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ABSTRACTS 
The development of OWL and OWL reasoning technologies has enabled them to be used for 

knowledge base (KB) modelling and/or intelligent data processing in applications of various 

areas. However the computation and memory intensive nature of OWL reasoners impedes 

the deployment of OWL ontology reasoning on resource-constrained devices. In order to 

address this issue, a possible approach is to compose the reasoners according to their 

application characteristics such that unnecessary reasoning capabilities are not loaded. This 

thesis introduces two novel automatic reasoner composition approaches, a selective rule 

loading algorithm and a two-phase RETE algorithm, that compose rule-entailment reasoners 

both at the rule level and inside the reasoning algorithm based on the ontology expressivity, 

in order to reduce resource consumption for reasoning on resource-constrained devices. 

With the growth of usage of ontology reasoners and the introduction of new reasoner 

characteristics, it is envisaged that reasoner selection in the future will become too 

complicated for the current consultation based process between application developers and 

reasoner experts. In addition the thesis proposes a semi-automatic reasoner selection process 

(RESP) that allows users to independently select a most appropriate reasoner for their 

applications according to application characteristics. The solutions to the problems of how 

to achieve resource constrained reasoning and more automatic reasoning selection, have 

been respectively implemented, in a resource-constrained composable reasoner (COROR) 

and a semi-automatic reasoner selection tool (TARS).  

Evaluation of the solutions indicates that the designed reasoner composition algorithms 

greatly reduce the time and memory requirement for reasoning and that proposed reasoner 

selection process helps users independently select a most appropriate reasoner for their 

applications, both of which will contribute to advancing the state of the art in the usage of 

reasoning within semantic applications.   



 

V 

 

TABLE OF CONTENTS 

Automatic	Reasoner	Composition	and	Selection	....................................................................	I	

Declaration	..............................................................................................................................	I	
Permission	to	Lend	or	Copy	....................................................................................................	II	
ACKNOWLEDGEMENTS	.........................................................................................................	III	
ABSTRACTS	............................................................................................................................	IV	
TABLE	OF	CONTENTS	..............................................................................................................	V	
TABLE	OF	FIGURES	...............................................................................................................	VIII	
TABLE	of	TABLES	.....................................................................................................................	X	
ABBREVIATIONS	...................................................................................................................	XII	
Chapter	1	Introduction	...........................................................................................................	1	

1.1	 Motivation	..............................................................................................................	1	
1.2	 Research	Question	and	Objectives	.........................................................................	4	
1.3	 Research	Process	and	Approach	............................................................................	5	
1.4	 Contributions	..........................................................................................................	8	
1.5	 Thesis	Overview	....................................................................................................	11	

Chapter	2	Background	and	Related	Work	............................................................................	13	
2.1	 Introduction	..........................................................................................................	13	
2.2	 Background	...........................................................................................................	15	

2.2.1	 OWL	and	OWL	Sublanguages	.......................................................................	15	
2.2.2	 RETE	and	RETE	Optimizations	.......................................................................	18	

2.3	 Related	Work	........................................................................................................	27	
2.3.1	 Survey	of	OWL	Reasoners	............................................................................	27	
2.3.2	 Survey	of	Semantic	Applications	..................................................................	38	
2.3.3	 Reasoner	Composability	...............................................................................	42	
2.3.4	 Resource-Constrained	OWL	Reasoners	........................................................	49	

2.4	 Summary	..............................................................................................................	52	
Chapter	3	COROR:	A	COmposable	Rule-entailment	Owl	Reasoner	for	Resource-Constrained	
Environments	.......................................................................................................................	54	

3.1	 Introduction	..........................................................................................................	54	
3.2	 An	Overview	.........................................................................................................	57	
3.3	 The	pD*	Semantics	...............................................................................................	58	



 

VI 

 

3.4	 Composition	Algorithms	.......................................................................................	59	
3.4.1	 Selective	Rule	Loading	Algorithm	.................................................................	59	
3.4.2	 Two-Phase	RETE	Algorithm	..........................................................................	65	
3.4.3	 Hybrid	Algorithm	..........................................................................................	76	

3.5	 Extending	COROR	to	Support	OWL	2	(Design	Perspective)	..................................	76	
3.6	 Summary	..............................................................................................................	83	

Chapter	4	RESP:	An	Automatic	Reasoner	Selection	Process	................................................	86	
4.1	 Introduction	..........................................................................................................	86	
4.2	 Overview	of	RESP	.................................................................................................	89	
4.3	 Discussion	of	Interplay	between	Semantic	Applications	and	RCs	........................	92	

4.3.1	 RCs	used	.......................................................................................................	93	
4.3.2	 Aspect	1	-	Frequently	Changing	Knowledge	Bases	.......................................	95	
4.3.3	 Aspect	2	-	Required	Semantics	.....................................................................	97	
4.3.4	 Aspect	3	–	Reasoning	Tasks	..........................................................................	97	
4.3.5	 Aspect	4	-	Query	...........................................................................................	98	
4.3.6	 Aspect	5	-	Rules	............................................................................................	99	
4.3.7	 Aspect	6	-	Concrete	Domains	.....................................................................	100	
4.3.8	 Aspect	7	-	Closed-World	Features	..............................................................	101	
4.3.9	 Aspect	8	-	Large	Knowledge	Base	or	Persistent	Storage	............................	102	
4.3.10	 Aspect	9	–	User/Application	Manipulation	of	Ontology	.............................	103	
4.3.11	 Aspect	10	-	Explanation	of	Reasoning	and	Ontology	Debugging	................	104	
4.3.12	 Aspect	11	-	Miscellaneous	..........................................................................	105	
4.3.13	 A	Summary	of	Example	Candidate	ACs	and	Connections	...........................	106	

4.4	 Matchmaking	......................................................................................................	106	
4.5	 Summary	............................................................................................................	109	

Chapter	5	Implementation	.................................................................................................	111	
5.1	 Introduction	........................................................................................................	111	
5.2	 COROR	................................................................................................................	112	

5.2.1	 Choosing	a	Platform	...................................................................................	112	
5.2.2	 Constructing	a	Resource-Constrained	Rule-Entailment	Reasoner	.............	113	
5.2.3	 Implementing	the	pD*	Semantics	..............................................................	124	
5.2.4	 Implementing	the	Composition	Algorithms	...............................................	128	
5.2.5	 Extending	COROR	to	Support	OWL	2	(Implementation	Perspective)	.........	136	

5.3	 TARS:	Tool	for	Automatic	Reasoner	Selection	....................................................	137	
5.4	 Summary	............................................................................................................	146	

Chapter	6	Evaluation	..........................................................................................................	148	
6.1	 Introduction	........................................................................................................	148	
6.2	 Performance	Comparison	and	Investigation	of	COROR	.....................................	150	

6.2.1	 Criteria	of	Selecting	Performance	Metrics	................................................	150	
6.2.2	 Design	and	Execution	.................................................................................	152	
6.2.3	 Intra-Reasoner	Comparison:	Results	and	Discussions	..............................	155	
6.2.4	 Inter-Reasoner	Comparison:	Results	and	Discussions	..............................	191	



 

VII 

 

6.2.5	 Accuracy	of	the	Selective	Rule	Loading	Algorithm	and	the	Two-Phase	RETE	
Algorithm	...................................................................................................................	196	

6.3	 Usability	Test	of	TARS	........................................................................................	197	
6.3.1	 Design	of	evaluation	..................................................................................	198	
6.3.2	 Results	and	discussions	.............................................................................	202	
6.3.3	 Questionnaires	analysis	.............................................................................	204	

6.4	 Summary	and	Key	Findings	................................................................................	209	
6.4.1	 Reasoner	Composition	Algorithms	.............................................................	209	
6.4.2	 RESP	............................................................................................................	211	

Chapter	7	Conclusions	and	Future	Work	............................................................................	214	
7.1	 Progress	vs.	Objectives	.......................................................................................	214	
7.2	 Contributions	......................................................................................................	218	
7.3	 Limitation	and	Future	Work	...............................................................................	221	
7.4	 Final	Remarks	.....................................................................................................	222	

References	..........................................................................................................................	223	
Appendix	A	A	Survey	on	OWL	Reasoners	...............................................................................	1	
Appendix	B	Scenario	descriptions	used	in	the	usability	experiment	of	RESP	........................	1	
Appendix	C	pD*	Entailment	and	Its	Implementation	in	Jena	Rule	Format	............................	1	
Appendix	D	Rule-Construct	Mappings	...................................................................................	1	
Appendix	E	A	Full	List	of	the	Java	Classes	Added	to	μJena	to	Form	the	Enhanced	μJena	......	1	

  



 

VIII 

 

TABLE OF FIGURES 

Figure 2-1: An example RETE network ................................................................................ 20	
Figure 2-2: Reasoner categorization used in this thesis ......................................................... 28	
Figure 2-3: A general structure of rule-based reasoner .......................................................... 33	
Figure 3-1: An Overview of COROR .................................................................................... 58	
Figure 3-2: Rule-construct dependency graphs (D* entailment rules) .................................. 61	
Figure 3-3: Rule-construct dependency graphs (P entailment rules) ..................................... 62	
Figure 3-4: Flow of the Two-Phase RETE Algorithm ........................................................... 66	
Figure 3-5: A shared alpha network v.s. a non-shared alpha network. .................................. 69	
Figure 3-6: Join sequences after been reordered by the most specific condition first heuristic.
................................................................................................................................................ 71	
Figure 3-7: pre-evaluation of the join connectivity heuristic ................................................. 72	
Figure 3-8: RETE Network with facts after all RETE cycles. ............................................... 74	
Figure 3-9: Rule-Construct dependency graph for OWL 2 RL entailments (semantics of 
equality). ................................................................................................................................ 77	
Figure 3-10: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of 
Axioms about Properties). ..................................................................................................... 78	
Figure 3-11: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of 
Classes). ................................................................................................................................. 79	
Figure 3-12: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of 
Class Axioms) ........................................................................................................................ 80	
Figure 3-13: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of 
Datatypes) .............................................................................................................................. 80	
Figure 3-14: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of 
Schema Vocabulary) .............................................................................................................. 81	
Figure 4-1: An overview of RESP ......................................................................................... 89	
Figure 5-1: Sun SPOT wireless sensor network development kit. ...................................... 113	
Figure 5-2: An example intermediate result for rule rdfp15 ................................................ 116	
Figure 5-3: An example Jena RETE network and an illustration of join operations ........... 118	
Figure 5-4: Class diagrams of the µJena enhanced with the Jena forward reasoner. ........... 121	
Figure 5-5: Implementation of the selective rule loading algorithm. .................................. 129	
Figure 5-6: Code snippet for the constructing a selective rule set. ...................................... 131	
Figure 5-7: Classes related to the two-phase RETE algorithm implementation .................. 132	
Figure 5-8: Code snippet for two-phase RETE algorithm ................................................... 133	
Figure 5-9: Intermediate results for the condition (?v ?p ?w) and (?u ?p ?x) in the rule 
rdfp15 and the rule rdfs4b. ................................................................................................... 134	
Figure 5-10: Intermediate results generated for rdfp15 and rdfs4b under the dual vector 
approach. .............................................................................................................................. 135	



 

IX 

 

Figure 5-11: Implementation for the most specific condition first heuristic. ...................... 136	
Figure 5-12: Packages and classes of TARS. ....................................................................... 138	
Figure 5-13: A snippet of the XML-coded profile for FaCT++. .......................................... 139	
Figure 5-14: Application characteristics selection interface. ............................................... 141	
Figure 5-15: Connections for AC integrity constraints. ....................................................... 143	
Figure 5-16: Reasoner selection results interface ............................................................ 143	
Figure 5-17: The user interface for registering candidate reasoners. ................................... 144	
Figure 5-18: User interface for specifying reasoner expressivity using OWL constructs. .. 145	
Figure 5-19: User interface for specify reasoner expressivity in DL. .................................. 146	
Figure 6-1: Comparisons of memory and reasoning time between COROR composition 
modes (Intra-reasoner comparison). .................................................................................... 157	
Figure 6-2: #IR generated by each rule when COROR-noncomposable/COROR-selective 
reasons over selected ontology ............................................................................................ 162	
Figure 6-3: Percentage of #IR occupied by each rule for COROR noncomposable. .......... 165	
Figure 6-4: Comparison between #M/#J of COROR-noncomposable and COROR-selective
.............................................................................................................................................. 167	
Figure 6-5: #M for the foaf ontology ................................................................................... 168	
Figure 6-6: #J for the foaf ontology. .................................................................................... 169	
Figure 6-7: Comparison of #IRM/#IRJ between COROR noncompoable and COROR two-
phase RETE ......................................................................................................................... 171	
Figure 6-8: Comparison of #J between COROR-two-phase and COROR-noncomposable.
.............................................................................................................................................. 174	
Figure 6-9: Comparison of #M between COROR two-phase and COROR noncomposable.
.............................................................................................................................................. 175	
Figure 6-10: Modified rule rdfp1, rdfp2 and rdfp4. ............................................................. 177	
Figure 6-11: Comparison of the memory usages of COROR-noncomposable and COROR-
two-phase to reason over selected ontology for different rule sets. ..................................... 178	
Figure 6-12: Comparison of the reasoning time of COROR-noncomposable and COROR-
two-phase to reason over selected ontology when different rule sets are used. ................... 179	
Figure 6-13: #M generated by COROR-noncomposable and COROR-two-phase when 
different rule sets are used. .................................................................................................. 181	
Figure 6-14: #J generated by COROR-noncomposable and COROR-two-phase when 
different rule sets are used. .................................................................................................. 182	
Figure 6-15: #IRM required by COROR-noncomposable and COROR-two-phase when 
different rule sets are used. .................................................................................................. 184	
Figure 6-16: #IRJ required by COROR-noncomposable and COROR-two-phase when 
different rule sets are used. .................................................................................................. 185	
Figure 6-17: #IRM/#IRJ required by COROR-hybrid and COROR-two-phase. .................. 188	
Figure 6-18: #M required by COROR-hybrid and COROR-two-phase .............................. 189	
Figure 6-19: #J required by COROR-hybrid and COROR-two-phase. ............................... 190	
Figure 6-20: Comparison of reasoning time/memory usage between COROR hybrid and 
state of the art reasoners. ...................................................................................................... 195	
Figure 6-21: The level of background knowledge of application-aware participants on both 
semantic application and ontology reasoning (level of knowledge, number of participants, 
percentage). .......................................................................................................................... 200	
 
  



 

X 

  

TABLE of TABLES 

Table 2-1: OWL constructs supported by the pD* semantics ................................................ 16	
Table 2-2: Reasoner characteristics used in the survey of OWL reasoners ........................... 37	
Table 3-1: Number of matched facts for each condition ........................................................ 70	
Table 4-1: A summary of values of the corresponding reasoner characteristics in the survey
................................................................................................................................................ 94	
Table 4-2: Candidate ACs and Connections Derived from Frequently Changing Knowledge 
Bases ...................................................................................................................................... 96	
Table 4-3: Candidate AC and Connection Derived from Required Semantics ...................... 97	
Table 4-4: Candidate AC and Connection Derived from Terminology-Centric Reasoning .. 98	
Table 4-5: Candidate ACs and Connections Derived from Query-Related ........................... 99	
Table 4-6: Candidate AC and Connection Derived from Rules ........................................... 100	
Table 4-7: Candidate ACs and Connections Derived from Concrete Domains ................... 101	
Table 4-8: Candidate ACs and Connections Derived from Closed-World Features ............ 102	
Table 4-9: Candidate ACs and Connections Derived from Large Knowledge Base or 
Persistent Storage ................................................................................................................. 103	
Table 4-10: Candidate ACs and Connections Derived from Ontology Manipulation ......... 104	
Table 4-11: Candidate ACs and Connections Derived from Explanation of Reasoning and 
Ontology Debugging ............................................................................................................ 105	
Table 4-12: Candidate ACs and Connections Derived from Miscellaneous ........................ 105	
Table 4-13: A Summary of Example ACs and Connections ................................................ 106	
Table 4-14: An example reasoner profile for COROR ........................................................ 107	
Table 5-1: pD* entailment rule rdfp2. .................................................................................. 124	
Table 5-2: Descriptions of built-in functors ......................................................................... 125	
Table 5-3: Definitions of lg, rdfs1 and rdf2-D in pD* entailments ..................................... 126	
Table 5-4: pD* entailment rule gl ........................................................................................ 127	
Table 5-5: The new application characteristic resource sensitive and its connections . 139	
Table 5-6: The new reasoner characteristic composition level and its possible values ........ 140	
Table 6-1: Ontologies used in intra-/inter-reasoner comparison experiments ..................... 154	
Table 6-2: Raw data for memory tests and time tests (memory in byte and time in 
millisecond). ......................................................................................................................... 158	
Table 6-3: Memory reduction achieved by the COROR-selective. ..................................... 163	
Table 6-4: The size of result ontologies generated by each reasoner mode. ........................ 197	
Table 6-5: Not selected ACs ................................................................................................ 202	
Table 6-6: Incorrectly selected ACs. .................................................................................... 202	
Table 6-7: Not selected RCs. ............................................................................................... 204	
Table 6-8: Incorrectly selected RCs. .................................................................................... 204	
Table 6-9: Mean values (overall and application-aware) for evaluation questions ............. 206	
Table A-1: Results of the survey of OWL reasoners ................................................................ 3	



 

XI 

 

Table A-2: Results of the survey of OWL reasoners (cont’d) .................................................. 4	
Table A-3: Results of the survey of OWL reasoners (cont’d) ............................................. 5	
Table A-4: Results of the survey of OWL reasoners (cont’d) ............................................. 6	
Table A-5: Results of the survey of OWL reasoners (cont’d) ............................................. 7	
Table A-6: Results of the survey of OWL reasoners (cont’d) ............................................. 8	
Table A-7: Results of the survey of OWL reasoners (cont’d) .................................................. 9	
Table A-8: Results of the survey of OWL reasoners (cont’d) ................................................ 10	
Table A-9: Results of the survey of OWL reasoners (cont’d) ................................................ 11	
Table E-1: Classes added to µJena to forming the enhanced µJena. ........................................ 1	
Table E-2: Classes added to µJena to forming the enhanced µJena. ........................................ 2	
 
  



 

XII 

 

ABBREVIATIONS 

ABox    Assertion Box 
AC    Application Characteristic 
CDC    Connected Device Configuration 
CLDC    Connected Limited Device Configuration 
COROR   COmposable Rule-entailment Owl Reasoner 
CPU    Central Processing Unit 
CWA    Closed World Assumption 
DB    Database 
DL    Description Logic 
FOL    First Order Logic 
IR    Intermediate Results 
KB    Knowledge Base 
L.H.S.    Left Hand Side 
MIDP    Mobile Information Device Profile 
NaF    Negation as Failure 
OS    Operating System 
OWA    Open World Assumption 
OWL    Web Ontology Language 
RAM    Random Access Memory 
RC    Reasoner Characteristic 
RDF    Resource Description Framework 
RDFS    RDF Schema 
RESP    REasoner Selection Process 
R.H.S.    Right Hand Side 
SPARQL   Simple Protocol and RDF Query Language 
SUS    System Usability Scale 
SWRL    Semantic Web Rule Language 
TARS    Tool for Automatic Reasoner Selection 
TBox    Terminology Box 
XML    eXtensible Markup Language 
XSLT    XML Stylesheet Transformation 
 



 

1 

 

Chapter 1 
Introduction 

1.1 Motivation	
The Web Ontology Language (OWL) [McGuinness and Van Harmelen 2004] is an ontology 

language aiming to enable the content of information to be processed by machine rather than 

merely being displayed to humans. To enable this, OWL includes a set of formally defined 

constructs with logic-based semantics [Patel-Schneider et al 2004], which facilitates 

machine reasoning on an OWL ontology revealing implicit knowledge from knowledge that 

is explicitly stated. An example would be the inference from a subclass/superclass 

relationship that any individual of a subclass is also an individual of the superclass. 

The formal definition and machine reasoning feature then enables OWL and its reasoning 

techniques to be used for knowledge base (KB) modelling and/or intelligent data processing 

in applications of various areas, such as clinical informatics [héja et al 2008, openGALEN, 

Golbeck et al 2003], bioinformatics [Harris et al 2004], battle field systems [Gomez et al 

2008, Sensoy et al 2011], sensor network systems [Calder et al 2010, Kim et al 2008, Eid et 

al 2007], web services composition [Hatzi et al 2009] and so on, forming semantic 

applications. Such semantic applications usually have diverse (reasoning related) 

application characteristics (ACs) that impose different requirements on reasoning, leading 

to the need for different OWL reasoners with distinct reasoner characteristics (RCs) to be 

used. For example some sensor network systems require OWL reasoning to be performed on 

historical sensor readings stored in a database and therefore a database-enabled OWL 

reasoner is preferable, while for some semantic publish/subscribe systems the ability to 

quickly answer a query over a changing KB would be an important RC. 

Currently the majority of research in the OWL reasoning area is targeted at building full-

fledged, fast and powerful OWL reasoners that run on desktop computers. However with the 
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growth of development of semantic applications, for example for pervasive computing, 

there is an increasing demand for on-device OWL reasoning to facilitate intelligent on-

device data processing, which in turn motivates the need for resource-constrained OWL 

reasoners [Kleemann and Sinner 2006, Brennan et al 2009, Koziuk et al, 2008]. Compared 

to the large amount of research performed to construct desktop OWL reasoners with 

different reasoner characteristics, very little research work has been conducted into how to 

minimize OWL reasoners so that they could operate on resource-constrained devices, in 

order to promote on-device intelligent data process and management [Ali and Kiefer 2009, 

Jang and Sohn 2004, Kim et al 2010].  

Desktop OWL reasoners are often computationally and resource intensive therefore it is 

difficult to have them run on resource-constrained devices where resource limitations are 

imposed (e.g. the Sun SPOT sensor board has 180MHz 32-bit ARM920T core processor 

with 512K RAM and 4M Flash [SUN SPOT 2010]). A natural and reasonable thought 

would be to adjust the reasoning algorithms according to the application characteristics of a 

particular application such that only required reasoning capabilities are preserved and 

unneeded reasoning capabilities are not loaded, thereby hypothetically the amount of 

required processing and memory could be reduced. The term coined for such an approach in 

this thesis is reasoner composition whereby a customized reasoner is composed for a given 

application, ontology or platform.  

Some reasoner composition mechanisms have been implemented in some OWL reasoners 

within the state of the art. For example Jena [Carroll et al 2004] and SwiftOWLIM 

[Kiryakov et al 2005] allow their reasoning rule set to be manually composed. However, 

such mechanisms are mostly static relying on tuning of the reasoner by reasoner experts or 

are only applicable to a specific rule set. The static reasoner composition mechanisms are 

appropriate if application characteristics are simple, relatively static and can be fixed before 

execution. However, they may be insufficient for some areas with a highly dynamic nature 

such as pervasive computing where applications often have changing application 

characteristics. An example would be the semantic publish/subscribe systems (refer to [Guo 

2009] for a general discussion of the semantic publish/subscribe systems) that are used for 

scalable and efficient information delivery in highly dynamic environments. Those systems 

are often designed to be application and ontology independent in order to cope with the 

dynamic nature of wireless sensor networks and ideally they should tune itself at 

deployment depending on the client ontology in use [Keeney et al 2008, Pathan et al 2010]. 

Another example could be semantic context-aware systems where ambient information may 
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keep changing with time, e.g. users’ interests, available services, the surrounding 

community and so on, which may need to alter ontologies and rules [Luther et al 2008, 

Ejigu et al 2007]. Hence it would be better that these systems are able to dynamically 

configure themselves to handle the diverse information from fast changing surroundings. 

Furthermore, as aforementioned, nowadays systems tend to push data processing toward the 

leaf nodes/edge of a network such as mobile phones or sensors, either to relieve servers 

from the heavy workloads and reduce throughputs of the networks from the system 

performance perspective or to protect users’ privacy from being uploaded to servers from 

the human perspective [Kleemann and Sinner 2006, Brennan et al 2009, Koziuk et al, 2008]. 

Considering the large amount of resource-constrained devices involved as well as the often 

lack of expertise of the end users, this thesis argues that static reasoner composition 

mechanisms appear to be inappropriate for semantic applications in dynamic areas and 

automatic composition mechanisms show better suitability for such dynamic areas.   

There are already many different reasoner characteristics out there for existing reasoners 

such as the support of rules, the support of database, and the support of conjunctive queries 

and so on, and the advance in OWL reasoning technologies will add more reasoner 

characteristics to the ever growing set of reasoner characteristics. For example the proposed 

reasoner composition mechanisms may enable reasoners to run on even smaller resource-

constrained devices, adding a new reasoner characteristic. On the other hand, as mentioned 

earlier the different semantic applications emphasize different reasoner characteristics. 

Therefore this raises a problem that the selection of an appropriate reasoner is becoming 

ever more complicated and there is an increasing need to help people to be able to choose an 

appropriate reasoner for their applications.   

In the state of the art, the selection of a reasoner relies largely on consultation between 

application developers and reasoner experts, and until recently this approach was 

straightforward and sufficient because of the relatively small number of OWL reasoners and 

reasoner characteristics envisaged. However, the ever widespread adoption of OWL and its 

reasoning technologies for applications in different domains and the rapid development and 

emergence of new OWL reasoning technologies makes this approach, in the opinion of the 

author, increasingly inadequate in the future for the following reasons. Firstly, as semantic 

applications grow more complicated and move beyond initial prototyping stages, these 

applications will be developed and extended by dedicated application developers with little 

or no knowledge of the intricacies of ontology reasoning. Furthermore reasoner experts may 

not always precisely understand some application characteristics expressed in domain 
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specific languages. The result could be a considerable amount of effort being required 

during consultations between an application developer and reasoner expert before an 

agreement is reached, or could even result in a wrong reasoner being selected. Secondly the 

existing approach requires that a reasoner expert is accessible to application developers, 

which will not always be the case. These inadequacies motivate the need for an automated 

approach to help application developers to limit consultation requirements or even to 

independently select a suitable reasoner for their semantic applications.  

In summary, this thesis focuses on overcoming the problem of how to undertake reasoning 

in a dynamic and complex resource-constrained environment. Given the highly dynamic 

nature of pervasive computing, it is taken as an example of such an environment. Two 

solutions in particular are identified and focused upon: (1) the provision of an automatically 

composed reasoner based on application characteristics (e.g. the ontology to be reasoned), 

focusing on a resource-constrained environment, and (2) tool support for the semi-automatic 

selection of the most appropriate reasoner for a given semantic application.  

1.2 Research	Question	and	Objectives	
This thesis addresses the question of: 

“How an appropriate resource-constrained OWL reasoner can be automatically 

composed and be selected based on application characteristics.”  

Five objectives are derived: 

§ Objective 1: survey the state of the art OWL reasoners, identifying Reasoner 

Characteristics (RCs) and categorizing them. Identify an appropriate type of 

reasoner upon which the reasoner composition research should be based. Survey 

semantic applications, identifying reasoning-related Application Characteristics 

(ACs).  

§ Objective 2: design automatic reasoner composition mechanisms and implement 

them in a resource-constrained reasoner. 

§ Objective 3: study the performance impact on the resource-constrained reasoner 

brought by the application of composition algorithm(s).  

§ Objective 4: design and implement a reasoner selection process that enables an 

application developer to automatically select a most appropriate reasoner for their 

semantic application based on application characteristics. 
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§ Objective 5: evaluate the usability of the reasoner selection process designed in 

objective 4. 

Objective 1 establishes a foundation for the other research carried out in this thesis. The 

categorization of OWL reasoners enables the reasoner composition research (objective 2) to 

be carried out for a type of reasoner rather than a particular reasoner implementation, 

providing this research with a general grounding. Furthermore during the survey reasoner 

characteristics are identified, and they are examined for each survey reasoner. Similarly the 

survey on semantic applications can facilitate the identification of application characteristics, 

and furthermore it helps the study of how existing semantic applications select reasoners to 

fulfil their application characteristics. Both surveys provide a basis for objective 4 and 5 

where the research on the automatic reasoner selection process is carried out.  

Objective 2 and 3 together address the first half of the research question that examines how 

an appropriate resource-constrained OWL reasoner can be automatically composed based 

on application characteristics. Objective 2 designs the automatic reasoner composition 

mechanisms for the selected type of reasoners. The designed reasoner composition 

mechanisms need also to be integrated into a resource-constrained reasoner, implementing a 

composable resource-constrained reasoner. Objective 3 examines the performance impacts 

of the reasoner composition algorithms on the selected type of OWL reasoner. A natural 

approach is followed in the evaluation where the performance of the composable resource-

constrained reasoner implementation with the use of composition mechanisms is compared 

with the reasoner without the composition mechanisms being used. 

Objective 4 and 5 together address the second half of the research question, which is how an 

appropriate OWL reasoner can be automatically selected based on application 

characteristics. Design and implementation of an automatic reasoner selection process is 

performed in objective 4, and evaluation of such process is included in objective 5. The 

automatic reasoner selection process constructed in objective 4 will still require application 

developers to be involved at some stages of the automatic reasoner selection process, for 

example to perform some tasks such as identifying application characteristics for their 

applications. Thus the evaluation focuses on the usability of this reasoner selection process, 

achieved through user trials.  

1.3 Research	Process	and	Approach	
An initial survey was conducted on 26 OWL reasoners in the state of the art and results are 

listed in Appendix A. For each reasoner 18 characteristics were surveyed, namely: reasoning 



 

6 

 

algorithm, reasoner type, reasoner expressivity, completeness (in terms of the supported 

expressivity), reasoning tasks, materialization, incremental reasoning, query support, rule 

support, closed-world features, concrete domain, database support, remote interface, user 

access, explanation, ontology manipulation, platforms, and os. Reasoners were then 

categorized into five types according to the algorithm used, including DL-Tableaux 

reasoners (DL stands for Description Logic), rule-entailment reasoners, resolution-based 

reasoners, hybrid reasoners and miscellaneous reasoners (as discussed in detail in section 

2.3.1.1). For each type of reasoners, it’s suitability for composition was discussed and the 

rule-entailment reasoner was found to have a good balance between expressivity and 

composability and thus was chosen as the target type of reasoner as the basis for the 

reasoner composition research. As reported in objective 1 another aim of this survey is the 

identification of reasoner characteristics. In fact as discussed in section 4.3 an example set 

of reasoner characteristics was identified based on this survey. 

Then a second survey was performed over five diverse sample types of semantic 

applications, namely semantic publish/subscribe systems, semantic context-aware systems, 

medical and bioinformatics systems, semantic sensor network management systems, and 

software engineering systems, chosen due to their wide adoption of semantic reasoning 

technologies to solve previously encountered problems or to perform intelligent data 

processing/accessing. This survey mainly concentrated on the examination of the 

application characteristics of these applications and how these application characteristics 

could affect the selection of an appropriate reasoner. As a matter of fact the examination of 

them facilitated the identification of an example set of application characteristics and 

correspondingly the mapping between application characteristics and reasoner 

characteristics which is termed connections in this thesis.  

The RETE algorithm [Forgy 1982] is the most common reasoning algorithm for rule-

entailment reasoners and hence two reasoner composition algorithms were designed by the 

author to compose at different levels, i.e. the rule set level and inside the RETE algorithm. 

The implementation of both composition algorithms was performed on a modified version 

of µJena [Micro Jena 2010] extended with a J2ME-ported Jena RETE engine [Carroll et al 

2004]. The choice of Jena RETE engine was motivated by the fact that it is a typical rule-

entailment reasoner and it is open source. The resulting implementation is named a 

COmposable Rule-entailment Owl Reasoner (COROR). 

In order to investigate the performance impacts brought by the application of the reasoner 
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composition algorithms, two experiments were performed. A first experiment was 

performed to measure and compare the time/memory performance of different COROR 

composition configurations (with one, two, or no composition algorithms) to fully reason 

over ontologies. This can directly reflect the performance change caused by the application 

of composition algorithms. A second experiment was then carried out to compare the 

performance of COROR with four counterpart rule-entailment reasoners namely Bossam 

[Jang and Sohn 2004], BaseVISor [Matheus et al 2006], SwiftOWLIM [Kiryakov et al 2005] 

and Jena RETE engine. This experiment could show how COROR performs compared to 

the other rule-entailment reasoner implementations. In addition it could reveal the 

performance merits and pitfalls of COROR compared to other state of the art rule-

entailment reasoners 

A REasoner Selection Process (RESP) was then designed which aims to assist application 

developers with little background on ontology reasoning to perform semi-automatic 

reasoner selection based only on application characteristics. A simple matchmaking 

approach is used in the process to check if the characteristics of an application are all 

satisfied by reasoner characteristics of a candidate reasoner. This process was designed to be 

a methodology without specifying any detailed technical solutions in order that it can be 

reused for different application domains. To make this process less abstract for 

demonstration and evaluation, a set of example application characteristics were identified 

based on the examination of 11 selected reasoning-related aspects of the surveyed semantic 

applications, ranging from frequently changing knowledge base to explanations of reasoning. 

Connections between the example application characteristics and the example reasoner 

characteristics were drawn based on the discussion in the survey. RESP was implemented as 

a prototype desktop application using Java, termed Tool for Automatic Reasoner Selection 

(TARS). The example application characteristics, example reasoner characteristics, and 

connections were implemented in TARS. 

Since human-beings are still involved in TARS to identify application characteristics for 

their semantic applications, a usability experiment was designed and performed that allowed 

participants to experience different facets of TARS, including a reasoner selection task that 

asked semantic application developers/users to select an appropriate reasoner for a given 

semantic application following RESP, and a reasoner registration task that asked reasoning-

aware users to register a candidate reasoner with TARS. 
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1.4 Contributions	
Two contributions are identified. 

Major contribution: the design of two novel automatic reasoner composition 

algorithms for rule-entailment reasoners, termed the selective rule loading algorithm 

and the two-phase RETE algorithm, and the implementation of them as a resource-

constrained rule-entailment OWL reasoner named COROR (COmposable Rule-

entailment Owl Reasoner) 

Minor contribution: the design and implementation of an automatic REasoner 

Selection Process (RESP) and a prototypical implementation, termed the Tool for 

Automatic Reasoner Selection (TARS). 

The major contribution that distinguishes this research from the state of the art is the design 

of the two novel automatic reasoner composition algorithms for rule-based reasoners, i.e. 

the selective rule loading algorithm and the two-phase RETE algorithm, and the 

implementation of them into a resource-constrained rule-based OWL reasoner named 

COROR (COmposable Rule-entailment Owl Reasoner). As will be introduced in section 

2.3.1.1.2 this research focuses on rule-based reasoners, more specifically on rule-entailment 

reasoners,  because they provide good balance between semantic expressivity and 

composability. The reasoner composition algorithms respectively perform the reasoner 

composition at the rule set level (selective rule loading algorithm) and inside the RETE 

algorithm (two-phase RETE algorithm). Briefly the selective rule loading algorithm 

estimates the usage of OWL reasoning rules for reasoning a particular ontology, and then 

selectively loads into the engine the rules estimated as useful. Unneeded rules are omitted, 

avoiding the allocation of resources originally required. The two-phase RETE algorithm 

interrupts the RETE network construction [Forgy 1982] (which is the internal reasoning 

algorithm for rule-entailment reasoners) midway by matching ontology against already 

constructed network, such that some heuristic indicators about the ontology that was only 

known at runtime can be collected and used to optimize1 the remaining RETE network 

construction. This enables the reasoning to be optimized taking into account information of 

the particular ontology.  

Experiments were performed to investigate the performance impact by applying the 

algorithms. Results show that for the tested ontologies the application of the selective rule 
                                                        

1 In this thesis optimize is referred to as having a better solution rather than having the best solution. 
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loading algorithm on average can reduce the time consumption by 33% and memory 

consumption by 35% for fully computing entailments. The application of two-phase RETE 

algorithm on average can reduce the time consumption by 78% and memory consumption 

by 74%. This contribution enables rule-entailment reasoners to be automatically composed 

in accordance with the ontology to be reasoned.  

Hence reasoners can always remain tightly “fit” to the changing ontology, enabling 

customized OWL reasoning for applications with high dynamism. Good examples of such 

applications are context-aware computing on resource-constrained devices or semantic 

publish/subscribe systems as described above. As shown by the experiment results, such 

customization of reasoning algorithms can save a large amount of resources for reasoning 

the same ontology, which, in other words, means that more complex/bigger ontology than 

before can be reasoned on the same resource-constrained devices, increasing the amount of 

intelligent processing that can be pushed to the edge of a network. In addition, although 

targeted at resource-constrained environment, it is envisaged by the author that the 

capability to reduce the memory consumption of OWL rule-entailment reasoning also 

enables the two introduced composition algorithms to benefit (desktop-based) applications, 

for example, to reduce the memory consumption of applications requiring web-scale 

reasoning, e.g. social network applications, so as to increase reasoning scalability. 

A minor contribution of this research is the design and implementation of an automatic 

REasoner Selection Process (RESP) and a prototypical implementation, termed Tool for 

Automatic Reasoner Selection (TARS). RESP is a process that automatically assists 

semantic application developers to select an appropriate reasoner for their semantic 

applications. It uses a relatively simple but useful matchmaking approach. In RESP 

semantic applications are represented as sets of application characteristics and reasoners are 

represented as sets of reasoner characteristics. Users identify and select the set of application 

characteristics representing their applications from the given candidate application 

characteristics and input them into RESP. The selection process is then one of matchmaking 

between the input application characteristics and reasoner characteristics of candidate 

reasoners through a set of predefined connections. Reasoners are ranked by the degree by 

which their reasoner characteristics match the selected application characteristics. The one(s) 

with 100% satisfaction is then the appropriate one(s). In the implementation users can also 

view which application characteristics are not satisfied with a reason for the mismatch. 

Based on this information users can adjust their required application characteristics if 

appropriate.  
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Usability experiments show RESP helps application developers in determining the reasoner 

to be used with little or even no help from reasoner experts (in contrast to the existing 

consultation-based reasoner selection process in which application developers totally rely on 

reasoner experts to select an appropriate reasoner).  

This contribution enables the reasoner selection process to be moved from a human-to-

human consultation-based approach to a human-to-computer semi-automatic approach. 

Application developers can easily select an appropriate reasoner for their applications 

without putting a lot of efforts in looking for reasoner experts or in the uptake of the 

intricacies of OWL reasoning technologies, facilitating the widespread of OWL and OWL 

reasoning technologies. Furthermore as a by-product when researching the semi-automatic 

reasoner selection approach, the identified application characteristics and reasoner 

characteristics will be useful as a starting point for other research in this area.  

Four papers were published in relation to research carried out in this thesis:  

“An Automatically Composable OWL Reasoner for Resource Constrained Devices”, in 

Proceeding of the International Conference on Semantic Computing (ICSC’09), 2009. 

This paper describes the selective rule loading algorithm and a prototype implementation of 

it on a desktop reasoner.  

“Open Framework Middleware for intelligent WSN topology adaption in smart buildings”, 

Proceedings of the International Conference on Ultra Modern Telecommunications 

(ICUMT’09), 2009. 

This paper investigates a potential use of composable reasoner to perform localized fault 

correlation in clustered wireless sensor networks. 

“A COmposable Rule-Entailment Owl Reasoner for Resource-Constrained Devices”, 

Proceedings of the International Symposium on Rule-Based Reasoning, Programming, and 

Applications (RuleML’11), 2011. 

This paper concentrates on the design, implementation and evaluation of COROR. The 

design of selective rule loading algorithm and the two-phase RETE algorithm is given in 

detail. The implementation of them in COROR as well as the evaluation are also described 

and discussed in this paper. 
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“RESP: A Computer Aided OWL REasoner Selection Process”, Proceedings of the 

International Conference on Semantic Computing (ICSC’11), 2011. 

This paper describes in detail the RESP process. Application characteristics are discussed 

from 11 reasoning-related aspects. A prototype implementation (TARS) and a usability 

evaluation are also presented and discussed.  

It is planned to submit a more detailed description of COROR and RESP based on this 

thesis to the Journal of Web Semantics or IEEE transaction on knowledge and data 

engineering. 

1.5 Thesis	Overview	
This thesis is comprised of seven chapters.  

Chapter Two provides background knowledge and related work of this thesis. Background 

knowledge includes the OWL ontology language and its sublanguages, and the RETE 

algorithm and its optimizations. Related work includes a survey of OWL reasoners, a survey 

of semantic applications, a discussion of state of the art composition approaches for rule-

based reasoners, and finally a discussion of resource-constrained reasoners.  

Chapter Three presents the design of COROR, a composable rule-entailment reasoner. Two 

novel composition algorithms are described in detail. 

Chapter Four describes the design of RESP, a process for selecting an appropriate reasoner 

for a given set of ACs. Some examples are also discussed. 

Chapter Five describes a prototype implementation of COROR and also a prototype 

implementation of RESP (named TARS) with some code snippets and screen shots attached. 

Chapter Six presents the design, settings and results of experiments performed for this thesis. 

Two experiments, i.e. an intra-reasoner comparison and an inter-reasoner comparison, were 

performed to evaluate how reasoning performance changes with the application of reasoner 

composition algorithms. This chapter also presents a usability experiment for RESP and 

TARS, and provides results and analysis. 

Chapter Seven concludes this thesis. Contributions and future work of this work are 

discussed. 

Seven appendices are attached at the end of this thesis. They are the results of the survey of 
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OWL reasoners, the scenario descriptions used in the usability experiment for TARS, the 

questionnaires used in the usability experiment for TARS, the pD* entailment rules and their 

implementations as Jena rules, the rule-construct mappings as a text implementation of rule-

construct dependency graphs, the profiles of candidate reasoners registered with TARS, and 

finally a full list of the Java classes added to µJena in order to make it support OWL 

reasoning.  

A DVD disc with all raw experiment results, ontologies used in the experiment and 

collected questionnaires is also submitted with this thesis. 
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Chapter 2 
Background and Related Work 

2.1 Introduction	
This chapter presents the background as well as related work for the investigation of the 

research question of this thesis as to  

“How an appropriate resource-constrained OWL reasoner can be automatically composed 

and be selected based on application characteristics.” 

As the overall context of this thesis, OWL and its sublanguages are discussed in the 

beginning in section 2.2.1. Both standard and non-standard OWL sublanguages are 

discussed. As indicated by the research objective 1, to kick off this research and to establish 

a solid foundation for the subsequent research, two surveys needed to be conducted: a 

survey of state of the art OWL reasoners and a survey of semantic applications. For the 

survey of OWL reasoners, two major problems needed to be solved. Firstly, in order to 

enable the research composition research to be applicable for a type of reasoners rather than 

a specific reasoner implementation, OWL reasoners needed to be categorized in some sense. 

A natural approach was to obtain this categorization based on the reasoning algorithms, as to 

compose OWL reasoners at the reasoning algorithms level would be the most intuitive way, 

given that the motivation to reduce resource consumption. Later investigation indicated that 

rule-entailment reasoner algorithm would be most amenable for composition in a way that 

would achieve resource efficient reasoning. A second problem that needed to be addressed 

was the distillation and survey of reasoner characteristics, which would also facilitate the 

research as to automatically select OWL reasoners. The survey of OWL reasoners is 

presented in 2.3.1 with the categorization of OWL reasoners and the identification of 

reasoner characteristics separately presented in section 2.3.1.1 and section 2.3.1.2. 
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The survey of semantic applications was to help the author to learn the interplays between 

the application characteristics and OWL reasoner characteristics, and also help the 

identification of (reasoner-related) application characteristics, that would facilitate the 

design of an automatic reasoner selection process. This survey and the survey of reasoners 

mentioned earlier influenced each other to some extent: the distillation of some specific 

reasoner characteristics, e.g. closed-world features, was inspired by the observation that the 

satisfaction of some application characteristics, e.g. integrity constraints, greatly depends on 

the possession of such reasoner characteristics and vice versa. The survey of semantic 

applications is presented in section 2.3.2. 

Then in order to identify a type of reasoner upon which to carry out the automatic reasoner 

composition research, the composability for different OWL reasoner categories is discussed 

in section 2.3.3. Rule-based reasoners were found to have better potential in composition 

and hence show better suitability for the automatic reasoner composition research. Existing 

reasoner composition approaches for rule-entailment reasoners were then studied (although 

none of these approaches are called “reasoner composition approach”). These reasoner 

composition approaches can fall into three types according to different composition levels 

they work on: to manually set the reasoning capability using pre-defined OWL 

sublanguages, to manually add/remove inference rules loaded into the reasoner, and 

automatic reasoning capability composition. Further investigation of these approaches 

revealed a gap where the automatic reasoner composition research could fit in: the existing 

reasoner composition approaches are either static relying on human tuning or designed to 

work on a specific semantics, therefore emphasizing the need for the design of an automatic 

reasoner composition approaches at the reasoning algorithm level and independent of 

specific semantics. 

As the designed reasoner composition approaches are implemented upon resource-

constrained devices, existing resource-constrained reasoners are presented in section 2.3.4. 

Surprisingly, it is rare that resource-constrained reasoners use reasoner composition 

approaches. In fact most of them are a direct migration of the desktop OWL reasoning 

algorithm onto resource-constrained devices. One resource-constrained reasoner adopts an 

automatic reasoner composition approach however it is restricted to only a specific OWL 

sublanguage. In addition the investigation of existing resource-constrained reasoners also 

reveals another gap for the reasoner composition research (at the implementation 

perspective) that none of the existing resource-constrained reasoners is designed for small 

devices with very limited resources, e.g. wireless sensors.  
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As will be seen in Chapter 3, rule-entailment reasoners are selected as the basis to carry out 

the reasoner composition research. Since RETE [Forgy 1982] is the major reasoning 

algorithm for this type of reasoner, a detailed description of RETE is given in the 

background section. 

2.2 Background	
In this section background knowledge of this thesis is presented. It includes two major parts: 

the OWL and its sublanguages and the RETE algorithm and its optimizations.  

2.2.1 OWL	and	OWL	Sublanguages	
OWL is an ontology modelling language standardized and recommended by W3C. It 

consists of a set of formally defined OWL constructs each of which is given a logic-based 

semantic [Patel-Schneider et al 2004]. OWL has three standard sublanguages, i.e. OWL-Full, 

OWL-DL and OWL-Lite, varying in the set of constructs supported and the semantic 

expressivity. Non-standard OWL sublanguages are also designed for different usages 

according to the OWL features supported, such as the pD* family [ter Horst 2005a, ter Horst 

2005b] and so on. Standard and non-standard OWL sublanguages are respectively discussed 

in section 2.2.1.1 and 2.2.1.2. OWL 2 [OWL 2 Overview] is the latest update of OWL. It 

extends OWL with more semantic expressivities and three application-oriented 

sublanguages, i.e. sublanguages that have been carefully crafted to suit for different usages. 

OWL 2 is introduced in section 2.2.1.3.  

2.2.1.1 OWL-Full,	-DL	and	-Lite	
OWL original has three standard sublanguages: OWL-Full, OWL-DL and OWL-Lite. 

OWL-Full provides complete support for all OWL constructs and it is fully compatible with 

RDF. It is very expressive for modelling domain knowledge however its reasoning tasks are 

not decidable, and fully automated reasoning is not possible. OWL-DL (OWL Description 

Logic) supports the same set of OWL constructs as OWL-Full but restricts support for some 

of the semantics possible in RDF in order to have decidable reasoning tasks. OWL-DL is 

currently the most widely used of the OWL sublanguages. OWL-Lite has a reduced 

construct set in order to provide the minimal useful language features for tool builders to 

support. In the rest of this thesis when OWL is mentioned without specifying the 

sublanguage it should be taken to mean OWL-DL. 

2.2.1.2 Nonstandard	OWL	Sublanguages	
Some nonstandard OWL sublanguages are designed to have computational or modelling 

advantages for some dedicated reasoning tasks. In this section some nonstandard OWL 
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sublanguages are discussed including the pD* semantics [ter Horst 2005a, ter Horst 2005b], 

EL++ [Baader et al 2005, Baader et al 2008], DL-Lite [Calvanese et al 2007], and DLP 

[Grosof et al 2003]. 

The pD* semantics (including pD* and pD*sv) defines a weakened but tractable2 subset of 

the OWL semantics. It adds to the D* semantics (the complete RDFS semantics extended 

with various datatypes, refer to [ter Horst 2005a]) with P entailment rules (a set of 

entailment rules implementing the partial semantics for some OWL constructs, refer to [ter 

Horst 2005a]). Some OWL constructs are missing, such as cardinality constructs 

(cardinality, minCardinality and maxCardinality), some (in)equality constructs (allDifferent 

and distinctMembers), Boolean combination constructs (unionOf, complementOf and 

intersectionOf), and oneOf. Still a substantial subset of OWL-DL constructs is kept (as 

indicated in Table 2-1). Semantics are encoded using a set of RDFS-like if semantic 

conditions and therefore the pD* semantics have PTIME 3 entailment complexity when 

variables are not used in the target ontology, i.e. checking if a variable-free target ontology 

G’ is the logical consequence of an ontology G for the given semantics, and NPTIME4 

entailment complexity when variables are used in the target ontology. A later work in [ter 

Horst 2005b] extends the pD* semantics with the support of the iff semantics for the 

owl:someValuesFrom forming the pD*sv entailment. However it does not have PTIME 

complexity. The pD* semantics inspired the standardization of OWL 2 RL [OWL 2 Profiles], 

an OWL 2 sublanguage with RDFS-like if semantics. A full set of pD* entailment rules can 

be found in Appendix C. 

Table 2-1: OWL constructs supported by the pD* semantics 

owl:FunctionalProperty owl:Restriction 
owl:InverseFunctionalProperty owl:onProperty 
owl:SymmetricProperty owl:hasValue 
owl:TransitiveProperty owl:someValuesFrom 
owl:sameAs owl:allValuesFrom 
owl:inverseOf owl:differentFrom 
owl:equivalentClass owl:disjointWith 
owl:equivalentProperty  
 
                                                        

2 Tractable is a concept in computational complexity theory. A problem is tractable if it can be solved in 
polynomial time.  
3 PTIME (Polynomial TIME): A PTIME problem can be solved by a deterministic Turing machine using a 
polynomial amount of computation time. 
4 NPTIME (Nonuniform Polynomial TIME): A NPTIME problem can be solved in polynomial time on a non-
deterministic Turing machine. 
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The EL++ is a specially dimensioned description logic to have tractable subsumption 

problems for ontology with a very large number of properties and classes. A very large 

subset of it (without property chain) can correspond to a subset of OWL. Some expressivity 

of OWL needs to be removed for EL++ to ensure its tractability, such as atomic negation, 

disjunction, at least restriction, inverse property, cardinality, and functional/inverse 

functional property. However EL++ is still expressive enough for modelling bioinformatics 

or medical ontologies such as Gene [Harris et al 2004] and SNOMED [héja et al 2008]. Part 

of the Galen ontology [openGALEN] can be expressed in EL++ as well. The EL family 

description logic has been standardized as an OWL 2 sublanguage, i.e. OWL 2 EL [OWL 2 

Profiles].  

The DL-Lite is a family of description logics carefully tailored to provide efficient 

conjunctive query answering capabilities over knowledge bases with large datasets. DL-

Litecore is the basic logic of the DL-Lite family. It can express someValuesFrom 

(unqualified), concept conjunction, concept disjointness, domains and ranges of properties, 

inverse properties. There are several variants for DL-Litecore extending it with different 

features without complicating the reasoning problems. For example DL-LiteR extends DL-

Litecore with inclusion assertions between object properties and DL-LiteF extends with 

functional and inverse functional property. DL-LiteR is standardized in OWL 2 as the logic 

underpinning of OWL 2 QL [OWL 2 Profiles].  

DLP (Description Logic Programmes) is a significant subset of OWL DL and Horn logic. It 

aims to provide bi-directional translation between semantic web ontologies and horn rules, 

coined DLP-fusion (for both ontology and reasoning problems), which allows an ontology 

built on top of rules and conversely rules built on top of an ontology. DLP supports the 

following features of OWL DL, namely concept disjointness, domains and range of 

properties, inverse and symmetric properties, functional and inverse-functional properties, 

inclusion and equivalence of object properties, transitive properties and a limited form of 

General Concept Inclusion (GCIs, i.e. C ⊑ D where both C and D are complex concept 

description rather than concept names). The translation between OWL and rules adopted by 

DLP is directly based on the semantic connections between horn logic and DL. Therefore 

rather than translating the ontology into a set of facts and using a set of OWL entailment 

rules to perform OWL reasoning, DLP translates the ontology into a horn rule program.  

2.2.1.3 OWL	2	and	OWL	2	Sublanguages	
OWL 2 is the latest update of OWL. Although the names of some OWL 2 constructs are 



 

18 

 

different from those in OWL, it is backward compatible with OWL 1. All OWL DL and 

OWL Lite ontologies are also considered as OWL 2 ontologies [OWL 2 Overview]. OWL 2 

adds some new features into OWL, including some new syntactical features, such as disjoint 

union of classes, and some new expressivity enhancements, such as: keys; property chains; 

richer datatypes/data ranges; qualified cardinality restriction; asymmetric, reflective and 

disjoint properties; and some enhanced annotation properties. These new expressivities 

together with OWL DL amount to an equivalent expressivity as the description logic 

SROIQ(D) (refer to [Baader et al 2007] for the naming scheme for a description logic). As 

in OWL 1, there are two types of semantics for OWL 2, a direct model-theoretic semantics 

[OWL 2 Direct Semantics] and a RDF-based semantics [OWL 2 RDF-Based Semantics]. A 

correspondence theorem is defined between them.  

OWL 2 defines five sublanguages. OWL 2 Full and OWL 2 DL are used to (informally) 

represent the entire OWL 2 capabilities when respectively interpreted using RDF-based 

semantics and direct semantics. OWL 2 DL can be viewed as OWL 2 Full with restrictions 

on some RDF features, such as the separation of properties, individuals and classes. In 

addition OWL 2 also defines three other more frequently used sublanguages, i.e. OWL 2 EL, 

OWL 2 QL and OWL 2 RL, in order to obtain tractable reasoning problems for some 

specific applications while retaining sufficient expressivities. OWL 2 EL extends EL++ and 

is designed to provide tractable reasoning services for very large ontologies with classes. 

OWL 2 QL enables efficient conjunctive query answering. OWL 2 RL defines a set of 

entailment rules (based on the pD* semantics), enabling OWL ontologies to be reasoned 

using rule systems. 

Note that in the rest of this thesis that if not specifically mentioned, the term OWL is used 

only for OWL DL. The terms OWL 2 will be specifically mentioned when OWL 2 is to be 

discussed. 

2.2.2 RETE	and	RETE	Optimizations	
As will be discussed in Chapter 3, the rule-entailment reasoners (using the ontology 

independent translation approach) show better suitability than the other reasoner categories 

for reasoner composition research. As the typical reasoning algorithm for rule-entailment 

reasoners, the RETE algorithm [Forgy 1982] is described and discussed in detail. Some 

optimizations have been designed to reduce its resource consumption, and they are 

described and discussed as well. 
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2.2.2.1 An	Overview	of	RETE	
The RETE algorithm is an efficient forward chaining pattern matching algorithm that 

matches facts in working memory against rules using a discrimination network termed 

RETE network (Figure 2-1). RETE forms the basis for most modern production rule engines 

and is also the internal reasoning algorithm for rule-entailment reasoners. RETE 

incorporates two of the three types of knowledge that are considered may be included in a 

production system algorithm [McDermott et al 1978], which are 

memory support, i.e. a scheme indicating the subset of working memory elements matching 

each condition element, and 

condition relationship, i.e. interaction between condition elements within a rule. 

The above two types of knowledge correspond to the alpha network and beta network of a 

typical RETE network (as shown Figure 2-1). The alpha network is comprised of one-input 

nodes named alpha nodes (maybe chained for some implementations), each of which 

performs intra-element test for each individual condition element in the left hand side (l.h.s.) 

of each rule. This intra-element test operation is termed match. Successfully matched facts 

are stored in the alpha memory of the corresponding alpha node as an intermediate result 

(IR), forming the memory support. 

As given in Figure 2-1, the beta network is comprised of networked two-input beta nodes 

that check for the consistency of variable bindings for pairs of intermediate results. The 

consistency checking operation is termed a join. Each input has associated memory where 

inputs from alpha memory or previous beta memory joins are stored, called beta memory. A 

typical beta node receives an intermediate result from one input each time (and stores it in 

the connected beta memory) and joins it against intermediate results stored in the opposite 

input. A joined intermediate result is generated for the paired tokens with consistent variable 

bindings and it is propagated to its successors which could be another beta node performing 

similar inter-condition checks or the conflict set (where intermediate results successfully 

matched to the entire rule reside) waiting for firing. The intermediate results joined by the 

last beta node are termed as an instantiation of the rule. The beta network realizes the 

condition relationship. 

Note that the above mainly describes how RETE handles additions (non-negative fact). 

Deletion (negative fact) is handled in the same way as addition. However rather than storing 

the deleted intermediate result in (alpha/beta) memory, RETE removes any same 
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intermediate results stored in the memory, and then propagates to the next node. 

 

Figure 2-1: An example RETE network 

The RETE algorithm operates iteratively with each iteration (termed a RETE cycle in this 

thesis) containing facts matching, joining and firing. The firing of rules may change the 

working memory by adding/removing any inferred facts, and changes are reflected in the 

RETE network by inserting the newly inferred facts into the network, matching and joining 

as normal facts. RETE blocks when no more changes are made to the working memory, and 

the result in working memory then contains all asserted and inferred facts. 
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RETE does not solve two problems that are commonly encountered in practical 

implementations. They are conflict resolution, i.e. how multiple instantiations can be 

ordered in the conflict set for firing, and rule firing, i.e. how firing a rule can change the 

working memory (e.g. adding/removing facts) and then affect the execution of the RETE 

algorithm (e.g. removing a fact can cause the retraction of an instantiation in conflict set). 

Many solutions have been proposed but since they are out the scope of this thesis they are 

not discussed in detail here.  

2.2.2.2 Other	Pattern	Matching	Algorithms	
There are some other pattern-matching algorithms besides RETE. The two most famous 

ones are TREAT [Miranker 1987] and LEAPS [Miranker et al 1990]. 

TREAT is designed following the conjecture made in [McDermott et al 1978] that 

sometimes maintaining intermediate results may require more efforts than re-testing and 

hence it becomes not worthwhile. It incorporates three types of knowledge: condition 

membership, memory support and conflict set support, where the former two are already 

defined in [McDermott et al 1978] as two of the three knowledge types should be included 

in a production system algorithm, and the conflict set support is proposed by TREAT as a 

forth type of the knowledge. It decides whether to generate or to invalidate instantiations for 

addition and retraction of facts. TREAT uses alpha memory only and excludes beta memory, 

realizing memory support but excluding the condition relationship knowledge of a RETE–

based production system.  

An initial empirical test by counting joins required in reasoning show TREAT outperforms 

RETE in all cases [Miranker 1987]. However a later work in [Nayak et al 1988] points out 

that although TREAT performs faster deletion operation for positive nodes, RETE 

outperforms it in most cases as TREAT is more likely to suffer from a long-chain effect, i.e. 

where the absence of successful matching is only detected after a large amount of expensive 

matching operations have been performed, leading to a waste of computational resources. 

Another performance comparison conducted in [Wang and Hanson 1992] shows TREAT 

always outperforms RETE in terms of the number of joins and storage required for 

evaluating database rule conditions. However later work in [Ding et al 2009] replaces the 

RETE engine in CLIPS with a TREAT engine and the experiment shows TREAT scales 

better than RETE. As recently pointed out by Miranker on his personal website5, RETE and 

TREAT share the same algorithmic complexity and the algorithmic superior of TREAT can 
                                                        

5 http://www.cs.utexas.edu/~miranker/treator.htm 
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easily be overcome by implementation. Furthermore since a single pass method is outlined 

for producing code for RETE, a RETE implementation is easier than a TREAT 

implementation.  

LEAPS (Lazy Evaluation Algorithm for Production Systems) is a variant of TREAT with 

best-first search for instantiations [Miranker et al 1990]. It is developed to avoid time and 

space wastage in the eager evaluation of rules [Miranker et al 1990]. Rather than 

enumerating the conflict set searching for the first to fire, LEAPS executes a best-first 

search for instantiations on a total ordered working memory (by recentness). Search states 

are stored in a stack. For each addition (deletion) that is matched to a non-negative fact 

(negative fact), an initial search state is generated and pushed into a stack. Once an 

instantiation is found the best-first search pauses immediately. The current search state is 

pushed into stack and the instantiation is fired. A next search state is popped as the root of 

the following search if the current search is exhausted. The algorithm halts if no more search 

states can be popped. A preliminary evaluation in [Miranker et al 1990] shows it 

substantially improves execution time as well as the space requirement for some application 

programs. Descriptions of the LEAPS implementation in OPS5 can be found in [Miranker et 

al 1990, Batory 1994]. LEAPS was supported in the Drools 3.x rule engine as well but not 

in later versions due to poor maintenance [Drools Documentation V4.x]. 

Although TREAT and LEAPS outperform RETE in some cases, RETE is widely 

implemented in general rule engines and a lot of optimizations have been developed (as will 

be discussed in the next section), improving its performance. In addition TREAT and 

LEAPS have not yet been implemented in any surveyed rule-entailment reasoners. As a 

matter of fact RETE is the major algorithm used by the surveyed rule-entailment OWL 

reasoners. 

2.2.2.3 RETE	Optimizations	
RETE stores intermediate results, enabling rule matching to be performed incrementally 

based on previous matching/join results. This enhances reuse however may require effort 

and memory to maintain the RETE network. Some potential problems include beta memory 

explosion, inefficient deletion, and so on [McDermott et al 1978, Miranker 1987]. To 

approach these shortcomings a number of RETE optimizations have been proposed in the 

state of the art. This section mainly describes and discusses RETE join sequence 

optimization heuristics, a group of widely applied optimizations to reduce the resource 

consumption of beta memory by reordering the join sequences of conditions. Furthermore 
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how they are applied automatically by RETE optimizers is also discussed. Finally some 

other heuristics are also discussed briefly. 

2.2.2.3.1 RETE	Join	Sequence	Optimization	Heuristics	
By default conditions are joined in the sequence in which they appear in the rule, which in 

many cases is authored by domain experts, and therefore join sequences of these rules are 

not already optimized (in most cases they might not). However as indicated by previous 

research [Ullman 1982, Brownston et al 1985, Wang and Hanson 1992, Ishida 1994] the join 

sequences of condition elements can greatly impact the performance of join operations and 

an inappropriate join sequence (e.g. cross production join) could cause drastically more join 

operations to be performed, hence leading to a lot more memory (more intermediate results 

generated) and time required (more joins performed) by the beta network. Therefore some 

join sequence optimization heuristics have been proposed to cope with the excessive 

overhead caused by inappropriate join sequences. Two most widely applied are the most 

specific condition first [Ishida 1988, Wang and Hanson 1992, Ishida 1994, Özacar et al 

2007] and the pre-evaluation of join connectivity [Scales 1986, Nayak et al 1988, Ishida 

1988, Ishida 1994, Özacar et al 2007]. 

The most specific condition element first heuristic is derived from the observation that the 

more specific a condition element is it is likely to match less facts, and therefore pushing 

more specific conditions towards the front of a join sequence is more likely to generate less 

intermediate results in a beta network [Wang and Hanson 1992, Özacar et al 2007]. To 

determine the specificity of condition elements some criteria are proposed. The counting 

matched facts criterion is the most straight forward one which uses the number of matched 

facts of a condition as its specificity. However this criterion appears to be paradoxical, as 

this number usually cannot be decided before the execution of RETE engine. A second 

criterion is counting variables, which assumes the more variables a condition element has 

the less specificity the condition element has and the higher likelihood it generates more 

intermediate results. This criterion is easy to implement but sometimes is coarse in 

determining the specificity, e.g. it is difficult to determine the specificity if two condition 

elements have the same number of variables. Deciding the specificity of a condition element 

by the complexity of the OWL predicate is a criterion specific for OWL reasoners [Özacar et 

al 2007]. It assumes the alpha memory for conditions with complex predicate is more likely 

to be smaller than conditions with simple assertion (e.g. type) or subsumption predicates 

(e.g. subClassOf) [Zhang et al 2004, Özacar et al 2007]. Although easy to implement and 

more accurate, this approach requires a predefined partial ordering of OWL predicates 
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according to their specificity, which is (1) static, that is the same order is used regardless of 

the particular ontology to be reasoned, and (2) somewhat inaccurate, e.g. it is not always 

correct to say that owl:subPropertyOf is more specific than owl:subClassOf.  

Pre-evaluation of join connectivity between condition elements is another widely adopted 

join sequence optimization heuristic [Scales 1986, Nayak et al 1988, Ishida 1988, Ishida 

1994, Özacar et al 2007]. It ensures two joining condition elements should at least have one 

common variable or otherwise it changes the join sequence. This heuristic is designed to 

avoid Cartesian product joins.  

There are some other less commonly applied RETE join sequence optimization heuristics. 

The pushing volatile conditions last heuristic [Ishida 1988, Ishida 1994] pushes the 

condition elements that match the frequently changing facts towards the end of the join 

sequence such that less joins are needed for changes. The join cluster sharing heuristic 

[Ishida 1988, Scales 1986, Ishida 1994] re-orders the join sequence to enable common join 

structures to be shared among rules, reducing the required efforts and resource to 1/n (if the 

sharable join structure is shared by n rules). However they are either not suitable for OWL 

reasoning (e.g. OWL ontology does not usually change) or highly constrained limiting their 

wide adaptation in general cases (e.g. the left-associative join tree of RETE network limits 

that only common join structures in the front of rules can be shared). Therefore they are not 

discussed in detail in this thesis. 

2.2.2.3.2 Application	of	RETE	Join	Sequence	Optimization	Heuristics	
Direct application of different RETE join sequence optimization heuristics may cause 

conflict with one another, e.g. pushing the most specific condition to the start of a join 

sequence may break the sharable join structure [Scales 1986, Ishida 1988, Wang and Hanson 

1992, Ishida 1994, Özacar et al 2007]. Therefore some approaches are proposed to carefully 

plan the application of these heuristics.  

In the work in [Scales 1986] a condition reorderer for SOAR, a RETE-based production 

system, is described to determine an optimized join sequence by repeatedly appending the 

“best” unordered condition to the ordered conditions (a best condition is the condition 

regarded by the reorderer to add most constraints to the existing ordered conditions). It 

classifies conditions into eight predefined ranks (ranging from 1 to 8) according to the static 

information that the reorderer knows about the conditions, that is if variables of an 

unordered condition is bound by the ordered conditions, if an unordered condition is the 

goal condition, and which attribute is multi-attribute (an attribute can have multiple values). 
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A condition with a lower rank is then regarded as one that adds more constraints than a 

condition with a higher rank. For example a condition with rank 1, i.e. condition with bound 

value in identifier, and constants in attributes and values, is regarded as to add more 

constraint than a condition with rank 8, i.e. condition with unbound variable in identifier. 

This approach is shown to be effective for SOAR. However it is specifically designed for 

SOAR rules and lacks generality. In addition, it uses only static information on the 

conditions to approximate optimal join sequence, which will generate the same join 

sequence even for two totally different fact bases.   

In the work in [Ishida 1994] the author proposes to use a priori execution to collect join 

costs for all conditions and then to enumerate all possible join structures and use a 

predefined cost model to estimate the cost for them. The join structure with the minimal cost 

is considered as the optimal join structure. Three heuristics are used to constrain the number 

of enumerated join structures: connectivity, i.e. all generated join structures should have 

common variable, minimal-cost, i.e. newly generated join structure should have lower cost 

than previously generated ones, and priority, i.e. avoid joining lower priority condition if a 

higher priority condition is available. This approach can find an optimal RETE structure 

however there are two obvious drawbacks: (1) enumerating all possible candidate join 

structures and computing costs for them may require a large amount of resources, and (2) a 

priori execution might not always be practical, particularly for the context of this research 

where limited resources are available. 

2.2.2.3.3 Miscellaneous	RETE	Optimizations	
Some other optimizations are designed to speed up or improve RETE algorithm in other 

aspects, such as: using indices to speed up searching for intermediate results; using non-

linear join structures to improve join performance or to enhance join structure sharing; 

enhancing RETE with the ability to process time sensitive events, and so on. They are 

described in this section. 

Indexing is a frequently used optimization to speed up production systems. Work in [Kang 

and Cheng 2004] builds two indices for conditions: a sequential index for finding the most 

recent fact and a tree shaped index for performing joins. Work in [Özacar et al 2007] uses a 

pyramid technique [Berchtold et al 1998] to index ontological data for efficient access. 

[Scales 1986] suggests indexing facts by class type and attribute name to minimise the 

number of tests on alpha nodes. [Obermeyer et al 1995] suggests selectively building and 

applying a relatively simple index structure to speed up production systems. 
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Some research considers replacing the linear join network of RETE with other join 

structures such as a binary network or a bilinear network to gain more performance benefit. 

The work in [Scales 1986] discusses in detail three possible effects of using a non-linear 

join network, including the change of the number of generated intermediate results, the 

improvement on the likelihood of join cluster sharing, and the elimination of long-chain 

effects. However a potential negative effect is that Cartesian production joins could occur 

more frequently, which may easily cancel out the benefits. Uni-RETE [Tambe et al 1992] 

adopts a bilinear join structure as an alternative of the linear join structure to increase 

sharing of common join structure. Experiment results show that the bilinear version of uni-

RETE requires less time than the linear version of uni-RETE and much less time than 

RETE. [Lee and Schor 1992] proposes a matching algorithm for generalized RETE network. 

Research in [Wright and Marshall 2003] proposes to prune the beta network at runtime so 

the amount of beta memory can be adjusted dynamically according to the availability of 

memory. Joins for the pruned part of the beta network is calculated on demand (as in 

TREAT). Therefore TREAT is a special case with all the beta networks pruned.  

Optimizations are proposed to improve the poor deletion performance of RETE. For 

example the work in [Wright and Marshall 2003] proposes to use a search-based asymmetric 

deletion approach to speed up the deletion operation in RETE network. It keeps the original 

facts in intermediate results and therefore deletion turns out to be searching for all the 

intermediate results containing the deleted fact. 

Some other optimizations that are not specially designed for RETE are also applicable or 

potentially applicable to it. For example, the work in [Schmolze and Snyder 1997] presents 

an approach for detecting redundant production rules for general production systems. The 

Gator network [Hanson and Hasan 1993] has been proposed as a generalized RETE/TREAT 

by allowing generalized join network. Similarly optimizations used in the Gator network 

[Hanson et al 2002] can also be studied and used by RETE optimizers. In addition given the 

close connection between RETE and query processing in database systems some 

optimizations strategies, such as query transformation heuristics, selectivity and cost 

estimation and so on, can be modified and applied for RETE optimization [Ullman 1982, 

Jarke and Koch 1984, Smitha and Geneseretha 1985, Elmasri and Navathe 2003].  

While some of the optimizations discussed in this subsection are not the focus of this 

research, some of them, such as indexing, could be introduced to this research without 

fundamentally changing the approach described in later chapters.  
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2.3 Related	Work	
Related work of this this research is four-fold. Two surveys are presented in the first 

instance: a survey of OWL reasoners and a survey of semantic applications. There were two 

goals for the survey of OWL reasoners: a categorization of OWL reasoners that enables the 

reasoner composition research to be conducted on a general grounding and the distillation of 

a set of reasoner characteristics. The survey of semantic applications helps the 

understanding of the complicated interplay between semantic applications and OWL 

reasoners, which may facilitate the design of an automatic reasoner selection process. 

Results of these two surveys form the foundation of research carried out in this thesis. Then 

existing reasoner composition approaches are presented. By discussing the existing reasoner 

composition approaches, gaps are identified which the automatic reasoner composition 

research can attempt to fill. Finally since the reasoner composition research is targeted at 

resource-constrained OWL reasoners, existing resource-constrained OWL reasoners are 

examined and how they are designed in order to more efficiently run on resource-

constrained devices are discussed.  

2.3.1 Survey	of	OWL	Reasoners	
As informed by research objective 1, a survey of state of the art OWL reasoners was 

performed on a set of 26 state of the art reasoners. These reasoners were encountered while 

the author was doing literature review. Two goals are targeted for this survey. First, a 

categorization of OWL reasoners needs to be obtained in order to enable the reasoner 

composition research to be conducted on a type of reasoner rather than a particular reasoner 

implementation, providing this research with a more general grounding. Therefore to 

categorize reasoners can provide a foundation for this research. A second goal needs to be 

achieved in the survey is that a set of reasoner characteristics needs to be distilled, which 

may help the automatic reasoner selection research. A summary of the results of this survey 

can be found in appendix A. In the next two subsections how the above two goals are 

achieved in this survey is discussed in detail. 

2.3.1.1 A	Categorization	of	OWL	Reasoners	
As mentioned earlier the goal for obtaining a categorization of reasoners is to provide a 

general grounding for the reasoner composition research. A natural approach identified by 

the author was to obtain this categorization based on the reasoning algorithms, since to 

compose OWL reasoners at the reasoning algorithms level tends to be the most intuitive 

way to conduct the reasoner composition research given the motivation to reduce the 

resource consumption of OWL reasoners. 
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A similar previous categorization was found in [Zou et al 2004] which categorizes OWL 

reasoners into three types according to logic that OWL can be translated into: OWL 

reasoners using specialized DL engines, OWL reasoners using full first order logic (FOL) 

theorem provers, and OWL reasoners using a reasoner designed for FOL subsets. This 

categorization to some extent satisfied the needs of the author as described above. However, 

there are some aspects of this categorization that impeded its use for the automatic reasoner 

composition research. First, this categorization is not based on reasoning algorithms and 

therefore the reasoning algorithms may be different even for reasoners of the same type. For 

example, this categorization does not distinguish between rule-based reasoners using 

forward-chaining rule engines and those using backward-chaining logic programming (LP) 

engines although both of them belong to OWL reasoners using a reasoner designed for FOL 

subsets according to this categorization. To distinguish them is important for the automatic 

reasoner composition research since forward-chaining rule engines and backward-chaining 

LP engines use different rule matching algorithms, which may need totally different 

automatic composition approaches. A second aspect is that there have been reasoning 

algorithms developed since this categorization was created, and new reasoners have 

emerged that do not fall into any category of this categorization, e.g. hybrid reasoners such 

as DLEJena [Meditskos and Bassiliades 2010] combine more than one reasoning algorithms. 

 

Figure 2-2: Reasoner categorization used in this thesis 

Hence, a new categorization was created by the author, based on the reasoning algorithms of 

OWL reasoners (as given in Figure 2-2). The new categorization was inspired by the above 

categorization, however with finer categorization. The first category, namely OWL 

reasoners using specialized DL engines, is kept however renamed as DL-tableaux reasoners. 

The last two types in the previous categorization, i.e. OWL reasoners using full first order 

logic (FOL) theorem provers and OWL reasoners using a reasoner designed for FOL subsets, 

are replaced by rule-based reasoners using forward chaining engines (rule-entailment 
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reasoners) and rule-based reasoners using backward chaining engines (resolution-based 

reasoners). Furthermore two new reasoner categories are added in correspondence to the 

development of new reasoning algorithms: the hybrid reasoners that combine more than one 

type of reasoners and the miscellaneous reasoners that differentiate other less common 

reasoning algorithms. This new categorization was then used in the survey of 26 state of the 

art reasoners. In the following subsections, each reasoner category is described. 

2.3.1.1.1 DL-Tableaux	Reasoners	
DL-tableaux reasoners convert OWL axioms into DL axioms and then reduce OWL 

entailment to determining the satisfiability of the reduced KB, that is to check there is a 

valid model for the reduced KB [Horrocks and Patel-Schneider 2004a]. As DL tableaux 

calculus is widely adopted in determining KB satisfiability [Baader and Sattler 2001, Baader 

et al 2007], reasoners of this type are termed DL-tableaux reasoners.  

KB satisfiability checking is the key DL reasoning task as (1) arbitrary conclusions can be 

drawn from a contradictory KB [Tobies 2001], and (2) other DL reasoning tasks such as 

concept satisfiability, concept subsumption, instance checking and so on can be reduced to it 

with the presence of negation in the logic [Baader et al 2007]. For example given C and D 

as two concept names, T a TBox6, a an individual, the subsumption C ⊑ D can be reduced to 

checking the unsatisfiability of KB {T, (C ⊓ ¬D):a}.  

In general, DL tableaux algorithm applies a set of (often hard-coded) consistency-preserving 

transformation rules to the ABox7  until no more rules apply. If the transformed ABox 

obtained this way consists a contradiction, then the ABox is consistent and inconsistent 

otherwise. An example transformation rule could be like: 

The à⊓ - rule 

Condition: A contains (C1 ⊓ C2)(x), but it does not contain both C1(x) and C2(x). 

Action: A’ = A ⋃ {C1(x), C2(x)}. 

This rule basically states that if the original ABox A contains a conjunction of two concepts 
                                                        

6 TBox is one of the two components of a typical KB. It contains intentional/terminological knowledge. The 
other component of a KB is ABox. 
7 ABox is one of the two components of a typical KB. It contains extensional/assertional knowledge. The other 
component of a KB is TBox. 
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C1 and C2, and they are not individually included in A, then the newly transformed ABox 

A’ needs to included C1(x) and C2(x). Hence if C1 ⊓ C2 is not satisfiable, say C1 = D and 

C2 = ¬D, an obvious contradiction will be detected in the A’ that the individual x belongs to 

two contradicting concepts D and ¬D. In order for better performance and ensure its 

termination, transformation rules are usually hardcoded and many optimizations are 

developed and applied. More detail on DL tableaux algorithms can be found in [Baader and 

Sattler 2001, Baader et al 2007]. 

While DL tableau calculi usually perform sound and complete TBox reasoning for the 

supported DL, they usually have difficulties in efficiently reasoning large ABox [Haarslev 

and Möller 1999, Horrocks et al 2004, Motik and Sattler 2006, Meditskos and Bassiliades 

2008a]. This has been partly solved by some newly proposed approaches such as DLE 

reasoning [Meditskos and Bassiliades 2008a], a hybrid approach using DL tableau calculi 

for efficient TBox reasoning and forward-chaining Datalog rules for scalable ABox 

reasoning, and hypertableau [Motik et al 2009], a variety of DL tableau calculi combining 

the idea of hyper-resolution to reduce the non-determinism. Since a hybrid approach, e.g. 

combining DL-tableaux reasoner with rule-based reasoner, is used in the DLE approach, 

reasoners using the DLE approach are considered in this categorization as within the hybrid 

reasoner category which will be introduced in section 2.3.1.1.3. Reasoners using the 

hypertableau algorithm are still considered as DL-tableaux reasoners.  

Some OWL reasoners of this type include FaCT++ [Tsarkov and Horrocks 2006], Pellet 

[Sirin and Parsia 2007], RacerPro8, and HermiT [Motik 2007], among which HermiT is the 

first and only reasoner implementing the hypertableau calculus while the others implement 

DL tableau calculi. 

2.3.1.1.2 Rule-based	Reasoners	
The interaction between rules (or FOL implication) and ontology is a long-discussed issue in 

the OWL community. Many approaches are proposed for combining them and a good 

number of rule-based reasoners have been implemented. According to the different 

algorithms used to perform reasoning, they fall into two reasoner categories: the forward 

chaining rule-entailment reasoners that use forward chaining (RETE-based) rule engines and 

the backward chaining resolution-based reasoners that use resolution-based backward 

chaining engines (including partial or full FOL engine). Before going into more detail about 
                                                        

8 http://www.racer-systems.com/ 
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the above two reasoner categories, a general description is given on how OWL ontology 

interoperates with rules in order to achieve rule-based OWL reasoning. 

2.3.1.1.2.1 A	General	Description	of	Rule-based	OWL	reasoning	
In order to process an ontology using rule-based approaches, the ontology needs to be 

converted into a rules-compatible form first. This conversion can follow two approaches: an 

ontology independent approach that translates OWL ontology syntactically into a set of facts 

and (partial) OWL semantics into a fixed set of ontology-independent entailment rules, and 

an ontology specific approach that semantically transforms the OWL ontology into a set of 

facts/ontology-specific rules according to the OWL direct semantics (following the DLP 

approach [Grosof et al 2003]). For example given a set of OWL axioms as 

Individual(a type(C)) 

Class(B partial C) 

Class(C partial D) 

Class(D complete restriction(P someValuesFrom E) 

which states D is a someValuesFrom constraint restricting the existence of instances of class 

E on property P, and C is a subclass of D. An ontology independent translation could be a set 

of facts in triple format such as 

a rdf:type C 

B rdfs:subClassOf C 

C rdfs:subClassOf D 

D rdf:type owl:Restriction 

D owl:onProperty P 

D owl:someValuesFrom E 

and ontology-independent OWL entailment rules can be implemented as  

(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) à (?a rdfs:subClassOf ?c) 
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(?a rdfs:subClassOf ?b), (?c rdf:type ?a)à (?c rdf:type ?b) 

(?a owl:someValuesFrom ?b), (?a owl:onProperty ?p), (?o rdf:type ?a), makeTemp(?x) 

à (?o ?p ?x). 

However an ontology specific translation of the example OWL axioms could generate a set 

of ontology specific rules (FOL implication): 

C(a) 

∀x.CL(x) à DL(x) 

∀x.BL(x) à CL(x) 

∀x∃y.DL(x)àPL(x, y)∧EL(y) 

where BL, CL, DL,EL and PL are the rule predicates for the corresponding classes or predicate.  

It is clear from the above examples that the ontology independent approach translates OWL 

ontology into a set of facts and uses ontology independent entailment rules to perform OWL 

reasoning. Entailment rules are usually static and they are fine grained in terms of the 

supported OWL semantics: each rule usually realizes a fixed and small portion of OWL 

semantics. Furthermore entailment rules are independent of the ontology and therefore any 

changes to the ontology do not change the rule set.  

However, it can be seen from the above examples, the ontology specific approach translates 

OWL axioms into rules (or FOL implication) by embedding the OWL semantics in this 

translation. The rule program (FOL program) obtained through this way is a direct and exact 

rule translation of the ontology and since OWL semantics are embedded in the translation 

no separate OWL entailment rules are required to perform reasoning. However some 

drawbacks also exist. Firstly, this approach embeds semantics in the translation, and 

therefore the same semantics could be realized multiple times for similar axioms, causing 

extra effort in the translation. For example, semantics for rdfs:subClassOf are realized 

twice for both Class(B partial C) and Class(C partial D), generating two different rules. 

Secondly, compared to the ontology independent approach, although the ontology specific 

approach may generate less complex individual rules (complex concept axioms, e.g. GCI, 

will still lead to complex rules to be generated by the ontology specific translation), many 
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more rules than the OWL entailment rules will be generated (for each concept/property 

axiom in the ontology a rule is generated).  

Depending on the different paradigms/algorithms used to process the translated rule 

program, rule-based reasoners are further divided into two reasoner categories: the (forward-

chaining) rule-entailment reasoners and the (backward-chaining) resolution-based reasoners. 

Figure 2-3 gives a general structure of rule-based reasoner. The next two subsections 

describe these two categories in detail. As will be found out that most surveyed rule-

entailment reasoners use the ontology independent approach and the resolution-based 

reasoners use both translation approaches evenly. 

 

Figure 2-3: A general structure of rule-based reasoner 

2.3.1.1.2.2 (Forward	Chaining)	Rule-Entailment	Reasoners	
Forward chaining rule-entailment reasoners (for brief they will be referred to as rule-

entailment reasoners in the reminder of this thesis) use (often RETE-based) forward 

chaining engine to process the translated rule program. Ontology entailment is the major 
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reasoning task for rule-entailment reasoners. It checks if a target ontology O’ is a logical 

consequence of a given source ontology O. If so, O is said to entail O’ (or O’ is entailed by 

O) and it is written down as O ⊨ O’. In general a rule-entailment reasoner fully calculate all 

possible entailments according to the OWL semantics either expressed as static entailment 

rules or embedded in the translated ontology-specific rule program. As a typical algorithm 

for rule-entailment reasoners, RETE materializes all inferred entailments and therefore 

queries can be laid on the ‘completely’ inferred ontology, enabling fast query evaluation 

[Kiryakov et al 2005, ter Horst 2005a, Meditskos and Bassiliades 2008b].  

Bossam [Jang and Sohn 2004], OWLIM [Kiryakov et al 2005], OWLJessKB [OWLJessKB 

2011], OWL2Jess [Mei et al 2005], BaseVISor [Matheus et al 2006], all use the ontology 

independent approach. O-DEVICE [Meditskos and Bassiliades 2008b] combines the 

ontology independent approach for TBox reasoning and the ontology specific approach for 

ABox reasoning. 

2.3.1.1.2.3 (Backward	Chaining)	Resolution-based	Reasoners	
Backward chaining resolution-based reasoners (for brief they will be referred to as 

resolution-based reasoners in the reminder of this thesis) translate OWL ontology into a rule 

program (using full FOL clauses or partial FOL clauses such as Prolog, Datalog, Flora) and 

hand-off OWL reasoning to the corresponding resolution engines (refer to [Nerode and 

Shore 1997] for resolution). The goal-directed nature of resolution enables reasoning to be 

performed at query evaluation time and therefore in contrast to rule-entailment reasoners in 

theory resolution-based reasoners do not require a priori full entailment calculation. 

Therefore it is expected that a resolution-based reasoner may have more flexibility in 

efficiently answering queries over a frequently changing KB. However some resolution-

based reasoner implementations still pre-calculate and materialize (part of) entailments in 

order to gain better runtime query performance, e.g. KAON2 [Hustadt et al 2004a].  

Resolution-based reasoners using the ontology specific translation include KAON2 [Hustadt 

et al 2004a], Thea [Vassiliadis et al 2009], Hoolet [Tsarkov et al 2006] and Bubo [Volz et al 

2003]. Resolution-based reasoners using ontology independent translation include F-OWL 

[Zou et al 2004], and Surnia [Surnia 2011]. 

2.3.1.1.3 Hybrid	Reasoners	
Some OWL reasoners combine two of different algorithms in order to take advantage of 

both. Reasoners using this hybrid reasoning approach are categorized as hybrid reasoners. 
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Two well-known hybrid reasoners are Minerva [Zhou et al 2006] which uses DL-tableaux 

reasoners to handle TBox reasoning and uses RDBMS and DLP rules to achieve scalable 

ABox reasoning, DLEJena [Meditskos and Bassiliades 2010], a hybrid reasoning framework 

delegating terminological reasoning to DL-tableaux reasoners and ABox reasoning to a rule-

entailment reasoner [Meditskos and Bassiliades 2008a], and Jena [Carroll et al 2004] which 

is a hybrid engine combining a resolution engine to evaluate the backward chaining part of 

Jena rules and a RETE engine to evaluate forward-chaining part of Jena rules. Pellet now 

supports rules as well but it is still primarily a DL reasoner, therefore it is categorized into 

the DL-Tableaux reasoners.  

2.3.1.1.4 Miscellaneous	Reasoners	
There are some other OWL reasoners using dedicated reasoning algorithms other than those 

mentioned above in order to have efficient reasoning services for some specific purposes. 

CEL uses a polynomial time classification algorithm for DL EL++ [Baader et al 2006]. 

Owlgres [Stocker and Smith 2008], QuOnto [Acciarri et al 2005] and MASTRO [Calvanese 

et al 2011] are designed to provide efficient conjunctive query answering algorithm over 

large ABox and an algorithm specifically designed for the DL-Lite subset of OWL is used 

combining TBox knowledge in query evaluation [Calvanese et al 2007]. The latest version 

of Owlgres (can be found here9) supports efficient conjunctive OWL 2 QL reasoning. Oracle 

database 11g [Wu et al 2008] evaluates entailment rules by converting them into equivalent 

SQL statements and evaluates them in RDBMS, enabling OWL ontology to be stored and 

reasoned in Oracle database. The SPIN technology [SPIN 2011] authors the OWL 2 RL 

rules using SPARQL rules (with the assistance of the CONSTRUCT keyword) and handles 

OWL reasoning using SPARQL engine. Although a similar approach as rule-entailment 

reasoners or some of the resolution-based reasoners is used where OWL ontology is reduced 

to rules and entailment rules (SPARQL rules) are used to express meaning of OWL 

vocabulary, the implementations of SPARQL engine vary and therefore this approach is 

classified as miscellaneous reasoner. 

Some other algorithms are also proposed to reason DL ontologies, for example the structural 

subsumption algorithm [Baader et al 2007] tests subsumption by analysing the syntactic 

structure of normalized DL axioms, however it is not yet implemented in any OWL 

reasoners and therefore it is out of the scope of this thesis. 

                                                        

9 http://pellet.owldl.com/owlgres/ 
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2.3.1.2 Reasoner	Characteristics	
As mentioned earlier a second goal of having a survey on state of the art reasoners is the 

distillation of a set of reasoner characteristics. In this survey, 18 reasoner characteristics 

were identified and surveyed (as given in Table 2-2). The selection of these reasoner 

characteristics was based on an initial survey over semantic reasoners published online10 in 

2009. Although this survey is an online document and may have not received strict peer 

reviews, its selection of reasoner characteristics is reasonable and therefore it serves as a 

good basis to start with. However the distillation of reasoner characteristics was not a one-

off effort and they were not fixed even after the survey had started. Some reasoner 

characteristics from the initial survey were removed (version and licensing) since they 

appear little relevance to application characteristics of semantic applications. Some others 

were combined for brevity (OWL-DL entailment and consistency checking were combined 

into reasoning tasks). More reasoner characteristics were added by the author. Some are 

common for OWL reasoners such as reasoning completeness, query support, concrete 

domain reasoning. Some others characteristics such as incremental reasoning, closed-word 

features were inspired when surveying semantic applications. They were then added into 

this survey. A full list of the surveyed reasoner characteristics and their descriptions can be 

found in Table 2-2. For each reasoner characteristic a code (given in parenthesis) is assigned 

in order for better brevity and preciseness when referenced. Surveying values of reasoner 

characteristics for reasoners mainly relied on two approaches: literature review (including 

published papers, webpages, and product release documents) and looking into the API 

documents, which required a large amount of reading and researching: more than 90 

different types of literature were reviewed. Still the values of some reasoner characteristics 

are unknown for some reasoners. A detailed discussion of how the correlation between these 

reasoner characteristics and characteristics of different types of applications can be found in 

section 4.3. Detailed results of the survey can be found in Appendix A. 

                                                        

10 http://en.wikipedia.org/wiki/Semantic_reasoner 
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Table 2-2: Reasoner characteristics used in the survey of OWL reasoners 

Reasoner characteristic Descriptions 

Reasoning algorithm (ALGM) The algorithm used by the reasoner. 

Reasoner type (TYPE) The type of the reasoner. 

Expressivity (EXPR) The expressivity of the reasoner. 

Completeness (CPLT) If the reasoner can completely reason its supported 

expressivity. 

Reasoning tasks (TASK) The reasoning tasks supported by the reasoner. 

Materialization (MTLZ) If the reasoner materialize reasoning results. 

Incremental reasoning (INCR) The types of incremental reasoning supported by the 

reasoner. 

Query support (QUERY) The type of queries the reasoner supports. 

Rule support (RULE) The type of rule languages the reasoner supports. 

Closed-world features (CWA) The type of closed-world features the reasoner natively 

supports.  

Concrete domain (CD) The type of concrete domain reasoning supported by the 

reasoner. 

Database (DB) How database is supported by the reasoner.  

Remote interface (RINF) If the reasoner supports remote interface. 

User access (ACCESS) How users can access the reasoner. 

Explanation (EXPL) If the reasoner provides reasoning explanation function. 

Ontology manipulation (MANI) How ontology can be manipulated and accessed by 

applications. 

Platforms (PLAT) The platforms required by the reasoner. 

OS (OS) The operating systems that the reasoner can run on. 
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2.3.2 Survey	of	Semantic	Applications	
This section discusses the survey of five diverse sample types of semantic applications. 

They include semantic publish/subscribe systems, semantic context-aware systems, medical 

and bioinformatics systems, semantic sensor network management systems, and software 

engineering systems. Their selection is motivated by the fact that the use of OWL reasoning 

technologies to solve problems within them has been widely investigated, and it is shown 

that the use of reasoning technologies indeed addresses some problems within these 

domains. The rationale behind this discussion is two-fold: (1) to enable the author to learn 

the interplay between semantic applications and OWL reasoners, and to showcase the 

amount of intricacies application developers need to know in order to select an appropriate 

reasoner using a manual reasoner selection approach, and (2) to assist the identification of a 

set of example reasoning-related application characteristics.  

2.3.2.1 Semantic	Publish/Subscribe	Systems	
In publish/subscribe systems (pub/sub systems) subscribers register subscriptions in a broker 

(or networked brokers) and publishers present publications to the broker. A conventional 

pub/sub broker syntactically matches the content of publications against registered 

subscriptions. Successfully matched publications are propagated to the corresponding 

subscribers. However semantic pub/sub systems extend this approach by matching based on 

the semantics of publication/subscription, informed by an associated ontology and 

facilitated by an ontology reasoner in the broker.  

In general publications in such systems are semantically annotated and the semantic filtering 

is delegated to either subsumption checking, conjunctive queries answering [Keeney et al 

2008] or instance checking [Haarslev and Möller 2003a, Ushchold et al 2003] according to 

the manner that publications/subscriptions are modelled. Thus the systems which use 

concept subsumption to perform semantic filtering would require concept-centric reasoning 

and in some cases may require to reason over very expressive ontology [Ushchold et al 

2003]. On the other hand the systems based on conjunctive query answering and instance 

checking may rely more on data-centric reasoning tasks [Haarslev and Möller 2003a, 

Ushchold et al 2003].  

Some other reasoning related characteristics that are common to semantic pub/sub systems 

are also observed. The first and most common one is the ability to efficiently reason and 

query over a frequently changing knowledge base. This is a problem encountered by many 

semantic pub/sub systems as most existing OWL reasoners are designed to reason over 

static datasets. To cope with this issue incremental reasoning approaches and incremental 
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query answering approaches are developed and integrated into some semantic pub/sub 

systems [Haarslev and Möller 2003a, Halaschek-Wiener and Kolovski 2008]. A second 

characteristic is the vast amount of individuals, motivating the usage of a database-enabled 

reasoner [Ushchold et al 2003]. Thirdly, some systems need datatypes to model concrete 

information such as date, time or space [Ushchold et al 2003], emphasizing the ability to 

reason over concrete domains. Fourthly, for some applications such as battle field systems 

or stocks exchange systems, a complete OWL reasoner would be critical for them to 

function correctly. A fifth characteristic is the ability to perform temporal or spatial 

reasoning, which is of particular importance for complex event systems [Ushchold et al 

2003, Keeney et al 2008, Keeney et al 2010]. Other characteristics of some particular 

pub/sub systems include the ability to handle closed-world queries [Haarslev and Möller 

2003a] and so on.  

2.3.2.2 Semantic	context-aware	systems	
Semantic context-aware systems are another type of applications where the use of OWL 

ontology and its reasoning technologies are well studied. There is now a consensus that the 

use of OWL ontology and reasoning technologies can (1) provide a more expressive method 

to model and process complex context such as human interests or activities that are hard to 

model using attribute/value pairs [Agostini et al 2005], (2) bring more intelligence into the 

utilization and aggregation of ambient information, enabling the personalisation and 

adaptation of application behaviours or services [Luther et al 2008, Ejigu et al 2007], and (3) 

enhance the interoperability between heterogeneous environmental entities engaged in the 

domain by allowing knowledge to be correctly interpreted and reasoned in different entities 

[Ali and Kiefer 2009]. 

An important characteristic of many semantic context-aware systems is the need for rules to 

perform (application-specific) reasoning tasks such as triggering actions or aggregating 

context to derive high-level context [Wang et al 2004, Weißenberg 2004, Agostini et al 2005, 

Chen et al 2005, Gu et al 2007, Ejigu et al 2007, Luther et al 2008, Ali and Kiefer 2009]. 

Therefore it is vital for them to be able to use rule-enabled OWL reasoners, e.g. to integrate 

a SWRL component in the reasoner, or to interface a standalone rule engine for rules 

processing outside the reasoner. A second characteristic is the use of conjunctive queries (i.e. 

a type of query where conditions are connected using conjunction) to perform more 

powerfully and (possibly) human-accessible context retrieving [Chen et al 2005, Gu et al 

2007, Ali and Kiefer 2009]. Thirdly in some systems the aggregation of low-level context 

data needs to process concrete values, emphasizing the support of concrete domain 
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reasoning in the selected reasoner [Weißenberg 2004, Luther et al 2008, Chen et al 2005, 

Boehm et al 2008]. Existing OWL profiles do not process more complex concrete domain 

relations other than comparison of datatypes, and so complex concrete values processing are 

mostly performed by rule engines, where many builtins, such as algebraic comparison and 

computations, are constructed to handle complex concrete value processing. However this is 

still considered as a potential reasoning related characteristic, as this can be handled by rule-

enabled OWL reasoners. Fourthly some context-aware systems use repositories to store 

context [Gu et al 2007, Boehm et al 2008], which then requires the reasoner to be able to 

access and reason over databases. Some other characteristics also exist such as using the DL 

Implementation Group (DIG) interface [DIG] to connect distributed applications and 

reasoners [Luther et al 2008], using incremental reasoning to incrementally handle context 

data increasing the response speed [Luther et al 2008], temporal reasoning [Chen et al 2005, 

Boehm et al 2008] and the need to perform runtime ontology manipulation [Boehm et al 

2008]. 

2.3.2.3 Clinical,	Medical	and	Bioinformatics	Systems	
OWL and OWL reasoning technologies have also been applied in clinical, bioinformatics 

and medical projects to enable knowledge to be modelled in a more formally defined and 

structured manner, which (1) facilitates the sharing and reusing of knowledge and (2) 

enables more intelligent data processing through OWL/application-specific reasoning. Some 

well-known projects/ontology are the Gene project [Harris et al 2004] which provides a 

controlled vocabulary of terms (concepts) for describing genes and gene product attributes; 

SNOMED [héja et al 2008] which provides a scientifically validated set of terms for 

practitioners to structure and computerize medical records, enhancing the sharing of medical 

records; the openGALEN project [openGALEN] which aims to construct a reusable and 

application independent ontology for medical procedures; the National Cancer Institute 

thesaurus (NCI) [Golbeck et al 2003] which aims to construct ontology on the vocabulary 

used in the cancer domain; and finally MGED which is aimed to develop ontology for 

describing samples used in microarray experiments. 

As an ontology approach is used in the above projects to define structured terminology, an 

important characteristic of these projects is their large and sometimes expressive TBox, 

which therefore emphasizes the requirement for an efficient and complete classification 

reasoning service to be provided by the underlying reasoner. A second characteristic is the 

support of a more powerful access mechanism, e.g. conjunctive query answering in 

graphical user interfaces, to enable users to query and browse the ontology. This 
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characteristic is not explicitly mentioned for most of the above projects however it can be 

deduced from that fact that they are often large in size to be jafit for manually browsing and 

accessing (e.g. GO has more than 47,000 concepts, SNOMED has more than 364,000 

concepts). 

The research in [Keet et al 2007] identifies nine requirements that OWL-based bio-

ontologies may have on OWL reasoning. They are: supporting the ontology development 

process; classification; model checking; finding gaps in an ontology and discovering new 

relations; comparison of ontologies; reasoning with mereological parthood and other (part-

whole) relations; using a hierarchy of relations; reasoning across linked ontologies; and 

complex queries. Some of these, e.g. classification, can be solved by existing OWL 

reasoners, whereas some others, e.g. finding gaps and new relations, are quite specific to life 

science and were not yet feasible for general OWL reasoners. 

2.3.2.4 Semantic	sensor	network	systems/sensor	ontology	
Semantic Web technologies are widely applied in sensor network systems. A typical usage is 

to annotate sensor readings (or sensors descriptions) using semantically rich tags to facilitate 

intelligent data processing [Calder et al 2010, Kim et al 2008, Eid et al 2007] and to increase 

interoperability [Russomanno et al 2005, Sheth et al 2008, Eid et al 2007]. Another usage is 

to perform complex management tasks, e.g. sensor tasks assignments [Gomez et al 2008] or 

fault correlation [Brennan et al 2009]. 

The ability to process rules is considered as an important characteristic for many sensor 

network systems in order to perform sensor observation validation [Calder et al 2010], 

sensor observation processing [Sheth et al 2008], and network management [Brennan et al 

2009]. A second characteristic is the ability to process complex queries, in particular 

conjunctive queries [Sheth et al 2008, Russomanno et al 2005, Eid et al 2007, Kim et al 

2008]. It provides semantic sensor network systems with a powerful approach to retrieve 

information from ontology. Third the support of database is also a vital characteristic of 

some systems to store sensor observations [Sheth et al 2008, Calder et al 2010]. It is worth 

noting that although the capability to handle concrete domain objects such as numbers, time 

and so on is not specifically mentioned by most systems, it is again not difficult to infer that 

the ability to handle concrete objects is also an important characteristic in such system 

where sensor observations are mainly comprised of simple datatypes, e.g. numbers.  

Some other characteristics include the provision of graphical interface to allow users to 

specify rules [Calder et al 2010], to use distributed reasoning to decentralise data processing 
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workload [Calder et al 2010], to complete OWL-DL classification to ensure complete and 

accurate sensor mission assignment [Gomez et al 2008], remote reasoning [Sheth et al 2008], 

explanation of deductions [Gomez et al 2008] and resource-constrained reasoning [Brennan 

et al 2009]. Furthermore the development semantic sensor ontology usually requires the 

support of ontology authoring tools such as Protégé, so a good integration with the ontology 

authoring tool of the selected reasoner can be considered as an important characteristic 

enabling fast prototyping.  

The work in [Compton et al 2009a] surveys a set of 12 sensor ontologies and points out that 

conjunctive queries, rules and OWL reasoning were key technologies to provide semantics 

support at different layers in semantic sensor networks. 

2.3.2.5 Software	engineering	
OWL and OWL reasoning technologies are also applied in the area of engineering systems 

to perform varieties of tasks ranging from detecting inconsistencies in software/system 

configurations [Shahri et al 2007, Kaviani et al 2008], to semantic-based source code 

searching [Keivanloo et al 2010], and bug tracking [Schuegerl et al 2008].  

Characteristics vary from system to system. A relatively common characteristic is the use of 

conjunctive query languages. As these systems often interact with human software 

developers or system administrators, the capability to answer conjunctive queries turns out 

to be a major method on which users can rely to access the information [Keivanloo et al 

2010, Kaviani et al 2008, Schuegerl et al 2008]. In addition a GUI for posing queries is 

sometimes important for users without background knowledge on the conjunctive query 

language in use in the system [Keivanloo et al 2010]. Other characteristics include the 

requirement to provide justification for inconsistencies in configuration [Shahri et al 2007], 

the use of a database to store meta-models of the source code [Shahri et al 2007] or for the 

bug repository [Schuegerl et al 2008]. 

2.3.3 Reasoner	Composability	
The categorization of OWL reasoners in section 2.3.1.1 classifies OWL reasoners into five 

types according to their reasoning algorithms. Discussion of the composability is required 

for each type of reasoner in order to identify a reasoner type that is better suited as a starting 

point for the automatic reasoner composition research of this thesis.  

As aforementioned, DL-tableaux reasoners adopt highly complicated DL-tableaux 

algorithms to perform OWL reasoning. Although the use of transformation rules to detect 
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obvious contradictions in the KB shows some potential for composition (a rule set can be 

easily decomposed and composed to retain only required rules), DL-tableaux reasoners still 

have some limitations in terms of composability. Firstly, compared to rule-based reasoners, 

transformation rules are still coarse-grained in terms of OWL semantics. For example, the 

pD* entailment rule set has 41 fine-grained entailment rules however the tableau algorithm 

for the DL SHIF (with a similar OWL expressivity as pD*) only has 7 transformation rules 

[Horrocks et al 2000]. Hence the amount of semantics implemented in each pD* entailment 

rules is finer grained than that in each tableau transformation rule, leading to better potential 

for composition. Secondly, transformation rules are hard coded in the tableau algorithms in 

order for better performance, which may complicate the composition algorithmThirdly, a lot 

of complicated optimizations and loop detection approaches (blocking) are hardwired in 

practical DL-tableaux reasoner in order to ensure the termination of DL-tableaux algorithms 

[Baader et al 2007].  In such cases the application of composition algorithms may greatly 

increase the complexity of the tableau algorithm: the automatic composing of 

transformation rules requires different blocking approaches to be swapped in/out on the fly.  

The heave adoption of rules in rule-based reasoners shows good composability at a first 

glance. A natural and straightforward approach to conduct reasoning composition is to 

add/remove the OWL entailment rules depending on the particular ontology to be reasoned. 

Then reasoners using the ontology-specific translation appear to have a good potential to be 

composed: the fine-grained, text-coded nature of the rule set (e.g. OWL entailment rules as 

well as domain specific rules) enables a selective rule set to be constructed for the particular 

ontology to be reasoned. The ontology-specific translation approach embeds OWL 

semantics in the translation and therefore the translation itself can be viewed as a 

composition process: the translation can always generate a rule program with the exactly 

required amount of OWL semantics for the ontology. However there are some potential 

limitations for performing reasoner composition using the ontology-specific translation: (1) 

the ontology-specific translation is limited to OWL semantics only and hence lacks 

flexibility to handle other semantics (modelled as domain specific rules), especially domain 

specific semantics which may be onerously required in some applications [Calder et al 2010, 

Sheth et al 2008, Compton et al 2009a, Brennan et al 2009, Rector 2002, Ejigu et al 2007], 

and (2) unlike ontology-independent translation which is straightforward and easy to 

perform, the ontology-specific translation may require analysis of the structure of the 

ontology, which may be non-trivial for resource-constrained devices.  

Some miscellaneous reasoners are tightly bound to specific underlying implementation 
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mechanisms, such as SPIN which uses a SPARQL engine; Oracle uses RDBMS; and the 

composability of those mechanisms are outside the scope of this thesis. Some other 

reasoners such as CEL, QuOnto are designed for specific reasoning tasks, specific ontology 

expressivities, or specific application areas so their lack of general applicability, low 

expressivity and hardwired algorithms makes them less appealing as candidates for 

composability studies. The composability of a hybrid reasoner relies on each individual 

reasoner of the hybrid reasoner and it is already discussed above. 

In summary, rule-based reasoners have better potential for composition and hence it shows 

more suitability than the other reasoner types for the automatic reasoner composition 

research. To explore how the automatic composition research can fit in rule-based reasoners, 

existing reasoner composition approaches used in rule-based reasoners are examined in the 

reminder of this section. In fact, at the moment no existing OWL reasoner claims to be a 

composable reasoner or to use reasoner composition approaches. Still, some mechanisms 

have been adopted by some reasoners in order to (potentially) (mostly manually) compose 

their reasoning capabilities/algorithms. These mechanisms are discussed. 

All surveyed rule-based reasoners support one or more of three types of composition: the 

selection of one of several predefined reasoning levels via the reasoner API, an editable rule 

set allowing users to able to re-write or change the entailment rule base (although this is not 

deliberately aimed at composition by most implementers) and the support for some 

algorithm-level composition mechanisms. A typical example is Jena that allows users to 

select from three predefined reasoning levels, OWL, OWL Mini and OWL Micro, forming 

the first type of composition. In addition its use of plain text encoded rule files potentially 

allows users to freely modify the rule set to construct their own reasoning level, forming the 

second type of composition. These two types of composition are easy to implement however 

are limited in some aspects. Firstly their applications are manual, therefore requiring user 

knowledge of OWL reasoning. For example, users need to have enough knowledge on the 

required amount of reasoning capability in order to decide the correct reasoning level, or 

users need to be familiar with the semantics and the syntax of the rule language to author a 

suitable rule set, which is sometimes hard as the rule language used by many OWL 

reasoners is not formally documented, e.g. BaseVISor. Furthermore, manual composition 

mechanisms will not be suitable for situations with dynamism nature, e.g. as discussed 

earlier the ontology is only known at runtime for some semantic publish/subscribe systems. 

Secondly selecting from predefined reasoning levels cannot always provide the most 

suitable reasoning capability due to its coarse granularity.  
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An algorithm-level composition mechanism performs (automatic) reasoner composition at 

the reasoning algorithm level. Three existing mechanisms fall into this type: dynamic rule 

generation, incremental loading of rules/triples (ILR/ILT), and rule dependency.  

In general the dynamic rule generation mechanism dynamically generates inference rules 

for the particular ontology to be reasoned according to pre-defined rule patterns. Since the 

ontology is considered in the dynamic rule generation, the generated rules are specially 

customized for the particular ontology and are less complex (in terms of joins) compared to 

static entailment rules, which hence can ensure efficient reasoning for the particular 

ontology [Meditskos and Bassiliades 2008b].  

In [Meditskos and Bassiliades 2008b], O-DEVICE dynamically constructs ontology specific 

ABox reasoning rules by materializing predefined ABox rule templates with 

concepts/properties defined in the ontology. For example, a rule template  

(defrule <rule-name> 

   (object (is-a <p-domain>) (name ?obj1)  

      (<p> $? ?obj2 &: (transitive ?obj1 ?obj2 <p>) $?))  

=> (bind $?v1 (send ?obj1 get-<p>))  

     (bind $?v2 (send ?obj2 get-<p>))  

     (send ?obj1 put-<p> (union$ $?v1 $?v2))) 

is defined to handle transitive properties. The <p> and the <p-domain> are (meta) variables 

that will be replaced with each occurrence of a transitive property and its given domain as 

drawn from the ontology to be reasoned.  

Another work in [Meditskos and Bassiliades 2008a] proposes the DLE reasoning framework 

in which TBox classification is handled by a complete DL classifier and ABox reasoning is 

delegated to dynamically generated ABox entailment rules by grounding the T-triples (i.e. 

concept related triples) in rules with queries to the classified TBox. The generated ABox 

entailment rules are then ontology-specific taking into consideration the ontology to be 

reasoned. For example, the rule rdfp14a is transformed into a meta-rule as 
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hasValue(var(r), var(y)), onProperty(var(r), var(p)), <x p y>Tà <x type r>T 

where hasValue(var(r), var(y)), onProperty(var(r), var(p)) are two queries to the 

previously reasoned Tbox. Multiple rules will be generated for the answers retrieved by 

these two queries. Any absence of a terminological axiom in the ontology will cause no 

answers to the corresponding TBox queries, which leads to the failure to generate such a 

rule instance. For example, if there is no hasValue construct in the ontology of the above 

example, then no such rules will be generated. Therefore this mechanism can make sure that 

the generated ABox rule set consists of only needed rules. In addition dynamically generated 

rules have fewer conditions, reducing the joining complexity of rules. The latest work in 

[Meditskos and Bassiliades 2010] apply this onto an OWL 2 RL reasoner, DLEJena. 

A similar approach is also employed in µOR [Ali and Kiefer 2009, Ali 2010], a mobile 

OWL reasoner for ambient intelligence devices. It employs a dynamic rule generation 

process that searches the ontology to be reasoned for OWL constructs and then dynamically 

generates entailment rules according to rule patterns pre-defined for the found OWL 

constructs. For instance if a triple (s rdfs:subClassOf o) is detected in the ontology, a rule 

will be generated to infer that every instance of s is also an instance of o, i.e.  

(?t rdf:type s) à (?t rdf:type o). 

In general the dynamic rule generation mechanisms take into account the ontology to be 

reasoned in the rule generation process and hence compared to static entailment rules 

dynamic rules generated this way can be simpler and more specific for the particular 

ontology. Experiments show that they do improve the memory efficiency of OWL reasoning 

[Meditskos and Bassiliades 2008a, Meditskos and Bassiliades 2008b, Ali and Kiefer 2009, 

Ali 2010].  

The incremental loading of rules/triples (ILR/ILT) is another algorithm level reasoner 

composition mechanism [Meditskos and Bassiliades 2008b]. ILR and ILT are designed to 

respectively reduce the amount of rules and triples in the reasoning engine in the same time. 

ILR separates the ABox reasoning rules into ten pre-defined subsets (i.e. transitive, 

symmetric, subproperty, inverse, equivalent, functional, inverse functional, universal 

quantifier, existential and classification) and they are evaluated one after another in a 

circular manner until no more rules are fired. However application of TBox reasoning rules 

is static without pre-analysis of their applicability for the ontology. ILT partitions the 
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ontology into segments of a pre-defined size and incrementally loads them into the reasoner 

for reasoning.  

Experiments show that ILT and ILR improve the memory efficiency [Meditskos and 

Bassiliades 2008b], enabling larger ontology to be processed within a given size of memory. 

However ILT can only efficiently handle ontology segments of size 4K-6K triples or 20K 

triples (by default). In addition, although a complicated decision process is designed to use a 

parameter p to automatically determine which of the two predefined sizes (i.e. 5K or 20K) 

to use, this process requires complicated a priori analysis of the class hierarchy and the 

complexity of rule subsets. Furthermore, pre-defined weights need to be specified for 

dynamic rules in the a priori analysis.  

A third algorithm level reasoner composition mechanism is the study of dependencies 

among OWL inference rules to avoid unnecessary rule evaluation in linear rule evaluation 

paradigms [Wu et al 2008]. Dependencies are used to decide at runtime if a rule should be 

evaluated: a rule is evaluated in round n only when in the round n-1 there is at least one new 

triple generated for at least one of the predicates contained in the rule. Experiments show it 

reduces the number of fired rules and the total inference time. However one drawback of 

this approach is there is a high chance that the generation of at least one new triple in round 

n-1 of a rule does not guarantee the fire of this rule in the round n therefore leading to still 

unnecessary memory to be wastage and processing. 

Limitations of existing reasoner composition approaches 

The algorithm level reasoner composition mechanisms perform automatic reasoner 

composition, and furthermore do improve the time/memory efficiency for their 

implementing reasoners. However they still have some potential limitations.  

For the dynamic rule generation mechanism, three limitations are identified. A first 

limitation is that since dynamic rules are small and very specific about the particular 

ontology, the number of dynamic rules may increase dramatically with the size of TBox, 

which may to some extent reduce the memory benefit gained by having a smaller and more 

specific dynamic rule set. While on the other hand, unlike dynamic rules since static 

entailment rules are independent of the ontology to be reasoned, the number of static 

entailment rules can keep unchanged for different ontologies. A second limitation is the 

dynamic rule generation mechanism lacks applicability in TBox reasoning. In fact none of 
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the three reasoners adopting this mechanism applies it to TBox reasoning. O-DEIVCE only 

applies dynamic rule generation to ABox reasoning while TBox rules still relies on static 

entailment rules (without application of any composition mechanisms) [Meditskos and 

Bassiliades 2008b]. DLEJena uses a full-fledged DL reasoner for TBox reasoning and use 

dynamic rule generation for ABox only. Similarly dynamic rules generated in µOR are only 

for processing extensional knowledge. As a matter of fact, no dynamic rules are credited for 

computing class hierarchy, and hence TBox reasoning is not handled. For example, even a 

simple class hierarchy, e.g. a rdfs:subClassOf b, b rdfs:subClassOf c à a 

rdfs:subClassOf c, cannot be calculated by µOR. Thirdly, dynamic rules generation is 

based on rule patterns pre-defined by reasoner experts for a specific OWL subset. Therefore 

different rule patterns need to be generated once a different semantic or rule set is used, 

which requires careful manual analysis from reasoner experts. This will greatly limit its 

application in situations with high dynamism, e.g. domain-specific semantics are changing 

at runtime. Furthermore µOR hardcodes the rule patterns into the algorithm, restricting its 

flexibility to changes and extensibility.  

In terms of the ILR/ILT mechanism, some limitations are also found. Firstly, ILR only 

operates on ABox rules and all TBox rules are loaded without any composition. Therefore 

unused TBox rules are still loaded and applied to the ontology, resulting in a waste of 

memory. Secondly, experiments show ILT will only have benefit if each ontology partition 

contains either 4K-6K triples or 20K triples [Meditskos and Bassiliades 2008b]. These 

beneficial partition sizes are much larger than that of many commonly used ontologies, e.g. 

wine (1.8K triples), food (0.9K triples) pizza (1.8K triples). Therefore it may not be suitable 

for the targeted context for the automatic reasoner composition research in this thesis, 

namely resource-constrained devices where the size of ontology may be (much) smaller than 

the beneficial sizes. Thirdly, although a decision process is designed to help determine 

which of the two beneficial partition sizes is better for the given ontology, the requirement 

of a priori analysis to the rule set and the ontology largely limits the application of this 

approach in a dynamic environment. 

The drawback of the approach of studying rule dependencies is obvious: it is designed for a 

very specific linear rule evaluation implementation and therefore lacks general applicability 

on other reasoners.   

To summarise, the discussion of the composability of different types of reasoners indicates 

that rule-based reasoners have better potential for composition and hence they show more 
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suitability than the other reasoner types for the automatic reasoner composition research. 

The discussion on the merits and limitations of existing reasoner composition algorithms 

reveals some features that the reasoner composition research can consider bringing in, as 

listed below.  

Firstly, an automatic composition mechanism would be more appropriate than a static one 

for situations with dynamic nature which is targeted by the reasoner composition research of 

this thesis.  

Secondly, existing automatic reasoner composition algorithms still require some a prior 

manual analysis of the rule set or the semantics they are going compose on, therefore 

manual re-generation of rule patterns, manual re-grouping of rules, or manual re-assignment 

of weight values to dynamic rules is required for them in order to handle a different 

semantics or rule set. Such prior manual analysis may cause problems for some applications 

such as context-aware system or semantic sensor network systems where application 

semantics may alter at runtime. Therefore an automatic composition algorithm independent 

of semantics is another important direction for this research.  

Thirdly, existing automatic reasoner composition approaches can only compose ABox 

reasoning. Hence to compose on both ABox and TBox reasoning could be another challenge 

for this research.  

Finally, the above described algorithm-level composition approaches compose at the rules 

level or ontology level (e.g. to generate simpler rules, to load only a subset of rules, to load 

ontology incrementally) and their reasoning algorithms, e.g. RETE or resolution, are still 

uncomposed, therefore leaving an additional opportunity for this research. 

2.3.4 Resource-Constrained	OWL	Reasoners	
While very few resource-constrained reasoners use reasoner composition approaches, this 

section however discusses all previous research on resource-constrained OWL reasoners 

including MiRE4OWL, µOR, Pocket KRHyper, Bossam, and the work done in [Gu et al 

2007, Seitz et al 2010]. Two major goals motivate this discussion. First, given the resource-

constrained environment as the context of the automatic reasoner composition research 

conducted in this thesis, how existing resource-constrained OWL reasoners optimize or 

compose themselves needs to be examined. The second goal is to assist the identification of 

a particular reasoner type for carrying out automatic reasoner composition research for the 

resource-constrained environment. Although rule-based reasoners are identified to have 
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better potential than the other reasoner types in terms of composability, still rule-entailment 

reasoners and resolution-based reasoners have totally different reasoning algorithms which 

may require total different reasoner composition mechanisms to be designed. Therefore a 

discussion of the merits and drawbacks of both existing resource-constrained rule-

entailment reasoners and resource-constrained resolution-based reasoners would be 

beneficial. 

MiRE4OWL [Kim et al 2010] is a resource-constrained rule-entailment OWL reasoner 

developed using C++ for the pocket PC platform (PPC). It is constructed based on the MiRE 

resource-constrained forward chaining rule engine [Choi et al 2008]. Two mechanisms are 

adopted to reduce the memory usage of the RETE engine. One is to restrict the number of 

facts of the same type and the other is to use a primary key to detect duplication of facts and 

to use an update key to specify the operation to take for duplications. These mechanisms are 

useful for keeping a light-weight and up-to-date fact base with continuously incoming facts. 

However there is no evidence that its RETE implementation is optimized and therefore it is 

likely that inefficient production joins may occur, if the rules are not tuned by rule experts. 

µOR [Ali and Kiefer 2009, Ali 2010] is a resolution-based OWL-Lite reasoner for ambient 

intelligent devices (J2ME CDC compliance). As already discussed in section 2.3.3, it 

implements a dynamic rule generation mechanism that can automatically generate and 

compose a set of ABox inference rules for the given ontology according to pre-defined rule 

patterns. Dynamic rules are small and specific. However as already discussed, the 

drawbacks of this approach are obvious: (1) the size of rule set could increase rapidly with 

the size of the TBox, (2) rule patterns are pre-defined and hardcoded, limiting the flexibility 

to apply this approach on another semantics or rule set, especially in a dynamic environment 

when the semantics or the rule set is changing, and (3) this approach is only applied to ABox 

reasoning. 

Bossam [Jang and Sohn 2004] is a forward-chaining OWL reasoner designed for desktop 

applications however its core engine is compatible to the J2ME CDC platform. However no 

evidence show Bossam has any implemented optimization to reduce the resource 

consumption for the resource-constrained environment. 

In the work [Gu et al 2007] the authors present a framework supporting ontology processing 

and reasoning on mobile devices. It is built on CLDC 1.1 and MIDP 2.0. A forward-chaining 

rule engine is integrated in this framework to process both user-defined rules and OWL 

entailment rules. Context information is stored in a local context repository. A light weight 
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RDQL query engine is implemented to answer conjunctive queries. However no evidence 

show which particular algorithm is used for the forward-chaining engine and also no 

evidence show that any optimizations are used in the rule engine to reduce the memory 

consumption.  

The work [Seitz et al 2010] presents a Digital Product Memory for storing product 

information and controlling product environment. OWL 2 RL is used to describe product 

information and the CLIPS engine [CLIPS] is used to perform forward-chaining rules 

matching. An ontology specific translation approach is used to translate between rules and 

OWL (refer to the section 2.3.1.1 for ontology specific translation). This work is 

implemented on a Crossbow Imote2 module (with 32bit PXA271 XScale CPU 624MHz, 

32MB SDRAM and 32MB flash) using C#. However no optimizations are reported to 

reduce the resource consumption of the reasoner.  

Some mobile DL tableaux reasoners also exist. The mTableaux [Steller and Krishnaswamy 

2008] is a resource-constrained DL tableaux OWL reasoner. Three optimisation strategies 

are implemented to reduce its memory usage including (1) selective application of 

consistency rules, (2) skipping disjunctions, and (3) establishing pathways of individuals 

and disjunctions which if applied would lead to potential clashes, and associating weight 

values to these elements such that the most likely disjunctions are applied first. Experiments 

on a PPC show mTableaux uses less time and memory than Pellet and Racer. Pocket 

KRHyper [Sinner and Kleemann 2005, Kleemann 2006, Kleemann and Sinner 2006] is a 

DL reasoner based on hyper tableau calculus. However it does not directly handle OWL 

ontologies.  

In summary, the state of the art review indicates that although some optimizations are 

applied to existing resource-constrained OWL reasoners, e.g. MiRE4OWL, in order to have 

better time/memory performance, very few of them use the automatic reasoner composition 

mechanisms as described in the previous section, and therefore their reasoning capabilities 

and reasoning algorithms are still static, further motivating the need for the development and 

application of automatic reasoner composition approaches for resource-constrained OWL 

reasoning.  

In terms of the second goal as to choose between rule-entailment reasoners and resolution-

based reasoners to support the reasoner composition research for resource-constrained 

environment, both reasoner types show their merits and drawbacks. In general fully pre-

computing and materialising reasoning results in the RETE algorithm (of rule-entailment 
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reasoners) show better potential to efficiently handle data which are frequently accessed, 

efficient to store, and expensive to calculate at runtime, while backward chaining enables 

reasoning to be performed at runtime on-demand, which gives it more flexibility in handling 

changes (adding/deleting facts). Although reasoning is required for RETE to handle each 

change, the caching of intermediate results in RETE enables the reasoning required for 

changes to be performed incrementally, which is still efficient enough for resource-

constrained devices. Furthermore, unlike rule-entailment reasoners that fully pre-compute 

and materialize reasoning results, enabling very fast and memory efficient query answering 

at runtime, the on-demand reasoning nature of resolution gives it less scope to reuse 

reasoning results and reasoning needs to be performed at runtime, which may require more 

runtime processing and power. Although pre-computation and materialization can be applied 

for resolution-based reasoners to enhance the runtime query answering performance, 

however, this also has the following limitations for the resource-constrained environment 

where processing power, memory, and power are restricted: (1) the fully pre-computation 

and materialization of reasoning results may require much more effort than RETE since the 

goal-directed feature of resolution requires to enumerate and to test a large number of 

possible goals; (2) memory- and time- expensive materialization maintenance algorithms 

need to be implemented for changes [Staudt et al 1996, Volz et al 2005], which on one hand 

may consume a lot more memory, processing, and power and on the other hand will greatly 

reduce its flexibility in handling changes; (3) the “answer space” of resolution is sometimes 

too large to materialize in resource-constrained devices.  

The above discussion provided the motivation for the selection by the author of rule-

entailment reasoners as the basis upon which the automatic reasoner composition research 

for resource-constrained environment would be conducted.   

2.4 Summary	
This chapter discusses the background knowledge (section 2.2) and related work (section 

2.3) of this research.  

Two parts are included in the background knowledge: OWL and its sublanguages (including 

both standard and non-standard OWL sublanguages for OWL 1 and sublanguages for OWL 

2) and a detailed description of RETE algorithm and its optimizations. 

The related work of this thesis consists of four parts. A first related work is a survey of state 

of the art OWL reasoners (section 2.3.1), in which a categorization of OWL reasoners was 

drawn and a set of reasoner characteristics was distilled. Five reasoner categories were 
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obtained which are the DL-tableaux reasoners, the rule-entailment reasoners, the resolution-

based reasoners, the hybrid reasoners and the miscellaneous reasoners. This survey offers a 

basis for the following research to carry out. A second related work (section 2.3.2) is then 

presented. Five selected types of applications were surveyed: a semantic publish/subscribe 

systems type, a semantic context-aware systems type, a clinical, medical and bioinformatics 

type and a semantic sensor network systems type and finally a software engineering systems 

type. This survey investigated the requirements of particular applications/application types 

and the interplay between these requirements and the selected reasoner, facilitating the 

research of an automatic reasoner selection process. A third related work is the discussion of 

the composability for different reasoner categories derived in section a survey of semantic 

applications, a discussion of reasoner composability for each type of reasoner identified 

above. The rule-entailment reasoners and the resolution-based reasoners were found to have 

the best potential to be composed. Then a fourth related work discusses about the state of 

the art resource-constrained reasoners. Based on this discussion, the suitability for the rule-

entailment reasoners and the resolution-based reasoners to be applied in resource-

constrained environment is discussed. It is found out that rule-entailment reasoners have 

better suitability for running in a resource-constrained device. Considering its high 

composability and suitability to run in resource-constrained environment, rule-entailment 

reasoners are selected as the most appropriate type of reasoner on which the resource-

constrained reasoner composition research will be carried out.  

The work undertaken in the related work section achieves objective 1, which is the state of 

the art survey objective of this thesis. In the next chapter, the design of the reasoner 

composition approach, including two novel automatic reasoner composition algorithms, is 

described in detail.   
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Chapter 3 
COROR: A COmposable Rule-entailment 
Owl Reasoner for Resource-Constrained 

Environments 

3.1 Introduction	
The discussion of the composability for different reasoner types in section 2.3.3 shows rule-

based reasoners has better potential for composition and show better suitability for carrying 

out the composition research. Further discussion of the pros and cons of existing reasoner 

composition algorithms has identified some aspects that this reasoner composition research 

could further explore. Firstly, the newly designed composition mechanism needs to be an 

automatic process in order to perform composition for applications with some dynamism. 

Secondly, although the existing automatic composition mechanisms perform well, they still 

require some a priori manual analysis of the specific semantics or the specific rule set to be 

composed, limiting the flexibility to apply them to a different semantics or rule set at 

runtime, which is sometimes the case for applications with dynamism. Hence it would be 

preferable that the newly designed composition mechanism can be “fully automatic” 

without any a priori manual analysis. Thirdly, the newly designed composition mechanism 

needs to operate for both ABox reasoning and TBox reasoning. Finally, investigating the 

composability of the reasoning algorithms themselves (rather than how rules are loaded, 

how ontologies are partitioned, how dynamic rules are generated, and so on) has never been 

studied by previous work. 

A later discussion in section 2.3.4 on existing resource-constrained OWL reasoners indicates 

that only µOR has adopted a dynamic rule generation mechanism to perform reasoner 

composition. Although some optimizations are adopted for some of the other resource-
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constrained reasoners, their reasoning algorithms remain uncomposed, showing 

opportunities for the application of reasoner composition research for resource-constrained 

reasoning. A further investigation on whether rule-entailment reasoners or resolution-based 

reasoners are more suitable for resource-constrained environment indicates that rule-

entailment reasoners need less runtime processing and therefore power consumption for 

query answering due to the pre-computation and materialization of reasoning results. 

Although pre-computation and materialization can also be adopted for resolution-based 

reasoners to reduce the processing required for answering queries at runtime, the 

requirement for materializing large “answer spaces”, the requirement of very complicated 

materialization maintenance algorithms, and the large degradation of its flexibility to handle 

changes, makes it is quite expensive from a resources perspective to apply materialization to 

resolution-based reasoners in resource-constrained environment.   

Based on the discussions on the composability of different types of reasoners and their 

suitability for resource-constrained environments, rule-entailment reasoners are then 

identified as the best suitable type of reasoners to carry out the reasoner composition 

research for resource-constrained environments. 

The discussion of different existing reasoner composition algorithms in section 2.3.3 has 

already pointed the author to some directions where the reasoner composition research can 

be developed. Considering that different ontologies may vary greatly in expressivity, e.g. the 

Pizza ontology used in this thesis has a DL expressivity ALCF(D) while the Wine 

ontology used in this thesis has a DL expressivity SHION(D), the required entailment 

rules may be different for them. Hence a natural avenue for achieving composition is to 

automatically compose a required set of entailment rules according to the expressivity of the 

particular ontology to be reasoned, and unnecessary entailment rules are removed so 

intuitively less processing and memory are required. This approach may require an analysis 

of the expressivity of the ontology. A straight-forward way to conduct this would be to 

examine the OWL constructs contained by the ontology, and this can also be easily and 

automatically achieved by existing ontology frameworks such as Jena or OWLAPI 

[Horridge and Bechhofer 2011]. Therefore if a condition of an entailment rule does not 

match any of the included OWL constructs the rule is never fired for this ontology and thus 

the entailment rule needs not to be loaded.  

The result entailment rule set composed in this way can then tightly fit the required 

expressivity of the ontology. Similar to all the automatic composition mechanisms discussed 
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in the related work, this approach composes only the entailment rule set, and still the RETE 

algorithm itself would be noncomposable. However, the discussion of RETE algorithms in 

the background knowledge section in Chapter 2 shows that RETE caches all intermediate 

results in the RETE network, which is the major source of the memory cost of RETE. To 

compose the RETE network such that less memory and processing (e.g. match/join 

operations) are required would be a second avenue for achieving composition. 

As discussed earlier in section 2.2.2.3.1, the quality of rules, in particular join sequences, 

has been found to be the key factor that determines the structure of a RETE network and 

inappropriate join sequences can cause a dramatic waste of memory and processing time. 

Thus many join sequence reordering optimizations have been proposed in order to have a 

better join sequence so that memory- and time- efficient RETE network can be obtained. It 

is shown in the discussion in the background knowledge that automatic application of these 

join sequence optimizations taking characteristics of the fact base to be processed into 

consideration can generate better join sequences for the particular fact base [Scales 1986, 

Ishida 1994]. Such automatic application of optimizations pointed a good avenue for the 

RETE composition research to follow. However such existing approaches either require a 

priori execution of the entire fact base to determine its characteristics [Ishida 1994] or are 

designed for a specific production system only [Scales 1986], which are not suitable for 

resource-constrained environment targeted by this thesis. Hence a new approach needs to be 

designed that requires no a priori analysis to collect required information for optimizing join 

sequences. 

By looking into the RETE network, two interesting observations are found: (1) facts are 

matched against alpha network and stored in alpha memories; hence some analyses of the 

alpha memories can obtain some information on the fact base which may be used for join 

sequence optimization; (2) the join sequence does not affect the construction of the alpha 

network, i.e. regardless of the join sequence the alpha network remains the same as long as 

the conditions keep the same. Following these observations, a possible way to perform 

automatic composition then could be to have an interrupted RETE network construction 

process: to construct only the alpha network first, then to match the ontology against the 

alpha network only so some information relevant to join sequence optimization can be 

collected at this stage, e.g. the number of matched facts for each condition, the joining 

selectivity and so on, then according to these information join sequences are optimized for 

the particular ontology, then an optimized and customized beta network is constructed, 

finally the fact matching resumes joining in the beta network and finishing the rest RETE 
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cycles.   

Following the above two intuitive avenues, this chapter presents COROR, a COmposable 

Rule-Entailment Owl Reasoner for resource-constrained environments incorporating two 

novel reasoner composition algorithms arising from the two avenues presented above. They 

automatically compose the reasoner at different levels according to the particular ontology 

to be reasoned such that less memory and time is required by the reasoner, facilitating the 

execution of OWL reasoning in highly resource-constrained environments. Section 3.2 gives 

an overview of COROR and how the composition algorithms are applied. Then detail on the 

two composition algorithms are presented and discussed in section 3.4. Finally section 3.5 

studies the possibility to extend this research to support OWL 2 from a design perspective.   

3.2 An	Overview	
COROR is a composable reasoner because of the use of two reasoner composition 

algorithms, i.e. a selective rule loading algorithm and a two-phase RETE algorithm, which 

are designed to compose the reasoner at different levels (rule set level and inside RETE 

algorithm) according to the semantics of the particular ontology to be reasoned. The use of 

composition algorithms facilitates the construction of a customized reasoner for the 

particular ontology and application such that redundant reasoning capabilities and processes 

are avoided by minimizing the resources required by the reasoner.  
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Figure 3-1: An Overview of COROR 

Figure 3-1 illustrates how different components in COROR interplay with each other. The 

composition algorithms are marked using a bold and italic font. The OWL Ontology is 

loaded and stored in a fact base where it can be manipulated and queried. Rule loading can 

follow two modes, either directly loading the full rule set or selectively loading through the 

use of the selective rule loading algorithm. Reasoning is performed by a forward-chaining 

RETE engine that can be configured to use either the standard RETE approach, or a novel 

two-phase RETE approach that will be presented in this thesis. Results of the reasoning are 

fed back into the fact base and the engine halts when an inference closure is reached (no 

new entailments can be generated).  

3.3 The	pD*	Semantics	
The pD* semantics is chosen as the semantics for COROR for three reasons. Firstly, as 

discussed earlier in section 2.2.1.2, it is composed of a definitive set of entailment rules, 

which then shows perfect suitability for COROR since it is a rule-entailment reasoner. 

Secondly pD* has tractable entailment reasoning. It has PTIME entailment complexity 

when variables are not used in the target ontology and NPTIME entailment complexity 

when variables are used in the target ontology. However its minor extension, pD*sv, does 



 

59 

 

not enjoy such low complexity. A tractable entailment problem of pD* shows its great 

suitability to be applied in resource-constrained environments given the low resource 

availability. Thirdly, although some OWL-DL constructs are missing, such as cardinality 

constructs, some (in)equality constructs, Boolean combination constructs, and oneOf, it still 

preserves a substantial subset of OWL-DL constructs (as indicated in Table 2-1). Given the 

resource-constrained context where this research will be applied, any ontology will be 

generally much less complex than OWL-DL. It can be envisaged that the pD* generally has 

sufficient expressivity and semantics to model the KBs in resource-constrained domains to 

an acceptable degree. As a matter of fact, pD* is also used by some state of the art desktop 

commercialized rule-entailment reasoners (such as OWLIM and BaseVISor), which 

demonstrates its sufficiency in terms of semantics. 

3.4 Composition	Algorithms	
Two novel reasoner composition algorithms are used in COROR both at the rule set level 

and inside the RETE algorithm, according to the semantics of the particular ontology to be 

reasoned. Customized rule set and RETE network are therefore constructed for the ontology. 

These composition algorithms form the core design of COROR. In this section the detail of 

the two composition algorithms are described. 

3.4.1 Selective	Rule	Loading	Algorithm	
The design of the selective rule loading algorithm is originated from the first thought 

presented in the introduction of this chapter as to compose at the entailment rule set level. In 

general the selective rule loading algorithm dimensions a selected entailment rule set by 

estimating the usage of each entailment rule for reasoning the ontology to be reasoned, 

using predefined rule-construct dependencies that describe the containment of OWL 

constructs in rules. If a construct is referred to in the left hand side (l.h.s.) of a rule, then the 

rule is said to depend on the construct and the construct is said to be a premise of the rule in 

the dependency relationship. Constructs in the right hand side (r.h.s) of a rule are said to 

depend on the rule, and the constructs are consequences of the rule in the dependency 

relationship. For example, as shown in Appendix C, the construct rdfs:subPropertyOf is 

the premise of rule rdfp13c and owl:equivalentProperty is the consequence. Multiple 

premises and consequences may exist for a rule. 

The rule-construct dependencies are used by the selective rule loading algorithm to decide if 

a rule should be loaded for reasoning a given ontology. A rule is loaded if there is possibility 

that it could be fired, and otherwise not loaded. One necessary condition of the rule’s 
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(potential) firing is all its premises are included in the ontology (Note that for brevity a 

premise included by the ontology to be reasoned is termed as a valid premise and otherwise 

an invalid premise). In other words, if any of its premises are invalid (for the given 

ontology), the condition containing the invalid premise will not be met (as the construct is 

not included in the ontology) and therefore there is no possibility that this rule is fired. 

Therefore the selective rule loading algorithm regulates a rule to be loaded if and only if all 

its premises are valid premises.  

However the firing of some loaded rules may produce consequences that are themselves 

premises for other unloaded rules, validating some previously invalid premises and causing 

the loading of unloaded rules. For example, the firing of the rdfp13c rule will add 

owl:equivalentProperty into the ontology, validating the premises of rule rdfp13a and 

rdfp13b and therefore causing them to be loaded into the engine (supposing the ontology 

originally contains rdfs:subPropertyOf but not owl:equivalentProperty). Therefore the 

selective rule loading algorithm also regulates that if a rule is loaded then its consequence 

can be used to validate premises of other unloaded rules. 

The dependency relationships described above, especially these chain-like dependency 

relationships, where some premises of one rule are consequences of some other rules, can be 

better illustrated as graphs, termed in this research as rule-construct dependency graph. 

Figure 3-2and Figure 3-3 respectively illustrate the rule-construct dependency graphs for the 

D* entailment rules and the P entailment rules (refer to [ter Horst 2005b] for a full set of D* 

and P entailment rules). Note that D* entailment rules and P entailment rules together 

comprise the pD* entailment rules used in COROR. All pD* entailment rules in Jena rule 

format can be found in Appendix C.  

Rules and OWL constructs are represented as nodes in the rule-construct graphs, 

respectively represented as regular and rounded rectangles (Figure 3-2 and Figure 3-3). 

Each rule/construct corresponds to one node. Different colours are used to mark different 

types of nodes, e.g. purple for D* constructs nodes, orange for P constructs nodes and blue 

for rules nodes. Dependencies are represented as both dashed arrows (links between core 

rules and core constructs) and solid arrows (links between expressivity constructs and 

candidate rules). An arrow always points from a premise (if any) to a rule or points from a 

rule to its consequence (if any). Note that the differences between these two types of arrows 

and the definitions of core rules, core constructs, expressivity constructs and condution rules 
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are discussed in detail in the following paragraphs. A bi-directional arrow linking between a 

construct node and a rule node means the construct is both a consequence and a premise of 

the rule, i.e. the construct is contained either in the both the l.h.s. and the r.h.s. of the rule, 

e.g. rdfs:subClassOf is contained in both the l.h.s. and r.h.s. of the rule rdfs11.  

 

 

Figure 3-2: Rule-construct dependency graphs (D* entailment rules) 
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Figure 3-3: Rule-construct dependency graphs (P entailment rules) 

Two types of constructs are omitted from the rule-construct graphs, i.e. basic constructs and 
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auxiliary constructs. In the selective rule loading algorithm three OWL constructs are 

considered as basic constructs, i.e. rdf:type, rdfs:Class and rdfs:Resource, since they are 

included in almost all (practical) ontologies. Basic construct premises are then deemed as 

valid by default for all ontologies, and for brevity they are omitted from the rule-construct 

graphs. One auxiliary construct, i.e. owl:onProperty, is identified as they always appear 

with OWL restrictions. Similarly they are also omitted from the rule-construct graphs for 

brevity.  

The omission of basic constructs and auxiliary constructs from Figure 3-2 and Figure 3-3 

may cause the absence of premises or consequences for some rules on the graph. For 

example the rule rdfs8 and rdfs10 has no displayed premises since all their premises are 

basic constructs. Some other rules also have no premises (and therefore no displayed 

premises), including lg, gl, rdf1, rdf2-D, rdfs1, rdfs4a, rdfs4b, rdfp5a, rdfp5b, as the 

conditions in their l.h.s. are wildcard conditions (i.e. conditions such as (?x ?y ?z) that 

match all kinds of facts). Similar reasons also apply to the rules without displayed 

consequence, such as rdfs7x (wildcard r.h.s., no consequences), rdfs3 (basic construct 

consequences). However omitting these constructs from the diagrams is only for the purpose 

of having a clearer rule-construct dependency graph and does not mean omitting their 

premises or consequences. The premises and consequences for these rules remain 

unchanged.  

According to the rule loading regulation presented above, rules with no displayed premises 

are loaded automatically for all ontology as either they have no premises or their premises 

are basic constructs. However their automatic loading causes the validation of some other 

premises, loading some other rules. For example, the automatic loading of rdf1 validates 

rdf:Property, and then causes the automatic loading of rdfs6, which again validates 

rdfs:subPropertyOf, causing the loading of rdfs5 and rdfs7x. The cascaded validating and 

loading paradigm causes a set of premises to be always validated for all ontologies 

automatically and therefore a set of rules to be always loaded for all ontologies 

automatically. They are respectively termed as core constructs (including basic constructs) 

and core rules. A full list of core constructs include rdf:type, rdfs:Class, rdfs:Resource, 

rdf:Property, rdfs:subPropertyOf, rdfs:subClassOf, owl:sameAs, 

owl:equivalentClass, owl:equivalentProperty. A full list of core rules include lg, gl, 

rdf1, rdf2-D, rdfs1, rdfs4a, rdfs4b, rdfp5a, rdfp5b, rdfs6, rdfs8, rdfs9, rdfs10, rdfp5a, 
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rdfp5b, rdfp6, rdfp7, rdfp9, rdfp10, rdfp11, rdfp12a, rdfp12b, rdfp12c, rdfp13a, 

rdfp13b, and rdfp13c. Core constructs and core rules are represented in the diagrams of 

graphs using an italic, bold and underlined font. Dependencies in between core rules and 

core constructs (both premises and consequences) are represented using dashed arrows. The 

other rules are then candidate rules for selective rule loading, and the other constructs are 

termed as expressivity constructs. Although a lot of core rules are automatically loaded there 

are still many candidate rules for selection, including rdfs2, rdfs3, rdfs12, rdfs13, rdfp1, 

rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx, rdfp14a, rdfp14bx, rdfp15, and rdfp16. They 

are represented in the diagrams of the graphs using normal fonts. Dependencies between 

candidate rules and expressivity constructs are represented as solid arrows. 

Hence in general, the selective rule loading algorithm using the rule-dependency graphs 

then turns out to be identifying valid premises according to the given ontology and then 

follow the dependencies searching for rules to be loaded. For example, given an ontology in 

triple format as  

ex:Car rdf:type rdfs:Class. 

ex:Engine rdf:type rdfs:Class. 

ex:Car rdfs:subClassOf ex:hasEngineRestriction. 

ex:hasEngineRestriction rdf:type owl:Restriction. 

ex:hasEngineRestriction owl:onProperty ex:hasComponent. 

ex:hasEngineRestriction owl:someValuesFrom ex:Engine. 

Valid premises include rdf:type, rdfs:Class, rdfs:subClassOf, owl:Restriction, 

owl:onProperty and owl:someValuesFrom, among which rdf:type, rdfs:Class and 

rdfs:subClassOf are core constructs, owl:Restriction and owl:onProperty are auxiliary 

constructs, owl:someValuesFrom is expressivity construct. Apart from core rules, 

following the dependency relationships starting from the valid premise 

owl:someValuesFrom causes the loading of the rule rdfp15. The other rules are not loaded 

as their premises are not valid for this ontology.  
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The regulations made by this algorithm ensure unloaded rules that are definitely not fired for 

the ontology (as an invalid premise means the construct is not included in the ontology) and 

loaded rules are possibly fired. Therefore these regulations may construct a super set of the 

required rule set for the ontology: not all loaded rules are guaranteed to fire.  

Discussion of the Selective Rule Loading Algorithm: 

The selective rule loading algorithm automatically performs composition at rule set level. It 

takes advantage of the intrinsic composability of the pD* entailment rule set, i.e. entailment 

rules are fine-granulated in terms of OWL semantics and can be freely loaded and unloaded 

according to the semantics of the ontology. What makes it different from previous work is 

the use of rule-construct dependencies to determine if a rule is necessary to be loaded for a 

particular ontology and the capability to work on both ABox rules and TBox rules..  

There are some merits about this approach. Firstly, it is independent of reasoning algorithms 

and therefore it can be applied to RETE or resolution. Secondly, although pre-analysis is 

required to construct the rule-construct dependency graphs limiting its dynamic application 

to a different rule set, this approach is independent of the rule set. Thirdly, a lot of core rules 

are loaded by default for all ontologies, however there are still 14 candidate rules for 

selective rule loading and the candidate rules are in general more complex than core rules 

(e.g. they have more conditions). Therefore the loading of all these candidate rules in an 

uncomposed reasoning approach is likely to cost a lot of time and memory consumption, 

necessitating a selective loading of them into the engine.  

Some drawbacks of the selective rule loading algorithms are also identified. A first 

drawback is the selected rule set may cause re-execution of the rule selection process once 

the ontology is changed at runtime and new constructs are introduced, thereby causing a 

potential waste in resources. A second drawback is pre-analysis is required in order to 

generate rule-construct dependencies, which, as discussed in section 2.3.3, limits the 

dynamic application of this composition approach to an environment with changing 

semantics or rule sets. 

3.4.2 Two-Phase	RETE	Algorithm	
The design of the two-phase RETE algorithm follows the second thought as presented in the 

introduction of this chapter. It performs composition inside the RETE algorithm. Rather than 

fully constructing the RETE network and then match facts along the RETE network as 

normal RETE does, it uses a novel interrupted RETE construction mechanism (Figure 3-4): 
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firstly a shared alpha network is built; then the RETE network construction is interrupted by 

an initial fact matching against the constructed alpha network, with matched facts stored in 

alpha memory; some information about the ontology is then collected; according to the 

collected information a customized beta network is then built using optimization heuristics 

for the particular ontology; and finally the fact matching resumes as normal RETE 

algorithm. The initial fact matching breaks the RETE network construction into two phases: 

the alpha network construction and information collection phase (the first phase for short) 

and the beta network optimization and construction phase (the second phase for short), 

inspiring the name two-phase RETE algorithm. This algorithm only changes the way a 

RETE network is constructed and the following RETE cycles are performed in a same way 

as normal RETE algorithm as described in section 2.2.2. This section presents the two 

phases separately in detail. 

 

Figure 3-4: Flow of the Two-Phase RETE Algorithm 

3.4.2.1 First	Phase	
In the first phase the shared alpha network is first built according to a node sharing 

mechanism in order to reduce the size of alpha network. Since the same condition may 

appear in several rules, e.g. (?x rdf:type ?y) appears in rdfs9, rdfp14bx and rdfp16, an 

alpha node sharing mechanism is adopted enabling common condition elements to be shared 

among rules. This mechanism constructs only one rather than n alpha nodes for a common 

condition shared by n rules, therefore the size of alpha memory and the number of match 

operations for this condition are reduced to 1/n. Note that the adoption of a node sharing 

mechanism adopted is not a novel idea and some other RETE engines, e.g. Drools11 , 

                                                        

11 http://www.jboss.org/drools 

Constructing	a	shared	
alpha	network

Initial	fact	matching	and	
information	gathering

Construct	an	optimized	
beta	network

Finish	the	initial	fact	matching	
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implement some similar alpha node sharing optimizations to reduce the alpha network. Then 

an initial fact matching is performed against the shared alpha network after its construction 

and matched facts are stored in the corresponding alpha memory. This enables analyses to 

be performed on the matched facts collecting some information about the ontology that is 

originally hard to collect before RETE execution, e.g. the number of facts matching to a 

particular condition and the join selectivity factor between two joining conditions, and so on. 

As already discussed in the section 2.2.2.3 this information can help construct an optimized 

and customized beta network for the particular ontology (in particular join sequence). In this 

research the number of matched triples for each condition is gathered. As will be described 

in the later sections, it is used to optimize the join sequence of conditions.  

There are two merits to collect information at this stage. Firstly, as mentioned earlier some 

information that is hard to collect before RETE execution can be easily collected at this 

stage. The second is the initial fact matching facilitates the collection of some information, 

e.g. the number of facts matching a particular condition, without traversing the ontology, 

saving some time.  

An example rule set and ontology are used to exemplify the algorithm. Given an entailment 

rule set R with two rules rdfp14bx and rdfp15 (in Jena rule format) as 

[rdfs9: (?v rdfs:subClassOf ?w), (?u rdf:type ?v) à (?u rdf:type ?w)] 

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x 

rdf:type ?w) à (?u rdf:type ?v)] 

and an ontology snippet O (in N-triple format) as 

ex:Car rdf:type rdfs:Class.       T1 

ex:Car rdfs:subClassOf ex:Vehicle.      T2 

ex:Fiat rdfs:subClassOf ex:Car      T3 

ex:Engine rdf:type rdfs:Class.       T4 

ex:hasEngineRestriction rdf:type owl:Restriction.    T5 
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ex:hasEngineRestriction owl:onProperty ex:hasComponent.  T6 

ex:hasEngineRestriction owl:someValuesFrom ex:Engine.   T7 

ex:myCar rdf:type ex:Car.       T8 

ex:azrTurbo rdf:type ex:Engine.      T9 

ex:myCar ex:hasComponent ex:azrTurbo.     T10 

ex:myCar ex:hasComponent ex:alcon     T11 

ex:myCar ex:hasComponent ex:energyMX1     T12 

 

ex:myCar rdf:type ex:hasEngineRestriction     I13 

ex:myCar rdf:type ex:Vehicle       I14 

whose TBox states any car needs to have a component as an engine and car is a subclass of 

vehicle. The ABox contains two individuals ex:myCar and ex:azrTurbo. Facts T1 to T10 

are asserted facts, and the facts I13 and I14 are inferred facts that can be deduced from the 

inserted ontology according to the rule rdfs9 and rdfp15. Figure 3-5 illustrates the alpha 

network of the example rules after the initial fact matching. Both a non-shared and a shared 

alpha network are given to illustrate the differences. In Figure 3-5a a non-shared alpha 

network is constructed following normal RETE while in Figure 3-5b a shared alpha network 

is built following the two-phase RETE algorithm. The common node, i.e. (?u rdf:type ?v), 

is shared between rdfs9 and rdfp15, leading to only one node constructed for it. Note that 

the condition sequence of rule rdfp15 has been changed ((?u rdf:type ?v) is lifted to the 

front of the rule) in the shared alpha network for better illustration, and it does not affect its 

join sequence.  



 

69 

 

 

(a) A non-shared alpha network 

 

(b) A shared alpha network 

Figure 3-5: A shared alpha network v.s. a non-shared alpha network. 

Matched facts for each condition are stored in the corresponding alpha memory after the 

initial matching. The number of matched facts for each condition is therefore collected for 

each condition. Results are shown in Table 3-1. The number of matched facts does not 

change for non-shared conditions, but the number of matched facts for the common 

condition is reduced to half as it is shared by both rules. This number will further reduce if 

more rules share this condition. 
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Table 3-1: Number of matched facts for each condition 

Condition Shared Non-shared 
rdfs9 (?v rdfs:subClassOf ?w) 2 2 

(?u rdf:type ?v) 2.5 (shared by both 
rules) 5 

rdfp15 (?v owl:someValuesFrom ?w) 1 1 

(?v owl:onProperty ?w) 1 1 

(?u ?p ?x) 10 10 

(?u rdf:type ?v) 2.5 (shared by both 
rules) 5 

3.4.2.2 Second	Phase	
In general the second phase of this algorithm heuristically builds an optimized and 

customized beta network for the ontology, using the information collected at the first stage, 

and then matched facts (stored in alpha network) continue to populate and to join along the 

beta network firing rules. Two heuristics from the state of the art, i.e. the most specific 

condition first heuristic and the pre-evaluation of join connectivity heuristic, are used in this 

phase to optimize the join sequences (refer to section 2.2.2.3 for a detailed description of 

them). However the novelty here is the way they are applied. Firstly, they are applied taking 

the ontology to be reasoned into account, rather than being statically and directly applied 

considering only the rule set. Secondly unlike the previous automatic RETE optimization 

approaches that requires a priori execution [Scales 1986] in order to collect information to 

apply the join sequence optimizations, here the information collection and join sequence 

optimization are embedded into the RETE cycles and therefore the number of matched facts 

for each condition can be collected and used as its specificity (which was considered as a 

“mission impossible” by a previous work [Özacar et al 2007]).  

As already discussed earlier in the background chapter, the most specific condition first 

heuristic, orders join sequences according to their specificity to avoid the long chain effect. 

In this research the number of matched facts for each condition is taken as an estimate of the 

specificity, which, according to section 2.2.2.3.1, is a straight forward way to determine 

specificity, but is hard for normal RETE as it cannot be known before execution. The more 

matched facts for a condition the less specific it is for the particular ontology. A corollary 

presents where the fewer matched facts a condition has, it is more specific. The join 

sequence is then reordered where conditions with more matched facts are moved later in the 

join sequence. This causes more discriminating joins to be performed first, thereby reducing 

the size of the beta network memory required and also the join operations to be performed.  
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For better illustration, the example given in section 3.4.2.1 is continued. The join sequence 

reordered after applying the most specific condition first heuristic should look like Figure 

3-6.  

 

Figure 3-6: Join sequences after been reordered by the most specific condition first 

heuristic. 

The pre-evaluation of the join connectivity heuristic is introduced after the most specific 

condition first heuristic as the second heuristic to ensure all joining conditions have 

variables in common so that Cartesian product joins are avoided. In brief it scans the entire 

join sequence from front to the end, and swaps the unconnected condition with the first 

connected condition behind it in the join sequence. As illustrated in Figure 3-7 C1, C2 … Cn-1 

are conditions having their connection checked (no matter if they are connected or not) and 

they form Cpre. Cn is found not connected to Cpre. Therefore this heuristic starts searching 

from Cn+1 to the end for the first condition that is connected to Cpre, which is Cm in this case. 

Then Cm is then switched before Cn and the rest conditions (conditions behinds Cn) are 

moved one place toward the end of the join sequence (as if shown by the second joins 

sequence in Figure 3-7). As the join sequence has already been ordered by the most specific 

condition first heuristic, Cm is then the most specificity condition after Cn that connects to 

Cpre. If none is found to connect to Cpre, then leave Cn where it is, and continue to check the 
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next condition, e.g. Cn+1 in this case. This tries to ensure the connectivity of the join 

sequence while avoids the damage to the join sequence where possible. As the rule rdfs9 

and rdfp15 are already connected the application of this heuristic does not change the join 

sequence.  

 

Figure 3-7: pre-evaluation of the join connectivity heuristic 

Customized join sequences are fixed after both heuristics are applied and a customized beta 

network is then constructed. After the construction of the RETE network facts stored in 

alpha memory continue to pass down the beta network joining each other and firing rules as 

in normal RETE algorithm until no rules can be fired. Figure 3-8a and Figure 3-8b gives the 

RETE networks of both the original RETE algorithm and the two-phase RETE algorithm 

when no more rules are fired. Intermediate results generated by join operations are listed in 

the yellow box under the corresponding beta nodes. 
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(a) The RETE network constructed by the original RETE algorithm 
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(b) The RETE network constructed by the two-phase RETE algorithm. 

Figure 3-8: RETE Network with facts after all RETE cycles. 

As shown in the diagrams the two-phase RETE algorithm shares common alpha nodes, i.e. 

(?x rdf:type ?w) in the rule rdfp15 and the (?u rdf:type ?v) in rdfs9, therefore the 

memory is shared between them (as shown in Figure 3-8b). The customized join sequences 

enable less intermediate results to be generated. For example, only 4 intermediate results are 

generated in the network given in Figure 3-8b, however 6 intermediate results are generated 

in the original RETE network given in Figure 3-8a. 
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Discussion of the Two-Phase RETE Algorithm: 

The two-phase RETE algorithm performs composition inside the RETE algorithm by 

constructing an optimized and customized RETE network for the particular OWL ontology. 

It is a fully automatic composition approach requiring no manual analysis or pre-analysis of 

either the rule set or the ontology and therefore can be applied to a different rule set or 

semantics without human intervention. Since composition is perfomed inside the RETE 

algorithm and the entire rule set is loaded, changes on the ontology can be reflected 

immediately in the reasoning without re-executing the entire composition. The two-phase 

RETE algorithm works on both ABox rules and TBox rules. Unlike the selective rule 

loading algorithm which can work on both RETE and resolution, the two-phase RETE 

algorithm is designed to work on RETE algorithm only. However it is clear that the 

functioning of the two-phase RETE algorithm does not rely on the particular rule set so it is 

semantic independent and can be applied to other semantics rather than pD*, e.g. OWL 2.  

Two problems need to be further clarified. The first problem is whether the information 

collected in the first stage can be used to effectively optimize the RETE beta network. The 

second problem is the limitations of using the number of matched facts of a condition as its 

specificity to order join sequences.  

In terms of the first problem, as the firing of rules may add inferred facts into the fact base 

and hence the RETE network, changing the number of matched facts for each condition, the 

number of matched facts collected in the first stage may not accurately represent the number 

of matched facts when RETE terminates. Therefore it appears that the number of matched 

facts collected at this stage is only accurate to construct an optimized RETE network for the 

first RETE cycle and this RETE network is not the optimal for the rest RETE cycles. 

However, it is also noticed from insights into the RETE network when reasoning over 19 

ontologies (as described in the evaluation chapter) one by one that with most ontologies 

experimented upon, the majority of joins occur in the first RETE cycle: 15 of a total of 19 

ontologies have an average of 75% joins performed in the first iteration (for the remaining 4 

ontology this percentage is still above 50%). Furthermore an average of 83% inferred facts 

are generated in the first cycle. Hence it is appropriate to optimize the RETE network by 

applying heuristics based on information collected here. 

For the second problem, it might not always be correct to deduce that a condition with 100 

matched facts is more specific than a condition with 101 matched facts as these numbers are 

only collected from the initial match, therefore it is highly likely that the previous condition 
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(with 100 matched facts) may have more matched triples the later condition (with 101 

matched facts) in the following RETE cycles. This can be partially solved by introducing 

more sophisticated mechanisms for specificity estimation, for example combining more 

types of information into specificity estimation such as the number of variables of condition 

elements, the cardinality of values to be joined and so on. They can all be gathered before or 

in the first phase. At the moment no other information is collected, but the approach taken is 

equally applicable and, as described later, the approach taken substantially reduces memory 

and reasoning time. As a matter of fact as other information can also be collected during the 

first phase enabling more sophisticated optimizations, e.g. to order join sequences according 

to join selectivity, to be applied to enable the construction of even more customized beta 

network. 

3.4.3 Hybrid	Algorithm	
The above two composition algorithms compose at different levels: the selective rule 

loading algorithm composes at the rule set level while the two-phase RETE algorithm 

composes inside the RETE algorithm. Hence it is natural to think that if these two 

algorithms will complete each other. Based on this idea, the hybrid algorithm is designed by 

simply combining of the selective rule loading algorithm and the two-phase RETE algorithm: 

the selective rule loading algorithm is applied first constructing a selected rule set and then 

the two-phase RETE algorithm builds a customized and optimized RETE network using the 

selected rule set. The hybrid algorithm is inspired by the idea that unneeded rules are 

removed from the rule set on which the two-phase RETE algorithm is applied, therefore an 

even smaller RETE network is built reducing the memory and reasoning time.  

Discussion of the Hybrid Algorithm: 

The hybrid algorithm combines both algorithms and therefore it naturally combines the 

merits and drawbacks of both. The algorithm is not applicable to other reasoning algorithms 

as the two-phase RETE algorithm only applies to the RETE algorithm. The hybrid algorithm 

cannot be dynamically applied to a different rule set or semantics as pre-analysis is required 

for the selective rule loading algorithm. However the hybrid algorithm composes both at the 

rule set level and inside the RETE algorithm. 

3.5 Extending	COROR	to	Support	OWL	2	(Design	Perspective)	
OWL 2 has been standardized and recommended in late 2009 by the W3C. As discussed 

earlier in the background chapter, OWL 2 RL is one of the OWL 2 sublanguages whose 

semantics are given as a set of entailment rules (the full OWL 2 RL rule set can be found in 
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[OWL 2 Profiles]). Therefore OWL 2 shows strong feasibility to be applied in rule-

entailment reasoners. At a matter of fact OWL 2 is an extension of pD* semantics, as 

discussed in section 2.2.1.3. This section shows in an analytical way that although COROR 

is originally designed for the pD* subset of OWL-DL, it is by design extensible to OWL 2 

without fundamental changes to the two composition algorithms, because of their semantics 

independent features.  

As already discussed in the previous sections, the two-phase RETE algorithm concentrates 

on the construction of an optimized RETE network, which is independent of the semantics 

in use. Therefore it is applicable to OWL 2 without further change.  

However in order to enable the selective rule loading algorithm to run on the OWL 2 rule 

set, the rule-construct dependency graphs need to be constructed for OWL 2. Figure 3-9 to 

Figure 3-14 list the rule-construct dependency graphs for OWL 2 RL entailment rule set, 

showing the applicability of the selective rule loading algorithm to OWL 2 RL without 

fundamentally changing the algorithm itself. Similarly core rules and core constructs are 

identified and emphasized in the same way as those in Figure 3-2 and Figure 3-3.  

 

Figure 3-9: Rule-Construct dependency graph for OWL 2 RL entailments 

(semantics of equality). 
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Figure 3-10: Rule-Construct dependency graph for OWL 2 RL entailments 

(Semantics of Axioms about Properties). 
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Figure 3-11: Rule-Construct dependency graph for OWL 2 RL entailments 

(Semantics of Classes). 
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Figure 3-12: Rule-Construct dependency graph for OWL 2 RL entailments 

(Semantics of Class Axioms) 

 

Figure 3-13: Rule-Construct dependency graph for OWL 2 RL entailments 

(Semantics of Datatypes) 
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Figure 3-14: Rule-Construct dependency graph for OWL 2 RL entailments 

(Semantics of Schema Vocabulary) 
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As one might notice that in the OWL 2 rule-construct dependencies graphs a third type of 

node is used to represent consistency rules (yellow nodes). They are not included in either 

Figure 3-2 or Figure 3-3 since no consistency rules are modelled for the pD* semantics. 

Two OWL 2 constructs, namely owl:onProperty and owl:onClass, are identified as 

auxiliary constructs; rdf:type and owl:Class are considered as basic constructs. Therefore 

they do not appear in dependency graphs. Similarly core constructs and core rules are 

identified by the following dependencies. Core constructs include owl:sameAs, 

owl:AnnotationProperty, owl:Nothing, owl:Thing, rdfs:Datatype, owl:sameAs, 

owl:differentFrom, rdfs:subClassOf and owl:equivalentClass; core rules include eq-

rep-p, eq-rep-s, eq-ref, eq-sym, eq-trans, eq-rep-o, prp-op, cls-nothing, cls-nothing2, 

cls-thing, dt-type1, dt-type2, dt-eg, dt-diff, dt-not-type, scm-sco, scm-cls, scm-eqc2 

and scm-eqc1. Core rules, core constructs and their dependencies are emphasized in similar 

way to those in Figure 3-2 or Figure 3-3.  

Some improvements can be performed to increase the accuracy of selecting rules using 

dependencies. For example, rather than constructing two premises (one for 

owl:someValuesFrom and the other for owl:Thing) for the rule cls-svf2, which can cause 

its loading even if both constructs are included in the ontology but not in the same triple, e.g. 

cannot match (?x owl:someValuesFrom owl:Thing). This can be solved using a complex 

premise that combines both owl:someValuesFrom and owl:Thing to limit the existence of 

two constructs in one triple. Another example is that owl:maxCardinality is limited to 0 

and 1 in some rules of OWL 2 RL entailments, e.g. cls-maxc1, cls-maxc2 and so on; 

however the value is not checked for number restriction premises in the current dependency 

graphs, such that the above rules can be loaded without considering the value of the number 

restrictions. A complex premise can be designed to impose a value condition that the value 

of the number restriction can only be 1 or 0.  

Although the implementation was not created for OWL 2, it would be straightforward to 

implement an OWL 2 conformant selective rule loading algorithm can be implemented after 

design analysis as presented above. The implementation of an OWL 2 conformant two-

phase RETE algorithm would also be quite straightforward since it is independent of the 

semantics and the rule set. 
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3.6 Summary	
The analysis of the previous composition algorithms and resource-constrained OWL 

reasoners has pointed out some aspects the automatic reasoner composition research can 

explore. Two ideas for composition are then inspired from this analysis. They perform 

reasoner composition on both the rule set and inside the RETE algorithm.  

This chapter presents the design of a composable rule-entailment OWL reasoner, COROR, 

which performs reasoner composition based on one the required expressivity of the ontology 

to be reasoned. Two novel reasoner composition algorithms, i.e. the selective rule loading 

algorithm and the two phase-RETE algorithm, are designed following the above two ideas to 

perform composition at both the rule set level and inside the RETE algorithm. Hence 

COROR instances can be automatically composed according to distinct ontologies.  

The selective rule loading algorithm builds a selected rule set according to the OWL 

constructs included in the ontology to be reasoned. Some previous work has also been 

designed to work on a customized rule set, e.g. dynamic rule generation. However the 

novelty of this algorithm is the use of rule-construct dependencies to analyse if a rule is to 

be used in the reasoning. In general the selective rule loading is performed following the 

dependencies between rules and constructs: a rule is loaded if all the OWL constructs from 

its l.h.s. (premises) are included by the ontology (valid), and the loading of this rule may 

cause the addition of constructs in its r.h.s. (consequences) into the ontology, leading to the 

loading of more rules. These chain-like dependency relationships are represented here using 

rule-construct dependencies graphs. They are used to guide the selective loading of rules in 

the selective rule loading algorithm. Later discussion shows the selective rule loading 

algorithm is reasoning algorithm independent, i.e. can be applied to other some other 

algorithms other than RETE (e.g. resolution). It can be applied to another semantic, e.g. 

OWL 2 RL, however requires a priori analysis of the semantics for rule-construct 

dependencies. Also the requirement of a priori analysis to the semantics when applied to a 

different semanticsmakes this composition algorithm unable to be dynamically applied onto 

a different semantics. Furthermore, the loading of a selective rule set raises a problem that 

re-execution of the selective rule loading algorithm is required if new OWL constructs are 

added to the ontology at runtime.  

The two-phase RETE algorithm introduces a novel interrupted RETE network construction 

approach that integrates the gathering of information required for applying existing join 

sequence optimization heuristics into the RETE network construction. Hence the 
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composition of a customized and optimized RETE network for the particular ontology to be 

reasoned can be performed at the RETE network construction phase without introducing 

extra a priori RETE execution. In general the two-phase RETE algorithm breaks the RETE 

network construction into two separate phases and interrupts them with an initial fact 

matching. In the first phase a shared alpha network is built using a node sharing heuristic 

such that common conditions share alpha nodes. Then the initial fact matching is performed 

against the alpha network and matched facts are stored in the corresponding alpha memory. 

Some information about the ontology that is otherwise hard to collect is then easily collected 

at this stage, e.g. number of facts matched to a specific condition, selectivity factor between 

two conditions and so on. At the moment only the number of matched facts for each 

condition is collected, however more types of information can be collected. Information 

used at this stage it is used to the next phase for building a customized beta network for the 

particular ontology. Two heuristics are introduced at this stage for building customized join 

sequences, i.e. most specific condition first and pre-evaluation of join connectivity. Rather 

being applied directly to the rule set (as the original optimization does), the most specific 

condition first is applied taking into consideration the information about the ontology 

collected at the first phase, such that a customized RETE join sequence is constructed for 

the particular ontology according to it, e.g. the less matched facts of a condition the more 

specific it is and it is pushed closer to the front of the join sequence, and to the end 

otherwise. Another heuristic is the pre-evaluation of join connectivity of the individual 

conditions in given rule. It is applied after the most specific condition first to check its 

connectivity. Unconnected conditions are swapped backward for the first connected 

condition. After the customized RETE network is constructed stored facts continue to 

propagate along it, joining each other and firing rules as ordinary RETE algorithm does until 

no more rules to fire. 

As discussed later in section 3.4.2.2 the information collected in the first stage after the 

initial matching may not be as accurate as when RETE terminates, since more RETE cycles 

are needed after the beta network is constructed and new (inferred) facts will be deduced 

(from rule firing) and fed back to the fact base, hence matching conditions and storing in the 

corresponding memory. However as discussed earlier most fact matching/joining operations 

are performed in the initial matching, and most inferred facts are generated at this stage as 

well, therefore it is reasonable to use the information collected at this stage (after the initial 

matching) to optimize the RETE network. The two-phase RETE network is not algorithm 

independent since it can only be applied to RETE algorithm. However it is also semantic 
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independent since its functioning does not rely on any particular rule set.  

A hybrid algorithm is designed by using the selective rule loading algorithm to construct a 

selected rule set based on which the two-phase RETE algorithm is applied. This algorithm 

tries to combine the rule-level composition and algorithm-level composition such that they 

can compensate each other. This algorithm is not algorithm independent because the use of 

two-phase RETE algorithm. However it is semantic independent because both two 

composition algorithms are semantic independent. 

Although at the moment COROR is designed to reason over OWL 1 ontology using the pD* 

semantics it is shown that both composition algorithms are extensible to OWL 2 RL without 

fundamental changes. A later discussion in section 5.2.5 shows the composition algorithms 

can be extended to support OWL 2 from the implementation perspective.  

This section is targeted at objective 2. As a matter of fact the design of COROR is 

considered as a part of the major contribution as identified in the introduction. 

Implementation of COROR, as another part of the objective 2, is presented in Chapter 5. 

The study of the performance impacts brought by composition algorithms, as targeted in the 

objective 3, is presented in Chapter 6. In the following sections the design of a reasoner 

selection process is presented. It approaches the research objective 4 identified in the 

introduction.  
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Chapter 4 
RESP: An Automatic Reasoner 

Selection Process 

4.1 Introduction	
As discussed in previous chapters the ability to deduce implied knowledge from an ontology 

has attracted ever more applications from various domains to use OWL reasoners to solve 

problems that are sometimes hard to solve using traditional approaches, such as bridging 

heterogeneity in diverse environment, or introducing more intelligence into data processing, 

or to detect inconsistencies in a knowledge base and so on. More usages are presented in a 

survey of semantic applications as presented in section 2.3.2. On the other hand the ever 

increasing application of OWL reasoning techniques in diverse domains also stimulates the 

development of OWL reasoning techniques due to the distinct reasoning-related 

requirements imposed. For example, as discussed earlier in motivation some sensor network 

systems require OWL reasoning to run on sensors, while bioinformatics systems/ontologies 

often need to thoroughly discover knowledge implied in the ontology. These differences in 

requirements then can be represented as the different (reasoning-related) application 

characteristics (ACs) possessed by the distinct applications. In order to handle different 

requirements, different reasoning technologies/features/capabilities are required. For 

example, a reasoner needs to be able to at least run on resource-constrained devices in order 

to provide reasoning support on sensors, and preferably it has some optimizations to reduce 

the resource consumption of reasoning. Similarly in order to thoroughly reveal all implied 

knowledge in bioinformatics ontologies, a reasoner may need to be able to completely 

classify OWL-DL ontology. These different reasoning technologies/features/capabilities are 

then the reasoner characteristics (RCs) of OWL reasoners. The diversified ACs of 

applications then give rise to reasoners with different RCs being needed. 
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Existing reasoner selections rely largely on consultation between application developers and 

reasoner experts, which is straightforward and sufficient at the moment with the relatively 

small and simple set of ACs/RCs that currently exist. However, it is envisioned that the ever 

more widespread adoption of OWL reasoning into applications in different domains and the 

rapid development and emergence of new OWL reasoning technologies may cause such a 

consultation approach to become increasingly inadequate in the future. This can be 

embodied in two aspects. Firstly, as semantic applications grow more complicated and move 

beyond initial prototyping stages, these applications will be developed and extended by 

dedicated application developers with little or no knowledge of the intricacies of ontology 

reasoning. A direct impact of this aspect is that some ACs are expressed in domain specific 

languages which sometimes may be difficult for reasoner experts to interpret and map into 

reasoner requirements. For example in some bioinformatics systems, a reasoner expert 

might be presented with a requirement that the selected reasoner need to be able to have 

such ability as to: 

“The causative agent of stomach ulcers is the bacterium Helicobacter pylori is, or that each 

instance x of disease of type X with symptom y of type Y is always preceded by infection by z 

of species Z in all of its patients suffering from X” (from [Keet et al 2007]). 

It is clear that it would not be very easy for most reasoner experts to interpret the above AC 

expressed in domain-specific language into a requirement for some RCs. In fact the above 

requires having the selected reasoner to be able to deal with existing gaps and to find out 

new relationships and new gaps. Therefore there are risks in selecting reasoners in the future 

using existing approaches: either a considerable amount of effort is required before an 

agreement is reached or, what is worse, an appropriate reasoner is selected due to 

misunderstanding. Secondly existing approaches require that a reasoner expert is accessible 

to application developers, which will not always be the case. These inadequacies motivate 

an automated approach for helping application developers to limit efforts required by 

consultation or even to help them independently select a suitable reasoner for their semantic 

applications. 

From some informal discussions by the author with semantic application developers, it is 

found that semantic application developers usually have some “shallow” knowledge on 

OWL reasoning, e.g. they may understand conjunctive query, ontology, OWL, and so on. 

However they would get confused at more detailed and specific reasoner technologies such 

as DL, tableaux, materialization, RETE, entailment rules, and so on. These complicated 
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reasoning-specific terms, however, may sometimes be raised in a reasoner selection process 

when reasoner experts try to discuss with application developers whether the selected 

reasoner is appropriate or not. However, on the other hand, application developers know 

well about what application characteristics need to be implemented on their application, and 

requirements posed by them may often be expressed using domain specific languages, as the 

example given above. The requirements expressed in domain specific languages often 

become hindrances impeding reasoner experts to understand the real needs of the 

application. In fact these gaps would become wider with the emergence of more new 

application characteristics and new reasoning technologies (reasoner characteristics). 

To bridge the above identified gaps between reasoner experts and application developers, a 

good way could be to design an automatic reasoner selection process, where a large number 

of pre-identified candidate application characteristics expressed in domain specific 

languages and pre-identified connections from these application characteristics to reasoner 

characteristics are stored. Application developers then only need to identify their required 

application characteristics and input these identified application characteristics into the 

process. The process can automatically recommend a most appropriate reasoner according 

to the existing connections.  

This chapter introduces RESP, a novel computer aided OWL REasoner Selection Process, to 

enable application developers with little knowledge of the intricacies of OWL reasoning to 

independently select an appropriate reasoner for their applications based only on the ACs. 

This process imitates the flow of thought in the existing consultation-based reasoner 

selection process however what is novel is it serializes expertise on computer: reasoners are 

abstracted as RCs and interplays between RCs and ACs are serialized as connections. Hence 

application developers only need to identify the ACs of their application and then the 

selection in RESP is one of automatic matchmaking between the identified ACs and the RCs 

of reasoners according to the connections. RESP enables the reuse of expertise and therefore 

RCs and connections need to be identified only once and then reused in the future selections. 

This reduces the effort required by the selection of an appropriate reasoner: application 

developers need not to know the complicated algorithms of OWL reasoning or to look for a 

reasoner expert every time a semantic application is to be developed, which can lower the 

barriers for a wider range of applications to adopt OWL reasoning technologies. 

An overview of RESP can be found in section 4.2. In section 4.3 discussions of 11 different 

reasoner-related aspects of semantic applications are presented, from which example ACs 
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and example connections are derived. These aspects are identified from the survey on 

semantic applications as described in the related work. Note that the example ACs and 

example connections are only for demonstrating RESP and still at their early stage. Hence 

they are neither definitive nor complete and sometimes are simple therefore are lack of 

practical usage. Still the distillation of them was not trivial, which required careful reviews 

and analysis of more than 80 pieces of published literature and online documents. Section 

4.4 describes the matchmaking performed in RESP for selecting an appropriate reasoner 

using an artificial use case. A summary is presented in section 4.3.13. 

4.2 Overview	of	RESP	

 

Figure 4-1: An overview of RESP 
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As illustrated in Figure 4-1, RESP consists of three steps:  

1. In the first step, application developers identify the ACs for the target application 

and input them into RESP for selection. 

2. In the second step, matchmaking is performed between the identified ACs and RCs 

of each candidate reasoner (reasoner to be selected), according to the pre-identified 

connections. The matchmaking result is given for each identified AC. At the 

moment the result can only be one of two values, namely satisfied or not satisfied. 

Results for all identified ACs are input into the next step for evaluating the 

satisfaction rate of each candidate reasoner for the input ACs.  

3. In the third step, the satisfaction rate for each candidate reasoner is calculated 

using a straight forward approach by dividing the number of satisfied ACs 

(|Satisfied_AC|) by the number of selected AC (|Selected_AC|).  

%100
_
_

_ ×=
ACSelected
ACSatisfied

RateonSatisfacti
 

This calculation is unique for this research and can directly represent the level of 

satisfaction of a candidate reasoner. For example, if five ACs are input 

(|Satisfied_AC|R = 5) and three are found to be satisfied by a candidate reasoner R 

(|Selected_AC|R = 3), then the satisfaction rate for R is 60%. The candidate reasoner 

with 100% satisfaction rate is then deemed the most appropriate reasoner for the 

given application. If none candidate reasoner is found to be the most appropriate 

reasoner, users can revise the input ACs according to the results loosening or 

tightening the ACs, and rerun RESP until an appropriate reasoner is selected. 

Before RESP starts some prerequisites work are required to materialize expert knowledge 

that will be used in the selection into RESP (as illustrated in Figure 4-1). First, a set of 

candidate ACs needs to be constructed. From this set users identify ACs relevant to their 

applications in the first RESP step. The construction of candidate ACs requires expertise of 

domain experts. Second, candidate reasoners are registered with RESP as RCs by reasoner 

experts. RCs are derived from the survey of reasoner as presented in section 2.3.1.2. Third, 

connections between the candidate ACs and the RCs of candidate reasoners are analysed 

and modelled in RESP. This requires collaboration between domain experts and reasoner 

experts. Although a lot of effort may be required to accomplish the above three prerequisite 
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work in order to materialize expert knowledge into RESP, they are only one-off and once 

finished RESP can be reused in the subsequent selection for different applications within the 

domain.  

Steps in RESP imitates the flow of thought in the existing consultation-based selection 

approach: application developers presents the requirements to reasoner experts (equal to 

RESP step 1), reasoner experts interpret the requirements into reasoning requirements and 

matchmaking reasoning requirements to reasoners based on their expertise on reasoning 

(equal to RESP step 2), reasoner experts recommend a most appropriate reasoner to 

application developers (equal to RESP step 3). However compared to the consultation-based 

approaches, what is novel of RESP is: RESP materializes expert knowledge used in the 

consultation-based process as ACs, RCs and connections in the process. There are many 

merits for doing this. First, it enables the reuse of expertise knowledge over time in the 

subsequent selection for other different applications without the attendance of a real 

reasoner expert. Second, materializing expert knowledge can prevent the selection of 

reasoners from being affected by geographical issue, e.g. application developers have the 

chance to run RESP anywhere in the world to perform reasoner selection without discussing 

with a real reasoner experts. Third, RESP hides the complicated interplay between semantic 

applications and reasoners from users such that users with little knowledge on ontology 

reasoning can use it.  

Rather than being specific, RESP is designed to be a high level methodology to facilitate 

automatic reasoner selection, and therefore specific technical detail, e.g. the format of 

ACs/RCs, the matchmaking algorithm, the format that connections are authored, etc., are 

left unspecified until implementation stage. On one hand, this gives more flexibility to 

RESP implementers as RESP can be implemented to be domain-specific for a specific 

application domain. Therefore domain specific languages can be used to label candidate 

ACs allowing RESP users to have better understanding of the candidate ACs when they 

identify relevant ACs for their applications. Furthermore the matchmaking can be realized 

as general rule engines (connections as rules), or be hardcoded according to the preference 

of specific implementers. However on the other hand, problems can be raised: users need to 

specify their own format for materializing ACs, RCs and connections, and design their own 

algorithm for matchmaking, which could require extra efforts for implementing RESP. 

In order to demonstrate RESP, the interplay between the surveyed semantic applications and 

reasoner characteristics has been investigated, and example candidate ACs and connections 



 

92 

 

have been derived. For clearer presentation, the interplay is discussed in the next section 

from 11 reasoning-related aspects. Note again, the investigation and derived ACs and 

connections are still at their early stage, and hence are neither definitive nor complete for 

practical usage. Still their development/distillation required careful reviews and analysis of 

more than 80 published pieces of literature and online documentations.  

4.3 Discussion	of	Interplay	between	Semantic	Applications	and	RCs		
In this section the interplay between the surveyed semantic applications and RCs is 

discussed according to 11 reasoning-related aspects, namely: frequently changing KB, 

terminology-centric reasoning, required semantics, query-related issues, rules, concrete 

domains, closed-world features, large KB, ontology manipulation, explanation of reasoning, 

and miscellaneous, with each corresponding to a following subsection. The use of these 

reasoning-related aspects was motivated from reviewing the literature of the surveyed 

semantic applications where these reasoning-related aspects are the points where semantic 

applications are tied to OWL reasoners. Example candidate ACs and connections derived 

from each reasoning-related aspect are listed at the end of each discussion. Example 

candidate ACs and connections are also used for implementing a prototype tool for 

automatic reasoner selection using RESP, as will be depicted in the next chapter. 

Several remarks are in order. Firstly, as mentioned before, the derived example candidate 

ACs and connections are only for demonstration and therefore they are not complete and 

definitive enough for practical usage. More usable candidate ACs and connections can be 

identified with the collaboration of domain experts and reasoner experts. Secondly, 

discussions are sometimes limited rather than in-depth and exhaustive. This is reasonable 

since it is the demonstration of RESP rather than having a thorough investigation of the 

interplay between semantic applications and reasoners, that is the major goal of this research. 

To limit the complexity of the discussions only three major types of reasoners are 

considered in the discussions, which are DL-tableaux reasoners, Rule-entailment reasoners, 

and resolution-based reasoners. Thirdly, for simplicity the performance aspects are dropped 

from the discussions. However it is obvious that the performance aspects will play an 

important role in deciding the selection of an appropriate reasoner for some semantic 

applications and so taking the performance of reasoners as an AC is part of the future work. 

Finally RCs and their values used in the discussion are selected from the state of the art 

survey of OWL reasoners as described in section 2.3.1.2.  

The RCs and their values used in the discussions are listed in section 4.3.1. An RC may have 
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multiple different values and these values were gathered in the survey of reasoners. 

Discussions of the 11 reasoning-related aspects are separately presented in subsections from 

4.3.2 to 4.3.12. Derived example candidate ACs and the correspondingly derived 

connections are presented at the end of each subsection using a table format. In the first 

column of the table derived example candidate ACs are listed and in the second column the 

corresponding connections between the AC and RCs are given. In order to be precise and 

concise, some mathematical symbols are used for describing connections and RCs and 

values are referred in connections as codes. A summary of all example candidate ACs and 

connections is given in section 4.3.13.  

4.3.1 RCs	used	
Before discussions of the 11 reasoning-related aspects are presented, RCs and values used in 

the discussions are listed in Table 4-1. All RCs distilled from the survey of reasoners (as 

introduced in section 2.3.1.2) are used here in the discussions. However to avoid over-

complex discussions of the interplay, the values of some RCs are restricted. Only three types 

of reasoners will be considered in the discussions, namely DL-tableaux reasoners, Rule-

entailment reasoners, and resolution-based reasoners. The values of the RC reasoning 

algorithm are then correspondingly restricted to only the algorithms used by the above three 

reasoner types. Although discussions are restricted to three types of reasoners, still they are 

the major reasoner types and hence the discussions are of general sense. Values for two 

other RCs, namely query support and rule support, are also restricted to avoid too many 

values: for query support only atomic query, SPARQL, nRQL and SeRQL are kept and for 

rule support only SWRL and Jena are kept. However extension to support all values for 

these RCs does not require fundamental changes to existing connections since some 

counterpart values are already used in the discussions.  
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Table 4-1: A summary of values of the corresponding reasoner characteristics in 

the survey 

Reasoner 
characteristic 

Values 

Reasoning 
algorithm 
(ALGM) 

DL-Tableaux 
(tableaux) 

RETE (rete) FOL prover (fol) 

Prolog (prolog) Datalog (datalog)  
Reasoner type 
(TYPE) 

DL-tableaux (dl) 
 

Rule-entailment 
(entailment) 

Resolution-based 
(resolution) 

Hybrid (hybrid) Others (others)  
Reasoner 
expressivity 
(EXPR) 

 

Completeness 
(CPLT) 

Yes (yes) No (no)  

Reasoning tasks 
(TASK) 

OWL entailment 
(ent) 

Classification (clsf) Realization (real) 

Concept satisfiability 
(sat) 

Conjunctive query 
answering (conj) 

KB consistency 
(cons) 

Materialization 
(MTLZ) 

Yes (yes) No (no)  

Incremental 
reasoning (INCL) 

Incremental 
classification 
(classify) 

Incremental 
consistency checking 
(consistency) 

Incremental 
materialization 
maintenance 
(materialize) 

Query support 
(QUERY) 

Atomic (atomic) SPARQL (sparql) nRQL (nrql) 
SeRQL (serql)   

Rule support 
(RULE) 

SWRL (swrl) Jena (jena)  

Closed-world 
features (CWA) 

OWL (owl) Rule (rule) Query (query) 

Concrete domain 
(CD) 

XSD datatypes (xsd) User-defined datatypes 
(user) 

computation/compari
son on datatypes 
(comp) 

Database support 
(DB) 

Native DB accessible 
(access) 

Native DB reasoning 
(reasoning) 

 

Remote interface 
(RINF) 

DIG (dig) Self-defined (self)  

User access 
(ACCESS) 

GUI (gui) Command line (cmd)  

Explanation 
(EXPL) 

Native explanation 
(yes) 

No (no)  

Ontology 
manipulation 
(MANI) 

OWLAPI (owlapi) Jena (jena) API (api) 

Platforms (PLAT) J2ME (j2me) J2SE (j2se) C++ (cpp) 
C# (csharp) Prolog (prolog)  

OS (OS) Windows (win) Linux (lin) MacOS (mac) 
Symbian (sym) Android (and) PalmOS (pm)  
SunSPOT (sun) WinMobile (wm) TinyOS (tos) 
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4.3.2 Aspect	1	-	Frequently	Changing	Knowledge	Bases	
As discussed earlier in the survey of semantic applications, many applications such as 

semantic pub/sub systems [Halaschek-Wiener and Kolovski 2008, Haarslev and Möller 

2003a, Halaschek-Wiener et al 2006] and semantic sensor network systems [Stuckenschmidt 

et al 2010] envision that their knowledge bases could be frequently updated by 

terminological or individual axioms. For examples, normally publications may be 

continuously received by the broker of a semantic publish/subscribe system and then 

combined into the knowledge base in order to match them against publications; sensor 

observations may be constantly generated by sensors and combined into the knowledge base 

for inference. As indicated by the survey of reasoners many existing OWL reasoners, 

especially DL-tableaux reasoners, are designed to handle static knowledge bases, namely 

once the knowledge base has been changed, the entire knowledge base needs to be re-

reasoned, which is sometimes inefficient. However these applications often requires quick 

turnover and therefore the ability to efficiently reason over changing KBs turn out to be an 

important characteristic for the selected reasoners.  

For DL-tableaux reasoners incremental reasoning techniques have been developed enabling 

KB consistency to be checked incrementally for ABox updates [Halaschek-Wiener et al 

2006] and also terminology to be classified incrementally for TBox updates [Parsia et al 

2006, Grau and Halaschek-Wiener 2010], which shows the potential for those DL-tableaux 

reasoners with these algorithms implemented to reason over updates efficiently.  

Resolution-based reasoners can pre-compute and materialization some important reasoning 

tasks materialization to enhance runtime query performance (e.g. KAON2 materializes 

classification results), however this would require re-reasoning in order to maintain 

materialization when the knowledge base changes. An incremental materialization 

maintenance algorithm is devised to enable efficiently handling of TBox update in 

resolution-based reasoners, in particular those using Datalog engine [Volz et al 2005]. Work 

has been done in deductive database to handle incremental materialization maintenance for 

fact updates [Staudt et al 1996], but none has been found applied in resolution-based 

reasoners in the survey. Given the goal-based query-time reasoning feature of the resolution 

algorithm, resolution-based reasoners can perform localized reasoning and then can handle 

updates efficiently.  

Rule-entailment reasoners use RETE to perform reasoning. According to the description of 

RETE given in the background knowledge, RETE inserts each newly added fact into the 
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RETE network where the fact is incrementally matched and joined to existing facts. 

Retraction is a similar process as insertion: the retracted fact is matched and joined in the 

RETE network. However rather than generating/caching intermediate results and inferring 

facts, RETE removes extant intermediate results and extant inferred facts for retraction. 

Since RETE view both TBox updates and ABox updates as facts, RETE has the intrinsic 

ability to handle both updates incrementally.  

Derived ACs and connections for this aspect are given in Table 4-2. To help readers 

understand the derived connections, some general rules used to construct connection are 

explained here. In general a connection states the conditions that a candidate reasoner needs 

to satisfy in order to satisfy the ACs. For examples, the condition TYPE = dl states that the 

value of the RC reasoner type of the candidate reasoner needs to DL-tableaux (refer to Table 

4-1 for codes); the condition classify ∈ INCL states that the value incremental 

classification needs to be included in the RC incremental reasoning of the candidate 

reasoner. Sometimes the ACs of the application are also considered in conditions. They are 

underlined in order to distinguish them from RCs and RC values. For example, the condition 

Required reasoning tasks ⊆ TASK states that the AC reasoning tasks required by the 

application (Required reasoning tasks) need to be a subset of the RC reasoning tasks 

supported candidate reasoner (TASK); the condition conjunctive queries are required 

state that conjunctive queries are required by the application. Conditions in a connection can 

be connected using two types of connectors: and and or. An and clause is satisfied only if 

all its composing conditions (clauses) are satisfied. An or clause is satisfied only if any of its 

composing conditions (clauses) are satisfied. 

Table 4-2: Candidate ACs and Connections Derived from Frequently Changing 

Knowledge Bases 

Derived AC Connections 

Frequent 
terminological update 

(TYPE = dl and classify ∈ INCL) or  
TYPE = entailment or 
(TYPE = resolution and MTLZ = yes and materialize ∈ INCL) 
or (TYPE = resolution and MTLZ = no) 

Frequent instance 
update 

(TYPE = dl and consistency ∈ INCL) or  
TYPE = entailment or 
(TYPE = resolution and MTLZ = no) 
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4.3.3 Aspect	2	-	Required	Semantics	
The amount of semantics required may vary from semantic applications and usually the 

selected reasoner needs to cover the required semantics of the application. For example 

reasoning an ontology as expressive as the wine ontology will usually require a full-fledged 

reasoner that covers the entire OWL DL semantics to be selected, e.g. Pellet or FaCT++, but 

if an ontology falls into the ALN subset of OWL DL, it can be classified using a reasoner 

implementing relatively simple structural subsumption algorithm [Baader et al 2007]. This 

characteristic can also be used to assign an appropriate reasoner to applications whose 

ontology is within some specific OWL sublanguages. For example, some pD*-based rule-

entailment reasoners such as OWLIM and BaseVISor can be used if the ontology uses OWL 

constructs within the pD* semantics; CEL classifies on DL EL++ into which many 

bioinformatics ontology fall; if the ontology fall into the DL-Lite subclass of OWL then 

some dedicated DL-Lite reasoners such as Owlgres and QuOnto can be used to perform 

efficient query answering services.  

Derived AC and connection for this aspect are given below in Table 4-3.  

Table 4-3: Candidate AC and Connection Derived from Required Semantics 

Derived AC Connections 

Required Semantics EXPR > Required semantics 
 

4.3.4 Aspect	3	–	Reasoning	Tasks	
The required reasoning tasks may vary from applications and hence the selected reasoner 

needs to perform reasoner tasks required by the application. One problem is often naturally 

raised when discussing reasoning tasks: the completeness of OWL-DL reasoning. Some 

applications focus on large dataset, such as sensor network systems, or context-aware 

systems. For these applications, discovering implied knowledge through OWL reasoning is 

often like extra points and hence complete OWL-DL reasoning is not necessary. Instead 

incomplete but more data-efficient reasoners are preferable, e.g. rule-entailment reasoners 

(still the chosen reasoner needs to provide the required reasoning tasks). However some 

other applications in particular bioinformatics/medical applications such as the Gene 

ontology and SNOMED ontology have their knowledge bases mostly populated by 

structured concepts and relations, and they usually expect exhaustive reasoning over the 

given ontology. For these applications, efficiency of reasoning and the completeness of 

capturing the iff semantics of OWL-DL turn out to be important for the selected reasoners. 
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All surveyed DL-tableaux reasoners including Pellet, Fact++, and RacerPro are designed for 

such requirements and can well satisfy these applications. Some resolution-based reasoners 

translate OWL ontology into datalog or prolog programs following the ontology-specific 

approach as described in related work (section 2.3.1.1.2). For examples, KAON2 can 

completely classify ontology within DL SHIQ subset of OWL-DL [Hustadt et al 2004a]. 

Thea and Bubo can completely handle DLP [Vassiliadis et al 2009, Volz et al 2003]. CEL 

can efficiently classify EL++ ontology, however it does not belong to any of the three 

reasoner types, namely DL-tableaux reasoners, rule-entailment reasoners, or resolution-

based reasoners. Since entailment rules used in rule-entailment reasoner cannot fully capture 

the iff semantics of OWL-DL, all rule-entailment reasoners do not perform complete OWL-

DL reasoning. 

Derived ACs and connections are given in Table 4-4. 

Table 4-4: Candidate AC and Connection Derived from Terminology-Centric 

Reasoning 

Derived AC Connections 

Reasoning tasks Required reasoning tasks ⊆ TASK  
Completely derive all 
implied knowledge 

CPLT = yes and EXPR > Required Semantics and (TYPE != 
entailment) 

 

4.3.5 Aspect	4	-	Query		
How queries can be issued may vary from applications. Some applications/ontologies 

require to pose complex queries in query languages such as SPARQL [Russomanno et al 

2005, Compton et al 2009a, Eid et al 2007, Kim et al 2008, Compton et al 2009b] while for 

some others application posing atomic queries though an API is sufficient [Keeney et al 

2008]. However different reasoner implementations have different capabilities in answering 

queries. Many state of the art reasoners such as Pellet (latest Ortiz API), KAON2, RacerPro, 

Jena (with ARQ), OWLIM and so on support conjunctive queries. They can be selected for 

the applications requiring complex queries. However some reasoners, e.g. CEL, FaCT++ 

and Jena (core), only allow queries to be posed either using pre-defined directives in 

command line or through an API. Hence they are not suitable for applications which need to 

put complex queries.  

In addition the syntax and functionality differences in different query languages can also 

affect the selection of reasoners. SPARQL uses a RDF-based triple syntax. SPARQL is 
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(partly) supported by many of the state of the art reasoners, such as Pellet, KAON2, Jena 

(with ARQ) and RacerPro. The nRQL is an axiom-based ABox conjunctive query language 

specifically designed for RacerPro. OWLIM supports SeRQL, a RDF query language. 

KAON2 enables queries to be formulated using F-logic. Bossam uses Buchingae [Jang and 

Sohn 2004]. Thea supports queries to be authored using Prolog rules. There are some query 

languages, such as C-SPARQL [Barbieri et al 2010b], that are implemented but however are 

not yet incorporated by state of the art reasoners, and so they are not discussed here. 

Derived ACs and connections for this aspect are given in Table 4-5. 

Table 4-5: Candidate ACs and Connections Derived from Query-Related 

Derived AC Connections 

Queries (Atomic queries are required and QUERY  ≠ ⌀) or 
(Conjunctive queries are required and QUERY ∩ {sparql, 
serql, nrql} ≠ ⌀ ) 

 

4.3.6 Aspect	5	-	Rules	
Rules are widely used in some semantic applications to perform tasks such as fusing sensor 

readings, handling context information or transferring partitive properties in medical 

informatics application based on application specific semantics [Calder et al 2010, Sheth et 

al 2008, Compton et al 2009a, Brennan et al 2009, Rector 2002, Ejigu et al 2007]. Although 

varying in the syntax and expressivity, rule-based reasoners have the intrinsic capability to 

model and process rules. Many tableaux reasoners are also extended to support rules, e.g. 

Pellet and RacerPro partly supports SWRL. However some of the state of the art reasoners 

still lack of support for rules. For example there is no evidence that FaCT++ can process 

rules and therefore it is not appropriate to be selected for applications using rules.  

The expressivity and syntax differences among rule languages can also affect the selection 

of reasoners to some extent. For example if application developers prefer to uses Jena rules 

to model domain knowledge, Jena would be preferable than the other rule-based reasoners 

such as Bossam. Other examples include that: as SWRL does not support negation as failure 

(NaF) a reasoner supporting only SWRL would not be appropriate for applications requiring 

NaF; Jena rules is triple-based and therefore does not express n-arity predicates; and so on. 

Considering this discussion is only for identifying example ACs and connections for 

demonstrating RESP rather than insight and complete discussion all interplay between 

different requirements on rules from applications and different rules languages, it is deemed 
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that the requirement for rules is satisfied if the selected reasoner has some types of rule 

support or the reasoner is one of the rule-based reasoners.  

Derived AC and connection are given in Table 4-6. 

Table 4-6: Candidate AC and Connection Derived from Rules 

Derived AC Connections 

Rules required RULE ∩ {swrl, jena} ≠ ⌀ or 
TYPE ∩ {entailment, resolution}  ≠ ⌀ 

 

4.3.7 Aspect	6	-	Concrete	Domains	
It is generally accepted that many real-world applications such as sensor network systems or 

context-aware systems need to handle some information such as temperature, geo-graphical 

location, time, moisture, speed and so on which often needs to be modelled as concrete 

objects such as string, numeric numbers, and time and so on. OWL12 has limited capability 

to model and handle concrete domains: concrete objects of some XSD datatypes can serve 

as values of data value properties. However OWL lacks abilities to (1) express comparisons 

or computations between concrete objects, e.g. the convention between Celsius and 

Fahrenheit, and (2) model arbitrary user-defined datatypes, e.g. human age is from 0 to 150. 

These two has been generally accepted to be of important for many practical applications.  

Due to this reason some semantic applications choose to handle concrete data outside OWL 

by interfacing an outside system with these abilities missing from OWL, e.g. a conventional 

publish/subscribe system [Keeney et al 2008, Keeney et al 2010] or a rule system [Sheth et 

al 2008, Agostini et al 2005] (many rule systems have a wide range of builtins for handling 

concrete objects) and so on. OWL is then used in such applications to model complex and 

non-concrete-data-related knowledge or information, e.g. concept hierarchies, user activities 

or human interests and so on. However, reasoning over concrete domains has been 

extensively studied in previous work for DL and OWL [Haarslev and Möller 2002, Lutz 

1999, Hustadt et al 2004b, Haarslev and Möller 2003b, Pan 2004], and indeed the latest 

OWL 2 specification enables the definition of user-defined datatypes and datatype 

restrictions. Pellet supports user-defined datatypes to be embedded in OWL ontology using 

added OWL constructs such as owl:onDataRange, owl:datatypeComplementOf, 

                                                        

12 OWL 2 has support for user-defined datatypes and datatype restriction. However given that this thesis is based 
on OWL 1, if not specified, all the terms “OWL” referred in this thesis are limited to OWL 1. 
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xsd:minInclusive and so on. Furthermore Pellet supports part of SWRL including 

mathematical/string builtins and hence it also enables limited comparisons and computation 

on concrete objects (except for date, time and duration) to be modelled and processed in 

SWRL rules. Jena also supports user-defined datatypes and it has a range of pre-defined 

builtins for handling concrete objects. Furthermore it enables user-defined builtins to be 

constructed and called in rules. Hence potentially enables arbitrary computation to be 

modelled as user-defined builtins. Bossam allows Java methods to be called as builtins in 

rules as well. 

Derived ACs and connections are given in Table 4-7. 

Table 4-7: Candidate ACs and Connections Derived from Concrete Domains 

Derived AC Connections 

Concrete domains (XSD datatypes are required and xsd ∈ CD) or 
(User-defined datatypes are required and user ∈ CD) or 
(Comparison and computation are required and (comp ∈ CD 
or RULE ≠ ⌀)) 

 

4.3.8 Aspect	7	-	Closed-World	Features	
Some systems, e.g. database-based systems, assume the known knowledge of this system is 

a complete modelling of the domain, and missing knowledge (the knowledge fails to derive) 

is simply regarded as not true. These systems are deemed to follow a closed world 

assumption (CWA). However OWL assumes an open world assumption (OWA) where the 

knowledge base is only a subset of domain and all missing knowledge is regarded as 

unknown. The difference between CWA and OWA can lead to different results in reasoning. 

A typical example could be owl:someValuesFrom. In standard OWL semantics no value 

for a property restricted by owl:someValuesFrom can lead to an anonymous object to be 

constructed: the object must be there however the only matter is it is unknown. However in 

CWA-based OWL semantics such as [Pellet ICV, Tao et al 2010] this would be interpreted 

as a breach of constraints: according to the knowledge base, there is no such object exists.  

The standard OWL semantics are useful in most cases but for some practical systems 

closed-world features are required for answering negated queries or for checking integrity 

constraints. For example, a flight system may want to query which two cities are not 

connected by a direct flight or a student record system may expect inconsistency to be 

reported when it is found no student number is assigned for a student rather than assigning 
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an anonymous object. Two approaches are taken to cope with the requirement of CWA. 

Firstly a dedicated reasoner can be constructed implementing (local) closed-world semantics 

for OWL. A lot of research in OWL has been devoted to enable (local) closed-world 

semantics in DL or OWL [Donini et al 1992, Katz and Parsia 2005, Motik et al 2006, Motik 

et al 2007, Tao et al 2010]. In fact Pellet ICV [Pellet ICV] is the only tool found in the 

survey of the state of the art reasoners supporting a closed-world flavoured OWL. A second 

approach is to interfacing an outside rule or query system supporting some closed-world 

features. For example SPARQL supports the use of constructs OPTIONAL and BOUND to 

achieve negation as failure [Nerode and Shore 1997], i.e. not P is assumed from failure to 

derive P. This enables users to pose negated query and check for integrity constraints 

without changing the closed-world semantics of OWL. Similarly some other query/rule 

languages such as nRQL (RacerPro query language, refer to [RacerPro Reference Manual 

v1.9.2]), SeRQL (Sesame query language, refer to [Sesame User Guide]) or Jena rules also 

support negation as failure. 

Derived ACs and connections are given in Table 4-8. 

Table 4-8: Candidate ACs and Connections Derived from Closed-World Features 

Derived AC Connections 

Integrity constraints CWA  ≠ ⌀ or RULE  ≠ ⌀ or QUERY ∩ {sparql, nrql, serql) 
Closed-world queries 
(negated queries) 

query ∈ CWA or QUERY ∩ {sparql, nrql, serql) ≠ ⌀ 

 

4.3.9 Aspect	8	-	Large	Knowledge	Base	or	Persistent	Storage	
Some applications often need to process a large knowledge base or need data to be 

persistently stored for offline access. For examples, some semantic context-aware systems 

require storing received context information locally for further analysis [Gu et al 2007, 

Boehm et al 2008]. This is also the case for many sensor network systems where sensor 

observations are maintained in a centralized database for analysis [Sheth et al 2008]. 

Database support in the selected reasoners is then a key characteristic for such applications. 

Many OWL (RDF) stores are available, such as Jena TDB [Jena TDB], BigOWLIM, 

AllegroGraph [Allegrograph 2011], KAON2, Oracle database 11g, Parliament [Kolas et al 

2009], and PelletDB [PelletDB]. However some of them implement optimizations enabling 

more scalable (and may be more efficient) database reasoning. For example, KAON2 

implements a virtual ontology technique that maintains only a view of the ontology in 

memory and the real data are still kept in database. Jena TDB provides only storage and 
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SPARQL querying for RDF dataset, but the entire OWL ontology still needs to be loaded 

and reasoned in memory. For the other OWL/RDF data stores their optimizations are not 

mentioned everywhere since they are commercialized. AlegroGraph supports storing data 

set in database with a reasoning service of the RDFS++ [RDFS++] subset of OWL; 

Parliament supports inference over a selected subset of OWL (equivalent classes and 

equivalent, inverse, symmetric, functional, inverse functional, and transitive properties); 

BigOWLIM supports the pD* subset of OWL. Some in-memory reasoners also gain access 

to databases by interfacing to a database-enabled OWL framework. For example, FaCT++ 

and CEL can be plugged into OWLAPI for which OWLDB [Henss et al 2009] is a de facto 

database backend. Similarly as Jena, they load the entire ontology into memory and do not 

have any specific optimizations for scalable database reasoning.  

Derived ACs and connections are given in Table 4-9. 

Table 4-9: Candidate ACs and Connections Derived from Large Knowledge Base 

or Persistent Storage 

Derived AC Connections 

Database support DB != ⌀ or MANI ∩ {owlapi, jena} ≠ ⌀ 
 

4.3.10 Aspect	9	–	User/Application	Manipulation	of	Ontology	
Although not explicitly notified in many published paper or webpages, the ability to 

manipulate ontology/knowledge (e.g. changing/adding/deleting axioms) is important for 

many applications to combine changes into the ontology at runtime or to allow human users 

to alter the ontology. For examples, it is generally accepted that semantic sensor network 

systems or semantic context-aware systems usually need to combine sensor readings or 

context information into the knowledge base/ontology at runtime in order to using 

ontology/KB manipulation APIs; some semantic publish/subscribe systems may allow users 

to dynamically change their current situation or interests (modelled as complex concepts) 

[Agostini et al 2005, Luther et al 2008]; in some applications such as the Gene ontologies, 

human users may want to use the reasoner standalone to manipulate, reason over and query 

the ontology, thus requiring either a rich and full-functioned GUI or command line to be 

supported by the selected reasoner, or that the selected reasoner needs to be pluggable into 

some graphical ontology manipulation tools such as Protégé (though DIG). 

According to the survey of reasoners there are three ways to enable ontology manipulation. 

Firstly some state of the art reasoners provide a rich set of native APIs/command line 
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derivatives/GUI interfaces. For examples, KAON2 has a rich set of APIs for ontology 

reading, parsing and manipulation; CEL has a set of command line derivatives to enable 

concept/role construction; RacerPro has a graphical interface allowing users to manipulate 

and reason over ontologies. A second approach is to plug reasoners into some semantic 

frameworks such that a rich set of ontology manipulation API is available. For examples, 

Pellet can be plugged into both OWLAPI and Jena; FaCT++ and CEL can work with 

OWLAPI. A third approach is through the DIG interface. It provides a standardized XML 

interface for OWL manipulation and query, i.e. a set of tell verbs for axiom assertions and a 

set of ask verbs for querying. Furthermore DIG compliant reasoners can be plugged into 

Protégé enabling users to manipulate, query and reason over ontologies using Protégé GUI 

interface. Many state of the art reasoners support DIG such as RacerPro, FaCT++, Pellet and 

CEL and so on.  

Some other reasoners, such as Bossam, have very limited native ontology manipulation 

interfaces and are also not pluggable into any ontology frameworks. They are then not quite 

suitable for these applications. 

Derived ACs and connections are given in Table 4-10. 

Table 4-10: Candidate ACs and Connections Derived from Ontology 

Manipulation 

Derived AC Connections 

Ontology 
manipulation 

(API manipulation is required and MANI ≠ ⌀) or  
(CMD manipulation is required and cmd ∈ ACCESS ) or 
(GUI manipulation is required and (gui ∈ ACCESS or dig ∈ RINF)) 

 

4.3.11 Aspect	10	-	Explanation	of	Reasoning	and	Ontology	Debugging	
Explanation of deductions and debugging are required by some applications like ontology 

engineering tools such as SWOOP [SWOOP], configuration management tools [Baader et al 

2007, Shahri et al 2007], or bioinformatics applications [Keet et al 2007] for explaining 

reasoning results or for providing justification for modelling inconsistency. In general two 

approaches are taken by existing reasoners to perform reasoning explanation. Some 

reasoners implement native explanation components enabling justifications to be derived for 

inferences, such as Pellet, Jena and Bossam. A second approach is to plug into OWLAPI 

that implements a black box debugging mechanism [Kalyanpur et al 2006]. Through this, 

explanations can be generated for reasoners that do not natively support explanation, e.g. 
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FaCT++ and CEL. 

Derived ACs and connections are given in Table 4-11. 

Table 4-11: Candidate ACs and Connections Derived from Explanation of 

Reasoning and Ontology Debugging 

Derived AC Connections 

Reasoning explanation EXPL = yes or owlapi ∈ MANI 
 

4.3.12 Aspect	11	-	Miscellaneous	
Some other application characteristics may also affect the selection of an appropriate 

reasoner. In some applications such as bioinformatics ontology. Some applications may need 

to remotely access reasoning services to achieve thin client. This requirement will need the 

implementation of some kinds of remote interfaces on the reasoner, e.g. DIG. Some other 

application characteristics include the requirement to run on a particular operating systems 

(Linux, Windows, MacOS), open sources, user support, price, and so on. Given that these 

ACs are not relevant to the reasoning capability of a reasoner and hence they are not 

discussed in detail in this thesis. From this aspect, three ACs are identified as examples. 

Derived ACs and connections are given in Table 4-12. 

Table 4-12: Candidate ACs and Connections Derived from Miscellaneous 

Derived AC Connections 

Human access  ACCESS ≠ ⌀ or dig ∈ RINF 
Remote access RINF ≠ ⌀ 
Operating systems Required os ⊆ OS 
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4.3.13 A	Summary	of	Example	Candidate	ACs	and	Connections	
A summary of the example Candidate ACs and connections can be found in Table 4-13.  

Table 4-13: A Summary of Example ACs and Connections 

Derived AC Connections 

Frequent 
terminological update 

(TYPE = dl and classify ∈ INCL) or  
TYPE = entailment or 
(TYPE = resolution and MTLZ = yes and materialize ∈ INCL) 
or (TYPE = resolution and MTLZ = no) 

Frequent instance 
update 

(TYPE = dl and consistency ∈ INCL) or  
TYPE = entailment or 
(TYPE = resolution and MTLZ = no) 

Required Semantics EXPR > Required semantics 
Reasoning tasks Required reasoning tasks ⊆ TASK  
Completely derive all 
implied knowledge 

CPLT = yes and EXPR > Required Semantics and (TYPE != 
entailment) 

Queries (Atomic queries are required and QUERY  ≠ ⌀) or 
(Conjunctive queries are required and QUERY ∩ {sparql, 
serql, nrql} ≠ ⌀ ) 

Rules required RULE ∩ {swrl, jena} ≠ ⌀ or 
TYPE ∩ {entailment, resolution}  ≠ ⌀ 

Concrete domains (XSD datatypes are required and xsd ∈ CD) or 
(User-defined datatypes are required and user ∈ CD) or 
(Comparison and computation are required and (comp ∈ CD 
or RULE ≠ ⌀)) 

Integrity constraints CWA  ≠ ⌀ or RULE  ≠ ⌀ or QUERY ∩ {sparql, nrql, serql) 
Closed-world queries 
(negated queries) 

query ∈ CWA or QUERY ∩ {sparql, nrql, serql) ≠ ⌀ 

Database support DB != ⌀ or MANI ∩ {owlapi, jena} ≠ ⌀ 
Ontology 
manipulation 

(API manipulation is required and MANI ≠ ⌀) or  
(CMD manipulation is required and cmd ∈ ACCESS ) or 
(GUI manipulation is required and (gui ∈ ACCESS or dig ∈ 
RINF)) 

Reasoning explanation EXPL = yes or owlapi ∈ MANI 
Human access  ACCESS ≠ ⌀ or dig ∈ RINF 
Remote access RINF ≠ ⌀ 
OS Required os ⊆ OS 
 

4.4 Matchmaking	
Users identify from the candidate ACs those relevant to their applications and input them 

into RESP. Candidate reasoners are registered in RESP as profiles of RCs. For example, 

COROR can be registered as the profile given in Table 4-14. Then the matchmaking process 
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is to check satisfiability of the selected ACs according to the connections identified in 

section 4.3. 

Table 4-14: An example reasoner profile for COROR 

Reasoner characteristic Values 
ALGM rete 
TYPE entailment 
EXPR pD* 
CPLT no 
TASK ent 
MTLZ yes 
INCL no 
QUERY atomic 
RULE jena 
CWA rule 
CD xsd, comp 
DB no 
RINF no 
ACCESS no 
EXPL no 
MANI api 
PLAT j2me 
OS win ,lin, mac, sym, and, wm, sun 

 

A simple use case is given showing how matchmaking is performed in RESP to assist the 

reasoner selection for applications using an artificial demonstration scenario and the above 

identified candidate ACs and connections.  

“Bob wants to build a semantic sensor network management system where sensors 

(SunSPOT) are clustered with one sensor as the head of each cluster. In this system cluster 

heads are expected to perform correlation over failures within the cluster. This can (1) 

identify the root cause of a set of received failures within a window, and then (2) reduce the 

traffic in the sensor network. To perform this Bob wants to use OWL to model failure 

hierarchy and causal relationships between failures are modelled as rules, as listed below: 

(1) BatteryNearDepletion is a root cause of itself. 

(2) NoNodeAvailable from a node can be caused by the BatteryNearDepletion from 

another node on its route to destination (include destination). 

(3) NoNodeAvailable from a node can be caused by the NodeOut from another 

node on its route to destination (include destination). 
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(4) NodeOut from a node can be caused by the BatteryNearDepletion from another 

node on its route to gateway (gateway not included). 

(5) NodeOut from a node can be caused by the NodeOut from another node on its 

route to the gateway (gateway not included). 

The system also needs XSD datatype values to be supported and handled by the reasoner so 

that sensor observations can be modelled and processed.” 

By analysing the requirements, Bob finds that: 

• the reasoner needs to support rules in order to model and process failure correlation 

rules; 

• the reasoner needs to run on the J2ME CLDC 1.1 platform since it is the software 

running platform for Sun SPOT; 

• the reasoner needs to support xsd datatypes and computation/comparison over xsd 

datatypes in order to model and process sensor observations. 

He then goes to the candidate ACs and finds the corresponding candidate ACs: 

• Rule required, 

• Platform: J2ME 

• Concrete domains: XSD datatypes 

in RESP. He then inputs them into RESP and RESP will then perform the matchmaking 

attempting to find out the most appropriate reasoners according to the example connections 

and the profile for COROR: 

RULECOROR = {jena} 

and  

RULECOROR ∩ {swrl, jena} = {jena} ≠ ⌀. 

Furthermore for COROR  

TYPECOROR = {entailment} 

and 

TYPECOROR ∩ {entailment, resolution} = {entailment} ≠ ⌀. 

Hence the AC rule required is satisfied. It can be deduced in similar ways that the ACs 
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platform and concrete domains are also satisfied. The satisfaction rate for COROR is then 

computed following the formula given in section 4.2, as 

 

and then COROR is identified by RESP as the most appropriate reasoner for the above 

semantic sensor network management system since its 100% satisfaction rate. Using RESP, 

Bob needs not to search for and read technical documents about reasoners and how different 

reasoning technologies match different application characteristics such as which reasoner 

supports rule reasoning, which reasoners supports J2ME CLDC 1.1 and which reasoner 

supports computation and comparison XSD datatype and so on. RESP can automatically 

select a most appropriate reasoner for him through matchmaking even if he has little 

knowledge of OWL reasoning. 

4.5 Summary	
This chapter presents a computer aided reasoner selection process, RESP, which is designed 

to address a problem raised by the rapid development and complexity in both OWL 

reasoning technologies and semantic applications: without a process to select an appropriate 

reasoner, such rapid advancement in semantic applications and reasoning technologies will 

require more effort to be devoted by application developers and reasoner experts to select an 

appropriate reasoner for semantic applications. RESP allows application developers to select 

an appropriate OWL reasoner for their applications by inputting only ACs of which they 

should be familiar.  

Discussions of the interplays between semantic applications and reasoners are presented in 

terms of 11 reasoning-related aspects. Example candidate ACs and connections are 

identified from the discussions and an artificial use case is presented using the identified 

ACs and connections to show the using of RESP to select an appropriate reasoner.  

This section approaches the first half (design of RESP) of the research objective 4 as to 

“design and implement a reasoner selection process enabling automatic/semi-automatic 

reasoner selection for applications.” 

A description of a prototype implementation of RESP can be found in the next chapter. It is 

implemented based on the identified ACs, RCs and connections discussed in this chapter, 

and it is targeted at the second half of the research objective 4 (implementation of RESP). 

𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑒 = 	
3
3 × 100% = 100% 
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RESP has been identified as the minor contribution of this thesis. 
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Chapter 5 
Implementation 

5.1 Introduction	
As discussed earlier in the introduction chapter, the increasing demand for intelligence in 

embedded devices calls for resource-constrained OWL reasoners [Kleemann and Sinner 

2006, Brennan et al 2009, Koziuk et al, 2008]. In order to use fewer resources on resource-

constrained devices, the idea of reasoner composition is proposed in this thesis enabling 

reasoners to adjust their reasoning capabilities/algorithms according to the characteristics of 

applications, such that unnecessary reasoning capabilities are not loaded, reducing the 

resource usage. Some (relatively static) reasoner composition mechanisms are already out 

there, such as to manually add/remove rule set or to generate translate ontology into rules 

according to pre-defined rule patterns. However, the highly dynamic nature of some 

embedded systems makes the static reasoner composition mechanisms insufficient, which 

then raises the problem of designing automatic reasoner composition mechanisms. 

Furthermore, as mentioned in the introduction chapter, the ever growing of complexity and 

volume of reasoner characteristics and application characteristics gradually makes the 

existing consultation-based insufficient and hence raises another problem of designing an 

automatic reasoner selection process.  

These two problems are separately discussed in the Chapter 3 and Chapter 4, and two novel 

tools are designed. In Chapter 3 the design of COROR, an automatic composable rule-

entailment reasoner for resource-constrained devices, is presented in correspond to the first 

problem. Two novel automatic reasoner composition approaches are introduced to 

automatically compose rule-entailment reasoners both at the rule set level and inside the 

RETE algorithm according to the ontology to be reasoned. To address the second problem as 

to construct an automatic reasoner selection process, Chapter 4 presents the design of RESP, 
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an automatic reasoner selection process that allows application developers to select an 

appropriate reasoner for their applications according to the application characteristics of 

their applications.  

Prototype implementation of the above two tools are described in detail in this section. The 

implementation of COROR is discussed with respect to five major aspects, namely: the 

selection of an appropriate resource-constrained platform on which COROR will be 

implemented; the selection/construction of a resource-constrained rule-entailment reasoner 

based on which the designed composition algorithms are implemented; the implementation 

of the pD* entailment rules using Jena rule format; the implementation detail for the two 

novel composition algorithms; and finally the extension of COROR to support OWL 2 from 

the implementation perspective (please refer to section 3.5 for the discussion of extending 

COROR to support OWL 2 from the design perspective). A desktop prototype 

implementation of RESP, which is called Tool for Automatic Reasoner Selection (TARS), is 

also presented in the subsequent sections. Since it is implemented for demonstration and 

evaluation purposes rather than for practical use, the RCs, example candidate ACs, and 

connections as identified above in section 4.3 are used.  

5.2 COROR	
This section describes in detail how COROR is implemented. 

5.2.1 Choosing	a	Platform	
The Sun SPOT [SUN SPOT 2010] platform is chosen as the platform on which COROR is 

implemented. It is designed to encourage the development of new embedded applications 

and therefore everything is well integrated. It includes a sensor board with a resource-

constrained hardware platform: a 180MHz 32-bit ARM920T core processor, 512K RAM 

and 4M Flash. Furthermore it has a well-integrated top-to-bottom Java software 

programming platform which is the de facto platform for resource-constrained devices such 

as sensors or medical devices and so on. It runs a Squawk Java Virtual Machine (JVM) that 

supports J2ME CLDC 1.1, which is a platform adopted by many very limited resource-

constrained devices. Furthermore Sun SPOT is powered by batteries, and multiple Sun 

SPOT sensor boards can be networked via wireless communications, enabling a wireless 

sensor network to be constructed. Some other benefits of using Sun SPOT include that it is 

well integrated with Netbeans java Integrated Development Environment (IDE) facilitating 

java development and it comes with an emulator allowing applications to be debugged and 

tested on it before physically deployed to the real sensor board. All these show that Sun 
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SPOT matches the target platform of the resource-constrained composable reasoner research 

carried out in this thesis, and therefore it appears to be a perfect platform for implementing 

and testing the COROR composable resource-constrained reasoner.  

 

Figure 5-1: Sun SPOT wireless sensor network development kit. 

COROR is implemented on the Sun SPOT [SUN SPOT 2010] sensor board emulator with 

SDK v4.0 (blue). It is written in Java in Netbeans 6.5. COROR is implemented to be 

conformant with J2ME CLDC 1.1 since it is the running platform supported by Sun SPOT 

and also many other small devices with very limited resources. Since J2ME CLDC 1.1 is a 

subset of J2ME CDC and J2SE platform, this implementation can also run on these 

platforms. 

5.2.2 Constructing	a	Resource-Constrained	Rule-Entailment	Reasoner	
Considering (1) the large amount of effort required designing and developing a resource-
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constrained rule-entailment OWL reasoner from scratch, and (2) the major objective of this 

research as to investigate the performance impacts brought by the application of the 

composition algorithms (refer to objective 3), it would be much easier to implement 

COROR by combining the two novel composition algorithms into an existing resource-

constrained rule-entailment OWL reasoner rather than from scratch. Since an investigation 

showed that no proper off-the-shelf resource-constrained rule-entailment reasoner is 

available, migration was required to port a proper existing desktop rule-entailment reasoner 

to the target platform (Sun SPOT). This section presents the effort involved in the 

construction of the resource-constrained rule-entailment reasoner based on which COROR 

was implemented. 

5.2.2.1 Selecting	a	Proper	Rule-Entailment	Reasoner	
Note that several requirements were to be imposed on the selected reasoner. Firstly, the 

selected reasoner needs to be a typical rule-entailment reasoner using RETE algorithm and 

ontology-independent translation, since (1) rule-entailment reasoners are identified as the 

most suitable type of reasoner to carry out the reasoner composition research (refer back to 

the introduction section of Chapter 3), and (2) the use of a typical rule-entailment reasoner 

enables a grounding for the general applicability of the two novel reasoner composition 

algorithms. Secondly, the selected reasoner needs to be open source since it is highly likely 

that the implementation of the composition algorithms, in particular the two-phase RETE 

algorithm, would require changes to the original reasoning algorithm. Thirdly the 

availability of well written documentation and an active developers/user group are important 

for the author to use less time to investigate the intricacies of the reasoner. 

Seven rule-entailment reasoners, including five state of the art desktop rule-entailment 

reasoners: OWL2Jess, OWLJessKB, BaseVISor, swiftOWLIM, and Jena (Although Jena is 

categorized as a hybrid reasoner, it has a well-built RETE engine which allows forward-

chaining rule-entailment OWL reasoning to be performed.); and two mobile rule-entailment 

reasoners: MiRE4OWL and Bossam, are investigated for their suitability in accordance to 

the above requirements. Among these reasoners, Jena shows better suitability than the others 

in all the above mentioned aspects, since (1) Jena is open source, enabling modifications to 

be performed on the code, (2) it has a typical and well-implemented RETE engine, 

providing a good basis for the implementation of the two novel reasoner composition 

algorithms, and (3) it is written in Java (J2SE) and there is also an off-the-shelf reduced Jena 

framework for mobile devices available (i.e. µJena, which is written to run on J2ME CDC), 

which largely reduces the efforts to port it to a J2ME CLDC platform. In addition Jena (and 
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µJena) has a rich set of interface enabling ontology manipulation and accessing, and it is 

well supported and documented, further simplifying the implementation. 

BaseVISor, swiftOWLIM and Bossam are closed source reasoners. Although MiRE4OWL 

is a mobile reasoner, it is not publically accessible and it is implemented using C++, and 

would involve a much more difficult migration. OWLJessKB and OWL2Jess are open 

source (OWL2Jess is only a XSLT document translating OWL to JESS program), but they 

both rely on the JESS general rule engine [JESS] and therefore there would be a need to 

migrate the JESS engine to J2ME platforms. After investigation, it was discovered that this 

migration would be much difficult than Jena.  

5.2.2.2 Jena	RETE	Engine		
Since Jena is selected as the reasoner to perform the migration, a study was carried out into 

the inside of Jena RETE engine. This section describes the Jena RETE engine and its 

implementation features.  

As mentioned earlier Jena has a RETE engine. OWL ontology is viewed in this RETE 

engine as a RDF graph, i.e. a set of triples of the format  

(subject predicate object). 

Each triple is a fact for the RETE engine. A set of OWL entailment rules written in Jena rule 

format is used to match the RDF graph according to OWL semantics. Two types of elements 

can exist in the l.h.s. of a Jena rule: a condition element and a functor. A normal condition 

matches triples and it has the same format as a triple except that the subject, predicate and 

object can be variables. A functor has different purposes. It can either be a builtin that 

performs actions, such as: assigning anonymous nodes; performing literal checking; 

performing mathematical operations; and so on, or be an embedded structure for caching 

matched subgraphs. As will be found out in the section 5.2.3, since functors are only used as 

builtins in the used rule set, the usage as embedded structure is ignored here.  

Two sample Jena rules are given for illustration. The rule rdfs4b infers that any non-literal 

subject is a RDFS resource. The functor notLiteral(?w) is responsible for checking if ?w is 

a literal or not.  

[rdfs4b: (?v ?p ?w), notLiteral(?w) à (?w rdf:type rdfs:Resource)]. 

The rule rdfp15 infers the class of a property value when the property is restricted by an 
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OWL someValuesFrom restriction: 

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x 

rdf:type ?w) à (?u rdf:type ?v)]. 

The left hand side of this rule consists of four normal conditions but no functors.  

The Jena RETE engine has some features that make it an efficient OWL reasoner.  

First each intermediate result is represented as an array of the same size with the number of 

variables in a particular rule, and each entry of the array corresponds to the value bound to a 

variable. For example the intermediate results generated for the rule rdfp15 (as illustrated 

above) is a five-entry array that looks like that represented in Figure 2.2. 

 

 

Figure 5-2: An example intermediate result for rule rdfp15 

Each entry in this array corresponds to a variable in the rule and they are arranged in the 

same order as appeared in rule, as illustrated in Figure 5-2. This approach can speed up joins: 

joining two intermediate results turns out to be checking for the consistency of values in the 

same position of the corresponding intermediate values. For example, joining the first two 

conditions of the rule rdfp15, that is (?v owl:someValuesFrom ?w) and (?v 

owl:onProperty ?p), turns out to check the consistency of the value in the first entry, i.e. ?v, 

of the intermediate results from them. As will be discussed later on in section 5.2.4, this 

mechanism needs special attention since it hinders node sharing. 

The second reason Jena is quite efficient is that triples are indexed according to the predicate 

used to speed up searching. The third reason is that as triple is the only type of fact, no type 

checking is needed for condition elements. However no other optimizations are applied to 

change the structure, construction process, or execution of the RETE network, making the 

Jena RETE engine a relatively typical and straight forward RETE engine for rule-entailment 

reasoner.  

Figure 5-3 illustrates an example Jena RETE network for the rule rdfp15 as listed above. As 

?v ?w ?p ?u ?x
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all facts are in triple format and therefore no type checking is needed for condition elements. 

Intermediate results are represented as n-array as described in Figure 5-2. Bound variables 

in intermediate results are coloured in green and yellow but unbound variables are coloured 

in grey with a cross in centre. Join operations are illustrated in each beta node as an 

equation(s) of the variable to be checked for consistency, e.g. in Beta Node 1 ?v=?v means 

the variable ?v is to be checked for consistency, and the corresponding bound variables are 

coloured in yellow and linked using dotted lines. The intermediate results come from the 

last beta node (in this example the beta node 3) pass the consistent checking for all variable 

bindings. It is then propagated to the functor node attached in the end, performing builtin 

operations such as number comparison, checking for variable bindings, etc. In this example 

no functors are exist therefore the functor set is empty. Intermediate results passing functor 

actions are then made to be the instantiations of the rule and are inserted into the conflict set 

waiting for firing. 
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Figure 5-3: An example Jena RETE network and an illustration of join operations 

The optimizations adopted in Jena RETE engine make it an efficient OWL reasoner. 

However their application does not change the structure of RETE network or execution 

process of the RETE algorithm, hence making the Jena RETE engine still a typical RETE 

engine compliant with the original RETE algorithm. Also considering its open-source nature, 

Jena RETE engine forms a good target for implementing COROR.  
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5.2.2.3 Implementing	OWL	Reasoning	on	μJena	
Based on the investigation carried out, Jena v2.5.5 and µJena v1.5 were thus selected to 

construct a resource-constrained rule-entailment OWL reasoner as a basis on which the 

implementation of COROR is carried out. However, a major problem that had to be 

addressed before µJena ran on Sun SPOT (J2ME CLDC platform) as a resource-constrained 

rule-entailment reasoner, was that µJena is only an ontology manipulation framework and 

the reasoning features of Jena were not included. Given the close connections between 

µJena and Jena, µJena was thus extended by the author to use the Jena RETE engine. The 

extension mainly focuses on the migration of classes from 12 packages of over 90 classes 

and over 10000 lines of code, which enlarged the original µJena source code by around 25% 

in size. Most classes are migrated from the corresponding classes in Jena and 9 class are 

introduced by the author in order for invoking forward chaining reasoning 

(EnhForwardRETEInfGraph, EnhForwardRETEReasoner), providing builtin support for 

operations in pD* rules (LiteralStore, AssignAnon, IsDLiteral, IsPLiteral), and some utils 

classes (Character, Collection, NumberUtil). Four major packages are 

com.hp.hpl.jena.reasoner, com.hp.hpl.jena.reasoner.rulesys, 

com.hp.hpl.jena.reasoner.rulesys.builtins and com.hp.hpl.jena.reasoner.rulesys.impl, where 

the major extension occurred. Since graph is the core structure in Jena (µJena) where 

ontology is stored and the other operations, including manipulation and reasoning, are 

performed, its extension is discussed in detail.  

A class diagram is given in Figure 5-4 showing the extension made to µJena in order to 

support OWL reasoning. To avoid an over complicated diagram, not all introduced or 

migrated classes are included in the diagram. Only classes related to graph are shown. A full 

list of the introduced and migrated classes can be found in Appendix E. 

Originally µJena only brings in six basic graph classes, as coloured in light blue in Figure 

5-4. To enable OWL reasoning, the InfGraph interface, i.e. an interface extending the Graph 

interface with methods to call the RETE engine and query the inferred graph, and related 

classes are introduced into µJena, as coloured in orange. The BaseInfGraph class is a base 

level implementation of InfGraph. The BasicForwardRuleInfGraph class extends 

BaseInfGraph by rendering forward-chaining features. For example, it materializes all 

inference results in a deduction graph; furthermore, it maintains a simple forward rule 

chainer (FRuleEngine), and runs it each time a new triple is added. The RETERuleInfGraph 

class extends the BasicForwardRuleInfGraph by replacing the simple rule chainer with a 

RETE engine (RETEEngine). The Reasoner interface includes the methods that all reasoners 
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need to conform. The RuleReasoner interface extends Reasoner with two methods that rule-

based reasoners need to conform, i.e. getRules() and setRules(). Jena does not have a 

dedicated RETE reasoner class. As a matter of fact, in order to use only RETE engine to 

perform OWL reasoning, Jena needs to configure the GenericRuleReasoner class using the 

FORWARD_RETE option. Other options include FORWARD (using a simple forward-

chaining engine), BACKWARD (using a backward resolution engine) and HYBRID (using 

both the RETE engine and the backward resolution engine). However the introduction of the 

GenericRuleReasoner class requires the introduction of many more classes into µJena, such 

as forward-backward inference graph, backward chaining engines, and so on, and they are 

not used for this research. Therefore an EnhForwardRETEReasoner class and an 

EnhForwardRETEInfGraph are constructed to perform only forward-chaining RETE 

reasoning. It is based on GenericRuleReasoner by removing the options and Java code for 

the other reasoners and the java code for the forward RETE reasoner is kept. By doing this 

only RETERuleInfGraph is returned for ontology binding. Some other classes are also 

introduced such as Rule, MultiUnion and so on. Since they are auxilirary classes in order to 

support reasoning, they are not discussed here in detail. 

The migration of the reasoning-related classes from Jena (J2SE platform) to µJena (J2ME 

CLDC 1.1 platform) involved a great deal of code refactoring, especially the replacement of 

J2SE conformant container classes with the corresponding CLDC 1.1 conformant container 

classes defined by µJena: java.util.List and its descendants such as ArrayList are replaced by 

it.polimi.elet.contextaddict.microjena.util.List. Similarly java.util.Set and its descendants 

such as HashSet are replaced by it.polimi.elet.contextaddict.microjena.util.Set, and 

java.util.Map and its descendants such as HashMap are replaced by 

it.polimi.elet.contextaddict.microjena.util.Map. The replacement container classes, namely 

it.polimi.elet.contextaddict.microjena.util.List, it.polimi.elet.contextaddict.microjena.util.Set, 

and it.polimi.elet.contextaddict.microjena.util.Map, are originally used in µJena and 

therefore their correct functioning is ensured. No other changes except for the replacement 

of container classes were performed on the migrated classes and hence the correctness of the 

migrated classes is ensured. 
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For clarity the µJena version after being extended with reasoning capabilities is termed as 

enhanced µJena. Entailment is the key reasoning task for enhanced µJena. Conjunctive 

queries are not yet supported by enhanced µJena since µJena lacks support for it. Since 

adding such functionality is a pure implementation issue involving a large amount of code 

work, however, without (positively/negatively) affecting the composition algorithms (the 

evaluation of conjunctive queries will be performed in a different module separate from the 

reasoning algorithm), its addition can be taken as a future work. The enhanced µJena only 

supports a single-triple-based query mechanism through the API, i.e.  

InfModel.listStatement(s, p, o),  

where s, p and o correspond to the subject, predicate and object of the triple pattern being 

queried. Since COROR only extends the enhanced µJena by combining the two novel 

composition algorithms rather than adding more reasoning tasks or the conjunctive query 

answering ability, the entailment and single-triple-based query are respectively the key 

reasoning task and the only query mechanism of COROR.  

However, some common reasoning tasks can be realized by querying the ontology with all 

entailments calculated (entailment closure) using the above single-triple-based query 

mechanism. For example: checking subsumption between two classes C and D can be 

reduced to querying the entailment closure with the triple (C rdfs:subClassOf D); checking 

instantiation of C as querying with the triple (?x rdf:type C), where ?x is a variable 

(represented in Jena triple-based query as null); checking satisfiability of a class C as 

querying with the triple (C rdfs:subClassOf Nothing); instance checking a:C as querying 

with the triple (a rdf:type C); and so on.  

For some other reasoning tasks the reduction is non-trivial and requires some codework. For 

example checking for a type of P-clash can be reduced to querying the result ontology with 

the triple:  

?x owl:differentFrom ?y, 

and for every pair of (?x, ?y) in the results, checking for  

?x owl:sameAs ?y 

Successful query (true is returned) then indicates a P-clash. Another example could be the 
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realization of an instance a. It requires finding the most specialized class C that a:C. This 

needs pairwise subsumption checking for all classes retrieved using (a rdf:type ?x). Since 

the above reasoning tasks can be reduced to querying a fully entailed ontology, entailment is 

then the key reasoning task and its performance becomes the major factor determining the 

performance of these reasoning tasks. Considering their little relevance to the research 

question and the amount of codework required, these reasoning tasks are not implemented. 

However extending the enhanced µJena to support more reasoning tasks and complex 

queries will be considered in the future work to enable COROR for practical usage.  

Manipulation of unreasoned ontologies is supported through the corresponding µJena APIs 

in either OWL style or triple style. Some common operations include add/delete 

statement(s), create (typed/plain) literal/property/resource and single-triple-based querying. 

For a reasoned ontology only three operations are supported, including triple-based addition, 

deletion, and searching. Addition is handled incrementally due to the use of the RETE 

algorithm and all subsequently inferred triples of the addition are inserted into the reasoned 

ontology. However since Jena RETE engine re-reasons the entire ontology for deletion, 

incremental deletion is not supported by the enhanced µJena, and therefore not available to 

COROR. This will be considered in the future research. 

Some other features of the enhanced µJena are described in this paragraph. µJena only 

supports reading and parsing OWL ontology in the N-TRIPLE format13, and hence so it is 

with the enhanced µJena and COROR. The enhanced µJena inherits the six XSD datatypes 

supported by µJena, which are xsd:float, xsd:double, xsd:int, xsd:long, xsd:integer, 

xsd:boolean, and xsd:string. The validation of datatype values is performed in µJena at 

the ontology loading time for encountered literal node of the above XSD datatypes in the 

ontology. Jena rules also provide a set of builtins to process string/number values (concrete 

domain objects) and to check for the bound/unbound of a variable (closed-world feature). 

Furthermore µJena has a datatype registry enabling user-defined datatypes to be constructed 

and used.  

To summarise, in this paragraph the reasoner characteristics of the enhanced µJena are 

presented. The enhanced µJena extends the original µJena with the Jena RETE engine and 

the relevant classes, making it a resource-constrained rule-entailment OWL reasoner for 

J2ME CLDC 1.1 devices. Entailment and single-triple-based queries are respectively the 
                                                        

13 http://www.w3.org/TR/rdf-testcases/#ntriples 
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key reasoning task and query mechanism of enhanced µJena. Some other reasoning tasks 

such as subsumption, instantiation, satisfiability and instance checking can be achieved by 

directly posing single-triple-based queries on the fully entailed ontology. Six XSD datatypes 

are supported and a datatype registry is available enabling users to define their own 

datatypes. Computations/comparisons of these datatypes are also supported through rule 

builtins. The migration of Jena rule handling classes enables Jena rules to be interpreted. 

This enables not only OWL inference rules but also user-specific rules to be modelled and 

handled in enhanced µJena. The ability to check if a rule variable is bound/unbound enables 

a closed-world taste in the supported Jena rules. A rich set of ontology manipulation APIs is 

provided by µJena to handle ontologies. Some reasoner characteristics are not yet supported 

since they are not relevant to the research question of this thesis and the significant 

codework involved. Explanation, conjunctive queries, and database are not yet supported. 

5.2.3 Implementing	the	pD*	Semantics	
The enhanced µJena enables rules written in the Jena rule format to be loaded from a text 

file as streams. The following Java code snippet shows how rules are loaded and parsed. The 

variable ruleSet is a Java String pointing to the location of the rule file. Rules are stored 

in the reasoner as a list of Rule instances.  

/* construct a buffered reader pointing to the rule file.*/ 
BufferedReader br = new BufferedReader(new InputStreamReader( 

this.getClass().getResourceAsStream(ruleSet))); 
 
/* load and parse the rules.*/ 
List rules = Rule.parseRules(Rule.rulesParserFromReader(br)); 
 
/* construct a forward chaining RETE reasoner according to the loaded 
rules.*/ 
Reasoner reasoner = new EnhForwardRETEReasoner(rules); 

Therefore the pD* entailment rules needed to be implemented using Jena rules in order to 

load them in COROR. Since the pD* entailment rules are originally given in triple format 

(as given in Appendix C), this implementation was then a direct translation from pD* 

entailments to the Jena rules. For example, given G represents the ontology graph to be 

reasoned, the pD* entailment rule rdfp2 (as in Table 5-1) 

Table 5-1: pD* entailment rule rdfp2. 

Rule If G Contains Where Then add to G 

rdfp2 p type 
InverseFunctionalProperty 
u p w 

 u sameAs v 
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v p w 
 

is directly translated into Jena rule as 

[rdfp2: (?p rdf:type owl:InverseFunctionalProperty), (?u ?p ?w), (?v ?p ?w) -> (?u 

owl:sameAs ?v)]. 

In general, the translation takes triple patterns in the “if G Contains” column as normal 

conditions in the l.h.s. of the Jena rule and conditions in the “where” column as functors. 

The triple patterns in the “Then add to G” is then transliterated as elements in the r.h.s. of 

the Jena rule. Variables and OWL constructs are preserved. However, a question mark (i.e. 

a ?) is added to the front of each variable and the corresponding namespace is added in front 

of every OWL/RDFS construct, making them Jena rule conformant. Four built-in functors 

are constructed to check the conditions given in the “where” column: they are isPLiteral(), 

isDLiteral(), assignAnon(), and notLiteral(). Descriptions for each built-in are given in 

Table 5-2.  

Table 5-2: Descriptions of built-in functors 

Functor Description 

isPLiteral(?l) Check if l is a plain literal. 

isDLiteral(?l, ?t) Check if l is a well-typed datatype literal. If it is the datatype of l is 
bound to t. 

notLiteral(?w) Check if w is not a literal (including plain literal and datatype literal). 

assignAnon(?l, ?b) Check if a literal l has not yet been assigned to an anonymous node. If 
yes a new anonymous node is assigned and is bound to ?b, otherwise 
the previously assigned anonymous node is retrieved and bound to ?b. 

 

Functors are constructed by extending the Functor class. The actions of a functor is realized 

by rewritten the method bodyCall() declared in the Functor class.  

In all 39 entailment rules are implemented, including 16 D* entailment rules and 23 P 

entailment rules (for a full set of pD* rules in Jena rule format please refer to Appendix C). 

Some modifications are made to the pD* entailment rule set while implementing them.  
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𝐿𝐷+  

A first modification is that in order to reduce the number of rules the rule lg is combined 

with the rule rdfs1 and rdf2D forming 2 combined rules, i.e. lg-rdfs1 and lg-rdf2D:  

[lg-rdfs1: (?v ?p ?l), assignAnon(?l, ?b), isPLiteral(?l) à (?v ?p ?b), (?b rdf:type 

rdfs:Literal)] 

[lg-rdf2D: (?v ?p ?l), assignAnon(?l, ?b), isDLiteral(?l, ?t) à (?v ?p ?b), (?b 

rdf:type ?t)] 

Before the correctness of lg-rdfs1 and lg-rdf2D is discussed the definitions of the rule lg, 

rdfs1 and rdf2-D are presented (Table 5-3). Suppose that L represents a set of all literals, Lp 

represents well-formed literals. The rule lg prescribes for represents plain literals and          

every triple (v p l) in a RDF graph G, where is a literal to which a blank node has never been 

assigned, a new blank node, represented as bl, is constructed and assigned to it. Otherwise 

the previously assigned blank node is assigned. The rule rdfs1 assumes that for any plain 

literal l in a triple (v p l) a new triple (bl type Literal) is added. The rule rdf2-D generates a 

new triple (bl type a) for well-formed datatype literal l in triple (v p l).  

Table 5-3: Definitions of lg, rdfs1 and rdf2-D in pD* entailments 

Rule If G Contains Where Then add to G 

lg v p l l 	L v p bl 

rdfs1 v p l l 	LP bl type Literal 

rdf2-D v p l l = (s, a) ∈ 𝐿𝐷
&   bl type a 

 

Here the correctness of lg-rdfs1 and lg-rdf2D is discussed. According to descriptions given 

in Table 5-3 the built-in assignAnon assign an anonymous node to all literals. Therefore 

the rule lg-rdfs1 assigns an anonymous node b to all literals in L and if the literal is a plain 

literal two triples, v p b and b type Literal, are added into the graph. Similarly the rule lg-

rdf2D assigns a blank node, b, to all literals it encounters and if l is a well-typed literal of 

type t, two triples, v p b, b type t, are added into the RDF graph. The rule lg-rdfs1 and lg-

rdf2D cover the rule rdfs1 and rdf2-D but part of the semantics in the rule lg is missing: the 

∈ 

∈ 
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triple v p b will not be added into the graph when l is an ill-typed datatype literal, otherwise 

will lead to a D-clash. However since it is presumed the ontology is clash-free and therefore 

the missing part of the semantics will not be needed for ontology reasoned under this 

presumption. 

A second modification is the removal of the rule gl (as indicated in Table 5-4). The rule gl is 

a reverse application of the rule lg. Since in practice all blank nodes are allocated through 

assignAnon() by lg-rdfs1 and lg-rdf2D, therefore there must already exist (v p l) where l 

is a Literal (the condition (?v ?p ?l) needs to be matched before assignAnon() can assign a 

blank node bl), therefore there is no need to reversely add (v p l) into the ontology graph. 

Table 5-4: pD* entailment rule gl 

Rule If G Contains Where Then add to G 

gl v p bl l 	L v p l 

 

As discussed in section 5.2.2, consistency checking is not implemented in the enhanced 

µJena (and COROR) and hence XML-clash and P-clash are not detected. This is reasonable 

due to the significant codework involved and the little relevance of detecting these 

inconsistencies to the research question: detecting XML-clash does not require ontology 

reasoning; and as µJena does not natively support for XML, an XML processing component 

needs to be implemented or an third-party XML library needs to be incorporated into 

enhanced µJena in order to handle XML-clash, causing extra complexity in code and more 

resources required; checking for P-clash requires reasoning but as discussed in the previous 

section it can be reduced to querying a fully entailed ontology and therefore in enhanced 

µJena (and COROR) it is highly dependent on entailment computation which is the key 

reasoning task of enhanced µJena (and COROR). D-clash is limitedly supported by µJena 

since µJena checks validation for the six supported XSD datatypes at ontology loading time. 

In fact COROR is not the first resource-constrained reasoner that does not implement 

consistency checking: µOR also does not provide consistency support and SwiftOWLIM 

(v3.0.10) does not include pD* consistency rules. However to provide with full support of 

detecting XML-clash, D-clash and P-clash on COROR will be considered in the future in 

order to make COROR for more practical usage.  

∈ 
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Considering COROR will work in resource-constrained environment, RDF/RDFS axiomatic 

triples and P axiomatic triples (can be found in [ter Horst 2005a]) are not included in this 

implementation to reduce the amount of inferred triples. This follows on from some of the 

other previous work where, for practical or efficiency reasons, axiomatic triples are 

sometimes removed. The work in [Hogan et al 2009] also removed axiomatic triples from 

the supported semantics to reduce the reasoning output so as to achieve web scale reasoning. 

OWL 2 RL does not include RDF/RDFS axiomatic triples and OWL axiomatic triples in 

order to avoid performance problems in practice  

Rules are plain text encoded in a specific rule file, giving users more flexibility to modify 

the rule set and also authoring application-specific rules. 

5.2.4 Implementing	the	Composition	Algorithms	
This section presents how the two composition algorithms, i.e. the selective rule loading 

algorithm and the two-phase RETE algorithm, are implemented in COROR. Four different 

composition modes are designed to allow the use of the corresponding composition 

algorithm. The noncomposable mode uses original Jena RETE engine (therefore no 

composition algorithms is applied). The three composable modes are the selective rule 

loading mode that uses the selective rule loading algorithm, the two-phase RETE mode that 

uses the two-phase RETE algorithm and the hybrid mode that uses the hybrid algorithm. 

Note that for clarity and brevity in the following text these COROR modes are respectively 

termed as COROR-noncomposable, COROR-selective, COROR-two-phase, and COROR-

hybrid. Note, although modifications are made to enable the composition algorithms to work 

on Jena RETE engine, the capabilities to turn off the composition algorithms are included 

such that in the noncomposable mode the original Jena RETE engine is used.  

The implementation of the two-phase RETE algorithm and the selective rule loading 

algorithm mainly happened in the RETE engine. It mainly involved modifications of the 

RETEEngine (the flow of RETE algorithm), RETEClauseFilter (alpha node) and 

RETEQueue (beta node). Three new classes were constructed in order to support condition 

node sharing, namely RETESibling, RETEClauseFilterSharing, and 

IntermediateBindingVector.  

5.2.4.1 Selective	Rule	Loading	Algorithm	
The selective rule loading algorithm is implemented in the RuleSetComposer class in the 

package ie.tcd.cs.nembes.microjenaenh.reasoner.rulesys.enh. Figure 5-5 shows in general 

the components involved in order to construct a selective rule set. In brief it analyses the 
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ontology for OWL constructs and then uses the rule-construct graphs (coded in the form of 

mappings) to construct a selected rule set for the reasoner to initialize. 

 

Figure 5-5: Implementation of the selective rule loading algorithm. 

Analysing the ontology graph for the contained OWL constructs is implemented by 

enumerating all pD* expressivity constructs and querying the ontology for each of them by 

using the method Model::contains() to determine if a triple pattern is included in the 

ontology. For example, the code snippet  

        if(model.contains(null, OWL.inverseOf)) { 
           ontSignature.add(owl+OWL.inverseOf.getLocalName()); 
        } 
 

checks if the ontology contains a triple pattern such as (x owl:inverseOf y) where x and y 

match arbitrary RDF nodes. Since owl:inverseOf will only appear in the predicate position 

if it is used to state the inverse of two properties, the existence of the above triple pattern 

then proves the existence of owl:inverseOf. All contained OWL constructs are stored in a 

list ontSignature for constructing a selective rule set. 

The rule-construct mappings represent rule-construct dependency graphs coded in plain-text. 
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Each mapping represents the dependency relationships of a rule. The format of mapping is 

specified here by means of a BNF-like notation: 

Mapping:=rule-name’:’semantic-level’:[‘premises‘]->[‘consequences‘]’ 

semantic-level:=‘rdfs’|‘owl-lite’|‘owl-dl’ 

premises:=‘’|premise{‘,’premise} 

consequences:=‘’|consequence{‘,’consequence} 

premise:= pD_expressivity_constructs 

consequence:=pD_expressivity_constructs 

The field rule-name and semantic-level correspondingly represent the name of the rule and 

the semantic level into which this rule falls. They exist for each mapping. As the rule-name 

is used to construct the selective rule set, it needs to be exactly the same as the name of the 

rule in the rule set. The field semantic-level is for COROR to select rules according OWL 

sublanguages. The field premises and consequences are correspondingly the premises and 

consequences of the rule. They may contain no, one or multiple premises or consequences. 

A premise (consequence) is defined as any construct in the expressivity construct set of the 

pD* entailment rules. Some example rule-construct mappings are given: 

rdfp13a:owl-lite:[owl:equivalentProperty]->[rdfs:subPropertyOf] 

rdfp10:owl-lite:[rdf:Property,owl:sameAs]->[rdfs:subPropertyOf] 

rdfp8bx:owl-lite:[owl:inverseOf]->[] 

The loading and parsing of the rule-construct mappings is performed through 

RuleSetComposer::readRuleConstructs(). Each rule-construct mapping is stored in a 

RuleSignature java class instance. All rule-constructs mappings are stored in a map structure 

ruleSignatures with key as the RuleSignature instance for each rule and the value as a 

Boolean value indicating if the rule should be loaded. All values are initialized as false. The 

entire list of rule-construct mappings can be found in Appendix D and the original 

dependency graphs can be referred to in the section 3.4.1. 
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Figure 5-6 lists the algorithm for constructing a selective rule set. Before this code snippet 

starts, the field ruleSignatures is initialized with the set of rule-construct mappings, and the 

field ontSignature is initialized with OWL constructs included by the ontology, as discussed 

above. Then the algorithm checks according to the order of rules in ruleSignatures if all 

premises of a rule are contained by ontSignature. If so, set the corresponding value in 

ruleSignatures as true and add the consequences into ontSignature and re-start the selection 

from the front of ruleSignatures. Otherwise go on check the next rule in the sequence. This 

algorithm iteratively selects rules until all rules are checked and no new construct is added 

into ontSignature. The appropriate rule set is then constructed and loaded into the reasoner. 

Note that not all selected rules are guaranteed to fire, as the presence of premises does not 

necessitate successful instantiation of the rule. However, unselected rules will definitely not 

fire even if they were loaded due to the absence of premises in the ontology. 

boolean hasNewConstructs = false; 
int s = ruleSignatures.size(); 
Set ruleSignaturesSet = ruleSignatures.entrySet(); 
do{ 
   hasNewConstructs = false; 
   for(int i = 0; i < s; i++){ 
      Entry entry = (Entry)ruleSignaturesSet.get(i); 
      if(entry.getValue().equals(Boolean.FALSE)){ 
         RuleSignature rSig = (RuleSignature)entry.getKey(); 
 
      // to check if all lhs constructs are included in ontology signature. 
     // to mark the corresponding rule signature as true if it is contained. 
         boolean containsAll = true; 
         List lhsConstructs = rSig.getLHSConstructs(); 
         if(lhsConstructs != null){ 
            for(int j = 0; j < lhsConstructs.size(); j++){ 
               if(!ontSignature.contains(lhsConstructs.get(j))){ 
                  containsAll = false; 
                  break; 
               } 
            } 
         } 
         if(containsAll){ 
            ruleSignatures.put(rSig, new Boolean(true)); 
         } 
 
         // to handle rhs constructs 
         List rhsConstructs = rSig.getRHSConstructs(); 
         if(rhsConstructs != null){ 
         for(int j = 0; j < rhsConstructs.size(); j++){ 
            Object rhsConstruct = rhsConstructs.get(j); 
            if(!ontSignature.contains(rhsConstruct)){ 
               hasNewConstructs = true; 
               ontSignature.add(rhsConstruct); 
            } 
         } 
      } 
   } 
}while(hasNewConstructs); 

Figure 5-6: Code snippet for the constructing a selective rule set. 
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5.2.4.2 Two-Phase	RETE	Algorithm	
The two-phase RETE algorithm is implemented in the RETE engine, which is in the Java 

class RETEEngine. Before going into further detail about the implementation, a class 

diagram is given that shows in detail the classes involved in the Jena RETE algorithm. In 

this implementation all RETE algorithm related classes are included in the package 

ie.tcd.cs.nembes.microjenaenh.reasoner.rulesys.impl. 

 

Figure 5-7: Classes related to the two-phase RETE algorithm implementation 

The RETEClauseFilter, RETEQueue, RETETerminal and RETEConflictSet correspond to 

the alpha node, beta node and functor action node and conflict set in the RETE network 

given in Figure 5-3. The RETE network is connected through the continuation field in 

RETEClauseFilter and RETEQueue, it points to the next node in the RETE network. Figure 

5-8 shows the code snippet for the two-phase RETE algorithm: 

            compileAlpha(rules, ignoreBrules); 
            conflictSet = new RETEConflictSet( 

new RETERuleContext(infGraph, this), 
isMonotonic); 

            findAndProcessAxioms(); 
             

/*populate addspending with triples for initial matching*/ 
            if (infGraph.getRawGraph() != null) { 
                for (Iterator i = inserts.find( 

new TriplePattern(null, null, null));  
i.hasNext();) { 

                    addTriple((Triple)i.next(), false); 
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                } 
            } 
             
            preMatch(); 
            applyHeuristics(); 
            compileBeta(); 
            crossJoinAll(); 
            runAll(); 

Figure 5-8: Code snippet for two-phase RETE algorithm 

A shared alpha network is first constructed (through compileAlpha()). The alpha node 

sharing heuristic is applied: for every non-sharable alpha node a RETEClauseFilter instance 

is constructed and for all sharable alpha nodes sharing a condition a 

RETEClauseFilterSharing instance is constructed. The implementation of this heuristic was 

hindered by some mechanisms used in the Jena RETE algorithm. Firstly, as discussed in 

section 5.2.2.2, the intermediate results used in Jena RETE algorithm vary across different 

rules. Therefore every time a fact matches sharable conditions from different rules, different 

intermediate results are generated, hindering the sharing. For example, the rule rdfs4b and 

rdfp15  

[rdfs4b: (?v ?p ?w), notLiteral(?w) à (?w rdf:type rdfs:Resource)]. 

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x 

rdf:type ?w) à (?u rdf:type ?v)]. 

have two sharable conditions, i.e. (?v ?p ?w) and (?u ?p ?x). However the intermediate 

results generated after they are matched to a same fact, say (ex:myCar rdf:type ex:Car), 

are different (as given in Figure 5-9). For the condition (?u ?p ?x) in rdfp15 an intermediate 

results of five elements are constructed. The matched fact only realizes three variables, 

i.e. ?p, ?u and ?x, and the other two variables, i.e. ?v and ?w, are still blank. For the 

condition (?v ?p ?w) in rdfs4b a three element intermediate result is generated and all 

variables are realized. This mechanism speeds up join operations, as the consistency of 

variable binding is checked, by comparing variable bindings in the same position of two 

tokens. However it hinders the sharable conditions in different rules from sharing the alpha 

memory (since different intermediate results are generated). 
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Figure 5-9: Intermediate results for the condition (?v ?p ?w) and (?u ?p ?x) in the 

rule rdfp15 and the rule rdfs4b. 

A dual vector approach was designed by the author to separate the position information from 

value bindings such that condition-specific rather than rule-specific intermediate results can 

be constructed. The approach builds a position vector and a value vector correspondingly for 

storing the position information and bound values. The position information is unique for 

each sharable condition but the value vector can be shared among conditions. For example 4 

different conditions are generated for the four conditions in rdfp15 under the dual vector 

approach. The value vectors for (?v ?p ?w) and (?u ?p ?x) are the same for the same 

matched fact and therefore facilitating the sharing of the alpha memory. 
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Figure 5-10: Intermediate results generated for rdfp15 and rdfs4b under the dual 

vector approach. 

Dual vector separates the position information and value bindings, and hence it changes the 

join operation. Originally the join operation is comparing the value on the same position of 

the intermediate value from each input. Under the dual vector approach the join is then 

comparing the values with the same position information (if any). A new larger position 

vector and value vector are generated combining the two successfully joined intermediate 

results. The dual vector approach is implemented in IntermediateBindingVector. 

A second problem was the different position vectors and different continuations among 

sharable conditions. To solve this problem a swap in/out approach is used: a class 

RETESibling is constructed for storing the position vectors and the continuations for shared 

conditions. Every time a particular condition is required (e.g. for performing join operation) 

it is restored into the RETEClauseFilterSharing node and the information stored in the 

corresponding RETESibling is restored as well. Therefore the RETEClauseFilterSharing 

node can work as the required condition. 

On the construction of the shared alpha network, triples of the ontology graphs are then 

added to addspending, a cache of triples to be inserted into the RETE engine.  

            if (infGraph.getRawGraph() != null) { 
                for (Iterator i = inserts.find( 

new TriplePattern(null, null, null));  
i.hasNext();) { 

                    addTriple((Triple)i.next(), false); 
                } 
            } 

The initial match is then performed (preMatch()). It removes triples from addspending 

and inject them into the RETE network (inject()) one by one, matching to the alpha 

network. Heuristics are applied by calling applyHeuristics()after the initial match: 

the information is collected according to which the most specific condition first heuristic is 

applied and the connectivity heuristic is applied after the application of the most specific 

condition first heuristic. Figure 5-11 shows the code snippet for the implementation of the 

most specific condition first heuristic in applyHeuristics(). 

Iterator conditionIt = conditionList.iterator();              
while(conditionIt.hasNext()){ 
   RETEClauseFilter condition = (RETEClauseFilter)conditionIt.next(); 
              
   if(newConditionList.size() == 0){ 
      newConditionList.add(condition); 
      continue; 
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   } 
                 
   boolean inserted = false; 
   int tripleNum = ((RETEQueue)condition.continuation).queue.size(); 
   for(int i = 0; i < newConditionList.size(); i++){ 
      if(tripleNum < ((RETEQueue)((RETEClauseFilter)newConditionList.get(i)) 

.continuation).queue.size())){ 
         newConditionList.add(i, condition); 
         inserted = true; 
         break; 
      } 
   } 
                 
   if(inserted == false) 
      newConditionList.add(condition); 
  
}  

Figure 5-11: Implementation for the most specific condition first heuristic. 

Basically it checks the number of matched facts for the first condition in the existing join 

sequence (conditionList) and then sorts the condition in a new join sequence 

(newConditionList) in ascendant order. The new join sequence is constructed until all 

conditions in the join sequence are inserted into the new join sequence. The connectivity is 

then checked by calling  

optimizeConnectivity(ruleId, newConditionList); 

after the most specific condition first heuristic. It checks the ordered join sequence and 

rearranges the join sequence when non-connected conditions are detected.  

The beta network is then constructed according to the new join sequences constructed 

(calling compileBeta()). After the construction of the entire RETE network, the initial fact 

matching resumes by calling crossJoinAll(). It goes through all join sequences and product 

joins the facts matched to first two conditions in the sequence (every matched fact from the 

first condition is joined to every matched fact from the second condition). Finally the two-

phase RETE algorithm resumes the normal execution and call runAll() to iteratively 

calculate all inferences. 

5.2.5 Extending	COROR	to	Support	OWL	2	(Implementation	Perspective)	
Analytical discussion in section 3.5 shows that both composition algorithms in COROR are 

semantically independent and therefore they are compatible with OWL 2 RL semantics from 

the design perspective. Rule-construct dependency graphs for OWL 2 RL rules are also 

given in that section providing a theoretical foundation for the selective loading algorithm to 

work on OWL 2 RL. However the application of OWL 2 RL entailments in COROR is still 
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hampered by two obstacles from the implementation perspective.  

The first, and a minor, obstacle is the lack of support of OWL 2 ontology manipulation APIs 

in µJena. Therefore COROR cannot manipulate OWL 2 ontologies using OWL style 

operations. However as COROR views ontology as RDF graphs, it is able to manipulate 

OWL 2 ontologies using triple style operations, and the triple-based RETE engine can also 

reason over OWL 2 ontologies. A second, and the major, obstacle is the absence of a Jena 

compatible OWL 2 RL rule set. Early attempts to draft an OWL 2 RL rule set was impeded 

by the intensive and complex use of RDF list operations in OWL 2 RL semantics. A naïve 

solution would be to construct a built-in for each list operation. However this will require 

the construction of a large amount of complex built-ins, greatly complicating the rule set, 

and limiting the potential for node sharing capabilities and join sequence reordering. Other 

approaches to handle RDF list in OWL 2 RL reasoners include using ARQ, e.g. SPIN14, or 

using customized tags for different RDF list operations and using dedicated list expansion 

rules, e.g. BaseVISor. However considering the small contribution to the result of this work 

by providing an OWL 2 RL rule set for COROR, this initiative was suspended.  

5.3 TARS:	Tool	for	Automatic	Reasoner	Selection	
A desktop prototype implementation of RESP, called TARS (Tool for Automatic Reasoner 

Selection), is constructed to allow users with little background on ontology reasoning to 

select appropriate reasoner according to the application characteristics of their semantic 

applications. The implementation was built in Java using Netbeans 6.5, involving the 

construction of 4 Java packages, 22 Java classes and in total around 10600 lines of code 

(6500 of which were automatically generated by Netbeans GUI designer). A full list of the 

constructed packages and classes can be found in Figure 5-12. Netbeans is free and has an 

inbuilt drag-and-drop GUI designer, which facilitates fast prototyping of TARS and reduces 

the effort required on tweaking GUI components at java code level, enabling the author to 

concentrate on the implementation of application characteristics, reasoner characteristics 

and connections.  

                                                        

14 http://www.topquadrant.com/products/SPIN.html 
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Figure 5-12: Packages and classes of TARS. 

All reasoner characteristics distilled from the survey of reasoners, example candidate 

application characteristics and connections derived from the survey of semantic applications 

(can be found in section 4.3) are implemented in TARS. Five candidate reasoners are 

registered, namely FaCT++, KAON2, Pellet, Jena and COROR. They have diverse reasoner 

characteristics and therefore are suitable for a wide range of semantic applications. For 

example KAON2 supports efficient conjunctive query answering over a database which is 

essential for some context-aware applications, FaCT++ and Pellet support complete OWL-

DL classification, while COROR runs efficiently on mobile platforms. Reasoner 

characteristics of candidate reasoners are stored as profiles locally as XML files. All of them 

are loaded into memory and parsed only once each execution (by the ReasonerProfiler class) 

when the selection process starts, and they remain in memory for the entire lifespan of the 
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execution. Figure 5-13 gives a snippet of the profile for FaCT++, showing how the RC 

reasoner expressivity is stored (The full profiles for all the five candidate reasoners can be 

found in the attached DVD ). 

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<reasoner name="factpp"> 

<algorithm>dl tableaux</algorithm> 
... 
<!-- Entries for other RCs --> 
... 
<expressivity> 

<dlexpressivity value="shion(d)"> 
<basedl value="al"/> 
<negation value="yes"/> 
<union value="yes"/> 
<inverse value="yes"/> 
<rolehierarchy value="yes"/> 
<transitivity value="yes"/> 
<nominal value="yes"/> 
<cardinality value="yes"/> 
<functionality value="yes"/> 

</dlexpressivity> 
</expressivity> 
... 
<!-- Entries for other RCs --> 
... 

<reasoner> 

Figure 5-13: A snippet of the XML-coded profile for FaCT++. 

Note that the use of automatic composition algorithms in COROR gives rise to a new 

reasoner characteristic, namely reasoner composition level, which indicates if the reasoner 

has no, static (OWL/DL level), or automatic reasoner composition algorithms, as discussed 

in section 2.3.3. As will be shown in the evaluation chapter, the use of automatic reasoner 

composition approach can reduce the resource of OWL reasoning (for rule-entailment 

reasoners), hence enabling a new candidate application characteristic: resource sensitive. 

This application characteristic may hold for embedded systems that want to deploy OWL 

reasoning on resource-constrained devices [Kleemann and Sinner 2006, Brennan et al 2009, 

Koziuk et al, 2008]. According to the above discussion, it is simply deemed that this 

application characteristic is satisfied if automatic composition algorithms are implemented 

on the selected reasoner. A description of the application characteristic resource sensitive 

and its connections is given in Table 5-5 and a description of the new reasoner characteristic 

composition level can be found in Table 5-6. 

Table 5-5: The new application characteristic resource sensitive and its connections 

Application 
Characteristic 

Connections 
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Resource sensitive auto ∈ CPSLvl  
 

Table 5-6: The new reasoner characteristic composition level and its possible 

values 

Reasoner 
Characteristic 

Values 

Composition level 
(CPSLvl) 

Rule (rule) OWL/DL (owl) Automatic (auto) 

 

Three graphical interfaces are implemented, namely the application characteristics selection 

interface, the reasoner registration interface and the reasoner selection results interface. The 

application characteristics selection interface can be found in Figure 5-14, on which all 

candidate application characteristics are listed. In general, a user first analyses their 

application for relevant application characteristics, and then ticks the corresponding 

candidate application characteristics on the application characteristics selection interface. 

The user can start the RESP reasoner selection process by hitting the “Perform Selection” 

button.  
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Figure 5-14: Application characteristics selection interface. 

It worth mentioning that ontology expressivity is gathered automatically in TARS. The 

OWL1ExpressivityChecker class is responsible for ontology expressivity checking. In 

general it checks for OWL classes, axioms and properties using OWLAPI methods, and 

detected expressivities are indicated by a set of class fields such as hasNegation, 

hasTransitive, and so on. In order to check the expressivities for OWL classes, the 

OWL1ExpressivityChecker lists all named classes then checks all its super-classes, sub-

classes, equivalent-classes and enumerations, setting the corresponding expressivity fields. 

Similarly In order to check the expressivities for class axioms, the 

OWL1ExpressivityChecker checks if they are OWLSubClassAxiom, 

OWLEquivalentClassesAxiom, or OWLDisjointClassesAxiom and then looks into the axioms 

to check the expressivities included. If a property axiom is found then the expressivity field 
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hasRoleHierarchy is set to be true. In order to check the expressivities for properties, the 

OWL1ExpressivityChecker checks if the property is transitive, symmetric, inverse, 

functional or inverse functional, and then sets the corresponding expressivity fields. Then 

the domain and range of the property is also checked. The combination of the expressivity 

fields is then the DL expressivity of the ontology. For example, if hasNegation and 

hasUnion are set to be true then the ontology has expressivity ALC; if hasTransitive is set 

to be true then the expressivity R+ is appended and the expressivity letter is set to be S. 

A user can view the hints for an application characteristic by clicking the question mark 

besides each application characteristic. The explanation is then displayed in the text field 

located in the bottom. 

Selected application characteristics are stored in an ApplicationCharacteristicSet class 

instance. To reduce the complexity of the prototype implementation, each connection is 

hardwired as a Java method of the ReasonerSelector class. Connection methods follow a 

naming scheme, namely “evaluateXXX” with XXX representing the corresponding 

application characteristic. Connection methods take the ApplicationCharacteristicSet 

instance (which lists the required application characteristics) and a ReasonerProfiler 

instance (from which the reasoner characteristics for candidate reasoners can be accessed) as 

arguments, and returns an ArrayList of SatisfactionLevel instances with each entry in the list 

representing the satisfaction of a candidate reasoner to this application characteristic. Then 

the matchmaking is performed in the ReasonerSelector class by evaluating all connection 

methods against the ApplicationCharacteristicSet instance. Figure 5-15 gives the code 

snippet of connections for the application characteristic integrity constraints. If the 

application characteristic integrity constraints is not selected then it ceases the connections 

checking immediately. Otherwise it iterates all candidate reasoner profiles and checks for 

each candidate reasoner the value of the reasoner characteristic native CWA support. 

ArrayList<SatisfactionLevel> retVal = new ArrayList<SatisfactionLevel>(); 
        
if(acs.getAppCharacteristicValue(RV.AC.integrityConstraints).equals(RV.NO)) 
   return retVal; 
 
ArrayList<ReasonerProfiler.ReasonerProfile> profiles =  
                                          profiler.getReasonerProfiles(); 
 
for(int i=0; i<profiles.size(); i++){ 
   ReasonerProfiler.ReasonerProfile profile = profiles.get(i); 
   if(profile.nafInQuery.equals(RV.YES) || profile.nafInRule.equals(RV.YES)) 
      retVal.add(new SatisfactionLevel(profile, 

SatisfactionLevel.satisfy)); 
   else 
      retVal.add(new SatisfactionLevel(profile, 
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SatisfactionLevel.not_satisfy)); 
   } 
return retVal; 

Figure 5-15: Connections for AC integrity constraints. 

Results are displayed in the reasoner selection results interface after the selection finished 

(as indicated in Figure 5-16). Traffic light notations are used to indicate the satisfaction 

percentage for each candidate reasoner. By clicking a candidate reasoner, a user can view 

the detail of the satisfaction for each application characteristic on the right hand side. 

Selected application characteristics are coloured in green or red, indicating their satisfaction 

or not. Unselected application characteristics are in grey. By selecting an application 

characteristic users can view the reason why it is satisfiable/not satisfiable.  

 

Figure 5-16: Reasoner selection results interface 

Figure 5-17 shows the reasoner registration interface where new candidate reasoners can be 

registered. Reasoner characteristics are listed allowing users to input the corresponding 

reasoner characteristics for the reasoner. 
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Figure 5-17: The user interface for registering candidate reasoners. 

Reasoner expressivities are specified manually for the candidate reasoners to be registered. 

The expressivities can be specified either using DL or using OWL constructs, as separately 

illustrated in Figure 5-18 and Figure 5-19. Specifying reasoner expressivity using OWL 

constructs is mainly designed for non-DL reasoners such as rule-entailment reasoners or 

resolution-based reasoners using ontology independent translation. Four common 

expressivities, including RDFS, OWL-Lite, OWL-DL, and R-entailment, are given as 

“hotkeys” for them.  
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Figure 5-18: User interface for specifying reasoner expressivity using OWL 

constructs. 
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Figure 5-19: User interface for specify reasoner expressivity in DL. 

5.4 Summary	
This chapter presents the prototype implementations of COROR and RESP. The 

implementation of COROR is discussed with respect to five aspects, including the selection 

of a proper platform based on which COROR was implemented, the construction of a 

resource-constrained rule-entailment reasoner where the novel reasoner composition 

algorithms can be implemented, the implementation of the pD* entailment rules as Jena rule 

format, the implementation detail for the two novel composition algorithms, and finally the 

extension of COROR to support OWL 2 from the implementation perspective. Sun SPOT is 

selected as an appropriate platform on which the implementation is performed since its 

resource-constrained environment (J2ME CLDC 1.1) and well-integrated development tools. 

Several requirements are identified for finding a suitable resource-constrained rule-

entailment reasoner to implement the composition algorithms. However a survey suggests 

that no off-the-shelf such reasoners exist. Therefore a resource-constrained rule-entailment 

reasoner is constructed by porting Jena RETE engine into µJena. The implementation of 

pD* semantics is simple translation from pD* entailment rules into Jena conformant rules. 
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Some modifications are performed to combine some rules. However it is shown that these 

modifications do not change the reasoning capability. Detail for the implementation of 

composition algorithms is then presented. The description of the implementation of the 

selective rule loading algorithm mainly concentrates on the implementation of the rule-

construct graph using text-based mappings. Code snippets are also given to illustrate how a 

selective rule set is constructed according to the rule-construct mappings. Class diagrams 

are provided to illustrate the Jena RETE engine and how it is extended to integrate the two-

phase RETE algorithms. Problems encountered during the implementation of the two-phase 

RETE algorithms are also discussed with solutions presented, including using the dual 

vector mechanism to solve sharing of intermediate results and using swappable conditions to 

support different sharable conditions share one common condition node. The process of the 

two-phase RETE algorithm is then illustrated in detail with code snippet presented.  

The heavy use of RDF lists in OWL 2 RL semantics hampers the construction of a set of 

Jena compatible OWL 2 RL rules, which resulted in the lack of support of OWL 2 RL in 

COROR. However this was simply an implementation detail and extension would not 

contribute much to validate the contributions of this research with respect to the semantic 

independent feature of the composition algorithms. Therefore no actual implementation is 

performed to extend COROR to support OWL 2 RL but it remains one of the most 

important pieces of work needed to support the adoption of COROR in a user community.  

A prototypical desktop implementation of RESP, TARS, is also presented in this chapter. 

Users can use it to perform automatic reasoner selection and to register new candidate 

reasoners. The candidate application characteristics, reasoner characteristics and 

connections implemented in TARS are based on the example candidate application 

characteristics, reasoner characteristics and connections derived in from the survey of 

reasoners (section 2.3.1.2) and the survey of semantic applications (section 4.3). However 

the use of COROR enables a new reasoner characteristic, i.e. composition level, and a new 

application characteristic, i.e. resource sensitive. This implementation is to some extent 

limited in terms of practical usage due to the use of example ACs and the hard-coding of 

AC/RC connections and the matching algorithm. However it is still sufficient for 

demonstration and evaluation purposes. 

Section 3, 4 and 5 together complete the research objective 2 and objective 4. In the next 

chapter evaluations are carried out to evaluate the performance of COROR and usability of 

TARS), targeting the research objective 3 and 5. 
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Chapter 6 
Evaluation 

6.1 Introduction	
In the previous chapters, solutions to the research question as to  

“How an appropriate resource-constrained OWL reasoner can be automatically composed 

and be selected based on application characteristics.” 

are proposed, designed and implemented. In Chapter 3 the design of two novel automatic 

reasoner composition algorithms, i.e. the selective rule loading algorithm and the two-phase 

RETE algorithm, are presented in order to enable OWL reasoning to run better on resource-

constrained environments. The two composition algorithms compose the reasoner both at 

the rule set level and inside the RETE algorithm. Considering that these two composition 

levels may complement each other, a hybrid algorithm is designed to combine both 

composition algorithms. Chapter 4 presents the design of an automatic reasoner selection 

process, RESP. It gathers application characteristics from applications and reasoner 

characteristics from candidate reasoners. Then the reasoner selection is performed through 

matchmaking between application characteristics and reasoner characteristics. 

Implementations of COROR and RESP (named as TARS) are given in Chapter 5.  

Then in this chapter, these solutions are evaluated in order to investigate to what extent the 

application of these solutions can address the research question. As discussed in the 

motivation section in the introduction chapter, the very original motivation of having 

reasoner composition approach is to allow fewer resources to be used when applying OWL 

reasoning in resource-constrained environments. Hence a direct way to evaluate if the two 

designed composition algorithms can satisfy this aspect would be to study the change of 

OWL reasoning performance of a reasoner before and after the application of these two 
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composition algorithms, as informed in the objective 3.  

The objective 3 can be further divided into two evaluation objectives. A first evaluation 

objective is the comparison of the reasoning performance of COROR when it is configured 

to use different composition algorithms, compared with no composition algorithm. This 

gives a direct impression on the performance change brought by the different composition 

algorithms. A second evaluation objective is to compare COROR (when composition 

algorithms are applied) with the state of the art (maybe resource-constrained) rule-

entailment reasoners. This can show how a composable rule-entailment reasoner performs 

compared to the other rule-entailment reasoner implementations, and facilitates the 

identification of performance merits and pitfalls of COROR compared to other state of the 

art rule-entailment reasoners.  

According to these two evaluation objectives, two experiments are designed and executed. 

An intra-reasoner comparison is designed that measures and compares the time/memory 

required by COROR to reason over the same set of ontologies when it is configured in 

different composition modes, i.e. COROR-noncomposable, COROR-selective, COROR-

two-phase and COROR-hybrid. A set of 19 small or medium sized (no larger than 13000 

triples) ontologies is selected for this experiment. The selection of time and memory 

required by reasoning as evaluation metrics can directly show the changes of performances 

across the systems. Other evaluation metrics do exist that are less appropriate for COROR.  

An inter-reasoner comparison is designed to compare COROR-hybrid with some other state 

of the art (resource-constrained) rule-entailment reasoners, including Jena, Bossam, 

BaseVISor and OWLIM. COROR-hybrid is selected as it combines both composition 

algorithms and therefore can better represent a composable reasoner. Pellet is also included 

in this experiment, even though it is not necessarily directly comparable, as both process 

different sets of semantics. The inclusion of Pellet is intended only to give readers an 

intuition of the performance of COROR comparing to a full-fledged DL-tableaux reasoner. 

Results of the two experiments are presented and discussed in detail. More detail on the two 

experiments can be found in section 6.2. The correctness of the composable reasoning and 

the OWL semantics coverage of COROR are also discussed. 

The major motivation for an automatic reasoner selection process is the large amount of 

difficulties to be involved in the future reasoner selection process: it may require a large 

amount of effort from both reasoner experts and application developers or even may lead to 

inappropriate reasoners to be selected. To solve this, RESP is proposed, designed and 
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implemented (as a prototype implementation TARS). In order to study to what extent the 

introduction of RESP can reduce the efforts involved in the reasoner selection process, the 

usability of TARS is then a good aspect to evaluate.  

A usability experiment is then designed to evaluate the usability of TARS since it is an 

implementation of RESP. Two participant groups are used: an application-aware group 

consisting of 17 participants with strong background on developing semantic applications, 

and a reasoning-aware group consisting of 5 participants with strong background on 

ontology reasoning. A reasoner selection task is designed to require application-aware 

participants to use TARS to select an appropriate reasoner for the given application scenario, 

and a reasoner registration task is designed to require reasoning-aware participants to use 

TARS to register a candidate reasoner. Questionnaires are given to both groups to collect 

feedbacks.  

Detail of the designs, execution results and discussion of the intra- and inter- reasoner 

comparison is presented in section 6.2. The usability test and results can be found in Section 

6.3. Summary and key findings are presented in section 6.4. 

6.2 Performance	Comparison	and	Investigation	of	COROR	
This section describes in detail the design, execution and results of the intra- and inter-

reasoner comparisons that are designed to fulfil the research objective 3. The rationale and 

criteria for selecting the evaluation metrics are discussed first in section 6.2.1. Then in 

section 6.2.2 settings of the experiments and their executions are presented. Results and 

discussions for both experiments are separately given in 6.2.3 and 6.2.4. Section 6.2.5 

discusses the correctness and the OWL semantics coverage of COROR.  

6.2.1 Criteria	of	Selecting	Performance	Metrics	
The memory usage and reasoning time required by COROR to fully compute the 

entailments of a given ontology are selected as the evaluation metrics to evaluate the 

performance of COROR. The underlying motivation for this selection is that the comparison 

and analysis of them is a direct and effective way to show the impact on reasoning 

performance. As a matter of fact, as indicated in the motivation in Chapter 1, a primary goal 

of COROR (and reasoning composition algorithms) is to reduce the resource usage such that 

OWL reasoning can be better applied to resource-constrained devices (e.g. sensor mote), 

which further encourages the use of memory usage and reasoning time as the evaluation 

metrics. It is not the first time that these metrics are used to in a performance evaluation. 

Many previous researchers have already employed (one or both of) them in reasoner related 
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experiments, such as Oracle database 11g [Wu et al 2008], SwiftOWLIM [SwiftOWLIM ver 

2.9.1 SysDoc], MiRE4OWL [Kim et al 2010], µOR [Ali and Kiefer 2009] and so on.  

Other evaluation metrics also exist for measuring the performance of OWL reasoners from 

other aspects, e.g. execution time for DL reasoning tasks, conjunctive query answering time, 

and benchmark suites. However, these metrics are excluded, as they are not suitable for the 

purpose of this evaluation, for the reasons explained in the following paragraphs. 

Execution time for DL reasoning tasks. Besides entailment many DL reasoners also 

implement a different set of reasoning tasks such as subsumption, instantiation, realization, 

consistency checking and so on [Baader et al 2007]. Note that DL reasoners here refer to 

those reasoners using DL reasoning techniques to reason over OWL, including all DL-

tableaux reasoners, some resolution-based reasoners such as KAON2, and some other 

reasoners such as CEL or QuOnto. Measuring the execution time for these DL reasoning 

tasks is widely adopted in the evaluations of DL reasoners, such as Pellet [Sirin et al 2005], 

CEL [Baader et al 2006], Minerva [Zhou et al 2006] and KAON2 [Motik 2008].  

However as entailment is the most basic (and only explicitly implemented) reasoning task in 

COROR and the other reasoning tasks are not explicitly implemented but can be reduced to 

querying the entailment closure as discussed in section 5.2.2, therefore the performance of 

the reasoning tasks are highly dependent on the performance of entailment calculation. 

Hence measuring the performance of other DL reasoning tasks is omitted from the 

performance experiments of COROR.  

Query Answering Time. Measuring the query answering time is also an often used 

evaluation metric for OWL reasoners, especially for those aiming at scalable ABox query 

answering. A number of reasoners, such as Pellet [Sirin et al 2005], RacerPro [RacerPro 

Release Notes v1.9.2], Miverva [Zhou et al 2006] and KAON2 [Motik and Sattler 2006], 

have used it in experiments to evaluate the scalability in terms of answering queries over a 

large ABox. This metric is also excluded from the performance experiment as the two 

designed composition algorithms do not extend µJena in this regard and no contribution is 

claimed in terms of query answering.  

Benchmark Suites. Some benchmark suites, such as the Lehigh University Benchmark 

(LUBM) suite [Guo et al 2005] and the University Ontology Benchmark (UOBM) [Ma et al 

2006], are designed to evaluate the scalability of a reasoner when handling a large ABox. 

They usually generate very large artificial ABox from a given TBox, which is often too large 
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to be used to evaluate the composition algorithms designed and implemented in this thesis 

where the context of resource-constrained devices is imposed. For example, LUBM 

generates synthetic data based on a university domain ontology; the smallest dataset of 

LUMB with only one university data, i.e. LUBM(1,0), still reaches 8.7MByte with 103K 

triples. Similarly the OpenRuleBench suite [Liang et al 2009] is a performance 

benchmarking tool designed to test rule engines from four aspects, including large join test, 

Datalog recursion, default negation, dynamic indexing tests and database interface tests. For 

each aspect, a set of tests is provided. The large join test appears to be relevant to this thesis 

where rule-entailment reasoner is used. However as the OpenRuleBench suite aims to 

evaluate how desktop rule engines perform at a web scale, the dataset is still too large for 

resource-constrained environments, e.g. the smallest dataset contains 50K facts.  

There are other metrics that are used to evaluate particular reasoners but are not commonly 

used in general, such as the ontology upload speed [SwiftOWLIM ver 2.9.1 SysDoc, 

Kiryakov et al 2005] which measures the amount of triples a reasoner can process per 

second, ontology deletion speed [Kiryakov et al 2005] which represents the time a reasoner 

required to handle a deletion transaction, completeness of query answer set [Zhou et al 2006, 

Jang and Sohn 2004] which is the completeness (given in percentage) of a query answer set 

comparing with the goal standard, and so on. They are also excluded from this evaluation as 

they are too specific for a particular reasoner to fit into the objectives identified for this 

research.  

6.2.2 Design	and	Execution	
Different settings were used for the intra- and inter-reasoner comparisons. The intra-

reasoner comparison was performed on a Sun SPOT emulator v4.0 blue15 with the support 

of the Squawk JVM [Squawk JVM] which is CLDC 1.1 conformant. In this comparison 

COROR was configured as four different composition modes, i.e. COROR-noncomposable, 

COROR-selective, COROR-two-phase, and COROR-hybrid, and all of them need to reason 

over a same set of ontology (as will be listed later in this section). The memory usage and 

reasoning time for each mode to reason over each ontology is measured and compare 

against each other. A Sun SPOT sensor board has a 180MHz 32-bit ARM920T core 

processor with 512K RAM and 4M Flash. The Sun SPOT emulator was running on a 

desktop computer with Intel Dual Core CPU @ 2.4GHz, 3.25GB RAM and Windows XP 

professional version 2002 SP2 x86. 

                                                        

15 http://www.sunspotworld.com/docs/index.html 
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State of the art rule-entailment reasoners are selected for comparison in the inter-reasoner 

comparison, including Bossam 0.9b45, Jena v2.6.3, BaseVISor v1.2.1, and swiftOWLIM 

v3.0.10. Their selection is motivated by the fact that they are state of the art rule-entailment 

reasoners using RETE algorithm and they have similar OWL expressivity as COROR. As 

discussed earlier, comparing them side by side with COROR can reflect the performance 

merits and pitfalls of COROR comparing to state of the art rule-entailment reasoners. 

MiRE4OWL and µOR were not accessible for usage in our experiments, so they are not 

included in the inter-reasoner comparison. Bossam is used in this evaluation as a resource-

constrained rule-entailment reasoner. Even though Bossam supports J2ME CDC, due to its 

wide use of Java class java.util.List which is not included in CLDC 1.1, it cannot run on Sun 

SPOT. However, it proved time prohibitive to port the other reasoners onto the SunSPOT 

platform. As a result, inter-reasoner comparison was performed using the same desktop 

computer as described above, using a J2SE platform in Eclipse Helios with Java SE 6 

Update 14 and maximum heap size as 128MB. Note, all J2ME CLDC 1.1 java code is 

backward compatible with J2SE (after 1.3) and so COROR runs on the desktop without 

modification. Jena was configured to use the RETE engine only (use GenericRuleReasoner 

and FORWARD_RETE mode) and it used the same pD* rule set as described in section 

5.2.3. Pellet 1.5.1 was also included in this comparison in order to provide readers an 

intuition of the performance of COROR comparing to a full-fledged DL tableau reasoner.  

Memory usage and reasoning time are measured using Java built-in time and memory 

methods. For measuring the reasoning time, the java method  

System.currentTimeMillis() 

was invoked both before and after the ontology reasoning is performed, that is  

InfGraph.prepare(). 

The reasoning time is then the difference of the two measurements.  

The memory usage that the composable reasoner requires to reason over an ontology is 

measured by subtracting the free memory from the total memory 

Runtime.getRuntime().totalMemory() -

Runtime.getRuntime().freeMemory() 

after the  
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InfGraph.prepare(). 

is invoked. At this stage, all reasoning is finished and the RETE network reaches its 

maximum, populated with all asserted and inferred triples.  

The reasoning time and memory usage are measured separately in different executions of 

COROR so no interference between them occurs. Each result of time/memory used in the 

evaluation is the average of 10 individual measurements to reduce the error in each 

measurement. Furthermore the method  

System.gc() 

is explicitly invoked 20 times before the memory measurements, releasing as much garbage 

memory as possible so interference from non-recycled garbage memory is reduced. A 

threshold of 30 minutes is set to avoid excessively long reasoning times, and manual 

termination is imposed for reasoning processes longer than this threshold.  

In total 11 ontologies of small sizes and moderate expressivities are selected for the intra-

reasoner comparison (as given in Table 6-1a), and eight more ontologies are used for the 

inter-reasoner comparison (as given in Table 6-1b). All ontologies used in this experiment 

can be found in the attached DVD of this thesis. They are selected for three reasons: (1) they 

model different domains, which, to some extent, is able to represent the diversity of the 

content of ontology that could be used in embedded devices, (2) they vary in expressivity so 

their usage avoids any unintentional bias where some OWL constructs are over- or under-

used by some ontology designers in different application domains, and (3) they are well 

known and commonly used, and so are relatively free from errors.  

Table 6-1: Ontologies used in intra-/inter-reasoner comparison experiments 

(a) Eleven ontologies used in the intra-reasoner comparison. 

Ontology Expressivity No. of cls/prop/indv Size (triples) 
teams  ALCIN 9/3/3 87 
owls-profile  ALCHIOF(D) 54/68/13 116 
Koala ALCON(D) 20/7/6 147 
university SIOF(D) 30/12/4 169 
Beer ALHI(D) 51/15/9 173 
mindswapper ALCHIF(D) 49/73/126 437 
Foaf ALCHIF(D) 17/69/0 503 
mad_cows ALCHOIN(D) 54/17/13 521 
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Biopax ALCHF(D) 28/50/0 633 
Food ALCOF 65/10/57 924 
mini-tambis ALCN 183/44/0 1080 

(b) Eight more ontologies used in the inter-reasoner comparison. 

Ontology Expressivity No. of cls/prop/indv Size (triples) 
amino-acid SHOF(D) 55/24/1 1465 
atk-portal ALCHIOF(D) 169/147/75 1499 
Wine SHOIN(D) 77/16/161 1833 
Pizza ALCF(D) 87/30/0 1867 
tambis-full SHIN 395/100/0 3884 
Nato ALCF(D) 194/885/0 5924 
Mged RDFS(DL) 437/21/1278 6284 
Tap RDFS(DL) 5488/0/0 12085 

6.2.3 Intra-Reasoner	Comparison:	Results	and	Discussions	
The memory usage (byte) and reasoning time (millisecond) required by the four 

composition modes, i.e. COROR-noncomposable, COROR-selective, COROR-two-phase 

and COROR-hybrid, to reason over the selected ontology are listed in Table 6-2. For easier 

presentation the raw data is represented as bar charts separately in Figure 6-1a (memory) 

and Figure 6-1b (reasoning time). In the charts the ontologies are arranged ascendant by 

sizes. There are no results for some measurements, e.g. the time and memory usage for 

COROR-noncomposable to reason over biopax, food and miniTambis ontologies. This is 

because these tests exceeded the threshold and therefore manual termination is applied to 

the reasoning process. For these measurements “X” symbols are placed on the 

corresponding position on the charts to represent their lack of results.  
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As can be found in both the diagrams and the table, the three composable modes, i.e. 

COROR-selective, COROR-two-phase and COROR-hybrid, use much less memory and 

reasoning time to reason over the same ontology than COROR-noncomposable does (where 

only the original ported Jena RETE engine is used and no composition algorithms are 

applied). Furthermore for eight ontologies (which are teams, owls-profile, koala, university, 

beer, mindswappers, mad_cows, and foaf) COROR-hybrid requires less than 512KB 

memory (the RAM size of Sun SPOT). Six ontologies for COROR-two-phase and two 

ontologies for COROR-selective use less than 512KB memory, however, no ontology falls 

into this size for COROR-noncomposable, which indicates for a given memory bound 

COROR composable modes (in particular for COROR-hybrid) can reason over larger 

ontology than COROR-noncomposable. In addition using less memory than the physical 

RAM size means there is not a need for the ontologies to frequently page in and out, further 

improving the time performance and reducing the power consumption.  

It is clear that the COROR-selective, COROR-two-phase and COROR-hybrid use less time 

and memory to fully compute the entailments for all tested ontologies than COROR-

noncomposable. However the amount of saved memory/time varies largely from the three 

COROR composable modes. For example, COROR-noncomposable uses 1.8MB memory to 

reason over mindswappers; COROR-selective requires 738KB to reason over the same 

ontology (of which the memory reduction is around 1.0MB); but COROR-two-phase and 

COROR-hybrid correspondingly require only 422KB and 401KB (of which the memory 

reduction is around 1.4MB). Similar situations also apply to the time reduction. As can be 

found in Table 6-2 and Figure 6-1 COROR-hybrid generally has the most memory/time 

reduction among the three composable modes, and then comes the COROR-two-phase 

which usually requires slightly more memory/time usage than COROR-hybrid. COROR-

selective usually has the least memory/time reduction among them all.  

In the remaining parts of this subsection, in-depth analysis is performed to investigate the 

causes of memory/time reduction for all the three composable modes, based on which the 

differences in memory/time among composable modes are discussed and analysed. Since it 

is proven to be difficult to measure the exact memory usage or time consumption for a rule 

or only for a part of the RETE network using the approaches described in section 6.2.2, an 

approximation approach is used. It is clear from the introduction of the RETE algorithm in 

section 2.2.2.1, join operation and match operation are the two major operations separately 

performed in the beta and alpha network. Furthermore the cached intermediate result in 

alpha memory and beta memory is the major source for memory consumption in beta 
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network. As discussed in section 2.2.2.3.1, join sequence optimization heuristics try to 

construct a better join sequences such that less join operations are required (so the less 

processing time is required) and also less intermediate results are generated, therefore in this 

evaluation the changes of the number of joins (#J) performed by a particular rule are used to 

represent the changes of reasoning time in the beta network of the rule. Similarly the 

changes of number of matches (#M) performed by a particular rule are used to represent the 

changes of reasoning time in the alpha network of the rule. Generally the greater the #M (#J) 

that are performed, the more time is required by the alpha network (beta network) of the rule 

(comparing to other rules). For memory, the changes of the number of intermediate results 

(#IR) generated in a rule are used to represent the changes of the memory usage required by 

the rule. The changes of number of intermediate results generated in the alpha/beta network 

of a rule (#IRM/#IRJ which are generated from successful matches/joins) are used to 

represent the changes of the memory usage of the alpha/beta network of the rule.  

A major benefit of using the changes in #J/#M/#IR/#IRM/#IRJ to represent the changes of 

reasoning time/memory usage of the RETE network is that the #J/#M/#IR/#IRM/#IRJ can 

truly represent the performance of the algorithm independent of the specifications of the 

platform on which the RETE algorithm is running. As long as the algorithm does not change, 

the same results will always be produced regardless as to whether it is run on a powerful 

desktop machine or a resource-constrained sensor node. As a matter of fact this thesis is not 

the first research adopting these metrics. These metrics were adopted in many previous work 

to measure the performance of their RETE network [Miranker 1987, Wang and Hanson 

1992, Ishida 1994]. 

6.2.3.1 Selective	Rule	Loading	Algorithm	
As discussed in the section 3.4.1 the rationale behind the selective rule loading algorithm is 

to remove unused rules from the rule set for a given ontology so that memory and 

processing power that would be allocated to them are saved. Figure 6-2a and Figure 6-2b 

separately show the number of intermediate results (#IR) generated by each rule when 

COROR-noncomposable and COROR-selective are used to reason over the eight selected 

ontologies. Singleton rules, i.e. rules with only one condition, are directly fired without 

caching intermediate results, and therefore they do not contribute to the #IR and they are 

excluded from both diagrams. The biopax, food and miniTambis are not included in the 

diagrams as manual termination was imposed for COROR-noncompoable leading to no 

results for them. 
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For each tested ontology in Figure 6-2 there are some rules that have the same #IR for the 

two composition modes, however, the #IR drops to zero for some other rules. For example, 

for the team ontology, in total 7 rules drop down to zero when the selective rule loading 

algorithm is applied, i.e. rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp14a, and rdfp14bx, however, 

the #IR remains the same for the other rules. This shows the selective rule loading algorithm 

generates a selective rule set, leading to no generated intermediate results for unloaded rules. 

This then raises a supplementary question that: is there any relationship between rules not 

selected and the memory reductions achieved. If such an indicative relationship exists, it 

may be possible to estimate the memory reduction that could be achieved without having to 

actually reason the ontology.  

To investigate this question, the amount of memory reduction and the unselected rules for 

each ontology are listed both in absolute values (in byte) and relative values (in percentage), 

as given in Table 6-3. Note that the relevant memory reduction is computed as  

 

where MCN is the memory usage for COROR noncomposable and MCS is the memory usage 

for COROR selective.  

As shown in the table, the absolute memory reduction does not show an obvious tendency 

with the number of unselected rules (shown in brackets). However, the relative memory 

reduction increases with the number of unloaded rules, from 17.42% for the university 

ontology with 4 unloaded rules to 59.01% for the mindswappers ontology 11 unloaded rules. 

One obvious relationship is the relative memory reduction increase with the number of 

unselected rules.  

Table 6-3: Memory reduction achieved by the COROR-selective. 

Ontology Memory reduction Unloaded rules (number of unloaded rules) 

Absolute 
(byte) 

Relative 
(percentage) 

university 186124 17.42% rdfs12, rdfp1, rdfp2, rdfp3 (4) 
Koala 265592 26.64% rdfs12, rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx (6) 
Teams 223856 31.22% rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp14a, 

rdfp14bx (7)  
mad_cows 697280 32.64% rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp14a, 

rdfp14bx (7) 
Foaf 739704 30.63% rdfs12, rdfp3, rdfp4, rdfp14a, rdfp14bx, rdfp15, 

rdfp16 (7) 
Beer 487036 37.92% rdfs12, rdfp2, rdfp3, rdfp4, rdfp14a, rdfp14bx, 

𝑀𝐶𝑁 −𝑀𝐶𝑆
𝑀𝐶𝑁

× 100% 
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rdfp15, rdfp16 (8) 
owls-profile 407296 47.00% rdfs12, rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx, 

rdfp14a, rdfp14bx, rdfp15, rdfp16 (10) 
mindswappers 1062404 59.01% rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp8ax, 

rdfp8bx, rdfp14a, rdfp14bx, rdfp15, rdfp16 (11) 
 

Further investigation into the percentage of #IR contributed by each rule when the COROR-

noncomposable is used (as shown in Figure 6-3) indicates that all unselected rules occupy a 

relative constant percentage of the total #IR generation regardless of the ontology reasoned: 

the rule rdfp1 occupies 8.15% on average with standard deviation 0.23%; this percentage is 

8.15%/0.24% for rdfp2, 4.07%/0.12% for rdfp3, 8.15%/0.23% for rdfp4, 4.09%/0.12% for 

rdfp8ax, 4.09%/0.12% for rdfp8bx, 4.15%/0.11% for rdfp14a, 1.67%/0.13% for 

rdfp14bx, 5.78%/0,19 for rdfp15 and 5.74%/0.18% for rdfp16. A possible use of this 

observation is to heuristically estimate the memory reduction for an ontology without 

having to perform reasoning. For example by running only the selective rule loading 

algorithm (without reasoning) against the university ontology, a set of four unselected rules 

are identified, which are rdfs12 (0%), rdfp1 (8.15%), rdfp2 (8.15%), and rdfp3 (4.07%); 

by adding up the corresponding percentage the estimated relative memory reduction is 20.37% 

for the university ontology (of which the measured memory reduction is 17.42%). Similarly, 

the estimated memory reduction is 28.55% for koala (of which the measured memory 

reduction is 26.64%), 34.34% for teams (31.22%), 34.34% for mad_cows (32.64%), 33.64% 

for foaf (30.63%), 37.75% for beer (37.92%), 43.57% for owls-profile (47.00%), 51.72% 

for mindswappers (59.01%).  

Considering the diversity of the tested ontologies, this approach may be generally applicable 

to other ontologies, but it has not yet been formally proven or verified in this thesis. Since it 

is a by-product of this research, its validity does not contribute to any of the evaluation 

objectives identified, i.e. comparing COROR-noncomposable and composable modes, and 

comparing between COROR and state of the art rule-entailment reasoners. A potential usage 

of this approach is to facilitate fast ontology engineering without performing reasoning in 

circumstances when a memory limitation is imposed. 
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Figure 6-4a and Figure 6-4b respectively compare COROR-noncomposable and COROR-

selective with respect to the number of matches (#M) and the number joins (#J) performed 

to reason over the eight selected ontologies. COROR-selective reduces #M for all tested 

ontologies (Figure 6-4a), however the #J remains the same for both modes (Figure 6-4b). 

This would suggest that all the time reduction is a result of the decrease of the #M.  

 

(a) Comparison between #M of COROR-noncomposable and COROR-selective 

 

(b) Comparison between #J of COROR-noncomposable and COROR-selective 
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Figure 6-4: Comparison between #M/#J of COROR-noncomposable and 

COROR-selective 

To further explain the observation found in Figure 6-4, without loss of generality, the #M/#J 

generated by all rules for reasoning the foaf ontology are compared between COROR-

noncomposable and COROR-selective. As shown in Figure 6-5 COROR-selective reduces 

the #M of all unselected rules to zero, including rdfs12, rdfp3, rdfp4, rdfp14a, rdfp14bx, 

rdfp15 and rdfp16, showing their unselection. The #M of selected rules, e.g. rdfp1, remains 

the same. As shown in Figure 6-6 there is no difference between #J performed by COROR-

noncomposable and that by COROR-selective. As one might have already noticed the #J for 

all unselected rules is zero even for COROR-noncomposable where all rules are loaded into 

memory, which indicates that no join operations are performed. By looking into the rules it 

is found that these unselected rules are quite optimized in terms of join sequences: singleton 

rules do not need joins; for rules with two conditions, e.g. rdfp3 and rdfp4, the lack of 

matched facts for one condition will cause no join operations to be performed for the rule; 

for rules with more than three conditions, e.g. rdfp14a, rdfp14bx, rdfp15 and rdfp16, 

expressivity constructs (OWL constructs that determines the selection of a rule, e.g. 

owl:hasValue, owl:someValuesFrom, owl:allValuesFrom; refer to section 3.4.1) are 

placed in the first condition of the join sequence, and therefore no join operations are needed 

since no facts are matched to the first condition of these rules. For this particular rule set it is 

the reduction on the number of matches that causes the reduction of reasoning time. 

However it is envisaged that in a less optimized rule set, e.g. expressivity constructs are not 

placed in the front of unselected rules, the application of the selective rule loading algorithm 

will also reduce the #J. 
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6.2.3.2 Two-Phase	RETE	Algorithm	
Unlike the selective rule loading algorithm which only removes unnecessary rules and then 

uses a standard RETE network, the two-phase RETE algorithm can take an unmodified rule 

set but heuristically constructs a customized RETE network for the particular ontology 

taking into account the semantics of the ontology, particularly the OWL constructs 

contained by the ontology. As already discussed in section 3.4.2, the two-phase RETE 

algorithm interrupts the RETE construction process using initial fact matching, and 

information that is hard to collect without matching is then collected. According to the 

information, a customized beta network is then built for the particular ontology.  

This subsection discusses how the application of two-phase RETE algorithm impacts on the 

memory usage and reasoning time required by the alpha network and the beta-network. Note 

that this discussion is based on results collected on desktop in order that more data can be 

analysed. The exact same COROR implementation as the one used to produce the results in 

Figure 6-1 is used in this analysis. However rather than running on Sun SPOT, it runs on the 

desktop machine as mentioned above in section 6.2.2. Since #M, #J and #IR are only 

relevant to algorithms and are independent of the platform on which the algorithms are 

running, the same #M, #J and #IR are generated. 

Figure 6-7 compares the number of intermediate results generated in both alpha network 

(#IRM) and beta network (#IRJ) between COROR-noncomposable and COROR-two-phase. 

The change related to #IRM shows the benefit from alpha network node sharing and the 

change of #IRJ shows the benefit from join reordering. As shown in the figure, COROR-

two-phase generates much less #IRM than that generated by COROR-noncomposable, 

however there are barely no changes between the #IRJ generated by COROR-

noncomposable and that generated by COROR-two-phase. This indicates that the major 

memory reduction comes from the reduction of #IRM, i.e. the sharing of common alpha 

nodes, however, nearly no memory reduction is from the decrease of #IRJ, i.e. the join 

sequence reordering.  
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To further investigate the reason for the very small reductions on #IRJ, an in-depth 

investigation into the heuristically optimized RETE network was carried out. Condition 

nodes in the alpha network are highly shared among rules. All rules, except for the rule 

rdfs12 and rdfs13, share at least one alpha node with other rules. Some alpha nodes are 

shared by more than two rules, e.g. the condition (?v owl:sameAs ?w) is shared by rdfp6, 

rdfp7, rdfp9, rdfp10 and rdfp11. The wildcard condition, i.e. (?v ?p ?l), is shared by 21 

rules. The highly shared alpha network enables only one set of intermediate results to be 

generated for all the conditions sharing the node, leading to the large reduction in #IRM.  

However the beta network shows very small changes after the join sequences being 

reordered by heuristics in the two-phase RETE algorithm. Inspection into the join sequences 

before and after the application of each heuristic shows only two rules, i.e. rdfp11 and 

rdfp15, have their join sequences reordered by the most specific condition first heuristic 

and no join sequence is reordered by the connectivity heuristic. The join sequences before 

and after the application of the heuristic are given below. 

The join sequence of rdfp11 after reordering 

(?u owl:sameAs ?up), (?u ?p ?v), (?v owl:sameAs ?vp)  

The join sequence of rdfp11 before reordering 

(?u ?p ?v), (?u owl:sameAs ?up), (?v owl:sameAs ?vp) 

The join sequence of rdfp15 after reordering 

(?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?x rdf:type ?w), (?u ?p ?x)  

The join sequence rdfp15 before reordering 

(?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x rdf:type ?w) 

The join sequences of the other rules remain the same due to the join sequences of pD* 

entailment rules as selected, are already well optimized manually by the original rule 

authors, e.g. conditions are arranged in a sequence that a more specific condition is placed in 

front of a less specific condition, and in addition the join sequences are already well 
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connected. It is evident that swapping the positions of (?u owl:sameAs ?up) and (?u ?p ?v) 

in rdfp11 do not change the #IRJ since they are the first two conditions in the join sequence 

(whatever the order of the first two conditions they will form the first join in the join 

sequence). Reordering the join sequence of rdfp15 leads to some reduction of #IRJ. 

However this reduction is too small to be observable on diagram. In fact the #IRJ generated 

by the rdfp15 accounts for a very small part of the total generated intermediate results in the 

whole RETE network (only 0.91% for the wine ontology and even smaller for the other 

tested ontology) and therefore its reduction is not very obvious. 

To study the effect of the two-phase RETE algorithm on reasoning time, the comparison of 

#J/#M between COROR-noncomposable and COROR-two-phase is illustrated respectively 

in Figure 6-8 and Figure 6-9. In a similar way, due to the highly shared alpha network as 

discussed above with regard to #IRM, the #M reduces by a large amount for all ontologies, 

which then indicates the large effects of the alpha node sharing heuristic on the reasoning 

time spent on performing match operations. However the small reductions of #J for all 

tested ontologies suggest that for this rule set, the selected the join sequence optimization 

heuristics do not have a very obvious effect on reducing the #J and therefore the reasoning 

time spent on performing join operations. This can also be explained by the observation that 

the join sequences for the rules except for rdfp11 and rdfp15 are already manually optimized 

in terms of the join sequence optimization heuristics, therefore leading to no changes in the 

majority of the join sequences of the selected rule set. However, different scales are used in 

Figure 6-8 and Figure 6-9, such that the absolute reduction of #J is much larger than that of 

#M, e.g. for the amino-acid ontology the reduction of the #J is 0.2M while this is 0.08M for 

the  #M.  



 

174 

 

 

Fi
gu

re
 6

-8
: C

om
pa

ri
so

n 
of

 #
J 

be
tw

ee
n 

C
O

R
O

R
-t

w
o-

ph
as

e 
an

d 
C

O
R

O
R

-n
on

co
m

po
sa

bl
e.

 

 



 

175 

 

Fi
gu

re
 6

-9
: C

om
pa

ri
so

n 
of

 #
M

 b
et

w
ee

n 
C

O
R

O
R

 tw
o-

ph
as

e 
an

d 
C

O
R

O
R

 n
on

co
m

po
sa

bl
e.

 

 



 

176 

 

All other ontologies (except for owls-profile, beer, mindswappers, foaf, food, atk-portal and 

nato) have reductions on both match operations and join operations. Therefore the time 

reductions (refer to Table 6-2) for them come from both the reduction in the number of 

match operations in the highly shared alpha network and the reduction of the number of join 

operations caused by heuristically reordering the rule rdfp15. As the time required by per 

join operation is different from that required by per match operation, it is not possible to 

determine which part contributes more to the total time reduction. The above listed 

ontologies (owls-profile, beer, mindswappers, foaf, food, atk-portal and nato) do not include 

owl:someValuesFrom and therefore no joins are performed for rdfp15 which is the only 

source for the reduction of #J. For those ontologies the time reductions come only from their 

highly shared alpha networks.  

It appears from the above analysis that the two-phase RETE algorithm does not obviously 

optimize the beta network, leading to relatively small time reductions (represented by the 

small reductions of #J) and the small memory reductions (represented by the small 

reductions in #IRJ). The main reason for this is the use of a manually optimized pD* rule set 

in the evaluation. Rules are quite optimized join sequences in terms of the heuristics used in 

this research: the join sequences are ordered with specific condition in front of less specific 

conditions in most times and joining conditions are connected. As will be shown later on, 

this is not a general case.  

In order to show that the two-phase RETE algorithm can optimize the join sequence in 

general cases, leading to more time and memory reduction, three rules from the pD* rule set 

were manually reordered to use different join sequences (renamed as rdfp1m, rdfp2m and 

rdfp4m, as listed in Figure 6-10). The modified rules bring forward more general 

conditions (wildcard conditions) to the front of their join sequences, making them less 

optimized. In fact it is often that domain experts would author rules with a more general 

condition at the start of the join sequence, which would then lead to the long-chain effect. 

The memory usage and reasoning time required by COROR-two-phase and COROR-

noncomposable to reason over the same set of ontology as selected in Figure 6-1 are tested 

again, however both the original and the modified rule set are used. The same experiment 

settings are used and the same COROR implementation is used. Results are illustrated in 

Figure 6-11 and Figure 6-12. Note that for brevity in Figure 6-11 and Figure 6-12 , COROR-

noncomposable using the modified rule set is represented as “COROR-noncomposable 

modified” in the legends and the same rule applies to other COROR configurations. 
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Figure 6-10: Modified rule rdfp1, rdfp2 and rdfp4. 

[rdfp1m: (?u ?p ?v), (?u ?p ?w), (?p rdf:type owl:FunctionalProperty), 

notLiteral(?v) -> (?v owl:sameAs ?w)] 

[rdfp2m: (?u ?p ?w), (?v ?p ?w), (?p rdf:type owl:InverseFunctionalProperty) -> 

(?u owl:sameAs ?v)] 

[rdfp4m: (?u ?p ?v), (?v ?p ?w), (?p rdf:type owl:TransitiveProperty) -> 

(?u ?p ?w)] 
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As can be seen from Figure 6-11 and Figure 6-12 , the COROR-noncomposable uses a lot 

more memory and reasoning time when the modified rule set is used. Some ontologies such 

as beer, mindswappers, mad_cows and foaf that have valid measurements in Figure 6-1 

require manual terminations for the modified rule set. However the memory usage and 

reasoning time required by the COROR two-phase stays unchanged for both the original and 

the modified rule set. 

A similar investigation of the #IR and #J/#M is also performed on COROR-noncomposable 

and COROR-two-phase in order to show how the two-phase RETE algorithm affects on the 

reduction of memory usage and reasoning time when the modified rule set is used. Insight 

into #M (Figure 6-13) indicates that the use of a modified rule set does not lead to changes 

in the #M for both COROR-noncomposable and COROR-two-phase. This is because only 

the join sequences are changed but the conditions remain the same for the modified rule set 

and therefore the alpha network remains unchanged for the modified rule set, leading to the 

same amount of time used in performing the match operations. The #J of COROR-

noncomposable has greatly increased for the modified rule set as sub-optimal join sequences 

are used. However, the #J remains the same for COROR two-phase (as indicated in Figure 

6-14), which explains the large reduction of the reasoning time for COROR-two-phase 

when the modified rule set is used (comparing to COROR-noncomposable when the 

modified rule set is used, as illustrated in Figure 6-12). Further investigation into the rule 

join sequences after the application of join sequence reordering heuristics indicates that join 

sequences of the modified rules are reordered into the optimal sequences as given in the 

original rules. This suggests that the heuristics used in the two-phase RETE algorithm can 

optimize join sequences automatically using the information collected in the first phase 

without changing the semantics of rules, which otherwise requires manual optimization 

from a rule expert. In fact people who write custom/domain-specific rules are usually not 

rule experts and hence they could not do this optimization manually, which emphasizes the 

benefit of the two-phase RETE algorithm to automatically optimize the join sequences of 

rules. To summarise, the results presented here using the modified rule set show that the 

heuristics used in the two-phase RETE algorithm can optimize join sequences of rules in 

general cases leading to a great reduction of the #J and hence the reasoning time spent on 

beta network. 
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The analysis of the #IRM/#IRJ show similar results as the corresponding investigation of 

#M/#J conducted above. The #IRM is the same for both rule sets (Figure 6-16) as the 

conditions are not changed. Hence the alpha network remains the same for the modified rule 

set. The #IRJ for COROR-noncomposable increases greatly when the modified rule set is 

used (Figure 6-16) since sub-optimal join sequences are used. However the #IRJ for 

COROR-two-phase remains the same for both the modified rule set and the original rule set 

since the sub-optimal join sequences in the modified rule set have been automatically 

reordered into the optimal join sequences, as those in the original rule set manually 

optimized by rule experts. Similar conclusions can be drawn that the two-phase RETE 

algorithm can automatically optimize the join sequences of general rule sets, leading to great 

reduction of the #IRJ. This also explains the great memory reduction of COROR-two-phase 

when using the modified rule set (Figure 6-11).  
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6.2.3.3 Hybrid	Algorithm	
Since the selective rule loading algorithm and the two-phase RETE algorithm do not affect 

each other in any way, it is possible to apply both optimizations at the same time. COROR 

hybrid uses a hybrid algorithm that combines the selective rule loading algorithm and the 

two-phase RETE algorithm by first generating a selected rule set and then applying the two-

phase RETE algorithm using the selected rule set. However as illustrated in Figure 6-1, in 

this experiment this combination does not gain a lot more time or memory reduction 

comparing to COROR two-phase. In fact Table 6-2 indicates that for all selected ontologies, 

COROR-hybrid only uses from 10KB to 20KB less memory than that required by COROR-

two-phase. The reasoning time required by COROR-hybrid is almost similar as required by 

COROR-two-phase, and for some ontologies such as Biopax and mad_cows COROR-

hybrid requires even slightly more. 

Investigation of #IRM/#IRJ shows that COROR-hybrid uses almost the same #IRM/#IRJ as 

COROR-two-phase (Figure 6-17). This can be explained as follows. If a rule is not selected 

by COROR-hybrid, then there must be a condition in it that has at least one OWL construct 

not included in the ontology (according to the principles of the selective rule loading 

algorithm) and so will have no matches at the initial matching stage when the number of 

matched facts is collected for each condition. Hence this condition is the most specific 

condition in the join sequence as it has no matched facts and is then re-ordered to the start of 

the join sequence by the most specific-condition first heuristic used in the two-phase RETE 

algorithm. This then leads to no join operations being performed for this join sequence and 

no intermediate results being generated in the corresponding beta network of the rule.  

Still some intermediate results are generated in the alpha network because of successful 

matches in alpha nodes. However as the alpha network is highly shared in the two-phase 

RETE algorithm and for this rule set almost all of the unnecessary alpha network matches 

for the unnecessary rules are actually shared with other (necessary) rules, hence the 

unloading of a rule will not reduce much of the #IRM generated in COROR hybrid. For 

example, in COROR hybrid the rule rdfp1 is unselected for the university ontology as the 

condition (?p rdf:type owl:FunctionalProperty) contains owl:FunctionalProperty 

which does not appear in the university ontology. The other conditions, e.g. (?u ?p ?v) in 

rdfp1, are shared by other (selected) rules, e.g. rdfs7x, and therefore no matter if the rule 

rdfp1 is unselected, the (shared) node (?u ?p ?v) is still constructed anyway (for the rule 

rdfs7x), and therefore unselecting rdfp1 does not cause the reduction of memory allocated 
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to the shared conditions. The small amount of memory reduction of COROR hybrid comes 

from both the removal of some unshared conditions in unselected rules and the removal of 

the data structures for unselected rules from the beta network.  

The #M reduces for COROR-hybrid by a certain amount as shown in Figure 6-18 as some 

unshared conditions of unselected rules are missing from the alpha network, e.g. (?p 

rdf:type owl:FunctionalProperty) in rdfp1, leading to fewer match operations being 

required (although no successful matches for this condition since the missing of the OWL 

construct owl:FunctionalProperty in the ontology, still match operations are performed). 

The #J is the same for both COROR-hybrid and COROR-two-phase (Figure 6-19). Similarly, 

this is because the most specific conditions for unnecessary rules are those with no matched 

facts, and hence the most-specific condition first heuristic will reorder them to the start of 

the join sequences causing no join operation to be needed, as if they are “unselected”.  

The decrease in the #M reduces the reasoning time of COROR-hybrid by a small amount. 

However the introduction of the selective rule loading algorithm introduces extra time in 

computing the selective rule set, which in total may use more time than COROR two-phase. 

From these results, for this rule set it can be seen that the combination of the alpha node 

sharing heuristic and join sequence reordering heuristics in the two-phase RETE algorithm 

actually achieved much of the same benefit as the selective rule loading algorithm: in fact 

rather than optimizing for unnecessary rules, these heuristics can also optimize the alpha 

network and join sequences for selected rules, leading to even less time and memory 

requirements over that of COROR-selective. Hence COROR-hybrid has little benefit 

beyond that of COROR-two-phase. When combined with the restriction that the adoption of 

the selective rule loading algorithm limited the flexibility to alter rules (new construct-rule 

mapping entries are required) or to handle updates with new constructs (new constructs will 

not be handled since the rule is not in the selected rule set), it could be seen that the selective 

rule loading algorithm has limited utility. However, with a different rule set (especially 

domain specific rules) with less overlaps of conditions in the rules, the benefit of the 

selective rule loading algorithm would become much more pronounced with respect to 

alpha network memory and time savings. 
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6.2.4 Inter-Reasoner	Comparison:	Results	and	Discussions	
The comparisons of reasoning time and memory usage between COROR and other state of 

the art reasoners are given in Figure 6-20a and Figure 6-20b. This experiment was 

performed on desktop using a J2SE platform. Experiment settings can be found in section 

6.2.2. A similar measurement approach is used as described in section 6.2.2. The exact same 

COROR implementation as the one used in the intra-reasoner comparison is used. However 

rather than running on Sun SPOT, it runs on J2SE platform. Four other rule-entailment 

reasoners with similar reasoning algorithms and expressivity are also included in this 

experiment for comparison, including Jena, BaseVISor, swiftOWLIM, and Bossam. Since 

Jena also has a resolution engine, it was configured to use only forward chaining RETE 

engine and the same rule set as the one used in COROR was loaded. For brevity the Jena 

under this configuration is termed as Jena-forward. As discussed in the reasoner 

categorization as described in the related work in Chapter 2, SwiftOWLIM and BaseVISor 

are two desktop rule-entailment reasoners supporting similar semantics as the pD* 

entailment as well. However, as well as pD* entailment rules, the axiomatic triples and 

consistency rules are also supported by them. The expressivity of Bossam is not mentioned 

in the website 16 , paper [Jang and Sohn 2004], and implementation, therefore made it 

difficult to judge its inference capability. COROR-hybrid was used in this comparison 

because it combines both composition algorithms and therefore can represent the 

performance gain achieved by both composition algorithms. Note that Pellet is also included 

in this experiment. It is a tableaux-based reasoner and performs complete OWL-DL 

reasoning. However it is included in this experiment not for comparing its performance side-

by-side with the other rule-entailment reasoners (which are not complete OWL-DL 

reasoners). It is only included to give readers an intuition as to how COROR performs 

compared to a full-fledged complete OWL-DL reasoner. 

The reasoning time required by the above reasoners to reason over a set of 17 ontologies 

(refer to Table 6-1 for more on the ontology) is shown in Figure 6-20a. As shown in the 

diagram, the time performance of COROR-hybrid is comparable to Jena-forward and 

BaseVISor. In contrast to the results listed in Figure 6-1b where COROR-hybrid uses much 

less reasoning time than COROR-noncomposable to reason a same ontology, here in the 

inter-reasoner comparison COROR-hybrid only slightly outperforms Jena-forward. Since (1) 

the exact same COROR implementation is used in both the intra-reasoner comparison and 

the inter-reasoner comparison, and (2) as discussed earlier in section 5.2.2, almost a same 
                                                        

16 http://bossam.wordpress.com/ 
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RETE engine as the one used in Jena-forward is used in COROR-noncomposable except 

only for the use of J2ME CLDC conformant container classes in the one used in COROR-

noncomposable in order to run on mobile devices, then a reasonable explanation for the 

different time reductions in Figure 6-1b and Figure 6-20a could be the performance 

differences of the different container classes used by COROR-noncomposable and Jena-

forward. The List and Map used in COROR-noncomposable are self-defined by µJena, 

which could be relatively less optimized and slower compared to the standard Java container 

classes such as java.util.ArrayList and java.util.HashMap used in the Jena-forward, 

hence offsetting the time reduction gained by composing the reasoner.  

SwiftOWLIM is the fastest reasoner for most ontologies (except for Tambis-full where 

BaseVISor is the fastest). However as will be shown later in this section, it may trade 

memory for time. Although the time required by COROR-hybrid is less than that of Pellet 

for smaller ontologies (except for tambis-full and NATO which are the two largest in the 

selected ontology), Bossam is also fast for many ontologies, for some smaller ontology such 

as Teams, OWLS-profile, Beer, it can compete with swiftOWLIM. However it gives errors 

for four ontologies including Koala, University, tambis-full and NATO all of which are 

successfully reasoned by the other reasoners. Pellet generally has quite constant 

performance for most selected ontologies regardless of their sizes. However for smaller 

ontologies it uses more time than all the other rule-entailment reasoners. Pellet uses much 

more time to reason over wine and mindswapper. This is because the special structures used 

in the terminology and ABox definition which slows down the tableaux-based reasoning. 

Pellet does not have results for the Beer ontology as inconsistencies are detected.  

As illustrated in Figure 6-20b, the memory performance of COROR is much better than the 

other reasoners. It uses the least memory for all selected ontologies. The memory usage 

grows much faster with the increase of both the size and the complexity of the ontology for 

Bossam and Jena-forward than COROR-hybrid does. For example, for the ATK-portal 

ontology Bossam uses 6 times more memory than COROR and for the Wine ontology it 

uses 13 times more memory than COROR. The memory footprint for swiftOWLIM is a lot 

larger than the COROR even for the very small ontology, e.g. even for teams it uses 20MB 

memory which is 15 times larger than COROR, which shows swiftOWLIM trades memory 

for time. The memory results indicate that much smaller memory footprint is required by 

COROR, and hence enable it to be better fit into resource-constrained devices. Note that 

BaseVISor hides its reasoning process from external inspection so it was not possible to 
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accurately measure its memory usage, and therefore it is omitted from the memory 

comparison. 
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6.2.5 Accuracy	of	the	Selective	Rule	Loading	Algorithm	and	the	Two-Phase	
RETE	Algorithm	

In previous sections how the application of composition algorithms into a rule-entailment 

reasoner can affect its reasoning performance is studied. This section then discusses how the 

application of composition algorithms can affect the accuracy of reasoning. In theory, the 

exact same reasoning results are generated before and after the application of the selective 

rule loading algorithm and the two-phase RETE algorithm.  

A direct and simple approach to demonstrate the reasoning accuracy of the composition 

algorithms is to compare reasoning results generated by different COROR composition 

modes to reason over the same ontologies side by side. Since as discussed in section 5.2.4 

COROR-noncomposable uses a mobile version of the Jena RETE engine which has been 

widely used and tested in the OWL community, hence it is reasonable to compare its 

reasoning results with results generated by the other COROR modes (COROR-selective, 

COROR-two-phase and COROR-hybrid): if the same reasoning results are generated, it then 

can be concluded that the application of the composition algorithms does not change the 

reasoning accuracy. 

An alternative approach may be comparing the reasoning results of COROR with other state 

of the art rule-entailment reasoners with the same semantics. However, this approach is not 

quite suitable to demonstrate the accuracy of the composition algorithms since the reasoning 

results rely largely on the rule set. Although some reasoners have their rule set also based on 

pD* semantics, the differences in the implementation of their rule sets, e.g. COROR does 

not use axiomatic triples but BaseVISor does; OWLIM condenses the triples generated for 

owl:sameAs, can cause different reasoning results to be obtained. Therefore their results 

cannot be compared side by side with COROR.  

The comparison of reasoning results generated by the four COROR modes is performed in 

Ultra Edit17 by first using the “Sort File” option to sort the result triples in an alphabetic 

order and then using the “Compare Files” option to perform comparison. Differences can be 

highlighted in the comparison window. Careful manual examination is then performed by 

the author, to find the differences between two results. Differences are all limited to the 

different names assigned to anonymous nodes. In fact these names are randomly assigned by 

the rule builtin assignAnon() as introduced in Table 5-2, but they still point to the same 

                                                        

17 http://www.ultraedit.com/ 
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resource. A summary of sizes of result ontology can be found in Table 6-4. No other 

differences are found in the compared results and therefore it is confident that the accuracy 

of the two designed reasoner composition algorithms is achieved.  

Table 6-4: The size of result ontologies generated by each reasoner mode. 

Ontology Original 
Size 

COROR-
noncomposable 

COROR-
selective 

COROR-two-
phase 

COROR-
hybrid 

teams 87 497 497 497 497 
owls-profile 116 594 594 594 594 
koala 147 710 710 710 710 
university 169 760 760 760 760 
beer 173 933 933 933 933 
mindswapper 437 1350 1350 1350 1350 
foaf 503 1772 1772 1772 1772 
mad_cows 521 1695 1695 1695 1695 
biopax 633 2228 2228 2228 2228 
food 924 2437 2437 2437 2437 
mini-tambis 1080 3407 3407 3407 3407 
amino-acid 1465 2932 2932 2932 2932 
atk-portal 1499 5418 5418 5418 5418 
wine 1833 7043 7043 7043 7043 
pizza 1867 3819 3819 3819 3819 
tambis-full 3884 10959 10959 10959 10959 
nato 5924 15746 15746 15746 15746 

6.3 Usability	Test	of	TARS	
As already mentioned at the very beginning of this chapter, the major motivation for having 

an automatic reasoner selection process is to reduce the amount of efforts that could be 

involved in the future reasoner selection where interplay between semantic applications and 

reasoners could be extremely complicated due to the ever advancing of reasoner 

characteristics and application characteristics. RESP is then proposed, designed and 

implemented (as TARS) to enable application developers to select an appropriate reasoner 

independently using application characteristics. Although RESP automatically recommends 

the most appropriate reasoners for application developers, application developers are still 

involved in this process to identify application characteristics and to input the identified 

application characteristics. Furthermore once no appropriate reasoners are recommended 

they need to revise the identified application characteristics based on the results given by 

RESP, loosing or tightening the application characteristics and then entering another 

selection iteration. Reasoner experts are also involved in RESP to register candidate 

reasoners. Considering the major motivation of having RESP is to reduce the human-labour 

involved in the selection process, a usability test tends to be a best suitable evaluation for 

RESP. As a prototype complete implementation of RESP, TARS is then used in this 

evaluation. 
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Accuracy of TARS, i.e. if the most appropriate reasoner recommended by RESP is the most 

appropriate reasoner for the application in reality, is another important aspect to demonstrate. 

However it is not evaluated here since what is to be demonstrated in this thesis is that RESP 

as an abstract methodology does help application developers in selecting a reasoner, rather 

than the accuracy of the example application characteristics and connections derived in 4.3 

and used in TARS. As a matter of fact, the accuracy of these example application 

characteristics and connections can be further refined when TARS comes into a practical 

stage.  

Design, execution and results analysis of the usability test to TARS are presented in the 

reminder of this section. 

6.3.1 Design	of	evaluation	
Two tasks are designed to enable different participants to experience the distinct aspects of 

TARS. A first task is the reasoner registration task (task 1) that is designed to require 

reasoning-aware participants to register a reasoner with TARS using a reasoner description. 

It evaluates the usability of TARS reasoner registration interface as well as the difficulties 

involved in the identification of reasoner characteristics. A second task is the reasoner 

registration task (task 2) that is designed to require application-aware participants to use 

TARS to select a most appropriate reasoner for a semantic application following the RESP 

process. The aims of this task consist of three parts. Firstly it investigates the difficulties for 

participants in the identification of a complete and correct set of ACs. Secondly it requires 

participants to use TARS to perform reasoner selection following the RESP process, and 

feedback is collected on the usability of TARS.  

In all 22 participants are selected and they are divided into two sub-groups according to the 

designed tasks: an application-aware group consisting of 17 application-aware participants 

with more experience in developing semantic applications and a reasoning-aware group 

consisting of 5 reasoning-aware participants with more experience in ontology reasoning. 

Six self-assessment questions designed by the author are used to enable participants to 

assess their own knowledge on semantic applications (Q2 to Q4) and on OWL reasoning 

(Q5 to Q7). These questions can be found in the post-task questionnaire in the attached 

DVD.  

The question Q2 and Q3 assess the participant’s level of knowledge on ontology and their 

frequency of using semantic applications. Each of the questions has 4 options describing 

different levels of knowledge (frequency): expert (often), a lot (sometimes), some (seldom), 
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and none (never). The question Q4 asks if the participant has ever designed a semantic 

application, and two options are provided for this question: yes or no. Similarly the question 

Q5 and Q6 correspondingly ask participants to assess their level of knowledge on ontology 

reasoning and the frequency of using an ontology reasoner. Q7 asks if the participant has 

ever looked into the internal reasoning mechanisms of an ontology reasoner.  

In order to evaluate the overall knowledge on semantic applications or ontology reasoning 

from these assessment questions, a score system is designed and used in this thesis. For Q2, 

Q3, Q5 and Q6, 4 is assigned to expert (often), 3 to a lot (sometimes), 2 to some (seldom), 

and 1 to none (never). The question Q4 and question Q7 have two options yes and no. Since 

whether a participant has designed a semantic application or looked into the reasoning 

mechanisms of a reasoner can make big differences on his/her corresponding background 

knowledge, for Q5 and Q7, 4 is assigned to yes and 1 is assigned to no. Then the average 

score is calculated separately for Q2-Q4 and for Q5-Q7 in order to know the overall 

background knowledge of a participant on semantic application and on ontology reasoning. 

Adjectives are assigned to different average scores: if the average score is within [1, 2), then 

the participant is regarded as a novice user; If it is within [2, 3), then he/she is regarded as an 

average user; if it is within [3, 4] then he/she is regarded as an expert user. 

The majority (82%) of application-aware participants have little or no knowledge on the 

intricacies of ontology reasoning (Figure 6-21). This fits into the vision motivating the 

development of RESP that semantic application developers would have little or no 

knowledge on semantic reasoning. The small size of the reasoning-aware group is 

reasonable as the reasoner registration task aims to collect expertise rather than large 

volumes of feedback. All the five reasoning-aware participants are expert reasoner users. 

The reasoner selection task is assigned to the application-aware group and the reasoner 

registration task to the reasoning-aware group. 
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Figure 6-21: The level of background knowledge of application-aware participants 

on both semantic application and ontology reasoning (level of knowledge, number 

of participants, percentage). 

Participants needed to carry out the corresponding task individually. Five steps needed to be 

followed for the reasoner selection task, including: 

1. Participants are given a short introduction on the RESP process (and TARS 

interface). A step-by-step demonstration is given showing how to use TARS to 

perform reasoner selection.  

2. A description on a semantic publish/subscribe system (can be found in Appendix 

B) for which a most appropriate reasoner is to be selected is given to participants 

and they are asked to individually analyse the description, identify the ACs, and 

input the identified ACs into TARS to start the reasoner selection using the RESP 

process. 

3. Participant is asked to identify the most appropriate reasoner from the TARS 

results interface. Correct identification of all the ACs (as listed in Appendix B) for 

the given application description will lead to the selection of Pellet (which is with a 

100% satisfaction rate). However over-identification or under-identification of ACs 

will lead to more than one appropriate reasoner to be identified (this may be the 

case for many other semantic applications but not for the given application) or none 
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to be identified. 

4. (optional) If Pellet is not identified, participants are required to go into another 

RESP iteration revising the set of ACs previously identified (by losing some or 

tightening others), and invoke again the reasoner selection using TARS until Pellet 

is correctly identified. 

5. Participants are required to complete two questionnaires: a post-task 

questionnaire for collecting feedback and comments on the functionality, usability, 

user interface and limitation of TARS, and a System Usability Scale (SUS) 

questionnaire as a general approach to evaluate the usability of TARS. The post-task 

questionnaire can be found in the attached DVD. 

Two things need to be clarified. Firstly the application description was written with the 

collaboration of a reasoner expert (the author) and the author of the semantic 

publish/subscribe application, and to ensure the impartiality of the evaluation neither is 

involved in the evaluation. Secondly identified ACs for each participant are tracked by the 

system for each iteration for later analysis of the reason for incorrect identification. 

Three steps need to be followed for the reasoner registration task, including: 

1. Participants are given a short introduction on the RESP process (and TARS 

interface). A step-by-step demonstration is given showing how to use TARS to 

perform reasoner registration. 

2. A description on BaseVISor is given to the reasoning-aware participants (can be 

found in Appendix B). They are asked to analyse the description and to identify the 

RCs for BaseVISor.  

3. Reasoning-aware participants are required to register the reasoner into TARS. 

4. A post-task questionnaire and a SUS questionnaire is given to each participant in 

order to collect their feedbacks on the usability of TARS (in terms of registering 

candidate reasoners). 

Note that the description is a careful abstraction of the BaseVISor paper [Matheus et al 2006] 

with the collaboration by the same two reasoner experts as before. They were not involved 

in this experiment.  
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6.3.2 Results	and	discussions	
All reasoning-aware participants successfully identified Pellet as the most appropriate 

reasoner in two iterations despite most having little or no knowledge on the specifics of 

ontology reasoning. Twelve out of the seventeen application-aware participants limited the 

reasoner selection results to only 2 candidate reasoners in the first iteration. With a little help 

by briefly explaining some application characteristics, all of them successfully selected 

Pellet as the most appropriate reasoners. The other five reasoning-aware participants 

selected the correct reasoner using only one iteration.  

The history log of selection of ACs show that all the 12 participants who failed to select 

Pellet on the first iteration, failed to identify the AC required expressivity SHION. Hence 

KAON2 was also recommended as the other most appropriate reasoner in their first iteration 

for the given application since it fits well the other ACs of the application other than 

supporting less expressivity. Two other ACs of the given application were also neglected by 

some applications developers, including complete reasoning and conjunctive query. Five 

ACs were incorrectly selected, among which the AC KB in database was incorrectly 

selected by most of the application-aware participants (10 participants) while the AC 

reasoning tasks was incorrectly selected by four participants. The other three were only 

incorrectly selected by one participant.  

Not selected AC Count of 
participants 

Causes  

Ontology expressivity 12 Lack of knowledge. 
Complete reasoning 2 Lack of knowledge. 
Conjunctive queries 1 Lack of knowledge. 

Table 6-5: Not selected ACs 

Incorrectly selected AC Count of 
participants 

Causes  

kb in database 10 Vague application description. 
reasoning tasks 4 Vague application description, by mistake, self-

inference, lack of knowledge. 
user-defined datatypes 1 Self-inference. 
closed-world queries 1 Lack of knowledge. 
interface (remote) 1 Self-inference 

Table 6-6: Incorrectly selected ACs. 

A full list of the not identified and the incorrectly identified ACs as well as the count of 

participants for each is listed separately in Table 6-5 and Table 6-6. In addition, the reason 

for the incorrect identification of an AC is listed. The identified reasons are as a result of 
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discussions with each participant after the task. All the 12 participants not selecting the AC 

ontology expressivity regarded the lack of knowledge about the DL-style ontology 

expressivity (e.g. SHOIN(D)) as the reason. This was also the reason for the not selection 

of the AC complete reasoning and the AC conjunctive queries, and the reason for the 

incorrect selection of the AC reasoning tasks and the AC closed-world queries. These 

problems can be avoided to a large extent in the future, by making the ACs more 

understandable, for example by using some explanation hints for each AC. This is partly 

shown by the fact that with a little explanation of the ACs to all the 12 application-aware 

participants that failed to identify Pellet in the first iteration, that they all successfully 

identified Pellet in the second iteration. All of the ten participants who incorrectly selected 

the AC kb in database regarded application description being vague as the reason: 

participants misunderstood the term “knowledge base” that is used in the application 

description as a type of database while in fact it represents the in-reasoner interpretation of 

the ontology. This reason can be partly handled using explanation hints for the AC as well. 

For example, an explanation can be supplied that KB does not have to be a database but can 

also be in-memory interpretation of ontology. Other reasons also exist. One of the reasons 

that cause the incorrect selection of the AC reasoning tasks, user-defined datatypes, and 

interface (remote) is self-inference which basically states that the AC is incorrectly selected 

based on participant’s own understanding of the application although it is not explicitly 

stated in the application description. For example in the experiment since semantic 

publish/subscribe system was the application for which an appropriate reasoner was selected, 

a participant inferred that there must be some remote interface available for different brokers 

to communicate with each other. However, in fact in this application the inter-broker 

communication is not a part of the reasoner. However this problem is likely to be less of a 

problem in the real use of the tool, as in the experiment the participants were not the 

application developers of the system they were trying to characterise.  

All reasoning-aware participants from the reasoning-aware group successfully registered 

BaseVISor to RESP, although with some not selected or incorrectly selected RCs. In a 

similar way, causes for not selection and incorrect selection were discussed with the 

participants after the task was complete. Not selected RCs and incorrectly selected RCs are 

respectively presented in Table 6-7 and Table 6-8 with the causes identified. Primarily two 

reasons were given for not selected or incorrectly selected RCs, the first being lack of 

knowledge and the second being vagueness in the reasoner description. For example, two 

reasoning-aware participants did not include the RC reasoner type in BaseVISor as they are 
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not familiar with the reasoner categorization used in this research (refer to section 2.3.1.1). 

This can be partly solved by giving detailed explanation hints for each RC. The RC datatype 

support was not selected by one participant, because it was overlooked. Reasoner 

expressivity (in OWL) was not selected by a participant because of the vagueness of the 

given reasoner description: RDFS constructs were not selected because they were not 

explicitly written in the reasoner description. As a matter of fact vague reasoner description 

was also the major reason for the incorrect selection of three other RCs, including running 

platform (J2ME platform was selected because BaseVISor was mentioned to be embedded 

into other applications, where the term embedded was interpreted by a reasoning-aware 

participant as can run on mobile devices), reasoner expressivity in DL (the original 

description does not explicitly state the given expressivity was given in OWL although 

OWL constructs are listed) and the level of reasoner composition (regarded procedural 

attachment in rule language as reasoner composition).  

Not selected RC Count of 
Participants 

Causes  

Reasoner type  2 Lack of knowledge 
Native CWA support 2 Lack of knowledge and by mistake. 
Query support 1 Lack of knowledge. 
Datatype support 1 by mistake 
Reasoner expressivity (in 
OWL) 

1 Vague reasoner description. 

Table 6-7: Not selected RCs. 

Over-selected reasoner 
Characteristic 

Count of 
Participants 

Reasons  

Running Platform 1 Vague reasoner description. 
Reasoner expressivity (in 
DL) 

1 Vague reasoner description. 

Level of reasoner 
composition 

1 Vague reasoner description, misunderstanding 
user-defined procedural attachment as composition 
of reasoning ability. 

OS  1 Self-deduction 

Table 6-8: Incorrectly selected RCs. 

All identified reasons for not selection and incorrect selection point to the inappropriate 

naming of ACs and RCs (too technical terms in the names caused the lack of knowledge of 

some ACs and RCs) or the unclear nature of the given description. These problems however, 

can be solved without changing the TARS tool or the RESP process.  

6.3.3 Questionnaires	analysis	
Two questionnaires, i.e. a post-task questionnaire and a SUS questionnaire, were used in this 
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experiment to collect feedback and comments on the functionality, usability, user interface 

and limitation of TARS. All 22 participants were required to fill the questionnaires after 

tasks. The following subsections correspondingly discuss feedback from the post-task 

questionnaire and the SUS questionnaire. The SUS questionnaire and the post-task 

questionnaire can be found in the attached DVD. 

6.3.3.1 Post-task	questionnaire	
The post-task questionnaire consists of two parts with the first part containing 6 self-

assessment questions on the background knowledge of the participant and the second part 

containing 15 evaluation questions on different facets of RESP. Only application-aware 

participants are required to answer self-assessment questions in the former part, and both 

application-aware and reasoning-aware participants are required to answer the evaluation 

questions in the second part. Some questions in the second part are task specific and 

therefore only participants taking the corresponding task need to answer them.  

A scale ranging from Strongly Disagree (1) to Strongly Agree (5) is associated to evaluation 

question 8 to 20 and similarly for each level a numeric value is associated, as parenthesized. 

Question 21 and 22 collect comments and suggestions from participants respectively on the 

RESP reasoner selection process itself and its interfaces. Again mean values are calculated 

for questions and descriptive adjectives are associated to means: [1, 1.5) as Strongly 

Disagree, [1.5, 2.5) as Disagree, [2.5, 3.5) as Neutral, [3.5, 4.5) as Agree and [4.5, 5] as 

Strongly Agree. Mean value for each evaluation question can be found in Table 6-9. 

Evaluation Question Mean 
(overall) 

Mean (app-
aware) 

Descriptive 
Adjective 

8. I can understand the idea of reasoner 
characteristics. 

4.0 4.0 Agree 

9. I can understand the idea of application 
characteristics. 

4.5 4.5 Agree 

10. I can understand the RESP reasoner selection 
process. 

4.4 4.5 Agree 

11. (Task 2 only) I think the given set of application 
characteristics precisely capture the corresponding 
application characteristics of a realistic ontology-
based application. 

3.8 3.8 Agree 

12. (Task 2 only) I think the given set of application 
characteristics thoroughly capture application 
characteristics of realistic ontology-based 
applications. 

3.8 3.8 Agree 

13. (Task 1 only) I think the given set of reasoner 
characteristics precisely capture the corresponding 
reasoner characteristics of a realistic ontology 
reasoner. 

4.2 N/A Agree 

14. (Task 1 only) I think the given set of reasoner 3.8 N/A Agree 
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characteristics thoroughly capture the 
corresponding reasoner characteristics of any 
realistic ontology reasoner. 
15. (Task 2 only) The manual approach to identify 
reasoner for an application, i.e. through discussion 
between reasoner experts and application 
developers, may have some biases due to reasons 
such as personal preference, miscommunication and 
so on. 

3.9 3.9 Agree 

16. (Task 2 only) I think the RESP reasoner 
selection process has the potential to avoid such 
bias mentioned above. 

4.1 4.1 Agree 

17. (Task 1 only) I find the reasoner registration 
interface is easy to use. 

4.2 N/A Agree 

18. (Task 2 only) I find the reasoner selection 
interface is neat and easy to use. 

4.3 4.3 Agree 

19. (Task 2 only) I find the way reasoner selection 
results are presented is neat and easy for me to find 
out the appropriate reasoner(s) and the reason why 
the other reasoners are not appropriate. 

4.6 4.6 Strongly 
Agree 

20. (Task 2 only) I think the RESP reasoner 
selection process helps me in making a decision to 
select an appropriate reasoner for an application. 

4.2 4.2 Agree 

Table 6-9: Mean values (overall and application-aware) for evaluation questions 

It can be concluded from Table 6-10 that most participants agreed that the concepts used in 

TARS, such as RC (question 8), AC (question 9) and the RESP reasoner selection process 

(question 10), were easily comprehensible. Some (7 out of 17) application-aware 

participants held neutral views on the precision (question 11) and completeness (question 12) 

of the set of example ACs, but still more than half of application-aware participants (10 out 

of 17) showed positive attitudes toward it. All five participants in the reasoning-aware group 

agreed that candidate RCs could precisely capture characteristics of realistic reasoners 

(question 14), however, two participants expressed neutral opinions on the completeness.  

Question 15 and 16 focus on limitations of the conventional reasoners selection approach. 

Generally, participants agreed that the conventional approach, i.e. through discussion 

between reasoner experts and application developers, would bring about biases due to 

reasons such as personal preference, miscommunication and so on. It is also accepted by 

most (14 out of 17) participants that RESP is able to reduce or avoid such biases. 

Feedback on TARS interfaces are collected in question 17, 18 and 19. It is generally 

accepted reasoner selection and reasoner registration interface are neat and easy to use 

(question 17 and 18). In addition the result interface is also considered as neat and clean for 

identifying the most appropriate reasoner. The reason that some ACs is not satisfied is also 
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considered easy to identify using the result interface according to feedback. 

A mean of 4.4 in question 20, indicates that on average participants from the application-

aware group regard the current RESP process as helpful for selecting the most appropriate 

reasoners for applications. In fact 16 out of 17 participants agree or strongly agree that 

RESP helped them in determining the most appropriate reasoner, while one held neutral 

opinions.  

Comments and suggestions on RESP and TARS are collected in question 21. They 

concentrate on four aspects. Firstly application characteristics should be ordered and a 

guidance leading users through RESP would be more helpful for users to go through the 

selection process. Secondly predefined characteristic profiles could be constructed for some 

applications reducing effort required by application developers to identify application 

characteristics. Thirdly more complicated analysis could be introduced. For example users 

supply sample ontology, queries, and demanded results, and RESP analyses them and gives 

the most appropriate reasoner. Lastly it would be more helpful if result reasoners 

dynamically change in accordance with selected application characteristics, allowing users 

to know how the selection of a characteristic may impact on results. Comments and 

suggestions collected here can be taken as future work. Other comments about the TARS 

interface are gathered in question 22. They suggest using drop down lists rather than check 

boxes for some application characteristics, and using hover-over tips rather than question 

marks for annotations and using larger font.  

6.3.3.2 SUS	questionnaire	
As a widely used tool for assessing system usability the SUS questionnaire was used in this 

experiment to survey the usability of RESP and TARS (the questionnaire used is given in the 

attached DVD). Both the reasoning-aware group and the application-aware group filled in 

this questionnaire. Scores are calculated for each questionnaire using the approach presented 

in [Brooke 1996] and they could range from 50 to 100. Since different tasks were carried 

out for different participant groups, their surveys are discussed separately. Table 6-11 and 6-

12 separately presents the upper bound, lower bound, mean and standard deviation of each 

question for the application-aware group and the reasoning-aware group. 

Table 6-11: Lower bound, upper bound, and mean score (in position) by questions for 
application-aware group. 

Question Lower Bound Upper Bound Mean Stdev 
1 2 5 3.8 0.8 
2 1 3 1.6 0.8 
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3 3 5 4.5 0.6 
4 1 4 2.1 1.1 
5 3 5 4.1 0.7 
6 1 3 1.5 0.6 
7 3 5 4.3 0.7 
8 1 3 1.5 0.7 
9 2 5 4 0.9 
10 1 4 2.4 1.1 

 

Table 6-12: Lower bound, upper bound and mean score (in position) by questions for 
reasoning-aware group 

Question Lower Bound Upper Bound Mean Stdev 
1 2 5 3.6 1.1 
2 1 2 1.6 0.5 
3 4 5 4.6 0.5 
4 1 3 1.8 0.8 
5 3 5 4.4 0.9 
6 1 2 1.6 0.5 
7 1 5 3.4 1.5 
8 1 4 1.6 1.3 
9 4 5 4.4 0.5 
10 1 3 1.6 0.9 

 

A similar set of descriptive adjectives as that used above in Table 6-10 is used here to 

interpret the mean for each question. Mean values given in Table 6-11 and 6-12 show that 

feedback for most questions are positive. 12/17 participants agree that he/she would like to 

use this system frequently.  

Table 6-13 gives the quartile breakdown of scores of surveys over the application aware 

group. Due to the small size of the reasoning-aware group (5 participants) quartile 

breakdown for it is not applicable. 

Table 6-13: Lower bound, upper bound, and mean for each quartile of surveys over the 
application-aware group. 

Quartile Lower Bound Upper Bound Mean 
1 50 67.5 58.8 
2 70 80 75.6 
3 82.5 87.5 84.4 
4 90 100 93.5 
Overall 50 100 79.0 
 

The mean score is 79 for application-aware group and 80.5 for reasoning aware group. 

According to [Brooke 1996] they indicate that the usability of the reasoner selection and 
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reasoner registration of TARS is between good (71.4) and excellent (85.5).  

6.4 Summary	and	Key	Findings	
This section presents the summary of the evaluation and key findings observed throughout 

the investigation of the research problem. They are presented from two perspectives: the 

reasoner composition algorithms (section 6.4.1) and RESP (section 6.4.2).  

6.4.1 Reasoner	Composition	Algorithms	
As discussed early in the introduction chapter, to reduce the resource consumption of OWL 

reasoning so that OWL reasoning can be deployed in resource-constrained environments, is 

the major motivation of having the reasoner composition approaches. Hence the evaluation 

of COROR concentrates on the performance changes before and after the application of the 

two developed reasoner composition algorithms. Results in Figure 6-1 show that the 

application of composition algorithms greatly reduces the memory consumption and 

reasoning time for COROR to fully compute pD* entailments for ontologies. An 

investigation into the inside of these two composition algorithms shows that both algorithms 

can always automatically compose a customized selective rule set or a customized RETE 

network for the particular ontology to be reasoned, hence leading to a large amount of 

memory/time reductions for all tested ontologies, which gives a general answer to the 

research question.  

The evaluation also shows that composition at different levels has different capabilities in 

reducing resource consumptions. The selective rule loading algorithm composes at the rule 

level by removing unnecessary rules and keeping only the required rules for the ontology to 

be reasoned. Therefore the amount of memory that is originally allocated to unnecessary 

rules in a noncomposable reasoner is saved. However the loaded rules are still the same as 

they are authored which sometimes maybe quite inefficient (imagine that these rules are 

authored by domain experts who have little knowledge on rule optimization), and the RETE 

network is also unoptimized.  

The two-phase RETE algorithm however performs composition inside the RETE algorithm. 

It composes customized RETE network for the ontology to be reasoned by applying two 

state of the art join sequence optimization heuristics and an alpha network optimization 

heuristic. However their applications are automatically taking the characteristics of the 

ontology to be reasoned into consideration. Unlike the work in [Ishida 1994] that uses an 

extra pre-execution for gathering the characteristics of the fact base (which may not be 

practical in resource-constrained devices as the limited resources), the two-phase RETE 
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algorithm uses an interrupted RETE construction mechanism that integrates the gathering of 

ontology characteristics in the first RETE cycles. As discussed in section 6.2.3.2, although 

all rules are loaded into the RETE engine, the two-phase RETE algorithm can optimize 

unnecessary rules as if they are “unloaded”. Besides, join sequences and alpha networks of 

loaded rules are also optimized. Therefore in most cases the two-phase RETE algorithm can 

gain more memory/time reduction than the selective rule loading algorithm where loaded 

rules are not optimized. However given that the two-phase RETE algorithm gains 

memory/time reductions by optimizing rule join sequences, it is possible that for some 

special cases where rules are very large in number but small in individual size (i.e. rules 

contain less than two conditions) and there are small amount of shared conditions among 

rules, that the selective rule loading algorithm may have more performance reduction than 

the two-phase RETE algorithm.  

An interesting finding from investigating the selective rule loading algorithm is its 

capability to predict the amount of memory reduction without performing reasoning (as 

discussed in the section 6.2.3.1 ). Since in the experiment the same rule appears to use the 

similar percentage of memory for all tested ontologies, the memory reduction (in percentage) 

for a different ontology then can be simply calculated by having the selective rule loading 

algorithm running through the ontology analysing the unnecessary rules (without reasoning) 

and then adding up the individual percentage for all the unnecessary rules. This finding can 

be useful to predict memory reduction for fast ontology prototyping when specific memory 

limitations are imposed. However since this finding is not a claim of this thesis it is not 

formally verified. 

Two Designed Reasoner Composition Mechanisms vs. State of the Art  

State of the art reasoner composition mechanisms are discussed in detail in section 2.3.3 and 

by analysing these mechanisms some aspects are derived for the reasoner composition 

research in this thesis to follow. Here how well the selective rule loading algorithm and the 

two-phase RETE algorithm satisfy these aspects is discussed.  

The first aspect is the design of an automatic composition process. It is achieved. Both 

composition algorithms designed in this thesis are automatic composition algorithms.  

The second aspect is that the approach would be free from a priori analysis. State of the art 

automatic reasoner composition mechanisms require some types of a priori analysis, e.g. to 

construct rule patterns, to group rules, or to assign weights to dynamic rules, which requires 
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manual analysis and also limits the application of the composition mechanisms to only one 

semantics or rule set. At the moment the selective rule loading algorithm relies on a priori 

manual analysis for the rule-construct dependencies. Hence it cannot be dynamically applied 

to a different semantic once the rule-construct dependencies are fixed. However the two-

phase RETE algorithm composes inside the RETE algorithm and requires no such a priori 

analysis and is independent of specific rule sets. Hence unlike all state of the art automatic 

composition mechanisms, the two-phase RETE algorithm has the flexibility to be applied 

onto a different rule set at runtime.  

The third aspect is the ability to compose for both ABox rules and TBox rules. The state of 

the art approaches, including the dynamic rule generation approach and the incremental 

loading of rules/triples (ILR/ILT) approach, works only on ABox rules. TBox rules are still 

processed in an uncomposed way, which may lead to resource waste for TBox reasoning. 

However, both composition algorithms have been designed in this thesis to work for both 

ABox rules and TBox rules.  

The fourth aspect is to compose inside the reasoning algorithm, which is achieved by the 

two-phase RETE algorithm. 

However compared to state of the art work, there are two limitations for the composition 

algorithms designed in this thesis. One limitation would be the size of an individual rule. 

Dynamic rules generated by the dynamic rule generation approaches are often very small 

and simple. This can generate smaller individual rules with much shorter join sequences, 

leading to less joins to be performed and less intermediate results to be generated and 

cached. Although the composition algorithms designed in this thesis can reduce the number 

of rules or can optimize the join sequence leading to a better join network, however the size 

of an individual rule is still unchanged and therefore the join sequences (although are 

optimized) are still long. Some interesting potential future work would be to combine the 

dynamic rule generation approach and the two-phase RETE algorithm since they compose at 

different levels. A second limitation is that the composition algorithms designed in this 

thesis lack the ability to compose at the ontology level as in ITL. Although the partition 

sizes used in ITL are too large for resource-constrained environments as targeted by this 

thesis, an incremental ontology loading approach will still be helpful for reducing the 

reasoning time and memory when applied in a desktop reasoner. 

6.4.2 RESP	
To reduce the amount of effort that could be involved in the future reasoner selection is the 
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major motivation for having RESP and therefore it is natural to have a usability evaluation 

for the implementation of RESP, that is TARS. Results reveal that the naming of application 

characteristics is a big issue that causes application-aware participants fail to identify the 

correct set of application characteristics for their application. An inappropriate name for an 

application characteristic (e.g. using reasoning-related terms in the name) may leave 

application-aware participants unable to understand the application characteristic and then 

fail to identify it. However with brief explanations of these inappropriate names, all 

participants can correctly identify the set of application characteristics for their applications. 

Hence expressing application characteristics using appropriate names, e.g. using domain 

specific languages to naming application characteristics or giving detailed explanation hints 

to application characteristics, would be very important for application developers to 

effectively use TARS to select a most appropriate reasoner for their applications.   

Questionnaires show that most application-aware participants agree that the RESP reasoner 

selection process is easy to understand and is easy to follow. Most than half of application-

aware participants regard the example application characteristics used in TARS in general to 

precisely capture the characteristics of semantic applications. 14 out of 17 application-aware 

participants agree that the conventional consultation-based approach may introduce bias in 

selecting reasoners but RESP somewhat overcomes this drawback. 16 out of 17 application-

aware participants agree or strongly agree that RESP helped them in determining the most 

appropriate reasoner and one held a neutral opinion. SUS questionnaires were also used in 

the experiment. An average score of 79 for application-aware group and 80.5 for reasoning 

aware group indicates that the usability of the reasoner selection and reasoner registration of 

TARS is between good (71.4) and excellent (85.5). 

Some drawbacks and limitations are identified for TARS and RESP. For example, the 

connections between ACs and RCs still need to be identified by collaboration of reasoner 

experts and domain experts, but even though this is a one-off task and then the connections 

can be reused in the future reasoner selection for an application domain, it still requires large 

amount of discussion. Secondly a set of general applicable ACs for all application domains 

may not exist. The example ACs used in the experiments are to some extent domain-neutral 

and therefore generally applicable. However the drawbacks are obvious in that application 

developers think it is difficult to understand some of them. Therefore domain-specific ACs 

(written in domain-specific language) may be important for application developers to better 

use RESP to perform selection, which means different sets of application characteristics 

need to be identified for different application domains (or they should be mapped to some 
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generally applicable ACs). Thirdly this process is still at its early stage and therefore no 

specific technical specifications are yet provided. However adding those in to RESP will not 

change the process and on the other hand this provides even more flexibility to 

implementers to use their own preferred format or approach, e.g. some would prefer to use 

rule engine to perform matchmaking but some others may prefer to use hardcode. Finally 

the RESP process is only semi-automatic. For example application developers are still 

largely involved in the process to identify application characteristics and reasoner experts 

are involved in identifying reasoner characteristics and registering them into RESP. It would 

be useful to use some kind of benchmarking tools to automatically analyse and register 

reasoners or allow identified application characteristics to be automatically adjusted 

according to the characteristics of existing candidate reasoners. These drawbacks and 

limitations can be considered in future work. 

In this chapter the evaluation is discussed, the next chapter concludes this thesis. 
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Chapter 7 
Conclusions and Future Work 

7.1 Progress	vs.	Objectives	
This section lists research question and derived research objectives and discusses how well 

they have been achieved. This thesis investigates the research question as to: 

“How an appropriate resource-constrained OWL reasoner can be automatically composed 

and be selected based on application characteristics.” 

In order to investigate this research question, five objectives were derived: 

§  Objective 1: survey the state of the art OWL reasoners, identifying Reasoner 

Characteristics (RCs) and categorizing them. Identify an appropriate type of 

reasoner upon which the reasoner composition research should be based. Survey 

semantic applications, identifying reasoning-related Application Characteristics 

(ACs).  

§ Objective 2: design automatic reasoner composition mechanisms and implement 

them in a resource-constrained reasoner. 

§ Objective 3: study the performance impact on the resource-constrained reasoner 

brought by the application of composition algorithm(s).  

§ Objective 4: design and implement a reasoner selection process that enables an 

application developer to automatically select a most appropriate reasoner for their 

semantic application based on application characteristics. 

§ Objective 5: evaluate the usability of the reasoner selection process designed in 

objective 4. 
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Two automatic composition mechanisms, i.e. a selective rule loading algorithm and a two-

phase RETE algorithm, are designed in response to the first half of the research question as 

to “how a resource-constrained OWL reasoner can be composed based on application 

characteristics”. An automatic reasoner selection process is designed in response to the 

second half of the research question as to “how a resource-constrained OWL reasoner can 

be selected based on application characteristics”. The reminder of this section discusses in 

detail how each research objective is achieved in this thesis. 

State of the Art Objective: Objective 1 

In response to objective 1, two surveys, a survey of state of the art OWL reasoners and a 

survey of semantic applications, were performed separately in section 2.3.1 and 2.3.2. In 

these surveys, a categorization of state of the art OWL reasoners was constructed, a set of 

reasoner characteristics was distilled and interplay between semantic applications and 

reasoners was studied.  

Five reasoner categories are derived based upon their reasoning algorithms, which are DL-

tableaux reasoners, rule-entailment reasoners, resolution-based reasoners, hybrid reasoners 

and miscellaneous reasoners. This categorization is unique and could be taken as a basis for 

future research that is based upon a type of reasoner. 

As a part of objective 1 the reasoning composability (cf. section 2.3.3) are discussed for 

each of the above reasoner category. Both rule-entailment reasoners and resolution-based 

reasoners are regarded to have the best potential for composition. The suitability for rule-

entailment reasoners and resolution-based reasoners to apply in resource-constrained 

environments are then discussed (cf. section 2.3.4). Rule-entailment reasoners are found to 

have more suitability than the others to run in resource-constrained environments. Hence 

rule-entailment reasoners are identified as the most suitable type of reasoners based on 

which the reasoner composition research is carried out. The examination and discussion of 

reasoner composability enables further composition research to be carried out for other 

reasoner types. 

Furthermore a set of 18 reasoner characteristics were distilled for the survey. They provide a 

basis for the automatic reasoner selection research in this thesis. These reasoner 

characteristics can cover a variety of aspects of OWL reasoners ranging from reasoning 

algorithm to explanation. Their distillation and the survey based on these reasoner 

characteristics enable future research to be better carried out on these aspects. 
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The survey of semantic applications was performed over five types of semantic applications, 

which are the semantic publish/subscribe systems type, the semantic context-aware systems 

type, the clinical, medical and bioinformatics systems type, the semantic sensor network 

systems type, and the software engineering applications type. This survey investigated the 

requirements of particular applications/application types and the interplay between these 

requirements and the selected reasoner, facilitating the research of an automatic reasoner 

selection process. As a matter of fact the discussion of interplay in 4.3 from 11 reasoning-

related aspects is based on this survey.  

Design objectives: objective 2 and objective 4 

Objective 2 and 4 are the design objectives. In response to objective 2 two automatic 

reasoner composition algorithms, i.e. the selective rule loading algorithm and the two-phase 

RETE algorithm, are designed and implemented in a prototype resource-constrained rule-

entailment reasoner COROR. To achieve the objective 4, RESP is designed and 

implemented as a prototype desktop application TARS. 

The design of the two composition algorithms (cf. section 3.4) followed the aspects pointed 

out in discussion of reasoner composability given in section 2.3.3. Hence they perform 

automatic reasoner composition which enables the reasoner to be automatically composed in 

a dynamic environment when different ontologies are used. The two-phase RETE algorithm 

composes inside the RETE algorithm and hence it is independent of the semantics or rule 

sets. Therefore unlike existing automatic composition algorithms such as the dynamic rule 

generation approach and the ILT/ILR approach (cf. section 2.3.3), no a priori manual 

analysis is required for the two-phase RETE algorithm in order to execute on a different 

semantics or rule set, which provide it with flexibility in a dynamic environment with 

changing semantics. Both designed composition algorithms execute for both ABox and 

TBox reasoning, which can further save resources in resource-constrained environments. 

Finally the two-phase RETE algorithm uses two state of the art join sequence optimization 

heuristics. However, it introduces a new way to apply them: rather than using an extra pre-

execution of RETE to collect the required information about the ontology (as in [Ishida 

1994]), an interrupted RETE construction approach is used that integrate the information 

collection into the execution of RETE, hence potentially reducing the resource cost. 

In section 5.2, both composition algorithms were implemented in the enhanced µJena which 

is constructed by porting the Jena engine to a cut mobile Jena framework, µJena. The 

implemented composable reasoner is called COROR, the COmposable Rule-entailment Owl 
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Reasoner. It is the first automatically composable rule-entailment reasoner for resource-

constrained environments. It enables OWL reasoning to be carried out in smaller resource-

constrained devices such as sensors. Its design and implementation can provide some hints 

for similar research in the future. 

The design of RESP is discussed in Chapter 4. RESP enables automatic reasoner selection to 

be independently performed by application developers to choose a most appropriate 

reasoner for their applications using only the application characteristics. Applications and 

reasoners are respectively abstracted in RESP as application characteristics and reasoner 

characteristics, and the selection is performed through matchmaking using pre-defined 

connections between application characteristics and reasoner characteristics. This approach 

is novel. It enables the materialization of reuse of the knowledge required in selecting a 

reasoner and hence reduces the effort required to put in for each reasoner selection. RESP 

itself is an abstract process without specifying any technical detail. However a set of 

example candidate application characteristics and their corresponding connections are 

derived from the discussions of interplay between applications and reasoners from 12 

reasoning-related aspects. Although the derived application characteristics and connections 

are not mature enough for practical use, the way these reasoning-related aspects are 

examined shows a good example for the follow-on research of how application 

characteristics and connections can be derived. 

RESP is implemented as a java desktop application TARS that allows application developers 

to perform reasoner selection independently following RESP and allows reasoner experts to 

register reasoners with TARS. TARS is the first tool performing automatic reasoner 

selection. 

Evaluation objectives: objective 3 and objective 5 

The objective 3 and 5 are evaluation objectives.  

In response to objective 3, two performance experiments, an intra-reasoner comparison 

(section 6.2) and an inter-reasoner comparison (section 6.3), were conducted to respectively 

(1) study the performance impacts brought by the two designed reasoner composition 

algorithms to a rule-entailment reasoner, and (2) compare the performance of COROR to the 

state of the art rule-entailment reasoners. The intra-reasoner comparison compared the 

reasoning time and memory usage required by the four COROR composition modes, which 

are COROR-noncomposable, COROR-selective, COROR-two-phase and COROR-hybrid, 
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to fully compute entailments for the same ontology. The inter-reasoner comparison 

compared the time/memory usage required by COROR-hybrid with four state of the art rule-

entailment reasoners, which are Jena forward, BaseVISor, swiftOWLIM, and Bossam. 

Results of the intra-reasoner comparison reveal that the application of the two designed 

composition algorithms can greatly reduce the time/memory required for performing rule-

entailment reasoning. Results of the inter-reasoner comparison reveal that COROR-hybrid 

can use much less memory than the other reasoners without sacrificing reasoning time. The 

experiments and investigations performed thoroughly studied the reasoning performance 

impact by applying the designed composition algorithms. 

To achieve the objective 5, a usability experiment was performed over TARS. In this 

evaluation, participants were grouped into two groups according to their background, i.e. an 

application-aware group and a reasoner-aware group. Each group was asked to perform a 

different task in order to experience a different facet of TARS. Application-aware 

participants were asked to select a most appropriate reasoner for the given application 

scenario following RESP. Reasoner-aware participants were asked to register candidate 

OWL reasoners with TARS. Results are positive. Most participants regarded TARS and 

RESP to be helpful for them to identify a most appropriate reasoner for semantic 

applications. An average SUS score of 79 for application-aware group and 80.5 for 

reasoning-aware group indicate TARS has usability between good and excellent. Results 

also revealed some limitations. A major one is the use of a too reasoning-related name for an 

application characteristic would affect the application-aware participants to identify the 

correct set of application characteristics. With some brief explanation to some application 

characteristics, application-aware participants then could successfully identify the correct set 

of application characteristics. This issue can be addressed using domain-specific languages 

to express application characteristics or using explanation hints. This usability experiment 

well evaluated the usability designed automatic reasoner selection process. In the meantime, 

this experiment helped the identification of limitations of the existing designed, enabling 

further improvement of the process and the implementation.  

7.2 Contributions	
Two contributions are identified. The major contribution is the design of two novel 

automatic reasoner composition algorithms for rule-entailment reasoners, termed the 

selective rule loading algorithm and the two-phase RETE algorithm, and the implementation 

of them in COROR (COmposable Rule-entailment Owl Reasoner). This contribution 

answers the first half of the research question as to “how a resource-constrained OWL 
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reasoner can be composed based on application characteristics”. Evaluation results indicate 

that applying those two composition algorithms to a noncomposable rule-entailment 

reasoner can reduce a large amount of memory and time spent on OWL reasoning (the 

average reduced time/memory consumption for all the tested ontologies is 33%/35% for the 

selective rule loading algorithm and 78%/74% for the two-phase RETE algorithm, which 

can reduce the resource required of OWL reasoning so that OWL reasoning can run in 

resource-constrained environments.  

This contribution enables OWL reasoning to be executed on smaller resource-constrained 

devices such as sensors or enables larger ontology to be reasoned on the same resource-

constrained environment, which can further reduce the resource required for OWL-based 

intelligent data processing or management, hence enabling such intelligence to be better 

introduced into resource-constrained devices/applications, such as medical devices, in-

vehicle network, wireless sensors/motes and so on.  

This contribution and its related work were published in three papers. An initial design and a 

prototype implementation of the selective rule loading algorithm on a desktop reasoner are 

described in: 

W. Tai, J. Keeney and D. O’Sullivan, “An Automatically Composable OWL 

Reasoner for Resource Constrained Devices”, in Proceeding of the International 

Conference on Semantic Computing (ICSC’09), Pages 495 -502, 2009. 

In this paper, an initial OWL reasoner classification is also presented. A sketch of how a 

composable resource-constrained rule-entailment reasoner can be applied in a wireless 

sensor network management system to perform localized fault correlation (on sensor node) 

is described. This has been published in: 

R. Brennan, W. Tai, D. O'Sullivan, M. S. Aslam, S. Rea and D. Pesch, “Open 

Framework Middleware for intelligent WSN topology adaption in smart buildings”, 

Proceedings of the International Conference on Ultra Modern Telecommunications 

(ICUMT’09), Pages 1-7, 2009. 

A full description of both the selective rule loading algorithm and the two-phase RETE 

algorithm is described in:  

W. Tai, J. Keeney and D. O’Sullivan, “A COmposable Rule-Entailment Owl 

Reasoner for Resource-Constrained Devices”, Proceedings of the International 
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Symposium on Rule-Based Reasoning, Programming, and Applications 

(RuleML’11), Pages 212 – 226, 2011. 

The implementation of these two composition algorithms in COROR is included in this 

paper. Furthermore, the intra-reasoner comparison between different COROR composition 

modes and the inter-reasoner comparison between COROR and state of the art OWL 

reasoners are also described in this paper. In addition a final version of the reasoner 

classification is also included in this paper. 

The minor contribution is the design and implementation of an automatic REasoner 

Selection Process (RESP) and a prototypical implementation, termed the Tool for Automatic 

Reasoner Selection (TARS). This contribution directly answers the second half of the 

research question as to “how a resource-constrained OWL reasoner can be selected based on 

application characteristics”. Users can use TARS to perform automatic reasoner selection 

following RESP process, and also can use register new candidate reasoners to TARS. 

Usability evaluation shows TARS/RESP helps application developers in selecting a most 

appropriate reasoner for application with a little or even no help from reasoner experts (in 

contrast to the existing consultation-based reasoner selection process in which application 

developers totally rely on reasoner experts to select an appropriate reasoner).  

This contribution provides a solution to the foreseen problem that future reasoner selection 

could get too complicated to be suitable for consultation-based reasoner selection process. It 

changes the existing human-to-human reasoner selection process to a semi-automatic 

human-to-computer process, which reduced the human effort required in the reasoner 

selection. Furthermore, the identified reasoner characteristics and their survey provide 

researchers a detailed overview of some state of the art reasoners from a variety of facets. In 

addition it provides a good starting point for people to have their own survey of reasoners. 

The examination of interplay between semantic applications and reasoners gives good hints 

for future research in order to study the selection of reasoners for semantic applications.  

A paper was published on this contribution: 

W. Tai, J. Keeney and D. O’Sullivan, “RESP: A Computer Aided OWL REasoner Selection 

Process”, Proceedings of the International Conference on Semantic Computing (ICSC’11), 

2011. 

In this paper, the survey of semantic applications and the discussions on the 11 reasoning-
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related aspects for candidate application characteristics and connections are presented. The 

design of RESP and the implementation of TARS are included as well. Furthermore, this 

paper also describes and discusses the usability evaluation carried out on TARS.  

7.3 Limitation	and	Future	Work	
In previous chapters limitations for the automatic reasoner composition research and the 

automatic reasoner selection research have been clearly identified and discussed. In this 

section future work corresponding to these limitations are identified.  

As discussed in section 3.4.2.2, using the number of matched facts collected in the initial 

matching for each condition as the specificity to reorder the join sequences is a direct 

approach but sometimes lacks accuracy. To (partly) solve this problem more information can 

be collected during or before the initial fact matching so that all collected information can 

together decide how the join sequences can be optimized. For example, the join selectivity 

factor between two joining conditions can be evaluated and used to determine the join 

sequence if these two conditions have the similar amount of matched facts. Other 

optimizations can also be introduced to improve the performance of RETE algorithm from 

other aspects. For example some indexing mechanisms can be combined to improve the 

searching performance. 

Another piece of future work that needs to be undertaken in the reasoner composition 

research area is the extension of COROR to support OWL 2 RL. In fact the extension of 

OWL 2 has been discussed from the design perspective in section 3.5 and the rule-construct 

dependency graphs for OWL 2 RL entailment rules have been drawn. However, as discussed 

in 5.2.5 two obstacles need to be coped with in order to put this extension into practice: the 

lack of OWL 2 ontology manipulation API in µJena and the absence of a Jena compatible 

OWL 2 RL rule set. Early attempts to draft an OWL 2 RL rule set was impeded by the 

intensive and complex use of RDF list operations in OWL 2 RL semantics. A naïve solution 

to construct a built-in for each list operation, however, will require the construction of a 

large amount of complex built-ins, greatly complicating the rule set, and limiting the 

potential for node sharing capabilities and join sequence reordering. 

Some other future research or development also exists. The first is to use other pattern 

matching algorithms such as TREAT and LEAPS (as introduced in section 2.4.2) to replace 

RETE and to study their composability. The second is to extend COROR to support 

conjunctive queries enabling complex queries to be placed and answered. Another possible 

extension to COROR is the DIG interface that enables distributed reasoning so that 
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distributed reasoning can be performed: simple reasoning tasks are processed locally in the 

sensor while complex reasoning tasks are sent to the server side where it is processed by a 

full-fledged reasoner, e.g. Pellet. This can achieve task balance among networked (resource-

constrained) devices based on their processing capabilities.  

In regard to RESP, one piece of research that can be considered is the further reduction of 

human effort required in identifying application characteristics for applications. This can be 

achieved through pre-defining application characteristic profiles for different application 

areas (as profiles for candidate reasoners) and hence application developers can modify 

existing profiles based on their applications, or the provision of step-by-step instructions to 

guide application developers to perform the identification of application characteristics. A 

second piece of future work that can be considered is the specification of technical detail for 

RESP so as to ease the development a RESP implementation, e.g. the format of application 

characteristics, reasoner characteristics, and connections, and the algorithm for 

matchmaking. Thirdly, the performance of reasoners could be taken as an application 

characteristic in the selection process. Some other future work from the implementation 

perspective includes (1) to implement TARS as a web-accessible tool and extend it to 

support OWL 2 reasoners, (2) to improve the interfaces of TARS (e.g. to enable the 

selection results changing dynamically with the changes in the selected ACs so that users 

can clearly know how the changes in ACs affect the selection results) and (3) to give more 

explanation hints to application characteristics. 

7.4 Final	Remarks	
The continual development of OWL and OWL reasoning technologies has encouraged a lot 

of applications to adopt them in order to increase interoperability or to enable intelligent 

data processing. However during such semantic application development, a lot of problems 

were, are, and will be raised, such as applying OWL reasoning onto large database, applying 

OWL reasoning to a frequently changing knowledge base and so on. In this thesis two such 

problems are addressed and the usage of the proposed solutions will push forward the 

application of OWL reasoning to resource-constrained environments and also provides an 

alternative way to enable easier OWL reasoner selection. Solving such problems will 

hopefully encourage the adoption of OWL and OWL reasoning technologies by more 

applications, which, in turn, will enable the further development of OWL and OWL 

reasoning technologies. 
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Appendix A 
A Survey on OWL 

Reasoners 

A survey is conducted on OWL reasoners in this research to construct the reasoner 

categorization. In total 26 reasoners were surveyed. 18 reasoner characteristics were 

surveyed for each of the reasoners. Survey was conducted through literature review, 

web browsing, and examination of code. Results are presented in the following tables (  
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Table A-1 to Table A-9). A color scheme is used to give readers a general idea the level 

a reasoner characteristic is satisfied by a reasoner: blue indicates this characteristic is 

not comparable among reasoners; red means this characteristic is not satisfied; green 

means this characteristic is (relatively) better satisfied than the others; yellow means 

this characteristic is (relatively) less satisfied compared to the other reasoners. 
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Table A-1: Results of the survey of OWL reasoners 

  

 Bossam Hoolet Pellet  
Reasoning 
algorithm  

RETE  FOL prover 
(Vampire) 

DL tableaux 

Reasoner type Rule-entailment Resolution-
based 

DL-tableaux 

Reasoner 
expressivity 

OWL DL OWL DL OWL DL and OWL 2 EL 

Completeness No Yes Complete for OWL DL 
Reasoning 
tasks 

Entailment, Conjunctive 
query answering 

Unknown Entailment, Conjunctive 
query answering (through 
Ortiz API), KB consistency, 
Concept Satisfiability, 
Classification, Realization  

Materializatio
n 

Yes (total) Unknown Yes 

Incremental 
reasoning 

Addition, No deletion 
support 

Unknown Consistency (not stable), 
Classification (accessed 
through OWLAPI) 

Query support Buchingae rule language 
(atomic, conjunctive) 

Simple queries SPARQL (Oritz, Jena ARQ, 
Protégé SAPRQL engine) 

Rule support Buchingae rule, RuleML, 
SWRL 

SWRL SWRL (DL-safe) 

Closed-world 
features 

rule, query Unknown Closed-world OWL 
semantics for integrity 
constraints (PelletDB), rule, 
query 

Concrete 
domain 

XSD datatypes, datatype 
computation/comparison 

XSD 
datatypes, 
datatype 
computation/c
omparison 

XSD datatypes, User-defined 
datatypes, datatype 
computation/comparison 

Database 
support 

No No reasoning (PelletDB) 

Remote 
interface 

Self-defined interface for 
distributed reasoning 

No DIG 

User access Command line GUI  GUI (protégé), Command 
line (The Prolog OWL Shell) 

Explanation Native OWLAPI 
blackbox 

Native and OWLAPI 
blackbox 

Ontology 
manipulation 

API OWLAPI API (Ortiz), Jena and 
OWLAPI  

Platform J2SE (entire) or J2ME 
CDC (core) 

Java J2SE 

OS Windows, Linux, MacOS, 
Symbian, Android, 
WinMobile, TinyOS 

Linux  Windows, Linux, MacOS 



 

A-4 

 

Table A-2: Results of the survey of OWL reasoners (cont’d) 

  

 KAON2 RacerPro (v2.0) Jena 
Reasoning 
algorithm  

Disjunctive Datalog  DL tableaux Resolution and RETE 

Reasoner type Resolution-based DL-tableaux Hybrid 
Reasoner 
expressivity 

OWL DL (SHIQ(D) 
subset) 

OWL DL and OWL 2 
(SHIQ(D) subset) 

OWL DL 

Completeness Yes Yes No 
Reasoning 
tasks 

Entailment, 
Conjunctive query 
answering, KB 
consistency, Concept 
satisfiability, 
Classification 

Entailment 
Conjunctive query 
answering, KB 
consistency, 
Classification, 
Realization, Concept 
satisfiability 

Entailment,  
Conjunctive query 
answering (ARQ), KB 
consistency, Concept 
satisfiability, 
Classification 

Materializatio
n 

Yes Yes Yes (total) 

Incremental 
reasoning 

Materialization Unknown Addition, Deletion 

Query support SPARQL nRQL (native) and 
SPARQL (protégé) 

SPARQL (ARQ) 

Rule support SWRL (DL-safe), F-
logic rules (function 
free) 

nRQL, SWRL Jena rules 

Closed-world 
features 

Limited NaF support 
in F-logic 
rules/ontology 

query rule, query 

Concrete 
domain 

XSD datatypes, 
datatype 
computation/comparis
on 

XSD datatypes, 
datatype 
computation/comparis
on 

XSD datatypes, User-
defined datatypes, 
datatype 
computation/comparison 

Database 
support 

Native Reasoning 
(AllegroGraph) and 
OWLAPI 

Access (TDB and SDB) 

Remote 
interface 

RMI and DIG OWLlink and DIG DIG 1.0 (removed after 
v2.6.0) 

User access No  GUI (RacerPorter, 
Protégé) 

Command line 

Explanation No Native and OWLAPI 
blackbox (?) 

Native 

Ontology 
manipulation 

API GUI (RacerPorter, 
Protégé) 

API 

Platform J2SE C++, J2SE or LISP J2SE 
OS Windows, Linux, 

MacOS 
Windows, MacOs X 
and Linux (java 
adaptor available) 

Windows, Linux, 
MacOS 
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Table A-3: Results of the survey of OWL reasoners (cont’d) 

  

                                                        

18 OWLAPI does not natively provide database support but there is a third party tool OWLDB enabling database 
access through OWLAPI. Find in http://sourceforge.net/projects/owldb/ for OWLDB. 

 FaCT++ Surnia F-OWL 
Reasoning 
algorithm  

DL tableaux FOL theorem 
prover (OTTER) 

FOL theorem prover 
(XSB) 

Reasoner type DL-tableaux Resolution-based Resolution-based 
Reasoner 
expressivity 

(Full) OWL DL and 
(Partially) OWL 2 

OWL Full OWL Lite, (Partially) 
OWL DL, (Partially) 
OWL Full 

Completeness Yes for OWL DL Unknown No 
Reasoning tasks KB consistency, 

Classification, 
Realization, Concept 
satisfiability (all 
reasoning tasks are 
accessed through 
OWLAPI) 

Unknown Entailment, Conjunctive 
query answering 

Materialization Unknown Unknown Yes (Tabling in XSB) 
Incremental 
reasoning 

Yes (but not clear if it 
is classification or 
consistency) 

Unknown Unknown 

Query support Atomic Unknown RDQL 
Rule support Unknown Unknown F-logic rules 
Closed-world 
features 

Unknown Unknown rule, query 

Concrete domain XSD datatypes Unknown XSD datatypes, 
Datatype comparison 

Database support Access (through 
OWLAPI18) 

Unknown Reasoning over DB 
using FLORA-2 

Remote interface DIG (before v1.4) Unknown Unknown 
User access GUI (through 

Protégé), Command 
line (The Prolog 
OWL Shell) 

Command line in 
input file 

Command line and GUI 

Explanation OWLAPI blackbox Unknown XSB justification library 
Ontology 
manipulation 

OWLAPI v3.1.0 Unknown No 

Platform C++, Java or LISP Python Flora-2, Java 
OS Windows, MacOS, 

Linux 
Windows, Linux Windows, Unix 
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Table A-4: Results of the survey of OWL reasoners (cont’d) 

  

 Euler (EYE) Minerva (IBM IODT) CEL 
Reasoning 
algorithm  

Resolution with 
Ruler path 
detection 

DL-tableaux for TBox 
reasoning and SQL 
engine for ABox 
reasoning 

CEL subsumption 
algorithm 

Reasoner type Resolution-based Hybrid Miscellaneous 
Reasoner 
expressivity 

OWL 2 RL (Partial) OWL DL OWL 2 EL 

Completeness Yes  No Yes 
Reasoning tasks Entailment, 

Conjunctive query 
answering 

Entailment Conjunctive 
query answering 

Classification, KB 
consistency, 
Realization 

Materialization Unknown Unknown Unknown 
Incremental 
reasoning 

Unknown Unknown Partial incremental 
classification 

Query support SPARQL SPARQL SPARQL (through 
Protégé) 

Rule support Unknown SQL Unknown 
Closed-world 
features 

Unknown rule, query query (through 
Protégé) 

Concrete domain Unknown XSD datatypes, Datatype 
comparison and 
computation 

Unknown 

Database support Unknown Reasoning (on DB2, 
Derby and HSQLDB) 

Unknown 

Remote interface Unknown DIG DIG 
User access GUI GUI (through IBM 

IODT) 
GUI (through 
Protégé), 
Command line 

Explanation Native Depends on each 
individual reasoner 

OWLAPI blackbox 

Ontology 
manipulation 

Unknown IODT OWLAPI 

Platform Java ,or C#, or 
Python, or 
JavaScript, or 
Prolog 

Java  Java, LISP 

OS Windows, Linux Windows, Linux, MacOS Windows 



 

A-7 

 

Table A-5: Results of the survey of OWL reasoners (cont’d) 

  

 OWL2Jess OWLLisaKB QuOnto 
Reasoning 
algorithm  

Jess RETE Engine 
(translates OWL file 
into Jess facts using 
an XSLT style sheet) 

LISA RETE 
Engine 

DL-Lite query unfolding 
algorithm 

Reasoner type Rule-entailment Rule-entailment Miscellaneous 
Reasoner 
expressivity 

Unknown Most OWL lite DL-Lite 

Completeness Unknown Unknown Yes 
Reasoning tasks OWL entailment, 

Conjunctive query 
answering 

Entailment, KB 
Consistency 

OWL Entailment, 
Conjunctive query 
answering, 
Classification, KB 
consistency,  

Materialization Yes (total) Yes (total) Unknown 
Incremental 
reasoning 

Addition, Deletion  Addition, 
Deletion 
(unknown) 

Unknown 

Query support Jess queries Lisa query 
language 

SPARQL (evaluated 
using SQL engine) 

Rule support Jess rules Lisa production 
rules 

Unknown 

Closed-world 
features 

rule, query rule, query Epistemic query 
answering  
Identification 
constraints, Epistemic 
constraints (all through 
MASTRO) 

Concrete domain Integer, String, User-
defined functions are 
allowed in rules 

Unknown XSD datatypes 

Database support Unknown Wilbur triple store Reasoning 
Remote interface Unknown Unknown DIG 
User access Command line, GUI 

(through Jess) 
Unknown GUI (MASTRO plugin 

to Protégé, QToolKit, 
ROWLKit) 

Explanation Unknown Unknown Unknown 
Ontology 
manipulation 

No Unknown OWLAPI (through 
ROWLKit) 

Platform Java LISP Java 
OS Windows, Linux, 

MacOS 
Windows, Linux Windows, Linux, 

MacOS 
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Table A-6: Results of the survey of OWL reasoners (cont’d) 

 Owlgres BaseVISor Thea 
Reasoning 
algorithm  

DL reasoning and 
RDBMS 

RETE (memory-based), 
Linear evaluation of rules 
as SQL (persistent-based)  

Prolog (SWI-
Prolog) 

Reasoner type Hybrid Rule-entailment Resolution-based 
Reasoner 
expressivity 

OWL 2 QL OWL 2 RL (used to be 
pD*) 

OWL 2 

Completeness Unknown Yes Unknown 
Reasoning tasks OWL Entailment, 

Conjunctive query 
answering, KB 
consistency, 
classification 

OWL Entailment, 
Conjunctive query 
answering, KB 
consistency, classification 

OWL Entailment, 
Conjunctive 
query answering,  

Materialization Unknown Yes (total) Depends on 
SWIProlog 

Incremental 
reasoning 

Unknown Addition, Deletion 
(unknown) 

Unknown 

Query support SPARQL BaseVISor query, RuleML 
query  

Prolog goal clause 

Rule support Unknown RuleML SWRL 
Closed-world 
features 

query (SPARQL 
queries are 
evaluated using 
PostgreSQL) 

rule, query query, rule 

Concrete domain XSD datatypes, 
user-defined 
datatypes and 
datatype 
comparison and 
computation 
(supported through 
PostgreSQL) 

XSD datatypes, Datatype 
comparison and 
computation, User-defined 
datatypes can be achieved 
through user-defined rule 
builtins  

XSD datatypes 

Database support Reasoning 
(PostgreSQL) 

Reasoning (through 
BaseVISor 
PersistentBatch) 

Prolog database 

Remote interface Unknown Can be deployed as a 
SOAP, RESTful web 
service 

HTTP 
client/server 
libraries in SWI-
Prolog 

User access Unknown Command line, GUI 
(through BaseVISor plugin 
for TopBraid Composer) 

Command line 
(The Prolog OWL 
Shell) 

Explanation Unknown No Unknown 
Ontology 
manipulation 

OWLAPI, Jena API OWLAPI, SWI-
Prolog semweb 
library 

Platform Java Java SWI-Prolog 
OS Windows, Linux, 

MacOS 
Windows, Linux, MacOS Windows, Linux, 

MacOS 
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Table A-7: Results of the survey of OWL reasoners (cont’d) 

  

 Oracle db SwiftOWLIM BigOWLIM 
Reasoning 
algorithm  

RDBMS, SQL 
Engine 

Forward-chaining 
(TRREE engine) 

Forward-chaining 
(TRREE engine with 
owl:sameAs optimization) 

Reasoner type Miscellaneous rule-entailment rule-entailment 
Reasoner 
expressivity 

OWL 2 RL OWL 2 RL, OWL 
2 QL, OWL-Horst 

OWL 2 RL, OWL 2 QL, 
OWL-Horst 

Completeness Unknown No (datatype 
reasoning is not 
supported) 

No (datatype reasoning is 
not supported) 

Reasoning tasks OWL Entailment, 
Conjunctive query 
answering,  

OWL Entailment, 
conjunctive query 
answering, 
classification 

OWL Entailment, 
conjunctive query 
answering, classification, 
KB consistency 

Materialization Yes Yes (total) Yes (total) 
Incremental 
reasoning 

Unknown Addition Addition, Deletion 

Query support SQL, SPARQL SPARQL and 
SeRQL (through 
Sesame)  

SPARQL and SeRQL 
(through Sesame) 

Rule support SWRL OWLIM rules 
(JDK v1.6 and 
above) 

OWLIM rules (JDK v1.6 
and above) 

Closed-world 
features 

rule, query query, rule query, rule 

Concrete domain XSD datatypes No No 
Database support Reasoning (Oracle 

DB 11g) 
Access (through 
Sesame) 

Reasoning (through 
Sesame) 

Remote interface Unknown Web services Web services 
User access GUI, Command 

line 
Command line 
(Sesame console) 

Command line (Sesame 
console) 

Explanation Native Unknown Unknown 
Ontology 
manipulation 

No Sesame Sesame 

Platform Oracle DB Java Java 
OS Windows Linux, Windows Linux, Windows 



 

A-10 

 

Table A-8: Results of the survey of OWL reasoners (cont’d) 

 O-DEVICE HermiT DLEJena 
Reasoning 
algorithm  

RETE (CLIPS rule 
engine using 
dynamic rule 
generation) 

Hypertableau Jena for ABox 
reasoning, Pellet for 
TBox classification 

Reasoner type rule-entailment DL-tableaux Hybrid 
Reasoner 
expressivity 

Partial OWL DL OWL 2 DL OWL 2 RL 

Completeness No  Yes Yes 
Reasoning tasks OWL Entailment, 

conjunctive query 
answering, KB 
consistency, 
classification 

OWL Entailment, 
conjunctive query 
answering, KB 
consistency, 
classification, 
realization 

OWL Entailment, 
conjunctive query 
answering, KB 
consistency, 
classification, 
realization 

Materialization Yes (total) Unknown Yes 
Incremental 
reasoning 

Addition, Deletion Unknown Addition and deletion 
for ABox reasoning 
only. TBox updates can 
cause ABox to be 
reasoned from scratch. 

Query support CLIPS rules Conjunctive query, 
SPARQL(through 
protégé) 

SPARQL (Jena ARQ) 

Rule support CLIPS rules SWRL (DL-safe) Jena rules 
Closed-world 
features 

rule, query query (through 
Protégé SPARQL 
engine), rule 

query, rule 

Concrete domain XSD datatypes, 
User-defined 
datatypes datatype 
computation and 
comparison (all 
through CLIPS 
rule pre-defined 
functions and self-
defined functions) 

XSD datatypes XSD datatypes, user-
defined datatypes, 
datatype comparison 
and computation 

Database support Unknown Unknown Unknown 
Remote interface Unknown Unknown Unknown 
User access Command line 

(CLIPS) 
Command line, GUI 
(through Protégé) 

Unknown 

Explanation No OWLAPI blackbox Jena ABox explanation 
Ontology 
manipulation 

No OWLAPI Jena 

Platform CLIPS Java Java 
OS Windows Windows, Linux, 

MacOS 
Windows, Linux, 
MacOS 
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Table A-9: Results of the survey of OWL reasoners (cont’d) 

 

 Bubo (UHU) The OWL 
Instance Store  

 

Reasoning 
algorithm  

Datalog engine 
(deductive database, 
XSB) 

DL Tableaux and 
SQL database 

 

Reasoner type Resolution-based Hybrid   
Reasoner 
expressivity 

OWL-Lite Unknown  

Completeness Unknown Unknown  
Reasoning tasks OWL entailment, 

conjunctive query 
answering 

OWL entailment, 
conjunctive query 
answering 

 

Materialization Unknown Yes for ABox 
reasoning 

 

Incremental 
reasoning 

Unknown Unknown  

Query support XSB queries, DB2 
SQL 

SQL  

Rule support XSB rules, DB2 SQL SQL  
Closed-world 
features 

Unknown rule, query (SQL 
support) 

 

Concrete domain XSD datatypes, 
Datatype comparison 
and computation 

Datatypes in SQL  

Database support Reasoning (DB2) Reasoning (JDBC)  
Remote interface Unknown DIG  
User access Unknown GUI  
Explanation Unknown Unknown  
Ontology 
manipulation 

Unknown Unknown  

Platform Unknown Java  
OS Unknown Windows, Linux, 

MacOS 
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Appendix B 
Scenario descriptions used 
in the usability experiment 

of RESP 

Description for Knowledge-based Networking 

“KBN is a semantic pub/sub message broker that uses an ontology reasoner to perform 

matchmaking between publications and subscriptions, i.e. a subscription can be propagated 

to a subscriber if it is matched by the subscription that the subscriber put. Publications arrive 

at the broker and are updated into a knowledge base (KB) where all knowledge is kept. 

Subscriptions are specified as conjunctive queries over the KB. A subscription is matched by 

a publication when the query that represents the subscription is resolved by the reasoner and 

the publication is sent to the subscriber.  

The ontology (wine ontology) used for matchmaking has an expressivity of SHION. All 

matched publications need to be propagated to the subscriber and therefore the underlying 

reasoner needs to be able to conduct complete reasoning over this ontology. Furthermore 

since this broker is designed to support real-time data processing, publications need to be 

updated into the ABox of the KB and propagated to subscribers immediately after their 

arrivals. Datatype values could be used in publications and subscriptions. This puts a 

requirement for the matchmaking algorithm to process XSD Datatypes.” 

The gold standard ACs for this scenario are: 

Expressivity: SHION. 
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Complete reasoning over SHION. 

Queries: conjunctive query. 

Frequent ABox update 

Concrete domain: XSD Datatype 

The gold standard reasoner for this application is Pellet. 

Description for BaseVISor: 

“BaseVISor is a forward-chaining inference engine using RETE algorithm optimized for 

processing RDF triples. It supports an expressivity of R-Entailment, a set of entailment rules 

that supports complete RDFS semantics and a subset of OWL semantics. The vocabulary R-

Entailment supports consists of the entire RDFS vocabulary and partial OWL vocabulary. 

The OWL vocabulary it supports includes FunctionalProperty, Restriction, 

InverseFunctionalProperty, onProperty, SymmetricProperty, hasValue, TransitiveProperty, 

someValuesFrom, sameAs, allValuesFrom, inverseOf, differentFrom, disjointWith, 

equivalentClass, equivalentProperty and intersectionOf. BaseVISor also provides supports 

for XSD datatypes. 

Rules can be authored in BaseVISor using the RIF, RuleML or BaseVISor format. 

Procedural attachments (either build-in or user-defined) are allowed in the BaseVISor 

language. Built-in procedural attachments include console output, variable binding, fact 

base management, equality/inequality function, common mathematical functions and 

Negation as Failure. In addition conjunctive queries can also be specified using BaseVISor 

or RuleML either in XML file outside the reasoner (using the Query tag) or in java program 

(using the Query class).  

BaseVISor can run either embedded in Java applications or as a standalone reasoner 

(command lines are provided). A persistent storage package is available in BaseVISor 

enabling facts to be stored and reasoned using SQL-computable databases (through JDBC). 

It is accessible either through a standard alone batch file (the PersistentBatch program) or 

from within a java program. When the persistent storage is used rules and queries are 

evaluated as SQL statements in the database.” 

The gold standard RCs for the BaseVISor are: 
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Reasoner type: Rule-Entailment Reasoner. 

Reasoning algorithm: RETE. 

Reasoner expressivity: pD*. 

Concrete domain: XSD datatypes. 

Rule support: RuleML rules and BaseVISor rules. 

Query support: BaseVISor queries 

Closed-world features: Negation as Failure in rule 

User access: command line  

Ontology manipulation: API 

Platform: J2SE. 

Persistent KB: connect to SQL-compatible database through JDBC. 
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Appendix C 
pD* Entailment and Its 

Implementation in Jena 
Rule Format 

This appendix gives the full set of pD* rules used in COROR. 

D* entailment rules 

[lg-rdfs1: (?v ?p ?l), isPLiteral(?l), assignAnon(?l, ?b) -> (?v ?p ?b), (?b rdf:type 

rdfs:Literal)] 

[lg-rdfs2D: (?v ?p ?l), isDLiteral(?l, ?t), assignAnon(?l, ?b) -> (?v ?p ?b), (?b rdf:type 

?t)] 

[rdf1: (?v ?p ?w) -> (?p rdf:type rdf:Property)] 

[rdfs2: (?p rdfs:domain ?u), (?v ?p ?w) -> (?v rdf:type ?u)] 

[rdfs3: (?p rdfs:range ?u), (?v ?p ?w), notLiteral(?w) -> (?w rdf:type ?u)] 

[rdfs4a: (?v ?p ?w) -> (?v rdf:type rdfs:Resource)] 

[rdfs4b: (?v ?p ?w), notLiteral(?w) -> (?w rdf:type rdfs:Resource)] 

[rdfs5: (?v rdfs:subPropertyOf ?w), (?w rdfs:subPropertyOf ?u) -> (?v 
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rdfs:subPropertyOf ?u)] 

[rdfs6: (?v rdf:type rdf:Property) -> (?v rdfs:subPropertyOf ?v)] 

[rdfs7x: (?p rdfs:subPropertyOf ?q), (?v ?p ?w) -> (?v ?q ?w)] 

[rdfs8: (?v rdf:type owl:Class) -> (?v rdfs:subClassOf rdfs:Resource)] 

[rdfs9: (?v rdfs:subClassOf ?w), (?u rdf:type ?v) -> (?u rdf:type ?w)] 

[rdfs10: (?v rdf:type owl:Class) -> (?v rdfs:subClassOf ?v)] 

[rdfs11:  (?v rdfs:subClassOf ?w), (?w rdfs:subClassOf ?u) -> (?v rdfs:subClassOf 

?u)] 

[rdfs12: (?v rdf:type rdfs:ContainerMembershipProperty) -> (?v rdfs:subPropertyOf 

rdfs:member)] 

[rdfs13: (?v rdf:type rdfs:Datatype) -> (?v rdfs:subClassOf rdfs:Literal)] 

 

P-entailment rules 

[rdfp1: (?p rdf:type owl:FunctionalProperty), (?u ?p ?v), (?u ?p ?w), notLiteral(?v) -> 

(?v owl:sameAs ?w)] 

[rdfp2: (?p rdf:type owl:InverseFunctionalProperty), (?u ?p ?w), (?v ?p ?w) -> (?u 

owl:sameAs ?v)] 

[rdfp3: (?p rdf:type owl:SymmetricProperty), (?v ?p ?w), notLiteral(w) -> (?w ?p 

?v)] 

[rdfp4: (?p rdf:type owl:TransitiveProperty), (?u ?p ?v), (?v ?p ?w) -> (?u ?p ?w)] 

[rdfp5a: (?v ?p ?w) -> (?v owl:sameAs ?v)] 

[rdfp5b: (?v ?p ?w), notLiteral(?w) -> (?w owl:sameAs ?w)] 
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[rdfp6: (?v owl:sameAs ?w), notLiteral(?w) -> (?w owl:sameAs ?v)] 

[rdfp7: (?u owl:sameAs ?v), (?v owl:sameAs ?w) -> (?u owl:sameAs ?w)] 

[rdfp8ax: (?p owl:inverseOf ?q), (?v ?p ?w), notLiteral(?w) -> (?w ?q ?v)] 

[rdfp8bx: (?p owl:inverseOf ?q), (?v ?q ?w), notLiteral(?w) -> (?w ?p ?v)] 

[rdfp9: (?v rdf:type owl:Class), (?v owl:sameAs ?w) -> (?v rdfs:subClassOf ?w)] 

[rdfp10: (?p rdf:type rdf:Property), (?p owl:sameAs ?q) -> (?p rdfs:subPropertyOf 

?q)] 

[rdfp11: (?u ?p ?v), (?u owl:sameAs ?up), (?v owl:sameAs ?vp), notLiteral(?up) -> 

(?up ?p ?vp)] 

[rdfp12a: (?v owl:equivalentClass ?w) -> (?v rdfs:subClassOf ?w)] 

[rdfp12b: (?v owl:equivalentClass ?w), notLiteral(?w) -> (?w rdfs:subClassOf ?v)] 

[rdfp12c: (?v rdfs:subClassOf ?w), (?w rdfs:subClassOf ?v) -> (?v 

owl:equivalentClass ?w)] 

[rdfp13a: (?v owl:equivalentProperty ?w) -> (?v rdfs:subPropertyOf ?w)] 

[rdfp13b: (?v owl:equivalentProperty ?w), notLiteral(?w) -> (?w rdfs:subPropertyOf 

?v)] 

[rdfp13c: (?v rdfs:subPropertyOf ?w), (?w rdfs:subPropertyOf ?v) -> (?v 

owl:equivalentProperty ?w)] 

[rdfp14a: (?v owl:hasValue ?w), (?v owl:onProperty ?p), (?u ?p ?w) -> (?u rdf:type 

?v)] 

[rdfp14bx: (?v owl:hasValue ?w), (?v owl:onProperty ?p), (?u rdf:type ?v), 

notLiteral(?p) -> (?u ?p ?w)] 
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[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x 

rdf:type ?w) -> (?u rdf:type ?v)] 

[rdfp16: (?v owl:allValuesFrom ?w), (?v owl:onProperty ?p), (?u rdf:type ?v), (?u ?p 

?x), notLiteral(?x) -> (?x rdf:type ?w)] 
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Appendix D 
Rule-Construct Mappings 

lg-rdfs1:rdfs:[]->[] 

lg-rdfs2D:rdfs:[]->[] 

rdf1:rdfs:[]->[rdf:Property] 

rdfs2:rdfs:[rdfs:domain]->[] 

rdfs3:rdfs:[rdfs:range]->[] 

rdfs4a:rdfs:[]->[] 

rdfs4b:rdfs:[]->[] 

rdfs5:rdfs:[rdfs:subPropertyOf]->[rdfs:subPropertyOf] 

rdfs6:rdfs:[rdf:Property]->[rdfs:subPropertyOf] 

rdfs7x:rdfs:[rdfs:subPropertyOf]->[] 

rdfs8:rdfs:[]->[rdfs:subClassOf] 

rdfs9:rdfs:[rdfs:subClassOf]->[] 

rdfs10:rdfs:[rdf:Property]->[rdfs:subClassOf] 

rdfs11:rdfs:[rdfs:subClassOf]->[rdfs:subClassOf] 

rdfs12:rdfs:[rdfs:ContainerMembershipProperty]->[rdfs:subPropertyOf] 
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rdfs13:rdfs:[rdfs:Datatype]->[rdfs:subClassOf,rdfs:Literal] 

rdfp1:owl-lite:[owl:FunctionalProperty]->[owl:sameAs] 

rdfp2:owl-lite:[owl:InverseFunctionalProperty]->[owl:sameAs] 

rdfp3:owl-lite:[owl:SymmetricProperty]->[] 

rdfp4:owl-lite:[owl:TransitiveProperty]->[] 

rdfp5a:owl-lite:[]->[owl:sameAs] 

rdfp5b:owl-lite:[]->[owl:sameAs] 

rdfp6:owl-lite:[owl:sameAs]->[owl:sameAs] 

rdfp7:owl-lite:[owl:sameAs]->[owl:sameAs] 

rdfp8ax:owl-lite:[owl:inverseOf]->[] 

rdfp8bx:owl-lite:[owl:inverseOf]->[] 

rdfp9:owl-lite:[owl:sameAs]->[rdfs:subClassOf] 

rdfp10:owl-lite:[rdf:Property,owl:sameAs]->[rdfs:subPropertyOf] 

rdfp11:owl-lite:[owl:sameAs]->[] 

rdfp12a:owl-lite:[owl:equivalentClass]->[rdfs:subClassOf] 

rdfp12b:owl-lite:[owl:equivalentClass]->[rdfs:subClassOf] 

rdfp12c:owl-lite:[rdfs:subClassOf]->[owl:equivalentClass] 

rdfp13a:owl-lite:[owl:equivalentProperty]->[rdfs:subPropertyOf] 

rdfp13b:owl-lite:[owl:equivalentProperty]->[rdfs:subPropertyOf] 

rdfp13c:owl-lite:[rdfs:subPropertyOf]->[owl:equivalentProperty] 

rdfp14a:owl-lite:[owl:hasValue,owl:onProperty]->[] 

rdfp14b:owl-lite:[owl:hasValue,owl:onProperty]->[] 
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rdfp15:owl-lite:[owl:someValuesFrom,owl:onProperty]->[] 

rdfp16:owl-lite:[owl:allValuesFrom,owl:onProperty]->[] 
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Appendix E 
A Full List of the Java 

Classes Added to μJena to 
Form the Enhanced μJena 

Table E-1: Classes added to µJena to forming the enhanced µJena. 

ie.tcd.cs.nembes.microjenaenh.db 
ie.tcd.cs.nembes.microjenaenh.reasoner.
rulesys 

RDFRDBException BasicFBReifier 
ie.tcd.cs.nembes.microjenaenh.graph BasicForwardRuleInfGraph 
bulkUpdateHandler BindingEnvironment 
Capabilities Builtin 
NodeVisitor BuiltinException 
Node_Variable BuiltinRegistory 
ie.tcd.cs.nembes.microjenaenh.graph.compo
se ClauseEntry 
CompositionBase EnhForwardRETEInfGraph  
MultiUnion EnhForwardRETEReasoner  
Polyadic ForwardRuleInfGraphI 
ie.tcd.cs.nembes.microjenaenh.graph.impl Functor 
AllCapabilities Node_RuleVariable 
SimpleBulkUpdateHandler RETERuleInfGraph 
ie.tcd.cs.nembes.microjenaenh.reasoner Rule 
BaseInfGraph RuleContext 
Fgraph RulePreprocessHook 
Finder RuleReasoner 
FinderUtil SilentAddI 
IllegalParameterException Util 

InfGraph 
ie.tcd.cs.nembes.microjenaenh.util.iterat
or 
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Reasoner ConcatenatedIterator 
ReasonerException Filter 
ReasonerFactory FilterDropIterator 
ReasonerRegistry FilterIterator 
TriplePattern FilterKeepIterator 

ValidityReport 
ie.tcd.cs.nembes.microjenaenh.vocabular
y 

ie.tcd.cs.nembes.microjenaenh.reasoner.rule
sys.enh ReasonerVocabulary 
LiteralStore   

 

Table E-2: Classes added to µJena to forming the enhanced µJena. 

ie.tcd.cs.nembes.microjenaenh.reasone
r.rulesys.builtins 

ie.tcd.cs.nembes.microjenaenh.reasoner.rulesy
s.impl 

BaseBuiltin BindingVector 
Difference FRuleEngineI 
Equal RETEClauseFilter 
GE RETEConflictSet 
GreaterThan RETEEngine 
IsLiteral RETENode 
LE RETEQueue 
LessThan RETERuleContext 
ListContains RETESinkNode 
ListEntry RETESourceNode 
ListEqual RETETerminal 
ListLength ie.tcd.cs.nembes.microjenaenh.shared 
ListMapAsObject DoesNotExistException 
ListMapAsSubject RulesetNotFoundException 
ListNotContains WrappedIOException 
ListNotEqual ie.tcd.cs.nembes.microjenaenh.util 
MakeTemp Character  
Max Collection  
Min FileUtils 
NotEqual IteratorCollection 
NotLiteral NumberUtil  
Print OneToManyMap 
Product PrintUtil 
Quotient Tokenizer 

Sum 
ie.tcd.cs.nembes.microjenaenh.reasoner.rulesy
s.builtins.enhbuiltins 

  AssignAnon 
  IsDLiteral 
  IsPLiteral 



 

E-3 

 

 


