

Automatic Reasoner Composition and
Selection

A thesis submitted to the

University of Dublin, Trinity College,

for the degree of

Doctor of Philosophy

Wei Tai

Knowledge and Data Engineering Group,

Department of Computer Science,

Trinity College, University of Dublin.

2011

I

Declaration

I, the undersigned, declare that this work has not previously been submitted as an exercise

for a degree at this or any other University, and that, unless otherwise stated, it is entirely

my own work.

Wei Tai

October 2011

II

Permission to Lend or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this thesis upon

request.

Wei Tai

October 2011

III

ACKNOWLEDGEMENTS

I would like to thank my supervisors Dr. Declan O’Sullivan and Dr. John Keeney for their

unflagging support, insightful contributions and the many revisions of this thesis. I would

also like to thank Dr. Rob Brennan for sharing his innovative ideas. My thanks to all in the

KDEG research group for their lively discussions, their participation in my experiments, and

also the proof reading/feedback.

I would like to especially thank my parents for their constant encouragement, support and

the many sacrifices. A special word of thanks to my grandparents for their affection and

encouragement.

Finally, thanks are due to Bei Gao for her absolute belief, unwavering support, and being

wonderful reminders throughout this period that there is more to life than research!

IV

ABSTRACTS
The development of OWL and OWL reasoning technologies has enabled them to be used for

knowledge base (KB) modelling and/or intelligent data processing in applications of various

areas. However the computation and memory intensive nature of OWL reasoners impedes

the deployment of OWL ontology reasoning on resource-constrained devices. In order to

address this issue, a possible approach is to compose the reasoners according to their

application characteristics such that unnecessary reasoning capabilities are not loaded. This

thesis introduces two novel automatic reasoner composition approaches, a selective rule

loading algorithm and a two-phase RETE algorithm, that compose rule-entailment reasoners

both at the rule level and inside the reasoning algorithm based on the ontology expressivity,

in order to reduce resource consumption for reasoning on resource-constrained devices.

With the growth of usage of ontology reasoners and the introduction of new reasoner

characteristics, it is envisaged that reasoner selection in the future will become too

complicated for the current consultation based process between application developers and

reasoner experts. In addition the thesis proposes a semi-automatic reasoner selection process

(RESP) that allows users to independently select a most appropriate reasoner for their

applications according to application characteristics. The solutions to the problems of how

to achieve resource constrained reasoning and more automatic reasoning selection, have

been respectively implemented, in a resource-constrained composable reasoner (COROR)

and a semi-automatic reasoner selection tool (TARS).

Evaluation of the solutions indicates that the designed reasoner composition algorithms

greatly reduce the time and memory requirement for reasoning and that proposed reasoner

selection process helps users independently select a most appropriate reasoner for their

applications, both of which will contribute to advancing the state of the art in the usage of

reasoning within semantic applications.

V

TABLE OF CONTENTS

Automatic	Reasoner	Composition	and	Selection	..	I	

Declaration	..	I	
Permission	to	Lend	or	Copy	..	II	
ACKNOWLEDGEMENTS	...	III	
ABSTRACTS	..	IV	
TABLE	OF	CONTENTS	..	V	
TABLE	OF	FIGURES	...	VIII	
TABLE	of	TABLES	...	X	
ABBREVIATIONS	...	XII	
Chapter	1	Introduction	...	1	

1.1	 Motivation	..	1	
1.2	 Research	Question	and	Objectives	...	4	
1.3	 Research	Process	and	Approach	..	5	
1.4	 Contributions	..	8	
1.5	 Thesis	Overview	..	11	

Chapter	2	Background	and	Related	Work	..	13	
2.1	 Introduction	..	13	
2.2	 Background	...	15	

2.2.1	 OWL	and	OWL	Sublanguages	...	15	
2.2.2	 RETE	and	RETE	Optimizations	...	18	

2.3	 Related	Work	..	27	
2.3.1	 Survey	of	OWL	Reasoners	..	27	
2.3.2	 Survey	of	Semantic	Applications	..	38	
2.3.3	 Reasoner	Composability	...	42	
2.3.4	 Resource-Constrained	OWL	Reasoners	..	49	

2.4	 Summary	..	52	
Chapter	3	COROR:	A	COmposable	Rule-entailment	Owl	Reasoner	for	Resource-Constrained	
Environments	...	54	

3.1	 Introduction	..	54	
3.2	 An	Overview	...	57	
3.3	 The	pD*	Semantics	...	58	

VI

3.4	 Composition	Algorithms	...	59	
3.4.1	 Selective	Rule	Loading	Algorithm	...	59	
3.4.2	 Two-Phase	RETE	Algorithm	..	65	
3.4.3	 Hybrid	Algorithm	..	76	

3.5	 Extending	COROR	to	Support	OWL	2	(Design	Perspective)	76	
3.6	 Summary	..	83	

Chapter	4	RESP:	An	Automatic	Reasoner	Selection	Process	..	86	
4.1	 Introduction	..	86	
4.2	 Overview	of	RESP	...	89	
4.3	 Discussion	of	Interplay	between	Semantic	Applications	and	RCs	92	

4.3.1	 RCs	used	...	93	
4.3.2	 Aspect	1	-	Frequently	Changing	Knowledge	Bases	95	
4.3.3	 Aspect	2	-	Required	Semantics	...	97	
4.3.4	 Aspect	3	–	Reasoning	Tasks	..	97	
4.3.5	 Aspect	4	-	Query	...	98	
4.3.6	 Aspect	5	-	Rules	..	99	
4.3.7	 Aspect	6	-	Concrete	Domains	...	100	
4.3.8	 Aspect	7	-	Closed-World	Features	..	101	
4.3.9	 Aspect	8	-	Large	Knowledge	Base	or	Persistent	Storage	102	
4.3.10	 Aspect	9	–	User/Application	Manipulation	of	Ontology	103	
4.3.11	 Aspect	10	-	Explanation	of	Reasoning	and	Ontology	Debugging	104	
4.3.12	 Aspect	11	-	Miscellaneous	..	105	
4.3.13	 A	Summary	of	Example	Candidate	ACs	and	Connections	106	

4.4	 Matchmaking	..	106	
4.5	 Summary	..	109	

Chapter	5	Implementation	...	111	
5.1	 Introduction	..	111	
5.2	 COROR	..	112	

5.2.1	 Choosing	a	Platform	...	112	
5.2.2	 Constructing	a	Resource-Constrained	Rule-Entailment	Reasoner	113	
5.2.3	 Implementing	the	pD*	Semantics	..	124	
5.2.4	 Implementing	the	Composition	Algorithms	...	128	
5.2.5	 Extending	COROR	to	Support	OWL	2	(Implementation	Perspective)	136	

5.3	 TARS:	Tool	for	Automatic	Reasoner	Selection	..	137	
5.4	 Summary	..	146	

Chapter	6	Evaluation	..	148	
6.1	 Introduction	..	148	
6.2	 Performance	Comparison	and	Investigation	of	COROR	150	

6.2.1	 Criteria	of	Selecting	Performance	Metrics	..	150	
6.2.2	 Design	and	Execution	...	152	
6.2.3	 Intra-Reasoner	Comparison:	Results	and	Discussions	155	
6.2.4	 Inter-Reasoner	Comparison:	Results	and	Discussions	191	

VII

6.2.5	 Accuracy	of	the	Selective	Rule	Loading	Algorithm	and	the	Two-Phase	RETE	
Algorithm	...	196	

6.3	 Usability	Test	of	TARS	..	197	
6.3.1	 Design	of	evaluation	..	198	
6.3.2	 Results	and	discussions	...	202	
6.3.3	 Questionnaires	analysis	...	204	

6.4	 Summary	and	Key	Findings	..	209	
6.4.1	 Reasoner	Composition	Algorithms	...	209	
6.4.2	 RESP	..	211	

Chapter	7	Conclusions	and	Future	Work	..	214	
7.1	 Progress	vs.	Objectives	...	214	
7.2	 Contributions	..	218	
7.3	 Limitation	and	Future	Work	...	221	
7.4	 Final	Remarks	...	222	

References	..	223	
Appendix	A	A	Survey	on	OWL	Reasoners	...	1	
Appendix	B	Scenario	descriptions	used	in	the	usability	experiment	of	RESP	1	
Appendix	C	pD*	Entailment	and	Its	Implementation	in	Jena	Rule	Format	1	
Appendix	D	Rule-Construct	Mappings	...	1	
Appendix	E	A	Full	List	of	the	Java	Classes	Added	to	μJena	to	Form	the	Enhanced	μJena	1	

VIII

TABLE OF FIGURES

Figure 2-1: An example RETE network .. 20	
Figure 2-2: Reasoner categorization used in this thesis ... 28	
Figure 2-3: A general structure of rule-based reasoner .. 33	
Figure 3-1: An Overview of COROR .. 58	
Figure 3-2: Rule-construct dependency graphs (D* entailment rules) 61	
Figure 3-3: Rule-construct dependency graphs (P entailment rules) 62	
Figure 3-4: Flow of the Two-Phase RETE Algorithm ... 66	
Figure 3-5: A shared alpha network v.s. a non-shared alpha network. 69	
Figure 3-6: Join sequences after been reordered by the most specific condition first heuristic.
.. 71	
Figure 3-7: pre-evaluation of the join connectivity heuristic ... 72	
Figure 3-8: RETE Network with facts after all RETE cycles. ... 74	
Figure 3-9: Rule-Construct dependency graph for OWL 2 RL entailments (semantics of
equality). .. 77	
Figure 3-10: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of
Axioms about Properties). ... 78	
Figure 3-11: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of
Classes). ... 79	
Figure 3-12: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of
Class Axioms) .. 80	
Figure 3-13: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of
Datatypes) .. 80	
Figure 3-14: Rule-Construct dependency graph for OWL 2 RL entailments (Semantics of
Schema Vocabulary) .. 81	
Figure 4-1: An overview of RESP ... 89	
Figure 5-1: Sun SPOT wireless sensor network development kit. 113	
Figure 5-2: An example intermediate result for rule rdfp15 .. 116	
Figure 5-3: An example Jena RETE network and an illustration of join operations 118	
Figure 5-4: Class diagrams of the µJena enhanced with the Jena forward reasoner. 121	
Figure 5-5: Implementation of the selective rule loading algorithm. 129	
Figure 5-6: Code snippet for the constructing a selective rule set. 131	
Figure 5-7: Classes related to the two-phase RETE algorithm implementation 132	
Figure 5-8: Code snippet for two-phase RETE algorithm ... 133	
Figure 5-9: Intermediate results for the condition (?v ?p ?w) and (?u ?p ?x) in the rule
rdfp15 and the rule rdfs4b. ... 134	
Figure 5-10: Intermediate results generated for rdfp15 and rdfs4b under the dual vector
approach. .. 135	

IX

Figure 5-11: Implementation for the most specific condition first heuristic. 136	
Figure 5-12: Packages and classes of TARS. ... 138	
Figure 5-13: A snippet of the XML-coded profile for FaCT++. .. 139	
Figure 5-14: Application characteristics selection interface. ... 141	
Figure 5-15: Connections for AC integrity constraints. ... 143	
Figure 5-16: Reasoner selection results interface .. 143	
Figure 5-17: The user interface for registering candidate reasoners. 144	
Figure 5-18: User interface for specifying reasoner expressivity using OWL constructs. .. 145	
Figure 5-19: User interface for specify reasoner expressivity in DL. 146	
Figure 6-1: Comparisons of memory and reasoning time between COROR composition
modes (Intra-reasoner comparison). .. 157	
Figure 6-2: #IR generated by each rule when COROR-noncomposable/COROR-selective
reasons over selected ontology .. 162	
Figure 6-3: Percentage of #IR occupied by each rule for COROR noncomposable. 165	
Figure 6-4: Comparison between #M/#J of COROR-noncomposable and COROR-selective
.. 167	
Figure 6-5: #M for the foaf ontology ... 168	
Figure 6-6: #J for the foaf ontology. .. 169	
Figure 6-7: Comparison of #IRM/#IRJ between COROR noncompoable and COROR two-
phase RETE ... 171	
Figure 6-8: Comparison of #J between COROR-two-phase and COROR-noncomposable.
.. 174	
Figure 6-9: Comparison of #M between COROR two-phase and COROR noncomposable.
.. 175	
Figure 6-10: Modified rule rdfp1, rdfp2 and rdfp4. ... 177	
Figure 6-11: Comparison of the memory usages of COROR-noncomposable and COROR-
two-phase to reason over selected ontology for different rule sets. 178	
Figure 6-12: Comparison of the reasoning time of COROR-noncomposable and COROR-
two-phase to reason over selected ontology when different rule sets are used. 179	
Figure 6-13: #M generated by COROR-noncomposable and COROR-two-phase when
different rule sets are used. .. 181	
Figure 6-14: #J generated by COROR-noncomposable and COROR-two-phase when
different rule sets are used. .. 182	
Figure 6-15: #IRM required by COROR-noncomposable and COROR-two-phase when
different rule sets are used. .. 184	
Figure 6-16: #IRJ required by COROR-noncomposable and COROR-two-phase when
different rule sets are used. .. 185	
Figure 6-17: #IRM/#IRJ required by COROR-hybrid and COROR-two-phase. 188	
Figure 6-18: #M required by COROR-hybrid and COROR-two-phase 189	
Figure 6-19: #J required by COROR-hybrid and COROR-two-phase. 190	
Figure 6-20: Comparison of reasoning time/memory usage between COROR hybrid and
state of the art reasoners. .. 195	
Figure 6-21: The level of background knowledge of application-aware participants on both
semantic application and ontology reasoning (level of knowledge, number of participants,
percentage). .. 200	

X

TABLE of TABLES

Table 2-1: OWL constructs supported by the pD* semantics .. 16	
Table 2-2: Reasoner characteristics used in the survey of OWL reasoners 37	
Table 3-1: Number of matched facts for each condition .. 70	
Table 4-1: A summary of values of the corresponding reasoner characteristics in the survey
.. 94	
Table 4-2: Candidate ACs and Connections Derived from Frequently Changing Knowledge
Bases .. 96	
Table 4-3: Candidate AC and Connection Derived from Required Semantics 97	
Table 4-4: Candidate AC and Connection Derived from Terminology-Centric Reasoning .. 98	
Table 4-5: Candidate ACs and Connections Derived from Query-Related 99	
Table 4-6: Candidate AC and Connection Derived from Rules ... 100	
Table 4-7: Candidate ACs and Connections Derived from Concrete Domains 101	
Table 4-8: Candidate ACs and Connections Derived from Closed-World Features 102	
Table 4-9: Candidate ACs and Connections Derived from Large Knowledge Base or
Persistent Storage ... 103	
Table 4-10: Candidate ACs and Connections Derived from Ontology Manipulation 104	
Table 4-11: Candidate ACs and Connections Derived from Explanation of Reasoning and
Ontology Debugging .. 105	
Table 4-12: Candidate ACs and Connections Derived from Miscellaneous 105	
Table 4-13: A Summary of Example ACs and Connections .. 106	
Table 4-14: An example reasoner profile for COROR .. 107	
Table 5-1: pD* entailment rule rdfp2. .. 124	
Table 5-2: Descriptions of built-in functors ... 125	
Table 5-3: Definitions of lg, rdfs1 and rdf2-D in pD* entailments 126	
Table 5-4: pD* entailment rule gl .. 127	
Table 5-5: The new application characteristic resource sensitive and its connections . 139	
Table 5-6: The new reasoner characteristic composition level and its possible values 140	
Table 6-1: Ontologies used in intra-/inter-reasoner comparison experiments 154	
Table 6-2: Raw data for memory tests and time tests (memory in byte and time in
millisecond). ... 158	
Table 6-3: Memory reduction achieved by the COROR-selective. 163	
Table 6-4: The size of result ontologies generated by each reasoner mode. 197	
Table 6-5: Not selected ACs .. 202	
Table 6-6: Incorrectly selected ACs. .. 202	
Table 6-7: Not selected RCs. ... 204	
Table 6-8: Incorrectly selected RCs. .. 204	
Table 6-9: Mean values (overall and application-aware) for evaluation questions 206	
Table A-1: Results of the survey of OWL reasoners .. 3	

XI

Table A-2: Results of the survey of OWL reasoners (cont’d) .. 4	
Table A-3: Results of the survey of OWL reasoners (cont’d) ... 5	
Table A-4: Results of the survey of OWL reasoners (cont’d) ... 6	
Table A-5: Results of the survey of OWL reasoners (cont’d) ... 7	
Table A-6: Results of the survey of OWL reasoners (cont’d) ... 8	
Table A-7: Results of the survey of OWL reasoners (cont’d) .. 9	
Table A-8: Results of the survey of OWL reasoners (cont’d) .. 10	
Table A-9: Results of the survey of OWL reasoners (cont’d) .. 11	
Table E-1: Classes added to µJena to forming the enhanced µJena. .. 1	
Table E-2: Classes added to µJena to forming the enhanced µJena. .. 2	

XII

ABBREVIATIONS

ABox Assertion Box
AC Application Characteristic
CDC Connected Device Configuration
CLDC Connected Limited Device Configuration
COROR COmposable Rule-entailment Owl Reasoner
CPU Central Processing Unit
CWA Closed World Assumption
DB Database
DL Description Logic
FOL First Order Logic
IR Intermediate Results
KB Knowledge Base
L.H.S. Left Hand Side
MIDP Mobile Information Device Profile
NaF Negation as Failure
OS Operating System
OWA Open World Assumption
OWL Web Ontology Language
RAM Random Access Memory
RC Reasoner Characteristic
RDF Resource Description Framework
RDFS RDF Schema
RESP REasoner Selection Process
R.H.S. Right Hand Side
SPARQL Simple Protocol and RDF Query Language
SUS System Usability Scale
SWRL Semantic Web Rule Language
TARS Tool for Automatic Reasoner Selection
TBox Terminology Box
XML eXtensible Markup Language
XSLT XML Stylesheet Transformation

1

Chapter 1
Introduction

1.1 Motivation	
The Web Ontology Language (OWL) [McGuinness and Van Harmelen 2004] is an ontology

language aiming to enable the content of information to be processed by machine rather than

merely being displayed to humans. To enable this, OWL includes a set of formally defined

constructs with logic-based semantics [Patel-Schneider et al 2004], which facilitates

machine reasoning on an OWL ontology revealing implicit knowledge from knowledge that

is explicitly stated. An example would be the inference from a subclass/superclass

relationship that any individual of a subclass is also an individual of the superclass.

The formal definition and machine reasoning feature then enables OWL and its reasoning

techniques to be used for knowledge base (KB) modelling and/or intelligent data processing

in applications of various areas, such as clinical informatics [héja et al 2008, openGALEN,

Golbeck et al 2003], bioinformatics [Harris et al 2004], battle field systems [Gomez et al

2008, Sensoy et al 2011], sensor network systems [Calder et al 2010, Kim et al 2008, Eid et

al 2007], web services composition [Hatzi et al 2009] and so on, forming semantic

applications. Such semantic applications usually have diverse (reasoning related)

application characteristics (ACs) that impose different requirements on reasoning, leading

to the need for different OWL reasoners with distinct reasoner characteristics (RCs) to be

used. For example some sensor network systems require OWL reasoning to be performed on

historical sensor readings stored in a database and therefore a database-enabled OWL

reasoner is preferable, while for some semantic publish/subscribe systems the ability to

quickly answer a query over a changing KB would be an important RC.

Currently the majority of research in the OWL reasoning area is targeted at building full-

fledged, fast and powerful OWL reasoners that run on desktop computers. However with the

2

growth of development of semantic applications, for example for pervasive computing,

there is an increasing demand for on-device OWL reasoning to facilitate intelligent on-

device data processing, which in turn motivates the need for resource-constrained OWL

reasoners [Kleemann and Sinner 2006, Brennan et al 2009, Koziuk et al, 2008]. Compared

to the large amount of research performed to construct desktop OWL reasoners with

different reasoner characteristics, very little research work has been conducted into how to

minimize OWL reasoners so that they could operate on resource-constrained devices, in

order to promote on-device intelligent data process and management [Ali and Kiefer 2009,

Jang and Sohn 2004, Kim et al 2010].

Desktop OWL reasoners are often computationally and resource intensive therefore it is

difficult to have them run on resource-constrained devices where resource limitations are

imposed (e.g. the Sun SPOT sensor board has 180MHz 32-bit ARM920T core processor

with 512K RAM and 4M Flash [SUN SPOT 2010]). A natural and reasonable thought

would be to adjust the reasoning algorithms according to the application characteristics of a

particular application such that only required reasoning capabilities are preserved and

unneeded reasoning capabilities are not loaded, thereby hypothetically the amount of

required processing and memory could be reduced. The term coined for such an approach in

this thesis is reasoner composition whereby a customized reasoner is composed for a given

application, ontology or platform.

Some reasoner composition mechanisms have been implemented in some OWL reasoners

within the state of the art. For example Jena [Carroll et al 2004] and SwiftOWLIM

[Kiryakov et al 2005] allow their reasoning rule set to be manually composed. However,

such mechanisms are mostly static relying on tuning of the reasoner by reasoner experts or

are only applicable to a specific rule set. The static reasoner composition mechanisms are

appropriate if application characteristics are simple, relatively static and can be fixed before

execution. However, they may be insufficient for some areas with a highly dynamic nature

such as pervasive computing where applications often have changing application

characteristics. An example would be the semantic publish/subscribe systems (refer to [Guo

2009] for a general discussion of the semantic publish/subscribe systems) that are used for

scalable and efficient information delivery in highly dynamic environments. Those systems

are often designed to be application and ontology independent in order to cope with the

dynamic nature of wireless sensor networks and ideally they should tune itself at

deployment depending on the client ontology in use [Keeney et al 2008, Pathan et al 2010].

Another example could be semantic context-aware systems where ambient information may

3

keep changing with time, e.g. users’ interests, available services, the surrounding

community and so on, which may need to alter ontologies and rules [Luther et al 2008,

Ejigu et al 2007]. Hence it would be better that these systems are able to dynamically

configure themselves to handle the diverse information from fast changing surroundings.

Furthermore, as aforementioned, nowadays systems tend to push data processing toward the

leaf nodes/edge of a network such as mobile phones or sensors, either to relieve servers

from the heavy workloads and reduce throughputs of the networks from the system

performance perspective or to protect users’ privacy from being uploaded to servers from

the human perspective [Kleemann and Sinner 2006, Brennan et al 2009, Koziuk et al, 2008].

Considering the large amount of resource-constrained devices involved as well as the often

lack of expertise of the end users, this thesis argues that static reasoner composition

mechanisms appear to be inappropriate for semantic applications in dynamic areas and

automatic composition mechanisms show better suitability for such dynamic areas.

There are already many different reasoner characteristics out there for existing reasoners

such as the support of rules, the support of database, and the support of conjunctive queries

and so on, and the advance in OWL reasoning technologies will add more reasoner

characteristics to the ever growing set of reasoner characteristics. For example the proposed

reasoner composition mechanisms may enable reasoners to run on even smaller resource-

constrained devices, adding a new reasoner characteristic. On the other hand, as mentioned

earlier the different semantic applications emphasize different reasoner characteristics.

Therefore this raises a problem that the selection of an appropriate reasoner is becoming

ever more complicated and there is an increasing need to help people to be able to choose an

appropriate reasoner for their applications.

In the state of the art, the selection of a reasoner relies largely on consultation between

application developers and reasoner experts, and until recently this approach was

straightforward and sufficient because of the relatively small number of OWL reasoners and

reasoner characteristics envisaged. However, the ever widespread adoption of OWL and its

reasoning technologies for applications in different domains and the rapid development and

emergence of new OWL reasoning technologies makes this approach, in the opinion of the

author, increasingly inadequate in the future for the following reasons. Firstly, as semantic

applications grow more complicated and move beyond initial prototyping stages, these

applications will be developed and extended by dedicated application developers with little

or no knowledge of the intricacies of ontology reasoning. Furthermore reasoner experts may

not always precisely understand some application characteristics expressed in domain

4

specific languages. The result could be a considerable amount of effort being required

during consultations between an application developer and reasoner expert before an

agreement is reached, or could even result in a wrong reasoner being selected. Secondly the

existing approach requires that a reasoner expert is accessible to application developers,

which will not always be the case. These inadequacies motivate the need for an automated

approach to help application developers to limit consultation requirements or even to

independently select a suitable reasoner for their semantic applications.

In summary, this thesis focuses on overcoming the problem of how to undertake reasoning

in a dynamic and complex resource-constrained environment. Given the highly dynamic

nature of pervasive computing, it is taken as an example of such an environment. Two

solutions in particular are identified and focused upon: (1) the provision of an automatically

composed reasoner based on application characteristics (e.g. the ontology to be reasoned),

focusing on a resource-constrained environment, and (2) tool support for the semi-automatic

selection of the most appropriate reasoner for a given semantic application.

1.2 Research	Question	and	Objectives	
This thesis addresses the question of:

“How an appropriate resource-constrained OWL reasoner can be automatically

composed and be selected based on application characteristics.”

Five objectives are derived:

§ Objective 1: survey the state of the art OWL reasoners, identifying Reasoner

Characteristics (RCs) and categorizing them. Identify an appropriate type of

reasoner upon which the reasoner composition research should be based. Survey

semantic applications, identifying reasoning-related Application Characteristics

(ACs).

§ Objective 2: design automatic reasoner composition mechanisms and implement

them in a resource-constrained reasoner.

§ Objective 3: study the performance impact on the resource-constrained reasoner

brought by the application of composition algorithm(s).

§ Objective 4: design and implement a reasoner selection process that enables an

application developer to automatically select a most appropriate reasoner for their

semantic application based on application characteristics.

5

§ Objective 5: evaluate the usability of the reasoner selection process designed in

objective 4.

Objective 1 establishes a foundation for the other research carried out in this thesis. The

categorization of OWL reasoners enables the reasoner composition research (objective 2) to

be carried out for a type of reasoner rather than a particular reasoner implementation,

providing this research with a general grounding. Furthermore during the survey reasoner

characteristics are identified, and they are examined for each survey reasoner. Similarly the

survey on semantic applications can facilitate the identification of application characteristics,

and furthermore it helps the study of how existing semantic applications select reasoners to

fulfil their application characteristics. Both surveys provide a basis for objective 4 and 5

where the research on the automatic reasoner selection process is carried out.

Objective 2 and 3 together address the first half of the research question that examines how

an appropriate resource-constrained OWL reasoner can be automatically composed based

on application characteristics. Objective 2 designs the automatic reasoner composition

mechanisms for the selected type of reasoners. The designed reasoner composition

mechanisms need also to be integrated into a resource-constrained reasoner, implementing a

composable resource-constrained reasoner. Objective 3 examines the performance impacts

of the reasoner composition algorithms on the selected type of OWL reasoner. A natural

approach is followed in the evaluation where the performance of the composable resource-

constrained reasoner implementation with the use of composition mechanisms is compared

with the reasoner without the composition mechanisms being used.

Objective 4 and 5 together address the second half of the research question, which is how an

appropriate OWL reasoner can be automatically selected based on application

characteristics. Design and implementation of an automatic reasoner selection process is

performed in objective 4, and evaluation of such process is included in objective 5. The

automatic reasoner selection process constructed in objective 4 will still require application

developers to be involved at some stages of the automatic reasoner selection process, for

example to perform some tasks such as identifying application characteristics for their

applications. Thus the evaluation focuses on the usability of this reasoner selection process,

achieved through user trials.

1.3 Research	Process	and	Approach	
An initial survey was conducted on 26 OWL reasoners in the state of the art and results are

listed in Appendix A. For each reasoner 18 characteristics were surveyed, namely: reasoning

6

algorithm, reasoner type, reasoner expressivity, completeness (in terms of the supported

expressivity), reasoning tasks, materialization, incremental reasoning, query support, rule

support, closed-world features, concrete domain, database support, remote interface, user

access, explanation, ontology manipulation, platforms, and os. Reasoners were then

categorized into five types according to the algorithm used, including DL-Tableaux

reasoners (DL stands for Description Logic), rule-entailment reasoners, resolution-based

reasoners, hybrid reasoners and miscellaneous reasoners (as discussed in detail in section

2.3.1.1). For each type of reasoners, it’s suitability for composition was discussed and the

rule-entailment reasoner was found to have a good balance between expressivity and

composability and thus was chosen as the target type of reasoner as the basis for the

reasoner composition research. As reported in objective 1 another aim of this survey is the

identification of reasoner characteristics. In fact as discussed in section 4.3 an example set

of reasoner characteristics was identified based on this survey.

Then a second survey was performed over five diverse sample types of semantic

applications, namely semantic publish/subscribe systems, semantic context-aware systems,

medical and bioinformatics systems, semantic sensor network management systems, and

software engineering systems, chosen due to their wide adoption of semantic reasoning

technologies to solve previously encountered problems or to perform intelligent data

processing/accessing. This survey mainly concentrated on the examination of the

application characteristics of these applications and how these application characteristics

could affect the selection of an appropriate reasoner. As a matter of fact the examination of

them facilitated the identification of an example set of application characteristics and

correspondingly the mapping between application characteristics and reasoner

characteristics which is termed connections in this thesis.

The RETE algorithm [Forgy 1982] is the most common reasoning algorithm for rule-

entailment reasoners and hence two reasoner composition algorithms were designed by the

author to compose at different levels, i.e. the rule set level and inside the RETE algorithm.

The implementation of both composition algorithms was performed on a modified version

of µJena [Micro Jena 2010] extended with a J2ME-ported Jena RETE engine [Carroll et al

2004]. The choice of Jena RETE engine was motivated by the fact that it is a typical rule-

entailment reasoner and it is open source. The resulting implementation is named a

COmposable Rule-entailment Owl Reasoner (COROR).

In order to investigate the performance impacts brought by the application of the reasoner

7

composition algorithms, two experiments were performed. A first experiment was

performed to measure and compare the time/memory performance of different COROR

composition configurations (with one, two, or no composition algorithms) to fully reason

over ontologies. This can directly reflect the performance change caused by the application

of composition algorithms. A second experiment was then carried out to compare the

performance of COROR with four counterpart rule-entailment reasoners namely Bossam

[Jang and Sohn 2004], BaseVISor [Matheus et al 2006], SwiftOWLIM [Kiryakov et al 2005]

and Jena RETE engine. This experiment could show how COROR performs compared to

the other rule-entailment reasoner implementations. In addition it could reveal the

performance merits and pitfalls of COROR compared to other state of the art rule-

entailment reasoners

A REasoner Selection Process (RESP) was then designed which aims to assist application

developers with little background on ontology reasoning to perform semi-automatic

reasoner selection based only on application characteristics. A simple matchmaking

approach is used in the process to check if the characteristics of an application are all

satisfied by reasoner characteristics of a candidate reasoner. This process was designed to be

a methodology without specifying any detailed technical solutions in order that it can be

reused for different application domains. To make this process less abstract for

demonstration and evaluation, a set of example application characteristics were identified

based on the examination of 11 selected reasoning-related aspects of the surveyed semantic

applications, ranging from frequently changing knowledge base to explanations of reasoning.

Connections between the example application characteristics and the example reasoner

characteristics were drawn based on the discussion in the survey. RESP was implemented as

a prototype desktop application using Java, termed Tool for Automatic Reasoner Selection

(TARS). The example application characteristics, example reasoner characteristics, and

connections were implemented in TARS.

Since human-beings are still involved in TARS to identify application characteristics for

their semantic applications, a usability experiment was designed and performed that allowed

participants to experience different facets of TARS, including a reasoner selection task that

asked semantic application developers/users to select an appropriate reasoner for a given

semantic application following RESP, and a reasoner registration task that asked reasoning-

aware users to register a candidate reasoner with TARS.

8

1.4 Contributions	
Two contributions are identified.

Major contribution: the design of two novel automatic reasoner composition

algorithms for rule-entailment reasoners, termed the selective rule loading algorithm

and the two-phase RETE algorithm, and the implementation of them as a resource-

constrained rule-entailment OWL reasoner named COROR (COmposable Rule-

entailment Owl Reasoner)

Minor contribution: the design and implementation of an automatic REasoner

Selection Process (RESP) and a prototypical implementation, termed the Tool for

Automatic Reasoner Selection (TARS).

The major contribution that distinguishes this research from the state of the art is the design

of the two novel automatic reasoner composition algorithms for rule-based reasoners, i.e.

the selective rule loading algorithm and the two-phase RETE algorithm, and the

implementation of them into a resource-constrained rule-based OWL reasoner named

COROR (COmposable Rule-entailment Owl Reasoner). As will be introduced in section

2.3.1.1.2 this research focuses on rule-based reasoners, more specifically on rule-entailment

reasoners, because they provide good balance between semantic expressivity and

composability. The reasoner composition algorithms respectively perform the reasoner

composition at the rule set level (selective rule loading algorithm) and inside the RETE

algorithm (two-phase RETE algorithm). Briefly the selective rule loading algorithm

estimates the usage of OWL reasoning rules for reasoning a particular ontology, and then

selectively loads into the engine the rules estimated as useful. Unneeded rules are omitted,

avoiding the allocation of resources originally required. The two-phase RETE algorithm

interrupts the RETE network construction [Forgy 1982] (which is the internal reasoning

algorithm for rule-entailment reasoners) midway by matching ontology against already

constructed network, such that some heuristic indicators about the ontology that was only

known at runtime can be collected and used to optimize1 the remaining RETE network

construction. This enables the reasoning to be optimized taking into account information of

the particular ontology.

Experiments were performed to investigate the performance impact by applying the

algorithms. Results show that for the tested ontologies the application of the selective rule

1 In this thesis optimize is referred to as having a better solution rather than having the best solution.

9

loading algorithm on average can reduce the time consumption by 33% and memory

consumption by 35% for fully computing entailments. The application of two-phase RETE

algorithm on average can reduce the time consumption by 78% and memory consumption

by 74%. This contribution enables rule-entailment reasoners to be automatically composed

in accordance with the ontology to be reasoned.

Hence reasoners can always remain tightly “fit” to the changing ontology, enabling

customized OWL reasoning for applications with high dynamism. Good examples of such

applications are context-aware computing on resource-constrained devices or semantic

publish/subscribe systems as described above. As shown by the experiment results, such

customization of reasoning algorithms can save a large amount of resources for reasoning

the same ontology, which, in other words, means that more complex/bigger ontology than

before can be reasoned on the same resource-constrained devices, increasing the amount of

intelligent processing that can be pushed to the edge of a network. In addition, although

targeted at resource-constrained environment, it is envisaged by the author that the

capability to reduce the memory consumption of OWL rule-entailment reasoning also

enables the two introduced composition algorithms to benefit (desktop-based) applications,

for example, to reduce the memory consumption of applications requiring web-scale

reasoning, e.g. social network applications, so as to increase reasoning scalability.

A minor contribution of this research is the design and implementation of an automatic

REasoner Selection Process (RESP) and a prototypical implementation, termed Tool for

Automatic Reasoner Selection (TARS). RESP is a process that automatically assists

semantic application developers to select an appropriate reasoner for their semantic

applications. It uses a relatively simple but useful matchmaking approach. In RESP

semantic applications are represented as sets of application characteristics and reasoners are

represented as sets of reasoner characteristics. Users identify and select the set of application

characteristics representing their applications from the given candidate application

characteristics and input them into RESP. The selection process is then one of matchmaking

between the input application characteristics and reasoner characteristics of candidate

reasoners through a set of predefined connections. Reasoners are ranked by the degree by

which their reasoner characteristics match the selected application characteristics. The one(s)

with 100% satisfaction is then the appropriate one(s). In the implementation users can also

view which application characteristics are not satisfied with a reason for the mismatch.

Based on this information users can adjust their required application characteristics if

appropriate.

10

Usability experiments show RESP helps application developers in determining the reasoner

to be used with little or even no help from reasoner experts (in contrast to the existing

consultation-based reasoner selection process in which application developers totally rely on

reasoner experts to select an appropriate reasoner).

This contribution enables the reasoner selection process to be moved from a human-to-

human consultation-based approach to a human-to-computer semi-automatic approach.

Application developers can easily select an appropriate reasoner for their applications

without putting a lot of efforts in looking for reasoner experts or in the uptake of the

intricacies of OWL reasoning technologies, facilitating the widespread of OWL and OWL

reasoning technologies. Furthermore as a by-product when researching the semi-automatic

reasoner selection approach, the identified application characteristics and reasoner

characteristics will be useful as a starting point for other research in this area.

Four papers were published in relation to research carried out in this thesis:

“An Automatically Composable OWL Reasoner for Resource Constrained Devices”, in

Proceeding of the International Conference on Semantic Computing (ICSC’09), 2009.

This paper describes the selective rule loading algorithm and a prototype implementation of

it on a desktop reasoner.

“Open Framework Middleware for intelligent WSN topology adaption in smart buildings”,

Proceedings of the International Conference on Ultra Modern Telecommunications

(ICUMT’09), 2009.

This paper investigates a potential use of composable reasoner to perform localized fault

correlation in clustered wireless sensor networks.

“A COmposable Rule-Entailment Owl Reasoner for Resource-Constrained Devices”,

Proceedings of the International Symposium on Rule-Based Reasoning, Programming, and

Applications (RuleML’11), 2011.

This paper concentrates on the design, implementation and evaluation of COROR. The

design of selective rule loading algorithm and the two-phase RETE algorithm is given in

detail. The implementation of them in COROR as well as the evaluation are also described

and discussed in this paper.

11

“RESP: A Computer Aided OWL REasoner Selection Process”, Proceedings of the

International Conference on Semantic Computing (ICSC’11), 2011.

This paper describes in detail the RESP process. Application characteristics are discussed

from 11 reasoning-related aspects. A prototype implementation (TARS) and a usability

evaluation are also presented and discussed.

It is planned to submit a more detailed description of COROR and RESP based on this

thesis to the Journal of Web Semantics or IEEE transaction on knowledge and data

engineering.

1.5 Thesis	Overview	
This thesis is comprised of seven chapters.

Chapter Two provides background knowledge and related work of this thesis. Background

knowledge includes the OWL ontology language and its sublanguages, and the RETE

algorithm and its optimizations. Related work includes a survey of OWL reasoners, a survey

of semantic applications, a discussion of state of the art composition approaches for rule-

based reasoners, and finally a discussion of resource-constrained reasoners.

Chapter Three presents the design of COROR, a composable rule-entailment reasoner. Two

novel composition algorithms are described in detail.

Chapter Four describes the design of RESP, a process for selecting an appropriate reasoner

for a given set of ACs. Some examples are also discussed.

Chapter Five describes a prototype implementation of COROR and also a prototype

implementation of RESP (named TARS) with some code snippets and screen shots attached.

Chapter Six presents the design, settings and results of experiments performed for this thesis.

Two experiments, i.e. an intra-reasoner comparison and an inter-reasoner comparison, were

performed to evaluate how reasoning performance changes with the application of reasoner

composition algorithms. This chapter also presents a usability experiment for RESP and

TARS, and provides results and analysis.

Chapter Seven concludes this thesis. Contributions and future work of this work are

discussed.

Seven appendices are attached at the end of this thesis. They are the results of the survey of

12

OWL reasoners, the scenario descriptions used in the usability experiment for TARS, the

questionnaires used in the usability experiment for TARS, the pD* entailment rules and their

implementations as Jena rules, the rule-construct mappings as a text implementation of rule-

construct dependency graphs, the profiles of candidate reasoners registered with TARS, and

finally a full list of the Java classes added to µJena in order to make it support OWL

reasoning.

A DVD disc with all raw experiment results, ontologies used in the experiment and

collected questionnaires is also submitted with this thesis.

13

Chapter 2
Background and Related Work

2.1 Introduction	
This chapter presents the background as well as related work for the investigation of the

research question of this thesis as to

“How an appropriate resource-constrained OWL reasoner can be automatically composed

and be selected based on application characteristics.”

As the overall context of this thesis, OWL and its sublanguages are discussed in the

beginning in section 2.2.1. Both standard and non-standard OWL sublanguages are

discussed. As indicated by the research objective 1, to kick off this research and to establish

a solid foundation for the subsequent research, two surveys needed to be conducted: a

survey of state of the art OWL reasoners and a survey of semantic applications. For the

survey of OWL reasoners, two major problems needed to be solved. Firstly, in order to

enable the research composition research to be applicable for a type of reasoners rather than

a specific reasoner implementation, OWL reasoners needed to be categorized in some sense.

A natural approach was to obtain this categorization based on the reasoning algorithms, as to

compose OWL reasoners at the reasoning algorithms level would be the most intuitive way,

given that the motivation to reduce resource consumption. Later investigation indicated that

rule-entailment reasoner algorithm would be most amenable for composition in a way that

would achieve resource efficient reasoning. A second problem that needed to be addressed

was the distillation and survey of reasoner characteristics, which would also facilitate the

research as to automatically select OWL reasoners. The survey of OWL reasoners is

presented in 2.3.1 with the categorization of OWL reasoners and the identification of

reasoner characteristics separately presented in section 2.3.1.1 and section 2.3.1.2.

14

The survey of semantic applications was to help the author to learn the interplays between

the application characteristics and OWL reasoner characteristics, and also help the

identification of (reasoner-related) application characteristics, that would facilitate the

design of an automatic reasoner selection process. This survey and the survey of reasoners

mentioned earlier influenced each other to some extent: the distillation of some specific

reasoner characteristics, e.g. closed-world features, was inspired by the observation that the

satisfaction of some application characteristics, e.g. integrity constraints, greatly depends on

the possession of such reasoner characteristics and vice versa. The survey of semantic

applications is presented in section 2.3.2.

Then in order to identify a type of reasoner upon which to carry out the automatic reasoner

composition research, the composability for different OWL reasoner categories is discussed

in section 2.3.3. Rule-based reasoners were found to have better potential in composition

and hence show better suitability for the automatic reasoner composition research. Existing

reasoner composition approaches for rule-entailment reasoners were then studied (although

none of these approaches are called “reasoner composition approach”). These reasoner

composition approaches can fall into three types according to different composition levels

they work on: to manually set the reasoning capability using pre-defined OWL

sublanguages, to manually add/remove inference rules loaded into the reasoner, and

automatic reasoning capability composition. Further investigation of these approaches

revealed a gap where the automatic reasoner composition research could fit in: the existing

reasoner composition approaches are either static relying on human tuning or designed to

work on a specific semantics, therefore emphasizing the need for the design of an automatic

reasoner composition approaches at the reasoning algorithm level and independent of

specific semantics.

As the designed reasoner composition approaches are implemented upon resource-

constrained devices, existing resource-constrained reasoners are presented in section 2.3.4.

Surprisingly, it is rare that resource-constrained reasoners use reasoner composition

approaches. In fact most of them are a direct migration of the desktop OWL reasoning

algorithm onto resource-constrained devices. One resource-constrained reasoner adopts an

automatic reasoner composition approach however it is restricted to only a specific OWL

sublanguage. In addition the investigation of existing resource-constrained reasoners also

reveals another gap for the reasoner composition research (at the implementation

perspective) that none of the existing resource-constrained reasoners is designed for small

devices with very limited resources, e.g. wireless sensors.

15

As will be seen in Chapter 3, rule-entailment reasoners are selected as the basis to carry out

the reasoner composition research. Since RETE [Forgy 1982] is the major reasoning

algorithm for this type of reasoner, a detailed description of RETE is given in the

background section.

2.2 Background	
In this section background knowledge of this thesis is presented. It includes two major parts:

the OWL and its sublanguages and the RETE algorithm and its optimizations.

2.2.1 OWL	and	OWL	Sublanguages	
OWL is an ontology modelling language standardized and recommended by W3C. It

consists of a set of formally defined OWL constructs each of which is given a logic-based

semantic [Patel-Schneider et al 2004]. OWL has three standard sublanguages, i.e. OWL-Full,

OWL-DL and OWL-Lite, varying in the set of constructs supported and the semantic

expressivity. Non-standard OWL sublanguages are also designed for different usages

according to the OWL features supported, such as the pD* family [ter Horst 2005a, ter Horst

2005b] and so on. Standard and non-standard OWL sublanguages are respectively discussed

in section 2.2.1.1 and 2.2.1.2. OWL 2 [OWL 2 Overview] is the latest update of OWL. It

extends OWL with more semantic expressivities and three application-oriented

sublanguages, i.e. sublanguages that have been carefully crafted to suit for different usages.

OWL 2 is introduced in section 2.2.1.3.

2.2.1.1 OWL-Full,	-DL	and	-Lite	
OWL original has three standard sublanguages: OWL-Full, OWL-DL and OWL-Lite.

OWL-Full provides complete support for all OWL constructs and it is fully compatible with

RDF. It is very expressive for modelling domain knowledge however its reasoning tasks are

not decidable, and fully automated reasoning is not possible. OWL-DL (OWL Description

Logic) supports the same set of OWL constructs as OWL-Full but restricts support for some

of the semantics possible in RDF in order to have decidable reasoning tasks. OWL-DL is

currently the most widely used of the OWL sublanguages. OWL-Lite has a reduced

construct set in order to provide the minimal useful language features for tool builders to

support. In the rest of this thesis when OWL is mentioned without specifying the

sublanguage it should be taken to mean OWL-DL.

2.2.1.2 Nonstandard	OWL	Sublanguages	
Some nonstandard OWL sublanguages are designed to have computational or modelling

advantages for some dedicated reasoning tasks. In this section some nonstandard OWL

16

sublanguages are discussed including the pD* semantics [ter Horst 2005a, ter Horst 2005b],

EL++ [Baader et al 2005, Baader et al 2008], DL-Lite [Calvanese et al 2007], and DLP

[Grosof et al 2003].

The pD* semantics (including pD* and pD*sv) defines a weakened but tractable2 subset of

the OWL semantics. It adds to the D* semantics (the complete RDFS semantics extended

with various datatypes, refer to [ter Horst 2005a]) with P entailment rules (a set of

entailment rules implementing the partial semantics for some OWL constructs, refer to [ter

Horst 2005a]). Some OWL constructs are missing, such as cardinality constructs

(cardinality, minCardinality and maxCardinality), some (in)equality constructs (allDifferent

and distinctMembers), Boolean combination constructs (unionOf, complementOf and

intersectionOf), and oneOf. Still a substantial subset of OWL-DL constructs is kept (as

indicated in Table 2-1). Semantics are encoded using a set of RDFS-like if semantic

conditions and therefore the pD* semantics have PTIME 3 entailment complexity when

variables are not used in the target ontology, i.e. checking if a variable-free target ontology

G’ is the logical consequence of an ontology G for the given semantics, and NPTIME4

entailment complexity when variables are used in the target ontology. A later work in [ter

Horst 2005b] extends the pD* semantics with the support of the iff semantics for the

owl:someValuesFrom forming the pD*sv entailment. However it does not have PTIME

complexity. The pD* semantics inspired the standardization of OWL 2 RL [OWL 2 Profiles],

an OWL 2 sublanguage with RDFS-like if semantics. A full set of pD* entailment rules can

be found in Appendix C.

Table 2-1: OWL constructs supported by the pD* semantics

owl:FunctionalProperty owl:Restriction
owl:InverseFunctionalProperty owl:onProperty
owl:SymmetricProperty owl:hasValue
owl:TransitiveProperty owl:someValuesFrom
owl:sameAs owl:allValuesFrom
owl:inverseOf owl:differentFrom
owl:equivalentClass owl:disjointWith
owl:equivalentProperty

2 Tractable is a concept in computational complexity theory. A problem is tractable if it can be solved in
polynomial time.
3 PTIME (Polynomial TIME): A PTIME problem can be solved by a deterministic Turing machine using a
polynomial amount of computation time.
4 NPTIME (Nonuniform Polynomial TIME): A NPTIME problem can be solved in polynomial time on a non-
deterministic Turing machine.

17

The EL++ is a specially dimensioned description logic to have tractable subsumption

problems for ontology with a very large number of properties and classes. A very large

subset of it (without property chain) can correspond to a subset of OWL. Some expressivity

of OWL needs to be removed for EL++ to ensure its tractability, such as atomic negation,

disjunction, at least restriction, inverse property, cardinality, and functional/inverse

functional property. However EL++ is still expressive enough for modelling bioinformatics

or medical ontologies such as Gene [Harris et al 2004] and SNOMED [héja et al 2008]. Part

of the Galen ontology [openGALEN] can be expressed in EL++ as well. The EL family

description logic has been standardized as an OWL 2 sublanguage, i.e. OWL 2 EL [OWL 2

Profiles].

The DL-Lite is a family of description logics carefully tailored to provide efficient

conjunctive query answering capabilities over knowledge bases with large datasets. DL-

Litecore is the basic logic of the DL-Lite family. It can express someValuesFrom

(unqualified), concept conjunction, concept disjointness, domains and ranges of properties,

inverse properties. There are several variants for DL-Litecore extending it with different

features without complicating the reasoning problems. For example DL-LiteR extends DL-

Litecore with inclusion assertions between object properties and DL-LiteF extends with

functional and inverse functional property. DL-LiteR is standardized in OWL 2 as the logic

underpinning of OWL 2 QL [OWL 2 Profiles].

DLP (Description Logic Programmes) is a significant subset of OWL DL and Horn logic. It

aims to provide bi-directional translation between semantic web ontologies and horn rules,

coined DLP-fusion (for both ontology and reasoning problems), which allows an ontology

built on top of rules and conversely rules built on top of an ontology. DLP supports the

following features of OWL DL, namely concept disjointness, domains and range of

properties, inverse and symmetric properties, functional and inverse-functional properties,

inclusion and equivalence of object properties, transitive properties and a limited form of

General Concept Inclusion (GCIs, i.e. C ⊑ D where both C and D are complex concept

description rather than concept names). The translation between OWL and rules adopted by

DLP is directly based on the semantic connections between horn logic and DL. Therefore

rather than translating the ontology into a set of facts and using a set of OWL entailment

rules to perform OWL reasoning, DLP translates the ontology into a horn rule program.

2.2.1.3 OWL	2	and	OWL	2	Sublanguages	
OWL 2 is the latest update of OWL. Although the names of some OWL 2 constructs are

18

different from those in OWL, it is backward compatible with OWL 1. All OWL DL and

OWL Lite ontologies are also considered as OWL 2 ontologies [OWL 2 Overview]. OWL 2

adds some new features into OWL, including some new syntactical features, such as disjoint

union of classes, and some new expressivity enhancements, such as: keys; property chains;

richer datatypes/data ranges; qualified cardinality restriction; asymmetric, reflective and

disjoint properties; and some enhanced annotation properties. These new expressivities

together with OWL DL amount to an equivalent expressivity as the description logic

SROIQ(D) (refer to [Baader et al 2007] for the naming scheme for a description logic). As

in OWL 1, there are two types of semantics for OWL 2, a direct model-theoretic semantics

[OWL 2 Direct Semantics] and a RDF-based semantics [OWL 2 RDF-Based Semantics]. A

correspondence theorem is defined between them.

OWL 2 defines five sublanguages. OWL 2 Full and OWL 2 DL are used to (informally)

represent the entire OWL 2 capabilities when respectively interpreted using RDF-based

semantics and direct semantics. OWL 2 DL can be viewed as OWL 2 Full with restrictions

on some RDF features, such as the separation of properties, individuals and classes. In

addition OWL 2 also defines three other more frequently used sublanguages, i.e. OWL 2 EL,

OWL 2 QL and OWL 2 RL, in order to obtain tractable reasoning problems for some

specific applications while retaining sufficient expressivities. OWL 2 EL extends EL++ and

is designed to provide tractable reasoning services for very large ontologies with classes.

OWL 2 QL enables efficient conjunctive query answering. OWL 2 RL defines a set of

entailment rules (based on the pD* semantics), enabling OWL ontologies to be reasoned

using rule systems.

Note that in the rest of this thesis that if not specifically mentioned, the term OWL is used

only for OWL DL. The terms OWL 2 will be specifically mentioned when OWL 2 is to be

discussed.

2.2.2 RETE	and	RETE	Optimizations	
As will be discussed in Chapter 3, the rule-entailment reasoners (using the ontology

independent translation approach) show better suitability than the other reasoner categories

for reasoner composition research. As the typical reasoning algorithm for rule-entailment

reasoners, the RETE algorithm [Forgy 1982] is described and discussed in detail. Some

optimizations have been designed to reduce its resource consumption, and they are

described and discussed as well.

19

2.2.2.1 An	Overview	of	RETE	
The RETE algorithm is an efficient forward chaining pattern matching algorithm that

matches facts in working memory against rules using a discrimination network termed

RETE network (Figure 2-1). RETE forms the basis for most modern production rule engines

and is also the internal reasoning algorithm for rule-entailment reasoners. RETE

incorporates two of the three types of knowledge that are considered may be included in a

production system algorithm [McDermott et al 1978], which are

memory support, i.e. a scheme indicating the subset of working memory elements matching

each condition element, and

condition relationship, i.e. interaction between condition elements within a rule.

The above two types of knowledge correspond to the alpha network and beta network of a

typical RETE network (as shown Figure 2-1). The alpha network is comprised of one-input

nodes named alpha nodes (maybe chained for some implementations), each of which

performs intra-element test for each individual condition element in the left hand side (l.h.s.)

of each rule. This intra-element test operation is termed match. Successfully matched facts

are stored in the alpha memory of the corresponding alpha node as an intermediate result

(IR), forming the memory support.

As given in Figure 2-1, the beta network is comprised of networked two-input beta nodes

that check for the consistency of variable bindings for pairs of intermediate results. The

consistency checking operation is termed a join. Each input has associated memory where

inputs from alpha memory or previous beta memory joins are stored, called beta memory. A

typical beta node receives an intermediate result from one input each time (and stores it in

the connected beta memory) and joins it against intermediate results stored in the opposite

input. A joined intermediate result is generated for the paired tokens with consistent variable

bindings and it is propagated to its successors which could be another beta node performing

similar inter-condition checks or the conflict set (where intermediate results successfully

matched to the entire rule reside) waiting for firing. The intermediate results joined by the

last beta node are termed as an instantiation of the rule. The beta network realizes the

condition relationship.

Note that the above mainly describes how RETE handles additions (non-negative fact).

Deletion (negative fact) is handled in the same way as addition. However rather than storing

the deleted intermediate result in (alpha/beta) memory, RETE removes any same

20

intermediate results stored in the memory, and then propagates to the next node.

Figure 2-1: An example RETE network

The RETE algorithm operates iteratively with each iteration (termed a RETE cycle in this

thesis) containing facts matching, joining and firing. The firing of rules may change the

working memory by adding/removing any inferred facts, and changes are reflected in the

RETE network by inserting the newly inferred facts into the network, matching and joining

as normal facts. RETE blocks when no more changes are made to the working memory, and

the result in working memory then contains all asserted and inferred facts.

Alpha	Node	1 Alpha	Node	2 Alpha	Node	3 Alpha	Node	4

Conflict	set

Working	memory	
(Fact	base)

Fire.	Changes	to	
working	memory

Alpha	
network

Beta	
network

Facts

Alpha	Node

Alpha	Memory

Beta	Node

Beta	Memory

IR IR IR IR

IR IR

IR IR

IR IR

Beta	Node	1

⊳⊲	
Join

Successfully	
Joined	IR	from	
Beta	node	1

Successfully	
Joined	IR	from	
beta	node	2

Beta	Node	2

⊳⊲	
Join

⊳⊲	
Join

Beta	Node	3

Instantiations

IR	=	Intermediate	Results

21

RETE does not solve two problems that are commonly encountered in practical

implementations. They are conflict resolution, i.e. how multiple instantiations can be

ordered in the conflict set for firing, and rule firing, i.e. how firing a rule can change the

working memory (e.g. adding/removing facts) and then affect the execution of the RETE

algorithm (e.g. removing a fact can cause the retraction of an instantiation in conflict set).

Many solutions have been proposed but since they are out the scope of this thesis they are

not discussed in detail here.

2.2.2.2 Other	Pattern	Matching	Algorithms	
There are some other pattern-matching algorithms besides RETE. The two most famous

ones are TREAT [Miranker 1987] and LEAPS [Miranker et al 1990].

TREAT is designed following the conjecture made in [McDermott et al 1978] that

sometimes maintaining intermediate results may require more efforts than re-testing and

hence it becomes not worthwhile. It incorporates three types of knowledge: condition

membership, memory support and conflict set support, where the former two are already

defined in [McDermott et al 1978] as two of the three knowledge types should be included

in a production system algorithm, and the conflict set support is proposed by TREAT as a

forth type of the knowledge. It decides whether to generate or to invalidate instantiations for

addition and retraction of facts. TREAT uses alpha memory only and excludes beta memory,

realizing memory support but excluding the condition relationship knowledge of a RETE–

based production system.

An initial empirical test by counting joins required in reasoning show TREAT outperforms

RETE in all cases [Miranker 1987]. However a later work in [Nayak et al 1988] points out

that although TREAT performs faster deletion operation for positive nodes, RETE

outperforms it in most cases as TREAT is more likely to suffer from a long-chain effect, i.e.

where the absence of successful matching is only detected after a large amount of expensive

matching operations have been performed, leading to a waste of computational resources.

Another performance comparison conducted in [Wang and Hanson 1992] shows TREAT

always outperforms RETE in terms of the number of joins and storage required for

evaluating database rule conditions. However later work in [Ding et al 2009] replaces the

RETE engine in CLIPS with a TREAT engine and the experiment shows TREAT scales

better than RETE. As recently pointed out by Miranker on his personal website5, RETE and

TREAT share the same algorithmic complexity and the algorithmic superior of TREAT can

5 http://www.cs.utexas.edu/~miranker/treator.htm

22

easily be overcome by implementation. Furthermore since a single pass method is outlined

for producing code for RETE, a RETE implementation is easier than a TREAT

implementation.

LEAPS (Lazy Evaluation Algorithm for Production Systems) is a variant of TREAT with

best-first search for instantiations [Miranker et al 1990]. It is developed to avoid time and

space wastage in the eager evaluation of rules [Miranker et al 1990]. Rather than

enumerating the conflict set searching for the first to fire, LEAPS executes a best-first

search for instantiations on a total ordered working memory (by recentness). Search states

are stored in a stack. For each addition (deletion) that is matched to a non-negative fact

(negative fact), an initial search state is generated and pushed into a stack. Once an

instantiation is found the best-first search pauses immediately. The current search state is

pushed into stack and the instantiation is fired. A next search state is popped as the root of

the following search if the current search is exhausted. The algorithm halts if no more search

states can be popped. A preliminary evaluation in [Miranker et al 1990] shows it

substantially improves execution time as well as the space requirement for some application

programs. Descriptions of the LEAPS implementation in OPS5 can be found in [Miranker et

al 1990, Batory 1994]. LEAPS was supported in the Drools 3.x rule engine as well but not

in later versions due to poor maintenance [Drools Documentation V4.x].

Although TREAT and LEAPS outperform RETE in some cases, RETE is widely

implemented in general rule engines and a lot of optimizations have been developed (as will

be discussed in the next section), improving its performance. In addition TREAT and

LEAPS have not yet been implemented in any surveyed rule-entailment reasoners. As a

matter of fact RETE is the major algorithm used by the surveyed rule-entailment OWL

reasoners.

2.2.2.3 RETE	Optimizations	
RETE stores intermediate results, enabling rule matching to be performed incrementally

based on previous matching/join results. This enhances reuse however may require effort

and memory to maintain the RETE network. Some potential problems include beta memory

explosion, inefficient deletion, and so on [McDermott et al 1978, Miranker 1987]. To

approach these shortcomings a number of RETE optimizations have been proposed in the

state of the art. This section mainly describes and discusses RETE join sequence

optimization heuristics, a group of widely applied optimizations to reduce the resource

consumption of beta memory by reordering the join sequences of conditions. Furthermore

23

how they are applied automatically by RETE optimizers is also discussed. Finally some

other heuristics are also discussed briefly.

2.2.2.3.1 RETE	Join	Sequence	Optimization	Heuristics	
By default conditions are joined in the sequence in which they appear in the rule, which in

many cases is authored by domain experts, and therefore join sequences of these rules are

not already optimized (in most cases they might not). However as indicated by previous

research [Ullman 1982, Brownston et al 1985, Wang and Hanson 1992, Ishida 1994] the join

sequences of condition elements can greatly impact the performance of join operations and

an inappropriate join sequence (e.g. cross production join) could cause drastically more join

operations to be performed, hence leading to a lot more memory (more intermediate results

generated) and time required (more joins performed) by the beta network. Therefore some

join sequence optimization heuristics have been proposed to cope with the excessive

overhead caused by inappropriate join sequences. Two most widely applied are the most

specific condition first [Ishida 1988, Wang and Hanson 1992, Ishida 1994, Özacar et al

2007] and the pre-evaluation of join connectivity [Scales 1986, Nayak et al 1988, Ishida

1988, Ishida 1994, Özacar et al 2007].

The most specific condition element first heuristic is derived from the observation that the

more specific a condition element is it is likely to match less facts, and therefore pushing

more specific conditions towards the front of a join sequence is more likely to generate less

intermediate results in a beta network [Wang and Hanson 1992, Özacar et al 2007]. To

determine the specificity of condition elements some criteria are proposed. The counting

matched facts criterion is the most straight forward one which uses the number of matched

facts of a condition as its specificity. However this criterion appears to be paradoxical, as

this number usually cannot be decided before the execution of RETE engine. A second

criterion is counting variables, which assumes the more variables a condition element has

the less specificity the condition element has and the higher likelihood it generates more

intermediate results. This criterion is easy to implement but sometimes is coarse in

determining the specificity, e.g. it is difficult to determine the specificity if two condition

elements have the same number of variables. Deciding the specificity of a condition element

by the complexity of the OWL predicate is a criterion specific for OWL reasoners [Özacar et

al 2007]. It assumes the alpha memory for conditions with complex predicate is more likely

to be smaller than conditions with simple assertion (e.g. type) or subsumption predicates

(e.g. subClassOf) [Zhang et al 2004, Özacar et al 2007]. Although easy to implement and

more accurate, this approach requires a predefined partial ordering of OWL predicates

24

according to their specificity, which is (1) static, that is the same order is used regardless of

the particular ontology to be reasoned, and (2) somewhat inaccurate, e.g. it is not always

correct to say that owl:subPropertyOf is more specific than owl:subClassOf.

Pre-evaluation of join connectivity between condition elements is another widely adopted

join sequence optimization heuristic [Scales 1986, Nayak et al 1988, Ishida 1988, Ishida

1994, Özacar et al 2007]. It ensures two joining condition elements should at least have one

common variable or otherwise it changes the join sequence. This heuristic is designed to

avoid Cartesian product joins.

There are some other less commonly applied RETE join sequence optimization heuristics.

The pushing volatile conditions last heuristic [Ishida 1988, Ishida 1994] pushes the

condition elements that match the frequently changing facts towards the end of the join

sequence such that less joins are needed for changes. The join cluster sharing heuristic

[Ishida 1988, Scales 1986, Ishida 1994] re-orders the join sequence to enable common join

structures to be shared among rules, reducing the required efforts and resource to 1/n (if the

sharable join structure is shared by n rules). However they are either not suitable for OWL

reasoning (e.g. OWL ontology does not usually change) or highly constrained limiting their

wide adaptation in general cases (e.g. the left-associative join tree of RETE network limits

that only common join structures in the front of rules can be shared). Therefore they are not

discussed in detail in this thesis.

2.2.2.3.2 Application	of	RETE	Join	Sequence	Optimization	Heuristics	
Direct application of different RETE join sequence optimization heuristics may cause

conflict with one another, e.g. pushing the most specific condition to the start of a join

sequence may break the sharable join structure [Scales 1986, Ishida 1988, Wang and Hanson

1992, Ishida 1994, Özacar et al 2007]. Therefore some approaches are proposed to carefully

plan the application of these heuristics.

In the work in [Scales 1986] a condition reorderer for SOAR, a RETE-based production

system, is described to determine an optimized join sequence by repeatedly appending the

“best” unordered condition to the ordered conditions (a best condition is the condition

regarded by the reorderer to add most constraints to the existing ordered conditions). It

classifies conditions into eight predefined ranks (ranging from 1 to 8) according to the static

information that the reorderer knows about the conditions, that is if variables of an

unordered condition is bound by the ordered conditions, if an unordered condition is the

goal condition, and which attribute is multi-attribute (an attribute can have multiple values).

25

A condition with a lower rank is then regarded as one that adds more constraints than a

condition with a higher rank. For example a condition with rank 1, i.e. condition with bound

value in identifier, and constants in attributes and values, is regarded as to add more

constraint than a condition with rank 8, i.e. condition with unbound variable in identifier.

This approach is shown to be effective for SOAR. However it is specifically designed for

SOAR rules and lacks generality. In addition, it uses only static information on the

conditions to approximate optimal join sequence, which will generate the same join

sequence even for two totally different fact bases.

In the work in [Ishida 1994] the author proposes to use a priori execution to collect join

costs for all conditions and then to enumerate all possible join structures and use a

predefined cost model to estimate the cost for them. The join structure with the minimal cost

is considered as the optimal join structure. Three heuristics are used to constrain the number

of enumerated join structures: connectivity, i.e. all generated join structures should have

common variable, minimal-cost, i.e. newly generated join structure should have lower cost

than previously generated ones, and priority, i.e. avoid joining lower priority condition if a

higher priority condition is available. This approach can find an optimal RETE structure

however there are two obvious drawbacks: (1) enumerating all possible candidate join

structures and computing costs for them may require a large amount of resources, and (2) a

priori execution might not always be practical, particularly for the context of this research

where limited resources are available.

2.2.2.3.3 Miscellaneous	RETE	Optimizations	
Some other optimizations are designed to speed up or improve RETE algorithm in other

aspects, such as: using indices to speed up searching for intermediate results; using non-

linear join structures to improve join performance or to enhance join structure sharing;

enhancing RETE with the ability to process time sensitive events, and so on. They are

described in this section.

Indexing is a frequently used optimization to speed up production systems. Work in [Kang

and Cheng 2004] builds two indices for conditions: a sequential index for finding the most

recent fact and a tree shaped index for performing joins. Work in [Özacar et al 2007] uses a

pyramid technique [Berchtold et al 1998] to index ontological data for efficient access.

[Scales 1986] suggests indexing facts by class type and attribute name to minimise the

number of tests on alpha nodes. [Obermeyer et al 1995] suggests selectively building and

applying a relatively simple index structure to speed up production systems.

26

Some research considers replacing the linear join network of RETE with other join

structures such as a binary network or a bilinear network to gain more performance benefit.

The work in [Scales 1986] discusses in detail three possible effects of using a non-linear

join network, including the change of the number of generated intermediate results, the

improvement on the likelihood of join cluster sharing, and the elimination of long-chain

effects. However a potential negative effect is that Cartesian production joins could occur

more frequently, which may easily cancel out the benefits. Uni-RETE [Tambe et al 1992]

adopts a bilinear join structure as an alternative of the linear join structure to increase

sharing of common join structure. Experiment results show that the bilinear version of uni-

RETE requires less time than the linear version of uni-RETE and much less time than

RETE. [Lee and Schor 1992] proposes a matching algorithm for generalized RETE network.

Research in [Wright and Marshall 2003] proposes to prune the beta network at runtime so

the amount of beta memory can be adjusted dynamically according to the availability of

memory. Joins for the pruned part of the beta network is calculated on demand (as in

TREAT). Therefore TREAT is a special case with all the beta networks pruned.

Optimizations are proposed to improve the poor deletion performance of RETE. For

example the work in [Wright and Marshall 2003] proposes to use a search-based asymmetric

deletion approach to speed up the deletion operation in RETE network. It keeps the original

facts in intermediate results and therefore deletion turns out to be searching for all the

intermediate results containing the deleted fact.

Some other optimizations that are not specially designed for RETE are also applicable or

potentially applicable to it. For example, the work in [Schmolze and Snyder 1997] presents

an approach for detecting redundant production rules for general production systems. The

Gator network [Hanson and Hasan 1993] has been proposed as a generalized RETE/TREAT

by allowing generalized join network. Similarly optimizations used in the Gator network

[Hanson et al 2002] can also be studied and used by RETE optimizers. In addition given the

close connection between RETE and query processing in database systems some

optimizations strategies, such as query transformation heuristics, selectivity and cost

estimation and so on, can be modified and applied for RETE optimization [Ullman 1982,

Jarke and Koch 1984, Smitha and Geneseretha 1985, Elmasri and Navathe 2003].

While some of the optimizations discussed in this subsection are not the focus of this

research, some of them, such as indexing, could be introduced to this research without

fundamentally changing the approach described in later chapters.

27

2.3 Related	Work	
Related work of this this research is four-fold. Two surveys are presented in the first

instance: a survey of OWL reasoners and a survey of semantic applications. There were two

goals for the survey of OWL reasoners: a categorization of OWL reasoners that enables the

reasoner composition research to be conducted on a general grounding and the distillation of

a set of reasoner characteristics. The survey of semantic applications helps the

understanding of the complicated interplay between semantic applications and OWL

reasoners, which may facilitate the design of an automatic reasoner selection process.

Results of these two surveys form the foundation of research carried out in this thesis. Then

existing reasoner composition approaches are presented. By discussing the existing reasoner

composition approaches, gaps are identified which the automatic reasoner composition

research can attempt to fill. Finally since the reasoner composition research is targeted at

resource-constrained OWL reasoners, existing resource-constrained OWL reasoners are

examined and how they are designed in order to more efficiently run on resource-

constrained devices are discussed.

2.3.1 Survey	of	OWL	Reasoners	
As informed by research objective 1, a survey of state of the art OWL reasoners was

performed on a set of 26 state of the art reasoners. These reasoners were encountered while

the author was doing literature review. Two goals are targeted for this survey. First, a

categorization of OWL reasoners needs to be obtained in order to enable the reasoner

composition research to be conducted on a type of reasoner rather than a particular reasoner

implementation, providing this research with a more general grounding. Therefore to

categorize reasoners can provide a foundation for this research. A second goal needs to be

achieved in the survey is that a set of reasoner characteristics needs to be distilled, which

may help the automatic reasoner selection research. A summary of the results of this survey

can be found in appendix A. In the next two subsections how the above two goals are

achieved in this survey is discussed in detail.

2.3.1.1 A	Categorization	of	OWL	Reasoners	
As mentioned earlier the goal for obtaining a categorization of reasoners is to provide a

general grounding for the reasoner composition research. A natural approach identified by

the author was to obtain this categorization based on the reasoning algorithms, since to

compose OWL reasoners at the reasoning algorithms level tends to be the most intuitive

way to conduct the reasoner composition research given the motivation to reduce the

resource consumption of OWL reasoners.

28

A similar previous categorization was found in [Zou et al 2004] which categorizes OWL

reasoners into three types according to logic that OWL can be translated into: OWL

reasoners using specialized DL engines, OWL reasoners using full first order logic (FOL)

theorem provers, and OWL reasoners using a reasoner designed for FOL subsets. This

categorization to some extent satisfied the needs of the author as described above. However,

there are some aspects of this categorization that impeded its use for the automatic reasoner

composition research. First, this categorization is not based on reasoning algorithms and

therefore the reasoning algorithms may be different even for reasoners of the same type. For

example, this categorization does not distinguish between rule-based reasoners using

forward-chaining rule engines and those using backward-chaining logic programming (LP)

engines although both of them belong to OWL reasoners using a reasoner designed for FOL

subsets according to this categorization. To distinguish them is important for the automatic

reasoner composition research since forward-chaining rule engines and backward-chaining

LP engines use different rule matching algorithms, which may need totally different

automatic composition approaches. A second aspect is that there have been reasoning

algorithms developed since this categorization was created, and new reasoners have

emerged that do not fall into any category of this categorization, e.g. hybrid reasoners such

as DLEJena [Meditskos and Bassiliades 2010] combine more than one reasoning algorithms.

Figure 2-2: Reasoner categorization used in this thesis

Hence, a new categorization was created by the author, based on the reasoning algorithms of

OWL reasoners (as given in Figure 2-2). The new categorization was inspired by the above

categorization, however with finer categorization. The first category, namely OWL

reasoners using specialized DL engines, is kept however renamed as DL-tableaux reasoners.

The last two types in the previous categorization, i.e. OWL reasoners using full first order

logic (FOL) theorem provers and OWL reasoners using a reasoner designed for FOL subsets,

are replaced by rule-based reasoners using forward chaining engines (rule-entailment

29

reasoners) and rule-based reasoners using backward chaining engines (resolution-based

reasoners). Furthermore two new reasoner categories are added in correspondence to the

development of new reasoning algorithms: the hybrid reasoners that combine more than one

type of reasoners and the miscellaneous reasoners that differentiate other less common

reasoning algorithms. This new categorization was then used in the survey of 26 state of the

art reasoners. In the following subsections, each reasoner category is described.

2.3.1.1.1 DL-Tableaux	Reasoners	
DL-tableaux reasoners convert OWL axioms into DL axioms and then reduce OWL

entailment to determining the satisfiability of the reduced KB, that is to check there is a

valid model for the reduced KB [Horrocks and Patel-Schneider 2004a]. As DL tableaux

calculus is widely adopted in determining KB satisfiability [Baader and Sattler 2001, Baader

et al 2007], reasoners of this type are termed DL-tableaux reasoners.

KB satisfiability checking is the key DL reasoning task as (1) arbitrary conclusions can be

drawn from a contradictory KB [Tobies 2001], and (2) other DL reasoning tasks such as

concept satisfiability, concept subsumption, instance checking and so on can be reduced to it

with the presence of negation in the logic [Baader et al 2007]. For example given C and D

as two concept names, T a TBox6, a an individual, the subsumption C ⊑ D can be reduced to

checking the unsatisfiability of KB {T, (C ⊓ ¬D):a}.

In general, DL tableaux algorithm applies a set of (often hard-coded) consistency-preserving

transformation rules to the ABox7 until no more rules apply. If the transformed ABox

obtained this way consists a contradiction, then the ABox is consistent and inconsistent

otherwise. An example transformation rule could be like:

The à⊓ - rule

Condition: A contains (C1 ⊓ C2)(x), but it does not contain both C1(x) and C2(x).

Action: A’ = A ⋃ {C1(x), C2(x)}.

This rule basically states that if the original ABox A contains a conjunction of two concepts

6 TBox is one of the two components of a typical KB. It contains intentional/terminological knowledge. The
other component of a KB is ABox.
7 ABox is one of the two components of a typical KB. It contains extensional/assertional knowledge. The other
component of a KB is TBox.

30

C1 and C2, and they are not individually included in A, then the newly transformed ABox

A’ needs to included C1(x) and C2(x). Hence if C1 ⊓ C2 is not satisfiable, say C1 = D and

C2 = ¬D, an obvious contradiction will be detected in the A’ that the individual x belongs to

two contradicting concepts D and ¬D. In order for better performance and ensure its

termination, transformation rules are usually hardcoded and many optimizations are

developed and applied. More detail on DL tableaux algorithms can be found in [Baader and

Sattler 2001, Baader et al 2007].

While DL tableau calculi usually perform sound and complete TBox reasoning for the

supported DL, they usually have difficulties in efficiently reasoning large ABox [Haarslev

and Möller 1999, Horrocks et al 2004, Motik and Sattler 2006, Meditskos and Bassiliades

2008a]. This has been partly solved by some newly proposed approaches such as DLE

reasoning [Meditskos and Bassiliades 2008a], a hybrid approach using DL tableau calculi

for efficient TBox reasoning and forward-chaining Datalog rules for scalable ABox

reasoning, and hypertableau [Motik et al 2009], a variety of DL tableau calculi combining

the idea of hyper-resolution to reduce the non-determinism. Since a hybrid approach, e.g.

combining DL-tableaux reasoner with rule-based reasoner, is used in the DLE approach,

reasoners using the DLE approach are considered in this categorization as within the hybrid

reasoner category which will be introduced in section 2.3.1.1.3. Reasoners using the

hypertableau algorithm are still considered as DL-tableaux reasoners.

Some OWL reasoners of this type include FaCT++ [Tsarkov and Horrocks 2006], Pellet

[Sirin and Parsia 2007], RacerPro8, and HermiT [Motik 2007], among which HermiT is the

first and only reasoner implementing the hypertableau calculus while the others implement

DL tableau calculi.

2.3.1.1.2 Rule-based	Reasoners	
The interaction between rules (or FOL implication) and ontology is a long-discussed issue in

the OWL community. Many approaches are proposed for combining them and a good

number of rule-based reasoners have been implemented. According to the different

algorithms used to perform reasoning, they fall into two reasoner categories: the forward

chaining rule-entailment reasoners that use forward chaining (RETE-based) rule engines and

the backward chaining resolution-based reasoners that use resolution-based backward

chaining engines (including partial or full FOL engine). Before going into more detail about

8 http://www.racer-systems.com/

31

the above two reasoner categories, a general description is given on how OWL ontology

interoperates with rules in order to achieve rule-based OWL reasoning.

2.3.1.1.2.1 A	General	Description	of	Rule-based	OWL	reasoning	
In order to process an ontology using rule-based approaches, the ontology needs to be

converted into a rules-compatible form first. This conversion can follow two approaches: an

ontology independent approach that translates OWL ontology syntactically into a set of facts

and (partial) OWL semantics into a fixed set of ontology-independent entailment rules, and

an ontology specific approach that semantically transforms the OWL ontology into a set of

facts/ontology-specific rules according to the OWL direct semantics (following the DLP

approach [Grosof et al 2003]). For example given a set of OWL axioms as

Individual(a type(C))

Class(B partial C)

Class(C partial D)

Class(D complete restriction(P someValuesFrom E)

which states D is a someValuesFrom constraint restricting the existence of instances of class

E on property P, and C is a subclass of D. An ontology independent translation could be a set

of facts in triple format such as

a rdf:type C

B rdfs:subClassOf C

C rdfs:subClassOf D

D rdf:type owl:Restriction

D owl:onProperty P

D owl:someValuesFrom E

and ontology-independent OWL entailment rules can be implemented as

(?a rdfs:subClassOf ?b), (?b rdfs:subClassOf ?c) à (?a rdfs:subClassOf ?c)

32

(?a rdfs:subClassOf ?b), (?c rdf:type ?a)à (?c rdf:type ?b)

(?a owl:someValuesFrom ?b), (?a owl:onProperty ?p), (?o rdf:type ?a), makeTemp(?x)

à (?o ?p ?x).

However an ontology specific translation of the example OWL axioms could generate a set

of ontology specific rules (FOL implication):

C(a)

∀x.CL(x) à DL(x)

∀x.BL(x) à CL(x)

∀x∃y.DL(x)àPL(x, y)∧EL(y)

where BL, CL, DL,EL and PL are the rule predicates for the corresponding classes or predicate.

It is clear from the above examples that the ontology independent approach translates OWL

ontology into a set of facts and uses ontology independent entailment rules to perform OWL

reasoning. Entailment rules are usually static and they are fine grained in terms of the

supported OWL semantics: each rule usually realizes a fixed and small portion of OWL

semantics. Furthermore entailment rules are independent of the ontology and therefore any

changes to the ontology do not change the rule set.

However, it can be seen from the above examples, the ontology specific approach translates

OWL axioms into rules (or FOL implication) by embedding the OWL semantics in this

translation. The rule program (FOL program) obtained through this way is a direct and exact

rule translation of the ontology and since OWL semantics are embedded in the translation

no separate OWL entailment rules are required to perform reasoning. However some

drawbacks also exist. Firstly, this approach embeds semantics in the translation, and

therefore the same semantics could be realized multiple times for similar axioms, causing

extra effort in the translation. For example, semantics for rdfs:subClassOf are realized

twice for both Class(B partial C) and Class(C partial D), generating two different rules.

Secondly, compared to the ontology independent approach, although the ontology specific

approach may generate less complex individual rules (complex concept axioms, e.g. GCI,

will still lead to complex rules to be generated by the ontology specific translation), many

33

more rules than the OWL entailment rules will be generated (for each concept/property

axiom in the ontology a rule is generated).

Depending on the different paradigms/algorithms used to process the translated rule

program, rule-based reasoners are further divided into two reasoner categories: the (forward-

chaining) rule-entailment reasoners and the (backward-chaining) resolution-based reasoners.

Figure 2-3 gives a general structure of rule-based reasoner. The next two subsections

describe these two categories in detail. As will be found out that most surveyed rule-

entailment reasoners use the ontology independent approach and the resolution-based

reasoners use both translation approaches evenly.

Figure 2-3: A general structure of rule-based reasoner

2.3.1.1.2.2 (Forward	Chaining)	Rule-Entailment	Reasoners	
Forward chaining rule-entailment reasoners (for brief they will be referred to as rule-

entailment reasoners in the reminder of this thesis) use (often RETE-based) forward

chaining engine to process the translated rule program. Ontology entailment is the major

34

reasoning task for rule-entailment reasoners. It checks if a target ontology O’ is a logical

consequence of a given source ontology O. If so, O is said to entail O’ (or O’ is entailed by

O) and it is written down as O ⊨ O’. In general a rule-entailment reasoner fully calculate all

possible entailments according to the OWL semantics either expressed as static entailment

rules or embedded in the translated ontology-specific rule program. As a typical algorithm

for rule-entailment reasoners, RETE materializes all inferred entailments and therefore

queries can be laid on the ‘completely’ inferred ontology, enabling fast query evaluation

[Kiryakov et al 2005, ter Horst 2005a, Meditskos and Bassiliades 2008b].

Bossam [Jang and Sohn 2004], OWLIM [Kiryakov et al 2005], OWLJessKB [OWLJessKB

2011], OWL2Jess [Mei et al 2005], BaseVISor [Matheus et al 2006], all use the ontology

independent approach. O-DEVICE [Meditskos and Bassiliades 2008b] combines the

ontology independent approach for TBox reasoning and the ontology specific approach for

ABox reasoning.

2.3.1.1.2.3 (Backward	Chaining)	Resolution-based	Reasoners	
Backward chaining resolution-based reasoners (for brief they will be referred to as

resolution-based reasoners in the reminder of this thesis) translate OWL ontology into a rule

program (using full FOL clauses or partial FOL clauses such as Prolog, Datalog, Flora) and

hand-off OWL reasoning to the corresponding resolution engines (refer to [Nerode and

Shore 1997] for resolution). The goal-directed nature of resolution enables reasoning to be

performed at query evaluation time and therefore in contrast to rule-entailment reasoners in

theory resolution-based reasoners do not require a priori full entailment calculation.

Therefore it is expected that a resolution-based reasoner may have more flexibility in

efficiently answering queries over a frequently changing KB. However some resolution-

based reasoner implementations still pre-calculate and materialize (part of) entailments in

order to gain better runtime query performance, e.g. KAON2 [Hustadt et al 2004a].

Resolution-based reasoners using the ontology specific translation include KAON2 [Hustadt

et al 2004a], Thea [Vassiliadis et al 2009], Hoolet [Tsarkov et al 2006] and Bubo [Volz et al

2003]. Resolution-based reasoners using ontology independent translation include F-OWL

[Zou et al 2004], and Surnia [Surnia 2011].

2.3.1.1.3 Hybrid	Reasoners	
Some OWL reasoners combine two of different algorithms in order to take advantage of

both. Reasoners using this hybrid reasoning approach are categorized as hybrid reasoners.

35

Two well-known hybrid reasoners are Minerva [Zhou et al 2006] which uses DL-tableaux

reasoners to handle TBox reasoning and uses RDBMS and DLP rules to achieve scalable

ABox reasoning, DLEJena [Meditskos and Bassiliades 2010], a hybrid reasoning framework

delegating terminological reasoning to DL-tableaux reasoners and ABox reasoning to a rule-

entailment reasoner [Meditskos and Bassiliades 2008a], and Jena [Carroll et al 2004] which

is a hybrid engine combining a resolution engine to evaluate the backward chaining part of

Jena rules and a RETE engine to evaluate forward-chaining part of Jena rules. Pellet now

supports rules as well but it is still primarily a DL reasoner, therefore it is categorized into

the DL-Tableaux reasoners.

2.3.1.1.4 Miscellaneous	Reasoners	
There are some other OWL reasoners using dedicated reasoning algorithms other than those

mentioned above in order to have efficient reasoning services for some specific purposes.

CEL uses a polynomial time classification algorithm for DL EL++ [Baader et al 2006].

Owlgres [Stocker and Smith 2008], QuOnto [Acciarri et al 2005] and MASTRO [Calvanese

et al 2011] are designed to provide efficient conjunctive query answering algorithm over

large ABox and an algorithm specifically designed for the DL-Lite subset of OWL is used

combining TBox knowledge in query evaluation [Calvanese et al 2007]. The latest version

of Owlgres (can be found here9) supports efficient conjunctive OWL 2 QL reasoning. Oracle

database 11g [Wu et al 2008] evaluates entailment rules by converting them into equivalent

SQL statements and evaluates them in RDBMS, enabling OWL ontology to be stored and

reasoned in Oracle database. The SPIN technology [SPIN 2011] authors the OWL 2 RL

rules using SPARQL rules (with the assistance of the CONSTRUCT keyword) and handles

OWL reasoning using SPARQL engine. Although a similar approach as rule-entailment

reasoners or some of the resolution-based reasoners is used where OWL ontology is reduced

to rules and entailment rules (SPARQL rules) are used to express meaning of OWL

vocabulary, the implementations of SPARQL engine vary and therefore this approach is

classified as miscellaneous reasoner.

Some other algorithms are also proposed to reason DL ontologies, for example the structural

subsumption algorithm [Baader et al 2007] tests subsumption by analysing the syntactic

structure of normalized DL axioms, however it is not yet implemented in any OWL

reasoners and therefore it is out of the scope of this thesis.

9 http://pellet.owldl.com/owlgres/

36

2.3.1.2 Reasoner	Characteristics	
As mentioned earlier a second goal of having a survey on state of the art reasoners is the

distillation of a set of reasoner characteristics. In this survey, 18 reasoner characteristics

were identified and surveyed (as given in Table 2-2). The selection of these reasoner

characteristics was based on an initial survey over semantic reasoners published online10 in

2009. Although this survey is an online document and may have not received strict peer

reviews, its selection of reasoner characteristics is reasonable and therefore it serves as a

good basis to start with. However the distillation of reasoner characteristics was not a one-

off effort and they were not fixed even after the survey had started. Some reasoner

characteristics from the initial survey were removed (version and licensing) since they

appear little relevance to application characteristics of semantic applications. Some others

were combined for brevity (OWL-DL entailment and consistency checking were combined

into reasoning tasks). More reasoner characteristics were added by the author. Some are

common for OWL reasoners such as reasoning completeness, query support, concrete

domain reasoning. Some others characteristics such as incremental reasoning, closed-word

features were inspired when surveying semantic applications. They were then added into

this survey. A full list of the surveyed reasoner characteristics and their descriptions can be

found in Table 2-2. For each reasoner characteristic a code (given in parenthesis) is assigned

in order for better brevity and preciseness when referenced. Surveying values of reasoner

characteristics for reasoners mainly relied on two approaches: literature review (including

published papers, webpages, and product release documents) and looking into the API

documents, which required a large amount of reading and researching: more than 90

different types of literature were reviewed. Still the values of some reasoner characteristics

are unknown for some reasoners. A detailed discussion of how the correlation between these

reasoner characteristics and characteristics of different types of applications can be found in

section 4.3. Detailed results of the survey can be found in Appendix A.

10 http://en.wikipedia.org/wiki/Semantic_reasoner

37

Table 2-2: Reasoner characteristics used in the survey of OWL reasoners

Reasoner characteristic Descriptions

Reasoning algorithm (ALGM) The algorithm used by the reasoner.

Reasoner type (TYPE) The type of the reasoner.

Expressivity (EXPR) The expressivity of the reasoner.

Completeness (CPLT) If the reasoner can completely reason its supported

expressivity.

Reasoning tasks (TASK) The reasoning tasks supported by the reasoner.

Materialization (MTLZ) If the reasoner materialize reasoning results.

Incremental reasoning (INCR) The types of incremental reasoning supported by the

reasoner.

Query support (QUERY) The type of queries the reasoner supports.

Rule support (RULE) The type of rule languages the reasoner supports.

Closed-world features (CWA) The type of closed-world features the reasoner natively

supports.

Concrete domain (CD) The type of concrete domain reasoning supported by the

reasoner.

Database (DB) How database is supported by the reasoner.

Remote interface (RINF) If the reasoner supports remote interface.

User access (ACCESS) How users can access the reasoner.

Explanation (EXPL) If the reasoner provides reasoning explanation function.

Ontology manipulation (MANI) How ontology can be manipulated and accessed by

applications.

Platforms (PLAT) The platforms required by the reasoner.

OS (OS) The operating systems that the reasoner can run on.

38

2.3.2 Survey	of	Semantic	Applications	
This section discusses the survey of five diverse sample types of semantic applications.

They include semantic publish/subscribe systems, semantic context-aware systems, medical

and bioinformatics systems, semantic sensor network management systems, and software

engineering systems. Their selection is motivated by the fact that the use of OWL reasoning

technologies to solve problems within them has been widely investigated, and it is shown

that the use of reasoning technologies indeed addresses some problems within these

domains. The rationale behind this discussion is two-fold: (1) to enable the author to learn

the interplay between semantic applications and OWL reasoners, and to showcase the

amount of intricacies application developers need to know in order to select an appropriate

reasoner using a manual reasoner selection approach, and (2) to assist the identification of a

set of example reasoning-related application characteristics.

2.3.2.1 Semantic	Publish/Subscribe	Systems	
In publish/subscribe systems (pub/sub systems) subscribers register subscriptions in a broker

(or networked brokers) and publishers present publications to the broker. A conventional

pub/sub broker syntactically matches the content of publications against registered

subscriptions. Successfully matched publications are propagated to the corresponding

subscribers. However semantic pub/sub systems extend this approach by matching based on

the semantics of publication/subscription, informed by an associated ontology and

facilitated by an ontology reasoner in the broker.

In general publications in such systems are semantically annotated and the semantic filtering

is delegated to either subsumption checking, conjunctive queries answering [Keeney et al

2008] or instance checking [Haarslev and Möller 2003a, Ushchold et al 2003] according to

the manner that publications/subscriptions are modelled. Thus the systems which use

concept subsumption to perform semantic filtering would require concept-centric reasoning

and in some cases may require to reason over very expressive ontology [Ushchold et al

2003]. On the other hand the systems based on conjunctive query answering and instance

checking may rely more on data-centric reasoning tasks [Haarslev and Möller 2003a,

Ushchold et al 2003].

Some other reasoning related characteristics that are common to semantic pub/sub systems

are also observed. The first and most common one is the ability to efficiently reason and

query over a frequently changing knowledge base. This is a problem encountered by many

semantic pub/sub systems as most existing OWL reasoners are designed to reason over

static datasets. To cope with this issue incremental reasoning approaches and incremental

39

query answering approaches are developed and integrated into some semantic pub/sub

systems [Haarslev and Möller 2003a, Halaschek-Wiener and Kolovski 2008]. A second

characteristic is the vast amount of individuals, motivating the usage of a database-enabled

reasoner [Ushchold et al 2003]. Thirdly, some systems need datatypes to model concrete

information such as date, time or space [Ushchold et al 2003], emphasizing the ability to

reason over concrete domains. Fourthly, for some applications such as battle field systems

or stocks exchange systems, a complete OWL reasoner would be critical for them to

function correctly. A fifth characteristic is the ability to perform temporal or spatial

reasoning, which is of particular importance for complex event systems [Ushchold et al

2003, Keeney et al 2008, Keeney et al 2010]. Other characteristics of some particular

pub/sub systems include the ability to handle closed-world queries [Haarslev and Möller

2003a] and so on.

2.3.2.2 Semantic	context-aware	systems	
Semantic context-aware systems are another type of applications where the use of OWL

ontology and its reasoning technologies are well studied. There is now a consensus that the

use of OWL ontology and reasoning technologies can (1) provide a more expressive method

to model and process complex context such as human interests or activities that are hard to

model using attribute/value pairs [Agostini et al 2005], (2) bring more intelligence into the

utilization and aggregation of ambient information, enabling the personalisation and

adaptation of application behaviours or services [Luther et al 2008, Ejigu et al 2007], and (3)

enhance the interoperability between heterogeneous environmental entities engaged in the

domain by allowing knowledge to be correctly interpreted and reasoned in different entities

[Ali and Kiefer 2009].

An important characteristic of many semantic context-aware systems is the need for rules to

perform (application-specific) reasoning tasks such as triggering actions or aggregating

context to derive high-level context [Wang et al 2004, Weißenberg 2004, Agostini et al 2005,

Chen et al 2005, Gu et al 2007, Ejigu et al 2007, Luther et al 2008, Ali and Kiefer 2009].

Therefore it is vital for them to be able to use rule-enabled OWL reasoners, e.g. to integrate

a SWRL component in the reasoner, or to interface a standalone rule engine for rules

processing outside the reasoner. A second characteristic is the use of conjunctive queries (i.e.

a type of query where conditions are connected using conjunction) to perform more

powerfully and (possibly) human-accessible context retrieving [Chen et al 2005, Gu et al

2007, Ali and Kiefer 2009]. Thirdly in some systems the aggregation of low-level context

data needs to process concrete values, emphasizing the support of concrete domain

40

reasoning in the selected reasoner [Weißenberg 2004, Luther et al 2008, Chen et al 2005,

Boehm et al 2008]. Existing OWL profiles do not process more complex concrete domain

relations other than comparison of datatypes, and so complex concrete values processing are

mostly performed by rule engines, where many builtins, such as algebraic comparison and

computations, are constructed to handle complex concrete value processing. However this is

still considered as a potential reasoning related characteristic, as this can be handled by rule-

enabled OWL reasoners. Fourthly some context-aware systems use repositories to store

context [Gu et al 2007, Boehm et al 2008], which then requires the reasoner to be able to

access and reason over databases. Some other characteristics also exist such as using the DL

Implementation Group (DIG) interface [DIG] to connect distributed applications and

reasoners [Luther et al 2008], using incremental reasoning to incrementally handle context

data increasing the response speed [Luther et al 2008], temporal reasoning [Chen et al 2005,

Boehm et al 2008] and the need to perform runtime ontology manipulation [Boehm et al

2008].

2.3.2.3 Clinical,	Medical	and	Bioinformatics	Systems	
OWL and OWL reasoning technologies have also been applied in clinical, bioinformatics

and medical projects to enable knowledge to be modelled in a more formally defined and

structured manner, which (1) facilitates the sharing and reusing of knowledge and (2)

enables more intelligent data processing through OWL/application-specific reasoning. Some

well-known projects/ontology are the Gene project [Harris et al 2004] which provides a

controlled vocabulary of terms (concepts) for describing genes and gene product attributes;

SNOMED [héja et al 2008] which provides a scientifically validated set of terms for

practitioners to structure and computerize medical records, enhancing the sharing of medical

records; the openGALEN project [openGALEN] which aims to construct a reusable and

application independent ontology for medical procedures; the National Cancer Institute

thesaurus (NCI) [Golbeck et al 2003] which aims to construct ontology on the vocabulary

used in the cancer domain; and finally MGED which is aimed to develop ontology for

describing samples used in microarray experiments.

As an ontology approach is used in the above projects to define structured terminology, an

important characteristic of these projects is their large and sometimes expressive TBox,

which therefore emphasizes the requirement for an efficient and complete classification

reasoning service to be provided by the underlying reasoner. A second characteristic is the

support of a more powerful access mechanism, e.g. conjunctive query answering in

graphical user interfaces, to enable users to query and browse the ontology. This

41

characteristic is not explicitly mentioned for most of the above projects however it can be

deduced from that fact that they are often large in size to be jafit for manually browsing and

accessing (e.g. GO has more than 47,000 concepts, SNOMED has more than 364,000

concepts).

The research in [Keet et al 2007] identifies nine requirements that OWL-based bio-

ontologies may have on OWL reasoning. They are: supporting the ontology development

process; classification; model checking; finding gaps in an ontology and discovering new

relations; comparison of ontologies; reasoning with mereological parthood and other (part-

whole) relations; using a hierarchy of relations; reasoning across linked ontologies; and

complex queries. Some of these, e.g. classification, can be solved by existing OWL

reasoners, whereas some others, e.g. finding gaps and new relations, are quite specific to life

science and were not yet feasible for general OWL reasoners.

2.3.2.4 Semantic	sensor	network	systems/sensor	ontology	
Semantic Web technologies are widely applied in sensor network systems. A typical usage is

to annotate sensor readings (or sensors descriptions) using semantically rich tags to facilitate

intelligent data processing [Calder et al 2010, Kim et al 2008, Eid et al 2007] and to increase

interoperability [Russomanno et al 2005, Sheth et al 2008, Eid et al 2007]. Another usage is

to perform complex management tasks, e.g. sensor tasks assignments [Gomez et al 2008] or

fault correlation [Brennan et al 2009].

The ability to process rules is considered as an important characteristic for many sensor

network systems in order to perform sensor observation validation [Calder et al 2010],

sensor observation processing [Sheth et al 2008], and network management [Brennan et al

2009]. A second characteristic is the ability to process complex queries, in particular

conjunctive queries [Sheth et al 2008, Russomanno et al 2005, Eid et al 2007, Kim et al

2008]. It provides semantic sensor network systems with a powerful approach to retrieve

information from ontology. Third the support of database is also a vital characteristic of

some systems to store sensor observations [Sheth et al 2008, Calder et al 2010]. It is worth

noting that although the capability to handle concrete domain objects such as numbers, time

and so on is not specifically mentioned by most systems, it is again not difficult to infer that

the ability to handle concrete objects is also an important characteristic in such system

where sensor observations are mainly comprised of simple datatypes, e.g. numbers.

Some other characteristics include the provision of graphical interface to allow users to

specify rules [Calder et al 2010], to use distributed reasoning to decentralise data processing

42

workload [Calder et al 2010], to complete OWL-DL classification to ensure complete and

accurate sensor mission assignment [Gomez et al 2008], remote reasoning [Sheth et al 2008],

explanation of deductions [Gomez et al 2008] and resource-constrained reasoning [Brennan

et al 2009]. Furthermore the development semantic sensor ontology usually requires the

support of ontology authoring tools such as Protégé, so a good integration with the ontology

authoring tool of the selected reasoner can be considered as an important characteristic

enabling fast prototyping.

The work in [Compton et al 2009a] surveys a set of 12 sensor ontologies and points out that

conjunctive queries, rules and OWL reasoning were key technologies to provide semantics

support at different layers in semantic sensor networks.

2.3.2.5 Software	engineering	
OWL and OWL reasoning technologies are also applied in the area of engineering systems

to perform varieties of tasks ranging from detecting inconsistencies in software/system

configurations [Shahri et al 2007, Kaviani et al 2008], to semantic-based source code

searching [Keivanloo et al 2010], and bug tracking [Schuegerl et al 2008].

Characteristics vary from system to system. A relatively common characteristic is the use of

conjunctive query languages. As these systems often interact with human software

developers or system administrators, the capability to answer conjunctive queries turns out

to be a major method on which users can rely to access the information [Keivanloo et al

2010, Kaviani et al 2008, Schuegerl et al 2008]. In addition a GUI for posing queries is

sometimes important for users without background knowledge on the conjunctive query

language in use in the system [Keivanloo et al 2010]. Other characteristics include the

requirement to provide justification for inconsistencies in configuration [Shahri et al 2007],

the use of a database to store meta-models of the source code [Shahri et al 2007] or for the

bug repository [Schuegerl et al 2008].

2.3.3 Reasoner	Composability	
The categorization of OWL reasoners in section 2.3.1.1 classifies OWL reasoners into five

types according to their reasoning algorithms. Discussion of the composability is required

for each type of reasoner in order to identify a reasoner type that is better suited as a starting

point for the automatic reasoner composition research of this thesis.

As aforementioned, DL-tableaux reasoners adopt highly complicated DL-tableaux

algorithms to perform OWL reasoning. Although the use of transformation rules to detect

43

obvious contradictions in the KB shows some potential for composition (a rule set can be

easily decomposed and composed to retain only required rules), DL-tableaux reasoners still

have some limitations in terms of composability. Firstly, compared to rule-based reasoners,

transformation rules are still coarse-grained in terms of OWL semantics. For example, the

pD* entailment rule set has 41 fine-grained entailment rules however the tableau algorithm

for the DL SHIF (with a similar OWL expressivity as pD*) only has 7 transformation rules

[Horrocks et al 2000]. Hence the amount of semantics implemented in each pD* entailment

rules is finer grained than that in each tableau transformation rule, leading to better potential

for composition. Secondly, transformation rules are hard coded in the tableau algorithms in

order for better performance, which may complicate the composition algorithmThirdly, a lot

of complicated optimizations and loop detection approaches (blocking) are hardwired in

practical DL-tableaux reasoner in order to ensure the termination of DL-tableaux algorithms

[Baader et al 2007]. In such cases the application of composition algorithms may greatly

increase the complexity of the tableau algorithm: the automatic composing of

transformation rules requires different blocking approaches to be swapped in/out on the fly.

The heave adoption of rules in rule-based reasoners shows good composability at a first

glance. A natural and straightforward approach to conduct reasoning composition is to

add/remove the OWL entailment rules depending on the particular ontology to be reasoned.

Then reasoners using the ontology-specific translation appear to have a good potential to be

composed: the fine-grained, text-coded nature of the rule set (e.g. OWL entailment rules as

well as domain specific rules) enables a selective rule set to be constructed for the particular

ontology to be reasoned. The ontology-specific translation approach embeds OWL

semantics in the translation and therefore the translation itself can be viewed as a

composition process: the translation can always generate a rule program with the exactly

required amount of OWL semantics for the ontology. However there are some potential

limitations for performing reasoner composition using the ontology-specific translation: (1)

the ontology-specific translation is limited to OWL semantics only and hence lacks

flexibility to handle other semantics (modelled as domain specific rules), especially domain

specific semantics which may be onerously required in some applications [Calder et al 2010,

Sheth et al 2008, Compton et al 2009a, Brennan et al 2009, Rector 2002, Ejigu et al 2007],

and (2) unlike ontology-independent translation which is straightforward and easy to

perform, the ontology-specific translation may require analysis of the structure of the

ontology, which may be non-trivial for resource-constrained devices.

Some miscellaneous reasoners are tightly bound to specific underlying implementation

44

mechanisms, such as SPIN which uses a SPARQL engine; Oracle uses RDBMS; and the

composability of those mechanisms are outside the scope of this thesis. Some other

reasoners such as CEL, QuOnto are designed for specific reasoning tasks, specific ontology

expressivities, or specific application areas so their lack of general applicability, low

expressivity and hardwired algorithms makes them less appealing as candidates for

composability studies. The composability of a hybrid reasoner relies on each individual

reasoner of the hybrid reasoner and it is already discussed above.

In summary, rule-based reasoners have better potential for composition and hence it shows

more suitability than the other reasoner types for the automatic reasoner composition

research. To explore how the automatic composition research can fit in rule-based reasoners,

existing reasoner composition approaches used in rule-based reasoners are examined in the

reminder of this section. In fact, at the moment no existing OWL reasoner claims to be a

composable reasoner or to use reasoner composition approaches. Still, some mechanisms

have been adopted by some reasoners in order to (potentially) (mostly manually) compose

their reasoning capabilities/algorithms. These mechanisms are discussed.

All surveyed rule-based reasoners support one or more of three types of composition: the

selection of one of several predefined reasoning levels via the reasoner API, an editable rule

set allowing users to able to re-write or change the entailment rule base (although this is not

deliberately aimed at composition by most implementers) and the support for some

algorithm-level composition mechanisms. A typical example is Jena that allows users to

select from three predefined reasoning levels, OWL, OWL Mini and OWL Micro, forming

the first type of composition. In addition its use of plain text encoded rule files potentially

allows users to freely modify the rule set to construct their own reasoning level, forming the

second type of composition. These two types of composition are easy to implement however

are limited in some aspects. Firstly their applications are manual, therefore requiring user

knowledge of OWL reasoning. For example, users need to have enough knowledge on the

required amount of reasoning capability in order to decide the correct reasoning level, or

users need to be familiar with the semantics and the syntax of the rule language to author a

suitable rule set, which is sometimes hard as the rule language used by many OWL

reasoners is not formally documented, e.g. BaseVISor. Furthermore, manual composition

mechanisms will not be suitable for situations with dynamism nature, e.g. as discussed

earlier the ontology is only known at runtime for some semantic publish/subscribe systems.

Secondly selecting from predefined reasoning levels cannot always provide the most

suitable reasoning capability due to its coarse granularity.

45

An algorithm-level composition mechanism performs (automatic) reasoner composition at

the reasoning algorithm level. Three existing mechanisms fall into this type: dynamic rule

generation, incremental loading of rules/triples (ILR/ILT), and rule dependency.

In general the dynamic rule generation mechanism dynamically generates inference rules

for the particular ontology to be reasoned according to pre-defined rule patterns. Since the

ontology is considered in the dynamic rule generation, the generated rules are specially

customized for the particular ontology and are less complex (in terms of joins) compared to

static entailment rules, which hence can ensure efficient reasoning for the particular

ontology [Meditskos and Bassiliades 2008b].

In [Meditskos and Bassiliades 2008b], O-DEVICE dynamically constructs ontology specific

ABox reasoning rules by materializing predefined ABox rule templates with

concepts/properties defined in the ontology. For example, a rule template

(defrule <rule-name>

 (object (is-a <p-domain>) (name ?obj1)

 (<p> $? ?obj2 &: (transitive ?obj1 ?obj2 <p>) $?))

=> (bind $?v1 (send ?obj1 get-<p>))

 (bind $?v2 (send ?obj2 get-<p>))

 (send ?obj1 put-<p> (union$ $?v1 $?v2)))

is defined to handle transitive properties. The <p> and the <p-domain> are (meta) variables

that will be replaced with each occurrence of a transitive property and its given domain as

drawn from the ontology to be reasoned.

Another work in [Meditskos and Bassiliades 2008a] proposes the DLE reasoning framework

in which TBox classification is handled by a complete DL classifier and ABox reasoning is

delegated to dynamically generated ABox entailment rules by grounding the T-triples (i.e.

concept related triples) in rules with queries to the classified TBox. The generated ABox

entailment rules are then ontology-specific taking into consideration the ontology to be

reasoned. For example, the rule rdfp14a is transformed into a meta-rule as

46

hasValue(var(r), var(y)), onProperty(var(r), var(p)), <x p y>Tà <x type r>T

where hasValue(var(r), var(y)), onProperty(var(r), var(p)) are two queries to the

previously reasoned Tbox. Multiple rules will be generated for the answers retrieved by

these two queries. Any absence of a terminological axiom in the ontology will cause no

answers to the corresponding TBox queries, which leads to the failure to generate such a

rule instance. For example, if there is no hasValue construct in the ontology of the above

example, then no such rules will be generated. Therefore this mechanism can make sure that

the generated ABox rule set consists of only needed rules. In addition dynamically generated

rules have fewer conditions, reducing the joining complexity of rules. The latest work in

[Meditskos and Bassiliades 2010] apply this onto an OWL 2 RL reasoner, DLEJena.

A similar approach is also employed in µOR [Ali and Kiefer 2009, Ali 2010], a mobile

OWL reasoner for ambient intelligence devices. It employs a dynamic rule generation

process that searches the ontology to be reasoned for OWL constructs and then dynamically

generates entailment rules according to rule patterns pre-defined for the found OWL

constructs. For instance if a triple (s rdfs:subClassOf o) is detected in the ontology, a rule

will be generated to infer that every instance of s is also an instance of o, i.e.

(?t rdf:type s) à (?t rdf:type o).

In general the dynamic rule generation mechanisms take into account the ontology to be

reasoned in the rule generation process and hence compared to static entailment rules

dynamic rules generated this way can be simpler and more specific for the particular

ontology. Experiments show that they do improve the memory efficiency of OWL reasoning

[Meditskos and Bassiliades 2008a, Meditskos and Bassiliades 2008b, Ali and Kiefer 2009,

Ali 2010].

The incremental loading of rules/triples (ILR/ILT) is another algorithm level reasoner

composition mechanism [Meditskos and Bassiliades 2008b]. ILR and ILT are designed to

respectively reduce the amount of rules and triples in the reasoning engine in the same time.

ILR separates the ABox reasoning rules into ten pre-defined subsets (i.e. transitive,

symmetric, subproperty, inverse, equivalent, functional, inverse functional, universal

quantifier, existential and classification) and they are evaluated one after another in a

circular manner until no more rules are fired. However application of TBox reasoning rules

is static without pre-analysis of their applicability for the ontology. ILT partitions the

47

ontology into segments of a pre-defined size and incrementally loads them into the reasoner

for reasoning.

Experiments show that ILT and ILR improve the memory efficiency [Meditskos and

Bassiliades 2008b], enabling larger ontology to be processed within a given size of memory.

However ILT can only efficiently handle ontology segments of size 4K-6K triples or 20K

triples (by default). In addition, although a complicated decision process is designed to use a

parameter p to automatically determine which of the two predefined sizes (i.e. 5K or 20K)

to use, this process requires complicated a priori analysis of the class hierarchy and the

complexity of rule subsets. Furthermore, pre-defined weights need to be specified for

dynamic rules in the a priori analysis.

A third algorithm level reasoner composition mechanism is the study of dependencies

among OWL inference rules to avoid unnecessary rule evaluation in linear rule evaluation

paradigms [Wu et al 2008]. Dependencies are used to decide at runtime if a rule should be

evaluated: a rule is evaluated in round n only when in the round n-1 there is at least one new

triple generated for at least one of the predicates contained in the rule. Experiments show it

reduces the number of fired rules and the total inference time. However one drawback of

this approach is there is a high chance that the generation of at least one new triple in round

n-1 of a rule does not guarantee the fire of this rule in the round n therefore leading to still

unnecessary memory to be wastage and processing.

Limitations of existing reasoner composition approaches

The algorithm level reasoner composition mechanisms perform automatic reasoner

composition, and furthermore do improve the time/memory efficiency for their

implementing reasoners. However they still have some potential limitations.

For the dynamic rule generation mechanism, three limitations are identified. A first

limitation is that since dynamic rules are small and very specific about the particular

ontology, the number of dynamic rules may increase dramatically with the size of TBox,

which may to some extent reduce the memory benefit gained by having a smaller and more

specific dynamic rule set. While on the other hand, unlike dynamic rules since static

entailment rules are independent of the ontology to be reasoned, the number of static

entailment rules can keep unchanged for different ontologies. A second limitation is the

dynamic rule generation mechanism lacks applicability in TBox reasoning. In fact none of

48

the three reasoners adopting this mechanism applies it to TBox reasoning. O-DEIVCE only

applies dynamic rule generation to ABox reasoning while TBox rules still relies on static

entailment rules (without application of any composition mechanisms) [Meditskos and

Bassiliades 2008b]. DLEJena uses a full-fledged DL reasoner for TBox reasoning and use

dynamic rule generation for ABox only. Similarly dynamic rules generated in µOR are only

for processing extensional knowledge. As a matter of fact, no dynamic rules are credited for

computing class hierarchy, and hence TBox reasoning is not handled. For example, even a

simple class hierarchy, e.g. a rdfs:subClassOf b, b rdfs:subClassOf c à a

rdfs:subClassOf c, cannot be calculated by µOR. Thirdly, dynamic rules generation is

based on rule patterns pre-defined by reasoner experts for a specific OWL subset. Therefore

different rule patterns need to be generated once a different semantic or rule set is used,

which requires careful manual analysis from reasoner experts. This will greatly limit its

application in situations with high dynamism, e.g. domain-specific semantics are changing

at runtime. Furthermore µOR hardcodes the rule patterns into the algorithm, restricting its

flexibility to changes and extensibility.

In terms of the ILR/ILT mechanism, some limitations are also found. Firstly, ILR only

operates on ABox rules and all TBox rules are loaded without any composition. Therefore

unused TBox rules are still loaded and applied to the ontology, resulting in a waste of

memory. Secondly, experiments show ILT will only have benefit if each ontology partition

contains either 4K-6K triples or 20K triples [Meditskos and Bassiliades 2008b]. These

beneficial partition sizes are much larger than that of many commonly used ontologies, e.g.

wine (1.8K triples), food (0.9K triples) pizza (1.8K triples). Therefore it may not be suitable

for the targeted context for the automatic reasoner composition research in this thesis,

namely resource-constrained devices where the size of ontology may be (much) smaller than

the beneficial sizes. Thirdly, although a decision process is designed to help determine

which of the two beneficial partition sizes is better for the given ontology, the requirement

of a priori analysis to the rule set and the ontology largely limits the application of this

approach in a dynamic environment.

The drawback of the approach of studying rule dependencies is obvious: it is designed for a

very specific linear rule evaluation implementation and therefore lacks general applicability

on other reasoners.

To summarise, the discussion of the composability of different types of reasoners indicates

that rule-based reasoners have better potential for composition and hence they show more

49

suitability than the other reasoner types for the automatic reasoner composition research.

The discussion on the merits and limitations of existing reasoner composition algorithms

reveals some features that the reasoner composition research can consider bringing in, as

listed below.

Firstly, an automatic composition mechanism would be more appropriate than a static one

for situations with dynamic nature which is targeted by the reasoner composition research of

this thesis.

Secondly, existing automatic reasoner composition algorithms still require some a prior

manual analysis of the rule set or the semantics they are going compose on, therefore

manual re-generation of rule patterns, manual re-grouping of rules, or manual re-assignment

of weight values to dynamic rules is required for them in order to handle a different

semantics or rule set. Such prior manual analysis may cause problems for some applications

such as context-aware system or semantic sensor network systems where application

semantics may alter at runtime. Therefore an automatic composition algorithm independent

of semantics is another important direction for this research.

Thirdly, existing automatic reasoner composition approaches can only compose ABox

reasoning. Hence to compose on both ABox and TBox reasoning could be another challenge

for this research.

Finally, the above described algorithm-level composition approaches compose at the rules

level or ontology level (e.g. to generate simpler rules, to load only a subset of rules, to load

ontology incrementally) and their reasoning algorithms, e.g. RETE or resolution, are still

uncomposed, therefore leaving an additional opportunity for this research.

2.3.4 Resource-Constrained	OWL	Reasoners	
While very few resource-constrained reasoners use reasoner composition approaches, this

section however discusses all previous research on resource-constrained OWL reasoners

including MiRE4OWL, µOR, Pocket KRHyper, Bossam, and the work done in [Gu et al

2007, Seitz et al 2010]. Two major goals motivate this discussion. First, given the resource-

constrained environment as the context of the automatic reasoner composition research

conducted in this thesis, how existing resource-constrained OWL reasoners optimize or

compose themselves needs to be examined. The second goal is to assist the identification of

a particular reasoner type for carrying out automatic reasoner composition research for the

resource-constrained environment. Although rule-based reasoners are identified to have

50

better potential than the other reasoner types in terms of composability, still rule-entailment

reasoners and resolution-based reasoners have totally different reasoning algorithms which

may require total different reasoner composition mechanisms to be designed. Therefore a

discussion of the merits and drawbacks of both existing resource-constrained rule-

entailment reasoners and resource-constrained resolution-based reasoners would be

beneficial.

MiRE4OWL [Kim et al 2010] is a resource-constrained rule-entailment OWL reasoner

developed using C++ for the pocket PC platform (PPC). It is constructed based on the MiRE

resource-constrained forward chaining rule engine [Choi et al 2008]. Two mechanisms are

adopted to reduce the memory usage of the RETE engine. One is to restrict the number of

facts of the same type and the other is to use a primary key to detect duplication of facts and

to use an update key to specify the operation to take for duplications. These mechanisms are

useful for keeping a light-weight and up-to-date fact base with continuously incoming facts.

However there is no evidence that its RETE implementation is optimized and therefore it is

likely that inefficient production joins may occur, if the rules are not tuned by rule experts.

µOR [Ali and Kiefer 2009, Ali 2010] is a resolution-based OWL-Lite reasoner for ambient

intelligent devices (J2ME CDC compliance). As already discussed in section 2.3.3, it

implements a dynamic rule generation mechanism that can automatically generate and

compose a set of ABox inference rules for the given ontology according to pre-defined rule

patterns. Dynamic rules are small and specific. However as already discussed, the

drawbacks of this approach are obvious: (1) the size of rule set could increase rapidly with

the size of the TBox, (2) rule patterns are pre-defined and hardcoded, limiting the flexibility

to apply this approach on another semantics or rule set, especially in a dynamic environment

when the semantics or the rule set is changing, and (3) this approach is only applied to ABox

reasoning.

Bossam [Jang and Sohn 2004] is a forward-chaining OWL reasoner designed for desktop

applications however its core engine is compatible to the J2ME CDC platform. However no

evidence show Bossam has any implemented optimization to reduce the resource

consumption for the resource-constrained environment.

In the work [Gu et al 2007] the authors present a framework supporting ontology processing

and reasoning on mobile devices. It is built on CLDC 1.1 and MIDP 2.0. A forward-chaining

rule engine is integrated in this framework to process both user-defined rules and OWL

entailment rules. Context information is stored in a local context repository. A light weight

51

RDQL query engine is implemented to answer conjunctive queries. However no evidence

show which particular algorithm is used for the forward-chaining engine and also no

evidence show that any optimizations are used in the rule engine to reduce the memory

consumption.

The work [Seitz et al 2010] presents a Digital Product Memory for storing product

information and controlling product environment. OWL 2 RL is used to describe product

information and the CLIPS engine [CLIPS] is used to perform forward-chaining rules

matching. An ontology specific translation approach is used to translate between rules and

OWL (refer to the section 2.3.1.1 for ontology specific translation). This work is

implemented on a Crossbow Imote2 module (with 32bit PXA271 XScale CPU 624MHz,

32MB SDRAM and 32MB flash) using C#. However no optimizations are reported to

reduce the resource consumption of the reasoner.

Some mobile DL tableaux reasoners also exist. The mTableaux [Steller and Krishnaswamy

2008] is a resource-constrained DL tableaux OWL reasoner. Three optimisation strategies

are implemented to reduce its memory usage including (1) selective application of

consistency rules, (2) skipping disjunctions, and (3) establishing pathways of individuals

and disjunctions which if applied would lead to potential clashes, and associating weight

values to these elements such that the most likely disjunctions are applied first. Experiments

on a PPC show mTableaux uses less time and memory than Pellet and Racer. Pocket

KRHyper [Sinner and Kleemann 2005, Kleemann 2006, Kleemann and Sinner 2006] is a

DL reasoner based on hyper tableau calculus. However it does not directly handle OWL

ontologies.

In summary, the state of the art review indicates that although some optimizations are

applied to existing resource-constrained OWL reasoners, e.g. MiRE4OWL, in order to have

better time/memory performance, very few of them use the automatic reasoner composition

mechanisms as described in the previous section, and therefore their reasoning capabilities

and reasoning algorithms are still static, further motivating the need for the development and

application of automatic reasoner composition approaches for resource-constrained OWL

reasoning.

In terms of the second goal as to choose between rule-entailment reasoners and resolution-

based reasoners to support the reasoner composition research for resource-constrained

environment, both reasoner types show their merits and drawbacks. In general fully pre-

computing and materialising reasoning results in the RETE algorithm (of rule-entailment

52

reasoners) show better potential to efficiently handle data which are frequently accessed,

efficient to store, and expensive to calculate at runtime, while backward chaining enables

reasoning to be performed at runtime on-demand, which gives it more flexibility in handling

changes (adding/deleting facts). Although reasoning is required for RETE to handle each

change, the caching of intermediate results in RETE enables the reasoning required for

changes to be performed incrementally, which is still efficient enough for resource-

constrained devices. Furthermore, unlike rule-entailment reasoners that fully pre-compute

and materialize reasoning results, enabling very fast and memory efficient query answering

at runtime, the on-demand reasoning nature of resolution gives it less scope to reuse

reasoning results and reasoning needs to be performed at runtime, which may require more

runtime processing and power. Although pre-computation and materialization can be applied

for resolution-based reasoners to enhance the runtime query answering performance,

however, this also has the following limitations for the resource-constrained environment

where processing power, memory, and power are restricted: (1) the fully pre-computation

and materialization of reasoning results may require much more effort than RETE since the

goal-directed feature of resolution requires to enumerate and to test a large number of

possible goals; (2) memory- and time- expensive materialization maintenance algorithms

need to be implemented for changes [Staudt et al 1996, Volz et al 2005], which on one hand

may consume a lot more memory, processing, and power and on the other hand will greatly

reduce its flexibility in handling changes; (3) the “answer space” of resolution is sometimes

too large to materialize in resource-constrained devices.

The above discussion provided the motivation for the selection by the author of rule-

entailment reasoners as the basis upon which the automatic reasoner composition research

for resource-constrained environment would be conducted.

2.4 Summary	
This chapter discusses the background knowledge (section 2.2) and related work (section

2.3) of this research.

Two parts are included in the background knowledge: OWL and its sublanguages (including

both standard and non-standard OWL sublanguages for OWL 1 and sublanguages for OWL

2) and a detailed description of RETE algorithm and its optimizations.

The related work of this thesis consists of four parts. A first related work is a survey of state

of the art OWL reasoners (section 2.3.1), in which a categorization of OWL reasoners was

drawn and a set of reasoner characteristics was distilled. Five reasoner categories were

53

obtained which are the DL-tableaux reasoners, the rule-entailment reasoners, the resolution-

based reasoners, the hybrid reasoners and the miscellaneous reasoners. This survey offers a

basis for the following research to carry out. A second related work (section 2.3.2) is then

presented. Five selected types of applications were surveyed: a semantic publish/subscribe

systems type, a semantic context-aware systems type, a clinical, medical and bioinformatics

type and a semantic sensor network systems type and finally a software engineering systems

type. This survey investigated the requirements of particular applications/application types

and the interplay between these requirements and the selected reasoner, facilitating the

research of an automatic reasoner selection process. A third related work is the discussion of

the composability for different reasoner categories derived in section a survey of semantic

applications, a discussion of reasoner composability for each type of reasoner identified

above. The rule-entailment reasoners and the resolution-based reasoners were found to have

the best potential to be composed. Then a fourth related work discusses about the state of

the art resource-constrained reasoners. Based on this discussion, the suitability for the rule-

entailment reasoners and the resolution-based reasoners to be applied in resource-

constrained environment is discussed. It is found out that rule-entailment reasoners have

better suitability for running in a resource-constrained device. Considering its high

composability and suitability to run in resource-constrained environment, rule-entailment

reasoners are selected as the most appropriate type of reasoner on which the resource-

constrained reasoner composition research will be carried out.

The work undertaken in the related work section achieves objective 1, which is the state of

the art survey objective of this thesis. In the next chapter, the design of the reasoner

composition approach, including two novel automatic reasoner composition algorithms, is

described in detail.

54

Chapter 3
COROR: A COmposable Rule-entailment
Owl Reasoner for Resource-Constrained

Environments

3.1 Introduction	
The discussion of the composability for different reasoner types in section 2.3.3 shows rule-

based reasoners has better potential for composition and show better suitability for carrying

out the composition research. Further discussion of the pros and cons of existing reasoner

composition algorithms has identified some aspects that this reasoner composition research

could further explore. Firstly, the newly designed composition mechanism needs to be an

automatic process in order to perform composition for applications with some dynamism.

Secondly, although the existing automatic composition mechanisms perform well, they still

require some a priori manual analysis of the specific semantics or the specific rule set to be

composed, limiting the flexibility to apply them to a different semantics or rule set at

runtime, which is sometimes the case for applications with dynamism. Hence it would be

preferable that the newly designed composition mechanism can be “fully automatic”

without any a priori manual analysis. Thirdly, the newly designed composition mechanism

needs to operate for both ABox reasoning and TBox reasoning. Finally, investigating the

composability of the reasoning algorithms themselves (rather than how rules are loaded,

how ontologies are partitioned, how dynamic rules are generated, and so on) has never been

studied by previous work.

A later discussion in section 2.3.4 on existing resource-constrained OWL reasoners indicates

that only µOR has adopted a dynamic rule generation mechanism to perform reasoner

composition. Although some optimizations are adopted for some of the other resource-

55

constrained reasoners, their reasoning algorithms remain uncomposed, showing

opportunities for the application of reasoner composition research for resource-constrained

reasoning. A further investigation on whether rule-entailment reasoners or resolution-based

reasoners are more suitable for resource-constrained environment indicates that rule-

entailment reasoners need less runtime processing and therefore power consumption for

query answering due to the pre-computation and materialization of reasoning results.

Although pre-computation and materialization can also be adopted for resolution-based

reasoners to reduce the processing required for answering queries at runtime, the

requirement for materializing large “answer spaces”, the requirement of very complicated

materialization maintenance algorithms, and the large degradation of its flexibility to handle

changes, makes it is quite expensive from a resources perspective to apply materialization to

resolution-based reasoners in resource-constrained environment.

Based on the discussions on the composability of different types of reasoners and their

suitability for resource-constrained environments, rule-entailment reasoners are then

identified as the best suitable type of reasoners to carry out the reasoner composition

research for resource-constrained environments.

The discussion of different existing reasoner composition algorithms in section 2.3.3 has

already pointed the author to some directions where the reasoner composition research can

be developed. Considering that different ontologies may vary greatly in expressivity, e.g. the

Pizza ontology used in this thesis has a DL expressivity ALCF(D) while the Wine

ontology used in this thesis has a DL expressivity SHION(D), the required entailment

rules may be different for them. Hence a natural avenue for achieving composition is to

automatically compose a required set of entailment rules according to the expressivity of the

particular ontology to be reasoned, and unnecessary entailment rules are removed so

intuitively less processing and memory are required. This approach may require an analysis

of the expressivity of the ontology. A straight-forward way to conduct this would be to

examine the OWL constructs contained by the ontology, and this can also be easily and

automatically achieved by existing ontology frameworks such as Jena or OWLAPI

[Horridge and Bechhofer 2011]. Therefore if a condition of an entailment rule does not

match any of the included OWL constructs the rule is never fired for this ontology and thus

the entailment rule needs not to be loaded.

The result entailment rule set composed in this way can then tightly fit the required

expressivity of the ontology. Similar to all the automatic composition mechanisms discussed

56

in the related work, this approach composes only the entailment rule set, and still the RETE

algorithm itself would be noncomposable. However, the discussion of RETE algorithms in

the background knowledge section in Chapter 2 shows that RETE caches all intermediate

results in the RETE network, which is the major source of the memory cost of RETE. To

compose the RETE network such that less memory and processing (e.g. match/join

operations) are required would be a second avenue for achieving composition.

As discussed earlier in section 2.2.2.3.1, the quality of rules, in particular join sequences,

has been found to be the key factor that determines the structure of a RETE network and

inappropriate join sequences can cause a dramatic waste of memory and processing time.

Thus many join sequence reordering optimizations have been proposed in order to have a

better join sequence so that memory- and time- efficient RETE network can be obtained. It

is shown in the discussion in the background knowledge that automatic application of these

join sequence optimizations taking characteristics of the fact base to be processed into

consideration can generate better join sequences for the particular fact base [Scales 1986,

Ishida 1994]. Such automatic application of optimizations pointed a good avenue for the

RETE composition research to follow. However such existing approaches either require a

priori execution of the entire fact base to determine its characteristics [Ishida 1994] or are

designed for a specific production system only [Scales 1986], which are not suitable for

resource-constrained environment targeted by this thesis. Hence a new approach needs to be

designed that requires no a priori analysis to collect required information for optimizing join

sequences.

By looking into the RETE network, two interesting observations are found: (1) facts are

matched against alpha network and stored in alpha memories; hence some analyses of the

alpha memories can obtain some information on the fact base which may be used for join

sequence optimization; (2) the join sequence does not affect the construction of the alpha

network, i.e. regardless of the join sequence the alpha network remains the same as long as

the conditions keep the same. Following these observations, a possible way to perform

automatic composition then could be to have an interrupted RETE network construction

process: to construct only the alpha network first, then to match the ontology against the

alpha network only so some information relevant to join sequence optimization can be

collected at this stage, e.g. the number of matched facts for each condition, the joining

selectivity and so on, then according to these information join sequences are optimized for

the particular ontology, then an optimized and customized beta network is constructed,

finally the fact matching resumes joining in the beta network and finishing the rest RETE

57

cycles.

Following the above two intuitive avenues, this chapter presents COROR, a COmposable

Rule-Entailment Owl Reasoner for resource-constrained environments incorporating two

novel reasoner composition algorithms arising from the two avenues presented above. They

automatically compose the reasoner at different levels according to the particular ontology

to be reasoned such that less memory and time is required by the reasoner, facilitating the

execution of OWL reasoning in highly resource-constrained environments. Section 3.2 gives

an overview of COROR and how the composition algorithms are applied. Then detail on the

two composition algorithms are presented and discussed in section 3.4. Finally section 3.5

studies the possibility to extend this research to support OWL 2 from a design perspective.

3.2 An	Overview	
COROR is a composable reasoner because of the use of two reasoner composition

algorithms, i.e. a selective rule loading algorithm and a two-phase RETE algorithm, which

are designed to compose the reasoner at different levels (rule set level and inside RETE

algorithm) according to the semantics of the particular ontology to be reasoned. The use of

composition algorithms facilitates the construction of a customized reasoner for the

particular ontology and application such that redundant reasoning capabilities and processes

are avoided by minimizing the resources required by the reasoner.

58

Figure 3-1: An Overview of COROR

Figure 3-1 illustrates how different components in COROR interplay with each other. The

composition algorithms are marked using a bold and italic font. The OWL Ontology is

loaded and stored in a fact base where it can be manipulated and queried. Rule loading can

follow two modes, either directly loading the full rule set or selectively loading through the

use of the selective rule loading algorithm. Reasoning is performed by a forward-chaining

RETE engine that can be configured to use either the standard RETE approach, or a novel

two-phase RETE approach that will be presented in this thesis. Results of the reasoning are

fed back into the fact base and the engine halts when an inference closure is reached (no

new entailments can be generated).

3.3 The	pD*	Semantics	
The pD* semantics is chosen as the semantics for COROR for three reasons. Firstly, as

discussed earlier in section 2.2.1.2, it is composed of a definitive set of entailment rules,

which then shows perfect suitability for COROR since it is a rule-entailment reasoner.

Secondly pD* has tractable entailment reasoning. It has PTIME entailment complexity

when variables are not used in the target ontology and NPTIME entailment complexity

when variables are used in the target ontology. However its minor extension, pD*sv, does

59

not enjoy such low complexity. A tractable entailment problem of pD* shows its great

suitability to be applied in resource-constrained environments given the low resource

availability. Thirdly, although some OWL-DL constructs are missing, such as cardinality

constructs, some (in)equality constructs, Boolean combination constructs, and oneOf, it still

preserves a substantial subset of OWL-DL constructs (as indicated in Table 2-1). Given the

resource-constrained context where this research will be applied, any ontology will be

generally much less complex than OWL-DL. It can be envisaged that the pD* generally has

sufficient expressivity and semantics to model the KBs in resource-constrained domains to

an acceptable degree. As a matter of fact, pD* is also used by some state of the art desktop

commercialized rule-entailment reasoners (such as OWLIM and BaseVISor), which

demonstrates its sufficiency in terms of semantics.

3.4 Composition	Algorithms	
Two novel reasoner composition algorithms are used in COROR both at the rule set level

and inside the RETE algorithm, according to the semantics of the particular ontology to be

reasoned. Customized rule set and RETE network are therefore constructed for the ontology.

These composition algorithms form the core design of COROR. In this section the detail of

the two composition algorithms are described.

3.4.1 Selective	Rule	Loading	Algorithm	
The design of the selective rule loading algorithm is originated from the first thought

presented in the introduction of this chapter as to compose at the entailment rule set level. In

general the selective rule loading algorithm dimensions a selected entailment rule set by

estimating the usage of each entailment rule for reasoning the ontology to be reasoned,

using predefined rule-construct dependencies that describe the containment of OWL

constructs in rules. If a construct is referred to in the left hand side (l.h.s.) of a rule, then the

rule is said to depend on the construct and the construct is said to be a premise of the rule in

the dependency relationship. Constructs in the right hand side (r.h.s) of a rule are said to

depend on the rule, and the constructs are consequences of the rule in the dependency

relationship. For example, as shown in Appendix C, the construct rdfs:subPropertyOf is

the premise of rule rdfp13c and owl:equivalentProperty is the consequence. Multiple

premises and consequences may exist for a rule.

The rule-construct dependencies are used by the selective rule loading algorithm to decide if

a rule should be loaded for reasoning a given ontology. A rule is loaded if there is possibility

that it could be fired, and otherwise not loaded. One necessary condition of the rule’s

60

(potential) firing is all its premises are included in the ontology (Note that for brevity a

premise included by the ontology to be reasoned is termed as a valid premise and otherwise

an invalid premise). In other words, if any of its premises are invalid (for the given

ontology), the condition containing the invalid premise will not be met (as the construct is

not included in the ontology) and therefore there is no possibility that this rule is fired.

Therefore the selective rule loading algorithm regulates a rule to be loaded if and only if all

its premises are valid premises.

However the firing of some loaded rules may produce consequences that are themselves

premises for other unloaded rules, validating some previously invalid premises and causing

the loading of unloaded rules. For example, the firing of the rdfp13c rule will add

owl:equivalentProperty into the ontology, validating the premises of rule rdfp13a and

rdfp13b and therefore causing them to be loaded into the engine (supposing the ontology

originally contains rdfs:subPropertyOf but not owl:equivalentProperty). Therefore the

selective rule loading algorithm also regulates that if a rule is loaded then its consequence

can be used to validate premises of other unloaded rules.

The dependency relationships described above, especially these chain-like dependency

relationships, where some premises of one rule are consequences of some other rules, can be

better illustrated as graphs, termed in this research as rule-construct dependency graph.

Figure 3-2and Figure 3-3 respectively illustrate the rule-construct dependency graphs for the

D* entailment rules and the P entailment rules (refer to [ter Horst 2005b] for a full set of D*

and P entailment rules). Note that D* entailment rules and P entailment rules together

comprise the pD* entailment rules used in COROR. All pD* entailment rules in Jena rule

format can be found in Appendix C.

Rules and OWL constructs are represented as nodes in the rule-construct graphs,

respectively represented as regular and rounded rectangles (Figure 3-2 and Figure 3-3).

Each rule/construct corresponds to one node. Different colours are used to mark different

types of nodes, e.g. purple for D* constructs nodes, orange for P constructs nodes and blue

for rules nodes. Dependencies are represented as both dashed arrows (links between core

rules and core constructs) and solid arrows (links between expressivity constructs and

candidate rules). An arrow always points from a premise (if any) to a rule or points from a

rule to its consequence (if any). Note that the differences between these two types of arrows

and the definitions of core rules, core constructs, expressivity constructs and condution rules

61

are discussed in detail in the following paragraphs. A bi-directional arrow linking between a

construct node and a rule node means the construct is both a consequence and a premise of

the rule, i.e. the construct is contained either in the both the l.h.s. and the r.h.s. of the rule,

e.g. rdfs:subClassOf is contained in both the l.h.s. and r.h.s. of the rule rdfs11.

Figure 3-2: Rule-construct dependency graphs (D* entailment rules)

62

Figure 3-3: Rule-construct dependency graphs (P entailment rules)

Two types of constructs are omitted from the rule-construct graphs, i.e. basic constructs and

63

auxiliary constructs. In the selective rule loading algorithm three OWL constructs are

considered as basic constructs, i.e. rdf:type, rdfs:Class and rdfs:Resource, since they are

included in almost all (practical) ontologies. Basic construct premises are then deemed as

valid by default for all ontologies, and for brevity they are omitted from the rule-construct

graphs. One auxiliary construct, i.e. owl:onProperty, is identified as they always appear

with OWL restrictions. Similarly they are also omitted from the rule-construct graphs for

brevity.

The omission of basic constructs and auxiliary constructs from Figure 3-2 and Figure 3-3

may cause the absence of premises or consequences for some rules on the graph. For

example the rule rdfs8 and rdfs10 has no displayed premises since all their premises are

basic constructs. Some other rules also have no premises (and therefore no displayed

premises), including lg, gl, rdf1, rdf2-D, rdfs1, rdfs4a, rdfs4b, rdfp5a, rdfp5b, as the

conditions in their l.h.s. are wildcard conditions (i.e. conditions such as (?x ?y ?z) that

match all kinds of facts). Similar reasons also apply to the rules without displayed

consequence, such as rdfs7x (wildcard r.h.s., no consequences), rdfs3 (basic construct

consequences). However omitting these constructs from the diagrams is only for the purpose

of having a clearer rule-construct dependency graph and does not mean omitting their

premises or consequences. The premises and consequences for these rules remain

unchanged.

According to the rule loading regulation presented above, rules with no displayed premises

are loaded automatically for all ontology as either they have no premises or their premises

are basic constructs. However their automatic loading causes the validation of some other

premises, loading some other rules. For example, the automatic loading of rdf1 validates

rdf:Property, and then causes the automatic loading of rdfs6, which again validates

rdfs:subPropertyOf, causing the loading of rdfs5 and rdfs7x. The cascaded validating and

loading paradigm causes a set of premises to be always validated for all ontologies

automatically and therefore a set of rules to be always loaded for all ontologies

automatically. They are respectively termed as core constructs (including basic constructs)

and core rules. A full list of core constructs include rdf:type, rdfs:Class, rdfs:Resource,

rdf:Property, rdfs:subPropertyOf, rdfs:subClassOf, owl:sameAs,

owl:equivalentClass, owl:equivalentProperty. A full list of core rules include lg, gl,

rdf1, rdf2-D, rdfs1, rdfs4a, rdfs4b, rdfp5a, rdfp5b, rdfs6, rdfs8, rdfs9, rdfs10, rdfp5a,

64

rdfp5b, rdfp6, rdfp7, rdfp9, rdfp10, rdfp11, rdfp12a, rdfp12b, rdfp12c, rdfp13a,

rdfp13b, and rdfp13c. Core constructs and core rules are represented in the diagrams of

graphs using an italic, bold and underlined font. Dependencies in between core rules and

core constructs (both premises and consequences) are represented using dashed arrows. The

other rules are then candidate rules for selective rule loading, and the other constructs are

termed as expressivity constructs. Although a lot of core rules are automatically loaded there

are still many candidate rules for selection, including rdfs2, rdfs3, rdfs12, rdfs13, rdfp1,

rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx, rdfp14a, rdfp14bx, rdfp15, and rdfp16. They

are represented in the diagrams of the graphs using normal fonts. Dependencies between

candidate rules and expressivity constructs are represented as solid arrows.

Hence in general, the selective rule loading algorithm using the rule-dependency graphs

then turns out to be identifying valid premises according to the given ontology and then

follow the dependencies searching for rules to be loaded. For example, given an ontology in

triple format as

ex:Car rdf:type rdfs:Class.

ex:Engine rdf:type rdfs:Class.

ex:Car rdfs:subClassOf ex:hasEngineRestriction.

ex:hasEngineRestriction rdf:type owl:Restriction.

ex:hasEngineRestriction owl:onProperty ex:hasComponent.

ex:hasEngineRestriction owl:someValuesFrom ex:Engine.

Valid premises include rdf:type, rdfs:Class, rdfs:subClassOf, owl:Restriction,

owl:onProperty and owl:someValuesFrom, among which rdf:type, rdfs:Class and

rdfs:subClassOf are core constructs, owl:Restriction and owl:onProperty are auxiliary

constructs, owl:someValuesFrom is expressivity construct. Apart from core rules,

following the dependency relationships starting from the valid premise

owl:someValuesFrom causes the loading of the rule rdfp15. The other rules are not loaded

as their premises are not valid for this ontology.

65

The regulations made by this algorithm ensure unloaded rules that are definitely not fired for

the ontology (as an invalid premise means the construct is not included in the ontology) and

loaded rules are possibly fired. Therefore these regulations may construct a super set of the

required rule set for the ontology: not all loaded rules are guaranteed to fire.

Discussion of the Selective Rule Loading Algorithm:

The selective rule loading algorithm automatically performs composition at rule set level. It

takes advantage of the intrinsic composability of the pD* entailment rule set, i.e. entailment

rules are fine-granulated in terms of OWL semantics and can be freely loaded and unloaded

according to the semantics of the ontology. What makes it different from previous work is

the use of rule-construct dependencies to determine if a rule is necessary to be loaded for a

particular ontology and the capability to work on both ABox rules and TBox rules..

There are some merits about this approach. Firstly, it is independent of reasoning algorithms

and therefore it can be applied to RETE or resolution. Secondly, although pre-analysis is

required to construct the rule-construct dependency graphs limiting its dynamic application

to a different rule set, this approach is independent of the rule set. Thirdly, a lot of core rules

are loaded by default for all ontologies, however there are still 14 candidate rules for

selective rule loading and the candidate rules are in general more complex than core rules

(e.g. they have more conditions). Therefore the loading of all these candidate rules in an

uncomposed reasoning approach is likely to cost a lot of time and memory consumption,

necessitating a selective loading of them into the engine.

Some drawbacks of the selective rule loading algorithms are also identified. A first

drawback is the selected rule set may cause re-execution of the rule selection process once

the ontology is changed at runtime and new constructs are introduced, thereby causing a

potential waste in resources. A second drawback is pre-analysis is required in order to

generate rule-construct dependencies, which, as discussed in section 2.3.3, limits the

dynamic application of this composition approach to an environment with changing

semantics or rule sets.

3.4.2 Two-Phase	RETE	Algorithm	
The design of the two-phase RETE algorithm follows the second thought as presented in the

introduction of this chapter. It performs composition inside the RETE algorithm. Rather than

fully constructing the RETE network and then match facts along the RETE network as

normal RETE does, it uses a novel interrupted RETE construction mechanism (Figure 3-4):

66

firstly a shared alpha network is built; then the RETE network construction is interrupted by

an initial fact matching against the constructed alpha network, with matched facts stored in

alpha memory; some information about the ontology is then collected; according to the

collected information a customized beta network is then built using optimization heuristics

for the particular ontology; and finally the fact matching resumes as normal RETE

algorithm. The initial fact matching breaks the RETE network construction into two phases:

the alpha network construction and information collection phase (the first phase for short)

and the beta network optimization and construction phase (the second phase for short),

inspiring the name two-phase RETE algorithm. This algorithm only changes the way a

RETE network is constructed and the following RETE cycles are performed in a same way

as normal RETE algorithm as described in section 2.2.2. This section presents the two

phases separately in detail.

Figure 3-4: Flow of the Two-Phase RETE Algorithm

3.4.2.1 First	Phase	
In the first phase the shared alpha network is first built according to a node sharing

mechanism in order to reduce the size of alpha network. Since the same condition may

appear in several rules, e.g. (?x rdf:type ?y) appears in rdfs9, rdfp14bx and rdfp16, an

alpha node sharing mechanism is adopted enabling common condition elements to be shared

among rules. This mechanism constructs only one rather than n alpha nodes for a common

condition shared by n rules, therefore the size of alpha memory and the number of match

operations for this condition are reduced to 1/n. Note that the adoption of a node sharing

mechanism adopted is not a novel idea and some other RETE engines, e.g. Drools11 ,

11 http://www.jboss.org/drools

Constructing	a	shared	
alpha	network

Initial	fact	matching	and	
information	gathering

Construct	an	optimized	
beta	network

Finish	the	initial	fact	matching	
and	the	rest	RETE	cycles

First	Phase Second	Phase

67

implement some similar alpha node sharing optimizations to reduce the alpha network. Then

an initial fact matching is performed against the shared alpha network after its construction

and matched facts are stored in the corresponding alpha memory. This enables analyses to

be performed on the matched facts collecting some information about the ontology that is

originally hard to collect before RETE execution, e.g. the number of facts matching to a

particular condition and the join selectivity factor between two joining conditions, and so on.

As already discussed in the section 2.2.2.3 this information can help construct an optimized

and customized beta network for the particular ontology (in particular join sequence). In this

research the number of matched triples for each condition is gathered. As will be described

in the later sections, it is used to optimize the join sequence of conditions.

There are two merits to collect information at this stage. Firstly, as mentioned earlier some

information that is hard to collect before RETE execution can be easily collected at this

stage. The second is the initial fact matching facilitates the collection of some information,

e.g. the number of facts matching a particular condition, without traversing the ontology,

saving some time.

An example rule set and ontology are used to exemplify the algorithm. Given an entailment

rule set R with two rules rdfp14bx and rdfp15 (in Jena rule format) as

[rdfs9: (?v rdfs:subClassOf ?w), (?u rdf:type ?v) à (?u rdf:type ?w)]

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x

rdf:type ?w) à (?u rdf:type ?v)]

and an ontology snippet O (in N-triple format) as

ex:Car rdf:type rdfs:Class. T1

ex:Car rdfs:subClassOf ex:Vehicle. T2

ex:Fiat rdfs:subClassOf ex:Car T3

ex:Engine rdf:type rdfs:Class. T4

ex:hasEngineRestriction rdf:type owl:Restriction. T5

68

ex:hasEngineRestriction owl:onProperty ex:hasComponent. T6

ex:hasEngineRestriction owl:someValuesFrom ex:Engine. T7

ex:myCar rdf:type ex:Car. T8

ex:azrTurbo rdf:type ex:Engine. T9

ex:myCar ex:hasComponent ex:azrTurbo. T10

ex:myCar ex:hasComponent ex:alcon T11

ex:myCar ex:hasComponent ex:energyMX1 T12

ex:myCar rdf:type ex:hasEngineRestriction I13

ex:myCar rdf:type ex:Vehicle I14

whose TBox states any car needs to have a component as an engine and car is a subclass of

vehicle. The ABox contains two individuals ex:myCar and ex:azrTurbo. Facts T1 to T10

are asserted facts, and the facts I13 and I14 are inferred facts that can be deduced from the

inserted ontology according to the rule rdfs9 and rdfp15. Figure 3-5 illustrates the alpha

network of the example rules after the initial fact matching. Both a non-shared and a shared

alpha network are given to illustrate the differences. In Figure 3-5a a non-shared alpha

network is constructed following normal RETE while in Figure 3-5b a shared alpha network

is built following the two-phase RETE algorithm. The common node, i.e. (?u rdf:type ?v),

is shared between rdfs9 and rdfp15, leading to only one node constructed for it. Note that

the condition sequence of rule rdfp15 has been changed ((?u rdf:type ?v) is lifted to the

front of the rule) in the shared alpha network for better illustration, and it does not affect its

join sequence.

69

(a) A non-shared alpha network

(b) A shared alpha network

Figure 3-5: A shared alpha network v.s. a non-shared alpha network.

Matched facts for each condition are stored in the corresponding alpha memory after the

initial matching. The number of matched facts for each condition is therefore collected for

each condition. Results are shown in Table 3-1. The number of matched facts does not

change for non-shared conditions, but the number of matched facts for the common

condition is reduced to half as it is shared by both rules. This number will further reduce if

more rules share this condition.

?v	rdfs:subClassOf	?w

T2
T3

?u	rdf:type	?v

T1
T4
T5
T8
T9

?v	owl:someValuesFrom	?w ?v	owl:onProperty	?p ?u	?p	?x ?x	rdf:type	?w

T7 T6 T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12

rdfs9 rdfp15

T1
T4
T5
T8
T9

?v	rdfs:subClassOf	?w ?x	rdf:type	?w
?u	rdf:type	?v ?v	owl:someValuesFrom	?w ?v	owl:onProperty	?p ?u	?p	?x

T7 T6 T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12

rdfs9 rdfp15

T2
T3

T1
T4
T5
T8
T9

70

Table 3-1: Number of matched facts for each condition

Condition Shared Non-shared
rdfs9 (?v rdfs:subClassOf ?w) 2 2

(?u rdf:type ?v) 2.5 (shared by both
rules) 5

rdfp15 (?v owl:someValuesFrom ?w) 1 1

(?v owl:onProperty ?w) 1 1

(?u ?p ?x) 10 10

(?u rdf:type ?v) 2.5 (shared by both
rules) 5

3.4.2.2 Second	Phase	
In general the second phase of this algorithm heuristically builds an optimized and

customized beta network for the ontology, using the information collected at the first stage,

and then matched facts (stored in alpha network) continue to populate and to join along the

beta network firing rules. Two heuristics from the state of the art, i.e. the most specific

condition first heuristic and the pre-evaluation of join connectivity heuristic, are used in this

phase to optimize the join sequences (refer to section 2.2.2.3 for a detailed description of

them). However the novelty here is the way they are applied. Firstly, they are applied taking

the ontology to be reasoned into account, rather than being statically and directly applied

considering only the rule set. Secondly unlike the previous automatic RETE optimization

approaches that requires a priori execution [Scales 1986] in order to collect information to

apply the join sequence optimizations, here the information collection and join sequence

optimization are embedded into the RETE cycles and therefore the number of matched facts

for each condition can be collected and used as its specificity (which was considered as a

“mission impossible” by a previous work [Özacar et al 2007]).

As already discussed earlier in the background chapter, the most specific condition first

heuristic, orders join sequences according to their specificity to avoid the long chain effect.

In this research the number of matched facts for each condition is taken as an estimate of the

specificity, which, according to section 2.2.2.3.1, is a straight forward way to determine

specificity, but is hard for normal RETE as it cannot be known before execution. The more

matched facts for a condition the less specific it is for the particular ontology. A corollary

presents where the fewer matched facts a condition has, it is more specific. The join

sequence is then reordered where conditions with more matched facts are moved later in the

join sequence. This causes more discriminating joins to be performed first, thereby reducing

the size of the beta network memory required and also the join operations to be performed.

71

For better illustration, the example given in section 3.4.2.1 is continued. The join sequence

reordered after applying the most specific condition first heuristic should look like Figure

3-6.

Figure 3-6: Join sequences after been reordered by the most specific condition first

heuristic.

The pre-evaluation of the join connectivity heuristic is introduced after the most specific

condition first heuristic as the second heuristic to ensure all joining conditions have

variables in common so that Cartesian product joins are avoided. In brief it scans the entire

join sequence from front to the end, and swaps the unconnected condition with the first

connected condition behind it in the join sequence. As illustrated in Figure 3-7 C1, C2 … Cn-1

are conditions having their connection checked (no matter if they are connected or not) and

they form Cpre. Cn is found not connected to Cpre. Therefore this heuristic starts searching

from Cn+1 to the end for the first condition that is connected to Cpre, which is Cm in this case.

Then Cm is then switched before Cn and the rest conditions (conditions behinds Cn) are

moved one place toward the end of the join sequence (as if shown by the second joins

sequence in Figure 3-7). As the join sequence has already been ordered by the most specific

condition first heuristic, Cm is then the most specificity condition after Cn that connects to

Cpre. If none is found to connect to Cpre, then leave Cn where it is, and continue to check the

?v	rdfs:subClassOf	?w ?u	rdf:type	?v

rdfs9

?v	owl:someValuesFrom	?w ?v	owl:onProperty	?p ?u	?p	?x?x	rdf:type	?w

rdfp15	(before)

T2
T3

T1
T4
T5
T8
T9

T7 T6 T1
T2
...
T12

T1
T4
T5
T8
T9

?v	owl:someValuesFrom	?w ?v	owl:onProperty	?p ?u	?p	?x ?x	rdf:type	?w

rdfp15	(after)

T7 T6 T1
T4
T5
T8
T9

T1
T2
...
T12

72

next condition, e.g. Cn+1 in this case. This tries to ensure the connectivity of the join

sequence while avoids the damage to the join sequence where possible. As the rule rdfs9

and rdfp15 are already connected the application of this heuristic does not change the join

sequence.

Figure 3-7: pre-evaluation of the join connectivity heuristic

Customized join sequences are fixed after both heuristics are applied and a customized beta

network is then constructed. After the construction of the RETE network facts stored in

alpha memory continue to pass down the beta network joining each other and firing rules as

in normal RETE algorithm until no rules can be fired. Figure 3-8a and Figure 3-8b gives the

RETE networks of both the original RETE algorithm and the two-phase RETE algorithm

when no more rules are fired. Intermediate results generated by join operations are listed in

the yellow box under the corresponding beta nodes.

C1 C2 Cn Cm…... …...

Cpre

Cm+1 …...Cn+1Front End

C1 C2 CnCm…... …...

Cpre

Cm+1 …...Cn+1Front End

C1 C2 Cn Cm…... …...

Cpre

Cm+1 …...Cn+1Front End

Cn-1

Cn-1

Cn-1

73

(a) The RETE network constructed by the original RETE algorithm

?v	owl:someValuesFrom	?w ?v	owl:onProperty	?p ?u	?p	?x ?x	rdf:type	?w

T7 T6 T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
I13
I14

rdfp15

T1
T4
T5
T8
T9
I13
I14?v	=	?v

T6-T7

?p	=	?p

T6-T7-T10
T6-T7-T11
T6-T7-T12

?x	=	?x
?w	=	?w

T6-T7-T10-T9

Conflict	set

?v	rdfs:subClassOf	?w

T2
T3

?u	rdf:type	?v

T1
T4
T5
T8
T9
I13
I14

rdfs9

?v	=	?v

T2-T8

Facts

Fire

T1 T2 T3 T4 T5 T5 T6 T7 T8 T9 T10 T11

I13 I14

T12

Asserted	Facts

Inferred	Facts

74

(b) The RETE network constructed by the two-phase RETE algorithm.

Figure 3-8: RETE Network with facts after all RETE cycles.

As shown in the diagrams the two-phase RETE algorithm shares common alpha nodes, i.e.

(?x rdf:type ?w) in the rule rdfp15 and the (?u rdf:type ?v) in rdfs9, therefore the

memory is shared between them (as shown in Figure 3-8b). The customized join sequences

enable less intermediate results to be generated. For example, only 4 intermediate results are

generated in the network given in Figure 3-8b, however 6 intermediate results are generated

in the original RETE network given in Figure 3-8a.

?v	owl:someValuesFrom	?w ?v	owl:onProperty	?p ?u	?p	?x?x	rdf:type	?w
?u	rdf:type	?v

T7 T6 T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
I13
I14

rdfp15

T1
T4
T5
T8
T9
I13
I14

?v	=	?v

T6-T7

?w	=	?w

T6-T7-T9

?x	=	?x
?w	=	?w

T6-T7-T9-T10

Conflict	set

?v	rdfs:subClassOf	?w

T2
T3

rdfs9

?v	=	?v

T2-T8

Facts

Fire

T1 T2 T3 T4 T5 T5 T6 T7 T8 T9 T10 T11

I13 I14

T12

Asserted	Facts

Inferred	Facts

75

Discussion of the Two-Phase RETE Algorithm:

The two-phase RETE algorithm performs composition inside the RETE algorithm by

constructing an optimized and customized RETE network for the particular OWL ontology.

It is a fully automatic composition approach requiring no manual analysis or pre-analysis of

either the rule set or the ontology and therefore can be applied to a different rule set or

semantics without human intervention. Since composition is perfomed inside the RETE

algorithm and the entire rule set is loaded, changes on the ontology can be reflected

immediately in the reasoning without re-executing the entire composition. The two-phase

RETE algorithm works on both ABox rules and TBox rules. Unlike the selective rule

loading algorithm which can work on both RETE and resolution, the two-phase RETE

algorithm is designed to work on RETE algorithm only. However it is clear that the

functioning of the two-phase RETE algorithm does not rely on the particular rule set so it is

semantic independent and can be applied to other semantics rather than pD*, e.g. OWL 2.

Two problems need to be further clarified. The first problem is whether the information

collected in the first stage can be used to effectively optimize the RETE beta network. The

second problem is the limitations of using the number of matched facts of a condition as its

specificity to order join sequences.

In terms of the first problem, as the firing of rules may add inferred facts into the fact base

and hence the RETE network, changing the number of matched facts for each condition, the

number of matched facts collected in the first stage may not accurately represent the number

of matched facts when RETE terminates. Therefore it appears that the number of matched

facts collected at this stage is only accurate to construct an optimized RETE network for the

first RETE cycle and this RETE network is not the optimal for the rest RETE cycles.

However, it is also noticed from insights into the RETE network when reasoning over 19

ontologies (as described in the evaluation chapter) one by one that with most ontologies

experimented upon, the majority of joins occur in the first RETE cycle: 15 of a total of 19

ontologies have an average of 75% joins performed in the first iteration (for the remaining 4

ontology this percentage is still above 50%). Furthermore an average of 83% inferred facts

are generated in the first cycle. Hence it is appropriate to optimize the RETE network by

applying heuristics based on information collected here.

For the second problem, it might not always be correct to deduce that a condition with 100

matched facts is more specific than a condition with 101 matched facts as these numbers are

only collected from the initial match, therefore it is highly likely that the previous condition

76

(with 100 matched facts) may have more matched triples the later condition (with 101

matched facts) in the following RETE cycles. This can be partially solved by introducing

more sophisticated mechanisms for specificity estimation, for example combining more

types of information into specificity estimation such as the number of variables of condition

elements, the cardinality of values to be joined and so on. They can all be gathered before or

in the first phase. At the moment no other information is collected, but the approach taken is

equally applicable and, as described later, the approach taken substantially reduces memory

and reasoning time. As a matter of fact as other information can also be collected during the

first phase enabling more sophisticated optimizations, e.g. to order join sequences according

to join selectivity, to be applied to enable the construction of even more customized beta

network.

3.4.3 Hybrid	Algorithm	
The above two composition algorithms compose at different levels: the selective rule

loading algorithm composes at the rule set level while the two-phase RETE algorithm

composes inside the RETE algorithm. Hence it is natural to think that if these two

algorithms will complete each other. Based on this idea, the hybrid algorithm is designed by

simply combining of the selective rule loading algorithm and the two-phase RETE algorithm:

the selective rule loading algorithm is applied first constructing a selected rule set and then

the two-phase RETE algorithm builds a customized and optimized RETE network using the

selected rule set. The hybrid algorithm is inspired by the idea that unneeded rules are

removed from the rule set on which the two-phase RETE algorithm is applied, therefore an

even smaller RETE network is built reducing the memory and reasoning time.

Discussion of the Hybrid Algorithm:

The hybrid algorithm combines both algorithms and therefore it naturally combines the

merits and drawbacks of both. The algorithm is not applicable to other reasoning algorithms

as the two-phase RETE algorithm only applies to the RETE algorithm. The hybrid algorithm

cannot be dynamically applied to a different rule set or semantics as pre-analysis is required

for the selective rule loading algorithm. However the hybrid algorithm composes both at the

rule set level and inside the RETE algorithm.

3.5 Extending	COROR	to	Support	OWL	2	(Design	Perspective)	
OWL 2 has been standardized and recommended in late 2009 by the W3C. As discussed

earlier in the background chapter, OWL 2 RL is one of the OWL 2 sublanguages whose

semantics are given as a set of entailment rules (the full OWL 2 RL rule set can be found in

77

[OWL 2 Profiles]). Therefore OWL 2 shows strong feasibility to be applied in rule-

entailment reasoners. At a matter of fact OWL 2 is an extension of pD* semantics, as

discussed in section 2.2.1.3. This section shows in an analytical way that although COROR

is originally designed for the pD* subset of OWL-DL, it is by design extensible to OWL 2

without fundamental changes to the two composition algorithms, because of their semantics

independent features.

As already discussed in the previous sections, the two-phase RETE algorithm concentrates

on the construction of an optimized RETE network, which is independent of the semantics

in use. Therefore it is applicable to OWL 2 without further change.

However in order to enable the selective rule loading algorithm to run on the OWL 2 rule

set, the rule-construct dependency graphs need to be constructed for OWL 2. Figure 3-9 to

Figure 3-14 list the rule-construct dependency graphs for OWL 2 RL entailment rule set,

showing the applicability of the selective rule loading algorithm to OWL 2 RL without

fundamentally changing the algorithm itself. Similarly core rules and core constructs are

identified and emphasized in the same way as those in Figure 3-2 and Figure 3-3.

Figure 3-9: Rule-Construct dependency graph for OWL 2 RL entailments

(semantics of equality).

78

Figure 3-10: Rule-Construct dependency graph for OWL 2 RL entailments

(Semantics of Axioms about Properties).

79

Figure 3-11: Rule-Construct dependency graph for OWL 2 RL entailments

(Semantics of Classes).

80

Figure 3-12: Rule-Construct dependency graph for OWL 2 RL entailments

(Semantics of Class Axioms)

Figure 3-13: Rule-Construct dependency graph for OWL 2 RL entailments

(Semantics of Datatypes)

81

Figure 3-14: Rule-Construct dependency graph for OWL 2 RL entailments

(Semantics of Schema Vocabulary)

82

As one might notice that in the OWL 2 rule-construct dependencies graphs a third type of

node is used to represent consistency rules (yellow nodes). They are not included in either

Figure 3-2 or Figure 3-3 since no consistency rules are modelled for the pD* semantics.

Two OWL 2 constructs, namely owl:onProperty and owl:onClass, are identified as

auxiliary constructs; rdf:type and owl:Class are considered as basic constructs. Therefore

they do not appear in dependency graphs. Similarly core constructs and core rules are

identified by the following dependencies. Core constructs include owl:sameAs,

owl:AnnotationProperty, owl:Nothing, owl:Thing, rdfs:Datatype, owl:sameAs,

owl:differentFrom, rdfs:subClassOf and owl:equivalentClass; core rules include eq-

rep-p, eq-rep-s, eq-ref, eq-sym, eq-trans, eq-rep-o, prp-op, cls-nothing, cls-nothing2,

cls-thing, dt-type1, dt-type2, dt-eg, dt-diff, dt-not-type, scm-sco, scm-cls, scm-eqc2

and scm-eqc1. Core rules, core constructs and their dependencies are emphasized in similar

way to those in Figure 3-2 or Figure 3-3.

Some improvements can be performed to increase the accuracy of selecting rules using

dependencies. For example, rather than constructing two premises (one for

owl:someValuesFrom and the other for owl:Thing) for the rule cls-svf2, which can cause

its loading even if both constructs are included in the ontology but not in the same triple, e.g.

cannot match (?x owl:someValuesFrom owl:Thing). This can be solved using a complex

premise that combines both owl:someValuesFrom and owl:Thing to limit the existence of

two constructs in one triple. Another example is that owl:maxCardinality is limited to 0

and 1 in some rules of OWL 2 RL entailments, e.g. cls-maxc1, cls-maxc2 and so on;

however the value is not checked for number restriction premises in the current dependency

graphs, such that the above rules can be loaded without considering the value of the number

restrictions. A complex premise can be designed to impose a value condition that the value

of the number restriction can only be 1 or 0.

Although the implementation was not created for OWL 2, it would be straightforward to

implement an OWL 2 conformant selective rule loading algorithm can be implemented after

design analysis as presented above. The implementation of an OWL 2 conformant two-

phase RETE algorithm would also be quite straightforward since it is independent of the

semantics and the rule set.

83

3.6 Summary	
The analysis of the previous composition algorithms and resource-constrained OWL

reasoners has pointed out some aspects the automatic reasoner composition research can

explore. Two ideas for composition are then inspired from this analysis. They perform

reasoner composition on both the rule set and inside the RETE algorithm.

This chapter presents the design of a composable rule-entailment OWL reasoner, COROR,

which performs reasoner composition based on one the required expressivity of the ontology

to be reasoned. Two novel reasoner composition algorithms, i.e. the selective rule loading

algorithm and the two phase-RETE algorithm, are designed following the above two ideas to

perform composition at both the rule set level and inside the RETE algorithm. Hence

COROR instances can be automatically composed according to distinct ontologies.

The selective rule loading algorithm builds a selected rule set according to the OWL

constructs included in the ontology to be reasoned. Some previous work has also been

designed to work on a customized rule set, e.g. dynamic rule generation. However the

novelty of this algorithm is the use of rule-construct dependencies to analyse if a rule is to

be used in the reasoning. In general the selective rule loading is performed following the

dependencies between rules and constructs: a rule is loaded if all the OWL constructs from

its l.h.s. (premises) are included by the ontology (valid), and the loading of this rule may

cause the addition of constructs in its r.h.s. (consequences) into the ontology, leading to the

loading of more rules. These chain-like dependency relationships are represented here using

rule-construct dependencies graphs. They are used to guide the selective loading of rules in

the selective rule loading algorithm. Later discussion shows the selective rule loading

algorithm is reasoning algorithm independent, i.e. can be applied to other some other

algorithms other than RETE (e.g. resolution). It can be applied to another semantic, e.g.

OWL 2 RL, however requires a priori analysis of the semantics for rule-construct

dependencies. Also the requirement of a priori analysis to the semantics when applied to a

different semanticsmakes this composition algorithm unable to be dynamically applied onto

a different semantics. Furthermore, the loading of a selective rule set raises a problem that

re-execution of the selective rule loading algorithm is required if new OWL constructs are

added to the ontology at runtime.

The two-phase RETE algorithm introduces a novel interrupted RETE network construction

approach that integrates the gathering of information required for applying existing join

sequence optimization heuristics into the RETE network construction. Hence the

84

composition of a customized and optimized RETE network for the particular ontology to be

reasoned can be performed at the RETE network construction phase without introducing

extra a priori RETE execution. In general the two-phase RETE algorithm breaks the RETE

network construction into two separate phases and interrupts them with an initial fact

matching. In the first phase a shared alpha network is built using a node sharing heuristic

such that common conditions share alpha nodes. Then the initial fact matching is performed

against the alpha network and matched facts are stored in the corresponding alpha memory.

Some information about the ontology that is otherwise hard to collect is then easily collected

at this stage, e.g. number of facts matched to a specific condition, selectivity factor between

two conditions and so on. At the moment only the number of matched facts for each

condition is collected, however more types of information can be collected. Information

used at this stage it is used to the next phase for building a customized beta network for the

particular ontology. Two heuristics are introduced at this stage for building customized join

sequences, i.e. most specific condition first and pre-evaluation of join connectivity. Rather

being applied directly to the rule set (as the original optimization does), the most specific

condition first is applied taking into consideration the information about the ontology

collected at the first phase, such that a customized RETE join sequence is constructed for

the particular ontology according to it, e.g. the less matched facts of a condition the more

specific it is and it is pushed closer to the front of the join sequence, and to the end

otherwise. Another heuristic is the pre-evaluation of join connectivity of the individual

conditions in given rule. It is applied after the most specific condition first to check its

connectivity. Unconnected conditions are swapped backward for the first connected

condition. After the customized RETE network is constructed stored facts continue to

propagate along it, joining each other and firing rules as ordinary RETE algorithm does until

no more rules to fire.

As discussed later in section 3.4.2.2 the information collected in the first stage after the

initial matching may not be as accurate as when RETE terminates, since more RETE cycles

are needed after the beta network is constructed and new (inferred) facts will be deduced

(from rule firing) and fed back to the fact base, hence matching conditions and storing in the

corresponding memory. However as discussed earlier most fact matching/joining operations

are performed in the initial matching, and most inferred facts are generated at this stage as

well, therefore it is reasonable to use the information collected at this stage (after the initial

matching) to optimize the RETE network. The two-phase RETE network is not algorithm

independent since it can only be applied to RETE algorithm. However it is also semantic

85

independent since its functioning does not rely on any particular rule set.

A hybrid algorithm is designed by using the selective rule loading algorithm to construct a

selected rule set based on which the two-phase RETE algorithm is applied. This algorithm

tries to combine the rule-level composition and algorithm-level composition such that they

can compensate each other. This algorithm is not algorithm independent because the use of

two-phase RETE algorithm. However it is semantic independent because both two

composition algorithms are semantic independent.

Although at the moment COROR is designed to reason over OWL 1 ontology using the pD*

semantics it is shown that both composition algorithms are extensible to OWL 2 RL without

fundamental changes. A later discussion in section 5.2.5 shows the composition algorithms

can be extended to support OWL 2 from the implementation perspective.

This section is targeted at objective 2. As a matter of fact the design of COROR is

considered as a part of the major contribution as identified in the introduction.

Implementation of COROR, as another part of the objective 2, is presented in Chapter 5.

The study of the performance impacts brought by composition algorithms, as targeted in the

objective 3, is presented in Chapter 6. In the following sections the design of a reasoner

selection process is presented. It approaches the research objective 4 identified in the

introduction.

86

Chapter 4
RESP: An Automatic Reasoner

Selection Process

4.1 Introduction	
As discussed in previous chapters the ability to deduce implied knowledge from an ontology

has attracted ever more applications from various domains to use OWL reasoners to solve

problems that are sometimes hard to solve using traditional approaches, such as bridging

heterogeneity in diverse environment, or introducing more intelligence into data processing,

or to detect inconsistencies in a knowledge base and so on. More usages are presented in a

survey of semantic applications as presented in section 2.3.2. On the other hand the ever

increasing application of OWL reasoning techniques in diverse domains also stimulates the

development of OWL reasoning techniques due to the distinct reasoning-related

requirements imposed. For example, as discussed earlier in motivation some sensor network

systems require OWL reasoning to run on sensors, while bioinformatics systems/ontologies

often need to thoroughly discover knowledge implied in the ontology. These differences in

requirements then can be represented as the different (reasoning-related) application

characteristics (ACs) possessed by the distinct applications. In order to handle different

requirements, different reasoning technologies/features/capabilities are required. For

example, a reasoner needs to be able to at least run on resource-constrained devices in order

to provide reasoning support on sensors, and preferably it has some optimizations to reduce

the resource consumption of reasoning. Similarly in order to thoroughly reveal all implied

knowledge in bioinformatics ontologies, a reasoner may need to be able to completely

classify OWL-DL ontology. These different reasoning technologies/features/capabilities are

then the reasoner characteristics (RCs) of OWL reasoners. The diversified ACs of

applications then give rise to reasoners with different RCs being needed.

87

Existing reasoner selections rely largely on consultation between application developers and

reasoner experts, which is straightforward and sufficient at the moment with the relatively

small and simple set of ACs/RCs that currently exist. However, it is envisioned that the ever

more widespread adoption of OWL reasoning into applications in different domains and the

rapid development and emergence of new OWL reasoning technologies may cause such a

consultation approach to become increasingly inadequate in the future. This can be

embodied in two aspects. Firstly, as semantic applications grow more complicated and move

beyond initial prototyping stages, these applications will be developed and extended by

dedicated application developers with little or no knowledge of the intricacies of ontology

reasoning. A direct impact of this aspect is that some ACs are expressed in domain specific

languages which sometimes may be difficult for reasoner experts to interpret and map into

reasoner requirements. For example in some bioinformatics systems, a reasoner expert

might be presented with a requirement that the selected reasoner need to be able to have

such ability as to:

“The causative agent of stomach ulcers is the bacterium Helicobacter pylori is, or that each

instance x of disease of type X with symptom y of type Y is always preceded by infection by z

of species Z in all of its patients suffering from X” (from [Keet et al 2007]).

It is clear that it would not be very easy for most reasoner experts to interpret the above AC

expressed in domain-specific language into a requirement for some RCs. In fact the above

requires having the selected reasoner to be able to deal with existing gaps and to find out

new relationships and new gaps. Therefore there are risks in selecting reasoners in the future

using existing approaches: either a considerable amount of effort is required before an

agreement is reached or, what is worse, an appropriate reasoner is selected due to

misunderstanding. Secondly existing approaches require that a reasoner expert is accessible

to application developers, which will not always be the case. These inadequacies motivate

an automated approach for helping application developers to limit efforts required by

consultation or even to help them independently select a suitable reasoner for their semantic

applications.

From some informal discussions by the author with semantic application developers, it is

found that semantic application developers usually have some “shallow” knowledge on

OWL reasoning, e.g. they may understand conjunctive query, ontology, OWL, and so on.

However they would get confused at more detailed and specific reasoner technologies such

as DL, tableaux, materialization, RETE, entailment rules, and so on. These complicated

88

reasoning-specific terms, however, may sometimes be raised in a reasoner selection process

when reasoner experts try to discuss with application developers whether the selected

reasoner is appropriate or not. However, on the other hand, application developers know

well about what application characteristics need to be implemented on their application, and

requirements posed by them may often be expressed using domain specific languages, as the

example given above. The requirements expressed in domain specific languages often

become hindrances impeding reasoner experts to understand the real needs of the

application. In fact these gaps would become wider with the emergence of more new

application characteristics and new reasoning technologies (reasoner characteristics).

To bridge the above identified gaps between reasoner experts and application developers, a

good way could be to design an automatic reasoner selection process, where a large number

of pre-identified candidate application characteristics expressed in domain specific

languages and pre-identified connections from these application characteristics to reasoner

characteristics are stored. Application developers then only need to identify their required

application characteristics and input these identified application characteristics into the

process. The process can automatically recommend a most appropriate reasoner according

to the existing connections.

This chapter introduces RESP, a novel computer aided OWL REasoner Selection Process, to

enable application developers with little knowledge of the intricacies of OWL reasoning to

independently select an appropriate reasoner for their applications based only on the ACs.

This process imitates the flow of thought in the existing consultation-based reasoner

selection process however what is novel is it serializes expertise on computer: reasoners are

abstracted as RCs and interplays between RCs and ACs are serialized as connections. Hence

application developers only need to identify the ACs of their application and then the

selection in RESP is one of automatic matchmaking between the identified ACs and the RCs

of reasoners according to the connections. RESP enables the reuse of expertise and therefore

RCs and connections need to be identified only once and then reused in the future selections.

This reduces the effort required by the selection of an appropriate reasoner: application

developers need not to know the complicated algorithms of OWL reasoning or to look for a

reasoner expert every time a semantic application is to be developed, which can lower the

barriers for a wider range of applications to adopt OWL reasoning technologies.

An overview of RESP can be found in section 4.2. In section 4.3 discussions of 11 different

reasoner-related aspects of semantic applications are presented, from which example ACs

89

and example connections are derived. These aspects are identified from the survey on

semantic applications as described in the related work. Note that the example ACs and

example connections are only for demonstrating RESP and still at their early stage. Hence

they are neither definitive nor complete and sometimes are simple therefore are lack of

practical usage. Still the distillation of them was not trivial, which required careful reviews

and analysis of more than 80 pieces of published literature and online documents. Section

4.4 describes the matchmaking performed in RESP for selecting an appropriate reasoner

using an artificial use case. A summary is presented in section 4.3.13.

4.2 Overview	of	RESP	

Figure 4-1: An overview of RESP

90

As illustrated in Figure 4-1, RESP consists of three steps:

1. In the first step, application developers identify the ACs for the target application

and input them into RESP for selection.

2. In the second step, matchmaking is performed between the identified ACs and RCs

of each candidate reasoner (reasoner to be selected), according to the pre-identified

connections. The matchmaking result is given for each identified AC. At the

moment the result can only be one of two values, namely satisfied or not satisfied.

Results for all identified ACs are input into the next step for evaluating the

satisfaction rate of each candidate reasoner for the input ACs.

3. In the third step, the satisfaction rate for each candidate reasoner is calculated

using a straight forward approach by dividing the number of satisfied ACs

(|Satisfied_AC|) by the number of selected AC (|Selected_AC|).

%100
_
_

_ ×=
ACSelected
ACSatisfied

RateonSatisfacti

This calculation is unique for this research and can directly represent the level of

satisfaction of a candidate reasoner. For example, if five ACs are input

(|Satisfied_AC|R = 5) and three are found to be satisfied by a candidate reasoner R

(|Selected_AC|R = 3), then the satisfaction rate for R is 60%. The candidate reasoner

with 100% satisfaction rate is then deemed the most appropriate reasoner for the

given application. If none candidate reasoner is found to be the most appropriate

reasoner, users can revise the input ACs according to the results loosening or

tightening the ACs, and rerun RESP until an appropriate reasoner is selected.

Before RESP starts some prerequisites work are required to materialize expert knowledge

that will be used in the selection into RESP (as illustrated in Figure 4-1). First, a set of

candidate ACs needs to be constructed. From this set users identify ACs relevant to their

applications in the first RESP step. The construction of candidate ACs requires expertise of

domain experts. Second, candidate reasoners are registered with RESP as RCs by reasoner

experts. RCs are derived from the survey of reasoner as presented in section 2.3.1.2. Third,

connections between the candidate ACs and the RCs of candidate reasoners are analysed

and modelled in RESP. This requires collaboration between domain experts and reasoner

experts. Although a lot of effort may be required to accomplish the above three prerequisite

91

work in order to materialize expert knowledge into RESP, they are only one-off and once

finished RESP can be reused in the subsequent selection for different applications within the

domain.

Steps in RESP imitates the flow of thought in the existing consultation-based selection

approach: application developers presents the requirements to reasoner experts (equal to

RESP step 1), reasoner experts interpret the requirements into reasoning requirements and

matchmaking reasoning requirements to reasoners based on their expertise on reasoning

(equal to RESP step 2), reasoner experts recommend a most appropriate reasoner to

application developers (equal to RESP step 3). However compared to the consultation-based

approaches, what is novel of RESP is: RESP materializes expert knowledge used in the

consultation-based process as ACs, RCs and connections in the process. There are many

merits for doing this. First, it enables the reuse of expertise knowledge over time in the

subsequent selection for other different applications without the attendance of a real

reasoner expert. Second, materializing expert knowledge can prevent the selection of

reasoners from being affected by geographical issue, e.g. application developers have the

chance to run RESP anywhere in the world to perform reasoner selection without discussing

with a real reasoner experts. Third, RESP hides the complicated interplay between semantic

applications and reasoners from users such that users with little knowledge on ontology

reasoning can use it.

Rather than being specific, RESP is designed to be a high level methodology to facilitate

automatic reasoner selection, and therefore specific technical detail, e.g. the format of

ACs/RCs, the matchmaking algorithm, the format that connections are authored, etc., are

left unspecified until implementation stage. On one hand, this gives more flexibility to

RESP implementers as RESP can be implemented to be domain-specific for a specific

application domain. Therefore domain specific languages can be used to label candidate

ACs allowing RESP users to have better understanding of the candidate ACs when they

identify relevant ACs for their applications. Furthermore the matchmaking can be realized

as general rule engines (connections as rules), or be hardcoded according to the preference

of specific implementers. However on the other hand, problems can be raised: users need to

specify their own format for materializing ACs, RCs and connections, and design their own

algorithm for matchmaking, which could require extra efforts for implementing RESP.

In order to demonstrate RESP, the interplay between the surveyed semantic applications and

reasoner characteristics has been investigated, and example candidate ACs and connections

92

have been derived. For clearer presentation, the interplay is discussed in the next section

from 11 reasoning-related aspects. Note again, the investigation and derived ACs and

connections are still at their early stage, and hence are neither definitive nor complete for

practical usage. Still their development/distillation required careful reviews and analysis of

more than 80 published pieces of literature and online documentations.

4.3 Discussion	of	Interplay	between	Semantic	Applications	and	RCs		
In this section the interplay between the surveyed semantic applications and RCs is

discussed according to 11 reasoning-related aspects, namely: frequently changing KB,

terminology-centric reasoning, required semantics, query-related issues, rules, concrete

domains, closed-world features, large KB, ontology manipulation, explanation of reasoning,

and miscellaneous, with each corresponding to a following subsection. The use of these

reasoning-related aspects was motivated from reviewing the literature of the surveyed

semantic applications where these reasoning-related aspects are the points where semantic

applications are tied to OWL reasoners. Example candidate ACs and connections derived

from each reasoning-related aspect are listed at the end of each discussion. Example

candidate ACs and connections are also used for implementing a prototype tool for

automatic reasoner selection using RESP, as will be depicted in the next chapter.

Several remarks are in order. Firstly, as mentioned before, the derived example candidate

ACs and connections are only for demonstration and therefore they are not complete and

definitive enough for practical usage. More usable candidate ACs and connections can be

identified with the collaboration of domain experts and reasoner experts. Secondly,

discussions are sometimes limited rather than in-depth and exhaustive. This is reasonable

since it is the demonstration of RESP rather than having a thorough investigation of the

interplay between semantic applications and reasoners, that is the major goal of this research.

To limit the complexity of the discussions only three major types of reasoners are

considered in the discussions, which are DL-tableaux reasoners, Rule-entailment reasoners,

and resolution-based reasoners. Thirdly, for simplicity the performance aspects are dropped

from the discussions. However it is obvious that the performance aspects will play an

important role in deciding the selection of an appropriate reasoner for some semantic

applications and so taking the performance of reasoners as an AC is part of the future work.

Finally RCs and their values used in the discussion are selected from the state of the art

survey of OWL reasoners as described in section 2.3.1.2.

The RCs and their values used in the discussions are listed in section 4.3.1. An RC may have

93

multiple different values and these values were gathered in the survey of reasoners.

Discussions of the 11 reasoning-related aspects are separately presented in subsections from

4.3.2 to 4.3.12. Derived example candidate ACs and the correspondingly derived

connections are presented at the end of each subsection using a table format. In the first

column of the table derived example candidate ACs are listed and in the second column the

corresponding connections between the AC and RCs are given. In order to be precise and

concise, some mathematical symbols are used for describing connections and RCs and

values are referred in connections as codes. A summary of all example candidate ACs and

connections is given in section 4.3.13.

4.3.1 RCs	used	
Before discussions of the 11 reasoning-related aspects are presented, RCs and values used in

the discussions are listed in Table 4-1. All RCs distilled from the survey of reasoners (as

introduced in section 2.3.1.2) are used here in the discussions. However to avoid over-

complex discussions of the interplay, the values of some RCs are restricted. Only three types

of reasoners will be considered in the discussions, namely DL-tableaux reasoners, Rule-

entailment reasoners, and resolution-based reasoners. The values of the RC reasoning

algorithm are then correspondingly restricted to only the algorithms used by the above three

reasoner types. Although discussions are restricted to three types of reasoners, still they are

the major reasoner types and hence the discussions are of general sense. Values for two

other RCs, namely query support and rule support, are also restricted to avoid too many

values: for query support only atomic query, SPARQL, nRQL and SeRQL are kept and for

rule support only SWRL and Jena are kept. However extension to support all values for

these RCs does not require fundamental changes to existing connections since some

counterpart values are already used in the discussions.

94

Table 4-1: A summary of values of the corresponding reasoner characteristics in

the survey

Reasoner
characteristic

Values

Reasoning
algorithm
(ALGM)

DL-Tableaux
(tableaux)

RETE (rete) FOL prover (fol)

Prolog (prolog) Datalog (datalog)
Reasoner type
(TYPE)

DL-tableaux (dl)

Rule-entailment
(entailment)

Resolution-based
(resolution)

Hybrid (hybrid) Others (others)
Reasoner
expressivity
(EXPR)

Completeness
(CPLT)

Yes (yes) No (no)

Reasoning tasks
(TASK)

OWL entailment
(ent)

Classification (clsf) Realization (real)

Concept satisfiability
(sat)

Conjunctive query
answering (conj)

KB consistency
(cons)

Materialization
(MTLZ)

Yes (yes) No (no)

Incremental
reasoning (INCL)

Incremental
classification
(classify)

Incremental
consistency checking
(consistency)

Incremental
materialization
maintenance
(materialize)

Query support
(QUERY)

Atomic (atomic) SPARQL (sparql) nRQL (nrql)
SeRQL (serql)

Rule support
(RULE)

SWRL (swrl) Jena (jena)

Closed-world
features (CWA)

OWL (owl) Rule (rule) Query (query)

Concrete domain
(CD)

XSD datatypes (xsd) User-defined datatypes
(user)

computation/compari
son on datatypes
(comp)

Database support
(DB)

Native DB accessible
(access)

Native DB reasoning
(reasoning)

Remote interface
(RINF)

DIG (dig) Self-defined (self)

User access
(ACCESS)

GUI (gui) Command line (cmd)

Explanation
(EXPL)

Native explanation
(yes)

No (no)

Ontology
manipulation
(MANI)

OWLAPI (owlapi) Jena (jena) API (api)

Platforms (PLAT) J2ME (j2me) J2SE (j2se) C++ (cpp)
C# (csharp) Prolog (prolog)

OS (OS) Windows (win) Linux (lin) MacOS (mac)
Symbian (sym) Android (and) PalmOS (pm)
SunSPOT (sun) WinMobile (wm) TinyOS (tos)

95

4.3.2 Aspect	1	-	Frequently	Changing	Knowledge	Bases	
As discussed earlier in the survey of semantic applications, many applications such as

semantic pub/sub systems [Halaschek-Wiener and Kolovski 2008, Haarslev and Möller

2003a, Halaschek-Wiener et al 2006] and semantic sensor network systems [Stuckenschmidt

et al 2010] envision that their knowledge bases could be frequently updated by

terminological or individual axioms. For examples, normally publications may be

continuously received by the broker of a semantic publish/subscribe system and then

combined into the knowledge base in order to match them against publications; sensor

observations may be constantly generated by sensors and combined into the knowledge base

for inference. As indicated by the survey of reasoners many existing OWL reasoners,

especially DL-tableaux reasoners, are designed to handle static knowledge bases, namely

once the knowledge base has been changed, the entire knowledge base needs to be re-

reasoned, which is sometimes inefficient. However these applications often requires quick

turnover and therefore the ability to efficiently reason over changing KBs turn out to be an

important characteristic for the selected reasoners.

For DL-tableaux reasoners incremental reasoning techniques have been developed enabling

KB consistency to be checked incrementally for ABox updates [Halaschek-Wiener et al

2006] and also terminology to be classified incrementally for TBox updates [Parsia et al

2006, Grau and Halaschek-Wiener 2010], which shows the potential for those DL-tableaux

reasoners with these algorithms implemented to reason over updates efficiently.

Resolution-based reasoners can pre-compute and materialization some important reasoning

tasks materialization to enhance runtime query performance (e.g. KAON2 materializes

classification results), however this would require re-reasoning in order to maintain

materialization when the knowledge base changes. An incremental materialization

maintenance algorithm is devised to enable efficiently handling of TBox update in

resolution-based reasoners, in particular those using Datalog engine [Volz et al 2005]. Work

has been done in deductive database to handle incremental materialization maintenance for

fact updates [Staudt et al 1996], but none has been found applied in resolution-based

reasoners in the survey. Given the goal-based query-time reasoning feature of the resolution

algorithm, resolution-based reasoners can perform localized reasoning and then can handle

updates efficiently.

Rule-entailment reasoners use RETE to perform reasoning. According to the description of

RETE given in the background knowledge, RETE inserts each newly added fact into the

96

RETE network where the fact is incrementally matched and joined to existing facts.

Retraction is a similar process as insertion: the retracted fact is matched and joined in the

RETE network. However rather than generating/caching intermediate results and inferring

facts, RETE removes extant intermediate results and extant inferred facts for retraction.

Since RETE view both TBox updates and ABox updates as facts, RETE has the intrinsic

ability to handle both updates incrementally.

Derived ACs and connections for this aspect are given in Table 4-2. To help readers

understand the derived connections, some general rules used to construct connection are

explained here. In general a connection states the conditions that a candidate reasoner needs

to satisfy in order to satisfy the ACs. For examples, the condition TYPE = dl states that the

value of the RC reasoner type of the candidate reasoner needs to DL-tableaux (refer to Table

4-1 for codes); the condition classify ∈ INCL states that the value incremental

classification needs to be included in the RC incremental reasoning of the candidate

reasoner. Sometimes the ACs of the application are also considered in conditions. They are

underlined in order to distinguish them from RCs and RC values. For example, the condition

Required reasoning tasks ⊆ TASK states that the AC reasoning tasks required by the

application (Required reasoning tasks) need to be a subset of the RC reasoning tasks

supported candidate reasoner (TASK); the condition conjunctive queries are required

state that conjunctive queries are required by the application. Conditions in a connection can

be connected using two types of connectors: and and or. An and clause is satisfied only if

all its composing conditions (clauses) are satisfied. An or clause is satisfied only if any of its

composing conditions (clauses) are satisfied.

Table 4-2: Candidate ACs and Connections Derived from Frequently Changing

Knowledge Bases

Derived AC Connections

Frequent
terminological update

(TYPE = dl and classify ∈ INCL) or
TYPE = entailment or
(TYPE = resolution and MTLZ = yes and materialize ∈ INCL)
or (TYPE = resolution and MTLZ = no)

Frequent instance
update

(TYPE = dl and consistency ∈ INCL) or
TYPE = entailment or
(TYPE = resolution and MTLZ = no)

97

4.3.3 Aspect	2	-	Required	Semantics	
The amount of semantics required may vary from semantic applications and usually the

selected reasoner needs to cover the required semantics of the application. For example

reasoning an ontology as expressive as the wine ontology will usually require a full-fledged

reasoner that covers the entire OWL DL semantics to be selected, e.g. Pellet or FaCT++, but

if an ontology falls into the ALN subset of OWL DL, it can be classified using a reasoner

implementing relatively simple structural subsumption algorithm [Baader et al 2007]. This

characteristic can also be used to assign an appropriate reasoner to applications whose

ontology is within some specific OWL sublanguages. For example, some pD*-based rule-

entailment reasoners such as OWLIM and BaseVISor can be used if the ontology uses OWL

constructs within the pD* semantics; CEL classifies on DL EL++ into which many

bioinformatics ontology fall; if the ontology fall into the DL-Lite subclass of OWL then

some dedicated DL-Lite reasoners such as Owlgres and QuOnto can be used to perform

efficient query answering services.

Derived AC and connection for this aspect are given below in Table 4-3.

Table 4-3: Candidate AC and Connection Derived from Required Semantics

Derived AC Connections

Required Semantics EXPR > Required semantics

4.3.4 Aspect	3	–	Reasoning	Tasks	
The required reasoning tasks may vary from applications and hence the selected reasoner

needs to perform reasoner tasks required by the application. One problem is often naturally

raised when discussing reasoning tasks: the completeness of OWL-DL reasoning. Some

applications focus on large dataset, such as sensor network systems, or context-aware

systems. For these applications, discovering implied knowledge through OWL reasoning is

often like extra points and hence complete OWL-DL reasoning is not necessary. Instead

incomplete but more data-efficient reasoners are preferable, e.g. rule-entailment reasoners

(still the chosen reasoner needs to provide the required reasoning tasks). However some

other applications in particular bioinformatics/medical applications such as the Gene

ontology and SNOMED ontology have their knowledge bases mostly populated by

structured concepts and relations, and they usually expect exhaustive reasoning over the

given ontology. For these applications, efficiency of reasoning and the completeness of

capturing the iff semantics of OWL-DL turn out to be important for the selected reasoners.

98

All surveyed DL-tableaux reasoners including Pellet, Fact++, and RacerPro are designed for

such requirements and can well satisfy these applications. Some resolution-based reasoners

translate OWL ontology into datalog or prolog programs following the ontology-specific

approach as described in related work (section 2.3.1.1.2). For examples, KAON2 can

completely classify ontology within DL SHIQ subset of OWL-DL [Hustadt et al 2004a].

Thea and Bubo can completely handle DLP [Vassiliadis et al 2009, Volz et al 2003]. CEL

can efficiently classify EL++ ontology, however it does not belong to any of the three

reasoner types, namely DL-tableaux reasoners, rule-entailment reasoners, or resolution-

based reasoners. Since entailment rules used in rule-entailment reasoner cannot fully capture

the iff semantics of OWL-DL, all rule-entailment reasoners do not perform complete OWL-

DL reasoning.

Derived ACs and connections are given in Table 4-4.

Table 4-4: Candidate AC and Connection Derived from Terminology-Centric

Reasoning

Derived AC Connections

Reasoning tasks Required reasoning tasks ⊆ TASK
Completely derive all
implied knowledge

CPLT = yes and EXPR > Required Semantics and (TYPE !=
entailment)

4.3.5 Aspect	4	-	Query		
How queries can be issued may vary from applications. Some applications/ontologies

require to pose complex queries in query languages such as SPARQL [Russomanno et al

2005, Compton et al 2009a, Eid et al 2007, Kim et al 2008, Compton et al 2009b] while for

some others application posing atomic queries though an API is sufficient [Keeney et al

2008]. However different reasoner implementations have different capabilities in answering

queries. Many state of the art reasoners such as Pellet (latest Ortiz API), KAON2, RacerPro,

Jena (with ARQ), OWLIM and so on support conjunctive queries. They can be selected for

the applications requiring complex queries. However some reasoners, e.g. CEL, FaCT++

and Jena (core), only allow queries to be posed either using pre-defined directives in

command line or through an API. Hence they are not suitable for applications which need to

put complex queries.

In addition the syntax and functionality differences in different query languages can also

affect the selection of reasoners. SPARQL uses a RDF-based triple syntax. SPARQL is

99

(partly) supported by many of the state of the art reasoners, such as Pellet, KAON2, Jena

(with ARQ) and RacerPro. The nRQL is an axiom-based ABox conjunctive query language

specifically designed for RacerPro. OWLIM supports SeRQL, a RDF query language.

KAON2 enables queries to be formulated using F-logic. Bossam uses Buchingae [Jang and

Sohn 2004]. Thea supports queries to be authored using Prolog rules. There are some query

languages, such as C-SPARQL [Barbieri et al 2010b], that are implemented but however are

not yet incorporated by state of the art reasoners, and so they are not discussed here.

Derived ACs and connections for this aspect are given in Table 4-5.

Table 4-5: Candidate ACs and Connections Derived from Query-Related

Derived AC Connections

Queries (Atomic queries are required and QUERY ≠ ⌀) or
(Conjunctive queries are required and QUERY ∩ {sparql,
serql, nrql} ≠ ⌀)

4.3.6 Aspect	5	-	Rules	
Rules are widely used in some semantic applications to perform tasks such as fusing sensor

readings, handling context information or transferring partitive properties in medical

informatics application based on application specific semantics [Calder et al 2010, Sheth et

al 2008, Compton et al 2009a, Brennan et al 2009, Rector 2002, Ejigu et al 2007]. Although

varying in the syntax and expressivity, rule-based reasoners have the intrinsic capability to

model and process rules. Many tableaux reasoners are also extended to support rules, e.g.

Pellet and RacerPro partly supports SWRL. However some of the state of the art reasoners

still lack of support for rules. For example there is no evidence that FaCT++ can process

rules and therefore it is not appropriate to be selected for applications using rules.

The expressivity and syntax differences among rule languages can also affect the selection

of reasoners to some extent. For example if application developers prefer to uses Jena rules

to model domain knowledge, Jena would be preferable than the other rule-based reasoners

such as Bossam. Other examples include that: as SWRL does not support negation as failure

(NaF) a reasoner supporting only SWRL would not be appropriate for applications requiring

NaF; Jena rules is triple-based and therefore does not express n-arity predicates; and so on.

Considering this discussion is only for identifying example ACs and connections for

demonstrating RESP rather than insight and complete discussion all interplay between

different requirements on rules from applications and different rules languages, it is deemed

100

that the requirement for rules is satisfied if the selected reasoner has some types of rule

support or the reasoner is one of the rule-based reasoners.

Derived AC and connection are given in Table 4-6.

Table 4-6: Candidate AC and Connection Derived from Rules

Derived AC Connections

Rules required RULE ∩ {swrl, jena} ≠ ⌀ or
TYPE ∩ {entailment, resolution} ≠ ⌀

4.3.7 Aspect	6	-	Concrete	Domains	
It is generally accepted that many real-world applications such as sensor network systems or

context-aware systems need to handle some information such as temperature, geo-graphical

location, time, moisture, speed and so on which often needs to be modelled as concrete

objects such as string, numeric numbers, and time and so on. OWL12 has limited capability

to model and handle concrete domains: concrete objects of some XSD datatypes can serve

as values of data value properties. However OWL lacks abilities to (1) express comparisons

or computations between concrete objects, e.g. the convention between Celsius and

Fahrenheit, and (2) model arbitrary user-defined datatypes, e.g. human age is from 0 to 150.

These two has been generally accepted to be of important for many practical applications.

Due to this reason some semantic applications choose to handle concrete data outside OWL

by interfacing an outside system with these abilities missing from OWL, e.g. a conventional

publish/subscribe system [Keeney et al 2008, Keeney et al 2010] or a rule system [Sheth et

al 2008, Agostini et al 2005] (many rule systems have a wide range of builtins for handling

concrete objects) and so on. OWL is then used in such applications to model complex and

non-concrete-data-related knowledge or information, e.g. concept hierarchies, user activities

or human interests and so on. However, reasoning over concrete domains has been

extensively studied in previous work for DL and OWL [Haarslev and Möller 2002, Lutz

1999, Hustadt et al 2004b, Haarslev and Möller 2003b, Pan 2004], and indeed the latest

OWL 2 specification enables the definition of user-defined datatypes and datatype

restrictions. Pellet supports user-defined datatypes to be embedded in OWL ontology using

added OWL constructs such as owl:onDataRange, owl:datatypeComplementOf,

12 OWL 2 has support for user-defined datatypes and datatype restriction. However given that this thesis is based
on OWL 1, if not specified, all the terms “OWL” referred in this thesis are limited to OWL 1.

101

xsd:minInclusive and so on. Furthermore Pellet supports part of SWRL including

mathematical/string builtins and hence it also enables limited comparisons and computation

on concrete objects (except for date, time and duration) to be modelled and processed in

SWRL rules. Jena also supports user-defined datatypes and it has a range of pre-defined

builtins for handling concrete objects. Furthermore it enables user-defined builtins to be

constructed and called in rules. Hence potentially enables arbitrary computation to be

modelled as user-defined builtins. Bossam allows Java methods to be called as builtins in

rules as well.

Derived ACs and connections are given in Table 4-7.

Table 4-7: Candidate ACs and Connections Derived from Concrete Domains

Derived AC Connections

Concrete domains (XSD datatypes are required and xsd ∈ CD) or
(User-defined datatypes are required and user ∈ CD) or
(Comparison and computation are required and (comp ∈ CD
or RULE ≠ ⌀))

4.3.8 Aspect	7	-	Closed-World	Features	
Some systems, e.g. database-based systems, assume the known knowledge of this system is

a complete modelling of the domain, and missing knowledge (the knowledge fails to derive)

is simply regarded as not true. These systems are deemed to follow a closed world

assumption (CWA). However OWL assumes an open world assumption (OWA) where the

knowledge base is only a subset of domain and all missing knowledge is regarded as

unknown. The difference between CWA and OWA can lead to different results in reasoning.

A typical example could be owl:someValuesFrom. In standard OWL semantics no value

for a property restricted by owl:someValuesFrom can lead to an anonymous object to be

constructed: the object must be there however the only matter is it is unknown. However in

CWA-based OWL semantics such as [Pellet ICV, Tao et al 2010] this would be interpreted

as a breach of constraints: according to the knowledge base, there is no such object exists.

The standard OWL semantics are useful in most cases but for some practical systems

closed-world features are required for answering negated queries or for checking integrity

constraints. For example, a flight system may want to query which two cities are not

connected by a direct flight or a student record system may expect inconsistency to be

reported when it is found no student number is assigned for a student rather than assigning

102

an anonymous object. Two approaches are taken to cope with the requirement of CWA.

Firstly a dedicated reasoner can be constructed implementing (local) closed-world semantics

for OWL. A lot of research in OWL has been devoted to enable (local) closed-world

semantics in DL or OWL [Donini et al 1992, Katz and Parsia 2005, Motik et al 2006, Motik

et al 2007, Tao et al 2010]. In fact Pellet ICV [Pellet ICV] is the only tool found in the

survey of the state of the art reasoners supporting a closed-world flavoured OWL. A second

approach is to interfacing an outside rule or query system supporting some closed-world

features. For example SPARQL supports the use of constructs OPTIONAL and BOUND to

achieve negation as failure [Nerode and Shore 1997], i.e. not P is assumed from failure to

derive P. This enables users to pose negated query and check for integrity constraints

without changing the closed-world semantics of OWL. Similarly some other query/rule

languages such as nRQL (RacerPro query language, refer to [RacerPro Reference Manual

v1.9.2]), SeRQL (Sesame query language, refer to [Sesame User Guide]) or Jena rules also

support negation as failure.

Derived ACs and connections are given in Table 4-8.

Table 4-8: Candidate ACs and Connections Derived from Closed-World Features

Derived AC Connections

Integrity constraints CWA ≠ ⌀ or RULE ≠ ⌀ or QUERY ∩ {sparql, nrql, serql)
Closed-world queries
(negated queries)

query ∈ CWA or QUERY ∩ {sparql, nrql, serql) ≠ ⌀

4.3.9 Aspect	8	-	Large	Knowledge	Base	or	Persistent	Storage	
Some applications often need to process a large knowledge base or need data to be

persistently stored for offline access. For examples, some semantic context-aware systems

require storing received context information locally for further analysis [Gu et al 2007,

Boehm et al 2008]. This is also the case for many sensor network systems where sensor

observations are maintained in a centralized database for analysis [Sheth et al 2008].

Database support in the selected reasoners is then a key characteristic for such applications.

Many OWL (RDF) stores are available, such as Jena TDB [Jena TDB], BigOWLIM,

AllegroGraph [Allegrograph 2011], KAON2, Oracle database 11g, Parliament [Kolas et al

2009], and PelletDB [PelletDB]. However some of them implement optimizations enabling

more scalable (and may be more efficient) database reasoning. For example, KAON2

implements a virtual ontology technique that maintains only a view of the ontology in

memory and the real data are still kept in database. Jena TDB provides only storage and

103

SPARQL querying for RDF dataset, but the entire OWL ontology still needs to be loaded

and reasoned in memory. For the other OWL/RDF data stores their optimizations are not

mentioned everywhere since they are commercialized. AlegroGraph supports storing data

set in database with a reasoning service of the RDFS++ [RDFS++] subset of OWL;

Parliament supports inference over a selected subset of OWL (equivalent classes and

equivalent, inverse, symmetric, functional, inverse functional, and transitive properties);

BigOWLIM supports the pD* subset of OWL. Some in-memory reasoners also gain access

to databases by interfacing to a database-enabled OWL framework. For example, FaCT++

and CEL can be plugged into OWLAPI for which OWLDB [Henss et al 2009] is a de facto

database backend. Similarly as Jena, they load the entire ontology into memory and do not

have any specific optimizations for scalable database reasoning.

Derived ACs and connections are given in Table 4-9.

Table 4-9: Candidate ACs and Connections Derived from Large Knowledge Base

or Persistent Storage

Derived AC Connections

Database support DB != ⌀ or MANI ∩ {owlapi, jena} ≠ ⌀

4.3.10 Aspect	9	–	User/Application	Manipulation	of	Ontology	
Although not explicitly notified in many published paper or webpages, the ability to

manipulate ontology/knowledge (e.g. changing/adding/deleting axioms) is important for

many applications to combine changes into the ontology at runtime or to allow human users

to alter the ontology. For examples, it is generally accepted that semantic sensor network

systems or semantic context-aware systems usually need to combine sensor readings or

context information into the knowledge base/ontology at runtime in order to using

ontology/KB manipulation APIs; some semantic publish/subscribe systems may allow users

to dynamically change their current situation or interests (modelled as complex concepts)

[Agostini et al 2005, Luther et al 2008]; in some applications such as the Gene ontologies,

human users may want to use the reasoner standalone to manipulate, reason over and query

the ontology, thus requiring either a rich and full-functioned GUI or command line to be

supported by the selected reasoner, or that the selected reasoner needs to be pluggable into

some graphical ontology manipulation tools such as Protégé (though DIG).

According to the survey of reasoners there are three ways to enable ontology manipulation.

Firstly some state of the art reasoners provide a rich set of native APIs/command line

104

derivatives/GUI interfaces. For examples, KAON2 has a rich set of APIs for ontology

reading, parsing and manipulation; CEL has a set of command line derivatives to enable

concept/role construction; RacerPro has a graphical interface allowing users to manipulate

and reason over ontologies. A second approach is to plug reasoners into some semantic

frameworks such that a rich set of ontology manipulation API is available. For examples,

Pellet can be plugged into both OWLAPI and Jena; FaCT++ and CEL can work with

OWLAPI. A third approach is through the DIG interface. It provides a standardized XML

interface for OWL manipulation and query, i.e. a set of tell verbs for axiom assertions and a

set of ask verbs for querying. Furthermore DIG compliant reasoners can be plugged into

Protégé enabling users to manipulate, query and reason over ontologies using Protégé GUI

interface. Many state of the art reasoners support DIG such as RacerPro, FaCT++, Pellet and

CEL and so on.

Some other reasoners, such as Bossam, have very limited native ontology manipulation

interfaces and are also not pluggable into any ontology frameworks. They are then not quite

suitable for these applications.

Derived ACs and connections are given in Table 4-10.

Table 4-10: Candidate ACs and Connections Derived from Ontology

Manipulation

Derived AC Connections

Ontology
manipulation

(API manipulation is required and MANI ≠ ⌀) or
(CMD manipulation is required and cmd ∈ ACCESS) or
(GUI manipulation is required and (gui ∈ ACCESS or dig ∈ RINF))

4.3.11 Aspect	10	-	Explanation	of	Reasoning	and	Ontology	Debugging	
Explanation of deductions and debugging are required by some applications like ontology

engineering tools such as SWOOP [SWOOP], configuration management tools [Baader et al

2007, Shahri et al 2007], or bioinformatics applications [Keet et al 2007] for explaining

reasoning results or for providing justification for modelling inconsistency. In general two

approaches are taken by existing reasoners to perform reasoning explanation. Some

reasoners implement native explanation components enabling justifications to be derived for

inferences, such as Pellet, Jena and Bossam. A second approach is to plug into OWLAPI

that implements a black box debugging mechanism [Kalyanpur et al 2006]. Through this,

explanations can be generated for reasoners that do not natively support explanation, e.g.

105

FaCT++ and CEL.

Derived ACs and connections are given in Table 4-11.

Table 4-11: Candidate ACs and Connections Derived from Explanation of

Reasoning and Ontology Debugging

Derived AC Connections

Reasoning explanation EXPL = yes or owlapi ∈ MANI

4.3.12 Aspect	11	-	Miscellaneous	
Some other application characteristics may also affect the selection of an appropriate

reasoner. In some applications such as bioinformatics ontology. Some applications may need

to remotely access reasoning services to achieve thin client. This requirement will need the

implementation of some kinds of remote interfaces on the reasoner, e.g. DIG. Some other

application characteristics include the requirement to run on a particular operating systems

(Linux, Windows, MacOS), open sources, user support, price, and so on. Given that these

ACs are not relevant to the reasoning capability of a reasoner and hence they are not

discussed in detail in this thesis. From this aspect, three ACs are identified as examples.

Derived ACs and connections are given in Table 4-12.

Table 4-12: Candidate ACs and Connections Derived from Miscellaneous

Derived AC Connections

Human access ACCESS ≠ ⌀ or dig ∈ RINF
Remote access RINF ≠ ⌀
Operating systems Required os ⊆ OS

106

4.3.13 A	Summary	of	Example	Candidate	ACs	and	Connections	
A summary of the example Candidate ACs and connections can be found in Table 4-13.

Table 4-13: A Summary of Example ACs and Connections

Derived AC Connections

Frequent
terminological update

(TYPE = dl and classify ∈ INCL) or
TYPE = entailment or
(TYPE = resolution and MTLZ = yes and materialize ∈ INCL)
or (TYPE = resolution and MTLZ = no)

Frequent instance
update

(TYPE = dl and consistency ∈ INCL) or
TYPE = entailment or
(TYPE = resolution and MTLZ = no)

Required Semantics EXPR > Required semantics
Reasoning tasks Required reasoning tasks ⊆ TASK
Completely derive all
implied knowledge

CPLT = yes and EXPR > Required Semantics and (TYPE !=
entailment)

Queries (Atomic queries are required and QUERY ≠ ⌀) or
(Conjunctive queries are required and QUERY ∩ {sparql,
serql, nrql} ≠ ⌀)

Rules required RULE ∩ {swrl, jena} ≠ ⌀ or
TYPE ∩ {entailment, resolution} ≠ ⌀

Concrete domains (XSD datatypes are required and xsd ∈ CD) or
(User-defined datatypes are required and user ∈ CD) or
(Comparison and computation are required and (comp ∈ CD
or RULE ≠ ⌀))

Integrity constraints CWA ≠ ⌀ or RULE ≠ ⌀ or QUERY ∩ {sparql, nrql, serql)
Closed-world queries
(negated queries)

query ∈ CWA or QUERY ∩ {sparql, nrql, serql) ≠ ⌀

Database support DB != ⌀ or MANI ∩ {owlapi, jena} ≠ ⌀
Ontology
manipulation

(API manipulation is required and MANI ≠ ⌀) or
(CMD manipulation is required and cmd ∈ ACCESS) or
(GUI manipulation is required and (gui ∈ ACCESS or dig ∈
RINF))

Reasoning explanation EXPL = yes or owlapi ∈ MANI
Human access ACCESS ≠ ⌀ or dig ∈ RINF
Remote access RINF ≠ ⌀
OS Required os ⊆ OS

4.4 Matchmaking	
Users identify from the candidate ACs those relevant to their applications and input them

into RESP. Candidate reasoners are registered in RESP as profiles of RCs. For example,

COROR can be registered as the profile given in Table 4-14. Then the matchmaking process

107

is to check satisfiability of the selected ACs according to the connections identified in

section 4.3.

Table 4-14: An example reasoner profile for COROR

Reasoner characteristic Values
ALGM rete
TYPE entailment
EXPR pD*
CPLT no
TASK ent
MTLZ yes
INCL no
QUERY atomic
RULE jena
CWA rule
CD xsd, comp
DB no
RINF no
ACCESS no
EXPL no
MANI api
PLAT j2me
OS win ,lin, mac, sym, and, wm, sun

A simple use case is given showing how matchmaking is performed in RESP to assist the

reasoner selection for applications using an artificial demonstration scenario and the above

identified candidate ACs and connections.

“Bob wants to build a semantic sensor network management system where sensors

(SunSPOT) are clustered with one sensor as the head of each cluster. In this system cluster

heads are expected to perform correlation over failures within the cluster. This can (1)

identify the root cause of a set of received failures within a window, and then (2) reduce the

traffic in the sensor network. To perform this Bob wants to use OWL to model failure

hierarchy and causal relationships between failures are modelled as rules, as listed below:

(1) BatteryNearDepletion is a root cause of itself.

(2) NoNodeAvailable from a node can be caused by the BatteryNearDepletion from

another node on its route to destination (include destination).

(3) NoNodeAvailable from a node can be caused by the NodeOut from another

node on its route to destination (include destination).

108

(4) NodeOut from a node can be caused by the BatteryNearDepletion from another

node on its route to gateway (gateway not included).

(5) NodeOut from a node can be caused by the NodeOut from another node on its

route to the gateway (gateway not included).

The system also needs XSD datatype values to be supported and handled by the reasoner so

that sensor observations can be modelled and processed.”

By analysing the requirements, Bob finds that:

• the reasoner needs to support rules in order to model and process failure correlation

rules;

• the reasoner needs to run on the J2ME CLDC 1.1 platform since it is the software

running platform for Sun SPOT;

• the reasoner needs to support xsd datatypes and computation/comparison over xsd

datatypes in order to model and process sensor observations.

He then goes to the candidate ACs and finds the corresponding candidate ACs:

• Rule required,

• Platform: J2ME

• Concrete domains: XSD datatypes

in RESP. He then inputs them into RESP and RESP will then perform the matchmaking

attempting to find out the most appropriate reasoners according to the example connections

and the profile for COROR:

RULECOROR = {jena}

and

RULECOROR ∩ {swrl, jena} = {jena} ≠ ⌀.

Furthermore for COROR

TYPECOROR = {entailment}

and

TYPECOROR ∩ {entailment, resolution} = {entailment} ≠ ⌀.

Hence the AC rule required is satisfied. It can be deduced in similar ways that the ACs

109

platform and concrete domains are also satisfied. The satisfaction rate for COROR is then

computed following the formula given in section 4.2, as

and then COROR is identified by RESP as the most appropriate reasoner for the above

semantic sensor network management system since its 100% satisfaction rate. Using RESP,

Bob needs not to search for and read technical documents about reasoners and how different

reasoning technologies match different application characteristics such as which reasoner

supports rule reasoning, which reasoners supports J2ME CLDC 1.1 and which reasoner

supports computation and comparison XSD datatype and so on. RESP can automatically

select a most appropriate reasoner for him through matchmaking even if he has little

knowledge of OWL reasoning.

4.5 Summary	
This chapter presents a computer aided reasoner selection process, RESP, which is designed

to address a problem raised by the rapid development and complexity in both OWL

reasoning technologies and semantic applications: without a process to select an appropriate

reasoner, such rapid advancement in semantic applications and reasoning technologies will

require more effort to be devoted by application developers and reasoner experts to select an

appropriate reasoner for semantic applications. RESP allows application developers to select

an appropriate OWL reasoner for their applications by inputting only ACs of which they

should be familiar.

Discussions of the interplays between semantic applications and reasoners are presented in

terms of 11 reasoning-related aspects. Example candidate ACs and connections are

identified from the discussions and an artificial use case is presented using the identified

ACs and connections to show the using of RESP to select an appropriate reasoner.

This section approaches the first half (design of RESP) of the research objective 4 as to

“design and implement a reasoner selection process enabling automatic/semi-automatic

reasoner selection for applications.”

A description of a prototype implementation of RESP can be found in the next chapter. It is

implemented based on the identified ACs, RCs and connections discussed in this chapter,

and it is targeted at the second half of the research objective 4 (implementation of RESP).

𝑆𝑎𝑡𝑖𝑠𝑓𝑎𝑐𝑡𝑖𝑜𝑛_𝑅𝑎𝑡𝑒 = 	
3
3 × 100% = 100%

110

RESP has been identified as the minor contribution of this thesis.

111

Chapter 5
Implementation

5.1 Introduction	
As discussed earlier in the introduction chapter, the increasing demand for intelligence in

embedded devices calls for resource-constrained OWL reasoners [Kleemann and Sinner

2006, Brennan et al 2009, Koziuk et al, 2008]. In order to use fewer resources on resource-

constrained devices, the idea of reasoner composition is proposed in this thesis enabling

reasoners to adjust their reasoning capabilities/algorithms according to the characteristics of

applications, such that unnecessary reasoning capabilities are not loaded, reducing the

resource usage. Some (relatively static) reasoner composition mechanisms are already out

there, such as to manually add/remove rule set or to generate translate ontology into rules

according to pre-defined rule patterns. However, the highly dynamic nature of some

embedded systems makes the static reasoner composition mechanisms insufficient, which

then raises the problem of designing automatic reasoner composition mechanisms.

Furthermore, as mentioned in the introduction chapter, the ever growing of complexity and

volume of reasoner characteristics and application characteristics gradually makes the

existing consultation-based insufficient and hence raises another problem of designing an

automatic reasoner selection process.

These two problems are separately discussed in the Chapter 3 and Chapter 4, and two novel

tools are designed. In Chapter 3 the design of COROR, an automatic composable rule-

entailment reasoner for resource-constrained devices, is presented in correspond to the first

problem. Two novel automatic reasoner composition approaches are introduced to

automatically compose rule-entailment reasoners both at the rule set level and inside the

RETE algorithm according to the ontology to be reasoned. To address the second problem as

to construct an automatic reasoner selection process, Chapter 4 presents the design of RESP,

112

an automatic reasoner selection process that allows application developers to select an

appropriate reasoner for their applications according to the application characteristics of

their applications.

Prototype implementation of the above two tools are described in detail in this section. The

implementation of COROR is discussed with respect to five major aspects, namely: the

selection of an appropriate resource-constrained platform on which COROR will be

implemented; the selection/construction of a resource-constrained rule-entailment reasoner

based on which the designed composition algorithms are implemented; the implementation

of the pD* entailment rules using Jena rule format; the implementation detail for the two

novel composition algorithms; and finally the extension of COROR to support OWL 2 from

the implementation perspective (please refer to section 3.5 for the discussion of extending

COROR to support OWL 2 from the design perspective). A desktop prototype

implementation of RESP, which is called Tool for Automatic Reasoner Selection (TARS), is

also presented in the subsequent sections. Since it is implemented for demonstration and

evaluation purposes rather than for practical use, the RCs, example candidate ACs, and

connections as identified above in section 4.3 are used.

5.2 COROR	
This section describes in detail how COROR is implemented.

5.2.1 Choosing	a	Platform	
The Sun SPOT [SUN SPOT 2010] platform is chosen as the platform on which COROR is

implemented. It is designed to encourage the development of new embedded applications

and therefore everything is well integrated. It includes a sensor board with a resource-

constrained hardware platform: a 180MHz 32-bit ARM920T core processor, 512K RAM

and 4M Flash. Furthermore it has a well-integrated top-to-bottom Java software

programming platform which is the de facto platform for resource-constrained devices such

as sensors or medical devices and so on. It runs a Squawk Java Virtual Machine (JVM) that

supports J2ME CLDC 1.1, which is a platform adopted by many very limited resource-

constrained devices. Furthermore Sun SPOT is powered by batteries, and multiple Sun

SPOT sensor boards can be networked via wireless communications, enabling a wireless

sensor network to be constructed. Some other benefits of using Sun SPOT include that it is

well integrated with Netbeans java Integrated Development Environment (IDE) facilitating

java development and it comes with an emulator allowing applications to be debugged and

tested on it before physically deployed to the real sensor board. All these show that Sun

113

SPOT matches the target platform of the resource-constrained composable reasoner research

carried out in this thesis, and therefore it appears to be a perfect platform for implementing

and testing the COROR composable resource-constrained reasoner.

Figure 5-1: Sun SPOT wireless sensor network development kit.

COROR is implemented on the Sun SPOT [SUN SPOT 2010] sensor board emulator with

SDK v4.0 (blue). It is written in Java in Netbeans 6.5. COROR is implemented to be

conformant with J2ME CLDC 1.1 since it is the running platform supported by Sun SPOT

and also many other small devices with very limited resources. Since J2ME CLDC 1.1 is a

subset of J2ME CDC and J2SE platform, this implementation can also run on these

platforms.

5.2.2 Constructing	a	Resource-Constrained	Rule-Entailment	Reasoner	
Considering (1) the large amount of effort required designing and developing a resource-

114

constrained rule-entailment OWL reasoner from scratch, and (2) the major objective of this

research as to investigate the performance impacts brought by the application of the

composition algorithms (refer to objective 3), it would be much easier to implement

COROR by combining the two novel composition algorithms into an existing resource-

constrained rule-entailment OWL reasoner rather than from scratch. Since an investigation

showed that no proper off-the-shelf resource-constrained rule-entailment reasoner is

available, migration was required to port a proper existing desktop rule-entailment reasoner

to the target platform (Sun SPOT). This section presents the effort involved in the

construction of the resource-constrained rule-entailment reasoner based on which COROR

was implemented.

5.2.2.1 Selecting	a	Proper	Rule-Entailment	Reasoner	
Note that several requirements were to be imposed on the selected reasoner. Firstly, the

selected reasoner needs to be a typical rule-entailment reasoner using RETE algorithm and

ontology-independent translation, since (1) rule-entailment reasoners are identified as the

most suitable type of reasoner to carry out the reasoner composition research (refer back to

the introduction section of Chapter 3), and (2) the use of a typical rule-entailment reasoner

enables a grounding for the general applicability of the two novel reasoner composition

algorithms. Secondly, the selected reasoner needs to be open source since it is highly likely

that the implementation of the composition algorithms, in particular the two-phase RETE

algorithm, would require changes to the original reasoning algorithm. Thirdly the

availability of well written documentation and an active developers/user group are important

for the author to use less time to investigate the intricacies of the reasoner.

Seven rule-entailment reasoners, including five state of the art desktop rule-entailment

reasoners: OWL2Jess, OWLJessKB, BaseVISor, swiftOWLIM, and Jena (Although Jena is

categorized as a hybrid reasoner, it has a well-built RETE engine which allows forward-

chaining rule-entailment OWL reasoning to be performed.); and two mobile rule-entailment

reasoners: MiRE4OWL and Bossam, are investigated for their suitability in accordance to

the above requirements. Among these reasoners, Jena shows better suitability than the others

in all the above mentioned aspects, since (1) Jena is open source, enabling modifications to

be performed on the code, (2) it has a typical and well-implemented RETE engine,

providing a good basis for the implementation of the two novel reasoner composition

algorithms, and (3) it is written in Java (J2SE) and there is also an off-the-shelf reduced Jena

framework for mobile devices available (i.e. µJena, which is written to run on J2ME CDC),

which largely reduces the efforts to port it to a J2ME CLDC platform. In addition Jena (and

115

µJena) has a rich set of interface enabling ontology manipulation and accessing, and it is

well supported and documented, further simplifying the implementation.

BaseVISor, swiftOWLIM and Bossam are closed source reasoners. Although MiRE4OWL

is a mobile reasoner, it is not publically accessible and it is implemented using C++, and

would involve a much more difficult migration. OWLJessKB and OWL2Jess are open

source (OWL2Jess is only a XSLT document translating OWL to JESS program), but they

both rely on the JESS general rule engine [JESS] and therefore there would be a need to

migrate the JESS engine to J2ME platforms. After investigation, it was discovered that this

migration would be much difficult than Jena.

5.2.2.2 Jena	RETE	Engine		
Since Jena is selected as the reasoner to perform the migration, a study was carried out into

the inside of Jena RETE engine. This section describes the Jena RETE engine and its

implementation features.

As mentioned earlier Jena has a RETE engine. OWL ontology is viewed in this RETE

engine as a RDF graph, i.e. a set of triples of the format

(subject predicate object).

Each triple is a fact for the RETE engine. A set of OWL entailment rules written in Jena rule

format is used to match the RDF graph according to OWL semantics. Two types of elements

can exist in the l.h.s. of a Jena rule: a condition element and a functor. A normal condition

matches triples and it has the same format as a triple except that the subject, predicate and

object can be variables. A functor has different purposes. It can either be a builtin that

performs actions, such as: assigning anonymous nodes; performing literal checking;

performing mathematical operations; and so on, or be an embedded structure for caching

matched subgraphs. As will be found out in the section 5.2.3, since functors are only used as

builtins in the used rule set, the usage as embedded structure is ignored here.

Two sample Jena rules are given for illustration. The rule rdfs4b infers that any non-literal

subject is a RDFS resource. The functor notLiteral(?w) is responsible for checking if ?w is

a literal or not.

[rdfs4b: (?v ?p ?w), notLiteral(?w) à (?w rdf:type rdfs:Resource)].

The rule rdfp15 infers the class of a property value when the property is restricted by an

116

OWL someValuesFrom restriction:

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x

rdf:type ?w) à (?u rdf:type ?v)].

The left hand side of this rule consists of four normal conditions but no functors.

The Jena RETE engine has some features that make it an efficient OWL reasoner.

First each intermediate result is represented as an array of the same size with the number of

variables in a particular rule, and each entry of the array corresponds to the value bound to a

variable. For example the intermediate results generated for the rule rdfp15 (as illustrated

above) is a five-entry array that looks like that represented in Figure 2.2.

Figure 5-2: An example intermediate result for rule rdfp15

Each entry in this array corresponds to a variable in the rule and they are arranged in the

same order as appeared in rule, as illustrated in Figure 5-2. This approach can speed up joins:

joining two intermediate results turns out to be checking for the consistency of values in the

same position of the corresponding intermediate values. For example, joining the first two

conditions of the rule rdfp15, that is (?v owl:someValuesFrom ?w) and (?v

owl:onProperty ?p), turns out to check the consistency of the value in the first entry, i.e. ?v,

of the intermediate results from them. As will be discussed later on in section 5.2.4, this

mechanism needs special attention since it hinders node sharing.

The second reason Jena is quite efficient is that triples are indexed according to the predicate

used to speed up searching. The third reason is that as triple is the only type of fact, no type

checking is needed for condition elements. However no other optimizations are applied to

change the structure, construction process, or execution of the RETE network, making the

Jena RETE engine a relatively typical and straight forward RETE engine for rule-entailment

reasoner.

Figure 5-3 illustrates an example Jena RETE network for the rule rdfp15 as listed above. As

?v ?w ?p ?u ?x

117

all facts are in triple format and therefore no type checking is needed for condition elements.

Intermediate results are represented as n-array as described in Figure 5-2. Bound variables

in intermediate results are coloured in green and yellow but unbound variables are coloured

in grey with a cross in centre. Join operations are illustrated in each beta node as an

equation(s) of the variable to be checked for consistency, e.g. in Beta Node 1 ?v=?v means

the variable ?v is to be checked for consistency, and the corresponding bound variables are

coloured in yellow and linked using dotted lines. The intermediate results come from the

last beta node (in this example the beta node 3) pass the consistent checking for all variable

bindings. It is then propagated to the functor node attached in the end, performing builtin

operations such as number comparison, checking for variable bindings, etc. In this example

no functors are exist therefore the functor set is empty. Intermediate results passing functor

actions are then made to be the instantiations of the rule and are inserted into the conflict set

waiting for firing.

118

Figure 5-3: An example Jena RETE network and an illustration of join operations

The optimizations adopted in Jena RETE engine make it an efficient OWL reasoner.

However their application does not change the structure of RETE network or execution

process of the RETE algorithm, hence making the Jena RETE engine still a typical RETE

engine compliant with the original RETE algorithm. Also considering its open-source nature,

Jena RETE engine forms a good target for implementing COROR.

Alpha Node 1
?v owl:someValuesFrom ?w

Alpha Node 2
?v owl:onProperty ?p

Alpha Node 3
?u ?p ?x

Alpha Node 4
?x rdf:type ?w

Beta Node 1
?v = ?v

Beta Node 2
?p = ?p

Beta Node 3
?x = ?x, ?w = ?w

v w p u xIntermediate	
Result

Bound

Unbound

Joining

Conflict	set

Instantiation

Working	memory	
(Fact	base)

Fire,	inserting	into	
working	memory	
(?u rdf:type ?v)

Alpha	
network

Beta	
network

Functor Actions

119

5.2.2.3 Implementing	OWL	Reasoning	on	μJena	
Based on the investigation carried out, Jena v2.5.5 and µJena v1.5 were thus selected to

construct a resource-constrained rule-entailment OWL reasoner as a basis on which the

implementation of COROR is carried out. However, a major problem that had to be

addressed before µJena ran on Sun SPOT (J2ME CLDC platform) as a resource-constrained

rule-entailment reasoner, was that µJena is only an ontology manipulation framework and

the reasoning features of Jena were not included. Given the close connections between

µJena and Jena, µJena was thus extended by the author to use the Jena RETE engine. The

extension mainly focuses on the migration of classes from 12 packages of over 90 classes

and over 10000 lines of code, which enlarged the original µJena source code by around 25%

in size. Most classes are migrated from the corresponding classes in Jena and 9 class are

introduced by the author in order for invoking forward chaining reasoning

(EnhForwardRETEInfGraph, EnhForwardRETEReasoner), providing builtin support for

operations in pD* rules (LiteralStore, AssignAnon, IsDLiteral, IsPLiteral), and some utils

classes (Character, Collection, NumberUtil). Four major packages are

com.hp.hpl.jena.reasoner, com.hp.hpl.jena.reasoner.rulesys,

com.hp.hpl.jena.reasoner.rulesys.builtins and com.hp.hpl.jena.reasoner.rulesys.impl, where

the major extension occurred. Since graph is the core structure in Jena (µJena) where

ontology is stored and the other operations, including manipulation and reasoning, are

performed, its extension is discussed in detail.

A class diagram is given in Figure 5-4 showing the extension made to µJena in order to

support OWL reasoning. To avoid an over complicated diagram, not all introduced or

migrated classes are included in the diagram. Only classes related to graph are shown. A full

list of the introduced and migrated classes can be found in Appendix E.

Originally µJena only brings in six basic graph classes, as coloured in light blue in Figure

5-4. To enable OWL reasoning, the InfGraph interface, i.e. an interface extending the Graph

interface with methods to call the RETE engine and query the inferred graph, and related

classes are introduced into µJena, as coloured in orange. The BaseInfGraph class is a base

level implementation of InfGraph. The BasicForwardRuleInfGraph class extends

BaseInfGraph by rendering forward-chaining features. For example, it materializes all

inference results in a deduction graph; furthermore, it maintains a simple forward rule

chainer (FRuleEngine), and runs it each time a new triple is added. The RETERuleInfGraph

class extends the BasicForwardRuleInfGraph by replacing the simple rule chainer with a

RETE engine (RETEEngine). The Reasoner interface includes the methods that all reasoners

120

need to conform. The RuleReasoner interface extends Reasoner with two methods that rule-

based reasoners need to conform, i.e. getRules() and setRules(). Jena does not have a

dedicated RETE reasoner class. As a matter of fact, in order to use only RETE engine to

perform OWL reasoning, Jena needs to configure the GenericRuleReasoner class using the

FORWARD_RETE option. Other options include FORWARD (using a simple forward-

chaining engine), BACKWARD (using a backward resolution engine) and HYBRID (using

both the RETE engine and the backward resolution engine). However the introduction of the

GenericRuleReasoner class requires the introduction of many more classes into µJena, such

as forward-backward inference graph, backward chaining engines, and so on, and they are

not used for this research. Therefore an EnhForwardRETEReasoner class and an

EnhForwardRETEInfGraph are constructed to perform only forward-chaining RETE

reasoning. It is based on GenericRuleReasoner by removing the options and Java code for

the other reasoners and the java code for the forward RETE reasoner is kept. By doing this

only RETERuleInfGraph is returned for ontology binding. Some other classes are also

introduced such as Rule, MultiUnion and so on. Since they are auxilirary classes in order to

support reasoning, they are not discussed here in detail.

The migration of the reasoning-related classes from Jena (J2SE platform) to µJena (J2ME

CLDC 1.1 platform) involved a great deal of code refactoring, especially the replacement of

J2SE conformant container classes with the corresponding CLDC 1.1 conformant container

classes defined by µJena: java.util.List and its descendants such as ArrayList are replaced by

it.polimi.elet.contextaddict.microjena.util.List. Similarly java.util.Set and its descendants

such as HashSet are replaced by it.polimi.elet.contextaddict.microjena.util.Set, and

java.util.Map and its descendants such as HashMap are replaced by

it.polimi.elet.contextaddict.microjena.util.Map. The replacement container classes, namely

it.polimi.elet.contextaddict.microjena.util.List, it.polimi.elet.contextaddict.microjena.util.Set,

and it.polimi.elet.contextaddict.microjena.util.Map, are originally used in µJena and

therefore their correct functioning is ensured. No other changes except for the replacement

of container classes were performed on the migrated classes and hence the correctness of the

migrated classes is ensured.

121

Fi
gu

re
 5

-4
: C

la
ss

 d
ia

gr
am

s o
f t

he
 µ

Je
na

 e
nh

an
ce

d
w

ith
 th

e
Je

na
 fo

rw
ar

d
re

as
on

er
.

122

For clarity the µJena version after being extended with reasoning capabilities is termed as

enhanced µJena. Entailment is the key reasoning task for enhanced µJena. Conjunctive

queries are not yet supported by enhanced µJena since µJena lacks support for it. Since

adding such functionality is a pure implementation issue involving a large amount of code

work, however, without (positively/negatively) affecting the composition algorithms (the

evaluation of conjunctive queries will be performed in a different module separate from the

reasoning algorithm), its addition can be taken as a future work. The enhanced µJena only

supports a single-triple-based query mechanism through the API, i.e.

InfModel.listStatement(s, p, o),

where s, p and o correspond to the subject, predicate and object of the triple pattern being

queried. Since COROR only extends the enhanced µJena by combining the two novel

composition algorithms rather than adding more reasoning tasks or the conjunctive query

answering ability, the entailment and single-triple-based query are respectively the key

reasoning task and the only query mechanism of COROR.

However, some common reasoning tasks can be realized by querying the ontology with all

entailments calculated (entailment closure) using the above single-triple-based query

mechanism. For example: checking subsumption between two classes C and D can be

reduced to querying the entailment closure with the triple (C rdfs:subClassOf D); checking

instantiation of C as querying with the triple (?x rdf:type C), where ?x is a variable

(represented in Jena triple-based query as null); checking satisfiability of a class C as

querying with the triple (C rdfs:subClassOf Nothing); instance checking a:C as querying

with the triple (a rdf:type C); and so on.

For some other reasoning tasks the reduction is non-trivial and requires some codework. For

example checking for a type of P-clash can be reduced to querying the result ontology with

the triple:

?x owl:differentFrom ?y,

and for every pair of (?x, ?y) in the results, checking for

?x owl:sameAs ?y

Successful query (true is returned) then indicates a P-clash. Another example could be the

123

realization of an instance a. It requires finding the most specialized class C that a:C. This

needs pairwise subsumption checking for all classes retrieved using (a rdf:type ?x). Since

the above reasoning tasks can be reduced to querying a fully entailed ontology, entailment is

then the key reasoning task and its performance becomes the major factor determining the

performance of these reasoning tasks. Considering their little relevance to the research

question and the amount of codework required, these reasoning tasks are not implemented.

However extending the enhanced µJena to support more reasoning tasks and complex

queries will be considered in the future work to enable COROR for practical usage.

Manipulation of unreasoned ontologies is supported through the corresponding µJena APIs

in either OWL style or triple style. Some common operations include add/delete

statement(s), create (typed/plain) literal/property/resource and single-triple-based querying.

For a reasoned ontology only three operations are supported, including triple-based addition,

deletion, and searching. Addition is handled incrementally due to the use of the RETE

algorithm and all subsequently inferred triples of the addition are inserted into the reasoned

ontology. However since Jena RETE engine re-reasons the entire ontology for deletion,

incremental deletion is not supported by the enhanced µJena, and therefore not available to

COROR. This will be considered in the future research.

Some other features of the enhanced µJena are described in this paragraph. µJena only

supports reading and parsing OWL ontology in the N-TRIPLE format13, and hence so it is

with the enhanced µJena and COROR. The enhanced µJena inherits the six XSD datatypes

supported by µJena, which are xsd:float, xsd:double, xsd:int, xsd:long, xsd:integer,

xsd:boolean, and xsd:string. The validation of datatype values is performed in µJena at

the ontology loading time for encountered literal node of the above XSD datatypes in the

ontology. Jena rules also provide a set of builtins to process string/number values (concrete

domain objects) and to check for the bound/unbound of a variable (closed-world feature).

Furthermore µJena has a datatype registry enabling user-defined datatypes to be constructed

and used.

To summarise, in this paragraph the reasoner characteristics of the enhanced µJena are

presented. The enhanced µJena extends the original µJena with the Jena RETE engine and

the relevant classes, making it a resource-constrained rule-entailment OWL reasoner for

J2ME CLDC 1.1 devices. Entailment and single-triple-based queries are respectively the

13 http://www.w3.org/TR/rdf-testcases/#ntriples

124

key reasoning task and query mechanism of enhanced µJena. Some other reasoning tasks

such as subsumption, instantiation, satisfiability and instance checking can be achieved by

directly posing single-triple-based queries on the fully entailed ontology. Six XSD datatypes

are supported and a datatype registry is available enabling users to define their own

datatypes. Computations/comparisons of these datatypes are also supported through rule

builtins. The migration of Jena rule handling classes enables Jena rules to be interpreted.

This enables not only OWL inference rules but also user-specific rules to be modelled and

handled in enhanced µJena. The ability to check if a rule variable is bound/unbound enables

a closed-world taste in the supported Jena rules. A rich set of ontology manipulation APIs is

provided by µJena to handle ontologies. Some reasoner characteristics are not yet supported

since they are not relevant to the research question of this thesis and the significant

codework involved. Explanation, conjunctive queries, and database are not yet supported.

5.2.3 Implementing	the	pD*	Semantics	
The enhanced µJena enables rules written in the Jena rule format to be loaded from a text

file as streams. The following Java code snippet shows how rules are loaded and parsed. The

variable ruleSet is a Java String pointing to the location of the rule file. Rules are stored

in the reasoner as a list of Rule instances.

/* construct a buffered reader pointing to the rule file.*/
BufferedReader br = new BufferedReader(new InputStreamReader(

this.getClass().getResourceAsStream(ruleSet)));

/* load and parse the rules.*/
List rules = Rule.parseRules(Rule.rulesParserFromReader(br));

/* construct a forward chaining RETE reasoner according to the loaded
rules.*/
Reasoner reasoner = new EnhForwardRETEReasoner(rules);

Therefore the pD* entailment rules needed to be implemented using Jena rules in order to

load them in COROR. Since the pD* entailment rules are originally given in triple format

(as given in Appendix C), this implementation was then a direct translation from pD*

entailments to the Jena rules. For example, given G represents the ontology graph to be

reasoned, the pD* entailment rule rdfp2 (as in Table 5-1)

Table 5-1: pD* entailment rule rdfp2.

Rule If G Contains Where Then add to G

rdfp2 p type
InverseFunctionalProperty
u p w

 u sameAs v

125

v p w

is directly translated into Jena rule as

[rdfp2: (?p rdf:type owl:InverseFunctionalProperty), (?u ?p ?w), (?v ?p ?w) -> (?u

owl:sameAs ?v)].

In general, the translation takes triple patterns in the “if G Contains” column as normal

conditions in the l.h.s. of the Jena rule and conditions in the “where” column as functors.

The triple patterns in the “Then add to G” is then transliterated as elements in the r.h.s. of

the Jena rule. Variables and OWL constructs are preserved. However, a question mark (i.e.

a ?) is added to the front of each variable and the corresponding namespace is added in front

of every OWL/RDFS construct, making them Jena rule conformant. Four built-in functors

are constructed to check the conditions given in the “where” column: they are isPLiteral(),

isDLiteral(), assignAnon(), and notLiteral(). Descriptions for each built-in are given in

Table 5-2.

Table 5-2: Descriptions of built-in functors

Functor Description

isPLiteral(?l) Check if l is a plain literal.

isDLiteral(?l, ?t) Check if l is a well-typed datatype literal. If it is the datatype of l is
bound to t.

notLiteral(?w) Check if w is not a literal (including plain literal and datatype literal).

assignAnon(?l, ?b) Check if a literal l has not yet been assigned to an anonymous node. If
yes a new anonymous node is assigned and is bound to ?b, otherwise
the previously assigned anonymous node is retrieved and bound to ?b.

Functors are constructed by extending the Functor class. The actions of a functor is realized

by rewritten the method bodyCall() declared in the Functor class.

In all 39 entailment rules are implemented, including 16 D* entailment rules and 23 P

entailment rules (for a full set of pD* rules in Jena rule format please refer to Appendix C).

Some modifications are made to the pD* entailment rule set while implementing them.

126

𝐿𝐷+

A first modification is that in order to reduce the number of rules the rule lg is combined

with the rule rdfs1 and rdf2D forming 2 combined rules, i.e. lg-rdfs1 and lg-rdf2D:

[lg-rdfs1: (?v ?p ?l), assignAnon(?l, ?b), isPLiteral(?l) à (?v ?p ?b), (?b rdf:type

rdfs:Literal)]

[lg-rdf2D: (?v ?p ?l), assignAnon(?l, ?b), isDLiteral(?l, ?t) à (?v ?p ?b), (?b

rdf:type ?t)]

Before the correctness of lg-rdfs1 and lg-rdf2D is discussed the definitions of the rule lg,

rdfs1 and rdf2-D are presented (Table 5-3). Suppose that L represents a set of all literals, Lp

represents well-formed literals. The rule lg prescribes for represents plain literals and

every triple (v p l) in a RDF graph G, where is a literal to which a blank node has never been

assigned, a new blank node, represented as bl, is constructed and assigned to it. Otherwise

the previously assigned blank node is assigned. The rule rdfs1 assumes that for any plain

literal l in a triple (v p l) a new triple (bl type Literal) is added. The rule rdf2-D generates a

new triple (bl type a) for well-formed datatype literal l in triple (v p l).

Table 5-3: Definitions of lg, rdfs1 and rdf2-D in pD* entailments

Rule If G Contains Where Then add to G

lg v p l l 	L v p bl

rdfs1 v p l l 	LP bl type Literal

rdf2-D v p l l = (s, a) ∈ 𝐿𝐷
& bl type a

Here the correctness of lg-rdfs1 and lg-rdf2D is discussed. According to descriptions given

in Table 5-3 the built-in assignAnon assign an anonymous node to all literals. Therefore

the rule lg-rdfs1 assigns an anonymous node b to all literals in L and if the literal is a plain

literal two triples, v p b and b type Literal, are added into the graph. Similarly the rule lg-

rdf2D assigns a blank node, b, to all literals it encounters and if l is a well-typed literal of

type t, two triples, v p b, b type t, are added into the RDF graph. The rule lg-rdfs1 and lg-

rdf2D cover the rule rdfs1 and rdf2-D but part of the semantics in the rule lg is missing: the

∈

∈

127

triple v p b will not be added into the graph when l is an ill-typed datatype literal, otherwise

will lead to a D-clash. However since it is presumed the ontology is clash-free and therefore

the missing part of the semantics will not be needed for ontology reasoned under this

presumption.

A second modification is the removal of the rule gl (as indicated in Table 5-4). The rule gl is

a reverse application of the rule lg. Since in practice all blank nodes are allocated through

assignAnon() by lg-rdfs1 and lg-rdf2D, therefore there must already exist (v p l) where l

is a Literal (the condition (?v ?p ?l) needs to be matched before assignAnon() can assign a

blank node bl), therefore there is no need to reversely add (v p l) into the ontology graph.

Table 5-4: pD* entailment rule gl

Rule If G Contains Where Then add to G

gl v p bl l 	L v p l

As discussed in section 5.2.2, consistency checking is not implemented in the enhanced

µJena (and COROR) and hence XML-clash and P-clash are not detected. This is reasonable

due to the significant codework involved and the little relevance of detecting these

inconsistencies to the research question: detecting XML-clash does not require ontology

reasoning; and as µJena does not natively support for XML, an XML processing component

needs to be implemented or an third-party XML library needs to be incorporated into

enhanced µJena in order to handle XML-clash, causing extra complexity in code and more

resources required; checking for P-clash requires reasoning but as discussed in the previous

section it can be reduced to querying a fully entailed ontology and therefore in enhanced

µJena (and COROR) it is highly dependent on entailment computation which is the key

reasoning task of enhanced µJena (and COROR). D-clash is limitedly supported by µJena

since µJena checks validation for the six supported XSD datatypes at ontology loading time.

In fact COROR is not the first resource-constrained reasoner that does not implement

consistency checking: µOR also does not provide consistency support and SwiftOWLIM

(v3.0.10) does not include pD* consistency rules. However to provide with full support of

detecting XML-clash, D-clash and P-clash on COROR will be considered in the future in

order to make COROR for more practical usage.

∈

128

Considering COROR will work in resource-constrained environment, RDF/RDFS axiomatic

triples and P axiomatic triples (can be found in [ter Horst 2005a]) are not included in this

implementation to reduce the amount of inferred triples. This follows on from some of the

other previous work where, for practical or efficiency reasons, axiomatic triples are

sometimes removed. The work in [Hogan et al 2009] also removed axiomatic triples from

the supported semantics to reduce the reasoning output so as to achieve web scale reasoning.

OWL 2 RL does not include RDF/RDFS axiomatic triples and OWL axiomatic triples in

order to avoid performance problems in practice

Rules are plain text encoded in a specific rule file, giving users more flexibility to modify

the rule set and also authoring application-specific rules.

5.2.4 Implementing	the	Composition	Algorithms	
This section presents how the two composition algorithms, i.e. the selective rule loading

algorithm and the two-phase RETE algorithm, are implemented in COROR. Four different

composition modes are designed to allow the use of the corresponding composition

algorithm. The noncomposable mode uses original Jena RETE engine (therefore no

composition algorithms is applied). The three composable modes are the selective rule

loading mode that uses the selective rule loading algorithm, the two-phase RETE mode that

uses the two-phase RETE algorithm and the hybrid mode that uses the hybrid algorithm.

Note that for clarity and brevity in the following text these COROR modes are respectively

termed as COROR-noncomposable, COROR-selective, COROR-two-phase, and COROR-

hybrid. Note, although modifications are made to enable the composition algorithms to work

on Jena RETE engine, the capabilities to turn off the composition algorithms are included

such that in the noncomposable mode the original Jena RETE engine is used.

The implementation of the two-phase RETE algorithm and the selective rule loading

algorithm mainly happened in the RETE engine. It mainly involved modifications of the

RETEEngine (the flow of RETE algorithm), RETEClauseFilter (alpha node) and

RETEQueue (beta node). Three new classes were constructed in order to support condition

node sharing, namely RETESibling, RETEClauseFilterSharing, and

IntermediateBindingVector.

5.2.4.1 Selective	Rule	Loading	Algorithm	
The selective rule loading algorithm is implemented in the RuleSetComposer class in the

package ie.tcd.cs.nembes.microjenaenh.reasoner.rulesys.enh. Figure 5-5 shows in general

the components involved in order to construct a selective rule set. In brief it analyses the

129

ontology for OWL constructs and then uses the rule-construct graphs (coded in the form of

mappings) to construct a selected rule set for the reasoner to initialize.

Figure 5-5: Implementation of the selective rule loading algorithm.

Analysing the ontology graph for the contained OWL constructs is implemented by

enumerating all pD* expressivity constructs and querying the ontology for each of them by

using the method Model::contains() to determine if a triple pattern is included in the

ontology. For example, the code snippet

 if(model.contains(null, OWL.inverseOf)) {
 ontSignature.add(owl+OWL.inverseOf.getLocalName());
 }

checks if the ontology contains a triple pattern such as (x owl:inverseOf y) where x and y

match arbitrary RDF nodes. Since owl:inverseOf will only appear in the predicate position

if it is used to state the inverse of two properties, the existence of the above triple pattern

then proves the existence of owl:inverseOf. All contained OWL constructs are stored in a

list ontSignature for constructing a selective rule set.

The rule-construct mappings represent rule-construct dependency graphs coded in plain-text.

Ontology
Graph

RuleSetComposerRule-
Construct	
mappings

EnhForwardRETERea
-soner

pD*	rules

Analyse	for	
OWL	constructs

Selected	
rule	set

COROR

130

Each mapping represents the dependency relationships of a rule. The format of mapping is

specified here by means of a BNF-like notation:

Mapping:=rule-name’:’semantic-level’:[‘premises‘]->[‘consequences‘]’

semantic-level:=‘rdfs’|‘owl-lite’|‘owl-dl’

premises:=‘’|premise{‘,’premise}

consequences:=‘’|consequence{‘,’consequence}

premise:= pD_expressivity_constructs

consequence:=pD_expressivity_constructs

The field rule-name and semantic-level correspondingly represent the name of the rule and

the semantic level into which this rule falls. They exist for each mapping. As the rule-name

is used to construct the selective rule set, it needs to be exactly the same as the name of the

rule in the rule set. The field semantic-level is for COROR to select rules according OWL

sublanguages. The field premises and consequences are correspondingly the premises and

consequences of the rule. They may contain no, one or multiple premises or consequences.

A premise (consequence) is defined as any construct in the expressivity construct set of the

pD* entailment rules. Some example rule-construct mappings are given:

rdfp13a:owl-lite:[owl:equivalentProperty]->[rdfs:subPropertyOf]

rdfp10:owl-lite:[rdf:Property,owl:sameAs]->[rdfs:subPropertyOf]

rdfp8bx:owl-lite:[owl:inverseOf]->[]

The loading and parsing of the rule-construct mappings is performed through

RuleSetComposer::readRuleConstructs(). Each rule-construct mapping is stored in a

RuleSignature java class instance. All rule-constructs mappings are stored in a map structure

ruleSignatures with key as the RuleSignature instance for each rule and the value as a

Boolean value indicating if the rule should be loaded. All values are initialized as false. The

entire list of rule-construct mappings can be found in Appendix D and the original

dependency graphs can be referred to in the section 3.4.1.

131

Figure 5-6 lists the algorithm for constructing a selective rule set. Before this code snippet

starts, the field ruleSignatures is initialized with the set of rule-construct mappings, and the

field ontSignature is initialized with OWL constructs included by the ontology, as discussed

above. Then the algorithm checks according to the order of rules in ruleSignatures if all

premises of a rule are contained by ontSignature. If so, set the corresponding value in

ruleSignatures as true and add the consequences into ontSignature and re-start the selection

from the front of ruleSignatures. Otherwise go on check the next rule in the sequence. This

algorithm iteratively selects rules until all rules are checked and no new construct is added

into ontSignature. The appropriate rule set is then constructed and loaded into the reasoner.

Note that not all selected rules are guaranteed to fire, as the presence of premises does not

necessitate successful instantiation of the rule. However, unselected rules will definitely not

fire even if they were loaded due to the absence of premises in the ontology.

boolean hasNewConstructs = false;
int s = ruleSignatures.size();
Set ruleSignaturesSet = ruleSignatures.entrySet();
do{
 hasNewConstructs = false;
 for(int i = 0; i < s; i++){
 Entry entry = (Entry)ruleSignaturesSet.get(i);
 if(entry.getValue().equals(Boolean.FALSE)){
 RuleSignature rSig = (RuleSignature)entry.getKey();

 // to check if all lhs constructs are included in ontology signature.
 // to mark the corresponding rule signature as true if it is contained.
 boolean containsAll = true;
 List lhsConstructs = rSig.getLHSConstructs();
 if(lhsConstructs != null){
 for(int j = 0; j < lhsConstructs.size(); j++){
 if(!ontSignature.contains(lhsConstructs.get(j))){
 containsAll = false;
 break;
 }
 }
 }
 if(containsAll){
 ruleSignatures.put(rSig, new Boolean(true));
 }

 // to handle rhs constructs
 List rhsConstructs = rSig.getRHSConstructs();
 if(rhsConstructs != null){
 for(int j = 0; j < rhsConstructs.size(); j++){
 Object rhsConstruct = rhsConstructs.get(j);
 if(!ontSignature.contains(rhsConstruct)){
 hasNewConstructs = true;
 ontSignature.add(rhsConstruct);
 }
 }
 }
 }
}while(hasNewConstructs);

Figure 5-6: Code snippet for the constructing a selective rule set.

132

5.2.4.2 Two-Phase	RETE	Algorithm	
The two-phase RETE algorithm is implemented in the RETE engine, which is in the Java

class RETEEngine. Before going into further detail about the implementation, a class

diagram is given that shows in detail the classes involved in the Jena RETE algorithm. In

this implementation all RETE algorithm related classes are included in the package

ie.tcd.cs.nembes.microjenaenh.reasoner.rulesys.impl.

Figure 5-7: Classes related to the two-phase RETE algorithm implementation

The RETEClauseFilter, RETEQueue, RETETerminal and RETEConflictSet correspond to

the alpha node, beta node and functor action node and conflict set in the RETE network

given in Figure 5-3. The RETE network is connected through the continuation field in

RETEClauseFilter and RETEQueue, it points to the next node in the RETE network. Figure

5-8 shows the code snippet for the two-phase RETE algorithm:

 compileAlpha(rules, ignoreBrules);
 conflictSet = new RETEConflictSet(

new RETERuleContext(infGraph, this),
isMonotonic);

 findAndProcessAxioms();

/*populate addspending with triples for initial matching*/
 if (infGraph.getRawGraph() != null) {
 for (Iterator i = inserts.find(

new TriplePattern(null, null, null));
i.hasNext();) {

 addTriple((Triple)i.next(), false);

RETEEngine

RETESourceNode

«interface»
RETENode

«interface»
RETESinkNode

RETETerminalRETEClauseFilter RETEClauseFilterSharing RETEQueue

RETERuleContext

1

-context 1

1

-alpha	nodes 0..*

RETEConflictSet

1

-conflict	set

1

1

-shared	alpha	nodes 0..*

1

-beta	nodes 0..*

1

-alpha	nodes

0..*
-Continuation

1

0..*

1..* -continuation1

1..*

-continuation

1

1 -continuation 0..1

«interface»FRuleEngineI

133

 }
 }

 preMatch();
 applyHeuristics();
 compileBeta();
 crossJoinAll();
 runAll();

Figure 5-8: Code snippet for two-phase RETE algorithm

A shared alpha network is first constructed (through compileAlpha()). The alpha node

sharing heuristic is applied: for every non-sharable alpha node a RETEClauseFilter instance

is constructed and for all sharable alpha nodes sharing a condition a

RETEClauseFilterSharing instance is constructed. The implementation of this heuristic was

hindered by some mechanisms used in the Jena RETE algorithm. Firstly, as discussed in

section 5.2.2.2, the intermediate results used in Jena RETE algorithm vary across different

rules. Therefore every time a fact matches sharable conditions from different rules, different

intermediate results are generated, hindering the sharing. For example, the rule rdfs4b and

rdfp15

[rdfs4b: (?v ?p ?w), notLiteral(?w) à (?w rdf:type rdfs:Resource)].

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x

rdf:type ?w) à (?u rdf:type ?v)].

have two sharable conditions, i.e. (?v ?p ?w) and (?u ?p ?x). However the intermediate

results generated after they are matched to a same fact, say (ex:myCar rdf:type ex:Car),

are different (as given in Figure 5-9). For the condition (?u ?p ?x) in rdfp15 an intermediate

results of five elements are constructed. The matched fact only realizes three variables,

i.e. ?p, ?u and ?x, and the other two variables, i.e. ?v and ?w, are still blank. For the

condition (?v ?p ?w) in rdfs4b a three element intermediate result is generated and all

variables are realized. This mechanism speeds up join operations, as the consistency of

variable binding is checked, by comparing variable bindings in the same position of two

tokens. However it hinders the sharable conditions in different rules from sharing the alpha

memory (since different intermediate results are generated).

134

Figure 5-9: Intermediate results for the condition (?v ?p ?w) and (?u ?p ?x) in the

rule rdfp15 and the rule rdfs4b.

A dual vector approach was designed by the author to separate the position information from

value bindings such that condition-specific rather than rule-specific intermediate results can

be constructed. The approach builds a position vector and a value vector correspondingly for

storing the position information and bound values. The position information is unique for

each sharable condition but the value vector can be shared among conditions. For example 4

different conditions are generated for the four conditions in rdfp15 under the dual vector

approach. The value vectors for (?v ?p ?w) and (?u ?p ?x) are the same for the same

matched fact and therefore facilitating the sharing of the alpha memory.

ex:myCar ex:Car

?v ?w ?p ?u ?x

rdf:type

ex:myCar ex:Car

?v ?w ?p

rdf:type

rdfs4b

rdfp15

Not	sharable

ex:myCar ex:Carrdf:type

?v ?w ?p

ex:myCar ex:Carrdf:type

rdfp15
?v ?w

0 1Position	vector

Value	vector ?v ?p

0 2

?u ?p ?x ?x ?w

3 2 4 4 1

rdfs4b

Position	vector

Value	vector

0 1 2

Sharable

135

Figure 5-10: Intermediate results generated for rdfp15 and rdfs4b under the dual

vector approach.

Dual vector separates the position information and value bindings, and hence it changes the

join operation. Originally the join operation is comparing the value on the same position of

the intermediate value from each input. Under the dual vector approach the join is then

comparing the values with the same position information (if any). A new larger position

vector and value vector are generated combining the two successfully joined intermediate

results. The dual vector approach is implemented in IntermediateBindingVector.

A second problem was the different position vectors and different continuations among

sharable conditions. To solve this problem a swap in/out approach is used: a class

RETESibling is constructed for storing the position vectors and the continuations for shared

conditions. Every time a particular condition is required (e.g. for performing join operation)

it is restored into the RETEClauseFilterSharing node and the information stored in the

corresponding RETESibling is restored as well. Therefore the RETEClauseFilterSharing

node can work as the required condition.

On the construction of the shared alpha network, triples of the ontology graphs are then

added to addspending, a cache of triples to be inserted into the RETE engine.

 if (infGraph.getRawGraph() != null) {
 for (Iterator i = inserts.find(

new TriplePattern(null, null, null));
i.hasNext();) {

 addTriple((Triple)i.next(), false);
 }
 }

The initial match is then performed (preMatch()). It removes triples from addspending

and inject them into the RETE network (inject()) one by one, matching to the alpha

network. Heuristics are applied by calling applyHeuristics()after the initial match:

the information is collected according to which the most specific condition first heuristic is

applied and the connectivity heuristic is applied after the application of the most specific

condition first heuristic. Figure 5-11 shows the code snippet for the implementation of the

most specific condition first heuristic in applyHeuristics().

Iterator conditionIt = conditionList.iterator();
while(conditionIt.hasNext()){
 RETEClauseFilter condition = (RETEClauseFilter)conditionIt.next();

 if(newConditionList.size() == 0){
 newConditionList.add(condition);
 continue;

136

 }

 boolean inserted = false;
 int tripleNum = ((RETEQueue)condition.continuation).queue.size();
 for(int i = 0; i < newConditionList.size(); i++){
 if(tripleNum < ((RETEQueue)((RETEClauseFilter)newConditionList.get(i))

.continuation).queue.size())){
 newConditionList.add(i, condition);
 inserted = true;
 break;
 }
 }

 if(inserted == false)
 newConditionList.add(condition);

}

Figure 5-11: Implementation for the most specific condition first heuristic.

Basically it checks the number of matched facts for the first condition in the existing join

sequence (conditionList) and then sorts the condition in a new join sequence

(newConditionList) in ascendant order. The new join sequence is constructed until all

conditions in the join sequence are inserted into the new join sequence. The connectivity is

then checked by calling

optimizeConnectivity(ruleId, newConditionList);

after the most specific condition first heuristic. It checks the ordered join sequence and

rearranges the join sequence when non-connected conditions are detected.

The beta network is then constructed according to the new join sequences constructed

(calling compileBeta()). After the construction of the entire RETE network, the initial fact

matching resumes by calling crossJoinAll(). It goes through all join sequences and product

joins the facts matched to first two conditions in the sequence (every matched fact from the

first condition is joined to every matched fact from the second condition). Finally the two-

phase RETE algorithm resumes the normal execution and call runAll() to iteratively

calculate all inferences.

5.2.5 Extending	COROR	to	Support	OWL	2	(Implementation	Perspective)	
Analytical discussion in section 3.5 shows that both composition algorithms in COROR are

semantically independent and therefore they are compatible with OWL 2 RL semantics from

the design perspective. Rule-construct dependency graphs for OWL 2 RL rules are also

given in that section providing a theoretical foundation for the selective loading algorithm to

work on OWL 2 RL. However the application of OWL 2 RL entailments in COROR is still

137

hampered by two obstacles from the implementation perspective.

The first, and a minor, obstacle is the lack of support of OWL 2 ontology manipulation APIs

in µJena. Therefore COROR cannot manipulate OWL 2 ontologies using OWL style

operations. However as COROR views ontology as RDF graphs, it is able to manipulate

OWL 2 ontologies using triple style operations, and the triple-based RETE engine can also

reason over OWL 2 ontologies. A second, and the major, obstacle is the absence of a Jena

compatible OWL 2 RL rule set. Early attempts to draft an OWL 2 RL rule set was impeded

by the intensive and complex use of RDF list operations in OWL 2 RL semantics. A naïve

solution would be to construct a built-in for each list operation. However this will require

the construction of a large amount of complex built-ins, greatly complicating the rule set,

and limiting the potential for node sharing capabilities and join sequence reordering. Other

approaches to handle RDF list in OWL 2 RL reasoners include using ARQ, e.g. SPIN14, or

using customized tags for different RDF list operations and using dedicated list expansion

rules, e.g. BaseVISor. However considering the small contribution to the result of this work

by providing an OWL 2 RL rule set for COROR, this initiative was suspended.

5.3 TARS:	Tool	for	Automatic	Reasoner	Selection	
A desktop prototype implementation of RESP, called TARS (Tool for Automatic Reasoner

Selection), is constructed to allow users with little background on ontology reasoning to

select appropriate reasoner according to the application characteristics of their semantic

applications. The implementation was built in Java using Netbeans 6.5, involving the

construction of 4 Java packages, 22 Java classes and in total around 10600 lines of code

(6500 of which were automatically generated by Netbeans GUI designer). A full list of the

constructed packages and classes can be found in Figure 5-12. Netbeans is free and has an

inbuilt drag-and-drop GUI designer, which facilitates fast prototyping of TARS and reduces

the effort required on tweaking GUI components at java code level, enabling the author to

concentrate on the implementation of application characteristics, reasoner characteristics

and connections.

14 http://www.topquadrant.com/products/SPIN.html

138

Figure 5-12: Packages and classes of TARS.

All reasoner characteristics distilled from the survey of reasoners, example candidate

application characteristics and connections derived from the survey of semantic applications

(can be found in section 4.3) are implemented in TARS. Five candidate reasoners are

registered, namely FaCT++, KAON2, Pellet, Jena and COROR. They have diverse reasoner

characteristics and therefore are suitable for a wide range of semantic applications. For

example KAON2 supports efficient conjunctive query answering over a database which is

essential for some context-aware applications, FaCT++ and Pellet support complete OWL-

DL classification, while COROR runs efficiently on mobile platforms. Reasoner

characteristics of candidate reasoners are stored as profiles locally as XML files. All of them

are loaded into memory and parsed only once each execution (by the ReasonerProfiler class)

when the selection process starts, and they remain in memory for the entire lifespan of the

139

execution. Figure 5-13 gives a snippet of the profile for FaCT++, showing how the RC

reasoner expressivity is stored (The full profiles for all the five candidate reasoners can be

found in the attached DVD).

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<reasoner name="factpp">

<algorithm>dl tableaux</algorithm>
...
<!-- Entries for other RCs -->
...
<expressivity>

<dlexpressivity value="shion(d)">
<basedl value="al"/>
<negation value="yes"/>
<union value="yes"/>
<inverse value="yes"/>
<rolehierarchy value="yes"/>
<transitivity value="yes"/>
<nominal value="yes"/>
<cardinality value="yes"/>
<functionality value="yes"/>

</dlexpressivity>
</expressivity>
...
<!-- Entries for other RCs -->
...

<reasoner>

Figure 5-13: A snippet of the XML-coded profile for FaCT++.

Note that the use of automatic composition algorithms in COROR gives rise to a new

reasoner characteristic, namely reasoner composition level, which indicates if the reasoner

has no, static (OWL/DL level), or automatic reasoner composition algorithms, as discussed

in section 2.3.3. As will be shown in the evaluation chapter, the use of automatic reasoner

composition approach can reduce the resource of OWL reasoning (for rule-entailment

reasoners), hence enabling a new candidate application characteristic: resource sensitive.

This application characteristic may hold for embedded systems that want to deploy OWL

reasoning on resource-constrained devices [Kleemann and Sinner 2006, Brennan et al 2009,

Koziuk et al, 2008]. According to the above discussion, it is simply deemed that this

application characteristic is satisfied if automatic composition algorithms are implemented

on the selected reasoner. A description of the application characteristic resource sensitive

and its connections is given in Table 5-5 and a description of the new reasoner characteristic

composition level can be found in Table 5-6.

Table 5-5: The new application characteristic resource sensitive and its connections

Application
Characteristic

Connections

140

Resource sensitive auto ∈ CPSLvl

Table 5-6: The new reasoner characteristic composition level and its possible

values

Reasoner
Characteristic

Values

Composition level
(CPSLvl)

Rule (rule) OWL/DL (owl) Automatic (auto)

Three graphical interfaces are implemented, namely the application characteristics selection

interface, the reasoner registration interface and the reasoner selection results interface. The

application characteristics selection interface can be found in Figure 5-14, on which all

candidate application characteristics are listed. In general, a user first analyses their

application for relevant application characteristics, and then ticks the corresponding

candidate application characteristics on the application characteristics selection interface.

The user can start the RESP reasoner selection process by hitting the “Perform Selection”

button.

141

Figure 5-14: Application characteristics selection interface.

It worth mentioning that ontology expressivity is gathered automatically in TARS. The

OWL1ExpressivityChecker class is responsible for ontology expressivity checking. In

general it checks for OWL classes, axioms and properties using OWLAPI methods, and

detected expressivities are indicated by a set of class fields such as hasNegation,

hasTransitive, and so on. In order to check the expressivities for OWL classes, the

OWL1ExpressivityChecker lists all named classes then checks all its super-classes, sub-

classes, equivalent-classes and enumerations, setting the corresponding expressivity fields.

Similarly In order to check the expressivities for class axioms, the

OWL1ExpressivityChecker checks if they are OWLSubClassAxiom,

OWLEquivalentClassesAxiom, or OWLDisjointClassesAxiom and then looks into the axioms

to check the expressivities included. If a property axiom is found then the expressivity field

142

hasRoleHierarchy is set to be true. In order to check the expressivities for properties, the

OWL1ExpressivityChecker checks if the property is transitive, symmetric, inverse,

functional or inverse functional, and then sets the corresponding expressivity fields. Then

the domain and range of the property is also checked. The combination of the expressivity

fields is then the DL expressivity of the ontology. For example, if hasNegation and

hasUnion are set to be true then the ontology has expressivity ALC; if hasTransitive is set

to be true then the expressivity R+ is appended and the expressivity letter is set to be S.

A user can view the hints for an application characteristic by clicking the question mark

besides each application characteristic. The explanation is then displayed in the text field

located in the bottom.

Selected application characteristics are stored in an ApplicationCharacteristicSet class

instance. To reduce the complexity of the prototype implementation, each connection is

hardwired as a Java method of the ReasonerSelector class. Connection methods follow a

naming scheme, namely “evaluateXXX” with XXX representing the corresponding

application characteristic. Connection methods take the ApplicationCharacteristicSet

instance (which lists the required application characteristics) and a ReasonerProfiler

instance (from which the reasoner characteristics for candidate reasoners can be accessed) as

arguments, and returns an ArrayList of SatisfactionLevel instances with each entry in the list

representing the satisfaction of a candidate reasoner to this application characteristic. Then

the matchmaking is performed in the ReasonerSelector class by evaluating all connection

methods against the ApplicationCharacteristicSet instance. Figure 5-15 gives the code

snippet of connections for the application characteristic integrity constraints. If the

application characteristic integrity constraints is not selected then it ceases the connections

checking immediately. Otherwise it iterates all candidate reasoner profiles and checks for

each candidate reasoner the value of the reasoner characteristic native CWA support.

ArrayList<SatisfactionLevel> retVal = new ArrayList<SatisfactionLevel>();

if(acs.getAppCharacteristicValue(RV.AC.integrityConstraints).equals(RV.NO))
 return retVal;

ArrayList<ReasonerProfiler.ReasonerProfile> profiles =
 profiler.getReasonerProfiles();

for(int i=0; i<profiles.size(); i++){
 ReasonerProfiler.ReasonerProfile profile = profiles.get(i);
 if(profile.nafInQuery.equals(RV.YES) || profile.nafInRule.equals(RV.YES))
 retVal.add(new SatisfactionLevel(profile,

SatisfactionLevel.satisfy));
 else
 retVal.add(new SatisfactionLevel(profile,

143

SatisfactionLevel.not_satisfy));
 }
return retVal;

Figure 5-15: Connections for AC integrity constraints.

Results are displayed in the reasoner selection results interface after the selection finished

(as indicated in Figure 5-16). Traffic light notations are used to indicate the satisfaction

percentage for each candidate reasoner. By clicking a candidate reasoner, a user can view

the detail of the satisfaction for each application characteristic on the right hand side.

Selected application characteristics are coloured in green or red, indicating their satisfaction

or not. Unselected application characteristics are in grey. By selecting an application

characteristic users can view the reason why it is satisfiable/not satisfiable.

Figure 5-16: Reasoner selection results interface

Figure 5-17 shows the reasoner registration interface where new candidate reasoners can be

registered. Reasoner characteristics are listed allowing users to input the corresponding

reasoner characteristics for the reasoner.

144

Figure 5-17: The user interface for registering candidate reasoners.

Reasoner expressivities are specified manually for the candidate reasoners to be registered.

The expressivities can be specified either using DL or using OWL constructs, as separately

illustrated in Figure 5-18 and Figure 5-19. Specifying reasoner expressivity using OWL

constructs is mainly designed for non-DL reasoners such as rule-entailment reasoners or

resolution-based reasoners using ontology independent translation. Four common

expressivities, including RDFS, OWL-Lite, OWL-DL, and R-entailment, are given as

“hotkeys” for them.

145

Figure 5-18: User interface for specifying reasoner expressivity using OWL

constructs.

146

Figure 5-19: User interface for specify reasoner expressivity in DL.

5.4 Summary	
This chapter presents the prototype implementations of COROR and RESP. The

implementation of COROR is discussed with respect to five aspects, including the selection

of a proper platform based on which COROR was implemented, the construction of a

resource-constrained rule-entailment reasoner where the novel reasoner composition

algorithms can be implemented, the implementation of the pD* entailment rules as Jena rule

format, the implementation detail for the two novel composition algorithms, and finally the

extension of COROR to support OWL 2 from the implementation perspective. Sun SPOT is

selected as an appropriate platform on which the implementation is performed since its

resource-constrained environment (J2ME CLDC 1.1) and well-integrated development tools.

Several requirements are identified for finding a suitable resource-constrained rule-

entailment reasoner to implement the composition algorithms. However a survey suggests

that no off-the-shelf such reasoners exist. Therefore a resource-constrained rule-entailment

reasoner is constructed by porting Jena RETE engine into µJena. The implementation of

pD* semantics is simple translation from pD* entailment rules into Jena conformant rules.

147

Some modifications are performed to combine some rules. However it is shown that these

modifications do not change the reasoning capability. Detail for the implementation of

composition algorithms is then presented. The description of the implementation of the

selective rule loading algorithm mainly concentrates on the implementation of the rule-

construct graph using text-based mappings. Code snippets are also given to illustrate how a

selective rule set is constructed according to the rule-construct mappings. Class diagrams

are provided to illustrate the Jena RETE engine and how it is extended to integrate the two-

phase RETE algorithms. Problems encountered during the implementation of the two-phase

RETE algorithms are also discussed with solutions presented, including using the dual

vector mechanism to solve sharing of intermediate results and using swappable conditions to

support different sharable conditions share one common condition node. The process of the

two-phase RETE algorithm is then illustrated in detail with code snippet presented.

The heavy use of RDF lists in OWL 2 RL semantics hampers the construction of a set of

Jena compatible OWL 2 RL rules, which resulted in the lack of support of OWL 2 RL in

COROR. However this was simply an implementation detail and extension would not

contribute much to validate the contributions of this research with respect to the semantic

independent feature of the composition algorithms. Therefore no actual implementation is

performed to extend COROR to support OWL 2 RL but it remains one of the most

important pieces of work needed to support the adoption of COROR in a user community.

A prototypical desktop implementation of RESP, TARS, is also presented in this chapter.

Users can use it to perform automatic reasoner selection and to register new candidate

reasoners. The candidate application characteristics, reasoner characteristics and

connections implemented in TARS are based on the example candidate application

characteristics, reasoner characteristics and connections derived in from the survey of

reasoners (section 2.3.1.2) and the survey of semantic applications (section 4.3). However

the use of COROR enables a new reasoner characteristic, i.e. composition level, and a new

application characteristic, i.e. resource sensitive. This implementation is to some extent

limited in terms of practical usage due to the use of example ACs and the hard-coding of

AC/RC connections and the matching algorithm. However it is still sufficient for

demonstration and evaluation purposes.

Section 3, 4 and 5 together complete the research objective 2 and objective 4. In the next

chapter evaluations are carried out to evaluate the performance of COROR and usability of

TARS), targeting the research objective 3 and 5.

148

Chapter 6
Evaluation

6.1 Introduction	
In the previous chapters, solutions to the research question as to

“How an appropriate resource-constrained OWL reasoner can be automatically composed

and be selected based on application characteristics.”

are proposed, designed and implemented. In Chapter 3 the design of two novel automatic

reasoner composition algorithms, i.e. the selective rule loading algorithm and the two-phase

RETE algorithm, are presented in order to enable OWL reasoning to run better on resource-

constrained environments. The two composition algorithms compose the reasoner both at

the rule set level and inside the RETE algorithm. Considering that these two composition

levels may complement each other, a hybrid algorithm is designed to combine both

composition algorithms. Chapter 4 presents the design of an automatic reasoner selection

process, RESP. It gathers application characteristics from applications and reasoner

characteristics from candidate reasoners. Then the reasoner selection is performed through

matchmaking between application characteristics and reasoner characteristics.

Implementations of COROR and RESP (named as TARS) are given in Chapter 5.

Then in this chapter, these solutions are evaluated in order to investigate to what extent the

application of these solutions can address the research question. As discussed in the

motivation section in the introduction chapter, the very original motivation of having

reasoner composition approach is to allow fewer resources to be used when applying OWL

reasoning in resource-constrained environments. Hence a direct way to evaluate if the two

designed composition algorithms can satisfy this aspect would be to study the change of

OWL reasoning performance of a reasoner before and after the application of these two

149

composition algorithms, as informed in the objective 3.

The objective 3 can be further divided into two evaluation objectives. A first evaluation

objective is the comparison of the reasoning performance of COROR when it is configured

to use different composition algorithms, compared with no composition algorithm. This

gives a direct impression on the performance change brought by the different composition

algorithms. A second evaluation objective is to compare COROR (when composition

algorithms are applied) with the state of the art (maybe resource-constrained) rule-

entailment reasoners. This can show how a composable rule-entailment reasoner performs

compared to the other rule-entailment reasoner implementations, and facilitates the

identification of performance merits and pitfalls of COROR compared to other state of the

art rule-entailment reasoners.

According to these two evaluation objectives, two experiments are designed and executed.

An intra-reasoner comparison is designed that measures and compares the time/memory

required by COROR to reason over the same set of ontologies when it is configured in

different composition modes, i.e. COROR-noncomposable, COROR-selective, COROR-

two-phase and COROR-hybrid. A set of 19 small or medium sized (no larger than 13000

triples) ontologies is selected for this experiment. The selection of time and memory

required by reasoning as evaluation metrics can directly show the changes of performances

across the systems. Other evaluation metrics do exist that are less appropriate for COROR.

An inter-reasoner comparison is designed to compare COROR-hybrid with some other state

of the art (resource-constrained) rule-entailment reasoners, including Jena, Bossam,

BaseVISor and OWLIM. COROR-hybrid is selected as it combines both composition

algorithms and therefore can better represent a composable reasoner. Pellet is also included

in this experiment, even though it is not necessarily directly comparable, as both process

different sets of semantics. The inclusion of Pellet is intended only to give readers an

intuition of the performance of COROR comparing to a full-fledged DL-tableaux reasoner.

Results of the two experiments are presented and discussed in detail. More detail on the two

experiments can be found in section 6.2. The correctness of the composable reasoning and

the OWL semantics coverage of COROR are also discussed.

The major motivation for an automatic reasoner selection process is the large amount of

difficulties to be involved in the future reasoner selection process: it may require a large

amount of effort from both reasoner experts and application developers or even may lead to

inappropriate reasoners to be selected. To solve this, RESP is proposed, designed and

150

implemented (as a prototype implementation TARS). In order to study to what extent the

introduction of RESP can reduce the efforts involved in the reasoner selection process, the

usability of TARS is then a good aspect to evaluate.

A usability experiment is then designed to evaluate the usability of TARS since it is an

implementation of RESP. Two participant groups are used: an application-aware group

consisting of 17 participants with strong background on developing semantic applications,

and a reasoning-aware group consisting of 5 participants with strong background on

ontology reasoning. A reasoner selection task is designed to require application-aware

participants to use TARS to select an appropriate reasoner for the given application scenario,

and a reasoner registration task is designed to require reasoning-aware participants to use

TARS to register a candidate reasoner. Questionnaires are given to both groups to collect

feedbacks.

Detail of the designs, execution results and discussion of the intra- and inter- reasoner

comparison is presented in section 6.2. The usability test and results can be found in Section

6.3. Summary and key findings are presented in section 6.4.

6.2 Performance	Comparison	and	Investigation	of	COROR	
This section describes in detail the design, execution and results of the intra- and inter-

reasoner comparisons that are designed to fulfil the research objective 3. The rationale and

criteria for selecting the evaluation metrics are discussed first in section 6.2.1. Then in

section 6.2.2 settings of the experiments and their executions are presented. Results and

discussions for both experiments are separately given in 6.2.3 and 6.2.4. Section 6.2.5

discusses the correctness and the OWL semantics coverage of COROR.

6.2.1 Criteria	of	Selecting	Performance	Metrics	
The memory usage and reasoning time required by COROR to fully compute the

entailments of a given ontology are selected as the evaluation metrics to evaluate the

performance of COROR. The underlying motivation for this selection is that the comparison

and analysis of them is a direct and effective way to show the impact on reasoning

performance. As a matter of fact, as indicated in the motivation in Chapter 1, a primary goal

of COROR (and reasoning composition algorithms) is to reduce the resource usage such that

OWL reasoning can be better applied to resource-constrained devices (e.g. sensor mote),

which further encourages the use of memory usage and reasoning time as the evaluation

metrics. It is not the first time that these metrics are used to in a performance evaluation.

Many previous researchers have already employed (one or both of) them in reasoner related

151

experiments, such as Oracle database 11g [Wu et al 2008], SwiftOWLIM [SwiftOWLIM ver

2.9.1 SysDoc], MiRE4OWL [Kim et al 2010], µOR [Ali and Kiefer 2009] and so on.

Other evaluation metrics also exist for measuring the performance of OWL reasoners from

other aspects, e.g. execution time for DL reasoning tasks, conjunctive query answering time,

and benchmark suites. However, these metrics are excluded, as they are not suitable for the

purpose of this evaluation, for the reasons explained in the following paragraphs.

Execution time for DL reasoning tasks. Besides entailment many DL reasoners also

implement a different set of reasoning tasks such as subsumption, instantiation, realization,

consistency checking and so on [Baader et al 2007]. Note that DL reasoners here refer to

those reasoners using DL reasoning techniques to reason over OWL, including all DL-

tableaux reasoners, some resolution-based reasoners such as KAON2, and some other

reasoners such as CEL or QuOnto. Measuring the execution time for these DL reasoning

tasks is widely adopted in the evaluations of DL reasoners, such as Pellet [Sirin et al 2005],

CEL [Baader et al 2006], Minerva [Zhou et al 2006] and KAON2 [Motik 2008].

However as entailment is the most basic (and only explicitly implemented) reasoning task in

COROR and the other reasoning tasks are not explicitly implemented but can be reduced to

querying the entailment closure as discussed in section 5.2.2, therefore the performance of

the reasoning tasks are highly dependent on the performance of entailment calculation.

Hence measuring the performance of other DL reasoning tasks is omitted from the

performance experiments of COROR.

Query Answering Time. Measuring the query answering time is also an often used

evaluation metric for OWL reasoners, especially for those aiming at scalable ABox query

answering. A number of reasoners, such as Pellet [Sirin et al 2005], RacerPro [RacerPro

Release Notes v1.9.2], Miverva [Zhou et al 2006] and KAON2 [Motik and Sattler 2006],

have used it in experiments to evaluate the scalability in terms of answering queries over a

large ABox. This metric is also excluded from the performance experiment as the two

designed composition algorithms do not extend µJena in this regard and no contribution is

claimed in terms of query answering.

Benchmark Suites. Some benchmark suites, such as the Lehigh University Benchmark

(LUBM) suite [Guo et al 2005] and the University Ontology Benchmark (UOBM) [Ma et al

2006], are designed to evaluate the scalability of a reasoner when handling a large ABox.

They usually generate very large artificial ABox from a given TBox, which is often too large

152

to be used to evaluate the composition algorithms designed and implemented in this thesis

where the context of resource-constrained devices is imposed. For example, LUBM

generates synthetic data based on a university domain ontology; the smallest dataset of

LUMB with only one university data, i.e. LUBM(1,0), still reaches 8.7MByte with 103K

triples. Similarly the OpenRuleBench suite [Liang et al 2009] is a performance

benchmarking tool designed to test rule engines from four aspects, including large join test,

Datalog recursion, default negation, dynamic indexing tests and database interface tests. For

each aspect, a set of tests is provided. The large join test appears to be relevant to this thesis

where rule-entailment reasoner is used. However as the OpenRuleBench suite aims to

evaluate how desktop rule engines perform at a web scale, the dataset is still too large for

resource-constrained environments, e.g. the smallest dataset contains 50K facts.

There are other metrics that are used to evaluate particular reasoners but are not commonly

used in general, such as the ontology upload speed [SwiftOWLIM ver 2.9.1 SysDoc,

Kiryakov et al 2005] which measures the amount of triples a reasoner can process per

second, ontology deletion speed [Kiryakov et al 2005] which represents the time a reasoner

required to handle a deletion transaction, completeness of query answer set [Zhou et al 2006,

Jang and Sohn 2004] which is the completeness (given in percentage) of a query answer set

comparing with the goal standard, and so on. They are also excluded from this evaluation as

they are too specific for a particular reasoner to fit into the objectives identified for this

research.

6.2.2 Design	and	Execution	
Different settings were used for the intra- and inter-reasoner comparisons. The intra-

reasoner comparison was performed on a Sun SPOT emulator v4.0 blue15 with the support

of the Squawk JVM [Squawk JVM] which is CLDC 1.1 conformant. In this comparison

COROR was configured as four different composition modes, i.e. COROR-noncomposable,

COROR-selective, COROR-two-phase, and COROR-hybrid, and all of them need to reason

over a same set of ontology (as will be listed later in this section). The memory usage and

reasoning time for each mode to reason over each ontology is measured and compare

against each other. A Sun SPOT sensor board has a 180MHz 32-bit ARM920T core

processor with 512K RAM and 4M Flash. The Sun SPOT emulator was running on a

desktop computer with Intel Dual Core CPU @ 2.4GHz, 3.25GB RAM and Windows XP

professional version 2002 SP2 x86.

15 http://www.sunspotworld.com/docs/index.html

153

State of the art rule-entailment reasoners are selected for comparison in the inter-reasoner

comparison, including Bossam 0.9b45, Jena v2.6.3, BaseVISor v1.2.1, and swiftOWLIM

v3.0.10. Their selection is motivated by the fact that they are state of the art rule-entailment

reasoners using RETE algorithm and they have similar OWL expressivity as COROR. As

discussed earlier, comparing them side by side with COROR can reflect the performance

merits and pitfalls of COROR comparing to state of the art rule-entailment reasoners.

MiRE4OWL and µOR were not accessible for usage in our experiments, so they are not

included in the inter-reasoner comparison. Bossam is used in this evaluation as a resource-

constrained rule-entailment reasoner. Even though Bossam supports J2ME CDC, due to its

wide use of Java class java.util.List which is not included in CLDC 1.1, it cannot run on Sun

SPOT. However, it proved time prohibitive to port the other reasoners onto the SunSPOT

platform. As a result, inter-reasoner comparison was performed using the same desktop

computer as described above, using a J2SE platform in Eclipse Helios with Java SE 6

Update 14 and maximum heap size as 128MB. Note, all J2ME CLDC 1.1 java code is

backward compatible with J2SE (after 1.3) and so COROR runs on the desktop without

modification. Jena was configured to use the RETE engine only (use GenericRuleReasoner

and FORWARD_RETE mode) and it used the same pD* rule set as described in section

5.2.3. Pellet 1.5.1 was also included in this comparison in order to provide readers an

intuition of the performance of COROR comparing to a full-fledged DL tableau reasoner.

Memory usage and reasoning time are measured using Java built-in time and memory

methods. For measuring the reasoning time, the java method

System.currentTimeMillis()

was invoked both before and after the ontology reasoning is performed, that is

InfGraph.prepare().

The reasoning time is then the difference of the two measurements.

The memory usage that the composable reasoner requires to reason over an ontology is

measured by subtracting the free memory from the total memory

Runtime.getRuntime().totalMemory() -

Runtime.getRuntime().freeMemory()

after the

154

InfGraph.prepare().

is invoked. At this stage, all reasoning is finished and the RETE network reaches its

maximum, populated with all asserted and inferred triples.

The reasoning time and memory usage are measured separately in different executions of

COROR so no interference between them occurs. Each result of time/memory used in the

evaluation is the average of 10 individual measurements to reduce the error in each

measurement. Furthermore the method

System.gc()

is explicitly invoked 20 times before the memory measurements, releasing as much garbage

memory as possible so interference from non-recycled garbage memory is reduced. A

threshold of 30 minutes is set to avoid excessively long reasoning times, and manual

termination is imposed for reasoning processes longer than this threshold.

In total 11 ontologies of small sizes and moderate expressivities are selected for the intra-

reasoner comparison (as given in Table 6-1a), and eight more ontologies are used for the

inter-reasoner comparison (as given in Table 6-1b). All ontologies used in this experiment

can be found in the attached DVD of this thesis. They are selected for three reasons: (1) they

model different domains, which, to some extent, is able to represent the diversity of the

content of ontology that could be used in embedded devices, (2) they vary in expressivity so

their usage avoids any unintentional bias where some OWL constructs are over- or under-

used by some ontology designers in different application domains, and (3) they are well

known and commonly used, and so are relatively free from errors.

Table 6-1: Ontologies used in intra-/inter-reasoner comparison experiments

(a) Eleven ontologies used in the intra-reasoner comparison.

Ontology Expressivity No. of cls/prop/indv Size (triples)
teams ALCIN 9/3/3 87
owls-profile ALCHIOF(D) 54/68/13 116
Koala ALCON(D) 20/7/6 147
university SIOF(D) 30/12/4 169
Beer ALHI(D) 51/15/9 173
mindswapper ALCHIF(D) 49/73/126 437
Foaf ALCHIF(D) 17/69/0 503
mad_cows ALCHOIN(D) 54/17/13 521

155

Biopax ALCHF(D) 28/50/0 633
Food ALCOF 65/10/57 924
mini-tambis ALCN 183/44/0 1080

(b) Eight more ontologies used in the inter-reasoner comparison.

Ontology Expressivity No. of cls/prop/indv Size (triples)
amino-acid SHOF(D) 55/24/1 1465
atk-portal ALCHIOF(D) 169/147/75 1499
Wine SHOIN(D) 77/16/161 1833
Pizza ALCF(D) 87/30/0 1867
tambis-full SHIN 395/100/0 3884
Nato ALCF(D) 194/885/0 5924
Mged RDFS(DL) 437/21/1278 6284
Tap RDFS(DL) 5488/0/0 12085

6.2.3 Intra-Reasoner	Comparison:	Results	and	Discussions	
The memory usage (byte) and reasoning time (millisecond) required by the four

composition modes, i.e. COROR-noncomposable, COROR-selective, COROR-two-phase

and COROR-hybrid, to reason over the selected ontology are listed in Table 6-2. For easier

presentation the raw data is represented as bar charts separately in Figure 6-1a (memory)

and Figure 6-1b (reasoning time). In the charts the ontologies are arranged ascendant by

sizes. There are no results for some measurements, e.g. the time and memory usage for

COROR-noncomposable to reason over biopax, food and miniTambis ontologies. This is

because these tests exceeded the threshold and therefore manual termination is applied to

the reasoning process. For these measurements “X” symbols are placed on the

corresponding position on the charts to represent their lack of results.

156

(a
):

 M
em

or
y

us
ag

e
re

qu
ir

ed
 b

y
di

ff
er

en
t C

O
R

O
R

 c
om

po
si

tio
n

m
od

es

to
 r

ea
so

n
ov

er
 th

e
on

to
lo

gi
es

.

157

(b
):

 R
ea

so
ni

ng
 ti

m
e

re
qu

ir
ed

 b
y

di
ff

er
en

t C
O

R
O

R
 c

om
po

si
tio

n
m

od
es

 to
 r

ea
so

n
ov

er
 th

e
on

to
lo

gi
es

.

Fi
gu

re
 6

-1
: C

om
pa

ri
so

ns
 o

f m
em

or
y

an
d

re
as

on
in

g
tim

e
be

tw
ee

n
C

O
R

O
R

co
m

po
si

tio
n

m
od

es
 (I

nt
ra

-r
ea

so
ne

r
co

m
pa

ri
so

n)
.

158

Ta
bl

e
6-

2:
 R

aw
 d

at
a

fo
r

m
em

or
y

te
st

s a
nd

 ti
m

e
te

st
s (

m
em

or
y

in
 b

yt
e

an
d

tim
e

in
 m

ill
is

ec
on

d)
.

159

As can be found in both the diagrams and the table, the three composable modes, i.e.

COROR-selective, COROR-two-phase and COROR-hybrid, use much less memory and

reasoning time to reason over the same ontology than COROR-noncomposable does (where

only the original ported Jena RETE engine is used and no composition algorithms are

applied). Furthermore for eight ontologies (which are teams, owls-profile, koala, university,

beer, mindswappers, mad_cows, and foaf) COROR-hybrid requires less than 512KB

memory (the RAM size of Sun SPOT). Six ontologies for COROR-two-phase and two

ontologies for COROR-selective use less than 512KB memory, however, no ontology falls

into this size for COROR-noncomposable, which indicates for a given memory bound

COROR composable modes (in particular for COROR-hybrid) can reason over larger

ontology than COROR-noncomposable. In addition using less memory than the physical

RAM size means there is not a need for the ontologies to frequently page in and out, further

improving the time performance and reducing the power consumption.

It is clear that the COROR-selective, COROR-two-phase and COROR-hybrid use less time

and memory to fully compute the entailments for all tested ontologies than COROR-

noncomposable. However the amount of saved memory/time varies largely from the three

COROR composable modes. For example, COROR-noncomposable uses 1.8MB memory to

reason over mindswappers; COROR-selective requires 738KB to reason over the same

ontology (of which the memory reduction is around 1.0MB); but COROR-two-phase and

COROR-hybrid correspondingly require only 422KB and 401KB (of which the memory

reduction is around 1.4MB). Similar situations also apply to the time reduction. As can be

found in Table 6-2 and Figure 6-1 COROR-hybrid generally has the most memory/time

reduction among the three composable modes, and then comes the COROR-two-phase

which usually requires slightly more memory/time usage than COROR-hybrid. COROR-

selective usually has the least memory/time reduction among them all.

In the remaining parts of this subsection, in-depth analysis is performed to investigate the

causes of memory/time reduction for all the three composable modes, based on which the

differences in memory/time among composable modes are discussed and analysed. Since it

is proven to be difficult to measure the exact memory usage or time consumption for a rule

or only for a part of the RETE network using the approaches described in section 6.2.2, an

approximation approach is used. It is clear from the introduction of the RETE algorithm in

section 2.2.2.1, join operation and match operation are the two major operations separately

performed in the beta and alpha network. Furthermore the cached intermediate result in

alpha memory and beta memory is the major source for memory consumption in beta

160

network. As discussed in section 2.2.2.3.1, join sequence optimization heuristics try to

construct a better join sequences such that less join operations are required (so the less

processing time is required) and also less intermediate results are generated, therefore in this

evaluation the changes of the number of joins (#J) performed by a particular rule are used to

represent the changes of reasoning time in the beta network of the rule. Similarly the

changes of number of matches (#M) performed by a particular rule are used to represent the

changes of reasoning time in the alpha network of the rule. Generally the greater the #M (#J)

that are performed, the more time is required by the alpha network (beta network) of the rule

(comparing to other rules). For memory, the changes of the number of intermediate results

(#IR) generated in a rule are used to represent the changes of the memory usage required by

the rule. The changes of number of intermediate results generated in the alpha/beta network

of a rule (#IRM/#IRJ which are generated from successful matches/joins) are used to

represent the changes of the memory usage of the alpha/beta network of the rule.

A major benefit of using the changes in #J/#M/#IR/#IRM/#IRJ to represent the changes of

reasoning time/memory usage of the RETE network is that the #J/#M/#IR/#IRM/#IRJ can

truly represent the performance of the algorithm independent of the specifications of the

platform on which the RETE algorithm is running. As long as the algorithm does not change,

the same results will always be produced regardless as to whether it is run on a powerful

desktop machine or a resource-constrained sensor node. As a matter of fact this thesis is not

the first research adopting these metrics. These metrics were adopted in many previous work

to measure the performance of their RETE network [Miranker 1987, Wang and Hanson

1992, Ishida 1994].

6.2.3.1 Selective	Rule	Loading	Algorithm	
As discussed in the section 3.4.1 the rationale behind the selective rule loading algorithm is

to remove unused rules from the rule set for a given ontology so that memory and

processing power that would be allocated to them are saved. Figure 6-2a and Figure 6-2b

separately show the number of intermediate results (#IR) generated by each rule when

COROR-noncomposable and COROR-selective are used to reason over the eight selected

ontologies. Singleton rules, i.e. rules with only one condition, are directly fired without

caching intermediate results, and therefore they do not contribute to the #IR and they are

excluded from both diagrams. The biopax, food and miniTambis are not included in the

diagrams as manual termination was imposed for COROR-noncompoable leading to no

results for them.

161

(a
) #

IR
 g

en
er

at
ed

 b
y

ea
ch

 r
ul

e
w

he
n

C
O

R
O

R
-n

on
co

m
po

sa
bl

e
re

as
on

s o
ve

r
se

le
ct

ed
 o

nt
ol

og
ie

s

162

(b
) #

IR
 g

en
er

at
ed

 b
y

ea
ch

 r
ul

e
w

he
n

C
O

R
O

R
-s

el
ec

tiv
e

re
as

on
s o

ve
r

se
le

ct
ed

 o
nt

ol
og

y

Fi
gu

re
 6

-2
: #

IR
 g

en
er

at
ed

 b
y

ea
ch

 r
ul

e
w

he
n

C
O

R
O

R
-n

on
co

m
po

sa
bl

e/
C

O
R

O
R

-s
el

ec
tiv

e

re
as

on
s o

ve
r

se
le

ct
ed

 o
nt

ol
og

y

163

For each tested ontology in Figure 6-2 there are some rules that have the same #IR for the

two composition modes, however, the #IR drops to zero for some other rules. For example,

for the team ontology, in total 7 rules drop down to zero when the selective rule loading

algorithm is applied, i.e. rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp14a, and rdfp14bx, however,

the #IR remains the same for the other rules. This shows the selective rule loading algorithm

generates a selective rule set, leading to no generated intermediate results for unloaded rules.

This then raises a supplementary question that: is there any relationship between rules not

selected and the memory reductions achieved. If such an indicative relationship exists, it

may be possible to estimate the memory reduction that could be achieved without having to

actually reason the ontology.

To investigate this question, the amount of memory reduction and the unselected rules for

each ontology are listed both in absolute values (in byte) and relative values (in percentage),

as given in Table 6-3. Note that the relevant memory reduction is computed as

where MCN is the memory usage for COROR noncomposable and MCS is the memory usage

for COROR selective.

As shown in the table, the absolute memory reduction does not show an obvious tendency

with the number of unselected rules (shown in brackets). However, the relative memory

reduction increases with the number of unloaded rules, from 17.42% for the university

ontology with 4 unloaded rules to 59.01% for the mindswappers ontology 11 unloaded rules.

One obvious relationship is the relative memory reduction increase with the number of

unselected rules.

Table 6-3: Memory reduction achieved by the COROR-selective.

Ontology Memory reduction Unloaded rules (number of unloaded rules)

Absolute
(byte)

Relative
(percentage)

university 186124 17.42% rdfs12, rdfp1, rdfp2, rdfp3 (4)
Koala 265592 26.64% rdfs12, rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx (6)
Teams 223856 31.22% rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp14a,

rdfp14bx (7)
mad_cows 697280 32.64% rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp14a,

rdfp14bx (7)
Foaf 739704 30.63% rdfs12, rdfp3, rdfp4, rdfp14a, rdfp14bx, rdfp15,

rdfp16 (7)
Beer 487036 37.92% rdfs12, rdfp2, rdfp3, rdfp4, rdfp14a, rdfp14bx,

𝑀𝐶𝑁 −𝑀𝐶𝑆
𝑀𝐶𝑁

× 100%

164

rdfp15, rdfp16 (8)
owls-profile 407296 47.00% rdfs12, rdfp2, rdfp3, rdfp4, rdfp8ax, rdfp8bx,

rdfp14a, rdfp14bx, rdfp15, rdfp16 (10)
mindswappers 1062404 59.01% rdfs12, rdfp1, rdfp2, rdfp3, rdfp4, rdfp8ax,

rdfp8bx, rdfp14a, rdfp14bx, rdfp15, rdfp16 (11)

Further investigation into the percentage of #IR contributed by each rule when the COROR-

noncomposable is used (as shown in Figure 6-3) indicates that all unselected rules occupy a

relative constant percentage of the total #IR generation regardless of the ontology reasoned:

the rule rdfp1 occupies 8.15% on average with standard deviation 0.23%; this percentage is

8.15%/0.24% for rdfp2, 4.07%/0.12% for rdfp3, 8.15%/0.23% for rdfp4, 4.09%/0.12% for

rdfp8ax, 4.09%/0.12% for rdfp8bx, 4.15%/0.11% for rdfp14a, 1.67%/0.13% for

rdfp14bx, 5.78%/0,19 for rdfp15 and 5.74%/0.18% for rdfp16. A possible use of this

observation is to heuristically estimate the memory reduction for an ontology without

having to perform reasoning. For example by running only the selective rule loading

algorithm (without reasoning) against the university ontology, a set of four unselected rules

are identified, which are rdfs12 (0%), rdfp1 (8.15%), rdfp2 (8.15%), and rdfp3 (4.07%);

by adding up the corresponding percentage the estimated relative memory reduction is 20.37%

for the university ontology (of which the measured memory reduction is 17.42%). Similarly,

the estimated memory reduction is 28.55% for koala (of which the measured memory

reduction is 26.64%), 34.34% for teams (31.22%), 34.34% for mad_cows (32.64%), 33.64%

for foaf (30.63%), 37.75% for beer (37.92%), 43.57% for owls-profile (47.00%), 51.72%

for mindswappers (59.01%).

Considering the diversity of the tested ontologies, this approach may be generally applicable

to other ontologies, but it has not yet been formally proven or verified in this thesis. Since it

is a by-product of this research, its validity does not contribute to any of the evaluation

objectives identified, i.e. comparing COROR-noncomposable and composable modes, and

comparing between COROR and state of the art rule-entailment reasoners. A potential usage

of this approach is to facilitate fast ontology engineering without performing reasoning in

circumstances when a memory limitation is imposed.

165

Fi
gu

re
 6

-3
: P

er
ce

nt
ag

e
of

 #
IR

 o
cc

up
ie

d
by

 e
ac

h
ru

le
 fo

r
C

O
R

O
R

 n
on

co
m

po
sa

bl
e.

166

Figure 6-4a and Figure 6-4b respectively compare COROR-noncomposable and COROR-

selective with respect to the number of matches (#M) and the number joins (#J) performed

to reason over the eight selected ontologies. COROR-selective reduces #M for all tested

ontologies (Figure 6-4a), however the #J remains the same for both modes (Figure 6-4b).

This would suggest that all the time reduction is a result of the decrease of the #M.

(a) Comparison between #M of COROR-noncomposable and COROR-selective

(b) Comparison between #J of COROR-noncomposable and COROR-selective

0

10

20

30

40

50

60

#M
 (t

ho
us

an
d)

Ontology

COROR-noncomposable
COROR-selective

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80

#J
 (m

ill
io

n)

Ontology

COROR-noncomposable
COROR-selective

167

Figure 6-4: Comparison between #M/#J of COROR-noncomposable and

COROR-selective

To further explain the observation found in Figure 6-4, without loss of generality, the #M/#J

generated by all rules for reasoning the foaf ontology are compared between COROR-

noncomposable and COROR-selective. As shown in Figure 6-5 COROR-selective reduces

the #M of all unselected rules to zero, including rdfs12, rdfp3, rdfp4, rdfp14a, rdfp14bx,

rdfp15 and rdfp16, showing their unselection. The #M of selected rules, e.g. rdfp1, remains

the same. As shown in Figure 6-6 there is no difference between #J performed by COROR-

noncomposable and that by COROR-selective. As one might have already noticed the #J for

all unselected rules is zero even for COROR-noncomposable where all rules are loaded into

memory, which indicates that no join operations are performed. By looking into the rules it

is found that these unselected rules are quite optimized in terms of join sequences: singleton

rules do not need joins; for rules with two conditions, e.g. rdfp3 and rdfp4, the lack of

matched facts for one condition will cause no join operations to be performed for the rule;

for rules with more than three conditions, e.g. rdfp14a, rdfp14bx, rdfp15 and rdfp16,

expressivity constructs (OWL constructs that determines the selection of a rule, e.g.

owl:hasValue, owl:someValuesFrom, owl:allValuesFrom; refer to section 3.4.1) are

placed in the first condition of the join sequence, and therefore no join operations are needed

since no facts are matched to the first condition of these rules. For this particular rule set it is

the reduction on the number of matches that causes the reduction of reasoning time.

However it is envisaged that in a less optimized rule set, e.g. expressivity constructs are not

placed in the front of unselected rules, the application of the selective rule loading algorithm

will also reduce the #J.

168

Fi
gu

re
 6

-5
: #

M
 fo

r
th

e
fo

af
 o

nt
ol

og
y

169

Fi
gu

re
 6

-6
: #

J
fo

r
th

e
fo

af
 o

nt
ol

og
y.

170

6.2.3.2 Two-Phase	RETE	Algorithm	
Unlike the selective rule loading algorithm which only removes unnecessary rules and then

uses a standard RETE network, the two-phase RETE algorithm can take an unmodified rule

set but heuristically constructs a customized RETE network for the particular ontology

taking into account the semantics of the ontology, particularly the OWL constructs

contained by the ontology. As already discussed in section 3.4.2, the two-phase RETE

algorithm interrupts the RETE construction process using initial fact matching, and

information that is hard to collect without matching is then collected. According to the

information, a customized beta network is then built for the particular ontology.

This subsection discusses how the application of two-phase RETE algorithm impacts on the

memory usage and reasoning time required by the alpha network and the beta-network. Note

that this discussion is based on results collected on desktop in order that more data can be

analysed. The exact same COROR implementation as the one used to produce the results in

Figure 6-1 is used in this analysis. However rather than running on Sun SPOT, it runs on the

desktop machine as mentioned above in section 6.2.2. Since #M, #J and #IR are only

relevant to algorithms and are independent of the platform on which the algorithms are

running, the same #M, #J and #IR are generated.

Figure 6-7 compares the number of intermediate results generated in both alpha network

(#IRM) and beta network (#IRJ) between COROR-noncomposable and COROR-two-phase.

The change related to #IRM shows the benefit from alpha network node sharing and the

change of #IRJ shows the benefit from join reordering. As shown in the figure, COROR-

two-phase generates much less #IRM than that generated by COROR-noncomposable,

however there are barely no changes between the #IRJ generated by COROR-

noncomposable and that generated by COROR-two-phase. This indicates that the major

memory reduction comes from the reduction of #IRM, i.e. the sharing of common alpha

nodes, however, nearly no memory reduction is from the decrease of #IRJ, i.e. the join

sequence reordering.

171

Fi
gu

re
 6

-7
: C

om
pa

ri
so

n
of

 #
IR

M
/#

IR
J
be

tw
ee

n
C

O
R

O
R

 n
on

co
m

po
ab

le
 a

nd
 C

O
R

O
R

 tw
o-

ph
as

e
R

E
T

E

172

To further investigate the reason for the very small reductions on #IRJ, an in-depth

investigation into the heuristically optimized RETE network was carried out. Condition

nodes in the alpha network are highly shared among rules. All rules, except for the rule

rdfs12 and rdfs13, share at least one alpha node with other rules. Some alpha nodes are

shared by more than two rules, e.g. the condition (?v owl:sameAs ?w) is shared by rdfp6,

rdfp7, rdfp9, rdfp10 and rdfp11. The wildcard condition, i.e. (?v ?p ?l), is shared by 21

rules. The highly shared alpha network enables only one set of intermediate results to be

generated for all the conditions sharing the node, leading to the large reduction in #IRM.

However the beta network shows very small changes after the join sequences being

reordered by heuristics in the two-phase RETE algorithm. Inspection into the join sequences

before and after the application of each heuristic shows only two rules, i.e. rdfp11 and

rdfp15, have their join sequences reordered by the most specific condition first heuristic

and no join sequence is reordered by the connectivity heuristic. The join sequences before

and after the application of the heuristic are given below.

The join sequence of rdfp11 after reordering

(?u owl:sameAs ?up), (?u ?p ?v), (?v owl:sameAs ?vp)

The join sequence of rdfp11 before reordering

(?u ?p ?v), (?u owl:sameAs ?up), (?v owl:sameAs ?vp)

The join sequence of rdfp15 after reordering

(?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?x rdf:type ?w), (?u ?p ?x)

The join sequence rdfp15 before reordering

(?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x rdf:type ?w)

The join sequences of the other rules remain the same due to the join sequences of pD*

entailment rules as selected, are already well optimized manually by the original rule

authors, e.g. conditions are arranged in a sequence that a more specific condition is placed in

front of a less specific condition, and in addition the join sequences are already well

173

connected. It is evident that swapping the positions of (?u owl:sameAs ?up) and (?u ?p ?v)

in rdfp11 do not change the #IRJ since they are the first two conditions in the join sequence

(whatever the order of the first two conditions they will form the first join in the join

sequence). Reordering the join sequence of rdfp15 leads to some reduction of #IRJ.

However this reduction is too small to be observable on diagram. In fact the #IRJ generated

by the rdfp15 accounts for a very small part of the total generated intermediate results in the

whole RETE network (only 0.91% for the wine ontology and even smaller for the other

tested ontology) and therefore its reduction is not very obvious.

To study the effect of the two-phase RETE algorithm on reasoning time, the comparison of

#J/#M between COROR-noncomposable and COROR-two-phase is illustrated respectively

in Figure 6-8 and Figure 6-9. In a similar way, due to the highly shared alpha network as

discussed above with regard to #IRM, the #M reduces by a large amount for all ontologies,

which then indicates the large effects of the alpha node sharing heuristic on the reasoning

time spent on performing match operations. However the small reductions of #J for all

tested ontologies suggest that for this rule set, the selected the join sequence optimization

heuristics do not have a very obvious effect on reducing the #J and therefore the reasoning

time spent on performing join operations. This can also be explained by the observation that

the join sequences for the rules except for rdfp11 and rdfp15 are already manually optimized

in terms of the join sequence optimization heuristics, therefore leading to no changes in the

majority of the join sequences of the selected rule set. However, different scales are used in

Figure 6-8 and Figure 6-9, such that the absolute reduction of #J is much larger than that of

#M, e.g. for the amino-acid ontology the reduction of the #J is 0.2M while this is 0.08M for

the #M.

174

Fi
gu

re
 6

-8
: C

om
pa

ri
so

n
of

 #
J

be
tw

ee
n

C
O

R
O

R
-t

w
o-

ph
as

e
an

d
C

O
R

O
R

-n
on

co
m

po
sa

bl
e.

175

Fi
gu

re
 6

-9
: C

om
pa

ri
so

n
of

 #
M

 b
et

w
ee

n
C

O
R

O
R

 tw
o-

ph
as

e
an

d
C

O
R

O
R

 n
on

co
m

po
sa

bl
e.

176

All other ontologies (except for owls-profile, beer, mindswappers, foaf, food, atk-portal and

nato) have reductions on both match operations and join operations. Therefore the time

reductions (refer to Table 6-2) for them come from both the reduction in the number of

match operations in the highly shared alpha network and the reduction of the number of join

operations caused by heuristically reordering the rule rdfp15. As the time required by per

join operation is different from that required by per match operation, it is not possible to

determine which part contributes more to the total time reduction. The above listed

ontologies (owls-profile, beer, mindswappers, foaf, food, atk-portal and nato) do not include

owl:someValuesFrom and therefore no joins are performed for rdfp15 which is the only

source for the reduction of #J. For those ontologies the time reductions come only from their

highly shared alpha networks.

It appears from the above analysis that the two-phase RETE algorithm does not obviously

optimize the beta network, leading to relatively small time reductions (represented by the

small reductions of #J) and the small memory reductions (represented by the small

reductions in #IRJ). The main reason for this is the use of a manually optimized pD* rule set

in the evaluation. Rules are quite optimized join sequences in terms of the heuristics used in

this research: the join sequences are ordered with specific condition in front of less specific

conditions in most times and joining conditions are connected. As will be shown later on,

this is not a general case.

In order to show that the two-phase RETE algorithm can optimize the join sequence in

general cases, leading to more time and memory reduction, three rules from the pD* rule set

were manually reordered to use different join sequences (renamed as rdfp1m, rdfp2m and

rdfp4m, as listed in Figure 6-10). The modified rules bring forward more general

conditions (wildcard conditions) to the front of their join sequences, making them less

optimized. In fact it is often that domain experts would author rules with a more general

condition at the start of the join sequence, which would then lead to the long-chain effect.

The memory usage and reasoning time required by COROR-two-phase and COROR-

noncomposable to reason over the same set of ontology as selected in Figure 6-1 are tested

again, however both the original and the modified rule set are used. The same experiment

settings are used and the same COROR implementation is used. Results are illustrated in

Figure 6-11 and Figure 6-12. Note that for brevity in Figure 6-11 and Figure 6-12 , COROR-

noncomposable using the modified rule set is represented as “COROR-noncomposable

modified” in the legends and the same rule applies to other COROR configurations.

177

Figure 6-10: Modified rule rdfp1, rdfp2 and rdfp4.

[rdfp1m: (?u ?p ?v), (?u ?p ?w), (?p rdf:type owl:FunctionalProperty),

notLiteral(?v) -> (?v owl:sameAs ?w)]

[rdfp2m: (?u ?p ?w), (?v ?p ?w), (?p rdf:type owl:InverseFunctionalProperty) ->

(?u owl:sameAs ?v)]

[rdfp4m: (?u ?p ?v), (?v ?p ?w), (?p rdf:type owl:TransitiveProperty) ->

(?u ?p ?w)]

178

Fi
gu

re
 6

-1
1:

 C
om

pa
ri

so
n

of
 th

e
m

em
or

y
us

ag
es

 o
f C

O
R

O
R

-n
on

co
m

po
sa

bl
e

an
d

C
O

R
O

R
-t

w
o-

ph
as

e
to

 r
ea

so
n

ov
er

 se
le

ct
ed

 o
nt

ol
og

y
fo

r
di

ff
er

en
t r

ul
e

se
ts

.

179

Fi
gu

re
 6

-1
2:

 C
om

pa
ri

so
n

of
 th

e
re

as
on

in
g

tim
e

of
 C

O
R

O
R

-n
on

co
m

po
sa

bl
e

an
d

C
O

R
O

R
-t

w
o-

ph
as

e
to

 r
ea

so
n

ov
er

 se
le

ct
ed

 o
nt

ol
og

y
w

he
n

di
ff

er
en

t r
ul

e
se

ts
 a

re
 u

se
d.

180

As can be seen from Figure 6-11 and Figure 6-12 , the COROR-noncomposable uses a lot

more memory and reasoning time when the modified rule set is used. Some ontologies such

as beer, mindswappers, mad_cows and foaf that have valid measurements in Figure 6-1

require manual terminations for the modified rule set. However the memory usage and

reasoning time required by the COROR two-phase stays unchanged for both the original and

the modified rule set.

A similar investigation of the #IR and #J/#M is also performed on COROR-noncomposable

and COROR-two-phase in order to show how the two-phase RETE algorithm affects on the

reduction of memory usage and reasoning time when the modified rule set is used. Insight

into #M (Figure 6-13) indicates that the use of a modified rule set does not lead to changes

in the #M for both COROR-noncomposable and COROR-two-phase. This is because only

the join sequences are changed but the conditions remain the same for the modified rule set

and therefore the alpha network remains unchanged for the modified rule set, leading to the

same amount of time used in performing the match operations. The #J of COROR-

noncomposable has greatly increased for the modified rule set as sub-optimal join sequences

are used. However, the #J remains the same for COROR two-phase (as indicated in Figure

6-14), which explains the large reduction of the reasoning time for COROR-two-phase

when the modified rule set is used (comparing to COROR-noncomposable when the

modified rule set is used, as illustrated in Figure 6-12). Further investigation into the rule

join sequences after the application of join sequence reordering heuristics indicates that join

sequences of the modified rules are reordered into the optimal sequences as given in the

original rules. This suggests that the heuristics used in the two-phase RETE algorithm can

optimize join sequences automatically using the information collected in the first phase

without changing the semantics of rules, which otherwise requires manual optimization

from a rule expert. In fact people who write custom/domain-specific rules are usually not

rule experts and hence they could not do this optimization manually, which emphasizes the

benefit of the two-phase RETE algorithm to automatically optimize the join sequences of

rules. To summarise, the results presented here using the modified rule set show that the

heuristics used in the two-phase RETE algorithm can optimize join sequences of rules in

general cases leading to a great reduction of the #J and hence the reasoning time spent on

beta network.

181

Fi
gu

re
 6

-1
3:

 #
M

 g
en

er
at

ed
 b

y
C

O
R

O
R

-n
on

co
m

po
sa

bl
e

an
d

C
O

R
O

R
-t

w
o-

ph
as

e
w

he
n

di
ff

er
en

t r
ul

e
se

ts
 a

re
 u

se
d.

182

Fi
gu

re
 6

-1
4:

 #
J

ge
ne

ra
te

d
by

 C
O

R
O

R
-n

on
co

m
po

sa
bl

e
an

d
C

O
R

O
R

-t
w

o-
ph

as
e

w
he

n
di

ff
er

en
t r

ul
e

se
ts

 a
re

 u
se

d.

183

The analysis of the #IRM/#IRJ show similar results as the corresponding investigation of

#M/#J conducted above. The #IRM is the same for both rule sets (Figure 6-16) as the

conditions are not changed. Hence the alpha network remains the same for the modified rule

set. The #IRJ for COROR-noncomposable increases greatly when the modified rule set is

used (Figure 6-16) since sub-optimal join sequences are used. However the #IRJ for

COROR-two-phase remains the same for both the modified rule set and the original rule set

since the sub-optimal join sequences in the modified rule set have been automatically

reordered into the optimal join sequences, as those in the original rule set manually

optimized by rule experts. Similar conclusions can be drawn that the two-phase RETE

algorithm can automatically optimize the join sequences of general rule sets, leading to great

reduction of the #IRJ. This also explains the great memory reduction of COROR-two-phase

when using the modified rule set (Figure 6-11).

184

Fi
gu

re
 6

-1
5:

 #
IR

M
 r

eq
ui

re
d

by
 C

O
R

O
R

-n
on

co
m

po
sa

bl
e

an
d

C
O

R
O

R
-t

w
o-

ph
as

e
w

he
n

di
ff

er
en

t r
ul

e
se

ts
 a

re
 u

se
d.

185

Fi
gu

re
 6

-1
6:

 #
IR

J r
eq

ui
re

d
by

 C
O

R
O

R
-n

on
co

m
po

sa
bl

e
an

d

C
O

R
O

R
-t

w
o-

ph
as

e
w

he
n

di
ff

er
en

t r
ul

e
se

ts
 a

re
 u

se
d.

186

6.2.3.3 Hybrid	Algorithm	
Since the selective rule loading algorithm and the two-phase RETE algorithm do not affect

each other in any way, it is possible to apply both optimizations at the same time. COROR

hybrid uses a hybrid algorithm that combines the selective rule loading algorithm and the

two-phase RETE algorithm by first generating a selected rule set and then applying the two-

phase RETE algorithm using the selected rule set. However as illustrated in Figure 6-1, in

this experiment this combination does not gain a lot more time or memory reduction

comparing to COROR two-phase. In fact Table 6-2 indicates that for all selected ontologies,

COROR-hybrid only uses from 10KB to 20KB less memory than that required by COROR-

two-phase. The reasoning time required by COROR-hybrid is almost similar as required by

COROR-two-phase, and for some ontologies such as Biopax and mad_cows COROR-

hybrid requires even slightly more.

Investigation of #IRM/#IRJ shows that COROR-hybrid uses almost the same #IRM/#IRJ as

COROR-two-phase (Figure 6-17). This can be explained as follows. If a rule is not selected

by COROR-hybrid, then there must be a condition in it that has at least one OWL construct

not included in the ontology (according to the principles of the selective rule loading

algorithm) and so will have no matches at the initial matching stage when the number of

matched facts is collected for each condition. Hence this condition is the most specific

condition in the join sequence as it has no matched facts and is then re-ordered to the start of

the join sequence by the most specific-condition first heuristic used in the two-phase RETE

algorithm. This then leads to no join operations being performed for this join sequence and

no intermediate results being generated in the corresponding beta network of the rule.

Still some intermediate results are generated in the alpha network because of successful

matches in alpha nodes. However as the alpha network is highly shared in the two-phase

RETE algorithm and for this rule set almost all of the unnecessary alpha network matches

for the unnecessary rules are actually shared with other (necessary) rules, hence the

unloading of a rule will not reduce much of the #IRM generated in COROR hybrid. For

example, in COROR hybrid the rule rdfp1 is unselected for the university ontology as the

condition (?p rdf:type owl:FunctionalProperty) contains owl:FunctionalProperty

which does not appear in the university ontology. The other conditions, e.g. (?u ?p ?v) in

rdfp1, are shared by other (selected) rules, e.g. rdfs7x, and therefore no matter if the rule

rdfp1 is unselected, the (shared) node (?u ?p ?v) is still constructed anyway (for the rule

rdfs7x), and therefore unselecting rdfp1 does not cause the reduction of memory allocated

187

to the shared conditions. The small amount of memory reduction of COROR hybrid comes

from both the removal of some unshared conditions in unselected rules and the removal of

the data structures for unselected rules from the beta network.

The #M reduces for COROR-hybrid by a certain amount as shown in Figure 6-18 as some

unshared conditions of unselected rules are missing from the alpha network, e.g. (?p

rdf:type owl:FunctionalProperty) in rdfp1, leading to fewer match operations being

required (although no successful matches for this condition since the missing of the OWL

construct owl:FunctionalProperty in the ontology, still match operations are performed).

The #J is the same for both COROR-hybrid and COROR-two-phase (Figure 6-19). Similarly,

this is because the most specific conditions for unnecessary rules are those with no matched

facts, and hence the most-specific condition first heuristic will reorder them to the start of

the join sequences causing no join operation to be needed, as if they are “unselected”.

The decrease in the #M reduces the reasoning time of COROR-hybrid by a small amount.

However the introduction of the selective rule loading algorithm introduces extra time in

computing the selective rule set, which in total may use more time than COROR two-phase.

From these results, for this rule set it can be seen that the combination of the alpha node

sharing heuristic and join sequence reordering heuristics in the two-phase RETE algorithm

actually achieved much of the same benefit as the selective rule loading algorithm: in fact

rather than optimizing for unnecessary rules, these heuristics can also optimize the alpha

network and join sequences for selected rules, leading to even less time and memory

requirements over that of COROR-selective. Hence COROR-hybrid has little benefit

beyond that of COROR-two-phase. When combined with the restriction that the adoption of

the selective rule loading algorithm limited the flexibility to alter rules (new construct-rule

mapping entries are required) or to handle updates with new constructs (new constructs will

not be handled since the rule is not in the selected rule set), it could be seen that the selective

rule loading algorithm has limited utility. However, with a different rule set (especially

domain specific rules) with less overlaps of conditions in the rules, the benefit of the

selective rule loading algorithm would become much more pronounced with respect to

alpha network memory and time savings.

188

Fi
gu

re
 6

-1
7:

 #
IR

M
/#

IR
J r

eq
ui

re
d

by
 C

O
R

O
R

-h
yb

ri
d

an
d

C
O

R
O

R
-t

w
o-

ph
as

e.

189

Fi
gu

re
 6

-1
8:

 #
M

 r
eq

ui
re

d
by

 C
O

R
O

R
-h

yb
ri

d
an

d
C

O
R

O
R

-t
w

o-
ph

as
e

190

Fi
gu

re
 6

-1
9:

 #
J

re
qu

ir
ed

 b
y

C
O

R
O

R
-h

yb
ri

d
an

d
C

O
R

O
R

-t
w

o-
ph

as
e.

191

6.2.4 Inter-Reasoner	Comparison:	Results	and	Discussions	
The comparisons of reasoning time and memory usage between COROR and other state of

the art reasoners are given in Figure 6-20a and Figure 6-20b. This experiment was

performed on desktop using a J2SE platform. Experiment settings can be found in section

6.2.2. A similar measurement approach is used as described in section 6.2.2. The exact same

COROR implementation as the one used in the intra-reasoner comparison is used. However

rather than running on Sun SPOT, it runs on J2SE platform. Four other rule-entailment

reasoners with similar reasoning algorithms and expressivity are also included in this

experiment for comparison, including Jena, BaseVISor, swiftOWLIM, and Bossam. Since

Jena also has a resolution engine, it was configured to use only forward chaining RETE

engine and the same rule set as the one used in COROR was loaded. For brevity the Jena

under this configuration is termed as Jena-forward. As discussed in the reasoner

categorization as described in the related work in Chapter 2, SwiftOWLIM and BaseVISor

are two desktop rule-entailment reasoners supporting similar semantics as the pD*

entailment as well. However, as well as pD* entailment rules, the axiomatic triples and

consistency rules are also supported by them. The expressivity of Bossam is not mentioned

in the website 16 , paper [Jang and Sohn 2004], and implementation, therefore made it

difficult to judge its inference capability. COROR-hybrid was used in this comparison

because it combines both composition algorithms and therefore can represent the

performance gain achieved by both composition algorithms. Note that Pellet is also included

in this experiment. It is a tableaux-based reasoner and performs complete OWL-DL

reasoning. However it is included in this experiment not for comparing its performance side-

by-side with the other rule-entailment reasoners (which are not complete OWL-DL

reasoners). It is only included to give readers an intuition as to how COROR performs

compared to a full-fledged complete OWL-DL reasoner.

The reasoning time required by the above reasoners to reason over a set of 17 ontologies

(refer to Table 6-1 for more on the ontology) is shown in Figure 6-20a. As shown in the

diagram, the time performance of COROR-hybrid is comparable to Jena-forward and

BaseVISor. In contrast to the results listed in Figure 6-1b where COROR-hybrid uses much

less reasoning time than COROR-noncomposable to reason a same ontology, here in the

inter-reasoner comparison COROR-hybrid only slightly outperforms Jena-forward. Since (1)

the exact same COROR implementation is used in both the intra-reasoner comparison and

the inter-reasoner comparison, and (2) as discussed earlier in section 5.2.2, almost a same

16 http://bossam.wordpress.com/

192

RETE engine as the one used in Jena-forward is used in COROR-noncomposable except

only for the use of J2ME CLDC conformant container classes in the one used in COROR-

noncomposable in order to run on mobile devices, then a reasonable explanation for the

different time reductions in Figure 6-1b and Figure 6-20a could be the performance

differences of the different container classes used by COROR-noncomposable and Jena-

forward. The List and Map used in COROR-noncomposable are self-defined by µJena,

which could be relatively less optimized and slower compared to the standard Java container

classes such as java.util.ArrayList and java.util.HashMap used in the Jena-forward,

hence offsetting the time reduction gained by composing the reasoner.

SwiftOWLIM is the fastest reasoner for most ontologies (except for Tambis-full where

BaseVISor is the fastest). However as will be shown later in this section, it may trade

memory for time. Although the time required by COROR-hybrid is less than that of Pellet

for smaller ontologies (except for tambis-full and NATO which are the two largest in the

selected ontology), Bossam is also fast for many ontologies, for some smaller ontology such

as Teams, OWLS-profile, Beer, it can compete with swiftOWLIM. However it gives errors

for four ontologies including Koala, University, tambis-full and NATO all of which are

successfully reasoned by the other reasoners. Pellet generally has quite constant

performance for most selected ontologies regardless of their sizes. However for smaller

ontologies it uses more time than all the other rule-entailment reasoners. Pellet uses much

more time to reason over wine and mindswapper. This is because the special structures used

in the terminology and ABox definition which slows down the tableaux-based reasoning.

Pellet does not have results for the Beer ontology as inconsistencies are detected.

As illustrated in Figure 6-20b, the memory performance of COROR is much better than the

other reasoners. It uses the least memory for all selected ontologies. The memory usage

grows much faster with the increase of both the size and the complexity of the ontology for

Bossam and Jena-forward than COROR-hybrid does. For example, for the ATK-portal

ontology Bossam uses 6 times more memory than COROR and for the Wine ontology it

uses 13 times more memory than COROR. The memory footprint for swiftOWLIM is a lot

larger than the COROR even for the very small ontology, e.g. even for teams it uses 20MB

memory which is 15 times larger than COROR, which shows swiftOWLIM trades memory

for time. The memory results indicate that much smaller memory footprint is required by

COROR, and hence enable it to be better fit into resource-constrained devices. Note that

BaseVISor hides its reasoning process from external inspection so it was not possible to

193

accurately measure its memory usage, and therefore it is omitted from the memory

comparison.

194

(a
) C

om
pa

ris
on

 o
f r

ea
so

ni
ng

 ti
m

e.

195

(b
) C

om
pa

ris
on

 o
f m

em
or

y
us

ag
e.

Fi
gu

re
 6

-2
0:

 C
om

pa
ri

so
n

of
 r

ea
so

ni
ng

 ti
m

e/
m

em
or

y
us

ag
e

be
tw

ee
n

C
O

R
O

R

hy
br

id
 a

nd
 st

at
e

of
 th

e
ar

t r
ea

so
ne

rs
.

196

6.2.5 Accuracy	of	the	Selective	Rule	Loading	Algorithm	and	the	Two-Phase	
RETE	Algorithm	

In previous sections how the application of composition algorithms into a rule-entailment

reasoner can affect its reasoning performance is studied. This section then discusses how the

application of composition algorithms can affect the accuracy of reasoning. In theory, the

exact same reasoning results are generated before and after the application of the selective

rule loading algorithm and the two-phase RETE algorithm.

A direct and simple approach to demonstrate the reasoning accuracy of the composition

algorithms is to compare reasoning results generated by different COROR composition

modes to reason over the same ontologies side by side. Since as discussed in section 5.2.4

COROR-noncomposable uses a mobile version of the Jena RETE engine which has been

widely used and tested in the OWL community, hence it is reasonable to compare its

reasoning results with results generated by the other COROR modes (COROR-selective,

COROR-two-phase and COROR-hybrid): if the same reasoning results are generated, it then

can be concluded that the application of the composition algorithms does not change the

reasoning accuracy.

An alternative approach may be comparing the reasoning results of COROR with other state

of the art rule-entailment reasoners with the same semantics. However, this approach is not

quite suitable to demonstrate the accuracy of the composition algorithms since the reasoning

results rely largely on the rule set. Although some reasoners have their rule set also based on

pD* semantics, the differences in the implementation of their rule sets, e.g. COROR does

not use axiomatic triples but BaseVISor does; OWLIM condenses the triples generated for

owl:sameAs, can cause different reasoning results to be obtained. Therefore their results

cannot be compared side by side with COROR.

The comparison of reasoning results generated by the four COROR modes is performed in

Ultra Edit17 by first using the “Sort File” option to sort the result triples in an alphabetic

order and then using the “Compare Files” option to perform comparison. Differences can be

highlighted in the comparison window. Careful manual examination is then performed by

the author, to find the differences between two results. Differences are all limited to the

different names assigned to anonymous nodes. In fact these names are randomly assigned by

the rule builtin assignAnon() as introduced in Table 5-2, but they still point to the same

17 http://www.ultraedit.com/

197

resource. A summary of sizes of result ontology can be found in Table 6-4. No other

differences are found in the compared results and therefore it is confident that the accuracy

of the two designed reasoner composition algorithms is achieved.

Table 6-4: The size of result ontologies generated by each reasoner mode.

Ontology Original
Size

COROR-
noncomposable

COROR-
selective

COROR-two-
phase

COROR-
hybrid

teams 87 497 497 497 497
owls-profile 116 594 594 594 594
koala 147 710 710 710 710
university 169 760 760 760 760
beer 173 933 933 933 933
mindswapper 437 1350 1350 1350 1350
foaf 503 1772 1772 1772 1772
mad_cows 521 1695 1695 1695 1695
biopax 633 2228 2228 2228 2228
food 924 2437 2437 2437 2437
mini-tambis 1080 3407 3407 3407 3407
amino-acid 1465 2932 2932 2932 2932
atk-portal 1499 5418 5418 5418 5418
wine 1833 7043 7043 7043 7043
pizza 1867 3819 3819 3819 3819
tambis-full 3884 10959 10959 10959 10959
nato 5924 15746 15746 15746 15746

6.3 Usability	Test	of	TARS	
As already mentioned at the very beginning of this chapter, the major motivation for having

an automatic reasoner selection process is to reduce the amount of efforts that could be

involved in the future reasoner selection where interplay between semantic applications and

reasoners could be extremely complicated due to the ever advancing of reasoner

characteristics and application characteristics. RESP is then proposed, designed and

implemented (as TARS) to enable application developers to select an appropriate reasoner

independently using application characteristics. Although RESP automatically recommends

the most appropriate reasoners for application developers, application developers are still

involved in this process to identify application characteristics and to input the identified

application characteristics. Furthermore once no appropriate reasoners are recommended

they need to revise the identified application characteristics based on the results given by

RESP, loosing or tightening the application characteristics and then entering another

selection iteration. Reasoner experts are also involved in RESP to register candidate

reasoners. Considering the major motivation of having RESP is to reduce the human-labour

involved in the selection process, a usability test tends to be a best suitable evaluation for

RESP. As a prototype complete implementation of RESP, TARS is then used in this

evaluation.

198

Accuracy of TARS, i.e. if the most appropriate reasoner recommended by RESP is the most

appropriate reasoner for the application in reality, is another important aspect to demonstrate.

However it is not evaluated here since what is to be demonstrated in this thesis is that RESP

as an abstract methodology does help application developers in selecting a reasoner, rather

than the accuracy of the example application characteristics and connections derived in 4.3

and used in TARS. As a matter of fact, the accuracy of these example application

characteristics and connections can be further refined when TARS comes into a practical

stage.

Design, execution and results analysis of the usability test to TARS are presented in the

reminder of this section.

6.3.1 Design	of	evaluation	
Two tasks are designed to enable different participants to experience the distinct aspects of

TARS. A first task is the reasoner registration task (task 1) that is designed to require

reasoning-aware participants to register a reasoner with TARS using a reasoner description.

It evaluates the usability of TARS reasoner registration interface as well as the difficulties

involved in the identification of reasoner characteristics. A second task is the reasoner

registration task (task 2) that is designed to require application-aware participants to use

TARS to select a most appropriate reasoner for a semantic application following the RESP

process. The aims of this task consist of three parts. Firstly it investigates the difficulties for

participants in the identification of a complete and correct set of ACs. Secondly it requires

participants to use TARS to perform reasoner selection following the RESP process, and

feedback is collected on the usability of TARS.

In all 22 participants are selected and they are divided into two sub-groups according to the

designed tasks: an application-aware group consisting of 17 application-aware participants

with more experience in developing semantic applications and a reasoning-aware group

consisting of 5 reasoning-aware participants with more experience in ontology reasoning.

Six self-assessment questions designed by the author are used to enable participants to

assess their own knowledge on semantic applications (Q2 to Q4) and on OWL reasoning

(Q5 to Q7). These questions can be found in the post-task questionnaire in the attached

DVD.

The question Q2 and Q3 assess the participant’s level of knowledge on ontology and their

frequency of using semantic applications. Each of the questions has 4 options describing

different levels of knowledge (frequency): expert (often), a lot (sometimes), some (seldom),

199

and none (never). The question Q4 asks if the participant has ever designed a semantic

application, and two options are provided for this question: yes or no. Similarly the question

Q5 and Q6 correspondingly ask participants to assess their level of knowledge on ontology

reasoning and the frequency of using an ontology reasoner. Q7 asks if the participant has

ever looked into the internal reasoning mechanisms of an ontology reasoner.

In order to evaluate the overall knowledge on semantic applications or ontology reasoning

from these assessment questions, a score system is designed and used in this thesis. For Q2,

Q3, Q5 and Q6, 4 is assigned to expert (often), 3 to a lot (sometimes), 2 to some (seldom),

and 1 to none (never). The question Q4 and question Q7 have two options yes and no. Since

whether a participant has designed a semantic application or looked into the reasoning

mechanisms of a reasoner can make big differences on his/her corresponding background

knowledge, for Q5 and Q7, 4 is assigned to yes and 1 is assigned to no. Then the average

score is calculated separately for Q2-Q4 and for Q5-Q7 in order to know the overall

background knowledge of a participant on semantic application and on ontology reasoning.

Adjectives are assigned to different average scores: if the average score is within [1, 2), then

the participant is regarded as a novice user; If it is within [2, 3), then he/she is regarded as an

average user; if it is within [3, 4] then he/she is regarded as an expert user.

The majority (82%) of application-aware participants have little or no knowledge on the

intricacies of ontology reasoning (Figure 6-21). This fits into the vision motivating the

development of RESP that semantic application developers would have little or no

knowledge on semantic reasoning. The small size of the reasoning-aware group is

reasonable as the reasoner registration task aims to collect expertise rather than large

volumes of feedback. All the five reasoning-aware participants are expert reasoner users.

The reasoner selection task is assigned to the application-aware group and the reasoner

registration task to the reasoning-aware group.

200

Figure 6-21: The level of background knowledge of application-aware participants

on both semantic application and ontology reasoning (level of knowledge, number

of participants, percentage).

Participants needed to carry out the corresponding task individually. Five steps needed to be

followed for the reasoner selection task, including:

1. Participants are given a short introduction on the RESP process (and TARS

interface). A step-by-step demonstration is given showing how to use TARS to

perform reasoner selection.

2. A description on a semantic publish/subscribe system (can be found in Appendix

B) for which a most appropriate reasoner is to be selected is given to participants

and they are asked to individually analyse the description, identify the ACs, and

input the identified ACs into TARS to start the reasoner selection using the RESP

process.

3. Participant is asked to identify the most appropriate reasoner from the TARS

results interface. Correct identification of all the ACs (as listed in Appendix B) for

the given application description will lead to the selection of Pellet (which is with a

100% satisfaction rate). However over-identification or under-identification of ACs

will lead to more than one appropriate reasoner to be identified (this may be the

case for many other semantic applications but not for the given application) or none

Expert Users, 8,
47%

Average Users,
4, 24%

Novice Users,
5, 29%

Expert
Users, 0, 0%

Average Users,
3, 18%

Novice Users,
14, 82%

Semantic applications Ontology reasoning

201

to be identified.

4. (optional) If Pellet is not identified, participants are required to go into another

RESP iteration revising the set of ACs previously identified (by losing some or

tightening others), and invoke again the reasoner selection using TARS until Pellet

is correctly identified.

5. Participants are required to complete two questionnaires: a post-task

questionnaire for collecting feedback and comments on the functionality, usability,

user interface and limitation of TARS, and a System Usability Scale (SUS)

questionnaire as a general approach to evaluate the usability of TARS. The post-task

questionnaire can be found in the attached DVD.

Two things need to be clarified. Firstly the application description was written with the

collaboration of a reasoner expert (the author) and the author of the semantic

publish/subscribe application, and to ensure the impartiality of the evaluation neither is

involved in the evaluation. Secondly identified ACs for each participant are tracked by the

system for each iteration for later analysis of the reason for incorrect identification.

Three steps need to be followed for the reasoner registration task, including:

1. Participants are given a short introduction on the RESP process (and TARS

interface). A step-by-step demonstration is given showing how to use TARS to

perform reasoner registration.

2. A description on BaseVISor is given to the reasoning-aware participants (can be

found in Appendix B). They are asked to analyse the description and to identify the

RCs for BaseVISor.

3. Reasoning-aware participants are required to register the reasoner into TARS.

4. A post-task questionnaire and a SUS questionnaire is given to each participant in

order to collect their feedbacks on the usability of TARS (in terms of registering

candidate reasoners).

Note that the description is a careful abstraction of the BaseVISor paper [Matheus et al 2006]

with the collaboration by the same two reasoner experts as before. They were not involved

in this experiment.

202

6.3.2 Results	and	discussions	
All reasoning-aware participants successfully identified Pellet as the most appropriate

reasoner in two iterations despite most having little or no knowledge on the specifics of

ontology reasoning. Twelve out of the seventeen application-aware participants limited the

reasoner selection results to only 2 candidate reasoners in the first iteration. With a little help

by briefly explaining some application characteristics, all of them successfully selected

Pellet as the most appropriate reasoners. The other five reasoning-aware participants

selected the correct reasoner using only one iteration.

The history log of selection of ACs show that all the 12 participants who failed to select

Pellet on the first iteration, failed to identify the AC required expressivity SHION. Hence

KAON2 was also recommended as the other most appropriate reasoner in their first iteration

for the given application since it fits well the other ACs of the application other than

supporting less expressivity. Two other ACs of the given application were also neglected by

some applications developers, including complete reasoning and conjunctive query. Five

ACs were incorrectly selected, among which the AC KB in database was incorrectly

selected by most of the application-aware participants (10 participants) while the AC

reasoning tasks was incorrectly selected by four participants. The other three were only

incorrectly selected by one participant.

Not selected AC Count of
participants

Causes

Ontology expressivity 12 Lack of knowledge.
Complete reasoning 2 Lack of knowledge.
Conjunctive queries 1 Lack of knowledge.

Table 6-5: Not selected ACs

Incorrectly selected AC Count of
participants

Causes

kb in database 10 Vague application description.
reasoning tasks 4 Vague application description, by mistake, self-

inference, lack of knowledge.
user-defined datatypes 1 Self-inference.
closed-world queries 1 Lack of knowledge.
interface (remote) 1 Self-inference

Table 6-6: Incorrectly selected ACs.

A full list of the not identified and the incorrectly identified ACs as well as the count of

participants for each is listed separately in Table 6-5 and Table 6-6. In addition, the reason

for the incorrect identification of an AC is listed. The identified reasons are as a result of

203

discussions with each participant after the task. All the 12 participants not selecting the AC

ontology expressivity regarded the lack of knowledge about the DL-style ontology

expressivity (e.g. SHOIN(D)) as the reason. This was also the reason for the not selection

of the AC complete reasoning and the AC conjunctive queries, and the reason for the

incorrect selection of the AC reasoning tasks and the AC closed-world queries. These

problems can be avoided to a large extent in the future, by making the ACs more

understandable, for example by using some explanation hints for each AC. This is partly

shown by the fact that with a little explanation of the ACs to all the 12 application-aware

participants that failed to identify Pellet in the first iteration, that they all successfully

identified Pellet in the second iteration. All of the ten participants who incorrectly selected

the AC kb in database regarded application description being vague as the reason:

participants misunderstood the term “knowledge base” that is used in the application

description as a type of database while in fact it represents the in-reasoner interpretation of

the ontology. This reason can be partly handled using explanation hints for the AC as well.

For example, an explanation can be supplied that KB does not have to be a database but can

also be in-memory interpretation of ontology. Other reasons also exist. One of the reasons

that cause the incorrect selection of the AC reasoning tasks, user-defined datatypes, and

interface (remote) is self-inference which basically states that the AC is incorrectly selected

based on participant’s own understanding of the application although it is not explicitly

stated in the application description. For example in the experiment since semantic

publish/subscribe system was the application for which an appropriate reasoner was selected,

a participant inferred that there must be some remote interface available for different brokers

to communicate with each other. However, in fact in this application the inter-broker

communication is not a part of the reasoner. However this problem is likely to be less of a

problem in the real use of the tool, as in the experiment the participants were not the

application developers of the system they were trying to characterise.

All reasoning-aware participants from the reasoning-aware group successfully registered

BaseVISor to RESP, although with some not selected or incorrectly selected RCs. In a

similar way, causes for not selection and incorrect selection were discussed with the

participants after the task was complete. Not selected RCs and incorrectly selected RCs are

respectively presented in Table 6-7 and Table 6-8 with the causes identified. Primarily two

reasons were given for not selected or incorrectly selected RCs, the first being lack of

knowledge and the second being vagueness in the reasoner description. For example, two

reasoning-aware participants did not include the RC reasoner type in BaseVISor as they are

204

not familiar with the reasoner categorization used in this research (refer to section 2.3.1.1).

This can be partly solved by giving detailed explanation hints for each RC. The RC datatype

support was not selected by one participant, because it was overlooked. Reasoner

expressivity (in OWL) was not selected by a participant because of the vagueness of the

given reasoner description: RDFS constructs were not selected because they were not

explicitly written in the reasoner description. As a matter of fact vague reasoner description

was also the major reason for the incorrect selection of three other RCs, including running

platform (J2ME platform was selected because BaseVISor was mentioned to be embedded

into other applications, where the term embedded was interpreted by a reasoning-aware

participant as can run on mobile devices), reasoner expressivity in DL (the original

description does not explicitly state the given expressivity was given in OWL although

OWL constructs are listed) and the level of reasoner composition (regarded procedural

attachment in rule language as reasoner composition).

Not selected RC Count of
Participants

Causes

Reasoner type 2 Lack of knowledge
Native CWA support 2 Lack of knowledge and by mistake.
Query support 1 Lack of knowledge.
Datatype support 1 by mistake
Reasoner expressivity (in
OWL)

1 Vague reasoner description.

Table 6-7: Not selected RCs.

Over-selected reasoner
Characteristic

Count of
Participants

Reasons

Running Platform 1 Vague reasoner description.
Reasoner expressivity (in
DL)

1 Vague reasoner description.

Level of reasoner
composition

1 Vague reasoner description, misunderstanding
user-defined procedural attachment as composition
of reasoning ability.

OS 1 Self-deduction

Table 6-8: Incorrectly selected RCs.

All identified reasons for not selection and incorrect selection point to the inappropriate

naming of ACs and RCs (too technical terms in the names caused the lack of knowledge of

some ACs and RCs) or the unclear nature of the given description. These problems however,

can be solved without changing the TARS tool or the RESP process.

6.3.3 Questionnaires	analysis	
Two questionnaires, i.e. a post-task questionnaire and a SUS questionnaire, were used in this

205

experiment to collect feedback and comments on the functionality, usability, user interface

and limitation of TARS. All 22 participants were required to fill the questionnaires after

tasks. The following subsections correspondingly discuss feedback from the post-task

questionnaire and the SUS questionnaire. The SUS questionnaire and the post-task

questionnaire can be found in the attached DVD.

6.3.3.1 Post-task	questionnaire	
The post-task questionnaire consists of two parts with the first part containing 6 self-

assessment questions on the background knowledge of the participant and the second part

containing 15 evaluation questions on different facets of RESP. Only application-aware

participants are required to answer self-assessment questions in the former part, and both

application-aware and reasoning-aware participants are required to answer the evaluation

questions in the second part. Some questions in the second part are task specific and

therefore only participants taking the corresponding task need to answer them.

A scale ranging from Strongly Disagree (1) to Strongly Agree (5) is associated to evaluation

question 8 to 20 and similarly for each level a numeric value is associated, as parenthesized.

Question 21 and 22 collect comments and suggestions from participants respectively on the

RESP reasoner selection process itself and its interfaces. Again mean values are calculated

for questions and descriptive adjectives are associated to means: [1, 1.5) as Strongly

Disagree, [1.5, 2.5) as Disagree, [2.5, 3.5) as Neutral, [3.5, 4.5) as Agree and [4.5, 5] as

Strongly Agree. Mean value for each evaluation question can be found in Table 6-9.

Evaluation Question Mean
(overall)

Mean (app-
aware)

Descriptive
Adjective

8. I can understand the idea of reasoner
characteristics.

4.0 4.0 Agree

9. I can understand the idea of application
characteristics.

4.5 4.5 Agree

10. I can understand the RESP reasoner selection
process.

4.4 4.5 Agree

11. (Task 2 only) I think the given set of application
characteristics precisely capture the corresponding
application characteristics of a realistic ontology-
based application.

3.8 3.8 Agree

12. (Task 2 only) I think the given set of application
characteristics thoroughly capture application
characteristics of realistic ontology-based
applications.

3.8 3.8 Agree

13. (Task 1 only) I think the given set of reasoner
characteristics precisely capture the corresponding
reasoner characteristics of a realistic ontology
reasoner.

4.2 N/A Agree

14. (Task 1 only) I think the given set of reasoner 3.8 N/A Agree

206

characteristics thoroughly capture the
corresponding reasoner characteristics of any
realistic ontology reasoner.
15. (Task 2 only) The manual approach to identify
reasoner for an application, i.e. through discussion
between reasoner experts and application
developers, may have some biases due to reasons
such as personal preference, miscommunication and
so on.

3.9 3.9 Agree

16. (Task 2 only) I think the RESP reasoner
selection process has the potential to avoid such
bias mentioned above.

4.1 4.1 Agree

17. (Task 1 only) I find the reasoner registration
interface is easy to use.

4.2 N/A Agree

18. (Task 2 only) I find the reasoner selection
interface is neat and easy to use.

4.3 4.3 Agree

19. (Task 2 only) I find the way reasoner selection
results are presented is neat and easy for me to find
out the appropriate reasoner(s) and the reason why
the other reasoners are not appropriate.

4.6 4.6 Strongly
Agree

20. (Task 2 only) I think the RESP reasoner
selection process helps me in making a decision to
select an appropriate reasoner for an application.

4.2 4.2 Agree

Table 6-9: Mean values (overall and application-aware) for evaluation questions

It can be concluded from Table 6-10 that most participants agreed that the concepts used in

TARS, such as RC (question 8), AC (question 9) and the RESP reasoner selection process

(question 10), were easily comprehensible. Some (7 out of 17) application-aware

participants held neutral views on the precision (question 11) and completeness (question 12)

of the set of example ACs, but still more than half of application-aware participants (10 out

of 17) showed positive attitudes toward it. All five participants in the reasoning-aware group

agreed that candidate RCs could precisely capture characteristics of realistic reasoners

(question 14), however, two participants expressed neutral opinions on the completeness.

Question 15 and 16 focus on limitations of the conventional reasoners selection approach.

Generally, participants agreed that the conventional approach, i.e. through discussion

between reasoner experts and application developers, would bring about biases due to

reasons such as personal preference, miscommunication and so on. It is also accepted by

most (14 out of 17) participants that RESP is able to reduce or avoid such biases.

Feedback on TARS interfaces are collected in question 17, 18 and 19. It is generally

accepted reasoner selection and reasoner registration interface are neat and easy to use

(question 17 and 18). In addition the result interface is also considered as neat and clean for

identifying the most appropriate reasoner. The reason that some ACs is not satisfied is also

207

considered easy to identify using the result interface according to feedback.

A mean of 4.4 in question 20, indicates that on average participants from the application-

aware group regard the current RESP process as helpful for selecting the most appropriate

reasoners for applications. In fact 16 out of 17 participants agree or strongly agree that

RESP helped them in determining the most appropriate reasoner, while one held neutral

opinions.

Comments and suggestions on RESP and TARS are collected in question 21. They

concentrate on four aspects. Firstly application characteristics should be ordered and a

guidance leading users through RESP would be more helpful for users to go through the

selection process. Secondly predefined characteristic profiles could be constructed for some

applications reducing effort required by application developers to identify application

characteristics. Thirdly more complicated analysis could be introduced. For example users

supply sample ontology, queries, and demanded results, and RESP analyses them and gives

the most appropriate reasoner. Lastly it would be more helpful if result reasoners

dynamically change in accordance with selected application characteristics, allowing users

to know how the selection of a characteristic may impact on results. Comments and

suggestions collected here can be taken as future work. Other comments about the TARS

interface are gathered in question 22. They suggest using drop down lists rather than check

boxes for some application characteristics, and using hover-over tips rather than question

marks for annotations and using larger font.

6.3.3.2 SUS	questionnaire	
As a widely used tool for assessing system usability the SUS questionnaire was used in this

experiment to survey the usability of RESP and TARS (the questionnaire used is given in the

attached DVD). Both the reasoning-aware group and the application-aware group filled in

this questionnaire. Scores are calculated for each questionnaire using the approach presented

in [Brooke 1996] and they could range from 50 to 100. Since different tasks were carried

out for different participant groups, their surveys are discussed separately. Table 6-11 and 6-

12 separately presents the upper bound, lower bound, mean and standard deviation of each

question for the application-aware group and the reasoning-aware group.

Table 6-11: Lower bound, upper bound, and mean score (in position) by questions for
application-aware group.

Question Lower Bound Upper Bound Mean Stdev
1 2 5 3.8 0.8
2 1 3 1.6 0.8

208

3 3 5 4.5 0.6
4 1 4 2.1 1.1
5 3 5 4.1 0.7
6 1 3 1.5 0.6
7 3 5 4.3 0.7
8 1 3 1.5 0.7
9 2 5 4 0.9
10 1 4 2.4 1.1

Table 6-12: Lower bound, upper bound and mean score (in position) by questions for
reasoning-aware group

Question Lower Bound Upper Bound Mean Stdev
1 2 5 3.6 1.1
2 1 2 1.6 0.5
3 4 5 4.6 0.5
4 1 3 1.8 0.8
5 3 5 4.4 0.9
6 1 2 1.6 0.5
7 1 5 3.4 1.5
8 1 4 1.6 1.3
9 4 5 4.4 0.5
10 1 3 1.6 0.9

A similar set of descriptive adjectives as that used above in Table 6-10 is used here to

interpret the mean for each question. Mean values given in Table 6-11 and 6-12 show that

feedback for most questions are positive. 12/17 participants agree that he/she would like to

use this system frequently.

Table 6-13 gives the quartile breakdown of scores of surveys over the application aware

group. Due to the small size of the reasoning-aware group (5 participants) quartile

breakdown for it is not applicable.

Table 6-13: Lower bound, upper bound, and mean for each quartile of surveys over the
application-aware group.

Quartile Lower Bound Upper Bound Mean
1 50 67.5 58.8
2 70 80 75.6
3 82.5 87.5 84.4
4 90 100 93.5
Overall 50 100 79.0

The mean score is 79 for application-aware group and 80.5 for reasoning aware group.

According to [Brooke 1996] they indicate that the usability of the reasoner selection and

209

reasoner registration of TARS is between good (71.4) and excellent (85.5).

6.4 Summary	and	Key	Findings	
This section presents the summary of the evaluation and key findings observed throughout

the investigation of the research problem. They are presented from two perspectives: the

reasoner composition algorithms (section 6.4.1) and RESP (section 6.4.2).

6.4.1 Reasoner	Composition	Algorithms	
As discussed early in the introduction chapter, to reduce the resource consumption of OWL

reasoning so that OWL reasoning can be deployed in resource-constrained environments, is

the major motivation of having the reasoner composition approaches. Hence the evaluation

of COROR concentrates on the performance changes before and after the application of the

two developed reasoner composition algorithms. Results in Figure 6-1 show that the

application of composition algorithms greatly reduces the memory consumption and

reasoning time for COROR to fully compute pD* entailments for ontologies. An

investigation into the inside of these two composition algorithms shows that both algorithms

can always automatically compose a customized selective rule set or a customized RETE

network for the particular ontology to be reasoned, hence leading to a large amount of

memory/time reductions for all tested ontologies, which gives a general answer to the

research question.

The evaluation also shows that composition at different levels has different capabilities in

reducing resource consumptions. The selective rule loading algorithm composes at the rule

level by removing unnecessary rules and keeping only the required rules for the ontology to

be reasoned. Therefore the amount of memory that is originally allocated to unnecessary

rules in a noncomposable reasoner is saved. However the loaded rules are still the same as

they are authored which sometimes maybe quite inefficient (imagine that these rules are

authored by domain experts who have little knowledge on rule optimization), and the RETE

network is also unoptimized.

The two-phase RETE algorithm however performs composition inside the RETE algorithm.

It composes customized RETE network for the ontology to be reasoned by applying two

state of the art join sequence optimization heuristics and an alpha network optimization

heuristic. However their applications are automatically taking the characteristics of the

ontology to be reasoned into consideration. Unlike the work in [Ishida 1994] that uses an

extra pre-execution for gathering the characteristics of the fact base (which may not be

practical in resource-constrained devices as the limited resources), the two-phase RETE

210

algorithm uses an interrupted RETE construction mechanism that integrates the gathering of

ontology characteristics in the first RETE cycles. As discussed in section 6.2.3.2, although

all rules are loaded into the RETE engine, the two-phase RETE algorithm can optimize

unnecessary rules as if they are “unloaded”. Besides, join sequences and alpha networks of

loaded rules are also optimized. Therefore in most cases the two-phase RETE algorithm can

gain more memory/time reduction than the selective rule loading algorithm where loaded

rules are not optimized. However given that the two-phase RETE algorithm gains

memory/time reductions by optimizing rule join sequences, it is possible that for some

special cases where rules are very large in number but small in individual size (i.e. rules

contain less than two conditions) and there are small amount of shared conditions among

rules, that the selective rule loading algorithm may have more performance reduction than

the two-phase RETE algorithm.

An interesting finding from investigating the selective rule loading algorithm is its

capability to predict the amount of memory reduction without performing reasoning (as

discussed in the section 6.2.3.1). Since in the experiment the same rule appears to use the

similar percentage of memory for all tested ontologies, the memory reduction (in percentage)

for a different ontology then can be simply calculated by having the selective rule loading

algorithm running through the ontology analysing the unnecessary rules (without reasoning)

and then adding up the individual percentage for all the unnecessary rules. This finding can

be useful to predict memory reduction for fast ontology prototyping when specific memory

limitations are imposed. However since this finding is not a claim of this thesis it is not

formally verified.

Two Designed Reasoner Composition Mechanisms vs. State of the Art

State of the art reasoner composition mechanisms are discussed in detail in section 2.3.3 and

by analysing these mechanisms some aspects are derived for the reasoner composition

research in this thesis to follow. Here how well the selective rule loading algorithm and the

two-phase RETE algorithm satisfy these aspects is discussed.

The first aspect is the design of an automatic composition process. It is achieved. Both

composition algorithms designed in this thesis are automatic composition algorithms.

The second aspect is that the approach would be free from a priori analysis. State of the art

automatic reasoner composition mechanisms require some types of a priori analysis, e.g. to

construct rule patterns, to group rules, or to assign weights to dynamic rules, which requires

211

manual analysis and also limits the application of the composition mechanisms to only one

semantics or rule set. At the moment the selective rule loading algorithm relies on a priori

manual analysis for the rule-construct dependencies. Hence it cannot be dynamically applied

to a different semantic once the rule-construct dependencies are fixed. However the two-

phase RETE algorithm composes inside the RETE algorithm and requires no such a priori

analysis and is independent of specific rule sets. Hence unlike all state of the art automatic

composition mechanisms, the two-phase RETE algorithm has the flexibility to be applied

onto a different rule set at runtime.

The third aspect is the ability to compose for both ABox rules and TBox rules. The state of

the art approaches, including the dynamic rule generation approach and the incremental

loading of rules/triples (ILR/ILT) approach, works only on ABox rules. TBox rules are still

processed in an uncomposed way, which may lead to resource waste for TBox reasoning.

However, both composition algorithms have been designed in this thesis to work for both

ABox rules and TBox rules.

The fourth aspect is to compose inside the reasoning algorithm, which is achieved by the

two-phase RETE algorithm.

However compared to state of the art work, there are two limitations for the composition

algorithms designed in this thesis. One limitation would be the size of an individual rule.

Dynamic rules generated by the dynamic rule generation approaches are often very small

and simple. This can generate smaller individual rules with much shorter join sequences,

leading to less joins to be performed and less intermediate results to be generated and

cached. Although the composition algorithms designed in this thesis can reduce the number

of rules or can optimize the join sequence leading to a better join network, however the size

of an individual rule is still unchanged and therefore the join sequences (although are

optimized) are still long. Some interesting potential future work would be to combine the

dynamic rule generation approach and the two-phase RETE algorithm since they compose at

different levels. A second limitation is that the composition algorithms designed in this

thesis lack the ability to compose at the ontology level as in ITL. Although the partition

sizes used in ITL are too large for resource-constrained environments as targeted by this

thesis, an incremental ontology loading approach will still be helpful for reducing the

reasoning time and memory when applied in a desktop reasoner.

6.4.2 RESP	
To reduce the amount of effort that could be involved in the future reasoner selection is the

212

major motivation for having RESP and therefore it is natural to have a usability evaluation

for the implementation of RESP, that is TARS. Results reveal that the naming of application

characteristics is a big issue that causes application-aware participants fail to identify the

correct set of application characteristics for their application. An inappropriate name for an

application characteristic (e.g. using reasoning-related terms in the name) may leave

application-aware participants unable to understand the application characteristic and then

fail to identify it. However with brief explanations of these inappropriate names, all

participants can correctly identify the set of application characteristics for their applications.

Hence expressing application characteristics using appropriate names, e.g. using domain

specific languages to naming application characteristics or giving detailed explanation hints

to application characteristics, would be very important for application developers to

effectively use TARS to select a most appropriate reasoner for their applications.

Questionnaires show that most application-aware participants agree that the RESP reasoner

selection process is easy to understand and is easy to follow. Most than half of application-

aware participants regard the example application characteristics used in TARS in general to

precisely capture the characteristics of semantic applications. 14 out of 17 application-aware

participants agree that the conventional consultation-based approach may introduce bias in

selecting reasoners but RESP somewhat overcomes this drawback. 16 out of 17 application-

aware participants agree or strongly agree that RESP helped them in determining the most

appropriate reasoner and one held a neutral opinion. SUS questionnaires were also used in

the experiment. An average score of 79 for application-aware group and 80.5 for reasoning

aware group indicates that the usability of the reasoner selection and reasoner registration of

TARS is between good (71.4) and excellent (85.5).

Some drawbacks and limitations are identified for TARS and RESP. For example, the

connections between ACs and RCs still need to be identified by collaboration of reasoner

experts and domain experts, but even though this is a one-off task and then the connections

can be reused in the future reasoner selection for an application domain, it still requires large

amount of discussion. Secondly a set of general applicable ACs for all application domains

may not exist. The example ACs used in the experiments are to some extent domain-neutral

and therefore generally applicable. However the drawbacks are obvious in that application

developers think it is difficult to understand some of them. Therefore domain-specific ACs

(written in domain-specific language) may be important for application developers to better

use RESP to perform selection, which means different sets of application characteristics

need to be identified for different application domains (or they should be mapped to some

213

generally applicable ACs). Thirdly this process is still at its early stage and therefore no

specific technical specifications are yet provided. However adding those in to RESP will not

change the process and on the other hand this provides even more flexibility to

implementers to use their own preferred format or approach, e.g. some would prefer to use

rule engine to perform matchmaking but some others may prefer to use hardcode. Finally

the RESP process is only semi-automatic. For example application developers are still

largely involved in the process to identify application characteristics and reasoner experts

are involved in identifying reasoner characteristics and registering them into RESP. It would

be useful to use some kind of benchmarking tools to automatically analyse and register

reasoners or allow identified application characteristics to be automatically adjusted

according to the characteristics of existing candidate reasoners. These drawbacks and

limitations can be considered in future work.

In this chapter the evaluation is discussed, the next chapter concludes this thesis.

214

Chapter 7
Conclusions and Future Work

7.1 Progress	vs.	Objectives	
This section lists research question and derived research objectives and discusses how well

they have been achieved. This thesis investigates the research question as to:

“How an appropriate resource-constrained OWL reasoner can be automatically composed

and be selected based on application characteristics.”

In order to investigate this research question, five objectives were derived:

§ Objective 1: survey the state of the art OWL reasoners, identifying Reasoner

Characteristics (RCs) and categorizing them. Identify an appropriate type of

reasoner upon which the reasoner composition research should be based. Survey

semantic applications, identifying reasoning-related Application Characteristics

(ACs).

§ Objective 2: design automatic reasoner composition mechanisms and implement

them in a resource-constrained reasoner.

§ Objective 3: study the performance impact on the resource-constrained reasoner

brought by the application of composition algorithm(s).

§ Objective 4: design and implement a reasoner selection process that enables an

application developer to automatically select a most appropriate reasoner for their

semantic application based on application characteristics.

§ Objective 5: evaluate the usability of the reasoner selection process designed in

objective 4.

215

Two automatic composition mechanisms, i.e. a selective rule loading algorithm and a two-

phase RETE algorithm, are designed in response to the first half of the research question as

to “how a resource-constrained OWL reasoner can be composed based on application

characteristics”. An automatic reasoner selection process is designed in response to the

second half of the research question as to “how a resource-constrained OWL reasoner can

be selected based on application characteristics”. The reminder of this section discusses in

detail how each research objective is achieved in this thesis.

State of the Art Objective: Objective 1

In response to objective 1, two surveys, a survey of state of the art OWL reasoners and a

survey of semantic applications, were performed separately in section 2.3.1 and 2.3.2. In

these surveys, a categorization of state of the art OWL reasoners was constructed, a set of

reasoner characteristics was distilled and interplay between semantic applications and

reasoners was studied.

Five reasoner categories are derived based upon their reasoning algorithms, which are DL-

tableaux reasoners, rule-entailment reasoners, resolution-based reasoners, hybrid reasoners

and miscellaneous reasoners. This categorization is unique and could be taken as a basis for

future research that is based upon a type of reasoner.

As a part of objective 1 the reasoning composability (cf. section 2.3.3) are discussed for

each of the above reasoner category. Both rule-entailment reasoners and resolution-based

reasoners are regarded to have the best potential for composition. The suitability for rule-

entailment reasoners and resolution-based reasoners to apply in resource-constrained

environments are then discussed (cf. section 2.3.4). Rule-entailment reasoners are found to

have more suitability than the others to run in resource-constrained environments. Hence

rule-entailment reasoners are identified as the most suitable type of reasoners based on

which the reasoner composition research is carried out. The examination and discussion of

reasoner composability enables further composition research to be carried out for other

reasoner types.

Furthermore a set of 18 reasoner characteristics were distilled for the survey. They provide a

basis for the automatic reasoner selection research in this thesis. These reasoner

characteristics can cover a variety of aspects of OWL reasoners ranging from reasoning

algorithm to explanation. Their distillation and the survey based on these reasoner

characteristics enable future research to be better carried out on these aspects.

216

The survey of semantic applications was performed over five types of semantic applications,

which are the semantic publish/subscribe systems type, the semantic context-aware systems

type, the clinical, medical and bioinformatics systems type, the semantic sensor network

systems type, and the software engineering applications type. This survey investigated the

requirements of particular applications/application types and the interplay between these

requirements and the selected reasoner, facilitating the research of an automatic reasoner

selection process. As a matter of fact the discussion of interplay in 4.3 from 11 reasoning-

related aspects is based on this survey.

Design objectives: objective 2 and objective 4

Objective 2 and 4 are the design objectives. In response to objective 2 two automatic

reasoner composition algorithms, i.e. the selective rule loading algorithm and the two-phase

RETE algorithm, are designed and implemented in a prototype resource-constrained rule-

entailment reasoner COROR. To achieve the objective 4, RESP is designed and

implemented as a prototype desktop application TARS.

The design of the two composition algorithms (cf. section 3.4) followed the aspects pointed

out in discussion of reasoner composability given in section 2.3.3. Hence they perform

automatic reasoner composition which enables the reasoner to be automatically composed in

a dynamic environment when different ontologies are used. The two-phase RETE algorithm

composes inside the RETE algorithm and hence it is independent of the semantics or rule

sets. Therefore unlike existing automatic composition algorithms such as the dynamic rule

generation approach and the ILT/ILR approach (cf. section 2.3.3), no a priori manual

analysis is required for the two-phase RETE algorithm in order to execute on a different

semantics or rule set, which provide it with flexibility in a dynamic environment with

changing semantics. Both designed composition algorithms execute for both ABox and

TBox reasoning, which can further save resources in resource-constrained environments.

Finally the two-phase RETE algorithm uses two state of the art join sequence optimization

heuristics. However, it introduces a new way to apply them: rather than using an extra pre-

execution of RETE to collect the required information about the ontology (as in [Ishida

1994]), an interrupted RETE construction approach is used that integrate the information

collection into the execution of RETE, hence potentially reducing the resource cost.

In section 5.2, both composition algorithms were implemented in the enhanced µJena which

is constructed by porting the Jena engine to a cut mobile Jena framework, µJena. The

implemented composable reasoner is called COROR, the COmposable Rule-entailment Owl

217

Reasoner. It is the first automatically composable rule-entailment reasoner for resource-

constrained environments. It enables OWL reasoning to be carried out in smaller resource-

constrained devices such as sensors. Its design and implementation can provide some hints

for similar research in the future.

The design of RESP is discussed in Chapter 4. RESP enables automatic reasoner selection to

be independently performed by application developers to choose a most appropriate

reasoner for their applications using only the application characteristics. Applications and

reasoners are respectively abstracted in RESP as application characteristics and reasoner

characteristics, and the selection is performed through matchmaking using pre-defined

connections between application characteristics and reasoner characteristics. This approach

is novel. It enables the materialization of reuse of the knowledge required in selecting a

reasoner and hence reduces the effort required to put in for each reasoner selection. RESP

itself is an abstract process without specifying any technical detail. However a set of

example candidate application characteristics and their corresponding connections are

derived from the discussions of interplay between applications and reasoners from 12

reasoning-related aspects. Although the derived application characteristics and connections

are not mature enough for practical use, the way these reasoning-related aspects are

examined shows a good example for the follow-on research of how application

characteristics and connections can be derived.

RESP is implemented as a java desktop application TARS that allows application developers

to perform reasoner selection independently following RESP and allows reasoner experts to

register reasoners with TARS. TARS is the first tool performing automatic reasoner

selection.

Evaluation objectives: objective 3 and objective 5

The objective 3 and 5 are evaluation objectives.

In response to objective 3, two performance experiments, an intra-reasoner comparison

(section 6.2) and an inter-reasoner comparison (section 6.3), were conducted to respectively

(1) study the performance impacts brought by the two designed reasoner composition

algorithms to a rule-entailment reasoner, and (2) compare the performance of COROR to the

state of the art rule-entailment reasoners. The intra-reasoner comparison compared the

reasoning time and memory usage required by the four COROR composition modes, which

are COROR-noncomposable, COROR-selective, COROR-two-phase and COROR-hybrid,

218

to fully compute entailments for the same ontology. The inter-reasoner comparison

compared the time/memory usage required by COROR-hybrid with four state of the art rule-

entailment reasoners, which are Jena forward, BaseVISor, swiftOWLIM, and Bossam.

Results of the intra-reasoner comparison reveal that the application of the two designed

composition algorithms can greatly reduce the time/memory required for performing rule-

entailment reasoning. Results of the inter-reasoner comparison reveal that COROR-hybrid

can use much less memory than the other reasoners without sacrificing reasoning time. The

experiments and investigations performed thoroughly studied the reasoning performance

impact by applying the designed composition algorithms.

To achieve the objective 5, a usability experiment was performed over TARS. In this

evaluation, participants were grouped into two groups according to their background, i.e. an

application-aware group and a reasoner-aware group. Each group was asked to perform a

different task in order to experience a different facet of TARS. Application-aware

participants were asked to select a most appropriate reasoner for the given application

scenario following RESP. Reasoner-aware participants were asked to register candidate

OWL reasoners with TARS. Results are positive. Most participants regarded TARS and

RESP to be helpful for them to identify a most appropriate reasoner for semantic

applications. An average SUS score of 79 for application-aware group and 80.5 for

reasoning-aware group indicate TARS has usability between good and excellent. Results

also revealed some limitations. A major one is the use of a too reasoning-related name for an

application characteristic would affect the application-aware participants to identify the

correct set of application characteristics. With some brief explanation to some application

characteristics, application-aware participants then could successfully identify the correct set

of application characteristics. This issue can be addressed using domain-specific languages

to express application characteristics or using explanation hints. This usability experiment

well evaluated the usability designed automatic reasoner selection process. In the meantime,

this experiment helped the identification of limitations of the existing designed, enabling

further improvement of the process and the implementation.

7.2 Contributions	
Two contributions are identified. The major contribution is the design of two novel

automatic reasoner composition algorithms for rule-entailment reasoners, termed the

selective rule loading algorithm and the two-phase RETE algorithm, and the implementation

of them in COROR (COmposable Rule-entailment Owl Reasoner). This contribution

answers the first half of the research question as to “how a resource-constrained OWL

219

reasoner can be composed based on application characteristics”. Evaluation results indicate

that applying those two composition algorithms to a noncomposable rule-entailment

reasoner can reduce a large amount of memory and time spent on OWL reasoning (the

average reduced time/memory consumption for all the tested ontologies is 33%/35% for the

selective rule loading algorithm and 78%/74% for the two-phase RETE algorithm, which

can reduce the resource required of OWL reasoning so that OWL reasoning can run in

resource-constrained environments.

This contribution enables OWL reasoning to be executed on smaller resource-constrained

devices such as sensors or enables larger ontology to be reasoned on the same resource-

constrained environment, which can further reduce the resource required for OWL-based

intelligent data processing or management, hence enabling such intelligence to be better

introduced into resource-constrained devices/applications, such as medical devices, in-

vehicle network, wireless sensors/motes and so on.

This contribution and its related work were published in three papers. An initial design and a

prototype implementation of the selective rule loading algorithm on a desktop reasoner are

described in:

W. Tai, J. Keeney and D. O’Sullivan, “An Automatically Composable OWL

Reasoner for Resource Constrained Devices”, in Proceeding of the International

Conference on Semantic Computing (ICSC’09), Pages 495 -502, 2009.

In this paper, an initial OWL reasoner classification is also presented. A sketch of how a

composable resource-constrained rule-entailment reasoner can be applied in a wireless

sensor network management system to perform localized fault correlation (on sensor node)

is described. This has been published in:

R. Brennan, W. Tai, D. O'Sullivan, M. S. Aslam, S. Rea and D. Pesch, “Open

Framework Middleware for intelligent WSN topology adaption in smart buildings”,

Proceedings of the International Conference on Ultra Modern Telecommunications

(ICUMT’09), Pages 1-7, 2009.

A full description of both the selective rule loading algorithm and the two-phase RETE

algorithm is described in:

W. Tai, J. Keeney and D. O’Sullivan, “A COmposable Rule-Entailment Owl

Reasoner for Resource-Constrained Devices”, Proceedings of the International

220

Symposium on Rule-Based Reasoning, Programming, and Applications

(RuleML’11), Pages 212 – 226, 2011.

The implementation of these two composition algorithms in COROR is included in this

paper. Furthermore, the intra-reasoner comparison between different COROR composition

modes and the inter-reasoner comparison between COROR and state of the art OWL

reasoners are also described in this paper. In addition a final version of the reasoner

classification is also included in this paper.

The minor contribution is the design and implementation of an automatic REasoner

Selection Process (RESP) and a prototypical implementation, termed the Tool for Automatic

Reasoner Selection (TARS). This contribution directly answers the second half of the

research question as to “how a resource-constrained OWL reasoner can be selected based on

application characteristics”. Users can use TARS to perform automatic reasoner selection

following RESP process, and also can use register new candidate reasoners to TARS.

Usability evaluation shows TARS/RESP helps application developers in selecting a most

appropriate reasoner for application with a little or even no help from reasoner experts (in

contrast to the existing consultation-based reasoner selection process in which application

developers totally rely on reasoner experts to select an appropriate reasoner).

This contribution provides a solution to the foreseen problem that future reasoner selection

could get too complicated to be suitable for consultation-based reasoner selection process. It

changes the existing human-to-human reasoner selection process to a semi-automatic

human-to-computer process, which reduced the human effort required in the reasoner

selection. Furthermore, the identified reasoner characteristics and their survey provide

researchers a detailed overview of some state of the art reasoners from a variety of facets. In

addition it provides a good starting point for people to have their own survey of reasoners.

The examination of interplay between semantic applications and reasoners gives good hints

for future research in order to study the selection of reasoners for semantic applications.

A paper was published on this contribution:

W. Tai, J. Keeney and D. O’Sullivan, “RESP: A Computer Aided OWL REasoner Selection

Process”, Proceedings of the International Conference on Semantic Computing (ICSC’11),

2011.

In this paper, the survey of semantic applications and the discussions on the 11 reasoning-

221

related aspects for candidate application characteristics and connections are presented. The

design of RESP and the implementation of TARS are included as well. Furthermore, this

paper also describes and discusses the usability evaluation carried out on TARS.

7.3 Limitation	and	Future	Work	
In previous chapters limitations for the automatic reasoner composition research and the

automatic reasoner selection research have been clearly identified and discussed. In this

section future work corresponding to these limitations are identified.

As discussed in section 3.4.2.2, using the number of matched facts collected in the initial

matching for each condition as the specificity to reorder the join sequences is a direct

approach but sometimes lacks accuracy. To (partly) solve this problem more information can

be collected during or before the initial fact matching so that all collected information can

together decide how the join sequences can be optimized. For example, the join selectivity

factor between two joining conditions can be evaluated and used to determine the join

sequence if these two conditions have the similar amount of matched facts. Other

optimizations can also be introduced to improve the performance of RETE algorithm from

other aspects. For example some indexing mechanisms can be combined to improve the

searching performance.

Another piece of future work that needs to be undertaken in the reasoner composition

research area is the extension of COROR to support OWL 2 RL. In fact the extension of

OWL 2 has been discussed from the design perspective in section 3.5 and the rule-construct

dependency graphs for OWL 2 RL entailment rules have been drawn. However, as discussed

in 5.2.5 two obstacles need to be coped with in order to put this extension into practice: the

lack of OWL 2 ontology manipulation API in µJena and the absence of a Jena compatible

OWL 2 RL rule set. Early attempts to draft an OWL 2 RL rule set was impeded by the

intensive and complex use of RDF list operations in OWL 2 RL semantics. A naïve solution

to construct a built-in for each list operation, however, will require the construction of a

large amount of complex built-ins, greatly complicating the rule set, and limiting the

potential for node sharing capabilities and join sequence reordering.

Some other future research or development also exists. The first is to use other pattern

matching algorithms such as TREAT and LEAPS (as introduced in section 2.4.2) to replace

RETE and to study their composability. The second is to extend COROR to support

conjunctive queries enabling complex queries to be placed and answered. Another possible

extension to COROR is the DIG interface that enables distributed reasoning so that

222

distributed reasoning can be performed: simple reasoning tasks are processed locally in the

sensor while complex reasoning tasks are sent to the server side where it is processed by a

full-fledged reasoner, e.g. Pellet. This can achieve task balance among networked (resource-

constrained) devices based on their processing capabilities.

In regard to RESP, one piece of research that can be considered is the further reduction of

human effort required in identifying application characteristics for applications. This can be

achieved through pre-defining application characteristic profiles for different application

areas (as profiles for candidate reasoners) and hence application developers can modify

existing profiles based on their applications, or the provision of step-by-step instructions to

guide application developers to perform the identification of application characteristics. A

second piece of future work that can be considered is the specification of technical detail for

RESP so as to ease the development a RESP implementation, e.g. the format of application

characteristics, reasoner characteristics, and connections, and the algorithm for

matchmaking. Thirdly, the performance of reasoners could be taken as an application

characteristic in the selection process. Some other future work from the implementation

perspective includes (1) to implement TARS as a web-accessible tool and extend it to

support OWL 2 reasoners, (2) to improve the interfaces of TARS (e.g. to enable the

selection results changing dynamically with the changes in the selected ACs so that users

can clearly know how the changes in ACs affect the selection results) and (3) to give more

explanation hints to application characteristics.

7.4 Final	Remarks	
The continual development of OWL and OWL reasoning technologies has encouraged a lot

of applications to adopt them in order to increase interoperability or to enable intelligent

data processing. However during such semantic application development, a lot of problems

were, are, and will be raised, such as applying OWL reasoning onto large database, applying

OWL reasoning to a frequently changing knowledge base and so on. In this thesis two such

problems are addressed and the usage of the proposed solutions will push forward the

application of OWL reasoning to resource-constrained environments and also provides an

alternative way to enable easier OWL reasoner selection. Solving such problems will

hopefully encourage the adoption of OWL and OWL reasoning technologies by more

applications, which, in turn, will enable the further development of OWL and OWL

reasoning technologies.

223

References

[Acciarri et al 2005] A. Acciarri, D. Calvanese, G. De Giacomo, D. Lembo, M.

Lenzerini, M. Palmieri, and R. Rosati, "QuOnto: Querying

Ontologies", Proceedings of the 20th National Conference on

Artificial Intelligence (AAAI'05), 2005.

[Agostini et al 2005] A. Agostini, C. Bettini, and D. Riboni, “Loosely coupling

ontological reasoning with an efficient middleware for context-

awareness”, Proceedings of the 2nd Annual International

Conference on Mobile and Ubiquitous Systems: Computing,

Networking and Services (Mobiquitous’05), 2005.

[Ali 2010] S. Ali, “Semantic Interoperability of Ambient Intelligent

Medical Devices and e-Health Systems”, PhD Dissertation,

Computer Science, University of Saarland, Saarbruecken, 2010.

[Ali and Kiefer 2009] S. Ali and S. Kiefer, "µOR - A Micro OWL DL Reasoner for

Ambient Intelligent Devices”, Proceedings of the 4th

International Conference on Advances in Grid and Pervasive

Computing (GPC’09), 2009.

[Allegrograph 2011] AllegroGraph RDFStore v4.2, Available at:

http://www.franz.com/agraph/allegrograph/, Last visited: Oct.

2011.

[Antoniou et al 2005] G. Antoniou, C. V. Damásio, B. Grosof, I. Horrocks, M. Kifer, J.

Małuszyński, and P. F. Patel-Schneider, "Combining Rules and

Ontologies. A survey”, REWERSE Technical Report,

REWERSE-DEL-2005-I3-D3, 2005.

[Baader and Sattler 2001] F. Baader and U. Sattler, "An Overview of Tableau Algorithms

224

for Description Logics”, Studia Logica, Volume 69, Issue 1,

Pages 5-40, 2001.

[Baader et al 2005] F. Baader, S. Brandt, and C. Lutz, "Pushing the EL Envelope",

Proceedings of the 19th Internationnal Joint Conference on

Artifical Intelligence (IJCAI'05), Pages 364-369, 2005.

[Baader et al 2006] F. Baader, C. Lutz, and B. Suntisrivaraporn, "CEL - A

Polynomial-time Reasoner for Life Science Ontologies",

Proceedings of the 3rd International Joint Conference on

Automated Reasoning (IJCAR'06), Pages 287-291, 2006.

[Baader et al 2007] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F.

Patel-Schneider, The Description Logic Handbook: Theory,

Implementation and Applications, 2nd ed., Cambridge

University Press New York, New York, 2007.

[Baader et al 2008] F. Baader, S. Brandt, and C. Lutz, "Pushing the EL Envelope

Further", Proceedings of the Washington DC workshop on OWL:

Experiences and Directions (OWLED’08DC), 2008.

[Barbieri et al 2009a] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M.

Grossniklaus, "Continuous Queries and Real-time Analysis of

Social Semantic Data with C-SPARQL", Proceedings of Social

Data on the Web (SDoW’09), 2009.

[Barbieri et al 2009b] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M.

Grossniklaus, "C-SPARQL: SPARQL for continuous querying",

Proceedings of the 18th International Conference on World

Wide Web (WWW’09), Pages 1061-1062, 2009.

[Barbieri et al 2010a] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, and M.

Grossniklaus, "Incremental Reasoning on Streams and Rich

Background Knowledge", Proceedings of the 7th Extended

Semantic Web Conference (ESWC’10), Pages 1-15, 2010.

[Barbieri et al 2010b] D. F. Barbieri, D. Braga, S. Ceri, and M. Grossniklaus, "An

execution environment for C-SPARQL queries", Proceedings of

the 13th International Conference on Extending Database

Technology (EDBT'10), 2010.

225

[Batory 1994] D. Batory, "The LEAPS Algorithms", Technical Report, 899216,

Department of Computer Science, The University of Texas,

Austin, 1994.

[Bechhofer et al 2005] S. Bechhofer, I. Horrocks, and D. Turi, “The OWL Instance

Store: System Description”, Proceedings of the 20th

International Conference on Automated Deduction (CADE’05),

2005.

[Berchtold et al 1998] S. Berchtold, C. Böhm, and H.-P. Kriegal, "The pyramid-

technique: towards breaking the curse of dimensionality",

Proceedings of the 1998 ACM SIGMOD International

Conference on Management of Data (COMAD’98), 1998.

[Berners-Lee et al 2001] T. Berners-Lee, J. Hendler, and O. Lassila, "The Semantic

Web”, in Scientific American Magazine, May 2001.

[Berstel 2002] B. Berstel, "Extending the RETE algorithm for even

management", Proceedings of the 9th International Symposium

on Temporal Representation and Reasoning (TIME'02), 2002.

[Bishop et al 2011] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev,

and R. Velkov, “OWLIM: A Family of Scalable Semantic

Repositories”, Semantic Web Journal, volum 2 issue 1, 2011.

[Bodriguez et al 2009] A. Bodriguez, R. McGrath, Y. Liu, and J. Myers, "Semantic

Management of Streaming Data”, the 2nd International

Workshop on Semantic Sensor Networks (SSN’09), 2009.

[Boehm et al 2008] S. Boehm, J. Koolwaajj, M. Luther, B. Souville, M. Wagner,

and M. Wibbels, “Introducting YOUIT”, Proceedings of the 7th

International Semantic Web Conference (ISWC’08), Pages 804-

817, 2008.

[Bolles et al 2008] A. Bolles, M. Grawunder, and J. Jacobi, "Streaming SPARQL -

Extending SPARQL to Process Data Streams”, Proceedings of

European Semantic Web Conference (ESWC'08), Pages 448-

462, 2008.

[Brennan et al 2009] R. Brennan, W. Tai, D. O'Sullivan, M. S. Aslam, S. Rea, and D.

Pesch, "Open Framework Middleware for Intelligent WSN

226

Topology Adaption in Smart Buildings”, Proceedings of

International Conference on Ultra Modern Telecommunications

& Workshops, Pages 1-7, 2009.

[Brooke 1996] J. Brooke, "SUS-A quick and dirty usability scale”, Usability

evaluation in industry, CRC Press, Pages 189-194, 1996.

[Brownston et al 1985] L. Brownston, R. Farrell, and E. Kant, “Programming Expert

Systems in Ops5: An Introduction to Rule-Based

Programming”, Addison-Wesley, Boston, MA, 1985.

[Calder et al 2010] M. Calder, R. A. Morris, and F. Peri, "Machine reasoning about

anomalous sensor data", Journal of Ecological Informatics,

volume 5, issue 1, Pages 9-18, 2010.

[Calvanese et al 2007] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R.

Rosati, "Tractable Reasoning and Efficient Query Answering in

Description Logics: The DL-Lite Family", Journal of

Automated Reasoning, volume 39, issue 3, Pages 385-429,

2007.

[Calvanese et al 2010] D. Calvanese, E. Kharlamov, W. Nutt, and D. Zheleznyakov,

“Evolution of DL-Lite Knowledge Bases”, Proceedings of the

International Semantic Web Conference (ISWC’10), Pages 112-

128, 2010.

[Calvanese et al 2011] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A.

Poggi, M. Rodriguez-Muro, R. Rosati, M. Ruzzi, and D. Fabio

Savo, “The MASTRO system for ontology-based data access”,

Journal of Semantic Web: Interoperability, Usability and

Applicability, volume 2, issue 1, Pages 43-53, 2011.

[Carroll and De Roo 2004] J. J. Carroll and J. De Roo, "OWL web ontology language test

cases”, W3C Recommendation, Available at:

http://www.w3.org/TR/owl-test/, 2004.

[Carroll et al 2004] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,

and K. Wilkinson, "Jena: implementing the semantic web

recommendations", Proceedings of the 13th international World

Wide Web conference (WWW'04), Pages 74-83, 2004.

227

[Chen et al 2005] H. Chen, T. Finin, and A. Joshi, “The SOUPA ontology for

pervasive computing”, Ontologies for Agents: Theory and

Experiences, Springer-Verlag, Berlin, Pages 233-258, 2005.

[Choi et al 2008] C. Choi, I. Park, S. J. Hyun, D. Lee, and D. H. Sim, "MiRE: A

Minimal Rule Engine for context-aware mobile devices",

Proceedings of the 3rd International Conference on Digital

Information Management (ICDIM'08), Pages 172-177, 2008.

[CLIPS] CLIPS: A Tool for Building Expert Systems, Available at:

http://clipsrules.sourceforge.net/, Last visited: Oct. 2011.

[Compton et al 2009a] M. Compton, C. Henson, L. Lefort, H. Neuhaus, and A. Sheth,

"A Survey of the Semantic Specification of Sensors",

Proceedings of International Workshop on Semantic Sensor

Networks (SSN’09), 2009.

[Compton et al 2009b] M. Compton, H. Neuhaus, K. Taylor, K. -N. Tran, “Reasoning

about Sensors and Compositions”, Proceedings of International

Workshop on Semantic Sensor Networks (SSN’09), 2009.

[de Bruijn et al 2005] J. de Bruijn, A. Polleres, R. Lara, and D. Fensel, "OWL DL vs.

OWL Flight: Conceptual Modeling and Reasoning for the

Semantic Web", Proceedings of the 14th International World

Wide Web Conference (WWW'05), 2005.

[DIG] The new DIG interface standard (DIG 2.0), Available at:

http://dl.kr.org/dig/interface.html, Last visited: Oct. 2011.

[Ding et al 2009] Y. Ding, Q. Wang, and J. Huang, "The Performance

Optimization of CLIPS", Proceedings of the 9th International

Conference on Hybrid Intelligent Systems (HIS'09), 2009.

[Dobson et al 2006] S. Dobson, S. Denazis, A. Fernández, D. Gaïti, E. Gelenbe, F.

Massacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli,

"A survey of autonomic communications", ACM Transactions

on Autonomous and Adaptive Systems (TAAS), Volume 1, Issue

2, Pages 223-259, 2006.

[Donini et al 1992] F. M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, W. Nutt,

“Adding Epistemic Operators to Concept Languages”,

228

Proceedings of the 3rd International Conference on Principles

of Knowledge Representation and Reasoning (KR’92), Pages

342-353, 1992.

[Donini et al 1998] F. M. Donini, M. Lenzerini, D. Nardi and A. Schaerf, “AL-log:

Integrating Datalog and Description Logic”, Intelligent and

Cooperative Information Systems, Volume 10, Issue 3, Pages

227-252, 1998.

[Doyle 1977] J. Doyle, "Truth maintenance systems for problem solving”,

Proceedings of the 5th International Joint Conference on

Artificial Intelligence (IJCAI'77), 1977.

[Drabent et al 2007] W. Drabent and J. Henriksson and J. Maluszynski, “HD-Rules:

a hybrid system interfacing Prolog with DL-reasoners”,

Proceedings of the 2nd International Workshop on Applications

of Logic Programming to the Web, Semantic Web and Semantic

Web Services, co-located with the International Conference on

Logic Programming (ICLP’07), 2007.

[Drools 2010] Drools Business Logic Integration Platform, Available at:

http://www.jboss.org/drools, Last visited: Oct. 2010.

[Drools Documentation V4.x] Drools Documentation for V4.x, Available at:

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html_s

ingle/index.html, Last visited: Mar. 2011.

[Eid et al 2007] M. Eid, R. Liscano, and A. El Saddik, “A Universal Ontology

for Sensor Networks Data”, Proceedings of International

Conference on Computational Intelligence for Measurement

Systems and Applications (CIMSA’07), Pages 59-62, 2007.

[Eiter et al 2005] T. Eiter, G. Ianni, R. Schindlauer and H. Tompits, “NLP-DL: A

Knowledge-Representation System for Coupling

Nonmonotonic Logic Programs with Description Logics”,

Proceedings of the International Semantic Web Conference

(ISWC’05), 2005.

[Ejigu et al 2007] D. Ejigu, M. Scuturici, and L. Brunie, “An Ontology-Based

Approach to Context Modeling and Reasoning in Pervasive

Computing”, Proceedings of the 5th Annual IEEE International

229

Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops ‘07), Pages 14-19, 2007.

[Elmasri and Navathe 2003] R. Elmasri and S. B. Navathe, Fundamentals of Database

Systems, 4th edition, Addison-Wesley, 2003.

[Fabret et al 1993] F. Fabret, M. Régnier, and E. Simon, "An Adaptive Algorithm

for Incremental Evaluation of Production Rules in Databases”,

Proceedings of the 19th International Conference on Very

Large Data Bases (VLDB'93), 1993.

[Forgy 1982] C. Forgy, "Rete: A Fast Algorithm for the many pattern/many

object pattern match problem”, Artificial Intelligence, Volume

19, Issue 1, Pages 17-37, 1982.

[Golbeck et al 2003] J. Golbeck, F. Fragoso, F. Hartel, J. Hendler, J. Oberthaler and

B. Parsia, “National Cancer Institute’s Thesaurus and

Ontology”, Journal of Web Semantics, Volume 1, Issue 1, 2003.

[Gomez et al 2008] M. Gomez, A. Preece, M. P. Johnson, G. d. Mel, W.

Vasconcelos, C. Gibson, A. Bar-Noy, K. Borowiecki, T. L.

Porta, D. Pizzocaro, H. Rowaihy, G. Pearson, and T. Pham, "An

Ontology-Centric Approach to Sensor-Mission Assignment”,

Proceedings of 16th International Conference on Knowledge

Engineering and Knowledge Management (EKAW’08), Pages

347-363, 2008.

[Grau et al 2007] B. C. Grau, C. Halaschek-Wiener, and Y. Kazakov, "History

matters: Incremental ontology reasoning using modules”,

Proceedings of the 6th International and the 2nd Asian

Semantic Web Conference (ISWC2007+ASWC2007), Pages

183-196, 2007.

[Grau and Halaschek-Wiener 2010] B. C. Grau and C. Halaschek-Wiener, "Incremental

Classification of Description Logics Ontologies”, Journal of

Automated Reasoning (JAR), Volume 44, Issue 4, Pages 337-

369, 2010.

[Grosof et al 2003] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker, "Description

logic programs: combining logic programs with description

logic”, Proceedings of the 12th international conference on

230

World Wide Web (WWW'03), Pages 48 – 57, 2003.

[Gu et al 2005] T. Gu, H. K. Pung and D. Q. Zhang, “A service-oriented

middleware for building context-aware services”, Journal of

Network and Computer Applications, Volume 28, Issue 1, Pages

1-18, 2005.

[Gu et al 2007] T. Gu, Z. Kwok, K. K. Koh, and H. K. Pung, "A Mobile

Framework Supporting Ontology Processing and Reasoning”,

Proceedings of Workshop on Requirements and Solutions for

Pervasive Software Infrastructures, 2007.

[Guha and Hayes 2003] R. V. Guha and P. Hayes, “Lbase: semantics for languages of

the semantic web”, W3C Working Group Note, Available at:

http://www.w3.org/TR/lbase/, Oct. 2003.

[Guo et al 2005] Y. Guo, Z. Pan, and J. Heflin, "LUBM: A benchmark for OWL

knowledge base systems”, Web Semantics: Science, Services

and Agents on the World Wide Web, Volume 3, Issue 2-3, Pages

158-182, 2005.

[Gupta et al 1993] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, "Maintaining

views incrementally”, Proceedings of ACM SIGMOD

international conference on Management of data, Pages 157-

166, 1993.

[Haarslev and Möller 1999] V. Haarslev and R. Möller, "An Empirical Evaluation of

Optimization Strategies for ABox Reasoning in Expressive

Description Logics”, Proceedings of the 1999 International

Workshop on Description Logics (DL'99), 1999.

[Haarslev and Möller 2002] V. Haarslev, and R. Möller, “Practical Reasoning in RACER

with a Concrete Domain for Linear Inequations”, Proceedings

of International Workshop on Description Logics (DL’02), 2002.

[Haarslev and Möller 2003a] V. Haarslev and R. Möller, "Incremental Query Answering

for Implementing Document Retrieval Services”, Proceedings

of International Workshop on Description Logics (DL’03),

Pages 85-94, 2003.

[Haarslev and Möller 2003b] V. Haarslev, and R. Möller, “Description Logic Systems

231

with Concrete Domains: Applications for the Semantic Web”,

Proceedings of International Workshop on Knowledge

Representation meets Databases (KRDB’03), 2003.

[Haarslev et al 2001] V. Haarslev, R. Möller, and A.-Y. Turhan, "Exploiting Pseudo

Models for TBox and ABox Reasoning in Expressive

Description Logics”, Proceedings of the 1st International Joint

Conference on Automated Reasoning (IJCAR'01), Pages 61-75,

2001.

[Halaschek-Wiener et al 2006] C. Halaschek-Wiener, B. Parsia, and E. Sirin, "Description

Logic Reasoning with Syntactic Updates”, Proceedings of the

5th Ontologies, Databases, and Applications of Semantics

(ODBASE’06), Pages 722-737, 2006.

[Halaschek-Wiener 2007] C. Halaschek-Wiener, "Expressive syndication on the web

using a description logic based approach”, Ph.D. Dissertation,

University of Maryland, College Park, MD, 2007.

[Halaschek-Wiener and Hendler 2007] C. Halaschek-Wiener and J. Hendler, "Toward

expressive syndication on the web”, Proceedings of the 16th

international conference on World Wide Web (WWW’07),

Pages 727-736, 2007.

[Halaschek-Wiener and Kolovski 2008] C. Halaschek-Wiener and V. Kolovski,

"Syndication on the Web using a description logic approach”,

Journal of Web Semantics: Science, Services and Agents on the

World Wide Web, Volume 6, Issue 3, 2008.

[Hall et al 2004] L. Hall, A. Gordon, R. James, and L. Newall, "A Lightweight

Rule-Based AI Engine for Mobile Games”, Proceedings of the

2004 ACM SIGCHI International Conference on Advances in

computer entertainment technology (ACE’04), 2004.

[Hanson and Hasan 1993] E. N. Hanson and M. S. Hasan, "Gator: An Optimized

Discrimination Network for Active Database Rule Condition

Testing”, Technical Report, CIS Department, University of

Florida, 1993.

[Hanson et al 2002] E. N. Hanson, S. Bodagala, and U. Chadaga, "Trigger

Condition Testing and View Maintenance Using Optimized

232

Discrimination Networks”, IEEE Transactions on Knowledge

and Data Engineering, Volume 14, Issue 2, Pages 261-280,

2002.

[Harris et al 2004] M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner, R.

Foulger, K. Eilbeck, S. Lewis, B. Marshall, and C. Mungall,

"The Gene Ontology (GO) database and informatics resource”,

Nucleic acids research, Volume 32, Database issue, Pages D258

- D261, 2004.

[Hatzi et al 2009] O. Hatzi, G. Meditskos, D. Vrakas, N. Bassiliades, D.

Anagnostopoulos, and I. Vlahavas, “PORSCE II: Using

Planning for Semantic Web Service Composition”, Proceedings

of the International Competition on Knowledge Engineering

for Planning and Scheduling (ICKEPS’09), in conjunction with

the International Conference on Automated Planning and

Scheduling (ICAPS’09), Pages 38-45, 2009.

[Henss et al 2009] J. Henss, J. Kleb, S. Grimm, and J. Bock, “A Database Backend

for OWL”, Proceedings of the International Workshop on OWL:

Experiences and Directions (OWLED’09), 2009.

[Herzog et al 2008] A. Herzog, D. Jacobi, and A. Buchmann, "A3ME - An Agent-

Based Middleware Approach for Mixed Mode Environments”,

Proceedings of the Second International Conference on Mobile

Ubiquitous Computing, Systems, Services and Technologies

(UBICOMM’08), Pages 191-196, 2008.

[Hogan et al 2009] A. Hogan, S. Decker and A. Polleres. "Scalable Authoritative

OWL Reasoning for the Web”, International Journal on

Semantic Web and Information Systems (IJSWIS’09), Volume 5,

Issue 2, 2009.

[Horridge and Bechhofer 2011] M. Horridge and S. Bechhofer, “The OWL API: A Java API

for OWL ontologies”, Semantic Web Journal: Interoperability,

Usability and Applicability, Volume 2, Issue 1, Pages 11-21,

2011.

[Horrocks et al 2000] I. Horrocks, U. Sattler, and S. Tobies, “Practical Reasoning for

Very Expressive Description Logics”, Logic Journal of the

233

IGPL, Volume 8, Issue 3, Pages 239-263, 2000.

[Horrocks and Patel-Schneider 2004a] I. Horrocks and P. F. Patel-Schneider, "Reducing

OWL entailment to description logic satisfiability”, Journal of

Web Semantics, Volume 1, Issue 4, Pages 345-357, 2004.

[Horrocks and Patel-Schneider 2004b] I. Horrocks and P. F. Patel-Schneider, “A Proposal

for an OWL Rules Language”, Proceedings of the 20th

International Conference on World Wide Web (WWW’04),

Pages 482-496, 2004.

[Horrocks et al 2004] I. Horrocks, L. Li, D. Turi, and S. Bechhofer, "The instance

store: Description logic reasoning with large numbers of

individuals”, Proceedings of the 2004 International Workshop

on Description Logics (DL'04), Pages 31-40, 2004.

[Horrocks et al 2005] I. Horrocks, P. F. Patel-Schneider, and S. Bechhofer, “OWL

rules: a proposal and prototype implementation”, Journal of

Web Semantics, Volume 3, Issue 1, Pages 23-40, 2005.

[Hustadt et al 2004a] U. Hustadt, B. Motik, and U. Sattler, "Reducing SHIQ-

Description Logic to Disjunctive Datalog Programs”,

Proceedings of the 9th International Conference on Knowledge

Representation and Reasoning (KR’04), Pages 152-162, 2004.

[Hustadt et al 2004b] U. Hustadt, B. Motik and U. Sattler, “Reasoning in Description

Logics with a Concrete Domain in the Framework of

Resolution”, Proceedings European Conference on Artificial

Intelligence (ECAI’10), 2004.

[Hustadt et al 2005] U. Hustadt, B. Motik, and U. Sattler, "Data Complexity of

Reasoning in Very Expressive Description Logics”,

Proceedings of the 19th International Joint Conference on

Artificial Intelligence (IJCAI'05), 2005.

[Ishida 1988] T. Ishida, "Optimizing Rules in Production System Programs”,

Proceedings of the 7th National Conference on Artificial

Intelligence (AAAI'87), Pages 699-704, 1988.

[Ishida 1994] T. Ishida, "An optimization algorithm for production systems”,

IEEE Transactions on Knowledge and Data Engineering,

234

Volume 6, Issue 4, Pages 549-558, 1994.

[Jang and Sohn 2004] M. Jang and J.-C. Sohn, "Bossam: An Extended Rule Engine

for OWL Inferencing”, Proceedings of the 3rd International

Workshop on Rules and Rule Markup Languages for the

Semantic Web (RuleML'04), Pages 128-138, 2004.

[Jarke and Koch 1984] M. Jarke and J. Koch, "Query Optimization in Database

Systems”, ACM Journal of Computing Surveys, Volume 16,

Issue 2, Pages 111-152, 1984.

[Jena 2010] Jena – A Semantic Web Framework for Java, Available at:

http://jena.sourceforge.net/, Last visited: Oct. 2011.

[Jena TDB] TDB - A SPARQL Database for Jena, Available at:

http://openjena.org/TDB/, Last visited: Oct. 2011.

[JESS] JESS, the rule engine for Java platform, Available at:

http://www.jessrules.com/jess/index.shtml, Last visited: Sep.

2011.

[Kalyanpur et al 2006] A. Kalyanpur, B. Parsia, and E. Sirin, “Debugging

Unsatisfiable Classes in OWL Ontologies”, Journal of Web

Semantics: Science, Services and Agents on the World Wide

Web, Volume3, issue 4, 2006.

[Kang and Cheng 2004] J. A. Kang and A. M. K. Cheng, "Shortening matching time in

OPS5 production systems”, IEEE Transactions on Software

Engineering, Volume 30, Issue 7, Pages 448-457, 2004.

[Katz and Parsia 2005] Y. Katz, and B. Parsia, “Towards a Nonmonotonic Extension to

OWL”, Proceedings of International Workshop on OWL:

Experiences and Directions (OWLED’05), 2005.

[Kaviani et al 2008] N. Kaviani, B. Mohabbati, D. Gasevic, M. Finke, “Semantic

Annotations of Feature Models for Dynamic Product

Configuration in Ubiquitous Environments”, Proceedings of the

4th International Workshop on Semantic Web Enabled Software

Engineering (SWESE’08), 2008.

[Keeney et al 2008] J. Keeney, D. Roblek, D. Jones, D. Lewis, D. O'Sullivan,

"Extending Siena to support more expressive and flexible

235

subscriptions", Proceedings of International Conference on

Distributed Event-Based Systems (DEBS’08), 2008.

[Keeney et al 2010] J. Keeney, C. Stevens, D. O’Sullivan, “Extending a

Knowledge-based Network to support Temporal Event

Reasoning”, Proceedings of the 12th IEEE/IFIP Network

Operations & Management Symposium (NOMS’10), Pages,

631-638, 2010.

[Keet et al 2007] C. M. Keet, M. Roos, and M. S. Marshall, "A Survey of

Requirements for Automated Reasoning Services for Bio-

Ontologies in OWL”, Proceedings of the 3rd OWL:

Experiences and Directions Workshop (OWLED2007), 2007.

[Keivanloo et al 2010] I. Keivanloo, L. Roostapour, P. Schugerl, and J. Rilling, “SE-

CodeSearch: A scalable Semantic Web-based Source Code

Search Infrastructure”, Proceedings of 2010 IEEE International

Conference on Software Maintenance (ICSM’10), Pages 1-5,

2010.

[Kim et al 2008] J.-H. Kim, H. Kwon, D. -H. Kim, H. –Y. Kwak, and S. –J. Lee,

“Building a Service-Oriented Ontology for Wireless Sensor

Networks”, Proceedings of International Conference on

Computer and Information Science (ICCIS’08), 2008.

[Kim et al 2010] T. Kim, I. Park, S. J. Hyun, and D. Lee, "MiRE4OWL: Mobile

Rule Engine for OWL”, Proceedings of the 2nd IEEE

International Workshop on Middleware Engineering (ME’10),

Pages 317-322, 2010.

[Kiryakov et al 2005] A. Kiryakov, D. Ognyanov, and D. Manov, "Owlim-a pragmatic

semantic repository for owl”, Proceedings of the 6th Web

Information Systems Engineering Workshop (WISE’05), Pages

182 – 192, 2005.

[Kleemann 2006] T. Kleemann, “Towards mobile reasoning”, Proceedings of the

2006 international workshop on description logics (DL’06),

2006.

[Kleemann and Sinner 2006] T. Kleemann and A. Sinner, "User Profiles and

Matchmaking on Mobile Phones”, Proceedings of the 16th

236

International Conference on Applications of Declarative

Programming for Knowledge Management (INAP’09), Pages

135-147, 2006.

[Kolas et al 2009] Dave Kolas, Ian Emmons, and Mike Dean, “Efficient Linked-

List RDF Indexing in Parliament”, Proceedings of the 5th

International Workshop on Scalable Semantic Web Knowledge

Base Systems (SSWS’09), Pages 17-32, 2009.

[Krötzsch et al 2010] M. Krötzsch, A. Mehdi, and S. Rudolph, "Orel: Database-

Driven Reasoning for OWL 2 Profiles”, Proceedings of the

23rd International Workshop on Description Logics (DL'10),

Pages 114-124, 2010.

[Lee and Schor 1992] H. S. Lee and M. I. Schor, "Match algorithms for generalized

RETE networks”, Journal of Artficial Intelligence, Volume 54,

Issue 3, Pages 249-274, 1992.

[Levy and Rousset 1998] A. Y. Levy and M. Rousset, “Combining horn rules and

description logic in CARIN”, Artificial Intelligence, Volume

104, Issue 1-2, Pages 165-209, 1998.

[Liang et al 2009] S. Liang, P. Fodor, H. Wan, and M. Kifer, "OpenRuleBench: An

Analysis of the Performance of Rule Engine”, Proceedings of

the 18th International World Wide Web Conference (WWW'09),

Pages 601-610, 2009.

[Liebig and Noppens 2004] T. Liebig and O. Noppens, "ONTOTRACK: Combining

Browsing and Editing with Reasoning and Explaining for OWL

Lite Ontologies”, Proceedings of the 3rd International

Semantic Web Conference (ISWC’04), Pages 244-257, 2004.

[Luther et al 2008] M. Luther, Y. Fukazawa, M. Wagner, S. Kurakake, T.

Naganuma, M. Wagner, and S. Kurakake, “Situational

reasoning for task-oriented mobile service recommendataion”,

Journal of the Knowledge Engineering Review, Volume 23,

Issue 1, 2008.

[Luther and Böhm 2009] M. Luther and S. Böhm, "Situation-Aware Mobility: An

Application for Stream Reasoning”, Proceedings of the 1st

International Workshop on Stream Reasoning (SR’09), 2009.

237

[Lutz 1999] C. Lutz, “Reasoning with Concrete Domains”, Proceedings of

International Joint Conference on Artificial Intelligence

(IJCAI’99), 1999.

[Ma et al 2006] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu, "Towards a

complete OWL ontology benchmark”, Proceedings of the 3rd

European Semantic Web Conference (ESWC’06), Pages 125-

139, 2006.

[Matheus et al 2006] C. J. Matheus, K. Baclawski, and M. M. Kokar, "BaseVISor: A

Triples-Based Inference Engine Outfitted to Process RuleML

and R-Entailment Rules”, Proceedings of the 2nd International

Conference on Rules and Rule Markup Languages for the

Semantic Web (RuleML'06), Pages 67-74, 2006.

[McDermott et al 1978] J. McDermott, A. Newell, and J. Moore, "The efficiency of

certain production system implementations”, Pattern-directed

inference systems, Academic Press, Orlando, FL, 1978.

[McGuinness and Van Harmelen 2004] D. L. McGuinness and F. Van Harmelen, "OWL

Web Ontology Language Overview”, W3C Recommendation,

Available at: http://www.w3.org/TR/owl-features/, 2004.

[Meditskos and Bassiliades 2008a] G. Meditskos and N. Bassiliades, "Combining a DL

Reasoner and a Rule Engine for Improving Entailment-Based

OWL Reasoning”, Proceedings of the 7th International

Conference on The Semantic Web (ISWC'08), 2008.

[Meditskos and Bassiliades 2008b] G. Meditskos and N. Bassiliades, "A Rule-Based

Object-Oriented OWL Reasoner”, IEEE Transactions on

Knowledge and Data Engineering, Volume 20, Issue 3, Pages

397-410, 2008.

[Meditskos and Bassiliades 2010] G. Meditskos and N. Bassiliades, "DLEJena: A

practical forward-chaining OWL 2 RL reasoner combining Jena

and Pellet”, Journal of Web Semantics: Science, Services and

Agents on the World Wide Web, Volume 8, Issue 1, Pages 89-94,

2010.

[Mei et al 2005] J. Mei, E. P. Bontas, and Z. Lin, "OWL2Jess: A

Transformational Implementation of the OWL Semantics”,

238

Proceedings of the 3rd International Symposium on Parallel

and Distributed Processing and Applications Workshop

(ISPA'05), Pages 599-608, 2005.

[Mendler and Scheele 2009] M. Mendler and S. Scheele, "Towards a Type System for

Semantic Streams”, Proceedings of the 1st International

Workshop on Stream Reasoning (SR’09), 2009.

[Micro Jena 2010] Micro Jena (µJena), Available at:

http://poseidon.ws.dei.polimi.it/ca/?page_id=59, Last visited:

Oct. 2011.

[Miranker 1987] D. P. Miranker, "TREAT: A better match algorithm for AI

production systems”, Proceedings of the 6th National

Conference on Artifical Intelligence (AAAI'87), Pages 42-47,

1987.

[Motik 2007] B. Motik, R. Shearer, I. Horrocks, “Optimized Reasoning in

Description Logics Using Hypertableaux,” Proceedings of the

21st International Conference on Automated Deduction

(CADE’07), Pages 67-83, 2007.

[Motik 2008] B. Motik, "KAON2 - Scalable Reasoning over Ontologies with

Large Data Sets”, ERCIM news, Volume 2008, Issue 72, 2008.

[Motik and Sattler 2006] B. Motik and U. Sattler, "A comparison of reasoning techniques

for querying large description logic aboxes”, Proceedings of the

13th International Conference on Logic for Programming,

Artificial Intelligence, and Reasoning (LPAR'06), Pages 227-

241, 2006.

[Motik et al 2006] B. Motik, I. Horrocks, R. Rosati, and U. Sattler, "Can OWL and

Logic Programming Live Together Happily Ever After”,

Proceedings of the 5th International Semantic Web Conferece

(ISWC'06), Pages 501-514, 2006.

[Motik et al 2007] B. Motik, I. Horrocks, and U. Sattler, “Adding Integrity

Constraints to OWL”, Proceedings of the Workshop on OWL:

Experiences and Directions (OWLED’07), 2007.

[Motik et al 2009] B. Motik, R. Shearer, and I. Horrocks, “Hypertableau reasoning

239

for description logics”, Journal of Artificial Intelligence

Research, Volume 36, Issue 1, Pages 165-228, 2009.

[Nayak et al 1988] P. Nayak, A. Gupta, and P. Rosenbloom, "Comparison of the

Rete and Treat production matchers for Soar (A summary)”,

Proceedings of the 7th National Conference on Artificial

Intelligence (AAAI'88), Pages 693-698, 1988.

[Nerode and Shore 1997] A. Nerode and R. A. Shore, Logic for Applications, 2nd edition,

Springer-Verlag, New York, NY, 1997.

[Obermeyer et al 1995] L. Obermeyer, D. P. Miranker, and D. Brant, "Selective

indexing speeds production systems”, Proceedings of the 7th

International Conference on Tools with Artificial Intelligence

(ICTAI'95), Pages 15-12, 1995.

[openGALEN] The openGALEN project, Available at:

http://www.opengalen.org/index.html, Last visited: Oct. 2011.

[OWLJessKB 2011] OWLJessKB: a semantic web reasoning tool. Available at:

http://edge.cs.drexel.edu/assemblies/software/owljesskb/, Last

visited: Oct. 2011.

[OWL Test Case Results] OWL Test Results (Semi-Official Semi-Static View), Available

at: http://www.w3.org/2003/08/owl-systems/test-results-out,

Last visited: Oct. 2011.

[OWL 2 Direct Semantics] B. Motik, P. F. Patel-Schneider, and B. C. Grau, "OWL 2 Web

Ontology Language: Direct Semantics”, W3C Recommendation,

Aailable at: http://www.w3.org/TR/owl2-direct-semantics/,

2009.

[OWL 2 Overview] OWL 2 Working Group, "OWL 2 Web Ontology Language

Document Overview”, W3C Recommendation, Available at:

http://www.w3.org/TR/owl2-overview/, 2009.

[OWL 2 Profiles] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C.

Lutz, "OWL 2 Web Ontology Language Profiles”, W3C

Recommendation, Available at: http://www.w3.org/TR/owl-

profiles/, 2009.

[OWL 2 RDF-Based Semantics] M. Schneider, "OWL 2 Web Ontology Language: RDF-

240

Based Semantics”, W3C Recommendation, Available at:

http://www.w3.org/TR/owl2-rdf-based-semantics/, 2009.

[Özacar et al 2007] T. Özacar, Ö. Öztürk, and M. O. Ünalir, "Optimizing a Rete-

based Inference Engine using a Hybrid Heuristic and Pyramid

based Indexes on Ontological Data”, Journal of Computers,

Volume 2, Issue 4, Pages 41-48, 2007.

[Pan 2004] J. Z. Pan. “Reasoning Support for OWL-E (Extended

Abstract)”, Proceedings of Doctoral Programme in the 2004

International Joint Conference of Automated Reasoning

(IJCAR’04), 2004.

[Paolucci et al 2002] M. Paolucci, T. Kawamura, T. R. Payne, and K. P. Sycara,

"Semantic Matching of Web Services Capabilities”,

Proceedings of the 1st International Semantic Web Conference

(ISWC’02), Pages 333-347, 2002.

[Parsia et al 2006] B. Parsia, C. Halaschek-Wiener, and E. Sirin, "E.S.: Towards

Incremental Reasoning Through Updates”, Proceedings of the

15th International World Wide Web Conference (WWW’06),

2006.

[Patel-Schneider et al 2004] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, "Web Ontology

Language (OWL) Abstract Syntax and Semantics”, W3C

Recommendation, Available at: http://www.w3.org/TR/owl-

semantics/ , 2004.

[Pellet ICV] Pellet ICV Integrity Constraints Validator, Available at:

http://clarkparsia.com/pellet/icv/, Last visited: Oct. 2011.

[PelletDB] Introducing PelletDB – Expressive, Scalable Semantic

Reasoning for Enterprise, Available at:

http://clarkparsia.com/pelletdb/, Last visited: Oct. 2011.

[RacerPro Release Notes v1.9.2] RacerPro 1.9.2 BETA Release Notes, Available at:

http://www.racer-systems.com/products/racerpro/manual.phtml,

Last visited: Oct. 2011.

[RacerPro Reference Manual v1.9.2] RacerPro Reference Manual v1.9.2, Available at:

http://www.racer-systems.com/products/racerpro/manual.phtml,

241

last visited: Oct. 2011.

[RDFS++] RDFS++ Overview, Available at:

http://www.franz.com/agraph/support/learning/Overview-of-

RDFS++.lhtml, Last visited, Oct. 2011.

[Rector 2002] A. Rector, “Analysis of propagation along transitive roles:

Formalisation of the galen experience with medical ontologies”.

Proceedings of the international workshop on Description

Logic (DL’02), 2002.

[Ren et al 2010a] Y. Ren, J. Z. Pan, and Y. Zhao, "Towards Scalable Reasoning

on Ontology Streams via Syntactic Approximation”,

Proceedings of International Workshop on Ontology Dynamics

(IWOD'10), 2010.

[Ren et al 2010b] Y. Ren, J. Z. Pan, and Y. Zhao, "Soundness Preserving

Approximation for TBox Reasoning”, Proceedings of the 25th

AAAI Conference (AAAI'10), 2010.

[Ren et al 2010c] Y. Ren, J. Z. Pan, and Y. Zhao, "Towards Soundness Preserving

Approximation for ABox Reasoning of OWL2”, Proceedings of

the International Description Logic Workshop (DL'10), Pages

325-335, 2010.

[Rosati 1999] R. Rosati, “Towards expressivity KR systems integrating

datalog and description logics”, Proceedings of the

international workshop on description logic (DL’99), 1999.

[Russomanno et al 2005] D. J. Russomanno, C. R. Kothari, and O. A. Thomas, "Building

a Sensor Ontology: A Practical Approach Leveraging ISO and

OGC Models”, Proceedings of The 2005 International

Conference on Artificial Intelligence (ICAI’05), 2005.

[Scales 1986] D. J. Scales, "Efficient Matching Algorithm for the

SOAR/OPS5 Production System”, Technical Report KSL-86-47,

Knowledge Systems Laboratory, Department of Computer

Science, Stanford University, Stanford, 1986.

[Schmolze and Snyder 1997] J. G. Schmolze and W. Snyder, "Detecting redundant

production rules”, Proceedings of the 14th National Conference

242

on Artificial Intelligence (AAAI’97) and the 9th Conference on

Innovative Applications of Artificial Intelligence (IAAI’97),

1997.

[Schuegerl et al 2008] P. Schuegerl, J. Rilling, and P. Charland, “Enriching SE

Ontologies with Bug Report Quality”, Proceedings of the 4th

International Workshop on Semantic Web Enabled Software

Engineering (SWESE’08), 2008.

[Seitz et al 2010] C. Seitz, S. Lamparter, T. Schöler, and M. Pirker, "Embedded

Rule-based Reasoning for Digital Product Memories”,

Proceedings of 2010 AAAI Spring Symposium Series (AAAI -

SSS’10), 2010.

[Sesame User Guide] User Guide for Sesame 2.3, Available at:

http://www.openrdf.org/doc/sesame2/users/, Last visited:

October 2011.

[Shahri et al 2007] H. H. Shahri, J. A. Hendler, and A. A. Porter, "Software

configuration management using ontologies”, Proceedings of

International Workshop on Semantic Web Enabled Software

Engineering, 2007.

[Sheth et al 2008] A. Sheth, C. Henson, and S. S. Sahoo, "Semantic Sensor Web”,

IEEE Internet Computing Magazine. Volume 12, Issue 4, Pages

78-83, 2008.

[Sinner and Kleemann 2005] A. Sinner and T. Kleemann, "KRHyper - In Your Pocket”,

Proceedings of the 20th International Conference on Automated

Deduction (CADE05), Pages 452-457, 2005.

[Sirin and Parsia 2007] E. Sirin and B. Parsia, "SPARQL-DL:SPARQL Query for

OWL-DL”, Proceedings of the 3rd OWL: Experiences and

Directions Workshop (OWLED'07), 2007.

[Sirin et al 2004] E. Sirin, B. Parsia, and J. Hendler, "Composition-driven

filtering and selection of semantic web services”, IEEE

Intelligent Systems, Volume 19, Issue 4, Pages 42-49, 2004.

[Sirin et al 2007] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,

"Pellet: A practical OWL-DL reasoner”, Web Semantics:

243

Science, Services and Agents on the World Wide Web, Volume 5,

Issue 2, Pages 51-53, 2007.

[Smitha and Geneseretha 1985] D. E. Smitha and M. R. Geneseretha, "Ordering

conjunctive queries”, Journal of Artificial Intelligence, Volume

26, Issue 2, Pages 171-215, 1985.

[SNOMED] G. Héja, G. Surján and P. Varga, “Ontological analysis of

SNOMED CT”, BMC Medical Informatics and Decision

Making, Volume 8, Issue Suppl. 1, 2008.

[SPIN 2011] OWL 2 RL in SPARQL using SPIN, available at:

http://composing-the-semantic-web.blogspot.com/2009/01/owl-

2-rl-in-sparql-using-spin.html, Last visited: Oct. 2011.

[Squawk JVM] Squawk Java Virtual Machine Project, Available at:

https://squawk.dev.java.net/, Last visited: Nov. 2010

[Staudt and Jarke 1996] M. Staudt and M. Jarke, "Incremental maintenance of

externally materialized views”, Proceedings of the 22nd

International Conference on Very Large Data Bases

(VLDB’96), Pages 75-86, 1996.

[Steller and Krishnaswamy 2008] L. Steller and S. Krishnaswamy, “Pervasive Service

Discovery: mTableaux Mobile Reasoning”, Proceedings of the

7th International Conference on Semantic Systems (I-

Semantics’08), Pages 93-101, 2008.

[Stocker and Smith 2008] M. Stocker and M. Smith, "Owlgres: A scalable OWL

Reasoner”, Proceedings of the 5th International Workshop on

OWL Experiences and Directions (OWLED'08), 2008.

[Stuckenschmidt et al 2010] H. Stuckenschmidt, S. Ceri, E. D. Valle, and F. v. Harmelen,

"Towards Expressive Stream Reasoning”, Proceedings of the

Dagstuhl Seminar on Semantic Aspects of Sensor Networks,

2010.

[SUN SPOT 2010] SUN SPOT project, Available at: http://sunspotworld.com/,

Last visited: Oct. 2011.

[Suntisrivaraporn 2008] B. Suntisrivaraporn, "Module extraction and incremental

classification: a pragmatic approach for EL+ ontologies”,

244

Proceedings of the 5th European semantic web conference on

the semantic web: research and applications (ESWC'08), 2008.

[Surnia 2011] Surnia reasoner, Available at:

http://www.w3.org/2003/08/surnia/, Last visited: Oct. 2011.

[SwiftOWLIM ver 2.9.1 SysDoc] "SwiftOWLIM System Documentation ver. 2.9.1”,

OWLIM documentation, 2007, Available at:

http://www.ontotext.com/owlim/OWLIMSysDoc.pdf, Last

visited: Oct. 2010.

[SWOOP] SWOOP - A Hypermedia-based Featherweight OWL Ontology

Editor, Available at: http://www.mindswap.org/2004/SWOOP/,

Last visited: Oct. 2011.

[Sycara et al 2003] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan,

"Automated discovery, interaction and composition of semantic

web services”, Journal of Web Semantics, Volume 1, Issue 1,

Pages 27-46, 2003.

[Tai et al 2009] W. Tai, R. Brennan, J. Keeney, and D. O'Sullivan, "An

Automatically Composable OWL Reasoner for Resource

Constrained Devices”, Proceeding of 3rd IEEE International

Conference on Semantic Computing (ICSC’09), Pages 495-502,

2009.

[Tai et al 2011] W. Tai, J. Keeney, and D. O’Sullivan, “COROR: A

COmposable Rule-entailment Owl Reasoner for Resource-

Constrained Devices”, Proceeding of 5th International

Symposium on Rules: Research Based and Industry Focused

co-located with the 22nd International Join Conference on

Artificial Intelligence (RuleML’11), 2011.

[Tambe and Rosenbloom 1989] M. Tambe and P. Rosenbloom, "Eliminating expensive

chunks by restricting expressiveness”, Proceedings of the 11th

International Joint Conference on Artificial Intelligence

(IJCAI’89), 1989.

[Tambe et al 1992] M. Tambe, D. Kalp, and P. S. Rosenbloom, "An efficient

algorithm for production systems with linear-time match”,

Proceedings of the 4th International Conference on Tools with

245

Artificial Intelligence (ICTAI’92), Pages 36-43, 1992.

[Tao et al 2010] J. Tao, E. Sirin, J. Bao, D. L. McGuinness, “Integrity

Constraints in OWL”, Proceedings of the 24th AAAI

Conference on Artificial Intelligence (AAAI’10), 2010.

[ter Horst 2005a] H. J. ter Horst, "Completeness, decidability and complexity of

entailment for RDF Schema and a semantic extension involving

the OWL vocabulary”, Web Semantics: Science, Services and

Agents on the World Wide Web, Volume 3, Issue 2-3, Pages 79-

115, 2005.

[ter Horst 2005b] H. J. ter Horst, "Combining RDF and Part of OWL with Rules:

Semantics, Decidability, Complexity”, Proceedings of the 4th

Internation Semantic Web Conference (ISWC’05), Pages 668 –

684, 2005.

[Tobies 2001] S. Tobies, "Complexity Results and Practical Algorithms for

Logics in Knowledge Representation”, PhD Dissertation,

LuFG Theoretical Computer Science, RWTH Aachen

University, Aachen, 2001.

[Tsarkov and Horrocks 2006] D. Tsarkov and I. Horrocks, "FaCT++ Description Logic

Reasoner: System Description”, Proceedings of the 3rd

International Joint Conference on Automated Reasoning

(IJCAR'06), Pages 292-297, 2006.

[Tsarkov et al 2006] D. Tsarkov, A. Riazanov, S. Bechhofer, and I. Horrocks, "Using

Vampire to Reason with OWL”, Proceedings of 3rd

International Semantic Web Conference (ISWC'04), Pages 471-

485, 2004.

[Ullman 1982] J. D. Ullman, Principles of Database Systems, 2nd edtion,

Computer Science Press, New York, 1982.

[Ushchold et al 2003] M. Ushchold, P. Clark, F. Dickey, C. Fung, S. Smith, S.

Uczekaj, M. Wilke, S. Bechhofer, and I. Horrocks, "A semantic

infosphere”, Proceedings of the 2nd International Semantic

Web Conference (ISWC’03), Pages 882-896, 2003.

 [van der Gaag and de Koning 1994] L. C. van der Gaag and C. de Koning, "Reason

246

Maintenance for Production Systems”, Technical Report,

Department of Computer Science, Utrecht University, 1994.

[Vassiliadis et al 2009] V. Vassiliadis, J. Wielemaker, and C. Mungall, "Processing

OWL2 ontologies using Thea: An application of logic

programming”, Proceedings of the 5th International Workshop

on OWL: Experiences and Directions (OWLED'09), 2009.

[Volz et al 2003] R. Volz, S. Decker, and D. Oberle, "Bubo-Implementing OWL

in rule-based systems”, Proceedings of the 12th international

conference on World Wide Web (WWW'03), 2003.

[Volz et al 2005] R. Volz, S. Staab, and B. Motik, "Incrementally Maintaining

Materializations of Ontologies Stored in Logic Databases”,

Journal of Data Semantics II, Volume 2260/2005, Pages 1-34,

2005.

[Wang and Hanson 1992] Y. Wang and E. N. Hanson, "A Performance Comparison of the

Rete and TREAT Algorithms for Testing Database Rule

Conditions”, Proceedings of the 8th International Conference

on Data Engineering (ICDE'92), Pages 88-97, 1992.

[Wang et al 2004] X. Wang, Q. Zhang, T. Gu, and H. K. Pung, “Ontology-based

context modeling and reasoning using OWL”, Proceedings of

the 2nd IEEE Annual Conference on Pervasive Computing and

Communications Workshops (PerCom Workshop’04), Pages 18-

22, 2004.

[Weißenberg 2004] N. Weißenberg, “Using ontologies in personalized mobile

applications”, Proceedings of the 12th annual ACM

international workshop on geographic information systems

(GIS’04), 2004.

[Witmate 2011] Mate your wit: the most performed mobile/embedded java

logic/rule engine, Available at:

http://www.witmate.com/default.html, Last visited: Oct. 2011.

[Wright and Marshall 2003] I. Wright and J. Marshall, "The execution kernel of RC++:

RETE*, a faster RETE with TREAT as a special case”,

International Journal of Intelligent Games and Simulation,

Volume 2, Issue 1, Pages 36-48, 2003.

247

[Wu et al 2008] Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski, M.

Annamalai, and J. Srinivasan, "Implementing an Inference

Engine for RDFS/OWL Constructs and User-Defined Rules in

Oracle”, Proceedings of IEEE 24th International Conference on

Data Engineering (ICDE’08), Pages 1239-1248, 2008.

[Zhang et al 2004] L. Zhang, Y. Yu, J. Lu, C. Lin, K. Tu, M. Guo, Z. Zhang, G. Xie,

Z. Su, and Y. Pan, "ORIENT: Integrate Ontology Engineering

into Industry Tooling Environment”, Proceedings of the 3rd

International Semantic Web Conference (ISWC'04), Pages 823-

837, 2004.

[Zhou et al 2006] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan, "Minerva:

A scalable OWL ontology storage and inference system”,

Proceedings of the 1st Aisan Semantic Web Conference

(ASWC’06), Pages 429 – 443, 2006.

[Zou et al 2004] Y. Zou, T. Finin, and H. Chen, "F-OWL: an Inference Engine

for Semantic Web”, Proceedings of the 3rd International

Workshop on Formal Approaches to Agent-Based Systems

(FAABS'04), Pages 16-18, 2004.

[µJena] µJena, Available at:

http://poseidon.elet.polimi.it/ca/?page_id=59, Last visited: Oct.

2011.

A-1

Appendix A
A Survey on OWL

Reasoners

A survey is conducted on OWL reasoners in this research to construct the reasoner

categorization. In total 26 reasoners were surveyed. 18 reasoner characteristics were

surveyed for each of the reasoners. Survey was conducted through literature review,

web browsing, and examination of code. Results are presented in the following tables (

A-2

Table A-1 to Table A-9). A color scheme is used to give readers a general idea the level

a reasoner characteristic is satisfied by a reasoner: blue indicates this characteristic is

not comparable among reasoners; red means this characteristic is not satisfied; green

means this characteristic is (relatively) better satisfied than the others; yellow means

this characteristic is (relatively) less satisfied compared to the other reasoners.

A-3

Table A-1: Results of the survey of OWL reasoners

 Bossam Hoolet Pellet
Reasoning
algorithm

RETE FOL prover
(Vampire)

DL tableaux

Reasoner type Rule-entailment Resolution-
based

DL-tableaux

Reasoner
expressivity

OWL DL OWL DL OWL DL and OWL 2 EL

Completeness No Yes Complete for OWL DL
Reasoning
tasks

Entailment, Conjunctive
query answering

Unknown Entailment, Conjunctive
query answering (through
Ortiz API), KB consistency,
Concept Satisfiability,
Classification, Realization

Materializatio
n

Yes (total) Unknown Yes

Incremental
reasoning

Addition, No deletion
support

Unknown Consistency (not stable),
Classification (accessed
through OWLAPI)

Query support Buchingae rule language
(atomic, conjunctive)

Simple queries SPARQL (Oritz, Jena ARQ,
Protégé SAPRQL engine)

Rule support Buchingae rule, RuleML,
SWRL

SWRL SWRL (DL-safe)

Closed-world
features

rule, query Unknown Closed-world OWL
semantics for integrity
constraints (PelletDB), rule,
query

Concrete
domain

XSD datatypes, datatype
computation/comparison

XSD
datatypes,
datatype
computation/c
omparison

XSD datatypes, User-defined
datatypes, datatype
computation/comparison

Database
support

No No reasoning (PelletDB)

Remote
interface

Self-defined interface for
distributed reasoning

No DIG

User access Command line GUI GUI (protégé), Command
line (The Prolog OWL Shell)

Explanation Native OWLAPI
blackbox

Native and OWLAPI
blackbox

Ontology
manipulation

API OWLAPI API (Ortiz), Jena and
OWLAPI

Platform J2SE (entire) or J2ME
CDC (core)

Java J2SE

OS Windows, Linux, MacOS,
Symbian, Android,
WinMobile, TinyOS

Linux Windows, Linux, MacOS

A-4

Table A-2: Results of the survey of OWL reasoners (cont’d)

 KAON2 RacerPro (v2.0) Jena
Reasoning
algorithm

Disjunctive Datalog DL tableaux Resolution and RETE

Reasoner type Resolution-based DL-tableaux Hybrid
Reasoner
expressivity

OWL DL (SHIQ(D)
subset)

OWL DL and OWL 2
(SHIQ(D) subset)

OWL DL

Completeness Yes Yes No
Reasoning
tasks

Entailment,
Conjunctive query
answering, KB
consistency, Concept
satisfiability,
Classification

Entailment
Conjunctive query
answering, KB
consistency,
Classification,
Realization, Concept
satisfiability

Entailment,
Conjunctive query
answering (ARQ), KB
consistency, Concept
satisfiability,
Classification

Materializatio
n

Yes Yes Yes (total)

Incremental
reasoning

Materialization Unknown Addition, Deletion

Query support SPARQL nRQL (native) and
SPARQL (protégé)

SPARQL (ARQ)

Rule support SWRL (DL-safe), F-
logic rules (function
free)

nRQL, SWRL Jena rules

Closed-world
features

Limited NaF support
in F-logic
rules/ontology

query rule, query

Concrete
domain

XSD datatypes,
datatype
computation/comparis
on

XSD datatypes,
datatype
computation/comparis
on

XSD datatypes, User-
defined datatypes,
datatype
computation/comparison

Database
support

Native Reasoning
(AllegroGraph) and
OWLAPI

Access (TDB and SDB)

Remote
interface

RMI and DIG OWLlink and DIG DIG 1.0 (removed after
v2.6.0)

User access No GUI (RacerPorter,
Protégé)

Command line

Explanation No Native and OWLAPI
blackbox (?)

Native

Ontology
manipulation

API GUI (RacerPorter,
Protégé)

API

Platform J2SE C++, J2SE or LISP J2SE
OS Windows, Linux,

MacOS
Windows, MacOs X
and Linux (java
adaptor available)

Windows, Linux,
MacOS

A-5

Table A-3: Results of the survey of OWL reasoners (cont’d)

18 OWLAPI does not natively provide database support but there is a third party tool OWLDB enabling database
access through OWLAPI. Find in http://sourceforge.net/projects/owldb/ for OWLDB.

 FaCT++ Surnia F-OWL
Reasoning
algorithm

DL tableaux FOL theorem
prover (OTTER)

FOL theorem prover
(XSB)

Reasoner type DL-tableaux Resolution-based Resolution-based
Reasoner
expressivity

(Full) OWL DL and
(Partially) OWL 2

OWL Full OWL Lite, (Partially)
OWL DL, (Partially)
OWL Full

Completeness Yes for OWL DL Unknown No
Reasoning tasks KB consistency,

Classification,
Realization, Concept
satisfiability (all
reasoning tasks are
accessed through
OWLAPI)

Unknown Entailment, Conjunctive
query answering

Materialization Unknown Unknown Yes (Tabling in XSB)
Incremental
reasoning

Yes (but not clear if it
is classification or
consistency)

Unknown Unknown

Query support Atomic Unknown RDQL
Rule support Unknown Unknown F-logic rules
Closed-world
features

Unknown Unknown rule, query

Concrete domain XSD datatypes Unknown XSD datatypes,
Datatype comparison

Database support Access (through
OWLAPI18)

Unknown Reasoning over DB
using FLORA-2

Remote interface DIG (before v1.4) Unknown Unknown
User access GUI (through

Protégé), Command
line (The Prolog
OWL Shell)

Command line in
input file

Command line and GUI

Explanation OWLAPI blackbox Unknown XSB justification library
Ontology
manipulation

OWLAPI v3.1.0 Unknown No

Platform C++, Java or LISP Python Flora-2, Java
OS Windows, MacOS,

Linux
Windows, Linux Windows, Unix

A-6

Table A-4: Results of the survey of OWL reasoners (cont’d)

 Euler (EYE) Minerva (IBM IODT) CEL
Reasoning
algorithm

Resolution with
Ruler path
detection

DL-tableaux for TBox
reasoning and SQL
engine for ABox
reasoning

CEL subsumption
algorithm

Reasoner type Resolution-based Hybrid Miscellaneous
Reasoner
expressivity

OWL 2 RL (Partial) OWL DL OWL 2 EL

Completeness Yes No Yes
Reasoning tasks Entailment,

Conjunctive query
answering

Entailment Conjunctive
query answering

Classification, KB
consistency,
Realization

Materialization Unknown Unknown Unknown
Incremental
reasoning

Unknown Unknown Partial incremental
classification

Query support SPARQL SPARQL SPARQL (through
Protégé)

Rule support Unknown SQL Unknown
Closed-world
features

Unknown rule, query query (through
Protégé)

Concrete domain Unknown XSD datatypes, Datatype
comparison and
computation

Unknown

Database support Unknown Reasoning (on DB2,
Derby and HSQLDB)

Unknown

Remote interface Unknown DIG DIG
User access GUI GUI (through IBM

IODT)
GUI (through
Protégé),
Command line

Explanation Native Depends on each
individual reasoner

OWLAPI blackbox

Ontology
manipulation

Unknown IODT OWLAPI

Platform Java ,or C#, or
Python, or
JavaScript, or
Prolog

Java Java, LISP

OS Windows, Linux Windows, Linux, MacOS Windows

A-7

Table A-5: Results of the survey of OWL reasoners (cont’d)

 OWL2Jess OWLLisaKB QuOnto
Reasoning
algorithm

Jess RETE Engine
(translates OWL file
into Jess facts using
an XSLT style sheet)

LISA RETE
Engine

DL-Lite query unfolding
algorithm

Reasoner type Rule-entailment Rule-entailment Miscellaneous
Reasoner
expressivity

Unknown Most OWL lite DL-Lite

Completeness Unknown Unknown Yes
Reasoning tasks OWL entailment,

Conjunctive query
answering

Entailment, KB
Consistency

OWL Entailment,
Conjunctive query
answering,
Classification, KB
consistency,

Materialization Yes (total) Yes (total) Unknown
Incremental
reasoning

Addition, Deletion Addition,
Deletion
(unknown)

Unknown

Query support Jess queries Lisa query
language

SPARQL (evaluated
using SQL engine)

Rule support Jess rules Lisa production
rules

Unknown

Closed-world
features

rule, query rule, query Epistemic query
answering
Identification
constraints, Epistemic
constraints (all through
MASTRO)

Concrete domain Integer, String, User-
defined functions are
allowed in rules

Unknown XSD datatypes

Database support Unknown Wilbur triple store Reasoning
Remote interface Unknown Unknown DIG
User access Command line, GUI

(through Jess)
Unknown GUI (MASTRO plugin

to Protégé, QToolKit,
ROWLKit)

Explanation Unknown Unknown Unknown
Ontology
manipulation

No Unknown OWLAPI (through
ROWLKit)

Platform Java LISP Java
OS Windows, Linux,

MacOS
Windows, Linux Windows, Linux,

MacOS

A-8

Table A-6: Results of the survey of OWL reasoners (cont’d)

 Owlgres BaseVISor Thea
Reasoning
algorithm

DL reasoning and
RDBMS

RETE (memory-based),
Linear evaluation of rules
as SQL (persistent-based)

Prolog (SWI-
Prolog)

Reasoner type Hybrid Rule-entailment Resolution-based
Reasoner
expressivity

OWL 2 QL OWL 2 RL (used to be
pD*)

OWL 2

Completeness Unknown Yes Unknown
Reasoning tasks OWL Entailment,

Conjunctive query
answering, KB
consistency,
classification

OWL Entailment,
Conjunctive query
answering, KB
consistency, classification

OWL Entailment,
Conjunctive
query answering,

Materialization Unknown Yes (total) Depends on
SWIProlog

Incremental
reasoning

Unknown Addition, Deletion
(unknown)

Unknown

Query support SPARQL BaseVISor query, RuleML
query

Prolog goal clause

Rule support Unknown RuleML SWRL
Closed-world
features

query (SPARQL
queries are
evaluated using
PostgreSQL)

rule, query query, rule

Concrete domain XSD datatypes,
user-defined
datatypes and
datatype
comparison and
computation
(supported through
PostgreSQL)

XSD datatypes, Datatype
comparison and
computation, User-defined
datatypes can be achieved
through user-defined rule
builtins

XSD datatypes

Database support Reasoning
(PostgreSQL)

Reasoning (through
BaseVISor
PersistentBatch)

Prolog database

Remote interface Unknown Can be deployed as a
SOAP, RESTful web
service

HTTP
client/server
libraries in SWI-
Prolog

User access Unknown Command line, GUI
(through BaseVISor plugin
for TopBraid Composer)

Command line
(The Prolog OWL
Shell)

Explanation Unknown No Unknown
Ontology
manipulation

OWLAPI, Jena API OWLAPI, SWI-
Prolog semweb
library

Platform Java Java SWI-Prolog
OS Windows, Linux,

MacOS
Windows, Linux, MacOS Windows, Linux,

MacOS

A-9

Table A-7: Results of the survey of OWL reasoners (cont’d)

 Oracle db SwiftOWLIM BigOWLIM
Reasoning
algorithm

RDBMS, SQL
Engine

Forward-chaining
(TRREE engine)

Forward-chaining
(TRREE engine with
owl:sameAs optimization)

Reasoner type Miscellaneous rule-entailment rule-entailment
Reasoner
expressivity

OWL 2 RL OWL 2 RL, OWL
2 QL, OWL-Horst

OWL 2 RL, OWL 2 QL,
OWL-Horst

Completeness Unknown No (datatype
reasoning is not
supported)

No (datatype reasoning is
not supported)

Reasoning tasks OWL Entailment,
Conjunctive query
answering,

OWL Entailment,
conjunctive query
answering,
classification

OWL Entailment,
conjunctive query
answering, classification,
KB consistency

Materialization Yes Yes (total) Yes (total)
Incremental
reasoning

Unknown Addition Addition, Deletion

Query support SQL, SPARQL SPARQL and
SeRQL (through
Sesame)

SPARQL and SeRQL
(through Sesame)

Rule support SWRL OWLIM rules
(JDK v1.6 and
above)

OWLIM rules (JDK v1.6
and above)

Closed-world
features

rule, query query, rule query, rule

Concrete domain XSD datatypes No No
Database support Reasoning (Oracle

DB 11g)
Access (through
Sesame)

Reasoning (through
Sesame)

Remote interface Unknown Web services Web services
User access GUI, Command

line
Command line
(Sesame console)

Command line (Sesame
console)

Explanation Native Unknown Unknown
Ontology
manipulation

No Sesame Sesame

Platform Oracle DB Java Java
OS Windows Linux, Windows Linux, Windows

A-10

Table A-8: Results of the survey of OWL reasoners (cont’d)

 O-DEVICE HermiT DLEJena
Reasoning
algorithm

RETE (CLIPS rule
engine using
dynamic rule
generation)

Hypertableau Jena for ABox
reasoning, Pellet for
TBox classification

Reasoner type rule-entailment DL-tableaux Hybrid
Reasoner
expressivity

Partial OWL DL OWL 2 DL OWL 2 RL

Completeness No Yes Yes
Reasoning tasks OWL Entailment,

conjunctive query
answering, KB
consistency,
classification

OWL Entailment,
conjunctive query
answering, KB
consistency,
classification,
realization

OWL Entailment,
conjunctive query
answering, KB
consistency,
classification,
realization

Materialization Yes (total) Unknown Yes
Incremental
reasoning

Addition, Deletion Unknown Addition and deletion
for ABox reasoning
only. TBox updates can
cause ABox to be
reasoned from scratch.

Query support CLIPS rules Conjunctive query,
SPARQL(through
protégé)

SPARQL (Jena ARQ)

Rule support CLIPS rules SWRL (DL-safe) Jena rules
Closed-world
features

rule, query query (through
Protégé SPARQL
engine), rule

query, rule

Concrete domain XSD datatypes,
User-defined
datatypes datatype
computation and
comparison (all
through CLIPS
rule pre-defined
functions and self-
defined functions)

XSD datatypes XSD datatypes, user-
defined datatypes,
datatype comparison
and computation

Database support Unknown Unknown Unknown
Remote interface Unknown Unknown Unknown
User access Command line

(CLIPS)
Command line, GUI
(through Protégé)

Unknown

Explanation No OWLAPI blackbox Jena ABox explanation
Ontology
manipulation

No OWLAPI Jena

Platform CLIPS Java Java
OS Windows Windows, Linux,

MacOS
Windows, Linux,
MacOS

A-11

Table A-9: Results of the survey of OWL reasoners (cont’d)

 Bubo (UHU) The OWL
Instance Store

Reasoning
algorithm

Datalog engine
(deductive database,
XSB)

DL Tableaux and
SQL database

Reasoner type Resolution-based Hybrid
Reasoner
expressivity

OWL-Lite Unknown

Completeness Unknown Unknown
Reasoning tasks OWL entailment,

conjunctive query
answering

OWL entailment,
conjunctive query
answering

Materialization Unknown Yes for ABox
reasoning

Incremental
reasoning

Unknown Unknown

Query support XSB queries, DB2
SQL

SQL

Rule support XSB rules, DB2 SQL SQL
Closed-world
features

Unknown rule, query (SQL
support)

Concrete domain XSD datatypes,
Datatype comparison
and computation

Datatypes in SQL

Database support Reasoning (DB2) Reasoning (JDBC)
Remote interface Unknown DIG
User access Unknown GUI
Explanation Unknown Unknown
Ontology
manipulation

Unknown Unknown

Platform Unknown Java
OS Unknown Windows, Linux,

MacOS

B-1

Appendix B
Scenario descriptions used
in the usability experiment

of RESP

Description for Knowledge-based Networking

“KBN is a semantic pub/sub message broker that uses an ontology reasoner to perform

matchmaking between publications and subscriptions, i.e. a subscription can be propagated

to a subscriber if it is matched by the subscription that the subscriber put. Publications arrive

at the broker and are updated into a knowledge base (KB) where all knowledge is kept.

Subscriptions are specified as conjunctive queries over the KB. A subscription is matched by

a publication when the query that represents the subscription is resolved by the reasoner and

the publication is sent to the subscriber.

The ontology (wine ontology) used for matchmaking has an expressivity of SHION. All

matched publications need to be propagated to the subscriber and therefore the underlying

reasoner needs to be able to conduct complete reasoning over this ontology. Furthermore

since this broker is designed to support real-time data processing, publications need to be

updated into the ABox of the KB and propagated to subscribers immediately after their

arrivals. Datatype values could be used in publications and subscriptions. This puts a

requirement for the matchmaking algorithm to process XSD Datatypes.”

The gold standard ACs for this scenario are:

Expressivity: SHION.

B-2

Complete reasoning over SHION.

Queries: conjunctive query.

Frequent ABox update

Concrete domain: XSD Datatype

The gold standard reasoner for this application is Pellet.

Description for BaseVISor:

“BaseVISor is a forward-chaining inference engine using RETE algorithm optimized for

processing RDF triples. It supports an expressivity of R-Entailment, a set of entailment rules

that supports complete RDFS semantics and a subset of OWL semantics. The vocabulary R-

Entailment supports consists of the entire RDFS vocabulary and partial OWL vocabulary.

The OWL vocabulary it supports includes FunctionalProperty, Restriction,

InverseFunctionalProperty, onProperty, SymmetricProperty, hasValue, TransitiveProperty,

someValuesFrom, sameAs, allValuesFrom, inverseOf, differentFrom, disjointWith,

equivalentClass, equivalentProperty and intersectionOf. BaseVISor also provides supports

for XSD datatypes.

Rules can be authored in BaseVISor using the RIF, RuleML or BaseVISor format.

Procedural attachments (either build-in or user-defined) are allowed in the BaseVISor

language. Built-in procedural attachments include console output, variable binding, fact

base management, equality/inequality function, common mathematical functions and

Negation as Failure. In addition conjunctive queries can also be specified using BaseVISor

or RuleML either in XML file outside the reasoner (using the Query tag) or in java program

(using the Query class).

BaseVISor can run either embedded in Java applications or as a standalone reasoner

(command lines are provided). A persistent storage package is available in BaseVISor

enabling facts to be stored and reasoned using SQL-computable databases (through JDBC).

It is accessible either through a standard alone batch file (the PersistentBatch program) or

from within a java program. When the persistent storage is used rules and queries are

evaluated as SQL statements in the database.”

The gold standard RCs for the BaseVISor are:

B-3

Reasoner type: Rule-Entailment Reasoner.

Reasoning algorithm: RETE.

Reasoner expressivity: pD*.

Concrete domain: XSD datatypes.

Rule support: RuleML rules and BaseVISor rules.

Query support: BaseVISor queries

Closed-world features: Negation as Failure in rule

User access: command line

Ontology manipulation: API

Platform: J2SE.

Persistent KB: connect to SQL-compatible database through JDBC.

C-1

Appendix C
pD* Entailment and Its

Implementation in Jena
Rule Format

This appendix gives the full set of pD* rules used in COROR.

D* entailment rules

[lg-rdfs1: (?v ?p ?l), isPLiteral(?l), assignAnon(?l, ?b) -> (?v ?p ?b), (?b rdf:type

rdfs:Literal)]

[lg-rdfs2D: (?v ?p ?l), isDLiteral(?l, ?t), assignAnon(?l, ?b) -> (?v ?p ?b), (?b rdf:type

?t)]

[rdf1: (?v ?p ?w) -> (?p rdf:type rdf:Property)]

[rdfs2: (?p rdfs:domain ?u), (?v ?p ?w) -> (?v rdf:type ?u)]

[rdfs3: (?p rdfs:range ?u), (?v ?p ?w), notLiteral(?w) -> (?w rdf:type ?u)]

[rdfs4a: (?v ?p ?w) -> (?v rdf:type rdfs:Resource)]

[rdfs4b: (?v ?p ?w), notLiteral(?w) -> (?w rdf:type rdfs:Resource)]

[rdfs5: (?v rdfs:subPropertyOf ?w), (?w rdfs:subPropertyOf ?u) -> (?v

C-2

rdfs:subPropertyOf ?u)]

[rdfs6: (?v rdf:type rdf:Property) -> (?v rdfs:subPropertyOf ?v)]

[rdfs7x: (?p rdfs:subPropertyOf ?q), (?v ?p ?w) -> (?v ?q ?w)]

[rdfs8: (?v rdf:type owl:Class) -> (?v rdfs:subClassOf rdfs:Resource)]

[rdfs9: (?v rdfs:subClassOf ?w), (?u rdf:type ?v) -> (?u rdf:type ?w)]

[rdfs10: (?v rdf:type owl:Class) -> (?v rdfs:subClassOf ?v)]

[rdfs11: (?v rdfs:subClassOf ?w), (?w rdfs:subClassOf ?u) -> (?v rdfs:subClassOf

?u)]

[rdfs12: (?v rdf:type rdfs:ContainerMembershipProperty) -> (?v rdfs:subPropertyOf

rdfs:member)]

[rdfs13: (?v rdf:type rdfs:Datatype) -> (?v rdfs:subClassOf rdfs:Literal)]

P-entailment rules

[rdfp1: (?p rdf:type owl:FunctionalProperty), (?u ?p ?v), (?u ?p ?w), notLiteral(?v) ->

(?v owl:sameAs ?w)]

[rdfp2: (?p rdf:type owl:InverseFunctionalProperty), (?u ?p ?w), (?v ?p ?w) -> (?u

owl:sameAs ?v)]

[rdfp3: (?p rdf:type owl:SymmetricProperty), (?v ?p ?w), notLiteral(w) -> (?w ?p

?v)]

[rdfp4: (?p rdf:type owl:TransitiveProperty), (?u ?p ?v), (?v ?p ?w) -> (?u ?p ?w)]

[rdfp5a: (?v ?p ?w) -> (?v owl:sameAs ?v)]

[rdfp5b: (?v ?p ?w), notLiteral(?w) -> (?w owl:sameAs ?w)]

C-3

[rdfp6: (?v owl:sameAs ?w), notLiteral(?w) -> (?w owl:sameAs ?v)]

[rdfp7: (?u owl:sameAs ?v), (?v owl:sameAs ?w) -> (?u owl:sameAs ?w)]

[rdfp8ax: (?p owl:inverseOf ?q), (?v ?p ?w), notLiteral(?w) -> (?w ?q ?v)]

[rdfp8bx: (?p owl:inverseOf ?q), (?v ?q ?w), notLiteral(?w) -> (?w ?p ?v)]

[rdfp9: (?v rdf:type owl:Class), (?v owl:sameAs ?w) -> (?v rdfs:subClassOf ?w)]

[rdfp10: (?p rdf:type rdf:Property), (?p owl:sameAs ?q) -> (?p rdfs:subPropertyOf

?q)]

[rdfp11: (?u ?p ?v), (?u owl:sameAs ?up), (?v owl:sameAs ?vp), notLiteral(?up) ->

(?up ?p ?vp)]

[rdfp12a: (?v owl:equivalentClass ?w) -> (?v rdfs:subClassOf ?w)]

[rdfp12b: (?v owl:equivalentClass ?w), notLiteral(?w) -> (?w rdfs:subClassOf ?v)]

[rdfp12c: (?v rdfs:subClassOf ?w), (?w rdfs:subClassOf ?v) -> (?v

owl:equivalentClass ?w)]

[rdfp13a: (?v owl:equivalentProperty ?w) -> (?v rdfs:subPropertyOf ?w)]

[rdfp13b: (?v owl:equivalentProperty ?w), notLiteral(?w) -> (?w rdfs:subPropertyOf

?v)]

[rdfp13c: (?v rdfs:subPropertyOf ?w), (?w rdfs:subPropertyOf ?v) -> (?v

owl:equivalentProperty ?w)]

[rdfp14a: (?v owl:hasValue ?w), (?v owl:onProperty ?p), (?u ?p ?w) -> (?u rdf:type

?v)]

[rdfp14bx: (?v owl:hasValue ?w), (?v owl:onProperty ?p), (?u rdf:type ?v),

notLiteral(?p) -> (?u ?p ?w)]

C-4

[rdfp15: (?v owl:someValuesFrom ?w), (?v owl:onProperty ?p), (?u ?p ?x), (?x

rdf:type ?w) -> (?u rdf:type ?v)]

[rdfp16: (?v owl:allValuesFrom ?w), (?v owl:onProperty ?p), (?u rdf:type ?v), (?u ?p

?x), notLiteral(?x) -> (?x rdf:type ?w)]

D-1

Appendix D
Rule-Construct Mappings

lg-rdfs1:rdfs:[]->[]

lg-rdfs2D:rdfs:[]->[]

rdf1:rdfs:[]->[rdf:Property]

rdfs2:rdfs:[rdfs:domain]->[]

rdfs3:rdfs:[rdfs:range]->[]

rdfs4a:rdfs:[]->[]

rdfs4b:rdfs:[]->[]

rdfs5:rdfs:[rdfs:subPropertyOf]->[rdfs:subPropertyOf]

rdfs6:rdfs:[rdf:Property]->[rdfs:subPropertyOf]

rdfs7x:rdfs:[rdfs:subPropertyOf]->[]

rdfs8:rdfs:[]->[rdfs:subClassOf]

rdfs9:rdfs:[rdfs:subClassOf]->[]

rdfs10:rdfs:[rdf:Property]->[rdfs:subClassOf]

rdfs11:rdfs:[rdfs:subClassOf]->[rdfs:subClassOf]

rdfs12:rdfs:[rdfs:ContainerMembershipProperty]->[rdfs:subPropertyOf]

D-2

rdfs13:rdfs:[rdfs:Datatype]->[rdfs:subClassOf,rdfs:Literal]

rdfp1:owl-lite:[owl:FunctionalProperty]->[owl:sameAs]

rdfp2:owl-lite:[owl:InverseFunctionalProperty]->[owl:sameAs]

rdfp3:owl-lite:[owl:SymmetricProperty]->[]

rdfp4:owl-lite:[owl:TransitiveProperty]->[]

rdfp5a:owl-lite:[]->[owl:sameAs]

rdfp5b:owl-lite:[]->[owl:sameAs]

rdfp6:owl-lite:[owl:sameAs]->[owl:sameAs]

rdfp7:owl-lite:[owl:sameAs]->[owl:sameAs]

rdfp8ax:owl-lite:[owl:inverseOf]->[]

rdfp8bx:owl-lite:[owl:inverseOf]->[]

rdfp9:owl-lite:[owl:sameAs]->[rdfs:subClassOf]

rdfp10:owl-lite:[rdf:Property,owl:sameAs]->[rdfs:subPropertyOf]

rdfp11:owl-lite:[owl:sameAs]->[]

rdfp12a:owl-lite:[owl:equivalentClass]->[rdfs:subClassOf]

rdfp12b:owl-lite:[owl:equivalentClass]->[rdfs:subClassOf]

rdfp12c:owl-lite:[rdfs:subClassOf]->[owl:equivalentClass]

rdfp13a:owl-lite:[owl:equivalentProperty]->[rdfs:subPropertyOf]

rdfp13b:owl-lite:[owl:equivalentProperty]->[rdfs:subPropertyOf]

rdfp13c:owl-lite:[rdfs:subPropertyOf]->[owl:equivalentProperty]

rdfp14a:owl-lite:[owl:hasValue,owl:onProperty]->[]

rdfp14b:owl-lite:[owl:hasValue,owl:onProperty]->[]

D-3

rdfp15:owl-lite:[owl:someValuesFrom,owl:onProperty]->[]

rdfp16:owl-lite:[owl:allValuesFrom,owl:onProperty]->[]

E-1

Appendix E
A Full List of the Java

Classes Added to μJena to
Form the Enhanced μJena

Table E-1: Classes added to µJena to forming the enhanced µJena.

ie.tcd.cs.nembes.microjenaenh.db
ie.tcd.cs.nembes.microjenaenh.reasoner.
rulesys

RDFRDBException BasicFBReifier
ie.tcd.cs.nembes.microjenaenh.graph BasicForwardRuleInfGraph
bulkUpdateHandler BindingEnvironment
Capabilities Builtin
NodeVisitor BuiltinException
Node_Variable BuiltinRegistory
ie.tcd.cs.nembes.microjenaenh.graph.compo
se ClauseEntry
CompositionBase EnhForwardRETEInfGraph
MultiUnion EnhForwardRETEReasoner
Polyadic ForwardRuleInfGraphI
ie.tcd.cs.nembes.microjenaenh.graph.impl Functor
AllCapabilities Node_RuleVariable
SimpleBulkUpdateHandler RETERuleInfGraph
ie.tcd.cs.nembes.microjenaenh.reasoner Rule
BaseInfGraph RuleContext
Fgraph RulePreprocessHook
Finder RuleReasoner
FinderUtil SilentAddI
IllegalParameterException Util

InfGraph
ie.tcd.cs.nembes.microjenaenh.util.iterat
or

E-2

Reasoner ConcatenatedIterator
ReasonerException Filter
ReasonerFactory FilterDropIterator
ReasonerRegistry FilterIterator
TriplePattern FilterKeepIterator

ValidityReport
ie.tcd.cs.nembes.microjenaenh.vocabular
y

ie.tcd.cs.nembes.microjenaenh.reasoner.rule
sys.enh ReasonerVocabulary
LiteralStore

Table E-2: Classes added to µJena to forming the enhanced µJena.

ie.tcd.cs.nembes.microjenaenh.reasone
r.rulesys.builtins

ie.tcd.cs.nembes.microjenaenh.reasoner.rulesy
s.impl

BaseBuiltin BindingVector
Difference FRuleEngineI
Equal RETEClauseFilter
GE RETEConflictSet
GreaterThan RETEEngine
IsLiteral RETENode
LE RETEQueue
LessThan RETERuleContext
ListContains RETESinkNode
ListEntry RETESourceNode
ListEqual RETETerminal
ListLength ie.tcd.cs.nembes.microjenaenh.shared
ListMapAsObject DoesNotExistException
ListMapAsSubject RulesetNotFoundException
ListNotContains WrappedIOException
ListNotEqual ie.tcd.cs.nembes.microjenaenh.util
MakeTemp Character
Max Collection
Min FileUtils
NotEqual IteratorCollection
NotLiteral NumberUtil
Print OneToManyMap
Product PrintUtil
Quotient Tokenizer

Sum
ie.tcd.cs.nembes.microjenaenh.reasoner.rulesy
s.builtins.enhbuiltins

 AssignAnon
 IsDLiteral
 IsPLiteral

E-3

