LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.



An investigation of the molecular signalling events which

occur in cannabinoid-mediated neuronal apoptosis

Aoife Gowran

Thesis submitted for the degree of Doctor of Philosophy at the
University of Dublin, Trinity College

Trinity College Institute of Neuroscience
Department of Physiology
School of Medicine
Trinity College
Dublin 2
Ireland



TRINITY COLLEGE
05 AUG 2008

LIBRARY DUBLIN
T HESIS

3519




Declaration

This thesis is submitted by the understated for the degree of Doctor of Philosophy at the
University of Dublin, Trinity College and has not been submitted to any other
university as an exercise for a degree. I declare that this thesis is entirely my own work

and I give permission to the library to lend or copy this thesis upon request.

Sell Gal
d

Aoife Gowran, BSc



I Abstract

The plant-derived cannabinoid A’-Tetrahydrocannabinol, is the predominant
psychoactive moiety of cannabis and exerts a variety of psychological and
physiological effects in humans. Previous investigations in this laboratory have shown
that A’-Tetrahydrocannabinol (5 uM) induces apoptosis in cortical neurones via
signalling through the cannabinoid receptor type 1. The phosphorylation of the tumour
suppressor protein, p53 at serine residue 15 is a critical step in stabilising p53 and
promoting p53-induced apoptosis. I report that A’-Tetrahydrocannabinol activates p53
by inducing the phosphorylation of serine residue 15, which was mediated by the stress
activated protein kinase, c-jun N terminal kinase 1. Furthermore, A’-
Tetrahydrocannabinol induced the translocation of phosphorylated-p53*"® to the
lysosomal membrane; an event that coincided with A’-Tetrahydrocannabinol-induced
lysosomal membrane destabilisation. A’-Tetrahydrocannabinol also induced the
selective translocation of cathepsin-D, a lysosomal protease which was required for A’-
Tetrahydrocannabinol-induced caspase-3 activation and DNA fragmentation. Depleting
neurones of p53 using small interfering RNA inhibited A’-Tetrahydrocannabinol-
induced lysosomal membrane destabilisation and DNA fragmentation, indicating that
p53 signalling is pivotal in A’-Tetrahydrocannabinol-induced lysosomal branch of
neuronal apoptosis. Additional evidence for the proclivity of A’-Tetrahydrocannabinol
to regulate p53 signalling was demonstrated by the alterations observed in the p53 post
translational modifying proteins, murine double minute 2 and small ubiquitin modifier
1. The observed changes in these p53 regulatory proteins could potentially increase the
activity of p53, thus promoting A’-Tetrahydrocannabinol-induced p53-dependent
neuronal apoptosis. I also present evidence that the endocannabinoids, anandamide (20
uM) and 2-arachidonoylglycerol (20 uM) have the proclivity to induce neuronal
apoptosis in vitro, involving similar mechanisms to those activated by A’-
Tetrahydrocannabinol. Conversely, a low concentration of 2-arachidonoylglycerol (0.01
uM) provided neuroprotection against glutamate-induced excitotoxicity. These results
indicate that endocannabinoids have pleiotropic effects in cultured cortical neurones

and can exert both neurotoxic and neuroprotective effects. This thesis also shows that



there is an inter-relationship between neuronal maturity and A’-Tetrahydrocannabinol in
vivo neurotoxicity. Briefly, A’-Tetrahydrocannabinol (1 mg/Kg) induced the release of
cathepsin-D from the lysosomes, caspase-3 activation and DNA fragmentation in the
neonatal, but not in the adult, rat cerebral cortex. These results indicate that A’-
Tetrahydrocannabinol induces a similar neurotoxic response in vivo and can be
considered to offer a molecular mechanism for the deleterious effect that maternal use

of cannabis may have on the developing cerebral cortex.
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Chapter 1

Introduction




1.1 Cannabis - a brief history

The hemp plant (cannabis sativa) first characterised by von Linne in 1753, is a
fast growing annual which has characteristic finely branched leaves with saw tooth
edges (Clarke, 1981). Cannabis sativa probably originated in Central Asia, however, it
has been cultivated around the world as a versatile economically beneficial crop
producing food, medicinal products, canvas fabric and rope (Iversen, 2000; Robinson,
1996). Currently the plant is thought of mainly in the context of its psychoactive
properties and is now grown for its A’-Tetrahydrocannabinol content, the main
psychoactive component of cannabis, and not for its fibre content (Iversen, 2000). The
psychoactive chemicals are found in most parts of the cannabis plant with the highest
concentrations found in the sticky resin produced by glands at the base of the fine hairs
that coat the leaves and particularly the bracts of the female flower head. The seeds
contain no psychoactive chemicals, but like all seeds they have a high nutritional
content (Iversen, 2000).

Cannabis preparations have been used for medicinal, recreational and
ceremonial purposes in many human cultures for thousands of years. It was Napoleon’s
retreating army that spread the recreational use of cannabis as a psychoactive drug to a
naive Europe. Although cannabis was cultivated in Europe and America at this time, its
psychoactive properties were largely unknown, possibly due to the low psychoactive
chemical properties of plant strains grown for fibre production. The Irishman Sir
William B. O’Shaugnessey carried out the first experimental characterisation of the
drug and advocated the medicinal use of cannabis in Europe. O’Shaugnessey (1842)
observed that cannabis was non-toxic, even at high doses and acted as an analgesic, a
muscle relaxant and an anticonvulsant. The medicinal use of cannabis became popular
for a time and was used to treat insomnia, neuralgia, migraine and dysmenorrhoea.
However, the use of cannabis waned due to technical difficulties obtaining consistent
preparations and the increased availability of opium, which at the time was considered a
more reliable and effective drug. Whilst the medicinal use of cannabis was not
sustained, the recreational use of the drug increased during the early 19th Century.
However, this was confined to a small number of artisans. Authors such as Ludlow

(‘The Hasheesh Eater’, 1857), Baudelaire (‘Les Paradis Artificiels’, 1860), and




Strindberg (‘Son of a Servant’, 1909) recounted their experiences with hashish in grand
literary style and provide descriptive accounts of the subjective effects of cannabis.
Since the use of cannabis as a recreational drug was increasing steadily, its prohibition
quickly ensued and was followed by what has been described by some as the
‘demonisation’ of the drug. During the period between c. 1950 to ¢. 1970 the medicinal
use of cannabis was halted and virtually all research interest in the field was terminated
(Iversen, 2000). Despite this tincture of cannabis remained on the British
pharmacopoeia until 1973. However, since then there has been advances in several
fields such as pharmaceutical purification, synthetic chemistry and molecular biology
which has led to a steady growth in research into this multipurpose plant and the effects

that its active compounds have on physiological systems.

1.2 Cannabis - current trends

Despite its illegal nature, cannabis is the World’s most used recreational drug.
Since the middle of the 20" Century, cannabis use has become steadily more prevalent
especially in young people (Ashton, 2001). There is a considerable population, which
includes 1% of schoolchildren, who smoke cannabis daily or several (5 - 15) times a
day and who may be chronically intoxicated due to the slow elimination of cannabis
from the body (Robertson et al., 1996). Throughout Europe, America and Australia
public debate has centred on the possible legalisation of cannabis use, at least for
therapeutic purposes. The best evidence on the affects of liberalising cannabis policy
comes from The Netherlands. To satisfy international treaties, the Dutch law states that
cannabis is illegal, however, in 1976 The Netherlands formally adopted a policy of non-
enforcement of the cannabis laws. Therefore, the cannabis regime in The Netherlands
lies somewhere between depenalisation of cannabis possession and complete
legalisation. This harm minimization policy seems to work well with the Dutch
tradition of “gedoogbeleid” which is the formal, systematic application of discretion
(MacCoun and Reuter, 1997 and 2001). MacCoun and Reuter also report that it is not
decriminalisation of cannabis but the legalisation and subsequent commercialisation

that may be responsible for increases in cannabis use. A cross-sectional comparison of



all drug use surveys carried out from 1970 to 1996 was carried out by MacCoun and
Reuter (2001) and has shown that rates (lifetime prevalence) of cannabis use in The
Netherlands are similar to those in the USA but higher than in neighbouring countries.
The situation in The Netherlands regarding the ‘gateway’ association, where it is
believed that the use of cannabis leads to the use of other drugs is less clear. However, a
regime that tolerates home cultivation of small quantities (as in Alaska and South
Australia) might be more effective in reducing the ‘gateway’ association than the Dutch
commercialised supply of cannabis (MacCoun and Reuter, 1997, 2001). The research of
MacCoun and Reuter, in addition to others in the field highlight the complexities (both
policy and non-policy based) that are involved in the debate over the legalisation of
cannabis.

A general population survey commissioned by the National Advisory
Committee on Drugs (NACD) in The Republic of Ireland made several findings on the
prevalence rates for the use of key illegal drugs in Irish people aged 15 - 64. The survey
found that the use of cannabis was more prevalent in male respondents and also in
younger respondents. The lifetime prevalence rate for those aged 15 to 34 was 24%,
which is more than double the rate for those aged 35 to 64, having a prevalence rate of
just 11%. Males (life time prevalence; 22%) were found to use cannabis more than
females (12%) and this was found across all age groups. The NACD survey also found
that 22% of current users have used cannabis on a daily or almost daily basis. This trend
is more prevalent in males (27%) than in females (11%) and in younger (23%) rather
than older respondents (21%; NACD, 2004). The use of cannabis by young adults is of
particular concern due to cannabis being viewed by many as a potential risk factor in
precipitating the onset of psychosis and schizophrenia in susceptible individuals
(Emrich et al., 1997; Moore et al., 2007). Cannabis resin incorporated into a cigarette
was the most commonly used (68%) form of cannabis. Ingesting A’-
Tetrahydrocannabinol by smoking a cigarette containing cannabis plant material or
cannabis resin is the most efficient way to administer A’-