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Summary

Traffic demand management is part of the package of measures currently being
implemented to offset the imbalance between transport demand and supply on the
transportation network of the Greater Dublin Area (GDA). An analysis of the
development of the transport environment in the GDA leads to the conclusion that the
transportation deficit that exists in the GDA can only be addressed using an integrated
transportation strategy involving infrastructural and service improvements on one side
and a demand management strategy on the other. This transportation deficit has
resulted from delays in infrastructure projects and unrealistic planning targets due to
institutional and regulatory inefficiencies, cumbersome and time consuming planning
system, and, the high economic growth since the Dublin Transportation Initiative began

in 1988.

The Dublin Transportation Network Model (DTNM), which uses the SATURN
(Simulation and Assignment of Traffic to Urban Road Networks) traffic assignment and
simulation model, is used to analyse potential solutions over the GDA. The SATURN
model is assessed with respect to the DTNM, with a view to finding the areas within the
model that take up the most Central Processing Unit (CPU) time, and to assess the
potential for reprogramming these areas to run in parallel.  The process of
reprogramming the most time consuming, or computationally intensive, areas of the
model in parallel is then undertaken in order to produce a more efficient model that can
then be used to assess the effects of road user charging schemes on the DNM. This
process results in a more efficient use of computer time over a variety of network

configurations and sizes and an improved efficiency in examining the DTNM.

Results from this research include outputs from the parallel model that demonstrate its
ability to converge while retaining at least the same accuracy as that of the sequential
model. The performance of the new parallel model is also compared with that of the
sequential (standard format) model to demonstrate a performance enhancement. An
increase in performance, measured using the variable ‘speed-up’, of 8.16 for a 16-
processor parallel implementation on the IBM supercomputing platform is achieved.

1



Further to this, the impact of a series of inner city cordon congestion charging scenarios
designed to reduce the demand for travel on the GDA highway network is evaluated.
The effects of this cordon application should help to counteract the transportation deficit
on the highway network. In order to examine whether this is the case or not, the newly
developed parallelised version of the traffic network analysis model, running across
parallel processors on the SP2 super computing platform, is utilised to run test scenarios
of the inner city cordon congestion charging scheme using a number of different charge
levels and a range of different price elasticities of user demand, which are based on the
conclusions reached from a comprehensive literature review of international experience

and academic research.

The analysis of this inner city congestion cordon scheme evaluates the impacts of
inserting an inner city cordon onto the highway network. The responses of trip makers
whose class of vehicle is either heavy goods vehicle (HGVs) or private car is assessed
for a range of charge levels and elasticity estimates. Variables used in the examination

include travel time, travel distance, queue lengths and average speed.

Conclusions are drawn from the output of this modelling evaluation of an inner city
congestion charging scheme and its affects on the GDA. Overall, it is found that
congestion in the GDA reduces by a significant amount as a result of the inner city
cordon. There is an approximate reduction of 14% in over-capacity queuing and a 15 to
16% reduction in the total travelled time on the highway network for an elasticity of —

0.3 and a charge of €5.70.
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Introduction

1.1 Background

Traffic demand management is part of the package of measures currently being
implemented to offset the imbalance between transport demand and supply on the
transportation network of the Greater Dublin Area (GDA). An analysis of the
development of the transport environment in the GDA leads to the conclusion that the
transportation deficit that exists in the GDA can only be addressed using an integrated
transportation strategy involving infrastructural and service improvements on one side
and a demand management strategy on the other. This transportation deficit has
resulted from delays in infrastructure projects and unrealistic planning targets due to
institutional and regulatory inefficiencies, cumbersome and time consuming planning
system, and, the high economic growth since the Dublin Transportation Initiative began

in 1988.

In 1999, the Strategic Planning Guidelines (SPG), a “framework for integrated land use
and transportation for the sustainable development of the GDA up to the year 20117,
was produced, which provided the first co-ordinated settlement plan for the GDA and
the starting point for the latest transportation plans to address traffic congestion (Brady
Shipman Martin et al., 1999). From a transportation perspective, the SPG objectives are
to consolidate development and increase density in the GDA so as to provide a basis for
a better public transport system, and, to facilitate a shift away from the private car to
public transport. As such, the SPG recommend that demand management measures
should be incorporated into all strategic planning and implementation to reduce traffic
demand, dissuade private car commuting and encourage the use of public transport. In
turn, the DTO 2000-2016 Strategy also advocated an integrated transportation strategy
involving demand management and infrastructural and service improvements. It was
also recognised that a comprehensive study is necessary to develop a demand
management strategy to reduce growth in overall travel by private car and to effect

further modal transfer from private car to public transport modes.

‘A Study of Road Pricing in Dublin’ was produced by Oscar Faber et al in 1998. This is

the only report that has been produced to assess road user charging on an area-wide
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basis in the GDA, and, in essence was a feasibility study. It examined a small number
of testing scenarios to try to assess the feasibility of road user charging and other fiscal
instruments, such as parking charges, for the management of transportation and traffic
demand in the GDA. The study also looked at the different forms of road user charging
and their implementation and went on to confirm the potential of road user charging in
contributing to the management of traffic in the GDA. The study was undertaken
strictly as a preliminary study to assess the potential of road user charging and it was
assumed that further information and detail would be required to evaluate in full the
charging schemes in the GDA. Based on the positive preliminary findings of the study
the report recommends that further work should be undertaken to investigate the
feasibility of introducing a road user charging scheme, and in particular an inner city

cordon charging scheme, to the GDA highway network.

1.2 Aim

The first main objective of this research was to assess the SATURN model (van Vliet,
1982), as applied to the Dublin Transportation Network Model (DTNM) with a view to
finding the areas within the model that take up the most Central Processing Unit (CPU)
time, and to reprogram these areas to run in parallel so that higher levels of efficiency
can be achieved (Dublin Transportation Initiative, 1995). Reprogramming the most
time consuming, or computationally intensive, areas of the sequential model in parallel
should allow for a more efficient use of computer time over a variety of network
configurations and sizes, and in doing so, result in improved efficiency in examining the

DTNM. The overall objectives for the parallel implementation are to:

e Demonstrate that the modified parallel model converges and produces results

that are comparable to the sequential original; and to,

e Evaluate the efficiency of the parallel implementation when more than one

processor is used, i.e., 2, 4, 8, and 16 processors.

Secondly, the impact of a series of inner city cordon congestion charging scenarios

designed to reduce the demand for travel on the GDA highway network is evaluated.
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The effects of this cordon application should help to counteract the transportation deficit
on the GDA highway network. In order to examine whether this is the case or not, the
newly developed parallelised version of the traffic network analysis model, running
across parallel processors on the SP2 super computing platform, is utilised to run test
scenarios of the inner city cordon congestion charging scheme using a number of
different charge levels and a range of different price elasticities of user demand, which
are based on the conclusions reached from a comprehensive literature review of

international experience and academic research.

1.3 Research Approach

A number of approaches were required for this work. Initially a literature-based study
was required for the analysis of the development of the GDA. Some information was
also gathered for this analysis using observation and through correspondence. A
literature-based study was also required for the examination of the theory and
background of road user charging and high performance computing techniques and

practices.

To gain an understanding of the methodologies used in the SATURN model a number
of communiqués were made with the creator of the model, Dr. Dirck van Vliet and with
the primary users of the SATURN model in the GDA, the Dublin Transportation Office
(DTO). Additionally, a visit to the Institute of Transport Studies (ITS), Leeds
University, was organised to meet with Dr. van Vliet. Other sources of information
have included communiqués with the Central Statistics Office (2002), and, Origin-

Destination (O-D) data from the DTO.

An extensive amount of programming and program testing was required to develop the
parallel implementation of the sequential SATURN model and to get the parallel
implementation to run on the IBM Supercomputer. A knowledge of a number of
operating systems (DOS, UNIX, LINUX), programming languages (Fortran 77, C++, C,
MPI) and compilers (FTN77, {77, g77, ¢90) was necessary to complete the parallel
implementation. A one year high performance computing Masters taught course was
attended to help in this regard and to gain an understanding of how complex parallel
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platforms operate, and, how parallel algorithms are produced to exploit system

architecture and other characteristics.

Similarly, once the parallel implementation was complete two extensive testing
programs were undertaken to ensure the accuracy, efficiency and performance of the
new parallel model, and once this had been achieved, to develop the methodology and

produce the cordon models for the different years, charge levels and elasticities tested.

1.4 Outline of Thesis

There are 7 chapters in this thesis, which relate to each other in the manner shown in
Figure 1.1. In Chapter 2 a detailed analysis of the development of the transportation
environment of the GDA is presented. This includes a look at the planning processes
that have shaped the GDA and a brief discussion of the proposed new planning and
administrative structures. Details of Dublin’s development over the last 15 years is
presented and some conclusions drawn as why the changes have taken place In the
manner that they have. Future development of the GDA is then discussed with

particular reference to traffic congestion and the existing transportation deficit.

In Chapter 3 the development of road user charging is described through a review of
international experience and literature. Basic design criteria and the practical aspects of
design and implementation are discussed briefly. The political and social aspects of
road user charging and the effectiveness of road user charging schemes are then
discussed in the context of pre and post implementation case reviews and studies. The
price elasticity of user demand is then examined in the context of this international
experience and literature. Finally, relevant conclusions are drawn from this review in

relation to the application of a road user charging scheme in the GDA.

Chapter 4 has two distinct parts. In the first part the Dublin Transportation Network
Model (DTNM) is described. The computationally intensive assignment and simulation
processes involved in the DTNM are analysed further and an investigation into the
results of this analysis are discussed. This leads to a review of the assignment and, in

particular, the shortest paths problem with respect to the DTNM and the assignment.
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In the second part of Chapter 4 a literature review of parallel programming techniques,
methodologies and considerations is undertaken. This review also describes parallel
hardware and software architectures and examines performance analysis techniques
used for parallel systems. Finally, an analysis of parallel processing in traffic
assignment and shortest path theory is presented with a view to reprogramming the

assignment and shortest path sections of the DTNM.

I

AT T
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| Introduction

b

\-‘*‘—

Ch.2
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.
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L L
Ch. 6 Ch. 5
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charging in the Greater of a transport network
Dublin Area model
Ch:?
Conclusions

Figure 1.1: Thesis outline.

In Chapter 5 the parallel implementation of the sequential transport network model is
presented. The methodology is presented outlining: a brief background to the

application of parallel processing techniques to the transport model; the parallel
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platform used to run the new parallel model; the parallelisation strategy for the
sequential model based on the comprehensive review in Chapter 4; and, the
programming implementation of the single-source one-to-all shortest path algorithm in
parallel. The results from this parallel implementation are then presented and discussed
with respect to the convergence, accuracy and performance of the new parallel model

when compared to that of the sequential model.

Chapter 6 presents a series of tests using the new parallel model, which look at
congestion charging in the GDA with particular reference to an inner city congestion
charging scheme. The chapter is laid out in much the same way as Chapter 5 with a
methodology detailing: the cordon model inputs; the charge levels and elasticity
estimates used based on the comprehensive literature review in Chapter 3; the demand
function and generalised cost equations; and, specific details pertaining to the highway
network and cordon application. The results and discussion of this testing is then
presented using a number of parameters including distance travelled, average speed,

queue lengths and travel time.

Chapter 7 contains final discussion and conclusions of the work and some suggestions

for further work.
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Chapter 2

2.1 Introduction

The Greater Dublin Area, or GDA, is defined as the city of Dublin and the areas defined
by the county councils of Dun Laoghaire-Rathdown, Fingal and South Dublin. The
catchment area of these county councils includes parts of county Dublin and parts of
counties Meath, Wicklow and Kildare, as seen in Figure 2.1 below. A map outlining
the boundary of the GDA can also be seen in Figure 2.2 in the context of the
Metropolitan Area. This Section will examine the development of the transportation
environment in Ireland, with specific reference to the GDA over the past four decades,

leading to the transportation deficit that exists in the GDA at present. To do this,
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Figure 2.1: Basic map of the Greater Dublin Area showing the Metropolitan

Area, the simulation area boundary and the inner city cordon.
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strategic proposals and reports that have been produced influencing the development of
transportation in the GDA will be assessed with a view to examining how successfully
they have been implemented and how this implementation has affected the development
of the transportation environment in the GDA. Future proposals influencing the
development of transportation will also be described and evaluated with reference to the

situation at present.

There are a number of reports that have been produced describing plans and strategies
for the future development of the Dublin area (as defined in previous studies to the
Dublin Transportation Initiative) and the GDA. These have tried to map out the
development of the GDA through transportation planning and land use management.
As a result, these reports have had a major influence over the development of
transportation in the GDA and the resulting transportation deficit that exists at present.
However, attempts have been made to rectify this deficit, including new legislation, a
transportation strategy for implementation between 2000 and 2016 and the production
of strategic planning guidelines, which outline proper planning and sustainable

procedures for both transportation and land use development.

2.2 Transport planning in the Greater Dublin Area

2.2.1 Introduction

Ireland’s planning system has undergone major changes in recent times. However, it is
the old system that has influenced development in Ireland and the Greater Dublin Area
(GDA) over the past four decades. The old planning system, 1963—-1999, will be
discussed with reference to the GDA as background material for other areas of the

thesis.

The planning of transportation and land use has been going through a period of change
since the introduction of the new Planning Bill in 1999, which outlines sustainable
procedures for proper planning practice. The Bill and its implications will be discussed

in the context of the changing transportation planning infrastructure of the GDA.
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While the new Planning Bill represents the catalyst and outline for change, the
publication of the Strategic Planning Guidelines (SPG) (Brady Shipman Martin et al.,

1999), see Figure 2.2, has provided a co-ordinated settlement plan for the GDA and the

| Transportation Corridor {‘:} Primary Development Centre
Future Transportation Corridor rj Secondary Development Centre
-
W Metiropolitan Area Boundary Strategic Green Belis

Figure 2.2: Strategic map of the Greater Dublin Area (GDA) taken from the
Strategic Planning Guidelines (Brady Shipman Martin et al., 1999)
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Platform for Change: Strategy 2000 — 2016’ (DTO, 2000) will be discussed in later

Sections of this chapter.

Finally, the establishment of a new authority with regulatory control over strategic land
use and transport issues in the GDA and the implications of deregulation will be

discussed.

2.2.2  The Irish planning system, 1963 — 1999

The planning system in Ireland has been predominantly based on the Local Government
(Planning and Development) Act of 1963. This legislation came into effect on the 1™ of
October 1964 and defined for the first time a “statutory development control system”
(DoE, 7/12/2001). As such, the basis of Irish urban planning lies in land use zoning and
development control (MacLaran, 1993). The Minister for the Environment and Local
Government is responsible for all planning legislation and regulations. Many have been
introduced since the 1963 Act and predominantly reflect the changing economical
environment, the introduction of the statutory and independent planning appeals system
(An Bord Pleanala) and legislation associated with our membership of the European
Union. The various acts resulting from these changes are collectively known as the
Planning and Development Acts, while the regulations are known as the Planning and

Development Regulations.

The planning system in Ireland is run by 88 local planning authorities whose principal

responsibilities include:
¢ Producing development plans;
e Assessing planning applications and accepting or refusing permission;
e Appeals against planning decisions; and,
¢ Planning enforcement and exempt development.

The GDA is predominantly made up of four local planning authorities, three of which

are county councils with the other being a city council. They are Dublin City Council,
12
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Fingal County Council, South Dublin County Council and DunLaoghaire-Rathdown

County Council.

Regulation of development is controlled by the Development Plan. Each local planning
authority must produce a development plan every five years, though this time schedule
isn’t always adhered to because of delays associated with public participation. The
development plan lays out policies and controls for transportation and land use
development in the local authority area. The authority must consider the development
plan and its objectives when making planning permission decisions. The public is
notified if a draft development plan is being produced or if an existing plan is being
revised. The draft is open to public criticism for at least three months and the public is
entitled to make submissions to the authority on it. These submissions must be
considered before the development plan is adopted. The draft must also be sent to
various statutory and voluntary institutions for specialist advice as well as to the

adjoining local authorities.

The decision to grant or refuse planning permission lies with the planning authority.
The authority must assess applications for planning permission by considering them in
the context of the development plan, i.e., the authorities’ objectives for land use, road
improvements, development and renewal of obsolete areas, and. amenities. Any
observations or submissions made by other bodies (e.g., the Environmental Protection

Agency) are also taken into account.

Certain developments, as defined in the First Schedule of the European Communities
(Environmental Impact Assessment) Regulations, 1989, must be examined for the likely
environmental impacts before planning permission can be granted. Applications for
these types of development must submit an Environmental Impact Statement (EIS)
when submitting for planning permission. In the case of a refusal for planning
permission the authority is required to inform the applicant of the reasons for the

refusal.

In the case of a refusal an appeal can be made to An Bord Pleanala (the Planning

Appeals Board). Usually a planning authority will decide on a planning application

13
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within two months unless more information is requested from the applicant to clarify
the planning application. The decision to make an appeal must be made within a month
of the refusal. The judgement made by An Bord Pleanala may only be appealed in the
High Court on a point of law within two months of An Bord Pleanala’s decision to

refuse permission. The High Court will not reassess the planning merits of the case.

The planning system described here, based largely on the 1963 Act, initially emphasised
the active involvement of planning authorities in development (MacLaran, 1993). This
did not happen because of a lack of public finance. In practice, the planning system
depends on the private sector to put forward potential development projects. As such,
development plans must set out a format for growth and prosperity that encourages the

private sector to participate in the development of transport and land use.

While the Irish Planning System appears to be a very democratic one, allowing the right
of appeal to third parties even though they may not have a direct association with the
development proposal, in practice the process of public participation tends towards a
public relations exercise (MacLaran, 1993) that is cumbersome and extremely
frustrating for potential developers. Unfortunately, development plans also take longer
than the recommended five years to review. Dublin’s present development plan was

introduced in 1999 but the previous Plan was adopted in 1991, eight years earlier.

Due to the influence of the private sector over development, the Irish Planning System
can be considered flexible to pressure for or against development. As such it lacks long
term strategic values. The continental approach to planning enables more long-term

strategic thinking with a more proactive, rather than reactive, approach.

2.2.3  The Irish planning system, 1999 —

Nine Planning and Development Acts have been enacted between 1963 and 1999. The
new Planning Bill has revised and consolidated these Acts while also incorporating a
sustainable development ethos into the Irish planning system. The production of
development plans will remain at the core of sustainable and proper planning but with

some changes:
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e Planning authorities must now produce a Development Plan every six years;

e The plan shall be consistent with any national plans or strategies relating to
proper planning and sustainable development and shall set out “an overall
strategy for the proper planning and sustainable development of the area”
(DEHLG, 2000); and,

e The plan must address not just land use scenarios but also the provision of

infrastructure including transport, energy and communications facilities.

The development plan is subservient to the regional plan while setting out the
background for any local area plans, see Figure 2.3. Each of the plans has been given

statutory recognition providing a consistent planning process.

Regional Plan . » Development Plan |1 Local Area Plan

Figure 2.3: The set-up for a more cohesive planning system as set out in the

Local Government (Planning and Development) Act, 2000 (DEHLG, 2000).

Local area plans have been given an increased status to allow a more consistent
relationship between development plans and individual development proposals. Local
plans can be produced for any area and when such an area lies between two different
planning authorities then these authorities can co-operate amongst each other. An
Environmental Impact Statement (EIS) must also be produced outlining any likely

effects on the environment through the implementation of a local area plan.

Regional plans must incorporate a number of issues. However, only some of the more

important characteristics pertaining to this work are mentioned here:

e The SPG (Brady Shipman Martin et al., 1999) for the GDA prepared for
Dublin City Council and the County Councils of Dun Laoghaire-Rathdown,
Fingal, Kildare, Meath, South Dublin and Wicklow in conjunction with Dublin

Regional Authority and the Mid-East Regional Authority have effect as if
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made under the Local Government (Planning and Development) Act, 2000

(DEHLG, 2000);
e They are to be developed for a period of time between 12 and 20 years;

e They should provide a long-term strategic planning framework for the
development of the region in accordance with the principles of proper planning

and sustainable development; and,

e Regional plans must also address the following matters, amongst others:

— Transportation, including public transportation;

— The location of industrial and commercial development;

— Economic and employment trends; and,

— Projected population trends and settlement and housing strategies.

These regional guidelines will allow for a better cohesion of development plans. The
Bill (DEHLG, 2000) sets out the purposes for which objectives may be indicated in a
development plan. ‘Infrastructure and Transport’ represent a separate section showing
the controls that a development plan can have over the provision of transportation. The
inclusion of transport planning in the Bill provides for the co-ordinated planning of
transport and land use by “promoting sustainable settlement and transportation
strategies in urban and rural areas” (DEHLG, 2000). Some of the more important

controls include:
e Reserving land for transport networks, including roads, rail, etc.;

e Facilitating the provision of sustainable integrated transport, public transport
and road traffic systems and promoting the development of local transport

plans;
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e Improving convenience and safety for users of the transport network, including

pedestrians and cyclists;

e Establishment of public rights of way and extinguishment of public and private

rights of way; and,

e Providing for the management and control of traffic, including the provision

and control of parking areas.

With respect to the GDA, local authorities will be obliged to consider the regional plan
produced by Dublin Regional Authority when reviewing development plans. This
should produce a cohesive planning system allowing consistent planning decisions

resulting in proper planning and sustainable development.

In addition to regional planning, a National Spatial Strategy (DEHLG, 2002) has been
prepared “to shape balanced regional development in Ireland for the next 20 years”
(Minister Martin Cullen TD, 2002). The National Development Plan 2000-2006 is
consistent with this long-term strategy. Also, any regional or development plans must

work within the framework of the National Spatial Strategy.

2.2.4  Existing institutional arrangements for transport and land use in the GDA

At present, there are a number of different bodies in operation that have responsibilities
in relation to land-use and transportation in the Greater Dublin Area (GDA). These can

be seen in Figure 2.4, which shows how the differing bodies interact with each other.

The responsibility for transportation in Ireland is divided between two government
departments: the Department of the Environment and Local Government and the
Department of Transport. The Department of Public Enterprise held responsibilities
until the Department of Transport was established in 2002. The Department of the
Environment and Local Government has responsibility for policy, legislation and
financing related to general traffic and road infrastructure. The strategy and co-
ordination to undertake this policy is controlled by the National Roads Authority
(NRA), the SPG Steering Committee and the DTO.

17
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The NRA was established under the Roads Act of 1993 and became active on the 1™ of
January 1994. The NRA has a planning, co-ordination and funding role in relation to
national roads and has the responsibility of providing a safe and efficient network

operating to international standards. However, implementation is primarily exercised
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Figure 2.4: Existing transport planning institutional arrangements for the

Greater Dublin Area (DELG & DPE, 2001).

through city and county local authorities. While the NRA oversees any work associated
with the national road network, it is the local authorities that have responsibility for the
maintenance and improvement of local roads. These works must also be financed with
the authorities’ own resources although State grants may be provided in certain

circumstances.

The DTO is a corporate body established on the 9" of November 1995, under the Local
Government Services (Corporate Services) Act, 1971. Apart from the control over
certain traffic management related funding, the DTO must pursue its mandate through
voluntary arrangements and consensus. The Department of the Environment and Local

Government sponsor the DTO and it has a Steering Committee comprised of a Local
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Authority Committee and Consultative Panel. These are made up of a number of
elected councillors, representatives from key transport agencies, representatives of both
the Department of the Environment and Local Government and the Department of

Public Enterprise, and, other outside expertise. The responsibilities of the DTO are to:

e (Co-ordinate and monitor the implementation of the DTI Strategy (see the DTI

Final Report (Steer Davis Gleave, 1994a));

e Review the activities of agencies involved in project implementation to ensure

that their actions are consistent with the DTI Strategy; and to,
e Review and update the Strategy every five years.

The DTO is managed by a Director who exercises his duties with the help of a team of
specialists in the areas of transportation planning, transportation modelling, traffic

management and land-use planning.

Separate arrangements exist to monitor the implementation of the SPG (Brady Shipman
Martin et al., 1999) involving a Steering Group with representatives from the local
authorities, both Departments, Coras lompair Eireann (CIE) and the DTO, a technical

group, and, a full-time technical director.

The Department of Public Enterprise has responsibility for policy, legislation and
financing related to public transport. It is a shareholder in the State transport company
CIE. CIE was established under the Transport Act of 1950. Under the Transport Act,
1986, CIE was required to form a holding company and three major operating
subsidiaries. CIE and three operating subsidiaries: larnrod Eireann (Irish Rail); Bus
Atha Cliath (Dublin Bus) and Bus Eireann (Irish Bus), are responsible for the provision
of the vast majority of public transport services in Ireland. Bus Atha Cliath provides
passenger services for the city and county of Dublin. larnrod Eireann provides mainline
passenger services, the Dublin Area Rapid Transit (DART) service and suburban
services in the GDA. Bus Eireann provides a bus passenger service throughout the

country.
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2.2.5 Proposed institutional arrangements for transport and land use in the GDA

The Department of the Environment and Local Government and the Department of
Transport have outlined ‘New Institutional Arrangements for Land Use and Transport
in the Greater Dublin Area’ in a consultation paper published in March 2001. Figure

2.5, when compared to Figure 2.4, shows the proposed changes to the institutional
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Figure 2.5: Proposed transport planning institutional arrangements for the

Greater Dublin Area (DoELG & DPE, 2001).

infrastructure in the GDA. It can be seen from Figure 2.5 that two main changes are

proposed:

e The establishment of a strategic land use and transport body, or GDA

Authority; and,

e Public transport institutional and regulatory changes, i.e., deregulation of the

public transport sector to facilitate a transport market.
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These changes have been proposed because it has been found that the existing
institutional arrangements are not capable of managing the development of the
infrastructure and public transport services proposed in the National Development Plan
2000 — 2006 and the DTO’s long term transportation strategy, A Platform for Change
(DoELG & DPE, 2001). The Public Transport Partnership Forum (October 2000), the
DTO (2000) and a range of other bodies have all agreed that the existing institutional
arrangements are not adequate and that a new single statutory body with the following

powers is required:

e The body should have responsibility for land use and transport planning in the

GDA;

e The body should deal with transport and land use strategic planning and co-

ordination in an integrated way;
¢ The body should have adequate financial powers and resources; and,
e The body should be democratically accountable at a political level.

The Department of Public Enterprise published a consultation paper on deregulation of
the public transport sector in August 2000. In this paper the main impetus for the
change in policy, i.e., deregulation, is described as the “urgent need to deal with traffic
congestion problems in Dublin” (DPE, 2000). Public transport is also recognised as an
important tool in promoting sustainable development and addressing social inclusion.
Figure 2.5 shows the new institutional changes necessary to facilitate the development

of a market in public transport.

The Strategic Land Use and Transport Body seen in Figure 2.5 will represent an

independent public transport regulatory body that will:
¢ Regulate the bus market through franchising and licensing;

e Negotiate public service contracts and award public transport service

franchises; and,
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e Be responsible for the regulation of matters arising from public private

partnerships and EU legislation.

These institutional and regulatory measures are being put in place to help facilitate the
strategic and policy driven objectives for the GDA. The National Development Plan

2000-2006 sets out these general objectives as being:

e To address the projected growth in traffic through transport infrastructure and

facilities investment and demand management measures;

e To make commuter travel by private car more unattractive thereby reducing

congestion and emissions;
e To increase accessibility and support sustainable development; and,

e To reflect commuter travel patterns by providing for a spatial distribution of

public transport in line with the SPG.

2.3 Transportation development in the GDA prior to the Dublin Transportation
Initiative (DTI)

2.3.1 Introduction

Dublin’s inner city streets developed over a long period of time. The City is over 1000
years old and was never bombed during the Second World War, unlike some of its
European counterparts. As such, it retains its narrow streets. By 1914 Dublin City had
a network of just over 100 kilometres of electrically powered trams. After the First
World War this network was replaced by the modern motorised bus, which was deemed

to be more flexible and forward looking at the time (Killen, 1992).

Many reports have been published outlining planning proposals for the Dublin area.
However, these proposals have rarely ever been implemented in full. Some of the

reports concentrate on land-use while others look more closely at transport issues.

o
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Considering the interconnections and dependency of each discipline on the other the

important sections of the reports will be summarised in chronological order.

2.3.2  The Myles Wright Report (1967)

The first attempts at planning the development of the Dublin area were produced in the
1960s. However, these reports did not take into account the fact that the areas of
transportation and land-use are closely related. For example, the Schaechterle traffic
plan was produced in 1965. It endorsed a comprehensive road widening scheme in the
inner city, which was proposed by Dublin Corporation to help keep traffic moving.
Two years later the Myles Wright Report was produced. This proposed a population
shift away from the inner city to relieve excess commuter traffic. As a result of the
contradiction between the transport oriented Schaechterle traffic plan and the land-use
oriented Myles Wright Report the majority of the Schaechterle plan was not
implemented and Dublin’s inner city streets remain narrow to this day. However, many
buildings became derelict along streets earmarked for widening. When this widening
never came to fruition the Government then had to offer the private sector costly
incentives to rejuvenate the derelict sites (MacLaran, 1993). A number of
improvements were made though, including the East Link Bridge and the East — West

routes along the Royal and Grand Canals.

The Advisory Regional Plan for the Dublin Region, or the Myles Wright Report (1967),
led to the development of four new towns to the West of Central Dublin. These new

towns were based on small existing settlements. The four new towns proposed were:
e Tallaght — Saggart;
¢ Clondalkin — Milltown;
e Palmerstown — Lucan; and,

e Blanchardstown — Mulhuddart.
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A high population growth was predicted and it was planned that these towns would
cater for the development necessary as a result of this growth. They were planned as
self-sufficient settlements providing employment, services, housing and amenities to
their inhabitants. These proposals were not implemented as planned. Even so, the
Myles Wright Report (1967) has had a large influence over the current shape of the
Metropolitan Region of the GDA, see Figure 2.1 and Figure 2.2.

The Advisory Plan proposed an expansion of the City limits 10 miles to the West over a
period of 20 years, taking account of a predicted population growth of 275,000 over the
same period. Wright (1967) states that “new building developments around Dublin
should be at low density”. This low density development was considered a cheaper
alternative to high density construction where land use was plentiful. In summary, the

main strategic points of the Report were that:

e The majority of the new population should live in the new self-sufficient

settlements;

e These towns and the city centre should be far enough apart so as to spread the

traffic between them; and,

e Trips between the new communities would take place over routes not suffering

from congestion.

These proposals were to encourage shorter journeys by keeping employment closer to
home and, in so doing, reduce traffic congestion and the growing pressure on Central
Dublin. Wright recommended heavy use of the bus for commuting between the new
towns and between the new towns and Central Dublin because of the low density
housing proposed, and encouraged the development of infrastructure for the bus and

private car as a means of dealing with any unknown needs in the future (Wright, 1967).

As MacLaran surmises (1993), due to the proximity of the new settlements to the city
and the manner in which the development was carried out the likelihood of their
achieving self-sufficiency was negligible. Planning was based on accommodating the

car, which only encouraged urban sprawl. No organisation was given the role of
24
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overseeing the development of these new towns. Instead, implementation of the
proposals was based on private sector investment (MacLaran, 1993). Consequently, the
proposals have not come to fruition, as is demonstrated by the fact that none of the new
towns have developed town centres and only Tallaght received its shopping centre in
1990. Also, the proposed green belts to be observed between the new settlements have
not been enforced and a continuous suburban area now envelops what should have been

independent self-sufficient towns.

2.3.3  Subsequent studies

The Dublin Transportation Study was produced in 1971 because it was generally
accepted that transport plans in the Myles Wright Report lacked detail (Steer Davis
Gleave et al., 1992). Though little of this report was realised proposals included an
outer motorway system and scaled down proposals for road development in the inner

city. Upgrading of both rail and bus commuter services were also endorsed.

The Dublin Rail Rapid Transit Study (DRRTS) was produced by Vorhees and
Associates in 1975. This CIE commissioned study proposed a rail system serving 47
stations, mostly underground, with a city centre terminus near O’Connell Bridge and an
extensive feeder bus system linked to the train system. In 1978 a Transport

Consultative Commission was set up to examine the DRRTS system.

The resulting report (Transport Consultative Commission, 1980) found that the DRRTS
proposal was too expensive and the only part that was implemented was the
electrification of the Howth/Bray Dublin Area Rapid Transit (DART) line, which was
opened in 1984. The DART is considered to be one of the most successful pieces of
public transport development in recent times. Unfortunately perhaps, instead of
advocating the implementation of all of the DRRTS proposals, the Transport
Consultative Commission recommended improved transport links for Tallaght in the
form of a bus service in the short term and with complementary features such as bus

lanes and parking restrictions to follow.
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The Eastern Regional Development Organisation (ERDO), set up in 1969, published its
first report in 1985. The organisation, made up of representatives from local authorities
including Dublin County Borough, County Dublin, Dun Laoghaire and counties Kildare
Meath and Wicklow, examined population growth and its effects in the Eastern Region
up to 2011. To do this, it looked at land-use options, paying little attention to
transportation effects. The report focused on regional effects and this brought it into
conflict with those trying to reinforce inner city development (Dublin Crisis Conference
Committee, 1986). The body appears to have been totally isolated from transport
planning but did acknowledge the importance of locating additional population near

transport facilities.

The next phase of planning has developed out of the Dublin Transport Initiative (DTI).
Much of the transport policy arising from the DTI is still currently in use and its

importance warrants a separate subsection.

2.4 The Dublin Transportation Initiative (DTI)

2.4.1 Introduction

The DTI began in 1988 when the Minister for the Environment commissioned a review

of transport planning. The first phase of the DTI declared that:

“It has become clear that what is now required is more than a once off study, rather a
transportation planning process which will permit the regular review of the
transportation strategy and investment or implementation programme and allow on-
going assessments of the impact of land-use and other policies on transportation and

vice versa’ (Steer Davis Gleave, 1992).

As such, the DTI heralded a new approach to planning in the Dublin region. The study
area, or DTI Study Area, is shown in Figure 2.2. It covered the City and County of
Dublin and parts of Counties Kildare, Meath and Wicklow including all of the built-up
areas making up Dublin City (Steer Davis Gleave, 1994a).
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The first phase of the DTI included an analysis of previous reports on land-use and
transportation planning. These included the Myles Wright Report (Wright, 1967), the
Dublin Transportation Study (1971), the Central Dublin Traffic Plan (Morgan et al.,
1973), the Dublin Rail Rapid Transit Study (Vorhees et al., 1975) and the Transport
Consultative Commission (1980). The study also incorporated all the relevant groups
including CIE, the relevant Government departments and local authorities and
advocated strong public involvement. This was the first time that such an open forum
had been advocated and then implemented, which led to real enthusiasm that progress
would be made in the right direction. Phase one of the DTI proceeded to set out an

approach for the second phase, saying that it should:
e Be all embracing of transport modes:
e Include assessment of the interaction between transportation and other policies;
¢ Provide a process;

e Provide a long term strategy (2011) and a five year investment and
implementation programme with short term policies for the period between

1994 and 1999 called the Operational Programme for Transport:
e Look at the question of enforcement;
¢ Consider funding in detail; and,

e Give special consideration to the peripheral suburbs and new towns, the Inner
City and the access needs of both the Port and Airport for both freight and

public passengers.

In 1992 phase two of the DTI began under the aegis of the objectives laid out in phase
one above. The most important objectives for phase two of the Initiative were set out to

be:

e The drafting of a long and short term transportation strategy; and,
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e The organisation of a continuous planning process.

After two years of intensive negotiation and consultation between all interested parties
and the general public, the DTI Final Report, laying out Dublin transportation plans,
was published in May 1994 (Steer Davis Gleave, 1994a).

2.4.2  DTI methodology

The first step in producing a DTI Strategy was to draft a Vision Statement and to use
this to set out the guiding principles for the rest of the Study. The Vision Statement
provided the core for more detailed objectives which the Strategy would be designed to

fulfil. The Vision Statement can be seen in Figure 2.6.

o Dublin as a leading European City: Competing and co-operating

successfully, civilised, literate and vibrant.

e The National Capital: Proud of its history and heritage, its unique character

conserved, a fit setting for Government and national centres of excellence.

e A Metropolitan Region with a strong, growing and diverse city, town and

rural economy, based on a skilled and adaptable work force.

e A Living City — Region on a human scale, accessible to all: at its heart, a city
to serve its people and communities and to meet their aspirations for an

improving quality of life.

Figure 2.6: The Vision for Dublin, which guided the Dublin Transportation

Initiative, had four facets (Steer Davies Gleave, 1994a).

From this Vision Statement potential transport strategies were developed. Agencies
within the Study Area then put forward possible schemes and plans, which were
examined in the context of policy and organised into eight Themes. These can be seen

in Figure 2.7.



Chapter 2

The eight themes were not examined with a view to finding a winning theme; rather it

was used to establish the contributions of individual policy options towards meeting the

objectives extrapolated from the Vision Statement. Once the strengths and weaknesses

of the different policy options were assessed a fundamental strategy would then be

adopted using different elements of the policies that performed well.

l.

19

Do Minimum - The benchmark situation for 2011 for comparison purposes,

comprising only those schemes that have already been given the go-ahead.

Restraint — To reduce car usage through road pricing and other transport

management measures.

Making Better Use of Existing Assets — Low cost approach to increase public

transport and road usage through traffic control measures and new rail stations.

Incremental Road Development — Investment in road infrastructure through the

completion of major road schemes and some minor developments.

Extended Road Development — A more expansive package of road investment

measures including all those from Theme 4 plus other extensive road developments.

Environmental Package — Focusing on pedestrianisation, priority for cyclists and

related measures such as traffic calming.

Enhanced Public Transport Investment — Including QBCs, Light Rail Transit

(LRT) and improvement to heavy rail suburban services.

Extended Public Transport Investment — Provide a city-wide heavy rail network

plus extensions to existing lines and a new city centre public transport interchange.

Figure 2.7: The DTI theme based approach (Steer Davies Gleave, 1994a).

The main criteria were:

(1)

Employment and the Regional Economy;
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2) Quality of Life;
(3) International and National Context;
(4) Development of the City and the Region; and,
(5) Efficiency in Implementation.

A full list of the objectives/criteria and their sub-criteria can be seen in Appendix 1.
The themes were then tested using a traffic model and their performances were

compared to the “Do Minimum” theme and to each other.

Due to the interaction of land use and transportation it was also decided that a number
of land use scenarios would be assessed so as to give further insight into the policy
options. However, the DTI did not have any land use planning powers and no long term
land use plans existed for them to base their transportation strategy upon. As a result,
the DTI realised it would have to produce a number of possible land use development

scenarios for the future. These scenarios can be seen in Figure 2.8.

Scenario A: Urban Concentration — Household and employment growth concentrated
in inner city and surrounding towns with control over development in surrounding

areas.

Scenario B: Growth Poles — Household growth in western towns with employment

growth in the city centre, the western towns plus Swords, Maynooth and the Bray area.

Scenario C: Dispersal — Household growth along radial routes and in North County

Dublin. Employment growth along the C-Ring motorway and outside of urban areas

Figure 2.8: The DTI land use scenarios (Steer Davies Gleave, 1994a).

The DTI also stressed that these scenarios were developed as hypothesise of how the
GDA would develop from a land use perspective over the projected period and that they

were not meant to replace any existing short or medium term land use strategies.
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These three scenarios were chosen through a process of socio-economic and
demographic analysis (Steer Davies Gleave, 1994b). Once chosen the scenarios were
developed for low, medium and high growth potential between 1991 and 2011, taking

population and household data into account. These can be seen in Table 2.1.

Table 2.1: Low, medium and high growth between 1991 and 2011 for the DTI
Study Area (Steer Davies Gleave, 1994b).

Low Medium High
Population (millions) 0.986 1.203 1:221
Household size (persons) 2.96 2.86 2.31
New households 77,000 77,000 77,000

In order to calibrate the three scenarios the ‘central figure’ of 77,000 households was
allocated over the Study Area. In actuality, for an average size of 2.84 persons,
approximately 80,000 new households would have been accommodated, while 63,000
new households would have been accommodated for an average household size of 2.84

persons, by the year 2011 (Steer Davies Gleave, 1994b).

The eight themes were assessed using a method of multi-criteria analysis. The criteria
used in the analysis are those mentioned previously and listed in Appendix 1. Each
theme was analysed by assessing and then awarding its sub-criteria a proportionally
positive or negative score depending on their performance in comparison to the other
themes. As such, the criteria score differently depending on what theme is being
assessed. For example, Table 2.2 shows a number of sub-criteria, which are of some
interest, and how they performed under the different themes; the letter ‘N’ represents

‘Not Given’.

With reference to the criteria mentioned in Table 2.2, Theme 2, ‘Restraint’, performs
very well. However, Themes 3 and 4 also have slightly positive effects and Themes 7
and 8 perform very well in certain aspects as well. This led the DTI to believe that a

multi-faceted approach to development in the Study Area was necessary, taking the
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positive aspects from each of the themes to produce an effective and comprehensive
strategy. Theme 5, though performing well on a number of criteria, was rejected
because of its conflict with the higher level strategic aims of the DTI to reduce car

dependence and reinforce the city centre.

While a network of quality bus corridors (QBCs) was assumed necessary as the basis
for a strong public transport foundation, further analysis was undertaken to assess the
potential benefits of light and heavy rail. A cost benefit analysis (CBA) was conducted

to compare the economic performance of the following two options:

e A heavy rail system serving Dublin Airport and suburbs to the North, South

and East of the City Centre; and,

e A light rail network serving Tallaght, Dundrum and Ballymun to the West,

South and North of the City Centre, respectively.

Table 2.2: Performance of some sub-criteria of interest over the eight themes

numbered above (Steer Davies Gleave, 1994a).

Sub-criteria 1 2 . 4 5 6 7 8
2.1 Improved travel
| ++ + + ++ N | +++ | +++
reliability
2.4 Reduce environmental
) et 4 + + ++ N ++ | ++
impacts of transport
3.3 Improve access to and
| + + + | +++ N + ++
from the GDA
5.1 Contain financial needs o 2 S S N (R i A I
5.6 Financial  health  of
+++ [ ++ N N + ++ N

transport operating costs

The cost benefit ratio of each option was produced using the bus network as a baseline

comparison. The results produced showed that heavy rail, at 0.4 : 1, was the least

32



Chapter 2

favourable option when compared to the proposed light rail project, which produced a

ratio of 1.76 : 1. This led to the inclusion of an LRT in the DTI final strategy.

2.4.3  Recommended strategy of the DTI

The DTI Final Report (Steer Davies Gleave, 1994a) set out a vision of Dublin. It saw
Dublin as a leading European Capital, economically competitive, historically proud,
accessible to all, a growing and diverse city based on a skilled and adaptable work
force. In order to achieve these aims the DTI laid out a number of objectives in order to
encourage economic regeneration and development throughout the Study Area and to
help maintain and reinforce the city centre as the countries prime commercial and
cultural centre. The strategy contains a number of measures to be implemented up to

the year 2011 and can be summarised as being to:

e Improve public transport and not to let the private car dominate the transport

system;

e Emphasise the movement of people and goods, not just vehicles, and in the
case of the ports and airport, address the access requirements for both freight

and public passengers:

e Bring greater equity to the transport system, improving accessibility for all and

taking account of the real needs of disadvantaged; and,
e Provide an integrated approach to transportation and land-use.

The DTI Strategy also considers a number of traffic management measures including
traffic calming in residential areas and environmental traffic management in the city,
especially in the city centre. There are strong implications for how traffic is managed in
the city centre as a result of the implementation of the DTI Strategy. Phase two of the

DTI states that;

o8]
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“Nothing less than its (city centre) conversion from a car and heavy vehicle
dominated, pedestrian unfriendly location to a vibrant, efficient area is being

proposed” (Steer Davies Gleave, 1994a).

The Initiative advocates a better, more efficient use of resources such as public
transport, the SCATS traffic-light control system and land-use planning so that major

infrastructural changes can be implemented in a more receptive environment:

e Public transport should be up-graded and given more priority through the
introduction of 10 Quality Bus Corridors (QBCs);

e SCATS, which covers the city centre area roughly between the Royal and

Grand canals, should be extended to cover a greater area of the city; and,

e High-density land development should be encouraged along priority public

transport routes and in areas earmarked for future development.

In the long term the Initiative proposed new and improved public transport links,
especially between the new towns of Tallaght, Lucan—Palmerstown, Clondalkin and
Blanchardstown to the west and between these towns and the city centre. Other

proposals include:

e A light rail network to be developed and implemented along routes of high trip
demand such as those from Tallaght to the city centre and from Sandyford to
St. Stephen’s Green, with a potential link to the airport also being considered

important;

e The DART being extended and the DART and suburban rail services being up-
graded; and,

e Road improvement projects such as the M50 C-ring, the Port Access Tunnel

and the South Eastern Motorway.

The Port Access Tunnel will allow HGVs to enter and exit the port area with
comparative ease while cars are tolled for the privilege of getting direct access to the
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city centre via the tunnel. A number of other traffic management measures are also

proposed; these include:

e Park and ride facilities to be set up at 9 locations near the C-ring where good
public transport facilities are present to transport people from outside the C—

ring into the city centre;

e Parking restrictions in the city centre to be enforced more stringently with the
addition of clamping and additional resources to spend on towing and clamping

equipment; and,

e Long term parking to be deterred by restructuring parking charges and

reducing the number of non-residential oft-street parking facilities.

Environmental traffic management measures including the development of
environmental traffic cells, pedestrianised zones and cycle paths are included in the
proposal to encourage a more equitable sharing of road space by all modes of transport
so as to make the roads and streets of Dublin more safe and pleasant for people and to

reduce the environmental impact of traffic (Steer Davies Gleave, 1994a).

The DTI Strategy recommended a co-ordinated land-use policy for the Dublin
metropolitan region and local authorities were encouraged to take account of the DTI
recommendations when next reviewing their development plans. Unfortunately, the
DTI Strategy was based on future land-use scenarios that had no influence over the way
in which the Dublin metropolitan region would really develop. Due to the close
interaction and dependency of land-use and transportation development, the DTI
Strategy could never provide a definite long-term solution unless a land-use strategy
was designed to complement it. Only in recent times has this been recognised in Ireland

with the publication of the SPG (Brady Shipman Martin et al., 1999).

Finally, the DTI Strategy went on to call for new institutional arrangements for the
running of the transportation planning process and to oversee implementation of the
strategy itself. This led to the establishment of the DTO, as a corporate body, in

November 1995 to co-ordinate and monitor the implementation of the DTI Strategy.
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2.4.4  Transportation modelling and the DTI

This Section provides a summary of the transportation network modelling process used
in the DTI for the Study Area and for Dublin’s recent transportation plans. This
modelling process is known as the Dublin Transportation Network Model (DTNM). An
understanding of this modelling process provides a basic foundation from which this
thesis will try to develop further ideas and from which it will also attempt to improve
certain aspects. Areas within the process will also be used in conjunction with the new

developments to assess transport management scenarios in the GDA.

Sections of the DTNM are discussed in more technical detail in Chapter 4, Section 4.2.

2.4.4.1 The DTI model approach

The DTI used a conventional approach to transportation modelling. This approach can

be broken down into four stages:
e Trip generation and trip attraction;
e Trip distribution;
e Modal split; and,
e Trip Assignment.

Each stage has its own sub-models and the four stages are generally carried out in the
order shown above. This approach can be applied at a strategic level for medium to
long term planning or it can be used to support detailed scheme design and
implementation issues. The DTI used two software suites, SATURN (Simulation and
Assignment of Transport in Urban Road Networks) and SATCHMO (SATURN Travel
CHoice Model).

For the purposes of modelling the Study Area was sub-divided into a series of zones.
There were two levels of zoning; the coarser, or strategic, level with 58 zones used to

assess land use, car ownership and trip growth changes and the finer, or tactical, level
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with 367 zones used to analyse mode choice, assignment problems and the actual traffic
flow and distribution within the Study Area. These finer zones were developed by sub-
dividing the coarser zones and are made up of wards, District Electoral Divisions

(DEDs) and six external peripheral counties representing the rest of the Ireland.

2.4.4.2 Data collection

The strategic zoning level is used in conjunction with the land use scenarios mentioned
earlier. These scenarios are used to provide the basic information from which the trip
generation data is derived, and hence, the trip generation model must also be applied at
this coarser level. The model can be described as being local in that the strategic zones
are addressed individually with growth factors being determined from the land use
scenarios and demographic data. The model also contains disaggregate household data

particularly pertinent to car ownership and car availability.

This data was obtained from census material, which was then aggregated to the strategic
58 zone level as it was originally produced at ward level. Data produced in this way
included information about population, employment, average occupancy of households,
cars per 1000 population and cars per household. The census data also allows strategic
zonal totals of journeys to work and education on foot and by bicycle. However, the
DTI assumed that these ‘slow modes’ share the same journey characteristics as those
travelling by bus. In effect, ‘slow mode’ transport characteristics were not catered for
in modal choice. Therefore, the resulting modelling process did not allow for analysis

of potential pedestrian or cyclist policies.

Two base year origin — destination matrices were produced using the peak (08:00 —
09:00) and off peak periods (14:00 — 15:00) for light goods vehicles and cars and for
Heavy Goods Vehicles (HGVs) to represent actual trip patterns. To do this, three sets

of origin — destination surveys were undertaken:
¢ Road side interviews;

e On-board bus interviews; and,
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e Rail passenger surveys.

During the road side interviews movements were recorded for cars and light goods
vehicles and for HGVs. A traffic count was also taken at the same time as the interview
allowing the origin — destination information to be scaled up (grossed) to take account
of travel during the entire model period and not just during the interview period. Once
this was done at each site a number of logic checks were undertaken to ensure the
accuracy of the travel patterns recorded. These logic checks involved assessing a
number of routes in more detail and comparing the predicted route totals with the actual
totals. Once these proved to be comparable an assumption was made that similar
scaling factors would apply to all other routes. Then the information from each site was
pooled together to form the seed matrices. Any unobserved data was then in-filled on

these matrices using a software package.

Bus and rail surveys were also taken. The bus questionnaire was designed to be
compatible with both the roadside interviews and a separate network planning review
being undertaken by Bus Atha Cliath (BAC). The questionnaire was handed to
passengers boarding each bus for self-completion and then collected as passengers
egressed at their specific stops. The boarding stops were recorded by noting the code
number of the questionnaire and the alighting stops recorded by storing the collected

questionnaires in a file specific to that stop.

The total number of passengers for each route was found by scaling up the results from
completed questionnaires using the total number of people travelling on each route
extracted from Electronic Ticketing Machines (ETMs) supplied by BAC. In this way a

trip matrix was produced for the period that the matrix was to represent.

The rail survey was performed in a similar manner to the bus survey with forms handed
out at suburban rail stations and the finished survey forms being collected at destination
stations. The survey was held very close to larnrod Eireann’s annual boarding/alighting
counts. These were used to scale up the survey data received to produce a rail matrix.
A matrix was also produced for non-car trip makers depending on the availability of a

car, or not, for both bus and rail passengers.

38



Chapter 2

2.4.4.3 DTI trip generation and future year matrices

This section of the model is used to forecast the increase in trips originating from a zone
(generation) and destined to a zone (attraction) between the base year and the forecast
years (Steer Davies Gleave, 1994b). Growth factors were developed for the ‘car
available’ and the ‘car non-available’ matrices. The two models were then applied over
the peak and off peak periods. Trip forecasts were then produced for each zone under

each of the three land use scenarios described.

The trip generation model is applied at the 58 strategic zone level. The peak trip
generation model predominantly uses the growth in work trips and school trips. The
working population is calculated by taking the total zonal unemployment from the 15 —
65 age group. The off peak generation and attraction models are similar, with the
former using origin data and the latter, destination data; for more detail see the DTI
Technical Report Volume 2 (Steer Davies Gleave, 1994b). Land use is treated as an
input to the attraction model in that there is a separate attraction model for separate
travel purposes. Growth in trips is based on the growth in employment within each
strategic zone. Trip totals calculated from trip generation models are taken to be more
accurate then trip attraction totals because trip generation models use growth factors
calculated using more reliable household data. Due to this, trip attraction totals are

adjusted to fall into line with the equivalent trip generation totals.

Future year trip matrices are produced using growth factors and the application of the
Furness Iteration Technique. Separate growth factors were produced for the number of
trips originating and terminating in each zone. The Furness method is a doubly
constrained technique that allows the estimate of a trip matrix that satisfies both growth

factors by balancing them against each other.
The output future year trip matrix between zone ‘i’ and ‘j’, Tj;, is given by:

T, =t;AB, Equation 2.1

y

where:
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e t;is the base year trip matrix (input matrix); and,

e Ai, Bj are the balancing factors incorporating the growth factors for

each zone.

For the first iteration the balancing factors are derived by dividing the future trip end

total by the current trip and total, i.e:

Ai= L Equation 2.2
O
D .

Bi= 7/ Equation 2.3
a;

where O, D; are zonal origin and destination totals for the future year and o;, d; are

similar for the base.

The method works by alternatively applying each balancing factor. For the first two
iterations this is done by setting Bj equal to zero and solving for A; and vice versa. For
further iterations the balancing factor is recalculated from the results of the previous
iteration, iteration number two in this case, with O, as previously defined and o; being
the origins resultant from the previous iteration. After a small number of iterations this

process converges to some predefined measure, usually within 5% of target values.

2.4.4.4 Generalised cost and mode split

Generalised cost is of key importance in modelling mode choice in the DTL It is
assumed that journeys are made for the utility (value) taken from activities that are
performed at their destination. However, when making such a journey the traveller
incurs the disutility of expense, time spent travelling, etc. Generalised cost represents
this disutility. The zone to zone generalised cost used by the DTI is given by the two

formula:

GCer = a1IVT + aaWK + a;z:EX + a4 VOC + asPK + ag Equation 2.4
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GCp = a' | IVT + aL,L WK + a'sWT + a',FARE + as Equation 2.5
where:

e IVT is the in-vehicle travel time;

e  WKiis the walk time;

e  WT is the waiting time for public transport;

e EX is the excess time while finding parking;

e VOC are the vehicle operating costs;

e FARE are the public transport fares;

e PK refers to the parking charges for the private car; and.

e a; to as are parameters used as both conversion factors and weights to

express generalised costs in common units.

The generalised cost can be expressed in monetary or time units. If the generalised cost
is measured in monetary terms ‘a,” can be interpreted as the perceived value of IVT.
Usually ‘a,” and ‘a;’ are approximately twice that of ‘a,’, making the perceived value of
walking and waiting times twice that of IVT. Parameters ‘as’ and ‘as’ convert values of
fare into their equivalent values in time while ‘as’ is the mode specific constant

representing the inherent costs of a mode.

The DTI have used a hierarchical or nested logic form of mode choice model. The first,
higher nest, choice that is made is between the private car and public transport using the

logit formula below:

¢ P
~pGC,,

P =
car e ;(’
e 1

Equation 2.6
P =1-P

pt car
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where:

e GC is the generalised cost; and,

e [ is a scaling parameter representing the effects of mode choices to

changes in the GC by each mode.

This finds the number of travellers with a car available that will use either their car or
public transport. The same type of formula is then applied to public transport to see
what the split is between bus and rail for both ‘car available’ and ‘car non available’

public transport users, i.e., two [ scaling parameters are needed.

-BGC,,
e P0Chs

P/m = 7C, iC
: e——[l:( bus 4 e*ﬂ’( rail
Equation 2.7
P

rail

=1-P

bus

For the higher nest choice it is necessary to form an equation representing the cost of
public transportation as a combination of both bus and rail costs, which are each found
using the public transport generalised cost equation given previously. To be consistent

with the logit models the logsum average of the respective modes costs was used:

| e A ,
GC,, = ——Ln(e i R ) Equation 2.8

P

2.4.4.5 Assignment

The assignment area of the DTNM will be looked at in greater detail at a later stage
because it is within this area that this thesis attempts to provide performance
improvement through the use of an IBM SP2 supercomputer that is jointly owned by

Trinity College Dublin and Queens University Belfast.

The DTI had two macro models available to them: CONTRAM (CONtinuous Traffic
Assignment Model) and SATURN, and chose to use SATURN as its platform to

represent the detailed interaction between junction delay and assignment. SATURN
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uses two models to give realistic assignment values. The simulation model uses cyclic
flow profiles to represent groups of vehicles moving across the network. In this way the
delays in one approach to a junction, which depend on one or more of the other
approaches plus itself, can be represented more accurately. However, it needs
information about the flow on each link to estimate capacity, queues and delays. To get
this information an assignment model is used, which loads a trip matrix onto the
network and obtains an estimate of these flows. Using SATURN this can be done with

either Wardrop’s equilibrium assignment or stochastic user equilibrium assignment.

Passenger assignment is also performed for the public transport networks and this is
carried out by SATCHMO, a complimentary package to SATURN. SATCHMO
considers a number of attributes associated with public transport route choice including:
cost, in-vehicle time, transfer time, walking and waiting time. Passengers then choose
the best route in terms of generalised costs. When the assignment of the private car and
public transport have been completed there may be some difference between the travel
times and costs calculated and those used in the mode split models described earlier.
Therefore, an equilibration process is used to balance the estimated generalised costs
and those found through assignment. When equilibrium conditions are reached then no

user can reduce his or her generalised costs by changing either their route or their mode.

2.4.5 Implementation of the DTI measures

In the year following the publication of the DTI strategy its implementation was already
falling behind schedule. However, the DTO, which had been planned for in the DTI,
emerged in 1995 to strategically monitor the transportation planning process. Many of
the transportation plans were to be completed by 1999, as laid out in the Operational
Programme for Transport (1994-1999). However, due, in part, to the division of
responsibility for the implementation of the DTI strategy amongst a number of
agencies, the DTO were unable to avoid substantial delays. Table 2.3, below, shows

estimated finish dates for some of the DTI schemes.

The implementation of traffic policy, including traffic management and the
implementation of QBCs and parking policy, is the responsibility of the Office of the
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Director of Traffic, established in 1997 in Dublin Corporation (now Dublin City
Council). Traffic cells have been introduced in and around the city centre. A number
of turns have also been banned except for public transport, bicycles, motorbikes and
taxis. These measures have been put in place to reroute through traffic away from the

city centre and to give public transport and pedestrians greater priority in the area.

Table 2.3: Differences in estimated finishing dates for some of the DTI strategy
measures from 1994 to 1998.

Scheme Estimate  of | Estimate  of | Estimate  of
finish  date, | finish  date, | finish  date,
1994  (Steer | 1998 (DTO, | 2003 (DTO,
Davies 1998) 2001)

Gleave, 1994)

Southern Cross Route (M50) 1999 2001 2003
South — Eastern Motorway (M50) 1999 2003 2006
Northern Port Access Tunnel 1999 2003 2006
Tallaght/Connolly (LRT) 1999 2002 2004
Sandyford/St. Stephens Green (LRT) 1994 2003 2005
St. Stephens Green/Ballymun (LRT) 2001 Post 2003 Cancelled

Only four of the initially proposed ten QBCs were completed by the proposed finish
date in 1999. However, five new QBCs opened in early 2001 and the DTO
immediately reported notable increases in passenger volumes at that time. By the end
of November 2001 nine of the DTI’s eleven QBCs had been opened (DTO, 2001). Bus
journey times have also been brought down along QBC routes. This can be seen along
the Lucan QBC where buses travel 20% more quickly and along the Rathfarnham QBC
where there is a 55% improvement, according to figures from Dublin Bus (QBC
Steering Committee, 2002). The QBCs that have been established for a longer period of

time, i.e., Malahide, Lucan and the N11, were also reported to be carrying more than
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twice as many people as a lane of general traffic at the design speed of 22kph (DTO,
2001). A further 15 QBC schemes have been planned for completion over the next
number of years; see the QBC Report to the DTO QBC Steering Committee (QBC

Steering Committee, 2002).

Parking policy has encouraged short-term parking. The city has been divided into five
zones with charges being proportional to their proximity to the city centre and the areas
of highest demand. The current highest rate in 2003 is Euro 2.90 per hour in the city
centre. Enforcement of parking policy has been vastly improved with wheel clamping
being introduced in 1998 and an increased level of towing of illegally parked vehicles
throughout the city region. Consequently, revenues are up and there are fewer illegally

parked vehicles clogging up the streets.

The Light Rail Project Office (LRPO), now the Railway Procurement Agency (RPA)
following the enactment of the Transport (Railway Infrastructure) Bill in 2001, is
responsible for the implementation of the LUAS light rail system project. The RPA is
an independent statutory State body whose main responsibilities will be the
procurement of the Metro and light rail projects through Public Private Partnership
(PPP). The LUAS scheme is considerably behind schedule because of two main
factors: the expansive public protest at the required infrastructural changes and the
resulting public consultation process; and, the prolonged bureaucracy and long periods
of indecision resulting from a change in national government during the planning
stages. These factors plus a number of engineering logistic difficulties have meant that
the planned finishing date for the lines from Tallaght to Connolly Station and from
Sandyford Industrial Estate to St Stephen’s Green have now been pushed back to 2004

and 2005, respectively.

The NRA is responsible, through the respective councils, for major road schemes. All
of the proposed major road schemes, including the Dublin Port Access Tunnel,
Southern Cross Route and South-Eastern Motorway have all been substantially delayed
by the planning appeals process. In late 2000, the Southern Cross Route was under

construction while the Port Tunnel and the South-Eastern Motorway were at the tender
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stage (DTO, 2000). However, over 125km of bicycle track and 2300 new bicycle
parking spaces have been made available and 2000 extra spaces have been provided at

suburban rail stations (DTO, 2000).

2.5 Dublin’s development since the DTI began

2.5.1 Economic growth and population change

There has been a huge surge in traffic growth in the Dublin metropolitan region since
the DTI began. This traffic growth has resulted from the economic boom in Ireland,
and in the Dublin region in particular, since the DTI Final Report was published in
1994. This has, in part, attributed to delays in implementing sections of the DTI

strategy.

Table 2.4: Factors affecting transport demand in the DTI Area (DTO, 1998).

DTI Area 1991 Base | 2001 Forecast 1996 Base | 1999
Forecast
Population (m.) 1.14 1.18 1.18 1.19
Households (‘000) 343 378 " 379 393
Unemployment rate 15.8% 17.0% 12.4% 11.6%
Car ownership per 1000 248 288 300 350
GNP Growth Base 49% 42% 70%

Table 2.4 and Table 2.5 show a number of factors that affect transport demand over the
DTI Study Area and over the GDA, as defined by the DTO. It can be seen that for the
DTI Study Area 49% GNP growth was forecast by 2001 yet by 1996 42% had already
been achieved with an updated forecast of 70% having been predicted for the year 1999.
The actual GDP growth in 1999 for the GDA was 79%, exceeding the DTI forecast for

that year, and growth of 260% was also forecast for the year 2016.
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The SPG (Brady Shipman Martin et al., 1999) also indicate that the 2016 forecast of
population, see Table 2.5, is conservative by at least 100,000 and that the figure for the
number of households is also conservative by as much as 10%, see Section 2.6.2. This
growth has outstripped all expectations, which is simply illustrated by the following

points:
e The predicted population for 2001 was exceeded in 1997;
e  GDP grew by 79% as opposed to a predicted 38% between 1991 and 1999,

e The DTI forecast a 17% rate of unemployment in 2001 and 12% in 2011 while

the rate in 2000 was a little under 6%:

e Car ownership per 1000 population was 342 in 1999, fast approaching the EU
average of 450 cars per 1000 population, compared to a predicted forecast of

288 for the year 2001.

Table 2.5: Factors affecting transport demand in the GDA (DTO, 2000).

Greater Dublin Area 1991 Base 1996 Base 1999 Actual | 2016
Forecast
Population (m.) 1.35 1.41 1.46 I
Households (‘000) 402 446 521 675
Unemployment rate 16% 12% 6% 5%
Car ownership per 1000 247 292 342 480
GDP Growth since 1991 Base I.I 42% 79% 260%

This growth can be attributed to a couple of important factors. Firstly, government
policy was aimed towards inward investment and attracting foreign investment through
tax incentives and other enticements. Secondly, the European Union gave large
amounts of structural funding allowing extensive infrastructural development. This has

facilitated investment from foreign sources and encouraged economic growth in the
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region. In 1996 direct oversees investnent, co-ordinated through the Irish Development

Authority (IDA), made up 45% of all nanufacturing jobs and 71% of exports.

The economic growth has in turn led to a large influx of people living and working in
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Figure 2.9: Changes in the populatbn of council areas in the Dublin metropolitan

region between 1981 and 2002 (Central Statistics Office, 2002).

the GDA. There has also been a larg: increase in the construction of office space to
accommodate the market place (Heancy, 2001). A large quantity of this office space,
approximately 40% between 1996 anc 2000, is located in proximity to the M50 ring
road (HOK 1997 — 2000). As well as this, a number of shopping complexes such as
The Square, Liffey Valley and Blaichardstown have been constructed on major
junctions of the M50 corridor. Due to te peripheral location of these facilities and their
close proximity to the M50 the major means of access is with the private car. This, and
the attraction of these facilities, has rzsulted in an increase in the number of people

travelling in the GDA, especially during peak periods.
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Population location has also effected trip demand in the GDA. Figure 2.9 shows an
increase in population in the peripheral areas of Dun Laoghaire-Rathdown, Fingal and
Dublin-Belgard / South Dublin while an overall decline is found up until the 1996
census in Dublin City Borough. However, as a direct result of the implementation of
schemes relating to the DTI objectives for the inner city, to create a vibrant sustainable
inner city environment, this population trend has changed and the population is now

increasing in the Dublin City Borough as well as in peripheral regions.

Overall, the general population has increased and there has been a population shift from
the inner city to more peripheral suburban areas, particularly in the Fingal and Dublin-
Belgard / South Dublin council areas. Dublin city has a dispersed central core and low
intensity of use with a policy of limiting height for inner city developments (DEGW,
2000).  This, along with rising land prices in the inner city, has encouraged
development to take place in suburban areas. This is demonstrated by the increase in
population in the Fingal and Dublin-Belgard / South Dublin Council areas where there
is ample room for low-density development. This low-density development has in turn
been made more favourable through rising car ownership, leading to increases in the

number of trips being made and to the distance travelled during peak periods.

2.5.2 Increased travel demand

The DTI’s predictions for growth in the demand for travel have been dramatically
exceeded. This is not surprising considering the unprecedented growth in the Irish
economy, growth that the DTI could not have foreseen. Table 2.6 shows the peak hour
and off-peak hour total trip demand figures for 1991 and 2001 from the initial 1991 DTI
model. It also shows the equivalent figures for 1996, 1997 and 1999 from the 1996
model updated by the DTO. These figures show that the demand for travel in 1997
exceeded the predicted levels for 2001 by 16%.

Table 2.7 shows the equivalent figures taken from the latest DTO revision of the DTI

model, published by the DTO (2000), and gives a forecast for peak and off-peak

demand in 2016. The 1997 peak and off-peak travel demand figures of 234,000 and

130,000 have been revised upwards to 250,000 and 157,000 respectively. Total peak
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hour trips have increased by 78,000, or 45%, between 1991 and 1997, with the private
car being accountable for approximately 71,000 of these. This represents an increase in
the use of the private car from 64-72% over the same time period. The increase in
congestion is demonstrated by the fact that the average journey time by car has

increased from 31 minutes in 1991 to 43 minutes in 1997 (DTO, 2000).

By 2016 total peak hour travel demand is predicted to increase by a further 95% over
1997 levels, up to 488,000 trips. In 1999 peak hour demand had already increased by
more than 13% over the 1997 level, exceeding the necessary growth rate to achieve the
2016 forecast. Total off-peak demand is forecast to be approximately 256,000 in 2016.

This total is higher than peak hour demand in 1997.

Table 2.6: Transport trip demand and growth from the DTI and the DTO (DTO,
1998).

Peak Hour Demand Off-Peak Demand
Person trips | Growth since 1991 | Person trips Growth since

1991

1991 Base 172,000 107,000
2001 Forecast 206,000 20% 126,000 18%
199?Bag 227,000 32% ] 125,000‘ ¥ 17%
1997 Actual 234,000 36% 130,000 22%
1999 Forecast 240,000 40% 134,000 25%

The changing environment in the GDA, resulting from unprecedented economic
growth, higher demand for travel and changes in demographic trends, has led to
changes in patterns of travel. A comparison has been made by the DTO (1998) of
journey destinations in the morning peak period for surveys carried out in 1991 and
1997. In 1991 the city centre was the primary destination. However, the 1997 survey

showed that:
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e  While the city centre remains the main destination other destinations such as

Clondalkin/Tallaght have had a fourfold increase in trips made by car in the

interim and the area is the fastest growing destination in the GDA;

e Dublin Airport is a major destination for trips and there is an axis of travel

demand between the western towns of Blanchardstown, Clondalkin, Tallaght

and Dublin Airport; and,

e The other areas of increasing significance include Sandyford in the South and

the northern fringes of Dublin City.

These trends demonstrate the spread of development investment in low-density

suburban areas and of the substantial increase in population in the western towns of

Tallaght, Lucan, Clondalkin and Blanchardstown.

Table 2.7: Transport trip demand and growth from the DTO (DTO, 2000).

Peak Hour Demand Off-Peak Demand
Person trips | Growth since 1991 | Person trips | Growth since
1991
1991 Base 172,000 107,000
1997 Actual 250,000 45% 157,000 47%
1999 Actual 283,000 65% 179,000 67%
2016 Forecast 488,000 184% 256,000 139%

In accordance with other trends of growth in the GDA, private car ownership levels

have increased as the economy has prospered. The DTI used a base value of 248 cars

per 1000 of population in 1991 for the DTI study area while a value of 288 cars per

1000 of population was forecast for 2001, see Table 2.4. However, when an updated

model was produced, using 1996 as the base year, it was found that the value of 288

cars had already been surpassed with a value of 300 cars per 1000 of population being

used as the new base. The new forecast for the DTI study area was given as 350 cars
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per 1000 of population to be achieved by 1999. As is seen in Table 2.5, the actual value
achieved in 1999 across the GDA, a larger area defined by the DTO, was 342 cars per
1000 of population with a predicted value of 480 cars per 1000 of population by the
year 2016.

Table 2.8: Private cars licensed for the first time (Central Statistics Office (CSO),
2002).

New Private Cars

2001 160,908 Jan-Jul 2002 118,938 Jul 2002 14,386
2000 225,269 Jan-Jul 2001 129,641 Jul 2001 14,558
1999 170,322 Jan-Jul 2000 178,225 Jul 2000 19,728

The value of 480 cars per 1000 of population is well beyond the EU average of 450 cars
per 1000 of population. However, this forecast was produced by the DTO during an
economic boom that has since come to an end. From Table 2.8 it is apparent that the
number of new private cars licensed for the first time in 2001 was 160,908, a decrease

of 29% on the figure for 2000 but only a decrease of 6% when compared to 1999.

There were 118,938 new private cars licensed in the first seven months of 2002, a
decrease of 8% on the corresponding period of the previous year. In July 2002 and
2001, 14,386 and 14,558 new private cars were licensed compared to a figure of 19,728
for July 2000, approximately a 27% reduction. These figures have reflected recent
trends in the economy. As such, it is the state of the economy that will determine how

quickly Ireland will progress towards the EU average for car ownership.

2.5.3 Dublin’s transportation deficit

A key objective of the DTI strategy (Steer Davies Gleave, 1994a) was to achieve an
effective modal shift away from the use of the private car in favour of public transport.

This would improve the transportation environment in the GDA by reducing

N
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congestion, travel times, pollution, and improving accessibility, especially in the inner

city region.

The DTO defines a transportation deficit as ‘any increase in person-trips by private car
over that forecast by the Dublin Transportation Initiative (Steer Davies Gleave, 1994a)’
(DTO, 1998). Simplistically, this is viewed as a combination of an increase in the
demand for travel and a reduction in the market share of public transportation. As the
previous Sections have made clear, the DTI strategy fell badly short of initial
infrastructural and strategic targets, see Section 2.4.5. The level of demand for travel
has also increased by more than double what was predicted for 2001 in the 1991 DTI

model forecast, and this was achieved in 1999, two years prior to the forecast year.

In addition to these factors, institutional and regulatory inefficiencies, discussed in
Section 2.2, and a cumbersome and time consuming planning appeals system have
resulted in numerous delays to infrastructural projects and unrealistic strategic planning
targets for land use and transportation development. These trends have resulted in a

substantial transportation deficit in the GDA.

2.6 Future development in the Greater Dublin Area

2.6.1 The Strategic Planning Guidelines for the Greater Dublin Area

The SPG Report (Brady Shipman Martin et al., 1999) was produced as a “framework
for integrated land use and transportation for the sustainable development of the
GDA up to the year 2011” (SPGO (Strategic Planning Guidelines Office), 2002). The
SPG were prepared for the councils of Dublin City, Dun Laoghaire-Rathdown, Fingal,
Kildare, Meath, South Dublin and Wicklow and for the Dept. of the Environment and
Local Government, in conjunction with Dublin Regional Authority and the Mid-East
Regional Authority and produced by a number of consultants including: Brady Shipman
Martin, Kirk McClure Morton, Fitzpatrick Associates and Colin Buchanan and Partners.
This expertise was later formalised into the SPGO whose mandate has been to monitor

and update the SPG. The key elements of the SPG include:
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The encouragement of transport modes other than the private car, including a
better public transport system within the Metropolitan Area, see Figure 2.2,
and good links between Development Centres and the Metropolitan Area to
reduce car congestion and to better integrate these centres into the economy of

the GDA;

Incorporation of the principles of sustainable development as established in the

National Sustainable Development Strategy (DEHLG, 2002);

Extensive strategic green belt areas where development will be encouraged to

meet local needs and not those arising from commuting; and,

More concentrated development within the Metropolitan Area and within
Development Centres along transportation corridors in the Hinterland, see

Figure 2.2.

The SPG considered a number of relevant points from the National Sustainable

Development Strategy 1997-2002 (DEHLG, 2002) including:

The minimisation of potential growth in transport demand as a leading

consideration in land use planning;

Attempts to provide more sustainable and environmentally acceptable

alternatives to private car transport, especially public non-motorised transport;

The promotion of closer co-ordination between transport and land use

planning; and,

An intensification of the implementation of the DTI and making the public

more aware of the negative effects of vehicle transport.

The SPG attempted to make economic growth predictions in 1999. However, as a result

of the events of 2001 the Economic and Social Research Institute (ESRI) made

alternative predictions in their Medium Term Review 2001-2007 that the SPG have
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now adopted, see Table 2.9. Both forecasts predict an economic decline with growth

moderating at approximately 4.5% (SPGO, 2002).

The 2011 forecast for the population of the GDA in the SPG Report (Brady Shipman
Martin et al., 1999) was 1.65 million, see Table 2.10. However, this was increased to
1.76 million in the SPG Review and Update (SPGO, 2002) because of long term Central
Statistics Office (CSO) predictions. It was changed once again by the CSO ‘M1F2’
high or low net national in-migration forecast to between 1.8 and 1.73 million. During
the present economic uncertainty migration rates may fall however, in which case the
original 2011 population forecast in the SPG (Brady Shipman Martin et al., 1999) may

prove accurate.

Table 2.9: ESRI alternative growth predictions (ESRI, 2001).

Benchmark Forecast | 2000 2001 2002 2003 2004 2005 2006 2007

GNP 9.9 6.0 54 4.4 4.0 4.0 44 43
Employment Growth 4.8 43 oo 1.2 1.0 1.4 b 1.8

Unemployment Rate 4.3 3.8 3.6 43 33 5.8 < s e

el —— e
—

Siowdown Forecast 2000 2001 2002 2003 2004 2005 2006 2007

GNP 99 6.0 1.8 4.2 3.1 b 6.1 4.6
Employment Growth 4.8 43 -0.9 0.2 20 28 34 24

Unemployment Rate 43 3.8 .3 7.6 7.4 6.5 5.1 4.6

The household figures in Table 2.10 are based on a prediction that the average persons
per household will continue to drop to 2.5 by 2011. This trend along with increasing

population gives rise to a high demand for housing.

The SPG are used as the basis for planning in the GDA by all Government Departments
and Agencies, including Local Authorities, when preparing development plans. The

priority of the SPG is to control where this new development will take place in the
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GDA, see Figure 2.2 for an outline of the proposed ‘Development Centres’. This will
allow for a better balance between public and private transport by securing growth in a
limited number of locations along existing or future transportation corridors and
consolidating growth in the Metropolitan area so as to allow for future population

expansion (Brady Shipman Martin et al., 1999).

Table 2.10: Population and household predictions for the Greater Dublin Area
(Brady, Shipman and Martin, 1999).

Population (‘000) Households (‘000)

2001 2006 2011 2001 2006 2011

Natural Growth Only 1,463 1,511 1,545 491 544 604
Natural Increase plus

1,471 1,530 1,578 495 554 622
low in-migration
Natural Increase plus

1,481 1,552 1,611 501 566 640
medium in-migration
Natural Increase plus

1,491 1,575 1,650 507 579 661

high in-migration

From a transportation point of view the strategy for the Metropolitan Area is to:
e Consolidate development within the GDA and increase the overall density; and,

e Thereby provide the basis for a better public transport system and facilitate a

shift away from the private car and towards public transport.

This will lead to a more compact urban area and thereby reduce the overall demand for
travel provided that demand management measures (such as peak hour road use pricing
and parking restrictions) are introduced and implemented (Brady, Shipman and Martin

et al., 1999).
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The strategy for the Hinterland Area (the rest of the GDA) is to develop a number of
towns, each independent in terms of employment, shopping and social facilities. These
towns should be self-sufficient, as far as is possible, with little or no commuting to the
Metropolitan Area. The spread of development serving the Metropolitan Area and
generating a lot of commuting traffic “is neither environmentally sustainable or
economic and should be restricted using demand management techniques” (Brady,

Shipman and Martin et al., 1999).

The SPG recommend that demand management measures should be incorporated into

all strategic planning and implementation by the relevant authorities to:
e Reduce the overall growth in the demand for travel;
e Dissuade private car commuting; and,
e Encourage the use of public transport.

The SPG recognise the importance of the private car for transport in the Hinterland
Area and that improvement to the road network is required to facilitate this use.
However, commuting from the Hinterland Area to the Metropolitan Area should be
transferred from the private car to public transport through demand management policy
and decisions and through measures that dissuade commuting by private car such as

road user pricing.

2.6.2 An integrated transportation strategy for the Greater Dublin Area

‘A Platform for Change: Final Report’ was published by the DTO in 2001 and describes
an integrated transportation strategy for the GDA 2000 — 2016. The report was
prepared to support and compliment the strategic land use and transportation planning
framework described in the SPG for the GDA, published in 1999 and summarised in
Section 2.6.2 above. As such, the SPG are the basis upon which the DTO Strategy

rests.
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The DTO Strategy has a number of specific objectives for transportation in the GDA,

which are summarised here:

e Improve accessibility by reducing the demand for private transport, reducing
the need for private car commuting by improving the quality of public
transport and by reducing travel times and congestion on the road network to

1991 levels when the average speed in the morning peak hour was 22kph;

e Sustain economic development, foster sustainable land use and transportation

development and consolidate existing economic activity;

e Promote the implementation of the SPG for the GDA by consolidating growth
within the Metropolitan Region and promoting the self-sufficiency of the

‘Development Centres’ in the Hinterland Area, see Figure 2.2; and,

e Ensure that legislative, institutional and administrative structures optimise
implementation, make efficient and cost effective use of resources and meet

sustainable transport needs.

The DTO Strategy to achieve these objectives is an integrated one with two main
elements. The Strategy will only be effective if both of these elements are implemented

together and in a coherent manner:

¢ Demand management to reduce the growth in the demand for travel while not
harming existing or future economic development and encouraging the transfer
of trips from the private car to more sustainable modes of transport such as

public transport, cycling and walking.

e Infrastructure and service improvements to increase the capacity of the
transportation network including a substantial increase in the capacity of the

public transport network, some road construction and traffic management.
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2.6.2.1 Infrastructure and service improvements

The public transport elements of the Strategy are expected to provide for 300,000 of the
488,000 trips in the predicted morning peak period in 2016, compared to 70,000 in 2001
(DTO, 2001). This integrated public transport network will incorporate improvements
to DART and suburban rail, LUAS light rail system, METRO, an expanded bus

network and measures to improve the integration and attractiveness of the public
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Figure 2.10: Map of the existing strategic road network (black) and the
proposed strategic road network of the DTO Strategy (DTO, 2001).

transport network. A detailed map of the completed public transport network

infrastructure in 2016 can be seen in Figure 2.11.

A number of national road projects are included in the DTO Strategy for the GDA, see

Figure 2.11. These include upgrading orbital routes around Dublin (M50, the Dublin
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Port Tunnel and the Eastern By-Pass) and upgrading the arterial routes outside of the
orbital M50. However, there will be no additional road space on radial roads inside the
M50 or within the Metropolitan Area and new or improved roads will be accompanied
by the reallocation of road space on the road network to pedestrians, cyclists and public

transport users.

Traffic management is used to optimise the use of road space for users. In the short
term this means providing bus priority while long-term high capacity rail projects are

being completed. Other measures include:

e Improved pedestrian and cyclist facilities and the promotion of health and
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Figure 2.11: Public transport networks both existing and proposed by the DTO
(DTO, 2001).
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safety on school trips;

e Local traffic signal control centres to manage traffic, detect faults, observe
junctions and communicate problems on the network. The overall objective
being to reduce rat-running, pedestrian delays and congestion while increasing

bus speeds and improving safety;

e A Regional Freight Study to identify appropriate routes and restrictions for

freight and the development of traffic cells and traffic calming; and,

e A motorway control centre for the GDA, improved enforcement systems,
planned road works to minimise traffic delay and information systems so

people can make informed travel choices.

2.6.2.2 Demand management

The SPG states that the success of the land use strategy for the GDA is dependent on
the introduction and implementation of demand management measures, since physical
planning policies and traffic management can only partially reduce the demand for
travel. It has also been accepted by the DTO that the planned infrastructural and service
improvements, described earlier, are not capable of achieving the overall objectives of

the DTO Strategy and the SPG.

In the Metropolitan Area, see Figure 2.1, the objective is to reduce morning peak hour
(08:00-09:00) car journeys forecast for 2016 to approximately 1997 levels
(approximately 127,000 car journeys in the morning peak hour in the Metropolitan
Area). Within the hinterland of the Metropolitan Region measures should be designed
to achieve sustainable modal split and trip distributions for travel within the

“development centres” identified in the SPG (DTO, 2000) and other urban regions.

A demand management strategy is, therefore, a fundamental element of the overall
DTO Strategy. However, a comprehensive study, the Demand Management Study, is

necessary to develop this strategy whose primary aims will be to:
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e Reduce the growth in overall travel by motorised modes of travel in the Greater

Dublin Area;

e Effect further modal transfer from private car to public transport modes over
and above that achievable through the infrastructure and service enhancement

measures described in A Platform for Change;

e Achieve a good level of service on the road network for essential road users;

and to,

e Encourage more sustainable trip distributions and modal split throughout the

Greater Dublin Area.

The consultant will examine the demand management study tasks laid out below and

develop potential demand management measures under these categories:

e Economic or fiscal instruments including vehicle charges, fuel charges and taxes:
public transport fares; road pricing and/or congestion charging; and, parking

charges including charging for workplace parking;

e Land use policies including advice relating to the location, scale and mix of
development; parking standards; development densities and other key

development principles to facilitate sustainable travel; and,

e Management and control of public parking, on-street and public off-street parking

control and management plus park and ride.

Based on the results from above, a set of demand management measures for the Greater
Dublin Area will be recommended, which should meet the objectives listed. The study

commenced in September 2002 and is due for completion in January 2004.

2.6.3  Likely benefits to the Greater Dublin Area

There will be a number of positive impacts associated with implementing the overall

DTO Strategy by 2016:
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The transportation system will have adequate capacity for all users during the

morning peak period;

Most people within the GDA will live within a 10 minute walk of the
integrated public transport system, including the DART/suburban rail,
METRO, LUAS, and a Quality Bus Network, where it will be possible in most
cases for journeys to be completed with, at most, one interchange and using

only one ticket;

Table 2.11: Average 2016 AM peak period journey times in the Greater Dublin

Area (DTO, 2001).

Without the Strategy With the Strategy
Bus 47 29
Rail 38 18
Car 94 5 i
Weighted average 76 34

As a result of the reduction in congestion the average journey times will reduce
dramatically with bus, rail and private car average journey times being 37%,
53% and 39%, respectively, less than if the Strategy were not implemented, see

Table 2.11;

With less private cars on the road network, it is predicted that public transport
will have 63% of the total transportation market in the GDA and 85% of the
market for city centre destinations. This compares favourably to 35% and

72%, respectively, if the Strategy were not implemented, see Table 2.12;

Some other benefits include reductions of 41% in energy consumed, 34% in

emissions and 35% in accidents;
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e Access to the airport and the city centre will improve by 43% and 23%,

respectively, in the morning peak period; and,

Table 2.12: Predicted transportation mode split in the morning peak period (DTO,
2001).

1991 1997 2016
Bus 44,000 26% 47,000 19% 69,000 14%
Rail 18,000 10% 21,000 8% 239,000 49%
Car 110,000 64% 181,000 73% 180,000 37%
Total 172,000 100% 249,000 100% 488,000 100%

e The urban areas within the GDA will become more attractive to business, have
better employment potential and capacity and become focal points for leisure

and retail activities.

According to the DTO, morning peak commuters using their car rather than bus or rail
to travel has fallen from 72% in 1997 to 70% in 2002 while the numbers using Dublin
Bus have increased by 40%, which represents the first time that bus travel has increased
its market share since the DTO started surveying. This increase is due primarily to

progress in the completion of the QBCs.

When the DTO produced their traffic model in 1997 they forecast the number of
morning peak commuters at 488,000. The current figure is now over 460,000, which
gives a clear indication of the size of the transportation challenge being faced (DTO,
2002). It is expected that the forecast of 488,000 will be exceeded in the next few

years, well before 2016, even considering the expected levelling off of travel demand.

The transportation deficit in the GDA differs from that of other cities that have
implemented congestion charging schemes in that there are infrastructural as well as

demand management challenges. For instance, the public transport network and
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highway infrastructure of the Greater London Area is very good in comparison to the

GDA, yet the demand for road space and congestion difficulties were still high enough

for it to be viable to implement a road user charging scheme, see Chapter 3, Section

3.6.2.1 for more details. Similarly, Singapore is a crowded city-state with a good

infrastructure taking up 11% of the gross land area of the island (Foo, 2000) but it has

still needed to control the demand for road space using demand management techniques

including road user charging, see Chapter 3, Section 3.6.2.2 for more details.

2.7 Summary of the Development within the Greater Dublin Area

The planning system in Ireland depends on the private sector to put forward
potential development projects. As such, it can be considered flexible to
pressure for or against development and lacks long term strategic values, see

Section 2.2.

Proposed institutional arrangements include the establishment of a strategic
land use and transport body and deregulation of the public transport sector to

facilitate a transport market, see Section 2.2.

The new institutional and regulatory measures should help facilitate the
National Development Plan 2000-2006 objectives of addressing projected
traffic growth through transport infrastructure and demand management

measures, see Section 2.2.

The majority of reports produced before the DTI began in 1988 failed to
address the interactions between land use and transportation, concentrating on

one or the other, see Section 2.3.

The DTI began a transport planning process in 1988 permitting regular review
and assessment of the impacts of land use and other policies on transportation

and vice versa, see Section 2.4.

In 1992, Phase 2 of the DTI began resulting in the production of the DTI
Strategy in 1994 laying out transportation plans for Dublin, see Section 2.4.
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Due to the fact that the DTI did not have any planning powers they produced a
number of possible land use development scenarios with different growth

levels for the future, see Section 2.4.

The objectives of the DTI Strategy were to encourage economic regeneration
and development and to help maintain and reinforce Dublin City centre as the

countries prime commercial and cultural centre, see Section 2.4 and Appendix

1

The DTI Strategy measures included: improving public transport and not
letting the private car dominate the transport system; emphasising the
movement of people and goods; bringing greater equity to the transport system;
and, providing an integrated approach to transportation and land use, see

Section 2.4.

The DTI Strategy could never provide a definite long-term solution because it
was based on future land use scenarios. A land use strategy would have to be
designed to complement it, which was recognised in 1999 with the production

of the SPG, see Section 2.4.

The 4-stage transportation modelling approach was used to produce the
DTNM, which uses trip generation and attraction, trip distribution, modal split
and trip assignment (using the SATURN traffic simulation and assignment

model), see Section 2.4.4.

Substantial delays to implementation of the DTI Strategy were unavoidable
due, in part, to the division of responsibility amongst a number of agencies, see

Section 2.4.

There has been a huge surge in traffic growth since the DTI began, which has

added to delays in implementing the DTI Strategy, see Section 2.5.

Forecasts for population and traffic growth have been very conservative, actual

trends have outstripped all expectations, i.e., predicted population for 2001 was
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exceeded in 1997 and the level of demand for travel has increased by double

what was predicted for 2001 in the 1991 DTI forecast, see Section 2.5.

The institutional and regulatory inefficiencies; the cumbersome and time
consuming planning system; and, the high economic growth since the DTI
began, have resulted in delays to infrastructure projects and unrealistic
planning targets resulting in a substantial transportation deficit in the GDA, see

Section 2.5.

In 1999, the SPG, a “framework jor integrated land use and transportation
for the sustainable development of the GDA up to the year 20117, was
produced, see Section 2.6, which provided the first co-ordinated settlement

plan for the GDA and the starting point for the latest transportation plans.

From a transportation perspective, the SPG objectives are to consolidate
development and increase density in the GDA so as to provide a basis for a
better public transport system, and, to facilitate a shift away from the private

car to public transport, see Section 2.6.1.

The SPG recommend that demand management measures should be
incorporated into all strategic planning and implementation to reduce traffic
demand, dissuade private car commuting and encourage the use of public

transport, see Section 2.6.1.

The DTO 2000-2016 Strategy also advocates an integrated transportation
strategy involving demand management and infrastructural and service

improvements, see Section 2.6.2.

It is recognised that a comprehensive study is necessary to develop a demand
management strategy to reduce growth in overall travel by private car and to

effect further modal transfer from private car to public transport modes.

Likely benefits of implementation of the DTO Strategy include between 27%

and 57% less congestion than if the Strategy was not implemented. Other
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benefits include reductions of 41%, 34% and 35% in energy consumption,

emissions and accidents, respectively.

When compared to the situation in other cities that have implemented
congestion charging schemes it appears that the GDA needs some form of
demand management measures to be implemented due to the dual problems of
having insufficient infrastructural highway and public transport networks, and,

a fast growing trip demand.

68



Chapter 3

Road User Charging and the
Greater Dublin Area: Literature

Review.

69



Chapter 3

3.1 Introduction

Traffic congestion is a serious problem in many urban centres. Increases in population,
car ownership and economic development have led to increased numbers of trips, which
have in turn put urban road networks under considerable pressure. In general,
investment in public transportation has failed to keep pace with these increases. As a
result, the public transport network has, for the most part, been unable to provide an
attractive alternative with adequate levels of service and consistent journey times. This
failure of public transport to provide a viable alternative to the private car has lead to
increased congestion and environmental damage in urban areas. With limited funding
for the supply of additional transportation infrastructure to cater for the increase in trip
demand, it appears that the only option is some form of restraint, in other words, some
form of demand management, as suggested by Goodwin et al. (1991). This can be
achieved through either regulatory traffic restraint or through increased trip demand
management, using road pricing mechanisms in order to better utilise the existing urban

road network.

While congestion charging, or congestion pricing, is the application of a charge to
reduce the demand for trips, and hence reduce congestion, a broader group of policies is
more usually known as road pricing. This broader group includes charging for road use
through tolls, parking charges or other means, in order to find new revenue sources for
transportation investment and, due to the failure of alternative, more conservative,

policies, to significantly reduce the growth of traffic congestion.

The first real comprehensive contribution to the application of pricing theory to road
pricing practice and implementation was the Smeed Report, published in 1964 by the
UK Ministry of Transport. Over a decade later, in 1975, the first road user pricing
scheme was implemented in Singapore. Singapore’s Area Licensing Scheme (ALS)
was also specifically designed to reduce traffic congestion. There have been other road
user pricing implementations since then including the Norwegian toll rings around Oslo,
Trondheim and Bergen, and, most recently, a city centre cordon scheme has been

implemented in Central London. A number of other trials and studies have taken place
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in Hong Kong (1985), the Randstad Region of the Netherlands (1988), Stockholm in
Sweden (1991) and in the United Kingdom. Local authorities in the UK, including
Leeds, Cambridge, Edinburgh, Bristol and Leicester have taken an interest in road user
pricing schemes since new powers were given by the government to allow road pricing

to be used to raise revenues for investment (UK DETR, 1998a).

Successful implementations of urban road pricing schemes have, however, been limited
to Singapore, Norway and London while single facility congestion pricing has been
implemented in France and the USA, in particular. A number of other places are
considering the use of road pricing schemes to achieve a range of objectives but have
come up against a number of problems, the largest obstacle of which remains the

problem of securing political and social acceptance (Jaensirisak, 2002).

This chapter presents a literature review of road user pricing. Section 3.2 describes the
development of road user charging, in particular the theory associated with traffic flow
and congestion economics and congestion charging itself. Section 3.3 briefly describes
the general principles of road user charging design and implementation. Section 3.4
looks at the issues associated with the political and social acceptability of road user
charging and ways of increasing the level of acceptability from the general public’s
point of view. Section 3.5 examines the effectiveness of road user charging using
information from pre and post implementation studies. Section 3.6 follows on from this
with a brief examination of previous studies in the area and a summary description of
existing road user charging implementations. Section 3.7 examines the price elasticities
of user demand associated with pricing measures drawing conclusions based on
international experience for this research. Finally, Section 3.9 and 3.10 examine

demand management in the GDA and conclude the chapter, respectively.

3.2 Development of road user charging

3.2.1 Introduction

Road user pricing is a transport policy that charges road users for using their vehicles on

certain roads or road networks. Jones and Hervik (1992) give two definitions of road
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user pricing, one in terms of transport engineering and planning, and the other in terms

of economics.

(1) Engineers and planners define road pricing as the application of a charge for the
use of a road. Road pricing can be used as a tool to achieve a number of
objectives including the reduction of traffic congestion, the reduction of
environmental damage and pollution, and for generating revenue to finance road

developments and public transport infrastructure and services.

(2) Within the field of economics road pricing is defined as the application of a
charge equal to the difference between the social marginal cost and the marginal
private cost of a journey in order to internalise the externalities associated with
the journey, such as traffic congestion, environmental pollution, traffic

accidents, etc.

The term road pricing is an ambiguous term but is generally used to describe the
application of a charge, or toll, for the use of road infrastructure (Thompson, 1990).
The Smeed Report (UK Ministry of Transport, 1964) applies the term to both direct and
indirect charging of road users. Direct and indirect charging are described by Lewis

(1993):

e Indirect methods of charging relate to ownership and usage of a vehicle. Fixed
charges such as purchase tax and license fees are usually applied while variable
charges such as taxes on tyres, fuel, oil, etc. vary. Other charges for usage of a

vehicle include parking tax and area license charges; and,

e Direct charging involves charging specifically for the actual time spent
travelling or the distance travelled on the road network. In this case the

economic optimum can be exceeded and is used for demand management.

Other terms, such as road user charging and congestion charging in the UK, congestion
pricing in the USA (Giuliano, 1992), and terms such as road tolling, value pricing and

variable pricing have been used to describe different types of road pricing initiatives.
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See the TCRP Report (2003), Chapter 14, for a review of value pricing from a U.S.A.

perspective.

Road user charging and congestion charging have, in general, been used to describe
direct charging schemes while the term congestion pricing is only used to describe the
pricing objective of reducing traffic congestion. This is done by charging in direct
proportion to the levels of traffic congestion encountered by the user (Gomez-Ibanez
and Small, 1994). The Transportation Research Board (1994), suggest that congestion
pricing be applied during peak periods using direct charging methods. Variable pricing
has been used to describe road pricing schemes that have variable charges and/or
variable periods of charge to encourage a shift of demand to off-peak periods or other

modes.

When the charge associated with a road pricing scheme is known as a road toll, this
defines the application of a fee by government or private investors upon categories of
users of a road infrastructure for one or more purposes, including financing, building,
maintaining, operating and improving the infrastructure and associated services. Traffic
demand management is not the primary goal of such schemes. In the USA the term
congestion pricing has been replaced by the term value pricing (Orski, 1998), which
was introduced in 1995 by the operators of the SR91 Express Lane Scheme in Southern

California as part of a marketing plan to make the scheme more acceptable.

3.2.2  Traffic flow and congestion economics

Congestion generally occurs as a result of an increase in traffic flow. The volume of
traffic consists of vehicles whose drivers wish to minimise their own journey time. The
speed and flow of traffic is, therefore, entirely dependent on the behaviour of each

vehicle’s driver.

On an unobstructed straight road free flow exists where traffic volumes are low and
faster drivers are able to overtake slower drivers if they wish to do so. Hence, they are
not adversely effected by other drivers’ behaviour, see Figure 3.1 (a). This is termed

stable flow. Where traffic volume is high each vehicle’s speed is dependent on that of
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Figure 3.1: Distance versus time of vehicle trajectories under (a) free flow and

(b) unstable flow during a shock wave effect (Lewis, 1993).
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Figure 3.2: Cost versus volume showing (a) the average variable cost according to

volume and (b) the supply contrasted with demand in the lower part of the curve
(Lewis, 1993).

the vehicle in front. Each driver must react, i.e., accelerate or decelerate, depending on
the behaviour of the driver in front, establishing a shock wave effect back through the

traffic flow, see Figure 3.1 (b). This is termed unstable flow. As the density of traffic

rises, speed and the traffic volume decrease. If the road is near capacity the shock wave
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effect may result in traffic coming to a halt, resulting in forced flow. As the queue
forms and congestion increases, each additional vehicle contributes to the congestion,
thereby imposing a delay, and hence a cost, on other drivers (Walters, 1961; UK

Ministry of Transport, 1964).

To determine the economic effects of congestion a value of time to travellers must be
established. The external cost of congestion is found by multiplying the average value
of time by the delay. When the vehicle operating costs and the variable road
maintenance costs are added to this the overall cost of congestion can be shown to
behave like the curve in Figure 3.2 (a), which represents the average variable cost
(AVC) increasing slowly under free flow conditions and asymptotically under forced
flow conditions. The AVC curve climbs upward because of the negative interactions
that occur before the traffic reaches maximum capacity, Qmax. It is variable in the
sense that as traffic flow is increased, congestion delay sets in rapidly well below the
maximum capacity, Qmax. This gives us a representation of supply (cost). After the
basic ‘engineering’ maximum capacity, Qmax, is reached the AVC curve becomes an
‘inverse supply’ curve (Hau, 1992a). Hau (1992a) also notes that the standard supply

curve does not exist in the context of roads.

The supply curve can be made congruent with the demand side when the demand curve
is specified to depend on the travel cost (price) facing a traveller for a single trip, see
Figure 3.2(b). When the demand curve intersects the AVC curve, point U, then a stable
equilibrium is said to exist at Qo (Hau, 1992a). Theoretically, whenever the AVC curve
rises the marginal cost curve lies above it. The marginal cost curves show the private
cost of any additional trip as perceived by the driver, and, the higher marginal social
cost of the trip representing the cost of delays and other external costs to other drivers,
which are imposed by the additional trip. The difference in the marginal private cost for
each trip as perceived by the driver, and the social cost that trip imposes in terms of
delays on other drivers, represents the marginal (external) congestion cost associated
with the trip. Since each driver chooses to drive or not based on the AVC curve, the
decision curve, the resulting external congestion cost imposed on other drivers is totally

ignored (Hau, 1992a). Therefore, the traveller will not reduce the number of trips that
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are made unless this external cost is quantified in the mind of the driver. However, if
the driver is charged this difference, thus internalising the externalities associated with
each trip, then a more balanced demand will result (Lewis, 1993). In figure 3.2(b) the
optimal point, T, at which the social marginal cost curve intersects the demand curve
gives the point, Q, being the optimal output in the sense that the total cost of a trip (the
marginal social cost including both external costs, operating costs of a vehicle and

variable maintenance costs of a road) is equated to the price, or cost.

Road user charging has been widely suggested by transport planners and economists as
a solution to the problem of congestion. According to Lewis (1993), a driver’s
perception of their real cost of travel is key to their behaviour. However, drivers do not
perceive these costs and hence, do not take them into account when making the decision
to take a trip. Therefore, it is important to devise a mechanism to allow the driver to
clearly perceive the real costs of the trip and to charge the external cost, either in terms
of delay or marginal social cost, imposed on other vehicles to the driver (Vickrey,

1953).

3.2.3  Congestion charging

The theoretical and empirical relationships governing road congestion in urban areas are
well founded in the economics and transportation engineering literature (Pigou, 1920;
Walters, 1961; Hau, 1992a). Consequently, most urban economists and an increasing
number of policy makers agree that the best policy to deal with the problem would be to
introduce some form of congestion charging (Small and Gomez-Ibanez, 1998). For
instance, the Dublin Transportation Office (DTO, 2000) concluded that some form of
demand management would have to be used in conjunction with infrastructural
improvements in order to improve the traffic congestion problems in the Greater Dublin
Area (GDA). From a European perspective, the High Level Group on Transport
Infrastructure Charging (HLGTIC, 1999), convened by the European Commission,
concluded that there is a need for an EU level approach to infrastructure charging that

includes all the major transport modes. The underlying objectives being to create
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efficient transport systems in Europe in order to strengthen Europe’s economy and

contribute to the ‘greater sustainability’ of the transport system (HLGTIC, 1999).

Pigou (1920) and Knight (1924) were the first to study the economics of road user
pricing in specific detail. They used an example with two roads, arguing that through
the application of a toll on a congested road the total travel time would be reduced, and,
that the road space would be used more efficiently leading to a net benefit to society.
Walters (1954) continued this train of thought suggesting that congestion can be
reduced by bringing the marginal private cost of running a vehicle closer to the marginal
social cost. Vickrey (1955) also suggested that marginal costs should be considered in
price schemes to achieve greater utilisation. However, in a later publication Vickrey

concluded that:

“In no other major area are pricing practices so irrational, so out of date, and so

conducive to waste as in urban transportation.” (Vickrey, 1963)

In 1964 the Smeed Report became a watershed in the study of road user pricing theory
and practice and a number of economic studies have taken place since its publication.
Some of these include those of Vickrey (1969), Newbery (1990), Small (1992), Verhoef
(1996, 1999), and Hau (1992a, 1992b, 1998). The more recent studies have
concentrated on the specification of demand and supply for congested networks.

However, researchers disagree on the analysis of choice and debate continues.

The flow analysis, see Hau (1992a) and Verhoef (1999), uses a static model with the
flow based approach to describe the relationship between the demand function and the
supply function, and hence, give a representation of the transportation network
performance, see Figure 3.2(b). May et al. (2000) assessed behavioural responses such
as route choice and time of travel by measuring the costs to users using individual
vehicle tracking across the network instead of during a set time period. Using micro-
simulations the issue was discussed further in a UK Department of the Environment,
Transport and the Environs project entitled ‘Analysis of Congested Networks’™ (UK
DETR, 2001), carried out by the Institute of Transport Studies (ITS, Leeds), Transport

Operations Research Group (TORG, Newcastle upon Tyne), John Bates’ Services and
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the Transport Research Laboratory (TRL). It was found that using performance curves
to estimate supply curves was unreliable in that the levels of congestion observed where
congestion charging would be recommended are overestimated while the effects of

congestion charging schemes are underestimated.

Figure 3.3 shows the economic components involved in road user pricing. In
examination of this figure it is noted that a driver currently makes the decision to
undertake a journey based on the perceived average variable cost of that trip. This

includes vehicle operating costs, time costs and road maintenance costs paid through
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Figure 3.3: Graph of the economic components involved in road user pricing

(Lewis, 1993).

taxes. External costs associated with the trip are not considered in the decision process.
In terms of road user pricing economics, the equilibrium point occurs where the demand
intersects the marginal cost curve. At this point the vertical difference (A) between the
average variable cost curve and the marginal cost curve represents the external
congestion cost resulting from an additional trip. The difference (B) refers to the user
operating cost and time borne directly by the user and (C) refers to the road
maintenance cost. Verhoef (2003) looks at key implementation issues associated with

the introduction of marginal cost pricing in transportation. From a demand management
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perspective this economic optimum pricing charge may be exceeded in order to restrain
or reduce traffic volumes. At this point road user pricing becomes congestion charging
where the charge is designed specifically to reduce trip demand and not just to

internalise external costs.

A successful urban road user charging system must address the viewpoints of the
different groups that are affected by it (Lewis, 1993). While the social aim is to ensure
that the social welfare function is maximised, i.e., that there is an overall net benefit to
society, it is recognised that costs and benefits to each group will vary in terms of time
and money. Users with high values of time may be better off at the expense of others.
The London Congestion Charging Research Programme into road pricing has identified
these Impacted Behaviour Groups (IBGs) and their respondents (MVA, 1995), see
Table 3.1. Table 3.1 shows a list of respondents who are impacted in different ways
depending on their lifestyle. For instance, a respondent falling into the category group

‘traveller” will most likely describe strong behavioural impacts to their mobility.

The goal is to ensure a positive benefit/cost ratio for any particular group (Lewis, 1993).
However, optimising the benefit/cost ratio may not correspond with the optimisation of

the revenue/cost ratio. In other words, though the optimal pricing charge may be

Table 3.1: Impacted behavioural groups (IBGs) and their respondents (Lewis,
1993).

Group Respondent

Spatial Land user

Socio-economic General public and residents
Mobility Traveller

Journey purpose Employee/shopper/recreation
Public service provider Health/education

Transport provider Operator

Business Employer
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desirable from an economic standpoint, from a social or practical viewpoint, e.g.,
congestion charging, deviation from the economic theoretical optimum is more than
likely, which inevitably makes it more difficult to ensure a net benefit for every group.

This leads to a discussion of ‘first-best’ and ‘second-best’ congestion charging.

‘First-best” congestion charging is a theoretical ideal. ‘First-best’ congestion charging
would be to charge each road user a fee that is equivalent to the increased costs the
users’ presence on the road implies for all other road users determined at a precise level.
As such, the charge level should theoretically vary not only with the time of day and the
type of road but with the specific time values of the road users that happen to be present
on the road at the same moment. This is currently too complex for practical
implementation on a road network. Therefore, any ‘second-best’ congestion charging
scheme, referring to any scheme that is not ‘first-best’, that might be implemented is
simplified as much as is necessary and be predictable to the road user as to the charge
level (Mattsson, 2003b). For instance, road user charging should be closely related to
the amount of direct usage so that a driver who uses the network more pays more
(Lewis, 1993); however, in practical implementations (Singapore and London) caps
have been placed on the maximum that a driver can be charged per month, which
appears to limit this ‘first-best’ ideal for practical reasons resulting in a ‘second-best’

solution.

3.3 Urban road user charging design and implementation

3.3.1 Introduction

Any road user charging system needs to be equitable, efficient and acceptable to the
majority of users (Jones, 1998). The objective of an urban road user charging system
should reflect the policy objectives of the governing transportation authority. This, in
turn, will be reflected in the authority’s transport planning framework. This planning
framework is usually largely concerned with matters associated with trip generation-
attraction and trip distribution. However, trip generation-attraction and distribution are

generally dependent on a number of factors including topology and land-use,
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residential, commercial and industrial location, the existing transportation network, and,

other factors that may be out of the control of the transportation authority.

Therefore, the policy objectives of the authority should be clearly defined with respect
to road user charging. These objectives may be to reduce congestion, raise revenue for
transportation infrastructure, reduce the demand for travel and hence the level of
environmental pollution, reduce the demand for the construction of new roads or to act

as a rationing mechanism for scarce road space.

3.3.2  Basic design criteria

One of the most important areas of focus in reducing traffic congestion is the reduction
of non-essential vehicle trips in peak periods (Lewis, 1993). A list of basic design
criteria has been formulated for the implementation of road user charging schemes in

the Smeed Report (UK Ministry of Transport, 1964):

e The majority of users should find the road user charge, and the charging system,

acceptable and fair;
e The road user charging scheme should be both easy to understand and to use;
e The system should have a high degree of reliability;

e The road user charging scheme needs to be accurate and the public need to be

able to verify prices before they embark on a journey; and,

e The scheme should be enforceable against both fraud and evasion, be it either

deliberate or unintentional.

Other criteria have been added since then by Thompson (1990) and Hau (1992b), which

have been referenced by Lewis (1993) as follows:

e The charging scheme should be designed to protect individual users’ right to

privacy while allowing them to check their account and charges levied;

81



Chapter 3

e The scheme should be able to integrate with other services and infrastructural

systems, particularly those associated with driver information systems; and,

e Technology should be utilised to achieve a road user charging scheme based on

the criteria set out above.

3.3.3  Practical aspects of design and implementation

From a practical standpoint a number of studies have been produced that look at the
main aspects of implementing a road user pricing scheme. These include work by May
(1992), Hau (1992b), Lewis (1993), Gomez-Ibanez and Small (1995), Small and
Gomez-Ibanez (1998), and, Jones (1998). Once the objectives of the scheme have been
ascertained five specific areas of practical importance must be addressed before

implementation of the scheme. These have been described by Jones (1998) as:
e The type of traveller or vehicle to be charged:
e The area where the charge is to be applied:
e The time period in which to apply the charge:
e The level of charge; and,

e The characteristic on which the charge is based, i.e., based on the amount of time

spent travelling, or on the distance travelled, etc.

Categorising the vehicle types to be charged becomes easier once the objectives of the
scheme have been defined. Jones (1998) suggests that some types of traveller or vehicle
should be made exempt depending on the objectives of the scheme. For instance,
pedestrians and cyclists are always exempt because there are no external costs
associated with their movements. If the scheme objective is to reduce pollution then
energy efficient cars may be made exempt, while in the case of congestion reduction

public transport may be made exempt. Other travellers or vehicles to be considered
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include the emergency services, goods vehicles, residents within a charged area,

motorcyclists, disabled drivers and high occupancy vehicles.

When considering the charged area there are three categories of implementation size,
which have been noted by Decorla-Souza (1993). Once again the scheme objectives
determine the scale of the system to be implemented. The most basic definition for the
charged area is used in single facility pricing, where a section of road or a bridge
represents the charged area, see Section 3.6.5 for an example. The most common type
of charged area is used in area-wide pricing, where a cordon is applied to a specific
area, usually a city centre or a central business district. This type of scheme has been
introduced in Singapore, the Nordic cities of Oslo, Trondheim and Bergen, and, most
recently, Central London. The third type of area involves large scale region-wide
pricing, where a large urban regional area is covered by the scheme; for example the

Ranstad Region of the Netherlands, see Section 3.6.4.

The duration and time of day of the charged period is also dependent on the scheme
objectives. For instance, in the case of a required congestion reduction the charged
period may be one or two hours during the morning peak period or a blanket congestion
charge during the working week like in the London congestion charging scheme, see
Section 3.6.2. However, where revenue collection is a priority a 24-hour charged period
may be used in conjunction with a lower charge like that in Oslo. The level of charge is
also closely related to the scheme objectives. A higher charge is generally used for
reducing traffic volumes and pollution whereas a lower charge would be used where
revenue collection is a priority and the controlling organisation does not want to price
users off the road, for example, the Nordic cities of Oslo, Trondheim and Bergen (Small
and Gomez-Ibanez, 1998). The charge level can also vary depending on the type of

user or vehicle, by time of day, by area, or depending on the direction of traffic.

Jones (1998) describes two broad bases upon which road user charging schemes can be
described; area-based and point-based. Within the point-based group there are cordon
and cellular oriented schemes (MVA, 1995). Cordon schemes involve one or more

boundaries and may also use a number of screen lines. Cellular schemes are similar but
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use a number of cells over a wider area. Both types charge when a boundary is crossed,
though ceilings can be put in place for the maximum amount one person can be charged

per day, week or month.

There are many types of area-based charging schemes including those which are
congestion oriented, time oriented, distance oriented, externality oriented or make use of
supplementary licensing. Congestion schemes apply a charge to users travelling during
congested periods in the designated charge area. When congestion dissipates then,
ideally, so should the charge. This theoretically ideal congestion charging scheme,
where charge is applied directly in relation to the levels of congestion experienced, was
attempted in Cambridge (Oldbridge, 1995), see Section 3.6.2. This type of scheme can
also use a charge based on the delays experienced by users but this may induce unsafe

driving behaviour (Bonsall and Palmer, 1997).

Time-based charging schemes involve charging users for the amount of time spent
travelling within the charge area. While this may seem like quite a fair method of
charging it may induce unsafe driving practice and lead to an increase in accidents,
although there are no studies to prove this. This contrasts with distance-based charging
schemes, which are similar but more predictable because of users’ route choice and,
according to Bonsall and Palmer’s (1997) study using a driving simulator, are far less
likely to encourage unsafe driving behaviour. It should be noted that no full scale real

studies have been undertaken to prove this conclusively.

Singapore’s Area Licence Scheme (ALS), from 1975 to 1998, has been the best
example of the use of a supplementary licence scheme to date. May (1975) defines such
a scheme as the purchase of a licence to be displayed on any vehicle used within a
charged area. This scheme was replaced in 1998 by an ERP system (Menon and Chin,
2000), which has also been introduced in Central London (GOL, 2000).
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3.4 Political and social acceptability of road user charging

3.4.1 Introduction

To implement an urban road user charging system; political will, social acceptance, the
willingness of the public to pay the charge, budgetary constraints and the availability of
alternatives are fundamental to the success of the scheme (PRIMA, 2000). The lack of
public acceptance is probably the largest obstacle to implementation of road user
charging (Jones, 1998). The public must recognise an overall net benefit to their own
independent interests. The problem has been well formulated by Zettel and Carll
(1964). Once an urban road user charging system has been introduced people fall into

three broad groups:

(1) Individuals who are ‘tolled’ must pay for a commodity that used to be free

(Giuliano, 1992; Small, 1992).

(2) Individuals who are ‘tolled off> must use less desirable modes of transport,

routes or times of travel.

(3) Individuals who are ‘untolled’, i.e., public transport users, are worse off because

of increased congestion of the public transport network.

Hence, almost everyone, except those with a very high value of time, is worse off. It is
therefore necessary to implement a policy that makes peoples lives better off, improves
the environment and makes the economy more efficient (Goodwin, 1997). To do this it
is imperative that revenues gained through road pricing are shown to be used in such a
way as to increase public benefit. Making the public more aware of the positive
benefits of a road pricing scheme can be done through a number of ways including
investment in road developments, the environment and public transport infrastructure
and services, and, by reducing vehicle related taxes. When the public are made more
aware of the likely benefits then they are more willing to pay (Transportation Research

Board, 1994).
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3.4.2  Acceptability of road user charging

Each individual of the public is a member of a different class or group of people. Once
their behaviour has been affected they become part of one of the Impacted Behavioural
Groups (IBGs) or interest groups (Small, 1992). These groups carry more relative
weight than individuals and can lobby on behalf of their members to exert pressure.
Any policy initiated by a governing, or transportation, authority must, therefore, attract
the support of the strongest, or largest, IBGs while trying to avoid alienating minority

groups. See Table 3.2 for a typical breakdown of interested groups.

In 1991 surveys in the United Kingdom showed increasing public support for measures
to overcome traffic congestion, which included road pricing, provided that other
elements of traffic restraint and an enhancement of public transport alternatives were

included (Jones, 1991). The most common general requirements were:

Restriction of cars in inner cities;

e Improvement of public transport alternatives:

e Enforcement of parking controls;

e Improvement of road links and intersections, and, traffic management;
e Introduction of traffic calming measures; and,

e Improvement of pedestrian and cycle routes.

Several attitudinal surveys towards road user charging have been carried out in the UK
over the last decade, see Table 3.3. On examination of these results large differences
are noted. There are a number of reasons for this. In London the results are far more
positive than for the UK nation-wide surveys. This could be due to the fact that there is
a higher percentage of non-car users in London. GOL (2000) reported that 30% of car
users thought road pricing to be a positive idea, whereas 54% of the general sample
agreed with the concept of road pricing. Another possible explanation is simply that

congestion is far more of a problem in London than in other smaller urban centres and
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Table 3.2: Interest groups (Small, 1992).

Industries User groups Environmental groups Residents
Motor Motorists Walkers/cyclists Pedestrians
Freight Truckers Anti-pollution Recreation
Public Transport Passengers Rail travellers Shoppers
Road building Contractors Conservationists Home owners

Table 3.3: Acceptability of road user pricing (Partial source: Jaensirisak, 2002)

Case study | Source Year of | Results
survey
UK Jones (1991) 1991 30% support
Nationwide
Taylor and Brook | 1993, 18% support of pricing in city centre (1993)
(1998) 1995, 25% support of pricing in city centre (1995)
1996 30% support for £2 charge for entering city centre at
peak times (1996)
CfIT/MORI 2000 27% support
(2000)
CfIT/MORI 2001 37% support
(2001)
London NEDO (1991) 1991 43% acceptance
Halcrow Fox and | 1992 37% acceptance of car users
Associates (1992)
London First | 1999 76% support (£5 daily car charge between 7am and
(1999) 7pm inside Inner Ring Road with resident
discounts)
GOL (2000) 1999 53% of respondents positive
30% of car users positive (£5 daily car charge in
Central London and £2.50 for Inner London)
Oslo Oscar Faber et al. | 1990 33% positive, 66% negative at opening of toll ring
(1998) 50-60% using automatic toll lanes in 1998
Bergen Oscar Faber et al. | 1986 54%  negative, 13%  positive  before  ring
(1998) implementation
>50% positive within one year of operation
Trondheim | Oscar Faber et al. | 1991 72% negative, 8% positive 6 months prior to opening
(1998) 1996 ring
48% negative, 19% positive 2 months after opening
(1991)
36% negative, 32% positive, 27% indifferent (1996)
Cambridge | Thorpe et al. | 1994 34% acceptance of city centre car charge (73%
(2000) travelled into the city centre once a week or less)
Leeds Schlag and | Not 8-16% support for different pricing schemes: distance
Schade (2000) Known pricing, congestion pricing and cordon pricing
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the public don’t see too many other alternatives to address the congestion problem other
than road pricing. These differences may also be accounted for where different road
user charging scheme characteristics were presented. However, the main difference in
results is most likely associated with the presentation of different charging schemes
themselves, which tend to have considerably different levels of social and political
acceptance. With regard to the different types of road user charging schemes, results
referenced by Glazer et al. (2001) appear to confirm a negative response from the public
to differential road user pricing such as distance-based, time-based and delay-based
charging when compared to a fixed charge type scheme. Taking London as an example
it is noted that of the two surveys conducted in the year 1999, the London First (1999)
survey resulted in a 76% support while the GOL (2000) survey resulted in a much lower
53% support. The GOL used a daily charge of £5stg for driving in Central London and
£2.50stg for driving in Inner London. London First (1999) presented a scheme where a
charge of £5stg per day between 7am and 7pm would be charged inside the Inner Ring
Road and a discount of £104stg per annum would be afforded to the residents within the
cordon. It appears that the London First scheme was far more acceptable to the general
public with 23% more support. See Section 3.4.3 for more detail on the effects of the

different types of road user charging on acceptability.

Luk and Chung (1997) have found that in other countries the range of acceptability
usually lies somewhere between 15% and 50% acceptance, unless the public have
practical experience of a successful charging scheme, in which case there is an increase
in acceptance, for example, in Singapore where the level of acceptance has risen to
above 50%. The Oslo experience has also demonstrated that acceptance increases
through successful implementation. In 1989 acceptance was at a level of 28%, which
increased to 40% by 1995 (Odeck and Brathen, 1997) and again to 46% in 1998
(Harsman et al., 2000).

3.4.3 Increasing acceptability of road user charging

Jaensirisak (2002) describes a number of factors that affect acceptability. The first

relates to the stated benefits of the scheme, defining the scheme objectives while
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meeting public concerns. A number of studies have addressed this including Sheldon et
al.’s (1993) London congestion charging study; Odeck and Brathen’s (1997) paper on
the Oslo toll ring; and, the TransPrice research project (Schlag and Schade, 2000,
TransPrice, 1999).

The stated benefits of a scheme include congestion reduction, or an increase in time
savings, environmental benefits and revenue collection. However, in the case of
improved journey times, Jaensirisak et al. (2003) and Harrington et al. (2001) have
shown that time savings do not have a significant impact in improving the acceptability
of road user charging schemes. Other studies have suggested that using collected
revenues to improve public transport, reduce travel related taxes or improve the
environment result in a positive increase of public acceptance (Jones, 1991; Stokes,
1996; CfIT/MORI, 2000; GOL, 2000; Thorpe et al., 2000). For example, in
CfIT/MORTI’s 2001 survey an increase in acceptance of 14% was found when revenues
were invested in public transport (CfIT/MORI, 2001). Jaensirisak (2002) has found that
using road user charging as a financial tool is more easily accepted by the public than

using it for demand management.

The second major factor affecting acceptance are the scheme features themselves, as
described above in Section 3.3.3. Schade and Schlag (2003) have found that complex
schemes that are time-based or delay based are less likely to be accepted. This is more
than likely because they are not easily understood or easily used by the public. Schade
(2003) describes results from the European research project TransPrice that show the
different levels of acceptability for various demand management measures, see Figure
3.4, with distance based charging being the least acceptable of the road user charging
measures surveyed. In a related example Bonsall and Cho (1999) found that schemes
where the charge is unknown or is difficult to ascertain are more likely to be unpopular.
The methods of charge used by a scheme and the physical characteristics of the scheme
have also been found to affect acceptability (Schlag and Schade, 2000; London First,
1999; GOL, 2000). In London it was found that the majority of the public (74%)
preferred a £5stg charge for Central London between 7am and 7pm (London First,

1999), compared to the GOL (2000) pricing scheme presentation of a £5stg charge for
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Central London and a £2.50stg charge for Inner London during the day, which garnered

a 53% approval from the public.
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Figure 3.4: Acceptability of various demand management measures (Schade and

Schlag, 2003; Schade, 2003).

Other factors that affect acceptability include attitudes towards problems in
transportation and the perceived effectiveness of any pricing scheme to address these
problems (van der Loop and Veling, 1994; Schlag and Toubel, 1997 (cited in: Schade.
2002); Rietveld and Verhoef, 1998), as well as environmental concerns (Nilsson and
Kuller, 2000) and issues associated with freedom (Baron, 1995; Jakobsson et al., 2000)
and equity (Giuliano, 1992; Transportation Research Board, 1994; Langmyhr, 1997,
Litman, 1999). Personal characteristics and constraints such as income, age, education,
etc. also have an effect (Stokes and Taylor, 1995; Odeck and Brathen, 1997; Rietveld

and Verhoef, 1998; Harrington et al., 2001).

Methods of improving the acceptance of road user charging schemes have been
addressed in a number of studies, including Giuliano (1992), May (1992), Sheldon et al.
(1993), the TransPrice project (Schlag and Teubel, 1997; TransPrice, 1999; Schlag and
Schade, 2000), Jones (1998), Reitveld and Verhoef (1998), the PRIMA project (Gueller,
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2000; Harsman et al., 2000), Harsman (2001), and, Jaensirisak (2002). These include
clear scheme objectives and an outline of the likely benefits of any scheme to society.
The scheme needs to be simple to understand and charges should be quantifiable before
the trip is undertaken. This can be achieved through the application of a simple pricing
system but also by using a marketing strategy to emphasise the scheme characteristics

and by allowing the scheme to be perceived as a good solution to the transportation

problems (GOL, 2000).

Revenue redistribution, or allocation, needs to correlate with public opinion, which
usually means assigning funds to public transport, environmental improvement,
reducing motoring taxes and infrastructural improvement. Revenue redistribution is
closely related to equity; the scheme must be perceived as being both fair and just
(Langmyhr, 1997). Litman (1999) examines how economic efficiency, equity, external
costs and political feasibility can help determine the distribution of road user charging
revenue. To address both freedom and equity issues alternatives need to be made

available, i.e. better public transport provision for those priced off the road.

As an approach to the redistribution of raised revenues from road user charging

Goodwin’s ‘rule of three’, see Figure 3.5, represents an equitable example whereby the

Enwironment Tax

Extra
traffic Roads

Speed Public transport

Road space Revenue

Figure 3.5: Expenditure of revenue and allocation of road space, Goodwin’s ‘rule

of three’ (Goodwin, 1989),

benefits from road user charging are distributed through the re-allocation of road space

and revenues earned (Goodwin, 1989). While it is accepted that anomalies will occur in
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any cordon or area based charging system, the main aim is to introduce as equitable a
system as possible by being both pragmatic and flexible in the approach to its

implementation (Lewis, 1993).

3.5 Effectiveness of road user charging

3.5.1 Introduction

A large body of literature has been produced looking at both design and evaluation of
congestion charging. Notable contributions include those from William Vickrey (1955,
1963, 1969), Walters (1961), UK Ministry of Transport (1964), Mohring (1963), May
(1975), Gomez-Ibaniez and Fauth (1980), and Small (1992). The US National Research
Council (Transportation Research Board, 1994) has concentrated on implementation
while Grieco and Jones (1994), and Emmerink e al. (1995) have evaluated different

policy approaches.

The effectiveness of road user charging depends on the objectives of the scheme itself.
A user response is the most obvious sign of the effect of road user charging, usually

reflecting a reduction in traffic or a switch in mode from car to other modes.

3.5.2  Studied effects of road user charging

The behavioural response to road user charging schemes can be measured using a
number of different methods, including network modelling, stated preference surveys,
attitudinal surveys, field trials and the observed response to practical implementations.
Table 3.4 gives an international review of the effects of road user charging studies.
These different types of assessment are necessary due to the complex nature of
introducing a congestion charging scheme and the expansive changes that result. In
practice, the modelling approach used for London by GOL (2000) proved to be the most

accurate when compared to actual implementation.

From a modelling perspective, effects from road user charging schemes are expected.

In London a number of modelling studies have been conducted, including those by

MVA Consultancy (MVA, 1995) and the Government Office of London (GOL, 2000).
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The London Congestion Charging Research Programme (MVA, 1995) found that the
application of an inbound charge of between £2stg and £8stg from 7am to 7pm would
provide between an 8% and 22% reduction in the total vehicle kilometres travelled in
the city. At £8stg, 21% of user respondents would switch mode to public transport,
with an increase of 16% predicted for inbound bus passengers during the morning peak,
and, 3% and 4% increases of suburban rail and underground usage, respectively. In
2000, the Road Charging Options for London (ROCOL) study predicted that car travel
to or from Central London would reduce by 20%. and that home-based commuting trips
would fall by 30% (GOL, 2000). In the case of London, transport planners have been
able to see how accurate these models have been because of the implementation of the

Central London congestion charging cordon scheme.

The Central London scheme has now been in place for a period of six months. A three
month report has been produced by Transport for London that demonstrates the
effectiveness of a city centre congestion charging cordon scheme (Transport for
London, 2003). An overall reduction in congestion of 32% has been achieved with a
16% reduction of traffic levels inside the cordoned Central London area. This compares
favourably with the 10-15% estimation in the ROCOL report (GOL, 2000). It was also
found that 50-70% of the daily reduction, some 75,000-105,000 car movements, have
transferred to public transport. A further 20-30% has switched to other modes and 10-
20% of the reduction is represented by car journeys, which previously travelled through
the zone and are now diverting around it. In Singapore the initial Area Licence Scheme
(ALS) was too effective with a 45% reduction of traffic levels, 15-20% higher than
targets. The fees were simply set too high (Watson and Holland, 1978; Wilson, 1988;
McCarthy and Tay, 1993).

A modelling study has also been carried out in Dublin. It examined a small number of
testing scenarios to try to assess the feasibility of road use pricing and other fiscal
instruments, such as parking charges, for the management of transportation and traffic
demand in the GDA. Though the modelling was not detailed, a 12-25% reduction in
vehicle hours was forecast for the city centre using a charge of IR£3 applied at a cordon

of approximately the same size as the Oslo toll ring (Oscar Faber et al., 1998).
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Table 3.4: Effectiveness of road user charging assessed through an international

review of pre and post implementation studies (Partial source: Jaensirisak, 2002).

Case study | Source Method Charging level | Results
UK Nation | Taylor and | Attitudinal | £2 city centre | 35% reduction of car use / reliance
wide Brook (1998) survey
London MVA (1995) Modelling | £2/ crossing 8%  reduction of total vehicle
kilometres
£8 / crossing 22% reduction of total vehicle
kilometres
21% increase in public transport usage
LEX (1999) Attitudinal | £3-£6 per day | 30-39% change to public transport
survey
GOL (2000) Attitudinal | £5 per day 30% not buy a licence (half change to
survey public transport)
Modelling | £5 per day 20% reduction of car trips in Central
London
30%  reduction of  home-based
commuting trips
10-12% reduction of total traffic level
Transport  for | Experience | £5 per day 16% reduction of traffic levels inside
London (2003) 7.00-18.30 Central London
daily 32% overall congestion reduction and
of that
50-70% transfer to public transport
Dublin O’Mahony et al. | Field Trial | Average 6.4 | 22% reduction from suppression and
(2000) Euro per trip change to public transport (distance
and time-based charging)
Oscar Faber et | Modelling | IR£3 city | 12-25% vehicle hour reduction in city
al. (1998) centre cordon centre
IR£3 inner and | 21% vehicle hour reduction in Dublin
outer cordon Metropolitan Area
Singapore | New Nation, | Experience | Area 45% reduction, morning peak ALS
1975; Goodwin Licensing (1975)
and Jones, 1989, Scheme 44% reduction inbound traffic with
Menon et al. intro of evening ALS (1989)
(1993) 36% increase in work trips by bus
share (1993)
Leeds Richards  and | Modelling | £2 peak 11% city centre traffic reduction
Harrison (1999) £1 off peak
May et al | Stated £0.50 25% car use reduction
(1998) preference
£1.00 54% car use reduction
£2.00 90%car use reduction
Edinburgh | Edinburgh City | Modelling | £1 / crossing 5% increase in public transport usage
Council (2001)
£4 / crossing 15% increase in public transport usage
Leicester Smith and | Field Trial | £1.5  tolling | 20% car use reduction
Burton (1998) 7.45-8.45am
£3 tolling | 18-22% car use reduction
7.45-8.45am
£3 tolling | 29% car use reduction
7.00-10.00am
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Additionally, the combination of an inner and outer cordon would result in a 21%
reduction of vehicle hours throughout the Dublin Metropolitan Region. A field trial
conducted by O’Mahony et al. (2000) examined time and distance based charging using
an average cost of 6.4 Euro per trip, which resulted in a 22% reduction in congestion.
In Leeds MVA Consultants found that a £2stg peak charge combined with a £1stg off-
peak charge could reduce city centre traffic by as much as 11% (Richards and Harrison,
1999).

It is noted from Table 3.4 that there are differences in the predicted effects of congestion
charging schemes when compared to practical implementation, as discussed above.
However, it is also noted that there are differences in the affects when different types of
predictive method are used to assess a particular charging scheme. For example, in the
case of the Central London congestion charging scheme, a number of different
predictive methods were utilised including modelling and attitudinal surveys, see Table
3.4. When the results from these methods are compared to the practical implementation
of the congestion charging scheme it has been found that modelling more accurately
predicts the likely effects on congestion and trip reduction while attitudinal surveys are
better at predicting the likely transfer to other modes of transport. In London, attitudinal
surveys predicted that 30-39% (LEX,1999) of those surveyed would change to public
transport while the ROCOL Report (GOL, 2000) predicted in its attitudinal survey that
of the 30% who would not travel by car, 50% would travel by public transport.
Practically, 50-70% of those no longer using their car have transferred to public
transport (Transport for London, 2003), which, although higher than the attitudinal
surveys predicted, is relatively accurate. From a modelling viewpoint, the most up to
date study conducted by GOL (2000) predicted a 10-12% reduction in total traffic level
while MVA (1995) predicted a 22% reduction in vehicle kilometres for an £8 charge.
Practically, a 32% reduction in congestion has been found, which seems to signify that

the scheme is far more effective than was predicted.

Users who respond to the charging schemes usually do so in two ways. Raux et al.
(1998), simulating behaviour in an urban road pricing environment, describes these

responses as either immediate changes or extraordinary changes. Immediate changes
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are postponement or cancellation of trips, route changes or rescheduling of activities for
different times. Extraordinary changes include mode switching, changing jobs or
relocation. As seems intuitively apparent May et al. (1998) and Bosnall et al. (1998)
concluded that users are more likely to respond through immediate changes than

extraordinary ones. They also reported an order in which users respond:
e Take a different route;
e Travel before charged period;
e Travel after charged period;
e Use park and ride;
e Use public transport;
¢ Use car share: and,
e Relocate.

Taylor and Brook (1998) describe a 35% reduction in the use of, or reliance on, cars as
a result of a £2stg charge for entering a city, found in the British Social Attitudes
surveys of 1996. LEX’s (1999) attitudinal survey in London reported that 30% of car
commuters would switch mode to public transport if a daily charge of £3stg was
implemented, and this would increase to 39% for a £6stg charge. Similarly, the
ROCOL report (GOL, 2000) found that with a £5stg daily charge for Central London
30% of car users would not buy a licence, and over half of these would switch to other
modes of travel. In Singapore, the use of bus services increased from 33% of work trips
before ALS to 69% in 1983 (Goodwin and Jones, 1989). Modelling in Leicester and
Edinburgh reinforces these findings. Smith and Burton (1998) found that 20-30%
would switch from car travel to other modes when tolled between £1.50stg and £3stg in
the peak period. In Edinburgh, a city centre cordon charge of £1stg-£4stg would result
in an increase in public transport usage of 5-15% respectively. Finally, May et al.

(1998) has reported findings from a stated preference survey that show between 25%
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and 90% of car users would change travel time or mode of travel if a cordon charge of

£0.50stg-£2stg was implemented during the morning peak period in Leeds.

The type of charging system used also affects congestion reduction. May and Milne
(2000) modelled four charging systems, using the SATURN traffic simulation and
assignment model, based on time travelled, distance travelled, time spent in queues and
cordons crossed using the Cambridge road network. It was concluded that, overall, time
based charging performed best. However, congestion oriented charging increased
network speed most effectively but encouraged re-routing around charged areas

resulting in extra distance travelled.

From the individual’s perspective the journey purpose also affects car usage and user
response. The reduction of car use for work related trips is higher than for other
purposes (Oscar Faber et al., 1998; GOL, 2000). Commuting trips are less flexible than
other trips such as leisure trips in that they usually finish at the same destination and
must be completed by the same time on a daily basis. It has been found that switching
mode from the car to public transport is the most likely choice for work related

commuting trips (Girling et al., 2000).

Road user charging has other effects. One of the most important of these is the
generation of revenue, which can then be used to address matters of equity, fund
improvements to public transport infrastructure and services, reduce vehicle associated
taxes and fund other projects. The Central London congestion charging scheme is
expected to raise more than £1.3bn sterling over 10 years of operation, which must by
law, be re-invested in London's transport infrastructure; see the Greater London
Congestion Charging Order produced by Transport for London having exercised powers
assigned to it under the Greater London Authority Act 1999 (Transport for London,
2001). This order states that all of the revenues collected through the scheme,
approximately £200 million sterling annually, must be spent on transport related
projects to make improvements to: the bus network and accessibility, public transport

infrastructure and services (for instance, increasing late night public transport), safety
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and security, the walking and cycling environment, and, Greater London’s public

transport rail and bus capacities.

Richards and Harrison’s (1999) modelling of an inner city congestion charge in Leeds
has lead to a prediction of £25 million sterling in net revenue per annum, which would
be used in a similar fashion to that in London. In Dublin, based on Oscar Faber et al.’s
(1998) modelling, somewhere between IR£43 and IR£67 million gross annual revenue
would be raised for a morning peak period congestion charging scheme. However,
Oscar Faber et al. also estimate that 15-20% of this gross revenue would be needed for
operating costs. For the Norwegian cordon toll schemes the approach is different in that
the toll is primarily designed to raise revenue for other projects. For instance, in Oslo
the gross toll income in 1991 was NOK 600 million, 19% of which is used in operating
costs. A further 20% was earmarked for public transport infrastructure and service
improvements but the remaining revenue, combined with equal funds from the central
government, finances 50 road projects, most of which divert traffic away from the city
centre (Ramjerdi and Larsen, 1991). Similarly, in Trondheim the main focus of
revenues from the toll will contribute 60% to a package of measures estimated at NOK

2.3bn to increase road capacity (Tretvik, 1993).

The other effect of reducing traffic volumes using road user charging is a reduction of
environmental pollution. Cars stuck in traffic can produce three times as much
pollution as those driving along a motorway (Institute for European Environmental
Policy, 1997). Daniel and Bekka (2000) found that congestion pricing does produce
environmental benefits such as cleaner air, less noise and a reduction in energy
consumption. The US Environmental Protection Agency (US EPA, 1997) also found
that congestion charging schemes could reduce congestion and harmful emissions faster
than building infrastructure or changing vehicles. The US Environmental Protection
Agency (US EPA, 1998) suggests that the main impacts of congestion charging on
vehicle emissions would be expected through effects on vehicle operating speeds. As
congestion is reduced and operating speeds become closer to free flow, emission rates
per mile of travel would be expected to decrease. For instance, in Edinburgh a

reduction in environmental pollutants of between 3.5% and 8.3% has been predicted for
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a city centre cordon scheme with a charge of £1stg and £4stg, respectively (Edinburgh
City Council, 2001). Santos et al. (2000) also concludes that any toll designed to reduce
congestion at peak times would yield the positive by-product of environmental benefits.
Newbery (2002) assesses the optimal road user charges from an economic perspective
for Britain in 2000, paying specific attention to environmental externalities and finding
that in terms of fuel a ‘green tax’ of 11p/litre on petrol and 15p/litre on diesel would be

justified.

Even though the transport effects have been shown to be substantial Mattsson (2003b)
has concluded that the locational effects are small. It has been feared that congestion
charging might negatively affect the attractiveness of the city centre as a location for
shops. However, Mattsson (2003b) has found that in fact the opposite is true with an
increase in the number of shops in the city centre, though these results come from a
highly simplified stylised model of a symmetric city. Mattsson (2003b) also found that
applying a congestion charge on a ring road has a slightly decentralising effect for shop
businesses as it is more expensive to use the ring road for shopping purposes. Similarly,
decentralisation has been found to result from demand management policies such as
parking restrictions, pedestrianisation and bus lanes (Shiftan et al., 2003). The US
Environmental Protection Agency (US EPA, 1998) also concludes that congestion
charging measures could lead to more dispersed new development or allow better access
to currently congested centralised developments, or both. However, Mattsson and
Sjolin (2002) have found that service based businesses have a slight tendency to move
further out from the city centre. Other studies have also reported small effects; see

Eliasson and Mattsson (2001) for a review of the literature.

3.6  Road user charging studies; pre and post implementation

3.6.1 Introduction

The cases detailed below cover a wide range of sites, objectives and details of
implementation. Hau (1992b), Lewis (1993) and Gomez-Ibanez and Small (1995) have

detailed a number of them. They are split into four broad categories:
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(1) Road user pricing of a city centre;
(2) City centre toll rings designed primarily to raise revenue;
(3) Road user pricing of a single facility; and,

(4)  Area-wide road user charging.

3.6.2  Road user charging of a city centre

3.6.2.1 Road user charging in the Greater London Area

London is a city with a population of over 7 million people. Many congestion pricing
studies have taken place in the last 30 years or so concerning the Greater London Area.
In the 1970s the Greater London Council suggested an area licensing scheme during
peak hours. The suggested charge was approximately £1.00stg (1973 prices) to drive in
Central London between 8am and 6pm on weekdays. A number of variations to this
were also considered with an additional charge for Inner London, which is a larger area
surrounding Central London. May (1975) found that congestion would be reduced
dramatically with such a scheme and that speeds during the peak period could rise as

much as 40%.

Changes to the transport functions of the Greater London Council were taken over by
the London Policy Advisory Committee in 1985. In 1988 the Committee proposed a
transportation planning strategy with considerably less infrastructural road development
than in previous transportation strategies, relying instead on traffic restraint and
congestion charging measures. Three concentric cordon rings were proposed, the inner
ring surrounding Central London and the outer surrounding Inner London. Screen-lines
would also be used to divide up the Central London cordon into 6 zones. A charge of
£0.50stg would be levied for crossing either a screen-line or cordon. The charge would
apply all day in both directions in Central London and in the direction of peak traffic for
the outer two cordons (London Panning Advisory Committee, 1988). May et al.’s
(1990) analysis suggests that the proposal would have lead to a 15% reduction of

inbound traffic to Inner London and a 25% reduction entering Central London.
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In 1994 the UK Department of Transport commissioned a comprehensive three year
study of congestion charging for the Greater London Area conducted by MVA
Consultancy (MVA, 1995). A number of charging schemes were investigated as part of
the London Congestion Charging Research Programme (MVA, 1995) but the simplest
one was a single cordon charge for Central London with 130 charge points. It was
found that the application of an inbound charge of between £2stg and £8stg from 7am to
7pm would provide between an 8% and 22% reduction in the total vehicle kilometres
travelled in the city. The estimated net benefit of the scheme after taking into account
time savings, implementation costs, accident cost savings, etc. ranged from
approximately £35stg million to £60stg million (Small and Gomez-Ibanez, 1998). The
scheme also offered high reliability, no disruption to traffic flow and protection of
privacy for users, making it a more acceptable scheme to the general public. However,
at the conclusion of the study the Minister of Transport declared that congestion

charging would not be undertaken in London until at least the end of the 1990s.

In 1999 the Greater London Authority was created under new legislation and a strategic
proposal for transportation in London, ‘Transport Strategy for London’, was produced
by the mayor, which included congestion charging (Dix, 2002; GLA, 2001). The
suggested charging scheme was based on the ‘Road Charging Options for London’
(ROCOL) study produced by the ‘Review of Charging Options for London Working
Group’ and commissioned by the Government Office of London (GOL, 2000). The
scheme is an inner city cordon with a £5stg charge operating between 7am and 7pm on
weekdays within Central London, see Section 3.4 and Section 3.5 for acceptability and

effectiveness.

The Central London congestion charging cordon scheme has now been in place for a
period of six months, operating from 7am until 6.30pm with a £5stg charge five days a
week. A three month report has been produced (Transport for London, 2003) that
describes the effectiveness of a city centre congestion charging cordon scheme.
Overall, a reduction in congestion of 32% has been achieved. In addition, the scheme

has resulted in a 16% reduction of traffic levels inside the cordoned Central London
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area. When compared with the 10-15% estimation in the ROCOL report (GOL, 2000)

these results indicate that the scheme is more effective than modellers first estimated.

3.6.2.2 Road user charging in Singapore

Singapore was the first to implement a working congestion charging scheme, commonly
known as Singapore’s Area Licence Scheme (ALS), which was inaugurated in 1975 and
still operates today. Its initial system was very simple with the priced area (over Skm
squared) defined within a single city centre cordon with a charge of S$3.12 (Holland
and Watson, 1978; Chin, 2002). Paper windshield stickers were used and enforcement

was carried out through visual inspection by traffic officers.

The ALS was designed to restrict car ownership and the demand for road space on the
crowded island city-state. Congestion charging was chosen over other means of
demand management because of a lack of space for tolling stations in the city centre and
because it was thought that higher parking charges would have little effect against

heavy through traffic and a high percentage of chauffeur driven cars.

When implemented in 1975 the charge was applied to inbound traffic crossing the
cordon in the morning peak period, though this charge period from 7.30 to 9.30 was
extended by 45 minutes because so many people were delaying their trips until after the
charged period (Willoughby, 2001). The charging period was extended further in 1989
to include the afternoon peak, and further again in 1994 to include the time between the

two peak periods. Charges of S$3 and S$2 were used respectively (Chin, 2002).

Traffic demand was effected in the desired way. For instance, commuters to jobs in the
restricted zone travelling by car with less than four passengers dropped from 48% to
27% while the combined modal shares of car-pool and bus rose from 41% to 62%, see
Holland and Watson (1978). Traffic volumes also dropped by 45% and the average
speed increased from 18 to 35km/hr.

Some latent demand was initially released with the frequency of uncharged trucks
entering the pricing area during the peak period increasing by 124% (Watson and

Holland, 1978). However, once the charge was extended to all vehicles, except public
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transport and emergency, in 1989 their use declined immediately. These responses
demonstrate that very specific reactions can be garnered through pricing initiatives,

while any loopholes are likely to be heavily exploited (Small and Gomez-Ibanez, 1998).

Finally, in 1998 the current paper permit system was replaced by an electronic smart
card system. The ALS was replaced by an Electronic Road Pricing (ERP) scheme and
the objectives of the scheme were changed to improve travel speeds on the road
network, which was predominantly to be achieved by forcing a transfer from private
cars to other modes (Menon and Chin, 1998; Menon, 2000; Goh, 2002). Each vehicle
entering the restricted zone, which has 33 gantries for control and enforcement placed at
the boundary of the zone, during the charge period between 7am and 7pm on weekdays
and 7am and 2pm on Saturday, must have an “In-vehicle Unit” (IU) with a smart card in
credit inserted. The charge is then automatically deducted as the vehicle passes under a
gantry. The charge is varied between S$0.50 and S$2.50 to maintain a traffic speed of
45-65km/hr on expressways and 20-30km/hr on arterial routes (Chin, 2002; Goh, 2002).
This has resulted in a reduction in traffic volumes within the restricted zone of 20% to
24%. The ERP system is more flexible, easier to use and technically more reliable than
the old ALS system but has a very high investment cost, which is deemed worth it in the
case of Singapore where congestion control is a priority (Foo, 1997, 2000). However,
Foo (2000) also concludes that the manual ALS system has laid the foundations for the

more technologically advanced ERP system to be a success.

3.6.2.3 Hong Kong'’s Electronic Road Pricing Trial

While Singapore was the first to implement a congestion charging scheme Hong Kong,
a slightly larger city with a population of approximately 4 million, was the pioneer in
fully-automated charging technology using an ERP scheme with multiple cordons
(Harrison et al., 1986). However, while the ERP system was subject to extensive field
trials and transportation modelling studies for prediction and evaluation, it was

withdrawn due to strong public opposition.

These field trials demonstrated that ERP systems could operate with a high degree of
accuracy. Subsystems for automatic charging, billing, and enforcement through closed-
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circuit television all performed very well (Dawson and Catling, 1986). Transportation
modelling studies of alternative pricing structures and charging locations were

undertaken by MV A Consultancy (Harrison, 1986).

Three different schemes were studied of varying size using a cellular zoning system and
time varying charges. The average monthly payment for the three schemes was
approximately HK$120, HK$140 and HK$160, respectively (Transpotech, 1985). A
reduction in demand of between 20 and 24% was predicted during the peak periods with
an overall daily reduction of 9% to 13% (Harrison, 1986). Taking the most complex
scheme as the benchmark, the simplest scheme (A) appeared to approximate marginal
cost pricing well. Scheme B had more of an effect on congestion by charging more in
the peak direction, which appears to be more important than refining the geographical

layout (as in Scheme C) (Small and Gomez-Ibanez, 1998).

The Hong Kong ERP scheme did not come to fruition due to a lack of public and
political acceptance. There were a number of reasons for this (Small and Gomez-

Ibanez, 1998):

(1) The trials took place during the transfer from British colonial government to

local officials;
(2) A weak economy had lowered car ownership in the early 1980s;

(3) Objections due to the potential invasion of privacy through electronic equipment

(Hau, 1990, 1992b; Gomez-Ibanez and Small, 1995); and,

(4) The public did not perceive that the revenues gained through such a scheme

would benefit them.

In March 1997 a feasibility study on an ERP System (ERPS) was undertaken by the
Hong Kong SAR Government, assessing two technology options, a Dedicated Short
Range Communications (DSRC) System, and a Vehicle Positioning System (VPS).
Their analysis found that peak hour charges should be applied from 8am to 9am and

from 5.30pm to 7pm with a slightly lower rate during inter-peak times. The charges
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used ranged from HK$8 to HK$35 depending on the time of day and the traffic demand
growth scenarios (Hong Kong SAR Government, 2001). The field trials found that
either the DSRC System or VPS could be adapted for possible implementation in Hong
Kong. An estimated 40% of car trips in the morning peak may be diverted to public
transport with 10% changing travel times so as to avoid the charge (Hong Kong SAR
Government, 2001). However, a stated preference survey involving a HK$20 charge
led to a 13-15% mode switch to public transport and 24-27% of car users changing their
time of travel (Transport Bureau, 1998). The feasibility study concluded that a
congestion charging scheme is not warranted on traffic management grounds before
2006 if the growth of the private vehicle fleet is no more than 3% per year (Hong Kong
SAR Government, 2001).

3.6.2.4 Congestion specific pricing for Cambridge, England

In Cambridge, theoretically optimal congestion charging was attempted. which closely
approximated the theoretical ideal of road user pricing by varying the charge in real
time to reflect the level of congestion encountered by the individual vehicle while
travelling within the priced area (Sharpe, 1993). The rationale for the idea was that the
congestion experienced by drivers is probably closely related to the externalities it
imposes on other vehicles. Field trials were undertaken but the scheme was abandoned

after a new, less supportive, city council came to power in 1993.

A metering system was to be used where technology was tested as part of the ADEPT
project within the European Union’s DRIVE-II program (Clark et al., 1994). In 1994,
after the implementation of the scheme was abandoned, surveys found that only one
third of respondents described the road user charging concept as ‘acceptable’ (Ison,
1996). May et al. (1994) have found that the use of congestion specific charges do
significantly increase the benefits over and above those gained through a cordon type
system. However, Sharpe rejected the congestion specific idea in early 1993 because of
concerns about the potential for public disapproval where charges appeared to be
unpredictable. His concerns proved to be well founded with the end of the proposed

scheme later in 1993 as a result of a change in local shire government. Ison (1998)
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describes several reasons why congestion metering failed to advance beyond the field
trial, concluding that the timing of the project and the level of sophistication were
important contributing factors to its downfall. In a further paper Ison (2000) concludes
that for Councillors (local government officials) public transport improvement, lower
fares, heavier restriction of vehicles in central areas and land use and transport planning

strategies are viewed as more effective and socially acceptable.

Cambridge has, however, demonstrated the technical feasibility of more complex forms
of road user charging. Unfortunately, it has also demonstrated the need to develop
support for road pricing schemes in parallel with any design proposals if the scheme is

to prove acceptable, both socially and politically.

3.6.3  City centre toll rings; the Scandinavian experience

A number of Scandinavian cities have developed road pricing as a tool for raising
revenue to finance road infrastructure. They are described not as congestion
management schemes but primarily as revenue generators. As such, the toll schemes
that have been implemented use a low charge and do not vary much by time of day. It
is also noted that cordon locations were chosen to be both politically acceptable and to
achieve the correct balance between the contributions of both city and suburban
residents, while altering trip behaviour as little as possible. It has been noted that public
confidence has increased with practical experience as long as the schemes have
remained closely tied to well known and widely shared objectives (Small and Gomez-

[banez, 1998).

3.6.3.1 Norway’s urban toll rings

Toll rings are an extension of the single facility tolling strategy used to raise money for
road infrastructure. Instead of applying a toll to finance a single facility, such as a town
or city by-pass, the toll is applied over entire urban road networks. Each toll ring is part
of a regional financial package of major road development. As a result Norway’s tolls
are low, ranging from NOKS in Bergen to NOKI10 and NOK 11 (1992 prices) in

Trondheim and Oslo, respectively (Small and Gomez-Ibanez, 1998).
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Bergen has a population of approximately 300,000. In 1986 it opened a manual system
operating from 6am to 10am on weekdays (Larsen, 1988). Oslo, the nation’s capital
with a population of approximately 700,000, followed four years later in 1990 with a
system of 19 toll stations operating at all times. In 1991 Trondheim introduced a more
complex system operating for 11 hours per day, 6am to Spm, on weekdays with a

discount after 10am.

In Trondheim electronic subscribers account for approximately 95% of all tolled
crossings and benefit from a discount after 10am, and, from ceilings on their charge
liabilities in any given hour or month. These characteristics could, according to Small
and Gomez-Ibanez (1998), enable the system to approximate congestion charging.
Literature published by the Public Roads Administration even makes reference to this

fact.

New charges have been put forward for Trondheim with three new screen-lines planned
for inside the large outer ring. This produces three zones and, combined with an
increase in the toll of NOKI1 for crossing the outer ring and an extension of one hour to
the operating time (to 18.00), is expected to lead to an increase of 50% in toll revenues.
It is noted that the charge for crossing internal screen-lines is considerably less than for

crossing the main outer ring.

The effect of these pricing schemes is as expected with inbound vehicle crossings
reduced by no more than 6% to 7% in Bergen, 8% in Oslo and 10% in Trondheim
(Larsen, 1995). However, in Trondheim 40% of the general public indicated some kind
of change in their behaviour, be that mode change, time change, trip frequency, etc.
(Meland and Polak, 1993). Odeck and Brathen (2002) assess the future of toll pricing in
Norway concluding that the public needs to be more involved in the planning process
prior to implementation, the tolls offer great potential to counteract the environmental
damage caused by traffic, and, that there are potential economic benefits to introducing

Pubic Private Partnerships (PPPs) for the transport sector.
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3.6.3.2 Road user charging in Stockholm

Stockholm is twice the size of Oslo. It is the capital city of Sweden, which has a strong
environmental movement concerned with problems associated with traffic in inner cities
(Small and Gomez-Ibanez, 1998). In 1991 negotiators from the three political parties
agreed to invest approximately $6.9bn over 15 years in urban transportation
improvements to be financed primarily by road pricing. The program, known as the
Dennis Package, devotes more than half of the funds to road improvements and the
balance to public transportation (Social Democratic Party, Moderate Party and Liberal
Party, 1991).

The project involved the completion of an inner ring road, the construction of a tolled
north-south bypass to the west of the city centre and an inner city toll ring designed in
part to reduce traffic volumes, noise and air pollution and to raise revenue. Johansson
and Mattsson (1995) found that these elements would combine well to reduce vehicle
travel in inner Stockholm, mitigating the effects of additional traffic caused by
construction of the new roads. Pre-purchased licences were to be used for the toll
operating on weekdays with £30 monthly smart cards or £2.50 daily passes resulting in
a predicted reduction of traffic of up to 10%. Construction was to begin in 1997 but

failed because of strong public opposition (Ahlstrand, 2001 ).

Recent elections in 2003 have resulted in another change of government and a change of
opinion with reference to road user pricing has followed (Mattsson, 2003a).
Consequently, a full-scale test of congestion pricing is to be carried out before the end
of the present term of office, i.e., 2006. This test is to start by the end of 2004 and a
referendum will be held at the time of general elections in 2006 to determine if it is to

be made permanent or not (Mattsson, 2003a).

A simple electronic zone-based system with 2 zones is proposed with the inner city
divided between North and South. The charge period will be on work days between
7am and 6.30pm and the charge level is suggested to be 20 SEK for crossing the cordon
boundary in any direction during peak hours and 10 SEK during off-peak. The fee for
passing between North and South is suggested to be 10 SEK during peak periods. The
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collected revenues are to be used as investment in the public transport system in the

Stockholm region.

Mattsson (2003a) reports on three studies of congestion pricing in Stockholm as part of
an ex ante study of transport to provide a knowledge background to the system being
considered at present. For the zone-based system, traffic volumes in the inner city are
predicted to drop by 30% for charged hours and a charge equivalent of 3 SEK/km. For
the distance-based system, traffic volumes in the inner city are predicted to drop by 35%
and 19% at charge levels of 4 and 2 SEK/km, respectively. Thirdly, in the case of
optimal congestion pricing, the reduction of traffic levels is 25% at an average charge
level of 2 SEK/km. Locational effects were also studied and were found to be very
limited (Mattsson, 2003a), see Eliasson and Mattsson (2001). In the opinion of
Mattsson (2003a), the use of revenues, including guarantees that the money will be
channelled back into the Stockholm region, is the key issue in gaining political and

public acceptance for congestion pricing in Stockholm.

3.6.4 Area wide road user pricing; The Randstad Region, The Netherlands

The Randstad region of The Netherlands is an urban agglomeration covering 2000
square miles with a population of over 6 million. Included in the Region are the cities
of Amsterdam, Rotterdam, Utrecht and The Hague. In the 1980s the government
proposed a road pricing development for the region. The proposal involved 140
charging points with time-varying tolls across a multi-cordon system. A 17% reduction
in congestion was modelled using a charge of 5 guilders. However, publicity had
focused on the technical aspects of the scheme rather than on the benefits to the general
public so in 1990, the government, unable to raise the levels of approval for the scheme,
reduced the scope of the proposal calling for more conventional road tolls instead

(Grieco and Jones, 1994; Emmerink et al., 1995).

The Ministry of Transport and Public Works revived the idea of congestion charging in
1992. The new proposal called for congestion charging along the main arterial road
system during the morning peak period from 6am to 10am. The proposal was set back
in 1994 with the election of a new government but in 1995, the new Minister for
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Transport suggested implementation starting in the year 2001 for the sole purpose of
congestion management. The Minister also mentioned a possible 50% reduction of

congestion during the morning peak period on the main road network.

In June 1995, the Minister surveyed peak period road users to assess public opinion on
the proposal (Verhoef, 1996). Fifty percent of those surveyed thought that road user
charging was a bad idea, 25% thought it was a good idea while 85% said their opinion
would depend on the allocation of revenues from the scheme. Of these allocations road
investments and vehicle-related tax reductions were at the top of the list, closely
followed by public transport investment. However, privacy was also a public concern

in the case of an ERP scheme (Phang and Toh, 1997).

In 1998, Mu-consult modelled a kilometre tax charge system to replace private car
registration tax (BPM) and annual vehicle tax for ownership (MRB) (Mu-consult,
1998). A number of scenarios were modelled using distance based charging of between
3.1 and 9.1 Euro per kilometre resulting in a reduction of between 6% and 20% of
private car volume (Boot et al., 1999). The effects of a large increase in fuel taxes were
also assessed (50% increase) resulting in only a 6% reduction in traffic volumes and the
conclusion that increasing fuel taxes is far less effective than distance-based charging

systems (Boot et al., 1999).

In 2001 a new charging scheme was proposed by the Dutch Ministry of Transport,
Public Work and Work Management in its strategic proposal for transportation up to
2020 entitled, ‘The National Traffic and Transport Plan’ (Sociaal-Economische Raad,
2001). The road pricing project began with the publication of the ‘Mobimiles’ report by
the Pieper committee, which recommended an implementation strategy and framework
for a variable road pricing system. The charge could vary according to location, time of
day, and, environmental parameters determined by the type of vehicle (EUROPRICE,
2002). This would be made possible by using an in-board unit called the ‘mobimetre’.
However, the project failed to go ahead once again because a new unsympathetic

government was installed in July 2002. This government’s strategic approach is to
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focus on broadening the road infrastructure and improving the public transport network

(EUROPRICE Newsletter, 2002).

3.6.5 Single facility road user pricing: California’s private toll lanes

The first example of congestion charging, or value pricing as it is known in the United
States, is located in Southern California along the median strip of the existing Riverside
Freeway, otherwise known as State Route 91. The scheme used has come to be known
as ‘HOV buy-in’ or high occupancy toll (HOT) lanes (Fielding and Klein, 1993). The

unused capacity in HOV lanes is auctioned off to low occupancy vehicles.

Further to this idea, the operator is considering toll rates that would vary in response to
real-time measurements of congestion levels. Information about the level of charge and
the delays on the free lanes running in parallel would be given on existing message
signs. The users would then know the price in advance of their decision to take the
HOT lane as well as the congestion situation on the free lanes. This represents a further
development from the real-time scheme proposed in Cambridge where users would not

be aware of the changing charges.

The scheme received a 60-70% approval for the use of toll finance and a 50-60%
approval, up from 40-50%, before introduction of time varying tolls (Small et al., 1997).
Delays on the free lanes dropped dramatically with the introduction of the scheme using
tolls of $0.25 to $2.50 varying by time of day. Additionally, it was found by Sullivan
(1996) that latent demand was not released onto the corridor either from parallel routes
or from newly generated traffic. Small and Gomez-Ibanez (1998) believe this reflects

the mountainous terrain and the resultant lack of alternative routes.

3.7  Price elasticities of user demand

3.7.1 Introduction

The user response to road user charges, i.e., the price elasticity of demand for car travel,
is an uncertainty that needs to be recognised as there are many factors that affect it.
Important factors influencing the calculation and interpretation of price elasticities
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include: the size of the price change; the type of pricing mechanism; the type of trip; the
type of traveller; the price of related goods and services; and whether the elasticity
accounts for short term or more long term demand responses. Hence, care should be
taken when applying price elasticities that they are based on a similar context to that in
which they are being applied. In the case of a road user charging scheme analysed in
the long term, say 10 or 20 year predictions, the elasticity associated with the scheme
changes over time. Initially people’s reaction is slow to the introduction of such a
scheme so the user responsiveness is low, hence a low elasticity. This elasticity can
increase from anywhere between 50% and 200% during the change from short to long

term forecasting (Cole, 1998).

3.7.2  Review of pricing elasticities

Although there are a limited number of road pricing studies a large body of literature
does exist on the estimation of demand elasticities, and a number of literature reviews
have been published which summarise this literature very well. These reviews include
Oum et al. (1992), Goodwin (1992) and Glaister and Graham (2000), and look at
evidence about increases of fuel price, parking charges and tolls. These can, to a certain
extent, be considered transferable to express effects of road user charging. It is
suggested in Oscar Faber et al. (1998) that a peak demand elasticity value of between —
0.1 for low charges (IR£1), rising to —0.5 for higher charges (IR£3) be used for the
Greater Dublin Area (GDA). For other examples of road user pricing elasticity
estimates, varying from —0.1 to —1.2, see Cole (1998), Oldfield (1981) and Halcrow Fox
(1993).

Elasticities of —0.18 and —0.36 are used by Santos (2000b) in an estimation of whether
the benefits of introducing road pricing would exceed the costs of introducing it by
enough to justify its introduction. The elasticities were justified by the fact that they are
roughly in line with fuel price elasticities in Oum et al. (1992) and Goodwin (1992).
Also, these elasticities represent short run elasticities of demand concerning fuel costs

and time costs. As such, they are probably greater than fuel price elasticities (Santos,

2000b).
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Menon (2000) has calculated the short-term demand elasticities, for the 8am to 9am
peak period for cars in the restricted area, to be between —0.12 and —0.35 for
Singapore’s ERP scheme in 1998. This compares to the previous ALS in 1976 where
the elasticity figures stabilised at —0.15. However, Luk (1999, cited in Jaensirisak,
2002) found that for the area licensing scheme in Singapore toll elasticities varied
between —0.19 and —0.58 with an average of —0.34, which is twice as effective as
increases in petrol prices. Further to this Luk found that in relation to mode shifts road
pricing was as effective as increases in petrol price. However, Luk and Hepburn (1993)
found that in the long term changes in petrol price had more effect in reducing petrol
consumption, an elasticity of —0.55, than in reducing travel demand, with an elasticity of

-0.26.

In the case of Stockholm’s proposed road pricing scheme, Mattsson (2003a) calculates
arc elasticity of vehicle distance travelled with respect to total vehicle operating costs,
leading to an elasticity for a distance-based road pricing scheme of —0.23. Here arc
elasticity refers to the distance between two points on a curve produced by graphing the
vehicle distance travelled with respect to total vehicle operating costs. It is noted by
Mattsson (2003a) that the value of —0.23 is well within intervals described by Goodwin
(1992) and does not represent an extravagant assumption about the trip makers’ cost
sensitivity. This value is also similar to experiences in Norway where elasticities of —
0.22 and —0.45 were found for Oslo and the Alesund toll station, respectively (Jones and

Hervik, 1992).

A study has been carried out by Arentze et al. (2003) using ‘Albatros’, a multi agent
system developed by the Dutch Ministry of Transport that predicts which activities are
conducted where, when, for how long, by whom, and the transport mode involved. For
congested roads a price elasticity of travel demand in the range —0.35 to —0.39 was
found, though it is noted that stated models tend to overestimate choice flexibility. Oum
et al. (1992) summarise price elasticities found in studies from various countries, and
are mainly concerned with fare charges. The elasticities found lie in the range of —0.09
to —0.52, though the context and response alternatives differ in several ways to those

used by Arentze et al. (2003).
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Halcrow Fox and Associates (1993) performed a study of road pricing in London using
stated preference surveys in 1992. The study assessed the effects of distance based
charges on private cars within Inner London. It was reported that the elasticities for
radial work journeys in the morning peak, being charged at a rate of 5, 15 and 35p/mile,
were —0.11, -0.38 and —0.52, respectively. Similarly, for orbital work journeys the
elasticities were —0.06, -0.12 and —0.41, respectively. The difference between radial and
orbital elasticities was explained as the result of better public transport services on

radial routes affording better alternatives to car use.

In 1994 the SACTRA (Standing Advisor Committee on Trunk Road Assessment)
Report on Induced Traffic was produced (UK DETR, 1998b). Following this MVA
conducted research on Induced Elasticities and Methods (IEM) derived from the
SACTRA Report, as part of a study for the UK DETR relating to possible responses to
increases in congestion. These results were reported in ‘Effects of Congestion Final
Report’ (MVA, 1995). Further to this, the ‘Phase 4 Report: Re-analysis of Effects of
Congestion Data’ was produced by MVA (UK DETR, 2000), which focuses on private
responses to increased traffic congestion using the stated preference survey results from

1995 (MVA, 1995).

A trip mileage elasticity of —0.14 is given for work related trips in London, which
represents both short and long-term effects. Short and long-term time elasticities,
allowing time switching to avoid the charge, of —0.27 and —0.33, respectively, are also
reported for work trips in the morning peak. These elasticities are supported by the
ROCOL study (GOL, 2000) where elasticities of —0.09 and —0.27 are reported for high
and low income groups, respectively, where stated preference responses to a £10stg
Inner Ring Road charge were used. ROCOL (GOL, 2000) have also used elasticities,
found using the AREAL model (a strategic model developed by the Government Office
for London to evaluate the impacts of alternative charging options in the Greater
London area), which relate to work trips with respect to £2.50stg and £10stg charges, of
—0.17 and —0.27, respectively. Elasticities of —0.20 and —0.31 were also found for peak

period trips including those related to education, work, employer’s business and other.
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The UK Department for Transport has used a ‘car traffic with respect to fuel cost
demand’ elasticity of —0.3 for the demand models calibration year of 1998 (Transport
for London, 2003). An elasticity of —0.5 was used by Stoneman (1998) for network
modelling carried out as a part of the “Transport Demand Management in Historic
Cities” research project. The National Economic Research Associates (NERA, 2002)
suggest the use of elasticities of at least around —0.1 to —0.3 in the short run for road
user charging schemes based on distances travelled and levels of congestion. There is
no evidence that the effects of petrol price and road user charging are the same yet an
assumption is made that they are unlikely to be very different. This, according to
NERA (2002), is based on the fact that while some travellers may avoid charges by
switching to periods with less or no charge and, hence, not reduce their use of the car,

others may drive more efficiently in order to mitigate the impact of a fuel price increase.

Glaister and Graham (2000) report short run elasticities, in particular, traffic levels with
respect to petrol price of —0.15 and a price elasticity of demand for petrol consumption
of -0.3. These are in line with Goodwin (1992) who found the price elasticity of
demand for petrol consumption to be —0.28 and traffic levels with respect to petrol price
to be —0.16 and —0.33 in the short and long-term, respectively. Goodwin also reported
an overall elasticity of —0.46. Jong et al. (1999) suggests that fuel price elasticities
could be used for evaluating distance-based charges in particular, and that area-based or
cordon-based road pricing could be evaluated using parking charge elasticities because
the charge is more or less fixed per trip. The average parking charge elasticity in
Western European countries was found to be —0.10. However, Jaensirisak (2002)
suggests by way of an explanation, that because many commuters have free parking,
parking charge elasticities could be lower than area-based pricing elasticities. Jong et
al. (1999) continue on to report a fixed price elasticity for car commuting trips of —0.20
in the short run for Western European countries, which is reasonably in line with other

studies.

115



Chapter 3
3.8 Conclusions

3.8.1 Effectiveness of road user charging

Through the case studies and literature discussed above, using either preliminary studies
or reports from implemented schemes, it has been demonstrated that road user charging
can substantially affect user behaviour and hence, traffic behaviour based on modelling
studies. Road user charging can be used to raise revenue, reduce environmental
pollution and reduce congestion. With the reduction of car trips during peak periods a
transfer of trips to other modes can be expected as the primary response to a road user
charging scheme. Hence, to be equitable revenues collected need to be re-allocated to
benefit those charged, which can be done by reducing motor related taxes, improving

public transport services and infrastructure, etc.

Locational impacts appear to be very small leading to the conclusion that geographical
layout plays only a minor roll in the effectiveness and impact of road user charging
schemes. However, from a business perspective congestion charging of a city centre
tends to increase the number of shops within the city centre, as opposed to decreasing

the number as was initially feared.

Overall, international experience appears to be very positive. However, pitfalls are
especially prevalent when dealing with political and social acceptability of congestion
charging schemes, i.e., the experiences in Stockholm, Hong Kong and Cambridge.
With respect to the implementation of congestion charging schemes a city centre cordon
scheme with a fixed charge appears to be favourable, especially in relation to social and
political acceptance. Once the public has been given the opportunity to get used to such
a scheme then it is far more likely that they will accept a more complex upgrade like

that experienced in Singapore.

3.8.2  Political and social acceptability of road user pricing

In order to implement a successful charging scheme it is, therefore, necessary to design
the scheme not just to be effective in achieving its objective but to be acceptable to the

general public as well. Further to this, Jaensirisak (2002) has found that acceptable road
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user charging schemes can be designed to be both acceptable and effective by limiting
the area of charge to within the city centre and having a fixed charge per day. It was
also noted that support would increase significantly if there was substantial
improvement to the environment. Goh (2002) suggests that even though some road user
pricing systems may result in a decline in overall welfare for some users (Phang and
Toh, 1997), for instance in Singapore, this can be mitigated by improving alternative
transport modes that can operate independent of road conditions. Therefore, any road
user charging scheme must be implemented as part of an integrated strategy that

combines transport demand management with infrastructure and service improvement.

3.8.3  Road user charging studies; pre and post implementation

The design and implementation of congestion charging schemes is very important for
public acceptability, particularly with respect to charge levels, enforcement, privacy and
the degree of public understanding. Political acceptability is difficult to attain because
most users tend to lose out. To counteract this feeling of loss it is necessary to make
users perceive the benefits of charge revenues by using them to finance transportation
improvements, or to lower vehicle associated taxes. Another approach for overcoming
peoples suspicion of change is to apply a strategy of incremental development (Small
and Gomez-Ibanez, 1998). For example, the Norwegian toll rings began as a means of
raising revenue for financing regional transportation infrastructure but have begun to

incorporate traffic management as a subsidiary goal.

At a more advanced level it is evident that introduction of a simple congestion charging
cordon scheme in the first instance is preferential if the scheme is to be a success (GOL,
2000; Oscar Faber et al., 1998). More complex systems are more likely to be successful
after a simple system has been seen to work by the general public. In Singapore a very
simple congestion charging cordon scheme was introduced first and has since been
developed into a more complex system with multiple cordons and screen-lines over a

wider area.

Charging levels have varied greatly across the case studies described from $0.25 to
£8stg. However, according to Santos (2000a), errors in estimating the effective charge
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will not hugely affect the efficiency of the system. Therefore, based on implemented
examples of congestion charging, i.e., Singapore and London, a charge in the range of 3

to 8 Euro would be appropriate.

3.8.4 Price elasticities of user demand

At this stage it is not possible to assign specific elasticities to represent user response to
road user charging scenarios in the GDA. Given the need to make an assumption on
elasticity values, they should be restricted to within a close range that is reasonably
justified. Taking into account the literature and studies described in Section 3.7, such as
Goodwin (1992), Oum et al. (1992), Jong et al. (1999), Glaister and Graham (2000), the
UK DETR (2000, 2001), as well as practical experience from, for example London, a
sensible range of values might be considered to be -0.2 to -0.7 for an inner city fixed

price congestion charging scheme.
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4.1 Introduction

The transportation environment in the GDA has been described in Chapter 2. This
chapter demonstrates that there is a significant transportation deficit in the GDA. The
DTO’s strategic plan for the period 2000 — 2016, ‘A Platform for Change’ explicitly
recognises this fact (DTO, 2000). The DTO (2000) have also recognised that
infrastructural development alone will not provide a sustainable transportation
environment in the GDA and that some form of demand management will have to make
up an integral part of any successful transportation strategy for the future of the GDA.
Success will be quantified by the measure of sustainability and accessibility, through a
reduction in travel times and congestion over the private car and HGV transportation
networks from the congestion levels experienced in 1991, when the average speed in the
morning peak hour was 22kph; see Chapter 2 Section 2.6.2 for more detail.
Considering that at present the trip levels in the GDA are already at or exceeding the
levels predicted for 2016 in ‘A Platform for Change’ it has become imperative that the
potential of demand management, its implementation and the effects of any potential

implementation for the GDA are investigated.

As Chapter 3 describes, there are a number of instruments that can be applied to manage
the demand for transport in urban areas. However, it is found that all of these
instruments, except for road user charging, fail to target the external costs of urban
motoring adequately (Oscar Faber et al., 1998). Therefore, Chapter 3 goes on to give a
review of road user charging as a means of demand management and describes any
implications that this review has for this research. It is concluded that an inner city
cordon scheme with a fixed rate of charge would have the greatest potential for
succeeding to reduce the demand for travel by the required levels in order to achieve the
objectives laid out in ‘A Platform for Change’ for the GDA. It is also found that an
investigation into the effectiveness of any such application, or variation there of, is
required before it would realistically be considered. This type of investigation would
take a considerable number of model runs given the area to be covered and the various
combinations to be tried. Undertaking this investigation was not practical at the time

due to the number of model runs required and the length of time taken to execute a
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model run. It was, therefore, concluded that an improvement in the running time of the
DTO’s Traffic Model was necessary to conduct research on possible road user charging

initiatives within the GDA.

This chapter will research how to improve the performance of the DTO Traffic Model
in the Greater Dublin Area with the aid of high performance computing techniques and
hardware. The objectives of this research for the DTO’s modelling process can be

described as follows:

e To investigate the possibility of reformatting the code of the SATURN
(Simulation and Assignment of Traffic to Urban Road Networks) model, see
Section 4.3.2, in order to incorporate parallel processing and, ultimately,
reduce the processing time for each model run. This would represent a very
useful enhancement for the DTO Traffic Model and the other authorities
currently using the model. It would also have implications for other users of

the SATURN Suite in the U.K. and Europe;

e To make use of the IBM 9076 Scalable POWERParallel SP2 supercomputer,
shared between Trinity College Dublin and Queens University Belfast, and the
computing power available by producing new improvements to the SATURN
model using parallel processing methods. This may be achieved by
concentrating on the algorithmic loops both between and within the assignment
and simulation procedures of the SATURN model. The long run times of the
SATURN model are due to the numerical computation involved in the
assignment and simulation of traffic conditions, such as those defined by the
transportation network for the GDA. Using the far superior computational
capacity of the IBM SP2, it is hoped that the long model run times may be cut
by a significant amount allowing the SATURN model, in conjunction with the
DTO Traffic Model, to be used in a wider range of problems than it is presently

feasible to undertake; and,

e To use the new model to conduct research on possible road user charging
initiatives within the GDA, which it is not practical to undertake at present due
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to the long run times of the model. This type of investigation would take a
considerable number of model runs given the area to be covered and the
various combinations to be tried. With the improved performance of the
parallelised model this could then be achieved within a reasonable period of
time due to the shorter run times of the new parallel model. This, according to
Hribar et al. (2001), is the primary goal of using parallel machines for traffic

equilibrium applications.

Dublin Transportation
Office Traffic Model

E

SATURN Assignment
and Simulation Model

+

Assessment of the
SATURN Model

¥
Computationally intensive
areas of the SATURN Model

.

Processes of the
Assignment

-

Processes of the
Shortest Path problem

+

Parallelisation of the
assignment and
shortest path area

.

Leading to conclusions for
a parallel implementation

Figure 4.1: Outline of the areas assessed in Chapter 4 and the progression through

to a set of conclusions for parallel implementation of the SATURN model.
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Figure 4.1 gives an outline of the areas assessed within Chapter 4. A summary of the
more important and practical aspects of the DTO Traffic Model is described in Section
4.2. Section 4.3 briefly describes the SATURN traffic assignment and simulation
model. Section 4.4 describes the initial analyses of the SATURN model, assessing if
potential performance improvement can be achieved through parallel processing, and if
so, where it might be achieved. Section 4.4 concludes that the computationally
intensive area of traffic assignment has the most potential for performance
enhancement. As a result, Section 4.5 describes the technical aspects of traffic
assignment within the SATURN model leading to a description of the shortest paths
problem and tree building in Section 4.6. After thoroughly investigating the areas
within the SATURN model where parallel processing could give relevant performance
enhancements, a literature review of parallel processing in those areas is undertaken in
Section 4.7. Finally, Section 4.9 summarises the more important aspects and

conclusions of the chapter.

4.2 The Dublin Transportation Office Traffic Model

4.2.1 Introduction

The Dublin Transportation Network Model (DTNM), or the Dublin Transportation
Office (DTO) Traffic Model as it is better known now, was first set up as part of the
DTI strategy to assess strategic transportation proposals in the DTI Study Area (DTI,
1995). This modelling process has been described in Chapter 2 Section 2.4.4. The
DTNM is described as a zone-based local model where strategic zones are addressed
individually. The DTNM made use of disaggregate data such as car ownership and car
availability and the trip making characteristics of the population, all of which were

designed to be easily updateable and enhanced in the future.

The model has since been updated by the DTO in 1996, 1997 and again in September of
2002. The DTO Traffic Model uses one of the largest representations of the SATURN
model in Europe assessing medium to long-term prospective strategic transportation

planning proposals in the GDA.
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The section that follows will summarise the more important aspects of the DTO Traffic
Model. Section 4.2.2 looks at zoning within the GDA. Section 4.2.3 describes
transportation networks; specifically, how they are defined in terms of zones, links and
nodes. Section 4.2.4 describes the classic 4-stage model structure looking at trip
generation, distribution, modal split and assignment from a practical standpoint.
Finally, Section 4.2.5 describes the overall model structure while Section 4.2.6

concludes briefly.

4.2.2  Zoning areas of interest

The area of interest is defined as:

“The area within which trip patterns will be significantly affected by the

implementation of transport proposals.” (Byrne, 2002)

Once this area has been identified then an analysis of the existing trip patterns is
necessary plus a prediction of future year trip patterns, as was the case in 1997 when the
DTO updated trip patterns on the existing 1996 DTO Traffic Model. The DTO Traffic
Model is broken up into a hierarchical zoning system with zone boundaries, centroids

and numbers; see Figure 4.2 for a typical zoning system with:

e 432 fine zones, with finer zones in the City Centre and coarser zones further
out, allowing for a combination of robust forecasting of socio-economic and
travel activity variables with the detail required for accurate mode choice and

assignment;

e 367 zones based on District Electoral Divisions (DEDs), which are used in

association with planning data;
e 58 strategic zones like that of the original DTNM; and,
e 2( coarse zones.

Origin and destination zones may be considered as a subset of the nodes known as
centroids, see Section 4.2.3.
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Zone
Boundary

Zone
Centroid

Z.one
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Figure 4.2: A typical zoning system with zone boundaries, centroids and numbers.

4.2.3  Transportation networks

The supply of transport infrastructure in the GDA is represented by a series of networks.
Each mechanised mode has its own network; one representing the road system for use
by private cars and commercial vehicles known as the highway network, and those

representing the bus system and rail services known as public transportation networks.

Transportation networks are defined in terms of links and nodes. In the highway
network links are defined as the road sections between junctions and nodes are defined
as the junctions. In the rail network nodes are train stations and links are the track
sections between them. Public transport is defined in terms of speed, efficiency,
frequency and routing through nodes. Figure 4.3 shows a basic sample of a

transportation network.
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The bus network used to be modelled as part of the highway network with full Dublin

Bus routings, time and operating schedules up until the 2002 DTO model update.

Node

Link

Figure 4.3: A transport network with nodes and links.

However, since 2002 a new model developed by MV A Consultants known as TRIPS, or

Transport Improvement Planning System (see http://www.citilabs.com/trips/index.html

for more details), has been employed to model the public transportation networks,
taking over from the less proficient SATCHMO (SAturn Travel CHoice MOdel)
extension to the SATURN Suite, which is also designed to assess public transportation
networks. All suburban rail is modelled as part of the rail network and incorporates the
full Irish Rail time schedules and operating frequencies for services. A diagram of how
the zones are connected with the transport network using centroid connectors can be

seen in Figure 4.4. Centroid connectors may be considered a subset of the links.

The highway network is made up of a simulation network and a buffer network,
combining to give 1,220 simulation junctions and 3,900 links throughout the GDA. The
simulation and buffer networks represent two different levels of detail to reflect the
complexity of congestion phenomena in the GDA. Links in the buffer network use a
simplified representation of delay as a function of the flow on the link itself. Links in
the simulation area, which represents the inner city and urban parts of the GDA, i.e., the
Metropolitan Area, consider delays at junctions as a function of traffic control

characteristics and of the flows on all approaches.
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Simulation links are especially useful where congestion is likely to be significant

because of the detail in which they are modelled. Separate transportation networks have

Network Link

\

Z.one Network
Connector Node
Z.one
Centroid

¥

Figure 4.4: A transport network with zones, centroids, nodes, links and centroid
connectors.

been produced at peak and off-peak periods due to the different traffic signal timings in
the two periods. The rail and bus networks for the peak and off-peak models represent

the different service patterns for those times of the day.

4.2.4  The transportation model structure: classic 4 - stage model

The classic 4-stage model used by the DTO, see Figure 4.5, is the same as that used by
the DTI, as described in Chapter 2 Section 2.4.4. However, the description in Section
2.4.4 is somewhat theoretical and what follows is a more practical description of how

the theory applies to the DTO Traffic Model.
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4.2.4.1 Trip generation — attraction stage

There are two aspects to trip generation; generation and attraction. In the DTO Traffic
Model the number of trips generated in a particular zone is a function of the socio-
economic properties of the zone while the trips attracted to a zone are a function of the

land use properties of the zone. Trip generation and attraction can be stated as follows:
Oi 7 f(xi, xi2, Xi3,....) Equation 4.1
and,
D;j = f(yn, yi2, yi3,....) Equation 4.2
where:

e O are the trips generated by zone ‘i’ and D; are the trips attracted to

zone ‘J’; and,

e X, are the socio-economic properties of zone ‘i” while Y; are the land

use properties of zone ‘j’.

Trip Generation

v
S Trip Distribution
-
O v
m Modal Split
QL
- !

Trip Assignment «

Figure 4.5: Four-stage model used in the DTI’s DTNM and in the
DTO Traffic Model.
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4.2.4.2 Trip distribution stage

Trip distribution models the distribution of trips generated by each origin zone that are
attracted to each destination zone. The output of the process is a matrix of trip

distributions for origin zone ‘i’ to destination zone ’j’, i.e., Tj;, such that:

ZT,, = D; Equation 4.3

and,

ZT,_, =0i Equation 4.4
dJ;

The base year trip generation and distribution were derived from data obtained in the
same multi-modal origin / destination surveys described in Chapter 2 Section 2.4.4 for
the DTI’s DTNM and updated by the DTO’s disaggregate stated preference surveys for
the DTO Traffic Model. Trip end totals were validated against demographic and land
use data while the trip demand forecasts were based on demographic, land use and

macro-economic forecasts, and, on the expansion of base year trip rates.

4.2.4.3 Modal split stage

Determination of the choice of mode for a trip is known as modal split. The most
important modal split in the DTO Traffic Model is the split between public and private
transportation. After this, a further split occurs between the different modes of public
transportation. This split is determined by assigning a generalised cost to each mode of
travel, derived from disaggregate stated preference surveys, and then, in the case of the
DTO Traffic Model, using a hierarchical logit model to determine the split between
public and private transportation and then between rail and bus transportation. This
logit model is described in Chapter 2, Section 2.4.4. However, while the equation for
the generalised cost of travel by public transport has remained the same, see Section
2.4.4, for the updated DTO Traffic Model, the generalised cost of travel by private car

has been abbreviated to the following:
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Ci=a\Vi+a2Va+asP + aa Equation 4.5
where;

e C; is the generalised cost of travel from zone ‘i’ to zone ’j’;

e V,is the in-vehicle time, including time spent looking for parking;

e V, is the in-vehicle distance, including distance spent looking for

parking;
e P is the parking charge; and,

e a4 is a constant representing other fixed costs, e.g., tolls, congestion

charging, etc.

Using model calibration suitable values for a;, a,, as, etc. can be found for the
expressions of generalised cost for both public and private transportation, i.e., rail, bus
and private car. This allows an expression to be found for the generalised cost of travel

between any two zones, ‘i’ and ‘j’, for any given mode of travel.

4.2.4.4 Assignment stage

Trip assignment is the last stage of the classic 4-stage model. Mode choice and
assignment in congested urban networks are not independent of each other. This is
explicitly recognised in the DTO Traffic Model, e.g., trip makers who have a private car
at their disposal but may or may not still use public transportation are subject to
‘equilibration’ between mode choice and assignment models. This means that there is
consistency in the treatment of generalised cost, the key determinant of travel choice,

between assignment and mode choice.

After the modal split each trip distribution matrix is assigned to the appropriate
transportation network.  This assignment is calculated based on the minimum
generalised cost of travel between each ‘ij’ pair of zones. In the case of highway trip

assignment, i.e., the private car distribution matrix, the time taken to complete a journey
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on a given link is a function of the characteristics of the link and the volume of traffic
on it. These characteristics include the link distance, link free flow speed, link capacity

speed, link capacity and the link speed-flow relationship.

For highway links that do not have junctions the speed on the link can be related to the
traffic flow on the link by a speed flow curve as seen in Figure 4.6. If the speed flow
curve is inverted then a cost-flow curve is produced, also Figure 4.6, which allows the

link journey times to be calculated for links on a highway network.
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Figure 4.6: An example of Speed versus Flow and Cost, measured in travel time,

versus Flow for a sample link representing a section of highway.

The trips are assigned to the highway network based on the Wardrop Equilibrium

Principle (Wardrop, 1952). The Wardrop Equilibrium Principle states that:

“At equilibrium all routes used by a particular user class are minimum cost routes as
defined by that user class while all other (permitted) routes have equal or greater

cost.”

However, if all trip makers perceive their costs in the same way then the Wardrop

Principle can be re-written as follows:

“Under equilibrium conditions traffic arranges itself in congested networks such that
all routes between any Origin / Destination pair have equal and minimum costs, while

all unused routes have greater or equal costs.”
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To achieve Wardrop’s Principle over a network, in practical terms, involves an iterative
process, which gradually converges until equilibrium conditions, or conditions
acceptably close to equilibrium, have been obtained. The SATURN traffic simulation
and assignment model is used to carry out this procedure for highway networks in the

DTO Traffic Model. Each iteration of the assignment process has four basic stages:
e Completing an all-or-nothing assignment on the cheapest route;

e (Calculating the flows as a linear function of the previous flow plus the flow

from the all-or-nothing assignment;
e Re-calculating the travel costs using these new flows for each link; and,

e Repeating the three steps above until the travel costs on each link are
approximately equal, i.e., within a set convergence parameter, and the Wardrop

equilibrium conditions have been reached.

Since the 2002 update public transport assignment has been carried out by TRIPS
instead of SATCHMO. TRIPS is more flexible than SATCHMO allowing trip transfer
between bus and rail services at intersection points on the public transportation network.
TRIPS has a number of other advantages. For instance, SATCHMO calculates the costs
associated with public transportation from the first assignment iteration and uses these
costs to ascertain the delays for buses as they travel through a congested network.
Whereas TRIPS takes a set of costs at the end of every new assignment iteration giving
a more accurate estimation of the delay costs for the movement of buses at the end of
the model run. TRIPS also allows more freedom in that one can set different fare tables
for different public transport modes, include other penalties such as crowding penalties,
and, assess ‘Park and Ride’ more accurately by calculating the combined cost of driving

to the site of a public transport service and then travelling on it.

4.2.5 Overview of the DTO Traffic Model layout

The software platform adopted in the DTNM was SATURN for highway modelling and
SATCHMO for public transportation modelling. Since the 2002 update of the DTO
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Traffic Model the SATURN Suite continues to be used for modelling highway

transportation while public transportation is, for the most part, assessed using TRIPS.

Enter Scenario Title and Prepare Data

Input starting matrices

Produce more outputs

MATS f
00 j

RESULT1
0

—_—

Prepare PT network and lines

Produce model outputs Produce model reports

TRIPS RESULTS |

REPORTS |

0 | | 00

00 ‘

Figure 4.7: Overview of the DTO Traffic Model from Data Preparation (1) to
Results (10) including the use of SATURN and TRIPS.

While TRIPS has a number of major advantages over the SATCHMO package there is
one major drawback. Within the DTO Traffic Model, if SATURN is used in
conjunction with TRIPS, see Figure 4.7, then the computing time required is four or five
times greater, depending on the values or involvement of certain parameters, than that
of the SATURN — SATCHMO combination, which takes between six and eight hours to

run (Byrne, 2002).

This research is looking at means of improving the congestion difficulties on the
highway network of the GDA using demand management measures. One of the main
problems with the use of the DTO Traffic Model when applied to the highway network,
which requires several model runs, is that each model run takes between six and eight
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hours to complete. It is proposed that high performance computing will reduce this run
time, significantly increasing the scope for research in the area of demand management
and allowing an assessment of transportation demand management proposals, and in

particular congestion charging options, in the GDA.

4.3 The SATURN traffic simulation and assignment model

4.3.1 Introduction

SATURN is a suite of transport network analysis programs developed at the Institute for
Transport Studies (ITS), University of Leeds by Dr. Dirck van Vliet and distributed by
WS Atkins of Epsom since 1981. The model, version 4.0, was first described by Hall et
al. (April 1980). It was initially designed for “self contained areas in large cities or for
free standing towns of less than 100,000 population™ to achieve reasonable computer
times (Hall et al., 1980). The article details the first practical application on the town of

Harrogate in North Yorkshire.

In 1982 an updated article was published describing a “considerably improved and
extended” version having been applied in a number of studies including a traffic
management study in Liverpool (Choraffa et al., 1982 and 1983) and studies in Sydney,
Australia, and Auckland, New Zealand. Testing was done in central Manchester
involving SATURN, version 8.0, in 1987 to validate the SATURN and ME2 (Matrix
Estimation from Maximum Entropy) models, for a network before and after the
introduction of a pedestrianisation scheme (Matzoros et al., 1987). It was found that
both models were accurate to within approximately 12%. SATURN, version 9.4, now
has over 250 users in approximately 30 countries world-wide and has been tested and
applied by consultants, universities and planning authorities for the evaluation of traffic

management and demand management schemes (ITS web site, 2003).

A number of road pricing studies involving SATURN in more recent times include
ROCOL, The Review of Charging Options for London (GOL, 2000), four studies

conducted in different Scottish towns by Oscar Faber in 1995 (www.scotland.gov.uk)
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and a number of other studies across the UK including those of Santos (2000) and May
et al. (2000).

The model has five main functions (ITS and WS Atkins, 1998), which are:

(1) The analysis of traffic management schemes over localised networks, of the
order of between 100 and 1,000 junctions on average, as a combined traffic

simulation and assignment model;

(2) The analysis of much larger networks of between 6,000, for the standard PC

version, and 30,000 links as a conventional traffic assignment model;

(3) The analysis and modelling of individual junctions using the simulation model;

(4) The analysis of transport networks and the production and manipulation of

transportation network databases; and,

(5) The production and manipulation of trip matrices with the use of a matrix

package.

There are two types of input to the SATURN model including a specification of the
demand for travel defined by an origin/destination trip matrix, time profile, etc. and a
specification of the supply provided by the transportation network, which is defined
using links, nodes, link lengths, capacities, banned turns etc. The output consists of link
flows, route choices, turning movements, etc., given by the traffic pattern produced by
the set of rules which define how trip makers select their mode and route of choice (van

Vliet, 1975).

4.3.2 The SATURN model framework

The basic SATURN model has seven main programs: the first three are concerned with

assigning traffic flows to the transportation network; and, the last four are concerned
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with the analysis of loaded transportation networks, where the trip matrix has been
assigned to the transportation network, i.e., the demand has been assigned to the supply
(van Vliet and Hall, 1998). Figure 4.8 shows the SATURN model framework with
SATALL being used in place of SATEASY and SATSIM, which are described below.

Network.DAT Trips.UFM
(Ascii network file) (unformatted matrix file)
Network Build
(SATNET)
Network.UFN
SATALL
Assignment
T e
Simulation
Network.UFS
SATURN Ananlysis Programs
SATED|SATLOOK | P1X SATDB

Figure 4.8: The SATURN simulation and assignment model framework
showing SATALL in place of SATEASY and SATSIM.

A further program for the production and manipulation of trip matrices, known as MX,

is also used quite frequently. MX is used to input all the necessary information about a

trip matrix from a number of sources and to create the input file, “Trips.UFM’. This file

is an UnFormatted Matrix ((UFM) file containing all the necessary data that the
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SATURN Suite needs to use in order to manipulate and edit the newly created trip
matrix in further programs, particularly in the simulation and assignment processes

associated with SATALL.

The programs that deal with loading traffic, in other words, the simulation and

assignment of traffic onto the transportation network, are described as follows:

e The network build program, SATNET, which takes the input ASCII data files
and prepares, or reformats, the information as an ‘UnFormatted Network’ file

(Network.UFN) so that it can be used as input into the next three programs;

e The assignment program, SATEASY, which assigns traffic to the
transportation network on the basis of delays, either measured through
chronometric or monetary means given as output by the simulation, and

produces an ‘UnFormatted Assignment’ file (Assignment.UFA);

e The simulation program, SATSIM, which takes the transportation network
with its associated assigned trips from the assignment stage and models the
passage of traffic through the transportation network outputting the resulting
delays from congestion and other related information in an ‘UnFormatted

Simulation’ file (Simulation.UFS); and,

e The combined simulation and assignment program SATALL, which combines
SATEASY and SATSIM into a single program switching automatically
between the two processes until a convergence parameter has been reached.
Once this is the case then an ‘UnFormatted SATALL’ file (SATALL.UFS) is

output for use with the analysis programs described below.

The SATALL model either iterates between the processes of assignment (SATEASY)
and simulation (SATSIM) manually or iterates through them automatically (SATALL)

until Wardrop’s Equilibrium has been satisfied.
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The analysis and display programs for assessing loaded transportation networks are

described as follows:

e The network plot program, P1X, displays link-based data either to a terminal or
as line printer output for the production of hard copy. It also contains virtually

all the functions contained in the three programs that follow;

e The analysis program, SATLOOK, allows the user to assess specific model
results within the context of a large output file and print out a description of

traffic conditions from model results;

e The network editing program, SATED, allows nodes, usually junctions, to be

edited and simulated on an individual basis using interactive commands; and,

e The data base analysis program, SATDB, allows a free-format manipulation

and display of data.

The analysis programs P1X, SATLOOK, SATED and SATDB, enable users to examine
output from the assignment, simulation or combined assignment-simulation modelling
processes.  The analysis programs themselves are of little interest in the re-
programming of the sequential SATURN model and they will not be discussed further
because they are predominantly for analysis purposes only and do not affect the

computationally intensive modelling procedure.

4.4  Initial analysis of SATURN

4.4.1 Introduction

Despite the extent to which the Dublin Transportation Initiative (DTI, 1995) strategy
has been implemented and the substantial investment still planned for Dublin City and
its hinterland under the Initiative, it is apparent that traffic congestion will remain a
serious problem in the Greater Dublin Area (GDA) for some time to come. As a result,

there remains the need to assess means of analysing the problem of traffic congestion in
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order to find solutions. The DTO Traffic Model, which uses the SATURN traffic
assignment and simulation model, is used to analyse potential transport planning

solutions over the GDA (DTO, 1998).

One of the objectives of this research has been to assess the SATURN model (van Vliet,
1982), as applied to the DTO Traffic Model, with a view to finding the areas within the
model that take up the most Central Processing Unit (CPU) time, and to reprogram
these areas to run in parallel. Reprogramming the most time consuming, or
computationally intensive, areas of the model in parallel will allow for a more efficient
use of computer time over a variety of network configurations and sizes, and in doing
so, will result in an overall improvement in efficiency for the DTO Traffic Model. The
success of this overall objective will be measured through the achievement of three

lesser objectives summarised as the following:

e To produce output from the reprogrammed parallel model that will demonstrate

its ability to converge as quickly as the sequential model;

e To produce output that will demonstrate the accuracy of the output data from
the new parallel model as compared with output from the sequential (standard

format) version of the SATURN model using the same input data; and,

e To produce output that will compare the performance of the new model against
that of the sequential SATURN model and to show the improvement of the

performance over that of the sequential model for the same test scenarios.

This Section analyses the model to assess if there are areas that take up large quantities
of CPU time and what the potential is for reprogramming any such areas using parallel

programming techniques and hardware.

4.4.2  Initial analysis

The assignment and simulation section, as opposed to the analysis and evaluation
section, of the SATURN model has three different parts: the input, the model and the

output. The input and output are once-only transfers of data and results to and from an
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internal format, known as ‘unformatted’ in SATURN, and will not be considered
further. However, the processes involved represent a not inconsiderable overhead from

a parallelisation standpoint and this will be considered at a later stage in the thesis.

It was found by Greenwood and Taylor (1993) that for the CONTRAM (CONtinuous
Traffic Assignment Mode) model (Leonard and Gower, 1982; Leonard et al., 1989;
Taylor, 1990) most of the computationally intensive areas, the areas where the Central
Processing Unit (CPU) spends most of its time, are within the assignment area.
CONTRAM is a dynamic traffic assignment model, which models time-variable
demands, routes and network variables (Taylor, 1992), that was developed by the UK
Transport Research Laboratory. As a starting point for the assessment of SATURN it
was initially assumed for this research that because of the similarities between the
CONTRAM and the SATURN models, similar results would be obtained for the CPU

time spent within the assignment area.

The computationally intensive part of the SATURN model is the SATALL program.
SATALL deals with loading the traffic onto the transportation network. SATALL is
made up of an assignment and a simulation. The assignment section assigns traffic on
the basis of the delays given by the simulation. The simulation section models in detail
the passage of traffic through the network and the resulting delays. The program
SATALL loops between the assignment and simulation until equilibrium is reached.
The SATALL program was profiled using a piece of software called ‘Gprof”, with the
optimiser switched on, run on the UNIX operating system to show on what and for how

long the CPU spends its time. These results can be seen in Table 4.1.

Table 4.1 gives a detailed profile of the top 38 most time consuming routines relative to
the overall running time, categorised by the percentage of CPU time used while running
the computationally intensive SATALL program, when applied to a sample problem
supplied by the DTO. The details of these routines are unimportant, as the
computational time distribution between them is what is significant (Greenwood and
Taylor, 1993). The second column, ‘% (Time)’, gives the percentage of CPU time that

each routine uses while SATALL runs through a given problem. The next column,
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‘Cumulative Time (Secs)’, gives the cumulative time used up by successively less time

consuming routines in the SATALL program as the assignment/simulation iterates to
convergence. Column four, ‘Self (Secs)’, gives the time that each routine uses per
iteration of itself, as opposed to the additional time spent in subroutines that happen to

be called from that routine. The column, ‘Self (No. of Calls)’, gives the number of

times that each routine is called from another routine while the ‘Time (ms/call)’ and

‘Total Time (ms/call)’ columns give the milliseconds used within each routine per

iteration of itself, i.e., per call, and the total milliseconds used per call including the time

spent in any subroutines that happen to be called from that routine, respectively.

Table 4.1 shows that the nested subroutine used to solve the shortest path problem,
‘desopo_cb’, demands over 80% of the overall CPU running time for the SATALL
program. As well as this, the subroutine, ‘loadit_plus’, (used to load, or assign, the trips
onto these shortest paths) that calls the nested shortest path subroutine, ‘desopo_cbh’,
uses an additional 5% of the total CPU running time. This only leaves approximately
12% of the overall running time for all of the other routines that make up the program
SATALL. The details of many of these subroutines are not shown in Table 4.1 as there
are too many of them to list but 99.1% of the total time for the program is accounted for

by the 38 routines shown.

4.4.3 Conclusion

e The processes involved in the assignment area of the SATURN model were
found to have the most potential for performance improvement using parallel

processing techniques.

e Since both the ‘desopo_cb’ (shortest path) and the ‘loadit_plus’ (trip
assignment) routines are both important sections of the assignment, and
because these routines give the assignment over 85% of the overall CPU
running time for the execution of SATALL including input and output, it was
decided that the assignment will be targeted for further research into potential

time saving development using high performance computers.
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Table 4.1: Profile of CPU related figures and number counts for a number of the

routines used in the execution of the SATALL program.

Subroutines used in % |Cumulati| Self Self (No. | Time Total
SATALL program (Time) | ve Time | (Secs) | of Calls) |(ms/call)] Time
(Secs) (ms/call)
.desopo_cb [7] 80.8 886.82 | 886.82 83711 10.59 10.69
Joadit_plus [6] 4.9 940.57 53.75 194 277.06 | 4897.06
.__mcount [16] 1.9 961.52 20.95 NG NG NG
.desopo_cb_2[17] 1.9 981.85 20.33 1726 11.78 11.88
stommix|[15] 1.4 997.01 15.16 200889 0.08 0.11
.init[20] .2 1009.9 12.89 337577 0.04 0.04
initr[23] 1 1020.93 11.03 490193 0.02 0.02
.opatt[21] 0.6 1027.24 6.31 242663 0.03 0.05
._pow[18] 0.5 1032.52 5.28 | 10094610 0 0
.saxvt[22] 0.4 1037.45 4.93 6807060 0 0
Joginner2[27] 0.4 1042.06 4.61 8479574 0 0
.expinner2[28] 0.4 1046.47 441 8479574 0 0
.whasig[29] 0.3 1050.04 3.57 4113402 0 0
.movset[26] 0.3 1053.25 321 4603361 0 0
itdset[30] 0.3 1056.21 2.96 7493280 0 0
.gapx[19] 0.2 1058.67 2.46 425885 0.01 0.03
.memcpy[33] 0.2 1060.98 2,31 NG NG NG
.totflo[35] 0.2 1063.22 2.24 7652970 0 0
.setacc[11] 02 1065.35 2.13 242663 0.01 0.22
.__stack_pointer[36] 0.2 1067.44 2.09 NG NG NG
.mixlin[12] 0.2 1069.22 1.78 154805 0.01 0.22
.cijadd[39] 0.1 1070.59 1.37 7135337 0 0
Jovset[41] 0.1 1071.94 135 5905959 0 0
Joadit_plus_2[14] 0.1 1073.21 1.27 4 317.5 | 5448.76
.pldis[44] 0.1 1074.44 1.23 185793 0.01 0.01
.qincrement1[46] 0.1 1075.51 1.07 NG NG NG
prisig[10] 0.1 1076.56 1.05 60568 0.02 1.14
.qincrement[47] 0.1 1077.55 0.99 NG NG NG
Alset[49] 0.1 1078.52 0.97 1950350 0 0
.mixriv[50] 0.1 1079.49 0.97 154805 0.01 0.01
.mucfw[5] 0.1 1080.43 0.94 2 470 482074.8
set_flow_by_lane[34] | 0.1 1081.35 092 412572 0 0.01
._log[53] 0.1 1082.17 0.82 1078977 0 0
.delay_cfp[51] 0.1 1082.99 0.82 55214 0.01 0.02
.saobjt[38] 0.1 1083.8 0.81 98 8.27 14.67
._xIfBeginlO[56] 0.1 1084.56 0.76 NG NG NG
.rbout[37] 0.1 1085.31 0.75 2911 0.26 0.52
.outin[31] 0.1 1086.05 0.74 63551 0.01 0.05
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e Hislop et al. (1991) also identified that, amongst others including CONTRAM,
the equilibrium assignment model SATURN is suitable for implementing on

parallel computers.

4.5 Trip Assignment

4.5.1 Introduction

This research concentrates on the standard default assignment procedures used by
SATURN. These can be found in the SATURN User Manual, see van Vliet and Hall
(1998). These procedures are also the standard network requirements and assignment
procedures used by the DTO for most of the work that it carries out using the SATURN

model.

The principle of road assignment was originally formulated by Wardrop in 1952, see
Section 4.4.3 below. The assignment procedure accepts as input a trip matrix and
assigns those elements to minimum cost routes through the network based on the
current cost - flow relationships, described in Section 4.2.4, either user-input or derived
from the simulation. There are various methods of assignment available. In the case of
SATURN the user has a choice of two standard methods: Wardrop Equilibrium
Assignment and Stochastic User Equilibrium Assignment. SATURN also allows for
Multiple User Class Assignment and Elastic Equilibrium Assignment, see Ortuzar and
Willumsen (1994). The relevant areas in relation to the DTO Traffic Model have been

summarised briefly in the sections that follow.

The DTO uses Wardrop or User Equilibrium Assignment over multiple user classes for
most of its work. It is proposed that the new high performance computing version of
the SATURN model will be developed to analyse these procedures more efficiently, and
in doing so, allow for more efficient analysis of potential congestion charging schemes

in the GDA using the DTO Traffic Model.
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4.5.2  Multiple User Classes

Multiple user classes refers to the consideration of more than one means of
transportation over a given transportation network at the same time, e.g. considering the
effect of public transportation and of private cars over a highway network at the same
time. The interaction between different user classes can be based either on a Wardrop
Equilibrium Principle (Wardrop, 1952) or on a Stochastic Equilibrium Principle

(Ortuzar and Willumsen, 1994). The Stochastic principle states that:

“At equilibrium individuals within each user class perceive all routes used as being

minimum cost routes (as well as being permitted routes).”
While the Wardrop principle, described in Section 4.2.4 above, states that:

“At equilibrium all routes used by a particular user class are minimum cost routes as
defined by that user class while all other (permitted) routes have equal or greater

cost.”

4.5.3  User Equilibrium Assignment

The default assignment procedure within SATURN is based on Wardrop’s Principle of
Traffic Equilibrium (Wardrop, 1952), which states that:

“Traffic arranges itself on congested networks such that all routes used between any
Origin and any Destination have equal and minimum costs while all unused routes

have equal or greater cost.”

This principle is based on two assumptions:

(1) That each user chooses their route based on the minimum perceived cost; and,
(2) That all users perceive their costs in the same fashion.

While the first assumption seems like a representation of realistic driver behaviour, the
second assumption is weaker as it is well known that not all drivers perceive their costs

in exactly the same way and that they choose different routes for a variety of different
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reasons. Unlike certain stochastic methods of assignment that may not converge if the
network being modelled is congested (van Vliet, 1979) equilibrium methods based on
Wardrop’s Principle have led to models which are stable on heavily congested
transportation networks and, to algorithms that converge to an equilibrium solution
(Hislop et al., 1991). An example of which is the Frank-Wolfe algorithm (Frank et al.,
1956) described in Section 4.5.4 below.

Ortuzar and Willumsen (1994) make reference to work carried out by Beckman et al.
(1956) where the set of flows, V,, satisfying Wardrop’s Principle can also be obtained
by finding the set of flows that minimise a certain “objective function” subject to all the
path flows that make up the loaded trip matrix being positive, e.g., for a single user
class:

a W

z=Y [c{v)dv Equation 4.6

where:
e (C,is equal to the cost of travelling from link ‘0’ to link ‘a’, and,
e V,is equal to the flow over those links.

This is extremely useful in that it enables one to establish algorithms that, by
minimising the objective function ‘Z’, guarantee finding an equilibrium solution. The
objective function for a multiple user class assignment under Wardrop Equilibrium
conditions may look like the following equation given here (Ortuzar and Willumsen,

1994):

a Va a g m
z=Y [u(viv+ ZiZb'k.m dak Ve Equation 4.7

0 0 0 0 0

where;
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e t, is equal to the travel time from link ‘0’ to link ‘a’ and ‘V,’ is equal to the

flow over those links;

e b’k.m is equal to the value of one unit of fixed cost component ‘k’, which can
be measured in time or distance or a combination of a number of factors, to

user class ‘m’ divided by the value of time as perceived by user class ‘m’;
e d,kisequal to the k’th fixed cost component on link ‘a’; and,
e V., mis equal to the flow over link ‘a’ by user class ‘m’.

There are a number of algorithms that can be used to achieve Wardrop Equilibrium
within the SATURN Suite. These include the Frank-Wolfe algorithm (Frank and
Wolfe, 1956), the PARTAN, or PARallel TANgent algorithm (Florian et al., 1983),

and, the Method of Successive Averages as described by Ortuzar and Willumsen

(1994); all of which are briefly described in the sections that follow.

4.5.4 The Frank-Wolfe Algorithm

The adaptation of the Frank-Wolfe algorithm, as used within the SATURN model, is

described as follows:

(1) Assign all trips to Origin-Destination (O-D) distribution paths to produce an
initial set of link flows, V,", where n = 1. Conventionally, the first assignment
is an all-or-nothing assignment with the initial set of link costs measured in time

units and set to their “free-flow” values.

(2) Create new link times by altering the old link times in accord with the current

flows, V,™; i.e., set: C,'™ = Ca(Va™).

(3) Build a new set of shortest paths based on the new link costs, C,"”, and assign all

trips, Tjj, to them to produce a set of “auxiliary” all-or-nothing flows, F,".

4) Generate an “improved” set of link flows, Va“””, as a linear combination of the

old and the auxiliary flows, 1.e:
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Ve = (1= 2)* Ve + A% F, ™ Equation 4.8

where;

e ‘A is chosen so that the “new” flows, V,"™", minimise the objective
function, ‘Z’, to satisfy Wardrop’s Equilibrium as described in the

sections above.

(5) Return to step (2) unless some convergence criterion has been satisfied; for
example, the maximum number of loops as specified by the user defined
parameter, NITA, has been exceeded. NITA is a parameter within SATURN

defining the maximum number of assignment iterations to be completed.

Each trip from an origin to a destination is represented by an O-D pair, ‘ij’. At each
stage of the algorithm a new set of routes is calculated for all origin-destination pairs,
‘i), and then a certain proportion of all previously assigned trips are shifted onto these
routes. Hence, after say five iterations, there will be up to five different routes for each
‘i)’ pair (allowing for the same route to be chosen more than once) with certain fixed
proportions of trips assigned to each creating a trip distribution over the network for

each ‘ij’ pair.

Starting from an initial feasible solution, i.e., trips assigned to links based on their free-
flow values, the method generates a feasible direction by linearising the objective
function. This means solving a linear (Taylor series expansion) programming sub-
problem and then finding an improved solution on the line segment between the current

solution and the solution of the sub-problem.

At each step in an iteration there is a feasible solution and the algorithm takes the latest
all-or-nothing assignment to provide a direction in which to take in order to achieve this
solution. This direction can be seen as an approximation to minimising the objective
function, ‘Z’. The Frank-Wolfe algorithm then seeks to find a second feasible direction
using a linear approximation to the objective function. To minimise the approximation

to the solution of the function, ‘Z’, the algorithm chooses routes such that their
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corresponding costs are minimised. In this way the algorithm fulfils the requirements of
Wardrop’s Equilibrium principle by only choosing a new route such that it has either
less costs or equal costs than the previous route. In other words, all routes with assigned
trips are minimum cost routes with all other routes having equal or greater costs. There
are numerous descriptions of the Frank-Wolfe algorithm including those in Daganzo

(1979) and LeBlanc (1975) amongst others.

4.5.5 PARTAN assignment
The PARTAN, or PARallel TANgent, algorithm is a variant of the Frank-Wolfe

algorithm for solving Wardrop equilibrium with a single user class. It introduces a new
step into the Frank-Wolfe algorithm, described in Section 4.5.4, between steps 4 and 5

n+l

of the algorithm. This new step combines the flows, V, ", at the end of step 4 with the

second previous solution for iterations greater than 2, i.e:

Vo = (1 - (5") BV, g Ry, Equation 4.9

where;
e 3"is chosen to minimise the objective function, Z(V,™").

LeBlanc et al. (1985) and Florian et al. (1987) have described the PARTAN method as
applied to equilibrium assignment and they have shown that it has improved
convergence over the Frank-Wolfe algorithm on its own. Arezki et al. (1990) have also
provided an analytical implementation of the PARTAN variant to the Frank-Wolfe

algorithm for user equilibrium assignment.

4.5.6 Method of Successive Averages (MSA)

MSA is an iterative assignment algorithm. It is used with stochastic user equilibrium
(SUE) assignment. The difference between stochastic and Wardrop’s equilibrium is
that in SUE models each driver is meant to define travel costs individually instead of

using a single definition of costs applicable to all drivers (Ortuzar and Willumsen,
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1994). In other words “no-one can improve his/her perceived travel cost by
unilaterally changing route” (Hislop et al., 1991). This is a more realistic approach in
terms of modelling behaviour than the assumptions associated with Wardrop’s Principle

of Traffic Equilibrium.

The flow on a link is calculated as a combination of an auxiliary all-or-nothing
assignment in the present iteration and the current flow on the previous iteration. The

algorithm is described as follows:

(1) Initialise all flows V, = 0 and make n = 0. Conventionally, link costs are set to

their “free-flow” values.
(2) Build a set of minimum cost paths with the current costs and make n=n + 1.
3) Load the matrix onto these paths obtaining a set of auxiliary flows, F,.

(4) Calculate the current flows as:

Ve = (1= 2)*Va" ™V + A% F. Equation 4.10

with, 0 <=A <=1

Then calculate a new set of current link costs based on the flows, V,'™. If there is no
significant change in the flows for two consecutive iterations, then stop. Otherwise

proceed to step 2.

Each user has a perceived cost for each link, which is selected at random from a
distribution table, whose mean is the actual link cost (Hislop et al., 1991). It has been
shown by Sheffi, (1985), that making A = 1/n produces a solution that converges to

Wardrop equilibrium but is less efficient in doing so than the Frank-Wolfe algorithm.

4.5.7 Conclusion

The standard default procedures within the SATURN model are the Frank-Wolfe

algorithm used within user equilibrium assignment. These have also been accepted as
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the standard for the DTO Traffic Model, which also has multiple user classes. Daganzo
(1977) and van Vliet (1976) have argued for using stochastic assignment in relatively
uncongested transportation networks while using user equilibrium assignment when
dealing with congested transportation networks. Sheffi et al. (1981) have stated that
while stochastic models are more realistic in terms of modelling behaviour, they have
much larger computational requirements and, the differences between stochastic and
user equilibrium flow patterns grow smaller as congestion over the transportation

network increases.

The research carried out for this thesis is concentrating on congested transportation
networks in the GDA, which means using user equilibrium assignment for the reasons
stated in the previous paragraph. Though PARTAN is considerably faster than Frank-
Wolfe, this research also needs to look at multiple user classes over congested
transportation networks. This excludes the PARTAN algorithm for solving Wardrop

equilibrium assignment leaving us with the Frank-Wolfe approach.

4.6 Shortest Paths

4.6.1 Introduction

Due to the fact that this research is concentrating on Wardrop equilibrium assignment
for the reasons described in Section 4.5, and because this assignment is to be applied to
multiple user classes, this research will concentrate on the adaptation of the Frank-

Wolfe algorithm as described in Section 4.5.4 above.

Within the assignment algorithm of the CONTRAM model, Greenwood and Taylor
(1993) have shown that the computational time used in the calculation of the shortest
paths makes up the dominant part of the overall run time of a single iteration of the
dynamic assignment algorithm used. From the results of the profile that can be seen in
Table 4.1, it is clear that the shortest path calculations in the SATURN model, using a
fixed demand approach, have proven to be just as costly with respect to CPU times.

These results have shown that the shortest path algorithm takes up over 80% of the
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overall CPU running time for the assignment and simulation program SATALL, see

Section 4.4 above.

The shortest paths problem is one of the most well-known network optimisation
problems. This problem comes up not just in pure graph theory but in a number of other
fields of study including transportation. A number of algorithms to solve the problem
have been produced and studied for quite some time; see for example Moore (1957),
Bellman (1958), Dijkstra (1959), Ford (1956), Dial (1969), and Pape (1974). Advances
have also been made both in theory and evaluation; see for example Ahuja et al. (1990),
Goldberg and Radzik (1993), Fredman et al. (1994), and, more recently Cherkassky et
al. (1996) and Zhan and Noon (1998).

However, transportation networks have a number of characteristics that distinguish
them from other network optimisation problems and pose particular problems in
deriving algorithms. Solving for the shortest paths has, according to Hribar et al.
(2001), usually been achieved by applying single source labelling algorithms at each
source (origin) in the network because of the sparseness of urban road networks (Gallo

and Pallottino, 1986; Golden, 1976; Hribar et al., 1995; Pape, 1974).

van Vliet (1978) has described a number of these characteristics and the most widely
used algorithms for solving the shortest paths, or tree building, problem on
transportation networks and the following Section 4.6.2 describing tree building

incorporates aspects of this paper.

4.6.2 Tree building on transportation networks

There are a number of algorithms that have been developed to solve the shortest path
problem, which are relevant to the transport modelling area. van Vliet (1978) has
described the most widely used algorithms for solving this problem, the two main
algorithms which have been produced are due to Moore (1957), a label-correcting
algorithm, and due to Dijkstra (1959), a label-setting algorithm; see Section 4.6.3 for

more detail on the use of labelling in shortest path algorithms.
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The characteristics of road networks that have consequences for shortest path

algorithms can be summarised as follows (van Vliet, 1978):

Link lengths between nodes, i.e., arcs, are always positive;

A path from an origin to a destination must use real nodes, i.e., not nodes at

centroids: see Section 4.2.3 for more on centroids;

Some links may exist in only one direction while two-way links may have

different lengths:

Certain turns or movements may be either banned or penalised to discourage

their use;

The ratio of links to nodes is relatively small, being approximately three, and
link lengths are usually represented by integers and are short, e.g. less than a

hundred; and,

Networks can be very large with up to 5000 nodes and 15,000 links.

The method for building a minimum path tree may be described using the following

general notation:

Set-up:

The length of a link between two nodes, A and B, in the network is L g;
The length of the chosen path is the sum of the link lengths in the path;
The minimum distance from the origin, O, to the node A is La; and,

The back-node of A is B and the link (Ba, A) is a part of the shortest path.

Set all L = oo, L = 0 and all B, equal to some default value;
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e Set up a loose-end table T to contain nodes, T;, already reached by the
algorithm but not fully analysed as back-nodes for further nodes. Entries into
this table represent the outer ends of the tree as branches grow to connect all of

the nodes together; and,
e All entries are set to zero, T; = 0.
Method:
Starting with the origin, ‘O’, equal to the ‘current node’, A;

(1) Look at each link (A, B) from the ‘current node’, A, in turn and if Ly + Liap) <
L then set Ly = Lo + Liag), set By = A, and add B to the loose-end table, T,

provided that B is not a centroid if routing through centroids is prohibited;

(2) Remove A from T and if the table is empty, stop. Otherwise continue to step

(3); and,

(3) Select another node from the table and return to step (1) with it as the ‘current

node’ A.

Once this process has come to an end then L contains the set of minimum lengths,
measured using costs, distances or by other means, from the origin, O, to each node or
centroid, A. The back-node, B, then contains all of the data necessary to retrace all of

the shortest paths.

4.6.3  Shortest path algorithms for transportation networks

A number of classical algorithms exist which solve the shortest paths problem within
the field of transportation. These include the Bellman-Ford-Moore algorithm (Bellman,
1958; Ford and Fulkerson, 1962; Moore, 1958), algorithms due to Moore (1959),
Dijkstra (1959), Pallottino (1984) and the D’Esopo-Pape algorithm, as described and
tested by Pape (1974) while being credited to D’Esopo by Pollock and Wiebenson
(1960). A number of reviews exist on shortest path algorithms in general; for example
see, amongst others, Deo and Pang (1984), Gallo and Pallottino (1986), Bertsekas
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(1991b), Ahuja et al. (1993) and Cherkassky et al. (1996), and within transportation
models see, van Vliet (1978) and Gallo and Pallottino (1984). It is recognised that these
algorithms have all developed using different strategies for selecting labelled nodes to
be scanned in order to solve the single-source shortest paths problem on transportation
networks and other sparse networks (Hribar et al., 2001; Goldberg and Radzik, 1993;
Gallo and Pallottino, 1986; Golden, 1976).

van Vliet (1977) found that the set of shortest paths between different zones in a
transportation network, commonly referred to as 'building trees’, can be a time-
consuming problem on a computer, particularly for large networks. The majority of tree
building algorithms in general use in transport modelling are of a label-correcting
nature, e.g., Moore’s algorithm (1957), though one label-setting algorithm is quite
prominent also, that due to Dijkstra (1959). The main advantage of Dijkstra over Moore
is that provided there are no negative links, it is a once-through method, i.e., building
the tree from the source each node and therefore each link is only visited once (van
Vliet, 1977). With Moore, a shorter path may be discovered at a later stage than when a
node is introduced. This means re-examination of links is necessary. A third algorithm
used for this type of modelling but not as common as the other two is called the
D'Esopo algorithm (Pollock and Wiebenson, 1960). Its advantage is that it corrects
errors as soon as they are detected without allowing them to progress further. van Vliet
(1977) found that D'Esopo was the fastest of the three on all but two of the nine
networks he tested and the relative efficiency is sensitive to network size and in the case
of Dijkstra, link length. D'Esopo can reduce central processing unit (CPU) times by
more than 50% relative to standard algorithms in use (van Vliet, 1977). The D'Esopo
algorithm is used by the SATURN model, one of the most commonly used

transportation network models in the UK and Europe.

Labelling algorithms consist of iteratively updating node labels, where the label
represents the shortest path, be that distance or a different measure of cost, at the end of
the algorithm. A general label-correcting method has been described by Goldberg and
Radzik (1993) for solving shortest path problems. The simplest method of keeping the

set of nodes eligible for scanning is to use a list. A queue is a list where additions to the
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queue are allowed only at the end of the queue and deletions only at the top (Mondou et

al., 1991).

Shortest path algorithms produce trees beginning at sources, or origins, on the network.
Each node, ‘i’, on the network has a label, dl(i), which represents the smallest known
distance from the source to the node, ‘i’. Each nodes label on the network is updated
iteratively until, at the end of the algorithm, each label represents the shortest distance
from the source node to the node, ‘i’. The list, as described in the previous paragraph,
contains nodes whose labels are not necessarily the shortest path distances. During each
iteration a node is removed from the list and its adjacent nodes’ labels are updated. The
method of removal of these nodes determines whether the algorithm is label-setting or

label-correcting.

The basic label-setting algorithm is due to Dijkstra (1959). In label-setting algorithms
the node with the smallest distance label is removed from the list during each iteration.
If the costs of travelling from node ‘1’ to node °j’, i.e., travelling along the arc ‘ij’, are
non-negative then the removed node will never enter the list again. Label-correcting
algorithms, on the other hand, do not necessarily remove the node whose label is the
minimum. Hence, a node that has been removed may re-enter the list at a later time.
Due to the fact that the labels not being set, the distance labels are only correct when,
for every arc, ‘ij’, the distance label for the node ‘j” is less than or equal to the distance
label dl(i) plus the cost of travelling along the arc, Cij. Label-correcting algorithms
have been shown to have better experimental performance than label-setting algorithms
for sparse networks (Hribar et al., 2001, 1995; Gallo and Pallottino, 1986; Golden,
1976, Pape, 1974).

To examine the performance difference between label-correcting and label-setting two
of the main algorithms in the field of transportation for solving the shortest path
problem, those due to Moore and Dijkstra, are compared. The main difference between
these algorithms lies in the procedure for selecting a labelled node from the loose-end
table. Moore’s algorithm is a label-correcting algorithm, and Dijkstra’s algorithm is a

label-setting algorithm. Moore selects the top entry on the loose-end table, which is the
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oldest entry in the table. On the other hand, Dijkstra selects the node that is nearest to
the origin, which requires additional computation but it does ensure that each node is
examined only once. It is well known, according to Ortuzar and Willumsen (1994), that
Dijkstra’s algorithm is superior to Moore’s, especially for large networks, although it is
more difficult to program. The D’Esopo variation, however, has been found by van
Vliet (1977, 1978) to be both more efficient and faster over a range of sparse

transportation network sizes and configurations.

The order in which the nodes are chosen from the list affects the number of removals
needed to complete the algorithm, and hence the algorithms performance. The label-
correcting Bellman-Ford-Moore algorithm was the first to maintain the set of labelled
nodes in a first-in first-out (FIFO) queue where the next node to be scanned is removed
from the top of the queue while the node that becomes labelled is added to the end of
the queue. Goldberg and Radzik (1993) put forward a heuristic improvement of the
Bellman-Ford-Moore algorithm but recognise that in practice, the D’Esopo-Pape
algorithm as described by Pape (1974) and the Pallottino algorithm, both also label-

correcting algorithms, perform better than the Bellman-Ford-Moore algorithm.

The Pallottino algorithm is a variant of the Bellman-Ford-Moore algorithm and uses two
FIFO queues to store the list; one has a low priority and the other a high priority. Each
labelled node appears on one of the queues. The next node to be scanned is removed
from the top of the high priority queue or from the top of the low priority queue if the
high priority queue is empty. If a node becomes labelled for the first time it is added to
the end of the low priority queue and to the end of the high priority queue otherwise
(Pallottino, 1984; Golberg and Radzik, 1993; Pallottino and Scutella; 1997). This
method is described as a variant of the deque (double-ended queue) list, which was
initially developed by D’Esopo and used in the D’Esopo-Pape algorithm as described in
the next paragraph. The idea of using this method is that nodes that have already been
seen and updated at least once, should be updated again before nodes that have yet to be

seen (Hribar et al., 2001).
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The D’Esopo-Pape algorithm was identified as performing very well for large as well as
small networks by van Vliet (1977). The D’Esopo-Pape algorithm is an extension to
Moore’s algorithm in that it uses a two-ended lose-end table, also known as a deque list
for which additions and deletions are possible at either end, so that a node is entered at
one of the ends depending on its status. In this way any node that has already been re-
examined but comes up again as the algorithm progresses is immediately examined
again because it will have been stored at the top of the loose-end table; see van Vliet
(1977) and Pape (1974) for more detail. The status can have three values corresponding

to the following situations:

e If the node B has not previously been reached before by the algorithm then it is

entered at the bottom of the table;

e If it is on the loose-end table already then no further entry is made to the table;

and,

e If it has been entered to the loose-end table, analysed and removed from the
table then it is entered at the top of the table so that it can be re-examined

immediately.

As shown by Van Vliet (1977), the D’Esopo-Pape algorithm can reduce CPU times by
up to 50% when compared to Moore’s algorithm. Furthermore, from a similar study
made by van Vliet (1978) of these algorithms, over a wide range of network sizes and
configurations, the D’Esopo modification to Moore’s algorithm gives minimum CPU
times when compared with those times obtained from the best implementations of
Dijkstra’s algorithm. The best implementations of Dijkstra’s algorithm used a box-sort
in 1977. This is demonstrated in Table 4.2 where the D’Esopo algorithm was found to

be fastest in all but two of nine networks tested in van Vliet’s (1977, 1978) analysis.

However, since then it has been found by Cherkassky et al. (1996) that for problems
with positive arc lengths, Dijkstra’s algorithm implemented with a ‘double-bucket’ data
structure is robust, and appropriate implementations are usually competitive when

compared to other algorithms. A ‘double-bucket’ data structure is one where origins
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that have been assessed by the algorithm are put in two lists instead of one depending on
their status. However, this study does not draw comparisons with the D’Esopo
modification to Moore’s algorithm for transportation networks nor does it use real road

networks for evaluation as van Vliet (1978) does.

Table 4.2: Table of network dimensions and CPU times (Van Vliet, 1977, 1978).

Dimensions CPU times (secs)
Network | Nodes Enks Cent.s Miz?lglglnk I;l.ll;:)S: D’I:I)sop Moore
Sort
(a) 14.5 2.05 1.7 2.1
1 256 657 57 (b) 24.9 2.3 1.7 2.1
{c} 356 2.4 1.7 2.1
(a) 10.2 6.0 6.4 9.8
2 567 1684 81 (b) 26.6 6.6 6.0 9.7
(c) 739 8.0 6.4 9.8
(a) 10.2 22 27 67
3 1811 4923 95 (b) 38.8 26 25 S
(c) 210.5 48 31 69

Zhan and Noon (1998) makes reference to Cherkassky et al. (1996) ) work on Dijkstra’s
algorithm as a starting point for their work but they use real road networks as opposed
to randomly generated networks. It is concluded that the best implementations for
solving the single-source ‘one-to-all” shortest path problem are those due to Pape (1974)
and Pallottino (1984). However, the algorithm attributed to Pape (1974) by Zhan and
Noon (1998) is described by Pape (1974) as the D’Esopo variation to Moore’s
algorithm. A number of different variations of Dijkstra’s algorithm are also
recommended for different network sizes and configurations; however it appears that no
one implementation of Dijkstra’s algorithm performs well across both large and small

networks.

The D’Esopo-Pape algorithm also has the advantage that it is a much simpler algorithm

to program (van Vliet, 1977, 1978). It is only slightly more complicated than the
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simplest version of Moore and far less complex than the most efficient versions of
Dijkstra, which are only more efficient in very specific circumstances. For more detail
on the practical efficiencies of the main algorithmic approaches, see Gallo and
Pallottino (1988), Hung and Divoky (1988), Mondou et al. (1991) and Cherkassky et al.
(1996).

4.6.4 Conclusion

The shortest path problem is the computationally intensive section of the Wardrop
equilibrium approach to assignment and hence, the Frank-Wolfe algorithm. Therefore,
when dealing with the shortest paths problem in the SATURN model this research will
concentrate on reprogramming the D’Esopo-Pape algorithm in parallel for a number of

reasons:

(1) In the case of transportation models, networks generally have nonnegative arc
costs and structured sparse graphs. Therefore, the current deque shortest path
algorithm, i.e., the D’Esopo-Pape algorithm, seems to be the best choice of
algorithm for transportation applications, excluding specific circumstances
where specialised algorithms need to be used (Gallo and Pallottino, 1984;

Pallottino and Scutella, 1997);

(2) Its robustness in being able to solve the shortest paths problem for different
network sizes and configurations more efficiently than both Moore, which is
only faster for very small networks (less than 75 nodes) and Dijkstra (box-sort),
which is only faster for large networks with short nonnegative link lengths (Van

Vliet, 1978);

(3) The D’Esopo-Pape algorithm may be used to prevent paths being routed through
centroid nodes; see characteristics of transportation networks in Section 4.6.2. If
the status of all of the centroid nodes is set to zero then the algorithm will never
enter them in the loose-end table. This means that exit links from centroid
nodes, which represent either origins or destinations, are effectively excluded

from the tree (van Vliet, 1977). This also means that a computationally
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expensive check to ensure that through routing of centroid nodes does not occur

is avoided; and,

(4) Its programming simplicity when compared to that of any of the most efficient

variations of Dijkstra’s algorithm.

4.7 Review of parallel programming in the area of traffic assignment and shortest

path calculation

4.7.1 Introduction

The field of transportation has, over the past half century, pushed against the barriers of
computational performance. Traffic equilibrium applications are large, computationally
intense programs. However, while the development of single processor speed and
power has been impressive, it is insufficient in meeting the computational demands of
traffic problems (Hribar et al., 2001). Parallel computing offers an increase in
computing power over and above what can be obtained sequentially and is, therefore, a

highly relevant field for transportation (Allsop, 1997).

A larger burden has been put on computing power as applications have become more
complex and the demand for user friendliness, better graphics and faster evaluation of
alternative scenarios has increased. Single processor computing power and processor
speeds have steadily increased over the last 50 years. However, a limit is rapidly being
approached that is determined by the speed of light. The overall speed of a computer
system is not just determined by processor speed however, but by the speed of its
slowest components, the proximity of those components to each other and the speed at
which data can be transferred between those constituent components. To counteract
these limiting factors, electronic components are produced to be as small as industry can
achieve, and placed as close together as possible. However, there is also a limit to how
close electronic components can be placed together, beyond which they cease to interact

properly as individual components.
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Parallel computing is a form of computation that offers a solution to these physical
limitations for problems that can be broken down into a number of constituent sub-
problems, or subtasks. These subtasks are distributed among a number of processors so
that they can be operated on simultaneously and solved more efficiently using parallel
programming techniques and hardware. Parallelisation also offers a solution to the ‘von
Neumann bottleneck’, which can occur when all tasks have to be processed in sequence
by a single processor; see Riley (1987) for a more detailed description of von Neumann

architecture.

However, the application of parallel methodologies and techniques to parallel platforms
is considerably more complex than in the sequential world. In the hardware domain one
must consider not just the instruction rate of the processors but the number of processors
and how they interact. In the software domain one must consider the service demands
of multiple processors as well as the structure of the software with respect to the
hardware architecture. For instance, it is noted by Chabini et al. (1997) that debugging

of parallel programs is an order of magnitude harder than for sequential applications.

This review describes an overview of parallel computing architectures in Section 4.7.2.
Section 4.7.3 describes the methods and considerations that need to be understood in
order to design and implement parallel programs. The computational methods of data
and process decomposition, computational and storage dependence, and, inter-process
communication are discussed. Section 4.7.4 describes performance analysis of parallel
systems, including a description of speed-up, relative burden, average parallelism and
benefit/cost profiles. Parallel processing in traffic assignment and shortest path theory
is reviewed in Section 4.7.5 with particular reference to single source one-to-all shortest
path parallel algorithms. Chapter 5, Section 5.2, draws conclusions from the parallel
computing review in this Section by describing a parallel application methodology and
parallelisation strategy for the parallel implementation of the sequential transport

network SATURN model, and more specifically the assignment process.

161



Chapter 4

4.7.2  Parallel computing architecture

The programmer should try to identify the parallelisation possibilities in an algorithm
and then use them to take full advantage of the architecture of the computer system and

the development tools available (Chabini et al., 1997).

Hockney et al. (1988) describe two types of supercomputing architecture. The first type
of parallel architecture uses pipelining and vector processing. Pipelining is used where
separate operations are repeated at each of a number of stages on a stream of data. A
stream of data is considered to be a sequence of instructions or data as operated on by a
processor. Each operation is carried out by a different processing element, or
processing unit. Vector processing is where vectors of numbers are operated on by
purpose built hardware, for example the CRAY range of hardware, which uses vector

processing and pipelining.

The second type of parallel architecture is the processor array. Flynn (1972) introduced
a double dichotomy based on processes using single or multiple streams of instructions
and single or multiple streams of data as a classification for parallel systems. Four types
of parallel architecture were identified. The first two are Single Instruction, Single Data
(SISD) and Multiple Instruction, Single Data (MISD). However, processor arrays fall
into the second two groups depending on how they relate their operating instructions to
the data being processed. Most commercially available parallel computers fall into

these two latter groups:

(1) Single Instruction stream / Multiple Data stream (SIMD). Each processor in
the array carries out the same instruction in parallel but on different data streams

and processors operate in step with each other; anf

2) Multiple Instruction stream / Multiple Data stream (MIMD). Each
processor runs using its own instruction stream and operates on its own data

stream, €.g., a transputer array.

Supercomputers such as the CRAY range can cost millions of dollars for onsite

installation but can take existing sequential programs written in computer languages
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such as C, C++ and FORTRAN and convert the code so that it can run in parallel on the
machine with minimal effort on the behalf of the programmer. MIMD machines are far
cheaper and offer far greater flexibility in the way problems are distributed, examples
being transputers and distributed networks of workstations. However, they are harder to
set-up and program in parallel (Hislop et al., 1991). An example of a SIMD machine is
the CM-2 connection machine, see Zenios (1989). The majority of parallel systems

becoming available belong to the MIMD category however (Allsop, 1997).

There are a number of other hardware characteristics that must be considered when
looking at the implementation of an algorithm in parallel. These include the number of
processors; fine grained, or massively, parallel systems have in the order of thousands
of processors whereas coarse grained parallel systems would usually have a couple of
dozen processors. The grain, referred to above, is a description of the size of the data
packet that a processor can handle in Random Access Memory (RAM). Fine grained
processors have perhaps 16-20 Kbytes of RAM whereas coarse grained processors may
have gigabytes of RAM available. Synchronisation refers to the presence of a global
clock in the computer system. SIMD machines are generally synchronous whereas
MIMD machines are usually asynchronous. Finally, communication may take place

among processors using two systems:

(1) In shared memory machines processors may write/read to a common memory.
Shared memory machines have two types: tightly coupled and loosely coupled.
In the tightly coupled format one memory block exists and is accessed by all of
the processors. In the loosely coupled format each processor has a block of

memory that can be fetched by all of the other processors; and,

(2) Processors may exchange messages using, for example, the MPI (Message
Passing Interface) interface to communicate between processors. Message
passing systems use an interconnection network over which they exchange
messages along links. This network has a topology describing the outlay of the

network. This topology must be chosen with the communication requirements
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of the parallel algorithm in mind. Common topologies include the ring, the tree,

the mesh and the hypercube, or three-dimensional mesh.

4.7.3  Parallel computation: methods and considerations

A number of issues need to be understood in order to design and implement parallel
programs; see Parallel Computation: Models and Methods by Akl (1997). The parallel
programmer should look for any explicit parallelisation potential in the sequential code.
The programmer needs to be aware that when a sequential program executes the order
in which its processes execute is known so the result can be determined easily.
However, when a parallelised version executes the order of process completion may
vary leading to, potentially, an indeterminate result. Also, every parallel process has an
associated optimal processor topology that minimises the amount of inter-process
communication. Additionally, it should be noted that not all sequential software is
suitable for parallelisation and not all methods of parallelisation perform well, mainly
due to communication overheads. However, parallelised software should be scalable,

1.e., give consistent results across different parallel architectures.

4.7.3.1 Decomposition

Parallel program design methodoiogies depend on the category to which the parallel
system belongs. Decomposition is the most common approach for the design of parallel
programs on multiprocessor parallel systems. As such, two types of parallelisation are

generally used; data decomposition and process decomposition:

e Data decomposition distributes any global data to all processors and each

processor executes the same code on its assigned portion of the data; and,

e Process decomposition breaks down the program algorithm itself and each
processor executes a different section. This system is likened to an assembly
line and may be referred to as ‘data flow’ as data is moved amongst various

Processes.
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Using the decomposition technique each problem, or sub-program within the overall
application, is divided into subtasks that can be executed simultaneously over a number
of processors in parallel. These problems, or tasks, are obtained through a process that
can involve any or all of the following criteria as described by Chabini et al. (1997):

partition, allocation, load balancing, communication and synchronisation.

e Partition consists of determining the size of each of the subtasks to be assigned
to each processor. Depending on the resulting size of each subtask three levels
of parallelisation are produced; fine, medium and coarse grained. In fine
grained parallelism each subtask can represent an operating instruction, as
compared to coarse grained parallelism where each subtask can represent a
procedure or loop. In order to do this the other criteria must also be

considered;

e Allocation looks at assigning each subtask to a processor so that priority

constraints amongst subtasks are respected:

e Load balancing is tightly interconnected with allocation and partition. The
main objective of load balancing is to keep all the processors in use, as far as is
practicable, and equally loaded in terms of the execution times of the processes
allocated to them. Fine grained subtasks are useful for load balancing but can
result in an increase in communication overheads. Coarse grained subtasks can
result in long idle times for processors that have finished their subtask and are
waiting for other processors to finish so that the algorithm can continue in a

synchronised manner;

e Communications are necessary between processors at some stage during any
parallel implementation of this kind. This communication detracts from the
overall running efficiency of a parallel program by introducing run time
latencies as processors must wait for information to be sent and received to and
from other processors in order to themselves proceed with their subtasks.
Therefore, to optimise any parallel application it is necessary to minimise the
communication costs. To do this it is imperative to take the topology of the
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interconnection network of the computing hardware into account, i.e., shared

memory machines or distributed memory machines:

— Shared memory machines have a limited number of processors that all

use the same memory bank; and,

— Distributed memory machines use an architecture where each
processor has its own memory and each processor is connected directly

with all of the other processors in the system.

e Finally, synchronisation is dependent on precedence constraints in the overall
application. In effect, synchronisation looks at how tasks are ordered in the
application, from the initial inputs to the outputs at the other end. A simple
example of this is that variables in a program must be defined and assigned
before they can be used. Processes may have to wait until previous tasks have
been completed before certain variables can be accessed. The process of doing

this can have an effect on the performance of the parallel implementation.

An example of decomposition can be seen in the master/slave parallel model. Here, a
master processor makes independent computations into work packets using the method
described above and sends them out to a pool of slave processors for computation. Each
slave processor is assigned one of the subtasks, or packets, while the master processor is
completely dedicated to the co-ordination of the activities of the slave processors and to
their communication requirements. The master/slave paradigm works well when work
packets are small and the amount of work to be done, or the time for computation per
packet, is large. This is to avoid large communication overheads. However, this
approach will eventually be limited by the computational bottleneck inherent in a
centralised system, which would arise from traffic levels, or the transportation network,

becoming too large (Hislop et al., 1991).
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4.7.3.2 Computational and storage dependence

Implementation of parallel algorithms without due attention to issues of
synchronisation, load balancing, partition, etc., can lead to problems of computational
and storage dependency, leading to severe inefficiencies and poor performance of the
algorithm. Avoiding computational and storage dependence (Ziliaskopoulos et al..
1997) can be one of the more difficult aspects of parallelising an algorithm. As such,
the programmer needs to be aware of what these dependencies are. Computational

dependence consists of data dependence and control dependence:

e Data dependence refers to the relationship between the order of statements that

use or produce the same data; and,

e Control dependence refers to the situation where the order of the execution

statements can not be determined beforehand.

Storage dependence refers to the independence of tasks from each other where the
access, usage and storage of variables for one task must not interfere with those of

another task.

4.7.3.3 Inter-process communication

The implementation of a number of subtasks making up part of a larger overall problem
depends on the type of parallel computing architecture being used, i.e., shared or
distributed memory using perhaps SIMD or MIMD parallel architecture. For example,
in a distributed memory message passing system each subtask is modelled as a process
and each process has its own address space. Communication happens between
processes operating on their own data along channels between exactly one pair of
processes. Each process may have many input or output (I/O) channels. This is known
as the communication sequential process model (Chabini et al., 1997) for parallel
execution, which was initially developed by Hoare (1978) in the 1970’s and is the basis
for the message passing paradigm. This model is commonly used in communication

libraries such as, for example, the MPI interface (The Message Passing Interface Forum,
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1994; Walker, 1994). Two basic functions, called ‘send’ and ‘receive’, are generally

used to send and receive the information along channels between processes.

The MPI interface has been generally accepted as the message passing interface of
preference in parallel computing environments (Hempel and Walker, 1999). The main
function of MPI is to communicate data from one process to another much as the
TCP/IP mechanism does for lower level networks. While message passing provides the
most obvious way of programming a physically distributed memory parallel system, it
can also be used on shared memory and sequential computer systems and, as such, can
be used as the basis for the development of efficient portable programs on all computer
architectures (Hempel and Walker, 1999). By the end of the 1980’s many programming
interfaces had been developed because each parallel computer hardware company
produced their own interface. This lack of portability between different machines led to
the development of independent programming interfaces such as PARallel MACroS, or
PARMACS, (Calkin et al., 1994; Hempel et al., 1994) and the Parallel Virtual Machine
environment, or PVM, (Sunderam, 1990; Geist et al., 1994), which gave portability to

programs for different parallel computing systems.

The design of portable programming interfaces was based on the design being
sufficiently abstract from the individual parallel system hardware requirements. The
resulting design and research undertaken to achieve portable programming interfaces
provided the experience for the development of MPIL. Also, the involvement of the
majority of parallel computer manufacturers ensured that no machine was
disadvantaged by the MPI specification. Two MPI specifications have been produced;
an annotated reference manual by Snir et al. (1996) for MPI-1 with a revision, also by
Snir et al. (1998), and an analogy for the MPI-2 specification by Gropp et al. (1998).
However, excluding the positive aspects of the development of portable programming
interfaces, the main success of the message passing paradigm is due to its efficiency,
scalability for large numbers of processors and portability for many different parallel

systems and applications (Hempel and Walker, 1999).
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PVM is a system designed for managing and coordinating parallel systems. It was
produced by researchers at Emory University, the University of Tennessee, Knoxville,
and Oak Ridge National Laboratory as a research development project (Geist et al.,
1994; Sunderam, 1990). When the development of the MPI interface began PVM was
the most popular message passing system in use. It has been regarded that MPI and
PVM have been competing to become the message passing standard since then,
however, two of PVM’s principle developers, Jack Dongarra and Al Geist, were also

key to the development of MPI (Hempel and Walker, 1999).

The design objectives for MPI and PVM differed greatly. PVM was designed for use
on networks of workstations and problems to do with interoperability and resource
management. As a result, its message passing facilities are not very sophisticated. In
contrast, MPI's development focused on message passing and is intended to provide
high performance on tightly-coupled homogeneous parallel computing architectures,
which it has achieved (Hempel and Walker, 1999). Gropp and Lusk (1997) also provide
a comparison between PVM and MPI, finding MPI more credible than other message
passing libraries because of the consultative process involved in its creation.
Development of message passing aspects of PVM were stopped after Version 3.4 in
favour of research into distributed, heterogeneous environments for networks of
workstations while some of PVM’s major strengths, such as its resource management
capabilities, have been incorporated into MPI. Today the majority of parallel computer
producers support MPI as their primary message passing interface with other interfaces

available for reasons of compatibility with legacy codes (Hempel and Walker, 1999).

Traff (1995) has noted that communication is at least an order of magnitude slower
using a distributed memory system as opposed to a shared memory one. Though
Hempel and Walker (1999) would, for the most part, disagree with Traff’s statement,
parallel computation using computer architectures without shared memory, i.e.,
distributed memory, is subject to a trade-off between keeping each processor as busy as
possible and the inter-processor time required to do so. As a result linear increases in

performance of parallel implementations are rarely, if ever, obtained.
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4.7.4  Performance analysis of parallel systems

4.7.4.1 Introduction

The performance of a parallel computer system, combining a software element in the

parallel algorithm and a hardware element in the parallel platform, needs to be assessed.

The definition of performance depends on the reason behind the use of parallel

programming in the first place. In general a reduction in the computation time of the

program is sought. Hence, the improvement in performance is measured by comparing

the sequential time to run the program on a single processor against that of the parallel

application across a number of processors. This measurement of the improvement in

the performance is known as speed-up. Other related measures include relative burden

and efficiency.
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Figure 4.8: The theoretical optimum speed-up for a parallel program.
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In an idealised environment the speed-up is linearly related to the number of processors
being used to run a parallel application, see Figure 4.9. For example, as the number of
processors increases from one to two then the program would run twice as fast and the
speed-up would be equal to two. However, due to the sequential nature of the
SATURN program and the assignment processes within it, achieving the theoretical
optimum, a linear speed-up, is impossible. As the number of processors increases the
relative affect of the sequential sections of the parallel model on the performance of the
entire model will increase. Therefore, a vastly reduced speed-up is expected. Based on
other parallel implementations, for instance the parallel application of the CONTRAM
model (Greenwood and Taylor, 1993), a speed-up of approximately 7 times might be
expected for the assignment. This research will parallelise the SATURN model, assess
the overall performance of this parallel model and also assess the likely affects of the

other sequential elements of the model on performance.

4.7.4.2 Speed-up, relative burden and efficiency

Chabini et al. (1997) focuses on the ‘execution’ of an instance of a problem using the
parallel system. Performance measures are reported for a varying size (w) of
‘execution’ and varying the number of processors (n) used for that ‘execution’. The

following parallel performance measures were produced:

e Speed-up, S(n), is defined as the ratio of the elapsed time, or serial time, when
executing a program on a single processor, Ts, to the execution time when a

number of processors, n, are available, T(n). Therefore;

S(n) =Ts/ T(n) Equation 4.11

This measures the gain in speed between using one processor and ‘n’
processors to solve a problem. It may also be interpreted as the average

number of processors kept busy during the execution of the problem.
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e Relative Burden, B(w,n), (Chabini (1994); Chabini and Florian (1995);
Chabini and Gendon (1995)) measures the deviation from the ideal
improvement in time between the serial execution and the parallel execution

normalised by the serial time. Therefore;

B(n)=T(n)/Ts—-1/n Equation 4.12

The speed-up and relative burden are interrelated with S(w,n) = n / (I + B(w,n)n).

Burden graphs are used expressly to compliment speed-up curves.

The idea of using parallelism to speed up the execution of a program has, according to
Kuck (1977), existed for more than a century, although the parallel systems that exist
today have only become common in recent times. As more processors are assigned to
the execution of a problem it is expected that the speed-up will increase. However, it
may also be expected that the total idle time will increase due to communication
overheads between processors and processes, the software structure, and, contention
between different components of the system for shared resources, i.e., two processors
trying to access the same memory block at the same time in a share memory parallel
computer (Eager et al., 1989). Overheads due to I/O are, in general, not included in the
assessment of the performance of the parallel system. The overheads, as described
above, are said to be represented by including them in the service demands of the
various subtasks. In this way one can assume that they are fixed and do not vary with
the number of processors being used nor with the scheduling procedure for the subtasks

(Eager et al., 1989).

The efficiency, ‘E’, is defined by Eager et al. (1989) as the average utilisation of the ‘n’
allocated processors. Ignoring I/O the efficiency of a single processor system is | and
hence, the speed-up is equal to 1. The relationship between efficiency and speed-up,
described by Eager et al. (1989) as the average processor utilisation, can then be defined

by E(n) = S(n) / n, leading us to the definition of linear speed-up, i.e., where the
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efficiency remains at 1 while the number of processors increases beyond two. Linear
speed-up is impossible for the same reasons idle time exists, as described above.
Studies such as those by Minsky et al. (1971) and Lee et al. (1985) have tried to define
the ‘typical’ speed-up though this is impossible in general terms as the speed-up of each
implementation of a parallel algorithm depends on the characteristics of the entire

parallel system, which are invariably different for each parallel application.

4.7.4.3 The average parallelism

The average parallelism measure was first introduced by Gurd et al. (1985) in their
review of the architecture and performance of the “Manchester Prototype Dataflow
Computer”. They found that programs with a similar value of average parallelism
exhibit virtually identical speed-up curves and that the higher the value, the closer the
program got to achieving 100 % utilisation, i.e. an efficiency of 1, on a graph. This
seems to indicate that the measure of average parallelism is all that is necessary to
ascertain an accurate description of its speed-up curve, regardless of other factors such
as the source code language, the time variance of parallelism, etc. Gurd et al. (1985)
also concluded that larger applications codes exhibited the same patterns as simpler

samples. Eager et al. (1989) define the average parallelism as:

e The average number of processors that remain busy during the execution of a

software system given an unlimited number of available processors;

e The speed-up given an unlimited number of available processors, i.e., the

maximum possible speed-up;

e The intersection of the hardware limitation with that of the software limitation
on speed-up, i.e., two upper bounds on speed-up based on the hardware and

software; or finally,

e The ratio of the total service demand (the execution time when a single
processor is used or the sum of the service demands of the subtasks) required

by the computation to the length of the longest subtask path (where multiple
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processors are being utilized), where the length of a path is measured by the

sum of the service demands of its subtasks.

The hardware limit on speed-up is given by the number of processors available, ‘n’, and
is only met if all of the processors being used can be kept fully utilized all of the time.
The software limitation is derived from the fact that no matter how many processors are

used the execution time must be at least as long as the length of a longest path.

Eager et al. (1989) go on to describe the use of the parameter ‘f’, the fraction of work
that is inherently sequential, to tighten both the upper and lower bounds on speed-up.
‘f” is defined as the ratio of the service demand of the sequential parts of the

computation to the total service demands of the computation where I/O is not included.

4.7.4.4 Benefit verses cost profiles

Profiles that plot benefit against cost are common in many areas. The concept of there
being a ‘knee’ in such a profile is a fundamental one, see Denning (1980). The ‘knee’ is
the point where the benefit per unit cost is maximised. The execution time — efficiency
profile is one such cost — benefit profile in parallel systems. Eager et al. (1989) give

two motivational stand points for the use of this graph in parallel systems:

(1) Efficiency is viewed as an indication of benefit (as efficiency goes up so does
benefit) and execution time as an indication of cost (as execution time goes up
so does cost). The system objective that can be taken from this is to achieve
efficient usage of each processor while taking into account the cost to users in

the form of increased execution times; and,

2) Execution time is taken as an indication of benefit (lower the execution time the
higher the benefit) and efficiency is taken as an indication of cost (lower the
efficiency the higher the cost). The objective that can be taken from this is to
achieve low execution times while taking into account the utilisation cost of low

efficiency.
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On the execution time — efficiency profile each point represents the execution time
verses the efficiency for a certain number of processors. The ‘knee’ occurs where the
ratio of efficiency to execution time, E(n) / Tn, is maximised, where ‘n’ is the number
of processors allocated to the computation at this point. Eager et al. (1989) proves that
at the ‘knee’ of the execution time — efficiency profile a speed-up, S(n), and efficiency,
E(n), of at least 50% of their maximum is guaranteed. All the processors are being
utilised at least 50% at this point but if one more processor is added then it would be
utilised no more than 50%. It is further shown that the location of the ‘knee’, i.e., the
number of processors used at this location, is well approximated by the average
parallelism, where the same guarantees regarding speed-up and efficiency are identical

to those at the ‘knee’.

4.7.5 Parallel processing in traffic assignment and shortest path theory

4.7.5.1 Assignment
Greenwood and Taylor (1993) found that parallelisation of the dynamic CONTRAM

traffic assignment model offers substantially increased performance to model larger
transportation networks and to model a larger range of transport scenarios. The
principle results from this parallelisation found that approximately a 7-fold speed-up
could be achieved with large networks benefiting more from large parallel systems

(Greenwood and Taylor, 1993).

It was found that most benefit came from assigning vehicles to their routes in parallel
because it involves physically independent or simultaneous processes. Significant
changes to the methodology of the model were required to ensure convergence and
computational efficiency though the essential characteristics of the CONTRAM model
remained the same (Greenwood and Taylor, 1993). The parallel approach used was a
“farmer/worker” paradigm, otherwise known as the master/slave paradigm described
previously. However, Hislop et al.’s (1991) approach where the network is dissected
into zones and traffic is assigned to the zones in parallel was discarded because of the
difficulties with assigning ‘packets’ to cross-boundary routes. It was decided that a

simpler data decomposition strategy to assign all ‘packets’ in parallel was more
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appropriate. This resulted in a speed-up of nine times using 16 T805 Transputers for a
network of 1001 links.

Chabini et al. (1997) published a paper entitled ‘Parallel and distributed computation of
shortest routes and network equilibrium models’ in 1997. This paper presents parallel
computing implementations of the linear approximation method for solving the fixed
demand network equilibrium problem. The paper also contains parallel computing

implementations of a shortest paths algorithm due to Dijkstra (1959).

The linear approximation method used to solve the fixed demand network equilibrium
problem by Chabini et al. (1997) is an adaptation of the Frank-Wolfe algorithm (Frank
and Wolfe, 1956; Arezki and van Vliet, 1990). In the sequential implementation of this
algorithm a variant of Dijkstra’s (1959) algorithm is used to calculate the shortest routes
for all origin-destination pairs. The following paragraph describes, briefly, the
methodology used to parallelise Dijkstra’s algorithm, as developed by Chabini et al.,

(1997).

Chabini et al. (1997) uses a master/slave decomposition model, as described in Section
4.7.3 above, to parallelise Dijkstra’s algorithm. The PVM environment (Geist et al.,
1994; Sunderam, 1990), which is predominantly used for message passing between
processors on distributed memory systems and usually for networks of workstations, is
used to manage inter-processor communication and the parallel process synchronisation.
PVM is also used for portability as it supports low-level networks of heterogeneous
workstations when implementing parallel process based algorithms. In order to
parallelise the algorithm the calculation of the shortest paths is considered to be a loop
over the origins. Dividing the problem into a number of subtasks that can then run on
separate processors allows this loop to be partitioned across the network of processors.
Each subtask then corresponds to the computation of the shortest paths for a subset of
the total number of origins. Once all of the subtasks are completed the output

information is transferred back to the master processor to continue with the application.

Chabini et al.’s results indicated that parallel computing offers significant advantages

for the parallel computation of shortest paths and for solving the fixed demand network
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equilibrium problem on the computing platforms and environments that were available

at the time.

Nagel and Rickert (2001) make use of the master/slave approach using decomposition
for a parallel implementation of the TRANSIMS micro-simulation. Reference is also
made to Chabini (1998) where domain decomposition is used to partition the network
graph into domains of approximately the same size for a discrete dynamic shortest path

problem.

Hislop et al. (1991) describe two approaches to parallelising traffic assignment, one
based on ‘central control’ and the other on ‘distributed control’. The ‘central control’,
or data decomposition, approach is the same as the master/slave paradigm described
above, which would work well for the assignment process as each slave processor
would only need the global information of origin co-ordinates and traffic volumes on-
route to each destination. While this approach may not be the theoretical optimum
strategy it would retain the overall framework of the model (Greenwood and Taylor,
1993). The Transport Parallel Computing Centre at University College London has
implemented this on a 36 * T800 transputer array. A relatively good performance was
obtained for the size of network used (Hislop et al., 1991). Hislop et al. (1991) also
mention using a “geometric parallelism”™ for the simulation aspect of assignment where
the data domain is divided up into regions and mapped onto the processor array so that

flows, queues and link costs in each region could be calculated in parallel.
Three proposed methods are given for the distributed approach.

(1) The first is a NEMIS-like system where a processor is responsible for each node,

which is not very economical.

(2) The second is a regional distribution where processors control different regions
of the network. Each processor maintains link costs and flows for its region and
a less detailed copy of link costs for the rest of the network, like the buffer and

simulation networks in SATURN. Each vehicle would have to be ‘moved’ as
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far as it could go within a discrete time interval instead of being assigned to its

entire route per assignment iteration.

(3) The third method is the same as the second accept that instead of a processor
having a less detailed copy of the network outside of its region, a distributed

minimum cost tree-building algorithm would operate.

Problems with these methods are associated with large communication overheads
incurred while transferring network information between processors. The third method

could also potentially have problems calculating routes for large networks

4.7.5.2 Single source one-to-all shortest path parallel algorithms

The majority of international research that has taken place has focused on developing
and comparing different parallel implementations for sequential label-setting and label-
correcting algorithms (Hribar et al., 2001). A number of parallel algorithms have been
proposed for various sequential shortest path algorithms such as those documented by
Tseng et al. (1990), Paige and Kruskal (1985) and Chandy and Misra (1982) on machine
independent algorithms and those by Habbal et al. (1994) and Dey and Srimani (1989)
on machine specific algorithms. The most investigated area being the all-pairs
problem, see Habbal et al. (1994), Paige and Kruskal (1985), Chandy and Misra (1982)
and Deo et al. (1980). Several attempts have been made to parallelise the single source
shortest path problem but with relatively little success (Traff, 1995; Bertsekas and
Tsitsiklis, 1989; Paige and Kruskal, 1985; Deo et al., 1980), however, certain

adaptations of Moore’s algorithm seem promising according to Deo et al. (1980).

By 1991, parallel algorithms for finding the shortest paths within the field of
transportation were based on Dijkstra, Moore and D’Esopo, and, Dynamic
Programming (Hislop et al., 1991). Bitz and Kung (1988) distributed Dynamic
Programming on an iWarp systolic array but found that the method did not perform well
on large networks. Mateti and Deo (1982) give examples of distributing Dijkstra’s and
Moore’s algorithms on a shared memory MIMD machine and on a specialised vector

addition and comparison supercomputer. Further to this Deo et al. (1983) have
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published results showing near linear improvement for the number of processors used

for the algorithms distributed on a MIMD shared memory architecture.

Habbal et al. (1994) present an algorithm for a distributed network achieving speed-up
but acknowledging that the performance is dependent on the decomposition of the
network. Paige and Kruskal (1985) present synchronous parallel versions of Dijkstra’s
and Ford’s algorithms but without any actual implementation or results. Traff (1995)
has compared two asynchronous distributed label-setting algorithms based on Dijkstra’s
algorithm and found that both algorithms initially performed poorly but, when
compared to Paige and Kruskal’s (1985) synchronous implementation with measures
included to reduce the communication costs, performed well. Experimental studies of
distributed label-setting algorithms, such as those by Traff (1995) and Adamson and
Tick (1991), use a partition of the network among processors so that each processor has
its own sub network on which to work. It was observed that label-setting algorithms
have little parallelism (Hribar et al., 2001). Mehlhorn et al. (1998) also describe a
theoretical approach to parallelising Dijkstra’s algorithm by dividing the algorithm into
a number of phases to be executed in parallel, a method of process decomposition. The
implementation shows good theoretical behaviour and further research is recommended.
Bertsekas and Tsitsiklis (1991) have surveyed both synchronous and asynchronous
iterative algorithms with mixed convergence results. Traff (1994) also found that for
distributed memory systems achieving speed-up for Moore’s algorithm is ‘apparently’

easier than for Dijkstra’s.

Two data parallel implementations of Floyd’s algorithm are discussed by Narayanan
(1992) where the algorithms are compared to each other but there is no measure of the
speed-up of either implementation relative to a sequential algorithm. Bertsekas and
Polymenakos (1994) have used an auction algorithm developed by Bertsekas (1991),
and, Bertsekas and Castanon (1991). The auction algorithm is itself slower than
standard sequential single source shortest path algorithms but is reported to be suited to
parallelisation and yields speed-up results that are comparable to those of Traff (1995)
for a shared memory machine. Other reports have reported on experimental results for

‘simulated’ shared memory computers; see Adamson and Tick (1991) and Bertsekas et
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al. (1996) as examples, while there appear to be few reports for the more realistic
distributed systems; see for example Papaefthymiou and Rodrique (1994). Bertsekas et
al. (1996) compares several label-correcting algorithms while Papaefthymiou and
Rodrique (1994) implement parallel versions of the label-correcting Bellman-Ford-
Moore algorithm and compare it to a sequential implementation of the Bellman-Ford-

Moore algorithm developed by Cherkassky et al. (1996).

The main problem with parallelising the single source shortest path problem is that the
problem is inherently sequential with a large number of iterations taking short periods
of time yielding very small grain sizes. One way to overcome this problem is to
perform more computations within every iteration, so as to increase the grain size

(Ziliaskopoulos et al., 1997).

Ziliaskopoulos et al. (1997) introduces parallel designs for the dynamic time-dependent
least time path algorithms using shared memory and message passing approaches. The
parallel algorithms are based on sequential dynamic algorithms introduced by
Ziliaskopoulos and Mahmassani (1993, 1996) using discrete time steps and the theory
of Bellman’s principle of optimality. However, no testing was carried out on large
networks. This research is continued through Ziliaskopoulos and Dimitrios (2001) who
propose and execute a massively parallel design for the time-dependent least time path
algorithm, which is also based on sequential work by Ziliaskopoulos and Mahmassani
(1993, 1996), on a PVM system. While speed-up improves with the number of time
intervals it is also acknowledged that further research into efficiency, over actual and

random networks, is necessary.

A number of papers have been published by Hribar et al. (2001, 1998, 1995) looking at
performance aspects of parallel shortest path algorithms and dynamic implementation
within the transportation field. Hribar et al. (2001) explore various network
decompositions to develop shortest path algorithms and the choice of shortest path
algorithm to solve route choice on congested networks but the results are found not to
be superior to a simpler decomposition by origin (Florian, 2001). Hribar et al. (1998)

examines termination detection implementation, the third aspect of what they have

180



Chapter 4

determined to be the parallel implementation issues of applying simple labelling
algorithms to distributed memory machines to solve transportation problems. However,
Hribar et al. (2001) focuses on “why algorithms perform the way they do” as opposed to
the type of performance analysis described in Section 4.7.4 of this thesis. A distributed
network approach, where the network is partitioned into ‘n’ sub networks for ‘n’
processors, is used for solving the shortest path problem using labelling algorithms on
distributed memory machines. This takes advantage of the aggregate memory of the
distributed system and parallelism can exceed the number of sources. However, there
are high communication overheads associated with communicating node labels, and for

termination detection (Hribar et al. 2001).

Another approach is to use network replication (Kumar et al., 1991) where the entire
network 1s assigned to each processor and each processor solves the shortest path
problem for a subset of sources (origins). There is no inter-processor communication
required for this solution. However, a global communication is required to update the
replicated network across the processors. The disadvantages are that the parallelism is
limited to the number of sources and that the communication overhead increases as the
number of processors increase. Hribar et al.’s (2001) approach uses the Single Program,
Multiple Data (SPMD) model, where each processor solves the shortest path problem
for all sources across its sub network. Multiple processors share boundary nodes while
the remaining nodes are known as interior nodes. The program is terminated when all
the processor lists are empty. Only 32 sources were used for ease of analysis where
transportation networks can have upwards of hundreds or thousands of sources to solve
for. Tremblay and Florian (2001) state that computing implementations based on
topological subdivisions of the network are not likely to be more efficient than the
decomposition by destination approach. Tremblay and Florian (2001) look at temporal,
or dynamic, shortest paths quoting Ziliaskopoulos and Mahmassani (1992, 1993,
reported in 1997) as the only previous contributors to the area, see above. The
parallelisation strategies implemented use a decomposition-by-origin approach with

good results found on a shared memory machine.
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4.7.6 Conclusion

Chapter 5, Section 5.2, draws conclusions from this parallel computing by describing a
parallel application methodology and parallelisation strategy for reprogramming the

sequential SATURN model, and more specifically the assignment process.



Chapter 5

Parallel Implementation of a

Transport Network Model
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5.1 Introduction

The objective of the research on which this Chapter reports is to assess the SATURN
model (van Vliet, 1982), as applied to the Dublin Transportation Network Model
(DTNM) with a view to finding the areas within the model that take up the most CPU
time, and to reprogram these areas to run in parallel so that higher levels of efficiency
can be achieved (Dublin Transportation Initiative, 1995). Reprogramming the most
time consuming, or computationally intensive, areas of the sequential model in parallel
should allow for a more efficient use of computer time over a variety of network
configurations and sizes, and in doing so, result in improved efficiency in examining the

DTNM. The overall objectives for the parallel implementation are to:

e Demonstrate that the modified parallel model converges and produces results

that are comparable to the sequential original; and to,

e Evaluate the efficiency of the parallel implementation when more than one

processor is used, i.e., 2, 4, 8, and 16 processors.

A detailed review of parallel programming in the areas of traffic assignment theory and
shortest path calculation has been undertaken in Chapter 4, Section 4.7. Additionally,
the initial analysis of the sequential SATURN model is detailed in Section 4.4. Further
to this, the computationally intensive area of trip assignment is assessed in Section 4.5,

and that of the shortest path algorithm in Section 4.6.

Section 5.2 draws conclusions from Chapter 4 and the parallel computing review in
Section 4.7. The parallel application background, methodology and parallelisation
strategy for reprogramming the sequential SATURN model, and, more specifically, the
assignment process is also described in Section 5.2. Further to this, Section 5.3
provides results and discussion from the implementation of the parallelisation strategy.
Finally, conclusions drawn from the results and discussion in Section 5.3, of the

parallelisation implementation, are given in Section 5.4.
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5.2 Method and strategy for the parallelisation of the sequential SATURN model

5.2.1 Introduction

The major objective to be achieved by reprogramming the sequential SATURN model
in parallel is to improve the model’s performance so as to be able to apply the model to
computationally intensive, and hence time intensive, transportation problems that

otherwise might not have been assessed.

In order to achieve this objective a parallelisation strategy was produced. The strategy
for programming the SATURN model in parallel is to take the most CPU
computationally intensive components of the model, which were found to be the
calculation of the assignment and shortest path algorithms, as described in Section 4.4,
and to parallelise these sections of the sequential model in such a way that the resulting
parallel version of the model: converges; is accurate; has a more efficient performance;
is scalable from a parallel computing point of view; and, is portable amongst different

parallel computing architectures.

Greenwood and Taylor (1993) give a number of steps to help remodel a sequential
program to run in parallel on a high performance computing (HPC) system. These steps
have been used as a basic guideline for the strategy to parallelise the sequential

SATURN model. These steps are to:

(1) Profile the time spent on each task;

(2) Study the existing algorithm and analyse the data flow;

(3) Investigate methods of parallelisation;

(4) Design and implement the parallelisation software; and to,

(5) Evaluate the performance compared to the standard sequential version.

So far the completion of step (1) has been demonstrated with the profiling of the

sequential SATURN model resulting in a clear determination of the areas of the model

that should be researched with respect to parallelisation; see Chapter 4, Section 4.4 for
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more detail. Step (2) has been completed through the analysis of the methods and
algorithms used within the assignment and shortest path areas of the sequential model;
see Chapter 4, Section 4.5 and Section 4.6, respectively. Chapter 4, Section 4.7
addresses step (3) and part of step (4) through a literature review of parallel computing
and high performance computers in the areas of traffic assignment and single-source all-
to-one shortest path algorithms within the field of transportation. Step (4), the design
and implementation of the parallel software, is addressed in this Section with the
strategy used to implement the parallel software. Finally, step (5) is completed in
Section 5.3, which gives results of the parallel implementation, evaluates its

performance and compares the parallel model with the standard sequential version.

Section 5.2.2 describes the background to the application of parallel theory and
methodology to the sequential model and briefly mentions the work that was completed
before parallel coding techniques could be applied to the code. Section 5.2.3 describes
the hardware and operating system used in the parallel application and performance
assessment. Section 5.2.4 details the parallelisation strategy and Section 5.2.5 describes
the methodology of programming the single-source one-to-all shortest path algorithm in

parallel.

5.2.2 Background

Initially an understanding of the code of the sequential SATURN model was necessary
in order to understand how to go about parallelising it. From Section 4.4 it was found
that the nested subroutine used to solve the shortest path problem, ‘desopo_cb’,
demands over 80% of the overall CPU running time for the SATALL program. In
addition to this, the subroutine, ‘loadit_plus’, (used to load, or assign, the trips onto
these shortest paths) which calls the nested shortest path subroutine, ‘desopo_cb’, uses
an additional 5% of the total CPU running time. In Section 4.5 an understanding of the
assignment algorithms and methodologies is described and in Section 4.6 shortest path

algorithms are assessed in some detail.

The sequential SATURN model, and hence, the computationally intensive
assignment/simulation SATALL sub-program, is programmed using the Fortran 77
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programming language and compiled using the Salford Fortran 77 compiler for 32-bit
Intel microprocessor systems (Salford, 1996). Using the raw code obtained from Dr.
Dirck van Vliet, of the SATURN model, the SATURN sub-programs, described in

Section 4.3, were compiled on an Intel microprocessor machine, a PC.

Once a detailed understanding of the Fortran code of the sequential model had been
obtained the code, designed for the Intel microprocessor and the DOS operating system,
was transferred, or ported, to a UNIX based operating system with a RISC
microprocessor, see Section 5.2.3. The two types of microprocessor are incompatible in
the way in which they store their data, i.e., ‘little endian’ versus ‘big endian’, see
Appendix 2 for more detail. Therefore, the raw code and input files had to be processed
to ensure that they would run properly. Once this was achieved the code was again
compiled using ‘g77’, a UNIX based Fortran compiler, until the sequential SATURN
program suite was fully executable. Once this had been achieved the sequential model
was profiled, see Section 4.4, resulting in the assessment of the most computationally
intensive routines, the ‘loadit_plus’ and ‘desopo_cb’ routines, which are the assignment

and shortest path algorithms, respectively.

To make sure that every part of the code that must be considered had been looked at
carefully, and to gain a detailed understanding of the routines involved in the
input/output (I/0), assignment and shortest path algorithms of the model, large portions
of the Fortran code, and in particular the two main subroutines of interest, ‘loadit_plus’
and ‘desopo_cbh’, were reverse engineered. What this means is that each line of the
code, as seen in the routine itself, has been described and explained in a paragraph
directly following the relevant line of code, see Appendix 3 for detail of the
‘loadit_plus’ and ‘desopo_cbh’ routines. This was seen as the easiest way to ensure a
comprehensive understanding of what the variables, parameters and arrays are doing

within the two subroutines of the SATALL program.

At this stage different parallelisation techniques and methodologies were considered for

the parallelisation of the sequential SATURN model and in particular the assignment

187



Chapter 5

and shortest path areas, see Chapter 4, resulting in the strategy and methodology

described in the following Sections.

5.2.3 The IBM SP2 supercomputer

The HPC system that was used during this research is an IBM 9076 Scalable
POWERParallel SP2 supercomputer and is jointly owned by Trinity College Dublin
(TCD) and Queens University Belfast (QUB). It is housed at QUB and consists of 48
nodes with varying amounts of resources assigned to each node. A summary of the

system parameters for the IBM 9076 model can be seen in Figure 5.1.

The IBM 9076 parallel SP2 System is a distributed memory multi-processor parallel
system composed of processor nodes, which are RISC (reduced instruction set

computer) System/6000 processors. A microprocessor is a processor embedded on a

5076 5P2
Clock cycle 15 ns
Theor. peak performance:
Per Proc. (64-bit) (0.267 Gflop/s
Maximal (64-hit) 34.1 Gflop/s
Mermory/node 64-512/2048 MB (see below)
Communication bandwidth:
Point-to-point 20+ MB/s
Bisectional 25 GB/s
No. of processors 8128

Figure 5.1: System parameters of the IBM 9076 SP2 system.

microchip. RISC microprocessors are designed to perform a smaller number of
computer instruction types so that it can operate at a higher speed, i.e., perform more
millions of instructions per second (MIPS). An instruction is an order given to a
processor by a computer program. At the lowest level, each instruction is a sequence of
‘0’s and ‘1’s that describe a physical operation the computer is to perform, for example
to ‘ADD’ one number to another. Also, depending on the type of instruction, the
specification of special storage areas called registers can be included, which may
contain data to be used in carrying out the instruction, or the location in computer

memory of data. Since each instruction type that a computer must perform requires
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additional transistors and circuitry, a larger list, or set, of computer instructions tends to

make the microprocessor more complicated and hence, slower in operation.

John Cocke of IBM Research in Yorktown, New York, originated the RISC concept in
1974 by proving that about 20% of the instructions in a computer did 80% of the work.
The RISC concept has led to a more thoughtful and efficient design of the

microprocessor.

Besides performance improvement, some advantages of RISC and related design

improvements are that:

e A new microprocessor can be developed and tested more quickly if one of its

aims is to be less complicated;

e The operating system and application programmers who use the
microprocessor's instructions will find it easier to develop code with a smaller

instruction set;

e The simplicity of the RISC system allows more freedom to choose how to use

the space on a microprocessor; and,

e Higher-level language compilers produce more efficient code than formeriy
because they have always tended to use the smaller set of instructions to be

found in a RISC computer.

The RISC microprocessors are held in nodes that are housed in frames and are
interconnected by one or several communication networks, such as Ethernet, token ring,

or FDDI (Fibre Distributed Data Interface).

e FDDI is a set of ANSI and ISO standards for data transmission on fibre optic
lines in a local area network (LAN) that can extend in range up to 200 km (124
miles). The FDDI protocol is based on the token ring protocol. In addition to
being large geographically, an FDDI local area network can support thousands

of users.
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e A token ring network is a LAN in which all computers are connected in a ring
or star topology and a token-passing scheme is used in order to prevent the
collision of data between two computers that want to send messages at the
same time. The token ring protocol is the second most widely used protocol on
LANs, after Ethernet. The IBM Token Ring protocol led to a standard version
specified as [EEE 802.5.

e Ethernet is the most widely installed LAN technology. It has been specified as
a standard in IEEE 802.3 and was originally developed by Xerox. An Ethernet
LAN typically uses coaxial cable or special grades of twisted-pairs wires

between Processors.

The SP2 is accessed and managed through a ‘front-end’ control workstation that uses an
IBM RISC System/6000 processor running the Parallel System Support Programs
(PSSP), which include software functions to monitor the SP2 from a single point of
control. The control workstation also monitors system failures. Failing nodes can be

taken off line and exchanged without interrupting service.

The operating system used on the IBM 9076 is AIX, IBM’s Unix variant. The clock
cycle for processors is 15ns giving a peak performance of 266Mflop/s per node.
Configurations are housed in frames, or columns, that contain between 8 and 16
processors, depending on the type of node being used. There are two different types of
node: thin nodes and wide nodes. There are a number of differences between these two
types of node. Wide nodes have twice as many I/O (input/output) channel slots as thin
nodes, with 8 instead of 4. They also have the option of having far more memory with a
maximum of 2GB as compared to the maximum for thin nodes of 512MB. More
important in terms of performance is the fact that the data cache of a wide node is four
times larger than that of a thin node (256 KB instead of 64 KB) and that the memory
bus is two times wider than that of a thin node, having 8 instead of 4 words per cycle.
These two differences have led to a performance gain of a factor of 1.5 for wide nodes

over thin nodes. More details about the parallel computing system hardware of the SP2
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can be found on the TCHPC (Trinity College Dublin High Performance Computing)

web site accessible from TCD’s homepage (http://www.tcd.ie).

5.2.4 Parallel strategy

Any parallel strategy for the parallelisation of the sequential SATURN model shall, in
modifying the relevant algorithms and code, ensure that the parallel model can be used
on a number of different systems with a minimum of difficulty. Initially the strategy
must be to try to identify any parallel potential that the algorithms of the sequential
model might have and then use them to take full advantage of the HPC system
architecture and the development tools available. Although this research will be
applying the new parallel model solution on an IBM RS6000 POWERParallel SP2
supercomputer, see Section 5.2.2, the final solution will be compatibie with the majority
of parallel HPC systems. The IBM SP2 has 48 Power2SC processors, although only 16
were utilised in this research due to administrative restrictions resulting from the large
workload on the machine. In order to ensure this portability amongst HPC systems the
solution has been designed to be compatible with both distributed memory and shared
memory systems. Any solution designed in this way can be applied to a number of

different parallel systems, including heterogeneous networks of workstations.

The most important aspect to consider in the design of the parallel implementation, in
order to achieve complete portability between distributed memory and shared memory
parallel systems, is how inter-process communication is to be achieved. Inter-process
communication has been discussed in some detail in Section 4.7.3, along with related
topics such as computational and storage dependencies. It was found that the MPI
interface is the most suitable parallel programming message passing interface for high
performance on tightly-coupled homogeneous parallel computing architectures (Hempel
and Walker, 1999). While the development of the PVM environment has branched off
into research of distributed heterogeneous environments, MPI has incorporated a
number of positive developments from within PVM, such as resource management
capabilities, and is now the primary message passing interface available. Gropp and

Lusk (1997) provide a comparison between PVM and MPI finding MPI more credible
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than other message passing libraries because of the consultative process involved in its
creation. Today the majority of parallel computer producers support MPI as their
primary message passing interface with other interfaces available for reasons of

compatibility with legacy codes (Hempel and Walker, 1999).

For these reasons the MPI interface is used for message passing between processes,
managing processor co-ordination, and, for resource management in the parallel
implementation; see Appendix 4 for a description and sample of some of the MPI calls
used to program the sequential model in parallel. The MPI interface has a number of

more specific advantages that are relevant to any parallel implementation:

e The MPI interface gives a high performance of message passing for
communication between processes, therefore reducing inefficiencies associated

with communication overheads;

e [t is flexible, allowing multi-tasking to be incorporated into the implementation
of the parallel solution so that the parallel model can, if the system user
requires it, run in the background instead of monopolising computer resources;

and,

e It is portable, see Section 4.7.3, over different parallel systems, requiring little

adjustment.

The closest available research on parallel implementation for the assignment area, with
respect to the SATURN traffic assignment and simulation model, is due to Chabini et
al. (1997) where a master-slave paradigm is implemented. @ Two types of
implementation were carried out: one using a distributed memory platform and message
passing and the other using a shared memory platform and threads. The shared memory
implementation has limited scalability due to computational dependence on a single
shared memory block while the distributed implementation uses PVM as the message
passing interface. See Kumar and Gupta (1994) for an analysis of the scalability of

parallel algorithms and architectures.
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After researching a number of potential strategies for the parallel implementation of the
sequential SATURN model a Single Program, Multiple Data (SPMD) paradigm was
chosen for this research, which involves a data decomposition around the outside of the
shortest path algorithm. The SPMD paradigm is an approach where each processor runs
the same program but acts on a different set of data. This means that the process of data
decomposition has been chosen over process decomposition, see Section 4.7.3, because
of the linear nature of the shortest path algorithm and trip assignment processes, and,
because of the nature of the input data, i.e., the fact that the data can be split into smaller
packets of input and acted upon independently of the other data packets. See the
following Section 5.2.4 for more detail. The SPMD approach will be more efficient and

scale better over multiple processors.

Each data packet is made up of a number of origin-destinations, which are then acted
upon the processor. Technically, at least as many processors could be used as there are
origin-destinations on the network. In this theoretical case, each processor would be
given a single origin and would find the shortest path from this origin to every other

destination and load traffic onto these routes as appropriate.

In addition, due to the sequential nature of the shortest path algorithm and the
assignment process, it was found that it was not feasible to attempt a parallelisation of

the algorithms themselves.

5.2.5 Programming the single-source one-to-all shortest path algorithm in parallel

The shortest path problem has been shown to take up over 80% of the overall CPU time
for SATALL, see Section 4.4. For every source (origin) in the network a shortest path
is found to every possible destination, so the same type of computation is calculated to
achieve a shortest path for every Origin-Destination (O-D) pair. In programming the
shortest path problem in parallel a simple decomposition by origin is used where the
total number of origins is divided into a number of subtasks in such a way that each
subtask can be issued to a separate processor for analysis. Each subtask then
corresponds to the computation of a subset of the total number of origins and has the
same computer code as all the other subtasks. The label-correcting single-source
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D’Esopo modification to Moore’s algorithm is being used as the shortest path algorithm
of choice.  Though not the fastest algorithm for specific network sizes and
configurations the algorithm performs very well over a wide range of transportation
applications unlike other well known algorithms such as Dijkstra’s label-setting
algorithm, which needs to be invoked in different ways to achieve good performance
depending on the specific circumstances, see Section 4.6 for more detail. Chabini et al.
(1997) have found that a slow sequential algorithm can lead to very good speed-ups
when the serial version of the algorithm is coded and the computation of shortest paths

is shared for subsets of origins among processors.

From a hardware perspective fine-grained, or massively, parallel systems have in the
order of thousands of processors whereas coarse-grained parallel systems would usually
have a couple of dozen processors. This definition makes the IBM SP2 HPC system a
coarse-grained parallel system. The grain, referred to above, is a description of the size
of the data packet that a processor can handle in Random Access Memory (RAM).
Fine-grained processors have perhaps 16-20 Kbytes of RAM whereas coarse-grained
processors may have gigabytes of RAM available. For instance, the wide nodes of the

IBM SP2 can have as much as two gigabytes of RAM available.

From a software perspective, the use of partition in decomposition consists of
determining the size of each of the subtasks to be assigned to each processor.
Depending on the resulting size of each subtask three levels of parallelisation are
produced: fine, medium and coarse-grained. In fine-grained parallelism each subtask
can represent an operating instruction, as compared to coarse-grained parallelism where
each subtask can represent a procedure or loop. In order to apply this decomposition
methodology in this research other criteria must also be considered, see Section 4.7.3.
For instance, allocation looks at assigning each subtask to a processor so that priority
constraints amongst subtasks are respected. Load balancing is tightly interconnected
with allocation and partition: the main objective of load balancing is to keep all the
processors in use, as far as is practicable, and equally loaded in terms of the execution
times of the processes allocated to them. Fine-grained subtasks are useful for load

balancing but can result in an increase in communication overheads. Coarse-grained
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subtasks can result in long idle times for processors that have finished their subtask and
are waiting for other processors to finish so that the algorithm can continue in a

synchronised manner.

The main problem with parallelising the single-source one-to-all shortest path problem
is that the problem is inherently sequential, with a large number of iterations taking
short periods of time, yielding very small grain sizes. One way to overcome this
problem is to perform more computations within each subtask, so as to increase the

grain size (Ziliaskopoulos et al., 1997).

Therefore, in order to parallelise the sequential SATURN model it was decided to create
a set of ‘coarse-grained’ subtasks based on the fact that the shortest path routine is
called so frequently and is so computationally intensive. In addition to this, each
shortest path computation is independent of every other shortest path computation,
which means that shortest path calculations for different origin-destination (O-D) pairs
can be executed simultaneously. Finally, it has been established that the calculation of
the shortest paths is an independent process on each processor because it can be
calculated on different input data simultaneously. For the O-D pairs sub-tasked to each
processor, the trips associated with the O-D pairs can also be assigned to the shortest
paths in parallel. This is possible because the other processors are also performing the
same task simultaneously, in parallel. Consequently, this is achieved without the need

for inter-processor communication.

Figure 5.2 shows a simplified overview of the data flow for a single processor involved
in a parallel application of the SATALL program, acting on a coarse-grained data
packet. Each processor involved in the parallel application of the model goes through
this process with its own ‘Independent data packet’. The inter-process communication is
not described on Figure 5.2 below but is shown on Figure 5.3. In Figure 5.2 the
Network.UFN and Trips.UFM files are input to the SATALL program. SATALL is
made up of the assignment and simulation stages. Within the assignment stage the
Frank-Wolfe algorithm performs the assignment process until either a convergence

parameter or equilibrium is achieved. When this occurs the program progresses to the
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simulation stage. Once the assignment and simulation stages have converged the

program outputs the network flows for assessment using one of the SATURN analysis

Network.UFN Trips.UFM
¥ ¥
SATALL
—_{ Assignment ]
Frank Wolfe Algorithm

2
Shortest Path Algorithm @
@:‘D lndependeni data packet

Convergence?

A

.-_L—~.
(YES
iy ot

( Simulation )
1
Convergence?

T
v
Network.UF S

v

SATURN Analysis Programs

Figure 5.2: Simplified diagram of the overall data flow, excluding inter-processor
communication, through the computationally intensive program SATALL for

each processor involved in a parallel application.

programs. The Frank-Wolfe algorithm is used many times while the program iterates
between the assignment and simulation stages. Also, within the Frank-Wolfe algorithm

the shortest path algorithm is used many times per iteration of the assignment stage.
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This loop within a loop helps to explain why the shortest path algorithm takes up over
80% of the CPU running time for SATALL.

SATALL

J[Assignmem Process |

r

Shortest path algorithm and trip
asgignment complete for each processor.

Procl Proc2

Data g » Data
Packet 1 Packet 2

| No |
T Proc3 Proc4
Data Data
Packet 3 Packet 4
Each processor now has the same
F asgsignment information.

( Simulation Process J

I
Convergence ?

b

Yes

Figure 5.3: Simplified diagram of inter-processor communication during the

assignment process and the SATALL program running in parallel.

Therefore, the use of coarse-grained subtasks is profitable in the context of this strategy
due to the fact that the areas to be reprogrammed in parallel are substantial in terms of
computation and can run in parallel without having to communicate very often with

other subtasks also running in parallel. This reduces the inefficiencies associated with
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communication overheads, which would be incurred in a fine-grained parallelisation as
subtasks running in parallel would have to communicate more frequently; see Chabini
(1998) for more detail of fine-grained parallelism in shortest path theory. Creating
these subtasks is achieved by dividing the total number of origins by the number of
processors being used for the implementation, an early implementation of which is due
to Chabini et al. (1997). The result is that there is a very high ratio of ‘computational
execution to data input’, which is what allows distribution of the sequential code and a
parallelisation approach based around the shortest path loop instead of inside the

shortest path algorithm.

Figure 5.3 shows a simplified diagram of inter-processor communication during the
assignment process of the SATALL program running in parallel. It is noted that the
inter-processor communication only happens at the end of an assignment. After each
assignment an inter-processor communication takes place where each processor gathers
the network flow information from the assignment on every other processor and, if
equilibrium has not been reached or a convergence parameter met, the Frank Wolfe
algorithm continues until one or the other has. Once equilibrium has been achieved the

SATALL process continues with the simulation process.

This represents a very pragmatic approach, which will give far better performance than
fine-grained parallelisation of the shortest path algorithm, which has proved very
difficult; see the review in Section 4.7.5 for more detail. In this implementation, each
processor in the distributed system will have a copy of the transport network, the trip
matrix and a copy of the sequential shortest path algorithm. The parallelisation will
result in each processor having a coarse-grained subtask that will be able to find the
shortest paths for a subset of origins equal to the total number of origins divided by the
total number of processors plus some remainder, and, once each processor has found the
shortest paths for its subset of origins, it then assigns the respective flows to this newly
found subset of shortest paths based on the O-D demand given in the trip matrix. When
this has been completed the shortest path information with the assigned flows, having
also been loaded in parallel, are gathered together by each processor from the other

processors and reconstituted. The program continues in this fashion for each iteration
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of the assignment with the updated network flow information until convergence or a
stopping parameter has been reached. In this way any number of processors can be
utilised to solve the problem. The data decomposition approach is simply performed for
the total number of processors available. This approach avoids the centralised approach
described by Hislop et al. (1991), which is limited by the computational bottleneck
inherent in a centralised system arising from traffic levels, or the transportation

network, becoming too large.

Chabini et al. (1997) implemented two versions of code for the assignment area: one
using a distributed memory platform and message passing and the other using a shared
memory platform and threads. The drawback of the shared memory version is the
limited scalability. Most shared memory systems are more expensive and use fewer
processors than distributed systems. At some stage further processors cannot be used as
the contention between processors in trying to access the memory at the same time
becomes too large. Chabini et al.’s (1997) distributed memory message passing version
uses PVM instead of MPI. However, Chabini et al. (1997) and others also opted for a
master-slave paradigm whereas a Single-Program, Multiple-Data (SPMD) paradigm is

being used here.

The SPMD approach should be more efficient and scale better over multiple processors.
The SPMD paradigm is one where each processor runs the same program but acts on a
different set of data. The way in which this works is that a duplicate of the parallel
program is distributed over multiple processors and each duplicate program runs in
parallel, acting on a different set of data and communicating between each other only
when altered data is needed by the other processors in order for the parallel application
to continue. This communication also occurs at approximately the same time across
multiple processors because each processor works on an equal share of the data that has
been allocated to it and performs the same tasks on this data, which leads to an efficient
load balance amongst processors. Allied to this the MPI interface will be utilised to
maximise performance and efficiency from a message passing point of view and allow

the parallel solution to be portable across different parallel systems, see Appendix 5 for
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a sample of how the MPI code is used in conjunction with new coding to parallelise a

subroutine within SATURN.

5.3 Results and Discussion

5.3.1 Introduction

A number of different transport network samples were analysed on three different
computing platforms. Comparisons were then drawn between outputs from the parallel
model and outputs from the sequential model on each system. The machines that were
used were the Intel dual processor 1686, the IBM RS/6000 F50 (4-processor) SMP
shared memory system and the IBM RS/6000 Scalable POWERParallel SP2

supercomputer, see Appendix 6.

The IBM RS/6000 SP2 System is a distributed memory multi-processor parallel system
composed of processor nodes. Each node contains a single Power2SC processor
running at |60MHz and runs its own copy of the AIX V4.3.3 operating system. Its peak
performance is 640 MFLOPS with 4 FP results/clock, an L1 Instruction Cache of 32 K

and an L1 Data Cache of 128 K. The memory configuration is as follows:
e Node Ol >>node 16: 1 GB memory:;
e Node 17 >> node 26: 512 MB memory; and,
e Node 27 >> node 48: 256 MB memory.

The total peak performance of the system is 30GFlops. The nodes are connected
together using the High Performance Switch Omega Network. For this research 256MB

of memory were assigned, as a minimum, to the execution of the program per processor.

The IBM RS/6000 F50 is a shared memory system with 4 PowerPC-604 processors
running IBM’s UNIX variant, AIX V4.3.3, and using a Symmetric Multi-Processing
(SMP) interconnection. Each processor has a peak performance of 332 MFLOPS with
an L1 instruction cache of 32 K, L1 data cache of 32 K, L2 cache of 256 KB and an L2

associativity of one.
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SATURN, and hence the parallelised version tested here, requires a trip matrix as input
and this specifies the number of trips, or journeys, from zone ‘i’ to ‘j’ for all zones, Tj;.
The trip matrix has been developed by the DTO using different data sources such as
vehicle surveys, home interviews, etc. In the case of this research, multiple user classes
(MUC), i.e., the private car and heavy goods vehicles (HGVs), are assessed. In the case
of MUC assignment involving two user classes, HGVs and private cars, two separate
trip matrices are required to describe their movements. To assess these two matrices a
‘stacked’ orientation is used where the two matrices are ‘stacked’ on top of each other,
making up a single ‘unformatted’ matrix file (matrix.UFM) representing the trip
demand for each O-D pair, before being assigned to the network. This single trip matrix
file is input to the model and yields results that refer to the movements of both user

classes combined.

The model also requires a transportation network input file (network.UFN) that
specifies the physical structure of the road network, and can be thought of as the supply
to the demand given in the matrix file. In the case of the DTNM this involves the
definition of both a simulation network and a buffer network. The simulation network
is coded in more detail than the buffer network and defines node and link based data.
The node-based data includes traffic signals, priority junctions and roundabouts, while
the link-based data describes the roads between intersections (nodes). The type of detail
modelled at this stage includes restricted movements, banned turns, one-way streets,
link and junction capacities, travel times, link distances, cost-flow curves, priorities at
junctions, gap acceptance parameters and saturation points, amongst others. The buffer
network lies outside the simulation network and is programmed in less detail but
accounts for a larger area of less importance. The essential difference between the two
networks is that the simulation network models both link and junction data while the

buffer network models only link data.

Both the trip matrix and road network are used as inputs to the route choice model,
which allocates (assigns) trips to routes through the road network. The GDA trip matrix
has 432 fine zones, with finer zones in the City Centre and coarser zones further out,

giving 432 sources (O-Ds). The highway network is made up of a simulation network
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and a buffer network, combining to give over 1,220 simulation nodes (junctions) and

3,900 links (connections between junctions) throughout the GDA.

The model uses up approximately 1.5 MB of space when running on each processor;
this was found using the AIX command ‘TOP’. Section 5.3.2 assesses the convergence
of the parallel model using the full GDA road network with the associated trip matrix.
Section 5.3.3 discusses results from the assessment of the accuracy of the parallel
model. Finally, Section 5.3.4 details the performance results, discussing the parallel
model in relation to the speed-up, efficiency and time-savings when compared to the

sequential implementation.

5.3.2 Convergence

The parallel model was run on the ‘IBM RS/6000 SP2’ and ‘IBM RS/6000 F50° HPC
parallel platforms and sequentially over a single processor. Convergence was reached
after the same number of iterations for all model runs. Once it was clear that the
parallel model converged the output was compared to that of the sequential SATURN
model. ISTOP is a percentile convergence parameter that stops the loop between the
simulation and assignment from continuing if ‘ISTOP’ percentage of the link flows
change by less than a predefined value, 5% in this case. After the 15" loop the
following output is produced for the parameter ISTOP where ISTOP is set equal to
90%.

e For the sequential SATURN model run on the IBM ibix machine, using one
processor, 89.8% of the assigned flows are within 5% of their values from the

previous simulation/assignment loop iteration.

e For the 1686 dual-processor machine, using two processors, 90.7% of the
assigned flows are within 5% of their values from the previous

simulation/assignment loop iteration.

o
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e For the IBM ibix machine, using four processors, 91.3% of the assigned flows
are within 5% of their values from the previous simulation/assignment loop

iteration.

This demonstrates that the parallel model converges with at least the same measure of
accuracy that the sequential SATURN model is able to achieve. This has been found to
hold for any number of processors that have been used, up to and including 16
processors. It is noted that ISTOP finishes at a slightly different percentage for each of
these tests. In the first case above, using the IBM ibix machine, the model gives results
where 89.8% of the assigned flows are within 5%. This compares to 90.7% and 91.3%

for 2 and 4 processors, respectively.

The slight differences in the convergence results are not considered large enough to

represent inaccuracy in the conversion of the parallel model for a number of reasons:

e The first and primary reason is that the parallelisation of the sequential model
does not change the algorithm itself but rather inserts a parallel loop around it.
Therefore, as the convergence theory remains unchanged for the parallel model

application the convergence within the parallel model is unaffected:;

e The slight changes in the results shown above are not unusual, i.e. slight changes
can result when running the sequential model using the same input data, which
means that it is the inherent nature of the model itself and the algorithms used
within it, and not the parallelisation process, that produce slightly differing

results from test run to test run; and,

e The parallelisation process may result in slight differences in rounding errors
associated with the processes of the model but these would be so small as not to

be of any significance.
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5.5.3  Comparison of Model Outputs

Initially a small transport network sample was used to determine whether the parallel
model was running accurately, i.e., that the parallel model was not producing spurious
outputs. This sample has the parameter MASL (Multiple Assignment Simulation
Loops) set equal to three, where it would usually be set equal to a high number such as
30 in the case of the DTNM. MASL controls the number of assignment/simulation
loops so when MASL is set equal to three the program is stopped after three loops. The
resulting output from the sequential model over a single processor and the parallel
model run using four processors on the IBM ibix machine differ by less than 1%, as

demonstrated in Table 5.1.

The difference in results is due to the same reasons given in Section 5.3.2 above, which
are the inherent nature of the sequential model itself and the algorithms within this
model and due, to a lesser extent to the rounding error associated with the complex
nature of the calculations involved in the assignment/simulation processes and iterative
loop, and, the convergence of this loop to equilibrium. In practice the accuracy of the
model output has been found to hold for any number of processors that have been used,

up to and including 16 processors on the IBM SP2 HPC.

Table 5.1: Sequential SATURN output compared with parallel model output.

SATURN IBM ibix
(sequential, single (shared memory,
processor) | four processors)
TRANSIENT QUEUES (PCU. HRS./HR.) 5970 5987
OVER CAPACITY QUEUES (PCU. HRS./HR.) 24821 24638
LINK CRUISE TIME (PCU. HRS./HR.) 16231 16231
TOTAL TRAVEL TIME (PCU. HRS./HR.) 47022 46856
TRAVEL DISTANCE (PCU. KMS./HR.) 837029 837050
OVERALL AVERAGE SPEED (KPH) 17.8 17.9

Once the accuracy and convergence of the parallel model were determined to be

acceptable the models performance was assessed for the DTNM.
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5.3.4  Performance

The performance of the HPC system, combining a software element in the parallel
algorithm and a hardware element in the HPC platform, is assessed. A detailed review
of performance analysis and the performance parameters used for this research is
provided in Section 4.7.4. However, the definition of performance depends on the
reason behind the use of HPC theory in the first instance. In general a reduction in the
computation time of the program, or model, is sought. Hence, the improvement in
performance is measured by comparing the sequential time to run the program on a

single processor against that of the parallel application across a number of processors.

The parameters used include the measure of speed-up, S(n), defined as the ratio of the
elapsed time, or serial time, when executing a program on a single processor, Ts, to the
execution time when a number of processors, n, are available, T(n). Therefore; S(n) =
Ts / T(n). The efficiency, E(n), is defined by Eager et al. (1989) as the average
utilisation of the ‘n’ allocated processors. Therefore, the relationship between
efficiency and speed-up, described by Eager et al. (1989) as the average processor
utilisation, can then be defined by E(n) = S(n) / n, leading us to the definition of linear
speed-up, i.e., where the efficiency remains at 1 while the number of processors
increases beyond two. In practice an efficiency of 1 is impossible to maintain when the

number of processors increase, even for software whose code is designed specifically

for HPC parallel platforms.

Gurd et al. (1985) found that programs with a similar value of average parallelism
exhibit virtually identical speed-up curves and that the higher the value, the closer the
program got to achieving 100 % utilisation, i.e. an efficiency of 1, on a graph. Eager et
al. (1989) define the average parallelism in a number of ways including the following

two:

e The average number of processors that remain busy during the execution of a

software system given an unlimited number of available processors; and,

e The speed-up given an unlimited number of available processors, i.e., the

maximum possible speed-up.

o
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‘Benefit verses cost’ profiles, describing the relationship between the benefit of a
scheme and the costs associated with that scheme, are then discussed with particular
reference to the efficiency — execution time profile and the ‘knee’ in such a profile, see
Denning (1980) and the discussion in Section 4.7.4. It is shown that the location of the
‘knee’, i.e., the number of processors used at this location, is well approximated by the
average parallelism. Further to this, the ‘knee’ occurs where the ratio of efficiency to
execution time, E(n) / T(n), is maximised, where ‘n’ is the number of processors
allocated to the computation at this point. Eager et al. (1989) prove that at the ‘knee’ of
the efficiency — execution time profile a speed-up, S(n), and efficiency, E(n), of at least
50% of their maximum is guaranteed. Therefore, the ‘knee’, or rather the number of
processors used to achieve the location of the ‘knee’ on the efficiency — execution time
profile, appears to give the optimum number of processors to apply to a parallel model

in order to achieve the best balance between efficiency and execution time.

These performance parameters are reported in Table 5.2, which gives the execution time
taken to complete the parallel model on the SP2 machine, with and without the
sequential section, the speed-up, S(n), the efficiency, E(n), and, the ratio of efficiency to
execution time, R, of the parallel model and of the parallel section by itself. Results

shown for the total model, T(n), where ‘n’ = 1 also use the parallel algorithm.

A graph of speed-up verses the number of processors being used (NPROC) for the
parallel implementation and for the parallel section of the new parallelised model can be
seen in Figure 5.4. The graph also shows the theoretical maximum, where there is a
linear relationship between the number of processors used and the resulting
performance gain, shown as the “Optimum Performance”. This graph was produced by
solving the GDA trip matrix assignment/simulation problem using 1, 2, 4, 8 and 16
processors. More processors were not used because of administrative limitations due to

large demands and a heavy workload on the SP2 platform.
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Table 5.2: Performance parameters including the execution time, speed-up,

efficiency and the ratio of efficiency to execution time.

N, the number of processors used to run the model

1 2 4 8 16

T(n) of total model 115.25min 82.1mins  48.73mins 33.66mins 23.63mins
T(n) of parallel section | 105.05min 71.14mins 38.13mins 22.53mins 12.87mins
Sequential segment 10.2mins  10.96mins 10.6Imins 11.14mins 10.77mins
S(n) of total model

1 1.4 2.36 3.42 4.88
(seq. incl.)
S(n) of ass. and s.p.

1 1.48 2.76 4.66 8.16
(parallel section)
E(n) of total model

1 0.7 0.59 0.43 0.31
(seq. incl.)
E(n) of ass. and s.p.

1 0.74 0.69 0.58 0.51
(parallel section)
R of total model 0.0087 0.0085 0.012 0.0127 0.0129
R of parallel section 0.0095 0.01 0.0182 0.0259 0.0396

It is noted from Table 5.2 and Figure 5.4 that while the speed-up for the parallelised

model drops off quickly with a value of 4.88 for 16 processors, the performance of the

parallel section of the new model is far better with a value of 8.16 for 16 processors.

The obvious reason for this is that the sequential section of the parallel model takes the

same amount of time to complete no matter how many processors are being used.

Therefore, the relative importance of that sequential section increases as the number of

processors being used increases, which was predicted beforehand. The performance
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Speed-up Profiles
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Figure 5.4: Speed-up verses the number of processors used for the optimum
performance, for the actual performance of the model, and, for the parallel
section performance compromising the shortest path problem and assignment of

flows.

speed-up of 8.16 is more than that achieved by Greenwood and Taylor (1993). which
was approximately 7, see Section 4.7.4.2. This is reinforced by examining the
efficiency of the parallel model, see Figure 5.5. The efficiency, E(n), of the parallel
model decreases quickly as the relative importance of the sequential section increases
with the number of processors used. The sequential section represents 9% of the
execution time, T(n), of the model using 1 processor but it represents 54% when 16
processors are used. As such the sequential nature of the model represents the dominant

limiting factor in this parallel implementation.
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Efficiency Profile
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Figure 5.5: Graph showing the relationship between efficiency and the number of
processors used for the total model with the sequential section included and for

the parallelised section of the model only.

It is also noted that the efficiency, E(n), execution time, T(n), profile of the parallel
model, represented by the ratio of one to the other, R, while still increasing for 16
processors at 0.0129, appears to be levelling off quite quickly, see Table 5.2. This is
demonstrated clearly in Figure 5.6, where the ratio, R, levels off quickly for the
parallelised model. This is expected due to the sequential section inherent in this
parallel application, however it does suggest that the ‘knee’ of the model, as described
earlier, lies somewhere around 0.013, the exact position of which would be found for
the model tested using an increased number of processors. This point gives a
reasonably accurate location for the average parallelism of the parallel model as

described earlier.
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Efficiency - Execution Time Profile
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Figure 5.6: The ratio, R, measuring the efficiency, E(n), execution time, T(n),
profile for the total model with the sequential section included and for the

paralielised section of the modei only.

The performance of parallel applications is usually measured by assessing the
parallelised section itself, i.e., excluding any sequential element associated with
inherently sequential algorithmic content or the sequential nature of I/O. In this respect,
the efficiency, E(n), of the parallel section, comprising the shortest paths problem and
the loading of flows to these shortest paths, decreases far slower than the parallel model
as expected, see Table 5.2 and Figure 5.5 for a comparison between the parallel model
efficiency and the parallel section efficiency. Using 16 processors the efficiency of the
parallel section is 0.51 compared to 0.31 for the parallel model. Additionally, the ratio,
R, is increasing with additional processors leading to the conclusion that the number of
processors needed to reach the ‘knee’ for the parallel section is far more than is

available for this research.
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Examining Figure 5.6 it is noted that for the parallel section, after an initially poor
increase in the ratio, R, from 1 to 2 processors, the efficiency — execution time profile
recovers and an almost linear relationship is noted for 4, 8 and 16 processors. The rate
of decrease of the efficiency is reducing and the ratio, R, suggests that the pattern of the
graph will continue for a considerable number of extra processors. As such, it is hard to
establish the effect of communication overheads on the parallel section of the model
without actually applying the model in practice to more processors. Future work could,
therefore, concentrate on finding the average parallelism of the parallel section of the

model and reducing the time spent in other sequential areas of the model.

Using a direct comparison of the times taken for completion of the parallel model with
different values of NPROC, the number of processors utilised, it can be seen that the
SP2 HPC platform is also far more efficient even using just one processor, see Table
5.3. The times shown in Table 5.3, in minutes, give the total time taken for the model to
run to completion using three different machines over 1, 2, 4, 8 and 16 processors.
While the processor clock speeds may vary slightly for these different parallel systems
the performance of the SP2 platform is mainly due to the amount of Random Access
Memory (RAM) available on the SP2 machine, which far exceeds that of the shared
memory Ibix machine or the dual-processor Intel machine. The results demonstrate the

portability of the parallel model across different parallel systems.

Table 5.3: The time taken to complete the parallel model, with the sequential

section and I/O included, for the three systems analysed.

NPROC, the number of processors used to run the model

1 2 - 8 16

SP2 (multi proc.s) | 115:45mins  82:10mins  48:53mins 33:38mins 23:40mins
IBM Ibix (4 proc) | 171:55mins  101:1mins  63:25mins

Intel (2 proc) 163:05mins  95:56mins
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Using just one processor the SP2 machine takes approximately 115 minutes as
compared to that of 172 minutes and 163 minutes for the Ibix and Intel computers,
respectively. Using 8 or 16 processors the time is 3.4 and 4.9 times faster than a single
processor, respectively, and the time of 23.66 minutes for the SP2 platform to complete
the model run using 16 processors saves 92 minutes, or 80%, when compared to the
time taken for a single processor to execute. This also represents large savings when
compared to the time taken for a single processor to finish the job on the Ibix or Intel

platforms.

o
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Chapter 6

Inner City Congestion Charging in
the Greater Dublin Area
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6.1 Introduction

A package of measures has been outlined by the Dublin Transportation Office (DTO) to
offset the current imbalance between transport demand and supply on the typically
heavily congested roads of the Greater Dublin Area (GDA) highway network. As part
of this package, traffic demand management was proposed as an important method for

the control of traffic congestion.

In Chapter 2 it was recognised that due to the institutional and regulatory inefficiencies,
the cumbersome and time consuming planning system, and, the high economic growth
since the DTI began, delays to infrastructural projects became inevitable and unrealistic
planning targets were set. Consequently, a substantial transportation deficit has arisen
in the GDA. In response, it has been recognised by the DTO that a comprehensive
study is necessary to develop a demand management strategy to reduce growth in
overall travel by private car and to effect further modal transfer from private car to

public transport modes.

Demand management seeks to reduce the growth in travel while maintaining economic
progress and is designed to encourage a transfer of trips, especially during peak periods,
from the private car to sustainable modes of transport (DTO, 2000). Road user charging
is an important tool in demand management strategy. There are a number of established
forms of road user charging including cordon charging, area licensing, screen-line

tolling and pricing by time or distance; see the literature review detailed in Chapter 3.

Chapter 3 describes the development of road user charging and briefly introduces
important elements of design and implementation. The political and social aspects of
acceptability are then examined, followed by a review of the effectiveness of road user
charging. A number of studies of pre and post implementation cases are then examined
and price elasticities of user demand are considered in this context. Finally, conclusions
are drawn from this review of international literature and practical experience, making
particular reference to the research carried out for this thesis. A summary of the

relevant conclusions from this Chapter is presented in Section 6.2.
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This Chapter reports on the impact of a series of road user charging inner city cordon
scenarios. These scenarios are tested over the GDA highway network, used in the
DTNM, and using the base year trip demand input matrix, also produced for the DTNM
by the DTO. Preliminary modelling was carried out on the original 1997 base year trip
matrix and network files obtained from the DTO, see Appendix 7 for a summary of the
results from these tests. Modelling was then carried out for the 2000 and 2006 trip
matrix and network definitions with particular reference to the 2006 model; Appendix 8
and Appendix 9 summarise the results from this testing, respectively. The parallel
model was used to carry out these modelling tests; the details of this parallel
implementation are reported in Chapter 5. The parallel model executes on the IBM SP2
supercomputer described in Section 5.2.3, which allows for parallel processing of model

tests while retaining accurate modelling behaviour.

Section 6.2 briefly summarises the transportation background, which has been dealt
with in some detail in Chapter 2. The cordon scheme location is also discussed with
conclusions drawn on the best location for an inner city congestion charging cordon.
Section 6.3 presents the methodology. This describes the natural geographical location
of the cordon and its size and position relative to the GDA. A brief review of previous
demand management studies in the GDA is then discussed in Section 6.3.2. Section
6.3.3 examines the input data files for the cordoned model implementations and
discusses the file content and structure. Section 6.3.4 summarises the conclusions
reached from the literature review of road user charging in Chapter 3, with particular
reference to the charge levels and the range of price elasticities of user demand in
response to these charges. The elasticity demand function, which relates elasticity to
charge, trip demand and generalised cost, is then explained and generalised cost is

summarised in Sections 6.3.5 and 6.3.6, respectively.

Section 6.3.7 presents more general information on the inner city cordon scenarios
modelled. Differences between the highway networks of 2006 and 2000/1997 are
explained and a discussion on elastic assignment and the attempts of this research to

include elastic effects over a fixed demand transportation network model are explained.
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The test scenarios are detailed in Section 6.3.8, followed by the results and discussion in

Section 6.4.

The modelled cordon scenarios are described and discussed using a range of
transportation variables including travelled distance, travelled time, average speed and
queuing. Some details are also provided on the effects of the cordon scenarios on fuel

consumption over the entire highway network as a whole.

6.2 Background

6.2.1 Transportation deficit

The DTI began a transport planning process in 1988 permitting regular review and
assessment of the impacts of land use and other policies on transportation and vice
versa. In 1992, Phase 2 of the DTI began resulting in the production of the DTI
Strategy in 1994 which laid out transportation plans for Dublin. The DTI produced a
number of possible land use development scenarios with different growth levels for the
future, see Section 2.4. The objectives of the DTI Strategy were to encourage economic
regeneration and development and to help maintain and reinforce Dublin City centre as
the country’s prime commercial and cultural centre, See Section 2.4 and Appendix 1 for

more details.

The DTI Strategy could never provide a definite long-term solution because it was
based on a number of future land use scenarios. A land use strategy would have to be
designed to complement it, which was recognised in 1999 with the production of the
SPG. The 4-stage transportation modelling approach was used to produce the DTNM,
which uses trip generation and attraction, trip distribution, modal split and trip
assignment (using the SATURN traffic simulation and assignment model), see Section

244

Forecasts for population and traffic growth made for the DTI Strategy have been very
conservative, actual trends have outstripped all expectations, i.e., predicted population

for 2001 was exceeded in 1997 and the level of demand for travel has increased by
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double what was predicted for 2001 in the 1991 DTI forecast. The institutional and
regulatory inefficiencies; the cumbersome and time consuming planning system; and,
the high economic growth since the DTI began, have also resulted in delays to

infrastructure projects and unrealistic planning targets, see Section 2.5.

Any increase in person-trips by car over that predicted by the DTI is defined as a
transportation deficit (DTO, 1998). Two main problems exist as the main causes of the

substantial transportation deficit in the GDA and these can be summarised as follows:

e The first is that there has been considerable 'slippage’ in the implementation of
the DTI Strategy, although with the emergence of the DTO to oversee its

implementation, progress has been made; and,

e The second is that there has been enormous growth in the economy resulting in
very large increases in the level of traffic and increased congestion. This
economic growth was not predicted in the DTI Strategy. Demographic and

economic indicators for the GDA are presented in Table 6.1.

The high rate of economic growth has resulted in a large increase in the demand for
travel. Peak hour trips between 1991 and 1997 have grown by 45% or 78,000, 71,000
of which are due to private car commuting. The average journey time has increased
from 31 minutes to 43 minutes over the same period with 72% of peak hour trips being

accounted for by the private car.

The DTNM was produced as part of the DTI to make transportation forecasts. The
DTO have developed this model further to produce new forecasts for the GDA (DTO,
2000). A percentage growth factor per year to predict future year trip matrices is not
used. Instead, land-use planning and employment information on a zone-to-zone basis
is used to predict the growth for each zone within the GDA. The forecast produced by
the DTO for 2016 predicts an even worse outlook with a 95% increase in the total peak
hour trips over and above the predicted demand in 1997, while the off peak demand for

trips in 2016 will also exceed the peak period demand in 1997. If, however, other
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strategies of transportation management were to be used, such as demand management

e.g. road user charging, this situation could potentially be improved.

Table 6.1. Factors Influencing Traffic Growth (DTO, 2000)

Greater Dublin Area 1991 1996 1999 2016
Population (million) 1.35 1.41 1.46 L.73
Households (‘000) 402 446 521 675
Employment (*000) 452 549 602 878
Unemployment rate 16% 12% 6% 5%
Car ownership (per 1000 pop.) 247 292 342 480
% growth in GDP since 1991 - 42% 79% 260%

In 1999, the SPG, a “framework for integrated land use and transportation for the
sustainable development of the GDA up to the year 2011, was produced, see Section
2.6, which provided the first co-ordinated settlement plan for the GDA and the starting
point for the latest transportation plans. From a transportation perspective, the SPG
objectives are to consolidate development and increase density in the GDA so as to
provide a basis for a better public transport system, and, to facilitate a shift away from
the private car to public transport. The SPG recommend that demand management
measures should be incorporated into all strategic planning and implementation to
reduce traffic demand, dissuade private car commuting and encourage the use of public

transport, see Section 2.6.1.

The DTO 2000-2016 Strategy also advocates an integrated transportation strategy
involving demand management and infrastructural and service improvements, see
Section 2.6.2. It is recognised that a comprehensive study is necessary to develop a
demand management strategy to reduce growth in overall travel by private car and to
effect further modal transfer from private car to public transport modes. Likely benefits
of implementation of the DTO Strategy include between 27% and 57% less congestion

than if the Strategy was not implemented. Other benefits include reductions of 41%,
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34% and 35% in energy consumption, emissions and accidents, respectively (DTO,

2001).

6.2.2 Road user charging

It has been demonstrated in Chapter 3, Section 3.5, that road user charging can
substantially affect user behaviour and hence, traffic behaviour. Based on modelling
studies and practical implementations it has been shown that road user charging can be
used to raise revenue, reduce environmental pollution and reduce congestion. With the
reduction of car trips during peak periods a transfer of trips to other modes can be

expected as the primary response to a road user charging scheme.

Locational impacts appear to be very small, leading to the conclusion that geographical
layout plays only a minor role in the overall effectiveness and impact of road user
charging schemes. However, from a business perspective congestion charging of a city
centre tends to increase the number of shops within the city centre, as opposed to a

decrease in the number as was initially feared.

Though international experience of road user charging is, in general, positive, pitfalls
are especially prevalent when dealing with political and social acceptability of
congestion charging schemes, i.e., the experiences in Stockholm, Hong Kong and
Cambridge. With respect to the implementation of congestion charging schemes a city
centre cordon scheme with a fixed charge appears to be favourable, especially in
relation to social and political acceptance. Once a simple scheme such as a city centre
cordon has been introduced then it is far more likely that the general public, and hence

politicians, will accept a more complex upgrade like that implemented in Singapore.

It was found in Chapter 3, Section 3.4, that in order to implement a successful charging
scheme it is, therefore, necessary to design the scheme not just to be effective in
achieving its objective but to be acceptable to the general public as well. Further to this,
Jaensirisak (2002) has found that acceptable road user charging schemes can be
designed to be both acceptable and effective by limiting the area of charge to within the

city centre and having a fixed charge per day. It was also noted that support would
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increase significantly if there was substantial improvement to the environment.
Therefore, any road user charging scheme must be implemented as part of an integrated
strategy that combines transport demand management with infrastructure and service

improvement as suggested in the SPG (1999) and by the DTO (2000, 2001).

From the study of road user charging studies, pre and post implementation, it is
concluded that the design and implementation of congestion charging schemes is very
important for public acceptability, particularly with respect to charge levels,
enforcement, privacy and the degree of public understanding. Political acceptability is
difficult to attain because most users tend to lose out. One approach for overcoming
people’s suspicion of change is to apply a strategy of incremental development (Small
and Gomez-Ibanez, 1998). For example, the Norwegian toll rings began as a means of
raising revenue for financing regional transportation infrastructure but have begun to

incorporate traffic management as a subsidiary goal.

At a more advanced level it 1s evident that introduction of a simple congestion charging
cordon scheme in the first instance is preferential if the scheme is to be a success (GOL,
2000; Oscar Faber et al., 1998). More complex systems are more likely to be successful
after a simple system has been seen to work by the general public. In Singapore a very
simple congestion charging cordon scheme was introduced first and has since been
developed into a more complex system with multiple cordons and screen-lines over a

wider area.

6.2.3 Inner city congestion charging cordon scheme

This thesis reports on research of an inner city congestion charging cordon scheme for
the GDA. The inner city location and the cordon implementation of road user charging

with a fixed charge were chosen for a number of reasons:

e The recommendations made by Oscar Faber et al. (1998) that the most suitable
place to implement an inner city congestion charging scheme would be along

the inner city canals and North Circular Road;
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e The conclusions reached in the literature review of road user charging, see
Chapter 3 and the summary in Section 6.2.2 above, that the best type of road
user charging scheme to implement from a social and political standpoint, and,
from an implementation and effectiveness standpoint, is a simple inner city

cordon scheme with a fixed price;

e Research has shown, see Chapter 3, that the overall impacts associated with
the geographical location of the cordon are small in comparison with its
effectiveness in reducing congestion and actually attract more business to
inner city leisure and retail businesses, which make up the bulk of inner city

commercial enterprise;

e The fact that the geography of the city lends itself to a natural cordon around
the inner city along the lines of the Grand Canal, the Royal Canal and the
North Circular Road, which encircle the inner city in a natural cordon, see

Figure 6.2; and,

e Previous implementations of successful congestion charging schemes on an
area-wide basis have all used an inner city congestion charging cordon scheme

to begin with, e.g., Singapore and London.

The relative location of the inner city cordon to the rest of the GDA can be seen in
Figure 6.1. The cordon itself takes up a small portion of the simulation area of the
DTNM, which is in turn combined with the larger buffer area lying outside this to
produce the overall DTNM highway network that this research models. A larger scale
map of the location shows the natural geographical location along the routes suggested
above, see Figure 6.2. Figure 6.2 also shows the outer ring to the left of the inner city,
which represents the M50 Motorway and the boundary of the simulation area shown in

Figure 6.1.
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6.3 Methodology

6.3.1 Introduction

The inner city road user charging cordon scheme is applied to the DTNM, which uses a

be-ww Simulation Boundary
P % Tnner City Cordon
DUBLIN

un Laoghaire
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It Bray Area

pOTeY stones

Figure 6.1. Basic map of the Greater Dublin Area showing the Metropolitan

Area, the simulation area boundary used in the DTNM and the inner city cordon

scheme location.

base year trip demand matrix and a highway network (supply) to define the
geographical and structural layout of the GDA highway network and the trip demand
across that highway network. The modelling will assess the effect of the inner city
cordon scheme, whose geographical location lies along the lines of the Royal Canal,

Grand Canal and the North Circular Road, see Section 6.2.3, on the modelling
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representation of private car and HGV traffic movement provided by the DTO. The
cordon scheme will be applied during the morning peak period, from 8am to 9am, using
the 1997, 2000 and 2006 highway network and trip demand definitions, also produced
by the DTO.

In order to do this, the base year trip matrix and highway network definitions for 1997,

2000 and 2006, must be altered to take into account the inclusion of the inner city

Figure 6.2: Map showing the natural geographical cordon location around the

inner city area and the M50 Motorway.

cordon. These alterations are made to the input files for the SATURN model used to
assign the trip demand to the highway network and simulate the traffic movement and
distribution across that highway network. However, in this case the parallel version of

SATURN is used instead of the sequential one used by the DTO. The process of
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altering the trip demand matrix and the highway network input files is detailed in
Section 6.3.3.

Section 6.3.2 briefly summarises the conclusions of the only other road user charging
study of the GDA produced by Oscar Faber et al. (1998). There are a number of factors
and constraints that must be considered for the road user charging scenarios assessed.
Section 6.3.4 details the charge levels to be used in the modelling process and the range
of price elasticity’s of user demand in response to these charges. Section 6.3.5 looks at
the elasticity demand function used in the modelling process to describe the relationship
between the number of trips travelling along a route, the charges associated with
travelling along that route, the cordon charge to be applied along the route and the
elasticity response to that extra charge. Section 6.3.6 details the generalised cost
equations used to calculate the charge associated with travelling along a route on the
highway network. These costs are used to produce a cost matrix representing each
origin-destination (O-D) route in the same way that the trip demand matrix gives the
number of trips travelling along each O-D route. Section 6.3.7 describes the cordon

tests while Section 6.3.8 details the test scenarios.

6.3.2  Previous studies of road user charging in the GDA

‘A Study of Road Pricing in Dublin’ was produced by Oscar Faber et al in 1998. This
is the only report that has been produced to assess road user charging on an area-wide
basis in the GDA, and, in essence was a feasibility study. It examined a small number
of demand management scenarios to try to assess the feasibility of road user charging
and other fiscal instruments, such as parking charges, for the management of
transportation and traffic demand in the GDA. The study also looked at the different
forms of road user charging and their implementation and went on to confirm the

potential of road user charging in contributing to the management of traffic in the GDA.

The study was undertaken strictly as a preliminary study to assess the potential of road

user charging and it was assumed that further information and detail would be required

to fully evaluate charging schemes in the GDA. Based on the positive preliminary

findings of the study the report recommends that further work should be undertaken to
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investigate the feasibility of introducing a road user charging scheme, and in particular a

cordon charging scheme, to the GDA highway network.

6.3.3

Cordon modelling input data

There are two sets of data to be used as input to the model:

(1)

The first data set describes the highway network, including the infrastructure,
traffic signals, geographic layout, etc., with over 2500 links, 4500 simulated
turns and 320 traffic signals. The data describing the highway network has been
provided by the DTO and was initially produced for the DTI, see the DTI Final
Report (1994) for more detail; and,

The second data set is the trip demand matrix, which in the case of the DTNM,
is made up of 432 O-D pairs making a 432%432 matrix. Each element of the
matrix is equivalent to the number of trips either originating in or destined for a
certain zone, of which there are 432 that make up the study area, which was also
provided by the DTO. Initially a 367*367 matrix was produced using a number
of surveying and interviewing techniques and census data as part of the DTI
Strategy (DTI, 1994) and was then developed further by the DTO to a 432%432

size matrix.

6.3.3.1 Model input data: the highway network

The GDA transport network is made up of two networks, which are better known as the

simulation network, which includes the Central Business District (CBD), and the buffer

network, the area outside the simulation network. The simulation network encapsulates

the inner city, CBD and surrounding urban environment inside the M50 Motorway, and

1s programmed in more detail than that of the buffer network, see Figure 6.1 for the

simulation boundary location. The buffer network represents the greater part of the

GDA (other than the simulation area) and also incorporates traffic entering the area

along major routes from the rest of the country. The simulation and buffer networks
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combined give the complete highway network, as used in the Dublin Transportation

Network Model (DTNM).

The highway network information is input to the transport model in the form of an
‘UnFormatted” Network (UFN) file, which will hence forth be known as the
Network.UFN file. The Network.UFN file is produced using another program from the
SATURN Suite called SATNET. SATNET takes the information produced in a
standard DAT file and converts this text-formatted file to the Network.UFN file format,
which is then input to the assignment and simulation model. An example of one of the

DAT files used to create a Network.UFN file can be found in Appendix 10.
The network data file is made up of a number of smaller sections including:

e The network title;

e Parameter specifications

e The simulation network and simulation centroid connectors;

e The buffer network and link data;

e Restricted turns and links;

¢ Node and zone co-ordinates;

e Bus routes; and,

¢ Generalised costs in the case of the multiple user classes.

Details of the network data file and how to program the information into the data file in
the right format can be found in the SATURN User Manual (van Vliet and Hall, 1998).
Within the restricted turns and links section links and/or turns may be banned from
making certain movements or penalised to account for differences between HGVs and

cars for instance.
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Figure 6.3: Map of the coarse DTO zones aggregated from the O-D trip demand

matrix for the GDA transport network.

The ability to be able to add restrictions to links is used to define the cordon location

across the highway network. The restriction, a monetary or time penalty, is applied to
227



Chapter 6

links that cross the cordon boundary in the same way that a real cordon scheme would
charge at the boundary location. This defines the boundary location for the cordon
scheme and adds the charge associated with that scheme to trips passing through the
cordon when the Network.UFN file is combined with the trip demand matrix during
modelling. An example of the coding used in the restricted turns/links section, and in

this case, to define a cordon is also given in Section 10.2 of Appendix 10.

6.3.3.2 Model input: the trip demand matrix

The GDA network is made up of a number of zones. Each zone represents both an
origin and a destination on the highway network. Originally, for the DTI Strategy, the
GDA was divided up into 367 zones based on District Electoral Divisions (DEDs). A
432-zone model was then developed by the DTO for the 1997 base year Dublin
transportation network model. The zone numbers, zone descriptions, the DEDs that
were used to define the boundaries into which trip information from census data was
gathered, and the CSO equivalent reference numbers are given in Appendix 11. The
trip demand matrix is, in the case of the 1997 model, made up of 432*432 trip elements
representing the trips associated with each O-D pair, where each zone represents an
origin and a destination to every other origin and destination in the matrix. The trip
demand matrix zones can also be aggregated to produce a set of 21 coarse zones as seen
in Figure 6.3. This Figure shows the area that is covered by the zone system. At the
extremity of this map, matrix elements defining zones at the boundary of the GDA
highway network are used to represent the trips entering and leaving the zoned area via
Primary National Roads from other parts of the country. In other words, these routes

are treated as external zones.

The trip demand matrix information is input to the parallel transport model in the form
of an ‘UnFormatted’ Matrix (UFM) file, which will hence forth be known as the
Matrix.UFM file. The Matrix.UFM file is produced using the Mx program, which is
included in the SATURN Suite. Mx takes the information produced in a standard DAT
file in a similar way to SATNET for network DAT files, and converts this text-

formatted file to the Matrix.UFM file format, which is then input to the assignment and
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simulation model. An example of one of the DAT files used to create a Matrix. UFM

file can be found in Appendix 12.

In this research both HGVs and private cars are modelled on the highway network.
This represents multiple user classes as each type of vehicle is called a class. In order to
represent both the movements of private cars and HGVs, i.e., multiple user classes, two
separate 432*432 matrices are needed. These matrices are then stacked one on top of
the other using the Mx program so that they can be used as input to the parallel

transport model together, and hence, modelled across the highway network together.

A cordon application affects the trip demand; therefore, it affects the trip demand
matrix. To express this in the trip demand matrix an elasticity demand function is used
in conjunction with the original trip matrix, the costs matrix produced from the first all-
or-nothing assignment defining the costs associated with each O-D trip, the charge
associated with the cordon application, and, the price elasticity of user demand
associated with that charge. This function 1s described in Section 6.3.5 below. The
elasticity demand function is applied to the specific zones within the original trip matrix
that refer to areas that are affected by the cordon application, i.e., zones inside the
cordon ring. A set of new trip demands are produced for zones crossing the cordon
boundary and this new set of values is then used to replace the existing trip demand

values for the O-D pairs which have their destination inside the cordon boundary.

Due to the size of the trip matrices involved the HGV and private car trip matrices were
broken down into manageable sections for manipulation as described and then
reconstituted with the new trip demands included. Once this was achieved the new trip
demand matrix, in standard txt format, was input to the program Mx to produce the

Matrix.UFM file for input to the parallel model.
6.3.4 Charge levels and the price elasticity of user response

The main factors and constraints include the charge associated with the cordon or

screen-line, the elasticity of user response to this level of charge and the elasticity
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demand equation used to calculate the new trip demand resulting from the

implementation of the congestion charging cordon scheme.

6.3.4.1 Charge levels

Road user charges should be linked as closely as possible to marginal external costs
(Boot et al., 1999). A study of transport externalities in Dublin found that a charge of
approximately €6.86 would be representative of the externalities associated with trips in
the GDA (Gibbons, 1998). In London, consultants Halcrow Fox (1993), have found
that between €8.20 — €16.39 (£5stg — £10stg) could be charged to enter central London.
In Singapore, where they use a system with restricted zones and toll charges on the
major expressways entering the city centre, the charges range from between €2.09 —
€3.48 (S$3.00 and S$5.00) during peak periods (Willoughby, 2000). In 1999, Oscar
Faber et al (1998) suggest charges varying from €0.79 — €3.81, but this report was based
on prices in 1997. Further testing has also been carried out in Cambridge using charges
between €0.98 — €8.20 (£0.60stg and £5.00stg) for congestion charging (May and
Milne, 2000).

On the basis of the summary above, and on the review of road user charges associated
with congestion charging carried out in Chapter 3, a relatively wide range of charges
will be used for this research to reflect international experience. Charging levels have
varied greatly across the case studies described in Section 3.6, from $0.25 to £8stg.
However, according to Santos (2000a), errors in estimating the effective charge will not
hugely affect the efficiency of the system. Therefore, based on implemented examples
of congestion charging, i.e., Singapore and London, a fixed charge in the range of €3 to
€8 would be appropriate. This fixed charge will be applied only during the morning
peak period from 8am to 9am due to the fact that the DTNM does not, at present, allow

for the modelling of peak spreading or for a longer peak period.

6.3.4.2 Price elasticity of user demand

These elasticities are directly related to the overall generalised costs through the
elasticity demand function described in the next section. During peak periods

elasticities are lower because work related commuting trips, which make up 67% of
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trips during this period (DTO, 1998), have to be made through one mode or another
(Hall et al., 1992). 19% of trips are school or college related while other trips make up
the remaining 14% (DTO, 1998). For a journey to work, there is little chance of a
change in destination or abandonment of the trip, which suggests that the elasticity of
demand for commuting with respect to changes in generalised cost may be relatively
low (Oscar Faber et al, 1998). As such, disincentives, like a road user charge, are likely

to have less effect on these high priority trips.

At this stage it is not possible to assign specific demand elasticity values to represent
user response to specific congestion charges and specific congestion charging scenarios
in the GDA. Given the need to make an assumption on elasticity values, they should be
restricted to within a close range that is reasonably justified. Taking into account the
literature and studies described in Section 3.7, for instance it is suggested in Oscar
Faber et al. (1998) that a peak demand elasticity value of between —0.1 and —0.5 should
be used for the GDA, as well as practical experience, a sensible range of values might
be considered to be -0.2 to -0.7 for an inner city fixed price congestion charging
scheme. This range of values will be used in conjunction with the elasticity demand
function described in the next Section to represent trip maker’s reactions to charges

during the peak period between 8am and 9am on working days

6.3.5 Elasticity demand function

The elasticity demand function used for the research is the same as that used in Oscar
Faber et al (1998). The elastic exponential, or semi-log function, referred to below is
one of four demand response functions available as part of an elastic assignment

algorithm in the SATURN Suite, see van Vliet (1982) and Hall et al. (1992).

The methodology used in the UK Engineering and Physical Sciences Research Council
(EPSRC) study, that led Oscar Faber et al (1998) to use this function, involved building
an independent relationship from a set of stated preference (SP) data via traditional
logit-based approaches and then attempting to fit one of the four SATURN elastic
assignment options to it. In the study, the semi-log function, described below, came out
as a best fit. In a subsequent, more complex project where SP data was collected in
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Cambridge, Norwich & York, the best fit was found to be a simple exponential

function.

However, according to Oscar Faber et al (1998), the function below is more consistent
with what might be expected in the case of the GDA and this is assumed to be the case
for this research. The exponential aspect of the demand function also takes into account
the fact that work, or priority, trips make up approximately 67% of the trips being made
in the peak hour period (DTO, 1998). The function does this by dampening the effect
that an increase in the elasticity of user response has on the trip demand to give a more

realistic, or elastic, response to a cordon charge over a peak hour charging period.

Tnew = Tpase EXP (EI- ((CH + Chase) / Chase - 1) ) Equation 6.1

Where:
e T, is the trip demand after charging has been applied;
® Ty is the trip demand in the base year per route;
e CH is the road user charge at the cordon;
e  Chpue 1s the total generalised cost in the base year for each trip and; and,

e EL is the constant power coefficient that regulates the shape of the function, i.e.,

the price elasticity of user demand.

However, if considering small changes in demand the equation will not work well. This
1s because a small change in the charge level will result in a large change in the number

of trips affected. This is due to the fact it is a logarithmic function.
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6.3.6 Generalised cost

It is assumed that journeys are made for the utility (value) taken from activities that are
performed at their destination. However, when making such a journey the traveller
incurs the disutility of expense, time spent travelling, etc. Generalised cost is defined as
a representation of this disutility. The zone-to-zone generalised cost used by the DTI is

given by the two formulae (DTI, 1994):

GCeur = aIVT + 2, WK + a3EX + a;VOC + asPK + ag Equation 6.2
GCp =a" IVT +a',WK + a'sWT + a',FARE + a'¢ Equation 6.3.
Where:

e [VT is the in-vehicle travel time;

e WKiis the walk time;

e  WT is the waiting time for public transport;

e EXis the excess time while finding parking;

e VOC are the vehicle operating costs;

e FARE are the public transport fares;

e PK refers to the parking charges for the private car; and,

® a; to a¢ are parameters used as both conversion factors and weights to express

generalised costs in common units.
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The generalised cost can be expressed in monetary or time units. If the generalised cost
is measured in monetary terms’a;’ can be interpreted as the perceived value of IVT.
Usually ‘a;” and ‘a3’ are approximately twice that of ’a,’, making the perceived value of
walking and waiting times twice that of [IVT. Parameters ‘as’ and ‘as’ convert values of
fare into their equivalent values in time while ‘as’ is the mode specific constant

representing the inherent costs of a mode.

Due to the fact that the generalised cost is calculated as a function of time the
congestion charges for crossing the cordon boundary are converted to time restrictions,
in seconds, based on the values of time for the private car and HGV user. These values

of time are based on those used by the DTO for the base year model definitions.

6.3.7 Inner city congestion charging cordon testing

The trip demand matrix file, Matrix.UFM, and the highway network file,
Network.UFN, are wused as inputs to the parallel implementation of the
assignment/simulation section of the SATURN traffic model, SATALL, which allocates

(assigns) trips to routes through the highway network.

The trip demand matrix and highway network files developed by the DTO are used for
initial testing of the 1997, 2000 and 2006 year scenarios. The base year for these files is
1997 and the files were then factored up by the DTO to represent trip demand on the
highway network for 2000 and 2006.

A number of changes have been made to the highway network file for the 2006 version
of the GDA road network. The changes have been made to represent the completion of
planned and confirmed infrastructure projects that are to be put in place in the
intervening years. These changes include, amongst others, the completion of arterial
and radial quality bus corridors (QBCs), improvements to suburban rail, completion of a
cycle network and completion of two lines of the new light rail implementation that is
already under construction. The DTO assumed that the growth for 2006 is 60% of the

growth that occurs from 1997 to 2016. The 2016 values are based on projections, on a
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zone-by-zone basis, in local authority areas and are capped at the Strategic Planning

Guidelines totals (Brady Shipman Martin, 1999).

The testing procedure involves adapting both the Network.UFN file and Matrix. UFM
file to accurately represent the different cordon charging scenarios applied to the GDA
highway network, see the description of these processes in Section 6.3.3. The highway
network file is edited to incorporate the cordon by applying a charge to links defining
the cordon boundary, see Figure 6.1 and Figure 6.2 for the cordon location, while the
trip matrix file is edited by applying the elasticity demand function, see Section 6.3.5, to
the standard base trip matrix for the year in question to produce the new trip demand

matrix for the cordoned network.

When this research began the DTO were not using elastic assignment to produce
network flows and distributions. Consequently, there were no elastic parameters, or
other necessary information, available to run elastic assignment for the DTNM. As a
result, this research concentrated on the fixed assignment aspect of the SATURN traffic
assignment and simulation model so that the new parallel model could be used to assess
the DTNM. However, to incorporate an elastic response this research has applied the
elasticity demand function described in Section 6.3.5 to the trip demand matrix. This
allows for a more realistic response from users than having a linear response to the

cordon charge.

This elasticity demand function is applied to the trip demand in the base year per route
in conjunction with the road user charge associated with crossing the cordon, the price
elasticity of user response and the total generalised cost in the base year per O-D pair.

The generalised cost is found using the equations described in Section 6.3.6.

At the start of an elastic assignment or a fixed assignment procedure an all-or-nothing
assignment is undertaken. This assigns trips to routes on the highway network in an all-
or-nothing fashion. This results in total flow along links in the highway network and
the costs associated with each link can then be calculated and then summed together to

give the corresponding highway network costs for each O-D pair. This matrix of
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generalised costs then represents the costs for each O-D route across the highway

network.

In the elastic assignment within the SATALL program of the SATURN Suite, one of
the four elastic demand functions given by the software is applied to the trip matrix
using the new set of generalised costs, producing a new trip demand matrix and the
process continues. Though the fixed assignment procedure was reprogrammed in
parallel an attempt was made to reproduce elastic response manually by applying the
elastic demand function described above to the trip demand matrix using the generalised

costs matrix obtained from the first all-or-nothing assignment.

6.3.8 Test scenarios

The testing that has been carried out is summarised in the ‘Lists of tests’ given in the
following pages for the 2006, 2000 and 1997 Dublin transportation network model
representations.  All testing has been carried out to convergence and the inner city
cordon application has been applied to the highway network using a number of different
elasticity levels ranging from O to —0.7. The monetary congestion charge of between €3
and €8 is converted to the time equivalent so that all of the parameters in the generalised
cost equations described in Section 6.3.6 are the same. The costs manipulated in the
elasticity demand function are also expressed in units of time because the costs matrix,
output from the first all-or-nothing assignment and used in conjunction with the
elasticity demand function to produce the new trip demand matrix, is produced by the

generalised cost equation.

Three charge levels were used as the fixed charge for crossing the cordon boundary:
€3.80, €5.70 and €7.60. These charges represent a time restriction of 3000, 4500 and
6000 seconds, respectively, when converted to their equivalent values of time. These
charge levels were then applied to the 2006, 2000 and 1997 base year transport model
produced by the DTO in the elasticity range mentioned above. The results from these

tests are reported in Section 6.4.

236



Chapter 6

6.3.8.1 List of tests: 2006

A cross-reference list of the cordon tests carried out on the 2006 Base Year model
produced by the DTO is given in Table 6.2. In addition to these tests the following

results files were produced for the base case and for a test case:
o AQ6H-ds5: Base year trip matrix and network file for 2006; and,

e A06icl: Test case adding a charge of €3.80 to the highway network
definition and not applying any demand management reaction to the trip

matrix.

Summaries of the results from these tests can be found in Appendix 9.

Table 6.2: Details of the names of the test result files in the Appendix with

reference to the road user charge and elasticity used.

No Charge Ch = €3.80 Ch = €5.70 Ch = €7.60

No elasticity AO6H-ds5

El. =-0.1 A061c5 A061c6H A06ic10
El.=-0.3 AO61c4 A06ic7 AO06icl 1
El =-0.5 A06ic3 A061c8 A06icl12
El =-0.7 A06ic2 A061¢c9 A06ic13

6.3.8.2 List of tests: 2000

A cross-reference list of the cordon tests carried out on the 2000 Base Year model
produced by the DTO is given in Table 6.3. In addition to these tests the following
results files were produced for the base year model without the cordon application and

for a number of test cases:
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e AQOOh-byO: Output from the base year trip matrix and network file for 2000,

obtained from the DTO;

e AO0Oic4: Test case applying a charge of €3.80 and an elasticity of —0.5 to the

trip matrix but not to the network file to assess the effect, or lack of an effect

on the model; and,

o AQOic5: Test case applying a charge of €3.80 to the network file, ie.,

defining the cordon around the network and the penalty for crossing it, but

not applying the effects of the charge to the trip matrix.

Summaries of the results from these tests can be found in Appendix 8.

Table 6.3: Details of the names of the test result files in this Appendix with

reference to the road user charge and elasticity used.

No Charge Ch = €3.80 Ch =€5.70 Ch = €7.60
No elasticity AOOh-by0O
El =-0.1 A00ic7 A00ic9 A00icl3
El. =-0.3 A00ic6 A00ic10 A0Oicl14
El. =-0.5 A00ic3 A0Oicl 1 A00Oicl5
El. =-0.7 A00ic8 A00icl2 A00ic16

6.3.8.3 List of tests: 1997

A cross-reference list of the tests carried out on the 1997 Base Year model produced by

the DTO is given in Table 6.4. In addition to these tests the following results files were

produced for the base year model without the cordon application and for a test case:

e A97s182: Output from the base year trip matrix and network file for 1997,
obtained from the DTO; and,
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e A97h-by0: Test case applying a charge of 3000secs and an elasticity of —0.1
to the trip matrix but not to the network file to assess the effect, or lack of an

effect on the model.

Summaries of the results from these tests can be found in Appendix 7.

Table 6.4: Details of the names of the test result files in this Appendix with

reference to the road user charge and elasticity used.

No Charge Ch = €3.80 Ch =€5.70 Ch = €7.60

No elasticity AO00Oh-by0O

El. =-0.1 A971c0 A97ic4 A97ic8
El.=-03 A97icl A97ic5 A97ic9
El. =-0.5 A97ic2 A97ic6 A97icl0
El. =-0.7 A97ic3 A97ic7 A97icl 1

6.4 Results and discussion

6.4.1 Introduction

The simulation time period is one hour in duration, representing the morning peak
period from 8am to 9am. The model continues to run until over-capacity queues at
intersections dissipate completely, i.e., that the traffic on the highway network is
running without over-capacity queuing on roads between junctions (links) or junctions
(nodes). However, from discussions with the DTO and Dr. D. van Vliet it was
recommend that results obtained from this period not be taken into context. Therefore,

the results described here will concentrate on the simulation period only.

The road user pricing scenarios will be assessed and discussed using a number of

variables described here:
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e Transient queues record the time spent by vehicles in queues which, in the case

of traffic signals, clear during a single cycle;

e Over-capacity queues record the extra time spent in queues at over-capacity

junctions waiting for the cycle in which the vehicle exits;

e Free-flow time is the time which would be spent travelling on links operating at

their free-flow speeds;

e Delays, the flow-specific extra travel time on those links with link speed-flow

Curves;

e The link cruise time is the sum of the free-flow time and the flow-specific extra

travel time on those links with speed-flow curves;
e The total travel time is the sum of both link and junction times:
e The travel distance is the vehicle or pcu.kms on simulation links; and,

e The overall average speed is defined by the travel distance divided by the total

travel time.

This results section will predominantly assess the effect of the inner city cordon
application on the 2006 highway network and trip demand matrix definitions provided
by the DTO. Testing has also been carried out on both the base year 1997 and 2000 trip
matrix and highway definitions during model testing. However, since similar reactions
have occurred over the DTNM for the 1997 and 2000 instances, and since the 2006
model specification is the most recent, the 2006 model will be discussed in detail in the
following sections and the results from modelling the 1997 and 2000 year models are

given in summary format in Appendix 7 and Appendix 8, respectively.

6.4.2 Distances travelled over the highway network

Figure 6.4 shows reductions in the distances travelled over the simulation network and

over the buffer network for a cordon charge of €5.70, with the elasticity of user
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response to this charge ranging from —0.1 to —0.7, respectively. The graph shows that
the travelled distance over the buffer network drops sharply with the inclusion of the
inner city cordon. This represents a 43% reduction in the distances travelled in the
buffer network when compared to the standard model predictions without any cordon

application.

Elasticity Vs Travelled Distance for 2006 with a charge level of €5.70
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Figure 6.4: The effect of elasticity on the distance travelled during the simulation

period for the simulation network and the buffer network.

The simulation also shows a reduction of 8% for an elasticity of 0.1, increasing to 10%
when an elasticity of —0.7 is applied. The simulation network includes the area inside
the M50 Motorway, shown in Figure 6.1 and in Figure 6.2. The change from the
simulation network to the buffer network takes place here. Therefore, most of the links
entering the simulation area are main radial routes that terminate in the city centre. As
such, they are heavily affected by the inner city cordon application. This appears to
represent the fact that less trip makers are making the trip to the city centre by car and
HGV from the buffer network. In comparison to this the distances travelled in the

simulation network drops by 8%, or approximately 130,000 Kms. It is noted from
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Figure 6.1 that the simulation area is substantially larger than the cordoned area. It is
most likely, therefore, that trip makers wishing to avoid the cordon charge are re-
routing around the cordon while remaining inside the simulation network, travelling
further to get to their destination. This leads to increased travel along orbital routes in

the simulation network.

Elasticity Vs Distance Travelled for 2006 using multiple charges
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Figure 6.5: The effect of elasticity on the distances travelled over the simulation

network using charges of €3.80, €5.70 and €7.60.



Chapter 6

Figure 6.5 shows the reduction in travelled distances as a result of the cordon
application for the simulation network using three different charges; €3.80, €5.70 and
€7.60. As expected, the higher the charge, the more effect the cordon has on the
distances travelled. It is noted, however, that the differences in the effectiveness of the
cordon application across the three different charges reduces as the elasticity is
increased. This reflects the nature of the trip makers during the peak period. Work
related trips are considered to have a high priority, higher than leisure for instance. As
such, a certain high percentage of trips have to be made, the only variable open to

interpretation for these trip makers is what route to take.

Figure 6.5 also shows an initial drop in the distance travelled for each of the three
charges using an elasticity of —0.1. This is expected in that any cordon implementation
will have an initial reaction, especially from trip makers who do not have to make a
priority trip. However, there are only a certain number of trips that are affected by the
inner city cordon. As a result, once trip makers who will not, or can not, pay the cordon
charge are priced off the network, i.e., either using another mode of transport,
cancelling their trip or making the trip at another time, the decrease in the distances
travelled resulting from further trip reductions levels out quickly as the majority of trip

makers have a high priority trip to make or are unaffected by the cordon.

Figure 6.6 shows the effects of the same charge levels on the buffer network. It is
immediately apparent that the travelled distances on the buffer network vary little in
terms of the charge used or in terms of the elasticity applied. While there is a slight
reduction in the travelled distances for further elasticities and for the charges used, in
general, the differences are small. This can be explained with the aid of Figure 6.7 and
Table 6.5. In the case of the buffer network nodes are not modelled. Only links and
link related delays are modelled. The distance travelled in the buffer network remains
at relatively the same level because trip makers are queuing to get onto the network
itself as opposed to queuing on it. This occurs, in particular, at the exits to large
housing estates where large queues form to get onto the highway network. Figure 6.7
shows the effect of the elasticity of user demand on the distance travelled across the

buffer centroid connectors. Centroid connectors connect zones to the highway network
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and are used to represent this queuing to get onto the buffer network. As can be seen

from Figure 6.7 and Table 6.5, which gives the numerical values for this graph,

Elasticity Vs Distance Traveleld for the Buffer Network 2006 using multiple charges
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Figure 6.6: The effect of the elasticity on the distance travelled over the buffer
network using charges of €3.80, €5.70 and €7.60.

Elasticity Vs Distance Travelled for the Buffer Centroid Connectors 2006
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Figure 6.7: The effect of the elasticity on the distance travelled over the buffer
centroid connectors using charges of €3.80, €5.70 and €7.60.
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Table 6.5: Table of the distances travelled over the buffer centroid connectors
using charges of €3.80, €5.70 and €7.60.

Distance Travelled over Buffer Centroid Connectors, in
Kms
Elasticity Charge = € 3.80 Charge = €5.70 Charge = €7.60
-0.1 244498 243606 240763
03 241382 239794 237597
-0.5 239372 237635 236462
-0.7 237924 236260 235286

the distances travelled along these connectors are dropping as the elasticity increases
and as the charge levied at the cordon increases. The reason that the effects are not
more prominent in Figure 6.7 is simply because most of the trip makers are not
travelling to the city centre and those that are have already responded more to the initial

introduction of the cordon than to the subsequent increases in charge.

Overall, the simulation network has approximately an 8-10% reduction in the
kilometres travelled for the 2006 transport model with an inner city cordon scheme with
the charge level ranging from €3.80 to €7.60, respectively. Due to the fact that the
simulation area is so much larger than the cordoned area this reduction seems to suggest
that a cordon scheme would be very effective and implies an even higher reduction

inside the cordon boundary.

6.4.3 Travel time

The total travel time on the highway network is measured in PCU.HRs. PCU stands for
Passenger Car Unit, a standard unit for the measurement of traffic levels. It is
recognized internationally that the presence of HGVs and slow-moving vehicles greatly

influences the design of a highway. Therefore, in this modelling process, the results are
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reported using PCUs. The flow coefficients shown in Table 6.6 are used to convert

vehicles into PCUs.

The total travel time for the simulation network is given in Figure 6.8 using the cordon
charge levels of €3.80, €5.70 and €7.60 and elasticities ranging from —0.1 to —0.7 on the
2006 transport network model. It is apparent from Figure 6.8 that the total travel time
decreases as expected with the initial application of the cordon model but continues to
fall steadily as the charge or elasticity is increased. This is a similar response to that
found for the distances travelled over the simulation network. The combination of the
reduction in the distances travelled and the total time spent on the network during the
peak hour suggests that either the highway network has become so over-congested and
over-capacity that the traffic has come to a halt, or, that there are less trips on the
network from private cars and HGVs as a result of the cordon application. It is assumed
that the latter of these cases is most likely though an assessment of the average speeds
over the highway network will help to determine the validity of this assumption, see the

next Section on speed.
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Table 6.6: Flow coefficients for PCU measurement.

Vehicle type Flow coefficient (PCU)
Bicycles 0.5
Motorcycles 0.5
Light, commercial motor vehicles (gross 1

weight 10 tons)

Passenger cars 1
Trucks and buses 2
Semi-trailers and trailers 3

Elasticity Vs Total Travel Time for the simulation network 2006 with multiple charges
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Figure 6.8: The effect of the elasticity on the total travel time in the simulation

network using charges of €3.80, €5.70 and €7.60.

Figure 6.9 gives the total travel times for the buffer network and these times show a
predictable outcome with little overall reduction in the total time travelled on the buffer
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network after the initial implementation of the cordon because trip makers are waiting

to get onto the network from buffer centroid connectors as discussed previously.

Elasticity Vs Total Travel Time for the buffer network 2006 with multiple charges
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Figure 6.9: The effect of the elasticity on the total travel time in the buffer network
using charges of €3.80, €5.70 and €7.60.

During the simulated peak period there is a 15-16% reduction in the total travel time in
the simulation network for a charge of €5.70 implying a larger reduction within the
boundaries of the cordon. This compares favourably to results obtained in London
where congestion charging is predicted to cut traffic levels inside the charging zone, in
kilometres travelled, by 10-15% and congestion, measured in 'vehicle delays', by 20-

30% (GOL, 2000).

Figure 6.10 shows the overall picture of the reductions in total travel demand using a
cordon charge of €3.80 on the 2006 highway network. This demonstrates an overall
reduction in the travel time on the highway network of approximately 27% for an

elasticity of 0.7 and 25% for an elasticity of —0.3.
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Elasticity Vs the Totoal Travel Time for the highway network and for the simulatiojn
network 2006 using a charge of €3.80
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Figure 6.10: The effect of efficiency on the total travelled time for the complete

highway network and for the simulation network using a charge of €3.80.

6.4.4  Speed over the highway network

The average speed is simply calculated by dividing the total distance travelled by the
total travel time giving KPH, (kilometres per hour). Figure 6.11 gives the average
speed for the 2006 simulation network over the elasticities and charges described
previously. This graph shows that the average speed increases steadily as the elasticity
is increased. This is true for any of the charges used, and indeed, the increases in
charge levels from €3.80 to €7.60 appear to have relatively less effect on the average
speed in comparison to the elasticity. Santos (2000) makes reference to the fact that
errors in choosing the correct charge are unlikely to influence the outcome of modelling
tests to any great extent. This certainly appears to be the case here. The fact that the
speed is increasing in the simulation network indicates that traffic congestion is
reducing as trip makers are, relatively speaking, travelling further in less time. An
increase in the average speed of just over 1 KPH is felt for a charge of €5.70 and an
elasticity of —0.3. If this value of average speed is to be increased then it would appear
that either a larger inner city cordon, a second cordon located at, or close to, the only
other geographically suitable location at the M50 Motorway, or the use of screen lines
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jutting out from the inner city cordon location, used for this research, to catch more

orbital trip makers trying to avoid the cordon charge.

Figure 6.12 describes the effects of the cordon application on the buffer network,
including delays experienced on buffer centroid connectors. The three charge levels
used for this modelling are applied to the 2006 model for each elasticity increase
modelled. For instance, for an elasticity of O, there is no change in the average speed
for each of the three charges because they do not apply. As the elasticity is increased

relative to the three charges the average speed varies from just below

Elasticity Vs the Average Speed for the simulation network 2006 using multiple
charges.
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Figure 6.11: The effect of elasticity and charge on the average speed of the 2006

traffic network.

32 KPH to just above it. These fluctuations in the average speed, showing only small
improvements, reinforce the conclusion that during the simulated peak period large
queues form on centroid connectors that are unaffected by the cordon application.
Therefore, due to the size of these queues, the relative effect of increases in the buffer
network average speed, see Figure 6.13, due to the cordon application are largely

negated by trip makers queuing to try to get onto the buffer network itself.

o
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Average speed relative to varying cordon charge and elsticity
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Figure 6.12: The average speed on the buffer network 2006, including delays

experienced on buffer centroid connectors, using charges of €3.80, €5.70 and €7.60.

An average speed increase of over 2 KPH is felt on the buffer network when considered
without centroid connectors. This compares to a maximum increase shown in Figure
6.12 of just 0.5 KPH. This increase in the average speed of 2 KPH for traffic flows is
found using a cordon charge of €3.80 and an elasticity of between —0.5 and —0.7.
Centroid connectors are not included in order to examine the buffer network without the
delays associated with buffer centroid connectors during the peak hour, which have the

effect of reducing the average speed.

Figure 6.11 and Figure 6.12 also demonstrate that for the average speed, the elasticity of
user response or the charge level do not have a significant effect relative to the affect

that the demand function itself has.
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Elasticity Vs Average Speed for the buffer network 2006 for a charge of €3.80.
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Figure 6.13: The average speed across the buffer network excluding buffer

centroid connectors using a charge of €3.80.

6.4.5 Queuing

There are three types of queues that are examined in this Section. There are transient
queues, over-capacity queues, and, link cruise times, which are a combination of the
free flow times along links and the delays encountered along those links. See Section
6.4.1 for a more thorough definition. Figure 6.14 shows the transient queues, over-
capacity queues and link cruise times, in parts 1, 2 and 3 respectively, from a cordon

application of €5.70 on the 2006 simulation network.
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Transient queues, over-capacity queues and link cruise times for the simulation
network 2006 using a charge of €5.70
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Figure 6.14: Graph of the transient queues, over-capacity queues and link cruise
times associated with the application of a €5.70 cordon to the 2006 highway

network.

It can be seen from Figure 6.14 that the elasticity demand function is reducing the effect
of higher elasticities to represent the response of trip makers to the cordon charge
during the morning peak period. Part 1 of Figure 6.14 shows that transient queues
remain at relatively the same level irrespective of increasing elasticity. This is due to
the fact that the morning peak period in the GDA lasts longer than the peak hour
modelled from 8am to 9am. Therefore, transient queues, representing the time spent by
vehicles in queues that, in the case of traffic signals, clear during a single cycle, remain
high as there is a constant demand for road space and the highway network remains
close to capacity beyond the one hour peak period modelled. The very slight reductions
in transient queues signify that some junctions are beginning to operate at less than
capacity. This is discernable because transient queues are the last queues to dissipate on
the network after over-capacity queuing. In other words, there must be less cars

queuing at a particular junction than can get through that junction in the cycle time
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assigned to it for the transient queue for that junction to reduce. This appears to be

happening on the simulation network as other queues dissipate.

From Figure 6.14 it is noted that there is little change in the link cruise times for the
simulation network during the peak hour modelled. Figure 6.15 looks at the link cruise
times over the three charge levels assessed. It is noted that the cordon application
results in an initial drop as expected, which is far smaller than it appears in this graph,
see Figure 6.14, part 3 or Figure 6.15. This is followed by stepped reductions as the
elasticity is increased. The levels of charge, however, do not appear to have a lot of
impact on the link cruise times in comparison to the other parameters. This leads to the
conclusion that while the demand function itself has the most affect on the results,
within the function it is the elasticity of user response that affects the number of trip

makers more than changes in the charge.

Link Cruise times for the simulation network 2006 using multiple charges.
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Figure 6.15: Link cruise times for the simulation network 2006 using charges of

€3.80, €5.70 and €7.60.

Part 2 of Figure 6.14 gives the over-capacity queue totals for the simulation network.

These queues represent over capacity links and junctions on the highway network
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during the peak period and, as such, give a good indication of congestion on the
network. In the case shown in Figure 16.4, applying the cordon with a €5.70 charge,
there is approximately a 17% reduction in the over-capacity queues for an elasticity of —
0.7 and a reduction of approximately 14% when an elasticity of —0.3 is used. This
reduction takes place in the simulation network, which can be seen more clearly in

Figure 6.16.

Figure 6.16 compares the over-capacity queue reductions from the entire highway
network and from the simulation network. Therefore, as the totals from the simulation
network go forward to making up the totals for the entire highway network it is

apparent that the major reduction in over-capacity takes place in the simulation

network.
Elasticity Vs Over-Capacity for the simulation and entire highway networks 2006
using a charge of €3.80.

60000

55000 &

50000 |
(2] i . .
T 45000 4 —&— Simulation
S — — = network
Q 40000 » =
= . » i —&— Entire highway
9 35000
) network
& 30000 -

25000

20000

15000 — - — :

0 -0.2 -0.4 -0.6 -0.8

Elasticity of user demand

Figure 6.16: The effect of elasticity on the over-capacity queuing on the simulation

and entire highway networks using a cordon charge of €3.80.

6.4.6  Fuel consumption

Fuel consumption is estimated for the simulation network using the following linear

equation provided by the transport model:

(8]
N
N
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TFC = FLPK*TTD + FLPH*TDT + FLPPS*S1 + FLPSS*S2 Equation 6.4

Where:

TFC is equal to the fuel consumption in litres per hour;
TTD is equal to the total travel distance per hour;
FLPK is equal to 0.07 litres/Km;

TDT is equal to the total delayed time (the time spent stationary in queues) per

hour;

FLPH is equal to1.20 litres/HR;

S1 is equal to the number of primary stops at junctions;
FLPPS is equal to 0.016 litres per primary stop;

S2 is equal to the number of secondary stops at junctions; and,

FLPSS is equal to 0.005 litres per ‘second stop’.

Table 6.7 describes the fuel consumption for the three charge levels tested. Drops in

fuel consumption of 12.5%, 13.1% and 13.5%, respectively, were achieved as a result

of the cordon application. It is recognised that this estimate of fuel consumption is a

crude one and is most likely out of date; van Vliet (1998) makes reference to Ferreira

(1981) for more details on the parameters used in the equation. This compares when

compared to other studies, for instance, in Edinburgh a reduction in environmental

pollutants of between 3.5% and 8.3% has been predicted for a city centre cordon

scheme with a charge of £1stg and £4stg, respectively (Edinburgh City Council, 2001).
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Table 6.7: Fuel consumption statistics for 2006.

Simulation network Charge = €3.70 Charge = €5.70 Charge = €7.60
Elasticity
0 180658.5 180658.5 180658.5
-0.1 162966.6 162269.3 159723.1
-0.3 160854.2 159614.4 158291.6
-0.5 159379.7 157879.1 157047.1
-0.7 158072.2 157002.2 156311.8




Chapter 7

Conclusions

257



Conclusions

7.1  Conclusions from parallel implementation

The parallel transport network model is converging accurately, as expected, and with at
least the same measure of accuracy that the sequential SATURN model is able to
achieve. However, it also appears that as more processors are used the rate of
convergence increases slightly by 1% or 2%, though the difference in convergence

performance is not particularly significant.

The output from the parallel transport network model is within 1% of the results
obtained from the sequential model for the scenarios tested over a number of runs. It is
not clear why there is a difference at all but this, in itself, is expected because of the
small differences in the convergence rates. It is noted that slight differences in results
are obtained when the sequential model is run using the same input data, which implies
that the differences are inherent in the sequential model itself and not because of the

parallel implementation process.

The speed-up of the parallel transport network model (combining the sequential section
and the parallel section) when compared with the number of processors being used is
approximately equal to 5 for the program running over 16 processors. This represents

an 80% reduction in the time taken for a single processor to complete the model run.

When a similar comparison is undertaken examining the parallelised module only, i.e.,
excluding the sequential section of the model, which is usually the case for performance
analysis of parallel implementations, an increase in speed-up to approximately 8.16 is
found for 16 processors. This compares favourably with results from a similar parallel
implementation on a different assignment model and with the initial speed-up estimate

for the parallel implementation, which was approximately 7.

The relationship between the efficiency and execution time for the parallel transport
network model gives a ratio of 0.0129 when the parallel model is run over 16
processors. Due to the fact the efficiency — execution time ratio, R, for the parallel
model run over 8 processors is 0.0127, a difference of just 0.0002, a tentative

conclusion is reached that the ‘knee’, or average parallelism, of the parallel model lies

258



Conclusions

close to 0.013. Also, given the rate of conversion of this ratio for the parallel model, it
is concluded that the ‘knee’ would most likely be found for the model tested using

approximately 24 to 32 processors, which represents an opportunity for further research.
pp y p p pPp y

For the parallel section, the ratio is increasing with additional processors leading to the
conclusion that the number of processors needed to reach the ‘knee’ for the parallel
section is far more than is available for this research. As such it is hard to establish the
effect of communication overheads on the parallel section of the model without actually
applying the model in practice to more processors. Future work could, therefore,
concentrate on finding the average parallelism, or ‘knee’, of the parallel section of the

model and reducing the time spent in other sequential areas of the parallel model.

With respect to shortest path theory, it is concluded from the literature review of
parallelisation within the field, see Section 4.7, that any attempt to parallelise the
shortest path algorithm itself is unlikely to prove worthwhile from a performance

standpoint.

Finally, the most computationally intensive part of the SATURN code, the SATALL
program, has been successfully reprogrammed in parallel and can be ported between the
majority of existing parallel systems. However, part of the parallel model remains in
sequential format and this sequential section enforces harsh penalties on the
performance of the parallel implementation. However, further work could include
reprogramming of the remaining sequential sections to run in parallel. These sections
include, for example, issues associated with /O, the essentially sequential nature of the

overall assignment procedure itself and the simulation section of the model.

7.2 Conclusion from inner city congestion charging cordon implementation

Based on the results of this research it is suggested that demand management could
constitute an important part of an integrated solution for the congestion difficulties in
the greater Dublin area (GDA). This is reinforced by the results of the tests discussed in

Chapter 6 of this research.
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There is a reduction in the number of trips entering the simulation network, as expected.
However, because transient queue levels drop off slowly it is evident that trip demand
within the GDA is remaining high. Considering that the peak period from 8 am to 9am

is being modelled this is as expected.

There is a reduction of congestion delays on the simulation network during the charged
period. This is demonstrated by the reduction in over-capacity queues on the simulation
network of 14% for a charge of €5.70 and an elasticity of —0.3. Very slight reductions
in transient queues signify that some junctions are beginning to operate at less than
capacity. It is clear that the major reduction in over-capacity queuing taking place in
the simulation network represents a reduction in delays at junctions and along the

highway network.

A reduction of travellers is felt more quickly on the buffer network than on the more
congested simulation network where there is an increase in the travelled distance
between the cordon and simulation network boundaries. There is a 43% reduction in
the distances travelled in the buffer network when compared to the standard model

predictions without any cordon application.

The travelled distance, which also reduces slowly after an initial drop, demonstrates that
people are travelling out of their way to avoid the cordon charge. However, because of
the effects within the cordoned area, traffic inside the simulation area as a whole is
moving more efficiently during the charged period as is demonstrated by the increase in
the average speed from 18.4-19.5km/hr. It is also found from a comparison of the
increases in average speed over the range of elasticities and charge levels used that the
cordon charge has less affect on the highway network than changes in the elasticity of
user response itself. However, it is the demand function itself that has the most effect
on the overall results. Therefore, further research on different types of user demand

function would be appropriate to assess the most realistic road user responses.

There are a substantial number of trip makers that are circumnavigating the cordon to
avoid the charge. This is implied from the relatively low increase in the average speed

compared to the comparatively larger reductions in over-capacity queuing. Some form
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of radial screen-lines from the city centre cordon projecting outwards or an additional
loop cordon application situated further out from the inner city may counteract these

effects, which should be investigated further.

The buffer network appears to gain a lot of benefit from the inner city cordon and
during the charged period the region inside the cordon also benefits greatly even though
demand remains high. While there is a reduction of 8% in the travelled distance in the
simulation network there is a 24% reduction across the complete network for a charge
of €5.70 and an elasticity of —0.3. This compares very well with that experienced in
London where very similar results were obtained. From modelling carried out a 20%
reduction in car trips was modelled for Central London with a 10-12% reduction in total
traffic level. In practice London’s city centre cordon scheme was even more effective
with a 16% reduction of traffic levels and a 32% reduction in overall congestion for an
inner city £5 congestion charge. However, a 24% reduction for the GDA could be
considered to be relatively accurate when the conclusions reached by O’Mahony et al.
(2000), where a 22% reduction in kilometres travelled was found using a field trial
conducted within the GDA, are taken into account. Similarly, results from a field trial
in Leicester (Smith and Burton, 1998) also found reductions of approximately 18-22%

for a morning peak period congestion charge.

An overall reduction in the travel time on the highway network of approximately 27%
for an elasticity of —0.7 and 25% for an elasticity of —0.3 is felt when a charge of €3.80
is applied. However, the relative effect of increases in the buffer network average speed
due to the cordon application are largely negated by trip makers queuing to try to get
onto the network itself. This signifies that at a local level in the buffer network the
effects of the cordon application are not felt as directly as elsewhere and large localised
tailbacks are still prominent, particularly trying to get out of large housing estates in the

morning peak period.

The analysis of fuel consumption suggests a reduction of approximately 12.5-13.5%,
which is high compared to other studies of emissions. The model equation used is,

however, only a rough estimate according to Dr. van Vliet and any serious conclusions
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about emission rates would have to incorporate further research. This research could
include an assessment of the likely impact of reductions of Sulphur Dioxide (SO2) and

Nitrogen Oxide (NOx) in the atmosphere as a result of the cordon application.

Overall, the simulation network has approximately an 8-10% reduction in the
kilometres travelled and a reduction of 15-16% in the total travelled time over the
network for the 2006 transport model with an inner city cordon scheme using a charge
of €5.70 and elasticities ranging from —0.1 to —0.7. These results appear to be relatively
accurate based on previous studies and practical experience. For instance, in Dublin
Oscar Faber et al. (1998) predicted a 21% vehicle hour reduction in the metropolitan
region of the GDA using an outer cordon and a 12-25% reduction using an inner
cordon. Comparable figures were also found in London with a reduction of 16% in
Central London. Similarly, for modelling in Leeds, a city centre reduction of 11% was

achieved for a peak period charge.

Considering this reduction in congestion it is noted that the simulation area is much
larger than the cordoned area, which seems to suggest that a cordon scheme would be
very effective and implies that there is an even higher reduction within the cordon
boundary, as has been achieved for the Central London scheme where an overall

congestion reduction of 32% was found, though this needs to be investigated further.

In addition to this, an assessment of the likely returns in revenue from such a cordon
application would also be insightful as would research on mode split and the effects on

other forms of transport such as public transport, cycling and walking.
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