2016 IEEE/ACM 11th International Symposium on Software Engineering for Adaptive and Self-Managing Systems

Clonal Plasticity: A Method for Decentralized Adaptation in
Multi-Agent Systems

Vivek Nallur, Nicolas Cardozo, Siobhan Clarke
Future Cities, DSG, Trinity College Dublin
College Green, Dublin, Ireland
{vivek.nallur | cardozon | siobhan.clarke}@scss.tcd.ie

ABSTRACT

This paper introduces a new plant-inspired mechanism for
decentralized adaptation, called clonal plasticity, which does
not make use of the MAPE loop. The mechanism acts on ev-
ery individual in a population and does not require central-
ized control. The paper presents a case-study demonstrating
its utility and feasibility in adaptation. The paper concludes
with some thoughts about the costs and limitations of this
mechanism, and possible future strands of research in this
direction.

CCS Concepts

eComputing methodologies — Self-organization;

Keywords

decentralized self-adaptation; plasticity;

1. INTRODUCTION

Technologically, society is moving towards an ever-increasing

number of connected devices, which are highly sophisticated
in terms of computing power. Concepts like Smart Cities en-
visage a world, where systems from multiple domains, cur-
rently silo-ed in their particular function, interact in an in-
tegrated manner to provide citizens with efficient and sus-
tainable infrastructural support in transportation, energy,
water, etc [23, 7]. Other concepts like Internet of Things
envisage a hyper-connected world, where devices, hitherto
considered ‘dumb’, would be able to connect to other devices
and make intelligent decisions, even in the face of changing
human needs [26, 29]. All of these concepts assume that the
underlying technological systems and infrastructure are able
to adapt to environmental change and preserve their func-
tion [3]. Thus, self-adaptive systems are a foundational ne-
cessity to the realization of such techno-fused societies. Self-
Adaptive systems are those that are able to preserve at least
one of the so-called self-* properties (self-protection, self-
healing, self-configuring, self-optimizing, etc.). This has tra-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SEAMS’16, May 16-17 2016, Austin, TX, USA

(© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4187-5/16/05. .. $15.00

DOL: http://dx.doi.org/10.1145/2897053.2897067

122

ditionally been done using the MAPE-K loop [17]. However,
this is difficult to scale for highly distributed systems, since
by the time the monitoring, analysis, planning and execution
steps are performed, the original problematic environment
could have already changed. Also, a centralized MAPE-
K loop based self-adaptation makes little sense in a Multi-
Agent System (MAS) where each agent is not only poten-
tially autonomous, but also has potentially different goals.
MASSs are typically used in situations where distributed, au-
tonomous decision-making is a natural fit. These situations
include modeling city traffic [8], socio-technical systems [22],
smart-grids [14, 20], smart-parking systems [24], cooperative
control [25], etc. Most multi-agent system based adapta-
tion relies on the distributed and autonomous nature of the
constituent agents [11], but there is little literature on how
to configure the agents themselves. Applications such as
collision avoidance [6], grid management [16] use collabo-
rative learning, and hierarchically deferring to a controller
agent, to achieve the application’s objectives. The most pop-
ular technique of self-configuration in multi-agent systems
is reinforcement-learning [4]. However, in competitive situ-
ations where collaboration is not possible, these techniques
are not readily applicable. In this context, Prof. David
Garlan presented a talk at SEAMS’15 entitled “The MAPE-
loop considered harmful”’, where it was speculated that a
MAPE-less adaptation technique could potentially be use-
ful in multiple scenarios. Coker et al. [9] also posited that
large-scale software adaptation could be enriched by tech-
niques from other domains, such as stochastic search. We
wish to position our paper in this line of thought, and present
a plant-inspired adaptation technique called clonal plastic-
ity. Many plants exhibit adaptive behavior through the use
of phenotypic plasticity, where the immediate environ-
ment influences the height of the stem, width of the leaves,
size of the roots, etc. Another phenomenon that occurs in
plants is clonal reproduction, where all the individual
plants in a given location are genetically identical copies
of a single ancestor, without any sexual reproduction. We
combine these two features to create a strategy called clonal
plasticity. In the following sections, we first define what we
mean by clonal plasticity for a software (Section 2), show
through a case-study (Section 3), its utility in decentralized
adaptation. Finally, we reflect from a software engineering
perspective (Section 4) on the costs and limitations of using
such an adaptation strategy, before concluding the paper.

2. CLONAL PLASTICITY

In clonal reproduction, a ‘daughter’ plant is formed “through

sequential reiteration of a basic structural unit or module
consisting of the leaf with its associated auxiliary bud and
a segment of stem that connects it to other units” [13]. Ba-
sically, the individuals that are formed after reproduction
are genetically identical to the original parent. This form of
reproduction (clonal reproduction) has long been known to
botanists as a very successful survival strategy. For instance,
one aspen tree has been known to cover 43 hectares of land in
Fish Lake County, Utah, with around 47000 clones, with an
average age of 100 years [10]. It is important to note that
though these clones are genetically (and sometimes physi-
cally) connected, they function as independent organisms.
Also, in spite of an identical genome, they do not necessar-
ily look or behave identically. This variation in structure
and/or behavior is due to a phenomenon called phenotypic
plasticity. Plasticity, in this context, is the ability of an or-
ganism to vary its structure (height of stem, width of leaves,
etc.) or behaviour (connect to its clonal sibling or discon-
nect) according to environmental influences.

Phenotypic Plasticity is shown by the genotype of an or-
ganism when its expression is able to be altered by environ-
mental influences [2]. Plasticity, by this definition, does not
include variation in an organism due to genetic factors.

We combine these two phenomenon, exhibited in plants,
to propose a self-adaptation mechanism called clonal plas-
ticity. The fundamental difference between clonal plastic-
ity and other evolutionary mechanisms, such as genetic al-
gorithms(GA), is the absence of a selection function, that
identifies fit and unfit individuals. Clearly the absence of
a selection function, from an adaptation perspective, im-
plies that a system consisting of many individually adapting
clones would adapt slower than a system implementing a
GA. However, in some uncertain environments, it is better
to approach a good solution in graduated steps, than in a
fast convergence. Another feature of clonal plasticity is that
all of its adaptations are reversible. This may not be the
case with a genetic algorithm. Depending on the sequence
of steps taken, a GA might not be able to revisit a certain
solution, since unfit individuals containing a portion of the
solution may have been previously completely removed from
a population. In the general case, it is not possible for any
adaptive mechanism to guarantee that the adaptation step
will definitely lead to a better situation than the current one.
However, a good adaptive mechanism must recognize that
sometimes environments change fast, and therefore changes
made to a system must be reversible.

2.1 Pre-requisites

A pre-requisite for clonal plasticity is plasticity in the
genome. That is, depending on environmental feedback, the
genome must be able to express behavioral changes. Note,
this does not mean that the genome itself is changed, but
merely that the organism responds behaviorally to changes
in the environment. This is in contrast with other mech-
anisms that have been studied under the umbrella of evo-
lutionary computing. Whether by schemes of mutation or
crossover, evolutionary computation makes changes in the
underlying genome of the organism, whereas with clonal
plasticity, the genome remains unchanged.

From a software system’s perspective, this feature of clonal
plasticity means that functional goals of a plastic system will
continue to be met in the same manner, as the original sys-

123

tem. For certain domains (e.g., critical systems [5]), the
guarantee of functional correctness is an important consid-
eration.

2.2 The Process of Plastic Reproduction

In clonal plasticity, the principal method of reproduction
is clonal, which means that child organisms are substan-
tially similar to their parent organism. The differentiation
between a parent and a child occurs due to environmental
influence, and the degree of plasticity exhibited by the or-
ganism. The process of plastic reproduction, depicted in
Figure 1, is given by the following steps:

1. Identify Plasticity Points: At a given moment in
time, t, of the system’s lifetime, each individual in the
system (depicted a circle in Figure 1) identifies all its
parts that can take multiple representations, values, or
behaviour.

2. Evaluate Environmental Input: Simultaneously,
the fitness of each individual is self-evaluated in the
following way: for each plastic point, environmental
feedback is evaluated to check whether it impedes or
favors that point. Feedback from the environment may
come from different sensors or neighboring individuals
or chemotaxis, or the individual’s own reproduction
memory (m in Figure 1).

3. Plasticity Memory: All individuals that have repro-
duced before, keep a record of the previous Plasticity
Range chosen during the last reproduction cycle (vari-
able m in Figure 1). This allows an individual to repeat
a good adaptation strategy, if it previously had a pos-
itive reward, or alternatively abandon a poor adapta-
tion strategy.

4. Choose Plasticity Range: During the following time-
step (t+1), each individual chooses a plastic response,
based on the evaluated environmental input. The avail-
able responses may be one of: (1) Exact Clone, (2) Low
Plasticity, and (3) High Plasticity.

5. Clone and Modify Plastic Points: During the same
time-step, each individual makes a clone of itself. The
individual’s plasticity points may be adapted accord-
ing to the chosen strategy. The entire process starts
again with a new time-step, t’, on all clones.

Choosing the Plasticity Range:.

The process of modifying the plastic points considers both
positive and negative feedback. For a given time instant t,
the adaptation decision depends on two factors:

1. Feedback from environment at time t, whether it is
positive or negative.

2. Memory of the modification action, taken at time t-1.

If the feedback from the environment is positive, and mem-
ory of the previous action is also positive, then the Plasticity
Range is Ezact Clone If the feedback from the environment
is positive, but the memory of the previous action is neg-
ative, then the Plasticity Range is Low Plasticity. If the
feedback from the environment is negative, then the Plas-
ticity Range is always High Plasticity

[Each individual]

individuals

Evaluate Environment

o-
o-

Input
Identify Plasticity Plasticity
Points Memory

m:4 —

——'—’—/>>

positive reward

Choose Plasticity Range

~0
Low Plasticity —>O

> @
>

" Exact Clone
ositive reward

m:t

@
@

o-

negative reward

@

High Plasticity —>.

t+1

Figure 1: Clonal plasticity process

Exact Clone.
In this case, the individual simply makes a copy of itself,
with no change at all.

Low Plasticity.

Modification with Low Plasticity implies that the individ-
ual chooses the same plasticity point, as chosen during the
previous cloning process, and moves in the same direction
as before.

High Plasticity.

Modification with High Plasticity implies that the indi-
vidual chooses a different plasticity point, than was chosen
during the previous cloning process, and moves in a random
direction.

Presence of Competition from Other Agents.

Depending on the particular system, plasticity can also ac-
commodate competition from other agents. If the feedback
from the environment is negative, and the memory of the
previous action is also negative, then that agent is deemed
to be too weak to clone itself. Rather, it is ‘taken over’ by
any random neighbouring agent that is stronger due to a
positive feedback from its environment.

2.3 Differences from a GA

Clonal Plasticity is still an instance of an evolutionary
process(since it is inspired from plants). However, there are
some important differences between Clonal Plasticity and
well-known evolutionary techniques, like a Genetic Algo-
rithm. These can be summarized as follows:

1. No Selection: Plasticity acts on every individual and
the degree of plastic change exhibited is solely depen-
dent on the individual’s fitness in its local environment.
This raises the possibility of an individual being fit in
one part of the environment, and being unfit in another
part of the environment. The hyper-local environment
for fitness and the absence of a selection function com-
pletely decentralizes the change process.

2. No change to genome: Phenotypic plasticity occurs

124

due to environmental conditions (this may be neigh-
bouring individuals or physical/temporal environment),
but there is no change in the genotype —that is, only
parametrizable changes are allowed. This implies that
the boundary of change is well-defined.

. Slow change: Unlike conventional genetic or evolution-
ary algorithms, the new ‘child’ is a faithful copy of the
parent, and hence, the amount of change that can be
exhibited from generation to generation is very little.

. No objective function: The absence of an objective
function means that for a long-lived system, as the en-
vironment changes, plasticity will cope with the changes
as well. Also, the system designer does not have to in-
ject an artificial stopping condition, since the system,
in the aggregate, remains largely stable in the absence
of change.

By its very nature, clonal plasticity is well-suited to sys-
tems where there are a large number of distributed, func-
tional units, each requiring adaptation that is local to its
particular environment. It is also suited to multi-agent sys-
tems, where each agent could potentially adapt on its own
terms. To evaluate the effectiveness of plasticity, we use a
case study that showcases adaptation in the face of environ-
mental change (Section 3).

3. PLASTIC ADAPTATION CASE STUDY

This section showcases the utility and feasibility of a plas-
ticity model to realize decentralized adaptation, by imple-
menting an adaptive version of Conway’s Game of Life (GoL).
We use Gol,, as its dynamics are readily known, and the ap-
plication can be easily decomposed into multiple individuals,
each reacting to adaptation scenarios from the environment.
The purpose of this case study is to show how individuals in
a system can adapt their behavior with respect to the their
own perception of the surrounding execution environment,
i.e., adaptation is not uniform for all individuals, but rather
is heterogeneous. The objective for each individual to adapt,
is to offer the most advance game experience with respect
to the surrounding environment. In order to adapt each in-
dividual’s behavior, we follow a clonal plasticity approach,

where individuals adapt immediately after they have sensed
a change in their surrounding execution environment.

The initial setting for our case study is that of the regu-
lar GoL, i.e., a two dimensional grid of cells, each cell be-
ing in one of two possible states, alive or dead. The game
progresses by changing the state of each cell with respect
to the state of their immediate neighbors. Our version of
GoL is decentralized, detaching cells from a central grid ar-
rangement. Rather, as shown in Figure 2a, each cell is a
free floating individual that finds its neighbors according to
their proximity (given by cells’ position). Cells use a 1-radius
neighborhood to evaluate game progress (e.g., demarcated
by the blue square centered at the live cell in the figures).
Each individual cell in the game can react to two changes in
their surrounding execution environment, leading to differ-
ent adaptations in its behavior. (1) The first environment
change, causes cells to use larger neighborhoods to update
their state as the game progresses. This is shown in Fig-
ure 2b for a neighborhood of radius 2 (demarcated by the
red square center around the alive cell). (2) The second
environment change, causes cells to transcend into a three-
-dimensional space. This is shown in Figure 2c, where all
cells are adapted to live in a three-dimensional space.

U
|
LI
Hn

(a) Decentralized (b) Large neighbor-
GoL hoods adaptation

Figure 2: Game of Life set-up and adaptations

3.1 Implementing Decentralized Adaptations

The two aforementioned adaptation scenarios for GoL are
implemented using the adaptation mechanisms proposed in
Context-oriented Programming (COP) [15], to adhere to a
plastic reproduction mechanism. In particular, we use the
Context Traits [12] language for our implementation. Con-
text Traits enables the behavioral adaptation of a software
system in response to input from its surrounding execution
environment. COP is chosen as an implementation mecha-
nism since it satisfies the five steps of the plastic reproduc-
tion process introduced in Section 2.2.

1. Our adaptation scenarios affect the interaction between
cells. Therefore, the Plasticity Points for all cell individ-
uals in GoL are identified precisely as those points where
cells interact with each other (i.e., the countAliveNeighbors
(), livenessConditions(), and step() functions). In Con-
text Traits such adaptations are defined as stand-alone
behavior units, defined as shown below for the large neigh-
borhood adaptation as an example. The two outermost
loops in this adaptation search for cells in a 2-radius
neighborhood, while the inner loop, goes over all cells
discovered in the environment. If there are alive cells in
the neighborhood, then these are counted.

2. Program entities (i.e., object instances) sense their en-
vironment and evaluate whether their Plasticity Points

125

LargeNeighborhoodCell = Trait ({
countAliveNeighbors: function() {

var count = 0;
for (dx=-2; dx<= 2; dx++){
for(dy = -2; dy <= 2; dy++) {
if(dx == 0 && dy == 0) {}
else {
for (i=0; i<cells.length; i++) {
if (this.x+dx == cells[i].x &&

this.y+dy == cells[il.y &&
cells[i].state) {
count ++;
}
}
}
}
}
return count;
}
B

(i.e., behavior) requires adaptation. If this is the case,
then adaptations are enacted immediately. In our ex-
ample, the need for adaptation is signaled to an object
instance via a contert object. Contexts associate ob-
ject instances with their behavior adaptations, for exam-
ple, the large neighbourhood adaptation requires a new
LargeNeighborhood; ; context is created, associating the
context to a cell; ; instance, and the behavioral adapta-
tion defined previously, as follows

var LargeNeighborhood;; = new cop.Context ({
name: ’LargeNeighborhood’;;

s

LargeNeighborhood; j.adapt(cell, ;,
LargeNeighborhoodCell) ;

3. In our implementation, individuals do not keep an active

record of their last adaptation taken. Rather, each indi-
vidual is aware of all its adaptations at all time. However,
these previous actions do not influence individuals’ behav-
ior, and Environmental Input is gathered from external
sensors and self.

. When adapting an object instance, in our COP model,

we always choose a low plasticity strategy. That is, adap-
tations are always assumed to provide the best possible
behavior, and hence provide a positive effect, for the ob-
ject instance with respect to its surrounding environment.

. Adaptations have an instantaneous effect on the object

instances they modify, i.e., immediately after the context
signals the adaptation, by calling the activate() construct
on the context (e.g., LargeNeighborhood.activate()), the
object instance associated with such context will imme-
diately use the behavior adaptation associated with the
context.

Also, similar to the introduction of adaptations by means
of context activation, in our approach, adaptations can
be reverted by withdrawing adaptive behavior from in-
stance objects using the deactivate() construct on the
context (e.g., LargeNeighborhood.deactivate()). Revert-
ing adaptations also has an immediate effect on object
instances, withdrawing the corresponding behavior from
the Plasticity Point.

3.2 Environment Dynamics and Experimen-
tal Set-up

To show the feasibility of the plasticity adaptation mecha-
nism for decentralized environments, we run a GoL consist-
ing of n? cells (i.e., individuals).! At any moment in time,
any of the individuals can engage in any of the adaptations,
if it is so required in the surrounding environment.

Our GoL implementation has three Plasticity Points, the

countAliveNeighbors (), livenessConditions (), and step() func-

tions. The first two functions are behavioural adaptations
in the LargeNeighborhood context, while the first and last
functions are behavioural adaptations in the 3D context.

Figure 3 shows the possible adaptation scenarios for our
GoL implementation. Starting from the top, the game pro-
gresses as stipulated by the original rules, where each cell
uses a neighborhood of radius 1 (e.g., blue square centered
on the alive cells in Figure 3) to verify the conditions to
progress to the next step. From this stage the environment
can influence change in two ways, the rules change to include
larger neighborhoods (moving to the game on the lefthand
side of Figure 3), or the rules change to work on a three-
dimensional space (moving to the right-hand side of Fig-
ure 3). Note here that, no matter which of the adaptations
is taken, this is not a uniform change for all individuals, but
only those cells that sensed the change in the surrounding en-
vironment adapt. For example, in Figure 3, in the first case
only the leftmost live cell adapted to take into account large
neighborhoods in its game rules, while, in the second case,
five cells adapted to a three-dimensional space. Cells that
have adapted, have two choices for a new adaptation, they
can either revert the adaptation taken, or they can incorpo-
rate the other adaptation, in response to their environment.
If the environment is sensed to revert the adaptation, then
the game will revert to its original state. In the case of cells
that adapted to large neighborhoods, if they now adapt two
three-dimensional spaces, then the game will behave as in
the bottom of Figure 3. In the case of cells that adapted to
a three-dimensional space, if they now adapt to large neigh-
borhoods, then they will also behave as in the bottom of
Figure 3 i.e., a three-dimensional space with neighborhoods
of radius 2. From such state, either of the adaptations can
be reverted, going back to the adaptation signaled by the
environment. For example, if the large neighbourhoods is
reverted, the behavior will be that of the three-dimensional
space.

We executed GoL in two different settings to ensure its
usability, and the feasibility of our approach. The first set-
ting consisted of controlled adaptations of the game. That
is, we implemented two fixed scenarios in which contexts
will be activated and deactivated deliberately to verify that
the game behaved correctly for each adaptation scenario as
well as a the combination of both. In this setting, at every
step the game progressed according to its rules (i.e., regu-
lar GoL rules and the adapted ones), and when reverting
all cells to the original setting, the game continued work-
ing normally. The second setting consisted on an “infinite”
run of the game, in which every two seconds each cell would
sense the environment and adapt according to the sensed
scenario. The cells that sense the adaptation scenario are

'Our implementation of GoL and the simulation experi-
ments are available for download at https://bitbucket.org/
viveknallur /seams2016.git.

126

L L

L/

regular GolL

regular GoL

LargeNeighborhood,

(]
(IO
OO
.

retract 3D

.

Figure 3: Adaptation scenarios for GoL

chosen randomly, but they all adapt to the same scenario,
i.e., either large neighborhoods, or three-dimensional space.
After this adaptation step, all cells take a step according to
the rules currently applying to them, and then the environ-
ment is sensed again.

We see that using the process of clonal reproduction along
with plasticity in behaviour allows independent cells to adapt
to changes in the rules of GoL. Implementing these kinds of
adaptations for an individual cell simplifies the adaptation
reasoning, since we do not have to account for the entire
system as a whole. Performing a MAPE-K based adapta-
tion for such a system, where the environment can signal
change of neighborhood size on one part of the system, or
three-dimensional space at another part of the system would
have been very difficult. The analysis and planning would
have had to deal with multiple conflicting signals from the
monitoring aspect of the adaptation framework.

3.3 Clonal Plasticity Beyond GoL

While GoL serves as an example to show the feasibility of
using clonal plasticity for the adaptation of software systems
in a decentralized fashion, this application also showcases
the applicability of this approach to larger and more complex
scenarios.

Note that the transition from small scale scenarios as GoLi
to larger decentralized application domains in smart cities
or IoT environments is immediate from the programmers’
perspective. As shown with GoL, each individual agent de-
fines the situations from the surrounding environment it re-
sponds to (i.e., contexts) and the fine-grained adaptations
to interact with the new environment. Such development
approach would still stand for larger case studies. Each
agent in the system is implemented associating their corre-
sponding adaptations without any additional infrastructure

or required knowledge about other agents. Furthermore, as
there is no coordination or synchronization required between
agents, the scale of the system will not affect the adaptation
time for the individual agents.

4. SOFTWARE ENGINEERING PERSPEC-
TIVE

The benefit of plasticity is the ability to produce better
phenotype-environment matches across more environments,
than would be possible by producing a single phenotype in
all environments [18]. However, there are some costs to be
incurred, as with all adaptive mechanisms, and some limi-
tations that accrue to a plastic mechanism.

4.1 Costs

1. Maintenance Costs: Although fitness for purpose is
usually considered at design-time, creating a contin-
ual sensory mechanism for receiving feedback from the
environment, induces maintenance costs.

2. Production Costs: In memory-constrained environments,

the binary footprint of a particular piece of software
could play an important role. In such deployment sce-
narios, creating a regulatory mechanism to sense feed-
back and then adjust parameters incurs a cost in terms
the of size of the deployed code.

3. Information Acquisition Costs: The process of sens-
ing the environment uses up CPU cycles and memory,
which may/may not be significant, depending on the
domain.

4. Development Costs: From a human perspective, adding
a plasticity mechanism, while less cumbersome than
other adaptation mechanisms, is still a developmental
addition. Any developmental addition also has knock-
on effects on testing and validation steps in the soft-
ware development life-cycle.

4.2 Limitations

1. Information Reliability Limit: Depending on the gran-
ularity of the sensory/feedback mechanism, the precise
environmental cue for plastic adaptation may not be
available. This is dependent more on the domain, and
less on the ability of the software. However, the adap-
tation performed by the plastic response might not be
correct at all times. This could lead to see-saw-ing of
the plastic response, which may be counter-intuitive to
the system-maintainer.

2. Lag-time Limit: A system can only adapt as quickly as
it can detect a relevant change in its environment. De-
pending on the implementation of the feedback mech-
anism and frequency of cloning, plasticity’s adaptive
response may not be in sync with the environment.

It must be noted, that all of these costs and limitations
are not exclusive to Clonal Plasticity, but rather are valid
for any adaptation mechanism, including those that use the
MAPE-K loop.

127

S. RELATED WORK

There has been a plethora of work on decentralized adap-
tation [27, 28] and the use of natural metaphors [21, 19]
for such goals. Our work falls squarely within this field
of using nature-inspired mechanisms. Other work such as
Morphogenetic engineering also draws its inspiration from
the self-organized-yet-architected natural systems, however
their emphasis is on the architectural properties enabled
through self-organization and self-assembly processes. These
can also accommodate adaptation to environmental changes,
but the focus is on the complex structure that is autonomously
created and sustained. In this paper, we examine a more
immediate goal of adaptation, that of responding quickly to
changes in the environment. Philosophically, this paper is
closest to the notion of functional blueprints [1]. Beal [1]
recognizes that “ stress-tolerant system can exploit its tol-
erance to navigate dynamically through the space of viable
designs”. Clonal Plasticity exploits this very tolerance to
differentiated-but-good-enough functionality to adapt to the
changing environment.

6. FUTURE WORK AND CONCLUSION

We propose clonal plasticity as an alternative to exist-
ing adaptation mechanisms. In our experiment, we demon-

strated the feasibility and performance of the approach. Nonethe-

less, to establish the efficacy of clonal plasticity, it needs to
be implemented and evaluated in multiple settings, and in
multiple domains. We expect that certain domains would
be a more natural fit, than others, especially those that re-
quire self-configuration of parameters. In the longer term,
we would like to establish a taxonomy of problems which
allows to systematically pick, whether to use clonal plas-
ticity or some other self-adaptive mechanism. In doing so,
we hope to enlarge the self-adaptation toolkit available to
system designers.

In this paper, we have introduced a new mechanism for
adaptation inspired by plants, which is completely decen-
tralized and does not require an objective function. This
allows a system that is clonally plastic to evolve at runtime,
without the need for a human to oversee its performance
over the long-term. We have shown its usability and feasi-
bility for adaptation to environmental changes. We further
discussed potential costs and limitations of implementing
clonal plasticity. From a software engineering perspective,
clonal plasticity represents a new decentralized pattern of
adaptation, where we have explored both, advantages and
potential pitfalls of using this pattern.

7. ACKNOWLEDGMENTS

This work was partially supported by the EU FET-Project
Diversify FP7-ICT-2011-9. We thank the external reviewers
for their comments to earlier versions of the paper.

8. REFERENCES

[1] J. Beal. Functional blueprints: an approach to
modularity in grown systems. Swarm Intelligence,
5(3):257-281, 2011.

[2] A. Bradshaw. Evolutionary significance of phenotypic
plasticity in plants. Genetics, 13:115-155, 1965.

[3] M. Brenna, M. Falvo, F. Foiadelli, L. Martirano,

F. Massaro, D. Poli, and A. Vaccaro. Challenges in

[12]

[13]

[14]

15

[16]

energy systems for the smart-cities of the future. In
Energy Conference and Ezhibition (ENERGYCON),
2012 IEEE International, pages 755-762, Sept 2012.
L. Busoniu, R. Babuska, and B. De Schutter. A
comprehensive survey of multiagent reinforcement
learning. Systems, Man, and Cybernetics, Part C:
Applications and Reviews, IEEE Transactions on,
38(2):156-172, March 2008.

R. Capilla, M. Hinchey, and F. J. Diaz. Collaborative
context features for critical systems. In Proceedings of
the Ninth International Workshop on Variability
Modelling of Software-intensive Systems, VaMoS 15,
pages 43:43-43:50, New York, NY, USA, 2015. ACM.
Y. Chaaban, J. Hahner, and C. Muller-Schloer.
Towards fault-tolerant robust self-organizing
multi-agent systems in intersections without traffic
lights. In Computation World: Future Computing,
Service Computation, Cognitive, Adaptive,

Content, Patterns, pages 467-475, Nov 2009.

H. Chourabi, T. Nam, S. Walker, J. Gil-Garcia,

S. Mellouli, K. Nahon, T. Pardo, and H. J. Scholl.
Understanding smart cities: An integrative
framework. In System Science (HICSS), pages
2289-2297, Jan 2012.

R. Claes, T. Holvoet, and D. Weyns. A decentralized
approach for anticipatory vehicle routing using
delegate multiagent systems. Intelligent
Transportation Systems, IEEE Transactions on,
12(2):364-373, June 2011.

Z. Coker, D. Garlan, and C. Le Goues. SASS:
self-adaptation using stochastic search. In 10th
International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS 2015,
pages 168-174, 2015.

R. E. Cook. Clonal plant populations: A knowledge of
clonal structure can affect the interpolation of data in
a broad range of ecological and evolutionary studies.
American Scientist, 71(3):244-253, May-June 1983.

S. Ghosn, P. Ranganathan, S. Salem, J. Tang,

D. Loegering, and K. Nygard. Agent-oriented designs
for a self healing smart grid. In Smart Grid
Communications (SmartGridComm), 2010 First IEEE
International Conference on, pages 461-466, Oct 2010.
S. Gonzilez, K. Mens, M. Colacioiu, and W. Cazzola.
Context traits: Dynamic behaviour adaptation
through run-time trait recomposition. In 12th Intl
Conf on Aspect-oriented Software Development,
AOSD’13, pages 209-220. ACM, 2013.

J. L. Harper. Plant demography and ecological theory.
Oikos, 35(2):244-253, 1980.

C. Harris, R. Doolan, I. Dusparic, A. Marinescu,

V. Cahill, and S. Clarke. A distributed agent based
mechanism for shaping of aggregate demand on the
smart grid. In Energy Conference (ENERGYCON),
pages 737-742, 2014.

R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. Journal of Object
technology, 7(3):125-151, March 2008.

J. Kantert, S. Edenhofer, S. Tomforde, J. Hahner, and
C. Muller-Schloer. Robust self-monitoring in trusted
desktop grids for self-configuration at runtime. In
Self-Adaptive and Self-Organizing Systems Workshops

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

(26]

27]

(28]

29]

(SASOW), 2014 IEEE Eighth International
Conference on, pages 178-185, Sept 2014.

J. Kephart and D. Chess. The vision of autonomic
computing. Computer, 36(1):41-50, Jan 2003.

R. Levins. Fvolution in Changing Environments:
Some Theoretical Explorations. Monographs in
Population Biology. Princeton University Press, 1968.
K. N. Lodding. The hitchhiker’s guide to biomorphic
software. Queue, 2(4):66-75, June 2004.

A. Marinescu, I. Dusparic, C. Harris, V. Cahill, and
S. Clarke. A dynamic forecasting method for small
scale residential electrical demand. In Neural Networks
(IJCNN), pages 3767-3774, July 2014.

R. Nagpal. Programmable self-assembly using
biologically-inspired multiagent control. In Proceedings
of the First International Joint Conference on
Autonomous Agents and Multiagent Systems: Part 1,
AAMAS ’02, pages 418-425, New York, NY, USA,
2002. ACM.

V. Nallur, J. Monteil, T. Sammons, M. Bouroche, and
S. Clarke. Increasing information in socio-technical
mas considered contentious. In 3rd Self-Adaptive and
Self-Organizing Systems Workshops (SASOW), pages
25-30, Sept 2015.

M. Naphade, G. Banavar, C. Harrison, J. Paraszczak,
and R. Morris. Smarter cities and their innovation
challenges. Computer, 44(6):32-39, June 2011.

C. Persson, G. Picard, and F. Ramparany. A
multi-agent organization for the governance of
machine-to-machine systems. In Web Intelligence and
Intelligent Agent Technology (WI-IAT), volume 2,
pages 421-424, Aug 2011.

P. Shi and Q. Shen. Cooperative control of multi-agent
systems with unknown state-dependent controlling
effects. Automation Science and Engineering, IEEE
Transactions on, 12(3):827-834, July 2015.

P. Vlacheas, R. Giaffreda, V. Stavroulaki,

D. Kelaidonis, V. Foteinos, G. Poulios,

P. Demestichas, A. Somov, A. Biswas, and

K. Moessner. Enabling smart cities through a
cognitive management framework for the internet of
things. Communications Magazine, IEEE,
51(6):102-111, June 2013.

D. Weyns, S. Malek, and J. Andersson. On
decentralized self-adaptation: Lessons from the
trenches and challenges for the future. In Proceedings
of the 2010 ICSE Workshop on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 10,
pages 84-93, New York, NY, USA, 2010. ACM.

D. Weyns, B. Schmerl, V. Grassi, S. Malek,

R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,
H. Giese, and K. M. Goschka. Software Engineering
for Self-Adaptive Systems II: International Seminar,
Dagstuhl Castle, Germany, October 24-29, 2010
Revised Selected and Invited Papers, chapter On
Patterns for Decentralized Control in Self-Adaptive
Systems, pages 76-107. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

A. Zanella, N. Bui, A. Castellani, L. Vangelista, and
M. Zorzi. Internet of things for smart cities. Internet
of Things Journal, IEEE, 1(1):22-32, Feb 2014.

