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Effects of molecular dipole orientation on the exciton binding energy of CH3NH3PbI3
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We present a simple interacting tight-binding model for excitons, which is used to investigate the dependence
of the exciton binding energy of CH3NH3PbI3 over the disorder induced by the molecular motion at room
temperature. The model is fitted to the electronic structure of CH3NH3PbI3 by using data from density-functional
theory and Born-Oppenheimer ab initio molecular dynamics, and it is solved in the mean-field approximation.
When a finite-scale analysis is performed to extract the energetic of the excitons at experimental concentrations
we find that disorder in general reduces the binding energy of about 10%. This suggests that the excitonic
properties of CH3NH3PbI3 largely depend on the electronic structure of the PbI3 inorganic lattice.
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I. INTRODUCTION

The understanding of the electronic processes in many
materials often requires a careful analysis of the disorder
intrinsically present. This is particularly true in the case
of organic compounds. For instance, static disorder is om-
nipresent in polymers due to their large polymorphism, while
in small-molecule organic crystals large thermal fluctuations,
caused by the weak dispersive bonds between the molecules,
leads to dynamical disorder at any practical temperature. In
both cases, the effect of the disorder is to determine the electron
transport properties [1]. When a material is hybrid, namely it
is composed of an organic and an inorganic component, some
of these characteristics remain [2,3].

Hybrid perovskites are a class of compounds with the
general chemical formula ABX3, where A is an organic
cation located in an inorganic cage of corner-sharing octahedra
constituted by a central cation, B (B = Pb, Sn), and six
halide anions, X (X = Cl, Br, I). A notable example of such
family is CH3NH3PbI3, a material which has attracted huge
recent interest as a light absorber in solar cell technology [4].
Such a class of compounds combines properties coming
from two worlds, the organic and the inorganic, resulting
from the intercalation of the two types of lattices. In fact,
they possess excellent light absorption, large carrier diffusion
length and mobility, and low defect activity, all properties
typical of inorganic conventional semiconductors [5,6]. At
the same time, they also show properties characteristic of
organic materials such as easy molecular movement [7], a
large dielectric constant, the presence of local dipole moments
in the lattice [8], and long-range van der Walls interactions
giving rise to soft low-energy phonon modes [9].

The organic cations in hybrid perovskite have been shown
to display strong rotational disorder at room temperature, such
that in all respects the system loses translational symmetry. The
most realistic picture of this material is thus that of a disordered
lattice, where the molecules are randomly oriented, and the
typical reorientation time scale is of the order of picoseconds.
This has been confirmed by ab initio molecular dynam-
ics [10,11], by interatomic model potential simulations [12],
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and by direct vibrational anisotropy spectroscopy [13]. Such
disorder is responsible for local variations of the electronic
structure, with a critical impact in the optical region. In fact,
the band gap, which electronically has to be attributed to
the inorganic sublattice, is demonstrated to vary by up to
0.2 eV depending on the orientation of the molecules [10,14].
Moreover, the nature of band gap itself is subject to variations,
as it dynamically shifts from direct to indirect depending on
the molecule position [15–17].

Upon illumination at the absorption edge, one finds a
strong excitonic peak, which broadens with increasing tem-
perature [18]. Such peak broadening has been attributed to
the motion of the organic cations [18]. The magnitude of
the exciton binding energy, EB , has been debated recently.
Most of the measurements report a room-temperature value in
the 10- to 30-meV range [18], while a recent study shows
that EB is 16 meV at 4 K and rapidly collapses to few
meV [19] as temperature increases to 300 K. This temperature
dependence suggests that the molecular motion has some
impact on the exciton lifetime. The collective orientational
motion of the organic cations has been proposed to screen the
excitons and to favor their dissociation into free carriers [20],
localizing electrons and holes in spatially distinct locations
and thus reducing their recombination rate [11,21]. Hence,
configurational disorder is proposed to contribute to the
dissociation of the exciton by lowering the binding energy
to generate free carriers at room temperature.

In order to capture the effect of disorder on the electronic
properties of solids, one requires simulations on a large scale,
such that many molecular units are included in the simulation
cell. This is prohibitively expensive to ab initio methods, be-
cause of the large computational overheads. Notably, one needs
both large cells, able to describe the excitons formation at
realistic concentrations, and extensive configuration averages
over the disorder configurations. In order to achieve such a
goal, in this work we propose a tight-binding (TB) model for
excitons, which, despite its its simplicity, is able to capture
the main physics of the hybrid perovskites. We demonstrate
that the inclusion of disorder in general reduces the exciton
binding energy. However, when the model is fitted to the
electronic structure of CH3NH3PbI3 and solved for realistic
exciton concentrations, we find that such a reduction is of the
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order of 10%, i.e., that the excitonic properties are largely
determined by the inorganic lattice alone.

The paper is organized as follows. After presenting the
model and providing some general insights into the general
features that it describes, we discuss the effect of dimension-
ality. Then we fit the TB parameters with the ab initio band
structure of methylammonium lead iodide and investigate the
effect of disorder on the exciton binding energy. Finally, we
conclude.

II. MODEL AND SOLUTION METHOD

We construct a model of interacting electrons and holes
based on the following tight-binding Hamiltonian [22,23]:

Ĥ = Ĥ e + Ĥ h + Û int, (1)

where Ĥ α is the single-particle Hamiltonian for electrons
(α = e) and holes (α = h),

Ĥ α =
∑

i

εα
0 n̂α

i +
∑
ij

tαij â
α†
i âα

j , (2)

and Û int is the interaction Hubbard-like term

Û int =
∑
ij

Uij n̂
e
i n̂

h
j . (3)

Here â
α†
i (âα

i ) is the cre ation (annihilator) operator for the
the quasiparticle α at the ith site, n̂α

i = â
α†
i âα

i is the density
operator, εα

0 is the on-site energy, and tαij the hopping integral.
The attractive Coulomb interaction between the quasiparticle
is long ranged and defined as

Uij =
{−U0 i = j

−βU0/rij i �= j
, (4)

where we keep β = 0.75.
At this level, our model is identical to the one introduced in

Ref. [23], where it was solved by exact diagonalization. In our
case exact diagonalization, or another many-body approach,
is not an option since we have to solve the model for large
cells and consider a significant number of disorder realizations
(see later). As a consequence, we propose a solution based
on the mean-field approximation, which effectively trans-
forms the problem into a single-particle one, although this
requires the solution to be determined self-consistently. To this
end, the density operator is expanded about the local quasi-
particle density, n̂ = 〈n〉 + δn, and neglect the fluctuation-
fluctuation term. The resulting mean-field Hamiltonian then
reads

Ĥ =
∑

i

⎛
⎝εe

0 +
∑

j

Uij 〈n〉hj

⎞
⎠n̂e

i +
∑

i

⎛
⎝εh

0 +
∑

j

Uij 〈n〉ej

⎞
⎠n̂h

i

+
∑
ij

(
t eij â

e†
i + thij â

h†
i

) −
∑
ij

Uij 〈n〉ei 〈n〉hj , (5)

where the effect of the interaction is to renormalize the on-
site energies of the quasiparticles. In the absence of Coulomb
interaction the exciton energy is obtained as the difference
between the lowest eigenvalues of the electrons system and
the highest eigenvalue of the holes one, Etot(U0 = 0) = εe

min −

εh
max. In contrast, when the interaction is present, the exciton

total energy can be written as Etot(U0 �= 0) = εe
min − εh

max −∑
ij U (rij )ne

i n
h
j . Finally, the exciton binding energy is obtained

as the difference EB = Etot(U0 = 0) − Etot(U0 �= 0).
In order to account for the disorder of real systems, we

introduce in our model a random field. This is implemented
by adding a small random fluctuation uniformly distributed
in an interval [−ξ,ξ ] to the onsite potential at every site of
the lattice. The disorder parameter ξ has opposite sign for the
electron and hole subsystems, meaning that an electron on-site
disorder at site i of ξi corresponds to a hole on-site disorder of
−ξi . This mimics the disorder introduced by a dipole moment.
Calculations are then performed self-consistently for lattices
of different size and for different disorder configurations.

Note that the orientation of the molecular cations in hybrid
perovskites has two effects. On the one hand, it provides a local
electric field originating from their permanent dipole. On the
other hand, it generates distortions in the inorganic framework.
As such, when the molecules are randomly oriented, the system
is characterized by both a random dipolar and a distortion
field, which translate into modifications of both the on-site
and hopping parameters of our tight-binding model. This
means that a more complete model should involve random
fluctuations of both the on-site energy and the hopping integral,
i.e., the model should include bond and on-site disorder.
In general, the effects of these two types of disorder are
equivalent, namely they promote charge localization, and the
differences are only quantitative. Here, for simplicity, we
consider only on-site disorder and we leave the investigation
of both on-site and bond disorder for future work.

III. RESULTS AND DISCUSSION

A. General features

Let us start our analysis with presenting some general
features of the model. In order to reduce the computational
costs we begin with a simple cubic two-dimensional (2D)
lattice and nearest neighbor interaction, which presents a
density of state (DOS) with a single van Hove singularity at the
band center. In the model the electron and hole systems have
opposite on-site energies, εh

0 = −εe
0, and identical hopping

parameter. In Fig. 1(a) the DOS for the noninteracting system
is plotted (gray area) for values of the parameters, εe

0 = 5.5
and tij = 1, which return an exciton energy of Etot = εe

min −
εh

max = 2. Note that for this first example we will report all
quantities in units of the hopping integral, t . Note also that
the DOS in Fig. 1 does not decay sharply at the band edges
because of the artificial broadening introduced.

When the Coulomb interaction is switched on [see the
dashed line in Fig. 1(a) for U0 = 3] the two bands move
closer to each other, since an attractive on-site potential moves
upwards in energy-occupied bands and downwards in the
empty ones. The net result is that the band gap and thus
εe

min − εh
max get reduced (for U0 = 3 the computed value is

εe
min − εh

max ∼ 0) and the binding energy is no longer zero. In
Fig. 1(b) we plot EB as a function of the interaction strength
U0, where a power law is found. This persists until U0 = 1,
beyond which there is a clear change in slope and the fit to
the power law is less accurate. This is not surprising since for
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FIG. 1. General features of the model for a 2D square lattice
with nearest-neighbor interaction: εh

0 = −εe
0 = 5t and tij = t (for a

20 × 20 lattice). In panel (a) we present the model DOS for the
noninteracting case (gray area) and for U0 = 3 (dashed line). Panel
(b) shows the change of EB as a function of the interaction strength
(on a log-log scale). Note the power-law dependence. The blue curve
corresponds to a two-dimensional 30 × 30 lattice and the orange one
to a three-dimensional 20 × 20 × 20 lattice. In panels (c), (d), and (e)
we plot the respectively 〈n〉e

i , 〈n〉h
i , and �〈n〉i = 〈n〉e

i − 〈n〉h
i , over a

20 × 20 grid. In panels (c) and (d) red indicates large charge density
and blue small. In panel (e) blue is for a region of excess of hole
density and red that of excess of electron density.

this disorder-free case one has 〈n〉hi = −〈n〉ei = 1, so the gap
closes for U0 = 1.

For a disorder-free lattice the electron and hole charge
densities are identically distributed in space and they do
maintain the lattice symmetry. In contrast, our correlated
disorder localizes the charge density and effectively separate
electrons from holes. This is displayed in Fig. 1(c) where we
present 〈n〉ei and 〈n〉hi for the disorder case of ξ = 0.5t and in
Fig. 1(e) where we show �〈n〉i = 〈n〉ei − 〈n〉hi . All densities
are plotted over a 20 × 20 lattice for a specific disorder
realization. Note from the figure that now the electrons and
holes distributions differ with regions of electron excess and
regions of hole excess. Such spatial separation is expected in
general to reduce the exciton binding energy. This is analyzed
next for both 2D and 3D lattices.

In Fig. 2 we present the relative binding energy reduction,
δEB/EB0, between the disordered and the disorder-free case,
EB0. For this example we have considered simple cubic lattices
in the nearest-neighbor approximation in both 2D and 3D. The
DOS for the 3D case has no van Hove singularities and a

√
E

dependence at the band edges. In order to determine to what
extent the disorder magnitude ξ affects EB , we performed
calculations for both the two- and three-dimensional lattices.
In particular, we present results respectively for 20 × 20 and
12 × 12 × 12 lattices and a Coulomb attraction parameter,
U0, ranging between 1t and 4t . Since disorder is introduced
stochastically over the lattice, every disorder realization is
associated with a different exciton binding energy. For this
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FIG. 2. Relative exciton binding energy reduction, −δEB/EB as
a function of the disorder strength, ξ , for two- and three-dimensional
simple cubic lattices and calculated for different values of U0 (note
the log-log scale). The parameters used [in units of t are ε0 = 5.5
(2D case) and ε0 = 7 (3D case)]. The error bars due to the disorder
averages are of the same dimension of the symbols and are not shown.

reason each point in the graph is averaged over 20 independent
disorder realizations.

In general, one can notice that EB decreases faster than
a power law (note the log-log scale) as function of the
disorder strength, regardless of the system dimensionality.
Furthermore, there is a clear competition between disorder and
interaction; for the same interaction strength, ξ , the reduction
of the binding energy is less significant when U0 is large for
both the 2D and 3D cases. This is particularly dramatic at low
disorder strength and large U0. For instance, if one follows the
−δEB/EB0(ξ ) curve for U0 = 4 it will be possible to note a
change in slope at ξ = 0.1. It is also interesting to note that the
dimensionality of the system plays a role in the dependence
of the binding energy with disorder, which is much more
effective in the 2D case. For the choice of parameters used
in Fig. 2 the largest −δEB/EB0(ξ ) is about 10% for the 2D
case (for U0 = 1 and ξ = 0.5), while it reaches only up to 1%
for 3D lattices. This is expected as the screening in 2D is less
efficient than in 3D, where the quasiparticle charge density has
more freedom to respond to disorder. Finally, still in Fig. 2,
we show −δEB/EB0(ξ ) for the same U0 = 1 but different
lattice sizes, respectively 12 × 12 × 12 and 20 × 20 × 20.
These effectively correspond to two different exciton densities
(we have only one exciton per unit cell). We find that the
exciton reduction is more pronounced for the lower density
(larger lattice), as expected by the fact that a lower density
implies a lower kinetic energy, and so a stronger sensitivity to
disorder.

Note that there is a vast literature looking at the interplay
between disorder and interaction, in particular related to the
issue of metallicity in low dimensions and to the competition
between Mott and Anderson insulators [24]. Here the scope
of our work differs and we just aim at showing the effects of
disorder on the binding energy of the excitons in perovskites.
Furthermore, in our case the disorder is actually dynamic, with
a typical timescale of picoseconds (the typical rotation time
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of the molecules). This essentially means that the interplay
between the structure dynamics (phonons) and the charge
carriers is the key factor determining charge transport in
perovskites.

B. Disorder in hybrid perovskites

After having discussed the general trends of the model, we
now adapt it to the case of the hybrid perovskites. First, we need
to generate the relevant tight-binding parameters. We have
then computed the band structure of cubic CH3NH3PbI3 by
all-electron density-functional theory (DFT) including spin-
orbit coupling with the FHI-aims suite [25,26]. A mesh of
260 k points and the PBE functional [27] have been used,
together with the “tight” basis set. The calculated valence
and conduction bands are then fitted to a 2D simple cubic
tight-binding model [see Fig. 3(a)], after the actual DFT band
gap has been increased to the experimental one of ∼1.6 eV. The
fit returns the following tight-binding parameters t e = 0.2 eV,
th = 0.14 eV, εe

0 = 2 eV, and εh
0 = −1.7 eV, which will be

used throughout.
The introduction of disorder in general produces a reduction

of the band gap. This is shown for the noninteracting case in
Fig. 3(b), where we plot the band gap as a function of ξ with re-
spect to that for ξ = 0, �EGAP(ξ ) = EGAP(ξ ) − EGAP(ξ = 0).
We now need to provide a quantitative estimate of the disorder
strength related to CH3NH3PbI3. To achieve this goal we have
performed ab initio Born-Oppenheimer molecular dynamics
(BOMD) for a 2 × 2 × 2 cubic supercell of CH3NH3PbI3 at
300 K. Here the k mesh has been reduced to 14 points and
the Bussi-Donadio-Parrinello thermostat [28] has been used.
The inset of Fig. 3(b) shows the time-dependent band gap as
calculated from the molecular dynamics trajectories after an
initial equilibration period of 5 ps. We note that the fluctuations
are of the order of 0.2 eV, in agreement with previous similar
simulations [10,11]. When this results is compared with
the �EGAP(ξ ) curve of Fig. 3(b) we conclude that ξ = 0.4
provides a good description of the disorder generated by the
molecular motion at room temperature.
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FIG. 3. The exciton model adapted to CH3NH3PbI3. (a) DFT-
calculated conduction and valence bands (gray) and TB band structure
(black dots) computed for a simple cubic lattice with parameters
t e = 0.2 eV, th = 0.14 eV, εe

0 = 2 eV, and εh
0 = −1.7 eV. The TB

DOS is plotted as a gray area on the right-hand side. (b) The band-
gap variation is plotted as a function of ξ for the same lattice. The
inset shows the evolution of the band gap of MAPbI3 in a BOMD
simulation.
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FIG. 4. (a) Exciton binding energy reduction −δEB/EB0 as a
function of the disorder and interaction strength for a 3D 12 × 12 ×
12 lattice. The parameters used at those of CH3NH3PbI3, namely
t e = 0.2 eV, th = 0.14 eV, εe

0 = 2 eV, and εh
0 = −1.7 eV. In panel (b)

we show the exciton binding energy as a function of the Coulomb
strength U0 for ξ = 0.

With this choice of TB parameters at hand we now discuss
the dependence of the exciton binding energy on disorder. This
is done at first with a 12 × 12 × 12 cell in Fig. 4(a), where we
show the exciton binding energy reduction, −δEB/EB0, over
a broad range of U0 and ξ . The figure shows a significant
reduction, up to 10–15%, which is more marked in the top
right corner of the plot where we find small U0 and large ξ .
Note that such a reduction is consistent with that reported in
Fig. 2, since here we are looking at a parameter space region
where 0 < U0/t < 2 and 0 < ξ/t < 2.5, i.e., within a range
of strong disorder and relatively week interaction. Figure 4(b)
shows the absolute value of the exciton binding energy for
different values of U0 in the disorder-free case. Notably, with
this choice of parameters the exciton binding energy remains
rather small.

Finally, the last step of our analysis consists in estimating
the exciton binding energy reduction at realistic exciton
concentrations. This requires a final estimate of the interaction
strength, U0, and of the cell size (in our model the exciton
density is 1/	 with 	 being the unit cell volume). The
typical concentrations of photoexcited charge carriers in
hybrid perovskites [29,30] do not exceed 1014 cm−3, a low
value if compared to typical impurity concentrations in doped
semiconductors. By assuming that the exciton concentration
is of the same order of magnitude and from the knowl-
edge of the methylammonium lead iodide unit cell volume

(∼260 Å
3
, see Refs. [14,17]), we find that a cubic lattice of

size ∼350 × 350 × 350 yields an exciton density in the typical
experimental range (we have assumed that there is a cubic
perovskite unit cell at each site of our simple cubic lattice).

Unfortunately, we cannot carry out calculations for such
large cells (the dimension of the Hamiltonian is about
10 000 000), so we perform a finite-size scaling analysis.
We point out here that in our model only one electron-hole
pair is present in the lattice, and therefore the concentration
is determined by the lattice size, and the exciton-exciton
interaction is neglected. We compute EB for various ξ and
average over 150 disorder configurations for lattice sizes
ranging from 5 × 5 × 5 to 13 × 13 × 13. The results are
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FIG. 5. Exciton binding energy as a function of disorder ξ (a) and
its percentage reduction (b) for exciton concentrations of 3 × 1018

(red), 5 × 1018 (blue), and 7 × 1018 (maroon) cm−3. Statistics over
200 random configurations have been performed, and the standard
deviation is shown in panel (a). The same quantities are shown
in panels (c) and (d) for the experimental exciton concentration
∼1014 cm−3, as resulting from finite-size scaling.

then fitted to a power-law function and extrapolated to the
∼350 × 350 × 350 lattice. Small variances of residuals in
the range 10−1–10−3 are found. The parameter U0 is then
set to a value 0.3 eV providing an extrapolated binding
energy of about 5 meV, which is in the experimental range
at room temperature. The final result is displayed in Figs. 5(a)
and 5(b), where we show the EB and its reduction as a function
of ξ for concentrations in the range of 1018 cm−3 and in

Figs. 5(c) and 5(d) the same quantities for a concentration
of 1014 cm−3. Clearly, in all cases the reduction of EB is of
the order of 10% for our realistic estimate of the disorder
strength. We then conclude that in hybrid perovskites the
exciton binding energy is indeed affected by disorder, but
disorder can account for about 10% of the actual value of
EB . This essentially means that in hybrid perovskites EB is
set by the details of the inorganic lattice, but its broadening is
largely determined by the disorder in the molecular one.

IV. CONCLUSIONS

In conclusion, we have constructed a simple exciton
model based on a tight-binding Hamiltonian and Hubbard-like
Coulomb interaction. The model can be solved for large
disordered simulations cells in the mean-field approximation,
providing insightful information about the dependence of the
exciton binding energy on disorder. After having reviewed the
general features of the model, we have adapted it to the case of
CH3NH3PbI3, by fixing the parameters with DFT band struc-
tures, Born-Oppenheimer molecular dynamics, and by finite
scaling analysis to realistic exciton concentrations. The model
then suggests that disorder can account for fluctuations in the
total exciton binding energy of the order of 10%. This means
that the exciton binding energy remains largely determined by
the electronic structure of the inorganic PbI3 sublattice.
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