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Abstract

Over the past decade a great body of research has been devoted to the field of organic 

spmtronics. This is primarily because of its potential to open new ways to cheap, low' 

weight, mechanically flexible, chemically inert and bottom  up fabricated spin-devices for 

high density data  storage and logic applications. The main advantage of using organic 

semiconductors (OSCs) for spintronics applications is tha t the device structure can be 

conveniently designed based on the experiences from an industrially well established field, 

namely th a t of organic electronics. However, the intrinsic transport properties of OSCs 

are poorly understood from both an experimental and a theoretical perspective. The 

work presented in this thesis provides the first comprehensive and robust procedure to 

investigate in detail the charge and spin transport properties of such OSCs from first 

principles.

The technique involves representing all the essential interactions in OSCs with a tight 

binding model including in particular the coupling of the charge carriers to phonons. 

Thereafter the ab initio Hamiltonian parameters are extracted from Density Functional 

Theory (DFT) and the maximally localized Wannier functions scheme. Furthermore, the 

Hamiltonian representing the organic material also incorporates carriers’ spin relaxation 

mechanisms, i.e. hyperfine interactions and spin-orbit coupling. We evaluate the finite 

tem perature properties of the system by evolving the classical fields in the Hamiltonian 

via Monte Carlo simulations. Thereafter the mobility is obtained from the Kubo formula 

and the spin diffusion length from a Landauer-Biittiker approach, implemented within



tlie Monte Carlo scheme.

The results from the work in this thesis can be divided into three main parts. Firstly, 

we explore in detail the phase diagram of the model to understand the effect of the various 

param eters on the physical observables. This is particularly crucial in order to optimize 

the different interactions in the OSC. Furthermore, we also understand the charge and 

spin transport properties of the model from such a microscopic approach. Secondly, we 

present in detail a D FT characterization of rubrene molecular crystals, which has the 

highest charge carrier mobility among OSCs. We shall then dem onstrate tha t the first 

principles estimates of its carrier mobilities are very close to those measured in single­

crystal rubrene-based organic field effect transistors and the spin diffusion lengths are also 

similar to th a t estim ated in experiments on rubrene-based spin valves.

Thirdly, we will discuss the use of a similar multiscale procedure to predict the ab initio 

charge and spin transport characteristics of triarylamine based organic nanowires. Such 

organic nanowires were recently synthesized from a light activated self-assembly process 

and were dem onstrated to have almost metallic type transport characteristics. We obtain 

exceptional estimates for the hole mobilities in such nanowires thereby confirming the 

experiments. Also the spin transport properties of such nanowires th a t we obtain are 

quite exceptional. As such, we predict tha t triarylamine based self-assembled organic 

nanowires can be promising candidates for organic spintronics.
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Chapter 1

General Introduction

It has been estim ated tha t the total da ta  generated by humanity today in two days is 

greater than th a t produced throughout the entire human civilization till the year 2003. 

This very interesting fact highlights the sheer volume of data th a t is produced as a result 

of human day to day basic activities. Most of this falls into the category of user generated 

contents in popular websites. There is therefore an urgent need to store large volumes of 

da ta  in as little space as possible and the solution must be as cost effective as possible. 

In fact, this mode is termed as high density da ta  storage.

Additionally, in this day and age, we are living through a technology revolution and 

at every moment in time a plethora of information is available literally at our finger 

tips using ’’sm art devices” . These devices which make human lives comfortable from a 

technological point, include sm art phones, tablets and laptop computers. Over the years 

these devices have become increasingly popular, cheaper, smaller and lighter. This is also 

made possible through new routes to high density data  storage.

Let us pictorially illustrate the perspective of the success story of high density data 

storage over the last half century. Fig. 1.1a shows a 5 megabytes hard disk drive (HDD) 

designed by IBM in 1956 for a supercomputer 305 RAMAC. This was deemed as the 

world’s first HDD, weighed more than a ton, and in today’s money (accoimting for infla­

tion) costed $160,000. On the right-hand side panel of Fig. 1.1b we show an external 1

1
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1956 2013
(a) (b)

Figure 1.1: The left panel (a) shows the world’s first hard disk drive (5 megabytes) 
designed by IBM while the right panel shows a typical 1 terabyte (10 ’̂ megabytes) external 
hard disk th a t one can purchase now a days.

terabyte HDD that one can purchase today. Such hard disks are the size of our palm and 

costs just under $100.

High density data  storage has been possible through a field known as Spintronics and 

now we will now spend some time introducing it.

1.1 Spintronics

Spin is an intrinsic angular momentum carried by elementary particles. Spin is a solely 

quantum  mechanical property. It is precisely the result of the spin, tha t elementary 

particles possess a magnetic moment. In fact, a single electron’s spin s can be measured 

by detecting the associated magnetic moment —g^iss, where f̂ iB is Bhor magneton and g
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is the electron (7-factor in the material. Spintronics is a branch of electronics exploiting 

both the intrinsic spin and the associated magnetic moment of carriers, together with their 

fundamental charge in solid state devices for da ta  storage applications. Spintronics offers 

a massive advantage of reduced dimensions. Thus, in this process spintronics promises 

smaller and cheaper devices with low power consumption. The latter is because spins can 

be m anipulated by very little differences in magnetic fields.

The field of spintronics concerns the creation, manipulation and detection of spin po­

larization through solid-state materials. Generating spin polarization involves producing 

a non equillibrium population of spins in a particular material. Traditionally this was 

done optically by directing circularly polarized light onto direct bandgap semiconduc­

tors, which transfers its angular momentum to carriers. However, in modern spintronic 

devices, which are known as spin valves (Giant M agnetoresistance-GM R- junctions), elec­

trical spin injection is achieved. This can be accomplished in sj)in valve like devices with 

the help of ferromagnetic (FM) electrodes which already boast a spin polarized density 

of states at their fernii level. The spin valve is the prototypical device for spin transport 

in spintronics and is a vital component of HDDs as we will discuss in the next section. It 

comprises two FM electrodes sandwiching a central spacer which can be either metallic 

(GMR junctions) or insulating (Tunnel Magnetoresistance -TMR- junctions). The elec­

trical resistance through the device depends on the direction of magnetization of the two 

FM electrodes. Some examples of FM metals used in GMR junctions include Co, Ni, 

Fe, CoFe Alloys, LaxSri-xMnOa (LSMO), etc. Thus, simply by passing current through 

such devices, spin polarized carriers can be generated within the spacer. If now, one 

wants to use the spin valve for injecting carriers into a semiconductor the combination 

of materials chosen must ensure tha t there is an appropriate level alignment between the 

conduction and valence bands of the semiconductor and the chemical potentials of the 

ferromagnetic electrodes. This is to ensure th a t the spin injection from the ferromagnets 

into the semiconductor material is efficient, i.e. th a t spins enter the semiconductor.
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The next im portant problem is how effectively these spin polarized carriers move 

through the semiconductor, which will decide the functioning of a spin valve. We explain 

this in more detail in the coming sections of this introduction chapter. Moreover, this is 

a principal ciuestion we wish to address through the work presented in this entire thesis.

Let us now discuss the use of spmtromcs in HDD.

1.2 M agnetic read heads

Modern HDDs are capable of storing and retreiving large volumes of data, with the help of 

rapidly rotating disks coated with a magnetic material. Furthermore, in the HDD design 

there is a very tiny read/w rite head ’’floating” above the disks which enables reading 

and writing information onto/from  the hard disk in the forms of bits (O’s and I ’s). The 

writing operation is facilitated relatively conveniently with the help of nanoniagnets or 

tiny electromagnetic coils. However, the success of high density data  storage in the {)resent 

day lies in the use of spintronics for creating efficient read-heads which are sensitive to 

very small changes in magnetic field. Let us nt)w explore how this is achieved in practice.

Fig. L2 shows the top view of the interior of a modern HDD. As we have discussed the 

key component of such hard disks is the tiny read head. In present hard disks, tunneling 

magnetoresistance (TMR) heads are used. The cartoon of a TMR head is illustrated 

in the right panel of Fig. 1.2 which also depicts the basic principle of the TMR. The 

materials set for the TM R read heads used in modern hard disks is Fe/M gO/Fe [131]. 

The very tip  of the read head is comprised of this structure, with a thick Fe layer, whose 

magnetization direction is always fixed and hence it is termed as the fixed layer. Next 

there is a few nanometers wide insulating barrier (MgO). Finally, the last component of 

the TM R structure is a thin Fe layer, which is termed as the free layer since the direction 

of its m agnetization can be easily altered b\' a stray magnetic field from the data w ritten 

on the particular part of the magnetic disk.

The current through the TMR junction comprising the read head is monitored during
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Read Head

Read Head

Tunnel Barrier 
FM2 (free layer)

Magnetic Disk

Magnetic Disk 

a) b)

Figure 1.2: The inside of a HDD is shown here with the magnetic disk and the tiny 
read head in the left panel. Cartoon illustrating a snapshot of a reading operation in the 
hard disk is shown in the right panel. In present day HDD, the read head is made up 
of a Tunnelling Magneto Resistance (TMR) junction which is highly sensitive to small 
magnetic fields and hence is very effective in reading data from the disk. In order to 
cope with the demand for HDD storage, significant research is invested into improving 
the configuration of such read heads.

the reading operation of a hard disk. The electrical resistance through the TM R junction 

depends on the relative direction of magnetization of the two ferromagnetic layers. If 

they are parallely aligned, the device is in the low resistance state and current can flow 

through the TM R junction. In contrast, if the alignment of the magnetizations of the 

two ferromagnetic layers is anti-parallel, the junction is in the high-resistance state  and 

no current flows. This phenomenon by which electrical resistance of the TM R junction 

depends on the magnetic configuration is known as Tunnel Magneto Resistance and the 

two resistance states of the junction are used for reading information from the magnetic
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disk.

So what exactly will ensure high density data storage in modern HDD? The areal 

density of the d a ta  stored in hard disks can be increased by making the bit size in a disk 

as tiny as possible. This means th a t the read heads should also be as small as possible. 

Furthermore, the magnetoresistance effect should be as large as possible in order to make 

the read heads extremely sensitive to tiny changes in magnetic field while reading data 

from the disk. As mentioned previously, in present generation HDDs Fe/M gO /Fe TMR 

junctions are used as read heads. In the past thicker junctions relying on the GMR 

effect have been used as read heads. Such spin valve structure included the following 

configuration, antiferromagnetic exchange bias layer /C o  (pinned layer)/ Cu spacer /  

NiFe (free layer). This was based on the pioneering work of Nobel laureates Albert Fert 

and Peter Griinberg [1, 2].

The need for HDD storage has led to periodic updating of these read heads over the 

last decade. There is also a substantial amount of research devoted in academia and 

industry in newer and better materials for the design of the next generation read heads. 

One such set of materials is represented by organic semiconductors (OSCs). The essential 

idea behind this was to use the knowledge from an already experienced field of organic 

optoelectronics and exploit the advantages of using organic materials. We will now discuss 

in detail this emerging and enticing field of Organic Spmtronics.

1.3 Organic Sem iconductor based devices

The work presented in this thesis is on researching the use of organic materials for spin- 

tronics. This was possible with the discovery of spin polarized transport through organic 

semiconductors [70]. Although this very exciting field is quite nascent, the most im portant 

advantage of organic spintronics is th a t organic based solid state  devices could be con­

veniently fabricated based on the experience accumulated in the already well-established 

fields of organic electronics and organic optoelectronics.
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Let us now talk about OSCs and organic electronics before we start our discussions 

on organic spintronics. tt—conjugated polymers are leading OSC materials because of 

their modest bandgaps and also because of the ease with which they can be manifactured 

in large area devices. Such polymers have a delocalized 7r-electron in their molecular 

plane, which serve as the itinerant charge carrier. In fact, organic molecular crystals 

which contain these molecular planes held together in the structure by Van der Waals 

forces are presently ubiquitous in the optical display panels of devices such as laptops, 

TVs, mobile phones and tablet screens. They make use of a large number of tiny but high 

quality Organic Light Emitting Diodes (OLEDs), providing high contrast display. A table 

summarizing the most common organic molecular crystals used in organic electronics is 

shown in Table. 1.1. Out of these Alqs is the most widely used OSC in such display panels 

because thin films out of Alqa can be conveniently manufactured on a large scale.

There are unique advantages which organic materials have over their inorganic coun- 

ter[)arts. In comparision to inorganic semiconductors, OSCs are cheap, low weight and 

most importantly they can be conveniently synthesized and are non-toxic. Furthermore, 

they are mechanically flexible and chemically inert, which is very advantageous in device 

fabrication. Moreover, their optical and electronic properties can be chemically tuned.

Organic light emitting diodes (OLEDs) have a similar device configuration as organic 

spin valves. However, instead of ferromagnetic electrodes (as in organic spin valves) 

OLEDs have hole and electron injecting electrodes sandwiching a thick layer of OSC(s). 

The hole-injecting electrode is comprised of high workfunction materials like indium tin 

oxide (ITO) while the electron-injecting electrode can be low workfunction alkali metals 

like calcium, magnesium, etc. OLEDs work by hole and electron transport (at finite 

applied bias) respectively through a hole transport layer (HTL) and an electron transport 

layer (ETL) where they meet and form quasi particles known as excitons. The HTL and 

ETL are made up of OSC. The two carriers (electron and hole) v/ith spins can combine 

together to form triplets (with total spin S' =  1) or singlets {S = 0). Only the singlet
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Organic molecular crystal Chemical Formula Structure

Rubrene C42H28

q p 
d 5

Tetracene C18H12 OC/C/Ĉ
Pentacene C22H14 00000

Metal Quinolates 
e.g. Aki3

C2rHi«AlN303

Metal Phthalocyanine 
e.g. CuPc

C32H18MN,

AOH-^

Table 1.1: Table depicting the chemical and structural fornuila of common molecular
crystals used as OSC for optoelectronic and spintronic applications.

excitons radiatively decay to produce light. However, the bulk of excitons produced in an 

OLEDs have a triplet character (singlet to triplet ratio is 1:3).

In 2002, Alek Dediu and Carlo Taliani [70] combined their expertise in OLEDs and 

half metallic oxides to increase the yield of singlet excitons by injecting spin polarized 

charge carriers through the OSCs. Although their original experiment was controver­

sial, they managed to observe a finite magnetoresistance (MR^) in a device made up 

of ferromagnetic LSMO electrodes and a tt—conjugated polymer known as sexithophene 

'M R  =  ; w ith A P=A iitiparallel and P=Parallel.
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T q. T heir device configuration was LSM O / T q (120 nm )/LSM O . A couple of years later, 

o ther groups [71] also observed a sim ilar resistance variation in a spin valve type device, 

LSM 0 /A 1q3 (160 nm )/C o , a t low tem peratures. Subsequently, for a sim ilar device con­

figuration, LSM O/Alqa (200 n m )/A l2 0 3  (1.5 nm )/C o , finite M R was confirm ed also a t 

room tem peratu res [139]. Furtherm ore, there have also been dem onstrations of a TM R  

effect using OSC m aterial as the  tunneling barrier. For exam ple, a TM R of abou t 4% was 

reported  [170] a t room tem peratu re  for a  device structu re , C 0 /A I2 O 3 (0.5 n m )/R ubrene  

(4.6 n m )/ Co. More recently [6 8 ] in LSM O /A lqs (2 nm )/C o  based T M R  junctions magne- 

toresistances of 300% were observed which is com parable with the  best inorganic tunneling 

junctions.

Note, th a t in these organic spin valves generally a few nanom eters of an insulating 

barrier like AI2 O 3 or LiF [148] is inserted between the organic spacer and th e  top  Co 

electrode. This has two advantages. Firstly, it [prevents the contact between th e  fragile 

organic s truc tu re  and the top  electrode, which is typically de{)osited on the  organic layer 

via vapour deposition techniques. Normally, based on the  experience on working w ith 

such devices, it was observed th a t deposition of Co on unprotected  organic surfaces lead 

to  m etal inclusions of the hot m etal through the OSC layer thereby short circuiting the  de­

vice. Thus the deposition of AI2 O 3 between the organic and the top  Co electrode prevents 

this problem. Secondly, a few nanom eters of insulators serves as an additional tunne l­

ing barrier. This facilitates the injection or removal of spin polarized carriers to /from  

the  organic sem iconductor thereby circum venting a problem which plagues organic device 

knowm as the resistance m ism atch problem. We shall now describe this.

Normally if there were no tunneling barrier between the organic and the m etal, the 

movement of carriers from the  organic to  the  m etal would be im peded. This is because, 

when a carrier moves th rough  the m etal it faces very little resistance bu t when it travels 

through the  organic its flow is m et w ith a  large am ount of resistance. Therefore the  en try  

and subsequent tran sp o rt of the carrier into (and through) the organic can be entirely
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impeded due to this resistance mismatch. Both these problems could be eliminated with 

the use of a ferromagnetic organic material (at room tem perature) Vanadium tetracya- 

noethylene, V(TCNE)j; [16, 17], as a magnetic electrode.

Uptill now in this introductory section we have discussed the basic concepts of read 

heads in hard disk dri^'es and organic spin valves. We have also discussed the advantages 

of using OSCs over their inorganic counterparts. Moreover, we have also mentioned the 

performance of organic spin valves made by different research groups over the past decade. 

However, note th a t we have also mentioned tha t the working of an organic spin valve is 

because of an efficient spin polarized transport through the organic media. In the next 

section of this introductory chapter we will talk about the operation of an organic spin 

valve.

1.4 U nderstanding th e  operation  o f an Organic Spin  

Valve

A spin valve is simply a resistor whose electrical resistance depends on the direction of 

magnetization of the  two ferromagnets. Let us elaborate upon the explicit mechanism of 

the working of a spin valve in a little more detail, since this will form the basis of much 

of the discussions on transport through the OSC in this thesis.

Electrical currenit dowing through a material is constituted by electrons of opposite 

spin types. In a nou-inagnetic metal or a semiconductor the resistance faced by each of 

these spin currents are the same. However, this is not the situation in a magnetic material, 

where the resistanc&s experienced by the two different spin species are different depending 

on the orientation o f the electron spins with respect to the internal magnetization [130].

In a spin valve, when the direction of the magnetization of the two ferromagnetic 

electrodes are the same, the electrical resistance of the device is low. In contrast, when the 

ferromagnets are antiparallely aligned with respect to each other, the electrical resistance
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FM l CSC FM2 FM l CSC FM2

I I I 1
Index

I

p s m

pose

No Spin Relctxation
Spin up channel

R esp o n se

Spin down channel

u n It tt

Spin Relaxation

Figure 1.3: The working mechanism of a spin valve is illustrated. An organic spin valve 
consists of two ferrornagnets FM l and FM2 sandwiching a central spacer made up of an 
OSC. The device in the parallel (P) and antiparallel (AP) configurations are depicted 
in the top panel. In the absence of any spin relaxation events (middle panel) it can be 
worked out th a t Rp  < R^p  and the spin valve exhibits a characteristic bi-stable I  vs H  
response which is desired. However, when relaxation of the carrier spins are taken into 
consideration (bottom  panel), the spins fail to reach the opposite electrode (FM2) due to 
spin mixing of the two spin channels. As a result, the resistances Hp and R_.\p will be 
indistinguishable and the device will not exhibit the desired spin valve effect. Here the 
size of the resistors directly correlate to the magnitude of tha t particular resistances in 
the circuit diagrams.

of the device is high. There are some cases (different configuration of niagnetic electrodes) 

when the opposite is true and an inverse spin valve effect is observed [71, 139]. However, 

for the description in this section we will stick to the conventional picture. In a device, 

typically one of the ferromagnet has its direction of magnetization fixed (it is the pinned 

layer) by exchange biasing it with a strong antiferromagnet. The other ferromagnet, the 

free layer, is allowed to change its magnetization direction upon application of an external 

niagnetic field, H.  The current through the device I  is monitored a.s a function of the 

applied magnetic field and the response is summarized in the right most panel of Fig. 1.3.

As evident from the response, the device will exist in a two distinct resistance states.



12 Introduction

wliich can be effectively used for storing information.

Let us examine the working mechanism of a spin valve with the help of a simple resistor 

model, first in the ideal case ignoring any spin relaxation mechanisms. This is illustrated 

in the middle panel of Fig. 1.3. We can assume th a t  the electrical resistance of the spin 

current is low when the electron spin is oriented along the direction of the magnetization 

(say spin up) and it is high when the electron spin is oriented against the direction of 

magnetization (spin down). In the parallel configuration of the ferromagnets, the spin- 

up electrons experience low resistance in both  the ferromagnets, while the spin down 

experiences high resistance in both  the ferromagnets. Therefore the overall resistance 

[ R p )  of the device in the parallel configuration can be worked out [8] to be equal to

7 ^  “  +  i?O SC  +  ^FM2 +  ;^FM1 +  J^OSC +  J^FM2 ‘ ( I ' l )

Here the arrows ( t , i )  mean the spin direction of the carriers with respect to the local 

magnetization. Furthermore, R ^ ^ ^  is the resistance of the carriers through the organic 

channel, resistance of the carriers with the same spin direction with

respect to the local magnetization (hence their magnitudes are low) and 

the resistance of the carriers with the opposite spin direction with respect to the local 

magnetization (hence their magnitudes are high). Therefore in the parallel configuration 

spin up electrons carry the current.

Similarly, in the antiparallel configuration one can work out [8] the effective resistance 

R j\p  as
1 1  1 

l^ p  ~  +  i?OSC +  7?FM2 +  ;^FM1 +  ^OSC +  ^FM2 ' i ' )

Please note th a t  neither of the two spin components experience the low resistance p a th  

in the antiparallel configuration of the two ferromagnets.

Now in Eq. (1.1) and Eq. (1.2), provided th a t  the resistance of the electronic current
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through the OSC, is small enough^ R p  will always be smaller than R a p - Thus the

device will exhibit a bi-stable response in its I  vs H  profile as shown in the middle-right 

panel of Fig. 1.3. This is a very simple explanation of the spin valve effect.

In what we have discussed till now no spin relaxation has been included. This is the 

perfect circumstance as far as the functioning of the device is concerned. However in 

reality, electron spins undergo decoherence as a result of their interaction with the en­

vironment. There are several spin relaxation mechanisms, some of which are pertinent 

to the discussions in this thesis. These include interaction of electron spin with nuclear 

spins of the atoms constituting a material, which is known as hyperfine interaction; inter­

action between the spin and orbital components of the angular momenta of the itinerant 

electron, which is termed as spin-orbit interactions; interaction between electron spins 

and tha t of paramagnetic impurities or defects. In this thesis we shall discuss in detail 

the different spin relaxation mechanisms in OSCs, in particular the former two. For now, 

we should keep in mind th a t spin diffusion causes mixing of the spin-up and spin-down 

channels in the spin valve, as illustrated in the bottom  panel of Fig. 1.3 and also leads to 

a resistance contribution Rgm- Here the subscript sm. stands for spin mixing. Therefore 

in an OSC with substantial spin mixing, Rsm will be large and will dictate both R p  and 

R a p - In such an scenario R p  and R a p  can be indistinguishable. This is a situation th a t 

is undesired in a spin valve based spintronic device.

Alternatively, one could also write down the resistances in the parallel { Rp)  and the 

antiparallel { R a p ) configurations by the following two equations in the limit of zero tem ­

perature

Rp  =  /?() (1 K ■ e (1-3)

R A P ^ R o { l - i ^ - e - ^ l ^ ^ ) ,  (1.4)

here L  is the length of the semiconducting channel. Is (spin diffusion length) is the average 

length electron spins travel through the channel before losing their spin polarization and 

^The organic material is a good semiconductor.
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K is a constant th a t will depend on the electronic structure of the materials comprising 

the spin valve and external field [12], Therefore in the above equations if L is large and 

there is spin mixing, R p  — R^p  0. Consequently, the device will not exhibit the desired 

spin valve effect.

W hen significant spin mixing takes place the spin valve effect would be minimal as 

illustrated in the I  y s  H  response in the bottom -right panel. Needless to say, a proper 

understanding of the spin diffusion mechanisms through OSCs is quintessential in organic 

spintronics. Furthermore, it is also crucial tha t we understand the factors which control 

jr^osc order to do so, we must comprehensively understand the intrinsic charge carrier 

transport behavior in OSCs. These are the facets we wish to explore in this thesis.

The above explanations for the bi-stable response of organic spin valves (as a function 

of magnetic field) is attributed to an efficient spin dependent transport through the OSC 

layer. This is what is assumed in experiments by the organic spintronics community. 

Unfortunately, Hanle effect in organic semiconductors is not yet been observed [9]. Hanle 

effect is the demonstration of spin {)recession and dephasing in a magnetic field non- 

collinear to the injected spin orientation within a semiconductor [10]. Therefore it is the 

only conclusive evidence of spin transport within the semiconductor layer.

Therefore, in practice, the working of an organic spin valve could also be due to 

interface effects [7]. However, in this thesis since we are interested in investigating the 

charge and spin transport through the bulk OSC layer, we assume perfect metal-organic 

contacts. Under experimental conditions, such a scenario could be due to the presence 

of a tunneling barrier between the injecting electrode and the OSC, in which case the 

charge carriers are expected to be injected into the molecular levels of the organic from 

the electrode without any metal-organic interface effects [170, 139]. Note tha t the metal- 

organic interface effects i.e. the problem of an organic molecule on metallic surface, using 

state of the art theoretical techniques, is an exciting research field in itself and is one of 

the possible future work of this thesis, especially after one has fully understood transport
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through the bulk OSC layer.

Let us now discuss briefly the general layout of the thesis.

1.5 T hesis layout

We will explore from first principles the charge and spin transport properties of OSCs, 

which are used in devices like organic spin valves. We will make an ab initio estimate of 

the charge carrier mobility, which epitomizes the ease with which carriers travel through a 

particular organic media and hence characterizes charge transport. We will also estimate 

the spin diffusion length of organic semiconductors, which is the average length that 

carriers travel through the organic material before losing their spin polarization. The 

spin diffusion length characterizes spin transport through (3SCs. Furthermore, we aim to 

obtain a comprehensive understanding from a microscopic point of the charge and s[)in 

transport mechanisms through OSCs. The work presented in this thesis is a significant 

step in achieving the goal of modelling a full organic spintronic device.

The approach which we use in this work, is to represent all the interactions in a 

particular OSC including the spin relaxation effects using a microscopic tight binding 

Hamiltonian. Next the tight binding Hamiltonian parameters are obtained from first 

principles calculations either directly or with the help of Wannier functions. The Hamil­

tonian has classical terms accounting for physical phenomena in OSCs. These classical 

terms in the Hamiltonian are evolved via Monte Carlo simulations and subsequently the 

spin and charge transport properties are estimated using the Kubo and the Landauer- 

Biittiker formulae respectively.

First principles modelling of the transport properties through the OSC is a challenging 

task particularly because it is a multiscale problem and involves several different degrees 

of freedom. In this work we have developed a comprehensive understanding of those 

param eters and hence have performed a careful optimization of them. The general layout 

of the thesis is as follows
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C hap ter 2 In Chapter 2 we will discuss the two main computational techniciues imple­

mented in the work presented in this thesis. These include stochastic methods namely 

Monte Carlo and energy minimization techniques which are used to statistically evolve 

the microscopic Hamiltonian describing the OSCs. Next we will discuss in detail about a 

very [)owerful tool known as Density Functional Theory (DFT), which is used to predict 

the properties of systems from first principles. We have made extensive use of DFT in 

exploring the electronic and geometric properties of organic molecular crystals. Further­

more, in our multiscale approach DFT calculations also form the basis for obtaining ab 

initio  information.

C hap ter 3 We will take a first step towards modelling OSCs in Chapter 3. This in­

cludes representing all the essential interactions in OSCs with the help of a microscopic 

Hamiltonian for a linear chain of atoms. Thereafter we will explore the effect of the dif­

ferent Hamiltonian parameters on the properties of the model and sunmiarize the results 

in the form of a phase diagram. This chapter gives us a comprehensive understanding of 

the role played by all the different model parameters.

C hap ter 4 In Chapter 4 we will introduce the procedure by which we compute the 

charge carrier mobility using Kubo Fornmla and the spin diffusion length using an algo­

rithm  based on the spin polarized Landauer-Biittiker formula. We will explore in detail 

the charge transport phase diagram for a one-dimensional chain, one-dimensional seg­

ments (molecular chains) and two-dimensional networks. Here we wish to understand the 

charge transport behavior for different morphologies as a function of the model Hamilto­

nian parameters. In the second part of the chapter we explore the spin transport phase 

diagram for a one-dimensional chain. Here we introduce the spin transport Hamiltonian, 

which accounts for the principal spin scattering effects in OSCs. We will investigate in 

detail the dependance of spin diffusion length on the model Hamiltonian parameters.
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C h ap ter 5 In Cliapter 5 and Chapter 6 we will investigate the ab initio charge and spin 

transport observables for real OSCs. Firstly, in C hapter 5 we will introduce a method to 

obtain the ah initio tight binding Hamiltonian for rubrene using a Wannier functions based 

projection scheme. Next we compute the carrier mobility and the spin diffusion length 

from the ab initio Hamiltonian of rubrene. We find tha t the first principles estimates for 

the charge carrier mobility and the spin diffusion length are quite close to those obtained 

from experiments. The choice for rubrene in our investigation is because it is the OSC 

with the highest charge carrier mobility and hence the best performing OSC.

C hap ter 6 In Chapter 6 we will perform a detailed first principle analysis of the elec­

tronic structure as well as the charge and spin transport properties of triarylaniine-based 

organic nanowires. These were recently synthesized through a self-assembly procedure 

and were found to have metallic type transport behavior. We will theoretically confirm 

this and also provide the ab initio estimates for the carrier mobility and the spin diffusion 

length in such organic nanowires.

C hap ter 7 Finally, in Chapter 7 we will describe some of our ongoing projects, we 

will draw some conclusions and highlight the achievements of the work presented in this 

thesis. We will also mention our perspective for some possible future research directions 

based on what we have learnt throughout the course of this thesis.
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Theoretical Framework

2.1 M ultiscale m odelling of organic sem iconductors

Fig. 2.1 shows a schematic illustration of a lateral organic spin valve, which is the pro­

totypical device in organic spintronics [181]. It comprises two metallic electrodes (leads) 

sandwiching a central spacer made up of an OSC material whic'h is typically 100-200 nm 

thick (see Fig. 2.1). Modelling such a nanodevice from first principles requires nmltiscale 

techniques (due to the OSC thickness) and hence it is a challenging task. In this respect, 

the very first problem which needs to be addressed is what happens at the metal-organic 

interface. Here we essentially need information at a length scale of less than  2 nm. Indeed, 

the characteristics of the metal-organic interface can be appropriately described by DFT 

up to a very high degree of accuracy. Some very interesting problems such as investigating 

the geometrical and electronic structure properties of organic molecules on a metallic sur­

face fall into this category [3, 4, 5]. Moreover, interfaces can play a crucial role in governing 

transport through the entire device as indicated by the pioneer explanation of spinterface 

physics [7], which we shall explain in the subsequent chapters. Using the appropriate ab 

initio technique to describe the interfaces accurately in such hybrid inorganic-organic sys­

tems (HIOS) is an exciting and ambitious field in itself. Furthermore, electronic transport 

properties across different organic molecules deposited on metallic surfaces or insulating

18
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islands in a Scanning Tunneling Microscope (STM) setup, can now be extensively studied 

using state of the art ab initio transport codes hke SMEAGOL [13], which is developed 

in our group.

5 nm 100- 200 nm

Organic Channel

Figure 2.1: Schematic cartoon of a lateral organic spin valve, which is the prototypical de­
vice in organic spintronics [181]. The work presented in this thesis is a crucial step towards 
developing a robust computational architechture to describe ah initio transport properties 
in such OSC based nanodevices. Our computational tools involve MC simulations and 
DFT, which shall be discussed in detail in this section.

The second most im portant issue at hand when modelling an organic nanodevice 

(depicted in Fig. 2.1) is how well can we describe the electronic structure and the transport 

properties across the rest 100—200 nm of the OSC channel. The fundamental complication 

th a t one faces is tha t this is a length scale not accessible by DFT. Hence, this is where 

the work presented in this thesis expects to make an essential contribution to the field 

of organic spintronics. At the very heart of our multiscale scheme to represent OSCs, 

lies a set of numerical methods th a t will be extensively employed throughout this thesis, 

which fall into the category of Monte Carlo (MC) techniques. They form a powerful class 

of stochastic methods which can be used to accurately sinmlate large physical systems 

at finite tem perature. We will discuss such stochastic methods in the first part of this 

chapter. Subsequently, in the second part we will discuss the basics of DFT which we 

make an extensive use of in our multiscale modelling of OSCs.
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2.2 M onte Carlo sim ulations

The aim of MC simulations performed in this thesis is to estimate the tem perature de­

pendent value of a physical observable Q,  of a system. For example, in this work Q can 

be the charge carrier mobility or the conductance. Such an expectation value for the 

observable, (Q),  can be obtained according to the following expansion [11]

where is the probability of a state  /i occurring in a real system at time t and

is the value of the observable when the system is in the state //. For example, the state 

f̂ i can be characterized by a set of displacements vectors of the molecules constituting 

the system or by the (classical) nuclear spins on an atom. In general we are assuming 

th a t the particle state // is defined by a set of classical vectors In principle, the

sunnnation is over all the possible states that the system can access. This can be an 

intractably large number. However, one can circumvent this problem by selecting a finite 

number of states, which provide a sufficient representative sampling of the states tha t 

the system can explore. This representative selection of states must be met in such a 

way tha t the frequency of their occurrence in the simulation is the same as it would be 

in a ’’real system” . The precise way in which this is described, is by a Markov process, 

which we shall explain in the coming subsections. Thereafter the expectation value {Q) 

is measured by averaging over a large number of these states.

Indeed keeping in mind th a t each state must appear with the correct frequency, care 

should be taken in the time evolution of the states so as to describe the correct dynamics 

of the system and the rules in transition of the system from one state to another. The 

system ’s dynamics is governed by the Master Equation [14] under the condition of only

( 2 . 1)
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including incoherent effects [235],

^  =  X ]  [wr,{t )R{v l-i) -  rj)], (2.2)
V

where R{ri /<) are the transition  rates from the  s ta te  77 to the  sta te  /u and is the

weight or the  probability  of the system  to  be found in s ta te  rj a t tim e t. The first te rm  

on the  right hand side of the  M aster equations represents the ra te  a t which the  system  is 

undergoing a transition  from the sta te  t] into the s ta te  while the  next term  represents 

th e  ra te  a t which the system  is leaving sta te  fi. Since the  system  m ust exist in some s ta te  

after transition , all the  probabilities m ust obey the criterion =  1 .

Now, since the system  a t hand is exam ined in its equilibrium  s ta te  vanishes (at 

ccjuilibriurn the  s ta te  population does not change w ith tim e ) which implies th a t the ra te  

takes constan t values at all time. T he values of m ust be known a t all tim e during the  

sim ulation and their equilibrium  value is =  lim(_^t<;,,(f). In fact, can be obtained  

for a system  a t therm al equilibrium  w ith a reservoir a t tem pera tu re  T , according to  the  

following expression given by Gibbs

P ,(E ,)  =  (2.3)

where is the energy of the  s ta te  /i and is the B oltzm ann’s constant. Here, Z  is 

th e  partition  function of the system  which is Z  =  ■ Eq- (2.3) is in fact the single

partic le  probability  d istribution  function for a canonical ensemble of the quan tum  sta tes 

of the  system , when the volume V , the num ber of particles N  and the tem pera tu re  T  of 

the  system  are fixed. In this case the system  exchanges only energy w ith the reservoir.

For a microcanonical ensemble when the internal energy U, V  and N  are fixed all 

th e  sta tes  occur w ith equal probability. We shall dem onstrate  in the next subsections 

why th e  choice of microcanonical ensemble of s ta tes  of the system  is poor in term s of 

sinuilating the dynam ics of the  system. Finally, for a grand canonical ensemble V^ the
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chemical potential /to (which controls the number of particles in the system, N^) and T  

are fixed. In this case the system exchanges both energy and particles with the reservior. 

For a grand canonical ensemble the single particle probability distribution function is:

~ ( ~ 
e '‘bt

P,(E^,N^) = ----- ^------. (2.4)

~ { E f x  — )

where the partition function is given by Z = ^

If the system evolves through a representative sample of states then the measured 

average must be close to the theoretical expectation value of the observable (Q). In 

the following subsections we shall explain in detail a set of rules which ensures that a 

representative sample of the states are generated during a MC simulation.

2.2 .1  Im p o r ta n c e  sa m p lin g

The estimation, Q a / i  o f  the observable ( Q a / ) ,  made during the MC simulations is,

where M is the complete finite immber of states sampled by the Â IC algorithm, is the 

probality distribution from which those states are randomly sampled. In other words the 

probality defines the likelihood of the state //j to occur in the simulation and hence 

depends on the nature of the algorithm used to evolve the system from one state to the 

next. Also /? =  is the inverse temperature^ Needless to say that when a large number 

of states are sampled, M  ^  oo , Qm ^  {Q}-

One alternative is to neglect the concept of importance sampling and choose all the states

is eV \  T  in K and the Boltzmann’s constant is /cs =  8.6173 x 10  ̂ eV/K.
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with the same probabihty (as for a microcanonical ensemble of states), which results in

Qm = • (2.6)
z^j=l e

As one can notice this will be a poor choice in an algorithm, especially if the selected 

number of states M  are a tiny fraction of the total number of states the system can be 

found in. In such a scenario there may be a very high possiblity that the states selected 

by the algorithm are not a good representation of the behavior of the system thereby 

yielding a very poor estimate of Qm from Eq. (2.6).

Fortunately, the probability of a state occuring in a real system is known, i.e. it 

is given by Boltzmann distribution, i.e. by Eq. (2.3) and Eq. (2.4). Therefore if the 

sinnilation is biased towards sampling states that are given by the Boltzmann’s probability 

distribution one can ensure that only the high probability states and therefore the ones 

which contribute the most to (Q) are examined in the simulation.

By maintaining the i)robability of the state chosen in our MC simulations as the 

Boltzmann’s probability, i.e. | — (for a canonical ensemble of states) we obtain,

1
•3' ' ' =  m E'J-'.' (2-7)

Thus, this ensures that the states occur with a correct probability distribution as in a real 

system and a simple average of the observable over those states (ensemble average) will 

yield quite an accurate estimation of the value of the observable. Furthermore, from here 

on we only provide the example for a canonical ensemble of states. If one wants to obtain 

the expressions for the corresponding grand canonical ensemble of states, one can simply 

use Eq. (2.4) instead of Eq. (2.3) and the corresponding values of partition function Z.

Since importance sampling provides the sampling of most probable states (only a small 

fraction of the total number of possible states) this procedure also provides a route to 

estimate the partition function Z  of the system. However, the partition function calculated
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in th is m anner will be noisy and therefore the expectation values of an observable, which 

will be calculated as a derivative of the [)artition function would be erroneous. A much 

b e tte r and accurate alternative is to calculate the observables directly w ith Eq. (2.7), 

for exam ple by averaging during the  sim ulation (ensemble average) ra ther than  from the 

partition  function [11].

T he next question is how exactly one can select th e  sta tes which occur w ith the 

B oltzm ann’s probability. An ineffecient procedure to  do this would be to  select sta tes 

a t random , as in th is m anner a vast m ajority  of sta tes considered would be rejected. A 

second possible m ethod of generating states is to again select sta tes a t random  bu t now 

decide w hether or not to  accept or reject the  states based on B oltzm ann’s probability 

proportional to e T he la tte r m ethod is a  much more efficient. The procedure used 

in m ost MC sim ulation is known as the Markov process which ensures an efficient sam pling 

of the  states.

2.2,2 M arkov process

Until now we have established th a t in order to  describe the dynam ics of the system  one 

needs to  solve the  m aster equation, Eq. (2.2). This is achieved by requiring th a t the 

transition  rates between the sta tes are fixed in such a way th a t the  equilibrium  solution 

for the  accessible sta tes are given by the B oltzm ann’s probability  distribution.

Markov process is a m ethod by which a new' s ta te  rj can be obtained from an old 

s ta te  n  during the  sim ulation based on the  probability d istribu tion  of the occurance of 

those sta tes (probability d istribu tion  function). The newly generated s ta te  rj m ust be 

selected a t random  from all the possible sta tes accessible to  and the probability of the 

particu lar selection, F(/x —> rj) is known as the transition  probability. For a transition  to 

be described by M arkov process it m ust not depend on tim e and m ust also be memoryless. 

This m eans th a t the transition  probability  P{fi  —> rj) m ust only depend on the sta tes n  

and 77 and not on the history of sta tes before them  during the course of the  sinuilation.



25 C hap ter 2

M oreover the  sum  rule for all the o ther possible accessible states, P{fi.  rj) — 1 m ust 

hold, since we are dealing w ith norm alized probabilities and the system  m ust end up in 

some sta te . We m ust keep in mind th a t although a M arkov process m ust generate a s ta te , 

P{ f i  //,) need not be zero as during a M arkov process the  system  can rem ain in the  same 

s ta te  for th a t  particu lar iteration  in the algorithm , w ithout violating the above m entioned 

criterion. T he series of s ta tes  generated in the process is known as a Markov chain.

To ensure th a t each s ta te  occurs w ith the correct probability as in a Markov process 

two add itional conditions m ust be specified which we shall now describe in detail. Firstly, 

th e  sim ulation m ust be ergodic, i.e. all the  sta tes of the system  should be in principle 

accessible from the current s ta te . This means th a t even though some of the  transition  

probabilities between certain  specific s ta tes  may be zero, a t least one path  joining those 

s ta tes  m ust exsist. In o ther words even if the transition  between two sta tes is restric ted  

they m ust be accessible via a in term ediate set of states. The second condition is known 

as detailed  balance which ensures th a t it is the  B oltzm ann’s probability d istribu tion  th a t 

is generated  during the  MC sim ulations.

Let us consider the m aster equation at equilibrium

T his gives us the transition  probabilities in an equilibrium  Markov process. How­

ever, th is alone is not sufficient to  generate the required probability  d istribu tion  for the 

s ta tes  in which the system  can be found. This is because the  system  may end up in a 

dynam ic equilibrium . W hen th is occurs during the  algorithm  the situation  is described 

as a lim it cycle whereby the  system  will a lte rna te  between a fixed num ber of states, s a t­

isfying the  above equation bu t not necessarily the  correct equilibrium  distribution. The 

second condition (also m entioned above) respected by any M arov process is the  condition 

of detailed balance which ensures th a t such limit cycles are not formed. According to  the

(2 .8)
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condition of detailed balance the following holds true

/V Pr, P { V  /O- (2-'̂ )

The left-hand side of the Eq. (2.9) represents the probability of transition  from the  sta:e 

to  q and the  right-hand side gives the probability of the opposite situation  i.e transition 

from sta te  rj to  î i. By requiring th a t these two probabilities are ecjual, we are ensuring 

th a t the  lim it cycles are not formed during the course of the sim ulation. This is because 

in a lim it cycle when the system  is changing between a fixed num ber of s ta tes  in a cyclic 

m anner, the conditions of detailed balance and ergodicity themselves are violated.

Now, subject to the condition th a t the system  transition  during the course of the 

MC sinuilation observes detailed balance and th a t the B oltzm ann’s d istribu tion  gives the 

desired probability  d istribu tion  of the sta tes the  system  can be fovmd in, the  following 

relation holds true

^  = E l  =  / 2 . 10)
P{7] n)

In practice, the  transition  probabilities can be m anipulated in a few ways to  make the 

algorithm  com putationally  efficient and yet satisfying the conditions of ergodicity and 

detailed balance. For instance one can adjust the transition  rates in the num erator and 

the dinom inator individually preserving the  ratio. Moreover, so as to  satisfy the  condition 

of detailed balance, ^  rj) can be adjusted by m aking an opposite change to  P{ri  —̂ /.i), 

thus ensuring th a t the sum  rule is still obeyed. Finally, P(/u —̂ /i) can be set to  any value 

as the  detailed balance condition will always be satisfied.

T he next step in the  actual realization of the  MC sim ulations is to  split the transition  

probabilities into two com ponents, P{f i  i]) =  rj) ■ A{f i  rj), where, ^(/i rj)

is the likelihood of the algorithm  generating the Markov chain a ttem p ting  to  evolve the 

s ta te  fi to  the  s ta te  q. T he second com ponent A{i^i q) is the acceptance probability.
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which is an inpu t in the sim ulation, indicating w hether a particu lar transition  is accepted 

or rejected. Therefore Eq. (2.10) may be recasted into the following form

v) v) ^2 i n
P{v lA giv ^  /i) '

In principle, the  acceptance probability  can be chosen as any num ber between zero and 

one. Therefore can take any values between zero and infinity and so can g{f_i rj)

and g{r] //). In the  next section we shall discuss the  well established M etropolis 

algorithm  used in choosing these different probability com ponents in a  MC sim ulation.

2.2 .3  M etropo lis  a lgorithm

The algorithm  used for m ost of the  MC calculations presented in this thesis is the M etropo­

lis algorithm  [15], described here for a particu lar set of classical configurations correspond­

ing to  the  displacem ent of th e  individual molecules com prising the  system . A particu la r 

displacem ent configuration is selected a t random  and is then  changed to  a new value based 

on selection probabilities, 7 7) chosen via a random  num ber generator. This ensures

th a t all possible s ta tes  are equally accessible hence,

^  V) _  ^  V) _
P{r] /O A{r] 1̂1)

^2 . 12 )

We should m ention th a t, although in every iteration  during a MC sim ulation only s ta tes  

differing from // by change of a single molecules’ displacem ent (for exam ple) are considered, 

the ergodicity criterion is still m aintained because a path  always exists connecting all 

those possible states. From Eq. (2.12) it can be seen th a t during th e  sim ulation when 

transition ing  from one sta te  to  ano ther the only constrain t is the  ratio  of the ir acceptance 

rates. This allows for considerable flexibility in the algorithm  in particu lar th e  largest 

factor in the acceptance ra tio  can be set to unity  and the o ther factor can be m ade to
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com pensate, i.e.

yl(/i —>■ v )  =  if Eri — E^i >  0, otherwise A{f. i  rj) =  1. (2.13)

Alternatively, during the  course of the  sim ulation, if the new s ta te  has an energy lower 

th an  th a t of the current s ta te  it is always accepted. O therw ise if the new s ta te  has energy 

higher than  th a t of the current s ta te  it is accepted based on the probability given by 

Eq. (2.13). This is a terse description of the  very powerful M etropolis algorithm . The 

M etropolis algorithm  ensures th a t new sta tes are generated on a regular basis and  states 

th a t are potential candidates for the  system  are not rejected, i.e. im portance sam pling is 

always respected.

2.2.4 Ground sta te  techniques

In many scenarios the properties of the system  in the ground s ta te  is required to  be 

sim ulated. In principle, by executing MC sim ulations a t a very low tem pera tu re  the 

ground s ta te  properties of the  system  can be recovered. However, most energy landscapes 

of real system s comprises num erous local minima. Therefore running a MC sim ulation 

at low tem peratu re  will be highly inefficient as the system  may spend a long tim e being 

stuck in one of these local m inim a, instead of probing the actual global mininm m . Wf 

have used two ground s ta te  techniques in th is thesis.

Conjugate gradient

One of the  m ost commonly im plem ented m ethod for energy m inim ization in condensec 

m a tte r physics is the conjugate gradient m ethod. Consider for exam ple the case of variabk 

vectors corresponding to  atom ic displacem ent {Qi } .  In th is algorithm  we minimize the
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energy function by moving the atom positions Qi, as follows:

Qi = Qi  ̂ ^  ̂ with i =  1.......N. (2.14)

Here /?.■ =  F{ql) + ')\h\  ̂ and 7 is updated from the Fletcher-Reeves formula as

h\ is the search direction vector and k is a constant in the simulations. At the beginning 

of calculation (when t =  1), we can make the search direction vector Hq = 0. Therefore in 

conjugate gradient m ethod energy minimization is carried out in the following manner. 

At every iteration for a particular configuration of atoms the potential energy and the net 

forces on all the atoms are evaluated. If every force vanishes the minimum energy solution 

is obtained. If not, atoms are moved according to Eq. (2.14) and Eq. (2.15) respectively 

and the cycle is repeated.

Despite the broad applicability of this method in energy minimization, in many cir­

cumstances conjugate gradient methods may fail as the algorithm can get trapped in 

local minima. This is primarily because in th a t situation the method does not provide 

any option to get out of the said local minima.

Sim ulated  annealing

Simulated Annealing provides a robust procedure of reaching the global minimum of the 

system with complicated energy landscapes. The algorithm evolves the system at hand 

based on a probability th a t depends on the difference in energy between the current state  

and a neighboring state, and also tem perature. In practice, the Metropolis algorithm with 

tem perature being a variable can also be used. The main advantage lies in the essential 

rule governing the j)rocess, a system can move to  a state with higher energy during the

F(qi) ■ F(g‘) (2.15)

where F(gJ) are the forces corresponding to the particular displacement configuration, ql,
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course of the simulation. This ensures th a t the system is not trapped in any local minima 

for a long time as it can escape such a situation by moving out to an intermediary higher 

energy state. Thus, simulated annealing is quite an efficient algorithm in comparison to 

conjugate gradient or the steepest descent method.

2.2.5 Summary

In this section we have discussed the essential theory behind one of the main statistical 

method tha t we will make extensive use of in our computational framework to model 

transport through OSCs. In the next chapter we shall discuss the tight binding model, 

which describes all the different interactions in organic materials. Some of the interac­

tions are associated with classical variables. These classical terms in the tight binding 

Hamiltonian will be evolved via MC simulations to give the finite tem perature properties 

of our system.

We will now shift our focus to the second computational technic}ue used in our nmlti- 

scale modelling of OSCs. This is known as Density Fmictional Theory.

2.3 D en sity  Functional T heory

In solid state theory many im portant electronic structure information of different sys­

tems can be obtained by describing their essential interactions in the form of microscopic 

models. These models require parameters which are generally obtained by some sort of a 

fitting procedure to experimental results or by the use of computationally heavy theoreti­

cal schemes (e.g. many-body techniques). For example, in this thesis we will describe the 

phase diagram and transport properties of OSC using microscopic models in Chapters 3 

and 4.

However, in order to obtain ’’realistic” quantitative information about the electronic 

structure of materials, one requires a self-contained theory tha t does not rely on any fitting
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parameters. Moreover, the route to this should be computationally inexpensive and must

levels of accuracy in predicting material properties. This electronic structure theory is 

known as DFT. Here we shall provide an outline to this powerful and ubiquitous theory.

In quantum mechanics, the Hamiltonian is an operator corresponding to the total 

energy of the system and describes all the interactions in the problem. The Hamiltonian 

operator H,  for an ensemble comprising Ng electrons of mass mg, moving in a potential 

generated by nuclei each with mass A// (and atomic number Zj )  is given by :

describe a broad range of systems from atoms to molecules and also solids, surfaces and 

crystals. Based on pioneering works in the last few decades [20, 21], the solution for such 

a ’’realistic” method lies on a well-tested route, which is known to give results with good

H = 7 ;(r) +  T„(R) +  Vee{r) + l/,„(r, R ) +  V;„(R) (2.16)

where the independent contributions to H  (above) are as follows; 

Electronic Kinetic Energy

(2.17)

Nuclei Kinetic Energy

(2.18)

Electron-Electron Coulomb energy
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Electron-Nuclei Coulomb energy

(2 .20 )

Nuclei-Nuclei Coulomb energy

(2 .2 1 )

Here the coordinates of the zth electron is T; and that of the Ith. nucleus is R /.

The central problem in condensed matter physics is to solve the many-body Schrodinger

Eq. (2.16). In order to make such a problem tractable, several api)roximations need to be 

introduced. Firstly, since electrons and nuclei are bound to eacli other, one may assume

erned by the non-relativistic Schrodinger equation. The j)roblem can be described by the 

time-independent Schrodinger equation as

Here E  is the energy and Vl/ =  ^ ( r i ,  r 2 ....r„, R i, R 2 ....R,i) is the many-body wavefunction 

of the system. Eq. (2.22) is the starting point for all many-body problems in quantum 

mechanics.

The second approximation assumes the following: since nuclei are many times heavier 

than electrons, i.e. Mj  ^  mg, the nuclear dynamics occur at a timescale much longer 

than the corresponding electron dynamics. Accordingly the nuclei can be described as 

classical particles. They thus generate a static potential in which electrons move. The 

total wavefunction 'I' can thus be decomposed into electronic and nuclear constituent

ecjuation for a large number of nuclei and electrons described by the Hamiltonian of,

that they travel at non-relativistic speeds and hence the dynamics of the system is gov-

H'H =  E'i>. (2 .22 )
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components, namely

'I'(r,R) =  V (̂r;R)< (̂R). (2.23)

The equation (2.23) describes the so called Born-Oppenheimer approximation [18]. 

Consequently, the Schrodinger equation can be separated into an electron and a nuclear 

component

He ^(r; R) =  Ee{K) R) = (2.24)

=  iTe  +  Vee +  V e n ) i ’ { r ; K ) ,  (2.25)

and

Hn 0(R) =  E  0(R) = (2.26)

= {Tn + Vnn + E e { K ) ) m ) .  (2-27)

where ■0(r; R) and 0(R) are the electronic and nuclear wavefunctions respectively. Ee{H.) 

is the total electron energy for a fixed nuclei configuration, while E  is the total energy of 

the system.

Thus, in all the DFT calculations described in this thesis the Born-Oppenheimer approx­

imation holds true.

2.3 .1  N o n -in tera ctin g  sy stem s

The Born-Oppenheimer approximation massively simplifies the electronic structure prob­

lem. However, the Schrodinger equation in Eq. (2.24) is far from being solved. For the 

special case when the electron-electron interaction term, Vge, can be neglected, the solu­

tion is trivial. The Hamiltonian of the system will then reduce to a sum of single particle
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H am iltonians, each of them  described by single particle Schrodinger equation as

Here we have introduced a coordinate x„ — (r„, cr„) which includes both  electron position 

and spin respectively and the  index a  in Eq. (2.28) represents the corresponding single 

particle states.

In order to  satisfy Pauli exclusion principle which restric ts the  occupation of a  single 

orbital to  two electrons carrying opposite spins, the non-interacting many particle wave- 

function of the system  can be w ritten  down as an anti-sym m etrized {)roduct or a Slater

determ inan t of Ng occupied single-particle wavefunctions {'ipa}a=i.2  Ne- Thus th is takes

the following form

T he single-particle orbitals can be expressed as products of the spacial (radial) and the  

spin com ponents as =  '4’a{'^n) Moreover, the ground sta te  energy of the

system , Eo, is simply the  sum  of the eigenvalues of the occupied single particle eigenstates.

(2.28)

'0l(Xl) 'i/>l(x2) ... -0l(XyvJ

-02 (Xl )  '02 (X2) ... 02(XivJ

07Ve(Xl) 07Ve(X2) ... IpNe i ^N, )

occupied

(2.29)
Q = 1
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2.3.2 H artree-Fock m ethod

O ne way to  tackle the  electronic s truc tu re  problem is by using the  variational principle [19].

T he variational principle sta tes th a t the ground s ta te  energy of the system , E q, is always 

less th a n  or equal to  the expectation value of H  calculated w ith any tria l wavefunction

Thus, by varying the  tria l wavefunction, xp w ithin the full H ilbert space, until the 

expectation  value of H  is minimized, one can ob ta in  the  wavefunction as well as the 

energy corresponding to  the ground state. T he variational principle can also be expressed 

in the  following functional way:

According to  variational principle, every eigenstate of the Schrodinger equation in Ecj. (2.24) 

is a sta tionary  point of the  functional E[iJ;]. A lternately, the excited sta tes of the system  

are saddle points, while the  ground s ta te  -ipo corresponds to  the absolute minimum.

In the H artree-Fock (HF) m ethod the subspace of the trial w avefunctions is chosen to 

be a single S later determ inant. In order to  solve the  problem, the expectation  value of H  

is m inimized w ith respect to  single-particle orbitals '0a(r). The H artree-Fock equations

ip. M athem atically  th is reads Eo < ( '0 |ff|'0 ).

(2.30)

where

a 1 ....(T yV e

and

(2.32)
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are as follows

ea '0 a ( r )  =  +  ^eiv(r) iAo(r) +

V'a(r) -

where are Lagrange m ultipliers of the orthonorm al single-particle orbitals. These equa­

tions need to  be solved self-consistently. T he first term  in Eq. (2.33) accounts for the 

kinetic energy of the electron and the electron-ion potential, while the final two term s 

outline the electron-electron interaction. Describing in more detail, the second te rm  in 

Eq. (2.33) is the H artree term  which is simply the electrostatic potential arising from a 

charge d istribu tion  of N  electrons. As such, the H artree term  includes the  unphysical 

self-interaction of an electron w ith itself when j  =  i. This is exactly canceled out by the 

fourth term  which is the exchange i)otential. This arises from the Pauli principle which 

imposes the wavefunction to  be anti-synnnetric. In i)ractice, the effect of the exchange 

interaction is to  make electrons w ith like spins to  avoid each other.

The difference between the ground sta te  solution E q and the Hartree-Fock energy 

E h f  is the  correlation energy Ec = E q — Ejip.  This contains quantum  many particle 

contribution to  the to ta l energy which is not accounted for by the Pauli principle. We 

shall discuss in detail the different approxim ate forms of the  correlation energy in the 

coming sections of th is chapter.

Finally, an effective way for in terpreting  the eigenvalues of the HF solution is by 

removing an electron from a particu lar eigenstate w ithout perturb ing  the  rest of the 

system, also commonly recognized as the  vertical ionization energy. As a m a tte r of fact, 

in HF theory the  first ionization energy of the system  is equal to  the negative of the 

orb ital energy of the highest occupied molecular orb ital (HOM O). This is known as the 

K oopm ans’ theorem  [24], which is exactly satisfied for the  HF approach.
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2.3.3 H ohenberg-K ohn theorem

The main ground work behind DFT was laid by Hohenberg and Kohn [20]. The essential 

idea behind DFT, is to have the ground state electronic density n(r) as the principal 

quantity in the theory instead of the complicated many-body wavefunction. Therefore 

in this fashion, the problem is more tractable, as it now depends only on three spacial

variables instead of 3Ng variables of the many-body wavefunction. The electron density

n(r), which is the probability of finding an electron at a position r is given by

n(r) =  y  |V^(xi,X2 ,X3  x„)p  drs drg dr„. (2.34)

The number of electrons in the system is

f  (2.35)

The first Hohenberg-Kohn theorem states that the external potential Ka^i(r) is a unique 

functional of n(r). This means that the electron density determines both the number of 

electrons in the system and the external potential Alternately, this implies that

any ground-state observable of a particular system is uniquely determined by the groimd- 

state electron density n{r). The total energy can therefore be written as a functional of 

the density,

E  =  E[n] = T[n] +  Vee[n] + (2.36)

where T[n] is the functional of the electron kinetic energy, is the functional de­

scribing the electron-electron interactions and is the functional corresponding to

the electron-nuclear interactions.

The second Hohenberg-Kohn theorem is essentially a variational principle, which states 

that the energy functional of Eq. (2.36) can be minimized only for the true ground state
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density no. Mathematically this means that when n ^  r?o then Eq < E[n], where Eq is 

the ground state energy. Therefore assuming that the total energy functional is known 

[i.e. all the components of Eq. (2.36)] the ground state density can be calculated by this 

theorem.

Although the Hohenberg-Kohn theorems are extremely powerful they do not offer a 

procedure to minimize Eq. (2.36), to obtain the ground state density.

2.3 .4  T h e K oh n-S ham  schem e

About one year after the Hohenberg-Kohn theorem was proposed, Kolm and Sham for­

mulated a systematic method to minimize the total energy functional, which forms the 

basis of modern DFT calculations. They established that the fully interacting many- 

body problem can be mapped onto an auxiliary system of non-interacting electrons with 

a requirement tliat the latter one has the same ground state density, and thus the same 

ground state energy, as the interacting system under examination.

The density of a system of non-interacting electrons under the influence of an external 

potential, Vgxt, can be expressed in terms of single-particle wavefunctions, ipi as

N e

i=l

The Kohn-Sham energy functional can now be written down as

where Ts[n] is the kinetic energy of the reference system of non-interacting particles:

The second term in Eq. (2.38) represents the interaction of the electron with the externa.

EKs[n] = Ts[n] +  / n(r)V;^4(r)dr + Eh +  Ê c,I (2.38;

(2.39
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po ten tia l Vext- Next, the  classical Coulomb repulsion (H artree) energy is given by

=  ^ ^ ^ d r d r - .  (2.40)

F inally  E^c is the  exchange and correlation (xc) energy. The xc energy includes all the 

rem aining contribu tions to  the  energy th a t are not already included in the  other term s.

All th e  contribu tions in Eq. (2.38) can be explicitly w ritten  down for any given system 

except for the  final term . Indeed in D FT, the exact functional dependence of the Exc is 

unknow n and m ust be approxim ated. These approxim ations will be discussed in detail in 

the  next subsection.

In order to  ob ta in  the  ground s ta te  energy, Eq. (2.38) m ust be m inimized under the 

condition th a t th e  wavefunctions are normalized, i.e. (■0j|'0j) =  This a lternately  

m eans th a t the  density  is in tegrated  to  the correct num ber of electrons given by Eci- (2.35). 

This gives us the following Kohn-Sham  equation

^K s ^ i(r )  =  Ei (2.41)

H-2

2m.
+ Kff(r)

e

T he effective K ohn-Sham  potential V̂ ff, is essentially the functional derivative of the 

energy functional in Eq. (2.38) w ith respect to  n (r) . It can be broken down as

K ff(r) =  l/ext(r) +  Vh {v) +  Vxc{r), (2.43)

where the  electrosta tic  H artree poten tial is

V H { r )  =  e ‘̂  j  (2.44)
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and the xc potential is

Vi.(r) =  (2^45)

The Kohn-Sham equations must be solved self-consistently with respect to the density 

n (r). In practice, the Kohn-Sham approach used in DFT certainly has its advantage

over Hartree-Fock. Firstly, the Kohn-Sham effective potential is a local operator (at least

for some flavors of DFT) which makes DFT computationally much less expensive than 

Hartree-Fock. Moreover in many cases DFT performs better than Hartree-Fock because, 

although DFT describes correlation effects of a many-body system in an approximate 

fashion, it recovers part of the electron correlation energy, neglected in Hartree-Fock.

E stim ation  o f th e  to ta l energy

The eigenvalues, Si which are introduced in the minimization procedure in Eq. (2.41) and 

Eq. (2.42) are the Lagrange multipliers imposing charge conservation. In the Kohn-Sham 

equation they appear as single-particle energies. In order to obtain the total electronic 

energy we sum up these single particle Kohn-Sham eigenvalues but include the so called, 

double counting corrections. Thus tlie total energy of the system is

+  E ^ c [ n ]  -  /  dr V^c(r)n(r) -  ̂  j  dr(lr’^ .^ |^ ^  ^  (2.46)
i = i  J  \ \

E stim ation  o f th e  forces

As discussed earlier, due to the Born-Oppenheimer approximation the position of the 

atomic nuclei only enters into the electronic Hamiltonian. After solving the Kohn-Sham 

equations for a particular nuclear configuration, the forces acting on the static nuclei can
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be obtained by using the Hellnian-Feynmann theorem [22] as

,2 4̂7)
OR,;

where is the classical nuclear-nuclear interaction energy:

r y  r y  
/ j i / j

N N

Eq. (2.47), can be used to calculate the equilibrium geometry of molecules and solids 

within the Born-Oppenheimer approximation, by changing R, until the forces Fj vanish 

(they are negligible).

In terp reta tion  o f K ohn-Sham  eigenvalues

In the previous section we have outlined tha t the Kohn-Sham scheme is a method to map 

the real many-body problem onto a fictitious system of non-interacting electrons. Strictly 

speaking the ground state electron density obtained by self-consistently solving the Kohn- 

Sham equations do not represent the molecular orbitals of any ’’real” (many electron) 

system. Moreover, £j are merely Lagrange nmltipliers used to enforce the orthonormality

of the Kohn-Sham states. The Koopmans’ theorem [24] is not valid for DFT but instead

Janak ’s theorem [23] is applicable. This establishes tha t the Kohn-Sham eigenvalues Si 

are equal to the derivative of the total energy functional with respect to the occupation, 

fi, of the Kohn-Sham eigenstates xpi, i.e.

e. = I f .  (2.49)
^  J i

The occupations / j  are defined by the following expression

occupied oo

n{v) =  ^  (2.50)
1=1 i = l
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Altliough the Kohn-Shani eigenvalues do not have any physical meaning and are not 

excitation energies, the highest occupied molecular orbital (HOMO) associated with the 

Kohn-Sham eigenvalue jg eq^j^i to the ionization energy (I.E.) of the real system

I.E. =  - e ™ o .  (2.51)

However, the above relation is only true if the xc energy is an exact one. In general I.E. 

can be aways obtained as:

I.E. =  Eo{N,  -  1) -  Eo(iVe), (2.52)

and in a similar manner the electron affinity (E.A.) can be calculated as

E.A.  = E{Ne) -  E{N,  + l) (2.53)

where Eo(Ne) is the ground-state energy of a system of Ne electrons (neutral). The 

resultant band-gap of the real system comprising of Ne electrons is

£ ;rea l ^  ^  j  g  ( 2 .5 4 )

In contrast the Kohn-Sham band gap, E^^  = eLUMO — chomoI^]) differs from the real 

bandgap due to a derivative discontinuity [31, 32, 33]. This is defined as

(5n(r) Ne+6
=  A (2.55)

N e - S

where 5 is an infinitesimal shift of the number of electrons in the system, N^. A is a 

system dependent quantity. The ambiguity due to derivative discontinuity apparent in

^HOMO: Highest Occupied M olecular O rbital and LUMO: Lowest Unoccupied M olecular Orbital.
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the Kohn-Shain bands can be summarized as

^ ro a l  _  ^ K S  ^  ^  >  Q. (2.56)

Thus due to the derivative discontinuity one must be conscious that the DFT band gap 

is incorrect because the Kohn-Sham band gap will never be equal to the real one unless 

A =  0. However it must be said that despite the lack of any physical meaning associated 

to the Kohn-Sham eigenlevels it has been found that in practice they provide an excellent 

description (first approximation) of the experimental band structure for a large number 

of molecules and solids.

DFT can be extended to spin polarized systems [25, 26] by decomposing the charge density 

r)(r), into its spin components

Majority and minority electrons must now satisfy two separate Kohn-Sham equations

2.3.5 Spin polarized D F T

n(r) =  n^(r) -I- n^(r), (2.57)

where n^(r) and n^(r) are respectively the density of the majority and minority electrons. 

Therefore the magnetic density can be defined as

m(r) =  n^(r) — n^(r). (2.58)

(2.59)

where a is the spin index, a = (T,i.)- For situations which causes mixing between the 

majority and minority electrons (for example due to spin-orbit coupling) additional terms
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are needed in the spin i)olarized Hamiltonian (like relativistic corrections and the spin- 

orbit Hamiltonian) [27]. Thus the spin dependent effective Kohn-Sham potential now 

takes the following form

=  V;„(r) .  /  dr +  (2.60)

As evident from Eq. (2.60), for non-relativistic calculations in the absence of an external 

magnetic field, the external potential Vext{'^) and the Hartree potential VV/(r) are not spin 

dependent. The Kohn-Sham equations can also be extended to account for non-collinear 

magnetism with the introduction of two component s[)inor wavefunction. However, the 

materials studied in this thesis do not exhibit non-collinear magnetism under any circum­

stances and hence this will not be discussed any further.

2.3.6 Exchange-correlation functionals

In principle, DFT formalism is exact, i.e. the ground-state total energy and density of 

a fully interacting system can be exactly obtained by minimizing the energy functional. 

However, this would only be true if the exact functional dependence of E^c on n (r) is 

known. In this section we shall discuss the several approaches to an approximate xc 

energy, which work quite well in predicting the properties for a wide variety of materials.

Local spin density approxim ation (LSDA)

The most simple approximation is the local spin density approximation (LSDA). This 

approximation was proposed in the original work of Kohn and Sham and is one of the 

most widely used DFT functionals till date. As evident from Eq. (2.41) and Eq. (2.42), 

the value of also depends on n ( r ’) for all r ’, however LDA assumes th a t it only

depends on n(r), i.e. the density calculated at th a t particular point r. Furtherm ore the 

xc energy is assumed to be the same as th a t of a homogeneous electron gas with the same
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density, which is known exphcitly. Therefore

rL S D A j  drn,(r)e;r(n'(r),n‘ (r)) (2.61)

w here e^°‘"(n1^(r), n^(r)) is the xc energy density of the  uniform (interacting) homogeneous

electron gas, which is known. The exchange part of the  energy is given by the following 

expression

techniques. In general LSDA works really well for system s w ith slowly varying densities, 

for exam ple metals. Moreover, LSDA also gives reasonable results for o ther m aterials 

because of a  system atic error cancellation, nam ely LSDA underestim ates the exchange 

energy, bu t it overestim ates the  correlation one, w ith the two having opposite signs.

num erous strengths and weaknesses of LSDA have been well docum ented in lite ra tu re  [37] 

in particu lar the  s tructu ra l and v ibrational properties such as bond lengths, bond angles

draw back of LSDA is its underestim ation of the bandgap of sem iconductors and insulators. 

In m any cases this can be so drastic  th a t LSDA may predict an unphysical m etallic ground 

s ta te  for sem iconductors and insulators!

G eneralized gradient approxim ation (GGA)

If the density of the system  under investigation is inhomogeneous such as in molecules, 

it is a sensible approach to  describe the xc energy as a function of the density and its 

gradient. In practice, such a semi-local approach is included in the  generalized gradient 

apj)roxim ation (GGA), where the xc energy is a  functional of the density and  its gradient.

(2.62)

while the  correlation part €c can be com puted by using Q uantum  M onte Carlo (QMC)

T he m ost commonly used param eterization for LDA is by Perdew and Zunger [34]. The

and phonon vibrational frequencies are well predicted by the functional. The principal
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For the spin polarized case the energy functional can be expressed as

E ^ ^ ^ [ n \ n ^ ]  = y  d r f(??J(r), n-*'(r), Vr?J(r), V n^(r)). (2.63)

There are several formulations of the GGA and the most commonly utilized one is that 

of Perdew, Burke and Ernzerhof (PBE) [35]. In general, both LDA and GGA fail in 

describing materials with localized electrons for example d and /  electrons. Also both 

LDA and GGA fail in describing systems where Van der Waals (vdW) interactions play 

an im portant role such as in organic materials, which will be investigated in this thesis. 

However, GGA does perform better than LDA in describing chemical bonds by correcting 

the tendency of LDA to overbind molecules.

M eta GGA

There are a number of post GGA methods, which fall in the category of orbital based 

DFT functionals. One such im portant functional is meta-GGA [36] where the xc energy 

functional, in addition to depending on the density and its gradient also depends on the 

Kohn-Sham kinetic energy density. It must be noted th a t there are a few varieties of the 

m eta GGA methods. In this thesis, however, we have not made an extensive use of meta 

GGA. Hence we will keep the discussions limited to this.

Hybrid Functionals

A class of im portant functionals which are especially popular in the chemistry commu­

nity is known as hybrid functionals. The xc energy in such hybrid functionals has the 

following contributions: a fraction from Hartree-Fock exact exchange and the rest from 

DFT exchange, as well as DFT correlation energy according to the general formula

^ h y b r i d  _  (j^^exact +  (1  _  a) ( 2 . 6 4 )
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The constant a is either produced theoretically or obtained by fitting to experimental data. 

The subscripts x  and c in Eq. (2.64) stand respectively for the exchange and correlation 

part of the energy functional. Please note that, strictly speaking because of the fitting 

parameters, hybrid DFT functionals are not in the spirit of ab initio theory. However, 

for a range of different systems hybrid functionals perform better than standard LDA or 

GGA functionals due to a partial self-interation correction.

B 3L Y P  The most im portant hybrid functional is B3LYP where the xc energy is given 

by

E^3Lyp ^  +  0.72AE®*® +  +  0.81^,^^^, (2.65)

where is the LDA exchange, AE^^^  is the exchange of the BeckeSS functional (GGA) 

[37]. £ ’VWN3 E^^^  are Vosko-Wilk-Nusair III [38] and the Lee-Yang-Parr correlation 

[39] functionals, respectively.

PB EO  Another popular hybrid functionals is PBEO [41] where the xc energy is defined 

as

(2.66>

where E ^^^  and are the PBE exchange and correlation energies respectively. This

fvmctional is, in principle, param eter free and no fitting to experimental da ta  is required 

in its derivation.

H S E  Another prominent hybrid functional employed by condensed m atter physicists is 

the HSE06 (Heyd-Scuseria-Ernzerhof) [42] one. This functional is designed to include the 

effect of electron screening in real solids while maintaining com putational efficiency, and 

it is known to work very well for semiconducting systems. In the HSE xc energy the long
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range part of the Hartree-Fock exchange is replaced by the corresponding part obtainec 

from PBE as follows

 ̂ ^  £.PBE,lr,A , ^  ^ P B E ^  ^ 2 .6 7

where Ir and sr denote the long range and short range part of the exchange interactior 

respectively (HF or PBE exchange energy) and n is the range separation. The short anc 

long range part of the exchange interaction are identified by decomposing the Couloml 

kernel [42],

Fiinctionals for strongly correlated system s

For weakly correlated systems LDA and GGA work perfectly in describing their electronic 

structures accurately. However for strongly correlated systems with well localized states 

several DFT functional, exists which imi)rove upon LDA or GGA based methods. Thes' 

include D FT+ Hubbard U [28, 29, 30] and self-interaction correction [34] methods. Sinc" 

the systems investigated in this thesis do not fall into this category, we shall not elaborat-; 

upon these methods any further. Please note that hybrid functionals are also quite suitabb 

for strongly correlated systems because of a partial (or even significant) cancellation d 
the self-interaction error.

2.3.7 Im plem entation o f Van der W aals interactions in D F T

Van der Waals (vdW) interactions are ubiquitous in nature playing a crucial role in detei- 

mining the structure and stability of a wide range of molecules and solids. In particulai, 

vdW interactions or London dispersions have profound importance in organic materials 

Local and semilocal Kohn-Sham DFT, are incapable of including any such long-rangi 

vdW interactions (interactions which have a long tail) and therefore an accurate firs; 

principles description of such interactions is a very challenging problem. This is primariP
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because the vdW  dispersion energy arises from a correlated motion of electrons resulting 

in fluctuating charge distributions and, in principle, must be described by many-electron 

quantum  mechanical techniques. Since many Kohn-Sham DFT functionals approximate 

the correlation energy they fail to accurately describe vdW interactions. Indeed, at present 

vdW  interactions can only be accurately accounted for by high level quantum  chemical 

wavefunction-based methods or by QMC.

The drive for an accurate description of vdW  interactions in DFT to achieve chemical 

accuracy in calculating the binding between molecules as well as in large and complex 

systems, is becoming an enticing research field in itself. The primary intention here is for a 

better description of vdW  interaction in molecules and solids, while simultaneously main­

taining the com putational costs similar to the one as incurred with standard (LDA/GGA) 

DFT calculations. Broadly speaking present day vdW  DFT techniques can be divided 

into three categories:

1. Non local density functionals, which are constructed to capture the pair-wise (two- 

body) part of the vdW  energy [46].

2. Interatomic (pairwise) vdW  energy added to the DFT Kohn-Sham energy in a post 

processing fashion [43, 47].

3. DFT functionals, which have the capacity to describe Coloumb interactions and 

many-body vdW  [48].

We shall now elaborate upon some of the vdW  functionals implemented in DFT, which 

we have made extensive use of in the calculations presented in this thesis.

D FT-D  m ethod of Grimme

A pioneering method to incorporate vdW  interactions in DFT was introduced by Grinmie 

in his seminal works [43, 45]. This consists of adding a semi-empirical dispersion potential
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to the PBE Kohn-Sham DFT energy

•^ G rim m e  -^ 'k S - D F T  “I" - ^ d isp -  (2.68)

Here the vdW interactions are described by a simple pair-wise interatomic force field. The 

dispersion energy E’disp, for periodic systems can be described by the attractive part of 

the Lennard-Jones potential [44] as follows

a...=-I E i: z  pjS t
2=1 i = \  L

where the sums are over all the atoms, Â at, hi the system and all translations of the 

unit cell are L = { h . h . h ) ,  se is a global scaling factor, Cg is the dispersion coefficient 

for the atom pair i — j  (simply referred to as Ce coefficient by the community), is a 

position vector of the atom i after performing L translations of the unit cell along tlie 

lattice vectors. The above equation is not valid for i = j  and for L = 0.

In {)ractice, the terms corresi)onding to the interactions between atoms tha t are further 

apart, i.e. beyond a particular cut-off radius (7?o) contribute to a negligible -Edisp and thus 

can be ignored. Finally, the term /damp(?'''^) is a short range damping function, which 

removes the inherent singularity in Eq. (2.69) at small distances. This damping function 

can be expanded as

Thus, the role of the damping term is to scale the force field so as to minimize the 

contributions from interactions within a typical bonding distance. The combination rules

for Cg and vdW  radii are Cg =  yCgCg and + i?g, respectively.

Most components of the dispersion energy of Eq. (2.69) have a default value already in­

corporated into popular codes like Quantum Espresso, VASP, etc. The method is however
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semi-em pirical as Ecj. (2.69) requires inputs for the elem ent specific coefficients and 

the corresponding vdW  radii B™, where m  is the elem ent index.

G rim nie’s m ethod  works really well for system s having dispersion effects a t m edium  

and short ranges, where conventional D FT  functionals underestim ate the binding energy. 

Indeed G rim m e has proved th is m ethod to  be accurate for a range of molecular system s 

[43]. Most im portan tly  in this procedure no additional com putational costs are incurred 

w ith respect to  the  underlying PB E  calculation.

However th e  m ain drawback of G rim m e’s m ethod is in its em pirical nature . Since 

the param eters do not depend on the underlying electronic s truc tu re  bu t are to  be ob­

tained  by fitting  to  the experim ental Ce coefficients a n d /o r to  HF binding energy data . 

S trictly  speaking G rinnne’s m ethod is not an ab initio  one. These equations [in particu lar 

Eq. (2.69)] forms the basis of many a ttem p ts  to  accurately  include vdW  in teractions in 

D FT.

Tkatchenko and SchefHer (T S) functional

The essential idea behind the work of Tkatchenko and Scheffler [47] is to  ob ta in  th e  Ce 

and vdW  radii from mean-field ground-state electron density for the  specific molecules 

and solids under investigation. Therefore the Ce and vdW  radii are estim ated  a t an ab 

initio  level. In the ir m ethod, the atom ic coefficients are calculated as a functional

of the  electron density of the specific molecule or solid under exam ination and  from a 

reference d a ta  for the  corresponding Ce coefficients for th e  free atom s. T hereafter, the  

molecular C™°' coefficients are calculated by sum m ing the various atom ic Cg‘°‘" coefficient 

contributions. T he au thors have shown th a t the ir estim ation  of CJf°' for a range of different 

system s agree qu ite  well w ith those obtained from experim ents in the  DOSD'^ database . 

The systems te sted  also include w ater molecules, a range of H2 bonded system s, as well as 

graphene. This is a  recentely im plem ented vdW  functional, therefore tests are still being 

^Dipole Oscillator S trength  D istribution.
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perform ed for different m olecular crystals and layered m aterials

For system s where short range vdW  interactions are prevalent, a Fermi type dam ping 

factor is introduced sim ilar to  th a t proposed by Grimme work in Ecj 2.70. Thus th e  vdW 

radius of an atom  in a molecular system  can be related to  th a t of the free atom  (which 

is known) by the  concept of an effective atom ic volume. Finally, the dispersion energy 

term  sim ilar to  th a t in Ecj. (2.69) is added to  an underlying K ohn-Sham  D FT  energy 

functional.

Van der Waals density functional (vdW -DF)

A nother popular im plem entation of vdW  interactions in D FT, which ensures a good 

perform ance in term s of balancing speed, accuracy and scalability is a non-local correlation 

functional nam ed van der W aals density functional (vdW -DF) [46], This m ethod includes 

long range dispersion effects as a pertu rba tion  to the D FT correlation energy. This 

correction is a function of the  density. The standard  D FT functional used w ithin vdW -D F, 

is the revised Perdew-Burke-Erzenhoff functional (revPBE)'* [49]. U nfortunately the  use 

of revPB E  as the underlying D FT  functional gives too nuich repulsion a t short distances. 

There are proposals to  replace revPB E by Hartree-Fock and PW 86 functionals, which 

improves vdW -D F inter-species separation distances but a t the cost of overbinding the 

entities, in com parison to  Q uantum  C hem istry wavefunction-based (CCSD calculations).

D espite these problem s the  vdW -D F functional is a true ab initio, universal, and widely 

accepted general-purpose functional. It is capable of describing quantita tively  the  weak 

dispersion interactions, w ithout com prom ising the accuracy of the best GGA functionals 

for stronger ionic, covalent as well as metallic bonds. Moreover, the vdW -D F functional 

has been successful in describing the  properties of a diverse group of m aterials, from 

molecules to  bulk polym ers as well as the problem of molecules on surfaces and also in 

describing accurately the cohesive energies of layer com pounds.

'^There are also versions of vdW-DF with PBE, PBEsol, etc.



53 C hap ter 2

2.3.8 Ingredients in solving th e K ohn-Sham  equations

In the  previous sections we have introduced th e  central idea behind Kohn-Sham  D FT  as 

well as discussed the different flavors of xc functionals. In this section we shall ta lk  abou t 

th e  ingredients th a t are required to  solve the said K ohn-Sham  problem.

B a s is  S e t

In order to  solve the  K ohn-Sham  equations, the  corresponding eigenstates m ust be ex­

panded over a finite num ber of basis functions. T he choice of the basis can be plenty 

ranging from plane-waves to  local orbitals or linearized Muffin-Tin orbitals. Let us dis­

cuss the essential concepts of the two m ost commonly used classes of basis sets in m odern 

D FT  codes.

P la n e -w a v e  b a s is  s e t  The system  wavefunctions and operators are described as a 

Fourier expansion over a set of plane-waves

=  (2 .71 )
k

T hus the concept behind the  application of plane-wave basis set is very simple. T he desired 

num ber of k  points are chosen such th a t the  wavefunctions are accurately represented. In
t 2  [ l^ |2

practice, this is done by deciding a value for the kinetic energy cutt-off, E c u t =  ~2m ’ ’̂ 'hich 

establishes th e  m axim um  value for the  kinetic energy associated to  any plane-wave th a t is 

chosen in the  expansion. As one would expect, a plane-wave basis set is most efficient for 

periodic solids. However, in system s w ith highly localized electrons^, a very hefty E c u t is 

required to  achieve convergence. Thus, the com putational cost incurred using plane-wave 

basis sets will be large in th is case. Moreover, in system s such as isolated molecules, 

[)lane-waves will also be ineffecient as they cannot describe vacuum  regions which have a 

vanishingly small charge density.

^Heiice a large kinetic energy.
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Linear com bination of atom ic orbitals (LCAO) Another popular strategy is to 

expand the wavefunction over a linear combination of localized atomic-like orbitals. This 

is illustrated by the following equation

one can excellently describe localized systems as well as molecules and clusters. Moreove' 

the number of basis functions required for the calculation are usually small. The onh 

disadvantage of using localized atomic-like orbitals is that unlike plane-waves there is no 

a single parameter with which the convergence of the DFT calculation can be tuned.

Furthermore, it is common to represent the different valence orbitals with more thai 

one basis function (each of which can inturn be composed of a linear combination cf 

localized functions). This is known as the split valence scheme [50] which characterizes 

LCAO type basis sets. Some examples are as follows, single Zeta-C (SZ) basis set has 

single radial function per angular momentum channel. Double Zeta-C (DZ) basis set has 

two radial function per angular momentum channel. There are also many other ways 

to introduce multiple zetas. High angular momenta radial functions are generated b/ 

polarizing the radial orbitals with an electric field.

Pseudopotentials

The electrons in atoms constituting molecules and solids can be classified into two cat­

egories, namely valence and core electrons. The core electrons are strongly bound t) 

the nuclei and form close shells. They are only slightly affected by the changes in thi 

chemical environment. Hence, the nuclear and core potentials can be replaced by a singb 

effective potential namely pseudopotential, which describes the resultant effect of the con 

on the valence electrons. The principal advantage of pseudopotentials is that it massivel/

(2.72
n

where 0„(r) are radial functions with a finite radius beyond which they are strictly zero 

These could be Slater-type orbitals or Gaussian functions. By using localized basis se.
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reduces the luim ber of electronic sta tes in the calculation.

” Ab initio" pesudopotentials can be obtained by inverting the free atom  Schrodinger

pseudo

pseudo

Figure 2.2: T he pseudo (red) and all-electron (blue) wavefunctions are illustrated  in the 
up{)er part of the graph as a function of the radius r  of a specific atom . T he corresponding 
Coloumb poten tial of the  nucleus (blue) and pseudopotential (red) are shown in the lower 
half. The real and pseudo wavefunctions and potentials m atch above a  certain  cutoff 
radius re-

c(iuation for a particu lar electronic configuration and enforcing the pseudo wavefunction

to coincide w ith the true  valence wavefunction® beyond a centain cut-off radius, r  >

[51] (see Fig. 2.2). Moreover the  pseudopotential also m atches the all-electron potential

beyond Tc- The pseudo-wavefunction is a nodeless function (Fig. 2.2), which has the  same

norm  as the all-electron wavefunction, i.e. ~  Here I is

the angular m om entum  quan tum  num ber for the  particu lar electronic s ta te  in question.

Also th e  pseudo-energy eigenvalues m ust m atch w ith the  valence eigenvalues.

In principle, the pseudopotentials constructed  for an atom ic species m ust api)ropriately

describe the core of th a t {)articular atom  in a range of different atom s, molecules as well

as solids. This property  of the pseudopotential is known as its transferability, which is

an im portan t condition when judging the (}uality of pseudopotentials used in a particu lar 

®Also referred to as all-electron wavefunction.
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DFT calculation. In order to satisfy this condition, the pseudoi)otential must be semi­

local, i.e. to accurately represent the combined effect of the nucleus and the core electrons, 

the ps(;udopotential nmst be acting differently on different angular momentum states /, m 

(as they are scattered differently). There are numerous ways how this can be ensured for 

pseudopotentials and the most im portant method is the one worked out by Kleinman and 

Bylander [52],

In plane-wave codes, sometimes the so called ultra-soft pseudopotentials are also used 

[202]. These produce much smoother (softer) {)seudo-wavefunctions and hence fewer 

plane-waves are needed to represent the charge density. This is achieved by releasing 

the norm conservation constraint and therefore DFT calculations performed using ultra 

soft pseudos are computationally lighter.

A'-poiut Sam pling

In order to obtain the ground state  energy in the Kohn-Sham scheme a real space integral 

needs to be solved, and the extent of the real space is in princij)le infinite. However by 

the virtue of Bloch theorem any real space integral can be replaced l)y an integral over 

reciprocal space, which is finite in the first Bruillion Zone (BZ). However this integral 

nmst be done over an infinite niunber of points constituting the reciprocal point, known 

as A'-points. Since the electron wavefunction does not change a lot in the /c-space, this 

can be taken into our advantage by replacing the integral over infinite number of A:-points 

by a  summation over a finite mesh of A:-points. Let us consider an integration function 

/ ( r ) ,  which upon integration yields the density or total energy. The integration can be 

com puted as a discrete sum as

volume, and Wj are the weight factors. Eq. (2.73), requires tha t the BZ must be accurately

j

(2.73)

where F{k)  is the Fourier transform of the integration function / ( r ) ,  V  is the unit cell
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represented by the /c-mesh chosen, hence in every D FT  calculation one m ust ensure th a t 

the  to ta l energy is fairly converged w ith respect to  the  num ber of fc-points.

Hence, the position of the /c-points m ust be carefully chosen for a particu lar system . In 

th is work we employ the  M onkhorst-Pack m ethod [56], where the A:-points are d istribu ted  

homogeneously in the BZ and can be divided into rows and  columns

ki — ^l ibi  +  X2ib2 +  x^ih^ (2-74)

where 6 1 , 6 2  and 6 3  are the  reciprocal vectors and Xij =  Here k  are the length of the 

reci[)rocal la ttice vectors and rij are the num ber of special points in the  set. T his results 

in a uniform sam pling of the /c-space used in the sum m ations.

2.3 .9  D F T  cod es

For m ost of the  results presented in th is thesis th e  plane-wave code Q uan tum  Esi>resso 

[201] is used. In Q uantum  Espresso we have m ade extensive use of bo th  norm  cons(’rving 

and ultrasoft pseudopotentials. Additionally, calculations are also perform ed using the 

G aussian 09 [199] code as well as SIESTA [55], b o th  of which im plem ent localized basis 

sets and norm  conserving pseudopotentials. Furtherm ore, some of the D FT  calculations 

presented in this thesis are also perform ed by using the  FH I-aim s code [168], which is 

an all-electron code w ith no pesudopotentials. We shall describe in detail, the  si)ecific 

param eters used for every D FT  calculation presented in th is thesis, whenever appropriate.

2.3 .10  S p in -orb it in teraction s in D F T : an on -site  ap p rox im ation

Spin-orbit coupling is one of the mechanisms by which the  itinerant carrie r’s spin polar­

ization is lost as it travels through a sem iconductor. Since the central point of our work 

is to  investigate the spin tran sp o rt properties of OSCs, a t several instances during  the 

course of this thesis we have made use of spin-orbit im plem entation in D FT  [53] to  check
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its effect on the electronic structu re  of the  OSC. We shall discuss briefly in this sectioi 

as to  how spin-orbit in teractions are incorporated in D FT.

Kleinm an and B ylander have shown th a t the generation of non-relativistic pseud) 

poten tials can be extended to  account for relativistic effects, by solving the  Dirac equatio i 

[54]. Relativistic pseudopotentials thus depend on the to ta l angular m om entum  j  =  I r t ] ,  

and can be w ritten  down as:

^  = X! 1̂ ’ ^ j \ -  (2-70
j ,mj

The above pseudopotential includes all the  relativistic corrections and \ j ,  rrij) are the  to td  

angular m om entum  states. T he above expression can be reform ulated into the following 

form, in term s of the real spherical harmonics

v ;,,. =  V ';,;, +  =  J ]  +  v r L . s  \i, m ) { i , m \, (2.7()

where

vr = ^ i ( '  +  m+M2 + 14-1/2I, (2.7;)

(2^7!)

Here Vi^  accounts for scalar non-relativistic pseudopotential plus relativistic correction;, 

while is the  corresponding relativistic spin-orbit correction.

Furtherm ore, |/, M )  are the  real spherical harm onics obtained from the  correspondirg 

complex ones |/ ,m ) (please refer to  A ppendix 1 for more details). Here I and m  aie 

respectively the more fam iliar angular m om entum  and m agnetic ciuantum num bers, fron 

atom ic physics.
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Finally, the sj)in-orbit corrected Kohn-Sham equation can be w ritten as

=  T,,„, +  V„ +  V” , +  l /“ , +  V” ,- (2-79)

W hen the above Kohn-Sham equation is solved self-consistently in the linear combination 

of atomic orbital (LCAO) scheme over a set of localized pseudoatomic (relativistic) orbitals 

\4>i), the spin-orbit part will be Vf° = This has an angular component, which

can be obtained in a similar fashion as shown in Appendix A. Moreover, Vf° also has a 

radial part for which only the on-site terms are considered [53]. The authors [53] claim 

to get the correct results for the overall bandstructure and splittings for materials with 

strong spin-orbit coupling (i.e. group IV and III-IV semiconductors and 5rf metals).

2.4 Sum m ary o f th is chapter

In this chapter we have provided the basic groundwork behind two very powerful methods 

th a t are used in our nuiltiscale approach to model OSCs. These include DFT which is 

used to extract the ab imtio  parameters in a model for OSCs. Furthermore we have also 

discussed MC techniques, which are used to evolve the model and thereafter compute 

the finite tem perature statistical average of the observable. Please note tha t the exact 

procedure with which we can extract the ab initio information for a model describing 

OSCs will be discussed in Chapter 5 and 6 of this chapter.
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Towards m odelling Organic 

Semiconductors: first steps

7T— conjugated m olecules

Amongst the various possible materials for organic spintronics, 7r-conjugated OSC molecules 

appear very appealing [70, 71]. This is because of their very long and relatively tem per­

ature independent spin relaxation time and their ability to form good interfaces with 

metal electrodes when incorporated in spin valve like devices [181]. Some prominent 

7T—conjugated OSC molecules and their chemical and structural units were listed in the 

previous section. The most relevant structural feature of such molecules is their planar 

shape. The 7r-electron wavefunction distends over the molecular plane and it can easily 

interact with the wavefunction of adjacent molecules due to the conjugation. Therefore a 

face-to-face molecular configuration is usually stabilized through tt-tt bonding and diffu­

sive Van der Waals interaction. This leads to a molecular stacking arrangement resulting 

in the formation of a low dimensional lattice [73]. Because of this peculiar structural 

conformation many of the 7r-conjugated organic molecular crystals can be described by 

simplified one-dimensional (ID) model Hamiltonians [180, 72, 218].

60
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In this section we explore a minimal model describing the principal interactions in 

organic 7r-conjugated polymers. This is based on the repulsive Hubbard model incorpo­

rating both electron-phonon (el-ph) coupling and hyperfine interaction. It is solved for 

finite molecules by using a combination of energy minimization techniques and MC simu­

lations over a vast region of its param eter space. Indeed, in the work presented in the rest 

of this chapter the detailed phase diagram of the model is explored and the effect of all 

the Hamiltonian parameters on the property of the system is explored. This is the very 

first step in the computational machinery which we have developed in the work presented 

in this thesis. It involves understanding in detail the different aspects of the tight binding 

model rej)resenting OSCs. In doing so, intriguingly we find tha t the interplay between 

on-site Coulomb repulsion and electron-phonon coupling, leading to Peierls distortion, 

can be resj^onsible for spin crossover transition in small-sized molecules.

Spin Crossover transitions are an interesting, intriguing and a crucial spintronic phe­

nomenon [78, 79, 80]. This is because an im portant aspect for the successful integrat ion of 

organic materials in magnetic memories and in magnetic switching devices is the feasibil­

ity of m anipulating the spin orientation in the organic media. It is difficult to achieve this 

in non-magnetic molecules because of the tiny non-equilibrium spin [)opulation originat­

ing from spin injection (little spins are inserted). Furthermore, the standard techniques 

for manipulation used in inorganic semiconductors, for example optical methods, are in­

effective because of the weak spin-orbit interaction. A more promising option is th a t of 

manipulating the internal spin degrees of freedom of the organic medium, when this is 

magnetic. Intriguingly there is a vast class of molecules, generally known as spin crossover 

compounds, whose spin state can be changed from low spin to high spin by an external 

perturbation [74]. Since the crossover transition is entropy driven, it is most typically 

achieved by increasing the tem perature, although also light, pressure and electro-chemical 

redox reactions can all produce it. Most recently the possibility of spin crossover driven 

by static electric fields has been proposed theoretically [75, 76, 77].
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Even more interesting is the  fact th a t spin crossover molecules can be prepared in a 

single crystal form in either one, two or three dimensions [81]. In these structu res the 

active m ononuclear spin crossover building blocks [usually Fe(II)] are connected via hy­

drogen bonding, tt-tt stacking or bridging ligands. As a consequence of such an interaction 

the  spin crossover properties of the so-made polymers differ from th a t of the constituent 

single molecules. This class of m aterials then appears to  be an excellent platform  for 

constructing  spin-devices, which incorporate an element of nmlti-functionality.

In th e  following subsection we shall provide the com putational details used by us to 

m odel OSCs.

3.1 C om putational m ethods

We consider a single-site tigh t binding model for a ID  lattice, including repulsive H ubbard 

in teraction and both  el-ph and hyperhne interaction. This is described by the  following 

H am iltonian

H [tij +  a{qi -  Qj)](clcj^ + +
ia  i j

+ n^^nil + Jh  Y  ■ [4a(<?«/3)ci/?] +  ~ k  ^  {q̂  -  Qj f ,  (3.1)
i ia(3 i ,j

where c|^(cjo.) denotes the creation (annihilation) operator for an electron a t site i with 

spin a, tier =  e is the on-site energy and  is the transfer integral for a uniform undistorted  

lattice. In this chapter we consider only nearest neighbor hopping, i.e. t^j = t for i = j  — 1 

and tij =  0 for any o ther ( i , j )  pair. T he other microscopic param eters of the model are the 

el-ph coupling param eter, a,  the H ubbard repulsion strength , U,  the hyperfine exchange 

J h , and the  elastic constant, k.  Thus, the second term  of the Ham iltonian, in addition 

to  electron hopping, describes the el-ph coupling, w ith Qi being a set of classical vectors 

representing the atom ic displacem ent of site i (we consider ID  longitudinal m otion only).
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The third term is the standard on-site Hubbard repulsion, while the fourth one describes 

a Heisenberg-like interaction between the electron spins, and a set of classical

vectors, , representing the nuclear spins. Finally the last term is a classical elastic 

energy.

In what follows we will express all energy related quantities (including the temper­

ature) as a function of t, which sets the energy scale of the problem. The on-site en­

ergy is taken to be zero and k is 5 t/A^.  Note that for t ~2.5 eV this corresponds 

to k =  12.5 eV/A”"̂, which is in between the value for the H2 molecule and that of Au 

monoatomic chains [85]. Also it is important to note that k > 5t/ i s  a value conmionly 

used in recent literature about transport in organic polymers [72, 86].

Please note that Eq. (3.1) is valid in the limit of fast moving electrons such that 

the nuclear kinetic energy is much smaller than the electronic kinetic energy t. This is 

the assumption in our approach and we will justify it with the speed of nuclear motions 

for realistic OSCs in Chapter 5. Furthermore, in Ecj. (3.1) we have only considered the 

Peierl’s (non-local) el-ph coupling and have ignored Holstein’s (local) el-ph coupling. We 

will provide a quantitative estimation for these el-ph interaction strengths in Chapter 5 

for rubrene and justify the exclusion of Holstein el-ph coupling in the model Hamiltonian.

We wish to put our work in this chapter in context with previously published literature 

for the Hubbard-Peierls model, which is that described by equation (3.1), when one ex­

cludes the hyperfine interaction. The ground state of such a model for the infinite ID case, 

sometimes including a quantum description of the phonons (Holstein-Hubbard model), has 

been extensively investigated with either variational methods [87], density-matrix renor­

malization group [88, 89], quantum Monte Carlo [90] and exact diagonalization [91]. In all 

these studies the attention has been focussed on describing the various electronic phases 

at zero temperature and for selected filling factors (mostly half-filling and ciuarter-filling) 

in the thermodynamic limit (L ^  00 and N  oc, with N / L  = n). Finite temperature 

calculations are much less abundant and usually have looked only at a small region of the
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param eter space [92]. This is mainly coimected to the significant computational overheacs 

associated to performing finite-temperature many-body calculations.

In general a ’’site” can be interpreted either as a real atom or as a molecular unt 

forming a conjugated compound. In both cases our description is limited only to Vc- 

lence electrons, which occupy either atomic or molecular orbitals. Organic magnets suci 

as bis(benzeue)vanadium-tetracyanoethylene [V(TCNE)j.] [16], polymeric spin crossova- 

compounds [81], charge transfer complexes like tetrathiafulvalene (TTF) derivatives [71] 

and OSC single crystals like rubrene are among the few examples where our model cai 

be applied.

In all the calculations presented in this chapter, we c'onsider only the half-filling case 

(one electron per site) so th a t the model exhibits an insulating behavior at T  =  0 for ai 

undistorted infinite chain. Our interest, however, is in finite chains of different lengths, i, 

mimicking real finite molecules. In particular the simulations presented here will be f(r 

the cases L =  10 and L =  20. Our approach consists in replacing the Hubbard term witi 

its unrestricted mean-field approximation [83] and then in solving the Hamiltonian sel- 

consistently for different lattice displacements ■ Energy minimization is performel 

by conjugate gradient over {qi} and further verified by additional simulated annealirg 

[84]. The bond lengths, Xj, are calculated from the ground state displacements as Xj = 

d +  — Qi, where d is the equilibrium bond distance. The main observables calculated

are the dimerization parameter, D, and the local magnetic moment per site, nii. Thefe 

are defined respectively in Eq. (3.2) and Eq. (3.3)

N - 2

D — \Xi — Xi+i| +  [Xj_|_i — Xj_|_2| (3.10
i= l

mi =  (nj -  n ‘) . (3.;)

^Thus the electron-electron interaction term in the Hamiltonian reduces to a quadratic problem insteid 
of a quartic one, in respect to the particles’ creation and annihilation operators. Please note that tie 
number of states in the solution are 2L, with the prefactor 2 coming from spins.
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Note th a t in Eq. (3.3) is the electron spin density at site i, which is calculated as the
occupied

diagonal m atrix elements of the density matrix, p — { |^ n )(^ n | i3En_i}, where En
n = l

and are respectively n-th electronic eigenvalues and eigenvectors. Our results are 

then plotted in a phase-diagram like form, where the different phases are presented as a 

function of a  and U.

For finite tem perature simulations we consider the system described by the Hamilto­

nian of Eq. (3.1) and evolve the classical dynamical variables {q^} and { S ^ }  by using the 

standard Metropolis algorithm [15]. Note th a t since Jh t [93] the hyperfine interaction 

has little effect on the a-U phase diagram, so tha t in what follows in this chapter we will 

neglect it unless otherwise indicated. As such, the only classical dynamical variables are 

the atomic displacements {qi}- In the Metropolis algorithm the acceptance probability 

of a new state is unity if the new configuration has an energy lower than th a t of the old
A G

configuration. Otherwise it is given by the Boltzmann factor e where AG is the

difference in the Gibbs free energy between the old and new configuration. By using the 

grand-canonical ensemble the Gibbs free energy G can be written as

n = l  i,j

where the chemical potential // is updated self-consistently from

^  e0[En({qr})-n]  +  1 ’

n

with /3 =  being the inverse tem perature and N  the total number of electrons (Â  =  10 

and 20 respectively for L =  10 and L = 20). G and /i are computed at each MC step 

during the simulations. For every value of {ct/t, U/t)  and each tem perature the system 

is allowed to reach equilibrium. Then both D  and rrii are calculated over several million 

MC steps. Such a procedure is incorporated in all the MC simulations presented in the 

entire thesis.
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Here we took a simphfied approach, by solving the electronic part of the problem at a 

niean-field level. This allows us to explore conveniently the wide param eter space of the 

model at different temperatures. Im portantly we expect that our main result, namely the 

spin-crossover transition occurring in a particular region of the param eter space, will be 

little affected by a more rigorous treatm ent of electron correlation. As we will demonstrate 

in the next section this is an entropy-driven transition and no significant changes in the 

entropy are forecasted as the result of including many-body corrections over our mean field 

electronic structure. Furthermore we wish to remark here that all calculations presented 

in this chapter are for relatively small (up to 20 sites) molecules, so th a t we do not expect 

to recover the results for the infinite systems. Such small molecules however are closer to 

real ID spin crossover polymers so tha t our theoretical analysis applies directly only to 

th a t specific class of materials.

3.1.1 T ight b inding H am ilton ian  matrix: an exam p le

Before we explore the phase diagram of the model, let us explicitly write down the Hamil­

tonian m atrix for a chain of only two atoms (L =  2). This is intended to be a clarification 

to the reader, so as to better understand all the terms in the Hamiltonian Eq. (3.1). Each 

atom i is represented by a tight binding basis |i^), where i is the atom index, which ranges 

from 1 — 2 in this case and a is the spin index, which can be t  or | .  Furthermore, e, t, 

a  and U are respectively the on-site energy, transfer integral, el-ph interaction constant 

and el-el interaction, which are assumed to be the same for all the atoms. Moreover, 

Qi = Qi (only longitudinal phonons) and Sy^, are the vectors representing

respectively the displacement and nuclear spins of each atom i.

For the sake of simplicity, we will first write down the Hamiltonian m atrix for the 

non-spin mixing (nsm) part of the tight binding Hamiltonian. This will include all the 

terms in Eq. (3.1) apart from the hyperfine interaction term. The Hamiltonian m atrix 

w ritten in the basis of {|1^), |2^) , |1^), 12̂ -)} is :
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0

0

0

0

 ̂ e +  t /  • 77-1 t +  a -  {qi -  q2) ^
t +  a  • ((?i -  92) e +  t /  • 77.2

0 0 e +  [ /  ■ 77.j t  +  a  • (g i -  92)

y 0 0 t  a  • [qi — Q2 ) e +  • 77-2 J

Notice th a t the Hamiltonian m atrix elements, which mix spins of different kinds are 

zero. Now, the spin mixing (sm) part of the Hamiltonian, which will be given only by the 

hyperfine interaction term  in Eq. (3.1), written in the same basis set as above takes the 

following form

- J h  •

0

.Jn ■ (5,̂ 1 -  5̂ ,^) 

0

0

- . / / /  • 5^2 

0

■hi • {S^2 -

0

Jn ■ 

0

J„  • (5^2 +  iS^,)

Jh ■ z2 /

The full Hamiltonian matrix given by Eq. (3.1) is

(3.6)

Thus the Hamiltonian m atrix for our model can be generalized for all L.

3.2 Phase diagram of the m odel 

3.2.1 Ground state

Let us begin our discussion by investigating the a-U  phase diagram at T  =  0 for a finite 

chain of length L =  10, which is presented in Fig. 3.1. This is populated by four different
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Figure 3.1; a-U  phase diagram at T  =  0 for a finite chain of length L = 10 for the ID 
model polymer investigated. In the left panel we present the schematic phase diagram, 
while in the right panel the dinierization parameter, D,  as a function of a / t  and U/t.

phases characterized by the different combined structural and magnetic properties of the 

chain. In particular there are two magnetic states and tw'O geometrical configurations. 

For small a / t  and U/t  the chains are undistorted (the atomic spacing is approximately 

uniform throughout the chain) and in a non-spin polarized (nSP) state. We denote this 

phase as nSP-undistorted. As U/t  increases eventually a spin polarized solution develops. 

This is the one expected from the mean field Hubbard model at half-filling, where local 

moments form at each atomic site, but their orientation alternates along the chain. Such 

a spin polarized (SP) phase may or may not be accompanied by a structural distortion, 

depending on the value of a/ t .  In general however there is a vast region of the model 

param eter space, where no significant distortion appears for the SP spin state. We denote 

this phase as SP-undistorted.

As a / t  increases for moderate U/ t  the system progressively developed a Peierls in­

stability and makes a transition to a geometry where long bond distances alternate to 

short ones. This dimerized phase, expected for the non-interacting case, remains non­

spin polarized (nSP-dimerized) for small U/t  but can coexist with a SP solution for a 

significant range of parameter. In sunmiary and as expected the phase diagram of the fi­

nite size molecule is characterized by a competition between the on-site repulsion, driving 

the magnetic instability, and the el-ph coupling, driving the Peierls distortion.

nSP
dimerized

nSP
undistortec undistorted
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Figure 3.2: Detailed investigation of the T  =  0 phase boundary. In the left-hand side 
panel we present the staggered magnetization parameter M  vs (U/t ,Q/t).  In right-hand 
side one we show the bond length as a function of site index for U = 0.4t and two different 
values of a  (top panel), and for a  =  l .2t  and two different values of U (bottom  panel). 
All the calculations shown here are performed for a ten-site long chain and at T  =  0.

In the discussion we have assigned the phase boundary of the magnetic transition to 

the condition ^  ^  0 [note tha t for this particular situation, where the local atomic

spin polarization alternates in sign along the chain, the quantity coincides with

the more frequently used definition of staggered magnetization M  = — In

contrast assigning the phase boundary to the Peierls transition is more complicated since 

D changes continuously upon increasing a. Thus we have used the operational definition 

of placing the {)hase boundaries at D = 0.17, which is interpreted as representative of 

strong dinierization. The complete evolution of D as a function oi U/ t  and a / t i s  presented 

in the right hand side panel of Fig. 3.1. The figure clearly reveals the interplay between 

el-ph coupling and Coulomb repulsion. In fact D  grows almost linearly with a / t  for small 

L'/t but then is drastically reduced as U/ t  grows.

Further evidence for the various phase transitions is provided in Fig. 3.2, where we 

show the staggered magnetization, M,  as a function of U/t  and a / t  (left-hand side panel) 

and the bond length distribution for a few values of the param eter space (right-hand 

panel). In both cases the calculations arc for a ten-site long chain. From the figure one 

can inmiediately note tha t the magnetic phase boundary appears very sharp. In fact.
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at the phase boundary M  departs abruptly from M  = 0, the value that characterizes 

the nSP solution. In contrast the bond-length distribution changes gradually with U and 

a. For instance one can note th a t for the same a = 1.2t the distortion for U = 0.4i is 

about twice as large as th a t for U = 2At  (see lower right panel of Fig. 3.2). Likewise for 

fixed U = OAt the distortion is significant for a  = 1.2t and decreases when a  is reduced. 

However, even for the very small value of a  =  0.04^ a small distortion can still be detected 

(see top right panel of Fig. 3.2).

3.2.2 F in ite tem perature phase diagram

We now move to study the finite tem perature properties of our model. These are simi- 

marized in Fig. 3.3, where we present the a-U  phase diagram for L  =  10 and L =  20 site 

long molecules, each at two representative temperatures, resi)ectively (3 =  200 eV“  ̂ and 

400 eV“ ' (these correspond respectively to T  =  0.0021 and 0.0011 or, T  =  58 K and 29 K 

for t = 2.5 eV).

The most im portant feature in each of the finite tem perature plots is the complete 

absence of a structural phase transition. This means th a t in general the system does not 

dimerize any longer as the tem perature is increased. The dimerization is instead replaced 

by a general increase in all the bond lengths and by a random distribution of the various 

bonds along the chain.

More details about the structure of the chains at finite tem perature can be found in 

the right-hand side panel of Fig. 3.3, which show the quantity D  [defined in Eq. (3.2)] as 

a function of U /t  and a / t  at T  =  O.OOli. Note th a t at finite tem perature the quantity D  

is a measure of the disorder in the bond distances of the chain as the thermal vibrations 

onset. As such D  is maximum at high values of the el-ph coupling and low U /t  but falls 

rapidly as U /t  increases.

The second most striking feature in both the finite tem perature a-U  phase diagrams 

is the movement of the nS P /S P  phase boundary towards lower U /t a,s the tem perature
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Figure 3.3: Finite temperature a-U phase diagram for the model ID polymers investi­
gated. In the left-hand side and middle panels we present the schematic phase diagrams 
for L =  10 and L =  20 chains respectively, each at two different temperatures, T =  0.0011 
and T  =  0.002 t. Note that now there are only two phases (nSP and SP) and there is no 
longer a distorted (Peierls) geometrical configuration. In the picture we also report the 
nSP/SP phase boundary for the T = 0 case. Thus in both the finite temperature phase 
diagrams, the region comprised between the solid black line and either the solid red, or 
the dashed blue line is characterized by a nSP to SP phase transition (spin crossover - 
SC - region) as a function of temperature. In the right-hand side panel we present the 
parameter D as & function of a / t  and U/t  for the L — 10 site chain (at T  = 0.001 t), 
which indicates the degree of disorder in the bond distances at finite temperature.

increases. This essentially means that, as the temperature grows, it takes less on-site 

Coulomb interaction to drive the system towards a magnetic instability. A similar effect 

is also found as a function of the chain length. In fact we note a general expansion of the 

SP phase at the expenses of the others as the chain gets larger (from L = 10 to L =  20). 

We further explore the evolution of the phase boundary as a function of temperature 

in figure 3.4, where we present the critical U value, Uq, at which the spin polarized 

solution for L =  10 develops. This effectively represents the position of the nSP/SP 

phase boundary. In particular Uq is plotted as a function of the temperature, T, and for 

three different el-ph strengths a/ t .  In general we find that the nSP/SP phase boundary 

moves in response to the disappearing of the distorted phase. Thus for the lower value 

of a / t  (0.12), for which there is no distorted phase even at T =  0, the phase boundary 

does not change as the temperature is increased and Uc remains constant at ~  I At .  For 

the larger values of the el-ph interaction strengths investigated the T  = {) phase diagram 

presents both a distorted and a homogeneous structural phase depending on U. In this
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Figure 3.4: Critical on-site Coulomb repulsion, Uc, needed for a spin polarized solution 
as a function of tem perature and evaluated at three different values of the el-ph coupling 
strength for a L =  10 chain. The error bars correspond to spacing of the interpolation 
grid used to extract Uq-

case the nSP /SP  i)hase boundary (i.e. Uc) decreases fast at low tem peratures in response 

to the melting of tlie distorted phase and then becomes essentially constant.

An imj)ortant consequence of the movement of the nSP /SP  phase boundary as the 

tem perature increases is the fact th a t there is a vast region in the a-U  diagram where 

the system makes a nSP to SP transition as the tem perature increases. Such a region is 

the one enclosed between the two vertical lines marking respectively the phase boundary 

at finite tem perature and at T  =  0 in figure 3.3, left-hand side and middle panels. W hat 

is also of significance here is th a t we observe this transition in finite chains of different 

lengths. For the particular values of a  and U found in such a region (called the spin 

crossover -SC- region) there is a tem perature driven spin crossover.

We will now suggest an experimental setup based on our calculations, as to how one 

can build a spin crossover molecular wire. The el-ph coupling strengths, a, of such a 

molecular wire could be manipulated for example, by external pressure while the el-el 

interaction, U, could be altered by adding impurities and doping the wire. Thus, by 

controlling the experimental conditions, the values for a  and U for such a ID molecular 

chain could be made to lie in the spin crossover region thereby yielding the spin crossover
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transitions (with temperature) in such wires. Next, we will analyze this spin crossover 

phase.

3.2 .3  Spin crossover phase

We now explain the spin crossover transition by using the standard framework of spin 

crossover usually employed for magnetic molecules having a divalent transition metal ion 

center [74]. In general the thermodynamically stable phase at finite temperature of a 

system that can assume different competing configurations is the one with the lowest 

Gibbs free energy, G. For the present case, where the competition is among the nSP and 

the SP phases, the relevant quantity is the difference, AG = Gsp — Gnsp, between their 

Gibbs energies,

AG = A H  -  T A S  (3.7)

w'here AH  = //sp ~  -^nsp and A S  = Ssp — 5„sp are respective the enthalpy and entropy 

difi’erences.

For spin crossover in standard molecules with divalent magnetic ions A H  > 0, so 

that the most stable phase at low temperature is low spin (nSP here). However, since 

the crossover transition is associated with the softening of the phonon modes of the fi.rst 

coordination shell around the transition metal and to the formation of a local magnetic 

moment, we also have A S  > 0. Hence as the temperature increases the entropic contri­

bution to the Gibbs energy may eventually dominate over the enthalpic one and drive a 

phase transition. We now want to establish that the same mechanism holds for the spin 

crossover region of the a-U diagram of Fig. 3.3.

We have already demonstrated (see figure 3.1) that for T =  0 the spin crossover region 

is occupied by the nSP phase, meaning that A H  > 0. Therefore one has only left to show 

that also A S  > 0. In general the entropy comprises two main contributions, an electronic, 

5®', and a vibrational one, S'''^. Since the SP phase is characterized by local spins, which 

are absent for the nSP phase, we can immediately conclude that — S'lfgp > 0.
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Figure 3.5: Entropy difference, AS*, between the nSP and SP phases for a chain of L =  10 
sites. The indivichial electronic, and vibrational, AS'''‘‘̂ , contributions as well as
their sum, A5, are presented as a function of U/t  for a = \ t. The entropy is presented 
in adiniensional units where both the energy and the temperature are in units of the 
hopping integral t. Note that there is a large region 0.84  ̂ < U < 1.85t, where AS > 0. In 
this region the entropic contribution to the Gibbs free energy can drive a spin crossover 
transition.

A more precise evaluation of 5''’' can be obtained by computing

= -A:BTr[plnp] , (3.8)

where p is the system density matrix [96]. The calculated AS"^' as a function of of a 

L =  10 chain at the representative value of a / i  =  1, for which the spin crossover region 

is quite large, is presented in figure 3.5. The electron densities entering the evaluation of 

5®' have been obtained as follows. For the low temperature phase (nSP) p is calculated 

by fixing the occupation to rij =  1/2 for every site and the geometry is that obtained from 

the T  =  0 diagram. In contrast the entropy of the high-temperature phase is computed 

from a density matrix in which the occupation is fixed to the proper spin polarized state 

(the temperature is T  =  O.OOlt) and the geometry is again that of the T =  0 solution. 

We have checked that the finite temperature geometry is rather similar to that obtained
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at T  =  0 for such a density-constrained sohition.

The general trend can be understood as follows. For small values o i U / t  there is no 

local spin {)olarization forming, regardless of the chain geometry, so tha t A5®' =  0. Then, 

as U/ t  gets larger a local magnetic moment gradually appears at each site, producing a 

linear increase of AS”®'. Such an increase continues until the local moment reaches the 

maximum value compatible with the chosen electron filling, which is 1 /ie (/^b is the 

Bohr magneton) for half-filling. At this point there is no further change in the electronic 

entropy and AS"®' saturates to a positive value.

Similarly we can also estimate the vibrational contribution to the entropy. This is 

obtained from the molecule phonon spectrum, hui, as

N y

S ' ' ' ^  =  kB -  In [1 -  ’ (3-9)
i

where uji is the vibration frequency of the z-th mode and is the to tal number of 

modes. Note tha t the oscillator masses in computing were taken as 1 amu. Eq. (3.9) 

is a well-known formula for the vibronic contribution to the entropy of a collection of 

harmonic oscillators. It has been used in the past for estim ating the vibrational entropy 

change associated to the low spin to high spin transition in spin crossover complexes [94, 

95]. We calculate the phonon spectra of the SP and nSP configurations by diagonalizing 

the associated dynamical matrices. These are constructed by finite difference, i.e. by 

displacing the atomic sites by a small fraction of the equilibrium bond length (0.1 %) 

and then by numerically evaluating the energy gradient (the force) associated to such a 

displacement. The density matrices and the initial geometries used to construct the finite 

difference dynamical matrices are the same used for calculating the electronic contribution 

to the entropy. Also in this case A5’''‘*̂ as a function o i U / t  evaluated at a / t  =  1 for the 

L =  10 site chain, is presented in figure 3.5.

In general the vibrational contribution to the entropy difference shows only a small 

dependence on the Coulomb on-site repulsion and is approximately ~  0. However
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we also report a relatively sharp decrease as U /t  approaches 1.7. This is value close to 

Uc for T  = 0, i.e. corresponds to a region in the param eter space where our Monte Carlo 

analysis does not find a nSP-SP transition and therefore the system remains in the SP 

state at any of the tem peratures investigated.

In summary the picture emerging from figure 3.5 is tha t of a region, 0.84t < U < 1.85t. 

in which A 5 is always positive. This is the only region of the param eter space where the 

entropy can drive the spin crossover and substantially matches the spin crossover region 

observed in our Monte Carlo simulations (see Fig. 3.3). We then conclude th a t in this 

case the spin-crossover is entropy driven. It is interesting to note tha t also in transition 

metal ion-based spin-crossover complexes, where the magnetic moment is associated with 

the d shell of the transition metal, the spin-crossover process is in fact entropy driven [78]. 

The low spin to high spin transition of the molecule causes > 0. Furthermore, as

the spin-crossover involves the transfer of one or more d electrons from a bonding state 

to a non-bonding one, the ligand field weakens and hence > 0 [78, 80].

Finally before sunnnarizing, we wish to comment on the role played by the hyperfine 

interaction. In general we expect very little changes to the phase diagram obtained by 

neglecting the hyperfine contribution to the total energy, since this is rather small for 

realistic hyperfine coupling strengths. In particular we have verified th a t minor modifi­

cations to the T  =  0 phase diagram start to appear for J\\ in the region of 0.01 t, which 

corresponds to local magnetic fields of 10^ T (considering \Si\ =  1 and t of the order of 

1 eV).

3.3 Summary

In this chapter, we have explored the possibility of spin crossover transition in tt—conjugated 

polymer chains with a simple tight binding model including a Hubbard on-site repulsive 

potential and both el-ph and hyperfine interactions. The model has been investigated 

both in its T  =  0 ground state  and at finite tem perature for polymer molecules of finite
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sizes by Monte Carlo methods combined with a mean field treatm ent of the Hubbard 

many-body interaction. At T  =  0 we have found four different phases depending on the 

relative strength of the Coulomb on-site repulsion U/t  and of the el-ph coupling strength 

a / t .  The four phases are characterized either by a non-spin polarized or a spin polarized 

magnetic state and by the possible presence of a dimerized geometrical configuration. 

By increasing the tem perature the structural distortion disap{)ears and only the phase 

boundary between the nSP and the SP solution remains. Intriguingly the position in the 

a-U  param eter space of such a phase boundary changes with tem perature so th a t there 

is a. region of parameters where a tem perature driven nSP SP spin crossover transition 

can be found. We have investigated the nature of the phase transition by calculating the 

relative entropy of the different magnetic phases and found th a t this is indeed entroi)y 

driven as in the most conventional case of divalent magnetic molecules. This suggests that 

TT-type magnetism can be achieved in organic molecules and that this can be switched on 

and off by tem perature.

The work presented in this chapter is also im portant for understanding the detailed 

response of the tight binding Hamiltonian elements, representing the essential interactions 

in OSCs. In particular, we now have a comjjrehensive knowledge of the effect of these 

terms in the tight binding Hamiltonian, on the model through its phase diagram. This will 

give us invaluable insights into understanding the transport i)roperties of the microscopic 

model of Chapter 4 and in developing the entire ab im tio  computational framework to 

compute charge carrier mobility and spin properties of OSCs from first principles, in 

C hapter 5.



Chapter 4

Charge and Spin transport in 

Organic Semiconductors: a 

microscopic study

’'Regardless of what forin future electronic devices take, we will have to learn how to model 

and describe the electronic properties o f device structures that are engineered on an atomic 

scale “ Supriyo D atta  on reaching Moore’s law upper limit.

4.1 Introduction

The ease with which charge carriers traverse a semiconducting material characterizes 

its charge transport property. There are physical quantities which one can measure, 

and which throw light onto the charge transport properties of a system. For example, 

according to the Drude model for electrical conduction [97] proj)osed in 1900, one can 

obtain the conductivity of the material as J  =  cr where J  is the current density, E  

is the applied electric field and a is the conductivity of the material. The conductivity is 

a material property of the conductor. Thus, higher the conductivity, better will be the 

^This is Ohm’s law.

78
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charge tran sp o rt characteriatics of the macroscopic conductor.

B allistic  T ra n sp o rt (L < X ) D iffusive T ra n sp o rt (L »  X. )

L

Figure 4.1: Schem atic illustration of the path  of a charge carrier th rough a conductor
of length L, when the  tran sp o rt mechanism is ballistic {left panel) and diffusive {right 
panel).  In this thesis we shall sim ulate carrier transpo rt th rough nanoscale system s using 
th e  L andauer-B iittiker and K ubo formulae a t low applied biases, describing bo th  trans{)ort 
scenarios. Please note th a t the  la teral length of the  conductor illustrated  above (in both  
tran sp o rt scenarios) is com parable to  the  carrier mean free path , Amfp.

T he exact natu re  of carrier tran sp o rt through the macroscopic conductor (in D rude 

model) is diffusive in natu re as illustrated  in the  right panel of Fig. 4.1 (right panel). In 

such a  diffusive tran sp o rt scenario the length of the conductor, L, is always larger than  

the  charge carrier mean free path , Xmfp- Therefore, the higher the num ber of scattering  

events, the lesser will be the conductivity  through the macroscopic m aterial. T he mean 

free p a th  Xmfp is defined as th e  average distance travelled by a charge carrier before being 

sca tte red  by other carriers or by im purities (either sta tic  or dynam ic).

W h at hapj)ens if we begin to  reduce the dim ensions of the  conductor, reaching the 

lim it L  < Xmfp"^ Here one is interested in investigating the tran sp o rt properties of small­

sized conductor right up to  the  nanoscale level. In th a t scenario, as seen in the left panel 

of Fig. 4.1, due to  the absence of scattering  events (as L < Xm/p) one cannot define the 

conductivity. However, the  current passing through the device and also its conductance 

can be experim entally m easured by connecting the channel to  two large current-voltage 

probes in a m anner sim ilar to  a macroscopic conductor. This regime of carrier tran sp o rt 

is known as ballistic transpo rt.

Theoretically, ballistic tran sp o rt has been extensively explored by the  pioneering works 

of L andauer and B iittiker [129]. In their approach one form ulates the tran sp o rt problem
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in terms of incoming and outgoing single-electron wavefunctions, which propagate in the 

(ballistic) electrodes and are scattered elastically by the potential of the central region. In 

the simplest case of a one-dimensional wire and absence of any scattering, the conductance 

of such a system has the following constant value

Eq. (4.1) is the expression of conductance for spin polarized transport (hence multiplied 

by 2). This equation is quite powerful because it establishes th a t in a ballistic system at 

zero applied bias (linear response limit) the current through the device is zero, but the 

conductance has a constant value. This is a key feature of (juantum transport.

In systems with higher dimensions one faces a ’’multi-channel” problem since several 

waves with the same energy can propagate in the electrodes. In this case, we have a quan­

tity  which is known as the total transmission probability T{E)  and is energy dependent. 

The total transmission probability denotes the probability for the wave to be transm itted, 

sunmied over all the available scattering channels in the left and in the right electrodes 

(of a two-probe transport device). Thus the expression for the conductance through the 

system at zero applied bias is given by

The generic quantum transport setup to investigate the charge transport properties 

of OSCs is an organic field effect transistor (OFET), illustrated in Fig. 4.2. The charge 

transport observable which is of interest in such experiments is the intrinsic carrier mobil­

ity /i of the OSC. The carrier mobility is related to its conductivity as a = j  e i-i, where j  

is the current density and e is the electronic charge. In FET experiments intrinsic carrier 

mobility of OSCs can be estim ated quite accurately. OFETs are constituted by a semi-

(4.1)

where Go is the quantum  of conductance and has a value of kQ ^ Note that

2e^
G = —  T{E). (4.2)
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Insulator

Channel

Insulating Substrate

Figure 4.2: Ilh istration of an organic field effect transistor. In m odern high perform ing 
O F E T s the  channel is made up of single crystal OSCs, like rubrene. The electrodes are 
usually m ade up of gold and the  substra te  can be poly-silicon or flexible organic polym ers 
like poly m ethyl m ethacrylate (PM M A). Finally, there have been a large variety of high 
dielectric constan t organic m aterials which have been used as the  gate insulating m aterial 
in O FE T s [183].

conducting channel sandwiched between two metallic contact pads, which form the  source 

and the  d rain  electrodes and are highly conducting (good m etals). T he conductance of 

the  device can be ex tracted  by m easuring the current flowing across the source and drain 

electrodes, I s o ,  upon the application of a potential difference between them , Vsn- More­

over, the F E T  struc tu re  has a  gate electrode separated  from the sem iconducting channel 

w ith an insulator (generally a m aterial w ith high dielectric constant). The voltage on the 

gate Vg is crucial in the perform ance of the  device since it controls the  carrier density in 

the  channel and therefore its conductance. We shall discuss th e  architecture of rubrene 

based O FE T s and how experim ental estim ates for carrier m obility can be made, in some 

detail in the  next chapter of this thesis.

Here we will introduce two approaches to  investigate theoretically  the charge trans[)ort 

characteristics of a device depicted in Fig. 4.2 in the linear response, i.e. a t low applied 

bias. T he theoretical approaches we use in this thesis comprises evaluating conductance
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from the Lanflauer-Biittiker formula [129] and the charge carrier mobility from the Kubo 

Formula [194]. In principle, the former is applicable only to ballistic systems, while the 

latter holds true for both ballistic and diffusive transport scenario. However, both the 

methods are eciuivalent in the large wavelength or low frequency limit of the charge carrier.

4.2 Charge transport through OSCs

OFETs use tt—conjugated OSC molecular crystals like polyacene, polyaniline, polypyr­

role, metal-quinoline derivatives as the semiconducting channel material, in their single 

molecular crystalline form [100]. In particular single crystalline rubrene-based OFETs 

have mobilities even coni[)arable to those traditionally made from arnourphous and poly­

silicon [159, 114, 169]. The predominant interest in OSCs have soared due to the low-cost 

of such organic materials, their effective realization into large area devices and an increas­

ing public sentiment towards biodegradable electronics. Solution processable OSC have 

also found wides{)read applications as polymer light-emitting diodes in high contrast op­

tical display panels [101, 102]. This application integrates current modulation with light 

emission in OSC, a phenonienom coined as electroluminescence [103]. These display units 

can be commercially realized as fully colored all plastic flexible panels [102], therefore 

finding their place as key technological outputs of the optoelectronics industry.

Such applications of OSCs require a better understanding of their optoelectronic and 

electrical properties [104]. Investigating charge transport and understanding the factors, 

which limit charge carrier mobilities in such materials, are crucial first steps in order to de­

sign and synthesize better materials and further improve their device performances. OSCs 

have band gaps comparable to  their inorganic counterparts [105], however their charge 

carrier mechanisms are completely different. Typical hydrocarbon based t t — conjugated 

polymers have their valance electrons residing in sp"̂  hybridized orbitals and orbitals, 

which are orthogonal to the sigma bonds. While the valence electrons in the sp^ hy­

bridized orbitals are completely saturated, the ones in the p  ̂ orbital are closer to the
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fermi level and are also delocalized. Thus when an organic polymer is doped (oxidized), 

some of the delocalized electrons are removed, and they become highly mobile along 

the direction of conjugation of the polymer chain. Such p —doping has been extensively 

dem onstrated in a number of electronegative hole transport materials [106]. More often 

in organic light em itting diodes (OLEDs) hole injection into the HOMO levels of the OSC 

is achieved through an electrode with a very high workfunction material like Indium Tin 

Oxide (ITO) [107].

Also, n —doping in OSCs has been established [108]. This typically includes electron 

injection from an electrode (e.g. in an OLED device) material of a low work function 

metal, like Calcium or Magnesium, into the unoccupied LUMO states of the OSC. The 

subsecjuent charge transport wit hin the organic material in both hole and electron trans­

port scenarios, is generally facilitated by the tt — tt stacking. The success of an efficient 

carrier injection and transport through OSCs as well as improved optical characterization, 

have resulted in the fabrication of OLEDs cable of producing white light with seriously 

improved device efficiency [109].

However, unlike inorganic materials, organic systems provide a very lively environment 

for carrier transport. Weak Van der Waals interactions, predominant t t  —  t t  stacking and 

interactions between electronic and nuclear degrees of freedom provide a phonon rich 

environment for charge transport [181, 62]. Needless to say, all these factors dominate 

charge transport through OSCs and must be accounted for in our theoretical methodology. 

While we are still in the subject of distinguishing between the electronic structures of 

organic and inorganic semiconductors there is one more point, which we want to mention. 

The band structures of inorganic semiconductors (e.g. Si) are generally quite dispersive, 

while th a t of an OSC (e.g. please see Fig. 5.8a) is relatively quite flat[62].

The charge transport mechanism in organic crystals is controlled by factors like tem ­

perature and charge carrier concentration. Historically with the advent of conducting 

polymers it was understood th a t the primary mechanism for carrier transport is thermally
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assisted hopping [196]. By the virtue of defects prevalent in a semiconductor material, the 

charge carriers propagate through the localized states near the conduction and valance 

band edges in the band gap of the OSC. Subsequently with tem perature, the carriers gain 

sufficient therm al energy to effectively hop across these localized states efficiently. This is 

usually reflected as an increase in charge carrier mobility with tem perature which is the 

fingerprint of thermally assisted hopping mechanism [111].

As time progressed and with better experimental technicjues, defect-free single crys­

talline semiconductors were synthesized. The reader is directed to the review in refer­

ence [117] for the history and development of organic single crystals. Such organic single 

crystals are grown under carefully controlled experimental conditions. Single crystalline 

semiconductors quickly became favored for applications in the optoelectronic industry. 

This is because of their physical characteristics by the virtue of which they are materials 

with a crystalline lattice tha t is continuous, with no grain boundaries and no defects or 

vacancies.

Charge transport mechanism in defect-free organic single crystals can be described 

by band transport. This transport mechanism is essentially characterized by delocalized 

charge carriers as in inorganic semiconductors or metals. Experimentally, evidence of 

band transport has been extensively reported in ultra pure naphthalene single crystals 

[111, 112, 113]. A part from these a substantial Hall effect in OSCs at room tem perature 

is an indication of delocalized (band) transport [160, 114], The characteristic feature of 

band transport is tha t the charge carrier mobility rapidly decreases with tem perature, as a 

result of increased scattering due to phonons at high tem perature. We must also mention 

the theoretical work of Troisi et al. [218, 115, 219, 116] who proposed an interesting 

concept based on localization induced by the intrinsic dynamic disorder of the molecules 

in an organic crystal, as another explanation for the mechanism of charge transport in 

ultra-pure organic crystals.

Interestingly, the signature of dynamic disorder is the same as band transport, i.e. a
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decrease in mobility with tem perature as a result of increased localization due to disorder 

at high tem perature. We shall discuss a system where dynamic disorder explanation is 

applicable in Chapter 6 of this thesis. Although in an ideal experiment defect free charge 

transport through the organic is desired, in a single crystalline OFET, gate dielectric 

always introduces some sort of localized defect states in the organic channel. A systematic 

study of cliarge transport properties as a function of gate insulators (with varying dielectric 

constants) provides valuable insights into this aspect [110].

In this section of the chapter, we will represent one-dimensional and two-dimensional 

OSC molecular networks u.sing the Hamiltonian introduced by us in the previous chapter. 

We monitor the transport observable namely charge carrier mobility of different ID and 

2D networks as a function of the microscopic param eters of the Hamiltonian. We find 

strong evidence of band transport for the range of parameters taken into consideration in 

the calculations presented here. Also, we find an acute sensitivity of the charge transport 

properties to the morphology of the networks.

The work presented in this section of the thesis is intended to provide an understanding 

for the charge transport response of the basic Hamiltonian representing OSCs. Before we 

move onto investigating the transport properties of real systems from first principles in 

the next chapter, we would like to familiarize ourselves with the “ charge transport phase 

diagram ” of the model, i.e. the behavior of the charge transport as a function of model 

param eters and network morphology. Therefore, this would also enable us to understand 

the capacity and capability of our computational procedure.

4.2.1 Linear R esponse K ubo Formula

We consider a single-site tight binding model for a ciuasi two-dimensional lattice, which 

includes repulsive Hubbard and electron-phonon (el-ph) interactions. This is described 

by the following Hamiltonian, which is exactly the same as the one introduced by us in
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the previous chapter

H 1' * ) + +

(4.3)
i ij

The microscopic parameters of the model are the el-ph coupling parameter, a,  the 

Hubbard repulsion strength, U, the elastic constant, k, the transfer integrals 7^ =  t and e 

the on-site energy. Moreover, r/j is the atomic displacement of site i and again we consider 

only ID longitudinal motion. The magnitudes of e, t and k are maintained the same as 

in the previous chapter.

In Eq. (4.3), it is assumed that the luiclear kinetic energy is quite small in coniparision 

to the electronic kinetic energy, t. This assumption is valid according to the classical 

treatm ent of nuclear motions, Furtheniore, the Holstein (non-local) electron phonon 

interaction term is ignored because the particular phouon modes which contribute to the 

Holstein term are excited at only very high tem perature [118, 119, 116].

In this thesis we evaluate the charge carrier mobility from the linear resjjonse Kubo 

formula [194] in particular using the approach by Cataudella and co-workers [98]. The 

conductivity, a, as a function of frequency u>, for each Monte Carlo configuration is given 

by the following expression

Here |A) are the eigenstates of H,  J  is the current density, a is the equilibrium distance

is the Fermi function representing the thermal occupancy of the carrier eigenstates

A ,A '

between sites in the model and V  = L ■ a is the system volume. Moreover in Ecj. (4.4), f \

-  /')] +  1 ’

(4.5)
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T he curren t density J  enters in Eq. (4.4) through the m atrix  elem ents of the  current- 

correlation operator. This can in tu rn  be re-w ritten in term s of the  un itary  m a t r i x t h a t  

diagonalizes H  [Eq. (4.3)], as:

<A|J|A') =  -  * 0 ,A ) * ( i ,A ') | (4.6)

where

T ,

In order to  use Eq. (4.4) for a finite lattice, the delta  function, S{E\ — E y  +u;), is replaced 

by a Lorentzian

= (4 .8)

Here rj is an artificial broadening added to  the discrete eigenvalues of the finite length la t­

tice. Let us discuss in more detail the physical m eaning of r/. From solid s ta te  knowledge, 

in a uniform  chain of H atom s of length L  w ith on-site energy e and transfer integral t 

the expression for energy eigenvalues is Em = e + 2 t c o s { j ^ ) .  Here m  is an integer taking 

values m  =  1,2....L . W hen L ^  oc th is reduces to  the band dispersion for the infinite 

chain, w ith k  for 0 < k < t v . However for finite lengths the  chain has a discrete

energy spectrum . In our approach in com puting the carrier mobility, 77 causes an artificial 

broadening of these discrete energy levels for finite lengths.

The charge carrier m obility // is defined as :

1̂1 — — lim Re[a{u!)]. (4.9)
pe

T he m obility /t is averaged over all the ionic displacem ents generated by the  M onte 

Carlo sim ulations [180]. In principle, the above equations to  com pute the m obility in the 

linear response is only valid when u  0 + (static  limit) and r; ^  0 ^ (therm odynam ic 

limit L  —̂ (X)). Let us briefly discuss the values for uj and rj used in our calculations.
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In our results it tu rns out th a t for any com bination of (/], L)  and a t every tem peratu re  

T , the mobility depends only slightly on uj. Moreover, as we keep reducing the  value 

of u  there is a particu lar threshold, beyond which m obility does not depend on further 

decreasing u .  Thus we take the  value of a; =  0.00004t as a good approxim ation of the 

sta tic  limit. Next, we also m onitor the values of the m obility as a function of system  size 

L  and rj. It is argued th a t for a one-dim ensional system if rj =  0 the carrier m obility // 

from Eq. (6.12) could be zero [98]. As such, in order to  obtain  a finite mobility in our 

model one needs to introduce an artificial broadening, rj. For th is purpose we m onitored 

// vs rj a t different L.  At low values of r], /i is small and sul)sequently on increasing 

T] the m obility reaches a p lateau. We use the value of 7] =  0.02t corresponding to  the  

onset of this p lateau to  calculate the mobility. We also find th a t for larger values of L  

(closer to  the therm odynam ic lim it in the model), we reach a constant //,. O ur procedure 

to  com pute m obility from K ubo formula was inspired by the work of C lautadella and 

co-workers [98, 99]. Here we have investigated one-dim ensional chains up to  L  =  512, 

bu t w ith no periodic boundary conditions. Thus in all the  calculations of carrier m obility 

presented in this thesis, we also have rigorously analyzed /i vs different values of u  and  r].

In the  following section we shall investigate in detail the role of microscopic param eters 

on charge tran sp o rt properties of OSC crystals w ith th is approach. In particu la r we 

analyze the dependence of mobility on the  charge carrier density, the el-el and the  el-ph 

interactions. We also explore the  charge trapp ing  m echanisms in various one-dim ensional 

(1-D) networks. In the final p a rt of this section we shall exam ine the charge tran sp o rt 

properties of tw o-dim ensional (2-D) polym er networks, and in particu lar the  role played 

by the various (inter and in tra  molecular) hopping constan ts in such networks.
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4.2.2 Results and discussions 

l -D  C hains

The charge transport properties of the model can be understood by exploring the tem ­

perature dependence of the charge carrier mobility as a function of other microscopic 

param eters in the problem. Let us begin our discussions first by investigating the role 

played by charge carrier density. The left panel of Fig. 4.3 shows the tem perature de­

pendence of the mobility at different densities. The carrier densities investigated here 

correspond to the half filling situation (p =  1.0) similar to the previous chapter, a filling 

slightly less than half (p =  0.85) and finally at a very low filling {p = 0.02). The first 

aspect th a t is apparent from the left panel of Fig. 4.3, is th a t at half-filling, the tem pera­

ture dependence of the mobility is extremely shallow. This can be understood by keeping 

in mind the fact tha t for a half-filled band the group velocity of the charge carriers is 

maximum. Therefore electrons are scattered little by phonons at finite tem peratures. 

In contrast at low charge carrier concentration (corresponding to single electron filling, 

p =  0.02), the mobility decreases rapidly with tem perature, following a (near) power law. 

This rapid decrease in mobility with tem perature is attributed to an increased scattering 

due to phonons and to the small group velocities of the carriers at the edge of the Brillouin 

zone.

In the right panel of Fig. 4.3, we show the tem perature dependence of the mobility at 

two different values of the el-el interaction U = 0.02t and 2At  at half filling. These two 

values of U correspond to the non-spin polarized (nSP) and spin polarized (SP) phases of 

the model explained in detail in the previous chapter. We notice tha t the absolute value of 

charge carrier mobility is smaller for U — 2At  in comparison to U = 0.02t at low tem per­

atures. This is a direct consequence of the charge localization as a result of SP phase at 

increased el-el interactions. The tem perature dependence of the mobility at U = 2At  can 

be understood in the following manner. W ith increasing U and at low tem perature, the 

charge carriers are more localized forming the SP phase. Therefore the carrier mobility is
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Figure 4.3: T he tem peratu re  dependence of the charge carrier mobility as a function of 
the  microscopic param eters in the problem: charge carrier density p in the left, panel and 
el-el interaction U in the right panel is shown here. In the left panel the other microscopic 
param eters used are U = 2At, a  =  O.Olf, k  =  4.2f and t =  2.5 eV. The o ther param eters 
used in the results presented in the right panel are p =  1.0, i.e. the half-filling scenario, 
a  =  0.015^, k = 4.2t and t =  2.5 eV.

low. However w ith tem peratu re, the itinerant electrons accjuire sufficient therm al energy 

to  overcome the trapp ing  induced by localization, and thus the mobility increases w ith 

tem perature. Here we would like to  point out an im i)ortant aspect in the  functioning 

of O FE Ts, which is very pertinen t to  the discussions we ju s t had on charge carrier con­

centration. The optim al perform ance in an O FE T  is a t low voltages, which correspond 

to  low carrier concentrations in the organic channel and therefore less localization [160]. 

Henceforth in all our calculations we shall use low charge carrier densities of p =  1 /L  and 

U =  0.0.

In Fig. 4.4, we show the  tem pera tu re  dependence of the mobility p lo tted  on a log-log 

scale for different values of the el-ph interaction strength , a  =  [0.004t — O.OSt], for a chain 

of L  =  256 atom s. In our calculations we have observed th a t the discrepancies due to  

boundary conditions were negligible for a large enough size of the chain. We fit each 

of the  plots to  a power law expression p  = po T ~ ^ . For all values of el-ph in teraction 

strengths, we note th a t the m obility rapidly decreases as a function of tem i)era ture w ith 

5 =  1.25 — 1.30. A large power law decay of the m obility is generally a fingerprint of 

band-transport as observed in single crystal organic m aterials. For w'eak el-ph in teraction
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Figure 4.4: //, vs T  for different vahies of the el-ph interaction strengtlis, a, for a chain 
of L =  256 atoms. At finite el-ph interactions the mobility decreases rapidly with T, 
signalling band transport. The other niicroscojjic parameters used in obtaining the graph 
are p =  1/256, U =  0, k = A.2t and t = 2.5 eV.

( a  =  0.004^ — 0.04^) the power law exponent is 5 =  1.25. As the el-ph interaction strength 

is increased, the absolute value of the mobility decreases. This is attributed to an increased 

scattering of the itinerant charge carriers at all tem peratures as a result of phonons, due to 

enhanced el-ph coupling also observed in previous works[218, 98]. However, interestingly 

the power law exponent, 5, slightly increases, 6 = 1.30 for a  = O.OSt and S = 1.40 for 

a  = 0.20t. This means th a t even for a stronger el-ph interaction, when there is increased 

scattering of the charge carriers, i.e. the signature of // vs T  is still the same. This was 

also observed in previous theoretical work [219]. Finally, we must mention tha t when 

a  > 0.It  for these range of parameters the vs T  curves become increasingly noisy.

In the ID polymer chain simulated here, we obtain a power law dependence of the 

mobility on tem perature over the entire range of parameters. Thus the charge carrier 

mechanism is the well established band transport. Indeed, the wavefunctions of the system 

are delocalized in nature for t =  2.5 eV, U = 0.0 eV and a / t  is relatively small. According 

to  the band transport mechanism with tem perature the delocalized carriers of the system
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are increasingly scattered due to phonons and therefore the mobility decreases. We must 

stress here th a t the charge transport mechanism depends on the absolute magnitudes of 

a, t and k as we shall see in the results presented in the next chapters in this thesis.

1-D Segm ents (M olecular Chains)

The charge transport calculations reported so far were performed on a uniform 1-D chain 

(inter-atomic hopping param eter t is constant throughout the chain). We are now inter­

ested in investigating the length dependence and studying the effect of charge trapping 

on transport. This is because the principal objective of this thesis is to simulate carrier 

transport through organic molecular crystals. The results presented in this subsection are 

indeed a step forward in tha t direction, justifying the coarse graining procedure to model 

organic molecular crystals.

L = 64 L = 128 L = 256

10

>
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ry..r H-  — H ••
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- A
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Figure 4.5: /x for different ID segments; L =  64 (circles), L  =  128 (triangles) and L = 256 
(squares). The polymer networks comprise molecules of a given length, electronically 
coupled by the intermolecular hopping, << t a.s shown in inset diagram. The mobility 
of the smallest molecule (segment), determines the overall mobility as a consequence of 
percolation theory [125]. The other microscopic parameters used are p = 1 / L, U = 0, 
k = A.2t, t =  2.5 eV, = 0.05 eV and T  = 300K.

Fig. 4.5, shows the absolute value of mobility for various ID polymeric networks cor-
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responding to chains of length (from left to right) L — 64, 128 and 256 atoms, each at 

a fixed temperature T  =  300K. The polymer networks are chains of total length L, each 

comprising of Nm molecules of length L^.  Thus L j Moreover, the intermolec- 

ular hopping integral tim is tin, << t, thereby creates an obstruction for charge transport. 

As an example, =  128 for a chain L = 256 has Nm — 2 molecules and likewise =  32 

for a chain L = 256 has =  8 molecules. Let us now analyze our results.

First of all in Fig. 4.5 for a chain with one molecule {Nm = 1, uniform hopping constant 

through-out) the mobility // increases with L. This can be understood very conveniently 

by considering that as the ID chain becomes longer, the number of terms in the current- 

correlation operator J  in Eci. (4.6) increases and therefore the charge carrier mobility 

increases. However, for L > 256 the carrier mobility converges to a constant value. It can 

be said that the thermodynamic limit in the model is reached for L > 256.

The central message c'oming from Fig. 4.5 is that for a fragmented molecular chain 

the mobility of the smallest segment determines the overall mobility. This is a direct 

consecjuence of percolation theory [125], because the smallest unit forms a bottle neck 

(̂ im «  t) for transport in the entire chain.

The results presented in Fig. 4.5 will be quite significant in justifying the basic concept 

behind the coarse graining method which we employ for representing organic molecular 

crystals, in the coming chapters of this thesis. Indeed according to these discussions, 

when we want to simulate transport properties of molecules in a crystal, one only needs 

to worry about the transfer integrals between the molecules. This is provided that the 

carrier is ’’delocalized” within the molecule (e.g. in rubrene). In this manner one can 

coarse-grain out molecular details smaller than a particular segment.

2-D  p o lym er netw orks

Here we investigate the charge transport properties of 2D networks. A 2D rectangular 

slab (see Fig. 4.6), containing five ID chains, coupled by a interlayer hopping t\\ and an
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Figure 4.6: 2D rectangular slab containing five layers of ID  chain w ith  a interlayer hopping 
til. The 2D rectangular slab, which we have investigated here is 256 x 5 sites.

interinolecular hopping ijm ( tn  and t i , „  can be upto the same order as t )  is used in our 

sinuilations. In general, the highest charge carrier m ob ility  in oligomers is found when 

there is a co-facial t t—stacking of the ind iv idual molecules. This arrangement forms the 

inspiration of the 2D polymer netw'ork sinnilated here. In our calculations we consider 

j)honons only in the longitud inal direction assuming the effect of phonons in the perper.- 

dicular direction, _L to  be negligible. The charge carrier m ob ility  in such a 2D network is 

anisotropic and we shall rej)ort the absolute values of m ob ility  in the directions parallel, 

//.||, and perpendicular, f i ± ,  to the ID  segments (see Fig. 4.6).

The left panel of Fig. 4.7 illustrates the temperature dependence of //-n at a fixed 

a  =  O.OSt and tjm =  l . O t ,  but changing t\\ as t\\ =  [0.0000002^— l.Ot]. We notice tha t for a 

minuscule value of =  0.0000002^, the 2D network is essentially five disjointed ID  chains, 

hence the temperature dependence of m ob ility  should reflect the ID  charge transport 

characteristic. Indeed the charge carrier m ob ility  decreases rap id ly  w ith  temperature 

following a power law =  1.2) decay. Therefore the charge transport of the setu{) can 

be understood w ith  the same explanation as in the previous section.

As til is increased from  ti \ =  0.02t to l.Ot, the absolute value o f fi\\ increases. This is 

by the v irtue  of more conducting channels available for the charge carriers to  move along
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Figure 4.7: Charge transport in a quasi-2D network. The temperature dependence of the 
t'harge carrier mobihties evaluated for the 2D network (Fig. 4.6) in the directions parallel 
/i|l vs T  {left panel) to the ID  chains and perpendicular to them vs T  {right panel) , 
both at fixed a. =  O.OSt and t\m =  l.Ot, but varying t\\ for t\\ =  0.0000002t — l.Ot. This 
behavior is again an indicative of dynamic disorder in such 2D networks. Please note that 
here t =  2.5 eV.

the various ID  chains as a result of an increasing ^ji. As a proof for th is argument we also 

find tha t //a increases as tw increases (see the right panel of Fig. 4.7). W ith  increasing 

^ii, the vs T  relation in the upper panel of Fig. 4.7 is a power law decay but w ith  a 

smaller <5 =  1.05. These calculations show tha t in order to  sinmlate real organic crystals, 

one must take in to  accoimt the intermolecular interactions along all the crystallographic 

directions, as the charge transport characteristics of the system w ill depend on them.

The results presented in this subsection on 2D networks has enabled us to understand 

the behavior of / i vs T  on the structura l morphology of 2D networks. This work intends 

to be a firs t step and gives us an idea of what to  expect when sim ulating fu ll 3D rubrene 

single crystals in the next chapter.

To summarize the work in this section, we have investigated in detail the charge 

transport characteristics obtained from a microscopic approach for different OSC net­

works. These are described by a microscopic Ham iltonian, which includes all the essential 

interactions in an organic material. We have observed tha t for ID  and 2D networks.
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typically emulating ultra-pure semiconductor materials used in OFETs, the charge car­

rier mechanism is band transport. We have also observed the effect of deliberate charge 

localization within a certain number of atoms (molecules) in the network and verified 

percolation theory for ID polymer networks. Finally we have also studied the charge 

transport characteristics of different 2D polymer networks. The dependence of charge 

transport properties on the morphology of the polymer networks observed in this work 

suggests a significant need for a comprehensive investigation of the different intermolecu- 

lar interactions along all the crystallographic directions. These are essential to understand 

the transport characteristics of a real OSC.

4.3 Spin transport

4.3.1 Spin relaxation m echanism s in organic m aterials

The spin transport properties of a material are characterized by how effectively electron 

spins maintain their polarization w'hile travelling through it. In OSCs the loss of spin 

polarization due to the interaction of spins with defects or magnetic ions can be safely 

ignored because such events arc quite rare in ultra pure single crystalline OSCs described 

by band transport‘d.

As such, the two main interactions responsible for spin relaxation of the carriers in 

OSCs are liyperfine (HI) and spin-orbit coupling (SO) [66].

H yperfine Interaction Hyperfine interaction is by the virtue of the electron’s spin 

interacting with the nuclear spins of the atoms constituting the organic material. It is 

well established that in an OSC HI is mediated in two different ŵ ays. The itinerant 

carbon vr—electrons can indirectly couple to proton spins in the organic material through 

exchange interactions with hydrogen s electrons [136]. Moreover, there is also dipole- 

^There are very few spin-flipping impurities in organic single crystals.
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dipole coupling of the tt—electrons to the proton spins. A combination of these two 

effects can give rise to a hyperfine field of a few mT [93] in particular because H has a 

large nuclear spin.

V

to ta l

c D
42 28c H

Figure 4.8: Semi-classical model [135] to explain the decoherence of carrier spins due to HI 
is illustrated here for the example case of a rubrene molecule. Due to a substantial nuclear 
magnetic moment of H atoms, the corresponding random hyperfine fields associated with 
the protons in rubrene will be significant. Vector sununation of these random fields are 
illustrated as the total hyperfine field, Bhf (in red). Replacing H with D [132, 133] is 
an experimental technique to probe the effect of HI in controlling spin transport through 
organic materials, as D has nuclear spin a fourth of tha t of H. The corresponding hyperfine 
fields of D are indicated in blue and they are smaller than those associated with H. The 
carrier spins (shown as green arrows) precess around the total field, Btotah which will be 
the sum of external magnetic field B, and the total effective hyperfine field Bi,f. According 
to this model, the random component of Btotai is reduced upon deutration and therefore 
spin relaxation is less for the deutrated polymer, as illustrated in the lower right panel. 
This model is derived from the work of Bobbert [135]

There is a semi-classical model based on the works of Schulten and Wolynes [134] and 

later Bobbert of [135], which explains the mechanism of HI in controlling spin relaxation 

through OSCs. According to the works, many proton spins in a material cause the 

itinerant electron’s spin to precess around an effective classical random hyi)erfine field
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which adds to  an  ex te rn a l m agnetic  field as illu s tra te d  in Fig. 4.8.

We explain  th e  loss of spin  p o lariza tion  in th e  exam ple case of rub rene  m olecule 

C 4 2 H2 8 - III th e  to p  panel of Fig. 4.8 th e  m olecular s tru c tu re  of ru b ren e  is dep ic ted , w here 

P h  is a  phenyl side group. In o rder to  illu s tra te  th e  concep t of spin  decoherence due  to  

random  p ro ton  spins we ex ten d  th e  ex{)lanation to  hyd rogenated  ru b ere  (C 4 2 H2 8 ) as well 

as d e u tra te d  ru b ren e  (C 4 2 D 2 8 )- T h is  is because th e  spin re laxation  is expected  to  be less 

in th e  la t te r  case as th e  nuclear spin  of d eu triu m  D is w eaker th a n  th a t  of H.

T he  m obile 7r-electrons in te rac t w ith  th e  H and  D nuclear spins, rep resen ted  by red  and  

blue arrow s, respectively  in Fig. 4.8. T hese  are  random ly  aligned. In th e  sem i-classical 

m odel, th e  yr-electron spins (green vecto rs in th e  b o tto m  panels of Fig. 4.8) [)recess around  

th e  effective m agnetic  field, Btotai, which is the  sum  of the  app lied  m agnetic  field, B  and  

a  cum ulative  to ta l of the  classical random  hyperfine fields, Bj,f (Btotai =  B  +  Bhf). Bhf is 

p ro p o rtio n a l to  th e  sum  of all th e  random ly  o rien ted  q u a n tu m  nuclear spins of the  system . 

Since th e  nuclear m agnetic  m om ent of D is sm aller th a n  th a t  of H, th e  m agn itude  of to ta l  

effective Bhf is reduced  for th e  d e u tra te d  rul^rene, therefo re  th e  loss of spin po la riza tio n  

is expected  to  be less in th is  case.

A no ther fac to r d e te rm in in g  th e  effective efficiency of HI in p roducing  sp in -decoherence 

is th a t  th e  w avefunctions of e lec trons and  holes m ay be different, so th a t  th e  resu ltin g  HI 

coupling will be different for th e  tw o ca rrie r types  [137]. T herefore, HI will be d ifferen t 

in O SC s w here th e  t ra n s p o rt  is hole d o m in a ted  (e.g. in rub rene) and  w hen it is e lec tron  

d o m in a ted  (e.g. in A lq3 ).

Lets us now discuss th e  experim en ts  which probe th e  role of HI in OSCs. E x p e rim en ­

ta lly  a c ra fty  way to  evaluate  th e  effects of HI is by rep lacing  H a to m s in th e  O SC s w ith  

D a tom s, w hich have a m uch sm aller nuclear m agnetic  m om ent (D: 0.433 x 10“ ®̂ Jo u le  

T “ ;̂ H: 1.411 x 10“ ®̂ Jou le  T “ ') .  R eplacing  H w ith  D does no t significantly  change th e  

e lectronic  s tru c tu re  or th e  geom etry  b u t it can change th e  spin  re laxation . However, th e  

resu lts  from  such experim en ts  have been q u ite  controversial.
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Figure 4.9: Experim ents investigating the role played by HI in controlling spin tran sp o rt 
th rough OSCs from Ref. [132], The O ptically D etected M agnetic Resonance (ODM R) in 
the  left and middle panels and the Electrolum inescence response in the right panel, as a 
function of m agnetic field (lineshapes) are narrower for the deu tra ted  polym er in com par­
ison to  th e  hydrogenated polymer. These results indicate th a t HI significantly influences 
spin tran sp o rt th rough organic m aterials. Furtherm ore, an enhanced m agnetoresistance 
was also observed for the deu tra ted  polym er based spin valve as opposed to  th a t m easured 
for th e  hydrogenated polym er based spin valve (see Fig. 4.10a).

Nguyen et al. [132] found a significant effect upon deu tra tion . In the first of the ir ex­

perim ents they m onitored the photolum inescence spectra  of a hydrogenated and d eu tra ted  

7 T — conjugated polymer^ as a function of m agnetic field‘d (see Fig. 4.9a and Fig. 4.9b). Fur­

therm ore, they  also m onitored the electroluminescence of LED devices m ade up of those 

polym ers as a function of m agnetic field (Fig. 4.9c). In both  these experim ents a pro­

nounced narrow ing of the  corresponding m agnetic resonance peaks was observed, upon 

deu tra tion  of th e  t t—conjugated polym er. Moreover, the peak w idths were all in the  niT 

range corresponding to  the  hyperfine coupling of the charge carriers. They also evaluated 

the m agnetoresistances (MR) of spin valves m ade from the  hydrogenated and d eu tra ted  

polym er (shown in Fig. 4.10a) and observed th a t the  d eu tra ted  polym er spin valves had 

a larger MR. th an  the hydrogenated one. This could be explained by low spin relaxation 

upon deu tra tion . Moreover, as shown in the inset of Fig. 4.10a they also observed th a t 

^Poly(p-phenyieiie vinylene), i.e. a PPV  based polymer.
^They monitored the magnetic resonance setup by a microwave field known as Optically Detected 

Magnetic Response (ODMR).
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Figure 4.10: T he m agnetoresistance (MR) of a spin valve (shown in the left-hand panel) 
m ade from th e  d eu tra ted  polym er was an order of m agnitude larger than  th a t com posed of 
the  hydrogenated polymer. These results (from the work of Nguyen et al. [132]) together 
w ith an absence of a tem pera tu re  dependence of MR for bo th  polymers (inset) indicate 
th a t HI play an im i)ortant role in governing spin transpo rt. However, Rolfe et al. [133] 
in the right panel, did not find an appreciable change in the MR upon deutra tion .

bo th  the hydrogenated and d eu tra ted  polymer si)in valves, followed a sim ilar decrease in 

MR w ith tem peratu re. This corroborated the fact th a t spin relaxation in their spin valves 

is indeed due to  His. T he la tte r is expected to be tem peratu re  independent because the 

energy scale for nuclear spins dynam ics is tiny.

Meanwhile however, another experim ent carried out by Rolfe et al. [133] reported  no 

significant change (in MR) upon deuteration of the OSC (see Fig. 4.10b). Thus, they 

concluded th a t HI is irrelevant in controlling spin tran sp o rt in OSCs. A part from these 

experim ents, there have also been a few theoretical works [93, 143] which advance HI as 

the  principal spin scattering  m echanism  in organic m aterials.

A fair assignm ent of the current situation is th a t, w hether or not HI controls spin 

tran sp o rt th rough OSCs is still an open cjuestion.



101 Chapter 4

Spin-orbit Coupling The other important spin relaxation mechanism in OSCs is due 

to SO interactions. As the name suggests spin relaxation due to SO occurs by the virtue 

of the interaction between tlie spin and orbital components of the angular momentum of 

the itinerant carriers. In principle, atomic SO in organic materials is quite small as it’s 

strength is inversely proportional to the fourth power of atomic number Z  (for a spherical 

potential). Since the atoms constituting organic materials are from the first two of rows 

of the periodic table the corresponding atomic SO strength will be small. However, there 

have been interesting arguments, which make SO mechanisms sufficient to influence spin 

transport through organic materials, particularly because it is dependent on geometry.

In Fig. 4.11a we show the experimental results from Ref. [148]. Here a rapid decrease 

in spin diffusion length (Ig) of a NiFe/LiF/Alqa/TPD/FeCo^ based spin valve, with tem­

perature is shown. The inset of Fig. 4.11a illustrates the MR of the device as a function of 

temperature also following a similar trend. The fast decrease in Ig with temperature indi­

cates that SO interactions are the main spin diffusion mechanism in OSCs. This is because 

the loss of spin polarization due to HI is not temperature dependent, as the energy scale 

corresponding to luiclear spin dynamics is tiny [181]. On the other hand spin relaxation 

due to SO coupling is controlled by temperature. Consequently with temperature, as the 

distance travelled by the spin polarized carriers (before losing their polarization) decreases 

the device MR also decreases. Please note that in these experiments Ig is obtained directly 

with muon spin resonance techniques.

The specific mechanism for spin relaxation in OSCs was identified as the Elliott-Yafet 

(EY) [141] one. According to the EY mechanism, whenever a charge carrier through a 

sennconductor scatters and loses (or gains) momentum, it relinquishes some of its spin 

polarization. Momentum scattering can occur due to phonons, which are ubiquitous in 

organic materials. The identification of the EY mechanism is based on another experi-

^Their device configuration is as follows: a few nanom eters of LiF serves as a tunneling barrier, TPD : 
N ,N ’-diphenyl-N-N ’-bis(3-m ethylphenyl)-l, r-b ipheny l-4 ,4 ’-di am ine is the  hole transpo rting  OSC and 
Alq ,3 is the  electron transporting  OSC.
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Figure 4.11: Experimental results, which support the evidence of SO coupling as the main 
carrier spin relaxation mechanism in organic materials, are shown here. Panels a  and b 
respectively show a rapid and a slow decrease in spin diffusion length (/«) of Akis-based 
organic spin valves with temi)erature, taken from references [65] and [148]. The inset of b 
shows a decrease in device rnagnetoresistance with temperature following a similar trend. 
Panel, c shows a decrease in the estimated Ig, as a function of an electric field [142]. The 
decrease in Ig with temperature (in a and b) and with electric field (in c) indicate spin 
relaxation due to spin-orbit coupling.

mental work [65], where they observed a decrease in Ig with system confinement. Tliis 

is based on observation of an inverse dependence of Ig on mobility that is predicted by 

the EY mechanism of spin relaxation. Furthermore, the Ig of their Co/Alqs nanowires/Ni 

spin valves also showed a temperature dependence (see Fig. 4.11b). In the experiment, 

Ig was obtained by fitting the MR data to a modified Julliere’s formula [138]. Another 

compelling evidence that SO interactions are responsible for spin relaxation in organic 

materials is based on the decrease in Ig with electric field observed by the same group (see 

Fig. 4.11c). For a detailed explanation please see the derivations in Ref. [142].

However, there have been experiments [139, 140] which have also observed a similar 

decrease in MR of Alqs based spin valves with temperature, as illustrated in Fig. 4.12.
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Figure 4.12: Steady decrease in MR in organic spin valves has also been observed in two 
other experiments. The results from reference [139] are shown in the left-hand side panel 
and those from reference [140] in the right-hand side panel. In both these experiments, 
the magnetoresistance decreases to zero around the Curie temperature of the ferromagnet 
(LSMO). In the inset of right-hand panel the magnetization of LSMO as measured in 
SQUID measurement is shown. These results show that the temperature dependence of 
MR curves observed is only controlled by the spin polarization of the injecting (bottom) 
electrode and has little to do with the intrinsic spin transport through the organic layer.

In this case curiously, the MR of the device decreases to zero at exactly the Curie tem­

perature (T =  Tc) of the LSMO ferromagnetic electrode. These results indicate that the 

temperature dependence of the spin valve effect is driven by the weakening of the spin po­

larization of the carrier injecting ferromagnetic electrode. In other words, the loss of spin 

polarization is likely to be controlled by the spin injection at the FM/OSC interface and 

not by the intrinsic spin transport through the organic layer. This argument is bolstered 

by the results of magnetization of the LSMO electrode plotted vs temperature measured 

using superconducting ciuantum interference device (SQUID) technique (see the inset of 

Fig. 4.12b), exhibiting a similar trend as MR vs T  and decreasing to zero at T = Tc.

It is quite fair to say that the experiments, which probe spin transport through OSCs 

have been quite ambivalent in our opinion. It would be interesting to understand the 

reason as to why the experimental opinion on spin transport through OSCs is divided, as 

we have seen from the discussions in the preceding pages. Therefore, in this section we 

present a microscopic approach for investigating the spin transport properties in OSCs.
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We can directly com pare and understand  the role of HI and SO coupling in controlling 

the  spin tran sp o rt properties of OSCs, by m onitoring Ig.

4.3.2 T heoretical setup for spin transport

y

Figure 4.13: T he model H am iltonian of Eq. (4.10) captures the  essential interactions in 
OSCs. T he system  we model includes a one-dim ensional chain of atom s (bottom  panel), 
containing two p {py and p^) o rbitals per atom  (top panel). The carrier transpo rt direction 
is along the x axis and the Py and p  ̂ reside in the  orthogonal y z  plane. In order to  account 
for spin-lattice fluctuations in our model, the atom s in the chain are ro ta ted  in the  y z  
plane (e.g. atom  i is ro ta ted  by an angle 6i). Therefore the  nearest neighboring transfer 
integrals [thjj =  'jujj  +  Qj j  {qi — qj)] will have an angular dependence. Furtherm ore, 
the atom s (i.e. bo th  the Py and Pz orbitals sim ultaneously) move along the x axis due to  
phonons, w ith la ttice displacem ents qt for atom  i.

We work on a one-dim ensional chain of atom s representing an organic molecule, con­

tain ing two p {py and Pz) orbitals per atom . The tran sp o rt direction is along x  and th e  

Py and Pz orbitals reside in the  y z  plane. A schem atic picture of our vr — tt model system
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is ilhistrated in the top and bottom  panels of Fig. 4.13. The Hamiltonian describing this 

ensemble is given by Eq. (4.10) (below). This is an extension to the one which we have 

used in the previous section. Please be aware tha t we now introduce additional notations 

and have changed the names of few of the variables and their indices, as compared to 

the Hamiltonian discussed in the previous section. Here Ci^i (c|^/) denotes the creation

(annihilation) operator for an electron in an orbital I  {py or orbitals) at a site (atom)

i with spin a. Going through the constants in the Hamiltonian: e is the on-site energy, k 

is the elastic constant and J h and Xso are the strengths of the hyperfine and spin-orbit 

interactions respectively.

Hm = ' Y e  -  9 j ) ] (4 /  CjaJ +  h.c.) +  ^  (f/, -  +
i a i  i l j J  i j

+  ■/h ^  *5/̂  • [c|a/('^a/3)Cj/3/] +  A5 0  ^  ’ c|^/(<?(i/3)cj^j- (4-10)
i a / 3 I  i I J a 0

Lot US systematically go through the Hamiltonian terms since will form the basis of 

a large portion of the work presented in this thesis.

Transfer Integrals In the Hamiltonian in Eq. (4.10) the second term represents the 

transfer (hopping) integrals betv/een each of the tv/o p orbitals of nearest neighboring 

molecules (j =  z ±  1). In our model, we assume th a t the molecules (therefore the Py and 

Pz orbitals) can rotate in the yz  plane. For example the Py and Pz orbitals of site i will 

make an angle 9i with respect to (both) the original ij and z axis. This is schematically

illustrated in the top panel in Fig. 4.13.

We will now discuss the hopping terms between the individual p orbitals of the nearest 

neighbor atoms i and j .  Assuming th a t the effective transfer integrals between two orbitals 

( /  and J)  is t ĵjj where thjj = 'ynjj +  Qij{qi — qj), the hopping terms between similar 

kinds of p orbitals, i.e. when I  = J  are Up ĵp  ̂ =  Tip̂ jp̂  cos{9i — 9j) and tipjp^ = 

Tipzjp̂  cos{9i — 6j). Furthermore, the hopping terms between dissimilar kinds of p orbitals.
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wlien I  ^  J , are tWyXPi =  - T , ipz ^j) and ' îpzjpy ^y)' Here 0j

and Oj are the angles, which the molecules i and j  are rotated, in the yz  plane.

These expressions for the transfer integrals satisfy the limiting case, 6i — Oj = 0, i.e. 

the transfer integrals between dissimilar p orbitals are zero by synmietry. The angles 

in our model are classical vectors, which are evolved via Monte Carlo simulations [180]. 

Finally in our model, the electron-phonon interaction constants are taken as, a u  = a 

and j i i j j  = t.

Spin-orbit Coupling Next, the SO term in Eci. (4.10) can be decomposed for each 

site i in the chain as Xso Luj  ■ S iu  =  Hgd^ where H^q is the intra-atomic, on-site, SO 

Hamiltonian. L ^ j  and 5j/,/ =  cl^j{^ni3 )ci3 j  here are the orbital and spin angular momenta 

at site i. Also, (7̂ /3 is a vector of electron Pauli matrices and a  and P represents the spin 

indices ( T ,  i)- HgQ can be expanded as

^so — ^so ^HJL j i . i  ■ S i i j  —

Aso + L + Aso ( 4 . 1 1 )

where Lfjj(a^jj) is the angular momentum (s{)in) ladder operators. In the spin-dependent 

orbital basis { \ p y  T)i |Pz '\)A'Py \ ) A p \  i)}> the resulting spin-orbit Hamiltonian matrix, 

{la \Liij ■ Sijj\ Jo'),  for an site i in the chain is

Hso =

 ̂ 0 0 0 ^

^  0 0 . 0  

 ̂ 0 - L  0 0

y L 0 0 0

Please refer to Appendix A where we derive all the non zero SO coupling matrix elements 

{la \Liij ■ Siij\ Ja'). As such, WJq lifts the spin degeneracies of the eigenvalues of H m 

[Eq. (4.10)]. In OSCs, the strength of SO {Xso) is small, therefore this splitting is also 

small.

/



107 Chapter 4

It is im portant to note th a t a minimal tight binding model which includes a non-zero 

SO, needs to have and another p orbital (please refer to  Appendix A). In our model this 

is the Py orbital. It is for the sake of computational simplicity th a t we have dropped the p^ 

orbitals in our model. Furthermore, the justification to this is also based on the structure 

of organic molecular crystals. They are commonly characterized by a herringbone stacking 

(see Fig. 5.2c in the next chapter), with tt electron density residing in the herringbone 

planes and minimal electron density between them. In our t t  — t t  model, these herringbone 

planes can be the yz  planes (in grey) shown in the top panel of Fig. 4.13.

Having described the incorporation of SO in our model let us go through the other terms 

in the Hamiltonian.

H yperfine In teraction  The hyperfine interaction term  describes a Heisenberg-like in­

teraction between the electron spins, and a set of classical vectors, , rep­

resenting the nuclear spins. The hyperfine coupling strength for OSCs is J// =  10“  ̂— 10“® 

eV [93]. The classical nuclear spins Sj^ are also evolved in our simulations via Monte Carlo 

sampling.

O ther T erm s The first term of Eq. (4.10) accounts for the on-site energy and the third 

term is the classical elastic energy. For the spin transport calculations presented in this 

section, the values of the various constants in Eq. (4.10) are e =  0 eV, t =  0.1 — 0.7 eV, 

a  =  0.05 eV A~^ and k =  12.5 eV [180]. Finally, in all the calculations the half-filling 

scenario is considered.

Thus to epitomize, our t t  —  t t  model describes carrier transport across the herringbone 

structure in organic molecular crystals (like rubrene).

4 .3 .2 .1  E xtractin g  th e  sp in  diffusion length

E xp erim en ta l approach Usually the spin diffusion length Ig, which is the figure of 

merit for spin transport in a semiconductor can be extracted by fitting the modified
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Figure 4.14: The device s tru c tu re  of a Lao.ySro.sMnOa (LSM O )/A lq3/C o  spin valve is
shown in a. A cartoon depicting the  essential concept of spin diffusion length is illustrated  
in b. The characteristic niagnetoresistance curve of the spin valve is shown in c from 
experim ental work of reference [71]. Spin diffusion lengths {Is) are usually estim ated  in 
experim ents by fitting the niagnetoresistance curve as a function of layer thickness, shown 
in c w ith modified Ju lliere’s formula, Eq. (4.12). Panels a  and c are from the experim ental 
work of Xiong et al. [71].

Ju lliere’s formula [138] to  the  experim ental niagnetoresistance curves as a function of 

layer thickness, for exam ple the  one shown in Fig. 4.14c. The modified Ju lliere’s form ula 

is
AT? 2 P 1F 2

MR - —— = ------   (4.12)
R  1 — P i P 2

Here Pi and P2 are the spin polarization a t the  Fermi level of the two electrodes, d is 

the  w idth of the  organic layer and do is the w idth of the tunneling barrier a t th e  FM - 

OSC interface. Note th a t d^ should be around 1 nni to  produce spin polarized carrier

injection into the organic. T he argum ent for using Eq. (4.12) is the  following: a t the
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first F M /O S C  interface spin polarized carriers are injected into the  organic layer from 

the  FM. T hese carriers drift and diffuse through the rest of the  organic layer, w ith an 

exponentially  decaying spin polarization P\ Q-id.-do)/is^ Finally a t the second FM /O SC  

interface th e  carriers tunnel into the FM  (top) electrode causing the current flow through 

the  external circuit. A cartoon illustrating  the concept of Ig is shown in the  Fig. 4.14b also 

depicting some of the param eters from Eq. (4.12). The device is a vertical spin valve of 

L SM O /A lqa/C o taken from reference [71] illustrated  in Fig. 4.14a and the  corresponding 

m agnetoresistance profile is shown in Fig. 4.14c.

Our theoretical approach The theoretical spin valve, which we sim ulate in th is work 

is a  tw o-term inal setup as illustrated  in Fig. 4.15. It is com prised of three d istinct regions, 

two sem i-infinite leads (current-voltage probes) sandwiching a central scattering  region. 

O ur device’s leads act as electron reservoirs pum ping uncorrelated electrons into the 

central scattering  region a t energies corresponding to their respective chemical potentials. 

///, and fifi for the left-hand side and right-hand side leads respectively. We evaluate the 

tran sp o rt properties in the linear response regime, i.e. when ///, — /<« ^  0. The ballistic 

tran sp o rt approach used in th is work is based on the  algorithim  introduced by Rungger 

and Sanvito [13].

T he leads are semi-infinite, and are modelled by a single site tigh t binding Ham iltonian. 

The diagonal term s of the  H am iltonian m atrix  (of the leads) are the on-site energies of the 

atom s com prising the lead, and the off diagonal term s are the hopping elem ents between 

nearest neighbor atom s of the leads. The corresponding H am iltonian for the leads are: 

H l =  -h Y l l iXClaCja  + Cj^Cia),  such th a t 6l e and 7 l  »  t (wide band
ic r  i j

lim it). Here Cjo- {Cj^) are the creation (annihilation) operator of the spin polarized carrier 

in the  leads. Note th a t there is no spin mixing w ithin the electrodes. Also the  condition 

7 /, 3> t, is v ita l in this ap[)roach so as to  ensure an alm ost constant density of s ta tes  in 

the leads. Here the index i runs over the atom s constitu ting  the  leads. Also, there is a 

hopping integral, 7 la /, between the  leads and bo th  the Py and Pz o rbitals of the organic



110 Chapter 4

molecule.

The scattering region of the problem is defined by the Ham iltonian of the OSC 

Ecj. (4.10), and the left and right retarded self-energies (E/, and respectively). The 

self-energies of the leads include the coupling between the OSC and the respective leads 

as well as the electronic structure of the sem i-infinite leads themselves. Thus the Ham il­

tonian (Heff) o f the ’’effective” scattering region can be w ritten  down as :

Left Lead Organic Molecule Right Lead

Figure 4.15: The spin-transport setup, containing the chain of atoms (organic molecule) 
described by E(j. (4.10), sandwiched between m etallic leads.

+  J2 j iE)  +  ^ n {E ) .  (4.13)

The defin ition of the retarded Green’s function of the scattering region is

G ^ (E )  =  lim [(£ ; -  Z77)/ -  (4.14)
t ; ^ 0

Furthermore, the left-hand side and right-hand side leads’ retarded self-energies in Eq. (4.13) 

can be w ritten  in terms of the surface Green’s function gi  ̂ and g^ and the coupling m atrix  

between the leads and the OSC Hf^s and Hus

E , { E )  =  H l , g iX E ) H , s ,  (4.15)

^ r {E)  =  Hns9R{E)H^j,s- (4-16)
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The technique [13] for obtaining the surface Green’s function relies on first constructing the 

Green’s function for an infinite system, then applying the relevant boundary conditions. 

The surface Green’s function for a single site ID tight binding model takes the following 

form

g,{E) = gn{E) = (4.17)
I L

k{E) = cos-1 ( ^ 27 / ^ )  ■

where k{E)  is the dispersion relation for the itinerant electrons coming from the leads. 

The coupling to the left-hand side and right-hand side leads has the effect of broadening 

the discrete energy levels in the scattering region. This is characterized by the broadening 

functions Fl A E )

T lA E )  = -  ELh(B)I- (419)

Finally the two-probe conductance is given by the Fischer-Lee relation

G{E)  =  ^^Tr[TiXE)G^\E)Tn[E)G‘̂ [E)\. (4.20)

The term Tr \TiXE)G^\E)Tn[E)G‘̂ {E)] is the energy dependent transmission coefficient 

T{E)  that can be calculated from scattering theory.

In the case of spin polarized transport which is of interest to us, the total transmission 

probability (and hence total conductance) is spin dependent. Thus the spin polarized 

conductance can be decomposed as follows

G(E) = j [ Tu( E)  +  r,i(£) + r„(E) + r„(B)], (4̂ 21)

Here, (7)x) refers to the transmission probability that an electron with spin up (down) 

enters the organic layer and exits out as a spin up (down), thereby preserving its spin 

direction. In contrast, (7)|) refers to the transmission probability that an electron
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with spin up (down) enters the OSC and leaves it, with its spin orientation down (up), 

after encountering spin mixing events (HI and SO) within the organic layer.

In our procedure, the transmission coefficient is integrated over the entire spectrum. At 

zero applied bias the integrated total transmission can be decomposed into its constituent 

spin-contributions using the Landauer-Biittiker formula for ballistic conductance G as

G -  —[T|t +  +  T || +  T |t]. (4.22)

Here, G and T  are the respective integrated conductance and transmissions and hence 

we have dropped the dependence on E.  We may separate the integrated transmission 

coefficient in Eq. (5.17) into a spin-conserving part, Tgc =  Tjj +  and a spin-mixing 

part, Tsm = T^i+Ti^.

As discussed earlier to obtain Ig in experiments, the spin polarization, 5 P , at the first 

metal-organic interface® is monitored as a function of the organic layer thickness. S P  is 

defined as

where and are respectively the density of states of the |  and J, carrier spins. It 

can be very easily shown^ that Eq. (4.23) can be rewritten in terms of Tgc and Tgm as

( 4 .24 )
SC ' s m

Therefore, in our theoretical approach, Ig can be extracted by monitoring the length 

dependence of SP.

In this work we are interested in understanding from a miscroscopic viewpoint, what 

is responsible for the loss of spin polarization of the itinerant carrier in OSC molecular 

crystals? In particular we investigate and comj)are the role played by intrinsic effects, i.e.

^Bottom electrode-OSC interface, see Fig. 4.14b.
7 c p  _

N f + N ^  T , r - N T + T , „ , - N^  '
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HI or SO coupling. Keeping this in mind, our approach to evahiate Is from a ballistic ap­

proach to spin transport is justified. In such a limit we will be estimating Ig by measuring 

the spin relaxation only due the intrinsic spin relaxation effects of the OSC i.e. HI and 

SO coupling and excluding any scattering effects.

The classical variables qi, 6i and in Hamiltonian Eq. (4.10) are evolved via metropo­

lis algorithm [180] and the transport observables are subsequently averaged over 50,000 

Monte Carlo (MC) steps. Also, all the spin transport calculations have been performed 

at a  =  0.2 eVjA.

4.3 .3  R esu lts and discussions 

H yperfine interactions

0.0005

l/k„T = 57ev'
0.0004

'i)
(N|

0 .000.1
> 1 l/k„T = 290 ev

0.0002

^  lc-0.1

0,0001

100

L
Figure 4.16: Tsm vs L evaluated at different temperatures (/? =  l//cfiT), when only HI is 
the source of spin-scattering in the model, i.e. Xso = 0 and Jh = 10~® eV. Note that 
is independent of temperature at all lengths. The inset shows an example of Tsm{E) vs 
E, where iio is the chemical potential and E — iLo is in units of eV. In order to obtain Tgm 
the spin mixing transmissions, Tsm{E), are integrated over the entire spectrum. Please 
note that to convert T in units of K  the Boltzmann’s constant is kis = 8.617 X 10  ̂ eV/A'.

We begin with presenting the spin transport results for the vr — tt model when only 

HI is the source of spin scattering, i.e. Xso — 0. In Fig. 4.16 we report, Tsm evaluated at
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J// =  10~  ̂ eV and A =  0 eV, as a function of length of the molecular chain (number of 

sites) L, each at different temperatures ranging from 1 /k sT  =  34 — 290 ev“ 'p]. Note that 

the temperature dependence of vs L is almost non-existent when the sj)in relaxation 

mechanism is only HI. This is because the energy scale for hyperhne coupling is too small 

for the spin dynamics to be affected by temperature. Since the strength of hyperfine 

coupling (J//) in OSCs is very small, the itinerant electron sees a frozen configuration of 

nuclear spins (randomly aligned) in the time it takes to travel through the chain. This 

also explains why Tsm increases with L. Similar increase in Tgm with L was also observed 

when J// =  0 and Xso is finite. In this scenario, it can be reasoned that with increasing 

L (imniber of sites), the spin scattering due to the on-site SO coupling increases and 

therefore Tsm increases. However, please note that the overall conductance (or Tsc + Tsm) 

decreases with length.

According to Ref. [93], the effective magnetic held created by HI in OSCs is in the mT 

range. This means that the lower bound of in our model i.s 10“'' eV and the uj)per 

bound can be 10^“̂ eV. Please note that, it is quite difficult to establish the ecjuivalency 

between our model and their theoretical work. Therefore, to understand the qualitative 

behavior of HI we have investigated the spin transport characteristics of the model for 

different strengths of .///■

In Fig. 4.17 we illustrate the length dependence of S P  for values of J„ = 10-^ 10-^ 

and 10“® eV. The S P  vs L graphs when spin diffusion is only due to HI are independent 

of both T  and t. Also J// > 10“'* eV is a rather large estimate for the HI strength. To 

extract the spin diffusion length, Ig, in our model, the S P  vs L graphs can be fitted to 

an exponential function, S P  = SP q e~'^  ̂ ~  SPq (1 — 7] ■ L), where the second equality 

is for the limitting case of small L. Ig for the system is the reciprocal of the exponential 

constant. Is — l/rj.

In Fig. 4.17 we observe that the rate of decay in S P  with increasing L is quite small 

®Where k s  =  8.617 x 10^ eV /K .
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Figure 4.17: When the spin diffusion mechanism in the model is only controlled by HI, 
the spin transport is independent of temperature T  and the transfer integral f. S P  vs 
L evaluated for one such T  and t but at different HI strengths, J//, is shown here. The 
rate of decay in S P  with L increases rapidly as the strength of HI is increased. The 
corresponding estimates for Ig (mentioned in the graph) also show a drastic decrease.

when Jh = 10̂ ® eV and is rapid as the the strength of HI is increased (by a factor of 

10), especially in the case when J// =  10“"̂ eV. Consequently, the estimate for Is also 

decreases swiftly. This is due to an enhanced spin scattering with increasing HI strength. 

The estimates for spin diffusion lengths are the following, Ig = 153.54 nm for J// =  lO"'* 

eV, Is =  4350.49 nm for J// =  10"^ eV and Ig -  1.218 x 10® nm for Jh = 10“® cV^]. We 

observe a stark increase in Ig on decreasing the magnitude of HI.

Let us now look into the effect of SO interactions on the spin transport properties of the 

model.

Spin-orbit interactions

We will begin by comparing the spin transport properties of the model as a function of 

HI and SO coupling strengths.

Please note that obtaining the magnitudes of both HI and SO coupling for organic

®Note that such large estimates of Ig for J/y =  10"® eV is expected from the nearly flat S P  vs L 
behavior in Fig. 4.17.
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Figure 4.18: S P  vs L graphs for equal strengths of HI (in black) and SO coupling (in 
red), each corresponding to spin relaxation magnitudes of : 10“® eV (left panel), 10“  ̂
eV (middle panel) and 10““̂ eV (right panel). As evident from the graphs, when the 
spin relaxation strengths are minute (as in the left panel), the decay of S'P with L is 
quicker in the scenario when spin relaxation is only due to HI as opposed to SO coupling 
alone. However, as the spin mixing interaction magnitudes are increased (middle and left 
panels), S P  decays rapidly with L for the case of SO coupling as opposed to HI. The 
results shown here are for a fixed t = 0.1 eV and /? =  60 eV“ ^

materials, proved to be not so straight-forward. There is lack of experimental insights in 

this respect because of the difficulties in measuring HI and SO couplings directly. The said 

complications arise because the magnitudes of these spin relaxation mechanisms are small 

in OSCs. Therefore experimentalists resort to indirect approaches to measure the effect of 

SO coupling and HI on spin transport as discussed earlier in section 4.3.1. Furthermore, 

theoretical attempts to c}uantify HI and SO coupling are also not conclusive. In our work 

we are interested in understanding the behavior of the spin relaxation mechanisms (HI vs 

SO coupling) through OSCs. For this purpose our approach is as follows.

Fig. 4.18 illustrates S P  vs L for equal strengths of HI (in black) and SO coupling (in 

red) when each of the spin scattering mechanisms are acting alone; with spin relaxation 

strengths corresponding to 10“® eV (left panel), 10“  ̂ eV (middle panel) and 10“ '̂  eV 

(right panel). Note that the amount of spin mixing {J^ and Xso): which we consider 

correspond to their upper and lower limits.

For small magnitudes of spin relaxation as in Fig. 4.18a, we observe that the decay in 

S P  with L is small for both the cases (note the ordinate of the graph). However, the rate
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of decay of S P  with L is more for HI as opposed to SO coupling. This suggests th a t in 

the lower limit for the spin flip mechanisms HI plays a more dominant role in governing 

spin transport than SO coupling.

Interestingly, the reverse holds true when the strength of spin-flip mechanisms are 

increased (to 10“® eV and 10“'* eV) in the tt — tt model. For a given strength, S P  decays 

more quickly with L  when spin relaxation is controlled by SO coupling as opposed to HI 

(see Fig. 4.18b and Fig. 4.18c). This means tha t for stronger magnitudes of spin scattering, 

SO coupling plays a more crucial role in dictating the spin transport properties than HI. 

Please note th a t in both cases, as the spin relaxation strengths are increased from 10“® 

eV to 10“ *̂ eV, the magnitude of S P  decreases more rapidly with L.

Let us now discuss the significance of the results presented in Fig. 4.18 with respect 

to sj)in transport characteristics in OSCs. In organic materials both J// and Xso lie in 

the range between 10“"* eV and 10“® eV. The magnitude of HI depends on the amount of 

nuclear spins coming from H (and also contaminations). Furthermore, the magnitude 

of SO coupling will depend on the geometry of the OSC molecular crystal, tem perature 

and intermolecular interactions. Therefore, in OSC the magnitudes of HI and SO would be 

controlled by a number of different variables^°. It may be suggested th a t in experiments, 

one of the two mechanism dominates over the other based on specific conditions like 

tem peratures, concentration of defects and impurities etc (which will govern the strength 

of J // and Xso)-

Next, in Fig. 4.19 we show the dependence of Ig on T  and t when Xso — 10“'* eV and 

Jf{ = 0 eV, i.e. when spin relaxation is only governed by SO coupling. We show Ig vs 

l / t  for T  = 200 K (in red) and T  =  58 K (in black). We investigate the spin transport 

characteristics of the ID model for values of t between, 0.1 — 0.5 eV, corresponding to 

reasonable estim ates for bandwidths in real OSCs** (please see the ah mitio estimates for

‘̂'A iid they  may not be equal, as assumed in the  coni])arisioris in the individual panels of Fig. 4.18. 
Therefore it is difficult to  establish HI vs SO coupling w ithout proper quantification of the  spin relaxation 
strengths.

^ 'N ote  th a t for our ID  model the bandw idth is 4f.
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Figure 4.19: The left panel shows the dependence of Is on T  and t, when spin relaxation 
in the model is only controlled by SO (A5 0  =  10“ '* eV and J// = 0  ). We notice tha t Ig 
decreases only slightly with decreasing t (increasing l / t ) .  Furthermore, the m agnitude of 
Is is marginally smaller at a higher tem perature. The inset in the left panel shows a rapid 
(power law) decrease in charge carrier mobility with l / t .  The right panel shows S P  vs L 
for t =  0.1 eV [l / t  =  10.0 eV“ ]̂ and t = 0.5 eV [\ / t  =  2.0 eV“ ]̂. Note tha t at a lower t 
and at larger lengths, S P  is slightly small.

the transfer integrals for OSCs in Chapter 5 and Chapter G).

First and foremost, one can see in Fig. 4.19a tha t for every t, the m agnitude of Is is 

greater at T  =  58 K in comparison to T =  200 K, although only slightly. This is because 

of an enhanced spin scattering due to SO coupling at higher tem perature due to increased 

modulation of the transfer integrals. Furthermore, we observe th a t with decreasing t 

(increasing l / t ) ,  Is also decreases, but only marginally.

In Fig. 4.19b we illustrate S P  vs L for t = 0.1 eV [l / t  = 10.0 eV“ ]̂ and t =  0.5 eV 

[l / t  =  2.0 eV“ ]̂. Note tha t for large lengths, the absolute value of S P  is slightly smaller 

at a lower tem perature. This can be attributed to enhanced spin scattering^^ due to SO 

coupling.

W hat exactly does decreasing t (increasing l / t )  mean in terms of describing the over­

all carrier transport properties of the system? To answer this question, in the inset of

^^Since a  is constant in our calculations, as t decreases, a / t  increases and therefore the fluctuations in 
t +  a  ■ {qi — qj) increases (which will govern SP) .
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Fig. 4.19a we illustrate the carrier mobility, vs 1/t on a log-log scale at T  = 200 K. 

Note that on decreasing the transfer integral t, i.e. decreasing the probability of hopping 

between neighboring sites in the model, // decreases rapidly following a power law behav­

ior. Please keep in mind that here we summarize the charge transport of the system in the 

diffusive limit while the spin transport observables throughout this section is evaluated in 

the ballistic limit. The graph shown in the inset of Fig. 4.19a is only intended to illustrate 

that the charge carrier becomes less itinerant on decreasing t (increasing 1/t). Indeed the 

corresponding ballistic transport observable {Tsm +  Tgc) also decreases on increasing 1/t. 

From Fig. 4.19a we find that the distance travelled by the carrier spins before losing 

their spin polarization {Ig), only decreases slightly with decreasing t (and increasing l /t).  

Therefore in our spin transport calculations (for both HI and SC) coupling) Ig is marginally 

dependent on the carrier mobility. This has also been documented in literature [146].

We will now recap the main conclusions based on the work presented in this section. 

We have \uiderstood the effect of HI and SO coupling on controlling s])in relaxation of 

the itinerant carrier as it travels through the OSC. While the loss of spin polarization 

due to HI is temperature independent the same due to SO coupling increases with T  and 

\ / t .  Finally, based on the absolute values of it is difficult to establish a comparision 

between HI and SO coupling, as which of the two mechanisms dominate spm transport. 

We have provided a miscroscopic explaination to this based on the strengths of HI and 

SO coupling.

From experiments, it is difficult to get an estimate of these spin relaxation strengths, 

in particular because their magnitudes are quite weak. For example, the nuclear hyperfine 

structure (in static case) can be obtained from Electron Paramagnetic Resonance (EPR) 

experiments [152]. However, the effect of the nuclear spins on an itinerant electrons (the 

scenario we are interested in to describe transport) is not straightforward to estimate. 

Furthermore, optical pump-probe techniques based on Kerr/Faraday rotation are the 

'^E valuated from K ubo formula in the ballistic transpo rt limit.
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standard methods for estimating the spin transport characteristics of inorganic semicon­

ductors [153], while for metals both electrical [154] and optical methods [155] can be used. 

Unfortunately, the same methods, i.e. spin-manipulation and optical spin-detection [151] 

cannot be utilized for investigating spin-dephasing though OSCs. This is because the weak 

magnitude of SO coupling in OSCs make polarized-light pumpprobe o[)tical techniques 

ineffective for organic materials and most of the standard optical characterization tools 

designed for inorganic semiconductors cannot be adopted for OSCs [59]. These factors 

make an accurate experimental estimation of J // and Aso for OSCs challenging !

4.4 Summary

In this chapter we have established the computational methods to investigate the charge 

and spin transport properties of OSC represented by a tight binding Hamiltonian. We 

presented the method to evaluate charge carrier mobility using Kubo fornmla within the 

Monte Carlo scheme. Furthermore in the second j)art of this cha[)tcr we have introduced 

the spin polarized tight binding Hamiltonian to include the two main spin relaxation 

mechanisms in OSC: spin orbit coupling and hyperfine interactions. We outlined in detail 

the method by which we can evaluate the spin polarized transmission coefficients from 

Landauer-Biittiker fornuila and thereafter a scheme to calculate spin diffusion length 

which is a figure of merit for spin transport.

In an organic spintronic device (e.g. one outlined in Fig. 2.1), both charge transport 

and the corresponding loss of its spin polarization takes place simultaneously. However, 

in this work to specifically understand the microscopic origins of both, we have adopted 

the ballistic ap{)roach to study the spin relaxation of the itinerant carriers due to intrinsic 

effects of the OSC (HI and SO coupling) and the diffusive transport approach to estim ate 

the carrier mobility. In other words, in this chapter we have explored in detail the spin and 

charge transport phase diagram in terms of the microscopic model Hamiltonian param e­

ters. However, what is missing from this analysis, is a first principle’s description of the
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OSC itself and therefore an ab irntio estim ation of the  tran sp o rt observables. This would 

enable us to  com pare the  estim ated  trans[)ort observables directly w ith experim ents. In 

fact, th is is exactly w hat we wish to  achieve in the  next chapters of the thesis.



Chapter 5

Charge and spin transport properties 

of Rubrene from first principles

In this chapter we will provide a systematic approach to investigate the charge and spin 

transport characteristics of rubrene from Hrst principles. Our techniciue involves obtaining 

the ab im tio  tight binding Hamiltonian for rubrene by computing the maximally localized 

Wannier functions of the system. The material specific tight binding Hamiltonian of the 

system investigated {)rovides a comprehensive information of the essential interactions in 

the crystal. This is then used to  com pute carrier mobility from the Kubo formula and the 

spin diffusion length from the algorithm introduced in the previous section. Before we 

embark upon a detailed description of the procedure to  estimate the transport properties, 

let us spend the introductory section of this chapter on the motivation behind our choice 

of rubrene as the OSC to address in this work. Furthermore, let us also provide our [per­

spective on the sta te  of the art experiments which study transport through rubrene based 

nanodevices. These will form the experimental benchmark for the ab im tio  simulations 

presented in the chapter.

122
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5.1 Charge transport experim ents on single crystalline 

rubrene based OFETs
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Figure 5.1: The evohition of carrier mobihty in single-crystalhne OFETs over the years is 
shown. This graph is borrowed from the review' of Hasegawa and Takeya [159]. In recent 
years rubrene based single-crystalhne OFETs have exhibited highest mobilities of about 
20 — 40 cm^/V-sec, thereby performing better than amorphous (q —Si) and polycrystalline 
Silicon (poly-Si).

In the previous chapters we have already discussed in some detail Organic Spin Valves 

and the experimental methods to extract the spin properties of OSCs. We will again 

come back to those in the latter part of this chapter, but for now we shift our focus on 

the experiments which probe charge transport in organic materials. OFETs (Organic 

Field Effect Transistors) are the prototypical devices to investigate the charge transport 

characteristics of OSCs. The semi-conducting channel material in such devices comprises 

a single crystal OSC like rubrene, which has been known to deliver improved performance 

in term s of its intrinsic charge carrier mobility. Indeed one of the figures of merit for O FET 

characterization is its carrier mobility. Fig. 5.1 shows how within the last few years the 

mobilities of single-crystalline rubrene based OFETs have surpassed tha t of FETs made 

from amorphous as well as polycrystalline silicon. This is partly due to advancements in 

experimental techniques, the use of better and cleaner substrates, as well as of better gate 

insulating materials in fabricating high-performance FETs.
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Figure 5.2: The struc tu re  of rubrene molecule in the gas phase and in an orthorhom - 
bic crystal [179] is shown respectively in (a) and (b). Rubrene molecule consists of a 
7T— electron rich central te tracene backbone which contributes to  much of interniolecular 
interactions, and bulky phenyl side groups. We show the orientation of its un it cell along 
the  shortest crystallographic axis y,  illustrating  the famous herringbone motif, which 
m any polyacene OSCs are associated w ith. Moreover, as one can predict, there  will be a 
strong 7T —7T overlap along the  y  direction which will therefore d ic ta te  the charge tran sp o rt 
properties in the  crystal.

A nother reason why rubrene based O FE T s have superior charge carrier m obilities is 

because of the inherent s truc tu re  of rubrene molecular crystals. Let us discuss th is in 

detail. F irst we depict the  s truc tu re  of the  rubrene molecule in Fig. 5.2a. T he molecule 

consists a tt—electron rich central te tracene backbone and heavy phenyl side groups. Next, 

we show the orthorhom bic crystallographic s truc tu re  of rubrene crystal in Fig. 5.2b. T he 

unit cell param eters are a —  26.92 X,  b =  7.17 A  and c =  14.35 A  [179]. In Fig. 5.2c 

we show the orientation of th e  crystal along the  shortest crystallographic direction, i.e. 

along the  y  direction. As is clearly evident from the  right panel of Fig. 5.2 there is a
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strong  7r — 7T overlap along the  y  direction thereby forming a herringbone m otif along th a t 

direction. Furtherm ore, we expect th a t there will be little interm olecular in teraction along 

the  o ther crystallographic directions. Hence, if the rubrene single crystals are aligned in 

the  channel of an O F E T  such th a t the  y  direction of the  crystal is along the  source- 

d ra in  of the  transisto r, one can expect exceptional charge tran sp o rt characteristics in 

such O FE T s. Such an anisotropy in rubrene crystal based O FE T s was also observed in 

experim ents [156].

drain
TO P VIEW

dielectric

substrate

organic crystal

oompiele laminatton

Figure 5.3: T he m ethod to  fabricate high perform ing O FE T s is schem atically illustrated  
here from th e  work of Sundar et al. [156]. They used a flexible elastom eric polydim ethyl- 
siloxane (PDM S) sub stra te  on top  of which the gate, dielectric and the transisto r source 
and drain  electrodes are deposited as shown in panel A. T he corresponding top  view of 
the device is shown in the  right frame. This is the first step  in the fabrication process. 
Next, th e  organic crystal is lam inated on the transisto r stam p as shown in panel B. Here 
at first the  initial contact is achieved (first and second frame) which creates a w etting area 
between th e  two surfaces. T hereafter, the  organic is held together in the architecture by 
Van der W aals forces w ith the elastom eric substrate.

Here we would also like to  draw  the a tten tion  of the reader to  the  key difference 

between m olecular crystals and inorganic solids. As we shall see in this chapter, the mor-
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phology of rubrene molecular crystals play an im portan t role in d ictating  its electronic 

properties. Indeed, the  main problem  w ith fabricating any organic based device lies in its 

inherent fragile nature. For exam ple, due to  chemical bonds between the organic m aterial 

and the su bstra te  the  m olecular ordering in the  organic layer can be severely disrupted. 

Furtherm ore, these may also generate interfacial trapp ing  sites creating barriers to  charge 

injection and subsequent transpo rt, and thereby causing many unwanted changes to  these 

fragile organic m olecular systems. Therefore the  main goal in experim ents to  fabricate 

high perform ing O FE T s is for the  fragile OSC to  be m aintained relatively untouched. C ur­

rent experim ental techniques to  obtain  high quality rubrene based O FE T s are based on 

the  {)ioneering work of Sundar et al. [156]. The authors dem onstrated  th a t Polydim ethyl- 

siloxane (PDM S) can be used as a substra te  on top  of which the O FE T  architecture can 

be fabricated effectively.

This is system atically illustrated  in Fig. 5.3. Before we address the detailed experi­

m ental procedure employed to fabricate O FE T s we m ust m ention th a t in their procedure, 

the  entire transisto r circuitry  is fabricated on a flexible elastom eric substra te  and in the  

final stage is bonded to  the  surface of the  organic layer w ith Van der W aals forces. An 

alternative popular m ethod is to  lam inate the  organic m aterial against a Silicon (Si) wafer 

w ith pre-deposited electrodes [157, 158]. Both the  m ethods elim inate the need to  deposit 

any m etal or gate dielectrics d irectly  onto the fragile s truc tu re  of the organic m aterial. 

However, there  are particu lar advantages which the m ethod of Sundar et al. has over 

th a t of lam inating the  OSC onto a Si wafer. The first advantage lies in the fact th a t the  

elastom eric technique is com patible w ith thicker and rigid structu res (in com parison to  

the Si stam p technique) because the  flexible elastom eric PDM S substra te  and the  ductile  

gold electrodes can ad just them selves easily to  different crystal shapes. Secondly, the  

elastom eric approach is non destructive and reversible. For a detailed perspective of the  

o ther different fabrication m ethods for O FE T s the reader is directed to  the  nice review 

by Hasegawa and Takeya [159].
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T he relatively simple O FE T  fabrication technique employed by Sundar et al. [156] is 

schem atically illustrated  in Fig. 5.3. F irstly  the gate, dielectric, and source-drain elec­

trodes are sequentially deposited onto a PDM S substra te  as shown in Fig. 5.3A. The right 

panel is the top  view of the device. The next step is to  lam inate the  OSC single crystal 

onto  th e  tran sis to r stam p as depicted in Fig. 5.3B. T he lam ination process is as follows: 

firstly an initial contact (first frame) is created between the  two surface producing a wet­

ting  front th a t progresses across the  sem iconductor stam p (second frame) and finally the  

entire organic crystal has an in tim ate contact w ith the transisto r stam p due to Van der 

W aals interactions between the  two surfaces (th ird  frame). T he right panels show' the 

corresponding optical m icrographs. In m odern high perform ing O FE T s, the  source, drain 

and gate electrodes are made up of gold. The gate insulator is m ade up of a m aterial 

w ith a  high dielectric constan t (parylene, air gap, flouropolymer, etc.) which acts as a 

capacitor in preventing a direct ohmic contact between the  gate and the OSC. We m ust 

also m ention th a t  Sundar et al. [156] reported  the  highest mobility of 15 cm ^/V-sec which 

indicates a superior perform ance of their O FE T  devices.

A t this point, a crucial question may be proposed, i.e. how exactly does carrier 

tran sp o rt take place in an O FE T ? Let us try  to  dehver an answer to  th is question w ithout 

going into much detail of the electronic s truc tu re  of the underlying organic, which will be 

addressed in th is chapter. Rubrene is a hole tran sp o rt dom inated OSC (^/^ ^  ^e)- Under 

ideal circum stances carrier tran sp o rt th rough the  device can be described by the  situation  

illustrated  in th e  top  panel of Fig. 5.4. According to  this, holes are injected from the 

electrodes into th e  Highest Occupied M olecular O rbitals (HOM O) of rubrene, where they  

subsequently travel across the HOMO levels ( th a t are broadened) of the organic to  reach 

the opposite electrode. The carrier tran sp o rt mechanism is therefore band transpo rt. 

In such an ideal circum stance carrier tran sp o rt across the HOMO of the  OSC can be 

understood from a delocalized natu re  of the  charge carrier in the band tran sp o rt limit. 

The fingerprint of band tran sp o rt is therefore a steady (power law) decrease in carrier
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Figure 5.4: The hole transport mechanisms through an OSC (e.g. rubrene) in an OFET 
device is illustrated with the help of two cartoons. When the OSC is completely defect- 
free, the carriers travel through the OSC via a band transport mechanism. According to 
this the charge carrier’s wavefunctions are delocalized across the molecules constituting 
the OSC (due to strong tt —tt interactions) and this charge transport scenario is illustrated 
in the top panel. There is a substantial broadening in the individual levels constituting 
the organic which facilitates the delocalized transport. The bottom  panel depicts the 
carrier transport mechanism when there are localized defect states (shown here) present 
close (within a few k s T )  to the HOMO of the OSC. As a result of the localization, carrier 
mobility is reduced. Furthermore, with tem perature this localization is overcome by the 
carriers and hence the transport mechanism is activated in nature.

mobility due to tem perature.

In actual experiments, intermediate trap  states are located close to the HOMO and 

within the band gap of the OSC. These trap  states can shift the HOMO energies by a 

few k s T  as illustrated in the bottom  panel of Fig. 5.4. These defect states could exist 

due to a structural mismatch or chemical bonding between organic and substrate and/or 

gate dielectric. Occasionally deep trap  states within the band gap of the organic may also 

form due to water contamination or oxidation of the organic material induced by gate 

dielectrics or severe structural imperfections. Thus, any sort of trap  states causes localized 

levels and reduces the carrier mobility through the OSC. So, what is the influence of these



localized trap  s ta tes  on the charge tran sp o rt through the  device?

At low tem peratu res carrier tran sp o rt through the  device now takes place via these 

localized sta tes as shown in bo ttom  panel of Fig. 5.4. As the  energy levels of these shallow 

(localized) tra p  sta tes are random ly d istribu ted , carrier tran sp o rt will be activated  in 

natu re . Therefore carrier mobility, which is itself low due to  trapp ing  effects increases w ith
- E

tem p era tu re  according to  the  following expression for activated  tran sp o rt, .

For obvious reasons in a high perform ing O FE T  the  num ber of such localized defect sta tes 

m ust be as little  as possible. Moreover, beyond a particu lar tem peratu re  when the  therm al 

energy is sufficient to  overcome the  localization due to  these states, carrier tran sp o rt 

becom es again band like. Usually in experim ents bo th  types of tran sp o rt behavior are 

observed in O F E T ’s mobility (see the  top  panel of Fig. 5.6C) [160]. Finally, we m ust also 

m ention th a t the  existence of deep trap  sta tes w ithin the  band gap of the organic severely 

im pedes the perform ance of the  device by lowering the  mobility dram atically  and it is 

therefore undesired.

5.1.1 E xperim ental estim ation  of carrier m obilities in O FETs

It is crucial to  spend a few pages of the  in troductory  section of this chap ter to  learn the 

experim ental techniques to  estim ate the charge tran sp o rt properties in organic m aterials, 

which will form a benchm ark for our ab irnUo calculations la ter on in this chapter.

T w o-term inal m easurem ents

In a F E T  architecture, commonly estim ated tw o-term inal mobility (^ 2t )  can be obtained 

from the  following expression:
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Figure 5.5: Schematic circuit diagram for a four-terminal conductivity measurement with 
applied gate voltage to measure the intrinsic charge carrier mobilities of an OSC in an 
OFET device. The diagram is taken from the review of Hasegawa and Takeya [159]. 
Here, S, D and G are source, drain and gate electrodes respectively ; Iq and Ip are the 
gate and source-drain current respectively; Vgd and Vsd are the gate drain and source 
drain voltages respectively and finally W  is the width of the organic channel and I is the 
distance between the voltage probes.

where L is the distance between the source and the drain electrodes and W  is the width of 

the channel. Also, Id is the drain current between the tw'o electrodes (source and drain), 

Vp and Vg are the drain and gate voltages respectively and Q  is the capacitance of the 

gate insulator per unit area.

Fig. 5.5 shows the electrical circuit used for measuring the drain current Id and the gate 

leakage current Iq on applying Vq and Vd- In the transistor operation Vth is the threshold 

gate voltage and only when Vg > Vth-, Id is finite. Additionally, the charge transport 

characteristics of the device is estimated when the measurement reaches a saturation 

regime. The saturation regime is achieved for a value of Vp beyond which Id stays 

constant. In this scenario, the excess carriers are accommodated at the depletion layer 

formed near the gate electrode. The saturation regime is reached when Vo larger than 

Vg — Vth and the saturation mobility (fisat) can be estimated according to the following 

formula:

-  Vthf/2,  (5.2)
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w here /ff*" is the  sa tu ra tion  drain current.

Four-term inal setup in an OFET architecture

Two term inal m easurem ents always include parasitic influences due to  the  contacts. 

Therefore in order to  probe the  intrinsic carrier tran sp o rt property  of single crystalline 

O FE T s, a four-term inal setup  is incorporated. This is schem atically illustrated  in Fig. 5.5. 

By de tecting  th e  voltages Vi and V2 a t two positions on the crystal (as illustrated  in 

Fig. 5.5), th e  longitudinal sheet conductivity  can be obtained as:

_ Id L\2 / r

{ V 2 - V 1 )  VI" ’  ̂ ^

where L 12 =  I is th e  distance between the  additional two voltage probes in the  direction 

of th e  current. T he four-term inal m obility which gives insights into the  intrinsic 

charge tran sp o rt characteristics of the  organic m aterial can be obtained using the  following 

formula;
4T 1 dcr 

" = Q " dVfc-

and

cr =  =  Q {V g -  (5.5)

Here j  denotes the  density of carriers and e is the electronic charge. Fig. 5.6A shows a 

typical I p  and a  vs Vq graphs in a four-term inal m easurem ent from which the  m obility 

can be ex trac ted  using Eq. (5.4).

Hall Effect to  probe intrinsic transport of field induced carriers in OFETs

An im po rtan t step  tow ards understanding  the charge carrier m echanism s and therefore 

fabricating high quality  single-crystalline O FE T s was in the  realization of Hall effect in 

such devices [160, 161, 162]. The prim ary conclusion from these experim ents were th a t, 

(indeed) band  tran sp o rt is realized for charge carriers generated in single crystalline OSC
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w ith highly overlapped orbitals between adjacent molecules.

Hall m easurem ents are done using a ” six-probe H all-bar” [163] which is illustrated  in 

the inset of Fig. 5.6B. The transverse Hall voltage Vjj is estim ated. T his recjuires the 

evaluation of th ree voltages Vi, V2 and V3  (by additional source measure units) as shown 

in the  inset of Fig. 5.6B. In Hall experim ents the sheet conductivity  and Vh =  ^ 3  — ^ 1 , as a 

function of external m agnetic field perpendicular to  the channel are m onitored. Succinctly, 

Hall m easurem ents give a direct indication of the fate of the injected charge carriers w ithin 

the OSC.

Fig. 5.6 shows some of the  experim ental [160, 161] results of Hall effect on single 

crystalline rubrene based O FE Ts. Prior to  the Hall m easurem ents in zero applied m ag­

netic field the  longitudinal conductivity  and therefore m obility was m onitored from a 

four-term inal setup. The results are illustrated  in Fig. 5.6A. The upper bound of the 

mobilities [estim ated from the slope of the  graph and Eq. (5.3)] were reported  to  be 25 

cm^/V-sec at low gate voltage and 2 cni^/V-sec a t high gate voltages.

For the Hall-effect m easurem ents, a m agnetic field is swept between i? T  to  — i? T  

(B can be in the order of 10) back and forth and the  transverse voltage is obtained. 

From this the  Hall coefficient i?// is derived as R h =  A V j j / F o r  rubrene O FE T s 

the sign for /?// is positive which is consistent w ith hole injection. In Fig. 5.6B the  

inverse Hall coefficient, 1 / R h , and sheet conductivity, a,  as a  function of gate voltage is 

illustrated. These results show th a t 1 /i? // decreases linearly w ith decreasing th e  negative 

gate voltage, which is an indication of the  absence of any unw anted polarization effects 

of the  carriers due to  the gate dielectric and therefore a tex t book Hall effect. 1 /i? // is 

directly proportional^ to  the  num ber of carriers (n) in the rubrene crystal responsible for 

charge transpo rt.

Hall m obility m easured as /f// =  i?//(J therefore gives the  average intrinsic carrier 

mobility. True Hall effect { 1 / R h  proportional to  Vq) dem onstrates th e  absence of charge 

^1/Rh = ne, where e is the electronic charge.
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Figure 5.6: Experim ental results [160, 161] on the Hall-effect on rubrene are illustrated. 
D em onstration of Hall-effect is crucial as it implies th a t the experim entally m easured 
m obility is indeed the intrinsic mobility of carriers. A) The Ip  vs Vc relationship from 
a four-term inal m easurem ent is shown here and the  corresponding m obilities arc also 
indicated. B) Hall m easurem ent setup  is shown in the inset of the  upper panel of B. 
Moreover in th e  upper panel of B, the inverse of the Hall coefficient (which is an estim ate 
for intrinsic carrier density) is p lo tted  as a function of Vq - The bo ttom  panel illustrates 
the  dependence of Hall m obility and carrier d istribu tion  dep th  (solid curve) again as a 
function of Vg - These results are from the work of Takeya et a/.[16G]. C) M obility (Hall 
m obility in blue and O FE T  four-term inal m obility in black) as a function of tem i)erature 
are shown in th e  upper panel. T he ratio  of Hall carrier density to  the  carrier density is 
shown again as a function of tem pera tu re  in the bo ttom  panel. These results are from 
the  work of Podzorov et al. [161].

trapp ing  effects especially a t low Vg- Fig. 5.6B (bottom  panel) shows the  variation of //// 

and the  carrier d istribu tion  dep th  La^] w ithin the organic crystal. At low gate voltages 

Vgi the  carrier mobility is 8 cm^/V-sec. Also which is an indication of the carrier 

mean free p a th  and therefore the ex tent of carrier wavefunction in the  organic crystal, is 

sufficiently long (6 la ttice spacings). These dem onstrate  th a t the  carriers upon injection 

have therm ally  diffused into the  crystal via a band tran sp o rt mechanism. This is because 

the  wavefunction of the injected carriers is quite delocalized throughout the  bulk of the 

^In term s of la ttice  units.
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crystal. Moreover, at low gate voltages since the charge carriers are less, which can be 

deduced from the low 1 / R h value in the upper panel of Fig. 5.6B (at low Vb), carrier 

correlation effects can be safely ignored. As the negative gate voltage is increased, the 

authors found th a t the carrier mobility drops to 2 cm'^/V-sec and so does L„ to almost zero 

lattice spacings. These results indicate tha t at higher negative Vq , the injected charge 

carriers are confined to the interface (hence negligible L^) because of larger electrostatic 

force and therefore a shorter screening length.

Similar demonstration of band transport was also shown by Podzorov et al. [161]. We 

show in Fig. 5.6 C the /i vs T  relationship for their O FET four-terminal measurements 

and Hall measurements. Notice the almost power law decrease of the hall mobility (in 

blue) with tem perature which is an indication of band transport mechanism for the charge 

carriers within the rubrene organic layer. Furthermore, the four-terminal O FET mobility 

(in black) is also shown as a function of tem perature, indicated by activated transport at 

low tem peratures (due to localization originating from traps) and band transport at high 

temperatures. Moreover, at room teni{)erature the Hall mobility and the four-terminal 

mobility match clearly. In the bottom  panel of Fig. 5.6C the ratio of the Hall carrier 

density to the overall carrier density is shown which reaches unity at room tem perature. 

These results indicate th a t the estimates for charge carrier mobilities from these exper­

iments are indeed a good measure of the intrinsic carrier transport through the organic 

layer (rubrene).

Having provided an overview of charge transport experiments in rubrene-based single 

crystalline OFETs and also of spin transport experiments (previous chapter), let us now 

begin to discuss some of our results. In the following section of this chapter we provide a 

detailed DFT characterization of the electronic structure and the geometry of rubrene.
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5.2 Electronic and structural characterization of rubrene

from D FT
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Figure 5.7: The Kohn-Sham HOMO-LUMO gap for the rubrene molecule in the gas phase 
is shown here for the different DFT functionals which we have tested. Also shown are the 
shape of the HOMO and LUMO molecular orbitals, which are identical for all the DFT 
functionals. Note tha t the Ionization Potentials and Electron Affinities calculated using 
the ASCF method which can be compared with the corresponding experimental values, 
are reported in Table. 5.1.

Before we embark upon our journey into investigating the transport properties of 

rubrene single crystals, it is vitally im portant to perform a detailed DFT study of the 

electronic structure and geometry of rubrene molecule in the gas phase and also rubrene 

crystals. Here we report our results on these studies, in particular a discussion regarding 

the performance of different DFT functionals and atomistic simulation codes. We explore 

the effect of standard DFT functionals, Van der Waals functionals and hybrid functionals. 

The calculations reported in this section have been performed using the FHI-aims code 

[168]. This is an all-electron code. In particular, we found tha t the implementation 

of hybrid functionals in FHI-aims is computationally less expensive than in Quantum
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Espresso [201]^ especially for rubrene crystal which has 280 atoms and has a large unit 

cell volume. Also within FHI-aims, there is an accurate implementation of Van der W aal’s 

functional by Tkachenko and Scheffler (TS) [47, 48], which was also a motivation to use 

the code. We have also performed the DFT calculations using SIESTA [55], Quantum 

Espresso [201] and Gaussian [199] throughout the course of the work presented in this 

thesis, and in this section (wherever possible) we will try  to comment on the results of 

using different atomistic simulation packages. The functionals used here are standard LDA 

(Perdew and Zunger) [34], GGA (PBE) [35] and revPBE [49]; Hybrid functionals including 

B3LYP [37, 38, 39], HSE03 [42] and PBEO [41]; vdW functionals [43, 46] including and 

TS functionals [47, 48].

5.2.1 Gas phase rubrene m olecule

We performed the DFT calculations using FHI-aims on rubrene molecule in the gas phase 

as follows: the experimental structure [179] was relaxed till the forccs on all the atoms 

were less than 0.01 eV/A. Furthermore, the convergence criteria for density and total 

energy were set to be 10“  ̂ and 10“® eV, respectively.

Electronic Structure

In Fig. 5.7 we illustrate the Kohn-Sham HOMO-LUMO gaps for rubrene molecule in gas 

phase as calculated using different DFT functionals. Firstly the shape of the HOMO 

and LUMO orbitals, which are constituted by the C tt electrons (also illustrated in the 

figure), for all the DFT functionals investigated here are identical. Next let us look into 

the energetics predicted by the various DFT functionals. According to Koopm ans’ theo­

rem if a DFT functional gives the correct electron-electron interaction energy functional 

(including the exchange-correlation part), the negative of the HOMO eigenvalue will be 

equal to the Ionization Potential (I.P.) of a system. The experimental estim ate for I.P. 

^Which is used for the results presented in the second part of this chapter.
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DFT Functional I.P.
(in eV)

E.A.
(in eV)

Band Gap Ag =I.P.-E.A. 
(in eV)

HF 7.002 1.149 5.853
revPBE 6.087 1.377 4.709

PBE 6.163 1.438 4.726
LDA 6.378 1.624 4.754

B3LYP 6.533 1.113 5.421
HSE03 6.693 1.460 5.234
PBEO 6.637 1.047 5.590

TS (PBE) vdW 6.209 1.432 4.778
TS (B3LYP) vdW 6.575 1.123 5.452

GW [164] 6.300 1.880 4.420
Diffusion QMC [164] 6.220 ±0.140 0.960 ±0.140 5.260 ±0.140

Table 5.1: The Ionization Potentials (I.P.), Electron Affinity (E.A.) and the band gap
(A =I.P.-E.A.) of rubrene molecule in the gas phase is tabulated here, for different DFT 
functionals as well as those from GW [164] and diffusion Quantum Monte Carlo (QMC) 
[164] calculations. The main message from the calculations shown here is that the standard 
PBE functional is able to accurately capture the energetics of rubrene.

from Ultraviolet Photoemission Spectroscopy (UPS) is 6.4 eV. The standard DFT func­

tionals and hybrid functionals in Fig. 5.7 are off from the UPS estimate by about 2 eV 

and 1 eV respectively. This discrepancy from the experimental value is due to approxima­

tions in the exchange-correlation in the various DFT functionals, causing a self-interaction 

error. Furthermore, hybrid functionals performs better than standard DFT functionals 

(LDA/GGA) because of a partial error cancellation of the self-interaction error, in them. 

However it is interesting to note that even the hybrid functionals in this case are off by 1 

eV.

The simplest and reliable DFT scheme to estimate the excitation energies (in particular 

electron addition or removal energies), is evaluating the total energy difference between 

the initial and final states. This is known as the ASCF method and is a reliable procedure 

to extract excited state properties like I.P. provided that the initial and the final state 

are within the reach of DFT, that is, when both states have the lowest energy for a given 

symmetry or a given nimiber of electrons. For all the functionals we have obtained the I.P. 

and E.A. with the ASCF method, and then the corresponding band gaps as A =I.P.-E.A.
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These results are tabulated in Table. 5.1, along with those obtained from many-body GW 

calculations [164] and diffusion QMC [164] calculations using the CASINO code [165]. 

The latter approach is assumed to be an accurate calculation because it treats  electron 

electron interaction effects exactly, as a many-body problem.

Notice, tha t apart from HF the I.P ’s estim ated by all the other DFT functionals 

are quite close to those obtained from GW and QMC calculations, as well as to the 

experimental estim ate from UPS experiments [166] which is I.P.ups =  6.4 eV. This is 

particularly because the ASCF procedure using total energy differences is quite accurate 

since all the functionals are based on the Hohenberg-Kohn theorems and therefore as 

long as our calculations are well converged'^, the total energy from the DFT calculations 

will be accurate. HF does not agree with experiments because it completely ignores the 

correlation energy. Furthermore because HF energy functional is exact, the Kohn-Sham 

eigenvalues (in Fig. 5.7) correspond to the I.P. and E.A. (in Table. 5.1) as Koopmans’ 

theorem is valid.

Unfortunately, experimental estimates of E.A. for rubrene were not available from 

literature^. Since our estimation of the I.P. from ASCF were remarkably close to exper­

iment we could also expect the estimates for E.A. to be reasonably accurate. Indeed, 

the E.A.s are all (for the different DFT functionals) roughly within a range of 0.5 eV of 

each other and also from QMC calculation. Interestingly, the E.A. estim ated from GW 

is overestimated.

In the last column of Table. 5.1, the band gap A^ =I.P. —E.A. is shown. These also 

follow a similar trend in terms of proximity to QMC estimate for E.A. and each of the DFT 

functionals perform better than  GW calculations. Finally, to the best of our knowledge 

there have been no experimental estimation of the transport band gap of rubrene (with 

which Ag can be compared).

have the true ground state density.
^Perhaps because rubrene is a hole transport based OSC.
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G eom etry

DFT Functional C-C Bond 
(% error)

C-H Bond 
(% error)

C-C-C Angle 
(% error)

C-C-H Angle 
(% error)

HF 0.98 11.48 0.20 -0 .7 4
revPBE 0.63 13.76 -0 .00 -0 .81

PBE 0.35 13.65 0.05 -0 .81
LDA -0 .3 3 13.94 0.14 -0 .80

B3LYP 0.19 12.60 0.06 -0 .80
HSE03 -0 .0 7 12.59 0.10 -0 .8 0
PBEO 0.02 12.76 0.10 -0 .81

TS (PBE) vdW 0.28 12.59 0.16 -0 .7 5
TS (B3LYP) vdW 0.28 12.59 0.16 -0 .7 5

Table 5.2; For gas phase rubrene molecule the percentage error in the C-C, C-H bond 
lengths as well as in C-C-C and C-C-H bond angles with respect to the experimental 
geometry [179], for different DFT functionals are reported in this table.

Moving on, we have also investigated the relaxed geometries of rubrene molecule ob­

tained using the different DFT functionals. The results are tabulated in Table. 5.2. Here 

we report the percentage error® for a C-C and an outer C-H bond length (the one with 

the highest error). Furthermore, we also report the percentage error in the C-C-C and 

C-C-H bond angles for the different functionals investigated. The central message coming 

from Table. 5.2 is tha t, all the functionals can produce accurate geometries with little 

discrepancies and perform more or less equally in terms of the relative error in the bond 

lengths and bond angles.

To summarize the results of the previous few pages, we have explored in detail the 

energetics and the relaxed geometry of gas phase rubrene molecule using different DFT 

functionals. While the different XC functionals return different Kohn-Sham HOMO- 

LUMO energies and the corresponding gap, the symmetry of the HOMO and LUMO 

wavefunctions are the identical. This point is quite crucial because it implies th a t the 

transfer integral between two rubrene molecules will not be dependent on the choice of XC 

functional. Furthermore, the IPs estimated by the different XC functionals (except HF) 

®With respect to experimental value.
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agree quite well with experiments. This is also very significant especially because rubrene 

is a hole transport OSC. Furthermore, we have also shown th a t the relaxed geometries 

predicted by the different DFT functionals are similar.

Finally, before moving to the next section, we report our results on the effect of 

spin-orbit coupling (SO) on the energy levels of rubrene. For this we used SIESTA and 

Quantum Espresso, which have SO implemented with an on-site approximation [53]. We 

found tha t on switching on SO, the energy levels of rubrene are only split by 10““̂ eV. This 

is a confirmation th a t atomic SO in rubrene will be small as the molecule is constituted 

by light elements, C and H. Moreover, as expected, the relaxed geometries is altered very 

little on switching on SO.

5.2.2 Rubrene crystal

Effect o f vdW  D F T  functionals on th e  geom etry  o f rubrene crystal

In this section we explore the energy levels (bands) and the relaxed unit cell param eters of 

rubrene crystals calculated using different DFT functionals. We are interested in testing 

standard DFT functionals (LDA/GGA) and Van der W aal’s (vdW) functionals namely TS 

(PBE), TS (LDA), Grimme vDW [43] and vdw-DF [46] functionals. Since the structure 

of organic molecular crystals is determined by vdW dispersive forces, we are particularly 

interested in exploring the relaxed geometries using different vdW ’s functionals within 

DFT. We must point out th a t performing a relaxed DFT calculation on rubrene crystal is 

computationally quite demanding because of its large crystal volume and also the fact th a t 

the unit cell of rubrene contains 280 atoms. Due to hardware limitations, investigations 

of HF and hybrid functionals for rubrene crystals are not possible.

The DFT calculations are performed using Quantum Espresso except for the TS func­

tionals, which are implemented only in FHI-aims. For all the calculations the experimental 

structure of rubrene [179] (including the unit cell) is relaxed to a tolerance of 0.01 eV /A  

and the overall stress on the unit cell is negligible. For the Quantum  Espresso calculations
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convergence is tested  in to ta l energy for an accuracy b e tte r th a n  1 m Ry for a  plane-wave 

cut-off of 30 Ry and a 5 x 5 x 5 M onkhorst-Pack grid using a Gaussian broadening of 

0.01 Ry. For the  FHI-aim s calculation, the  convergence in the  electronic density and 

to ta l energy has been checked as a function of M onkhorst-Pack grid. In th e  final calcu­

lations reported  here a 5 x 5 x 5 M onkhorst-Pack grid is used w ith a density and energy 

convergence of 10“ '' and 10“ ® eV, respectively.

D FT Functional HOM O-LUMO G ap a b c
(in eV) (% error) (% error) (% error)

PB E 1.175 0.243 1.713 2.247
G rim m e vdW 1.144 -1 .6 7 9 -1 .9 9 4 -4 .6 0 5

vdW -D F 1.156 -0 .0 7 9 0.114 0.537
TS (PBE) 1.088 -0 .1 1 7 -1 .4 2 6 -0 .6 5 3
TS (LDA) 1.051 -0 .5 5 2 -4 .2 5 6 -2 .1 7 5

Table 5.3: The HOM O-LUMO gap and the  percentage deviation from the experim ental 
value of the  relaxed rubrene un it cell axes are reported  here. The percentage deviation 
(error) is evaluated as (D FT - E xp .)/E xp . x 100. For every D FT  functional reported 
here, unit cell relaxations are perform ed till atom ic forces are less than  0.01 e V / A  and 
th e  stress on the  unit cell is negligible.

The Kohn-Sham  band gap of rubrene for the various D FT  functionals are shown in the 

second column of Table. 5.3. These com pare quite accurately w ith the gap obtained  for 

previous GGA calculations on rubrene crystal published in litera tu re  [164]. We m ust also 

m ention th a t the  band gap of rubrene obtained from optical experim ents is 2.3 eV [167] 

and th a t calculated from B ethe-Salpeter equation^ is 2.8 eV [164]. Again, the sym m etry of 

the  HOMO and LUMO bands are exactly identical for all the  D FT  functionals investigated 

here.

The other columns in Table. 5.3 contain the percentage deviation of the relaxed unit 

cell lattice param eters of rubrene m olecular crystal for different D FT  functionals. This 

percentage deviation (error) is evaluated as (D FT value - Exp.V alue)/E xp.V alue x 100. 

The main m otivation for the  calculation perform ed in th is subsection is to  explore the 

effect of different vdW  D FT  functionals on the crystal s tructu re . Overall, all the  D FT  

^Which produces the correct quasi-partical states.



142 C hapter 5

functionals accurately reproduce the  experim ental crystal s truc tu re  of rubrene w ith less 

th a n  5% error.

Let us now try  to  understand  how each of the different vdW  D FT  functionals perform 

w ith respect to  each other and also w ith respect to  a s tandard  P B E  calculation. We 

m ust keep in mind th a t the  b la ttice param eter is also the  distance between the  rubrene 

molecules in adjacent herringbones. The accuracy w ith which b is reproduced will de­

term ine the  accurateness of the interm olecular interactions in rubrene m olecular crystal. 

S tandard  PB E  functionals overestim ate the experim ental rubrene la ttice  constan ts while 

all the o ther vdW  functionals except for vdW -D F underestim ate them  (hence all the vdW  

D FT functionals bind molecules in the  crystal). G rim m e’s vdW  functional gives the  niax- 

inmm relative error while vdw-DF reproduces the experim ental s tru c tu re  w ith rem arkable 

accuracy.

In the next subsection we will explore the band struc tu re  and the  P artia l D ensity of S tates 

(PDO S) of rubrene crystals obtained from D FT.

Band structure

Firstly, we would like to m ention th a t for all the D FT  functionals investigated in th is 

subsection the  band structu res of rubrene crystal are very similar^. In Fig. 5.8a we 

illustrate  the  band struc tu re  of a rubrene crystal obtained from D FT  along the  high 

sym m etry points in its orthorhom bic Brillouin Zone, which is shown in Fig. 5.8b. Also 

in Fig. 5.8b we plot the partial Density of S tates (PD O S), which illu stra te  th a t the 

HOM O and LUMO levels of rubrene are entirely constitu ted  by carbon 2p  electrons (the 

contribu tion  from H is little).

We in terp ret the  band struc tu re  as follows. T he HOM O and th e  LUMO levels are 

each com prised of four bands, each from the individual rubrene molecules (there are 

four molecules per unit cell). Moreover, if we look a t the  band s tru c tu res  carefully we 

*Each plotted for the corresponding relaxed geometries.
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notice th a t two of the  HOMO (LUMO) levels are separated  from the o ther two levels, 

by ab o u t 0.1 eV. This is because the two d istinct rubrene molecules which constitu te  the 

herringbone m otif (Fig. 5.2c) in a  crystal are not equivalent in the  cell.
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Figure 5.8: T he D FT  band s truc tu re  of rubrene obtained  is p lo tted  in (a) along w ith the 
high synm ietry  points in the  Brillouin Zone of an orthorhom bic rubrene crystal which is 
illu stra ted  in th e  inset of (b). Also the  D FT  partial density of sta tes (PDO S) is shown 
in (b), which illustrates th a t HOMO and LUMO levels are entirely constitu ted  by C 2p 
electrons.

Furtherm ore, one sees th a t the HOM O and LUMO levels are very well separated  

from the  o ther bands, which is a characteristic feature of the polyacene family of OSCs 

(unlike the  bands of Si crystals, for instance). Also, if one looks carefully a t the  HOMO 

and LUMO levels, one can decipher th a t there is m inim al dispersion of these bands 

along the  F — X  direction, while the m axim um  dispersion is along the F — F  direction. 

Correspondingly, in the  orthorhom bic rubrene unit cell the  x  crystallographic axis is the 

longest while the  y  axis is the shortest. Infact, the  characteristic  features of the  HOMO
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levels from the  D FT  bandstructu re  exactly corresponds to  the ir dispersions from Angle 

Resolved U ltraviolet Photoem ission Spectroscopy (ARUPS) [73]. Also according to  the 

experim ental work, the dispersion of the  HOM O levels along the  F — X  direction is 

negligible and th a t along the F — F  direction is the largest. Furtherm ore the bandw idth 

of the  HOM O levels along the  F — F  direction is 0.4 eV, which is the same for the 

D FT  HOMO bands of Fig. 5.8a. Thus th e  bandstructu re  results strongly indicate th a t 

rubrene crystal is a quasi one-dim ensional solid w ith im portan t interniolecular interactions 

predom inantly  along the  y  direction. Indeed in reality the  rubrene molecular crystal has 

a herringbone packing s truc tu re  (see Fig. 5.2c) w ith a strong tt — tt stacking and vdW  

interactions along the y  direction. This discussion will be very relevant when we will 

com pute the  transfer integrals along the  different crystallographic axis in the following 

section.

We will discuss further th e  band struc tu re  of rubrene crystals in the next section of 

this chapter. For now, let us begin w ith introducing the central achievement of the  work 

presented in th is thesis. In the  next section, we shall e laborate  in detail our procedure to 

obtain  the ab m itio  tigh t binding H am iltonian for rubrene using W annier functions and 

thereafter com pute its charge and spin tran sp o rt properties from first principles.

5.3 F irst principles estim ation  o f charge and spin trans­

port in rubrene m olecular crystals

Introduction

In the  last few years, a body of work in the  organic spintronics com nm nity has shifted in 

a ttem p ting  to  investigate the  spin tran sp o rt characteristics of crystalline OSCs. R ubrene 

single crystals are strong candidates, as they  possess the highest m obility of 20 — 40 cni^/V  

s [169] am ong the OSC family. Therefore one can expect spin polarized carriers to  travel
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over large distances and hence a large spin diffusion length Ig. Indeed recent spin tunneling 

and spin transport measurements through rubrene tunnel barriers show evidence of very 

long spin diffusion lengths, Ig = 13.3 nm [170].

Theoretical understanding of charge carrier transport through OSCs is often based 

on simple tight binding (TB) models including electron-lattice coupling such as the Su- 

Schrieffer-Heeger (SSH) model [218, 219]. Indeed the work presented in the previous 

chapter addresses this perspective. Such models describe the electronic structure of a 

material in a certain energy window in terms of the localized ” hydrogen-like” orbitals. To 

solve the problem one has to write the Hamiltonian in the basis of the localized molecular 

orbitals of the characteristic system. For example, in the case of rubrene (illustrated in 

Fig. 5.2) provided we know the true molecular wavefunctions of the system we simply have 

to write down the Hamiltonian which we have worked on in the previous two chapters, 

in the basis set of those wavefunctions. In this procedure one can obtain the ’’material- 

specific” TB Hamiltonian which provides an accurate first principles representation of all 

the interactions in rubrene.

Indeed such a ’’material-specific” estimation of the TB Hamiltonian param eters is 

quintessential for understanding carrier transport through organic systems a t a quantita­

tive level. In the past this has been done by fitting the TB band structure to angle-resolved 

photoemission data  [171] and to ab initio band structures. In this chapter we will describe 

an alternative, efficient and a reliable way to extract the model Hamiltonian parameters 

of crystalline rubrene using localized Wannier functions (W Fs). This is indeed the central 

part of this thesis and more im portantly the main contribution which the work presented 

here intends to make to the field of Organic Spintronics. Once we obtain the ab initio 

Hamiltonian for rubrene, we compute the carrier mobility from Kubo formula and the spin 

diffusion length (Ig) from the algorithm introduced in the previous section. The ab imtio 

transport observables tha t we obtain can be directly compared with their experimental 

counterparts.
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LocaHzed W Fs computed from the Kohn-Sham states obtained from DFT provide a 

systematic and dependable route for extracting the TB parameters from first principles 

for a specific system. This procedure ensures a rigorous downfolding of the DFT Kohn- 

Sham states into localized W Fs and in the process captures the ab imtio  information of 

the system. Furthermore the W Fs in our work are intended to represent the real space 

localized molecular wavefunctions of the system. However, the procedure to extract the 

correct W F is actually not straightforward. This is because W Fs are not uniquely defined 

since they are not invariant to gauge transformation of the original Bloch function. For 

example, for each A;-point one can perform an arbitary unitary transformation of the Bloch 

states such as the one shown below,

l^nfc) =  (5.6)

Here 0„(A:) is a generic real function periodic in the reciprocal space. Indeed, \ipnk) a-nd 

\il)nk) describe the same Bloch function but generate different WTs. Therefore in this 

respect the main predicament is, which Bloch states does one need to use in order to 

compute the localized WFs? The answer to this problem was addressed by the semi­

nal work of Marzari and Vanderbilt [173], where they postulated a maximally localized 

paradigm to generate a unique set of W Fs for the particular system in consideration. 

Their method produces a unique set of Maximally Localized Wannier Functions (ML- 

WFs) and also yields the ab initio TB model of the system. We will discuss these in 

detail in the coming section.

Apart from reproducing accurately the ab initio (material specific) band structure 

of the system, MLWFs have found significant importance in modern electronic structure 

theory. Since W Fs are localized functions they provide intuitive information regarding the 

nature of the chemical bonds in real solids. MLWFs also allow one a systematic estim ate 

of bulk polarization of a system from the microscopic modern theory of polarization. This 

is because of a one to one correspondence between charge centers of W Fs and the Berry
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phases of Bloch functions as one moves through the Brillouin zone. Alternatively W Fs are 

also used to define the basis sets in methods like DM FT (dynamical mean field theory), 

etc. which provide a detailed and accurate description of many-body effects for strongly 

correlated systems. Furthermore MLWFs are also used to study ballistic transport prop­

erties of systems from first principles, where the Green’s functions and self-energies can be 

constructed in a W F basis. Comprehensive reviews on the broad applications of MLWFs 

in modern electronic structure theory can be found in the literature [174, 175]..

In this work we compute the MLWFs corresponding to the HOMO and LUMO levels 

of rubrene molecular crystals. We then evaluate the real space, direction dependent 

Hamiltonian matrix elements in the MLWFs basis for the different HOMO and LUMO 

levels, also in the spin polarized case. Our results indicate a strong anisotropy in rubrene 

crystal, which will reflect in the transport characteristics. Furthermore we compute the 

charge carrier mobility using Kubo formula [194] and the spin diffusion length from the 

scaling of the spin polarized conductance, which inturn is obtained using the Landauer 

formula. Both the carrier mobility and the spin diffusion length are estim ated at a finite 

tem perature using MC sampling. We find quite good agreement between the experimental 

and ab initio estimates for the spin and charge transport observables. To the best of our 

knowledge this method to extract ab initio based TB Hamiltonian for a molecular crystal 

has never been used so far. In the next section we provide a brief background on Wannier 

functions which is another im portant tool in our multiscale modelling technique.

5.4 W annier Functions

Electronic structure (DFT) calculations performed on perfect periodic solids yield eigen­

functions tha t are described by a system of extended Bloch waves. The Bloch vectors of 

the solid | c a n  be identified by a wave-vector quantum  number k and a band index 

n. As an example, in our case of rubrene they represent the true molecular wavefunctions. 

Furthermore, these Bloch waves can also be expressed in terms of localized atomic-like
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TB basis functions, for example W annier Functions.

b)
Figure 5.9: T he D FT  band s truc tu re  of rubrene molecular crystal is shown in black. 
MLWFs obtained for the bands corresponding to  the HOM O and LUMO energy levels are 
illustrated in red triangles. Note th a t there  is a one-to-one resemblance between the D FT 
and the W annier band structu res across the  entire Brillouin Zone, a) T he wavefunction 
corresponding to  the LUMO band of a rubrene molecule top panel and a real space 
representation of a MLWF corresponding to  a LUMO level in rubrene crystal bottom  
panel, b) T he wavefunction corresponding to  the HOMO level of a rubrene molecule 
top panel and a real space representation of a MLWF corresponding to  a HOMO band 
bottom panel. The sym m etry of the  m olecular wavefunctions and the MLWFs for both  
the  HOMO and the  LUMO bands are essentially identical.

Fig. 5.9 shows the D FT  band struc tu re  of rubrene focussed on the  energy window 

corresponding to  the  HOM O and LUMO bands, i.e. those responsible for tran sp o rt in 

th e  crystal. As discussed earlier in this chapter the HOM O (LUMO) bands form a four 

band manifold corresponding to  the  four rubrene molecules included in the  unit cell. 

The HOMO and LUMO energy levels are very well separated  w ith respect to  any higher 

or lower bands outside this manifold across the  entire Brillouin zone (BZ). For such an 

isolated group of J  bands w ith J  =  4, a set of J  localized W annier functions \wnR), can
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be obtained according to the following transformation

= l h i f  ‘'k. (5.7)

Here is a unitary matrix mixing the Bloch states with wave-vector k and V is the 

volume of the unit cell. Note that the indices of the WFs are n which is the band

index and R which is a quantum number associated with the real space representation of 

the WFs.

Without the unitary matrix Eq. (5.7) is essentially a Fourier transformation of the 

extended Bloch bands which generates localized functions. There are two main issues that 

are associated with this Fourier transformation. Firstly as evident from Fig. 5.9, there are 

degeneracies among the bands constituting the HOMO (LUMO) levels at certain locations 

in the BZ. The bands in question become non-analytic in k at those points and hence the 

Fourier transform would result in a poorly localized WFs. Thus, to obtain well localized 

WFs one usually starts with a selected number of Hamiltonian eigenstates \'tpnk) that ™ay 

not be smooth in the k space, and then introduces a set of unitary transformations 

that cancels out any such discontinuities so that the smoothness is restored.

The second issue associated with the Wannier transformation in Eq. (5.7), is that the 

WFs are non-unique. This non-uniqueness in the WFs comes from the presence of gauge 

freedom that exists in the definition of Bloch functions, I'^nk) as mentioned earlier in 

Eq. (5.6). Therefore, different sets of yield different WFs which have distinct shapes 

and spreads. Marzari and Vanderbilt [173] showed that a unique set of MLWFs for a 

crystal can be obtained by minimizing the quadratic spread of the J  WFs about their 

centers,

(5-8)
n

where r is the expectation value of the position operator between WFs and (r^) is the 

expectation value of the square of the position operator. To express in terms of the



150 C hapter 5

Bloch functions, the expectation values of the position operators are defined in the  Bloch 

representation based on the separate works by Blount [184] and V anderbilt and King- 

Sm ith [185]. T he MLWFs are then obtained by minimizing Q w ith respect to  This 

m inim ization is done in an iterative m anner [173].

Once we have obtained the MLWFs we can use the  corresponding to  construct

the H am iltonian m atrix  H'^{k) expressed in the  basis of the  MLWFs as:

H ' U k )  =  ( U L ) '  U L -  ( 5 .9 )

where =  tnk^mn is the Bloch H am iltonian m atrix  w ith 6nk being the Bloch eigenvalues.

In order to  obtain  this Ham iltonian in real space we can simply take its Fourier transform  

yielding

 ̂ k

Here are essentially the  m atrix  elem ents of the H am iltonian in the  basis of the ML­

W Fs, hence in real space. Thus, th is procedure of obtaining the  MLWFs yields the  ab 

initio  TB H am iltonian of the system  in real space as a simple by-product. Finally, the 

main advantage especially in the  case of rubrene is th a t, no disentanglem ent procedures 

[176] are required to  obtain  the MLWFs corresponding to  HOM O (LUMO) levels as they 

are well separated  from the  bulk bands as seen in Fig. 5.9. Therefore the TB  H am iltonian 

obtained for rubrene is exact, it reproduces the D FT  one a t an arb ita ry  accuracy and it 

is constructed  w ith m olecular orbitals of minimal extension.

We have perform ed spin polarized D FT  calculations using the  Q uantum  Espresso 

package [201] w ith the  same specifications as in the band s truc tu re  calculations of the 

previous sections. T he D FT  calculations were done for GGA, G rim m e’s vdW  D FT  and 

vdW -D F, and we observed th a t even though the  relaxed geom etries were only slightly 

different, th e  TB  H am iltonian param eters did not change a lot.

After obtain ing  the  D FT  Bloch bands we perform  the W annier post-processing using
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the  WannierOO code [178] em bedded into Q uantum  Espresso. Indeed, the principal reason 

for using the  Q uantum  Espresso sim ulation package in th e  work presented in th is section is 

th a t  there is an efficient and well tested  im plem entation of a post-processing subroutine 

to  com pute the MLWFs (W annier90 code). We found the  im plem entation of W annier 

post-processing (W annier 90) using the  Q uantum  Espresso D FT  ou tp u t m ost convenient 

(in com parison to  VASP or SIESTA).

We obtain  four sets of MLWFs for the  HOMO (LUMO) bands of rubrene. T he spread 

functional, Eq. (5.8) (both  gauge invariant and non-gauge invariant parts) are converged 

if th e  corresponding fractional change between two successive iterations is smaller than  

IQ- 10 ensures th a t we have tru ly  obtained ’’m axim ally localized” W annier functions

for our system.

5.5 T B  H am iltonian  param eters

Fig. 5.9 shows the  D FT  band struc tu re  (in black) along w ith  the high sym m etry points of 

the BZ, calculated for the orthorhom bic crystal of rubrene in the  energy window including 

only the HOMO and LUMO levels. MLWFs corresponding to  the  four HOM O (LUMO) 

bands are also illustrated , in red in Fig. 5.9. Notice an exact correspondence between the 

W annier and the  D FT  band s truc tu re  across the  entire BZ for those bands. Moreover even 

the sym m etry of MLWFs and the  corresponding m olecular wavefunctions are identical as 

we shall show next. One such MLWF (bottom panel) and the  corresponding molecular 

orb ital in the  gas phase (top panel) are shown in Fig. 5.9a and Fig. 5.95 respectively, for 

the LUMO and HOMO bands. All the  MLWFs of th e  HOM O and LUMO bands are 

identical to  the ir corresponding molecular orb ital wavefunctions (for the molecule in the 

gas phase) obtained from D FT.

Therefore, we can assert th a t the  real space representation of the  H am iltonian in the 

MLWFs basis in Eq. (5.10) will be exactly equivalent to  a realistic TB  description in 

the basis of the  molecular orbitals of rubrene. In other words, the  TB  model constructed
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from the WFs exactly reproduces the ab initio band dispersion for the HOMO and LUMO 

bands without the need of employing any additional fitting procedures. Thus Eq. (5.10) 

can be re-arranged to write the full TB Hamiltonian for rubrene in terms of its molecular 

orbitals as:

H  ^   ̂ huini' R “I” /i .C.] (5.11]
R ,A R

Here the indices of the Hamiltonian matrix elements hmm'i^R) correspond to Wannier 

orbitals of the HOMO (LUMO) levels. Moreover due to the equivalency between Wannier 

and molecular orbitals established previously, indices m, m' can also label the rubrene 

molecules in the crystal. Therefore from now on we shall follow the definition where m, m' 

represents rubrene molecules (i.e. their molecular wavefunctions) 1 to 4 per unit cell. We 

schematically represent the four molecules in a unit cell of rubrene corresponding to the 

real-space position of the MLWFs in Fig. 5.10 i — h. For the sake of clarity in Fig. 5.10 

and in the follow'ing discussions, we shall only depict a straight line along the central 

tertracene backbone (Fig. 5.10 i — a) oi each rubrene molecule as the real space notation 

of the molecule itself. Finally, in Eq. (5.11) Cm'R {cln'R) the creation (annihilation) 

operator of a charge carrier in the specific HOMO (LUMO) band of a particular rubrene 

molecule.

In the case of rubrene, the TB Hamiltonian in Eq. (5.11) can be decomposed into a 

local part and a non-local part, based upon identifying the nature of real space MLWF 

TB matrix elements h r m n ' { ^ R )  as

H  HjiQYi—local (5.12)

Hlocal —  ^   ̂ ^   ̂ ^mm' ( c ^ R C m 'R  +  h.c.) (5.13)
m R  m m 'R

AH=0

H jio n —local ^   ̂ t m m ' f i ^ R )  i ^ m R + A R ^ m 'R  ( ^ " 1 4 )

m m ' R  
AR=1,2...
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Eq. (5.13) represents the local TB Hamiltonian with being the on-site energy for the 

itinerant carrier in the orbital (HOMO/LUMO) of molecule m  and tmm' is the hopping 

integral between the corresponding bands of molecule m  and m ' within the same unit cell, 

i.e. A/? =  0. Eq. (5.14) represents the non-local TB Hamiltonian with tmm' f i ^R)  being 

the hopping integral between the particular bands of molecule m and m ' along a direction 

f  in the crystal, belonging to neighboring unit cells, which are determined by the value 

of A/?. For example, when Ai? =  1, = 1) are the nearest neighbor hopping

term s and for A R  = 2, = 2) are the next-nearest neighbor hopping terms and

so on so forth.

5.5.1 O n-site energies and transfer integrals

The ah initio TB Hamiltonian parameters for the HOMO and LUMO bands of rubrene 

are listed in Table. 5.4. Let us systematically go through the parameters one by one. 

The on-site energy for the HOMO bands is e =  1.873(3) eV and for the LUMO bands 

is e =  3.333(3) eV. The absolute values of the on-site energies are the same up to the 

third decimal place for each of the four rubrene molecule per unit cell. We find tha t 

e„i(LUMO) — 6m(H0M 0) =  1.14 eV which is also the HOMO-LUMO gap estim ated from 

DPT in Table. 5.3.

Furthermore, when spin-orbit coupling for the system is taken into consideration the 

splitting of the energy bands on an average is less than 10“  ̂ eV. This tiny difference can 

be attributed to the fact tha t rubrene is made up of light elements, i.e. C and H, for which 

spin-orbit interaction is small. We also observed tha t when including spin-orbit coupling 

the average forces on the individual atoms fluctuate only by 0.01%. Hence we can safely 

rule out the role of spin-orbit coupling on affecting the Hamiltonian m atrix elements in 

the case of rubrene.

Moving to the ah m itio  estimate of the hopping terms, the largest of the hopping 

integrals is the one between similar molecules on the herringbone structure along the y
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Figure 5.10: i — a) Ball and stick representation of a rubrene molecule is illustrated here. A 
bold vertical line is shown along the axis of symmetry of the molecule®. Since the MLWFs 
are exactly equivalent to the corresponding molecular wavefunctions the bold lines in z — 6 
are used to represent the real space position of the molecules in the crystal. The four 
rubrene molecules per unit cell are indicated by four different colors and the herringbone 
molecular structure can be clearly identified. The inter-unit cell, nearest neighbor hopping 
between similar color rubrene molecules, = 1) = t is illustrated in (n) with m  e
rubrene molecules [1 —> 4]. This hopping is the largest in rubrene crystal and is along the y 
direction. Finally, the inter-unit cell hopping between dissimilar color rubrene molecules, 

= ^) = t' along the y, z and y-\-z directions of rubrene crystal with m, m' being 
molecules 1,4 is showin in iii — a and those between molecules 2, 3 are shown in iii — b. 
All other hoppings are very small and hence can be safely ignored. For the sake of clarity 
in these illustrations describing the various TB hopping elements, the atoms and bonds 
constituting the rubrene unit cells are stripped off.
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direction, tmmy (Ai? =  1) as depicted in Fig.5.2c. As illustrated, this is between similar 

rubrene molecules of nearest neighboring unit cells along the y direction for both the 

HOMO and LUMO levels. Indeed, the y  direction is also the shortest crystallographic 

axis of the orthorhombic cell. The transfer integrals are, tmmyi^R  =  1) =  0.0976(2) 

eV for HOMO levels and — 1) =  0.0535(0) eV for LUMO levels, note m  G

molecule [1 ^  4]. The hopping integrals = 1) = t are schematically illustrated

in Fig. 5.10 (m). They are between identical rubrene molecules of the same color. Note 

th a t this large hopping value in rubrene along the y  direction was also inferred from 

the DPT bandstruture as discussed earlier, since the maximum dispersion for HOMO 

(LUMO) bands in is along the F — F  — F direction.

HOMO LUMO

100

10

0.1

1 • in tra  u.c. h o p p in g s 1 • in tra  u.c. h o p p in g s

□ □ y d ire c tio n 1 0 0 f □ y d ire c tio n
♦ X d ire c tio n ♦ X d ire c tio n
▲ z  d ire c tio n □ ▲z d ire c tio nX m isc e llan eo u s  d ire c tio n s X m isc e llan eo u s  d ire c tio n s

• m
- _ 10 - -

; •
□ ^ □
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• s • S ;
A i Q 0.1 1 A
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Figure 5.11: The magnitudes of all the transfer integrals in rubrene for the HOMO {left 
panel) and LUMO {nght panel) bands along the different crystallographic directions are 
illustrated here. Note th a t the ordinates of the graphs are in a logarithmic scale. One can 
distinguish quite conveniently the largest transfer integral =  1) =  ]̂ from all the
other transfer integrals. The largest transfer integral corresponds to nearest neighboring 
hopping {A R  = 1) along the herringbone structure.

The other hopping integrals in rubrene crystal, = 0,1) =  t' are quite

small in comparison to the nearest neighbor hopping. These are between the dissimi­

lar rubrene molecules constituting the herringbone structure with the combination {mm') 

being molecules (1, 4) and (2, 3) along the y, z and the fj-\-z directions as shown in Fig.5.10 

Hi — a and Hi — b. Thus, tm m'f {^R  =  0,1) =  0.0112(8) eV for the HOMO levels and
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tjnm'f{AR =  0,1) =  0.0109(3) eV for the LUMO levels. Hopping terms along all the other 

directions between all the different combinations of rubrene molecules for A B  — 0,1,2... 

are minute and are henceforward neglected in this work.

The magnitudes of all the transfer integrals along the different crystallographic axis in 

rubrene (upto A R  = 2) are summarized in a pictorial form in Fig. 5.11 for the HOMO {left 

panel) and LUMO {right panel) bands. Fig. 5.11 is designed to give the reader a feeling 

of the different direction depended transfer integrals, in particular how their magnitudes 

compare with each other. Notice tha t the ordinate of the graphs (in Fig. 5.11) is in a 

logarithmic scale. Furthermore, tmmy{AR = I) = t, the largest of the transfer integrals 

between similar rubrene molecules in the herringbone (Fig. 5.2c) along the y direction for 

both the HOMO and LUMO levels, is cjuite distinct from the other transfer integrals.

Let us now compare our estimates of the transfer integrals for the HOMO electrons 

with previous theoretical approaches in rubrene molecular crystals. The computational 

techniciue used by Troisi includes representing all the essential interactions in the crystal 

with a SSH Hamiltonian and thereafter the transfer integrals are evaluated via a com­

bination of quantum chemistry computation (ZINDO overlap technique) and molecular 

dynamics [219]. Thus a distribution of transfer integrals were obtained. Troisi’s results 

for the two main transfer integrals in rubrene are 0.1426 ±  0.0508 eV and 0.0229 ±  0.0099 

eV. Furthermore, other theoretical works which have probed charge transport in rubrene 

molecular crystals include th a t of Coropceanu and co-workers [216]. They estim ated the 

two predominant transfer integrals as 0.083 eV and 0.015 eV from Koopman’s theorem^® 

for a rubrene dimer system. Please note th a t each of the theoretical methods discussed 

above are different from our multiscale computational approach. However it is interesting 

to note th a t our ab initio estimate of the transfer integrals are close to previous theoretical 

works and infact also those obtained by fitting the experimental band structures [73].

The results for the TB Hamiltonian elements in Table. 5.4 are for GGA (PBE) bands.

will use this m ethod in C hapter 6, where we will descibe the details of this m ethod.
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TB Param eter HOMO LUMO
em (eV) 1.873(3) 3.333(2)

=  1) (eV) t m m y  =  0.0976(2)
W y  =  0.01128 
W i  =  0.01128

t m m ' y + z  =  0.01127

t m m y  =  0.0535(0) 
t m m ' y  =  0.01092 
t m m ' z  =  0.01092 

t m m ' y + z  =  0.01093

t m m ' i ^ R  =  0) (eV) t m m '  =  0.01127 t m m ’ =  0.01093

^ m m ' f  (^^/•^) a m m y  =  0.0106
^ m m ' y  0.003

O i m m ' z  =  0.0001
^ m m . ' y - { - z  0.0004

C t m m y  =  0.0048
^ m m ' y  0.001

C t m m ’z  =  0.0003
( ^ m m ' y + z  0.001

K  (eV/A2) 0.06612 0.06612

Table 5.4: The ab initio TB param aters for the rubrene molecular crystal are summarized 
in this table. The TB Hamiltonian representing the essential interactions in rubrene 
responsible for charge transport is described by Eq. (5.15). For computing the charge and 
s{)in transport observables in the later portion in this section, only the TB Hamiltonian 
parameters corresponding to HOMO bands are used. This is because rubrene is a hole 
transport OSC with the itinerant carriers residing in the HOMO bands.

We also repeated the procedure for Van der Waals functionals: Grimme [43] and vdw-DF 

[46] and we found th a t the different TB Hamiltonian param eters for rubrene differs by 

only 1% in comparison with the same estim ated from PBE.

5.5.2 E lectron-phonon and stiffness constants

We elaborate upon Eq. (5.12) to include all the physical processes th a t describe charge 

dynamics in an OSCs. These are summed up in Eq. (5.15) below

~  ^  ̂ ~ h.C.) +
m m '  R  

A R = 1 . 2 . . .

X ]  ^  (<?m -  9 m ')^ -  ( 5 - 1 5 )
m m '
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Here is the carrier-phonon interaction constant, corresponding to a molecular

displacement direction and modulates the transfer integrals between the rubrene 

molecules m  and m!. In the equation, is the displacement (from the equilibrium 

position) of the rubrene molecule m  in the crystal along that particular direction (r') 

and finally K^, is the elastic constant also calculated along the particular direction (f'). 

In principle, a comprehensive charge transport theory should take into account all the 

phonon modes of the crystal. However, computing the phonon band structure for rubrene 

(which has 280 atoms in a unit cell) in our experience proved to be computationally 

very expensive, exhaustive and therefore not possible with our computational hardware 

constraints. In our charge transport procedure we have therefore employed the following 

steps.

Firstly, since rubrene is a hole transport based OSC, in all our simulations from this 

moment on we only consider the TB Hamiltonian matrix elements for the HOMO levels. 

This is because the itinerant carrier (hole) in a rubrene crystal resides in the HOMO levels. 

Next, since rubrene has an almost cjuasi one-dimensional crystal structure with only one 

dominant transfer integral, we expect that there will be just one particular phonon mode 

along which the values of a as well as K  will be significant and will therefore govern 

transport. The displacement due to this particular phonon mode, which we considered 

in our simulations, corresponds to a co-facial sliding motion of similar (colored) rubrene 

molecule (Fig. 5.12) in adjacent unit cells along its tetracene backbone; with respect to 

one another. We shall discuss further in the coming paragraphs on our justification of 

this particular phonon mode for rubrene, which is chosen in our simulations.

An estimate of the elastic constant K  per rubrene molecule is made from, K  =  — (1 ^ ).
^  ’ 9 m  ' '  f>qm '

Here E' is the total energy of the Hamiltonian, Eq. (5.15). We obtain K  =  0.06612 

eV/A^ per rubrene molecule, which corresponds to a frequency u j  = 36.53 cm“ \

of the corresponding optical phonon mode. Here M is the mass of rubrene molecule, 

^^This corresponds to the particular phonon mode in the crystal.
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which is 532 a.m.u. The vahie for uj obtained agrees quite well with the lowest frequency 

phonon mode calculated previously for the rubrene crystals in the works of Troisi [219] 

and Girlando and co-workers [182], Note that this frequency, lo =  36.53 cm“ \  justifies the 

classical treatment of the phonons via MC sampling. Indeed the corresponding nuclear 

motions ( u j )  are slow and as a result the nuclear kinetic energy can be ignored.

Figure 5.12: The herringbone crystal structure of rubrene along the if direction is shown 
here. The arrows shown in this figure depict a sliding displacement of one set of molecules 
corresponding to the nearest neighboring transfer integrals. All the molecules in the crys­
tal are displaced along such a sliding mode to estimate a  and K  (from finite differences) 
in our simulations.

To obtain a  -, =  again we make a small displacement of a molecule m. along the 

sliding mode (r') shown in Fig. 5.12 and evaluate the change in the TB hopping parameters 

obtained upon recalculating the MLWFs. For the HOMO levels we obtain ammy — 0.0106 

eV/A[^^] for tm m yi^R = 1) = t. Next, the el-ph interactions corresponding to the other 

transfer integrals (of smaller magnitudes) between dissimilar kind of rubrene molecules 

m, and m' are amm'y =  0.003, amm'z =  0.0001 and amm'y+z = 0.0004 eV/A. The el-ph 

interactions (a) for the LUMO levels are also tabulated in Table. 5.4. Our estimates for

non-local el-ph interactions are smaller than those obtained by Troisi [219].

^^Note th a t  a m m f  follows th e  co rrespond ing  tran sfe r  in teg rals  t m m f -
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For the sake of completeness we have computed the el-ph interactions corresponding 

to Holstein phonon modes. These correspond to local (on-site) electron-phonon coupling, 

which can be calculated as aiocai =  We find the calculated aiocai for the Holsteii
OQm

phonons to be minute and the frequencies corresponding to such modes exceed 1000 cni“‘ 

in agreement with previous works of Troisi [219] and Bredas [126]. Therefore the contr:- 

bution of local electron-phonon interactions in determining the charge transport charac­

teristics in rubrene crystals can be safely neglected, as these modes will be excited onl/ 

at very high temperatures.

We also evaluated a and K  along another set of phonon modes corresponding to motio.i 

of the rubrene molecules along the y direction, since it is the shortest crystallographic axis 

and has the maxinmrn amount of intermolecular interactions in the crystal. We founi 

that the magnitude of all the el-ph interaction constants arc a < 10“  ̂ eV/A. Therefore 

in this case a «  t and hence would make little contribution to the carrier mobility. Let 

us leave the discussions on the particular j)honon mode chosen, upto here and again come 

back to it in the next section.

5.6 Ab initio  transport observables 

5.6.1 Charge carrier m obility

After obtaining the TB parameters for rubrene, we evolve the classical lattice displace­

ments in Eq. (5.15) via MC sampling according to our previous work [180]. In Fig. 5.13 a 

and Fig. 5.13 b we show the statistical distribution of the (two main) hopping integrals t 

and t' in rubrene crystal (discussed previously), respectively at T =  96 K and at T =  387 

K arising from the MC simulations. For each temperature the distributions are fitted 

to a Gaussian function and the corresponding Full Width at Half Maxima (FWHM) are 

reported. Firstly we notice that for all temperatures the fluctuations in t and t' are of 

the order of ±10 meV. Indeed the small magnitudes of lattice displacements are a direct
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• T  =  96  K. FW H M  = 0.2755
• T  =  387 K. FW H M  = 1.7997
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Figure 5.13: a) and b) show the statistical d istribu tion  of the two main hopping integrals 
t and t' in rubrene crystal (respectively) a t a small and large value of tem peratu re , each 
evahiated from the  full H am iltonian. The distributions are fitted to  a G aussian function 
and the full w idth a t half m axim a (FW HM ) are also reported. Note th a t for all tem per­
atures the  fluctuation in the  transfer integrals {t and t') are small, i.e. a t m axim um  ±10 
meV.

fallout of the estim ates for electron-phonon interaction streng ths amm' f  and stiffness con­

stan t Kf .  Moreover the  sta tistica l d istribu tion  is narrow  at low tem pera tu re  and broad 

at high tem peratu re , which can be confirmed from the values of FW HM  reported  in the 

graphs. Also because ( —-— ) > >  (—-— ), a t higher tem peratu res the  fluctuation in the
\ ^ m m r  J  ^ m m ' f

effective t' (Fig. 5.14 b) is slightly larger. The m ain message coming from the s ta tis tica l 

d istribu tion  plots of Fig. 5.13 is th a t, because the  fluctuation in the  transfer integrals are 

not large, for the system  represented by Eq. (5.15), a t any tim e (and a t any tem peratu re) 

carriers will occupy delocalized wavefunctions^^. In th is particu lar aspect, even a t high 

tem peratures our results indicate pure band tran sp o rt, as in inorganic sem iconductors 

(or m etals). Interestingly, th is high tem peratu re  behavior is different from th a t reported

'^This is because the value of the transfer integral t will be relatively unaffected by temperature 
(phonons). Furthermore, the estimate for t is cjuite significant among the OSC family.
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by Troisi [219] and Hannewald [236] for organic molecular crystals, each of whom have 

proposed different charge transport theories.

^-8
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Figure 5.14: The tem perature dependence of the ab initio charge carrier mobility, /.i,
of rubrene evaluated along the y, z and y + z directions plotted on a log-log scale are 
illustrated here. Our estimates shows th a t the crystal is highly anisotropic exactly as 
found in experiments [156]. Furthermore the carrier mobility decreases with tem perature 
according to a power law, n  = . The corresponding power law coefficients, <5, are
reported. At T  =  300 K the estim ate for ab initio mobility in rubrene is, /x =  58 cm^/V-s, 
which agrees with the highest experimental estimate from a four-terminal setup for single 
crystalline rubrene based OFETs. [169]

Next we evaluate the charge carrier mobility from the linear response Kubo formula 

[194]. The procedure is similar to the one used to evaluate mobility in the previous chapter. 

After the MC simulations have reached equilibrium for every MC configuration the charge 

carrier mobility is evaluated and averaged over 100,000 MC steps. Fig. 5.14 illustrates 

the mobility of rubrene along y, z  and y + z  directions of the crystal, as a function of 

tem perature, on a log-log scale^^. From the figure we can clearly understand th a t the

“̂̂ Note that the results in Fig. 5.14 are for L  =  128 unit cells. T he length dependence of m obility has 
been verified to be non-existent for L >  64 unit cells.
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charge carrier mobihty is strongly anisotropic as also observed in experiments [156]. This 

is expected from our work as the predominant transfer integrals in the rubrene crystal 

are along the y  direction. Therefore the highest mobility in rubrene is also along the y 

direction. Furthermore, we notice tha t the charge carrier mobility decreases according to 

a power law as the tem perature is increased. The corresponding power law coefficients are 

indicated in Fig. 5.14 which are quite large and indicate a ”band-like” transport. Further 

evidence of a band-like transport can be based on the small magnitude of carrier-phonon 

coupling which we estimate and also the fact th a t the therm al fluctuations of the transfer 

integrals are little (due to small lattice displacements), as observed in Fig. 5.13a and 

Fig. 5.13b. Therefore, in rubrene molecular crystals (described by band transport), on 

increasing the tem perature the charge carriers are increasingly scattered due to  phonons 

and the mobility decreases.

We find our estimate for ab initio mobility of rubrene at room tem perature [T =  300 

K) to be /I =  58 cm^/V-s. This is slightly larger than the value for contact-free intrinsic 

mobility observed experimentally from four-terminal measurements conducted on single 

crystal rubrene based OFETs [169]. Our result for charge carrier mobility also agrees 

quite well with previous theoretical predictions for rubrene based on sliding phonon modes 

[218, 219] as well as th a t calculated from the full phonon band structure [182]. This re­

affirms tha t, in order to obtain the mobility of rubrene crystal, one does not need to 

include the contributions of all the phonon modes of the entire phonon spectra.

5.6.2 Spin diffusion length

In the final section of this chapter we shall explore the spin transport properties of rubrene 

from first principles. In order to achieve such goal we add the spin Hamiltonian i/spm 

as defined below, to Eq. (5.15). The spin Hamiltonian describes the two main sources of 

spin scattering in OSCs namely hyperfine (HI) and spin-orbit (SO) interactions.
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H yperfine in teraction

In order to  include the  effect of HI in our problem  we add the following spin H am iltonian 

to  the ab initio H am iltonian of rubrene [in Eq. (5.15)]

H m  = J h ^ S ^ -  [cL(^a/?)c/3m]- (5.16)
af3m

Eq. (5.16) includes HI in a m anner sim ilar to  the approach we have followed in the  previous 

two chapters of this thesis. Therefore are a set of classical vectors representing the 

collective nuclear spins of all the  hydrogen atom  in the  m -th  rubrene molecule. The 

itinerant carrier’s spin in every rubrene molecule rn. is described by a vector of Pauli 

m atrices, [cl^rni^ai3)ci3m]y where a  and p  are the spin indices (T,i)- Finally Jh  is the 

hyperfine coupling strength , which for organic m aterials is estim ated to  be J //  =  lO” '* — 

10“ ® eV. Please note th a t the value for J // taken from the theoretical work of B obbert [93] 

is a close estim ate for the  param eter. O ur tw'o models are not equivalent in representing 

HI in OSCs and in i>articular (in our model) is the collective nuclear spins of all the 

hydrogen atom  of a rubrene molecule.

O ur spin tran sp o rt setup com prises the  rubrene molecular crystal described by the 

corresponding full TB H am iltonian H  = H ' + Hu\, sandwiched between two semi-infinite 

metallic electrodes. The H am iltonian of the electrodes and the  ballistic tran sp o rt ap­

proach th a t we use here are the  same as the  one introduced in the  previous chapter. T he 

spin polarized ballistic conductance is evaluated according to  the  Fisher-Lee equation  as

G = + T i i+ T -^ l  + Ti-^], (5.17)

where =  Tsc is the spin-conserving (sc) transm ission coefficient and  +  T ||- =

Tsm is the spin-m ixing (sm) transm ission coefficient. Please note th a t each of the  tran sm is­

sion coefficient constituents appearing in Eq. (5.17) are in tegrated  over only th e  H OM O 

energy levels where the charge tran sp o rt occurs. Furtherm ore, the  reciprocal of th e  slope
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Figure 5.15: S P  vs L  graphs for Jh =  10“ "̂ eV (solid line) and at J h =  10“  ̂ eV (dashed 
line without the data  points for clarity) is shown here. The corres{)onding values for Ig are 
also mentioned. The lower bound estimate for Ig (when only His are taken into account), 
i.e. Ig =  13.6 nni matches quite well with the experimental value of Ref. [170]. Note 
th a t L = I rubrene unit cell corresponds to 1.17A  which is the b axis length of a rubrene 
crystal (orthorhombic).

of the length dependence of S P  [see Eq. (4.24)] gives us the spin diffusion length (/*) of 

the spin valve setup in a manner exactly the same as discussed in the previous chapter. 

We compute the ab imtio estim ate for Ig by evolving the classical variables {ql and 5 ^ )  

in the Hamiltonian, H  = H' + Hm  via MC sampling. Once the MC simulation reaches 

equilibrium, Ig is averaged over 10, 000 MC steps.

Before we present our results for the first principles estimate of Ig, we first discuss the 

validity of the ballistic limit (Fig. 4.1b) used to investigate the spin transport properties. 

The reason why we consider the ballistic approach to spin transport are two folds. Firstly, 

we have a convenient algorithim (introduced in the previous chapter) th a t can be used 

to estimate Ig based on the length dependence of S P ,  a param eter which can be directly 

related to the corresponding experimental value. In other words, Ig th a t we estim ate 

from the procedure discussed above can be actually compared directly with experiments. 

Furthermore the second point is tha t, by considering a ballistic limit for carrier transport
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we will estim ate the value of by measuring the spin relaxation only due the intrinsic 

spin scattering  effects of the OSC i.e. HI and SO coupling. As such, our approach is 

closer to  an ideal experim ental scenario in a T M R  device (ignoring scattering and other 

spurious effects). O ur estim ate of Ig can be thus considered to  be the upper limit.

In Fig. 5.15 we illustrate  S P  vs L  (num ber of rubrene unit cells) for J // =  10“ '̂  eV 

(solid line) and =  10“  ̂ eV (dashed line). We observe th a t the  S P  vs L  graphs are 

independent of tem peratu re  when spin relaxation is only due to  HI. The estim ates for 

spin diffusion length are the  following, Is =  279.2 nm for J // =  10~® eV and Is =  13.6 nm 

for J // =  10“ '̂  eV. Since in organic m aterials J h > 10““* eV is a ra ther large m agnitude 

for HI [93], we may take Is =  13.6 nm to be the lower bound estim ate when only HI is 

taken into account.

T he experim ental measure [170] for Is for am orphous rubrene bases spin valves is 

Is =  13.3 nm. Thus, the  close proxim ity of the ah imtio  and the  experim ental results 

suggests th a t our nuiltiscale procedure for modelling spin transpo rt in rubrene is quite  

accurate.

Spin-orbit coupling

In order to  include the  effect of spin scattering  due to  SO coupling we use th e  following 

spin H am iltonian

^ s o  ^ ^   ̂ (5.18)
a0m

Here Lmm and Smm = [carni^a0 }c/3m] the  orbital and spin com ponents of th e  angular 

m om entum . Let us discuss in more detail how we incorporate SO into our sim ulations.

We s ta r t w ith pictorially representing the largest transfer integral = I) = t

along the  herringbone m otif of a  rubrene crystal, in the left panel of Fig. 5.16. Here four 

such molecules (m, m , m'  and m /), belonging to  nearest neighboring unit cells, constitu ting  

the herringbone struc tu re  are shown. In order to  dem onstrate how SO is incorporated
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Figure 5.16: In the left panel (a), the crystal structure of rubrene oriented along the y 
direction is illustrated, showing the characteristic herringbone motif. Also depicted are a 
set of rubrene molecules (m, m, m' and m') between which there is the largest transfer 
integrals in the crystal, tmmy{AR = 1) = t (along the herringbone motif). In order to 
incorporate a trajectory-dependent spin mixing due to SO, in our model we assume an 
angular dependence (with respect to the original parallel axis) of the molecules as depicted 
in (b). An example is shown here for generic molecules m. and m. belonging to the nearest 
neighboring unit cells R and /? +  1, corresponding to transfer integral tmmyi^R = !)• 
Therefore the transfer integral will have an angular dependence and together with an 
on-site Lmm’ • Smm' matrix, this induces spin mixing.

in our simulations let us consider one such set of molecules m, m, belonging to nearest 

neighboring unit cells labelled by their unit cell index, R and R  -|- A R  with A R  = 1 and 

henceforth referred to as i? -|- 1-

The inclusion of SO in our model is in the following manner: the rubrene molecules 

R  and i? -|- 1 are assumed to be at an angle Or and with respect to a parallel axis 

(II) as shown in Fig. 5.16 (right panel). Ideally, the angles must also have an m index to 

represent the corresponding molecule, but in this explanation we drop it for the sake of 

simplicity. The parallel axis is along the plane containing the central tetracene backbone
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of rubrene molecule when Or =  6rj \̂ =  0°. Similarly we may define a perpendicular 

axis (J_) when On =  6r+\ =  90°. These axes are schematically illustrated in the right 

panel of Fig. 5.16. Since in our model, the rubrene molecules are at an angle Or , we 

may decompose the molecular wavefunction w into a parallel w\\ and perpendicular w± 

component. Furthermore, we now express Eq. (5.18) as well as Eq. (5.15) in terms of the 

parallel and perpendicular molecular wavefunction components by introducing an extra 

index, O = ||, ±.

Therefore Eq. (5.15) will have an additional index O and O', added only to the transfer 

integrals. The system wavefunctions can be written down in the following basis; \r)) =  

\RC<j), where C =  Wq , a is the spin index and the other indices are the same as in the 

previous section. The original transfer integral between nearest neighboring unit cclls 

R  and i? + 1, — 1) = t which is pictorially represented in the right panel of

Fig. 5.16 can be written down as the following four components: tm||m|| =  i <̂os{6r — 0r^ i ), 

^Tnxmx t cos(6 /̂j 6r^\), tm\\mi.  ̂ sin(6 /̂j ^H+i) <md r̂nXm||  ̂ sin(6̂ /{ 0/j_|_i). Also

all the other transfer integrals (tmm'f) hi the problem can be expressed with an analogous 

angular dependence. Note that when 9r = 9r+i = 0 and 6r — Or^ i =  0, there is no 

hopping between the || and ±  components of the molecular wavefunctions of adjacent 

rubrene molecules and tm_Lm|| =  m̂||m_L = 0.

We finally need to evaluate the SO matrix elements {r] \Lmm • Smm\ v')^ which lift the 

spin degeneracy. For every \r}) =  \RCcr) with C =  W q  and \r]) =  \R(^'a') with (̂ ' =  W q , ,  the 

SO Hamiltonian, {rj \Lmm ■ Smm\ v') when expressed in the ket notation of { | W | P  t ) )  T  

)> l îi” i)> 1^1 i)} is the following
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where X s o  i s  the  SO couphng strength . The above {rj  \ L m m  • S m m \  v ' )  m atrix  is the 

SO couphng m atrix  between p  orbitals sim ilar to the one used in th e  previous chapter. 

Therefore the  approxim ation m ade in this part of the work is th a t the || and _L com ponents 

of the  wavefunctions of rubrene w,  i.e. and w'^ correspond approxim ately to  py and p^ 

wavefunctions. T he justification for using such approxim ation, is based on the fact th a t 

the  rubrene m olecular orbitals are entirely constitu ted  by C 2p electrons^^. Furtherm ore, 

due to  the  natu re of the herringbone stacking of its m olecular crystal (see Fig. 5.2c), the 

m olecular wavefunctions reside in those herringbone planes. Therefore the  inclusion of 

only two orthogonal coordinate systems, i.e. and mimicking the basis of Py and Pz 

orbitals respectively (representing each molecule), can be the minim al model to  describe 

SO coupling.

T he spin transpo rt setup  is exactly the same as in the previous section (when esti­

m ating Is for HI alone) except th a t now the  MC sim ulations are performed also over an 

additional set of classical vectors representing th e  angles On's.

In Fig. 5.17 we illustrate S P  vs L  for the following cases, J // =  10“  ̂eV and Xso =  10“ '* 

eV (shown in dashed lines) and J // =  10“ “* eV and Xso  =  10“ *̂ (shown in bold lines) each 

a t a  high tem peratu re  of T  =  300 K (in red) and a low tem peratu re  of T  =  58 K (in black). 

Please note th a t this m agnitude for SO couphng streng th  is based on the SO sp litting  of 

the rubrene crystal eigenvalues (from a D FT  calculation) and also from Ref. [146]. For 

spin relaxation strengths corresponding to  J // =  10“  ̂ eV and Xso — 10“  ̂ eV, we obtain  

Is =  165.6 nm a t T  =  58 K and Ig = 153.9 nm at T  =  300 K. Note th a t when bo th  HI and 

SO interaction are taken into account, the  m agnitude of Is decreases in com parision to 

when there is only HI (for J h  — 10“  ̂ eV). Furtherm ore, for J // =  10“ '* eV and X$o — 10“ '' 

eV, we obtain Ig =  13.8 nm  a t T  =  58 K and Is =  10.4 nm  a t T  =  300 K. Also note 

th a t the  spin tran sp o rt properties of the system  is now tem peratu re  dependent due to  SO 

coupling and Ig is higher a t a lower tem peratu re. Finally, the lower bound estim ates for 

^®See the PDOS in Fig. 5.8b and the molecular wavefunctions of the HOMO bands in Fig. 5.9.
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Figure 5.17: S P  vs L graphs for J// =  10“  ̂ cV and Xso =  10“'̂  eV (shown in dashed 
lines without the data points) and Jh = lO”"* eV and Xso =  lO”'* (shown in bold lines) 
each at a high temperature, T  =  300 K (in red) and a low temperature, T = 58 K (in 
black). The corresj)onding estimates for Ig are also mentioned. We observe that the lower 
bound estimates for Is (when spin relaxation is the maxinnnn) matched really well with 
the experimental value in Ref. [170], i.e. ^^(exp.) =  13.3 nm at room temperature.

Is agrees remarkably well with the experimental value of /^(exp.) =  13.3 nm in Ref. [170] 

at room temperature.

We would like to point out that the spin diffusion length in our approach obtained is 

for crystalline rubrene. For an amorphous rubrene barrier as in the case of the experiment 

of Ref. [170], we may calculate Is by assuming t, a  and K  to be 10% its crystalline value. 

However we do not find a significant change in Ig for the amorphous rubrene barrier even 

though the charge carrier mobility (at T  =  300 K) decreases to 11 cm^/V s (from 58 

cm^/V s).
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5.7 Sum m ary

In conchision, in th is chapter we have successfully im plem ented a system atic m ethod to  

ex trac t the  basic ah initio TB  H am iltonian for rubrene using MLWFs. The m agnitudes 

of the  tran sp o rt observables obtained for rubrene crystal, nam ely the  charge carrier mo­

bility, //, and the spin diffusion length, Ig, agree rem arkably well w ith the ir experim ental 

estim ates. Thus, our i)rocedure has the potential to  be a system atic and a  reliable m ethod 

for obtain ing the  spin and charge tran sp o rt properties of OSCs, in general. This may also 

tu rn  out to  be a very helpful tool for predicting new OSCs m aterials w ith improved spin 

and charge tran sp o rt properties.

In the next chapter, we shall show a sim ilar m ultiscale approach to  com pute the  spin 

and charge tran sp o rt properties for a family of triary lam ine based organic nanowires, 

which have been recently grown through a self-assembly process.



Chapter 6

First principles study of Organic 

Nanowires synthesized from light 

sensitive triarylam ine derivatives

In previous chapters we have described in detail our procedure to extract the charge and 

spin transport properties of rubrene molecular crystals from a multiscale theory. We have 

shown th a t the ab imtio  estimates for carrier mobility and spin diffusion length obtained 

for rubrene agrees quite well with their corresponding experimental estimates. A perfect 

test for any comprehensive theory is its transferability, i.e. can the theory be applied to 

other systems? We would wish to convince the readers with the work presented in this 

chapter, th a t indeed we have a affirmative answer to this question.

Let us now describe the particular system we will be investigating in this chapter. In 

order to motivate this we want to raise the following question; W hat should be the char- 

actertistics of an ideal OSC in terms of maxinumi performance of the corresponding solid 

state device? We answer this crucial question with the help of the following discussions.

An ideal OSC for optimum device performance must have exceptional charge transport 

characteristics. In terms of a measurable quantity this means th a t the carrier mobility

172
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should be as high as possible. This situation could be achieved in an OSC, if under certain 

operating conditions it has a metallic type transport behavior. An experimental finger­

print of this scenario could be a linear current voltage profile for a two-probe transport 

device or a gapless density of states. Under these circumstances, another im portant issue 

associated with organic based device is circumvented, which is the ’’infamous” resistance 

mismatch problem. Let us explain this in a little more detail.

The skeleton of any organic photovoltaic or nanoelectronic device is an OSC material 

placed betw'een metallic electrodes. A convenient way to create mobile charge carriers 

within the organic layer is upon charge injection (from electrodes) into the conducting 

molecular orbitals of the OSC. Herein, lies a very crucial problem.

W hen mobile charge carriers in the device travel through the metallic electrodes they 

face very little resistance. However once they enter into the organic layer the resistance 

increases massively due to the poor transport characteristics generally associated with 

conventional organic materials. This effect is known as the infamous resistance mismatch 

problem, which can entirely impede transport between the metallic electrodes and the 

OSC, as it creates large contact resistances. Thus the obvious solution to overcome this 

problem is to use organic materials with exceptional charge transport characteristics. 

This actually gives us a very narrow range of potential candidates, in fact just carbon 

nanotubes. However, in practice it is extremely difficult to isolate and process such carbon 

nanotubes which is quintessential to incorporate them into a device geometry.

This brings us to the second characteristic which an ideal OSC material should have. 

It is concerned with the fabrication of an organic solid state  device like an O FET or an 

organic spin valve. We have seen in the beginning of the previous chapter how the different 

deposition techniques in the device architecture results in a contact between the organic 

and substrate material. The deposition technique is crucial because any irregular contacts 

between the organic and substrate material has a tendency to disrupt the fragile geometry 

of the OSC or cause chemical reactions, which can severely affect device performances. A
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key development in this respect was to  use flexible elastonieric PDM S substra tes based 

on the work of Sundar et al. [156] which preserves the integrity of the  OSC.

A nother alternative would be if the  organic m aterial can be effectively grown in a self­

assembled m anner on top  of a particu lar substra te  m aterial (e.g. metallic electrodes) [187, 

188]. Self-assembly is an equilibrium  process by which individual entities come together 

to  form a structu re , w ith the lowest free energy and the highest possible entropy. Thus the 

need of any physical deposition techniques can be entirely elim inated in a  self-assembled 

process. The biggest advantage in any self-assembled process is th a t the s truc tu re  of the  

organic m aterial is preserved and in particu lar it will not be affected by th e  substrate.

Finally from a spintronics point of view, when a carrier travels through a particu lar 

sem iconductor m aterial there m ust be minimal spin relaxation events w ithin the seniicon- 

ductor. This is a point, which we also addressed previously and is the th ird  characteristic  

of an ideal OSC m aterial for spintronic application.

Presently the main draw back of OSCs which is hindering their ability to  revam p the 

entire electronics industry  is their not so improved tran sp o rt characteristics, which are 

related to the discussions above. Recent experim ents [189, 190] suggested triary laniine 

derivatives as a promising cand idate  th a t seems to  be a solution to  these issues. We will 

now describe these experim ents in detail.

6.1 Light triggered self-assem bly of supram olecular 

organic nanowires: the experim ents

Triarylam ine derivatives are well known to  be an excellent hole transp o rtin g  com ponent 

used in organic light-em itting diodes (OLEDs) [186]. Hence, understanding  the  behavior 

of their radical-cation is crucial for designing efficient m aterials to  be incorporated  in 

optoelectronic devices. Over the past decades, these derivatives have continuously stim u­

lated exciting research bo th  theoretically  and experimentally. This is prim arily  because of
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OR̂

R2

Figure 6.1: Structure of the triarylam ine derivatives synthesized in Ref. [189] and inves­
tigated in this work. and R^ denote the position of three radicals. A list of all the
molecules synthesized is provided in Table 6.1.

the general widespread drive towards incorporating OSCs into modern electronic devices, 

due to their low cost, low weight and mechanical flexibility. Two additional advantages 

of triarylam ine derivatives arc th a t they are generally also chemically inert and tha t their 

optical and transport properties can be chemically tuned.

Recently a chemistry group from Strasbourg [190, 189] showed that when certain 

triarylamine derivatives in chloroform solution are exposed to light, one-dimensional 

suprarnolecular (and self-assembled) nanowire structures were obtained. The particu­

lar triarylamine derivatives synthesized by the experimentalists are shown in Fig. 6.1. 

The key difference between the various derivatives is the possibility of choosing the three 

radicals, R \  R^ and R;̂ . In particular eight different molecules have been synthesized in 

Ref. [189] (the same will be investigated by us). These are listed in Table 6.1. Note that 

the various molecules are labelled as ’’precursors” since they are the precursors for the 

synthesis of the ID nanowires. The table also indicates whether a particular precursor 

leads to the actual formation of the nanowire, a process whose unique fingerprint is the 

disappearance of the NMR signals of the aromatic protons upon exposure to light [189].

It was suggested th a t the self-assembly process involves cooperative phenomena, which 

begin with the formation of cationic radicals induced by light and then j)roceed with neu­

tralization upon charge hopping across other molecules. This leads to a supra-molecular
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Precursor Ri R ' R^ Photoactive

E l CgHi7 H Cl yes
P2 CgHiT H H yes
P3 CgHi7 CH 3 H no
P4 CgHi7 H CeHia yes
P5 Bn H Cl yes
P 6 Bn H H yes
P7 H H Cl no
PS CH 3 H Cl no

Table 6.1: List of the nanowires precursors synthesized in Ref. [189] and investigated 
here. The photoactiv ity  is established from the disappearance of the NMR signals of tha 
arom atic protons upon exposure to  light. Photo-active precursors lead to  the form ation cf 
the  ID  nanowires. P I  has been highlighted since P l-based  nanowires have been employed 
in the tran sp o rt experim ents of Ref. [190].

polym erization of units th a t contain a delocalized cationic radical. More recently, the 

same group used one of those triarylam ine-based nanowires as a channel in a two-terminfcl 

device setup [190]. They showed th a t such device exhibits a com bination of metal-like 

tran sp o rt characteristics and also low interface resistance, although the intrinsic transport 

properties of the organic nanowires, such as the  mobility, were not measured.

In their setup nanotrenches were dug out on a gold substra te  and filled w ith  tr ia r j-  

lamine (P I derivative in Fig. 6.1) plus chloroform solution. A cartoon illustrating  their 

device s truc tu re  is shown in the  upper panel of Fig. 6.2. On the  left-hand side of the 

figure the situation  in the absence of light is shown, while on the  right-hand side the  same 

is illustrated  when light is switched on. The corresponding images from AFM  topogra­

phy and phase images are shown in the middle and lower panels respectively (Fig. 6.2), 

w ith light switched on and off. As clearly seen from the experim ental results illu stra ted  in 

Fig. 6.2, on exposure to  light astonishing one-dim ensional nanowire bundles were observed 

in the nanotrenches between the gold electrodes.

Furtherm ore, the au thors also m easured the  conductance of the ir device under the 

two situations. Their results are sum m arized in Fig. 6.3. We can see in Fig. 6.3a th a t 

on exposure to  light a substan tial increase in conductance of the device was observed.
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Figure 6.2; The nanodevice architecture constructed in the experimental work of Ref. [190] 
is shown here. The top panel shows the cartoon of the device structure which is a nan­
otrench dug in gold substrate. These nanotrenches are filled with triarylamine dispersed 
in a chloroform solution. The situation when light is switched off and when it is switched 
on is shown in the left and right panels respectively. The corresponding AFM topography 
and phase images are shown in the middle and bottom  panel respectively. As clearly ev­
ident from the experimental figures when light is switched on, one-dimensional nanowire 
structures are formed in the nanotrenches connecting the gold platform. This now serves 
as electrodes in the device.

by almost six orders of magnitude. Moreover, the device exhibited Ohmic type (linear) 

current-voltage (IV) characteristics, which is shown in Fig. 6.3c. The corresponding non­

linear IV of the device when light is switched off is illustrated in Fig. 6.3b^ Clearly 

the self-assembled organic nanowire structures obtained from triarylam ine solution were 

responsible for such enticing transport characteristics of the device.

In this chapter we report on state o f the art DFT calculations on the structural, elec-

^Notice that the actual current through the device when light is switched on, also increases by six 
orders of magnitude.
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Figure 6.3: The conductance of the nanodevice fabricated from triarylam ine derivative 
is shown in a), in the  situation  when Hght is switched on and when it is off. The corre­
sponding IV characteristics are shown in b) and c) (note the different current scales). As 
clearly seen from the  above figures, when light is switched on bo th  the conductance and 
the current th rough the device increases six folds. Moreover, the device exhibits a linear 
(m etallic like) IV characteristic (light switched on). The figure is reproduced from the 
experim ental work of Faraniarzi et al. [190].

tronic and tran sp o rt properties of such triarylam ine-based nanowires, w ith the  aim  of 

relating the electronic characteristics of the  triarylam ine precursors to  the self-assembly 

process and to  the  nanowires mobility. We begin by looking a t the  derivatives proposed 

in Ref. [189] in their gas phase and provide a  detailed analysis of the electronic s truc­

tu re  of these precursors and their intram olecular interactions. As reference m aterial we 

also include calculations for the basic triphenylam ine (TPA) molecule, for which bo th  

theoretical and experim ental d a ta  are available.

We then  move to  investigating th e  interm olecular interactions and the tran sp o rt char-
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acteristics of the nanowires. Unfortunately, no crystallographic information were available 

for these triarylam ine based organic nanowires. Therefore we adopted two different ap­

proaches. The first is the semi-classical Marcus theory [191] to investigate the transport 

properties of defective nanowires. This procedure relies on the internal reorganization 

energy and on the transfer integrals between molecules dimers. The Marcus theory ap­

proach has been used to calculate hole mobility in oligothiophenes [192] and pentacene 

[193], yielding reasonable values in agreement with experimental trends. The second ap­

proach, used only for the case of ultrapure nanowires, is based on the linear response 

Kubo Formula [194] and Monte Carlo sampling to extract the charge carrier mobility. In 

this case a few non-local phonons modes, treated at the classical level are introduced. 

For both the approaches all the parameters of the theory are extracted from DFT, so 

th a t our estimates for the mobility are those obtained by taking into account the detailed 

electronic structure of the nanowires. It is im portant to note here th a t Marcus theory and 

the linear response Kubo approach have two different limits of validity. The first is con­

structed for hopping conductance while the second performs best for band-like transport. 

Here we used both, since we do not have any direct experimental evidence of the actual 

transport mechanism or the concentration of defects in the nanowires. Finally in the last 

section of this chapter we will investigate the spin transport characteristics for the organic 

nanowires using a procedure similar to the one we have used in the previous two chapters. 

It is actually the mechanism of carrier transport through these organic nanowires which 

led us to propose to use them as spin transporting media.

6.2 Charge transport properties 

System  and com putational m ethods

First principles calculations are performed for all the derivatives in the gas phase and for 

TPA, chosen as a reference system. Since our interest is in hole transport, we restrict
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the discussion to th a t of the positively charged derivates. Their molecular geometry (in 

the ground and single cationic state), the energy level of the Highest Occupied Molecular 

Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO), the HOMO- 

LUMO gap, the ionization potential (IP), the total density of states (DOS) and the 

reorganization energy are computed by using DFT [20, 21]. The B3LYP hybrid functional 

[195], which is known to be suitable for most molecular systems is adopted together with 

a 6-31G* basis set [221],

In order to evaluate the intermolecular interactions to be input in Marcus theory, 

we construct molecules dimers from the B3LYP optimized monomers, we calculate their 

binding energies (BE) and then estimate the transfer integral (TI) as a function of the 

intermolecular distance along the nanowire axis (2-axis). The mobilities are then com­

puted at the optimum dimer distance (the nanowire lattice param eter), which is at the 

BE minimum. While B3LYP-DFT usually describes well electronic properties like the IP, 

the HOMO-LUMO gap, and molecular geometries, it does not describe in a satisfactory 

way weak interactions, in particular those of dispersive nature. These inchide van der 

Waals (vdW) and tt-tt interactions, which in turn  play an imi)ortant role in determining 

the structure of organic materials [192]. As a test, we calculate the BE and TI for the 

TPA dimer model system by using three additional DFT functionals: the long-range- 

corrected version of B3LYP (CAM-B3LYP) [197], the meta-hybrid generalized gradient 

approximation (GGA) M06-2X functional [198] and the Grimme’s functional including 

vdW dispersion [43]. Then, by using the functional th a t returns the lowest BE for TPA, 

we calculate the BE and TI for all the precursors and estimate the values of their mobilities 

at the optimal intermolecular distance.

Finally, we move to investigate in detail the charge transport characteristics of such 

organic nanowires as a function of tem perature. DFT calculations are first performed on 

a one-dimensional nanowire geometry, by using the optimized B3LYP monomer structure 

and maintaining the distance between the monomers at th a t of the BE minimum for the
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dimer. We then obtain a complete band structure for the organic nanowires and from the 

dispersion of its valence band we extract an elementary tight binding (TB) Hamiltonian. 

This includes a static term  and a Su-Schrieffer-Heeger-type interaction [196], which relates 

the hopping integrals with the molecular displacements in the nanowire, i.e. it introduces 

carrier-lattice coupling. The parameters for such an interaction term are evaluated with 

a simple finite difference m ethod (see Section 6.2.3). The charge carrier mobility as a 

function of tem peratures is then calculated by using the linear response Kubo formula, 

evaluated with Monte Carlo sampling.

Ending this section we report the technical details of the DFT calculations performed 

in this work. All the simulations for the single molecules in the gas phase are performed 

with the Gaussian09 suit [199], using the 6-31G* basis set. The same package is also 

employed to evaluate the electronic structure of the dimers, then used for the semi-classical 

Marcus theory. Relaxation with Gaussian09 is carried out with the Berny algorithm [200] 

until the forces are smaller than  2 x 10“ ''’ Hartrees/Bohr. After relaxation the phonon 

spectrum  is computed and the vibrational frequencies are inspected. The absence of 

imaginary frequencies confirms th a t the energy minimum is reached.

The Quantum  Espresso [201] code is used for the electronic structure of the organic 

nanowires. Spin polarized DFT calculations are performed at the GGA level as imple­

mented by Perdew, Burke and Ernzerhof [35] and with the semi-empirical implementation 

of vdW  interactions by Grimme [43]. In all calculations we employ Vanderbilt ultra-soft 

pseudopotentials [202]. Convergence is tested over the total energy and an accuracy lower 

than 1 mRy is achieved by a plane-wave cut-ofF 30 Ry. A 5 x 5 x 5 Monkhorst-Pack grid 

with a Gaussian broadening of 0.01 Ry is used for sampling the reciprocal space. Addi­

tional details about our calculations will be provided later on whenever necessary. Also 

in this case geometrical relaxation is performed by standard conjugate gradient method.
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Figure 6.4: Energy level diagram of the frontier molecular orbitals for all the precur­
sors and the TPA. Here we report the Kohn-Sham eigenvalues calculated for the neutral 
molecules with the B3LYP hybrid functional.

6.2.1 Single m olecules in the gas phase

All the precursors and the TPA molecule have been optimized in their neutral and cationic 

states using the B3LYP hybrid functional. We start our analysis by examining the energy 

levels of the precursors’ frontier molecular orbitals. Fig. 6.4 shows the Kohn-Sham HOMO 

and LUMO energy levels as well as the HOMO-LUMO gap for all the precursors and 

TPA. It is clear from the figure tha t, whether light active or not, there is no remarkable 

difference in the position of the energy levels of the frontier molecular orbitals, meaning 

tha t the different radicals th a t uniquely characterize a given precursor ( R \  and R^) 

have little effect on th a t region of the quasi-particle spectrum. Note tha t our calculated 

values for the TPA (our reference) agree well with existing literature, for instance w ith 

those reported in Ref. [203].

Next we calculate the IP and the hole extraction potential (HEP) of all the precursors. 

These are im portant parameters to characterize the molecules hole-transport ability. Both 

IP and HEP are well defined quantities obtainable by DFT in terms of total energies 

differences for the molecule in different charging states and positions over the potential



183 Chapter 6

E
Catic

E*'(P*i
\P(v)=E^(P)-E(P)

HEP=E^(P*)-E(P^)

lP(a)=E^(P^)-E(P)Neutral

Q

Figure 6.5: Schematic diagram of the potential energy surface, E,  of a neutral and cationic 
radical precursor as a function of reaction coordinate, Q. E~^{P~^) and E{P)  are the 
energies of the cationic radical and the neutral precursor in their lowest energy geometries, 
respectively. In contrast E^{P)  [E{P^)] denotes that of the cationic radical [of the neutral 
precursor] obtained at the geometries of the neutral j)recursor [cationic radical]. The 
definitions of the various IP ’s and of the HEP are also introduced.

energy surface (see diagram in Fig. 6.5). Thus, the vertical IP, IP(v), is calculated as the 

energy difference between the neutral molecule and the cationic radical at the geometry 

of the neutral configuration. Likewise the HEP is the same energy difference, but now 

calculated at the geometry of the cationic state. Finally, the adiabatic IP, IP (a), is 

obtained as the energy difference between the neutral and single positively charged state, 

both calculated at their equilibrium geometries.

The calculated IP’s and HEP for all the precursors are shown in Table 6.2. We 

find the vertical IP ’s in the range 5.69-6.01 eV, the adiabatic ones in the range 5.54- 

5.88 eV, while the HEP’s distribute over the interval 5.40-5.75 eV. In the case of IP(v), as 

expected, we find good consistency between our total energy calculations and the Kohn- 

Sham HOMO levels reported in Fig. 6.4, i.e. we find that those precursors showing deep 

HOMO energies also display a deep IP(v). In particular the energy order of the various 

Kohn-Sham HOMO’s is the same as that of the IP(v)’s. Note that the calculated IP(v)’s
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are not exactly m atching the HOMO levels and th a t the two differ by about 1 eV, with 

the quasi-particle energies being system atically  more shallow.

In general in D FT  one expects the  Kohn-Sham  HOMO energy to  correspond to  the 

system  vertical IP [31, 23]. This condition however is not satisfied by approxim ated 

exchange and correlation functionals because of the self-interaction error, and th e  HOMO 

levels are usually much more shallow th an  the true  IP ’s. T he B3LYP functional partially  

removes the self-interaction error. This removal however is not com plete and the  residual 

self-interaction is probably responsible for the differences. In any case, the overwhelming 

result is th a t there is alm ost no dependence of the charge extraction energies ( IP ’s and 

H EP) on the natu re  of the precursors, m eaning th a t the different radicals have little  effect 

on the  ability of a molecule to  transfer electrons/holes. Further support to  this conclusion 

is the fact th a t the IP ’s for TPA  are w ithin 0.5 eV from th a t of any precursors, indicating 

th a t the  TPA  unit is the molecular block responsible for the charge transfer. Finally, note 

th a t our calculated IP  value for TPA  is not only consistent w ith other theoretical works 

[203, 204, 205] bu t also close to  th e  experim ental d a ta  [206].

Precursors Photoactive IP (v) (eV) IP (a) (eV) H EP (eV) A.nt (eV) do (A )
P I yes 5.81 5.66 5.52 0.30 0.39
P2 yes 5.71 5.57 5.42 0.30 0.38
P3 no 5.73 5.57 5.42 0.32
P4 yes 5.69 5.54 5.40 0.29 0.44
P5 yes 5.88 5.69 5.52 0.36 0.45
P6 yes 5.79 5.60 5.42 0.37 0.51
P7 no 6.01 5.88 5.75 0.26
P8 no 5.80 5.67 5.53 0.28 0.47

TPA 6.41(6.88) 6.35 0.12 0.60

Table 6.2: DFT-B3LY P estim ates of the ionization potentials, IP(v) and IP (a), the hole 
ex traction  potential, HEP, the in ternal reorganization energy, Ai„t, and the localization 
radius, d o ,  for all the  precursors and for TPA. In the case of TPA  the value reported  in 
brackets is the experim ental IP from Ref. [206]. Note th a t we report d o  only for those 
precursors for which a good exponential fit of the transfer integral as a function of the 
dim er distance is obtained. We rem ind here th a t P3, P7 and P8 are not photo-sensisitve, 
i.e. they  do not form the nanowires.
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We then  exam ine the  DOS of the  precursors in the ir gas phase. Interestingly the  main 

characteristics of the  DOS are qualitatively  sim ilar for all the  precursors, so th a t here in 

Fig. 6.6 we report only the  illustrative case of th e  P I  molecule^. T he figure reports the 

DOS for bo th  the  neu tra l s ta te  (top panel) and the cation radical (bottom  panel), together 

w ith  the  isosurface plots of the charge density of the  different molecular orbitals. Note 

th a t the  results reported  here are for GGA, whose only difference from B3LYP for this 

molecule is in the quantitive position of the energy levels (the order and the  sym m etry is 

the  sam e). Note also th a t in the figure the molecular DOS has been artificially broadened 

for visualization purposes.

From the  DOS it is clear th a t the H OM O ’s of b o th  th e  neu tra l molecule and the 

cationic radical are highly localized on the  N atom  of th e  TPA  central unit. This m eans 

th a t the  ionization process simply involves the ex traction  of an electron from such double 

occupied sta te , w ithout affecting the rest of the molecule. Indeed a close analysis reveals 

th a t the sym m etry of the HOMO-1 and of the LUMO is somehow different for the  two 

charging states, indicating level reorganization upon ionization. T he same, however, is not 

true  for the HOMO, whose only difference in the two charging sta tes lies in the  occupation. 

In fact we find th a t the HOM O of all the precursors investigated here is essentially the 

same of th a t of the widely studied TPA  isolated molecules [207, 203, 204], nam ely it is 

formed by the 2p o rbitals of the  central N ion.

In closing this section we wish to  pu t our results in the  context of the photo-induced 

self-assembly form ation of the  nanowires. T he m echanism  for the  nanowires form ation 

proposed in Ref. [189] is th a t, under exposure to  light, in itially  a small am ount of positively 

charged radical (6 over 1000 molecules) is formed. O ur local DOS calculations point out 

th a t the  positive charge in the radical is localized on th e  central N atom , as speculated 

in the original experim ental work. According to  the  m echanism  proposed, the positively 

^The one for which transport has been measured.
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Figure 6.6: The DOS of tlie P I molecule and the P1+ radical in the gas phase, as calculated 
from DFT-GGA, are shown in the top and bottom  panels, respectively. Charge density 
isosurfaces (local DOS) for the H O M O -1, HOMO and LUMO levels are also displayed. 
The DOS has been artificially broadened for visualization purposes. Note tha t the HOMO 
of both the neutral molecule and the cation radical have identical symmetry with charge 
density distribution strongly localized over the central N atom of the central TPA unit. 
The qualitative features of the DOS and the orbitals symmetry of all precursors are very 
similar.

charged radical comes into contact with a neutral molecule and transfers its charge. This 

process continues until ID triarylamines-based bundles of nanowires are formed. Our first 

principles analysis of the energy levels and of the nature of the frontier molecular orbitals 

for all the triarylam.ines derivatives, does not provide any evidence th a t may distinguish 

the light active precursors (which self-assemble into supra-molecular organic nanowires) 

from those, which are not light active. In other words we do not find any fingerprint in 

the electronic structure of the precursors, which can help us to identify the conditions 

for the self-assembly. Thus we conclude th a t the self-assembly process may be initiated 

by factors not completely intrinsic to the molecular precursors. For example it may be
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affected by the strength of the oxidizing agent used in the solvent, i.e. by the interaction 

of the different precursors with the solvent.

6.2.2 Charge transport properties from M arcus theory

In the weak coupling limit, charge transfer between molecules is described by Marcus 

theory [191], and the calculated charge transfer rates can be used for evaluating the 

mobility of molecular crystals. Under the assumption that the temperature is sufficiently 

high so that vibrational relaxation is fast, Marcus’ formula for the hole transfer rate, A:cTi 

reads [191]

rnaterials-specific quantities are the charge reorganization energy, A, and the transfer 

integral, J. Various approaches have been put forward in literature to estimate these 

parameters (see for instance Ref. [208]).

The most popular method for evaluating the transfer integrals for a hole transporting 

pair of identical molecules (of equivalent symmetry) is rooted in Koopmans’ theorem [24], 

which establishes that the HOMO of the neutral molecule is the negative of the ionization 

potential. This, together with the assumption that the geometry of the ground state 

of the neutral molecule is a good approximation of the geometry at the point of charge 

transfer [209], allows one to evaluate the absolute value of the transfer integral, | J |,  as half 

of the energy difference between the HOMO and HOMO-1 levels of a dimer of molecules 

in its closed-shell configuration. In practice the idea is that, in the weak coupling limit, 

the energy separation between the HOMO and HOMO-1 levels of the dimer is simply 

the energy split between the bonding and anti-bonding orbitals derived from the HOMO 

of the individual molecule. This quantity is largely kinetic and as such it is relatively 

independent from the actual position of the HOMO level, i.e. from how the specific 

exchange and correlation functional reproduces a correct quasi-i)article spectrum. In

(6 . 1)

where T  is the temperature and the Boltzmann constant. In equation (6.1) the two
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Figure 6.7: Variation of the (a) binding energy, BE and of the (b) charge transfer integral 
of TPA calculated by using different DFT functionals. The solid line in (b) are exponential 
fits of the data.

other words, one expects th a t it should not be im portant how a particular exchange and 

correlation functional quantitatively satisfies Koopmans’ theorem as long as the HOMO 

has the correct symmetry. Because of its simplicity this approach has been widely used in 

literature to estim ate J  for organic molecules [209, 210, 192, 211, 212], although caution 

should be taken when the dimer is not co-facially stacked [213] and corrections should be 

included [214],

The reorganization energy deserves additional discussion. This contains two parts, 

namely an internal, Ajnt, and an external, Aext, one. The internal contribution is intrinsic 

of the two molecules exchanging charge and accounts for the change in molecular geometry



189 Chapter 6

0.02
0.01 0.3

0.2
- 0.01

- 0.02
5.5 4.5 5.56.5

0.25 0.04 rr

0-2 0.02 -  

0.15

0.045P6 “0.02
0.04

- 0.02
-0.04

0.035

0.05-0.02 0.03
4.5 5.5 5.5 6.5

0.02
0.3 P 4 - 0.14CQ 0.01

- 0.01
- 0.02 0.2 -0.04 0.08

75.5 6 6.5 4.4 4.8 5.2 5.6 6.46

0.06 
0.15 0.04 
„ . 0.02

0.15
0.02 P 2 -

- 0.02
-0.04

0.05
0.05-0.02

4.5 5.5 4.5 5.5 6.5
d( A)d( A)

Figure 6.8: Binding energy (soUd circles and left-hand side vertical axis) and charge 
transfer integrals (open squares and right-hand side vertical axis) for all the precursors 
calculated at the geometry provided by the Grinime’s functional. The solid black lines 
interpolate the binding energies while the red dashed lines are an exponential fit of the 
transfer integrals.

corresponding to the charge transfer, i.e. it accounts for the different geometries of the 

molecule in different charging states. In contrast, Aext describes the change in electronic 

polarization of the surrounding molecules associated to the charge transfer process. Such 

external contribution is not straightforward to calculate [208]. However for molecular 

crystals Aext is usually neglected since it is considerably smaller than Ajnt [212]. The 

internal reorganization energy can then be w ritten as the sum of two terms [214]: (1) the 

difference between the total energy of the neutral precursor at its equilibrium geometry 

and tha t at the geometry of the radical ion, and (2) the difference between the energy 

of the radical ion at its equilibrium geometry and tha t at the geometry of the neutral
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configuration. By taking the definitions introduced in the diagram of Fig. 6.5 we can 

write

Aint =  IP(v) -  HEP . (6.2)

Since both IP and HEP for all the precursors are similar, we do not expect Ai„t to differ 

much across the various precursors, as dem onstrated in Table 6.2. Also for this quantity 

our calculated value for TPA compares well with those reported in previous works [203, 

204, 205].

Let us now move to computing the J ’s. First we need to calculate the ecjuilibrium 

separation, c?eq, of the various dimers, i.e. to compute the dimer BE as a function of 

the separation, d, between two identical monomers. The geometry of each molecule in 

the dimer is optimized by using the B3LYP hybrid functional and the 6-31G* basis set, 

with the dimer considered in this work having a co-facial orientation. This means tha t the 

planes defined by the three bonds proceeding from the central N atom on each molecule are 

parallel to each other, with the tw'o N atoms situated on a vector normal to their planes. 

This simulates a wire in which the central N atoms of the TPA unit are co-axial. Even 

though J  may strongly depend on the type of crystal packing, the co-facial orientation is 

usually considered as a geometry of interest, having a high symmetry reference point and 

being an upper limit for the electronic coupling [216]. Furthermore a geometry of this type 

has been suggested for the nanowires under investigation by our reference experiments 

[189, 190].

Note tha t, in the weak coupling limit, one expects the J ’s to vary exponentially witfi 

d [209]

\J\ exp{-d/do)  , (6.3)

where do is a constant called the localization radius. This decay is well understood and 

a ttributed to the exponential decay of the intermolecular overlap between the orbitals 

when the two monomers are pulled apart. In our analysis we will test such property, by
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s ta rtin g  w ith the  case of TPA.

T he BE and the transfer integral of TPA  calculated by using different D FT  functionals 

are presented in Fig. 6.7. We note here th a t the  BE is ob ta ined  by neglecting th e  basis 

set superposition error, since it has a negligible con tribu tion  [215]. We first determ ine the  

dim er optim um  distance and then  we exam ine J  around th is region. As expected J  decays 

exponentially  w ith d and the values of do are 0.60 A, 0.64 A and 0.57 A, when the  BE is 

evaluated respectively w ith th e  Grim m e, the  CAM -B3LYP and the M06-2X functionals. 

The figure shows th a t only G rim m e and M06-2X bind the  dim er, while for CAM -B3LYP 

the  binding energy does not present a m inim um  w ith rf. Furtherm ore, we notice th a t 

although the equilibrium  interm olecular distance is predicted  ra ther consistently  for the  

two functionals, G rim m e displays a significantly larger binding energy than  M06-2X. This 

is by the v irtue of explicit inclusion (in Grim m e) of pairw ise van der W aals interactions. 

W ith  these considerations a t hand we have decided to  optim ize the  dim er interm olecular 

d istance for all the  precursors by using the  G rim m e functional. However, we then  calculate 

the T I ’s by using both  G rim m e and B3LYP (at the geom etry obtained  w ith G rim m e), so 

th a t we can com pare results from functionals th a t satisfy the  K oopm ans’ theorem  at a 

different level of accuracy.

As for the TPA, also for all the nanowires precursors we consider a co-facial arrange­

ment of the dimers. We note th a t perform ing a ro ta tion  of one of the two molecules in 

the dim er around the axis joining the  two N atom s gives approxim ately the  sam e bind­

ing energy as th a t of a perfectly co-facial geometry. T his fu rther supports the  idea th a t 

the co-facial geom etry is indeed representative for the  charge transfer, which in terests 

by large the  N atom s only. In Fig. 6.8 we present the  BE and J ’s as a function of the  

N-N distance for all the  precursors. Clearly in all cases th e  dim er can form and  one can 

identify an equilibrium  interm olecular distance. This is tru e  also for P3, P7 and P8, th a t 

experim entally are found not to  be photo-sensitive, i.e. they  do not lead to  the nanowires 

form ation.
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Precursors ^ e q  (-^) -^Grimme (uieV) >^B3LYF (nieV) //, (cm^/Vs)
P I 4.8 29.54 34.03 0.13
P2 5.4 24.18 24.61 0.11
P3 5.8 132.68 134.25 3.10
P4 4.8 48.72 51.88 0.40
P5 4.8 46.99 53.92 0.17
P6 6.0 17.86 18.14 0.04
P7 5.6 97.93 99.06 3.11
P8 4.6 55.05 64.31 0.53

Table 6.3: Table coinparing the  estim ated  J  values at the  m ininm m  of the BE calculated 
by using the Grim m e and the B3LYP functional for all the precursors. Note th a t in both 
cases the dim er optim al geom etry and c?eq are th a t obtained w ith Grimm e, since B3LYP 
does not bind the  dimer.

Moving to  the J ’s we notice th a t for all photo-sensitive precursors (P I, P2, P4, P5 

and P6) there is a clear exponential decay of J  as a function of the  dim er interm olecular 

separation, while this is not the  case for the non-photo-sensitive ones (P3 and P7), for 

which the decay is linear. The precursor P8 rem ains outside this picture, since it is 

not photo-sensitive and yet the  decay of J  is exponential. As such, also th e  transfer 

integrals do not seem to  provide a clear way to  differentiate photo-sensitive from non- 

photo-sensitive precursors. Finally, in Table 6.3, our estim ated J  values calculated a t the 

m inim um  of the BE (Grimm e) are tabu la ted  for all the precursors using the K ohn-Sham  

spectrum  obtained either w ith the  Grimm e or the B3LYP functional. N otably there is 

a ra th e r good agreem ent between the  two functionals, strengthening the  argum ent made 

before abou t the  kinetic na tu re  of the transfer integrals. Intriguingly we find the  largest 

three transfer integrals for the  three precursors known not to form nanowires, while the  

values for all the  o thers are ra ther sim ilar ranging from ~ 18  meV to  ~ 50  meV. Im portan tly  

we do not find any particu lar correlation between the equilibrium  dim er interm olecular 

separation, deqi and the m agnitude of the transfer integral, apart for P6, which has the  

sm allest J  and the largest deq- This indicates th a t the fine details of the electronic 

s truc tu re  of the precursors determ ine the  molecule ability to  exchange charges.
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Finally, we are now in the position to  evaluate th e  m obilities of the  im pure (defective) 

nanow ires’. T he charge carrier mobility, //, can be estim ated  by using the  following 

expression [208, 217]

= T ^ d l ^ k c T  , (6.4)
K q I

where e is electron charge. Having calculated bo th  the Ajnt’s (Table 6.2) and th e  J ’s 

(Table 6.3) for all the precursors, the  estim ated  mobilities a t room tem pera tu re  (300 K) 

are reported  in Table 6.3. Notably, w ith the exception of P3 and P7, which anyway 

do not self-assemble, the m obilities are all around some fraction of cm ^/Vs, w ith the 

m axim um  value being for P4 (0.40 cm ^/V s) and the m inim um  for P6 (0.04 cm ^/V s). Such 

sim ilarity  between the  mobilities is expected in the  light of the fact th a t the  tran sp o rt 

occurs th rough  the central N atom  of the TPA  unit, i.e. through a m olecular orbital 

conm ion to  all precursors and largely independent from the particu lar radicals which 

characterize the precursors. This reflects in sim ilar reorganization energies and, although 

to  a sm aller degree, transfer integrals, and therefore in similar mobilities. These estim ates 

for charge carrier m obility are w ithin the general lim it beyond which charge tran sp o rt in 

a  particu la r sem iconductor m aterial cannot be described by a hopping m echanism  [220]. 

It is because of the presence of defects or im purities in the nanowires th a t the  charge 

carrier is localized and therefore the speed of sequential charge hopping is reduced. In 

general, the  use of M arcus form ula to  describe the  carrier tran sp o rt m echanism  in (pure) 

OSC m ust be utilized w ith a great deal of caution [220, 116].

6.2.3 Charge transport properties from linear response theory

As an alternative to  M arcus theory we now revahiate the mobility of P I  by linear re­

sponse theory  w ith param eters ex tracted  from D FT. This approach is valid for u ltrapure  

organic nanowires. T he first task  consists of w riting an adequate TB  H am iltonian for the 

nanowires including electron-phonon coupling to  a few relevant v ibrational modes. We 

begin by calculating the electronic s truc tu re  of the  nanowires. This is obtained by placing
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a single molecule, whose geom etry has been optim ized by D FT-B3LYP (the same of the 

previous section), in an orthorhom bic unit cell w ith lattice param eters a, b and c. In par­

ticu lar we take c as the interm olecular separation for the dim er calculated in the previous 

section and a,b ^  c (see Table 6.3). We verify th a t further crystal relaxation does not 

change significantly the  value of c (the exchange and correlation functionals used to  opti­

mized the dim ers and the  ID  nanowires are the  same), while considering a = b = 63.5 A 

ensures th a t there is no interaction between the image cells in the  plane, i.e. th a t there 

is no in teraction between adjacent nanowires. The spin polarized D FT  calculations are 

perform ed w ith Q uantum  Espresso and the  G rim m e’s exchange correlation functional [43] 

and the in ternal coordinates of the  atom s inside the unit cell are relaxed until the forces 

are sm aller th an  10“ '* R y/A .

Fig. 6.9 displays the band struc tu re  of the nanowire constructed from the P I molecules 

(henceforth referred to  as the nanowire P I)  p lotted  along the ID  Brillouin zone, F — Z. 

In the figure we report d a ta  for c being the equilibrium  lattice constant, f4q =  4.8 A, 

and for an extrem ely compressed configuration, w'liere c =  3.18 A. This allows us to  trace 

the band struc tu re  as the  lattice param eter changes. Im portan tly  we find th a t the band 

relative to  the HOM O is always well separated  from the  rest of the valence manifold even 

a t the compressed lattice param eter. This means th a t there is little interaction among 

the  HOM O-derived band and the  rest of the  valence, so th a t a single-site TB  effective 

H am iltonian appears appropria te for the problem  of hole conduction. A different s ituation  

appears for the  conduction part of the band structu re , which is characterized by a num ber 

of closely spaced bands presenting crossing.

In any case, we m ap the H O M O -related band onto the following TB H am iltonian

^HOMO =  X !  ~  Qj)](4cj  +  h.c.) + K  { q i -  Q j f  , (6.5)
ij ij

where tij = t  denotes the hopping integral between the molecules in the wire and extends 

only to  nearest-neighbor molecules, a  is the  carrier-phonon coupling and K  the stiffness
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HOMO

Figure 6.9: Band structure of a nanowire obtained by repeating periodically the PI unit, 
plotted over the ID Brillouin zone. Here we present da ta  for the equilibrium lattice 
param eter c =  dgq =  4.8 A (right panel) and for a strongly compressed structure c =  
3.18 A (left panel). The nanowire geometry keeps the molecules in a co-facial arrangement 
and the distance between the N centers is the same equilibrium distance found for the 
corresponding dimer (see Table 6.3). A single-orbital per site TB Hamiltonian, where the 
relevant orbital is the HOMO, can be extracted from the band structure by fitting the 
HOMO-derived band (in red). The dashed horizontal line denotes the Fermi level, which 
is simply placed in the HOMO-LUMO gap.

constant. Here cj (q ) is the creation (annihilation) operator for a charge carrier at the 

i-th site (molecule), while is a classical vector describing the displacement of the z-th 

molecule of the nanowire from its equilibrium position.

The magnitudes of the hopping integrals, t, can be simply obtained from the dispersion 

of the HOMO-derived band (Fig. 6.9) a.s t = A /4 , where A is the bandwidth. For the 

P I nanowire at c =  d^q (right panel Fig. 6.9) we extract t = 25.0 meV, which is in 

close agreement with the value calculated for the corresponding dimer (29.5 meV from

Table. 6.3).
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Figure 6.10: Schematic ilhistration of the molecular displacement of the different phonon 
modes for which the carrier-phonon coupling, a, and the stiffness constants, K,  have been 
calculated. The picture is for the PI nanowire. The various modes are labelled as C-I to 
C-V and only the C-I mode is considered when estimating the charge carrier mobility.

The parameters of H\\ouo related to the coupling to the vibrations, namely a and 

K, can be evaluated from finite difference. In practice we displace the molecule along a 

particular direction r  (the phonon mode displacement vector) and then compute Q'f =  |~ 

and K  = where E  is the DFT total energy. In order to estimate the mobility we 

consider a single acoustic phonon mode constructed by displacing the molecules along 

the nanowire axis with respect to each other. This is illustrated in Fig. 6.10 and referred 

to as the C-I mode. We expect such particular phonon mode to be the most significant 

in governing charge transport through the organic nanowire because the motion of the 

molecules along the nanowire axis facilitates the overlap between the density of the local-
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ized carriers thereby enhancing the charge transfer, a mechanism proposed in the original 

experimental work [189] to justify the excellent transport properties measured. For the 

PI nanowire and the C-I mode we obtain a j t  = 1.585 1/A and Kj t  = 1.530 l /h?.

Mode a/ t  (1/A)
C-I
C-II
C-III
C-IV
C-V

Rubrene

1.585
0.000
0.067
0.501
0.370
0.109

Table 6.4: Table showing the calculated values for a / t  along the various phonon modes 
for the PI nanowire. The labels for the phonons are those introduced in Fig. 6.10. In the 
table we also report the result for the rubrene crystal as reference.

Together with the C-I mode we have also evaluated a / t  for other relative molecular 

displacements, as depicted in Fig. 6.10 (C-II to C-V). The results are listed in Table 6.4. 

In the same table we report as a comparison also a/ t  for the mode most relevant to 

the longitudinal transport in rubrene, the organic crystal displaying the overall highest 

mobility (previous chapter). In general we find the electron-lattice coupling along the 

C-I displacement to be significantly larger than that of all the others, and also of the 

analogous longitudinal mode in rubrene. This justifies our approximation of considering 

only the C-I mode when evaluating the mobility. It also tells us that the electron-lattice 

coupling in such nanowires is strong so that the mobility should display a rather strong 

temperature dependence.

We finally turn our attention to the mobility. This is calculated as a function of 

temperature using the linear response Kubo formula evaluated over a Monte Carlo sam­

pling of the molecular displacements [in Eq. (6.5)]. The dynamical quantities entering 

the A'lonte Carlo scheme are the longitudinal displacements of the molecules (TB sites), 

which are treated as a continuous variable [180]. After equilibration the charge carrier 

mobility is evaluated using the Kubo formula [194] averaged over 100,000 Monte Carlo 

configurations.
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r  = 380 K; FWHM = 71.3 meV 
7"= 58 K; FWHM = 44.7 meV

20 30 40
t (meV)

Figure 6.11: The statistical distributions of the transfer integral t + a{qi — qj) are shown at 
tw'o different temperatures. The distributions are obtained from Monte Carlo simulations. 
For both temperatures the transfer integral fluctuates by about 100% of its magnitude as 
a resuh of the large value of a  obtained for the phonon mode C-1.

Fig. 6.11 shows the statistical distributions of the transfer integral t + a{qi — Qj) 

evaluated botli at low and high temperature. As expected the fluctuations in the transfer 

integrals are larger at a higher temperature. This can be quantitatively observed in the 

full width at lialf maxima (FWHM, fitted to a Gaussian) of the distribution, which is 

71.3 meV and 44.7 meV, respectively at 380 K and 58 K. Also it is important to note 

that based on the statistics, the fluctuation in the hopping integral is almost 100% of 

the static value at both temperatures. Such large fluctuations observed in the hopping 

integral are also fingerprint of the fact that the transport in these nanowires is dominated 

by dynamic disorder [218, 219]. Let us now explain this mechanism for charge transport.

The organic nanowire [modelled by Eq. (6.5)] has a number of different hopping inte­

grals between nearest neighboring molecules, each fluctuating by 100% at any instant of 

time. Therefore, charge transport would be limited by those transfer integrals that fall in 

the tail of this distribution ([t +  a{qi — (?_,)] —̂ 0 in Fig. 6.11) at a given instant of time.
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In practice, this would result in charge localization accross those few molecules. This is 

the concept behind the dynamic disorder explanation of charge transport [218, 219].

100

1000 500
T{K)

Figure 6.12: Our ah initio estim ate for charge carrier mobility, //,, as a function of tem ­
perature for the P I nanowire. The mobility drops drastically with tem perature (note 
the double logarithmic scale) as a consequence of the very large value of carrier-phonon 
coupling calculated. At room tem perature (T =  300 K) the mobility is found to be 11.6 
cni^/Vs.

Finally Fig. 6.12 shows the calculated mobility, //, of the P I nanowire as a function of 

tem perature. We find an extremely severe dependence of // over T, which is evident in its 

reduction by almost two orders of magnitude when T  goes from 10 K to 500 K (note the 

double logarithmic scale). This is due to the rather strong carrier-phonon coupling, to­

gether with a general softness of the nanowires. Note in fact tha t here K  — 0.03825 eV/A^, 

while for the longitudinal mode of rubrene one has K  =  0.06612 eV/A^. Therefore it ap­

pears tha t, along the most relevant vibrational modes, the P I nanowire is significantly 

softer than rubrene. Our results thus point to a transport mechanism dominated at 

high tem perature by dynamic disorder [218, 219], where the degree of charge localization 

increases with tem perature, as expected by an increasing spread of the statistical distri-
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but ion of the hopping parameters. At T  =  300 K we estimate a charge carrier mobihty 

of 11.6 cm^/Vs. This is a rather large value for any one-dimensional object^. Thus our 

theoretical analysis confirms the experimental results, which a ttribute to the nanowires’ 

exceptional charge transport properties.

In concluding this section it is im portant to note tha t for the PI nanowire the room 

tem perature mobility evaluated from Marcus theory and th a t calculated from linear re­

sponse differ by two orders of magnitude, with the former being the smaller. This is not 

sur{)rising since the two theories are applicable in rather different hniits. It is reasonable 

to believe tha t our linear response value constitutes an upper limit to the actual mo­

bihty, since our calculation neglects effects such as static disorder (defective or reacted 

molecules in the wires), electrostatic charging, and it is constructed by considering only a 

single type of vibration. Instead probably the result from Marcus theory can be taken as 

a lower bound (unless in the actual nanowires the concentration of static defects is very 

high).

Thus, in this section we have explored in detail the electronic structure and the charge 

transport characteristics of organic nanowires obtained from triarylamine derivatives. 

Also we have confirmed the superior charge transport observed in experiments [190] based 

on the estim ates for ab initio carrier mobility using two transport approaches. Next we 

will explore spin transport in these triarylamine-based organic nanowires. In particular, 

we think tha t spin transport through such nanowire structures may be noteworthy, par­

ticularly because carrier transport through the organic nanowire structure takes place 

through the central nitrogen atoms of each of the triarylamines. We will elaborate upon 

this in the next section.
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Figure 6.13: a) An illustration of triarylaniine radical depicting the positive charge local­
ized on the central N atom, which forms the itinerant hole across the nanowire. There are 6 
such radicals every 1000 triarylaniine molecules in the organic nanowires, self-assembled 
under exposure to light [189]. b) The sketch of one such organic nanowire P I, with a 
co-facial stacking of triarylaniines, is simulated in this work.

6.3 Spin transport properties

W hen a semiconductor material is incorporated into a spintronic device, there arc two 

princii)le paradigms tha t must be met in order to make an efficient device. Firstly, the 

spins must travel rapidly through the semiconductor material. This condition is auto­

matically ensured in organic nanowires developed from triarylaniines, as evident from 

(heir metallic I-V characteristics [190] and also from our theoretical calculations of their 

mobilities. The second criterion is tha t there must be minimal spin scattering occurring 

within the semiconductor material, when the charge carrier is travelling through it. In 

any material, the key mechanisms responsible for the loss of spin polarization of the itin­

erant charge carrier are spin-orbit (SO) coupling and hyperfine interaction (HI), as we 

have discussed in the previous chapters.

^Except for carbon nanotubes.
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As estabhshed previously charge carriers are holes localized on the central nitrogei 

atom  of the triary lam ine molecule (see Fig. 6.13a). The charge tran sp o rt pathw ay alon^ 

the  nanowire is th rough the nitrogen centers across each of the triarylam ine molecules 

constitu ting  the  nanowire. Therefore, the  His causing spin relaxation of the itinerait 

hole will be proportional to  the nuclear m agnetic m om ent of nitrogen, which has a mag­

n itude of ///V =  0.4037 nuclear Bohr m agnetons. This value is quite small, to  pu t t 

in perspective H n  =  0.14 j i n ,  where j i j j  is the nuclear m agnetic m om ent of H, whim 

is known to be quite substan tial (as discussed in C hapter 4 and C hap ter 5). Therefoie 

spin relaxation due to  hyperfine in teraction in triarylaniine-based organic nanowires wil 

actually  be quite meager. In principle, such organic nanowires could be ideal candidates 

for organic spintronics'^ and therefore they  could have the  potential to  revolutionize tie  

field due to  the ir exceptional charge and spin tran sp o rt properties. How nmch of th is s 

true  in practice? We will try  to  address th is question w ith our multiscale spin polarized 

tran sp o rt approach.

Fig. 6.13a shows the essential backbone of the positively charged triarylam ine radicil 

used in the experim ental work [190]. As speculated in the  experim ents there are about 

six such radicals every 1000 triarylam ine molecules in the nanowire. T he hole responsibe 

for carrier tran sp o rt across the nanowire is localized on the central N atom  as illu stra ttd  

by the  space resolved local density of sta tes of Fig. 6.13a. Fig. 6.13b depicts the o rgaac  

nanowire formed by the individual triarylam ine molecules in a co-facial arrangem ent, that 

we model.

Ab initio  spin diffusion length  Ig : — Pz m odel

We will now focus our a tten tion  to  describe the spin tran sp o rt properties of such organic 

nanowires. We have carefully analyzed the  structu re  of the  triarylam ines molecules ai.d 

deduced th a t the  central N atom  and the three C atom s to  which it is bonded (in Fig. 6.L) 

^As one of the two spin scattering mechanism is negligible.
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Figure 6.14: Schematic cartoon of a sjp —pz model which we use to represent spin trans­
port through the organic nanowires. The bottom  panel shows the chain of triarylaniine 
molecules represented as coarse-grained spheres. The top panel illustrates the three sp^ 
hybrid orbitals and the remaining orbital (comprising each sphere), for nearest neigh­
boring molecules i and j  in the nanowire.

are in the same plane. Therefore, to describe the spin transport properties we can use 

a four band sp^ — Pz model (see Fig. 6.14). Please refer to Appendix B where we have 

discussed in detail, how one can construct the three degenerate hybrid orbitals : sp^

and spl-

The spin polarized Hamiltonian, //nanowirei representing hole transport through the 

central N atoms of the organic nanowire, with an additional SO coupling term can be 

written as

The index i represents the particular triarylaniine molecule (site index) in the nanowire

HOMOnanowire ( 6 .6 )

i l J a / d

and I{J)  is the specific orbital (p^, sp^, spf,  sp^) in our model. Furthermore, L u j  and
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Siij  =  cl^j{^ai3 )ci/3 j[^] are the orbital and spin angular momentum of the charge carrier, 

and Aso is the strength of the SO coupling. Hence a good spintronic material represented 

by Eq. (6.6) must have Aso ^  W-

The {la |//so | J(^') SO matrix elements for a particular triarylamine molecule i in the 

nanowire when expressed in the spin polarized basis set of {\pz T)> \sp‘i T)i \spl T)i \sp‘i t 

)APz i),|sPa DAspl  i)} is

Hho =
Aso
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The reader is again directed to Appendix B where we have explained the derivation of the 

SO Hamiltonian for the sp"̂  — p^ model. The matrix elements above lifts the degeneracies 

of the spin eigenvalues. Now, as a result of incorporating the orbitals into the {)roblem 

we modify Eq. (6.5) to include the orbital indices I  and J  as

-^HOM O — c \iC ii  +  [ t i l j j  +  Oiz {<ii ~  Qj)] { c l j C j j  +  f l .C. )  +

i l  i j l J

\  A' {Qi -  Qj) -̂ (6.7)
i j

Please note that additionally we now have an on-site energy term in Eq. (6.7) (the first 

are the vector of Pauli matrices.
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term) to account for the fact that the sp'  ̂ hybrid orbitals are lower in energy in comparison 

to the pz orbital. In our calculations, we take the following values for the constants appear­

ing in Eq. (6.7), on-site energies; ê p2 =  —5.0 eV and €p̂  — —7.8 eV, nearest-neighboring 

transfer integrals: igp̂ sp-̂  = —0.00038 eV, tp̂ gp̂  = 0.00202 eV[®] and tp̂ p̂  = 0.025 eV. 

Please refer to Appendix B where we have provided the detailed procedure by which one 

can obtain these parameters. Finally, a = 0.03963 eV/A and K  = 0.03825 eV/A^[^], were 

respectively taken to be the same for all the orbitals. This is the only approximation in 

our approach. We could not come up with a convenient way to obtain orbital specific 

el-ph constants for our system .̂

The source of spin relaxation as a result of SO coupling in triarylamines is due to N 

and O atoms. In fact, in what follows we take Aso =  10“  ̂ eV which is an approximate 

upper bound estimate for the SO coupling (based on atomic SO strengths in organic 

materials [146]).

The spin valve arrangement which we model is schematically illustrated in Fig. 6.15

where the organic nanowire is sandwiched between two metallic electrodes. The metallic

leads are modelled by a simple TB Hamiltonian, ^  j iXCjCj  -f CjCi), such that
i j

>> t- Zero bias spin polarized conductance of the setup can be computed from 

Landauer-Biittiker formula. We integrate the spin polarized conductance over only the 

Pz levels, as they are the carriers responsible for transport. Finally from the length 

dependence of the integrated spin polarization, SP,  the spin diffusion length, Ig, of the 

organic nanowire can be evaluated, as in the previous chapters.

Fig. 6.16 shows the length dependence of S'P for the triarylamine PI nanowire at room 

temperature {T = 300 K). The reciprocal of the slope of graph yields the spin diffusion 

length {Is) for the uanowire.

In principle, if there is no spin relaxation of the itinerant carrier, i.e. if Aso =  0 then 

Is = oo. This would be an ideal situation desired for a perfect spintronic device. However

®Note th a t tgp^p^ =  —0.00202 eV.
and K  values are the  same as in the  previous section.
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Organic Nanowire

Substrate

Figure 6.15: Schem atic cartoon of a spin valve comprising a triarylam ine based organic 
nanowire sandwiched between ferrom agnetic leads, M l and M2. In our sim ulations the 
ab mit io  H am iltonian for carrier tran sp o rt across the HOMO of triarylam ine organic 
nanowires is illustrated  by Eq. (6.6), while the metallic electrodes are represented by a 
simple TB  model. We then com pute the spin diffusion length, Is, of the charge carriers, 
which is the distance travelled w ithin the  organic nanowire before the spin polarization 
is lost (see top  panel), based on the  procedure similar to  the previous chapters.

in the case of triarylam ine-based organic nanowires, the spin polarization of the  carrier 

will be lost th rough the  nanowire due to  spin-orbit coupling, as included in Eq. (6.6). 

The ab initio estim ate for spin diffusion length in triarylam ine based organic spin valve is 

Is =  23.73 nm  a t T  =  300 K. The room tem peratu re m agnitude for spin diffusion length 

th a t we obtain  is actually  quite superior in com parison to  common OSCs [60].

Overall our estim ates for bo th  the charge and spin transpo rt observables are cjuite 

decent and strongly indicate such nanowires as promising candidates for spintronic de­

vices. T he principal reason, which can account for such superior spin and charge tran sp o rt 

properties in these system s can only be a ttr ib u ted  to  the ir one-dim ensional self-assembled 

nanowire s tructu re , which is obtained upon irradiation with visible light of the  triary -
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T= 300 K, 1 = 23.73 nm
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Figure 6.16; We show the length dependence of room temperature S P  for the — 
Pz model which describes spin transport through the triarylaniine nanowire. The spin 
diffusion lengths [Ig) of the nanowire are obtained from the reciprocal of the slope of the 
graph. We obtain Ig =  23.73 nm at T  =  300 K. Please note that L = 1 corresponds to a 
length of 4.SA, which is the distance between two triarylaniine molecules in the nanowire.

lamine solution. In such one-dimensional nanowire structures the charge carrier (hole) 

is localized on the central N atom. At finite temperatures due to excitation of phonons, 

when the individual triarylamine molecules come closer with respect to one another, the 

overlap of the HOMO of adjacent molecules in the nanowire is facilitated which ultimately 

results in an efficient hole transport across the entire organic nanowire. This also ensures 

that the itinerant carrier transport is along the central N atoms of the triarylamines. 

Moreover it establishes that there is a negligible spin relaxation of the carrier through the 

organic nanowire due to hyperfine interactions. To the best of our knowledge, this is the 

first comprehensive work that provides the first principles estimate for charge and spin 

transport observables of organic nanowires synthesized from triarylamines. We hope that 

these estimates can be confirmed by the experimental community.
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6.4 Summary

We have reported on a detailed first principles study of the s tructu ra l, electronic and 

transpo rt properties of a class of triarylam ine derivatives recently synthesized [189]. O ur 

aim was th a t of gaining insights into the  self-assembly process leading to  ID  nanowires 

and into the charge tran sp o rt characteristics of such nanowires. The basic electronic 

s truc tu re  of the molecules in the  gas phase is ra ther sim ilar for all the precursors w ith a 

HOM O mainly localized around the  N atom  of the triarylam ine unit. As a conseciuence 

all the  j)recursors appear to  have ra ther sim ilar ionization potentials. These first calcula­

tions suggest th a t the criterion for the form ation of supram olecular self-assembled organic 

nanowires in triarylam ine derivatives is independent of the precursor chemistry.

Next the  electron tran sp o rt properties of the  nanowire were explored. Firstly, we eval­

uated the hole m obilities of all the  precursors by using M arcus theory, w ith the  transfer 

integrals evaluated from the  electronic s truc tu re  of molecular dim ers and the reorgani­

zation energy from the ionization potential of the  single molecules. Then, for the  P I 

I)recursors, we also perform  linear response m obility calculations by considering the  most 

relevant phonon mode. As expected we find the m obility calculated from M arcus theory 

to  be about two orders of m agnitude sm aller than  th a t ex tracted  from linear response, 

which reaches 12 cm ^/V s a t room  tem peratu re. These two values can be realistically 

taken as the  lower and upper bound for the  nanowire mobility.

We also com puted the ab initio estim ate for spin diffusion length in such organic 

nanowires synthesized from triarylam ine. The estim ate for spin diffusion length from first 

principles is Ig =  23.73 nm a t T  =  300 K, which is a very superior value for the  d istance 

which carrier’s spins travel in a sem iconductor before losing their spin polarizations. O ur 

results thus prove th a t triarylaniine-based nanowires are indeed good hole conductors 

and are also capable for spin polarized transpo rt through them . Their ability  to  self- 

assenible in-situ in a device geom etry [190] makes them  interesting candidates for organic 

electronics and organic spintronics.
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Finally, the procedure to estim ate the charge and spin transport characteristics em­

ployed in this chapter is quite similar to the one we have used in the previous chapters. 

Therefore this is a successful test of transferability of the multiscale method to compute 

carrier mobility and spin diffusion length for OSCs.



Chapter 7

Current projects, Conclusions and 

Future works

7.1 P roject in progress: investigating the organic mag- 

netoresistance effect

After the spin valve effect was dem onstrated  in hybrid inorganic-organic devices [70] a very 

interesting phenom enon was observed in th in  film OSCs by Francis et al. [228]. According 

to their work the intrinsic resistance through an OSC th in  film can be altered when a 

small m agnetic field is applied. This effect was term ed as O rganic M agneto Resistance 

(OMAR). The device s truc tu re  designed to  investigate this effect is illustrated  in Fig. 7.1a 

and is th e  same as an OLED, i.e. a  ca thode/O S C /anode , simple two-probe architecture. 

The cathode is com prised of a hole injecting com pound like Indium  Tin Oxide while the 

anode can be an electron injecting m aterial like an alkali m etal (Ca, Mg, etc.).

Experim ents to  observe the O M A R effect were performed on A1q3 films [228] but 

subsequently the effect was also observed in o ther OSCs namely: pentacene [231], regio 

polymers [231], PCBM  (Phenyl-CG l-butyric acid methyl ester) [230] and Ceo [229].

The salient features associated w ith the OMAR effect can be sum m arized as follows:

210
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1. OMAR is a phenomenon due to the change in the bulk resistance of the OSC and is 

assumed to be unaffected by any semiconductor-nietal interface effects. The latter is 

not conclusive at this moment and there are ongoing experiments to control OMAR 

by manupulating semiconductor-metal interface effects.

2. This effect is independent of the magnetic field direction.

3. The magnitude of the OMAR can be positive or negative depending on the OSC, 

device configuration and device operating conditions.

In experiments, the resistance through the device, R, is monitored as a function of 

magnetic field, B. OMAR is then defined by the following expression

OMAR =  X 100. (7.1)

Cathode

Organic

\nodc /
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Figure 7.1: The left panel shows the characteristic device structure for investigating 
the OMAR effect, also resembling an OLED. In experiments the normalized resistance, 
AR/R ,  is monitored as a function of magnetic field, B  and OMAR is quantified accord­
ing to Eq. (7.1). The right panel shows the OMAR from one such experiment [231] for 
different OSCs at room temperature.

Characteristic experimental results demonstrating the OMAR effect are shown in
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Fig. 7.1b* where A R / R  is plotted as a function of the applied magnetic field for dif­

ferent OSCs.

Typically the OMAR effect is observed at low applied magnetic fields of magnitude less 

than 100 mT. Furthermore, the maximum OMAR measured in experiments is about 20%. 

The OMAR effect generally decreases on increasing the electric field and the temperature. 

The field and temperature dependence of the OMAR have been both well documented in 

literature and for a detailed reading please refer to the review in Ref. [232]. Very recently 

OMAR effects of around 400% at 200 niT magnetic fields have also been reported in Alqs 

based devices [233].

The most interesting and enticing aspect of the OMAR effect is that it is observed 

even at room temperatures. In principle, this experimental observation could imply that 

the organic materials themselves can be used as resistive switches for data storage appli­

cations. However, this effect is still in its early days of re.search and more experimental 

and theoretical research is necessary in order to fully understand it. Furthermore, the 

OMAR effect has been observed only by a few research groups and the validity of the 

effect itself is still controversial.

One of the applications of the OMAR effect proposed by the authors who had first 

observed it, was in touch-screen devices. The idea was to couple an OLED-based display 

with a magnetic pen, which can generate a small magnetic field. When the pen approaches 

a specific pixel, the OSC detects the magnetic field through a change in its resistance (the 

OMAR effect), which can then be converted into pixel illumination [227].

Our ab in itio  estim ation of OM AR in rubrene We are quite curious to explore 

the cliange in charge transport characteristics of OSCs as a function of magnetic field and 

investigate the microscopic origins of OMAR. We can include an external magnetic field 

'Taken from work of O. Mermer et  al. [231].
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in our m odel by adding the following H am iltonian

^ b = Y ^  B  ■ c\^,{ac,p)cipi, (7.2)
ilaf}

w here is the  Bohr m agneton, g is the Landae ^r-factor and B  the  m agnetic field vector.

Finally, — cl^j{^ai3 )cii3i are the  carrier spin for holes belonging to  th e  the  rth  rubrene

m olecule’s I t h  orbital.

T he OSC can be described through the coarse-graining procedure we employed in 

C hap ter 5. Therefore, we already have the  entire appara tus for representing the  essential 

in teractions in rubrene in the form of its ab initio tigh t binding H am iltonian. T he resu ltan t 

H am iltonian including the effect of an external m agnetic field is

H  = Hruhrene + H b - (7.3)

Furtherm ore, the  tran sp o rt observable m onitored as a function of m agnetic field is the 

charge carrier mobility. Therefore we may define the OM AR as

_ j ________ i_.

OMAR =   ̂ X 100 (7.4)
W)

Fig. 7.2 shows the OM AR for rubrene calculated using the definition in Eq. (7.4) as a 

function of applied m agnetic field B ,  a t th ree different tem peratures. Let us system atically 

analyze our results.

Firstly, the  ab initio  estim ate for OM AR at room tem peratu re  (300 K) is between 

10-15%, which is quite close to  th a t obtained also in experim ents [230]. Secondly, we also 

find th a t the  OM AR effect is independent of the direction of m agnetic field. Moreover, 

it decreases on increasing tem pera tu re  particu larly  because the carrier m obility decreases 

on increasing tem pera tu re  (band tran sp o rt lim it). However, we find th a t our ah initio
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^ T =  193 K 
3-0  T = 299.7 K 
w T  = 380K

-100 100-50

B (mT)
Figure 7.2; We can make an ab m itio  estim ate of the OMAR using Eq. (7.4) by evaluating 
the carrier mobility of rubrene as a function of magnetic field {B).  This is shown here for 
three different temperatures.

estimates for OMAR made using Ecj. (7.4) has a much broader shape (vs B)  in comparison 

to the same obtained by experiments. In experiments, OMAR vs B  plot can be fitted 

with a Lorentzian [232].

In a model such as ours, used to investigate OMAR based on the definition in Eq. (7.4), 

with increasing B  we will always observe a change in the carrier mobility. One can 

understand this very easily based on the description of how carrier mobility is estimated 

by using Kubo fornmla. How exactly we can relate our estimation of OMAR with tha t 

in experiments, is a question th a t we want to ponder about a little more. Moreover, 

another question is whether from our model we could explain the miscroscopic origins 

of the change in intrinsic resistance of an OSC due to magnetic field? This is a project 

currently in progress.
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7.2 G eneral conclusions and achievem ents o f th is th e­

sis

The prospect of using OSC-based spintronic devices for high density da ta  storage appli­

cations is quite enticing. Although, the foundations of the fields have already been laid 

based on the experience from the field of organic electronics, an actual understanding of 

how charge carriers and especially their associated spins travel through an OSC is not 

comprehensively achieved. Throughout the work presented in this thesis we have provided 

a miscroscopic understanding of both the charge and spin transport properties of OSCs.

One of the central problems in this respect was th a t the Hamiltonian used in modelling 

OSCs have a number of different terms representing a broad range of interactions and a 

large number of degrees of freedom. Throughout our work we have been successful in 

optimizing these degrees of freedom and simultaneously understanding the tem perature 

dependent properties of the miscroscopic system as a function of these variables.

In this thesis we have developed an ab m itio  theory with which we can estim ate the 

charge carrier mobility and spin diffusion length of particular OSCs. We have looked 

into the problem in different transport regimes, including ballistic and the diffusive limit. 

Most importantly, the transport observables were evaluated as a function of tem perature 

with a Monte Carlo sampling procedure. Moreover, our multiscale procedure proved to 

be robust, self-contained and accurate. The work presented here is the first and a very 

crucial step towards achieving a full ab initio modelling of an organic spintronics device. 

This is indeed one of the central accomplishment of this thesis.

Furthermore, we have also carefully optimized the structure of triarylam ine based 

organic nanowires w ithout the access of its crystallographic information. We envisage 

th a t such a method can also be used for optimizing the structure of amorphous thin films 

of Aki3 (whose crystalline structure is not known) in order to compute the transport 

properties through our multiscale process. The interests in Alqs films are plenty because
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it is being extensively explored by the experimental organic spintronics connnunity.

Based on what we have learned in this thesis we envisage a number of j)ossible novel 

research projects on organic spintronics.

7.3 Future works

O rganic-m etal interface

Spinterface The premise of the work presented in this thesis is to understand charge 

and spin transport through the bulk of the OSC layer in a device. While the work pre­

sented in this thesis is indeed a significant achievement in describing the bulk transport 

properties of OSC, the organic-metal interface effects are neglected. However, in reality 

this is not at all the scenario. Therefore if one wants to model an entire organic de­

vice, incorporating and understanding the effects occurring at the metal-organic interface 

is absolutely ciuintessential. As we had mentioned previously, the problem of organic 

molecule on a metallic substrate has been widely studied in the last half decade. We 

will now share our perspective on modelling organic-metal interface in this subsection. In 

many ways the processes occurring at the metal-organic interface have similar effects on 

the electronic structure and transport properties of the entire device than those we have 

discussed already in this thesis to some extent. We will now summarize them.

Firstly from an experimental j)oint of view, the contact between the fragile OSC 

material and the metal electrode must be as clean as possible. This means tha t the 

geometry and electronic structure of the OSC must be preserved in the device. Imperfect 

organic-inorganic contacts may cause metal inclusions into the OSC layer. This may short 

the device and cause spurious transport measurements. Moreover, it is absolutely crucial 

for an optimum device performance th a t there must not be any kind of complications 

arising due to chemical reactions between the metal and the organic.

The second issue th a t will always plague an OSC based device is associated with the
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infam ous resistance m ism atch problem  between the organic m aterial and m etal electrodes. 

T here are two solutions to  this. T he first is to  use an organic m aterial w ith superior 

tran sp o rt characteristics. The work presented in the  previous chapter is quite prom ising in 

this respect. Generally, in experim ents the  resistance m ism atch problem  is circum vented 

by introducing a small tunneling barrier (1-2 nm of AI2O 3) between the  organic m aterial 

and the  m etallic electrode.

a b e

Figure 7.3: The concept behind spin dependent interface effects known as spinterface 
is illustrated. W hen the organic molecule is far away from the metallic electrode, it is 
characterized by a single discrete energy level as shown in a). However, as the  molecule is 
brought closer to  the m etallic surface due to  an increased m etal-m olecule in teraction the 
energy level of th e  organic molecule broadens. This broadening depends on the  na tu re  of 
the interaction between the  m etal and the organic molecule. T he im portance of the  exact 
natu re of this broadening (therefore the organic molecule m etal in teraction) is illustrated  
in b) and c). The exact characteristic  of this broadening, which will be controlled by spin 
dependent in teraction (spinterface) between the organic molecule and the  electrode will 
govern spin tran sp o rt th rough the  device.

T he th ird  issue is connected w ith a very fundam ental property  of a m etal-organic 

molecule interface and is prevalent regardless of how clean is the  m etal organic interface. 

In Fig. 7.3a we show the  energetics of such a m etal-m olecule interface, when the  organic 

molecule is relatively far away from the m etal. T he organic molecule is characterized by a 

single discrete energy level while the ferrom agnetic m etal is represented by a contiiuious
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spin polarized density of state . However, the situation  is different when the organic 

molecule is brought closer to  the metallic electrode and two possible scenarios can arise 

which are schem atically illustrated  in Fig. 7.3b and Fig. 7.3c.

W hen the  organic molecule is gradually brought closer to  the metallic electrode, the 

discrete energy levels will broaden due to  increased organic-m etal interactions (for exam ple 

chemical bonding). The broadening of the  organic molecule will entirely depend on the 

na tu re  of in teraction between the organic molecule and the  m etal a t the interface and 

can be spin dependent. Indeed, such a spin polarized broadening can lead to  two possible 

scenarios which are depicted in Fig. 7.3b and Fig. 7.3c. As we can clearly see from these 

two figures, the exact na tu re  of the  spin polarized carrier transpo rt th rough the organic 

molecule are different in th e  two cases, since hybrid molecular orbitals w ith different spin 

polarization can appear a t the  electrode’s Fermi level. This phenom enon of spin depended 

broadening due to  m etal organic interface effects, was coined as spinterface [7].

Needless to  say th a t a proper system atic study of hybrid organic-inorganic interfaces 

is absolutely crucial to  com plete the modelling of an organic spintronic device. At the 

m etal-organic interface the  length scale is about 0 — 2 nm. At th is length scale, D FT  is 

a very powerful tool for investigating quite accurately the m etal-organic interface effects. 

We suggest the  following projects on investigating system atically the properties of hybrid 

organic-inorganic interface effects.

Possible projects

1. As we have seen, obtain ing  the correct interactions between the organic m edium  

and a m etal is crucial in describing hybrid organic-inorganic systems. T he first step  

would be to  ob ta in  an accurate binding distance between the organic molecule and 

the  m etal. We propose investigating organic molecules such as rubrene or Alqs on 

Co substrates. In order to  describe the correct binding properties we propose the  

use of s ta te  of the  a rt vdW -D FT codes [47, 48]. The calculation, which we have
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in mind is quite simple: make a supercell out of the system under investigation, 

i.e. organic molecule on a metallic substrate and then relax the supercell till atomic 

forces are less than 0.01 eV/A, for different vdW  DFT functionals.

2. Assuming we have the relaxed geometries and the correct organic-metal distances, 

the next step would be th a t of investigating the energetics and the energy align­

ment between the organic molecule and the metal. In order to describe the elec­

tronic structure of the ferromagnetic metal accurately we will however require more 

involved DFT functionals in order to treat strongly correlated systems, namely self­

interaction error corrected functionals or hybrid functionals. An option could be to 

use the constraint DFT approach.

3. Assuming we have the correct geometry and electronic structure of the hybrid 

organic-inorganic system, it would be worth investigating the transport properties 

of the ensemble. This will also give us an idea of the hybrid interface states involved 

in carrier transport at the interface of an organic device. One could also evaluate 

the IV characteristics as a function of the magnetization of the leads and therefore 

evaluate the TMR of the device. We suggest the use of the SMEAGOL atomistic 

(luantum transport, a code developed by our group, for this project.

Charge and spin transport properties o f Alqs

The majority of the experiments on organic spintronics dem onstrate substantial spin valve 

effect in Alcja-based devices. This is because Alqs thin films can be extensively grown on 

a range of different substrates. Furthermore, Alqa thin films have been widely employed 

for making OLEDs. A very exciting research project would be th a t of computing the 

electron mobility and spin diffusion length of Alqs from our multiscale procedure.

However, to the best of our knowledge crystalline Alqa has never been produced. Due 

to the lack of any crystalline da ta  for Alqa one cannot use the approach we have used for
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rubrene, to  com pute the  corresponding ab initio tight binding H am iltonian as in C hapter 

5 of this thesis. Possible solution would be to  optim ize the structu re  using the coarse­

grained m ethod th a t we have employed for the  organic nanowires work in C hap ter 6 . 

A nother possible project could be th a t of estim ating the change in mobility and spin 

diffusion lengths for Alqs w ith system  confinement, i.e. for Alqs nanowires and com pare 

them  w ith experim ents [G5]. T he change in m obility and spin diffusion lengths w ith 

system  confinement would also give us inform ation on the role of spin-orbit coupling in 

governing spin relaxation in such systems.

D etailed  phonon bandstructure calculation

In both  C hap ter 5 and C hapter 6  we have estim ated the electron-phonon coupling, a ,  and 

the  stiffness constants. A', of the tigh t binding H am iltonian for OSCs, along a particu lar 

direction, based on physical argum ents for the respective systems. However, any system  is 

characterized by m any phonon modes having different energies (freciuencies). D epending 

on the  tem peratu re, a set of phonon modes will be excited and will contribute to  different 

m agnitudes of a  and K .  Therefore, a system atic com putation of these param eters {a 

and K )  for all the phonon modes of the system  is necessary in a comprehensive ab initio 

procedure to  com pute the  tran sp o rt properties of OSCs. The most severe h indrance in 

th is respect is the fact th a t phonon bandstructu re  calculations for system s like rubrene 

(280 atom s) and triary lam ine (70 atom s) is ra ther com putationally  intense.

O n th is very aspect I oversaw a project of a colleague. In the project the detailed 

phonon bandstruc tu re  of a much smaller OSC, Durene (C 1 0 H 1 4 ) was calculated. Moreover, 

a  and K  from the procedure m entioned in this thesis were estim ated for all the  phonon 

modes of the  system.
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O rganic charge transfer salts

«•—B ED T -(TT F)2X [bis(ethylene-dithio) tetrathiafulvalene] organic charge transfer salts, 

which have been a subject of intense research by experimentalists and many-body physi­

cists. This is because their anisotropic triangular lattice has a very rich phase diagram 

including superconducting, M ott insulating and spin liquid phases [222]. Recently, an ab 

im tio  study [234] found th a t these charge transfer salts may not be th a t frustrated. Such 

work was based on Car-Parrinello molecular dynamics simulations (CPMD) to evolve the 

crystalline structures of the charge transfer salts and then fitting the ab im tio  bandstruc­

tures of the system to a Hubbard model.

We have also explored the problem at the ab im tio  level, using Wannier functions to 

obtain the transfer integrals in the triangular lattice of such salts and therefore provide a 

more systematic procedure to estimate t and U in such systems. However, we could not 

reproduce the bandstructure of such salts in particular because we did not have access to 

the crystal structures of such salts. In fact we found th a t the bandstructures were quite 

sensitive to relaxation coordinates. Perhaps, a MD evolution of the structures is required 

for this project.

Self-assem bly of organic nanowires: incorporating solvent effects

In C hapter 6, based on exploring the electronic structures of triarylamine precursors (in 

their dry states), we have concluded tha t their self-assemblies is not governed by their 

precursor chemistry but rather may be controlled by solvent induced effects. A possible 

project stemming out from this work can be to incorporate the solvent (chloroform) and 

study the dynamics of the nanowire plus solvent system, in order to investigate if we 

could achieve the same self-assemblies as in the experiments [189]. The dynamics of the 

system can be studied using classical molecular dynamics sinuilations. This project could 

be im portant to explore candidates for similar self-assembled nanowire structures with 

exceptional transport characteristics.



A ppendix A  

Derivation of the spin-orbit 

Ham iltonian for the vr — tt model

T hroughout the course of th is work we have used the spin-orbit couphng H am iltonian

H 'sd  =  T ,  E  5  ( ‘' u j S - . j  +  L ~ u S * , j )  +  L h j S t u -  (A-1)
i l j  i l j

Here i is the  atom  index and I ,  J  are the orb ital index. The natu re  of spin-orbit coupling 

H am iltonian used in this work is on-site as evident from Eq. (A .l). Therefore for every 

site i  let us derive the spin-orbit m atrix  elements

(/<7|Aso l u   ̂ +  L J j S * j )  +  \ s o  L h S l , \ J a ' )  (A.2)

Here L j j { L j j )  and S ^ j { S y j )  are respectively the angular m om entum  and spin ladder 

operators; and S z  are the  2; com ponetnts of the orbital angular m om entum  and spin 

angular m om entum  respectively. In order to  obtain  the  on-site spin-orbit m atrix  elem ents 

we adopt the following procedure.

T he orbitals 1, J  in our case are Px,Py  and Pz- These can be w ritten  in term s of the 

complex spherical harm onics F;*” according to  the following expressions, where I and m
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are respectively the more familiar angular momentum and magnetic quantum numbers;

P, =  4 ( V - - y ‘), (A.3)

p , =  ^ ( F - ' + y ‘), (A^4)

p. = (A.5)

In the above definitions, we have dropped the I subscript associated with the spherical 

harmonics, as for all p orbitals I = 1 and hence it is the same. Finally, we define the 

operators appearing in Eq. (A.2) as

L^\Y^;a)  = m \ Y ^ ] a ) ,  (A.6)

L+\Y^-,a) = v//(/ +  l ) - m ( m .  + l) |F " ’+ ';a ) ,  (A.7)

L - \ Y ^ ; a )  =  ^ l { l  +  1) -  m ( m  -  V ) ,  (A.8)

and the corresponding spin operators as

S^ \Y^;a)  = a\Y^- ,a) ,  (A.9)

5 + |F '" ; a ) =  |r" >  +  l), (A.IO)

=  | r " >  -  1). (A.ll)

In the above definitions the index cr =  ±  |  describes the spin quantum number associated 

with each of the spherical harmonics yj"* and h is taken to be unity. Also, spin | =  cr and

spin 1= —(7, the corresponding spin quantum numbers for the two spin states. Finally

there is one identity which will form the basis of the derivations presented in this appendix 

which is.

(A.12)
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Let us work out the spin-orbit m atrix  elem ent for each atom  i (on-site SO):

(pI |i (L+S- + L-S+) + L^S^Ipi) = ^  ( (y- '+ri ) ; (T |i (L+S- + L-S+) + L^S^l V°;-a}  

( ( y - i + y i ) ; a | i L + 5 - | F ° ; - a )  =  0

( (y- i  + yi ) ;a II L-5+1 V ^ ; - a )  = ( (F-^a  | y V )  + | r - i ;a ) )  =  f

((y-^ + y ‘);fT \L^S \̂ y ° ; - a )  = 0. - a  ( ( y - ^ a  I y ° ; - a )  +  ( y V  I y°;-(^))  =  0

(p I  \L ■ s \  p i )  =  and (p^ |L • 5|  p i )  =  f.

(pI | i (L+S- + L-S+) + L^S^j pI) = ^  ( ( y - i  + y ' ) ; - a  | |  {L+S~ + L~S+) + S ^ \  Y^-a) 

((y-i + yi); |i i ^ s - \ y°; a) = ( ( y ^  | y^ -a) + (y^ - a  | y^; -a)) = ^

((y-^ +yi);-CT |i L-5+1 yO;a) = 0

((y-i + y ' ) ; - a  \L^S^\ y°;a) = O.a ( ( y ^ - a  | Y^-a) + {Y^- -a  \ Y^;a)) = 0 

• ' • {pi \L ■ S\ pI) = - f  and {pi \L • S\ p^) = f .

{pI II {L+s- + L-S+) + L^s^i pD = j  (y- i  -  y'; a II (L+s- + L-S+) + L^s^j (y-' + 

yi);a)

( (y - i  - y i ) ; a  II L+S-j  ( y - i  +  yi ) ;a)  =  ^  (y-i;cT I y°;a)  + (y i ;a  I yO;a) =  0 

( (y - i  - y i ) ; (T II L-s+i  (y-1 + y' ) ;a)  =  0 

((y- 1  _ yi).^ (y-i +yi);a) = a. (-1 ( y ^ a  | y -^a)  + 1 (Y-^;a j Y^;a)  +  

l ( y ^ a | y - ^ a ) - l ( y i ; a | y i ; a ) )  = - l

(p I  |L • Sj  p I )  =  - f  and (pj |L • 5|  p^) =  f .



225

{pI II {L+s- + L-s+) + L̂ s \̂p̂ y) = I | i  (l +s - + l ~s +) + l ŝ î (y ~̂  +

V ' ) ; - a )

((y-i _ yi). |i i+s- j  (y- i  + yi); -a )  = 0

( (r - i_y i ) ;  |i l - 5+I (r-i+y^); -a )  = f  (y-i; - a  | -a )  + (yi; - a  | -a )  =

0

( ( y - i_ y i ) ;  \L^s^\ ( F - i + r i ) ;  - a )  = - o  ( -1  {Y - ^ - -a  \ Y~^-, - a ) + l  (y-^; - a  | - a )  +

1 ( y ^  - a  I Y~^-,-a) -  1 (y i ;  - a  \ Y^ - -a) )  =  1

••• {vi \L • S\ pI) = f and (p  ̂ \L ■ S\ pi) =  - f .

(p1 II (L+S- + L-5+) + L̂ Ŝ l Pi) = ^  ((y-^-y^);a ji (L+S”+ L-S+) + L̂ Ŝ l y";-a)

((y-i -  y^);a II L^S~\  y°;-(j) = 0

((y-i -  yi);a II L-5+1 y";-a) = f  { { Y ~ ^ - a  \ Y ~ ^ - a )  -  { Y ^ - a \  Y ~ ^ - a ) )  =  f

((y-i -  ŷ );(T \uŝ \ y°;-a) = 0. -  (7 ((y-^d | y°;-(r) -  (y v  | y°;-(x)) = o

•■• {pi \L ■ s\ pi) = I and {pi \L ■ S\ pl) = | .

{pi II {L+S- + L-S+) + L^S^\pD = ^  ( ( y - i - y i ) ; a  II (L+5- + L-5+) + L^5^| y ° ; - a )  

( ( y - ‘ -  yi);  -<T II L + S - \ yO; a) = ^  { {Y - ^ ; - ct \ Ŷ -, - a )  -  {Y^; - a  \ Y^; -a) )  = - f  

( (y-i  _  yi);  |1 L~S+\y°; a) = 0

((y-i  _  r i ) ; - a  \L^S^\ Y°;a) = O.a {{Y-^; -a  \ Y^;a) -  {Y^ ; -a  \ Y^;a)) = 0

{pi \L • S\ pI) = - |  and {p\ \L ■ S\ pi) = - | .
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Thus, the spin-orbit coupling m atrix (for every site i) obtained by expanding Eq. (A.2) 

over the following basis T), T),pi T), |pU)> H i)> \pi i ) }

0 —  i 0 0 0 1

i 0 0 0 0 — i

0 0 0 - 1 L 0

0 0 - 1 0 I 0

0 0 — I — i 0 0

1 L 0 0 0 0



A ppendix B 

sp — pz m odel

T he discussions in this appendix section perta ins to  the  sp^ — Pz model, which has been 

used to  ex trac t the  spin diffusion length (Ig) in the second part of C hap ter 6.

C onstruction of sp2 hybrid orbitals

T he th ree sp^ {n =  a, b, c) hybrid orbitals can be constructed  based on the  following 

equations

\spl) = ( |s )  +  V2\p^)^ j v ^ ,  (B .l)

\spl) = (^\s) -  + \J ^ \P y )^  / V3,  (B.2)

\spl) =  ^

here |s), \px) and \py) are the  usual ket notations of the corresponding (real) wavefunctions 

for N 2s and 2px and 2py levels respectively.

These sp \  hybrid orbitals together w ith the rem aining 2pz orbital form our four band 

— Pz model.
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The SO m atrix for the sp"^ — m odel

In order to obtain the SO matrix, {Ia\Xso L j j  ■ S u \J a ' ) ,  we will have to write the 

wavefunctions of the orbitals (from the definitions above) in terms of their real spherical 

harmonics' and repeat the same procedure described in Appendix A.

The on-site SO matrix for the sj)̂  ̂ — model (for every site i) written in the following 

basis {\p, t ) .  \spl T ) , \spl T), \sp‘i T), \Pz i ) ,  \spl j ) ,  \spl |) ,  \spl j ) }  is

A 5 0

0 0 0 0 0
- V i

J _______ (_
v /6  v/2

J _  +
v / f  ^  v /2

0 0
L i

n/ 3
0 0 0

0
t

v/3
L

n/ 3
0

I

v /2
0 0 0

0
i

V z
0

i
v /3

1
v /6

I

v/2
0 0 0

0
y i

1 L 

\ / 6  n/2
____ L  I

n /6  ^  v/2
0 0 0 0

’2
3 0 0 0 0 0 L

v/3
L

v/3

1
+

I
^ 2

0 0 0 0
L

v/3
t

0

1
v/6

—
I

V 2
0 0 0 0 0

L
v/3

Ham iltonian param eters for the sp"^ — p z  model

The on-site energies for N 2s and 2p levels are e* =  —13 eV and tp =  —5.0 eV respectively 

[6] and hence tsp2 =  (e* -H 2 ■ ep)/3 =  —7.7 eV. The various nearest-neighboring transfer 

integrals {tu)  in the model can be obtained from the following procedure;

zPzCr^ (B.4)

t , . p .  =  7p.p.« =  0-026 eVp],

^|s) =  and the other bands are the same as in Appendix A, 
^Evaluated from the dispersion of the HOMO band in Fig. 6.9.
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^sp\sp^ ( ' ^PnJIPz)  2 (Tssct “H 2 • 'Jppir), (B.5)

^sp^sp'^,  { ^ P n \ ^ t \ ^ P n ' )  ~  2  • 7 p p 7 t ) ,  ( B - 6 )

^PzSp'i^ ~~ ^Pz\Ht\s'Pj  ̂ ^ ^ ' ) s p a -  (B-7)

In the above equations Ht is the transfer integral Hamiltonian, i.e. the second term 

in Eq. (6.7) and n(n ') =  a,b,c. Furthermore, we obtain jssa — —0.00115 eV, jspa = 

—0.00351 eV and 7pp,r ~  0.0 eV. These are based on the dispersion of the corresponding 

bands in the band structure of a ID N chain (calculated within DFT) with a N-N separa­

tion distance of 4.9 A, which gives 'Yp̂ p̂ a =  0.025 eV. Note that the latter clearly means 

th a t the HOMO of the organic nanowire is constituted by electrons.



A ppendix C

Publications stem m ing from this 

work

1. The search fo r  a spin crossover transition in small sized tt—conjugated molecules: 

a Monte Carlo study, S B hattacharya, M S Ferreira and S Sanvito, Journal o f  

P hysics.: C ondensed . M atter 23, 316001 (2011).

2. What causes spin-flip in organic crystals?, S B hattacharya and S Sanvito, in 

preparation.

3. Ab-initio estimation of charge and spin transport, properties of rubrene using maxi­

mally localized Wannier functions, S B hattach arya and S Sanvito, in preparation.

4. First Principles Study of the Structural, Electronic and Transport properties o f 

triarylamine-hased nanowires, A A kande\ S B hattacharya^  T Cathcart and S 

Sanvito, accepted in Journal o f C hem ical P h ysics (2013).

5. Spin transport properties o f Organic Nanowires synthesized from Triarylamine deriva­

tives, S B hattacharya, A Akande and S Sanvito, subm itted to C hem m C om m  

as an invited article (2013).

 ̂ These authors contributed equally in the work and are co-first authors in this pajjer.
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Charge and spin transport through organic semiconductors
Sandip Bhattacharya

() \  er the past decade a great body o f  research has been devoted to the Held o f  organic sp in lw n ics. 
This is primarily because o f  its potential to open new ways to cheap, low weight, mechanically 
Hexible. chemically inert and bottom up fabricated spin-de\ ices for high density data storage and 
logic applications. The main advantage o f  using organic semiconductors (OSCs) for spintronics 
applications is that the device structure can be conveniently designed based on the experiences from 
an industrially well established field, namely that o f  organic electronics. However, the intrinsic 
transport properties o f  OSCs are poorly understood from both an experimental and a theoretical 
perspective. I 'he work presented in this thesis provides the first comprehensive and robust 
procedure to investigate in detail the charge and spin transport properties o f  such OSCs from first 
principles.

The technique involves representing all the essential interactions in OSCs with a tight-binding 
model including in particular the coupling o f  the charge carriers to phonons. Thereafter the ah initio  
Hamiltonian parameters are extracted from Density Functional Theory (DF'I ) and the maximally 
localized Wannier functions scheme. Furthermore, the Hamiltonian representing the organic 
material also incorporates carriers' spin relaxation mechanisms, i.e. hyperfine interactions and spin- 
orbit coupling. We evaluate the finite temperature properties o f  the system by evolving the classical 
fields in the Hamiltonian via Monte Carlo simulations. I hereafter the mobility is obtained from the 
Kubo formula and the spin diffusion length from a I.andauer-Biittiker approach, implemented 
within the Monte Carlo scheme.

The results from the work in this thesis can be divided into three main parts. Firstly, we explore in 
detail the phase diagram o f  the model to understand the effect o f  the various parameters on the 
physical observables. Fhis is particularly crucial in order to optimize the different interactions in the 
OSC. Furthermore, we also understand the charge and spin transport properties o f  the model from 
such a microscopic approach. Secondly, we present in detail a DF'f characterization o f  rubrene 
molecular crystals, which has the highest charge carrier mobility among OSCs. We shall then 
demonstrate that the first principles estimates o f  its carrier mobilities are very close to those 
measured in single-crystal rubrene-based organic field effect transistors and the spin diffusion 
lengths are also similar to that estimated in experiments on rubrene-based spin valves.

I'hirdly, we will discuss the use o f  a similar multiscale procedure to predict the ah initio  charge and 
spin transport characteristics o f  triarylaniine based organic nanowires. Such organic nanowires were 
recently svnthesized from a light activated self-assembly process and were demonstrated to have 
a lm ost metallic type transport characteristics. We obtain quite exceptional estimates for the hole 
mobilities in such nanovvires thereby confirming the experiments. Also the spin transport properties 
o f  such nanowires that we obtain are quite exceptional. As such, vve predict that triarylamine based 
self-assembled organic nanowires can be promising candidates for organic spintronics.


