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Declaration

This thesis has not been submitted as an exercise for a degree at 

this or any other university. It is entirely the candidate’s own work. 

The candidate agrees that the Library may lend or copy the thesis 

upon request. This permission covers only single copies made for 

study purposes, subject to normal conditions of acknowledgement.



Summary

In this thesis we study the real submanifolds of codimension 2 in a com plex manifold near a CR singularity. 

The thesis has 3 chapters. In Chapter 1 we shall make a small introduction where we will remind some basic 

notions and known results. The first chapter has 3 parts. In the first part we recall some basic notions. The 

second part represents an preparation for the second chapter. The third part represent a preparation for the third 

chapter. The main result o f the thesis represent the content o f Chaper 2. We generalize to a higher dimensional 

case Huang-Yin’s normal form in C^. The main tool is given by the Fisher decomposition and our construction 

is done following the lines of Huang-Yin’s normal form construction.

The last Chapter contains some remarks about a family o f analytic discs attached to a real submanifold and 

some applications.
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Chapter 1

Introduction

1.1 Real Submanifolds in the Complex Space

In this Section we shall give some basic notions about the real subm anifolds in the complex space.

A (smooth) real submanifold of of codim ension d  i sa  subset M  C such that for every point po G M  

there exists a smooth real vector-valued function p  =  ( p \ , . .  -,Pd) defined in U  such that

M n U  = { z € U \  p { z , z ) = 0 } ,

with differentials d p \ , . . . , dpa  linearly independent in U.

W hen d  =  1, M is called a hypersurface. If p  G =  C ^ , we define the tangent space to at p as follows

f  d d \

If p  G M and X e  TpC", we say that X  is tangent to M at and we write that X  G TpM if

L  =0 ,  k =  \ , . . . , d .

Since, for any two local defining equations p , p ' f o r M  there exist a(z,z)  a d  x  cf-matrix such that p{z , z )  =  

a{z , z)p{z , z)  it follows that the previous definition does not depend on choice o f the local defining equation.

Similarly we define the complexified tangent spaces CTpC^  and CTpM  by allowing the coefficients in 

the expressions above to be complex numbers. Then d imniTpM)  =  d im c(C rpA /) = 2 N  — d.  Therefore the 

m appings M  B p  — > TpM and M  ^  p  — > CTpM  define real and com plex vector bundles over M,  denoted by 

T M  and respectively by C 7 M.

Using the following notations

dz j  2 \  dxj  * dy j  )  ' dz j  2 \  dxj  ^  * dy j  )  ’

any X  G CTpC^  can be written uniquely as follows

^ f  d d  \
X =  [ u j - ^  + h j - ^ j  ; a u b i , . . . , a j , b j , . . . , a N , b N  G C.

A tangent vector X  is holomorphic if a i =  ■•■ =  =  0, and antiholomorphic if =  ■ ■ ■ =  b^  =  0. We

denote by the space o f antiholomorphic vectors and respectively by Tp'^C^  the space of holomorphic

vectors.

2



CHAPTER 1. INTRODUCTION 3

For p  G M we  define the space of antiholomorphic vectors tangent to M ai p  as follows

T^ ' m  =  Vp :=  T^-^C^r\CTpM.

Here

dime V p = N -  rankc ( ^  {p,  p)
■J /  i= \,...,N -,k= \,...4

M  is called a CR manifold if the map M 5  dime T^'^M is constant.

A point p € M  is called a CR singularity if it is a discontinuity point for the map

M B d im e T^'^M

defined near p.

A  point p  in a CR manifold N  is called a non-minimal point if N  contains a proper CR submanifold S 

containing p  such that Tp̂ ' '̂ Ŝ =  Tp '̂^^N (see [23] for more details).

A smooth mapping T : M  ^  M i s  called a formal transformation.

1.1.1 CR Singularities and Normal Forms in

The study o f real submanifolds in a complex space near an CR singularity goes back to the celebrated paper

[2] o f Bishop. Bishop considered the case when there exists coordinates (z, tv) in such that near a CR

singularity /? =  0, a real 2-codimensional submanifold M c  is defined locally by

w — ZZ + A  +  +  0 (3 ) ,  (1.1)

where X €  [0,°°] is a holomorphic invariant called the Bishop invariant. When X =  M is understood to be 

defined by the equation w =  z~ +z^  +  0 (3 ) .  If A is non-exceptional Moser-Webster proved in [28] that there 

exists a formal transformation that sends M  into the normal form

w =  zz +  (A +  ew'̂ ) (z^ +  z^ ), £ € { 0 ,  —1, +  1},  ^ s  N, (1-2)

where w =  u +  iv. Here the Bishop invariant A is called non-exceptional if the following quadratic equation in 

X has no roots o f unity: Xx^ —x +  X =  0 or if A 0  {O,

When A =  0 Moser derived in [27] the following partial normal form:

w =  z H - 29? I  ^  fljẐ  I . (1.3)

Here s :=  min { j  €  N*; aj ^  0 }  is the simplest higher order invariant, known as Moser’s invariant. When 

5  =  oo Moser proved in [27] that (1.3) is holomorphically equivalent to the quadric (w  =  zz}. Moser’s partial 

normal form is the subject o f an action o f the infinite dimensional group of formal self-transformations of the 

quadric {w  =  zz} that fix the origin. When  ̂ <  oo, the problem of reducing the previously mentioned group 

action was completely solved by Huang and Yin in the recent deep paper [20]. Among other results, they 

proved that (1.3) can be formally transformed into the following normal form

' =  ZZ +  29? < ^ O y Z ^  > , « i = l ,  a j = 0 ,  if  7  =  0,1 mod j  >  s.
[j>  ̂ )

(1.4)

Further studies concerning the real submanifolds near a CR singularity were done by Ahern-Gong in [1], 

Coffman in [5], [6], [7], [8], Gong in [12], [13], [14],



CHAPTER  /. INTRODUCTION 4

1.1.2 CR Singularities and Analytic Discs in

Let A be the unit open disc from C and let S' be its boundary. A map / :  A — > is called an analytic disc if  

/ l^  is continuous and / | a  analytic. We say that /  is an analytic disc attached to A/ if /  (S ’) C M .  In the case 

when A s  [0 ,2 ). Kenig-Webster proved in [24] the existence of an unique family o f 1-dimensional analytic 

disks shrinking to the CR singularity p =  0. These discs are mutually disjoint and form a smooth hypersurface 

M  with boundary M in a neighborhood o f the point p  =  0. In the real-analytic case, Huang-Krantz proved in 

[17] that M is a real-analytic hypersurface across the boundary manifold M.

In Chapter 3 we shall study the higher dimensional analog case o f Kenig-Webster’s Theorem in C^.

1.1.3 Thesis Organization

In Chapter 2 we shall prove a generalization of Huang-Yin’s normal form to a higher dimensional analog case. 

In Chapter 3 we shall generalize Kenig-Webster’s result in C“ to a higher dimensional analog case in and 

then we shall provide some applications.



Chapter 2

The Normal Form Construction

In this chapter, we construct a higher dimensional analogue of Huang-Yin’s normal form in C“. Let (z,w) =  

(2 i,...,ZAr,vv) be the coordinates in and let M  c be a real submanifold of codimension 2. We 

consider the case when there exists a holomorphic change of coordinates (see [9], [10] or [19]) such that near 

p  =  Q,M '\s given by

W  =  Z \ Z \ A  \ - Z n Zn +  ( p m , n { z , z ) ,  (2.1)
in+n>3

where (Pm,n{z,z) is a bihomogeneous polynomial o f bidegree {m,n)  in (z,z).

Some o f our methods extend the construction methods of Huang-Yin’s normal form in C^. First, we give a 

generalization of Moser’s partial normal form, called here the extended Moser lemma (Theorem 2.1.2), which 

uses the trace operator (.see e.g. [33], [34|, [35]);

N  32

In Moser’s partial normal form eliminates the terms in the local defining equation of M  o f positive 

degree in both z and z- The higher dimensional case considered here brings new difficulties. In the

extended Moser lemma eliminates only iterated traces of the corresponding terms. However, these terms can 

still contribute to higher order terms in the construction of the normal form. Recently, similar normal forms 

were constructed for Levi-nondegenerate hypersurfaces in by Zaitsev in [34]. The main instrument is 

given by the Fisher decomposition.

The condition that (1.3) contains nontrivial higher order terms has the following natural generalization to 

the higher dimensional case;

5 ? |i ;< P * ,o (z ) | ^ 0 ,  (2.3)

where here and throughout the chapter we use the following abbreviation

%-,o(z) :=  (Pk.o{z,z)

as the latter polynomials do not depend on z- As a consequence we obtain that 5 ;= m in {A :eN * ; (p i:o (2 )^ 0 }<  

oo. Then i  is a biholomorphic invariant and (Ps,o{z) is invariant (as tensor). We call the integer 5 >  3 the 

generalized Moser invariant. In this chapter we will use the following notations

H z ) - = f s . o { z ) ,  A;.(z) ;=  a j(p j,o (z )), k = \ , . . . , N .  (2.4)

The extended Moser lemma provides us a partial normal form that is not unique, but that is determined up 

to an action of the infinite dimensional group Auto (Moo), the formal self-transformation group of the model 

Moo ;=  {w =  Z]Z\ H that fix the origin. The next step is to reduce the action of the above mentioned

5
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group on the partial normal form. In order to do this, we use the methods recently developed by Huang and Yin 

in [20]. In particular, we follow the lines of Huang-Yin’s normal form construction [20] considering instead

of the model ;=  {w = zizi H \~znZn }, the model w =  zizi H hz/vzw +  A(z) +  A(z) and we adapt the
powerful Huang-Yin’s weights system to our higher dimensional analog case.

Before we will give the statement of our main theorem, we introduce the following definition

Definition 2.0.1. For a given homogeneous polynomial V(z) =  ^  biz' we consider the associated Fisher
\n = k

differential operator

' ' = E * > ' 5 7 -  12.5)
i'i=* ^

We would like to mention that the Fisher decomposition was used also by Ebenfelt in [11].

We consider the class of submanifolds such that in their defining equations, the polynomial A(z) defined in 

(2.4) satisfies the following nondegeneracy condition;

Definition 2.0.2. The polynomial A{z) is called nondegenerate iffo r  any linear forms (z),. . .  one
has

-^ i(z )A i (z)H \ - ^ n { z ) A n {z ) = 0  ==> ^ i { z ) =  - - - = ^ n {z ) = 0 .  (2 .6)

In Section 2.1 we prove that our non-degeneracy condition is invariant under any linear change of coordi

nates.

We prove the following result;

Theorem 2.0.3. Let M  C be a 2-codimensional real (formal) submanifold given near the point 0 G M by 

the form al power series equation

W =  ZlZ\-\ \-ZnZn+ Y , Vm,n(z,z) ,  (2.7)
m+n>3

where (pm,n{z,z) is a bihomogeneous polynomial o f  bidegree [m,n) in {z,z) satisfying (2.3). We assume that the 
homogeneous polynomial o f degree s defined by (2.4) is nondegenerate. Then there exists a unique formal map

{z',w ') = {F{z,w ),G {z,w )) = {z,w) + 0 {2 ), (2.8)

that transforms M  into the following normal form:

w ' =  z!^z'\+ ---+ z!nz'n+  X  <Pm,n(z'.?)+29^|E‘P-t,o(z')l> (2.9)m + r t > 3  I k > S  I

where <p'̂ „ (z^^0 ^ bihomogeneous polynomial o f bidegree {m,n) in {z',z') satisfying the following normal
ization conditions

tr"’“ '«)' . ( z ',? )  = 0 ,  m < n — \, m , n ^ O \rm,nv^> j   ̂ T -  ^2.10)

,z ') = 0 , m > n ,  m,nj ^O.

r ( A ') > f ,o W = 0 ,  if  T  = t s + U t > \ ,  

\ { A , A ‘Y { ( p ! r , o { z ) ) = 0 , k = \ , . . . , N ,  i f  T = {t + \)s-, t > I.

A few words about the construction of the normal form. We want to find a formal biholomorphic map 

sending M  into a formal normal form. This leads us to study an infinite system of homogeneous equafions by 

truncating the original equaUon. As in the paper [20] of Huang-Yin, this system is a semi-non linear system 

and is very hard to solve. We have then to use the powerful Huang-Yin’s strategy defining the weight of 

Zk to be 1 and the weight of Zk to be s — 1, for all /: =  1. . .  ,N. Since Auto(Afoo) is infinite-dimensioral, it 

follows that the homogeneous linearized normalization equations (see sections 3 and 4) have nontrivial kernel
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spaces. By using the p reced ing  system  o f  w eights and  sim ilar argum ents as in the paper [20] o f  H uang-Y in, 

w e are able to trace p recisely  how  the low er o rder term s arise in non-linear fashion; T he kernel space o f  degree 

I t  + \  is restric ted  by im posing a norm alization  condition  on q(^) kernel space o f  degree 2t +  2

by im posing norm alization  conditions on (Pi'^q(z ). T he non-uniqueness part o f  the low er degree solu tions are 

uniquely  determ ined  in the h igher o rder equations.

W e w ould  like to  m ention here the pseudo-norm al form  constructed  by H uang-Y in in [19] for the real 

subm anifo lds defined by (2.7). O ur norm al fo rm  is a natural genera liza tion  o f  H uang-Y in’s norm al form  in 

C^. W e observe that ou r norm alization  conditions are invariant under the linear changes o f  coord inates that

preserves the m odel := {w  =  z i^ i H hzwZAf}.

A  few  w ords about the norm al form  construction  organization: In course o f  section 2.1 w e will give a 

generalization  o f  M o se r’s partial norm al form  and w e w ill m ake fu rther p reparations fo r our norm al form  

construction . T he norm al form  construction  w ill be p resented  in the course  o f  sections 2 .2  and 2.3. In section  

2 .4  w e w ill prove the uniqueness o f  the form al transform ation  m ap.

2.1 Preliminaries, Notations and the extended Moser lemma

L et ( z i , . . .  ,zjv, w) be the coord inates in L et M  c be a real subm anifo ld  defined near p  =  O h y

W =  Z\Z\-\-------- \-Zn Zn +  Y ,  *iP'n,«(z,z), (2 .12)
m + n> 3

w here (pm,n{z,z) is a b ihom ogeneous polynom ial o f  bidegree (m ,n )  in {z,z) ,  for all m,n >  0.

L et M'  be a real subm anifo ld  defined by

w' =  z',z 'lH-------- \-z ' nZ'n +  Y  (2-13)
m + n> 3

w here (p'„„ {z ' , z ' )  is a  b ihom ogeneous polynom ial o f  b idegree {m,n)  in ( z ',z ') ,  fo r all m,n >  0.

We define the herm itian  product

=  ------- \-ZNtN, z =  {z \ , . . . , z n ) ,  t  =  € C ' ^ .  (2 .14)

L et { z \ w ' )  =  { F {z , w ) , G {z , w ) )  be a form al m ap w hich sends M  to  M '  and fixes the po in t 0  £  C ^ ^ ' .  Sub

stitu ting  th is m ap into (2 .13), we obtain

G{z,w)  =  { F { z , w ) , F { z , w ) ) +  Y  9 m . n [ l ^ i z , w ) , F { z , w ) y  (2 .15)
m + n> 3

In the course o f  th is chapter, w e use the fo llow ing  notations

(p>k{z , z)= Y ,  (Pm,n(z,z), (pk{z,z) =  Y  <P'«,«(z,z), k > 3 .  (2 .16)
m + n > k  m -\-n=k

We w rite  F (z ,h ')  =  Y  ^ m A z ) ^ ’ G{z ,w)  =  Y  Gm,«(z)w", w here Gm,„(z), Fm,„(z) are hom ogeneous poly- 
m .n > 0  m ,n> 0

nom ials o f  degree m  in z. By using w  satisfy ing  (2 .12) and the notations (2.16), by (2.15) it fo llow s that

Y  GmAz){{z,z) + <P>3{z,z))"
m .n > 0

Y  m̂i.«i(z)((z.z) + 9>3(z,z))"'
mi ./ii >0

•P>3 ( L ^'n2,n2i^){{z,z) + 9 > 3 { z , z ) T \  Y W +  9> 3(z ,^ ))”  ̂V
\ni2M2>0 'n3,«3>0 /

2

+
(2 .17)

S ince our m ap fixes the point 0  e  it follow s that Go,o(z) = 0 ,  fo ,o(z) =  0. C o llecting  the term s o f  b idegree
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(1,0) in (z,z) in (2.17), we obtain Gi,o(z) =  0. Collecting the terms of bidegree (1,1) in (z,z) in (2.17), we 
obtain

Go,,{z,z) =  {F,,o(z),F,,o(z)). (2.18)

Then (2.18) describes all the possible values of Go,i (z),Fi.o(z). Therefore 3G o j =  0. By composing with a 

linear automorphism of 9^^ =  {z,z), we can assume that Go,i (z) =  1, /^i,o(z) =  Z-
By using the same approach as in [34] (this idea was suggested me by Dmitri Zaitsev), the ’’good” terms 

that can help us to find the formal change of coordinates under some normalization conditions are the following

<Pm,n(z,z), 9m,niz,z), G,„^n{z) (z,z)" , {Fm,n{z),z) (z,z)'', {z, Fm^n{z)) {z,z)'‘■ (2.19)

We recall the trace decomposition (see e.g. [33], [34]):

Lemma 2.1.1. For every bihomogeneous polynomial P{z,z) and n € N there exist Q(z,z) and R{z,z) unique 

polynomials such that

P{z,z) = Q {z,z){z,z)"+  R{z,z), it”R = 0. (2.20)

By using Lemma 2.1.1 and the ’’good” terms defined previously by (2.19), we develop a partial normal 
form that generalizes Moser’s Lemma [27]. We prove the following result:

Theorem 2.1.2 (Extended Moser Lemma). Let M  C be a 2-codimensional real-formal submanifold. 
Suppose that 0 E M  is a CR singularity and the submanifold M  is defined by

W = {z,z}+  Y , Vm,n{z<z), (2 .2 1 )
m + n > 3

where (pm,n {z,T) is bihomogeneous polynomial o f bidegree {m,n) in {z,z), fo r  all m ,n > 0 . Then there exists a 
unique form al map

{ z , w ' ) = ( z +  Fm,n{z)w",w+ Gm,„(z)H'"j, (2.22)
\  m + r t > 2  m + n > 2  /

where F,„^„{z), Gm,n{z) are homogeneous polynomials in z o f  degree m with the following normalization condi
tions

^0 ,n+ i(z)=0 , F i,„ (z )= 0 , f o r a l l n > \ ,  (2.23)

that transforms M into the following partial normal form:

w = {z',z ')  +  Y . {z'^z') +  29^ |  (pj.Q {z )  1 ,  (2.24)
m + n> 3  I k> 3  I
m.n^O ^  ~  '

where (Pm^„{z,z) are bihomogeneous polynomials o f bidegree {m,n) in {z,z), fo r  all m ,n > 0, that satisfy the 

trace normalization conditions (2.10).

Proof. We construct the polynomials F„i „:{z) with m' -\-2n' = T  — I and G„< „»(z) with m' -\-2n' =  T by induc

tion on 7  =  m' +  2n'. We assume that we have constructed the polynomials F^j (z) with k-\-2l < T  — \, Gkj (z) 

with k-\-2l < T .

Collecting the terms of bidegree (m,n)  in (z,z) with T  =  m +  n in (2.17), we obtain

9m,n(z,z) =  G„_„,„(z) (z,z)" -  (F,„_„+i,„_i (z),z) (z,z)"~‘ -  (z,F„_m+i,„_i (z)) (z,z)'"“ ' +  (Pm.n(z,z) +  • ..,
(2.25)

where ” . . . ” represents terms which depend on the polynomials Gkj{z) with k + 2l < T ,  Fkj{z) with k + 2l < 

T -  1 and on (Pk,i{z,z), (p'kj{z,z) with A: +  / < T  = m-\-n.
Collecting the terms of bidegree (m,n)  in (z,z) with T :=m-\-n  >  3 in (2.25), we have to study the following 

cases:
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(1) C ase m < n  — 1, m , n > l .  C ollecting the terms o f  bidegree {m,n)  in {z,z)  in (2 .25) with m < n — \ and 

m , n >  1, w e obtain

=  - { z ,F 'n -m+l ,m- \ iz ) )  {z,z)"’~' +  . . .  (2 .26)

We want to use the normalization condition (p'„„{z,z) — 0. This allow s us to find the polynom ial 

(z). By applying Lem m a 2.1.1 to the sum o f  terms w hich appear in ” . . we  obtain

=  { -  { z ,F„-,„+i .m-\ {z))  +  D„^„{z,z)) {z,z)"'~^ + P \ { z , z ) ,  (2 .27)

where Dm,n{z,z)  is a polynom ial o f  degree n — m + \  in z i , - . . , zn and 1 in z \ , . . . , zn with determined co 

efficients by the induction hypothesis and tr'"“ ' =  0. Then, by using the normalization condition

tr'"“ ' „ {z, z) =  0, by the uniqueness o f  the trace decom position w e obtain that {z, Fn~m+\ ,m- 1  (z)) =  ^m,n (z, z) •

It fo llow s that

Fkj{z) =  d^{Di+i^k+i{z,z)) ,  f o r a l U > 2 , / > 0 ,  (2 .28)

where :=  ( 5 ^ , , . . . ,

(2) C ase m > n  +  l ,  n i , n > l .  C ollecting the terms o f  bidegree (m ,n) in {z,z)  in (2 .25) with m > n + \  and 

m,n  >  1, w e obtain

=  {Gm-n,n{z){z,z)  ~  {F,„-.„+i^„-i{z),z)) {Z,Z)''~  ̂ +  . . .  (2 .29)

In order to find the polynom ial Gm_„ „(z) w e want to use the normalization condition tr"(p^ „(z,z) =  0. By 

applying Lem m a 2 .1 .1 to the sum o f  terms which appear in ”. . . ” and to „_i (z ) ,z ), w e obtain

'Pm.nCz-Z) =  (Gm-n,«(z) -£ m ,„ (z ))  {z,z}" +  P2 { z, z) ,  (2 .30)

where E,„^„{z) is a polynom ial with determined coefficients by the induction hypothesis and tr" (P2 { z , z ) )  =  0. 

Then, by using the normalization condition tf(p'„ „(z , z )  =  0 , by the uniqueness o f  the trace decom position we 

obtain that Gm-n,n{z) =  E„^„{z). It follow s that

Gkj{ z)  =  Ek+i j {z) ,  for all A: >  2, / >  0. (2 .31)

(3) C ase (n — l ,n ) ,  n  >  2. C ollecting the terms o f  bidegree {n — \ ,n)  in (z,z) in (2.25) with n > 2 ,  we 

obtain

<P«-l,n(Z-Z) =  “  (^0,n-l (z ),z ) “  {z, F2,n-l{z)) { z , z ) ’'~^ +  . . .  (2 .32)

In order to find F2^n-i{z) w e want to use the normalization condition tr"“ ^9 '_ j  „ (z ,z) =  0. By applying 

Lemma 2 .1. 1 to the sum o f  terms in ”. . .  ”, w e obtain

=  -  {{Fo,n-\{z) , z)  {Z,Z) +  {z,F2,n-2 {z)) ~ C „ _ i,„ (z ,z ))  (z,z)"“  ̂+  P ?(z,z), (2 .33)

where tr"~“ ( / ’3 (z ,z )) =  0  and C „_i,„(z,z) is a determined polynom ial o f degree 1 in z i, ■ • ■ ,zw and degree 2 in 

z i , . . , , zn-  We take F o.n-i(z) =  0  (see (2.23)). Next, by using the normalization condition tr"“ ^(p'_[ „ (z ,z ) =  0 

and by the uniqueness o f  the trace decom position w e obtain that {z,F2 ,n-2 {z)) =  C „_i,„(z,z). It fo llow s that

F2. n- i {z )  =  a (C « - i ,„ (z ,z ) ) ,  (2 .34)

where (9- :=

(4) C ase ( n ,n  — 1), n >  2. C ollecting the terms o f  bidegree {n,n  — 1) in (z ,z) in (2 .25) with n >  2, we 

obtain

¥ n , n - 1 Z )  =  (G|  1 (z) ( Z ,  Z )  -  { F 2 ,n -2  { z ) , z) -  (z, Fo,„_ i (z)) { z , z ) ) { z ,  z)"  ̂+  (pn,n- 1 (z, z) +  - • • (2 .35)
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In order to find (j) we want to use the normalization condition tr” 1 (2 , 2 ) =  0- By using (2 .23)

and by applying Lem m a 2.1.1 to {p2,n- 2  ( z) , z) (see (2.34)) and to the sum o f  terms in ”. . .  ”, w e obtain

<Pn,n-l(2-2) =  (G l,„-1 (z) -  (z)) + P 4 { z , z ) ,  (2 .36 )

where tr"“ ' { P i { z , z ) )  =  0  and B„^„-\{z) is a determined polynom ial. By the uniqueness o f  the trace decom p o

sition w e obtain that (z) =  {z), for all n > 2 .

(5) C ase (n ,n ) ,  n >  2. C ollecting the terms o f  bidegree (n ,n ) in { z ,z )  in (2 .25) with n >  2, w e obtain

=  G0,«(Z)(Z,Z)" -  {F’\ ,n - l { z ) , z )  “  { z ,F i ,„ - i { z ) )  +  (Pn,n(z,z) +  ■■■ (2 .37)

By taking F i,„_ i(z ) =  0 (see (2 .23)), we obtain (p'„^„{z,z) =  Go,n{z){z,z)" + . . . .  In order to find Go,„(z) w e use 

the normalization condition tr”(p' „ (z ,z) =  0. By applying Lemma 2.1.1 to the sum o f terms in ” . . . ” w e obtain 

that (Pn^n{z,z) =  (Go,n(z) — A„) (z ,z )” + P 5 (z ,z ) , where A„ is a determined constant and tr" (P5 (z ,z ))  =  0. B y  the 

uniqueness o f  the trace decom position w e obtain that Go,n =  A„, for all «  >  3.

(6) C ase  (T ,0 )  and (0 ,T ) T  >  3. C ollecting the terms o f  bidegree (7’,0 )  and (0, T) in (z ,z ) in (2 .25 ), we 

obtain

GTfi {z )  +  (Ptj^{z) =  <p7,o(z) +  a(z)

<Po,r(2) =  <Po,r(z) +  Mz)

where a (z ) , b{z)  are the sum s o f  terms that are determined by the induction hypothesis . By using the normal

ization condition (pQj{z) =  ( Pfo i z )  w e obtain that G t ,o{z) =  (pr.o{z) — ( p o j { z )  + a { z )  - b { z ) .  □

The extended M oser lemma leaves undetermined an infinite number o f  parameters (see (2 .23)). They act 

on the higher order terms. In order to determine them and com plete our partial normal form w e w ill apply in 

the course o f  Sections 3 and 4 the follow ing two lemmas:

L em m a 2 .1 .3 . Let P{z) be  a  homogeneous pure polynomial. For every k G N*, there exist Q (z),  R{z) unique  

polynom ials  such that

P { z ) = Q { z ) A { z ) ' ‘ + R { z ) ,  ( a ‘ ) * ( /^ ( z ) ) = 0 .  (2 .39)

L em m a 2 .1 .4 . For every homogeneous polynom ial P{z) o f  degree  (? +  1 there exists a unique decomposit ion

P{z)  =  L { z ) + C { z ) ,  (A ,A ')* (C (z ) )= 0 ,  k = l , . . . , N ,  (2 .40)

such that L{z) =  (A i(z )A i(z ) H \- An {z)An {z)) A {z)‘, where A \ { z ) ,  ■■■ ,A n {z) are linear forms.

Lem m a 2.1 .3  and Lemma 2.1 .4  are particular cases o f  the Fisher decom position (see [33]). The polynom ial 

L{z)  defined by Lem m a 2.1 .4  is uniquely determined, but the linear forms A] (z), • •. ,Aat(z) are not necessarily  

uniquely determined. In order to make them uniquely determined we consider a nondegenerate polynom ial 

A(z) (see (2 .4 ) and Definition 2.0.2).

The fo llow ing proposition show s us the nondegeneracy condition on A(z) is invariant under any linear 

change o f  coordinates:

P rop osition  2 .1 .5 . If  A{z) is nondegenerate and  z '— > A z is a  linear change o f  coordinates,  then  A(Az) is a lso  

nondegenerate.

_  _  N

P ro o f  Let A(z) =  A (A z), where A =  Therefore Aj { z )  =  J ^ A k {A z )a jk ,  for all j  =

We consider ^ \ { z) , . - - , ^ n {z) linear form s such that .if i(z )A i(z ) H------- 1-JS?/v(z)Aat(z) s  0 , or equivalently
N
^  Aî  {Az) ^ j { z ) a j k  =  0. S ince A(z) is nondegenerate and is invertible it fo llow s that (z) =

■■■ =  ^ n {z ) =  ^.  □  '
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T h e  sy s te m  o f  w e ig h ts  : F o llo w in g  H u an g-Y in ’s approach in [20 ], w e  define the sy stem  o f  w e ig h ts  for 

Z \ , Z \ , .  ■. ,Zn , zn as fo llo w s. W e define w t { 2* } =  1 and w t{z;t}  =  5 — 1, for all k =  I f  A { z , z )  is a

form al pow er series w e  write w t { A ( z ,z ) }  >  A: i f  A [ t z , t ' ‘~^z) — W e a lso  w rite O r d { A (z ,z ) }  =  A: if

A { t z , t z )  =  t ^A(z , z ) .  W e d en ote  by @'^{z,z)  a ser ies in (z ,z )  o f  w e ig h t at least m  and order at least n.  In the 

particular ca se  w hen 0 ^ ( z , f )  is  ju st a p o lyn om ial w e  use the notation  IP^(2 ,z ) .  W e define the set o f  the norm al 

w eig h ts as fo llo w s

Wt„„r { w }  =  2 , Wt„or {z i } =  • • • =  Wt„or {zw } =  Wt„or {z i } =  '' ’ =  Wt„or { za }̂ =  1 ■

N o ta tio n s  : I f  h{z,  w)  is a form al pow er ser ies w ith no constant term  w e  introduce the fo llo w in g  notations

h{z,  M') =  ^  hH^riz, w ) ,  w here { t z , t ^ w )  =  t'hil}r{z,  w) ,

(2 .4 1 )
h > l { z , w )  =  Y,^^nJr{z,w).  

k>l

2.2 Proof of Theorem 2.0.3-Case 7  +  1 =  +  1, r > 1

B y app ly ing  the exten ded  M oser  lem m a w e can assum e that M  is g iv en  by the fo llo w in g  equation

r + i
w = ( z , z ) +  (pm.„(z,z) +  0 ( T  +  2 ) ,  (2 .4 2 )

m + n > 3

w here (p„ n̂ {z,  z) satisfies (2 .1 0 ) , for all 3 <  m +  n <  T.

W e m ake induction on T >  3. A ssu m e that ( 2 . 11)  ho ld s for (pk.oiz),  for all A =   ̂+  1 , . . . ,  7  w ith  k =  

0 , 1 m od (s ) . If r  +  1 ^  {ts', f €  N* — { 1 , 2 } }  U +  1; f G N * } w e  apply the exten d ed  M oser lem m a. In the 

c a se  w h en  7  +  1 €  { t s \  f e  N* — { 1 }}  U {fs  +  1; f €  N * } , w e search a form al m ap w hich  sends our su bm an ifo ld  

M  to a new  subm anifold  M'  g iven  by

w' =  ( z ' , z ' ) +  E  < , „ ( z ' , ? ) + 0 ( T  +  2 ) ,  (2 .4 3 )
m + « > 3

w h ere {z ' , z ' )  sa tisfies (2 .1 0 ) , for all 3 <  w  +  n <  7  and (p^o(z')  sa tisfies ( 2. 11) ,  for all k =  s  +  \ , . . . , T  

w ith  A =  0 ,1  m od (s ) . W e wi l l  obtain  that <pĵ  q (z) =  (pkfliz) for all A: =  i , . . . ,  7 .

In the course o f  this section  w e  consider the case  w h en  7  +  1 =  +  1. W e are look in g  for a b ih olom orph ic

transform ation o f  the fo llo w in g  type

(z ',w ')  =  {z +  F { z , w ) , w  +  G { z , w ) ) ,

F { z - , w ) =  2^ Fnor (ZiW),  G ( z , w )  =  ^  G„or (Z,H'),
1=0 T=0

determ ined  w e  assum e that pj;l‘r ^ ^ \ z , w )  is norm alized  as in the exten d ed  M oser  lem m a, for  all I =  1 , . . . 7 .

that m aps M  into M'  up to the degree 7  +  1 =  +  1. In order for  the preced ing  m apping to be un iquely

determ ined  w e  assum e that F n o r ^ ' \ z , w )

Substitu ting (2 .4 4 ) into (2 .4 3 )  w e  obtain

T +\  ,  .
w +  G( z , w)  =  (z +  F (z ,H ’) ,z  +  f ( z , w ) ) +  E < P m , n  +  +  + 0 ( T  +  2 ) ,  (2 .4 5 )

m+n>3
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where w satisfies (2.42). By making some simpHfications in (2.45) by using (2.42), we obtain

T - 2 t  . , /  T - 2 t

Y, cS!r^ '̂^ \̂z,{z,z) + (l>>3{z,z))-=2‘̂ (^Z, Y, P'ior' '̂\z,{z,z) + (p>3{z,z))j

(2.46)

T=0 \ 1=0
T - 2 t

Y ,  f i ? r ' ^ ’ H z , { z , z )  +  ( ( > > 3 { Z , Z ) )  
1=0

+  (P>3\Z+ Y  ^ior'^'Hz,{z,z)  + (P>3{Z,Z)) ,Z-\- Y  (^, (z,z) +  <P>3U,^)) )
V 1=0 1=0 /

Collecting the terms with the same bidegree in (2.46), we find F (z , w) and G{z,  w) by applying the extended 

M oser lemma. Since we don’t have com ponents o f F{z ,w)  o f normal weight less than 2t  and G{z,w)  with 

normal weight less than 2t + \,  collecting in (2.46) the terms with the same bidegree {m,n)  in (z,z) with 

m +  n <  2f +  1, we obtain that (Pm^n{z,z) =  (Pm,n(z,z).

Collecting the terms of bidegree (m, n) in (z, z) with m +  n =  2t +1  (like in the proof of the extended M oser ; 

lemma) we find G^nor^^\z,w) and Fnor\z,w)  as follows. We prove the following lemma:

L em m a 2.2.1. Gior^^\ z ,w)  =  0, Fnor\z,w)  =  aw^ — z{z ,a)w‘~ \  where a — {a\ , . .  . , a ^ )  G C ^ . ^

Proof. Collecting the pure terms of degree 2r +  1 in (2.46), we obtain that qhi+\fi{z) =  <p2t+\ o(^)- Collecting 

the terms o f bidegree (m ,«) with m +  « =  2? +  1 in (z,z) and 0 <  m <  n — 1 (2.46), we obtain

= -  (z,Fn-m + \,m~\(z)) (Z,Z)'”~'  +(Pm,nU,z)- (2.47)

Since (Pm,n{z,z), ^>'m,n{z,z) satisfy (2.10), by the uniqueness of the trace decomposition, we obtain Fn-m^-\,m-\ (^)

0. Collecting the terms of bidegree {m,n)  in {z,z) with m-\-n =  2t +  I and m >  n +  \ in (2.46), we obtain

^  G m -n A z ) { z ,Z y  -  {Fm-n+\,n-\{z),z) {Z,Z)"~^ +  (2.48)

Since F,„^n+ 1  \{z) =  0 it follows that Gm~n,n (z) =  0. Collecting the terms o f bidegree (t — l , f )  and — 1)

in (z,z)  in (2.46), we obtain the following two equations

<p/_ 1 (z, z) =  - (  (Fo,t-l ( z) , z) (z, z) + (z, F2 ,t- 2  {z) ) ) { z , zy~ ^  + (pt-\,r {z, z ) ,

(z,z) =  G i,,_i (z)(z ,z)^"' -  ((F 2 ,,_2 (z),z) +  (z,Fo,,_i (z)) (z,z)) +  (Pt,t-\{z,z).

By using (2.49) it follows that G\^t-\{z)  =  0. We set Fo^t-\{z) — a  = : { a \ , . . . , a s )  and we write F2 ^t-2 {z) =  

( f 2 j_ 2 (z),. .. ,F 2̂ f_2 (2 ) ) .  Since (pm^n{z,z), (Pm,n{Z:Z) satisfy (2.10), by the uniqueness o f the trace decom posi

tion, by (2.49) we obtain the equation (z,a){z,z)  +  {F2^t-2 {z),z) =  0, that can be solved as

Fit -2{z)  =  ~ - ^ ^ { { z , a ) { z , z ) )  =  - zk{z , a ) ,  k = \ , . . . , N .  (2.50)

Therefore Fjo^^(z,w) =  a u ^ —z ( z , a ) w h e r e  a =  ( a i , . . .  ,aA?) G C'^. □

By Lem m a 2.2.1 and by (2.41) we conclude that F{z,w)  — Fno‘r̂  (z, w) +  F>2 / + 1  (z, w) and G{z,w)  =  G>2t+2 {z, 

We also have F>2f+i (z, w) =  Y  P^k,i{z)w', where F^,/(z) is a homogeneous polynomial o f degree k. It fol- ■
k+2l>2t+\

lows that

w t{F> 2 /+i(z,vv)} >  min +  min {k +  2 l \ > 2 t + \ .  (2.51)
fc+2/>2r+l k+2l>2t+\

Next, we prove that w t |F > 2/+ i(z ,w ) | >  5̂ +  5 - 1 .  Since w t |F > 2 /+ i(z ,w ) | >   ̂ m n   ̂ |/:(5'—1)+/5'}, it is 

enough to prove that k{s — \) + Is > ts + s — \ for k + 21 > 2 t  + \ . Since we can write the latter inequality as

(/c — 1)(5' — 1) +  /5 >  for (^ — 1) +  2/ >  2t, it is enough to prove that k{s— \ ) -\- Is > ts ,  for /c +  2/ >  2t. Since
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■s >  3 it follows that ks — 2 k >  0. Hence 2k{s — \) + 2 l s > k s  + 2ls. It follows that k{ s— I) + Is > ^{k + 2l) >

Lemma 2.2.2. By using the previous calculations, we give the following immediate estimates

w t { F > 2 r + i ( z , w ) }  > 2 t + \ ,  w t | F > 2 , +  i ( z , w ) |  >  ts + s - l ,  w t | | | F > 2 , +  i ( z , w ) | | ^ |  > t s  + 2,

W t | F i o ^ ^ ( 2 , w ) |  > f S  +  2 - . S ,  W t | F i o ^ ^ ( z , w ) |  >  w t j  F^or\z,w) I

wt I  (^F^^r (z, w),F>2t + ] (z, ^^)) } I wt I  <̂ F>2, + i ( z , w),F„^^r  ̂(z, |  >  +  2,

where w satisfies (2.42).

> ts  + 2, (2.52)

As a consequence of the preceding estimates, we obtain

2
ll^u>vv)||^= F^or\z,w) +2'R/Fio;^(z,w),F>2,+i(z,w)\4-||F>2,+i(z,w)|p =  0,^^'+f(z,z), (2.53)

where w satisfies (2.42). We observe that the preceding power series property wt >
ts-\-2.

In order to apply the extended Moser lemma in (2.46) we have to evaluate the weight and the order of the 

terms which appear and are not ’’good”. Beside the previous weight estimates (see (2.52) and (2.53)) we also 

need to prove the following lemmas:

Lemma 2.2.3. For all m , n >  1 and w satisfying (2.42), we have the following estimate

(p'm.n { z  +  F{z,w), z  +  F{z,w)^ =  (p,'„„(z,z) +  29  ̂ F>2,+i(z, +  0^'+ |{z,z), (2.54)

where wt | 0 ,‘5+2 (^ '2)}  > ts  + 2.

Proof. We make the expansion ^z +  F(z,w ),z +  F(z,w )^ =  „(z,z) +  ■ ■., where in we have dif
ferent types of terms involving Fi^r i i { z )  with k' + 21' < m +  n and normalized terms ( P k , i { z , z ) ,  ( P u ( z , z )  with 
k + l < m + n. In order to study the weight and the order of terms which can appear in ” ...  ” it is enough to 

study the weight and the order of the following particular terms

Ai(z ,w)  = F,(z,w)z'z^,  A2 (z,w) =z^ 'z^ 'F i(z,w ), B]{z,w) = F z{z ,w )^ t ! , B2 [z,w) = F2 {z,w)zf'z:' ' ,

where Fi (z, w) is the first component of Fno'r {z,w) and F2 (z, h') is the first component of F>2i+1 (z, vv). Here we 
assume that |/| = m  — 1, |/i | — m, |/i | =  n — 1, |/ |  = n.

By using (2.52) we obtain wt{Ai(z,w)} >  m — 1 + fs  +  2 —s +  n(s — 1) >  fi +  2. It is equivalent to prove that 

m — 1 +s{n  — 1) — « >  0. This is true because m — 1 +s{n  —1) —n > m —1 +  3(n — \) — n > m  + 3n — 4 — n >  

3 +  « — 4 >  0. On the other hand, we have Ord{Ai (z,w)} > m  — \ + 2t + n > 2 t  + 2.
By using (2.52) we obtain wt {A2 (z, w)} > m + ts + {n — \ ){s — I) > t s  + 2 4==> m +  (^ — 1)(n — 1) >  2. We 

have m + { n — l ) ( s — 1) > m  + 2{n— 1) > m + 2 n  —4 > 0 ,  and this is true because m + n > 3  and m , n >  1. On 

the other hand we have Ord {A2 (z, h')} >  w +  2f +  n — 1 > 2? +  2.

In the same way we obtain that O rd{Si(z, w)}, Ord{fi2 (^iW')} > 2 t + \ .  By using (2.52), every term in 

that depends on F2 {z,w) can be written as 0^(z,z)F2(z, w). From here we obtain our lemma. □

Lemma 2.2.4. For w satisfying (2.42) and fo r  all k >  s, we have the following estimation

(pliz + F{z,w)) = (pI{z) + 2 ‘̂ (@~{z,z),F>2t+\{z,w)'^ +@f^+j{z,z),  (2.55)

where wt | 0 ,'5+ |( 2 ,^) |  >  fi +  2.
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Proof. We make the expansion (z +  F(z,w )) =  <p^(z)+  ...  . In order to study the weight and the order of 

terms which can appear in it is enough to study the weight and the order of the following terms

A{z,w)  =  F\ { z ,w)z ' , B{z,w) =  F2{z, w)z',

where F] (z, w) is the first component o f F^or\z,w) andF 2 (z,w) is the first component of F>2;+i (z, w). Here we 

assume that \I \= m  — \ > s. Then, by (2.52), we obtain that wt {A(z, w)} >  5+  f^ +  2 — s >  /s +  2. On the other 

hand, we have Ord{A(z,w)} >   ̂+  2/ >  2f +  2. By using (2.52), every term in ”. . that depends on F2 {z,w) 

can be written as & l{z,z)F 2 {z, w). From here we obtain our lemma. □

We want to evaluate the weight and the order of the other terms of (2.46). By Lemma 2.3.3 and by Lemma 

2.3.4, it remains to evaluate the order and the weight of the terms of the following expression

S{z, z) =  29  ̂{F{z, w), z) +  291 {cp' (z +  F(z, w))},

where w satisfies (2.42).

(z , w) +  F > 2 ,+ 1 (z, w ) , +  29^ I A  +  ^nor
(2.56)

Lemma 2.2.5. For Fnl‘r{z ,w ) given by Lemma 2.3.1 and w satisfying (2.42) we have

2‘̂ {F jilP  {z,w) =29? {(z,a)A (z)w '~ '}+0,^^'+ |(z,z), (2.57)

where wt (^>^)} > *̂ +  2.

Proof. We compute

29?{^Fio^^(z,w'),z^ = 2 9 ? {w' (0 ,2 )} - 2 9 ? {(2,a)(z,z)w '“ ‘},

=  29?{(z,a) w* -  (z,a)(z,z)M/” ' } +  (a,z) (w* - ' ^ )  +  (z,a) - w ‘) , (2.58)

=  29? { (z, a) A(z) '}  +  0,“' + | (z, z ),

where wt |  ©,̂ j+ 2  |  >  f-* +  2. □

In the course of our proof we will use the notation A'(z) =  (Ai (z ),. . .  ,A/v(z)). It remains to prove the 
following lemma

Lemma 2.2.6. For w satisfying (2.42) we have the following estimate

(2.59)
29?{A (z +  F (z ,w ) ) }  = 2 9 ? {A (z) - s (z ,a )A (z )v / ’ }

+  29? A' (z) +  0^ (z, z), F>2 , + 1 (z, w) ̂  +  0,^j+| (z, z),

where wt (z, z) |  > ts + 2.

Proof. By using the Taylor expansion it follows that

29?{A(z +  F (z,w ))} =  29? I A(z) +  A;t(z)F|2,(z,H’) +L (z,z) I , (2.60)

w hereF |2,(z,w) =  (F^2/(2>^)>--->-f’>2r(^>^)) and L(z,z) =  (0^(z,z),F>2i+i(z,w)}. We compute

5 ]  29? I  A* ( z ) f |2 ,  (z, w) I  =  29? I  a* (z) (<3* w' -  Zi (z, a> v /  ‘ +  F |2 ,+  1 (z, h ')) | ,
i= i '■ J i= i  ̂ (2.61)

=  (2 -2 ) - 2 i ’9? {(z,a)A (z)w '“ ‘ } +29? (|a '(z),F > 2,+i (z, w)^ ,
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where wt > t s  + 2. □

For w satisfying (2.42), by Lernma 2.2.5 and by Lem ma 2.2.6, we can rewrite (2.56) as follows

5(z, z) =  2( 1 -  5)9  ̂{ (z,a) A(z) w '" '}  +  25R +  A'(z) +  (z, z ) , F>2/+1 (z, w )^ > (2.62)

where wt |0 j “̂ '^ |( z ,z ) | >  ts +  2. By Lemmas 2.2.1-2.2 .6 we obtain

G>2t+ 2  (z, (z,z) + (f>>3(z,z)) =2(1  - s ) 'R |( z ,a ) A (z ) ({ z ,z )  +  <|P>3(z ,z )) '“ ’ }

4-29? (^z-t-A'(z) - |-© i(z ,z ) ,f> 2r+l (z, (z,z) 4- (p>3iz,z))^ (2-63)

+  9>2t+2[z,z) -  f > 2 ,+2 i^,z) +  ef ^+l{z , z) ,

where wt |©,^^'+l(z, z) |  > t s  +  2.

Assum e that / =  1. Collecting the terms of total degree k < s +  I in (z,z) in (2.63) we find the polynomials 

(^Gnor^\z,w),F^ol{z,w)^  for all k < s .  Collecting the terms of total degree m + n =  s +  \ in (z,z) in (2.63), we 

obtain

G «w '* (z,(z ,z)) =2(1  {(z,a)A(z)}-t-29t<^z,Fi^^(z, (z,z))^  -1-<p,'+i(z,z) -  <p.s+i (z,z) +  (© 1)^+2 (z-^)-
(2.64)

By applying the extended M oser lemma we find a solution ^C?ioT'*(z, w),F„or(z, for the latter equation. 

We consider the following Fisher decompositions

<P.vfi.o(z) =  2(z)A (z)-h /?(z), <Pi-+i,o(2) =  G '(z)A (z)-h/? '(z), (2.65)

where A* {R{z)) =  A* {R'{z)) =  0. We want to put the normalization condition A* i o(^)) =  0- Collecting 

the pure terms of degree i  -I-1 in (2.64), by (2.65) we obtain

«Pi'+i,oW =  <P.vf i,o(z) -  (1 - s ) (z ,a )A (z )  =  (e (z )  -  (1 - s ) ( z , a ) )  A(z) -h«(z), (2.66)

where 2 (z )  is a determined polynomial o f degree 1 in z i,. .. ,Z N - It follows that Q '(z) =  2 (z )  — (1 — ^)(z, a)

and R'(z) =  R(z).  Then the normalization condition A* =  0 is equivalent to finding a such that

Q'{z) =  Q{z) — (I —s)(z ,a)  =  0 . The last equation provides us the free param eters.

A ssum ing that f >  2, we prove the following lemma (this is the analogue o f Lemma 3.3 of Huang-Yin’s 

paper [2 0 ]):

Lemma 2.2.7. Let : = t s  +  2. For all 0 < j  < t — \ and p  £  [2t +  j { s  — 2) -|-2 ,2f -t- (7 4- l ) ( i  — 2) -|- 1], we

make the following estimate

G>p{z,  w) = 2 (  I -  9? { (z,a)A(z)^'^' } 4- 29? (z  4- A'(z) 4- © ?(z ,z ), f> p - 1 (z, w )\
\  /  (2.67)

4- <p>p(z,z) -  <p>p(z,z) 4 -®N,(z,z),

where wt >  Ng and w satisfies (2.42).

Proof.

S tep  1. When .y — 3 this step is obvious. Assume that s~^3.  Let pQ — 2t ji^s — 2) 4-2, where j  G [0,f — 1]. 

We make induction on p  G [2t +  j { s  — 2) 4 -2 ,2f 4- (7 4 - 1)(i — 2) 4-1]. For 7 =  0 (therefore p  =  2t +  2) the 

lem m a is satisfied (see equation (2.63)). Let p  > po such that/? 4-1 <  2? 4 - (7 4 - l ) ( i  — 2) 4 - I. Collecting the 

term s o f  bidegree {m,n)  in (z,z) in (2.67) with m + n =  p , w e  obtain

Gm)r{z,{z,z)) =  29l(^z,f’,w r'^  (z, (z ,z )))  +  9p{z,z)  ~  (Pp{z,z)+ F'^^{z,z). (2.68)
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By applying the extended M oser lem m a w e find a solution ^ \ z , w ) , G i o l { z , w ) j  for (2 .68). A ssum e

that p  is even. In this case w e find p } ^ r ^ \ z , w )  recalling the cases 1 and 3 o f  the proof o f  the extended

M oser lem ma. By using the cases 2 and 4 o f  the proof o f  the extended M oser lem m a w e find

Since w t |p ^ + ^ ( z ,z ) |  >  Ns w e obtain w t |< ^ F i^ r " '* (z ,(z ,2 ) ) ,z ^ |,w t |^ F i^ r " ’^ (z ,( z ,z ) ) ,z ^ }  >  Ns. A lso

w t |G io l - ( z , ( z ,z ) ) | ,  w t |c i o r ( z ,  ( z , 2 ) ) |  >  We can bring sim ilar arguments as w ell when p  is even. We 

obtain the fo llow ing estim ates

w t |F if r ~ ’^(z,H ')| > A ^ j - s + l ,  > A ^ i - l ,

w t |F i^ r ' ' ( z ,H ') - F i^ r ~ ’* ( z , ( z ,z ) ) |  > N s - l ,  w t |F i ^ r ‘’ (z ,H ')-F ii'r“ ' ’ (z, ( z , z ) ) |  >  Ns ~  s +  I , (2 .69)

w t|G i^ ^ (z ,H ') | > N s ,  wt l^G‘fJ r { z ,w ) -Gi^ l { z , { z , z ) ) '^  >N s ,

where w  satisfies (2 .42). A s a consequence o f  (2 .68) w e obtain

c h ’Jriz, w)  -  g\̂ X  (z , ( z , z ) )  =  & ^ ^ ' ( z , z y ,  291 < ^ z , F m r ~ ' \ z , w )  -  (z, ( z , z ) ) j  =  0 ^ ^ '  ( z , ? y ,

^ ' ( z ) + & s( z , z ) ,F no r  (z, w) )  +  (  (z, Vw), A'(z) +  0 ^ (z ,z )  )  = 0 ^ + ' ( z ,z ) ' ,
(2 .70)

and each o f  the preceding formal power series 0 ^ ^ ' (z ,z)' has the property wt |© ^ ^ ' ( z ,z ) ' |  >  Substituting  

i(z ,i

c i i f j  (z, w) +  G>p + 1 (z, w) = 2 (  1 -  s y +  ' 9 i ( ( z , a } A ( z y + ' n /  ‘ }

F>p^i ( z ,w )  =  Fjî r ’*(z,w ) + F > p (z , w) and G> p{z ,w)  =  G if i(z ,w )  +  G > p + i(z ,w ) into (2 .67), w e obtain

+  29? ^ z +  A'(z) +  @;{z,z),F^^r  '^(z, w) +  F>p{ z ,w )^  +  (Pp{z,z) -  (pp{z,z) 

+  (z, z) +  <p>p+ 1 (z, z) -  <p>p+ 1 (z, z) +  0^;^ ‘ (z, z ) .
(2.71)

Collecting the pure terms o f degree p  in (2.68), it follows that (pp,o(z) =  (ppoiz) +  ■ ■ ■, where in ”. . .  ” we 

have determined terms with the weight less than p  <  := ts +  2. Therefore <Pp,o(z) =  (Ppo{z)- We will obtain

that (pk.o(z) =  all  ̂ =  3 , . . .  , r .  By making a simplification in (2.71) by using (2.68), it follows that

G>p+i { z , w)  =2(1 -s)-^'^'9l {{z,a)A(z)-''*'V  ̂ '}  +  29? (̂ z +  A'(z) +  0^(z,z),F>p(z,M' 

+  9>p+i (z ,z ) -  <p>p+i (z ,z ) + / ( z , z )  +  0 ^ + ' (z ,z ) ,
(2 .72)

where wt 0^; (z ,z ) ? >  N,  and

y(z,z) =29?(z,Fi^r ^ \ z , w ) - F ^ l ^ r  ( z , ( z , z ) ) )  +  291 ( A '( z )  +  0?(z,z),F^^’r '^(z.w)
' / \  /  (2.73)

+  C il’Jr (Z, (Z,Z)) -  C il’j r i z ,  w ) .

By using (2 .69) and (3 . 16) it follows that 7(z,z) =  0^^'(z,z), where wt |0 ^ ^ '(z ,z ) | >  Ng.

Step 2. Assume that we have proved Lemma 2.2.7 for p  &[2t +  j { s  — 2) +  2 ,2t  +  { j  +  l ) ( i  — 2) +  1] for all 

j  G [0,f — 1]. We shall prove Lemma 2.2.7 for p  £  [2f +  ( y +  l ) ( i  — 2) + 2 ,2 ?  +  (y +  2)(s —2) +  1]. Collecting 

the terms of bidegree {m,n)  in (z,z) in (2.67) with m +  n =  A +  1 :=  2f +  (7 +  l) ( s  — 2) +  1, we obtain

Gior'^''(z,(z,z)) = 2(1 - 5)^'+'9? {{z,a)A(z)-'’̂ '(z,z)'“ “̂ ‘ } +  29? (z ,F ^ oh z, (z,z)))
\  '  (2 .74)

+ <Pa+ 1 (z, z) -  (Pa+1 (z, z) +  IF^+' (z, z).
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Here wt (z ,z )| >  N̂ . We define the following map

F„!^){z , w ) = f I ' ^ \ z , w ) + F ^ ^ \ z , w ) ,  f I ^ \ z , w ) =  - { {  -  s y " "  { z , a ) A { z Y ^ W ~ j ~ ^  { z \ , .. ■ , z n ) ■ (2.75)

Substituting (2.75) into (2.74), we obtain

Gnor' {z,{z,z)) =  23i(^z,F^^\z,{z,z))'^ +  (PA+dz,z)-(pA^i{z,z) +  W>^^\z,z). (2.76)

By applying the extended Moser lemma we find a solution for (2.76). By using the

same arguments as in the Step 1 we obtain the following estimates

Wt I   ̂(z, w) -  d o ^ ' ̂  (z, (z, z) ) I  , wt I  ’ (z, w) |  , Wt |  c i^ r  ’ ' (z, (z, z) ) |  >  Â .v,

w t | F i ' ' ’ (z ,w )-F 2 ^ '^ * (z ,{z ,z ) ) | ,  w t|F2^''’ (z ,w )|,w t|F 2 ^ _ ^ ^ (z ,(z ,z )) | > A ^ j - ^ + l ,  (2 .77)

wt I F^ '̂’ (z, w) -  F̂ ^̂  (z, (z ,z )) I , wt I F̂ '"̂  (z, w) I , wt I F^̂  ̂(z, (z ,z )) |  >  A(s -  1, 

where w satisfies (2.42). As a consequence o f (2.77) we obtain

/  A' (z) +  0 ;  (z, z), F ^ ^ ^  { z , w ) \  +  /  F j ^ ^  (z, w ) ,A ' ( z ) + 0 ^ ( z , z )  \  =  0;^+^ (z, z ) ',
\  /  \  /  (2.78)

GTOr̂ ‘ ’ (z ,w )-G ilir^ ''(z ,(z ,z ))  =  0 ;i+^(z,z)', 29? <̂ F2^"'^(z, w) - ^ 2^̂ ’̂ (z, (z,z)) ,z^ =  0 jj+^(z,z)',

where w satisfies (2.42) and each o f the preceding formal power series has the property wt |© jj^^^(z ,z)| >  A(s-

Substituting F>a(z,h') =  FX^r^(z,w)+ F>a+i(z,w) and G > a + i (z , w ) =  G ^^ /''(z ,w ) +  G>a+2 (z,w) in (2.67), 

we obtain

GTOr^''(z, w) +  G > a + 2 (z, w ) =  2 ( 1 -  5 )''+ ' 9? { ( z , a ) A ( z y  '̂ w ' ' - '” ' }

+  29t ^ z  +  a '( z )  +  © ^ (z , z ) , f JoJ (z , w ) +  F > a +  1 (z, w ) ̂  +  (pA+1 (z ,z )  -  <Pa+ i (z> 

+  <PU+2(2>z) -  <P>A+2 (z ,z ) + P ;J + '( z ,z )  +  © ;^+^(z ,z).
(2.79)

By making a simplification in (2.79) with (2.74), and then by using (2.75), we obtain

G > a + 2 ( z , w)  =  29? <̂ Z + A '( z )  + 0 ? ( z ,z ) ,F > a + i  ( z , w ) j  +  <P>a+2 (z ,z )  -  (p>A+2 (z ,z )  + & ^ ^ ^ ^ (z ,z ) + J ( z , z ) ,

(2.80)

where

J (z ,z )  =  29{<^Z,F„i^^ ( z , w ) ~  F ^ o ) (z, (z ,z)) ^ +  29? ^ a ' (z ) +  0 ^ ( z , z ) , F ^ io ) (z, w)  ^

+  2(1 - i) -^ + ‘ 9?{(z,a)A (z)-^ '^V“ -''"‘ -  (z ,fl)A (z)^+ '(z ,z )'" -'" '} + c io r  (z ,(z ,z)) -G J ,ô (z , w),

=  29? (̂ z, ( z , w) -  f [^^  (z , (z , z ) ) +  F2̂ "̂ ' (z , w) -  F^^  ̂(z, (z, z )) ̂

+  29? A'(z) +  0 j  (z, z ), f / ' ' '  ( z , w) +  F^̂ '̂  (z, w ) ^ +  G^or (z, (z, z )) -  g Io ’ i z , w )

+  2 ( 1 -  5)^+'9? { (z,a)A(z)^+‘ (w '-> - ' -  (z ,z ) '-^ - ‘ ) } .
(2.81)

By using (2.77) and (2.78) it follows that

y(z,z) =  29? (z , f / ' ' '  (z, w) -  f/'^^ ( z , (z , z ) ) )  +  29? / a ' (z ) +  © j ( z , z ) , f/"'^ ( z , w) \
'  /  \  /  (2.82)

+  2(1 -.)^ + '9 ? {(z ,« )A (z V + ' - ( z , z r ^ ' - ' ) }  +  ©;^;2(z,z),
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where wt|©jJ^^^(z,z)| >  Ns- We observe that

‘3 i (^z ,F l^\ z , { z , z )) ' j  =  - ( 1  (2.83)

Since wt|F,^^^(2 ,w ) |  >A(s —san d  wt > N s, it follows that

3 i ( ^ e l { z , z ) , F l ^ \ z , w ) ^  =  Q^+^{z,z),  (2.84)

where wt >  N .̂ By using (2.83) and (2.84), we can rewrite (2.82) as follows

J{z , z)  = 23 i  (^z,F^^\z,w)'j  + 2 3 i  ( ^A ' { z ) ,F l^ \ z ,w ) j  + 2 { l  -  s y + ' ^ i  { { z , a )A {zy ^ '  w‘  ̂ ‘ } +©;^+^(z,z),

_____________________________________________________________________________________________ (2.85)

where wt |©/Vj'’'^(z,2) |  >  N .̂ Substituting the formula o f f [ ^ \ z, w) in (2.85), we obtain

J{z , z)  =  - 2 ( 1  I  ( z , a ) A ( z ) ^ ' + ^ ( z , z )  +  {^(zi, . . .  , (A | (z), .. . ,A n {z)^ ) )  }

+  2 ( l - . r > 9 ^ { ( z ,« ) A ( z V + V - ^ - - ' }  +  0;J+^(z,z), ^2.86)

=  - 2 ( 1  { ( z , a ) A ( z ) - ^ + ( ( z , z )  + sA (z) -  w)} +Q^^^{z ,z ) ,

=  2 { l - s y + ^ ^ { { z , a ) A { z y + ^ v ^ ^ - j - ^ } + @ ^ f { z , z ) ,

where w satisfies (2.42) and wt |© /v^'^(z,z)| >  Ng.

The proof of our Lemma follows by using (2.86) and (2.80). □

Collecting the terms o f bidegree {m,n) in (z,z) with m +  n =  t s +  I and f =  y — 1 in (2.67), we obtain

Gno^ '̂* (z, (z,z)) = 2 ( 1 - { (z, a)A(z) ' } +  2SK (z,Fi,'r’ (z, (z ,z )))
\  /  (2.87)

+  9(5+1,0 (^-2 ) — (jD,i+i,o(z,z) +  (©Ojj '̂ '̂ (z,z).

By applying the extended Moser lemma we find a solution (^cllo^^\z,w),F^oJ{z,w)^ for (2.87). Collecting 

the pure terms in (2.87) o f degree fs +  1, it follows that

<P«+i,o(z) -  <P«+i,o(z) =  (1 -  x)'(z,a)A (z)'. (2.88)

The parameter a will help us to put the desired normalization condition (see (2.11)). By applying Lemma 2.1.4 

to <p,^+i_o( )̂ and (p„+i,o(z), it follows that

<iP(j+i,o(z) =  (1 - s ) '2 (z )A (z ) '+ /? (z ) ,  (p/j+,_o(z) =  !2'(2)A (z)'+/?'(z), (2.89)

where (A')* {R{z)) =  (A')* {R’{z)) =  0. We impose the normalization condition (A')* o(^)) =  0- T̂ his

is equivalent finding a  such that Q'{z) =  0. Here Q{z) is a determined polynomial. We find a by solving the 

equation Q'(z) =  (1 -  s)‘ (z,a) -  Q{z)  = 0 .

By composing the map that sends M  into (2.42) with the map (2.44) we obtain our formal transformation 

that sends M  into M'  up to degree /s  +  1.
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2.3 Proof of Theorem 2.0.3-Case T +  1 =  (f +  1)5, r >  1

In this case we are looking for a biholom orphic transformation of the following type

(z ',w ') =  {z +  F {z , w ) ,w  +  G{z ,w) ) ,

F { z , w ) =  ^  G(z,w) =  ^
(2.90)

/=0 1=0

that maps M  into M'  up to the degree 7" +  1 =  (f +  1 )s. In order to make the mapping (2.90) uniquely determ ined 

we assume that Fnl‘r^ ^ ^^ \ z , w )  is normalized as in the extended M oser lemma, for all / =  l , . . . r  —2/ — 1. 

Replacing (2.90) in (2.43), and after a simplification with (2.42), we obtain

E r '  G,
T=0

T-2t- \

i z , { z , z )  +  <p>3{z , z ) )=23i (^  ̂ F^or^''^^''{z,{z,z) +  (p>3{z , z ) ) , z
1=0

1=0
(2.91)

+  <P>3 E Fn0 r ^ ' ^ ^ \ z , { z , z )  +  (l>>3{z,z)),z+ Y, {z,z) +  (p>3{z,z))^ ~  (l>>3{z,z) ■

Collecting the terms with the same bidegree in {z,z) in (2.91) we will find F{z ,w)  and G{z,w)  by applying 

the extended M oser lemma. Since F{z,  w) and G(z, w) don’t have com ponents o f normal weight less than 2t  +  2, 

collecting in (2.91) the terms of bidegree (m ,n) in (z,z) with w +  n <  2/ +  2, we obtain (p'„^„(z,z) =  (Pm,n{z,z). 

Collecting the term s o f bidegree (m ,«) in (z,z) with m +  « =  2 f+  2 in (2.91), we prove the following lemma:

L em m a 2.3.1. Gj,~Jr ~ \ z , w )  =  (a +  a )w '+ ',  f}^‘/  ' \ z , w ) =  w/

(  a\

\  «A /l

a \ N \ (  Z\  \

o n n  )
, where N a  is

\ Z N  J

the trace o f  the matrix j<n -

Proof. Collecting the pure terms of degree 2 r+  2 in (2.91), we obtain that (pit+iiz) =  Collecting the

terms of bidegree {m,n)  in (z,z) with w +  n =  2f +  2 and 0 <  m <  n — 1 in (2.91), we obtain

(2.92)

Since (pm,n{z,z), Satisfy (2.10), by the uniqueness o f the trace decomposition, we obtain F„-m+\,m-i{z)

0. Collecting the terms of bidegree {m,n)  in {z,z) with m +  n =  2f +  2 and m >  n + \  in (2.91), we obtain

— Cm—n{z){z,z) (^m—n+l,«—1 (z),z) (z,z) +<Pm,n(z,z).

Since Fn_m+\.m-\{z) =  0 it follows that Gm-n{z) =  0.

Collecting the term s of bidegree (f +  l , r  +  1) in (z,z) in (2.91), we obtain

< P ; ' + l , r + l  f c z )  =  ( G 0 . / + 1 ( Z ) ( Z , Z >  -  {F\ j {^) , z )  ~  {z,F\ , , {z)) )  { z , z ) ‘ +  9/ + l , r + l f c z ) -  

Then (2.94) can not provide us Fj ,(z). Therefore F] ,(z) is undetermined. We obtain

/
p(2 r +l ) /  s _  /
t^nor \ Z i W )  — W

<311 aiN \

\ <̂ N\

f  Z\  \

ClNN / \ Z N  /

(2.93)

(2.94)

(2.95)

We write a\\ =  a~\-b\ \ , . . . ,aNt^  =  a +  b^N and we use the notations bk j  =  a^ j ,  for all k ^  j .  Then the 

matrix j)  represents the traceless part o f the matrix {c^k.j)x<k j<N' By applying Lem m a 2.1.1 to the
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N

polynomial we obtain {F[j{z) ,z)  = a { z , z ) + P { z , z )  with tr(P(2 ,z)) =  0, where F (z,z) =  Y,
' . j= i

By using the preceding decomposition we obtain

9,Vi,/+i(z,z) =  (Go,,+i { z ) - a - a )  (z,z)'+' +  (p,+i.,+\{z,z) -  29? {P {z , z ) { z , zy )  ■ (2.96)

Since tr(P (z,z)) =  0 it follows that tH^' (9? (P (z ,z)(z ,z)')) =  0 (see Lemma 6.6 in [34]). □

We can write F{z,w)  =  F„l‘r^^\z ,w)  +  F>2,+ 3 (z,w) and G(z,w) =  G>2,+2 (z,w) (see (2.41)). We have

^>2(+2 (z>^ )̂ =  P'k,i{z)w‘, where is a homogeneous polynomial of degree fc. Therefore wt {F>2(+2 (
k+2l>2t+2

min +  >  min (A: +  2 /} >  2f +  2. Next, we show that w t | f > 2/+2 (z ,w )!  >   ̂— 1. Since
k+2l>2l+2 k+2l>2t+2 I -  J

Wt |^>2t+2(z, min — 1) +  /s} , it is enough to prove thatk(s  — l ) ^- / ^>^^ +  ^ — 1 fo r k +  2l >

2t +  2. Since we can write the latter inequality as { k — l ) ( s — I) +  Is >  ts for { k — 1) +  2/ >  2f +  1, it is enough 

to prove that ^ ( 5  — 1) +  / i  >  fs for A: +  2/ >  2f +  1 >  2t. Continuing the calculations like in the previous case 

we obtain the desired result.

Lemma 2.3.2. For w satisfying (2.42), we make the following immediate estimates

>  f . ? + 1 ,  w t | F i ^ ^ ^ ' ^ ( z , w ) |  >  +  1 ,  w t |  | > f s  +  i + l ,  

W t { F > 2 , + 2 ( z , H ' ) }  >  2f +  2, W t | F > 2 , + 2 ( z , w ) |  > r j  +  i -  1, W t | | | F > 2 , + 2 ( 2 , H ' ) | | ^ |  > t S  +  S + \ ,  

W t | < ^ F i i ^ ' ^ ' ^ ( 2 , w ) , F > 2 , + 2 ( z , H ' ) ^ |  , W t | < ^ F > 2 , + 2 ( z , w ) , F j O T ^ ' ^ ( z , H ' ) ^ |  >  f i  +  i  +  1 .
(2.97)

As a consequence of the estimates (2.97) we obtain

+29?<^Fio/^''(z,w),F>2,+2(z,H')^ +  ||F>2,+2(z,H')||^ =  0 “'+ ^ i(z ,z ) , (2.98)

where wt |  , (z, z) |  >  f-J +  s +  1 •

In order to apply the extended Moser lemma in (2.91) we have to identify and weight and order evaluate 

the terms which are not ’’good”. We prove the following lemmas:

Lemma 2.3.3. For all m , n >  \ and w satisfying (2.42), we make the following estimate

<Pm,n ( z  +  F (z ,w ) , z  +  F(z ,w)^ =  cp̂  „ ( z ,z )+2Sl i (^0^(z , z ) ,F>2 ,+2(z ,w) j+&f‘+^^j(z,z),  (2.99)

where wt | 1  (z> +  ■̂ +  1 •

Proof  We have the expansion 9^ „ ^z +  F(z,w ),z +  F (z,w )j =  <p'„ „{z,z) + .  ■. (see the proof of Lemma 2.2.3). 
In order to prove (2.99), it is enough to study the weight and the order of the following particular terms

A \ { z , w )  =  F \ { z , w ) ^  z f , A 2(z,h ’) = z ^ ‘/ ‘F i(z ,w ) , B \ { z , w )  =  F 2 { z ,w ) ^z f , ^2(2, w) =  ẑ ‘z^‘F2(z, w ),

where Fi (z, w) is the first component of Fior^'^(z,vw) andF2 (z,w) is the first component o f F>2 1 + 2 ( z , h >). Here 

we assume that |/| =  /n -  1, |7| =  «, |/i | =  m, |7i | =  n — 1.

By using (2.97) we obtain w t{A i (z,w )} >  m — l + r ^ +  1 +  n(^ — 1) >  /^ +  s +  1 4==> m-[-ns — n > s +  \ <=>  

m +  s { n — 1) >  « +  1 and the latter inequality is true since m + s { n — 1) >  m +  3 ( n — 1) >  n +  1. On the other 

hand O rd{Ai(z, w )} > m — l + 2 f + l + n > 2 ?  +  3.

By using (2.97) we obtain w t{A 2 (z ,w )} > m  +  ( n— l ) ( i — l ) + f i  +  5 —1 > f s  +  s + l  and the last inequality 

is equivalent with m +  (n — l ) ( i  — 1) > 2 .  The latter inequality can be proved with the same calculations like in 

the proof of Lemma 2.2.3. On the other hand, we observe that O rd {A i(z ,w )} > m  +  2 t + l + n — 1 > 2 t  +  3.
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In the sam e way w e obtain O r d {S i(^ ,w )} , O rd{B 2 (2 iH’)} >  2 / + 2 .  By using (2.97), every term in 

tiiat depends on F2 { z , w)  can be written as 0 j(z ,z )F 2 (2 , w). This proves our lemma. □

L em m a 2 .3 .4 . For a ll k >  s and w satisfying (2.42), we make the fo llo w in g  estim ate

<pI,o (z +  /^(z-W')) =  + 23^ (0?(^ .z)>^ >2r+2(z,H ')) + 0 f ,'+ ,+ i(z ,z ) ,  (2 .100)

where wt |  i ( z , z ) |> / ' ^  +  i +  l.

Proof. We make the expansion q (j  +  F (z , w )) =  <p[ g(z) + ___ To study the w eight and the order o f  terms

which can appear in . . ” it is enough to study the weight and order o f  the follow ing terms

A{ z , w)  =  F \{z, w)t!  , B{ z, w ) = F i 7!,

where F\ { z , w)  is the first com ponent o f  Fjio'r^^\z,w) and F2 { z , w)  is the first com ponent o f  F>2i+3 {z , w) .  Here 

w e assume that |/ | =  m — 1 >  i . From (2 .97) w e obtain wt {A (z, w )} >  s +  t s  +  1 = t s  +  s +  1. On the other 

hand, we have O rd {A (z , w )}  >  2t +  s +  1 >  2t +  3 . By using (2 .97) each term in . . ” that depends on F2 { z , w)  

can be written as @j { z , z ) F 2 {z, w).  This proves our lemma. □

L em m a 2 .3 .5 . For w satisfying (2.42) we have the fo llow in g  estim ate

2 9 l{A (z  +  F (z , w ))}  =29^ |  A { z ) + Y , ^ k { z )  (a^izi H ha*/v2w)vv' >
t *=i J (2 .101)

+  29t  ̂A' (z) +  ©j (z, z), F>2,+2 (z, w) ̂  {̂z,z),

where wt i |  > ts +  s +  1.

Proof. For w satisfying (2.42), we have the expansion

29?{A(2 +  F (z, w))} =2?k | a (z) +  £ A i(z )F |2 ,+ i ( z ,w )+ L (z ,2 ) |  +©,2;+^^^,(z,z), (2.102)

whereF>2,+ i ( z ,w )=  (F^2(+i(^>^ )̂>--->-f’>2,+i(2,w')) and L(2 ,z) =  (^©^(z,z),F>2,+2 (z, w )^  We compute

^>2,+2(^’W) fE  25  ̂{A t(z)F |2 ,+ i(z, w ) | =  E  23̂  I M z )  ( w'' E
k = l  k = l  I  \  J = l

{ N
=  29^|w' EAt(z)(fltizi H \ - a k N Z N ) | +29^<^A'(z),F>2,+2(z,h')  ̂ .

(2.103)
□

Lemma 2.3.6. For w satisfying (2.42), we have the following estimate

( z , w ) -  29  ̂(̂ F̂ or̂  '^(z,H'),z^=2(a +  a)9?{A(z)w'}+2^R{P(z,z)w'} +  ©,“̂ '+,5 + 1  (z, z ), (2.104)

_ w _ ------------ --
where P{z,z) =  ^  t>k.jZkZj and wt|©^'+ 5 ^j(z,z) |  >  ts +  s +  1 . 

k . j = \
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Proof. For w satisfying (2.42), by Lemma 2.3.1 it follows that

/ b \ i + a  ... a\N \ / Zi \

,z ),(^P'nor'^^\z,w),z^ =  (a +  5)vv'+* - 2 9 ? ^ w '

\  f l / vi  . . .  b N N + a  )  \ Zn  )

— 29?{aw '" '''}  —2%[av\^{z,z)  + P (z,z)vv '}  + a { W ^ ^  — ,

=  2 3 i{a w '  ( w -  (z,z))} -2 9 l{ P (z ,z )w '}  + 0 f '̂+^^_^i(z,z),

=  29? ja w ' ( a (z) + A (z ) j  |  - 2 9 ?  {/>(z,z)w '} +©f;+^^+i(z,z),

=  2 (a  +  5)9? { A(z) w '} -  29? {P(z, z) w '} +  0,^ '̂+^+, (z, z ) ,
(2.105)

where wt ( z , z ) |  >  ts +  s +  1 . □

Substituting F{z ,w )  =  F^or^^ \z ,w )  + F>2 t+2 {z,w)  and G{z,w)  =  c ' 'nJr^^ \z ,w )+ G > 2 ,+3 {z,w)  (see (2.41)) 

into (2.91) and by Lem m as 2.3.2-2.3 . 6  , we obtain

G>2f+3 (z,w) =  2 9 ? |  + - - + a t ^ z w ) - ( a  +  a)A (z)^  h - ' |  + 29? {P(z,z) (vv'-  ( j , z ) ' ) }

+  29? +  A' (z) +  0 ^  (z, z ) , F>2 ,+ 2  (z, w) ̂  +  9 >2 ,+ 3  (z, z) -  <p>2i+ 3  (z, z) +  ©,̂ 5'^*+ ] (z, z) -
(2.106)

where w satisfies (2.42) and wt |©t̂ s‘+ŝ +i (Z iz ) | >  ts +  s +  1. It remains to study the following expression

E {z,z )  =  29? {P{z,z)  (w' -  ( z ,z ) 'j} . (2.107)

L em m a 2.3.7. For w satisfying (2.42) we make the following estimate

^ (z .z )  = 2 9 ? H p ( z ,z )  +  P (z,z}) A(z) Y ,  +®ri'Xs\i(z>2). (2.108)
t <:+/=»-1 J

N ______ _
where P{z,z) =  Y ,  wt (z ,z) |  >  t s +  s +  1.

k , j= \

Proof. We com pute

£(z,z) = 2 9 ? | p ( z , z )  (a ( z ) +A (z ) )  Y

=  2 9 ? N P ( z , z ) + P ( z , z ) )  A(z) Y. +®m+5+i(2>2)>
k + l = t - \

where wt |0fs^s^+[ ( z ,z ) |  >  ts +  s +  1. 

We consider the following notations

(2.109)

□

.if(z,z) = p(z,z) + p(z,z) = Y  {t>kj + bj k̂)zkzj,
k j = \

N  _
Q [ z ) = Y ^ k { z ) { a k \ Z \ + - - - + a k N Z N ) - { a  +  a)A{z) ,  Q\ { z ) - = Y  i>’kj +bj . k) zkAk{z) .

k = \  k ,J= l

(2.110)
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Then, for w satisfying (2.42), by Lemma 2.3.7 and the notations (2.110), we can rewrite (2.106) as follows

<^>2r+3 (z, w ) =  29^ {  Q{z) w '}  +  29^ {z, z)A{z)E,  _ i (w, (z ,z )) }  +  29? +  A '(z ) +  Qj(z,  z) , F>2i+2 (z, w) )

+  <P>2,+3(z>^) -  9>2r+3(z,z) +  © ,- ,'^ + 1  (z ,z ),

following lemma ( the analogue o f Lemma 3.4 o f Huang-Yin’s paper [20]):

Lemma 2.3.8. We define e{p) = O i f p <  It- \-sand  £{p) =  1 i f  p > 2 t  +  s, y {p) =  1 i f p <  ts +  2and j { p )  =  0 

i f p  =  ts +  2. LetN'^ := ts  +  s + l .  For all 0 <  j  < t  and pG  [2r +  j { s  — 2) +  3,2t +  { j  +  1)(5 —2) +2 ], we have 

the following estimate

G

Also Pi e N, fo r  a ll  / =  1,... ,y — 1.

Proof. For 7 =  0 and k =  Qws obtain p =  2/ +  3. Therefore (2.112) becomes (2.111).

Step 1. It follows by a similar approach as in the Step 1 o f Lemma 2.2.7.

Step 2. Assume that we proved Lemma 2.3.8 for m e  [2/ +  j {s  — 2) + 3 ,2 t  +  { j +  l)(s  — 2) + 2 ], for j  e 

[0,f — 1]. We want to prove that (2.112) holds for w e [2f +  (_/+ l)(s  — 2) +  3,2/ +  (y +  2)(5 — 2) +  2]. Collect

ing in (2.112) the terms o f bidegree (m,n) in (z,z) with w +  « =  A  +  1 :=  2f +  (y +  1 ) ( i  — 2) +  2, we obtain

(2 .111)

where wt { ® K + s ^ + i >  ts +  s +  1. Here £,_i (w ,{ z , z ) )  =  For p >  2/ +  3 we prove the
k+l=l- l

(2.112)

where w t |0 ^ ,  (z ,z ) | >  N ' and w satisfies (2.42). Here with l\ +  h  =  t — j  — \ and Fp  ̂ with I =  

1 are natural numbers satisfying the following recurrence relations

, ( A + l )
'nor +  2y{p) { ^ i z ,z ) A i z y + ^ { z ,z y - ^ - 'iz,{z,z)) =  2 3 i { z ,F ^ J  {z,

+  2e{p)3i lQi{z)A{zy{z,zy  ̂X^(-l)'^'(l- s ) ‘f I  
[  1=0

+  ( p A + l { z , z )  -  ( p A + l { z , z )  i z , z ) ,

where wt (z ,z )| >  We define the following mappings

+  2 { \ - s y 3 i { Q { z ) A { z y { z ,z y - J }

(2.113)

'nor

F,^'^>{z,w) =  -e {p )Q , {z )A {z y w ‘

F^^\z,w) = -y{p){- \yA{zy'^^ Y,  ̂  ̂ iY{bi , \+b[ j )zi , . . . ,J^{bi^N+bNj )zi
/|+/2=t-7-l \ '= i  /=i

F^to) (z,w) =  f I ' ^ \ z, w) +  F f  ̂ (z, w) +  F f  ̂ (z, w) +  (z, w),

where F^ (z, w) w ill be determined later (see 2.115)

f / ' ' \ z , w )  = - ( 1 -s ) ^ G (z )A (z ) - 'w '  j  '  { z ] , . . . , z n ) ,  

f I ' ^ \ z , w )  =  - e ( p ) Q , ( z ) A ( z y w ’ ~ ^ ^ ‘  (  - s / f / ' A  ( z i , . . . , z n )

(2.114)
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Substituting (2.114) into (2.113), by making some simplifications it follows that

g I o^ ' \ z , { z , z } )  = 2 ' ^  (^z , ( z , ( z , z } } ' ^  +  ( p A + i (z , I)  -  <Pa +  1 (z,z) +  ' ( z , z ) .  (2.115)

By applying the extended Moser lemma we find a solution w)j for (2.115). Byrepeating
the procedure from the first case of the normal form construction, we obtain the following estimates

W t|G io r " ^ '^ ( z ,H ') -G i^ r '^ '^ ( z ,  ( Z , Z ) ) | ,  Wt (z, w ) |  , Wt  ̂ (z, (z ,z ) )  |  >  N ' ,

W t ^ F j ^ \ z , w )  - F j ^ \ z ,  ( z , z ) ) j  , w t|F ]''’ (z,w)|, w t|F4'^’ (z,(z,z))| > A (,'-^ + l, (2.116)

wt|/=’4̂ ''’ (z,H')|, w t|F ]''^(z,(z,z))|, wt|F^'^'(z,w)-F^''^(z,z)| > N ' - 1,

where w  satisfies (2.42). As a consequence of (2.116) we obtain

'^& !{z ) +  Q ] { z , z ) , F ^ ^ \ z , w ) ^ +  ( F l ^ \ z , w ) , d ^ { z )  +  @ ] { z , z ) ^  =  @ ^ t '^ { z , z ) ', 

w) -  fJ '^^  (z, (z ,z ) )  ,z ^  =

(2.117)

where w satisfies (2.42) and each o f 0 ^^^(z ,z )' has the property wt |© ^ '/^^(z ,z )| Substituting F>^(z,w) =  

F j^r(z ,w ) +  F>A+i(z,w) and G > a + i (z , w ) =  G^o;^'^(z , h') +  G > a + 2 (z , h ’) in (2.112), it follows that

w) +  G > A+2 (z, w) =291 ^z +  a ' (z ) +  0 j ( z , z ) ,F^!^)(z,h') +  F>a 4-i(z,m')^ +  1 (z,z) -  <P>a+ i(z,z)

+ ‘ (z ,z )+ © ;J / ' (z ,z )+ 2 ( 1 -  s y ^  [ Q { z ) K z y w - i  ]

+  2 r (p )9 ? |( - l) ^ '^ (z ,z )A (z )^ + ' £ ' - { w' ' ( z,z) 4
I /|+/2=/-7'-1 J

+  2 e (p )911 e , ( z ) A ( z ) V - ^ ' s ) 'F ; - j | ,

(2.118)

where w satisfies (2.42). A fter a simplification in the preceding equation by using (2.113), it follows that

G >A+2 (z, w) =  29t +  A'(z) +  0 ^  (z, z) , F > a +  l (z, w) ̂  +  (p>a+2 (z, z) -  cp>a+2 (z. z) +  (z, z) +  / (z ,  z ) ,

(2.119)

where we have used the following notation

J{z,z) =  29  ̂(z, f !̂o)  (z, w) -  F^o) (z, (z,z)) ^ +  29? ^A'(z) +  © j (z,z), (z, w)^

+  2(1 -  s y ^ { Q { z ) ^ { z y ^ - i  -  e(z)A(z)^(z,z)'->} +  (z, (z,z)) -  o i^o t^\z, w)

+  2 7 (p ) ( - l) ^ 9 ? |^ ( z ,z )A (z r+ ' f E  £ '-> '> {z ,z ) '^ -(z ,z ) '-^ ’- ‘ I
I  \ i \+h=t - i - \  h+h=t- i - \  J )

+  2e(/?)9? |e i(z )A (z ) ' ' - s ) '  { f ‘~ ^ W ~ > - F '~ \ z,z)‘ ~^^ I ,

(2.120)

By using (2.114) the precedent identity becomes
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J{z,z) =  291 (^F^^\z,w) - (z ,(z ,z ) ) jy  +  29^^A'(z) +  0^(z,z), ^^Fj^^ \ z , w)

+  2( 1 -  sy S i  {Q{z)A{zy  (h / '^  -  (z,z)'“^ )} +  (z, (z,z)) -  ci^;^‘ ^(z, w)

+  2 r ( p ) ( - lV ^ R ^ ( z ,z ) A ( z y + ‘ E  £ '; > '■  (z ,z ) '^ -  i :  £ '- { ( z ,z r ^ '- '
I \h+l2='-j-^ l\+l2=t-j-\ ,

+  2e ( /? )9 ^ |e i(z )A (z ) ' '  •

We observe that

91 (z , (z , z )) ,z )  =  - (1  {Q (z)A(zV(z,z)'-^'},

(z , ( ^ , z) ) , z )  =  - e ( / 7 ) 9 ^ | ! 2 i ( z ) A ( z V ( z , z ) ' ~ ^  X ^ ( - l ) ^ ' ( l

9? ( F f  > (z, (z,z)) ,z )  =  - ( - 1  y j { p )  ^  I^U .z )A (z )^ '+ ' (z ,z ) '-^ -‘ I  I .
I h+h=t-j-\  j

Since wt | f^^^(z, w )! > +  1 and wt | f /^^(z, w ) |  >  fs +  i  — 1 for all /c G {1,2,3}, it follows that

(2 . 121 )

(2.122)

29? ^©2(z,z), ^ F , ^ ^ \ z , w ) ^ = 0 ^ , ^ ^ ( z , z ) ,  (2.123)

where wt |© J^,^^(z,z)| >  By using (2.116), (2.117), (2.122), (2.123) we can rewrite (2.121) as follows 

J(z,z)  =29? ^z, L  f / '' '( z ,w ) ^  +29? ^A'(z), ^

+ 2(l-sy9i{Q(z)A(zyw‘-j}+2(-iyy(p)9i! (̂z,z)A(zy '̂(z,zy- -̂' £  E'-jX
y h + h = t- j - \  j

+  2e (/7) 9? I Q ,  (z)A(z) V - ^ '  £  ( - 1  ) '̂ (1 -  s)’F ‘-^  I .

(2.124)

Substituting the formulas of f [ ^ \ z , w ) ,  p2^ \ z ,w )  and p j ^ \ z , w )  in (2.124) and using w satisfying (2.42), we 

obtain

y(z,z) =  -2 (1  -s)^9? {(2(z)A(z)-'w'~-'“ ' ( (z ,z )+ ^ A (z ))-!2 (z)A(z) W “ -'}

- 2 { - i y r { p y : n { ^ { z , z ) A { z y ^ '  E ' - / y ^ U ' - { z , z ) ' ^ ) ]
I h+l2=l-j-l J

- 2 ( - i y y ( p ) 9 ?  ( G,(z)A(z)^+' \
{ /|+ /2=/-)-l J

(2.125)

- 2 £ ( ; > ) 9 ? | G i ( z ) A ( z ) ' ' ^ ( - l ) ^ ' ( l V  ’ '( ( z , z ) + s A ( z ) - w ) | ,

By (2.125) and by the next identity (2.126) we obtain the recurrence relations given by the statement of 

Lemma 23.
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J{z,z) =  2{l -^V+‘9t{G(z)A(zV+V-^-'}+2y(p)(- iy-'^R|^(z,z)A(zV+2 ^  e ‘J - ' w'Hz,z)‘'
[ /,+/j=,_y_2

+  2 ( - 1 V + '9 i | g , ( z)A(zV + ‘ ^
I h + l 2 = t - j - \  )

+ 2 £ ( / , ) 9 t | e , ( z ) A ( z v ^ 'X;( - i ) f t+ ' ( i -5 ) '+ 'F / -v ->- ' |+© ; j^2 (^^^

(2.126)

w herew t{© ;^^2(z ,2 )}  >yv;.

The proof o f our Lem m a follows by using (2.126) and (2.119). □

Collecting the term s of bidegree {m,n)  in {z,z) in (2.112) with m + n — ts +  s and t =  j ,  we obtain

(z, (z, 2)) = 2 (  1 -  5)'9^ { Q i z ) A { z y  } +  2^:9? { 0 ,  (z)A(z)' } + 2 3 i ( z ,  ‘ > (z, vw))
\  '  (2.127)

+ <iPw+i,o(̂ >z) -  <P«+.r,o(2,z) +  (01 (z,z)-

By applying the extended M oser lemma we find a solution w),Fnor^^~^\z,  w)^ for (2.127). C ollect

ing the pure term s of degree +  s in (2.127), it follows that

<Pu+.s.o(z) -  <Pts+sfi{z) =  (1 ~ s ) ‘Q{z)A{z)‘ +  KQi ( z)A{z ) ‘, (2.128)

where K  =  (—l)^ '^ i (1 — H h ( —l) ^ '- '/ : ,_ i ( l  — .s) +  (—1)^/:,, with k \ , . .. ,k, £  N.  By the proof o f

Lem m a 2.3.8 (see (2.125) and (2.126)) we observe that fi\ — \ =  t. Next, by applying Lem ma 2.1.4 to

<Pr.s+.!,o(z) and (p',,+sfi{z), it follows that

<Pis+s,o{ )̂ =  (A i(z)A i(z)h  \-An {z)An {z) )A{z)' +C{z) ,

(Pts+sfl iz) =  (A',(2)Ai(2) + ---+A;vW'^/vW)AW'+G'(2),

where (A^A')* (C(z)) =  (A^A')* (C'(z))  =  0, for all A: =  1 ,.. .  ,N.  We have

^  K / \ (  (A*(z) + • • •  +  ( « t t -
k=\

(2.129)

G(^) =  Ak{z) +  • • • +   — J  Zk +  -- ■+akNZjvJ ,

N
QiW = E  A4(2)((a^i +«u)zi H----- \ - { a k k + a k k - { a  +  a ) ) z k  +  - "  +  {akN +  a N k ) z N ) -

k=\

(2.130)

We impose the normalization condition (A^^A')* =  0, for all A: =  1,...,A^. By L em m a2.1.4 this is

equivalent to finding («iy)i<,-^<yv that A', (z) =  • • • =  Ajy(z) =  0. It follows that

{ \ -  s)‘Okj +  K  {ok j +ajk )  =Ckj,  for all k j =  j ,

, /  a +  a \  _  _  (2-131)
(l--y) [ a k k  ] + K { a k k + a k k - { a  +  a ) )  =  Ckk, for a lU  = 1 ,. . .  ,N,

N
where Ckj is determ ined, for all =  1 , . . .  ,A .̂ Here Na =  By using the second equation in (2.131) we

*=i
find for all A =  1, . . . ,  Â . By taking the real part in the second equation in (2.131), we obtain

N
{ N s [ l - s ) ‘ +  2 NKs )  -  (2 (  1 - i ) '  +  2Ks )  J ]  9?a/, =  9lc*,t, A: =  1 , . . . , Â . (2.132)

l=\
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N N
By summing all the identities in (2.132), it follows that (1 —s)'N {s — 2) Next, going back

/ = i  * = i
to (2.132) we find for all I =  1 ,... ,Â . Now, let j  and k , j G { \ , . . . , N } .  By taking the real and the

imaginary part in first equation in (2.131), we obtain

((1 - sY + K) ^iakj + K ^ia j, = K^ia^j + ((1 - s ) ‘ +K )

((1 -  s)‘ + K) 3akj -  K'^iajk = 'SiCk.j, -K ^ a ^ j  + {{ \ -  s)' + K) 'Zajk =^cj^k,

where c^j  is determined, for all A:, y =  1 , . . . , and k 7̂  j. In order to solve the preceding system of equations 

it is enough to observe that (1 — s)' ((1 — +2K)  ^  0. It is equivalent to observe that

( 1 - 5 ) '+ 2 ( ( - 1 ) / : , ( 1 - ^ ) ' - ‘ + -- -  +  ( - 1) % ) / 0 , 

{ - \ y { { s - i y + 2 { k i { s - \ y - ^ + k 2 { s - i y - ^ + - - - + k , ) )  ^ o .

By composing the map that sends M  into (2.42) with the map (2.90) we obtain our formal transformation 

that sends M into M'  up to degree +  s 4  1.

2.4 Proof of Theorem 2.0.3-Uniqueness of the formal transformation 
map

In order to prove the uniqueness of the map (2.8) it is enough to prove that the following map is the identity

M ' b {z , w ) — > ( z + ( 2. 135)
\  k>2 k>2 /

Here M' is a manifold defined by the normal form in Theorem 2.0.3. We have used the notations (2.41). We 
make the proof by induction induction on /c >  2.

Definition 2.4.1. The undetermined homogeneous parts o f the map (2.135) by applying the extended Moser 

lemma are called the free parameters.

i DWe prove that F„„r (z, w) =  0. Here we recall the first case of the normal form construction. We assume that 
/ =  1. By repeating the normalization procedures from the first case of the normal form construction, we find 

that all of the homogeneous components of FnVr (z, w) except the free parameter are 0 and that Gnm{z, w) =  0 . 
By using the same approach as in the first case of the normal form construction (see (2.66)), it follows that

‘Ps+i,o(2)-<Pi+i,o(z) =  (1 - s ) { z , a ) ^ { z ) =Q.  (2.136)

(2)
Here a is the free parameter of F„v (z, w). It follows that a =  0. Therefore F„y {z, w) =  0.

We assume that F„o}{z,w) =  • • • =  F„^r^\z,w ) =  0, Gioi(z, w) =  • • • =  0 ^ 7 ''(ZjW') =  0. We want to prove 

that F„or~'^(z,w) =  0, Gllijr{z,w) =  0. First, we consider the case when k = 2t, with t > 2. Let a € be the free 

parameter of the polynomial Fnor\z,w). By repeating all the normalization procedures from the first case of 

the normal form construction it follows that all of the homogeneous components of Fnor\z,w) except the free 

parameters are 0 and that (z, tv) =  0. We are interested in the image of the manifold M  through the map

(2.135) to M  up to the degree f5 +  1. We repeat the normalization procedure done during the proof of Lemma 

2.2.7 In that case we have considered a particular mapping (see (2.44)). Here we have a general polynomial 

map with other free parameters. They generate terms of weight at least ts + 2 that do not change their weight 

under the conjugation:

w t{(Fi, ,„(z)H ''" ,z)} ,  w t{ ( 2 ,Fi,m(z)w'")} > / s  +  2, f o r a l l m > r ;

w t{(Fo,r(^)^v^^)}, wt{(z,Fo,r(z)w ' ')}  >  fs +  2, f o r a l l r > f  +  2.
(2.137)
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Here Foj{z)w''  are the free param eters o f f n l T ^ ^ \ z , w )  and F^or\z ,w),  for aWm > t and r > t  + 2 .

Therefore they cannot interact with the pure terms of degree t s +  1 (because of the higher weight). Therefore 

all Lem m as 2.2.1-2.2.6 rem ain the same in this general case.

By using the same approach as in the first case of the normal form construction (see (2.88)), it follows that

<P/j+i,o(z)-<P/s+i,o(z) =  (1 -  ^ )'(z ,a)A '(z) = 0 .  (2.138)

It follows that a =  0. Therefore F^or\z,w) =  0.

We assume that k — 2 t + \ ,  with t > 2 .  Let ( a , j )  j ^ b e  the free param eter o f F ior^ ' ^(z, w ) . By repeating 

all the normalization procedures from the first case of the normal form construction, it follows that all o f the 

hom ogeneous com ponents o f Fnl‘r ^ ^ \ z ,w )  except the free parameters are 0 and that d"„o^'^\z,w)  =  0.

We are interested of the image o f the manifold M '  through the map (2.44) to M '  up to the degree fs +  5 +  1. 

The other free param eters o f the map (2.135) generate terms o f weight at least ts +  s +  1 that do not change 

their w eight under the conjugation:

w t{(F i,m (z)H ''",z)}, w t{(z,Fi,m (z)w "')} >  /S +  S +  1, for all m >  f +  1;

w t{(Fo,r(z)H '^^)}, w t{(z,Fo,r(z)w '')} >  ?5 +  ^ + 1, f o r a l l r > /  +  3.

Therefore all Lem mas 2.3.1-2.3.7 remain true in this general case.

By using the same approach as in the second case o f the normal form construction (see (2.128)), it follows

that

(p L sf l iz )  -  (P,s+sfiiz) =  (1 -  ^)'(2(z)A '(z) =  0. (2.140)

It follows that =  0. Therefore F„}‘r ^ ^ \ z ,w )  =  0, Gior*^~\z,w) =  0. This proves that (2.135) is the

identity mapping. From here we conclude the uniqueness o f the formal transformation (2.8).



Chapter 3

A family of analytic discs

Let {z\,. ■ ■ ,ZNiW) be the coordinates from C ^+ '. In this chaper, we consider the higher dimensional analog 

case of (1,1) when the submanifold M  c is defined near p = Ohy

W =  ZiZl + A  (z f+ z f)  +Q(zi,Z i,Z2,22,---,Z jV ,2w )+0(3), (3.1)

where Q{zi,Z],Z2 ,Z2 , - - - , Zn , Zn ) is a quadratic form depending o n  Z2 ,Z2 , ---,Zn,Zn and combinations between 

Z2 ,Z2 , - - - , zn, zn  and zi ,zi. We say that A is elliptic if A e  [O, j ) .
In this chapter, we extend Kenig-Webster’s Theorem [24]. We prove the following result;

Theorem 3.0 .2. Let M  C be a smooth submanifold defined locally near p  = 0 by (3.1) such that A is 
elliptic. Then there exists a family o f  regularly embedded analytic discs with boundaries on M that are mutually 

disjoint whose union forms a smooth hypersurface M with boundary M in a neighborhood o f the CR singularity
p  = 0.

The manifold M  given by Theorem 3.0.2 is not necessary a Levi-flat hypersurface as in Kenig-Webster’s 
case from [24] in C^. For the definition and properties of the Levi-form of a hypersurface we mention here the 

book [22], page 49.
The existence problem of a Levi-flat hypersurface with prescribed boundary S in with N  > 2 ,  was 

studied by Dolbeault-Tomassini-Zaitsev in [9] under the following natural assumptions on S:
(i) S is compact, connected and nowhere minimal at its CR points;

(ii) S does not contain a complex submanifold of dimension (n — 2);

(iii) S contains a finite number of flat elliptic CR singularities.

We would like to mention that properties of nowhere minimal CR submanifolds were studied by Lebl in 

[30].

The CR singularity p = Q 'is called elliptic if the quadratic part from (3.1) is positive definite. We say that 

/? =  0 is a ’’flat” if Definition 2.1 from [9] is satisfied. Under the preceding natural assumptions, Dolbeault- 

Tomassini-Zaitsev proved the existence of a (possibly singular) Levi-flat hypersurface which bounds 5 in the 

sense of currents (see Theorem 1.3, [9]).

The graph case was studied by Dolbeault-Tomassini-Zaitsev in [10]: Let C ^+ ' =  (C^ x R„) x where 

vv =  M +  iv, and let be a bounded strongly convex domain of x with smooth boundary bO.. Let 

5 C , « >  3, be the graph of a function g : bO. — > Ry such that S satisfies the natural assumptions (i), (ii), 

(iii). Under these assumptions Dolbeault-Tomassini-Zaitsev proved the following result

Theorem 3.0.3 . Let q \ , q 2 S bO. be the projections o f the complex points p i , p 2 o f S, respectively. Then, 
there exists a Lipschitz function f  : D. — > which is smooth on Q.— {q\ , q 2 } and such that f\/,n  =  g and 

N  =  graph ( / )  — 5 is a Levi-flat hypersurface o f  C ^+ ’. Moreover, each complex leaf o f N  is the graph o f a 

holomorphic function 0 : Q.' — > C where Cl' C C "^ ' is a domain with smooth boundary (that depends on the 

leaf} and <j> is smooth on SI'.

29
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As an application of Theorem 3.0.2 , we solve an open problem regarding the regularity of /  given by 

Theorem 3.0.3 at q i,q i,  proposed by Dolbeault-Tomassini-Zaitsev in [10].

By combining Theorem 3.0.2 and Theorem 3.0.3 we obtain the following result

Theorem 3.0.4. Let M  C be a smooth submanifold as in Theorem 3.0.3. Suppose p  is a point in M  such 

that M is defined near p = Q by (3.1) satisfying the condition that (i) p  = 0 is a flat-elliptic CR singularity 

(ii) any CR point o f  M  near p  = 0 is non-minimal, and (Hi) M  does not contain a complex submanifold o f  
dimension n — 2. Then M constructed by Theorem 3.0.2 is a smooth Levi-flat hypersurface with boundary M  in 

a neighborhood o f p  = 0.

In the real analytic case our smoothness result combined with an similar argument as in the paper [23] of 

Huang-Yin concerning the analyticity of the local hull of holomorphy, gives the following result:

Theorem 3.0.5. Let M  C * be a real analytic submanifold defined near p  = 0by(3 .1 ) and that satisfies the 

assumptions o f  Theorem 3.0.4. Then M is a Levi-flat hypersurface real-analytic across the boundary manifold 

M.

We prove our results by following the lines of developed by Huang in [17], Kenig-Webster in [24], [25] 

and in particulary the construction of holomorphic di.scs developed by Huang-Krantz in [16]. First, we make 

a perturbation along the CR singularity and then we find a holomorphic change of coordinates depending

smoothly on a parameter. Then, we will adapt the methods used in by Huang-Krantz and Kenig-Webster in

our case.
We would like to mention that versions of our result were obtained in a higher codimensional case by Huang 

in [17] and Kenig-Webster in [25].

3.1 Preliminaries

3.1.1 A Perturbation Along the CR singularity

We construct analytic discs attached to M  depending smoothly on

X  =  { Z 2 , -  ■ ■ , Z n )  =  ( x 2 +  i> 2 , • ■■, x n  +  i y N )  «  0  €  C ^ “ ^ . (3.2)

By using the notation z = Zi, our manifold M  is defined near ;? =  0 by

W = ZZ-\-^{z^ -\-Q{z \,Z\,Z2,Z2,---,Zn ,Zn ) + O 0 ) ,  (3.3)

or equivalently by

w=Ho, o{X) +z HoA{ X) +z H^ f i { X) +z z { \ +Hi ^ i { X) )
I  (3.4)

+ (A +//2,o (X))z2 +  (A +//0.2 (X))2^ +  0  (izpj ,

where //q,o (X̂ ), //i,o H\ \ (X), Hofi (X), //q ,2 {X) are smooth functions vanishing at X = 0 .
We prove the following lemma:

Lemma 3.1.1. Let M d  C? be a real smooth submanifold defined near p  0 by w = az-[- bz-\- O (|zp). Then

T^M  ^  0 <s=^ =  0. (3.5)

Proof. We need to solve the equations d f  =  ^ /  =  0 at the point z =  w =  0. We compute:
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We obtain adz =  dw and hdz = 0. It follows that /> =  0 is a CR singularity if and only if =  0. □

We make a change of coordinates depending smoothly on X «  0 e  preserving the CR singularity

p = 0:

Proposition 3.1.2. There exists a biholomorphic change o f  coordinates in {z,w) depending smoothly o n X  k ,

0 G that sends (3.4) to a submanifold defined by

w =  ZZ +A  (X) (e^ +  z ^ )+  0 ( |z p ) , (3.7)

preserving the CR singularity p = 0. Here 0 <  A (X) <  j  fo r  X «  0 S and A (0) =  A.

Proof. We consider a local defining function for M  near p =  0

/(z ,X , w) = - W +  / / 0 .0 (X )+  z//o,i (X )+  z / / , ,o (X )+ z z ( l+ / / , . ,  (X)) 

+  (A +  //2,o (X)) +  (A +  //o,2 { X ) ) f  +  O ( |z p )  .
(3.8)

Each fixed X «  0 S defines us a real submanifold in which may not have a CR singularity at the point 
2  =r H’ =  0 because //q,i (X) may be different than 0 (see Lemma 2.1). Therefore we need to make a change of 

coordinates in (z, w) depending smoothly on X w 0 G that perturbs the CR singularity p = 0. We consider 
the following equation

0 = ^ = W o a ( X )  +  ( l+ / / i , i ( X ) ) z  +  S (z ,z ,X ), (3.9)

where B {z,z ,X )  is a smooth function. Since H\ [ (0) =  0, by applying the implicit function theorem we obtain 

a smooth solution zo =  Zo (X) for (3.9). By making the translation (w',zO =  (n',z +  zo (X)), the equation (3.4) 
becomes

w =  zC,,o (X) + z z ( l  + C u  (X)) +  (A + C 2 ,o(X))z^ +  (A +Co ,2 (X))z^ +  0  ( |z p )  , (3.10)

where Ci,o(X), Ci.i (X), C2 ,o(X), Cq,2 (X) are smooth functions vanishing at X =  0. Let y(X) =  1 + C i j  (X),
Ai (X) =  A + C 2 .0 (X), A2 (X) =  A +Co ,2 (X). In the new coordinates (w,z) :=  ((h' — C i _o (X)z) /y (X ) ,z), the 

equation (3.10) becomes

H' =  zz +  A i(X )z2+A 2(X )z^ +  o ( | z p ) .  (3.11)

Next, we consider a map 0 (X )  such that A2 (X) >  0. Changing the coordinates (w,z) :=  ,

we can assume A2 (X) >  0. Changing again the coordinates (w,z) '■= (w +  (Ai (X) — A2 (X))z^,z) we obtain 
(3.7). □

We write
M : w =  zz +  A (X )(z ^ + z 2 )+ P (z ,X )+ //s :(z ,X ), (3.12)

where P {z,X ) and K{z ,X)  are real smooth functions. We prove an extension of Lemma 1.1 from [24]:

Proposition 3.L3. There exists a holomorphic change o f coordinates in (z, w) depending smoothly on X w 0 € 

in which K and its partial derivatives in z and z o f order less or equal to I vanish at z = 0.

Proof. By making the substitution (z' (X) ,w' (X)) =  (z, w +  ^(Z jX ,^ )) and by (3.12) it follows that

M -.w ' = q { z , X ) +P{ z , X )  + i K{ z , X) +%B{ z , X , w) +i ' 2B{ z , X , w) ,  (3.13)

where<y(z,X) = zz  +  A (X) (z^ + z^). We want to make the derivatives in z of order less than I of i {K (z,X) + 3 6 (z ,X , w)) 

vanish at z =  0. By multiplying (3.13) by i =  our problem is reduced to the following general equation

9^B(z,X,g(z,X) +  P (z ,X )+ /A r(z ,X ))= /(z ,z ,X ) , (3.14)
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where /(z ,z ,X )  is a real formal power series in (z,z,X) with cubic terms in z and z with coefficients depending 

smoothly on X «  0 G We write

f ( z , z , X ) =  f „ ( z , z , X ) =  Y.

 ̂ (3.15)

B ( z , X , w ) =  ’£ b ^ ( z, X , w),  B„,(z, X , w ) =  bJ^j^(X)z^'wJ^.
m=3 yi+2j2='«

We solve inductively (3.14) by using the following lemma:

Lemma 3.1.4. The equation (3.14) has a unique solution with the normalization condition S B ^  {0,X,  u) =  0.

Proof. We define the weight of z to be 1 and the weight of w to be 2. We say that the polynomial {z,X., w) 
has weight m if Bm ( tz ,X, t^w)  =  t’”B„, (zjXjVv). Let be the space of all such homogeneous holomorphic 

polynomials in (z, w) of weight m satisfying the normalization condition with coefficients depending smoothly 

on X «  0 € and let F „  be the space of all homogeneous polynomials fm {z,z,X)  of bidegree (k, l)  in {z,z) 

with k + 2l = m with coefficients depending smoothly on X w 0 S We can rewrite (3.14) as follows

B „(z,X,<7(z,X) +  P ( z,X) +  / / : ( z,X)) =  S „ ( z,X ,9 (z,A :))+ o ( |z |'"+‘) .  (3.16)

In order to solve (3.16) it is enough to prove that we have a linear invertible transformation

(p{X) :B „  B B^{z , X, w) i - ^ ' 3iB„{z , X, q{z , X) )  e  F „ , (3.17)

depending smoothly on X ss 0 G By Lemma 1.1 from the paper [24] of Kenig-Webster, it follows that
(p{X) is invertible for X =  0 G By the continuity it follows that (p{X) is invertible. If it is necessary we

shrink the range of X «  0 G C^~^.  □

The proof is completed now by induction and by using Lemma 2.4. □

3.1.2 Preliminary Preparations

Let w = u + iv and 4  :=  (—e ,e )  C  R, for 0 < e < <  1. We assume that M  is defined by (3.12) and satisfies the 

properties of Proposition 2.3.

In order to define a family of attached discs to the manifold M, we define the following domain

D x , r  =  {z G C; V =  0, q{z,X)  + P{z ,X)  < u < e } ,  (3.18)

where u =  r^. By similar arguments as in the paper [17] of Huang, it follows that Dx,r is a simply con

nected bounded set o f C. Therefore there exists a unique mapping r o x ,r : A —» Dx,r such that a^,r (0) =  0 
and ^(0) >  0. Then, for 0 <  r  < <  1 we can define the following family of curves depending smoothly on 

X «  0 G

Yx.r =  {z G C; q { z , X ) + P { z , X )  = r^} . (3.19)

Next, we define the following family of analytic discs

{ o < r« l  ' (3.20)

The family of analytic discs shrinks to {0} x ^  x {0} as r  0, where 0 G ^  C  ̂ and fills up the following 

domain

Wo =  { (z ,X ,« )g C x C '^ -2 x ]R ; ||X|| < <  1, q{z,X)  + P{z,X)  < u} . (3.21)
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3.1.3 The Hilbert Transform on a Variable Curve

Let Yx.r given by (3.19), where r is taken very small. For a function (px^r(^) defined on r we define its 

Hilbert transform Hx,r [<iPx,r] to be the boundary value of a function holomorphic inside yx.r, with its imaginary 
part vanishing at the origin. For more informations about Hilbert’s transform we mention here the book [15] of 

Helmes.

For a  S (0,1) we define the following Banach spaces:

: = < ( « :  Yx,r — » K; |ii<|la :=  sup +  sup < °o

 ̂ (3.22)

I \ P \ < k

< o o
a

Let X  :=  {x2 ,y2 ,---,XN,yN}- The following result can be proved by using the same lines as in Kenig- 
Webster’s paper [24] (Theorem 2.5) or from Kenig-Webster’s paper [25]:

Proposition 3.1.5. As r —* 0 and X w 0 G  ̂ we have

= 0 [ r ) ,  fo r  all y <  / -  2; || J fx ,r\\. ^ = 0(1) ,  for  all j +  2s < I - 4 ,  I  €  (3.23)

3.1.4 An Implicit Functional Equation

During this section we work in the Holder space • We employ ideas developed by Huang-Krantz
in 117], Huang in [ 17], Kenig-Webster in [24], [25] and we define the following auxiliary hypersurface

/Wo =  {(z,A:,m) e C x C ' ^ ^ ^ x l ;  ||X|| «  1, c f { z , X ) + P { z , X ) = i i < e } ,  (3.24)

where e > 0 is small enough and w = u + iv. We would like to find a map of the following type

T = T[X]-.= { z { \ + ^ { z , X , r ) ) , I ^ { z , X , r ) )  (3.25)

such that T  (Mo) C M.  Here ^  are holomorphic functions in z and smooth in (X ,r). It follows that

^ { z , X , r )  =  {q + P + iK){z + z ^ { z , X , r ) , X )  (3.26)

where yx.r is the curve defined by (3.19). By using the Hilbert transform on the curve Yx,r and by dividing by
r  the equation (3.26), it follows that there exists a smooth function V {X, r) such that

q { z { \ + ^ { z , X , r ) ) , X ) \ y , ^  = - P { z { \ + ^ { z , X , r ) ) , X ) \ y , ^  

-JfxAK{zH+<^(z,X,r)),X)]\y,^+V{X,r).

We follow Huang-Krantz’s strategy from [17] and we define the following functional

(3.27)

£ l { ^ , X , r )  = 1̂^^ (3,28)

where ^  ^  {z,X,r).  By linearizing in ^  =  0 the functional defined in (3.28), the equation (3.27) becomes

1 + Q ' ( ^ , X , r )  ( ^ , X , r )  +  ^ _ M k A K { z { \ + ^ ) , X ) \  =  0, (3.29)

where ^  ^  (z,X,r)  and f2i {z,X,r) ,X,r) ,  are terms that are coming from the Taylor expansion of
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P { z , X )  and

(3 .30)

We put the normalization condition V { X, r )  =  r^. In order to find a solution ^  in the Holder space 

II ■ llj^a) for (3 .29), w e need to study the regularity properties o f  the functional f2. We consider the 

fo llow ing notation

' ^ X , r { z )  =  ^ _ ^ { { q  +  P ) ^ { z , X ) z ] \ y y , .  (3-31)

Since ^ x ,r { z )  /  0  for |r| < <  1, X  w  0  e  w e can write '^x,r{z) =  [ z , X , r ) 3 S { z , X , r )  with

hAi). c / { z , x , r )  =  \ ' ^x, r{z) \ ,  ^ { z , x , r ) \^xAz)\'
(3 .32)

Then I n ^ ( z ,X ,r )  is a w ell-defined sm ooth function in ( z , X, r ) .  A m ong the lines developed by Huang- 

Krantz in [17], w e define the fo llow ing function

' i f * ( z , X, r )  =
£ / ( z , X , r )

(3 .33)

Then ‘if*  is a sm ooth positive function and D { z , X , r )  :=  ( z , X , r ) ^ { z , X , r )  is holom orphic in z, smooth in

{ X, r ) .  We write D ( z , X , r ) ^  { z , X , r )  =  U  { z , X , r )  +  y /^ J t f x ,r  \U  (z ,X ,r )]. S ince D (z ,X ,r )  0  w e can rewrite 

(3 .29) as follow s

- C { z , X , r ) \ j f x , r

D { z , X , r )
(3 .34)

D { z , X , r )

We summarize all the precedent com putations and we obtain the follow ing regularity result 

T h eorem  3 .1 .6 . The equation (3 .34) has a unique solution in the Banach space  || • ||y,a) ^uch that

jW -2=  , fo r  a ll j  <  I — 2; = 0 ^ r ^   ̂ , f o r  al l  j +  2s  <  I — 4,  I  Gmj.=
(3 .35)

Proof. The solution U  and its uniqueness fo llow s by applying the im plicit function theorem. We denote by 

A] { U , X , r )  and A 2 { U , X , r )  the first and the second term from (3.34). It fo llow s that

\U <  IIA, (f/,X ,r)||^_„  +  IIA2 (t/,X ,r)||^ . „ <  ||A , (i/,X ,r)||^ . „ +  0  <  C | |f / | |2 „ +  O ,

for som e C >  0. It fo llow s that ||C/||y a =  ^  ^)-

The proof o f  the second regularity property goes after the previous line. D ifferentiating with r the equa

tion (3 .34) it fo llow s that drU  =  ^^Ai { U , X , r )  +  du A i { U , X , r )  [drU] +  drA2 { U , X , r )  +  d u A 2 { U , X , r )  \drU].  

By Proposition 2.3 and Proposition 2 .5  w e obtain that ||<3rt^||y« ~  0 (r ^ “ ^“ ' ) .  S ince P { z , X )  =  O (z^) and 

K  ( z , X)  =  O  [z' ) ,  by taking higher derivatives o f  x  in (3 .34) it fo llow s that the differentiation o f  any order with 

x £ X  does not affect the estim ates. Therefore the second estim ates follow  im mediately. □

We write that

^  , U{ z , X , r ) + i J f ^ x . r [ U { z , X , r ) ]  _ ^  ,
-^X,r [(Px.rl =  --------------- r ./  v  ^ ’D ( z , X , r )

(3 .36)

where IlcjOx.rliy a =  O (/^ ^ ) ,f o r a ll  _ /<  / — 2 and |  <px,r = 0 [ r ‘ ■' ^ ) , for all < /  —4, /  €
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3.2 A Family of Analytic Discs and Proofs of Main Results

3.2.1 A Family of Analytic Discs

We construct a continuous mapping T  defined on Mq into that is holomorphic in z for each fixed u = r~ and 

that maps slice by slice the hypersurface Mq into M. Let (px.r be the function defined by (3.36). Then

■^X.rVPx.r] =  <px,r +  [<Px,r] , ■^X,r[<Px,r] =  (<7 +  Z’ + '^ )  (z +  [<PX,r] ,^ )  • (3.37)

We extend these functions to Mq by the Cauchy integral as follows

1 ^xA^xA{Q)ze{e,X,r)

2ni Jo z { 9 , X , r ) - ^

dG,

de.
(3.38)

where z = z ( 0 , X  ,r) is a parameterization of the curve defined by (3.19).
We define T  by (3.37). Then T  is continuous by construction up to the boundary on each slice (X,r)=constant. 

In order to obtain the regularity of T,  we have to bound the derivatives in (z,X,u)  of ^  and We state the 
following lemma:

Lemma 3.2.L For all j  + 2s < I — 4 , 1 £  - as n -^ 0 , we have

=  (3.39)

The proof of the preceding lemma follows by the lines of Lemma 4.1 proof from Kenig-Webster’s paper 
[24].

Theorem 3.2.2. Let M defined by (3.12) with P{z ,X)  =  O (z^), K(z , X)  = O (z^), I >7,  T extended by (3.38). 
Then M = T is a complex manifold-with-boundary regularly foliated by discs embedded o f class

Proof Since d„ =  't follows that

d ld 'i^d t^x .r  {z,X, r ) = 0  iz,X,  r) = 0  , (3.40)

and these derivatives remain bounded for all j  + 2s <1  — 4 , 1 £  It follows that the jacobian matrix DT
of T = T (X) IS the identity matrix. □

3.2.2 Proof of Theorem 3.0.2

Let M, M,  T  as in Theorem 3.3.2. Using the techniques from [26], [29] together with an extended reflection 

principle as in the paper [25] of Kenig-Webster, we construct smooth extension of T  past every point of 

Mo — {0}. By similar arguments as in the papers [24], [25] of Kenig-Webster, we obtain that M U M  is a 

smooth manifold-with-boundary M in a neighborhood of the CR singular point p  = 0.

3.2.3 Proof of Theorem 3.0.4

Since the hypersurface given by Theorem 2.1 is Levi-flat it follows each of our analytic discs is a reparameter

ization of an analytic disc contained inside. By dimension reasons it follows that the under the hypothesis of 

Theorem 3.0.3, the hypersurfaces given by Theorem 3.0.2 and Theorem 3.0.3 are the same.
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3.2.4 Proof of Theorem 3.0.5

We can study now the hull of M  near p = 0 when M  is assumed to be real-analytic. The hypersurface Mg 

defined by (3.24) is foliated by a the family of analytic discs defined by (3.20) and therefore M  is foliated 

by the family of analytic discs defined by (3.38). By similar arguments as in Section 7 of the paper [23] of 

Huang-Yin we obtain our result. The author believes that the arguments from the paper [17] of Huang-Krantz 

or from the paper [17] of Huang can be adapted in order to prove the analyticity in our case.
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