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Summary

In this thesis we study the real submanifolds of codimension 2 in a complex manifold near a CR singularity.
The thesis has 3 chapters. In Chapter 1 we shall make a small introduction where we will remind some basic
notions and known results. The first chapter has 3 parts. In the first part we recall some basic notions. The
second part represents an preparation for the second chapter. The third part represent a preparation for the third
chapter. The main result of the thesis represent the content of Chaper 2. We generalize to a higher dimensional
case Huang-Yin’s normal form in C2. The main tool is given by the Fisher decomposition and our construction
is done following the lines of Huang-Yin’s normal form construction.

The last Chapter contains some remarks about a family of analytic discs attached to a real submanifold and
some applications.
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Chapter 1

Introduction

1.1 Real Submanifolds in the Complex Space

In this Section we shall give some basic notions about the real submanifolds in the complex space.
A (smooth) real submanifold of CV of codimension d is a subset M C CV such that for every point po € M
there exists a smooth real vector-valued function p = (py,...,p4) defined in U such that

MNU = {zeU; p(z,z) =0},

with differentials dpy,...,dp4 linearly independent in U.
When d = 1, M is called a hypersurface. If p € R?N = CV, we define the tangent space to CV at p as follows

N

d d
TP(CN = TPRZN = {X = Z (aja—xj +bja—yj> : al,bl,...,aj,bj,...,aN,bN (S R}.
j=l1

IfpeMand X € T,,(CN. we say that X is tangent to M at p and we write that X € T,M if

N
j; <a,%% (p,P) —Hy;—’;j (p,ﬁ)) — () — e

Since, for any two local defining equations p, p’ for M there exist a(z,Z) a d x d-matrix such that p(z,Z) =
a(z,z)p(z,7) it follows that the previous definition does not depend on choice of the local defining equation.

Similarly we define the complexified tangent spaces C7,C" and CT,M by allowing the coefficients in
the expressions above to be complex numbers. Then dimg (T,M) = dim¢ (CT,M) = 2N —d. Therefore the
mappings M > p — T,M and M > p — CT,M define real and complex vector bundles over M, denoted by
TM and respectively by CTM.

Using the following notations

o A b G e B S
dz; 2Nk oy dm  2\o%. By

any X € CT,,(CN can be written uniquely as follows

X i(a 2 +b g ) a,b aj,b an,by €C
— j=— e (K1 1,P1y..,8j,0j,...,4N,UN :
S\ 7oz Yoy W

A tangent vector X is holomorphic if aj = --- = ay = 0, and antiholomorphic if by =--- = by = 0. We
denote by T,? ICN the space of antiholomorphic vectors and respectively by T‘,,1 OCN the space of holomorphic

vectors.
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For p € M we define the space of antiholomorphic vectors tangent to M at p as follows
M S, = E Y ST,

Here P
dim¢ V), = N —rankc (a—ﬁ_)k (p,[‘))) :
Zj j=1,..Nk=1,...d
M is called a CR manifold if the map M > g — dim¢ T,,O"]M is constant.
A point p € M is called a CR singularity if it is a discontinuity point for the map

M > g dimc T)'M

defined near p.

A point p in a CR manifold N is called a non-minimal point if N contains a proper CR submanifold §
containing p such that T,,(l’O)S = Tél’o)N (see [23] for more details).

A smooth mapping 7' : M — M is called a formal transformation.

1.1.1 CR Singularities and Normal Forms in C?

The study of real submanifolds in a complex space near an CR singularity goes back to the celebrated paper
[2] of Bishop. Bishop considered the case when there exists coordinates (z,w) in C? such that near a CR
singularity p = 0, a real 2-codimensional submanifold M C C? is defined locally by

w=2Zz+A (ZZ+7) +0(3), (11

where A € [0,e0] is a holomorphic invariant called the Bishop invariant. When A = eo, M is understood to be
defined by the equation w = z> + 7> + O(3). If A is non-exceptional Moser-Webster proved in [28] that there
exists a formal transformation that sends M into the normal form

w=2Z+(A+eu?) (2+7%), e€€{0,—1,+1}, g€N, (1.2)

where w = u + iv. Here the Bishop invariant A is called non-exceptional if the following quadratic equation in
x has no roots of unity: Ax? —x+A =0orif A & {0,],}.
When A = 0 Moser derived in [27] the following partial normal form:

w=z2+2<ﬁ{2a,-zf}. (1.3)

Jj=s
Here 's/:— min { JENY a; # 0} is the simplest higher order invariant, known as Moser’s invariant. When
s = oo Moser proved in [27] that (1.3) is holomorphically equivalent to the quadric {w = zZ}. Moser’s partial
normal form is the subject of an action of the infinite dimensional group of formal self-transformations of the
quadric {w = zzZ} that fix the origin. When s < oo, the problem of reducing the previously mentioned group

action was completely solved by Huang and Yin in the recent deep paper [20]. Among other results, they
proved that (1.3) can be formally transformed into the following normal form

w=zz‘:+29i{2ajz’}, a=1, a;=0, if j=0,1mods, j>s. (1.4)
J=s

Further studies concerning the real submanifolds near a CR singularity were done by Ahern-Gong in [1],
Coffman in [5], [6], [7], [8], Gong in [12], [13], [14].
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1.1.2 CR Singularities and Analytic Discs in C?

Let A be the unit open disc from C and let S! be its boundary. A map f : A — C? is called an analytic disc if
fl5 is continuous and f|, analytic. We say that f is an analytic disc attached to M if f (Sl) C M. In the case
when A € [O, %), Kenig-Webster proved in [24] the existence of an unique family of 1-dimensional analytic
disks shrinking to the CR singularity p = 0. These discs are mutually disjoint and form a smooth hypersurface
M with boundary M in a neighborhood of the point p = 0. In the real-analytic case, Huang-Krantz proved in
[17] that M is a real-analytic hypersurface across the boundary manifold M.

In Chapter 3 we shall study the higher dimensional analog case of Kenig-Webster’s Theorem in C2.

1.1.3 Thesis Organization

In Chapter 2 we shall prove a generalization of Huang-Yin’s normal form to a higher dimensional analog case.
In Chapter 3 we shall generalize Kenig-Webster’s result in C to a higher dimensional analog case in CV*! and

then we shall provide some applications.



Chapter 2

The Normal Form Construction

In this chapter, we construct a higher dimensional analogue of Huang-Yin’s normal form in C2. Let (z,w) =
(z1,...,2n,w) be the coordinates in C¥*! and let M € CV*! be a real submanifold of codimension 2. We
consider the case when there exists a holomorphic change of coordinates (see [9], [10] or [19]) such that near
p =0, M is given by

w=z1Z1 + - +2ZNIN + Z Omn(2,2), (25)

m+n>3
where @, ,(z,Z) is a bihomogeneous polynomial of bidegree (m,n) in (z,2).
Some of our methods extend the construction methods of Huang-Yin’s normal form in C2. First, we give a
generalization of Moser’s partial normal form, called here the extended Moser lemma (Theorem 2.1.2), which
uses the trace operator (see e.g. [33], [34], [35]):

= 040%:

™M=

2:2)

tr:

In C? Moser’s partial normal form eliminates the terms in the local defining equation of M of positive
degree in both z and Z. The higher dimensional case considered here brings new difficulties. In C¥*! the
extended Moser lemma eliminates only iterated traces of the corresponding terms. However, these terms can
still contribute to higher order terms in the construction of the normal form. Recently, similar normal forms
were constructed for Levi-nondegenerate hypersurfaces in C¥*! by Zaitsev in [34]. The main instrument is
given by the Fisher decomposition.

The condition that (1.3) contains nontrivial higher order terms has the following natural generalization to
the higher dimensional case:

R {;} (Pk,O(Z)} #0, 2.3)
>

where here and throughout the chapter we use the following abbreviation

®0(2) = Pro(2,2)

as the latter polynomials do not depend on Z. As a consequence we obtain that s :=min {k € N*; @ (z) #0} <
co. Then s is a biholomorphic invariant and @;0(z) is invariant (as tensor). We call the integer s > 3 the

generalized Moser invariant. In this chapter we will use the following notations

A(Z) = (PX,O(Z)7 Ak(z) = a:k ((DS,O(Z)% k=1,...,N. (2.4)

The extended Moser lemma provides us a partial normal form that is not unique, but that is determined up
to an action of the infinite dimensional group Autg (M), the formal self-transformation group of the model
M :={w =212 + - +2znZy} that fix the origin. The next step is to reduce the action of the above mentioned
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group on the partial normal form. In order to do this, we use the methods recently developed by Huang and Yin
in [20]. In particular, we follow the lines of Huang-Yin’s normal form construction [20] considering instead

of the model Mw := {w =z1Z1 +---+25Zn }, the model w = 7,7 + - -- +zyZn + A(z) + A(z) and we adapt the
powerful Huang-Yin’s weights system to our higher dimensional analog case.
Before we will give the statement of our main theorem, we introduce the following definition

Definition 2.0.1. For a given homogeneous polynomial V (z) = Z b1z we consider the associated Fisher
|T|=k
differential operator
_ gl
V* — Z b]—,
=k 9z

2.5)

We would like to mention that the Fisher decomposition was used also by Ebenfelt in [11].
We consider the class of submanifolds such that in their defining equations, the polynomial A(z) defined in

(2.4) satisfies the following nondegeneracy condition:

Definition 2.0.2. The polynomial A(z) is called nondegenerate if for any linear forms £ (z),...,%n(z), one
has
LA+ + A(DAn(Z) =0 = AR =--=Lw(z)=0. (2.6)

In Section 2.1 we prove that our non-degeneracy condition is invariant under any linear change of coordi-
nates.
We prove the following result:

Theorem 2.0.3. Let M C CN*! be a 2-codimensional real (formal) submanifold given near the point 0 € M by

the formal power series equation

w=zZi++WINt Y, Oma(2,2), Q.7

m+n>3

where @y ,(2,2) is a bihomogeneous polynomial of bidegree (m,n) in (z,7) satisfying (2.3). We assume that the

homogeneous polynomial of degree s defined by (2.4) is nondegenerate. Then there exists a unique formal map
(Z W) = (F(z,w),G(z,w)) = (z,w) + O(2), (2.8)

that transforms M into the following normal form:

W=4Z1++dn+ Y Ona(d,7) +2% {Z Pro (Z’)} : 29
m+n>3 k>s
m,n#0 =

where @y, , (z' ,?) is a bihomogeneous polynomial of bidegree (m,n) in (z’ ,?) satisfying the following normal-
ization conditions
e (2 ) =0 m<n—1, mn#0;

= (2.10)
" h ., (7,2) =0, m>n, mn#0.
(AN pho(z) =0, If T=istEe>1, i
(AkA!)*(‘PIT,O(Z)) =0ke=1,.. N, T T={+rl)sst=1 g

A few words about the construction of the normal form. We want to find a formal biholomorphic map
sending M into a formal normal form. This leads us to study an infinite system of homogeneous equations by
truncating the original equation. As in the paper [20] of Huang-Yin, this system is a semi-non linear system
and is very hard to solve. We have then to use the powerful Huang-Yin’s strategy defining the weight of
7k to be 1 and the weight of Z; to be s— 1, for all k = 1...,N. Since Autyg(Mw) is infinite-dimensioral, it

follows that the homogeneous linearized normalization equations (see sections 3 and 4) have nontrivial kernel
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spaces. By using the preceding system of weights and similar arguments as in the paper [20] of Huang-Yin,
we are able to trace precisely how the lower order terms arise in non-linear fashion: The kernel space of degree
2t +1 is restricted by imposing a normalization condition on ¢/ +1’0(z) and the kernel space of degree 2¢ +2
by imposing normalization conditions on (p,’syo(z). The non-uniqueness part of the lower degree solutions are
uniquely determined in the higher order equations.

We would like to mention here the pseudo-normal form constructed by Huang-Yin in [19] for the real
submanifolds defined by (2.7). Our normal form is a natural generalization of Huang-Yin’s normal form in
C?. We observe that our normalization conditions are invariant under the linear changes of coordinates that
preserves the model M. := {w =212 +--- +znIn}.

A few words about the normal form construction organization: In course of section 2.1 we will give a
generalization of Moser’s partial normal form and we will make further preparations for our normal form
construction. The normal form construction will be presented in the course of sections 2.2 and 2.3. In section

2.4 we will prove the uniqueness of the formal transformation map.

2.1 Preliminaries, Notations and the extended Moser lemma

Let (z1,...,2y,w) be the coordinates in C¥*!. Let M C CV*! be a real submanifold defined near p = 0 by
w=2Zi+-+wWINt Y, Pma(z2), (2.12)
m+n>3

where @ ,(z,2) is a bihomogeneous polynomial of bidegree (m,n) in (z,z), for all m,n > 0.
Let M’ be a real submanifold defined by

w :zllzl+"'+z;\lZIN+ z (p,InAn (Zl’Z_/)’ (213)

where @}, , (z’,?) is a bihomogeneous polynomial of bidegree (m,n) in (z’,z_’), for all m,n > 0.
We define the hermitian product

(z,8) =211 +++2NN, 2=(21;--520)y t = {0 ) € CY (2.14)

Let (/,w') = (F(z,w),G(z,w)) be a formal map which sends M to M’ and fixes the point 0 € CV*!. Sub-
stituting this map into (2.13), we obtain

Glz,w) = (Fzw) Few)+ L. s (Flzw).F@w)). 2.15)

m+n>3

In the course of this chapter, we use the following notations

oor(22)=" ¥ Ouilem) ozEI = ohn ) k=% (2.16)

m-+n>k m-+n=k

We write F(z,w) = Z Fnn(2)W", G(z,w) = Z G n(2)W", where Gy, n(2), Finn(z) are homogeneous poly-
m,n>0 m,n>0
nomials of degree m in z. By using w satisfying (2.12) and the notations (2.16), by (2.15) it follows that

2
Y, Gna(2) ((2,2) + 03(2,2))" Y Fum (@ ((22) +@3(2,2)"|| +
m,n>0 my,n >0
2.17)
( Z F;na ny (Z) ((Z Z> + (P>3 2, Z Z Flru n3 Z Z> +(P23(Z7Z))n3> .
my,ny >0 m3,n3>0

Since our map fixes the point 0 € CV*1, it follows that Go(z) =0, Fyo(z) = 0. Collecting the terms of bidegree
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(1,0) in (z,2) in (2.17), we obtain G| o(z) = 0. Collecting the terms of bidegree (1,1) in (z,z) in (2.17), we
obtain
Go,1(2,2) = (F1,0(2),F1,0(2)) - (2.18)

Then (2.18) describes all the possible values of Gg (z),Fi0(z). Therefore 3Gp, = 0. By composing with a
linear automorphism of Rw = (z,z), we can assume that Gy ;(z) = 1, Fi o(z) =z
By using the same approach as in [34] (this idea was suggested me by Dmitri Zaitsev), the “good” terms

that can help us to find the formal change of coordinates under some normalization conditions are the following

(22 00, 22)  Can(2z2)", (Fap(2)i2i(z.2)"s (2,Fma(2)){z:2)". (2.19)

We recall the trace decomposition (see e.g. [33], [34]):

Lemma 2.1.1. For every bihomogeneous polynomial P(z,Z) and n € N there exist Q(z,7) and R(z,Z) unique

polynomials such that
P(z,Z2) = 0(z,2)(z,2)" + R(z,Z2), t"R=0. (2.20)

By using Lemma 2.1.1 and the ”good” terms defined previously by (2.19), we develop a partial normal

form that generalizes Moser’s Lemma [27]. We prove the following result:

Theorem 2.1.2 (Extended Moser Lemma). Let M C CN*! be a 2-codimensional real-formal submanifold.
Suppose that O € M is a CR singularity and the submanifold M is defined by

W=t o+ ¥ OnalzZ) @2.21)
m+n>3
where QOmn(2,2) is bihomogeneous polynomial of bidegree (m,n) in (z,2), for all myn > 0. Then there exists a

unique formal map

W) =2+ Y Faa@w'sw+ .}, Gualz)¥"}, (2:22)
m+n>2 m+n>2

where Fy, ,(2), Gmn(2) are homogeneous polynomials in z of degree m with the following normalization condi-

tions
Font1(z) =0, Fin(z)=0, foralin>1, (223)

that transforms M into the following partial normal form:

m+n>3 k>3
m,n#0 T

W= )+ Y O (@7)+2%R { Y, 9o (2) } : 2:24)

where @y, ,(z,Z) are bihomogeneous polynomials of bidegree (m,n) in (z,z), for all m,n > 0, that satisfy the

trace normalization conditions (2.10).

Proof. We construct the polynomials F,y (z) withm'+2n' =T — 1 and G,y ,y(z) with m' +2n" = T by induc-
tion on 7 = m’ 4 2n’. We assume that we have constructed the polynomials Fy ;(z) with k+ 21 < T — 1, G (z)
with k+2/ <T.

Collecting the terms of bidegree (m,n) in (z,Z) with T = m+n in (2.17), we obtain

B 22) = G nn@622) — Bnniin-1(2),20 62 = @ P mrm DN 2)™ P v
(2:23))
where ”...” represents terms which depend on the polynomials Gy ;(z) with k+21 < T, Fy ;(z) with k+ 2] <
T —1and on ¢ (2,2), ¢ /(2,2) withk+1 < T =m+n.
Collecting the terms of bidegree (m,n) in (z,Z) with T := m+n > 3 in (2.25), we have to study the following

cases:
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(1) Case m < n—1, m,n > 1. Collecting the terms of bidegree (m,n) in (z,Z) in (2.25) with m < n— 1 and
m,n > 1, we obtain
D@t =GB miimd (@) @ (2.26)

We want to use the normalization condition tr"~ !¢/, ,(z,Z) = 0. This allows us to find the polynomial

Fy—m+1.m—1(z). By applying Lemma 2.1.1 to the sum of terms which appear in ”...”, we obtain

(prln,n (sz) = (_ (Zan—erl.m—l (Z)) + Dm_n (Z,Z)) <Z7Z>m—l +P] (Z,Z), (227)

where Dy, ,(z,Z) is a polynomial of degree n—m+1 in Zj,...,Zy and 1 in zj,...,zy with determined co-
efficients by the induction hypothesis and tr"~! (P;(z,z)) = 0. Then, by using the normalization condition
a1 0}, 2(z,2) =0, by the uniqueness of the trace decomposition we obtain that (z, F,—m+1,m—1(z)) = Dm.n(2,2)-
It follows that

Fi(2) = 9, (Drs1411(2,7)), forall k>2,1>0, (2.28)

where o = (s )i
(2) Case m > n+ 1, m,n > 1. Collecting the terms of bidegree (m,n) in (z,Z) in (2.25) with m > n+ 1 and

m,n > 1, we obtain

(pr/n,n(zvz) = (Grnfn,n(z)<z1z> T <Fm—n+l,n——l (Z),Z)) (sz>nAl fe (2.29)

In order to find the polynomial G,,_, ,(z) we want to use the normalization condition tr" ¢}, ,(z,Z) = 0. By
applying Lemma 2.1.1 to the sum of terms which appear in ”...” and to (F,;_,+1,-1(2),2), we obtain

(Pr/n.n (sz) = (Gm—n,n(Z) e Em,n (Z)) (27 Z>n +P2(Zv 2)7 (230)

where E,, ,(z) is a polynomial with determined coefficients by the induction hypothesis and tr”* (P»(z,2Z)) = 0.
Then, by using the normalization condition tr" ¢}, ,(z,Z) = 0, by the uniqueness of the trace decomposition we
obtain that Gy, p(2) = Emn(2). It follows that

Gk'[(z) = Ek+l,[(Z), for all k = 2, It > 0. (231)

(3) Case (n—1,n), n > 2. Collecting the terms of bidegree (n — 1,n) in (z,z) in (2.25) with n > 2, we

obtain

Or-1.2(2,2) = Pn-1,4(2.2) — (Fon-1(2),2) (2:2)"' — (2, Fan—2(2)) (2,2)" > +... (2.32)

In order to find F>,_>(z) we want to use the normalization condition tr”‘zwf,_l,n(z,i) = 0. By applying
Lemma 2.1.1 to the sum of terms in ”..."”, we obtain

Or_12(2,2) = — ({(Fon—1(2),2) (2,2) + (2, Fan-2(2)) — Ca-1,(2,2)) (2,2)" > + P3(2,2), (2.33)

where tr""~2 (P3(z,Z)) = 0 and C,,_1 »(z,Z) is a determined polynomial of degree 1 in zy,...,zy and degree 2 in
Z1,-.-,2N. We take Fy ,—1(z) = 0 (see (2.23)). Next, by using the normalization condition tr"_ztp,',_l,,,(z,Z) =0
and by the uniqueness of the trace decomposition we obtain that (z,F> ,_2(z)) = Cy—1,(z,2). It follows that

Fan2(2) = o: (Cn—l.n(Zyz))y (2.34)

where.d; :=1{d;,, ..., 0 )
(4) Case (n,n—1), n > 2. Collecting the terms of bidegree (n,n— 1) in (z,Z) in (2.25) with n > 2, we
obtain

Phn1(2,2) = (G1,1-1(2)(2,2) — (Fan—2(2),2) — (&, Fon-1(2)) (2,2)) {2,2)" 2 + @un-1(2,2) +...  (2.35)
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In order to find Gy ,_1(z) we want to use the normalization condition tr ! @) n_1(2,27) = 0. By using (2.23)
and by applying Lemma 2.1.1 to (F» ,-2(z),z) (see (2.34)) and to the sum of terms in ”...”, we obtain

Op n-1(2,2) = (G1,a-1(2) — Ban—1(2)) (z.2)" " +Pa(2,2), (2.36)

where tr"~! (P4(z,Z)) = 0 and B, ,_(z) is a determined polynomial. By the uniqueness of the trace decompo-
sition we obtain that Gy ,—1(z) = Byn—1(z), for all n > 2.
(5) Case (n,n), n > 2. Collecting the terms of bidegree (n,n) in (z,Z) in (2.25) with n > 2, we obtain

0 1(2,2) = Goul(2)(2,2)" — (Fi,n-1(2),2) (2.2)" " — (&, Fin-1(2)) (2,2 + @na(2,2) +. .. (2.37)

By taking Fi ,—1(z) = 0 (see (2.23)), we obtain ¢@;, ,(z,2) = Go,n(2)(z,2)" +.... In order to find Gy ,(z) we use
the normalization condition tr"(p,’,,,,(z,z) = 0. By applying Lemma 2.1.1 to the sum of terms in ”...” we obtain
that @}, ,(2,2) = (Gon(z) — An) (2,2)" + P5(2,Z), where A, is a determined constant and tr" (Ps(z,Z)) = 0. By the
uniqueness of the trace decomposition we obtain that Gy , = A, for all n > 3.
(6) Case (T,0) and (0,T) T > 3. Collecting the terms of bidegree (7,0) and (0,7) in (z,Z) in (2.25), we
obtain
Gro(2) + 970(2) = ¢ro(z) +a(z)

0 7(2) = @o,r(2) +b(2)

(2.38)

where a(z), b(Z) are the sums of terms that are determined by the induction hypothesis . By using the normal-

ization condition @ 7(Z) = @7o(z) we obtain that Gr,0(z) = @r,0(z) — @o,7(2) +a(z) — b(2). d

The extended Moser lemma leaves undetermined an infinite number of parameters (see (2.23)). They act
on the higher order terms. In order to determine them and complete our partial normal form we will apply in
the course of Sections 3 and 4 the following two lemmas:

Lemma 2.1.3. Let P(z) be a homogeneous pure polynomial. For every k € N*, there exist Q(z), R(z) unique

polynomials such that !
P(z) = QAR +R(), (&%) (R()=0. (2.39)

Lemma 2.1.4. For every homogeneous polynomial P(z) of degree (t + 1)s there exists a unique decomposition
Bai=Ya) £ Cl, (A ER) =0 k=1, N, (2.40)

such that L(z) = (A1(2)A1(z) + -+ An(2)An(2)) A(2)", where A1 (z),...,An(z) are linear forms.

Lemma 2.1.3 and Lemma 2.1.4 are particular cases of the Fisher decomposition (see [33]). The polynomial
L(z) defined by Lemma 2.1.4 is uniquely determined, but the linear forms A (z),...,An(z) are not necessarily
uniquely determined. In order to make them uniquely determined we consider a nondegenerate polynomial
A(z) (see (2.4) and Definition 2.0.2).

The following proposition shows us the nondegeneracy condition on A(z) is invariant under any linear

change of coordinates:

Proposition 2.1.5. If A(z) is nondegenerate and 7 — Az is a linear change of coordinates, then A(Az) is also

nondegenerate.

. % N
Proof. Let A(z) = A(Az), where A = {ajk}1<j sone Therefore' Ay(z)= Y. ‘A (Az)ay, for allG=1,... N
AT k=1

We consider %, (2),...,%v(z) linear forms such that £ (2)A;(z) + -+ + Ly (2)An(z) = 0, or equivalently

N

Y. Ac(Az) Zj(z)aj =0. Since A(z) is nondegenerate and {aj } 1< k< 18 invertible it follows that 2} (2) =
JE= i
= 2N(2) =0.

O
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The system of weights : Following Huang-Yin’s approach in [20], we define the system of weights for
21,21,---,2N,2n as follows. We define wt{z;} = 1 and wt{Z} =s—1, forall k=1,...,N. If A(z,Z) is a
formal power series we write wt{A(z,2)} > k if A (tz,t*"'Z) = O (r*). We also write Ord{A(z,2)} = k if
A(tz,17) = t*A(z,7). We denote by @ (z,7) a series in (z,Z) of weight at least m and order at least n. In the
particular case when ©7,(z,7) is just a polynomial we use the notation [P}, (z,Z). We define the set of the normal
weights as follows

Wlaor {W} =2, Wiyor {Zl} == Wiyor {ZN} = Wtpor {Zl} == Whyor {ZN} =1.
Notations : If /1(z,w) is a formal power series with no constant term we introduce the following notations

h(z,w) = Z h,,,,, (z,w), where nh (tz,12w) = 1/1,,0,(2 w),

" 2.41)
h>l 2y W) Zhnor Z, W)
k>l
2.2 Proof of Theorem 2.0.3-Case 7+ 1 =ts+ 1,1 > 1
By applying the extended Moser lemma we can assume that M is given by the following equation
T+1
w=(z,2)+ Y, Omn(z,2)+0(T+2), (2.42)
m+n>3

where @, ,(z,2) satisfies (2.10), forall 3 <m+n <T.

We make induction on 7 > 3. Assume that (2.11) holds for @ o(z), for all k =s+1,...,T with k =
0,1 mod (s). f T+ 1¢ {ts; t e N*—{1,2}} U {ts+ 1; t € N*} we apply the extended Moser lemma. In the
case when T +1 € {ts; t € N* — {1} }U{ts+ 1; r € N*}, we search a formal map which sends our submanifold
M to a new submanifold M’ given by

T+1 2
wW=(,2)+ Y 0h.(,7)+0(T+2), (2.43)

m+n>3
where @}, , (Z,7) satisfies (2.10), for all 3 <m+n < T and Pro () satisfies (2.11), forall k =s+1,...,T
with k = 0,1 mod (s). We will obtain that ¢; ((z) = @ro(z) forallk =s,...,T.

In the course of this section we consider the case when 7'+ 1 =ts+ 1. We are looking for a biholomorphic
transformation of the following type

(z’ w’) = (z+F(z,w),w+G(z,w)),

(2.44)
ZF,,%:*’ (zw), Gz ZG&%&“*” W),

that maps M into M’ up to the degree T + 1 = ts+ 1. In order for the preceding mapping to be uniquely

determined we assume that F,,((?:H)(z,w) is normalized as in the extended Moser lemma, for all [ = 1,...T.
Substituting (2.44) into (2.43) we obtain

T+1
WHG(z,w) = @+ F&w), e+ Few)+ Y Ona(z+F@w)2+FEw)) +0(T+2), (249

m+n>3
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where w satisfies (2.42). By making some simplifications in (2.45) by using (2.42), we obtain

1=0

T-2 )
z I (1 (2 ) 4 oa(2,7)) = 2R <z, Y E&H ¢, (z,z)+(p23(z,z‘:))>

2

Z Fn“;H) (2,(2,2) + 9>3(2,2)) (2.46)

+ L3 <z+ ¥ F,,(gﬁl (z,(z,2) + 0>3(2,2)) 2+ Z F,,(,Z;H 2) + 0>3(2, z))) — 0>3(2,2).

Collecting the terms with the same bidegree in (2.46), we find F(z,w) and G(z,w) by applying the extended
Moser lemma. Since we don’t have components of F(z,w) of normal weight less than 2t and G(z,w) with
normal weight less than 2¢ + 1, collecting in (2.46) the terms with the same bidegree (m,n) in (z,z) with
m+n < 2t + 1, we obtain that ¢}, ,(2,2) = @m(2,2).

Collecting the terms of bidegree (m,n) in (z,z) with m+n = 2t + 1 (like in the proof of the extended Moser

lemma) we find Gﬁ,ﬁ'rﬂ (z,w) and F,,((%:)(z, w) as follows. We prove the following lemma:

Lemma 2.2.1. Gﬁ,ﬁ'fq)(z, w) =0, F,,(g':)(z,w) = aw —z(z,a)w !, where a = (ay,...,ay) € CN.

Proof. Collecting the pure terms of degree 2¢ + 1 in (2.46), we obtain that @, 10(z) = @5, ¢(2). Collecting
the terms of bidegree (m,n) with m+n =2t+1in (z,zZ) and 0 <m < n—1 (2.46), we obtain

‘Prln,n(zwz) = — (2, Fa—m+1,m-1(2)) (Z»Z>"lll + Omn(2,2). (2.47)

Since Qmn(2,2), @y, 5(2,2) satisfy (2.10), by the uniqueness of the trace decomposition, we obtain Fyp.1,m—1(2)
0. Collecting the terms of bidegree (m,n) in (z,z) withm+n =2t + 1 and m > n+ 1 in (2.46), we obtain

(p,,n,n (sz) == Gm—n.n(z)(zvz)n = (Fm7n+1.nfl (Z)vz> (Z,Z>n41 S (Pm,n(zvz)« (2.48)

Since Fy—n+1,0-1(2) = 0 it follows that Gy, »(z) = 0. Collecting the terms of bidegree (t — 1,¢) and (¢,t — 1)
in (z,Z) in (2.46), we obtain the following two equations

O_1,(2:2) = — ((Fos-1(2),2) (2:2) + (2, F24-2(2))) (2,2)' 2 + @r-1,(2,2),
@—1(22) = Gr—1(2)(2,2)" " = ((F4-2(2),2) + (2, Fo-1(2)) (2,2)) (2. 2) 7% + @ra-1(2,2).-

J

(2.49)

By using (2.49) it follows that Gy, _(z) = 0. We set Fy,_1(z) = a =: (ai,...,an) and we write F>, (z) =
(FZ",_Z(z), s ,Fz’f’,_z(z)). Since Qmn(z,2), @), .(2,2) satisfy (2.10), by the uniqueness of the trace decomposi-
tion, by (2.49) we obtain the equation (z,a)(z,z) + (F>,-2(z),z) = 0, that can be solved as

d
FE o= o (lz.a){z,2)) = ~wlz,a); k=1,...,N. (2.50)

Therefore F,,(fﬁ)(z,w) =aw —z(z,a)w'~!, where a = (ay,...,an) € CV. O

By Lemma 2.2.1 and by (2.41) we conclude that F(z,w) = F,,(gﬁ) (z,w)+F>24+1(z,w) and G(z,w) = G>2142(2,

We also have F>o,11(z,w) = Z Fr;(z)w', where Fy ;(z) is a homogeneous polynomial of degree k. It fol-
k+21>20+1
lows that

= > > : 3
wt{F>2+1(z,w)} > b _}}1;511+1{k+ls} 2r}11f7_1+l{k4-21}_2t+1 (2.51)

Next, we prove that wt {Fzz,ﬂ(z, w)} >ts+s—1. Since wt {F22t+1 (z,w)} > g 2!}1)151 l{k(s— 1) +1Is}, it is
F20>2t+

enough to prove that k(s — 1) + /s > ts+s— 1 for k+21 > 2t 4+ 1. Since we can write the latter inequality as
(k—1)(s—1)+1s>ts, for (k—1)+2l > 2t, it is enough to prove that k(s — 1) 4 Is > ts, for k+21 > 2¢. Since
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1>]

> 3 it follows that ks — 2k > 0. Hence 2k(s — 1) 4 2Is > ks + 2Is. It follows that k(s — 1) +1s > 5 (k+21) >

=1s.

NS
5

Lemma 2.2.2. By using the previous calculations, we give the following immediate estimates

wt{F>211(z,w)} > 2t +1, wt{F22,+1(z, w)} >ts+s—1, wt{]lFZz,H(z,w)Hz} >ts+2,

———— 2
wt{F,,(Z':)(z,w)} >ts+2—s, wt{F,,(g;)(z,w)} > ts, wt{ Fn(gﬁ)(z,w)H } >ts+2, 2.52)
(20) (2r)
Wt{<Frmr (z,w), F>2:41(z, W)>}, Wt{<FZZI+l(va)’anr (z, W)>} >ts+2,
where w satisfies (2.42).

As a consequence of the preceding estimates, we obtain

2
1P w1 = |BS @w)| + 2R (B (@ w), Foarsia.w)) + IFoai@w)? = 0212(22),  253)

where w satisfies (2.42). We observe that the preceding power series @,zs’jzz(z,z) has the property wt {@f;jzz(z,z)} =

t512:

In order to apply the extended Moser lemma in (2.46) we have to evaluate the weight and the order of the
terms which appear and are not "good”. Beside the previous weight estimates (see (2.52) and (2.53)) we also
need to prove the following lemmas:

Lemma 2.2.3. For all m,n > | and w satisfying (2.42), we have the following estimate
/ TR - o) e 210l
O (24 F (2, W), 2FF W) = B2, +2% (0202, o & W)) +02 322, @54

where wt {@i’ﬁ(z,i)} >ts+2.

Proof. We make the expansion @y, , (Z+F(z,w),mw—)) = @ 2(2,2) +..., where in "...” we have dif-
ferent types of terms involving Fy y(z) with k' 421" < m+ n and normalized terms @4 (z,2), ¢ ,(z,2) with
k+1 < m+n. In order to study the weight and the order of terms which can appear in ”...” it is enough to
study the weight and the order of the following particular terms

Ai(z,w) = Fi(z,w)dZ, As(z,w) =Z"'Z'Fi(z,w), Bi(z,w)=F(z,w)Z, Ba(z,w) = B(z,w)Z'Z",

where Fj (z,w) is the first component of F,,(,f;) (z,w) and F>(z,w) is the first component of F>y,;1(z,w). Here we
assume that |I| =m—1, || =m, |Ji|=n—1,|J| =n.

By using (2.52) we obtain wt{A; (z,w)} >m—1+ts+2—s+n(s—1) > ts+2. Itis equivalent to prove that
m—1+s(n—1)—n>0. This is true because m — 1 +s(n—1)—n>m—14+3(n—1)—n>m+3n—4—n>
3+n—4>0. On the other hand, we have Ord{A;(z,w)} >m—1+42t+n>2t+2.

By using (2.52) we obtain wt{Az(z,w)} >m+ts+(n—1)(s—1) >ts+2<=m+(s—1)(n—1) >2. We
have m+(n—1)(s—1) >m+2(n—1) >m+2n—4 >0, and this is true because m+n > 3 and m,n > 1. On
the other hand we have Ord {A2(z,w)} >m+2t+n—12>2t+2.

In the same way we obtain that Ord {B(z,w)}, Ord{B2(z,w)} > 2t + 1. By using (2.52), every term in
”...” that depends on F>(z,w) can be written as ®%(z,Z)F»(z,w). From here we obtain our lemma. |

Lemma 2.2.4. For w satisfying (2.42) and for all k > s, we have the following estimation

9L z+F(z,w) = $4(2)+ 2R (03(2,D), Foui (&) ) + 0212(2,2), (2.55)

where wt {@ifizz(z,Z)} >ts5+2.
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Proof. We make the expansion ¢ (z+F(z,w)) = ¢,(z) +... . In order to study the weight and the order of
terms which can appear in ”...” it is enough to study the weight and the order of the following terms

A(va) = Fl (va)zl7 B(va) = FZ(zv W)zlv

where F(z,w) is the first component of F,.(gi)(z, w) and F>(z,w) is the first component of F>5,+1(z,w). Here we
assume that |[I| =m —1 > s. Then, by (2.52), we obtain that wt {A(z,w)} > s+1ts+2—s > ts+2. On the other
hand, we have Ord {A(z,w)} > s+ 2t > 2t +2. By using (2.52), every term in ”...” that depends on F>(z,w)
can be written as ®%(z,Z)F>(z, w). From here we obtain our lemma. O

We want to evaluate the weight and the order of the other terms of (2.46). By Lemma 2.3.3 and by Lemma
2.3.4, it remains to evaluate the order and the weight of the terms of the following expression

S(z,2) =2R(F(z,w),2) + 2R {@; (z+F(z,w)) },

(2.56)
= 2R (F3) (@ w) + Fonn (&), 2) + 29t { A (24 FG (& w) + B (@w) ) }
where w satisfies (2.42).
Lemma 2.2.5. For F,,(,fﬁ) (z,w) given by Lemma 2.3.1 and w satisfying (2.42) we have
2R(FS (2w),2) =2R{(z.a)Aw '} +021E(2,2), @.57)
where wt {@,Z:izz (2,2)} >its 2.
Proof. We compute
2R <F,w[) (z,w), > =2R {w’ (a,z)} —2R {(z,a)(z,z)w’_l } :
=2R{(z,a)W — (z,a) (¢, )W '} + (a,2) (W — W) + (z,a) (W — '), (2.58)
=2R {(z,a)A(2)W '} + 0¥ 13(2,2),
where wt {@,2;1,2( )} >ts+2, =
In the course of our proof we will use the notation A’(z) = (A;(z),...,An(z)). It remains to prove the
following lemma
Lemma 2.2.6. For w satisfying (2.42) we have the following estimate
2R{A(z+F(z,w))} =2R{A(z) — s(z,a)A()w' '}
/ 2 = TR 2+2 (%39
+2R <A (Z) ot ®s (212)7FZ21+| (Zv W)> ®rs+2 (Z,Z),
where wt {9'2;122( )} >ts+2.
Proof. By using the Taylor expansion it follows that
N
2R{A(z+F(z,w)} =2R{A@R) + Y A(x)Fhy(z,w) +L(z,2) ¢, (2.60)
k=1
where F§21(27W) T (FZIZI(ZaW)v TR ?FgZI(Z’ W)) and L(Z,Z) o <®?(Z#z)7F22t+1(Z7W)>' We compute
N N
Z 2R {Ak(z)Fﬁz,(z,w)} — Z 2R {Ak(z) (akw' — z(z,a)w ! +F (z,w)) } :
= = (2.61)

=0212(z,7) —2sR {(z,a)A(z)w"' }+2%R <A’(z),F22,+| (z, w)> ;
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where wt {@2”2(2,2)} >ty a

ts+2

For w satisfying (2.42), by Lemma 2.2.5 and by Lemma 2.2.6, we can rewrite (2.56) as follows
5(z,2) =2(1 — )R {(z,a)A(2)w' '} +2R <2+A’(z) +02(2,2), F>241 (2, w)> +0212(2,2), (2.62)

where wt {@f‘f}fg’(zi)} >ts+2. By Lemmas 2.2.1-2.2.6 we obtain

Goni2 (2, (2,2) + 923(2,9)) =2(1 - )R { (2, a)A@) (2.2) + 923(2,2) " }

+OR <Z+A’(z) +02(2,2), Foarr1 (& (02) + (p23(z,2))> (2.63)

+ @>242(2,2) — 052142(2.2) + 0313 (2,2),

where wt {@fjﬁ(z,z)} >ts+2.
Assume that # = 1. Collecting the terms of total degree k < s+ 1 in (z,Zz) in (2.63) we find the polynomials
<G§,’Z}L1)(z,w), ,,(,If,)(z, w)) for all k <s. Collecting the terms of total degree m +n = s+ 1 in (z,Z) in (2.63), we

obtain

o) (2,(2,2)) =2(1 = )R {(z.@AQ)} +2% (2, Faot (2, (2,2))) + P11 (2D) — o1 (2.9 + (©)}3 (2.2).

(2.64)
By applying the extended Moser lemma we find a solution (Gf,f,);l)(z, w), ,};f)(z, w)) for the latter equation.
We consider the following Fisher decompositions

?5+10(2) = Q(2)A(2) +R(2),  P511,0(2) = Q' (2)A(z) + R (2), (2.65)

where A* (R(z)) = A* (R'(z)) = 0. We want to put the normalization condition A* ((p;“’o(z)) = 0. Collecting
the pure terms of degree s+ 1 in (2.64), by (2.65) we obtain

Pi+10(2) = @5410(2) — (1 = 5)(2,0)A2) = (Q(z) — (1 —5)(z,2)) A(z) + R(2), (2.66)

where Q(z) is a determined polynomial of degree 1 in zy,...,zy. It follows that Q'(z) = Q(z) — (1 —s5)(z,a)
and R'(z) = R(z). Then the normalization condition A* <(p_§+l’0(z)> = 0 is equivalent to finding a such that
0'(z) = 0(z) — (1 —s){(z,a) = 0. The last equation provides us the free parameter a.

Assuming that t > 2, we prove the following lemma (this is the analogue of Lemma 3.3 of Huang-Yin’s
paper [20]):

Lemma 2.2.7. Let Ny :=ts+2. Forall 0 < j<t—1land p € [2t+j(s—2)+2,2t+(j+1)(s—2)+1], we
make the following estimate

Gaplz,w) =2(1 = s} 'R { (2, @AY W I} +2R (24 8(0) + €2(2,2), Fopi W) 2.67)

+05,(2,2) — 92p(2,2) + 05, (2,2),

where wt {@,2\,'5”(@2)} > Ny and w satisfies (2.42).

Proof.

Step 1. When s = 3 this step is obvious. Assume that s > 3. Let pg = 2t + j(s —2) + 2, where j € [0, — 1].
We make induction on p € [2t+ j(s—2)+2,2t+ (j+1)(s—2)+1]. For j = 0 (therefore p = 2t +2) the
lemma is satisfied (see equation (2.63)). Let p > po such that p+1 < 2t + (j+ 1)(s —2) + 1. Collecting the
terms of bidegree (m,n) in (z,Z) in (2.67) with m+n = p, we obtain

Gif) (2, (22)) = 2R (2, B8 (2,(2,2)) ) + @) (2,2) — 9p(2,2) + P, (2.2). (2.68)
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By applying the extended Moser lemma we find a solution (F,,((f’r_l)(z, w), f.’;)r(z, )) for (2.68). Assume

that p is even. In this case we find Fb- l)(z, w) recalling the cases 1 and 3 of the proof of the extended
Moser lemma. By using the cases 2 and 4 of the proof of the extended Moser lemma we find Gf,ﬁ),(z w).
Since Wt{val.fz(z,Z)} > Ny we obtain wt{<Fn(£’r ¥ (z,(z,Z)),Z>} {<an M, <z,Z>),Z>} > N;. Also

wt{Gﬁ,’;), (z, <z,z))}, wt {Gf,ﬁl (@ (z,z))} > N;. We can bring similar arguments as well when p is even. We

obtain the following estimates

wt{F,,(fr_l)(z,w)} >N;—s+1, wt{F,,(opfl) (z,w)} >Ny —1,

{ o (W) = Fabr (2, (2 ,z>)} >Ny~ 1, wt{Fn%’, V(ew)-Fg (2 22 } 2 N—s+1, @69
wt{GEzw) } 2 N, w{Ghzw)— G (. (z.2) } 2 N,
where w satisfies (2.42). As a consequence of (2.68) we obtain

Bz w) -G (2 (2.2) = O @2, 2R(2FE ew)-FE (. (22)) =€ 2,2),

5

1Y 2.70)
<A’<z> 10222, 8V, w)> ; < D (2 w),8(2) +®.%(z,z>> — 05 (1,7),

and each of the preceding formal power series ®%,"' (z,z)’ has the property wt{ ©2"'(z,z)’ } > N,. Substituting
p g p Ny Ng

F>p_1(z,w) = FEV (z,w)+ F>p(z,w) and G>,(z,w) = foé)r(z, w) +G>p41(z,w) into (2.67), we obtain

W (2, W) + Gopri (W) =2(1 - 5) 'R {(z,0)AR) ' w1}

+zm<z+&gy+@ﬁaa,&?”@mo+nmgﬂw>+¢uaa—¢ﬂaa

P}, (@2) + 05p11(2.2) = P2p11(2.2) + O}, (2,2).
(2.71)
Collecting the pure terms of degree p in (2.68), it follows that @, 0(z) = ¢}, (2) + ..., where in "...” we
have determined terms with the weight less than p < Nj := ts+ 2. Therefore ¢, 0(z) = (p;,.o(z). We will obtain

that @ 0(z) = @} ¢(2), for all k = 3,...,T. By making a simplification in (2.71) by using (2.68), it follows that

G>p+1(z,w) =2(1 — s MR {(z,a)A(z) W71} + 2R <Z+A’(z) +02%(2,2), F>p(2, w)>

(2.72)
=t (p/2p+l (sz) — @>p+1 (Z’Z) +J(Z,Z) ot 611\7/:_1 (Zﬂz)v
where wt {@f,:rl (Z,Z)} > N; and
I(22) =2 (2. Fih O (ew) - Fy D (2, (2.2)) ) + 2% <A’<z) +03(2.2). Far (2, w>>
(2.73)

+G¥) (2, (z,2)) — Gz, w).

By using (2.69) and (3.16) it follows that J(z,Z) = G)Z:l (z,Z), where wt {@f,jl (Z,Z)} > N;.

Step 2. Assume that we have proved Lemma 2.2.7 for p € [2¢+ j(s —2) +2,2t+ (j+ 1)(s —2) + 1] for all
J € [0,t —1]. We shall prove Lemma 2.2.7 for p € [2t 4+ (j+1)(s —2) + 2,2t + (j +2)(s — 2) + 1]. Collecting
the terms of bidegree (m,n) in (z,Z) in (2.67) withm+n=A+1:=2t+(j+1)(s—2) + 1, we obtain

o (2, (2,2)) =2(1 =Y1K { (2, @)A@* (2,2} + 2R (2. (2, (2,))

+@hi1(22) — Oa+1(2,2) + PR (2,2).

(2.74)
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Here wt {((::)1)/,\)‘;+1 (2,2)} > Ny. We define the following map

FN@w) = FY w) +EVw), FV(w)=—(1-5)"Yz,a) AR W 2(z,...,2n).  (2.75)
Substituting (2.75) into (2.74), we obtain

G (z,(z,2)) = 2R <z,F2(A)(z, (z,z>)> +Pp41(2,2) — Pa+1(2,2) +PYT (2,2). (2.76)

(A+1)

By applying the extended Moser lemma we find a solution (G,w, (z,w), F2 (z, )) for (2.76). By using the

same arguments as in the Step 1 we obtain the following estimates
wt{Gio " @w) ~ Gior (& @) } wi {6 @w) }, w6l @ (@) } 2 W,
w{FVew -FY @@} w{AYew}wm{Ep @@} 2Mm-st1, @77)

w{ B -EV e fon{EVem |, w{FV @ e} 2 m-1,

where w satisfies (2.42). As a consequence of (2.77) we obtain

<A’(z) +02(2,2), FV(z, w)> 4 <F2(A)(z, w), A (z) +®§(z,z)> N2 (z,2),

oV @w) = Gio ! (2.(22) = 0472, M(EVew) -EY (. 02).12) = 047,

(2.78)

where w satisfies (2.42) and each of the preceding formal power series has the property wt { @;}jz(zi)} > N;.

Substituting F>A(z,w) = F,,(,,A,)(z,w) + Fsat1(z,w) and G>at1(z,w) = f,’,}:rl)(z,w) + G>a+2(z,w) in (2.67),

we obtain

Gror ) (2,w) +Gaava(e, w) = 21 =)' R {(z a)Ax) w7
A <2+A/(Z) ¢ ®§(z,2),M+m> +0r+1(2,2) — Pa41(22)
+ 05a12(2:2) — @a42(2,2) + ]P’Q:r' (z,2) + GQJZ(Z,Z).

(2.79)
By making a simplification in (2.79) with (2.74), and then by using (2.75), we obtain

Gansa(ew) =2 (2+A(D) +03(0.2), Forr @W)) + 5a12(62) = P2042(2,0) + O3 (0.2) +1(2,2)
(2.80)
where

J(z,2) <z Fnor (z,w) — EY (z:(z; z))>+29§< /(z )+®f(z,2),F,,({,\,)(z,w)>

+2(1 =) 'R {(z,)AR) W — (z,a)A(z) T (z,2) I 1}+G,,or {2,2)) —Gf,gz(z, w),
=2%R z,Fl(A)(z, w) — Fl(A) (z,{(z,2)) + FZ(A) (z,w) — Fz('\) (z, (z,z))>

2R <A'(z) +0%(2,2), F N w) + EV(z, w)> +G (2, (2,2) — Gz, w)
20 - R aalgt (W = )}
(2.81)
By using (2.77) and (2.78) it follows that
J02) = 2R (AN @ w) -V (2, (2,2)) +2R <A’<z) +8}(22). ", w>>

+2(1 — )R {(z,a)A(z) " (w1~ e 7)) +®QS+2(Z,Z),

(2.82)
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where wt {@sz(z,z)} > N;. We observe that

R F® (@ (02)) = (1R (z.a) (a0 7A@} 2.83)
Since wt {FI(A)(z,w)} > N; —s and wt {FI(A)(z,w)} > N, it follows that
R <®?(z,z),F,(A’ (2, w)> =0y(2,2), (2.84)

where wt {@,/\\,jz(z,z)} > N;. By using (2.83) and (2.84), we can rewrite (2.82) as follows

J(22) =2R (2, FV(z,w)) +2R <A’<z>,FfA) <z,w>> +2(1—s) R { (2, ))ARY w1} + 047 (2,2),

(2.85)
where wt {@&”(z,z)} > Nj. Substituting the formula of FI(A) (z,w) in (2.85), we obtain
J(23) = =21 - R{@aA@" W2 (@2 + (@ an), (81D D)) ) |
= —2(1- 'R {(z,a)A(2) *'W 2 ((2,2) + 5A(z) —w) } + ©42(2,2),
=2(1—s) R {(z,a)A(z) W 72} + O (2,2),
where w satisfies (2.42) and wt {9',}:'2(&2)} SN
The proof of our Lemma follows by using (2.86) and (2.80). O

Collecting the terms of bidegree (m,n) in (z,Z) withm+n=ts+ 1 andt = j— 1 in (2.67), we obtain

wor ) (2,(2,2)) =2(1 - sYR{ (2, a)A2)' } + 2% <Z’F"(“’i) (2 (2:2) 2.87)

+ 0ls41,0(2:) — Ps+1,0(2,2) + (@) (2,2)-

By applying the extended Moser lemma we find a solution ( f,’,f,“)(z, w),F,,(é'ﬁ)(z,w)) for (2.87). Collecting

the pure terms in (2.87) of degree ts+ 1, it follows that

@5110(2) — Prs+1,0(z) = (1 —5)" (z,a)A(z)". (2.88)

The parameter a will help us to put the desired normalization condition (see (2.11)). By applying Lemma 2.1.4
to @/ 10(2) and @r5110(2), it follows that

@rs+10(2) = (1 =5)'Q(2)ARR)' +R(z), Prs410(2) = Q' (2)A2)' +R (2), (2.89)

where (A")* (R(z)) = (A")* (R'(z)) = 0. We impose the normalization condition (A")* ((p,’s +l,0(z)) — 07This
is equivalent finding a such that Q’(z) = 0. Here Q(z) is a determined polynomial. We find a by solving the
equation Q’(z) = (1 —s)(z,a) — Q(z) =0.

By composing the map that sends M into (2.42) with the map (2.44) we obtain our formal transformation
that sends M into M’ up to degree ts+ 1.
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2.3 Proof of Theorem 2.0.3-Case 7+ 1 = (t + 1)s,¢ > 1

In this case we are looking for a biholomorphic transformation of the following type
W) = (z+F(z,w),w+G(z,w)),

—2t— (2.90)
Z Fn3:+l+l G(Z w Z Gn:)tr+2+r) )

that maps M into M’ up to the degree T + 1 = (¢ + 1)s. In order to make the mapping (2.90) uniquely determined

we assume that F,,(gﬁ+’+])(z,w) is normalized as in the extended Moser lemma, for all [ =1,...7 —2r — 1.

Replacing (2.90) in (2.43), and after a simplification with (2.42), we obtain

2t—

Z 2 (2,(2,2) + 03(2,7)) _2€R< Z Fnﬁ‘*’*” 2,2) + 9>3(2,2)) , >

2

i‘, Fat™ (2,(2,2) + 923(2,7)) 2.91)

T—
(r+1+2 \ s (24142 %
+ L3 (Z+ Z Faor 7 (2,(2,2) + 923(2,2)) 2+ Z Fa D (2 (2,2) + @s3(, z))) — 0>3(2,2).
I=—1 I=—1
Collecting the terms with the same bidegree in (z,z) in (2.91) we will find F(z,w) and G(z,w) by applying
the extended Moser lemma. Since F(z,w) and G(z,w) don’t have components of normal weight less than 27 +2,
collecting in (2.91) the terms of bidegree (m,n) in (z,Z) with m+n < 2t +2, we obtain @, ,(z,2) = @m.n(z,2).
Collecting the terms of bidegree (m,n) in (z,zZ) with m+n =2t +2in (2.91), we prove the following lemma:
i1 ~sn - QIN 21
Lemma 2.3.1. ,,7,',‘ “)(z,w) = (a+a)w't!, F, HS:H)(Z,W) — : : : , where Na is
aNi. -..- 4NN N
the trace of the matrix (aij)l<ij§N'
Proof. Collecting the pure terms of degree 2 +2 in (2.91), we obtain that ¢, 2(z) = @), ,(z). Collecting the
terms of bidegree (m,n) in (z,Z) withm+n=2t+2and 0 <m < n—1in (2.91), we obtain

(Pr,n,n(zaz) e <Z7Fn—m+1,m*1 (Z)> <sz>'nVI a5 (Pm,n(Z,Z)- (292)

Since P n(2,2), @), ,(z,2) satisfy (2.10), by the uniqueness of the trace decomposition, we obtain Fy_ 4 1m—1(2) =
0. Collecting the terms of bidegree (m,n) in (z,Z) withm+n=2t+2 and m > n+1in (2.91), we obtain

PLaT) = Grnl)(2i2) = (Baasin-12h D" | + a2 2 (2.93)

Since Fy_pm+1,m—1(z) = 0 it follows that G,,_,(z) = 0.
Collecting the terms of bidegree (¢ + 1,4+ 1) in (z,z) in (2.91), we obtain

@r1,441(2,2) = (Gos+1(2)(2,2) — (F14(2),2) — (2, F14(2))) (2:2)" + Pr1,641(2,2).- (2.94)

Then (2.94) can not provide us Fy,(z). Therefore Fj ;(z) is undetermined. We obtain

a1l ses QIN |
bor g 108 2 v @yeC, 1S4 j< N, (2.95)
aNiy ... QNN N
We write aj) = a+byy,...,ayy = a+byy and we use the notations by ; = ay j, for all k # j. Then the

matrix (by ;) 1<, j<y Tepresents the traceless part of the matrix (3.1) 1 < j<n- By applying Lemma 2.1.1 to the
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N
polynomial (Fy,(z),z), we obtain (Fi ,(z),z) = a(z,z) + P(z,z) with tr (P(z,Z)) = 0, where P(z,Z) = Z bi j2iZj.

ij=1
By using the preceding decomposition we obtain
O 11041@2) = (Gog41(2) —a—a) (2,2)" + @ri1,441(2,2) — 2R (P(2,2) (z,2)") - (2.96)
Since tr (P(z,z)) = 0 it follows that t'*! (R (P(z,2)(z,2)")) = 0 (see Lemma 6.6 in [34]). a
We can write F(z,w) = F,,(gﬁ+2)(z,w) + F>213(z,w) and G(z,w) = G>2+2(z,w) (see (2.41)). We have
Foora(z,w) = Z Fry (z)wl , where Fy ;(z) is a homogeneous polynomial of degree k. Therefore wt { F>2,2(2

k+21>2t42

min {k+1Is} > min {k+2l} > 2t +2. Next, we show that wt{F>2,+2(z, w)} >ts+s—1. Since
k+21>2142 k4+21>26+2 5

wt{Fzz,Jrz(z, w)} > . 2(}1;51 2{k(s —1) +Is}, it is enough to prove that k(s — 1) +Is > ts+s— 1 for k+ 21 >
20220+

2t +2. Since we can write the latter inequality as (k—1)(s — 1) +Is > ts for (k— 1) +2[ > 2t + 1, it is enough

to prove that k(s — 1) 4+ Is > ts for k+ 21 > 2t + 1 > 2. Continuing the calculations like in the previous case

we obtain the desired result.

Lemma 2.3.2. For w satisfying (2.42), we make the following immediate estimates

(2t+1)

TR 2
Wt{ n((%:H)(Z,W)}ZIS-Fl, Wt{ rl((%;+l)(sz)}2ts+s‘la Wt{ nor (Z’W)l' }215+S+1,

wt{Fozi2(z,w)} > 2 +2, wt{F22,+3(z,w)}2ts+s—1, wt{||FZp_,+z(z,w)||2}2ts+s+1,

wt{< §3ﬁ+')(z,w),Fzzr+z(2,W)>}, wt{<Fzzl+z(z,W),F,535+1)(z,w)>} 208 LSl
2.97)

As a consequence of the estimates (2.97) we obtain

2
IF @ w)I? = ||FS D@ w)|| + 29t (B (2 w), Foanale,w) ) + I Fsarsa(ew)IP = 0212,,2,2), (2.98)

where wt {G)f;jf+1 (z,Z)} >ts+s+1.
In order to apply the extended Moser lemma in (2.91) we have to identify and weight and order evaluate

the terms which are not “good”. We prove the following lemmas:

Lemma 2.3.3. For all m,n > 1 and w satisfying (2.42), we make the following estimate

O (24 F @) 2HFEW)) = On(2.)+ 2R (0222, Baunalew) + 0212, @D, 299

where wt {G)tzs'isH (z,Z)} >ts+s+1.

Proof. We have the expansion ¢, , (z +F(z,w),z+F(z, w)) = @p.n(2,2) +. .. (see the proof of Lemma 2.2.3).
In order to prove (2.99), it is enough to study the weight and the order of the following particular terms

Ai(z,w) = Fi(z,w)dZ, Ax(z,w) =Z"Z'Fi(z,w), Bi(z,w)=F(z,w)d7, Bi(z,w)="Z'R(z,w),

where Fj(z,w) is the first component of D (z,w) and F>(z,w) is the first component of F>212(z,w). Here

we assume that |I[| =m—1, |J|=n, || =m, |J1| =n—1.

By using (2.97) we obtain wt{A; (z,w)} >m—1+ts+1+n(s—1) >ts+s+1 <= m+ns—n>s+1 <=
m+s(n—1) > n+ 1 and the latter inequality is true since m+s(n—1) > m+3(n—1) > n+ 1. On the other
hand Ord{A;(z,w)} >m—1+2t+1+n>2t+3.

By using (2.97) we obtain wt{A>(z,w)} >m+(n—1)(s—1)+ts+s—1>ts+s+ 1 and the last inequality
is equivalent with m+ (n — 1)(s — 1) > 2. The latter inequality can be proved with the same calculations like in
the proof of Lemma 2.2.3. On the other hand, we observe that Ord {A(z,w)} > m+2t+1+n—1>2t+3.
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In the same way we obtain Ord {Bj(z,w)}, Ord{B2(z,w)} > 2t +2. By using (2.97), every term in ”...”
that depends on F>(z,w) can be written as ®2(z,Z)F»(z,w). This proves our lemma. a

Lemma 2.3.4. For all k > s and w satisfying (2.42), we make the following estimate
Pho(2+F(z,w)) = @holz )+25K< 2(2,2), Fo12(2, )> +0XH (z,2), (2.100)

where wt{@ffifﬂ( ,Z)} >ts+s+1.

Proof. We make the expansion ¢ , (z+ F(z,w)) = @; 4(z) +.... To study the weight and the order of terms
which can appear in ”...” it is enough to study the weight and order of the following terms

A(z,w) = Fi(z,w)d, B(z,w) =R,

where Fi(z,w) is the first component of F,,((%;H)(z, w) and F>(z,w) is the first component of F-5,3(z,w). Here
we assume that |[/| = m—1 > s. From (2.97) we obtain wt{A(z,w)} > s+ts+ 1 =ts+s+ 1. On the other
hand, we have Ord {A(z,w)} > 2t+s+1 > 2t+ 3. By using (2.97) each term in ”..."” that depends on F>(z,w)
can be written as ®%(z,7)F>(z,w). This proves our lemma. O

Lemma 2.3.5. For w satisfying (2.42) we have the following estimate

2R{A(z+F(z,w))} =2R {A(z) + iAk(Z) (arrz1+--- +aszN)w’}
k=1

(2.101)
/ PN e 2043 =
+2%(8(2) +©2(2,2), Baraaw) ) + 0212, (2,9),
2t+3 =
where wt{@)MH ((z ,z)} >ts+s+1.
Proof. For w satisfying (2.42), we have the expansion
N
2R{A(z+F(z,w))} =2R{AR) + Y. M@ Fp 11 (W) +L(2,2) ¢+ 121 (2,2), (2.102)
k=1

where F>p11(z,w) = (leth(z,w),...,ngtH(z, w)) and L(z,Z) = < 2(2,2), Fou2(2, )> We compute

N N N
Z {Ak( >7t+1(Z w } = Z 2R {Ak(z) <W1 Zakaj+F§2,+2(z,w)> }

k=1 j=1

N
2R {W' Y A2) (anzr + - +akNZN)} +2R <A'(Z)aF221+2(Z’W)> :

k=1
(2.103)
O

Lemma 2.3.6. For w satisfying (2.42), we have the following estimate

Gior ) (2,w) - 291< ,w'ﬁ“)(z,W),z> =2(a+a)R{AQw} +2R{P(z,2)W'} +©X1] 1 (z,2),  (2.104)

where P(z,7) Z by jzkzj and wt{@)tzstjfg“( ,’z’)} >ts+s+1.
k,j=1
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Proof. For w satisfying (2.42), by Lemma 2.3.1 it follows that

bii+a ... aiN Z

1
: ,Z>,

any ... byn+a N
=2R{aw' ™'} — 2R {aW (z,2) + P(z,))W' } +a (W' — W),
=2%R {aw (W—(2,2))} —2R {P(z,2)W' } + ©Z 2, (2,2),
— 2R {aw’ (A(z) +K(z7) } —2R{P(z,2)w' } +OZ1 | (2,2),

=2(a+a)R{A@)wW} —2R{P(z,2)W' } +©* 13, | (z,2),

G @ w) -2 (B @ w),2) = (@+a)w! —29%<w'

(2.105)

where wt{@fijfgﬂ(zj)} >ts+s+1. O

Substituting F (z,w) = F,,(gﬁl)(z, w) + F>242(z,w) and G(z,w) = Gf,%,'fz)(z, w) + G>2+3(z,w) (see (2.41))

into (2.91) and by Lemmas 2.3.2-2.3.6 , we obtain

N
G>u13(z,w) = 29‘{ (Z A(2) (anz1 + - +awzn) — (@ + 5)A(Z)> W'} +2R{P(z,2) (W — (z.2)") }
k=1

+29R <Z + A (z) + ©%(2,2), F>2r42(z, w)> + @L143(2,2) — P>243(2,2) + O3, (2,2),
(2.106)
where w satisfies (2.42) and wt {@fs‘isﬂ (z,i)} > ts+s+ 1. It remains to study the following expression
Elzz)=2R{Pz2)(w - &2} (2.107)
Lemma 2.3.7. For w satisfying (2.42) we make the following estimate
E(z,7) =2%R { (P(z,z) +P(z,Z)) Ne) Y Wz } +0X1 (2,2), (2.108)
k+i=t—1
N L0 AR
where P(z,Z) = Z by, jzxz; and wt{@fﬁil (z,i)} >ts+s+ 1.
k,j=1
Proof. We compute
E(z,7) = 2R {P(m) (A0+2@) ¥ w"<z,z>’} + €311 (2.2), ;
k=11 (2.109)
=2%R { (P(z,z) +P(z,z)) N Y WD) } +023 (z,2),
k=11
where wt{@f;iirl(z,i)} >ts+s+1. a
We consider the following notations
—_— N P
(2,7 =Pl2,2) +Pz2) = Y. (bk;+Bp)2Z),
k,j=1
il (2.110)

N
0(z) = Y A(z) (auzi ++-+avaw) — (@+@)AR), Qi(x)= Y, (brj+bji) %de(2).
k=1 k;1=1
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Then, for w satisfying (2.42), by Lemma 2.3.7 and the notations (2.110), we can rewrite (2.106) as follows

Goaura(e,w) = 2R{ QW } + 2 {L @ DADE 1 (w,(2,2)} + 2% (Z+8(2) + (D), s e w))

+ @b 13(02) — 92243(0.0) + O3, (2,2),
@.111)
where wt{@i‘i&l(z,i)} >ts+s+1. Here E_ (w,(z,2)) = Y, wF(z,2)!. For p >2t+3 we prove the

k+i=t—1
following lemma ( the analogue of Lemma 3.4 of Huang-Yin’s paper [20]):

Lemma 2.3.8. Wedefinee(p)=0ifp<2t+sande(p)=1ifp>2t+s y(p)=1ifp<ts+2andy(p)=
ifp=ts+2 LetN,:=ts+s+1. Forall0< j<tandp € 2t + j(s—2) + 3,2t + (j+ 1) (s — 2) + 2], we have

the following estimate

Gzp(z,w):2(1—s)j‘.R{Q(z)A(z)jw"j}+2}’(p)(—l)j9({.Sf(z,Z)A(z)jH y E;hliw"(z,z)lz}

L +lp=t—j—1
+2£(p)93{ 2w JZ( ,l_j}+2§R<Z~I—A/(z)+®f(z,2),F2p‘1(Z,w)>
+05,(2,2) — 92p(2,2) + O (2.7),

(2.112)
where wt{@)gi(z,i)} > N} and w satisfies (2.42). Here E,t;,jz with Iy + b, =t — j—1 and F,™/ with | =
1,...,Jj— 1 are natural numbers satisfying the following recurrence relations

t—j—1 t—j t—j—1 t—j r 1 t
F/+1j =k % Foj I Z E/,.ljz’ ul, 1=l 5 ZE,jjz'/'
I+l=t—j—1

Also B €N, foralll=1,...,j—1.

Proof. For j =0 and k = 0 we obtain p = 2t + 3. Therefore (2.112) becomes (2.111).

Step 1. It follows by a similar approach as in the Step 1 of Lemma 2.2.7.

Step 2. Assume that we proved Lemma 2.3.8 for m € [2t + j(s —2) + 3,2t + (j+ 1)(s —2) +2], for j €
[0, —1]. We want to prove that (2.112) holds for m € [2t + (j+1)(s —2) + 3,2t + (j+2)(s —2) +2]. Collect-
ing in (2.112) the terms of bidegree (m,n) in (z,Z) withm+n=A+1:=2t+(j+1)(s —2) + 2, we obtain

ﬁ'ﬁ”(z,(x,z))=29(<2,Fn(5\r)(z,<z,Z>)>+2}’(P)(-UjiK{X(Z»Z)A(Z)j+l(z7l)'—j_l X E,',‘,/;}

h+h=t—j-1
+2e<p>m{Ql<z>A<z>fzz”Z DA (1-s)F, }+z( —s)R{Q(2)A(z)! (z,2)" I}
1=0

+ @n+1(2,2) — Pa+1(2,2) + N_;+ (2,2),
2.113)

where wt {]P’A\,?l (Z,Z)} > N!. We define the following mappings

FV(z,w) = —=(1-5)/0@)ARW 7" (@,...,2n),

o .
BV (z,w) = —€(p) @1 ()AR)'w I~ (IZ(—I)ﬁ’(l —S)'F/_’> (215000528)
=0

L+h=t—j—1 I=1

N N
FM (z,w) = —¥(p) (1) A(2) ! Y E /2 Wl l(Z bia+bi) .-, Y, (biy +bN,1)21>,

or w) = FV @w) + BV @w) + BV @w) + BN @ w),
(2.114)
where F4 (z w) will be determined later (see 2.115).
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Substituting (2.114) into (2.113), by making some simplifications it follows that

GOV (2, (2,2)) =2R <z,F4(A) (, (z,z))> +@hi1(2:2) — Pari (D) + P (2,2). (2.115)

By applying the extended Moser lemma we find a solution (Gﬁ,ﬁf”(z, ) F4 (z, )) for (2.115). By repeating
the procedure from the first case of the normal form construction, we obtain the following estimates

wt{Gi ) @w) -GV (2, (2) }, w{Gi @w) }, wi {6 2,220 } 2 N,
Wt{F‘fA)(z,w)—F‘fA) (z, (Z,Z>)}v wt{FjA)(Z’w)}, wt{F4 (z,(z, z))} >N, —s+1, (2.116)

wt {Fj”(z,w)} . wt {F}A) (z, <z,z>)} , wt{FS{‘)(z,w) ¥ (Z,Z)} > Nl

where w satisfies (2.42). As a consequence of (2.116) we obtain

<A’(z) +®§(Z,Z),F4(A)(z,w)> + <F4(A)(z,w),A’(z) + ®f(z,2)> = @Q{"Z(z,z)’,

R{FP@w) - BN (2,(2.2)) ,2) = 0222,

(2.117)

where w satisfies (2.42) and each of ®A+2(z Z)’ has the property wt {@2”3( )} > Nj. Substituting F> 5 (z,w) =

F,,(,, (z,w) + F>a+1(z,w) and G>p 41 (z,w) = n’,}fl)(z,w) + G>a+2(z,w) in (2.112), it follows that

Gn();kl)(z W) I G>/\+2(Z W) =2R <Z +A,(Z) iz G%(sz)an((ﬁ’)(zv W) ot FZA+| (Zv W)> p (p/2A+l (272) D (P2A+1 (272)

+PAH (2,2) + 042 (2,2) +2(1 - s)R{Q(x)A(z) W/}

+zy(p>9t{(—wfzu,z)A(z)“‘ x Ei.‘,z’;w"<u>’2}

h+h=t—j—-1

) Wl y
+2€ (p)R { Q1AW Y (-1 (1 —s>’F,"’} :
1=0
(2.118)
where w satisfies (2.42). After a simplification in the preceding equation by using (2.113), it follows that

Gansalaw) =29 (2+4/(0) + 0322 Foani@m)) + P2as2(22) — Phasa(@2) + 07220 +1(2.2),

(2.119)
where we have used the following notation
J2,2) = 2R (2,F5) (@.w) - B3 (2, (2.2)) ) + 2% <A’(z) +02(2,2), Fy (2, w)>
+2(1- )R {QE)ARY W™ — Q(2)ARY (2,2) 7} +Glor ) (z,(2,2)) — iy (2, W)
+2y<p)(—1>f<x{z’(z,z)A(z)f“( X Bl el EZ.Z’;)}
h+h=t—j—1 h+h=t—j-1

+2e(p)%{Q1 z)A(z)’Z (~1(1 - (KW - F <z,z>'*f)},

(2.120)

By using (2.114) the precedent identity becomes
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JI(z,z) =2R <z, i (F,((A) (z,w) — Fk(A) (z, (z,z)))> +2%R <A'(z) + @2(z,7),

k=1 1
+2(1- )R {Q)ARY (W~ (5,2} +Gror  (2,(2,2)) — Gror' (2, W)

+2y<p>(—1)f<ﬁ{z)(z,z)A(z)“‘( Vo B i E;;/Z'@,zy_,-_l)}

h+h=t—j—1 h+h=t—j-1

'y i |
+2e(p)% {Qt(Z)A(Z)jJ):(—l)ﬁ’(l _E (W — (1,2 } .

=0
(2.121)
We observe that
‘Ji<F1(A) (z,(2,2)),2 > —(1 —s)j‘R{Q Az) (z,2)' 7},
: 2 &
R(FM (2,(2,2),2) = —e(p)%{gl(z)A(z)f<z,z>’f DI e ’}, 2.122)
=0 3
{EW® — —(—1VYv(p)R AT bl =
R F3 (Zv <Z7Z>) 2 ( 1) Y(p/ g(Z,Z/A(\,) <~,Z> Z El|,12 i
\ L+h=t—j—1
Since wt{Fk(A)(z, w)} >ts+ 1 and wt {Fk('\)(z,w)} >ts+s—1 forall k € {1,2,3}, it follows that
T
R <®§(z,z), Y F )(z,w)> = 04+%(z2,2), (2.123)
k=1 :

where wt {@,’Q,,_*Z(z,z)} = N\' By using (2.116), (2.117), (2.122), (2.123) we can rewrite (2.121) as follows

J(z,2) 2ER< Z zw)>+29(<A'(z),23:Fk(M(z,w)>
= k=1

+2(1—s)fm{Q(z)A(z)fwf}+2(—1)fy(p)<.x{z’(z,z)A(z)“‘(z,z)“f—‘ 5 E,’I_J’Z}

Lh+l=t—j—1
1
+2e(p)R {Ql (z)A(z)fw"f]Z (=B (1= s)’F,’*j} _
i=0

(2.124)
Substituting the formulas of FI(M (z,w), F:,(A) (z,w) and F3 (z, w) in (2.124) and using w satisfying (2.42), we
obtain

J(2,2) = —2(1—5)!R{Q(2)A(2)'w' /7! ((2,2) +5A(z)) — Q(2)A(z)/ w7 }

—2(—1>fy<p>9t{f(z,zwz)f“ Y Ejw (W"—<z,z>")}

h+h=t—j—1

‘2(—1)jY(P)9{{Q1(Z)A(Z)j“ Y  Ew 1} (2.125)

Lh+lh=t—j-1
J=1

—2e(p)R {Q1 @AY Y (=P (1—5)F w1 ((2,2) +5A(z) - w)} :

=0

By (2.125) and by the next identity (2.126) we obtain the recurrence relations given by the statement of
Lemma 23.
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J(2,2) =201 =)' R{QARD* W1} +27(p) (—1>’*'9‘{ @A™ Y By W)

htly=t—j-2

+z(—1)f“9t{Q1(z)A(z)f“ r fl/z“"”}

h+l=t—j-1
+2¢ (p)ER{ j+l Z /3,+1 s)1+1Ferjw:—j~1 } +®A+7(z7z)’
(2.126)
where wt {®A+2( )} =N..
The proof of our Lemma follows by using (2.126) and (2.119). O
Collecting the terms of bidegree (m,n) in (z,Z) in (2.112) with m+n =ts+ s and t = j, we obtain
ot (2, (2,2) =2(1 - sy R{Q@AG) } +2KkR{Q1(2)AE@) } +2R (2. iy V(g w) )

2:127)

T (pt,s+s,0(zv Z) Qrs+s, O(Z Z) =iz (®1 )tﬁ_s (Z,Z)-

By applying the extended Moser lemma we find a solution (G,,to’,“) (iz w),F,,(,’,‘§+s71)(z, w)) for (2.127). Collect-
ing the pure terms of degree ts+ s in (2.127), it follows that

Pls+50(2) — Prs4s0(2) = (1-5)'Q(2)A(2)" +KQ1(2)A(2), (2.128)

where K = (—1)Biky(1 —s) '+ + (=1)B-1k,_1 (1 — 5) + (—1)Pk,, with ky,...,k, € N. By the proof of
Lemma 2.3.8 (see (2.125) and (2.126)) we observe that f; = 1,..., B, =t. Next, by applying Lemma 2.1.4 to
@rs150(2) and @/ o(2), it follows that

Brs+50(2) = (A1(2)A1(2) + - +An(2)An(2)) A(2)' +C(2),

; , / , (2.129)
Plsrs0(2) = (A1(2)A1(2) ++ - + AN (2)AN(2)) Az)' +C(2),
where (A,A")* (C(z)) = (AA")* (C'(z)) =0, for all k =1,...,N. We have
A a+a
= Z Ax(2) (aklzl e (akk = T) Zk+“'+akNZN> )
k=1

(2.130)

N
01(2) = Y, Ac(z) (a1 + @) 21 + -+ + (A + @ — (@ +@)) 2+ -+ + (v +awi) 2n) -
k=1

We impose the normalization condition (A;A")* (‘PIIS-H,O(Z)) =0, forallk=1,...,N. By Lemma 2.1.4 this is
equivalent to finding (a;;), j<n Such that Al (z) =---=Aj(z) =0. It follows that

(1—s)ax;+K (agj+ap) =cxj, forallk,j=1,...,N, k#j,
’ A (2.131)
(1—ys) Gl enicy +K(ag +a — (a+a)) =cix, forallk=1,...,N,

N
where cy; is determined, for all k, j =1,...,N. Here Na = Z ayk. By using the second equation in (2.131) we
k=1
find Say, for all k = 1,...,N. By taking the real part in the second equation in (2.131), we obtain

N
(Ns(1—s) +2NKs) Rape — (2(1—5)" +2Ks) Y Ray = Reg, k=1,...,N. (2.132)
=1
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By summing all the identities in (2.132), it follows that (1 —s)'N (s —2) ZERa” = Z Re k- Next, going back
=1 k=
to (2.132) we find Ray, forall l =1,...,N. Now, let k # jand k, j € {1 N} By taking the real and the

imaginary part in first equation in (2.131), we obtain

((l —s)t*i-K) ‘Xakj%—K‘.Rajk Z%ij, K‘.Kakj+ ((1 —S)' +K) %ajk ZSRCN(,

(2.133)
((1 —-S)' +K) Sakj — KSajk = Sck.j, ~KSakj == ((1 —S)’ +K) Sa,k = SCj,k,
where ¢y ; is determined, for all k, j = 1,...,N and k # j. In order to solve the preceding system of equations
it is enough to observe that (1 —s)" ((1 —s)" +2K) # 0. It is equivalent to observe that
T T Y e SRR SRy g R B
(1—=5) +2((~1)ks (1 —5) (=1'k) # (2134)

(=1 ((s= 1) +2(ki(s— 1) +ha(s — 1) 2+ +k)) #O.

By composing the map that sends M into (2.42) with the map (2.90) we obtain our formal transformation
that sends M into M’ up to degree ts+ s+ 1.

2.4 Proof of Theorem 2.0.3-Uniqueness of the formal transformation
map

In order to prove the uniqueness of the map (2.8) it is enough to prove that the following map is the identity

k>2 k>2

M' 3 (z,w) — <z+ Y F&(zw),w+ Y 6%V ) eM. (2.135)

Here M’ is a manifold defined by the normal form in Theorem 2.0.3. We have used the notations (2.41). We
make the proof by induction induction on k > 2.

Definition 2.4.1. The undetermined homogeneous parts of the map (2.135) by applying the extended Moser

lemma are called the free parameters.

We prove that Fn(,?,) (z,w) = 0. Here we recall the first case of the normal form construction. We assume that
t = 1. By repeating the normalization procedures from the first case of the normal form construction, we find
that all of the homogeneous components of F,§32 (z,w) except the free parameter are O and that Gg,),(z, w)=0.
By using the same approach as in the first case of the normal form construction (see (2.66)), it follows that

@541,0(2) — Ps11,0(z) = (1 —5)(z,a)A(z) = 0. (2.136)
Here a is the free parameter of F,,‘f) (z,w). It follows that @ = 0. Therefore F,,(oz,) (z,w) =0.
We assume that F,,(,‘Z',) (z,w)=:--= F,,((’,‘fz)(z, w) =0, GE,%,),(z, w)=---= S,Iﬁ,;l)(z, w) = 0. We want to prove

that F,,(:,_]) (z,w) =0, Gs,’f,),(z, w) = 0. First, we consider the case when k = 2¢, witht > 2. Leta € CV be the free
parameter of the polynomial F,,(fﬁ)(z, w). By repeating all the normalization procedures from the first case of
the normal form construction it follows that all of the homogeneous components of F,,(gzﬁ) (z,w) except the free

parameters are O and that G,,?,',H

(z,w) = 0. We are interested in the image of the manifold M through the map
(2.135) to M up to the degree ts+ 1. We repeat the normalization procedure done during the proof of Lemma
2.2.7 In that case we have considered a particular mapping (see (2.44)). Here we have a general polynomial
map with other free parameters. They generate terms of weight at least zs + 2 that do not change their weight

under the conjugation:

wt{(F m(2)W",2)}, wt{(z,Fim(z)W")} >1ts+2, forall m >t

(2.137)
wt{(F,(z)w",2)}, wt{{(z,Fo,(2)w")} >ts+2, forall r >¢+2.
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Here Fi n(z)w™, Fy »(z)w" are the free parameters of F,,(gﬁnﬂ)(z, w) and Fn(g',r)(z,w), forallm >t and r >1t+2.
Therefore they cannot interact with the pure terms of degree zs+ 1 (because of the higher weight). Therefore
all Lemmas 2.2.1-2.2.6 remain the same in this general case.

By using the same approach as in the first case of the normal form construction (see (2.88)), it follows that

@rs5110(2) — Ps+1,0(z) = (1 —5) (z,a)A’ (z) = 0. (2.138)

It follows that @ = 0. Therefore F,,(,f,t) (z,w) =0.

We assume that k =2t + 1, witht > 2. Let (ai-j)lgi,jgN be the free parameter of F,f,?ﬁ”(z, w). By repeating
all the normalization procedures from the first case of the normal form construction, it follows that all of the
homogeneous components of F,,(ng) (z,w) except the free parameters are 0 and that GEI%,',H)(Z, w) =0.

We are interested of the image of the manifold M’ through the map (2.44) to M’ up to the degree ts+s+ 1.
The other free parameters of the map (2.135) generate terms of weight at least ts+ s+ 1 that do not change

their weight under the conjugation:

wt{(Fi m(z)w™,2)}, wt{(z,Fim(zx)w")} >ts+s+1, forallm>r+1;
wt{(For(2)w",2)}, wt{(z,For(2)w")} >ts+s+1, forall r >¢+3.

(2.139)

Therefore all Lemmas 2.3.1-2.3.7 remain true in this general case.
By using the same approach as in the second case of the normal form construction (see (2.128)), it follows
that
Pls+50(2) = Prs10(2) = (1= 5)'Q(2)A'(2) = 0. (2.140)

It follows that (aixf)1<i,jgN = 0. Therefore F,f,?ﬁ+‘>(z,W) =0, Gfl2orr+2)(z,w) = 0. This proves that (2.135) is the
identity mapping. From here we conclude the uniqueness of the formal transformation (2.8).




Chapter 3

A family of analytic discs

Let (z),...,25,w) be the coordinates from CN+1, In this chaper, we consider the higher dimensional analog
case of (1.1) when the submanifold M C CN*! is defined near p = 0 by

w=z171 +4 (Z%-}-f%) +0(z1,21,22,22, - --»2n,2n) + O(3), 3.1

where Q(z1,21,22,22,---,2n,2N) s a quadratic form depending on z,72,...,25,2v and combinations between
22,%2,--.,2n,2y and z1,Z;. We say that A is elliptic if A € [0, }).
In this chapter, we extend Kenig-Webster’s Theorem [24]. We prove the following result:

Theorem 3.0.2. Let M C CVN*! be a smooth submanifold defined locally near p = 0 by (3.1) such that A is
elliptic. Then there exists a family of regularly embedded analytic discs with boundaries on M that are mutually
disjoint whose union forms a smooth hypersurface M with boundary M in a neighborhood of the CR singularity
p=0.

The manifold M given by Theorem 3.0.2 is not necessary a Levi-flat hypersurface as in Kenig-Webster’s
case from [24] in C2. For the definition and properties of the Levi-form of a hypersurface we mention here the
book [22], page 49.

The existence problem of a Levi-flat hypersurface with prescribed boundary § in CN*! with N > 2, was
studied by Dolbeault-Tomassini-Zaitsev in [9] under the following natural assumptions on S:

(i) S is compact, connected and nowhere minimal at its CR points;

(ii) S does not contain a complex submanifold of dimension (n —2);

(iii) S contains a finite number of flat elliptic CR singularities.

We would like to mention that properties of nowhere minimal CR submanifolds were studied by Lebl in
[30].

The CR singularity p = 0 is called elliptic if the quadratic part from (3.1) is positive definite. We say that
p = 0is a "flat” if Definition 2.1 from [9] is satisfied. Under the preceding natural assumptions, Dolbeault-
Tomassini-Zaitsev proved the existence of a (possibly singular) Levi-flat hypersurface which bounds S in the
sense of currents (see Theorem 1.3, [9]).

The graph case was studied by Dolbeault-Tomassini-Zaitsev in [10]: Let C¥*! = (CY x R,) x R,, where
w = u-+iv, and let Q be a bounded strongly convex domain of (CQ’ x R, with smooth boundary bQ. Let
S C CN*! n >3, be the graph of a function g : bQ — R, such that § satisfies the natural assumptions (i), (ii),
(iii). Under these assumptions Dolbeault-Tomassini-Zaitsev proved the following result

Theorem 3.0.3. Let q1,q2 € bQ) be the projections of the complex points pi,p> of S, respectively. Then,
there exists a Lipschitz function f : Q — R, which is smooth on Q — {q1,q2} and such that f|po = g and
N = graph(f) — S is a Levi-flat hypersurface of CN*'. Moreover, each complex leaf of N is the graph of a
holomorphic function ¢ : Q' — C where Q' C C"~! is a domain with smooth boundary (that depends on the
leaf) and ¢ is smooth on .

29
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As an application of Theorem 3.0.2 , we solve an open problem regarding the regularity of f given by
Theorem 3.0.3 at g, g2, proposed by Dolbeault-Tomassini-Zaitsev in [10].
By combining Theorem 3.0.2 and Theorem 3.0.3 we obtain the foilowing resuit

Theorem 3.0.4. Let M C CV*! be a smooth submanifold as in Theorem 3.0.3. Suppose p is a point in M such
that M is defined near p = 0 by (3.1) satisfying the condition that (i) p = 0 is a flat-elliptic CR singularity
(it) any CR point of M near p = 0 is non-minimal, and (iii) M does not contain a complex submanifold of
dimension n—?2. Then M constructed by Theorem 3.0.2 is a smooth Levi-flat hypersurface with boundary M in
a neighborhood of p = 0.

In the real analytic case our smoothness result combined with an similar argument as in the paper [23] of

Huang-Yin concerning the analyticity of the local hull of holomorphy, gives the following result:

Theorem 3.0.5. Let M C CN*! be a real analytic submanifold defined near p = 0 by (3.1) and that satisfies the
assumptions of Theorem 3.0.4. Then Misa Levi-flat hypersurface real-analytic across the boundary manifold
M.

We prove our results by following the lines of developed by Huang in [17], Kenig-Webster in [24], [25]
and in particulary the construction of holomorphic discs developed by Huang-Krantz in [16]. First, we make
a perturbation along the CR singularity and then we find a holomorphic change of coordinates depending
smoothly on a parameter. Then, we will adapt the methods used in C? by Huang-Krantz and Kenig-Webster in
our case.

We would like to mention that versions of our result were obtained in a higher codimensional case by Huang

n [17] and Kenig-Webster in [25].

3.1 Preliminaries

3.1.1 A Perturbation Along the CR singularity

We construct analytic discs attached to M depending smoothly on
X =(22,...,28) = (%2 +iy2,...,.xn +iyy) 0 € CV 2, (3.2)
By using the notation z = z;, our manifold M is defined near p = 0 by
w=2Z+A (22 +7) +0(21,21,22,22, - - 2N, Zn) + O(3), (3.3)
or equivalently by

w =Hop (X)+ZHo,1 (X)+zH) 0 (X) +22 (14 Hy 1 (X))

34
+ (A +Ha0 (X)) 2+ (A +Hoz (X)) 22 +0(12*), 5 !

where Hy o (X), Hi 0 (X), Ho,1 (X), Hi,1 (X), Ha (X), Ho2 (X) are smooth functions vanishing at X = 0.
We prove the following lemma:

Lemma 3.1.1. Let M C C? be a real smooth submanifold defined near p = 0 by w = az+ bz + O (|z]2) Then
TsM #0 < b=0. 3.5)
Proof. We need to solve the equations d f = df =0 at the point z = w = 0. We compute:

8f|o=%(O)dz—i—j—i(O)dw:—dw—}—adz, §f|o—a—f( 0)dz +—(O)dw bdz. 3.6)
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We obtain adz = dw and bdz = 0. It follows that p = 0 is a CR singularity if and only if b = 0. O

We make a change of coordinates depending smoothly on X ~ 0 € CN=2 preserving the CR singularity
p=0:

Proposition 3.1.2. There exists a biholomorphic change of coordinates in (z,w) depending smoothly on X =~
0 € CN-2 that sends (3.4) to a submanifold defined by

w=2Z+A(X)(Z+72)+0(2%), (3.7)

preserving the CR singularity p=0. Here 0 < 4 (X) < § for X =0 € CN-2 and A (0) = A.

Proof. We consider a local defining function for M near p =0

f(z,X,w) =—w+Hopo(X)+ZHo, (X)+zH 0 (X)+2Z(1 +Hy 1 (X))

3.8
+(A+Hao (X)) 22+ (A +Ho,z(X))22+O(IZl3)- jex

Each fixed X ~ 0 € CV~2 defines us a real submanifold in C> which may not have a CR singularity at the point
z=w = 0 because Hj (X) may be different than O (see Lemma 2.1). Therefore we need to make a change of
coordinates in (z,w) depending smoothly on X ~ 0 € CV~? that perturbs the CR singularity p = 0. We consider
the following equation

d
0= = Ho (00)+ (14 B (0) 2+ B2.X), (39)
where B (z,7Z,X) is a smooth function. Since H; | (0) = 0, by applying the implicit function theorem we obtain
a smooth solution zg = zo (X) for (3.9). By making the translation (w’,7') = (w,z+ 20 (X)), the equation (3.4)
becomes

w=2C10(X) +2(1+Cpi (X)) + (A +Co0 (X)) 2+ (A +Coa ()2 +0 (1),  (.10)

where C1 o (X), C1,1 (X), C20(X), Co2 (X) are smooth functions vanishing at X = 0. Let y(X) = 1+ C1 (X),
A (X)=A+Cr(X), A2 (X) =A +Cp2(X). In the new coordinates (w,z) := ((w—C10(X)z)/7(X),z), the
equation (3.10) becomes

w=2Z+A (X) 22+ A2 ()2 +0(I2). 3.11)

Next, we consider a map © (X) such that A, (X) e 2®X) > 0. Changing the coordinates (w,z) := (w, zeie(x)) :
we can assume A; (X) > 0. Changing again the coordinates (w,z) := (w+ (A1 (X) — A2 (X))z?,z) we obtain
3.7). [E]

We write
M:w=2Z+A(X)(Z?+7) +P(z,X) +iK (z,X), (3.12)

where P(z,X) and K (z,X) are real smooth functions. We prove an extension of Lemma 1.1 from [24]:

Proposition 3.1.3. There exists a holomorphic change of coordinates in (z,w) depending smoothly on X =0 €

CN=2 in which K and its partial derivatives in z and 7 of order less or equal to | vanish at 7 = 0.

Proof. By making the substitution (z' (X),w' (X)) = (z,w+ B(z,X,w)) and by (3.12) it follows that
M:w =q(z,X)+P(z,X)+iK (z,X) +RB(z,X,w) +iSB(z,X,w), (3.13)

where g (z,X) =2Z+A (X) (22 +7z%). We want to make the derivatives in z of order less than [ of i (K (z,X) + 3B (z,X,w))
vanish at z = 0. By multiplying (3.13) by i = /—1, our problem is reduced to the following general equation

RB(2,X,q(2,X) +P(2,X) +iK (z,X)) = f (2.2,X), (3.14)
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where f (z,Z,X) is a real formal power series in (z,Z,X) with cubic terms in z and Z with coefficients depending
smoothly on X ~ 0 € CN~2. We write

I . . _—
f(Z7Z7X)= me(Z»Z7X)7 fm(Z,z,X): ) Z C;'r:_jz (X)ZJIZJZ’ C;n].jz (X)ZCTZJI (X),
R = (3.15)

B(z,X,w) = Z B (z,X,w), Bm(z,X,w)= Z b;"lljz(X)zj'wh.
m=3 J1+2ja=m

We solve inductively (3.14) by using the following lemma:

Lemma 3.1.4. The equation (3.14) has a unique solution with the normalization condition 3B, (0,X,u) = 0.

Proof. We define the weight of z to be 1 and the weight of w to be 2. We say that the polynomial B,, (z,X,w)
has weight m if B, (tz,X ,t2w) =1"Bp (z,X,w). Let B,, be the space of all such homogeneous holomorphic
polynomials in (z,w) of weight m satisfying the normalization condition with coefficients depending smoothly
on X ~0 € CV~2 and let IF,, be the space of all homogeneous polynomials f;, (z,Z,X) of bidegree (k,!) in (z,Z)
with k +21 = m with coefficients depending smoothly on X ~ 0 € C¥~2. We can rewrite (3.14) as follows

Bm(2,X,q(2,X) +P(2,X) +iK (z,X)) = Bn (2,X,4(2,X)) + O (IZI"’“) : (3.16)
In order to solve (3.16) it is enough to prove that we have a linear invertible transformation
O (X):By > Bn(z,X,w) — RBp (2,X,9(z,X)) € Fp, (3.17)

depending smoothly on X ~ 0 € CV~2. By Lemma 1.1 from the paper [24] of Kenig-Webster, it follows that
@ (X) is invertible for X = 0 € CV~2. By the continuity it follows that ¢ (X) is invertible. If it is necessary we
shrink the range of X ~0 € CV 2, O

The proof is completed now by induction and by using Lemma 2.4. O

3.1.2 Preliminary Preparations

Letw=u+ivand [ := (—¢€,€) C R, for 0 < € << 1. We assume that M is defined by (3.12) and satisfies the
properties of Proposition 2.3.
In order to define a family of attached discs to the manifold M, we define the following domain

Dx,={z2€C;v=0, q(z,X)+P(z,X) <u<g¢e}, (3.18)

2. By similar arguments as in the paper [17] of Huang, it follows that Dy , is a simply con-

where u = r
nected bounded set of C. Therefore there exists a unique mapping roy , : A — Dy , such that oy ,(0) =0
and 0')’(,, (0) > 0. Then, for 0 < r << 1 we can define the following family of curves depending smoothly on
X=0eblin

W, ={z2€C; q(z,X)+P(z,X)=r}. (3.19)
Next, we define the following family of analytic discs
{(rGX»”X’rZ) }XzOGCN—Z, O<r<<1” (3.20)

The family of analytic discs shrinks to {0} x & x {0} as r + 0, where 0 € & C CV~2 and fills up the following

domain
Mo = {(z,X,u) eCxC" 2 xR; |IX| << 1, (2,X) +P(2,X) <u}. (3.21)
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3.1.3 The Hilbert Transform on a Variable Curve

Let yx , given by (3.19), where r is taken very small. For a function @y ,(0) defined on yx , we define its
Hilbert transform Hy , [@x ,| to be the boundary value of a function holomorphic inside ¥x r, with its imaginary
part vanishing at the origin. For more informations about Hilbert’s transform we mention here the book [15] of
Helmes.

For a € (0, 1) we define the following Banach spaces:

ux)—u
%a = ll:'yx’r—-)R; ||u||a ‘= sup + sup _| ( ) ((Zy)|
xew, wewn, |[X—Y
XAy

R = {ui%{,r—’RZ ”Hk,a:: Z DPu <°°}'
BI<k i

Let X := {x2,y2,...,xn,yn}- The following result can be proved by using the same lines as in Kenig-

< oo 5,
(3.22)

Webster’s paper [24] (Theorem 2.5) or from Kenig-Webster’s paper [25]:

Proposition 3.1.5. Asr — 0 and X ~ 0 € CV~2 we have

=0(1), forall j+2s<1—4, e N2, (3.23)

| #rll o = O (), foratt j<1-2; | (3f'5) ., 5

3.1.4 An Implicit Functional Equation

During this section we work in the Holder space (’ﬁf B j‘a) . We employ ideas developed by Huang-Krantz
in [17], Huang in [17], Kenig-Webster in [24], [25] and we define the following auxiliary hypersurface

Mo={(z,X,u) eCxCV2xR; |X| << 1, ¢(z,X)+P(z,X) =u<e}, (3.24)
where € > 0 is small enough and w = u + iv. We would like to find a map of the following type
T =T[X|:=(2(l+F(z:X,r),Z(zX,r) (3.25)
such that T (M) C M. Here .#, 4 are holomorphic functions in z and smooth in (X, r). It follows that
B(2,X,r) |y, =(q+P+iK)(z+2F (2,X,1),X) |y, (3.26)

where 7Yx , is the curve defined by (3.19). By using the Hilbert transform on the curve ¥x , and by dividing by
7% the equation (3.26), it follows that there exists a smooth function V (X, r) such that

gz(1+F (&X,r), X) |y, = P21 +-F(2,X,1)), X},

3.27)
— A [K(z(1+F (2,X,), X)] [w, +V (X,r).
We follow Huang-Krantz’s strategy from [17] and we define the following functional
1+ %),X)+P(z(1 X
e d e s oMt A v 318G (3.28)

)
where .# = % (z,X,r). By linearizing in .% = 0 the functional defined in (3.28), the equation (3.27) becomes

1
L0 (X, 41 (P X,)+ 5375, K @(14 ) 1)l e, — 57 =0, (3.29)

where % = Z (z,X,r) and Q, (F (z,X,r),X,r), are terms that are coming from the Taylor expansion of
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P(z,X) and
-
QU X r—29i{(q+P)z(z,X)29} e (3.30)

We put the normalization condition V (X,r) = r?. In order to find a solution .# in the Holder space
(€7% |- |lj.a) for (3.29), we need to study the regularity properties of the functional Q. We consider the

following notation

x,r(2) = 7229?{(4+P)z(z,X)z} - (3.31)

Since %x r (z) # 0 for |r| << 1, X ~0 € CN—2, we can write $x , (z) = & (z,X,r) B (z,X,r) with

CKX r (Z)
A (2,X,r)=Cx,(2)|, B(z,X,r)= —"—. 3.32)
@X.n) =18, @), BXo)=
Then In4 (z,X,r) is a well-defined smooth function in (z,X,r). Among the lines developed by Huang-
Krantz in [17], we define the following function

ei()ﬁv,(ln.%(z,x,r))
ool N R sl (3.33)

o (z,X,r)
Then %™* is a smooth positive function and D (z,X,r) := €* (z,X,r) € (z,X,r) is holomorphic in z, smooth in
(X,r). We write D(z,X,r) % (z,X,r)=U (z,X,r)+v—15%,[U (z,X,r))]. Since D (z,X,r) # 0 we can rewrite
(3.29) as follows

5, g o Bl (91 (U(z,X,r) i, [U(2X,7)] ,x,r))

1 U(z,X,r) 253[;?[)(] (z,X,r)] 9
ot (o1 LEEAL AV XN ]
We summarize all the precedent computations and we obtain the following regularity result
Theorem 3.1.6. The equation (3.34) has a unique solution in the Banach space (‘fj‘“, Il ||j,a) such that

1a=0("2), foratt j<i-2; |(')u| =0(’7), foraitjt2s<i-4 1eN"2
(3.35)

Proof. The solution U and its uniqueness follows by applying the implicit function theorem. We denote by
Ay (U,X,r) and A, (U, X, r) the first and the second term from (3.34). It follows that

1010 < WAL U X,) 0+ 182 (U X, D] < 11 U X, D0 +0 (772) < CIUIE o +0 (#72),

Il
for some C > 0. It follows that [|U||; , = O (r'~2).

The proof of the second regularity property goes after the previous line. Differentiating with r the equa-
tion (3.34) it follows that 3,U = 9,A; (U,X,r) +dyA; (U,X,r)[0:U] + A2 (U,X,r) + duA2 (U,X,r) [3,U].
By Proposition 2.3 and Proposition 2.5 we obtain that [|9,U]; , = O (F~*7"). Since P(z,X) = O(z’) and
Ki(Z: %) =0 (z’ ), by taking higher derivatives of x in (3.34) it follows that the differentiation of any order with
x € X does not affect the estimates. Therefore the second estimates follow immediately. B

We write that

U(z,X,r)+i#, U (z,X,r)]
D(z,X,r)

gX,r [‘pX,r] = =Qxr+ 17 r [(PX,r] , (3.36)

where ||¢x r[|; , = O (r'~?), for all j <1—2 and H (3,‘(”8,‘) Ox.r
, i

=0(r=2), forall j+2s<I—4,1€
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I e

3.2 A Family of Analytic Discs and Proofs of Main Results

3.2.1 A Family of Analytic Discs

We construct a continuous mapping 7" defined on My into C2 that is holomorphic in z for each fixed u = r* and
that maps slice by slice the hypersurface My into M. Let @x , be the function defined by (3.36). Then

Fx r [(PX,r] = ¢X,r+ijfj\(.r [(PX‘r]a Bx r [(PXJ] = (q+P+iK) (Z+Z§X.r [(PX,r] »X) . 3:37)

We extend these functions to M by the Cauchy integral as follows

2r 3
fgz(C’er)=(€(9x,r[¢x,})(é)5ﬁ/o yx,%&ei;ef?x, a6,

2 g (6 : (3.38)
BEN) = (B o) (O = g [ PBAT DT,

where z = z(0,X,r) is a parameterization of the curve yx , defined by (3.19).
We define T by (3.37). Then T is continuous by construction up to the boundary on each slice (X, r)=constant.
In order to obtain the regularity of 7', we have to bound the derivatives in (z,X,u) of .% and %. We state the

following lemma:

Lemma 3.2.1. Forall j+2s<[l—4,1¢€ NV¥-2 as r— 0, we have
AN %F @x,y=0(r"7), AN'yBEx,)=0("). (3.39)

The proof of the preceding lemma follows by the lines of Lemma 4.1 proof from Kenig-Webster’s paper
[24].

Theorem 3.2.2. Let M defined by (3.12) with P (z2,X) = O (2*), K (2,X) = O(2!), 1 > 7, T extended by (3.38).
Then M =T (Mo) is a complex manifold-with-boundary regularly foliated by discs embedded of class ¥

Proof. Since d,, = %8,, it follows that
azja)[(”ai:yx,r (vavr) =0 (,J—Z.\'—j—Z) ) a:ja)’(llalf‘gxef (Z,X, r) =0 (’1723) s (3.40)

and these derivatives remain bounded for all j+2s < —4, I € NV=2, It follows that the jacobian matrix DT
of T =T (X) is the identity matrix. O

3.2.2 Proof of Theorem 3.0.2

Let M, M , T as in Theorem 3.3.2. Using the techniques from [26], [29] together with an extended reflection
principle as in the paper [25] of Kenig-Webster, we construct smooth extension of 7 past every point of
My — {0}. By similar arguments as in the papers [24], [25] of Kenig-Webster, we obtain that M UM is a
smooth manifold-with-boundary M in a neighborhood of the CR singular point p = 0.

3.2.3 Proof of Theorem 3.0.4

Since the hypersurface given by Theorem 2.1 is Levi-flat it follows each of our analytic discs is a reparameter-
ization of an analytic disc contained inside. By dimension reasons it follows that the under the hypothesis of
Theorem 3.0.3, the hypersurfaces given by Theorem 3.0.2 and Theorem 3.0.3 are the same.
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3.2.4 Proof of Theorem 3.0.5

We can study now the hull of M near p = 0 when M is assumed to be real-analytic. The hypersurface M
defined by (3.24) is foliated by a the family of analytic discs defined by (3.20) and therefore M is foliated
by the family of analytic discs defined by (3.38). By similar arguments as in Section 7 of the paper [23] of
Huang-Yin we obtain our result. The author believes that the arguments from the paper [17] of Huang-Krantz

or from the paper [17] of Huang can be adapted in order to prove the analyticity in our case.
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