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Abstract

Calculating an Internet Eigenvector for Internet ranking is a massive computational 

problem dominated by Sparse Matrix by Vector M ultiplication (SM VM ) where the 

matrix is very sparse, unsymmetrical and unstructured. The computation presents a 

serious challenge to general purpose processors (GPP) on which it is run. The GPP 

only achieves a fraction of its peak performance. The result o f this is a very lengthy 

computation time.

Specialised hardware running on FPGAs has been used in other scientific 

applications to accelerate algorithms where very sparse SMVM is required. This 

thesis attempts to apply the knowledge gained, from using FPGAs on these other 

scientific calculations, to PageRank - the most popular Internet ranking algorithm - 

for the first time.

This is done firstly by implementing and benchmarking two floating point hardware 

architectures (SPAR and SCAR) designed for finite element analysis against a state 

of the art GPP. Two variations of the SCAR SMVM unit are presented. One of which 

has a single MAC pipeline and the second which has a dual MAC pipeline and thus 

fully utilises the available memory bandwidth. A third architecture is proposed and 

implemented which is designed to work especially with the PageRank algorithm.

Two variations of this hardware architecture are also created, one that has three 

SMVM units with 1024 vector entries in the X and Y cache and the other which has 

two SMVM units with 2048 vector words stored in the cache. The five variations of 

the hardware architecture are targeted to a Virtex-II V6000 PPG A with four 

independent memory channels.

With the exception of the SPAR architecture, all of the FPGA based architectures 

achieved over 50% of the performance of the GPP despite having a clock rate of
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Abstract

about 100 MHz which is 30 times slower than the 3 GHz clock rate of the GPP. The 

DDR-266 SDRAM S used by the FPGA are also less than half the speed of the 

DDR2-667 SDRAM modules used in the GPP. The Specialised PageRank hardware 

with two SMVM units and 2048 Vector entries in its cache is the highest performing 

FPGA architecture achieving approximately 80% of the GPP performance.

The FPGA architectures pad their streams with NOPs to avoid Read After Write 

(RAW) hazards in the adders. NOPS inserted to avoid RAW hazards account for 

between 12% and 16% of the matrix stream length. It is shown that the number of 

RAW hazards is directly proportional to adder latency and so reducing adder latency 

should reduce NOPs in the stream. One method to reduce adder latency is to reduce 

precision. Thus, a number o f tests are presented to estimate the precision needed to 

calculate the PageRank algorithm and two of the above systems are implemented 

using fixed point arithmetic. The performance of the fixed point implementations is 

only marginally better than the floating point implementations. This is due to the 

SMVM being only part o f the PageRank algorithm.

Finally the two best performing designs are targeted at a Virtex-5 FPGA with the 

result that the generic SM VM  architecture performs on average about 1.5 times faster 

than the GPP and the specialised PageRank HW can run at about 1.8 times the speed 

of the GPP even though the clock rate is 14 times slower than that of the GPP.

Throughout the thesis a number of limitations of the architectures are discussed 

together with suggested improvements that could be made to the architectures in 

future implementations o f a hardware solver for Internet Eigenvectors.
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Introduction

Chapter One 

1 Introduction

1.1 Introduction
In 1962, J.C.R . Licklider published a series of memos discussing his idea for a 

global network [1] which would allow people to access large libraries of information 

from a computer. The vision that Licklider presented in this paper was quite possibly 

the humble root of the reality o f the Internet today. Licklider became the first head of 

computer research at the Defence Advanced Research Project Agency (DARPA) in 

1962. Here, he was in charge o f three newly installed network terminals, one in Santa 

Monica, one in Berkeley and one in MIT. His need for a global unified network was 

made evident by the problems he faced with these three different machines. Each oi 

the three terminals had different user commands, making it impossible to 

communicate with the three computers from the same terminal [2], Thus, Licklider 

convinced his successors at DARPA of the importance of his networking concept. 

Meanwhile, in MIT, Leonard Kleinrock had just developed packet switching theory 

[3]. Previously, all communications had been done using switching circuits, by 

which a direct circuit was created between the two people communicating. Packet 

switching changed this procedure by allowing many people to share a line, thus 

making a direct electronic circuit unnecessary. Each package of information in 

Kleinrock’s theory contained its own destination address and so could be routed 

automatically. This process has become normal procedure for all data networks.

In 1972, an electronic engineer by the name of Robert Kahn joined the team at 

DARPA. He began working on a protocol to unify the way networks communicated 

with each other [4]. Kahn, with the help of Vinton Cerf, created the protocol which is 

used on the Internet to this day. This protocol is known as Transmission Control
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Protocol/Internet Protocol (TCP/IP) [4], The backbones of the Internet were then 

com plete, m aking it possible for computers to communicate across the world.

The Internet continued changing from its initial foundations. In 1989, Tim Bemers- 

Lee created a language that changed the way the Internet is used to this day [5]. Tim 

Bem ers-Lee may not have invented the Internet, but his work made the Internet so 

accessible that he is often praised in this way. Bem ers-Lee’s work on hypertext 

m ark-up language (HTM L) made the Internet accessible to the masses. Bemers- 

Lee’s HTM L sparked the creation of the very first website and the first browsers to 

view websites. These innovations, coupled with the falling cost of technology, 

helped create the Internet’s current form.

Currently, the Internet is the w orld’s largest document collection, containing over 1 

trillion pages; that is 1,000,000,000,000 pages [6], Licklider’s dream of a ‘Galactic 

N etwork’ has now developed into a reality. W ith a trillion pages to choose from, 

though, finding one desired page on the Internet can seem a daunting task for any 

user. In order to remedy this problem, search engines have been designed to wade 

through the vastness o f the Internet and retrieve the most useful documents for any 

given query.

Internet search engines generally perform two main processes. The first is the user 

query process which is the view of a search engine that a user gets when they make a 

query. This process parses the user query and builds a ranked list o f pages the search 

engine deems most relevant to the user’s query. This is done by consulting a vast 

database/index of pages stored on the search engine servers. The page ranking is 

important since many search terms return a large number of pages and users will 

usually only check the first few results returned. The user query process culminates 

in the user being served with a webpage containing this ranked list of these relevant 

pages. However, long before any user submits a query, the search engine must 

perform the second process. This second process is independent o f user queries and 

aims to create an extensive index for use in the user query process. This process 

begins with automated web-page parsing programs, called spiders, visiting and 

gathering information about all the pages that the search engine will later index. This 

first step in the process is commonly called crawling. The pages retrieved are then 

parsed and vital information is saved to a database, so that a list o f related pages can 

be retrieved quickly when a query is submitted. This second step is called the

2
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indexing step. The third necessary step is to rank the pages, which can be done either 

at or before query time. In both cases, a ranking algorithm  handles this process. 

Documents with relevant content receive a high rank and irrelevant documents 

receive low ranking scores. Once the crawling, indexing and ranking (if any) steps 

are complete the search engine is ready to deal with user queries. Crawling and 

indexing are on going operations and periodically update the index being used to 

lookup user queries. This ensures that the search engine responds to deleted pages as 

well as new content on the Internet.

Before the advent o f Google™ , malicious com puter program m ers, often referred to 

as spammers, had found ways to manipulate the existing ranking algorithm s used by 

search engines. Thus, an Internet user often had to search through pages o f useless 

results (Spam) before finding a page with useful information. It was vital for the 

future of the Internet as a useful knowledge resource that useful and relevant data be 

easily accessible. Google made this possible by quickly returning relevant pages for a 

query every time and managed to avoid including spam. This improved search 

engine was made possible by a new ranking algorithm called PageRank™ . PageRank 

remains an important part of the Google search engine to this day [7].

PageRank achieved a higher quality result than other search engines of the day by 

taking advantage o f the hyperlinked structure o f the Internet [7]. Most pages on the 

Internet contain hyperlinks to other legitimately relevant pages on the Internet. Each 

hyperlink to a page is counted as a vote for the content of the page to which the 

hyperlink leads. Pages that receive more votes are given a higher ranking score, since 

a page that gets m ore votes is assumed to have better content. This ranking is a 

problem in linear algebra, which requires the eigenvector of a very large sparse 

matrix to be calculated. This PageRank calculation has been dubbed “the largest 

matrix calculation in the world” [8]. The matrix at the centre o f the calculation is of 

the order o f 1 trillion rows and columns and is constantly growing as new pages are 

added to the Google index. The PageRank calculation is only one of about 200 

factors used to rank a webpage to a given search query [7]. It is none the less a vital 

part o f the Google search engine and is by far the most computationally intensive of 

the ranking scores. The PageRank calculation is query independent. Thus, it is 

calculated prior to query time. The freshness o f the PageRank algorithm is still 

important since the Internet is a highly dynamic environment. Pages are created.

3
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updated an d  rem oved constantly and so the hyperlink structure of the Internet 

changes and  thus the PageRank. Therefore the PageRank of all pages must be kept 

up to date to  avoid returning pages whose content is no longer relevant or useful to 

the user. The PageRank calculation is currently solved through the use o f General 

Purpose Processors (GPPs). In 2003, L.A. Barroso, a Google engineer, published a 

paper that stated that over fifteen thousand commodity class PCs were in use by 

Google worldw ide [9]. Barroso’s paper is primarily concerned with user query 

handling and the number of PCs used is probably much larger now, since G oogle’s 

index has grown considerably in recent years but it does indicate the scale o f the 

problem. Google use commodity PCs as they give better cost/performance than high 

end servers [9]. One of the major problems that Google face with this strategy is the 

reliability o f  the commodity PCs. Commodity PCs are inherently unreliable and so 

Google use fault tolerant software and redundancy to remove this problem. Another 

better approach may be possible, however. Many hardware developers are claiming 

large performance increases are possible by bringing modern FPGA parallelism  and 

size to bear on scientific problems.

1.2 FPGA hardware
The first Field Programmable Gate Array (FPGA) was created by Xilinx in 1984 

110]. This FPGA was a simple device that could be reprogrammed by the user to 

calculate different functions. The reducing cost of transistors has allowed more 

m odem FPGAs grow in complexity and usefulness. The modem FPGA is a 

dynamically reconfigurable microchip that can be programmed to become almost 

any digital circuit. FPGAs now contain large quantities of logic as well as specialised 

arithmetic units, memory units and a great deal of I/O capabilities. The FPGA can be 

programmed to become a specialised hardware unit which is optimised to the special 

needs of an application without the expense and complex design flow that would be 

necessary to produce a custom Application Specific Integrated Circuit (ASIC).

Traditionally, FPGAs were used in integer and fixed point arithmetic in fields such 

as Digital Signal Processing (DSP). FPGAs are especially suited to perform  largely 

parallelisable algorithms. The achievable clock rate in the FPGA is much lower than 

the clock rates of GPPs. However, since the FPGA is programmable a user can create
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a highly parallelised version of an algorithm and still obtain accelerations over the 

GPP performance.

Each generation of FPGA released shows a dramatic improvement over previous 

generations in terms o f I/O pins, clock rate increases and program m able logic 

increases. Up until a few years ago it was impossible to implem ent a floating point 

arithmetic unit on a single FPGA due to the complexity and size. However, this all 

changed with the introduction of the Virtex generation devices. It is now possible to 

implement floating point operators on FPGA along with other circuitry. The advent 

of these larger FPGAs and the ever increasing gap between GPP processor speed and 

memory I/O has sparked a great deal of research into using FPGAs to accelerate 

floating-point operations. [11-14].One such research project was the FIAMMA 

project which was used as a starting point for this work.

1.3 The FIAMMA Project
The aim of the FIAM M A' project was to develop an FPGA based accelerator for 

Finite Element Analysis (FEA). This was implemented on an FPGA daughterboard 

connected to the host PC via a PCI connection. The host PC offloaded FEA problems 

to the FPGA daughterboard via the PCI bus. FEA problems often have large memory 

requirements and so the FPGA daughter board was populated with 4 separate banks 

o f SDRAM. The daughterboard contained a single Virtex-II FPGA [15] on which the 

accelerator was built. The accelerator was designed around 4 W ishbone buses [16] to 

which a MicroBlaze controller [15], three SMVM units, a divider and a multi­

purpose Vector Unit were attached. The initial version of the FIAMMA accelerator 

used a column-based SMVM architecture which was implemented from a legacy 

architecture called SPAR [17], This was later replaced with the smaller and more 

efficient SCAR architecture which was designed and implemented by the FIAMMA 

team.

1.3.1 Accreditation of work

The FIAMMA project had several team members. In this section the work carried 

out by each member of the team will be outlined.

' F inite Iterative and Matrix M athem atic A ccelerator
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Seamas McGettrick: The author is responsible for all of the aspects of the 

search project. This contribution includes creation of additional software for the 

PageRank algorithm and other software functions. Furthermore, the original 

FIAMMA architecture was modified to increase performance and to remove 

bugs that became evident when computing Internet ranking algorithms. The 

author designed and implemented a double-precision floating-point divider and 

dual port read-write cache for use in the FIAMMA architecture. He was also 

responsible for implementing and testing the SPAR architecture. The author 

implemented the fixed point SCAR unit and carried out all benchmarks on all 

the architectures unless otherwise stated. The FIAMMA architecture was 

designed for use with Virtex-II and so it had to be ported to the newer Virtex-5 

device. To achieve this, all Intellectual Property (IP) had to be regenerated using 

Xilinx’s core generator and a new SDRAM controller had to be created using 

Xilinx’s Memory Interface Generator (MIG). Finally, the author is responsible 

for the design and implementation of the PageRank architecture which is 

discussed in section 5.5.3. This architecture was specially designed to take 

advantage of the unique structure of the PageRank algorithm.

Ciaran Me Elroy: Ciaran implemented the initial floating point version of the 

SCAR architecture and designed the Wishbone bus system used in the FIAMMA 

and the search system. He also created a design flow to aid with the creation of 

bit files for the FIAMMA and search systems.

Fergal Connor: Fergal delivered the SDRAM controller design used in this 

project, as well as developing the hardware floating point cores (multiplier and 

adder) used in the SPAR system (Chapter 5).

Colm Me Sweeney: Colm developed the core software library routines used in 

this project. The ranking software is built to use a number of Colm’s libraries.

Dermot Geraghty: Dermot is the Principal Investigator for the FIAMMA and 

Search project and supervisor for this PhD research project.
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1.4 Contribution
This thesis evaluates the viability of using an FPGA based accelerator architecture to 

calculate the PageRank Internet ranking algorithm. This was done by emulating 

PageRank precision requirements, designing and implementing hardware and 

software for the PageRank algorithm and benchmarking this hardware against the 

GPP. To the best of the author’s knowledge this work is the first published work to 

investigate Internet ranking algorithms being run on an FPGA. The PageRank 

problem is, in essence, a problem in linear algebra. In recent years, a myriad of work 

has been published with regard to linear algebra problems running on FPGAs. The 

work outlined in this thesis expands this research to the area of Internet search for the 

first time.

1.4.1 Precision of the PageRank Calculation

A system for estimating the precision needed to calculate the PageRank vector is 

proposed. To this end. a fixed point emulator was developed and the PageRank was 

calculated for a num ber of real Internet Adjacency (lA) matrices over a number of 

precisions. The PageRank vector is known to follow a Zipfian distribution. A Zipfian 

distribution was thus created that fitted the fixed point emulations. This Zipfian 

distribution was then used to extrapolate the precision needed for lA matrices of any 

size.

It is important to know the precision of the calculation. This data can be used to 

ensure the most suitable number representation is used in the architectures to 

compute the PageRank vector.

1.4.2 PageRank in hardware

The design and implementation of an FPGA based architecture for calculating the 

Google PageRank vector (i.e. the power eigenvector method) is presented with 

implementation on a Virtex-II FPGA. This architecture is specially designed to cater 

for large sparse matrices like lA matrices. The algorithm was broken down into 

operations that can be performed at a hardware level. Then a number of software 

libraries were written to control the hardware, so as to calculate the PageRank 

algorithm.
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A num ber of variants of the hardware architecture were developed. The first version 

uses double precision floating point representation with each of the three SMVM 

architectures (discussed in the next two sections) and the second version uses the 

information gained in the precision tests to create a fixed point solution for the 

PageRank architecture. The third version is the same as version one with the 

exception that the whole design is ported to Virtex-5. These versions of the hardware 

are benchmarked and compared to one another and the GPP with real lA matrices. 

The effect of adder latency, bus contention and load balancing on the architecture 

performance is discussed and the effect of reducing memory bandwidth with Reverse 

Cuthill McKee (RCM) reordering is also measured in section 6.5.3.

1.4.3 Implementation and Benchmarking of two generic Linear 
Algebra architectures

This thesis includes details of the implementation of two SMVM architectures which 

are suitable for use with any large matrix calculations. The SPAR architecture is an 

existing SMVM architecture [17]. From now on the SPAR architecture will be 

referred to as just SPAR. The SPAR had not been implemented on an FPGA prior to 

the FIAMMA project. The architecture computes the SMVM between a X-vector 

which is held in cache and a matrix which is streamed from memory. On large 

matrices this process often resulted in a lot of cache misses. The second architecture 

known as the SCAR architecture was designed to address the problems inherent to 

the SPAR. The SCAR architecture is a block row based solver; it breaks the matrix 

into strips and then each strip into multiple tiles. The SMVM of the matrix is 

calculated on a per tile basis. Since the X-vector and Y-vector entries associated with 

the block fit in the local cache this method alleviates problems associated with Y 

cache misses.

The two architectures are benchmarked calculating the PageRank vector of real lA 

matrices. Results are given for both floating point and fixed point solutions. The 

performance of these generic architectures is compared with results obtained from a 

modem GPP.
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1.4.4 Implementation and Benchmarking of specialised 
PageRank hardware

The final architecture presented is a specialised architecture for the PageRank 

problem. The unique structure of the matrix used in the PageRank calculation allows 

for some changes in the PageRank algorithm. The multiplication stage of the SMVM 

can be removed from the SMVM and carried out as a dense vector operation. Doing 

this means the SMVM can be removed and replaced with a ‘pattern addition’ .̂ This 

reduces the amount of data needed to be streamed from memory for each operation 

and so can increase the parallelism of the calculation and thus increase architecture 

performance. This architecture was designed and implemented as part o f the work 

presented in this thesis.

The PageRank architecture was benchmarked by calculating the PageRank vector 

with real lA matrices. The results were obtained for both floating point and fixed 

point implementations. These results were used to compare the architecture with a 

m odem  GPP.

1.5 Publications
Some of the work presented in this thesis has been published and presented in a 

number of international peer reviewed conferences.

The initial idea was proposed at the 3'̂ '* Intemational Workshop for Applied 

Reconfigurable Computing in Brazil in 2007. It was subsequently published in 

Springer Lecture Notes for Computer Science, Vol. 4419 [ 18].

The hardware system for large linear algebra problems was presented at the Field 

Programmable Logic 2007 (FPL 2007) conference in Amsterdam [19]. This paper 

contained results for the SPAR connected to DDR on FPGA.

Some of the benchmarks from Chapter 6 were presented in the Parallel Computing 

conference 2007 (PARCO 2007) in Aachen, Germany and were subsequently 

published in [20].

 ̂ Pattern addition is the phrase coined for an SM V M  unit without a multiplier.
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More of the benchmarks from Chapter 6 were presented in the Field Programmable 

Logic conference 2008 (FPL 2008). This included a discussion on the overall 

architecture and the novel specialised PageRank architecture [21],

1.6 Thesis Guide
This thesis is presented in 7 Chapters. Chapter 1 is this introduction. In Chapter 2 the 

technologies being used are discussed. This information is presented to aid 

understanding of the work performed for this thesis. The chapter starts with a brief 

review of the hardware design flow. This outlines the process of designing hardware 

from the concept phase to the generation of the bit file for the FPGA. This is 

followed by a discussion on the FPGA architecture and logic. The development 

board used in this project is then introduced. The memory hierarchy of the 

development platform and the GPP used to benchmark the test architectures is 

discussed. Finally a brief introduction to numeric representations is offered.

Chapter 3 gives a general overview of Internet Search algorithms. This is broken 

down into the key operations needed for Internet search, crawling, indexing, ranking 

and returning a query. A number of Internet ranking algorithms are reviewed and the 

mathematical operations explained. The chapter concludes with a discussion on 

Sparse Matrix by Vector Multiplication (SMVM) and matrix storage formats.

Chapter 4 gives an overview of other work that is related to this thesis. This chapter 

is divided into a number o f sections in which the state of the art in Internet search, 

SMVM and arithmetic units on FPGA is discussed.

In Chapter 5, the implementation of this project is discussed with details of hardware 

and software developed for this project. Three hardware units for performing SMVM 

are outlined and the advantages and weaknesses of both are highlighted. One of these 

SMVM architectures was designed especially for the PageRank algorithm as part of 

this project. Chapter 5 concludes with a discussion of the PageRank software used to 

control the hardware units.

In Chapter 6 the results of the benchmark results are presented. This chapter begins 

by introducing the lA matrices used for benchmarking. The performance o f lA 

matrices on an Intel Xeon W oodcrest is then presented. The FPGA architecture
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performance results are split into three main sections. These are floating point 

performance on Virtex-II, fixed point performance on Virtex-II and floating point 

performance on Virtex-5. The Chapter also includes a discussion on PageRank 

precision and performance limitations..

In Chapter 7 the results of this thesis are discussed. The contribution of the work is 

presented and some ideas for future work are highlighted.
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Chapter Two 

2 Technology Background

2.1 Introduction
The process of creating a suitable architecture to calculate the PageRank vector 

requires an understanding of several technical subjects. A working knowledge of 

these subjects and related technologies is essential in the understanding of the design 

problems and solutions. In this section, a number o f these key technologies are 

explored. This discussion includes a general overview o f the technologies, with 

special regard given to how they are used in this particular project. The discussion 

begins with an overview of the hardware design flow in section 2.2. The basics of 

FPGA based technology, including the details of the development board used to 

prototype and test the architectures developed for the PageRank problem, are then 

presented in section 2.3. The PageRank problem has very large storage requirements, 

due to the scale of the matrices and vectors involved. Thus, commodity memory in 

the form of Double Data Rate SDRAM (DDR SDRAM), or equivalent, is the only 

viable option. This memory technology is discussed in section 2.4, with special 

regard to FPGA compatibility. The memory hierarchy of a state of the art General 

Purpose Processor (GPP) which uses SDRAM memory is also described as the 

performance of the FPGA solutions are benchmarked against its performance. The 

chapter concludes with section 2.5, which provides a brief introduction to number 

representation in computers.
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2.2 Hardware Design Flow
The FPGA hardware design flow is depicted in Figure 2. i (based on a diagram from 

[22]). This design process begins with an initial concept or hypothesis. The concept 

is then modelled at the behavioural level and the model tested to prove viability and 

function. Behavioural modelling can be performed in any high level language, such 

as C or Matlab. M odelling the system before implementation provides an opportunity 

to refine the concept; it also establishes a reference against which the hardware 

behaviour may be compared in the later stages of the hardware design process. In this 

project, a fully functional Matlab model was created of the PageRank algorithm. This 

model was used with the real lA matrices to verify the PageRank algorithm and to 

identify the hardware units needed to solve the PageRank problem. The Matlab 

model also was used to estimate the actual hardware performances.

Design V a c a t io n  
Model Tests

Functional
simulation

; static Timing 
Analysis

IrvCirculi
Verification

Design
Synthesis

Opbmizabon

Bitstream Generation

Concept

Download to FPGA

Behavoura Model

Design Entry

Design Implementation

Figure 2.1 Design flow for FPGA design, based on [22]

Every stage o f the design process has a corresponding testing phase. The design 

entry was done using System C [23] and converted to Verilog with the SC2V tool 

[24]. System C is a C based Register Transfer Level language which allows designs 

to be fully integrated with C test-benches. RTL simulations and testing were done 

both using a C test-bench and a Verilo;g test-bench after the code had been converted
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using the SC2V tool. The design was synthesised using Synplify Pro [25] and 

implemented into logic using the Xilinx ISE [26] and EDK [27] tools version 8.1. 

The design was then downloaded onto an FPGA and tested. A combination of a 

Matlab front-end and a C program running on the M icroBlaze on board the FPGA 

were used for testing. This software is discussed in more detail in section 5.8.

2.3 Field Programmable Gate Arrays (FPGAs)
A Field Programmable Gate Array (FPGA) is a user reconfigurable device which can 

be programmed to implement a hardware circuit [15]. FPGA based prototype 

hardware is significantly cheaper and faster to develop than ASIC based prototype 

hardware. The FPGA will not achieve the same clock rate achievable by ASIC 

hardware but it does have a number of advantages over ASIC hardware. The FPGA 

can be reprogrammed in the field or after deployment to compute different functions 

quickly and easily, unlike ASIC, which can usually only perform a single task. The 

FPGA also shortens the time taken in the design implementation stage o f the 

hardware design flow since hardware can be written to the FPGA in seconds without 

expensive equipment. ASIC designs on the other hand must be fabricated from 

silicon which is a long and costly process. The FPGA also allows for changes to be 

made to the hardware after it has been configured which means that much of the 

FPGA testing can be done in hardware. If a problem is found it is easy to reconfigure 

with the correct hardware. ASIC designs on the other hand cannot be changed once 

fabricated and thus a great deal of testing must be done before fabrication to ensure 

that the circuit operates correctly. ASIC fabrication is very expensive and large order 

quantities are needed to reduce the price. The result is that FPGAs lend themselves to 

low production prototype circuits. It is for these reasons that the FPGA is used in this 

project.

All circuits created on an FPGA are comprised of just five main reconfigurable 

elements as illustrated in Figure 2.2. These elements are the Input/Output Blocks 

(lOB), the Configurable Logic Blocks (CLBs), the Block RAM memory modules, 

the multiplier modules and the Digital Clock M anager blocks (DCM) [15], These 

elements are connected together in various configurations to create the desired circuit
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via programmable switch matrices which are represented by the spaces between 

blocks in Figure 2.2.

DCM

Global Clock Mux-

Configurable Logic

Program m able l/Os

DCM lOB

-►VWi/ mu mu ■ lU l U mu mu mu ■ im u mu

■
1

i
■s

p

/ / \ 1

CLB Block SelectRAM Multiplier

DS031 2B 100600

Figure 2.2 FPGA Architecture Overview (Virtex-II) [15]

The lOBs are arguably the most important components of the FPGA as they are used 

to link the circuit implemented on the FPGA to the pins of the FPGA. The pins can 

then be connected to external devices, such as memory, Ethernet, or PCI 

connections. The lOBs are highly versatile and support many different I/O standards 

allowing the FPGA to communicate with many devices. The lOBs have no 

knowledge o f how to communicate with devices connected to the FPGA until they 

are configured. The designer’s responsibility is to ensure that the lOB is set up 

correctly to communicate with the device connected to the pins of the FPGA.

The DCMs can be used to correct a delay caused by clock distribution, to multiply or 

divide the clock signal or to shift the clock phase. This is especially important in 

large designs to ensure that the registers in the circuit are all clocked at the right time.

The block RAM modules provide small 18Kb of dual-port RAMs. These on board 

RAMs can be used to store data needed by the design. This feature reduces the 

number of CLBs being used as memory and thus increases the size of the designs 

that will fit on the FPGA. Integer M ultipliers also consume a lot of FPGA area when
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implemented using standard CLBs. For this reason, dedicated onboard 18x18 integer 

multipliers are provided as part of the FPGA fabric.

The CLBs form the biggest part of the FPGA fabric. Internally, the CLBs in Virtex-II 

FPGAs contain four slices, two tri-state buffers and a switch matrix; see Figure 2.3. 

The slices inside the CLB can communicate via a dedicated internal communication 

channel. If the slices need to connect to slices outside the CLB, they must do this 

through the switch matrix. The tri-state buffers can be used if a slice in the CLB 

needs to drive a bus.

COUT
> T B U F  X0Y1 
> T B U F  XOYO

COUT

SHIFT
CIN

Fast
C onnects 
to  neighbors

Slice
XOYO

Slice
X0Y1

Slice
X1Y1

Slice 
XI YO

Switch
Matrix

C I N  DS031_32_101600

Figure 2.3 CLB Element (Virtex-II) 115]

On a Virtex-II FPGA, each slice contains two registers, two 4-input function 

generators. Carry logic (CY), arithmetic logic gates and function multipliers, as 

shown in Figure 2.4. The 4-input function generator can be configured as a 4-input 

LUT, 16-bit shift register element or 16 bits of distributed RAM. The registers can be 

used in conjunction with the function generators. They can also be separately 

configured to use inputs that bypass the function generator. This process does not 

affect the function generator, which can still be used in the design [15].
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Figure 2.4 Slice Configuration (Virtex-II) [15]

2.3.1 Development board

The development platform used in this work is the Alpha-Data ADP-DRCII [28]. 

The development platform supports Virtex-II FPGAs and is populated with the 

Virtex-II 2V6000 (FFl 152 package) FPGA device (speed grade 6). Figure 2.5 shows 

a block diagram of the development board used. Its major features include four 

independent SDRAM memory banks (populated with DDR-266), programmable 

clocks, 2MB of DDR SRAM, a PCI Interface Chip (PLX 9656 ASIC) with a 

66M Hz, 64-bit PCI bus and some programming and control logic.

The development platform plugs into the PCI slot of a PC. W hile the PLX target 

device supports a 64 bit PCI interface, the local bus interface (i.e. the interface 

between the PCI target device and FPGA) is only 32 bits wide. The net result is that 

the bandwidth of this interface is only 264MB/s. In this implementation this is 

something of a bottleneck, severely limiting the rate at which data can be transferred 

from the PC memory to the FPGA platform memory.

18



Technology Background

2V4000 to 2V8000

DDR SDRAM 
DIMM

DOR SDRAM 
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Figure 2.5 Alpha-Data ADP-DRCII board [28]

However, the most important factor in the choice of this platform for this 

development was the large memory bandwidth -  provided by four independent 

SDRAM memory spaces. Additionally, as the intention was to develop an iterative 

solver the data transfer time could be amortised over the total solution time and does 

not prove to be a major hindrance.

A platform supporting PCI-Express would have been ideal but no suitable one was 

available at the start of the project (or even still as far as the author is aware).

2.3.2 Virtex-5

The Virtex-II FPGA is now several generations old. Xilinx have introduced Virtex-4 

and Virtex-5^ devices more recently.These more recently introduced FPGAs have

 ̂Virtex-6 has just been announced at time o f  writing
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larger capacities, cost less and can achieve higher clock rates. A summary of some of 

the Xilinx FPGA families introduced since Virtex-Il are shown in Table 2.1.

Table 2.1 Xilinx Virtex family compared (* multipliers replaced with extreme DSP slices, t  
Slices in Virtex-5 contain four LUT and four flip-flops)

Virtex-II
[15]

Virtex-II Pro 
[29]

Virtex-4
[30]

Virtex-5 [31]

Process
Geometries

90 nm 90nm 90nm 65nm

Slices 256-46,592 1,408-44,096 6,000-
89,088

4,800-
51,840t

Multipliers 4-168 12-444 32-96* 32-192*
RAM (Kbits) 72-3,024 216-7,992 864-6,048 1,152-10,368

I/O 88-1,108 205-1,164 320-960 400-1,200
Introduced 2000 2002 2004 2006

Virtex-5 is the newest of these families and was introduced in 2006 and there are 

some notable differences between the Virtex-5 and the Virtex-II used on the 

development platform. The 18x18 multipliers used in Virtex-Il have been replaced 

with Extreme DSP slices which contain an 18x25 multiplier [32]. The basic slice 

architecture has also been changed. Figure 2.6 shows a Virtex-5 slice which consists 

of four LUTs and four flip-flops [33].

Register/! 
Latch I

Register/I
Latch_J

Register/1 
l^tch

Register/
Latdi

Figure 2.6 Virtex-5 Logic Block

Table 2.1, clearly shows that the Virtex-5 family provides a great deal more on chip 

Block RAM (BRAM). The Virtex-5 family can support DDR2 and DDR3 memory
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and so offers the opportunity to increase memory bandwidth. However, a suitable 

Virtex-5 (or Virtex-4) development board for the PageRank problem was not 

available. For this reason the Virtex-II FPGA platform was used.

If a suitable development platform was created for Virtex-5 a number of tasks would 

need to be carried out to port the hardware designed for the Virtex-II development 

board onto the newer device. The hardware modules written as part o f this project 

can be ported easily but all Xilinx generated hardware would need to be 

reconfigured. The hardest module to port would be the memory interface which was 

created with the Xilinx M emory Interface Generator (MIG) [34]. Time would also 

need to be taken to reassign pins on floor planning o f the design

2.4 Memory - Double Data Rate SDRAM (SDRAM)
The large size of the PageRank problem limits the choice o f memory available to use 

in the problem. Often in FPGA based architectures, on board BRAM is sufficient to 

store the data. This situation is not the case, however, in the PageRank problem. 

Static RAM (SRAM) modules could be used to store the data, but they become 

prohibitively expensive as the problem size grows. Commodity memory in the form 

of Double Data Rate SDRAM (DDR SDRAM) is scalable and cheap. Many different 

types of SDRAM memory exist, which are often classified by the amount of data 

words they output per second. For example, DDR-266 produces about two hundred 

and sixty six million 64-bit (8 Byte) words per second.

Table 2.2 shows a number o f different DDR memories along with their clocking 

rates, peak transfer rate, latencies and whether or not they are supported by the 

Virtex-II or Virtex-5 FPGA. DDR2 and DDR3 are newer versions o f DDR and can 

achieve higher clock rates than DDR memory.
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Table 2.2 A summary of DDR data rates [35]

Device
name

Bus clock 
rate MHz

data
width
(bytes)

peak 
transfer 

rate MB/s

Memory
Latency
(cycles)

Virtex-II
support

Virtex-5
support

DDR-266 133 8 2128 2-2.5 yes yes
DDR-333 166 8 2656 2-2.5 yes yes

DDR2-400 200 8 3200 3 no yes
DDR2-533 266 8 4264 4 no yes
DDR2-667 333 8 5336 5 no yes
DDR3-800 400 8 6400 7 no yes

The newer DDR memories have a higher clock speed, yet also have an increase in 

memory latency. The memory latency measures the time taken between a memory 

request to the memory and data being returned. Memories with larger bandwidths 

also have larger latencies. These latencies have minimal effects on large data 

transfers, but decrease the performance on short bursts of data.

The memory controller has a huge effect on performance of SDRAM. The effects are 

specific to the memory hierarchy and controller being used. In the next two sections, 

the difference between the way the FPGA uses DDR and the way the PC uses DDR 

is explored. The effects o f the memory hierarchy and controller on SDRAM 

performance in these specific architectures will be discussed further in section 2.4.3.

2.4.1 PC Memory Hierarchy

The benchmarks presented in this thesis were obtained using a Dell 590 server. At 

the heart o f this PC is the Intel Xeon (Woodcrest) processing chip which is a 65nm 

technology [36]. Internally the W oodcrest contains two processor cores running at 3 

GHz, as shown in Figure 2.7. Each of these cores has a 32 KB LI data cache. A 32 

KB cache is small and translates to approximately 4000 double precision numbers. 

Thus, the core can compute small problems very quickly. If the problem cannot be 

stored in LI cache, the two cores have access to a shared 4 MB L2 cache. Data can 

be shared between the two processors using this L2 cache [37]. The L2 cache is 

connected via a 1333 MHz Front Side Bus (FSB) with a bandwidth o f 10.6 GB/s to 

the Northbridge memory controller. The controller is connected to four banks of fully 

buffered DDR2-667 (FBD). Each FBD has a bandwidth of 5.33 GB/s and so overall, 

the memory controller has a bandwidth of 21.3 GB/s. This memory bandwidth
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cannot be utilised by the processor since the FSB can only achieve a maximum 

bandwidth of 10.6 GB/s. The FSB is therefore the bottleneck in the PC memory 

system. The memory controller allows for a second FSB to be connected to it, which 

would use the memory bandwidth available. However, in the tests run as part o f this 

thesis the second processor socket is not populated.

Socket 0 Socket 1

1333MHz FSB 1333MHz FSB

CORE 2
3GHz

CORE1
3GHz

FBD 
DDR2 667

FBD 
DDR2 667

Shared L2 Cache 
4MB

Shared L2 Cache
4MB

Woodcrest Woodcrest

3GHz
rC O R E  2 '
I 3GHz

NorthBridge Memory Control Hub

Figure 2.7 Intel Xcon Woodcrest memory architecture, based on [38] (LI cache is 32KB data &

32KB Instruction)

2.4.2 FPGA Memory Hierarchy

The FPGA has a major advantage over the PC as regards memory 

interfaces/bandwidth. The FPGA can support multiple banks of SDRAM in parallel. 

The development platform used in this project implements four independent banks of 

DDR-266 memory. The FPGA can stream data from all four of these DDRs 

simultaneously. DDR-266 has a peak data rate o f 2128 MB/s (see Table 2.2). Thus,
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the FPGA platform has a maximum memory bandwidth of 8512 MB/s. Virtex-5 

FPGAs can support DDR-800, which has a memory bandwidth of 6400 MB/s'*.

Some Virtex-5 FPGAs have enough lO pins to implement four (or more) banks of 

DDR, yielding a memory bandwidth of 25.6GB/s when used with DDR3-800. 

Memory bandwidth, however, is not the bottleneck for FPGA computations, as is the 

case with general purpose processors. The clock speed is often the bottleneck in 

FPGA designs. It is often difficult to design hardware for the FPGA logic to run fast 

enough to fully utilise the memory bandwidth. Table 2.3 shows the clock rates that 

are required to fully utilise the DDR memory bandwidth. The clock rate varies with 

the number of bits that the processing elements on the FPGA require per clock cycle. 

For example, a circuit that needed 64 bits (8 Bytes) of data streamed from DDR-266 

memory would require a clock rate of 266 MHz in order to fully utilise the memory 

bandwidth. However, if the circuit used 96 bits (12 Bytes) per clock cycle the clock 

rate would fall to 175 MHz.

Table 2.3 FPGA clock rates needed to utilise maximum memory bandwidth in systems of

various data word sizes

Device name peak transfer 
rate MB/s

Clock rate (MHz) for payload of:
8 Byte 12 Byte 24 Byte

DDR-266 2128 266 177 88.6
DDR-333 2656 333 218 109

DDR2-400 3200 400 266 133
DDR2-533 4264 533 355.5 177.8
DDR2-667 5336 666 444 222
DDR3-800 6400 800 533 266

The clock rates for the 8 Byte and 12 Byte data transfers are almost impossible to 

achieve for large circuits. The clock rates for the 24 Byte transfer look more 

reasonable. This subject is discussed again in section 5.5.3, when the details of the 

architecture are discussed.

It is worth noting that at the time of writing only very high end, highest speed grade devices can support 
this speed grade of memory.
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2.4.3 FPGA and PC Memory Hierarchy Compared

The benchmark PC, like all PCs, has a complex memory hierarchy with three levels 

of varying speed memories. The LI and L2 cache have low latencies, high clock 

rates and thus, have large bandwidths albeit very limited in size, 32 KB for LI cache 

and 4 MB for L2 cache. The caches are clocked at the same speed as the processor. 

The caches are linked by the FSB to a Northbridge chip which is responsible for 

communicating with the SDRAM. The result of this complex memory hierarchy is a 

memory system whose performance varies with data size and data reuse. Table 2.4 

shows the latency o f the PC memory for varying data sizes as measured by the 

SANDRA benchmarking suite [39]. The latency increases as the data size outgrows 

the LI and L2 cache. The larger data forces the PC to fetch data from its slower 

memory. There is an obvious increase in latency as the data outgrows each cache. 16 

KB is the largest data size that will fit in LI cache. The drop in bandwidth between 

the LI and L2 cache is caused by the L2 cache’s higher latency. The limit of the L2 

cache is also evident after 4 MB. Larger data sizes are accommodated by SDRAM 

which is much higher latency and lower bandwidth than the LI and L2 caches. The 

reduction in bandwidth evident between the L2 cache and the SDRAM is caused by 

both increased latency, FSB cycles, memory controller cycles and the slower clock 

rate o f the SDRAM.

Table 2.4 SDRAM latency of FPGA and Intel Woodcrest

Block Size
Intel Woodcrest (DDR2-667) FPGA (DDR-266)

Clock cycles 3 GHz Time (ns) Clock cycles lOOMHz Time (ns)
1 KB 3 1 33 330
4 KB 3 1 31 310
16 KB 3 1 32 320
64 KB 14 4.7 30 300

256 KB 16 5.3 32 320
1 MB 16 5.4 32 320
4 MB 55 18.6 31 310
16 MB 289 96.7 34 340
64 MB 329 110 32 320

In contrast to the complex PC memory hierarchy the memory hierarchy on the FPGA 

can be implemented in what ever form best suits the problem. The PC memory 

hierarchy performs well for problems with a large quantity of data reuse. SMVM has
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little data reuse - this will be discussed in greater detail in section 3.6. For this reason 

a different memory hierarchy was implemented on the FPGA; see section 5.2. The 

FPGA memory architecture is based on a streaming data system. Data that will not 

be reused is streamed from memory directly to the processing elements. The BRAM 

on the FPGA is used as buffers (simple LI cache) for the vector elements that are 

reused. This simple streaming architecture reduces the overhead and complexity 

associated with having LI and L2 caches. Removing this overhead and complexity 

result in the memory latency for all data sizes remaining constant; see Table 2.4. The 

longer latency time of the FPGA is due to the slower clock-rate of the memory.

The memory architectures of the two systems are also evident in the bandwidth 

measurements. The three tiered memory architecture of the PC is reflected in the 

three distinct steps in the memory bandwidth; see Figure 2.8. The top most tier o f the 

graph in Figure 2.8 represents the LI cache. The L2 cache bandwidth is evident for 

memory blocks between 64 KB and 4 MB. After this point the PC must access 

information from SDRAM via the Northbridge chip. The memory bandwidth 

decreases greatly when data is stored in the SDRAM. This decrease in bandwidth can 

be attributed to lower memory bandwidth of SDRAM when compared with the LI 

and L2 caches, FSB limitations and memory controller overhead. The theoretical 

peak bandwidth of the DDR2-667 SDRAM used in the Intel W oodcrest is 5336 

MB/s per socket. The Northbridge supports four banks of memory giving a 

theoretical memory bandwidth of 21344 MB/s. The PC sustains a mere 2775 MB/s 

which is 13% of this value in the Sandra bandwidth tests [39].

160000 
^  140000
a  120000 
1- 100000 
^  80000 
I  60000
= 40000

“  20000 
0

4 16 64 1284 8 16 32 64 128 256 512 12
KB KB KB KB KB KB KB KB KB MB MB MB MB MB 

Memory block size

— PC Memory Bandwidth FPGA Memory Bandwidth

Figure 2.8 M em ory B andw idth of the Xeon W oodcrest and FPGA for various m em ory block

sizes.
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The FPGA exhibits a constant memory bandwidth. In memory copy tests carried out 

on the FPGA with data blocks of varying size, the FPGA achieves a sustained 7660 

MB/s or 90% percent of its 8512 MB/s peak. The FPGA, thanks to its efficient use of 

memory, has a larger sustained memory bandwidth than the PC despite using 

memory that is less than half the speed. Memory bandwidth is very important since 

large matrices associated with Sparse Matrix by Vector Multiplication are memory 

bounded.

2.5 Number representation
There are many ways to represent numbers on computer systems. These include 

integer/fixed point and floating point. The simplest form is integer/fixed point 

format. This format can be used to represent any whole number or fractional part. 

However, it is difficult to achieve a large dynamic range as the number of bits is 

limited. An integer is simply the number saved in binary format using a certain 

number of bits. A 32-bit integer uses 32 bits to store the number and a 64-bit integer 

uses 64 bits to represent the number. The range of a number format is a measure of 

the amount of numbers it can represent. It is calculated by taking the smallest number 

from the largest number and adding 1. In the case of an integer the range is simply 2* 

where h is the number of bits used to store numbers in the format. The precision of a 

number is the number of significant bits the representation can accommodate.

Integers cannot represent the fractional part of a number. Scientific calculations like 

the PageRank algorithm need a number system can represent fractions. In this 

section, two formats for storing these numbers are discussed. They are fixed point 

and floating point numbers.

2.5.1 Floating point

A Floating Point (FP) number is made up of three parts, namely the sign, the 

exponent and the mantissa; see Figure 2.9 [40]. If the number is negative, the sign bit 

is 1. Otherwise, the sign bit is 0. The exponent gives the position of the number in 

the numerical systems range. The mantissa contains the fractional part of the number. 

The number is normalised so that the most significant 1 is just to the left hand side of 

the binary point sign. This 1 does not need to be stored, since it is implied.
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* 2̂ '̂P * {11 0} .mantissa

, /  7 ^
Sign Exponent Mantissa

Figure 2.9 Floating point number

The IEEE floating point standard gives a standard approach for handling floating 

point num bers. This approach includes inform ation on precision, range, rounding 

m odes, exception handling, overflow  and underflow  [40], Thus, consistent behaviour 

is given across com pliant processors. Before the standard was introduced in 1985, 

m any different w ays o f dealing w ith FP num bers existed. This led to a great deal of 

confusion as program s run on different m achines often gave different answers. A  

floating point standard is needed to ensure everyone running a calculation will get 

the sam e answer.

2.5.1.1 Precision and range

Tw o m ain floating point form ats are outlined in the IEEE floating point standard. 

These tw o form ats are single and double precision. D ouble precision floating point 

has a larger range and precision than single precision floating point. The range is 

lim ited by the num ber o f  exponent bits available and the precision is governed by the 

num ber o f m antissa bits in the format. Table 2.5 show s how the single and double 

precision form ats differ. The double precision form at has a larger num ber o f bits in 

its exponent, and so can cover a greater range than the single precision form at. The 

double precision form at also has m ore digits in its m antissa and so can represent a 

num ber to a great precision than the single precision form at. The double precision 

form at can represent a num ber w ith 53 significant digits. These 53 significant binary 

digits encom pass the 52 fractional binary digits and the im plied 1 w hich is included 

because the num ber is norm alised to  be betw een 1 and 2.The single precision form at 

gives 24 significant binary digits o f  precision.

Table 2.5 double and single precision floating point

Type exponent mantissa bias max value min value
single 8 bits 23 bits 127 (l-2 '^^)*2‘‘̂^ 2 - rib

double 11 bits 52 bits 1023 (l-2'-‘’‘̂ )*2“'‘-' 2-1022
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Numbers between the minimum value and zero can be achieved using denormalized 

numbers. Denormalized numbers increase the range, but do so by decreasing 

precision. A denormalized floating point number is one in which the exponent is 

zero. This factor signals that the number is no longer normalised, and so no longer 

contains a 1 left of the binary point. The largest denormalized number is just below 

the minimum value of the normalized numbers quoted in Table 2.5. Each time the 

number gets a degree smaller, it loses a bit of precision until the precision finally 

becomes zero. The IEEE floating point format includes a representation of infinity; 

thus if a number is too large to be represented by the scheme, it is treated as infinity.

The IEEE floating point format allows for other non-arbitrary formats to be used. 

Any combination of exponent length and mantissa length can be used to suit a user’s 

needs so long as it is made conform to the standard regarding rounding modes, 

exceptions, and denormal numbers as outlined in the IEEE standard [40].

2.5.1.2 Rounding modes and exceptions

The IEEE floating point format includes 4 rounding modes. These modes are round 

to zero, round to negative infinity, round to positive infinity and round to nearest 

even. All IEEE-compliant arithmetic units must support these formats. In order to 

fully support the format, arithmetic units must also support a number of exceptions. 

The IEEE floating point format includes an exception code word which must be 

allowed to propagate unhindered through the arithmetic units. An underflow, 

overflow and divide by zero flag must also be available. The divide by zero flag is 

set when a division by zero operation is attempted. The overflow flag is set if a 

number gets too big to be represented by the format while being operated upon. The 

underflow flag gets set if precision is lost, due to the number becoming too small to 

be represented or becoming denormalized when being used in a calculation.

2.5.2 Fixed point

Fixed point arithmetic gets its name from the fact that the binary point always 

remains in the same fixed place. The digits before the binary point are referred to as 

the Magnitude (M) and the digits after the binary point are called the Fraction (F). 

The maximum value that can be represented using unsigned fixed point arithmetic is
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given by 2'"-2'^ where m an d /a re  the number of bits used to represent M  and F 

respectively. The upper limit for signed fixed point arithmetic is given by 2"’’'-2 *̂ and 

the minimum value is given by -2"’ '. Table 2.6 shows the range and precision of four 

fixed point number systems.

Table 2.6 Fixed point range and precision

Type Magnitude Fraction precision max value min value
Unsigned 32 2 bits 30 bits 32 bits 0

Signed 32 2 bits 30 bits 32 bits 2-2'^" -2
Unsigned 64 2 bits 62 bits 64 bits 2̂ -2"^^ 0

Signed 64 2 bits 62 bits 64 bits 2-2'“ -2

The range and precision of the fixed point numbers in Table 2.6 are very different 

than the range and precision calculated for the floating point numbers in Table 2.5. A 

floating point number has a much larger range than the fixed point number of the 

same size. However, the fixed point number has a greater precision than the 

equivalent floating point number. For example, a single precision floating point
127number has a dynamic range of 2x2 and a precision of 23 bits. A signed 32-bit 

fixed point number has a maximum dynamic range of 2jc2‘̂  ̂ (depending o n /) and a 

precision of 32 bits. Floating point numbers are designed to cover a large range, 

while fixed point numbers cover a much smaller range, albeit with greater precision. 

Fixed point arithmetic is not as complicated as floating point to implement on FPGA 

and can usually run at a higher clock speed than its floating point counterpart. If the 

number used by an algorithm falls into a small range, then fixed point arithmetic is 

often the best choice of number format. If a large range of numbers is needed, 

however, then fixed point is limited in its use and floating point arithmetic should be 

used.

2.6 Summary
In this section a number of key technologies were discussed. First of all, a brief 

description of the hardware design flow was presented. Details of the fabric of the 

two FPGAs used in this research were also presented. The development platform 

uses a Virtex-II FPGA. Although this FPGA is several generations old no suitable 

replacement development board has been created using the Virtex-5. Virtex-5
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performance data can be obtained from the Virtex-II performance results together 

with post place and route timing information. The performance data is extrapolated 

to the clock rate on the newer device. Virtex-5 performance data will give a truer 

picture of the achievable performance for the PageRank architecture on a state of the 

art FPGA.

Next, the memory issue was addressed. The PageRank vectors and matrix are very 

large, and so it is essential to use commodity memory. The development platform 

with four banks of DDR memory provides the necessary memory capacity and 

bandwidth. The memory bandwidth is often the limiting factor in calculations like 

the PageRank algorithm. However, modem FPGAs can support very high speed 

DDR3 memory, and so achieving a clock rate to fully utilise the memory bandwidth 

is a serious design issue.

Finally, a discussion of number representation in scientific computing was presented. 

Floating-point arithmetic is complex to implement on FPGA but the large range it 

offers is often required by applications. Floating point arithmetic also requires the 

hardware engineer to implement special case exceptions and rounding modes. 

Historically, FPGAs have implemented fixed point arithmetic. Fixed point is limited 

in range but offers good precision. The choice between floating and fixed point 

comes down to the range and precision needed by the PageRank algorithm to 

distinguish between the multitude of pages it ranks.
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Chapter Three 

3 Internet Search

3.1 Introduction
A ll large collections o f information are inde>'^ed to allow them to be searched 

effectively. For this reason, books have indic^es, libraries have catalogues, and 

bookshops have inventory lists. Likewise, as the Internet began to grow, it became 

obvious that it too needed to be indexed. Search engineers thus applied well- 

established search techniques to the Internet so that it could be searched. These 

techniques were clearly shown to be insuffic^ient in early search engines, as users had 

to wade through pages o f Spam results to gett the page they had sought in a web 

query. These poor results were caused by spaimmers, who purposely wrote pages to 

manipulate search engines results. They addeJd hidden text (e.g. white text on white 

back ground), added fake description tags amd stuffed their articles fu ll o f commonly 

used search keywords all in order to bring unihelpful web pages to the fore. The result 

was that Internet users were frustrated in theiir searches for helpful information and 

web pages.

The unique d ifficu lty  o f the Internet is that it is different from other document 

collections in ways which make it d ifficult to) search. It has four key distinguishing 

features that complicate search methods TheJse four features are that the Internet is 

huge, dynamic, self-organised and hyperlinkted. For these reasons, traditional search 

methods like boolean search algorithms, wene destined to fa il on the Internet [41].

First o f all, the Internet is huge and thus its siize alone prevents many traditional 

search techniques from being used. Any seanch engine needs to be scalable to the 

ever-increasing size o f the Internet. The Intermet is not only huge, but its size is not 

accurately known. In 2003, Langville said Gcoogle had ten b illion  pages in its index
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[41], In 2006, Austin claimed Google had twenty five billion pages in its index [42], 

In 2007 Google announced that they had indexed their one trillionth page [6]. Even 

though these estimates are very different, they give an idea of the scale of the 

Internet and possibly the rate of growth. The Internet is a data collection of billions 

o f documents, many of which have frequently changing content.

Secondly, the Internet is dynamic. Studies have shown that 40% of web pages 

change weekly and that 23% of the “ .com” domain web pages change daily [43, 44]. 

This feature also represents a big change from traditional document collections, 

where documents remain unchanged once they are added to the collection.

Thirdly, the Internet is self-organised. In a traditional data collection, one trained 

body of staff collect and organise the data. With the Internet, however, no one central 

person or body organises or controls the Internet. Pages are added, removed and 

updated regularly.

The last and most obvious way that the Internet differs from a traditional data 

collection is that it is hyperlinked. A hyperlink is a digital link from one webpage to 

another which when clicked sends the user to the referenced page. Hyperlinks are 

what makes “web surfing” and modem search engines possible. These four 

properties of the Internet must be considered when creating a successful search 

engine.

Figure 3.1 is an overview o f the major components of a search engine. The search 

engine can be broken down into four processes, namely crawling, indexing, ranking 

and query processing. In this chapter, these four processes are discussed. Although 

many of the details of crawling, indexing and query processing are outside the scope 

o f this project, a short simplified description of each is given as applicable to this 

project. The second part of this chapter is focused on the ranking process. A number 

o f ranking algorithms are discussed in detail in this section.
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Page RepositoryThe Internet

Crawling
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i
R ev*r«e Term  Table

Link M a t r i x -----------------------------------------------------------------------

Indexes
Query Independent

Figure 3.1 Overview of a Search Engine

3.2 Crawling
In the previous section, the Internet was described as a highly volatile environment. 

The structure and content of the Internet are constantly changing. The scale of the 

Internet makes it impossible for any human to keep search engines up to date with 

the newest web pages. No central index exists to tell search engines when a page is 

updated or a new page is added to the Internet. The search engine indexes thus are 

kept up to date by Internet crawlers.

The process begins when Internet crawlers, or ‘spiders’, are given lists of URLs to 

visit by the Crawler Module [42]. The spiders visit the pages and return the text 

content to the Page Repository and the Indexing Module. The Crawler Module parses 

the new content looking for URLs. When a URL that has not been visited recently is 

found, the Crawler Module adds that URL to the list o f URLs that the spider has yet 

to visit. Thus, the spider spreads its accesses out across the Internet, crawling from
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one site to another, adding new pages to its index and refreshing its index for pages 

that have been updated.

Internet crawling is a continuous process. New pages and updated content ensure that 

the Internet crawlers perpetually have plenty of work. Since the spiders visit pages, 

they consume the bandwidth of the websites they visit; they take that bandwidth from 

the “paying public” . Sites are often limited in their bandwidth. This bandwidth can 

be thought of in two different ways. The bandwidth of a site is the number of page 

requests that a site’s server can deal with or the maximum amount of data that the 

server can transfer before it can no longer keep up with page requests. If search 

engine providers did not limit their web crawling, they could clog up the Internet by 

requesting too many pages too quickly. Yet, if search engines did not continually 

crawl websites, the search engine would not have the newest version o f pages and 

not be able to return the most relevant results. Thus, a balance must be found. Search 

engine providers are continually trying to find the right balance between crawling too 

much and crawling too little, and thus between index freshness and bandwidth 

consumption.

The search engine company Google has a novel approach to this problem. In order to 

take the guesswork out of figuring out when was the right time to crawl, Google 

created a service called W ebmaster Tools [45]. The service simply asks the people 

who make the sites (webmasters) to estimate how often each page changes on their 

site. The webmaster uploads an XML file containing information about every page 

on his or her site, including an estimate of how often it is updated. This service also 

gives the W ebmaster the option of limiting the crawl rate of his/her site (Figure 3.2), 

to save bandwidth for his/her visitors. Using this service is not mandatory to be 

included on the Google index, but does help to ensure the Google spiders find your 

site and crawl it regularly.
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^ WeVe detec led  lh «  Googlebot is limmng Ihe rale at which it crawls p ag es  on you» site to ensure 
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Your current speed

Faster
Expires in 36 days
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S»ve I

Figure 3.2 Google Webmaster controls

3.3 Indexing
Freshly crawled content is fed into the Indexing Module [41]. This module has two 

functions. It must both create an index of the page content, referred to as the Reverse 

Term Index (RTI), and it must create the Internet Adjacency (lA) matrix, as in Figure 

3.3. Each new URL crawled is assigned a number to identify it. The lA matrix is 

created using these identity numbers as co-ordinates. Figure 3.3 shows how the lA 

matrix is constructed from a simple web. Note that each page is represented with a 

number. The actual URLs are stored in another index.

Non-zeros in the lA matrix column represent hyperlinks to the page corresponding to 

the column number (inlinks). Non-zeros in this lA matrix rows represent hyperlinks 

that page has to another page corresponding to the column number (outlinks). The lA 

matrix in Figure 3.3 shows that the page with index number I contains a hyperlink to 

pages 2, 3 and 5, and pages 3 and 4 contain hyperlinks to page L  This lA matrix is 

central to the ranking algorithms and so will be discussed in more detail later.
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'^Pl P2 P3 P4 P5 P6'

PI 0.0 1 1 0.0 1 0.0

P2 0.0 0.0 0.0 0.0 0.0 0.0

i  = P3 1 0 0 0 0 0.0 0.0 0.0
P4 1 0.0 0.0 0.0 0.0 1

P5 0,0 0.0 1 0.0 0.0 1

P6 Q o 0.0 0.0 1 0,0 0.0,

Figure 3.3 Link matrix created from crawled pages

The second function of the Indexing Module is the creation of the Reverse Term 

Index (RTI). The Indexing Module parses the content of each page that the spiders 

return, removing unnecessary information and very commonly used words. Figure 

3.4 shows a simplified version of what the Indexing Module does to create the RTI. 

The RTI is similar to an index at the back of a book. Every keyword is listed, along 

with a list of pages on which that keyword occurs.

Pape 100

Google use the 
PageRank 

Algorithm to sort 
results

Page 100

Google

Algorithm t

Term 1 (aardvark) - 2,456,345 

Term 10 (Algorithm) - 32,42,100 

Term 344 (Google) - 3,23,34, 47,64,100 

Term 567 (PageRank) - 3,53,54.78,64,65,88,100 

Term m (Xymurgy) - 329

Reverse Term Index
Figure 3.4 Reverse Term Index creation

Every page on the Internet that uses a particular word can be found by consulting the 

RTI. Figure 3.4 demonstrates that the word “Google” appears in six pages of this 

simple example. It appears on page 3 , 23, 34, 47, 64 and 100. RTIs are commonly
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used in information retrieval [41], The size o f the Internet and its variety o f content 

does cause some problems for the RTI creation and management. It consumes a great 

deal of memory, as it must index numerous languages, names and phrases. The RTI 

is not as simple as portrayed in this example. Other information regarding the 

reference is also stored (e.g. is the word in the page title, in a heading or in bold font 

etc.). Significant time and resources are spent researching the best way to store and 

implement the Reverse Term Index.

3.4 Query Processing
Internet crawling and indexing occur before the user makes a query. They are query 

independent. The previous two modules create the indexes that the query module 

uses to return results to the user. The Query m odule is query dependent. This means 

that the results of this process are affected by what the user searches for. It is 

important that any calculations carried out in this process are done quickly because 

the user is waiting for the result. The query m odule is responsible for three duties, the 

RTI lookup, content score calculation and returning the ranked results to the user 

141].

The first step is use the RTI to find all the pages in which the query keywords 

appear. For example, if we search for “Google AND PageRank” using the RTI from 

Figure 3.4, we would see we have 6 pages with the word “Google” in them and 8 

pages contain the word “PageRank” . However, only 3 pages contain both words. The 

pages are page 3, 64 and 100. The second step is to create the content score. This 

score is worked out using the other information in the RTI. Many different factors 

make up the content score [46], For example, the frequency and position (title, 

header or body text) of the keyword in the document affects the overall content 

score. These other factors are unimportant for the purposes o f this example. Some 

search engines only use the content score to rank pages but others have a separate 

ranking module. If a ranking module exists these scores are combined with the 

content score to give the overall result order. The results are then returned in this 

order to the user.
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3.5 Ranking
In this section a number of ranking algorithms will be presented and compared. To 

aid understanding a number of traditional document collection ranking algorithms 

will be presented along side the Internet ranking algorithms. The algorithms will be 

assessed for scalability, complexity of calculation, accuracy of results and the time 

the user has to wait for results. The traditional ranking algorithms refer to ranking 

algorithms that are used on non-linked document collections. These include Boolean 

Search Engines and Latent Semantic Analysis. Traditional ranking-algorithm scores 

are computed only using the page content. M odem Internet ranking algorithms differ 

from traditional algorithms as they combine a content score with a popularity score. 

This popularity score is calculated using the linked structure of the Internet. There 

are many different ways of doing this and a number of these methods are outlined in 

this chapter. Salsa [47], HITS [48], and PageRank [49, 50] are examples of this type 

o f ranking algorithm.

3.5.1 Boolean Search Engines

The Boolean search engine is one of the simplest types of ranking algorithms. Many 

libraries use a version of the Boolean search engine. As the name suggests the 

Boolean search engine is based on Boolean algebra [51]. The user uses the AND,

OR, XOR and NOT operators with keywords to get the results they want. The user 

can string as many keywords as they want using these operators, thus refining their 

search. The search engine looks for the presence (absence in the case of the NOT 

operator) o f the inputted keywords and only returns the pages that comply with the 

user’s query statement. The model does not return partial matches. Decisions are 

based completely on the binary criterion. This can lead to too many or too few results 

being returned and ultimately poor performance [51]. Users can find these systems 

counter intuitive, since a search for Boolean meaning of the AND operator and the 

OR operator are not the same as they are in daily language. A request for “cats and 

dogs” in daily language can mean the user wants documents about cats and 

documents about dogs but in Boolean logic it means only documents that contain 

both terms. A request for “tea or coffee” on the other hand can imply a mutually 

exclusive decision. You can have tea or you can have coffee but not both. In Boolean 

logic it means you want any document that contains the word tea or the word coffee.
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This can cause confusion and often the results users received were very different 

from what they expected [51J.

Boolean search engines also suffer from another grave disadvantage. They do not 

understand synonymy (multiple words have the same meaning) and polysemy (one 

word meaning many different things). Many search engines fail to deal efficiently 

with this problem. If you searched for “car AND maintenance” a Boolean search 

engine would fail to return a document called “automobile maintenance” . To help 

alleviate this problem the idea of a fuzzy Boolean search engine was developed. It 

uses fuzzy logic to categorise queries like the “car and maintenance” example as 

partially relevant [41,51].

The Boolean search engine is scalable and versions of it were used in early Internet 

search engines. However, it is easy to spam. It has no concept of a document being 

useful other than that it contains a given keyword. A spammer could include 

keywords on his page that were not relevant to the page content, making his page 

appear in the results of high traffic searches. This was a very common spamming 

method before Google.

3.5.2 Latent Semantic Analysis

Latent Semantic Analysis (LSA) is an example of a vector space search model. It 

was introduced in 1988 to address the issues that were inherent in summarising 

documents and queries into a set of keywords, as is done in Boolean search engines, - 

namely irrelevant documents with the query keywords are returned and relevant 

documents that do not contain the keywords are not returned [51]. In LSA, 

documents and query vectors are mapped into a lower dimensional space, which is 

associated with themes [51]. Simplified, this mapping process works by comparing 

the structure and word usage in the documents to find the underlying themes of the 

documents. This process looks at the frequency of words used in the document and 

their relative proportionality to each other. Based on these factors, documents of 

similar themes can be identified despite individual discrepancies in exact keywords 

used. The hypothesis is that results retrieved from this themes based approach are 

better than those retrieved using keyword lookup model like that used in Boolean 

search engines. A simple example of this would be to take the case o f two almost
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identical documents about car engines. Document A uses the keyword “car” . 

Document B uses the keyword “automobile” . As discussed earlier, a Boolean search 

engine would only return document A  for a query on “car engines” as it would only 

analyse exact words used in the query. However, LSA should notice similarities in 

documents A  and B, despite document B not using the query word “car.” LSA would 

do this by examining other words common to both documents, and noting their 

frequency and proportionality. Thus, LSA should see the common theme of both 

documents and return both document A  and document B. Since document A  and B 

have relevance to the query, by returning them both LSA performed better than the 

Boolean search engine.

The latent semantic search engine contains a dictionary of terms, Tt, T2 ,...Ts. This 

dictionary contains words and phrases and is in the order o f a couple of thousand 

entries. The search engine parses each document D j in its index and records the 

frequency each dictionary term appears D j = ( freqij, freq 2j, ...freqmj) where,/re<7y is 

the frequency that term 7, occurs in document Dj. This information is stored in a 

matrix m see (1). Since most documents do not contain all the words this matrix is 

sparse. Thus, sparse matrix techniques can be used to solve it |52].

D, • •

7'. 'freqn freqn  ' • •  freq̂ ^̂

>
..

freq22 ' • •  freq2„,

Jreq„i freq„2 ’ • •  freq„^,

Singular Value Decomposition (S V D ) is applied to the An.m matrix as shown in 

equation 2 [53].

K .^= U S V '  (2)

This yields the three component matrices that make up the An,m matrix, where U  is 

the matrix of eigenvectors derived from the term-to-term correlation matrix given by 

An.nA'n.m. V  is the matrfx of eigenvectors derived from the term to term correlation 

matrix given by A'n,mAn,m, and S is the r x r diagonal matrix o f singular values where 

r=min(n,m) is the rank of A„ „ [51J. The S matrix is truncated to the k top entries. The 

V matrix and the U  matrix are also truncated to correspond to the S matrix [53]. 

Figure 3.5 shows the truncation of the S, U  and V  matrices.

42



Internet Search

Term
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Figure 3.5 The truncation of the S,U and V matrices in LSA

This is the crucial step in LSA. If k includes too few of the S  values, returned query 

results would be inaccurate. The LSA search engine would be unable to tell 

documents apart. However, if k includes too many rows of the S matrix the results 

returned for a query would resemble the results of a simple Boolean search engine 

and will not effectively deal with synonymy or polysemy [52].

A number of ways to run queries exist in LSA. Baeza-Yates et al. suggest modelling 

the query as a pseudo document [51]. A query vector O ' i s  created 

where is equal to one if term r, appears in the query string and zero otherwise. 

This vector is added to the A  matrix as the first column. Then SVD is applied to the 

matrix and the Ak^Ak matrix is calculated. The first row of this Ak^A^ matrix is the 

rank of all documents with respect to this query [51]. This method requires a full 

SVD to be calculated on the document collection every time a query is made. Berry 

et al. [53] and Meyers [52] use a method that does not involve calculating the SVD 

every time a query is made. Instead the SVD is computed every time the document 

collection changes. This is done to compute the new Ak, which is the reduced term- 

document matrix. The document ranking for a query is then given by comparing the 

query vector to each document vector Dj  (Columns of Ak).  Equation 3 below 

shows how the cos function can be used to compare the vectors.

C O S 0 J  =

l l e l U p (3)
J Wi

The user must choose a threshold t . The results where \cos6\> r are returned to the 

user as relevant documents. The choice of r  is as M eyer puts it “part art part science” 

[52].
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Latent Semantic Analysis is a powerful tool for finding the underlying semantics in a 

document collection. The quality of the results is high provided the k and t  values 

have been wisely chosen. LSA, however, is not suitable for huge, dynamic, self­

organised and hyperlinked document collections like the Internet. First of all, LSA is 

computationally expensive for huge document collections as it requires comparing 

every query to every document. Furthermore, LSA necessitates computing a SVD 

each time a document changes, further adding to computation costs for a dynamic 

document collection. The huge computations associated with LSA make it the 

perfect candidate for hardware acceleration. This avenue of inquiry was not pursued 

in favour of examining the most popular form of Internet ranking algorithms.

3.5.3 Internet Ranking Algorithms

Modem Internet ranking algorithms exploit the unique linking structure of the 

Internet when calculating page rankings. Before the advent of these hyperlink 

dependent-ranking algorithms, searching the Internet for useful information had 

become a rather frustrating task. The search engines of the day often returned pages 

and pages of spam results before a single useful page could be found. It was clear 

that something had to be done or the Internet could never achieve the dreams of its 

creators of becoming the world’s largest useful information collection. So, in the late 

1990s the door was open for anyone who could product highly relevant search results 

and cut down on the spam results being returned by search engines. Solutions came 

in the form of two ranking algorithms, HITS and PageRank, which both used the 

Internet’s linked structure to determine the order in which pages should be returned 

for a query. Leading modem day search engines such as Google, MSN search and 

Ask still use the linking structure of the Internet to compile webpage rankings [50,

54, 55]. The precise details of these algorithms are closely guarded trade secrets. 

However, the initial versions of PageRank used by the Google search engine and the 

HITS algorithm used by Ask are available. In the following two sections the HITS 

and PageRank algorithms will be discussed.
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3.5.4 Hypertext Induced Topic Search (HITS)

Jon Kleinberg developed HITS in 1997 [48], To understand HITS one must 

visualise the web as a graph. Every page in the web is a node on the graph and 

directed arrows on the graph represent hyperlinks between pages. Figure 3.6 shows a 

simple example web. This type of graph is called a neighbourhood graph.

A node that has several inbound links is called an authority. It is thought o f as an 

authority because multiple other websites reference its material. A node with several 

outbound links is called a hub. A hub directs web users to sites where the 

information can be found, see Figure 3.7.

The HITS thesis is that good authorities are pointed to by good hubs and good hubs 

point to good authorities |48]. Many pages on the Internet are both hubs and 

authorities since they have incoming and outgoing links. In the HITS ranking 

algorithm a hub and authority score are calculated for every node on the web. Pages 

with highly relevant content, to a given query, receive a high authority score. Pages 

that contain many links to useful pages for a given query get a high hub score. Both 

results are returned to the user and they choose to order the results with either the 

hub or authority scores. The scores are useful for different things. For example, if 

one was searching for a camcorder. If the particular model was known, the authority

Figure 3.6 Example of a 10 Node Neighbourhood graph

Authority

Figure 3.7 An Authority node and a Hub node
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score would return highly specialised pages about that particular model. However, if 

one just wanted to conduct a broad search about camcorders in general the hub score 

would return pages that linked to many relevant informative pages, which would 

allow the search to be broadened to find what was needed. Equation 4, shows the 

original equations used by Kleinberg to calculate the HITS ranking algorithm, where 

every page (i) has both an authority score x, and a hub score y, [48], Let e,) be a 

directed link going form page i to page j  (i.e. a hyperlink going form page / to page 

j).  An initial estimation of authority score Xi(0) and the hub score must be 

assigned. HITS iteratively refines these estimates using the two equations in 

Equation 4

'LyAk-D
j-.ej,eE

( / : - ! )  (4)
j-.ejieE

k = 1,2,3,-■■

It is clear from the equations for HITS that the authority score of a page is the sum of 

all the hub scores of the pages that link to it. Likewise the hub score of a page can be 

determined by summing all the authority scores of the pages it links to. These 

equations can be written in matrix form. This is shown in Equation 5, where L is a 

partial link matrix obtained as described in the indexing Section 3.3. This will be 

discussed later.

X( k )  = L ^ Y { k - l )

Y(k)  = LXi k )

Equation 5 can be simplified to the form shown in Equation 6 by simple substitution. 

These two new equations define the iterative power method for computing the 

dominant eigenvector for the matrices LL^  and L^L. Kleinberg suggested that this 

method could be used to solve the equations [48]. There is no need to solve both 

equations using the power method. Once one of the scores has been computed the 

other can be obtained by back-substitution into Equation 5.

X( k )  = L ^ L X { k - \ )
(6)

Y{k) = L l J Y { k ~ \ )

The HITS algorithm can be divided into three parts. Firstly a neighbourhood graph is 

created, then the link matrix L is obtained from the neighbourhood graph and finally
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the authority and Hub scores are calculated. W hen a query is made the HITS based 

search engine must create a neighbourhood graph. There are various ways of doing 

this but one simple way to do it is to consuh the RTI as described in section 3.3.

Inverse Term Index
• Addilives: term l - doc 7, doc 9

Beetles term 4 - doc8

Canine: term 7 - doc 5

Dog: termIO - doc 3, doc 6 
Dogfish terml 1 -doc 2

Food termIS- doc 1

zoo term 100 - doc 10, doc 4

Figure 3.8 Building a neighbourhood graph in HITS

If a query for “dog food” was run on the RTI in Figure 3.8, the pages 1, 3 and 6 

would be returned. The initial neighbourhood graph would be created using only 

these results (shown in red). The neighbourhood graph would then be expanded by 

adding pages that link directly to the existing pages in the graph. In the example 

above that adds pages 2, 5 and 10 to the graph (marked in blue). This padding o f the 

neighbourhood graph is done to allow some semantic associations to be made. This 

usually resolves the problem of synonyms [41], However, it can also add unrelated 

pages to the search. This is evident in this example; neighbourhood graph padding 

has added a page about the zoo (page 10) and a page about dogfish (page 2), which 

are two unrelated pages to the subject of “dog food”. However by adding page 5 it 

has added a page on canines which is a related article. A limit is placed on how much 

the neighbourhood graph can be padded because large graphs would take too long to 

solve. Figure 3.9 shows the final neighbourhood graph for this example.

Figure 3.9 Finalised neighbourhood graph for “dog food” query

Once the neighbourhood graph has been created the adjacency matrix L can be 

created. The adjacency matrix is an NxN  matrix where N  is the number of nodes in
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the neighbourhood graph. Say e'-' is an elem ent in the adjacency m atrix on row  / and 

colum n j .  If a hyperlink exists linking node i to node j  then e'-' is set to one. If node i 

is not linked to node j  then e'̂  is set to zero. The adjacency m atrix show s us how all 

the nodes in the neighbourhood graph are linked. The adjacency m atrix for the 

neighbourhood graph in Figure 3.9 w orks out as follows:

1 2 3 5 6 10
1 '0 0 1 0 1 0

2 1 0 0 0 0 0

L =  3 0 0 0 0 1 0

5 0 0 0 0 0 0

6 0 0 1 1 0 0

10 .0 0 0 1 1 0

Figure 3.10 Link matrix for HITS neighbourhood graph

This adjacency m atrix is used w ith Equation 6 to calculate the authority  and hub 

scores. The version o f the pow er m ethod used by HITS always converges. The 

reasons for this are outside the scope o f  this thesis but it is due to the m atrices LL^ 

and L^L being sym m etric, positive semi definite and nonnegative, so it is not possible 

to have m ultip le eigenvalues on the spectral circle [41 ]. Sam ple M atlab code for the 

pow er m ethod used to solve the HITS ranking algorithm  is given in Figure 3.11.

while(residual >= epsilon) 
prevx=x; 
x=x*L’; 
x=x/sum(x);
residual=norm (x-prevx,2);

end
y=x*L’;
y=y/sum(y)

Figure 3.11 Matlab code for HITS ranking Algorithm

The HITS algorithm  requires tw o Sparse M atrix by V ector M ultiplications, one 

m em ory copy, one vector scale, one division, one vector subtraction, and one vector 

norm  to be calculated per iteration. Research suggests that the HITS algorithm  

converges in about 10-15 iterations [48, 56].

HITS has a num ber o f d isadvantages. It is query-dependent, w hich m eans that the 

neighbourhood graph, the authority  scores and the hub scores are calculated at query 

tim e (w hile the user waits). HITS is also susceptible to spam m ing. By adding links to 

and from  your page you can influence the authority  and hub scores. A slight change 

in score can give a page a big advantage on the Internet. Since m ost users only ever
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view the top 10 to 20 results for a query there is great incentive to try to improve 

your score by link spamming. Finally, HITS can fall susceptible to topic drift. The 

process used to expand the neighbourhood graph can sometimes introduce an off 

topic page that scores very well due to the num ber o f links it has either in or out. 

However, by weighting the authority and hub scores by how relevant they are to a 

query one can eliminate this problem. The cosine distance measure between query 

and page, like the one used in LSA, could be used to calculate this weight factor [57],

3.5.5 PageRank
At the same time Kleinberg was working on his HITS thesis, Sergey Brin and 

Lawrence Page, two PhD students in Stanford university, had teamed up to create 

another link-based ranking algorithm. They called their ranking system PageRank 

and it was the heart of their new search engine. The Google search engine started as 

four PCs networked together in a Stanford dorm room [58]. PageRank remains at the 

heart o f Google to this day [7]. The PageRank algorithm  for ranking hyperlinked 

documents has been compared to the HITS authority score [41]. However, PageRank 

avoids the inherent weaknesses of HITS. It is query independent. This means the 

page rankings are calculated before query time and they are used regardless of the 

query terms used. There is no need for real time matrix operations at query time. In 

this section the PageRank algorithm will be discussed as it was described in Page and 

Brin’s initial paper [50].

PageRank is a popularity score for page. It is calculated for every page in G oogle’s 

index. Hyperlinks to a page are considered votes for that page. However, votes from 

important pages are worth more than votes from unimportant pages and votes from 

pages with fewer out-bound links are worth more than votes from pages that link to 

many pages. Page and Brin described this, in their landmark paper, in terms of a 

“random surfer” . This Internet surfer randomly follows hyperlinks on the Internet 

surfing from page to page. The PageRank score is the probability that the random 

surfer will arrive at any given page. Therefore, the PageRank vector sums to one. If 

this surfer is randomly following links from page to page it makes sense that the 

more inbound links a page has the higher the probability of the surfer landing on that 

page, and hence the higher the PageRank will be for that page. If a page has a high 

probability that the surfer will land on it, all pages to which it links will benefit from
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its higher PageRank score, since the surfer must follow a hyperlink to its next page. 

After landing on a page the surfer must randomly choose a link to follow if there is 

more than one outbound link and so the chances o f it going to any particular page it 

links to must be modified to reflect the number o f out-bound links on the page. 

Equation 7 shows how PageRank (r) could be calculated using the random surfer 

model for any page P.

Equation 7 states that the PageRank o f a page is the sum of the PageRanks of all the 

pages linking to it, divided by the number of pages they link to. This gives each page 

a vote corresponding to their PageRank. Each page passes on a proportion of its vote 

to every page to which it links. Figure 3.12 shows how the PageRank of a very 

simple 3-node web is distributed (Note: sum of all PageRank scores must sum to 

one). Node A has a PageRank of 0.4. It has two out bound links and so passes on half 

of its PageRank to each of the pages it links to. Node C has two links to it each 

passing on 0.2 PageRank and so Node C has a PageRank of 0.4.

flp = {all pages pointing to P}

|p |̂ = number of out links from page Pj

(7)

A
0.4

B
0.2

0.2

/

Figure 3.12 Simplified PageRank Calculation [49]
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It can be seen in Figure 3.12 and Equation 7 that the PageRank calculation is a 

recursive method. One must know the value for PageRank to work out the value for 

PageRank. However, it can be rewritten in an iterative form as in Equation 8. In this 

process, a new estimation for PageRank is calculated on each iteration, until the 

PageRank eventually converges to some stable value.

An initial estimate for PageRank is needed to start the system off. In Brin and Page’s 

initial paper r^{P^) = \ l n  where n is the number of pages being indexed by the

Google search engine [49]. Equation 8 can be rewritten in terms of matrix operations. 

Firstly an adjacency matrix (//) must be created in much the same way as it was for 

the HITS neighbourhood graph (section 3.5.4). However, in PageRank an adjacency 

matrix is made for the entire web and not just a subsection of it as happens in HITS. 

The PageRank adjacency matrix is also column normalised. A 1 represented a link 

between two web pages in the HITS adjacency matrix. //Ip,I represents a link 

between two pages in the PageRank adjacency matrix, where Ip,I is the number of 

outbound links on page /.

Figure 3.13 Sample Web for PageRank adjacency matrix

Figure 3.14 shows the PageRank adjacency matrix for the sample web shown in 

Figure 3.13.

(8)
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1 2 3 4 5 6 7 8 9 10
1  ̂ 0 1 0 0 0 0 0 0 0 0
2 0 0 0 0.5 0 0 0 0 0 0

3 0.5 0 0 0 0 0.5 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0

H  = 5 0 0 0 0.5 0 0.5 0.5 0 0 0.25

6 0.5 0 1 0 0 0 0 0 0 0.25

7 0 0 0 0 1 0 0 0 0 0

8 0 0 0 0 0 0 0.5 0 0 0.25

9 0 0 0 0 0 0 0 0 0 0.25

10 . 0 0 0 0 0 0 0 0 1 0

Figure 3.14 PageRank adjacency Matrix

The equation for PageRank can now be expressed in terms of this column normalised 

adjacency matrix H.

(9)

The PageRank equation as shown in Equation 9 is easily identified as a power 

method iteration to find the dominant Eigenvector of matrix / /  [41 ]. Brin and Page 

chose the power method to solve the PageRank problem because it was simple to 

implement, it converged relatively quickly and it was able to deal with the problem- 

size. In section 4.2.1, alternate PageRank algorithms are discussed. Brin and Page 

choose the power method because it was simple and has a very lower storage 

requirement than the alternatives. This simple form of the PageRank algorithm is not 

guaranteed to converge. H  is a substochastic^ matrix; this is to say that the sum of all 

the elements in each column that contain values is one. However, there are zero 

columns. These represent pages with no outlinks and are referred to as dangling 

nodes. On the Internet these nodes might represent Portable Document Format (PDF) 

files or other non-linking office documents. Node 8 in Figure 3.13 is a dangling 

node. The zero columns caused by these dangling nodes are the reason why this 

simple PageRank algorithm is not guaranteed to converge [41]. To circumvent this 

problem Brin and Page extended the random surfer model to include dangling nodes 

[49]. They stated that when the random surfer lands on a dangling node, there is no 

link to follow and so is forced to type an address in the address bar and jump to some

* All columns in the matrix that contain NZE sum to one. but zero columns are also allowed
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other random point on the Internet^. They decided that the probability of such a jump

should be uniformly spread over every page. This adjustment replaced the zero 

columns in the H  matrix with a column with equal probability of visiting any page. 

This new adjustment to H  is show mathematically in Equation 10. A new N  length 

vector is created called the dangling node vector {dnv). The dvn(i) = 7 if Pagej is a 

dangling node, i.e. corresponds to a zero column in the H  matrix. The dnv is zero 

otherwise. In Equation 10, « is the number of rows in the matrix and e is a vector full

The matrix S is fully stochastic, i.e. all columns sum to one. The power method 

calculated using the 5 matrix will always converge. However, being stochastic alone 

does not guarantee the PageRank algorithm will converge to a unique solution 

regardless of initial estimation. It also cannot guarantee that it will converge quickly. 

The PageRank vector should be the same regardless of the starting estimation for 

PageRank and quick convergence is also favourable. To do this the matrix would 

need to be primitive. A primitive matrix is irreducible and aperiodic and thus is the 

stationary vector of a Markov chain. Page and Brin never discussed the Google 

matrix in relation to Markov chains but it has been well documented since that it is 

stationary vector of a Markov chain [41, 59]. Page and Brin again describe this 

adjustment in terms of the random surfer. The random surfer goes from page to page 

following hyperlinks. Occasionally the random surfer gets bored with the current 

page and does not follow any of its links but instead jumps to another page by typing 

the address in the address bar. The probability that a user will continue to follow the 

pages’ hyperlinks is given by the Google factor a. Equation 11 shows how the S 

matrix is adjusted to make the new G matrix.

n

The choice of a  is important. Since it is a probability factor it must be between 0 and 

1. Smaller a  values result in the method converging quickly, but large a  values give

D. Meyer, Google's PageRank and Beyond: The Science o f  Search Engine Rankings: Princeton 
University Press, 2006.

of ones.

(10)

G = aS + { \ -  a)  — e^ e (11)

* Brin and Page did not include back button modelling (i.e. their model suggests people do not use the 
back button). However, Langville discusses back button modelling in [41 ] A. N. Langville and C.
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better approximations of link popularity. Brin and Page set a  to 0.85 in their 

experiments in 1998. The G matrix will always converge to a unique PageRank 

vector and so a new expression for PageRank can be given by equation 12.

(12)

The G matrix is dense. It would take too long to repeatedly calculate a dense matrix 

by vector calculation on a matrix like this with billions of rows. Luckily the equation 

can be rewritten in terms of the sparse matrix H  and two vector adjustments. This is a 

prime example of where sparse matrix computation increases performance and 

reduces storage requirements considerably. Consider a one billion node web. To 

store the G matrix would require 12xlO^GB. However, in sparse matrix form with an 

average of 10 Non-Zero Elements (NZE) per column it would require just over 

120GB. Equation 13 shows the final equation for PageRank. This equation always 

converges and does so in between 50 and 100 iterations [49, 50J.

= GR̂ _,

1 T= cxSRJ_̂  + (1 -  a ) - e e  Rj_̂  
n

= cxHR. ^+a{dnv)R ^ -  + { \ - a ) - e
n n

= oHRj_^ + {a(dnv)Rj^^ - \ - \ - a ) - e
n

One sparse matrix by vector multiplication, two vector scales, one dot product and 

four scalar operations are required per iteration to compute the PageRank vector. 

There is also a vector subtraction and vector norm to check for convergence. Sample 

Matlab code for PageRank is given in Figure 3.15.

while(residual >= epsilon) 
prevR=R;
R=alpha *H*prevR +{alpha*(prevR*dnv)...
+1-alpha)*1\n*ones(1 ,n) 
residual=norm(R - prevR,2);

end

Figure 3.15 Matlab code for PageRank ranking Algorithm

The PageRank ranking algorithm avoids the weaknesses of the HITS algorithm; 

namely it is query independent and due to the primitivity adjustment is guaranteed to 

converge to the same vector regardless of the initial estimation. PageRank is also less 

susceptible to topic drift because it is computed on the whole web graph instead of
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just a partial web graph as is the case with HITS. The sheer size of the PageRank 

calculation is a major disadvantage. It has been reported that it takes a number of 

days to complete and is only calculated about once a m onth [41], A great deal can 

change on the Internet in 30 days. Pages can be created, deleted and updated. The 

PageRank algorithm does not take these changes into account until it has re-crawled 

and recomputed the PageRank ranking vector. Users can often be presented with 

pages that are out of date. To combat this Google must rely heavily on other scores 

for fast updating pages like news sites and blogs.

3.6 Sparse Matrix by Vector Multiplication
Sparse Matrix by Vector Multiplication (SMVM) is the key operation in the 

PageRank, HITS and other Internet Ranking algorithms as seen in the preceding 

sections. These matrices are often very large. In the case o f the PageRank algorithm, 

the matrix is of the order of billions of rows. The SMVM multiplication, A x = y  , 

can be calculated in many ways [60], One way to perform SM VM  is to take each row 

of the matrix and perform a dense dot product calculation with the vector x. The 

result obtained from this dot product is the y value corresponding to the matrix row

used in the dot product. Equation 14 shows this method where Gj is row i of the 

matrix A.

'  r r -|
fl| . X y\

T  -  
^2 X V2

T  -
.  -V; _a, . X

This m ethod works well for dense matrices. However, for sparse matrices it is 

inefficient, since it computes the dot product of all values in the row including the 

zero entries. It also results in a large number o f cache misses.

Another method for computing matrix by vector operations involves multiplying the 

Non-Zero Elements (NZE) by their corresponding X  value and summing the result to

the corresponding Y vector entry. Figure 3.16 shows how SMVM is calculated, is
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calculated by summing the products of j and . This scheme reduces the

storage requirements for the matrix and the number of operations being can ied out 

for the SMVM, since zero-entry trivial-operations are not processed.

^11 0 ^13 0  " '« l l - ^ l+ « 1 3 -^ 3  ^

0 a 22 ^23 0 X2 ^22-^2 ^23-^3

0 0 ^33 ^34 ^3 ^33-^3 ^34-^4

0 ^42 0 ^44 7 V-^4 j ^44-^4 J

Figure 3.16 Sparse Matrix by Vector Multiplication

There are many different schemes for storing sparse matrices in memory. They are 

known as sparse matrix compression schemes since they compress the matrix 

information into a much smaller memory space. Duff et al. give a good overview of 

these compression schemes in [61]. These schemes include Compressed Row 

Storage (CRS) and Compressed Column Storage (CCS), which are described here, as 

well as other schemes. These other schemes include block compressed row storage, 

compressed diagonal storage, jagged diagonal storage, and skyline storage [62], 

These schemes usually involve storing a vector of the non-zero elements of a matrix 

and one or two vectors that give the address of the non-zero in the matrix. In this 

way, storage requirements are reduced considerably.

3.6.1 Compressed Row/Column Storage

The Compressed Row Storage scheme (CRS) uses three vectors to store the matrix. 

The NZE are stored in the K  vector in row major format. The corresponding column 

numbers for each NZE are stored in the C vector and finally the L vector contains 

information on how many NZE are in each row. This reduces the storage 

requirements from N *N  floating point numbers to NNZ floating point numbers and 

NNZ+N integers, where NNZ is the number of non-zero elements in the matrix. 

Figure 3.17 shows how the/I matrix in Figure 3.16 can be represented using CRS.

56



Internet Search

^ - [ ^ 1 1  ^13 ^22 ^23 ^33 ^34 ^42 4̂ 4]
C = [1 3 2 3 3 4 2  4]
L = [2 2 2 2]

Figure 3.17 CRS vectors of A matrix in Figure 3.16

Compressed Column Storage (CCS) is very similar to CRS. It uses 3 vectors. The K  

vector stores the NZE in column major format. The R  vector contains the row 

containing the corresponding NZE and the L vector contains the number of NZEs in 

each column. CCS reduces the storage requirements of the A matrix in exactly the 

same way CRS does.

K  — [^?| j ^22 ^42  ^13 ^23 ^33 ^34 ^ 4 4 ]

/? = [1 2 4 1 2 3 2  4]
L = [l 2 3 2]

Figure 3.18 CCS vectors of A matrix in Figure 3.16

CRS and CCS are widely used compression schemes for sparse matrices; other 

compression formats can be architecture specific. The SPAR architecture for 

SMVM, as discussed in section 5.4, is designed to work with the SPAR 

compression/storage format [17]. The SCAR system for SMVM, discussed in section 

5.5, also has a specific storage format.

Splitting the matrix up into multiple vectors has one main disadvantage. Multiple 

memory reads are now needed to access any matrix information. In the case of CRS 

three reads are needed. One memory read is needed for the NZE data and two other 

memory reads are needed to access NZE position information. This reduces the 

utilisable memory bandwidth.

In CRS and CCS each NZE requires 96 bits of data to be transferred to represent the 

NZE, a 64 bit double precision word for the NZE data and a 32 bit integer for the 

NZE row/column address. Furthermore, another 32 bit integer needs to be read from 

memory at the end of every column or row for CCS and CRS respectively. This 

reduces the bandwidth available to feed the multiplier and adder used in SMVM by 

over 33%. Thus, the maximum utilisable bandwidth is therefore only 66% the peak 

bandwidth available.
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It is com m on for a G PP to achieve less than 10% o f its peak perform ance while 

com puting SM VM  [37, 63, 64], T his cannot be entirely accounted for by the 

bandw idth lim itation caused by sparse m atrix storage form ats and so SM VM  

perform ance m ust be lim ited by other factors. O ne m ajor reason for this poor 

perform ance is the poor data locality o f  the m atrix in m em ory [65], There are tw o 

different types o f data locality  that m ust be considered when it com es to SM VM  

perform ance. They are spatial and tem poral locality o f reference. Tem poral locality 

o f reference refers to the reuse o f data in a relatively short tim e. In SM VM  problem s 

there is very little tem poral locality o f reference since every N ZE only gets used once 

in the calculation. The X and Y vectors do exhibit tem poral locality o f reference but 

this is dependent on the level o f  spatial locality o f reference evident in the NZE o f 

the m atrix. Spatial locality o f reference refers to the use o f data relatively close to 

o ther data in m em ory. F igure 3.19 show s how  the spatial locality o f the m atrix data 

can lead to data reuse o f the X and Y values (the X value in this particular case). In 

the sim ple system  show n in Figure 3.19 the X -cache and Y -cache can only store a 

single entry o f  the X or Y vector. The N ZE distribution in the A m atrix is such that 

the sam e X value is used m ultip le times.

Spatial locsNty of 
reference in NZE

Temporal locality of 
reference in X vector

0 0 0

^ 2 1 0 0 0
*

X ,

^ 3 1 0 0 0 ^3

0 0 0 ^ 4

X-cache 

Y-cache 

NZE

X , X i

i y .

1 ^31

1 Time
A Matrix

Figure 3.19 Spatial locality of reference in the NZE leads to temporal locality of reference in X

and V vectors.

Figure 3.20 show s a m atrix w here the N ZE elem ents are m ore scattered than in 

Figure 3.19. In this system  a new  X and Y value is used for every NZE. T his shows 

how the structure o f  the m atrix used in the SM V M  can affect the locality o f  reference 

o f the data in m em ory. This locality o f  reference affects perform ance since m ore data 

reuse reduces cache m isses and thus reduces the am ount o f tim e the system  m ust 

wait fo r m em ory.
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NZE spread around 
with little spatial 

locality of reference
No Temporal locality of 

reference in X and Y

0 0 Au

0 0 0

0 0 ^ 3 3 0

0 0 0 0

Xi Yi

* X, V'2

X4

X-cache 

Y-cache 

NZE

X, X3 1

I  >'2 > ^ 3  1  V ,

1 2̂2 1 ^ 3 3  1

1 Time
A Matrix

Figure 3.20 Matrix with poor spatial locality increase the number of cache misses

Poor data locality o f reference increases cache miss rates, forcing the processor to 

retrieve data from main memory. Fetching data from commodity memory, like that 

used in processors today, has quite a large overhead, which greatly reduces the 

floating-point SMVM performance. In section 2.4.3, the latency of SDRAM in the 

PC was discussed. The Intel Xeon W oodcrest takes about one hundred times longer 

to access SDRAM than its LI cache (see Table 2.4). The custom architectures for 

SMVM, like the ones described in Chapter 5, aim to alleviate this problem by using 

storage formats and hardware that increase the potential for data locality.

3.7 Summary
It was clear from the earliest years of the Internet that users would need some sort of 

index to find information. Users were accustomed to being able to consult indices to 

find the information they needed in other archives. Libraries and bookshops had 

inventories kept up to date by their trained workers. However, unlike a book shop, 

where the owners keep a central catalogue, the Internet has no owner. The Internet is 

dynamic, self organised, hyperlinked and is growing rapidly. Internet search 

engineers started crawling the Internet, downloading pages and indexing them to 

attempt to create a useful index. The Internet is volatile with 40% of its pages being 

changed weekly. Thus, crawling and indexing is a continuous process. The result of 

this endless crawling is that search engines now had a list of pages that contained 

keywords that users were searching for. The next problem is in what order these 

pages should be returned to the user. In the early days o f the Internet search 

engineers experimented with traditional methods o f search. Boolean operator search
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engines were simple to build but were very hard for the user to operate efficiently to 

get the right results. Spamming became a major problem with these early attempts at 

ranking results. Spammers packed their documents full of high traffic keywords that 

had little or nothing to do with the page content. The result was frustrated users. 

Latent semantic analysis techniques would have helped make the search engines user 

friendly but the Internet’s sheer size meant that they were limited in their use.

The answer to Internet search came in 1998 when two papers were published 

independently but with a similar theme. Both Jon Kleinberg’s HITS algorithm and 

Brin and Page’s PageRank algorithm took advantage of a unique feature of the 

Internet - hyperlinks. They allowed each hyperlink count as a vote for a page. The 

more web pages that link to a page the more important/useful that page is. It was a 

revolutionary idea and it returned relevant documents almost every time. The HITS 

algorithm created two scores, an authority score and a hub score. Documents with 

higher authority scores are deemed more relevant to a query than documents with 

lower authority scores. Pages with higher hub scores are more likely to link to a 

useful document than those pages with low hub scores. HITS is query dependent and 

is calculated on a subsection of the Internet. The matrix calculations at the heart of 

the calculations can be computed using the power method and always converge to an 

answer but the answer depends on the starting vector. Since HITS is only calculated 

on a subsection of the Internet link matrix it is susceptible to topic drift and link 

spamming.

PageRank seemed to tackle all the weaknesses inherent in the HITS algorithm. It 

does not give a relevance score because it is query independent. Instead it gives an 

importance score to each page on the Internet. The PageRank philosophy is that an 

important page is linked to by more important pages than unimportant pages are. The 

PageRank vector can be solved using the power method and it always converges to a 

single solution regardless of starting estimation. The PageRank algorithm became the 

heart of Brin and Page’s search engine, Google, which is the most widely used 

search engine to this day. Brin and Page had figured out a way to search the huge, 

dynamic, self-organised and hyperlinked Internet efficiently and accurately.

Central to the PageRank algorithm is a large SMVM calculation where the lA matrix 

is multiplied by the current estimate for PageRank to compute a better estimate for 

PageRank using the simple power method iteration. Storing the lA matrix in its
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dense foim at is unfeasible and so sparse matrix compression schemes are used like 

CRS and CCS which only store the NZE of the matrix together with NZE position 

information. These schemes greatly reduce the storage requirement. The performance 

of this SM VM  operator is critical to the performance of the overall PageRank 

algorithm. The performance of SMVM on GPP is severely limited by memory 

bandwidth due to the lack of temporal and spatial data locality in the lA matrix. To 

increase performance of this bottleneck SMVM calculation a solution for the 

memory bandwidth issues must be found. One way that this could be achieved would 

be to implement multiple paths to memory to increase memory bandwidth. 

Specialised hardware connected to these multiple paths could then be used to 

calculate the SMVM and thus boost the overall SMVM performance.
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Chapter Four 

4 Literature Review

4.1 Introduction
The PageRank eigenvector problem is one o f the w orld’s most important 

calculations. In the words of Brin and Page, it brings “order to the web,” which is 

otherwise a very difficult environment to search effectively. Google has invested a 

great deal of time and effort to ensure that the PageRank algorithm is suitable for all 

their needs. Unfortunately, little of this information is available to the public. No 

other research into PageRank algorithms running on FPGA devices has been carried 

out, to the best of the author’s knowledge. It is difficult therefore to compare the 

results of this research to existing work. A num ber o f researchers have been 

publishing revisions of the PageRank algorithm and a good deal of research is being 

carried out on SMVM on the FPGA architecture. Much of this research is targeted at 

structured matrices such as those common to Finite Element Analysis (FEA) 

problems. In this section, some of this research is presented. This includes 

publications on the PageRank ranking algorithm, SMVM on FPGA, General Purpose 

Processor (GPP) benchmarks and other scientific algorithms running on FPGA.

4.2 Internet Search
In this section, research carried out on PageRank efficiency will be reviewed. The 

matrix at the heart of the PageRank calculation is huge and constantly growing. It 

currently takes a number of days to compute the PageRank of the Google index [41], 

However, as the matrix grows in size, algorithm solving time also increases. Thus, a 

great deal of research has been carried out with an aim of making the PageRank
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algorithm run faster and more efficiently. Brin and Page’s original paper used the 

power method to solve the algorithm. The problem size alone limited their choice of 

algorithm greatly. The power method is often slow to converge and so the possibility 

o f accelerating such a commercial application sparked new research interest into this 

well-known algorithm. Researchers investigated many ways in which they could 

speed up the PageRank computation. These methods can be categorised under three 

generic fields; researchers could use different algorithms than the power method to 

compute PR, they could reduce the work being done in each iteration of the power 

m ethod and finally they could reduce the number of iterations needed by the power 

m ethod to converge. These methods have been applied to the PageRank problem in 

many different combinations with varied success.

4.2.1 Alternative PageRank Algorithms

Arasu et al., Gleich et al., Golub et al. and Corso et al. [66-69] were all involved in 

attempts to use other algorithms to solve the PageRank eigenvector problem. Arasu 

et al. proposed the use o f the Gauss-Seidel method [66]. This method is very like the 

power method except that it uses the newer approximations for PageRank as soon as 

they are calculated, rather than waiting until the next iteration to use them. The main 

drawback with this method is that it requires the rows in the matrix to be sorted. The 

power method can take the matrix rows in any order. Arasu et al. suggested that the 

improved performance would more than make up for the time taken to sort the 

matrix. However, Arasu et al. only carried out tests on a single test matrix, and so 

this method would need further testing before its performance improvements could 

be proved. Arasu’s paper also explained that his method uses an aggregation method, 

similar to the one used by Kamvar et al. [70] which will be discussed later.

Gleich et al., [69] went yet another route and took a broader look at the possible 

algorithms. He compared the ability of many different linear algebra algorithms at 

calculating the PageRank vector. In his experiments he compared the power method 

to the Jacobi algorithm and a number of Krylov subspace methods, namely 

Generalised Minimum Residual (GMRES), Biconjugate gradient (BiCG), Quasi- 

Minimal Residual (QMR) Conjugate Gradient Squared (CGS), Biconjugate Gradient 

Stabilized (BiCGSTAB) and Chebyshev Iterations [62], The Krylov m ethods’ 

performance can be improved by the use of preconditioners, so Gleich et al. [69]
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investigated using parallel Jacobi, block Jacobi and Adaptive Schwarz as 

preconditioners. Gleich found that QMR, CGS, and Chebyshev algorithms failed to 

converge for the test data being used. Gleich et al. also found that the Power and 

Jacobi methods converged at approximately the same rate and were the most stable 

of all the algorithms. The Power and Jacobi iterations are actually the same for 

graphs that contain no dangling nodes [69]. Convergence o f the Krylov methods was 

highly dependent on the structure of the lA matrix (see section 3.3). However, Gleich 

et al. do not go into detail regarding what aspects of lA matrix structure affect the 

convergence rate. Gleich et al. concluded that GMRES and BiCGSTAB are the best 

choice for the PageRank algorithm as they converge quickly for most graphs. This 

acceleration comes at a cost of increased memory requirements. The power method 

requires the matrix and three vectors of length n to be stored. The GM RES method 

requires the matrix and over five vectors of length n to be stored. The BiCGSTAB 

requires the matrix and ten vectors of length n to be stored. This increased memory 

requirement for a calculation that is already memory bounded may cause problems. 

Corso et al. [68] also experimented with a large range o f algorithms including Jacobi, 

Gauss-Seidel and Reverse Gauss-Seidel and reordering schemes for the PageRank 

algorithm. Using these techniques, they managed to reduce the time taken to 

calculate the PageRank algorithm to 10% of the time needed by the Power method 

for his test set. However Corso did not take into account the time needed to reorder 

his test sets when this figure was calculated.

Golub and G reif came up with a way to solve the PageRank problem using the 

Amoldi method [67], They adjusted the restarted refined Amoldi algorithm to tailor 

it especially for the PageRank algorithm. This adjustment was made to avoid 

complex eigenvalues and the sometimes slow and irregular behaviour which occurs 

as the algorithm eigenvalues converged to 1. Golub found that the Amoldi method 

had more computations per iteration than the power method. However, for higher 

values of the Google factor a, the Amoldi m ethod required significantly fewer 

iterations than the Power method. Brin and Page [49] set a = 0.85. Golub found that 

at this setting the Amoldi method offered no increase in speed over the basic Power 

method. For a=0.99 the power method performed 230% more iterations than the 

Amoldi method. This improvement came at the cost o f an increased memory
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requirement. The PageRank problem is already memory hungry and so further 

increases in memory requirements are undesirable.

In this section, some research into alternate algorithms for solving the PageRank 

problem was presented. Many of these algorithms can offer performance increases 

over the basic power method. However, most of them come with an increase in 

memory requirements or require some sort of reordering to be carried out on the lA 

matrix. Arasu shows that Gauss-Seidel can increase performance of an ordered lA 

matrix. Gleich et al., show that the performance of many of the alternate algorithms 

is very dependent on matrix structure. Corso et al., show that large performance 

increases can be achieved using reordering together with alternate algorithms. 

However, he did not take the reordering time into account when publishing his 

results. The Power method gives a good overall trade-off between convergence 

speed, memory requirements and scalability. There has not been any conclusive 

proof that other algorithms are going to prove better. If performance improvements 

cannot be gained by changing the algorithm perhaps some modification can be made 

to the Power method to increase performance. A number of these modifications are 

discussed in the next section.

4.2.2 Modifications to Power Method for PR

A renewed interest in the Power method arose with the advent of PR, since other 

algorithms proved to be of limited use for the PageRank eigenvector problem. 

Kamvar et al’s lab in Stanford published three different optimisations that can be 

applied to the PageRank algorithm [70-72]. The first of these papers described a 

m ethod called the adaptive power method [70]. In the basic power method, 

convergence is judged on the aggregated error between this iteration’s result vector 

and the previous result vector. Kamvar et al. noticed that not all pages converge at 

the same rate. They saw that the PageRank score for the majority of pages converged 

quickly and that the algorithm continued to run waiting for the last few PageRank 

scores to converge. They changed the convergence criterion to compare individual 

elements rather than computing an aggregate error (vector norm) for the whole 

vector. They then locked these values o f PageRank and continued only to compute 

the values of PageRank that had yet to converge. Locking the converged values of 

PageRank itself had no effect on the work carried out. In order to reduce the amount
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o f calculations being carried out, they periodically zeroed rows of the matrix 

corresponding to the locked entries. This approach reduced the work carried out in 

every iteration of the algorithm. Using this method, Kamvar et al. reported a 

reduction of 20% in the time needed to solve the PageRank algorithm. The adaptive 

power method required more iterations than the normal power method, but due to the 

decrease in average work per iteration, the adaptive power method still produced a 

significant reduction in calculation time. Kamvar et al. do not make it clear if this 

increase in iterations to convergence is to be expected in all instances of the adaptive 

power method or if they are related to the lA matrix structure.

The major disadvantage with this method, however, is that it is not guaranteed to 

converge. Often PageRank values level off for a time in the PageRank algorithm 

before changing and converging to a different number. If values that are momentarily 

levelled off are locked as being converged, the m ethod will not get the correct 

PageRank vector and may not converge. Figure 4.1 shows how identifying a 

temporary levelling off in PageRank score as convergence can lead to an incorrect 

PageRank vector with adaptive power rank. A simple three node web/Internet, along 

with its PageRank vector during the first 10 iterations of the PageRank algorithm 

using both basic power method and adaptive power method are shown in Figure 4.1. 

When using the basic power method the PageRank vector is normalised throughout 

the first 10 iterations. The power method in this example will eventually converge to 

give PR=[0.400,0.200,0.400].
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1 2 3 4 5 6 7 8 9 10
A
B
C

0.333
0.333
0.333

0.333
0.167
0.500

0.500
0.167
0.333

0.333
0.250
0.417

0.417
0.167
0.417

0.417
0.208
0.375

0.375
0.208
0.417

0.417
0.188
0.396

0.396
0.208
0.396

0.396
0.201
0.403

Power Method

1 2 3 4 5 6 7 8 9 10
A 0.333 0.333 0.500 0.333 0.417 0.333 0.375 0.333 0.354 0.333
B 0.333 0.167 0.1671 0.167 LOCKED
C 0.333 0.500 0.333 0.417 0.333 0.375 0.333 0.354 0.333 0.340

Adaptive Power Method
Figure 4.1 Adaptive power method mis-identifled convergence

The adaptive power method however notices that the PageRank for node B does not 

change between iteration 2 and 3, thus falsely identifying node B as having 

converged. This PageRank value is then locked and remains at this value for the rest 

of the calculation. This mistake in the PageRank of node B stops the algorithm from 

calculating the correct value of PR. The PageRank vector becomes de-normalised. 

After 10 iterations, PR=[0.333,0.167, 0.340]. The algorithm will continue to iterate 

and finally converges to PR=[0.333,0.167, 0.333]. In some cases, the algorithm will 

not converge at all when this happens. The risk of this problem happening can be 

reduced by leaving multiple iterations of the power method before allowing a value 

to be locked. If, for example, a value has not changed over 10 iterations, it is much 

less likely to be a false positive. However, the risk cannot be totally eliminated since 

PageRank propagation relies heavily on the structure of the matrix.

The same lab in Stanford published another paper detailing another scheme for 

accelerating the PageRank algorithm called Quadratic Extrapolation |71]. The rate at 

which the PageRank algorithm converges is dictated by the second eigenvalue o f the 

Google matrix. If the second eigenvalue is close to one, the PageRank algorithm
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converges slowly. Kamvar et al., [71] proposed subtracting estimates o f the sub­

dominant eigenvectors at intervals during the algorithm. By using this method, they 

claim to speed up the computation of the PageRank algorithm by up to 300% on 

some of their data sets. This method reduces the number of iterations o f the power 

method before convergence at the cost of calculating an estimate for the sub­

dominant eigenvectors periodically throughout the calculation. The results show that 

the method works very well at a  factors close to 1 for which the power method 

struggles to converge due to sub-dominant eigenvalues being close to the unit circle. 

However, at the level o f a  suggested by Brin and Page in their landmark paper, 

quadratic extrapolation shows little or no reduction in the number of iterations.

The third and final contribution to PageRank acceleration made by the team at 

Stanford is called BlockRank [72]. In this paper Kamvar et al. set out to increase 

locality of reference, reduce computational com plexity and increase parallelization 

by taking advantage o f the way that the Internet naturally orders itself, i.e. a web 

page’s host path. They do this by looking at a top down approach to the web page’s 

address. For example the URL for the M echanical Engineering Department at Trinity 

College Dublin (TCD) is www.mme.tcd.ie/index.php this would be stored as follows 

ie.tcd.mme.www/index.php in Kamvar’s approach. The top level domain “ie” comes 

first which states it is a host from Ireland, “ted” comes next which tells us that the 

page is part of the TCD webspace. The “mme” shows that the page is on the 

mechanical engineering servers and the “www” shows that it is a public website on 

the mme server. The rest of the address is the location on the host “mme” . This high 

level to low level organisation is inherent in Internet URL. Kamvar et al. sorted their 

crawl data according to this method. Kamvar then showed that above 79.1 % of links 

on websites are intrahost links (links between pages on the same host) and over 83% 

are intra-domain links (links between pages with the same domain i.e. tcd.ie). This 

high level of intra-domain and host-linking is to be expected since most links on any 

given website are to other pages on that website. This statistic led Kamvar et al. to 

propose the BlockRank algorithm. The BlockRank algorithm is divided into two 

parts, the local PageRank calculation and the global PageRank calculation. The local 

PageRank calculation is computed using intra host links and the global PageRank 

vector is calculated using the inter host links. The algorithm begins by dividing the

69



Chapter Four

web-graph according to hosts, see Figure 4.2. In this simple example, the Internet 

consists of nine web pages, which are from three different web sites or hosts.

Host: ie.tcd.www/ Host: ie.rte.www/

1:
Index.php

, 4:
f  Index.php

o*- 2:
p ag e2 .p h p

5:
p ag e2 .p h p

3:
p ag e3 .p h p

6:
p ag eS .p h p

7:
Index.php

( ) 8:
p a g e2 .p h p

9:
p ag eS .p h p

J
Host: com.abc.www/

Figure 4.2 Example of Internet divided into hosts for Blockrank

Normally the adjacency matrix for Figure 4.2 would be given by Figure 4.3. The 

shaded areas of the matrix represent links that are intra-host links. There are many 

more intra-host links than there are inter-host links (i.e. a page on one host links to a 

page on another host).

0 1
Host 1

1 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0
Ho6(2

0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 1 0 0 1 0 1
Hosts

1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0

Figure 4.3 Adjacency matrix for Internet shown in Figure 4.2
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The BlockRank method extracts these local host adjacency matrices and partitions 

the calculation according to host. Any interhost links are placed in the newly formed 

global PageRank matrix. The matrix in Figure 4.3 becomes four matrices as shown in 

Figure 4.4.

P1 P2 P3 P4 P5 P6
PI "0 1 1 P4 ' 0 0 0

P2 1 0 0 P5 1 0 0

P3 1 0 0 P6 0 1 0

Host 1 Host 2

P7 P8 P9 HI H2 H3
P7 '0 1 r H I "0 1 O '

P8 0 0 1 H2 1 0 0
P9 1 0 0 H3 1 1 0

Host 3 Global

Figure 4.4 Local and Global adjacency matrices for Internet shown in Figure 4.2

The problem has now been split up into multiple matrices, one matrix for each host 

in the system and a global matrix that shows how the hosts in the system connect. In 

this example, it is coincidence that all the matrices are the same size. In reality, they 

would all be different sizes. The size of a local host matrix is dependent on the 

number of pages on the host and the size of a global matrix is dependent on the 

number of hosts in the system.

Once the web graph has been divided into local and global link matrices, the 

PageRank of each local host matrix is calculated in the normal way, see Section 

3.5.5. Once the local host PageRank values have been calculated, the relative 

importance of each block or host must be calculated. The NZE in the global matrix 

are weighted by the results of the local PageRank calculations, to ensure that 

multiple links between hosts are weighted correctly. See [72] for details on how this 

weighting is achieved. The BlockRank is calculated using the modified global 

matrix. The BlockRank gives the relative importance of the blocks to each other. 

Once the BlockRank is calculated, each local PageRank vector is weighted by its 

corresponding BlockRank result. This weighting gives an approximate PageRank 

score for every page. The PageRank calculated by BlockRank is not the actual
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PageRank since some links are ignored in both stages of the algorithm. Kamvar 

stated that these missing links in the local PageRank calculations cause the algorithm 

to give too little importance to the root node. This effect could be very problematic, 

as the root node (main page) should usually have the highest PageRank of a web site. 

Kamvar also asserted that using the BlockRank PageRank as the starting vector for 

the normal PageRank calculation would correct all these errors. Only a few iterations 

would be needed since the starting vector is a very good approximation.

As Kamvar et al pointed out, the BlockRank algorithm can speed up the PageRank 

calculation by a factor o f two or more. It succeeds in improving calculation speed by 

breaking down the large problem into parallelisable blocks. These blocks can fit in 

cache and so increase the locality of reference. The smaller problems also converge 

much quicker than the large PageRank algorithm does. However, the BlockRank 

m ethod’s major disadvantage is that it only creates an approximation of the 

PageRank vector. Thus, the large PageRank vector must be run for a number of 

iterations at the end to correct the errors in the BlockRank PageRank vector causing 

additional time to be used in the calculation.

Yizhou Lu et al. published an algorithm similar to the BlockRank algorithm called 

PowerRank [73]. Lu sub-divided the Internet into three levels; domain, host and 

webpage. The PageRank algorithm is first run at a domain level. At this level, each 

domain is counted as a single node in the web-graph. After a number of iterations, 

the lowest scoring domains are removed from the calculation. The hosts from the 

remaining domains are then put forward for the second part of the algorithm. The 

PageRank algorithm is run another time on this new host graph. Again, after a 

number of iterations, the lowest scoring hosts are removed from the calculation. The 

remaining web-graph is expanded to include all remaining webpages and the 

PageRank algorithm runs for a third time on this reduced web-graph. The final step 

in the PowerRank algorithm is to assign a PageRank score to the pages that were 

excluded from the algorithm. This is done using the domain and host scores. Lu et 

al., claimed an increase in the performance of this method of 30% more than the 

basic PageRank algorithm. However, the PowerRank algorithm only estimates the 

PageRank algorithm. The PowerRank vector could be used as a starting point for the 

PageRank algorithm. Kamvar et al., did this with BlockRank to calculate the exact 

PageRank vector. Yet, this approach would reduce the performance increase
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achieved by PowerRank. The PowerRank algorithm therefore isn't sufficient if an 

exact PageRank vector is needed.

A different approach is shown by Lee et al., who proved that, by using Markov chain 

lumping theory, the dangling nodes of the PageRank algorithm could be reduced to a 

single super node [74], This change reduced the size o f the matrix considerably 

without compromising the accuracy o f the result as the PowerRank algorithm did. 

Lee et al., used this theory by lumping all the dangling nodes together. This approach 

was viable because all the dangling nodes have the same probability distribution (1/n 

in Brin and Page’s original paper).There are many dangling nodes on the web. They 

are made up of PDFs, pictures, other non linking media and pages that have not been 

crawled yet. Lumping all these pages together significantly reduces the problem size. 

Lee then calculated the PageRank score for the reduced web-graph containing the 

dangling node supemode. He used aggregation to lump the non-dangling node pages 

together and computed the PageRank vector for the dangling nodes given the result 

obtained from the first step. These results are concatenated and produced a full 

PageRank vector which is identical to the PageRank vector produced by using the 

full matrix. Lee et al., achieved speed ups of up to five times better than the basic 

power method by using their Markov chain lumping method. Langville and M eyer 

described the same technique using linear algebra and proposed a reordering scheme 

that was suitable for it [75]. This reordering scheme does not increase the 

performance further as it is costly to implement, but they too achieved a factor of 

five speed-up over the basic power method. Implementing this change to 

thePageRank algorithm would not require any additional hardware units in an FPGA 

accelerator. All changes could be made on the software level at lA matrix creation 

time and runtime.

In this section, many adjustments to the PageRank algorithm were discussed. These 

adjustments can be used to increase the performance o f the PageRank algorithm. 

However in order to successfully speed up an algorithm of this size on an FPGA, a 

large amount of parallelisation must be used. In the next section a number of parallel 

methods will be discussed. Many of these parallel methods can be used in 

conjunction with the algorithmic improvements discussed in this section.
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4.2.3 Parallel Computation of PageRank

Much of the work described in the previous section opened the door to increased 

parallelisation in the PageRank calculation. BlockRank and PowerRank break the 

problem down into multiple local PageRank calculations allowing many parallel 

processors to be used when calculating the PageRank vector. Zhu et al. proposed 

another similar scheme to BlockRank [76]. However, the emphasis in Zhu’s work 

was on distributed calculation of the PageRank algorithm. The method splits the 

matrix up into hosts much like the BlockRank algorithm.. However, in this case, each 

host must calculate its own local PageRank score. This local PageRank score is used 

as a starting estimate for the rest of the algorithm. Like BlockRank, a controller goes 

on to calculate the relative rank of all the hosts. Zhu’s method differed in this regard 

from Kamvar’s BlockRank. In Zhu’s method, each host then had to construct an 

extended local transition matrix. It is not clear from [76] as to what exactly is 

included in this new extended matrix, but after PageRank calculations at a local level 

on this extended matrix, the vectors are normalised and sent back to the controller. 

This process is iterated until the convergence criteria are met. The majority of work 

in this algorithm is done by the host itself. The major shortcomings of this method 

are that it only calculates an approximate PageRank vector and all nodes have to wait 

for all other nodes to finish the current iteration before they can continue. 

Furthermore, allowing a host to calculate its own PageRank also leaves the scheme 

open to malicious attacks. A host could wilfully return the wrong local PageRank in 

an attempt to increase its own PageRank ranking.

Other work has been done by Bradley et al. on partitioning of the algorithm over 

parallel processors [77], He found that using 2D graph partitioning increased the 

algorithm speed by almost twice that achievable with other techniques. However, 

there was a substantial overhead due to the initial partitioning. Cevahir et al., 

suggested using a site-to-page version of the pre-processing algorithm used by 

Bradley [78]. This method meant that instead of i h t n x n  matrix used in Bradley’s 

experiments, Cevahir used an m x n matrix where m is the number of sites being 

crawled and n is the number of pages. This reduced matrix size and increased the 

performance of the pre-processing step considerably. Yet, it remains ultimately 

unhelpful because of the necessary initial overhead.
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4.2.4 Other FPGA Architectures for Internet Ranking

To the best of the author’s knowledge, no other work has been released to date on 

FPGA implementations of the Google PageRank algorithm to the best of the author’s 

knowledge. However, recently an FPGA based accelerator for RankBoost was 

unveiled by Xu et al. [79]. RankBoost [80] is a machine learning algorithm first 

published in 2003. Traditionally in search engines, many factors have to be taken 

into account when calculating overall relevancy. In Google, PageRank is only one of 

the scores used in the overall ranking. Other scores for page content, page freshness, 

URL. page title and many more must be factored into the final ranking score. This 

inclusion of other factors can be done by manual tuning the scores. The RankBoost 

algorithm is an alternate approach. It uses machine learning techniques to combine 

all the scores to give an overall ranking score. RankBoost must be trained with a 

large training set. This training is very computationally expensive and its operation is 

critical to the speed o f RankBoost. Xu et al. developed a co-processor architecture to 

accelerate the training algorithm used by the RankBoost algorithm. The co-processor 

board connects to the host PC via a PCI link. The board contains a single bank of 

DRAM which gets filled by the host PC. The host PC then sets the Processing 

Elements (PE) on the co-processor running. The PE process data streams from 

memory. The algorithm must be run as many as 200,000 times and so any overheads 

caused by downloading data across the PCI are definitely merited. Xu found that the 

FPGA could process the training data almost 168 times quicker than a naive 

implementation of the problem and 4 times quicker than an optimised system 

distributed across 4 threads on a 3GHz Pentium 4. Xu does use floating point 

arithmetic but it is unclear if double or single precision is used. The results are 

impressive and show that FPGAs can be used in Internet algorithms to speed up 

operations. The RankBoost accelerator has been successfully used by research 

engineers in Microsoft India [79].

4.3 SMVM
Sparse matrix by vector multiplication (SMVM) dominates the PageRank calculation 

as discussed in section 3.5.5. It is also the central calculation of many other scientific 

calculations and as such has been the subject of much research. Gropp et al. showed
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that operations like SM VM , which are memory bound, are fated to achieve an ever 

decreasing percentage o f the GPPs peak performance [81 ]. This consequence is due 

to the ever increasing gap between memory speed and processor performance. Much 

of the CPU ’s time is spent waiting for memory in the SMVM instructions. In this 

section, a number of attempts to accelerate the SMVM calculation will be discussed. 

These modifications can be grouped in three headings. The first of these three 

sections deals with ways to reduce the effect of this memory-processor gap on 

software. These software approaches to accelerating SMVM are presented in section

4.3.1. Next, specialised hardware for SMVM calculation are discussed in section

4.3.2. Finally, specialised FPGA accelerators for SMVM are examined in section

4.3.3. This last group of accelerators is of the most relevance to this project. 

Developing a powerful SMVM architecture on FPGA will be pivotal to the success 

o f an FPGA based solver for the PageRank eigenvector problem.

4.3.1 Optimisation for SMVM in software

Software optimisation for SMVM calculations has been the subject of much 

research. Researchers are limited in what they can do by the fixed structure of the 

CPU architecture. Therefore, several methods exist that centre around the same 

general theme, namely to increase data reuse by increasing locality of reference. This 

result can be achieved in numerous ways, such as reordering the matrix, register 

blocking, cache blocking and multiplying multiple vectors at one time.

Sparse matrices often suffer from poor data locality when stored in the CPU cache. 

This problem can lead to poor performance as new values need to be read into the 

cache frequently when computing SMVM. Cuthill and McKee [82] introduced a 

reordering scheme for symmetric matrices. This scheme, known as Cuthill-M cKee 

reordering, reduced the matrix bandwidth needed to represent the sparse matrix. The 

matrix bandwidth is a measure of how tightly the non-zero elements of the matrix are 

banded. George found that the reverse of the Cuthill-M cKee reordering often 

achieved better results and never was inferior to the original Cuthill-M cKee 

reordering [83]. This method is known simply as Reverse Cuthill-M cKee (RCM). 

These reordering schemes were devised for symmetric matrices. They still often 

work well for non-symmetric cases. In the course of this work a number of 

experiments were carried out with RCM and arc presented in section 6.5.3. Using
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RCM reduces the number of the PageRank adjustments described in section 4.2 that 

can be used, since methods like BlockRank require the matrix to be stored according 

to its domain and host.

Register blocking attempts to increase data reuse in the highest level memory 

possible, the CPUs registers. Im and Yelick described a method for register blocking 

that divided the sparse matrix into dense blocks [63]. The optimal size of the blocks 

is determined by the structure of the matrix and the number of registers available in 

the GPP. A simple example o f a matrix being partitioned into dense blocks for 

register blocking is shown in Figure 4.5. This diagram also highlights one of the 

drawbacks of register blocking. Zero entries have to be added to some of the blocks 

to make them dense and thus increasing the storage requirement for the matrix. Im 

and Yelick did find that this method increased performance in certain matrices 

though. Deciding on the optimal block size is not a trivial problem and requires a 

good deal of computation [84]. Im devised a method for deciding if register blocking 

would increase performance and a method to decide the optimal block size. It was 

made available in the SPARSITY tool box [84].

1 2 0 0 0 0
3 4 0 0 0 0

/ 0 5 0 0 0
0 0 6 7 0 0
0 0 0/ 0 8 0
0 0 0 0 9

1 2 1 3 4 5 0 6 7 8 0 0 9
Figure 4.5 Register blocking dense block schemc to increase data reuse

Toledo also used register blocking as part o f his optimisations for SMVM [64]. 

Unlike Im and Yelick, however, Toledo did not limit his search to square dense 

matrix blocks. He searched for dense rectangular blocks in addition to square blocks. 

Toledo also investigated RCM and found that with sufficient iterations, the
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performance increase justified the cost of the reordering scheme. Furthermore,

Toledo used pre-fetching in a novel way to increase the performance of his SMVM 

computations. Usually, pre-fetching is used to hide latency. This event occurs when a 

large amount of computations are completed between memory accesses. Pre-fetching 

removes the time spent waiting for memory to respond to a request. The large 

amount of data computations gives the pre-fetcher time to start the request to 

mem ory before it is needed. However, in sparse systems, a great deal of memory 

reads are needed and not enough computation time is available to use pre-fetching to 

hide memory latency. Toledo, however, used pre-fetching to avoid multiple 

load/store units stalling due to misses on the same cache line [64]. These changes 

increased the performance of his tests by more than twice the naive implementation.

Another optimisation suggested by Im in her PhD thesis is the use of cache blocking. 

Cache blocking is very similar to the tiling technique used by the SCAR architecture 

in section 5.5. The matrix is divided into blocks. These blocks are processed one by 

one. The blocks, together with the corresponding segment o f the X and Y vector, are 

stored in the G PP’s cache. All values processed inside the block are in cache, thus 

reducing memory cache misses. This method, as implemented by Im, increased 

performance for a number o f the matrices on the architectures tested [84]. Im also 

investigated the use of register and cache blocking in unison but found that no further 

performance increase was achieved by using both methods together. Im ’s results 

showed that if multiple vectors were multiplied by a single matrix the performance of 

the system could be greatly increased. Vuduc [85] and Gropp [81] both published 

results that suggest multiple vectors in SMVM can greatly increase performance.

This process is suitable for some algorithms e.g. conjugate gradient with multiple 

right hand sides as is sometimes used in finite element problems, but not for the 

PageRank algorithm where only one vector for sparse matrix multiplication is 

available at any time. In the SPARSITY package, Im developed a method that 

chooses the best configuration for registery blocking and cache blocking for any 

given matrix. This calculation can be costly, but only needs to be done once per 

matrix.

W illiams et al. examined sparse matrix by vector multiplications on multi-core 

m achines [37, 86]. They ran a number of tests on Intel Xeon, AM D Opteron, Sun 

Niagara2 and IBM Cell processors. The Intel Xeon processor used in the experiments
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is the Intel Xeon Clovertown, which is a very sim ilar model to the Intel Xeon 

W oodcrest used in this project. The Clovertown can hold four core-2 processors 

sharing two FSBs to memory; see Figure 4.6. The W oodcrest on the other hand only 

contains two core 2 processors, each of which has its own FSB to memory. Since 

SMVM is memory bounded and both architectures share the same FSB architecture, 

the performance results should be similar.

X eon1Xeon Xeon Ixeon

4MB 4MB
Shared L2 Shared L2
■ ■ !" A

1 FSB

10.6GB/S

X eon1Xeon X eon1Xeon
i m i n m i ^ i n i i n n M

4MB 4MB
Shared L2 Shared L2

^  A
FSB 1

10 6GB/8

Blackford

21.3 GB/s(read) I,0.6 GB/8(write)

Fully Buffered DRAM

Figure 4.6 Clovertown memory hierarchy [37, 86]

The AM D Opteron machine consists of two sockets with two 2.2 GHz cores each 

with a 64 KB LI cache, 1 MB victim cache (L2 cache); see Figure 4.7. Each socket 

in the Opteron has an independent FSB to DDR-2 667. A hyper-transport connection 

is used to transfer data between the two sockets [37].

1MB
victim

1MB
victim

Opteron Opteron

^  A
Memory Controller I  HT

DDR2 DRAM

8GB/S

1MB
victim

Opteron

1MB
victim

Opteron

Memory Contro)ter/HT |

10.6GB/S 10 6GB/S

DDR2 DRAM

Figure 4.7 AMD Opteron memory hierarchy [86]

Probably the most interesting aspect of the results of this work is that one o f the 

matrices used to test the processor performance is a matrix also used in the 

benchmarks of this thesis. This result will therefore provide some independent
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validation of the benchmarks obtained in the course of this work. The Webbase 

matrix, used by W illiams and in this work, is an Internet link matrix sourced from the 

W ebbase archive (see Table 6.1). It is called webbase-2001 (matrix 13) in this thesis.

The first test run by W illiams et al., was a naive single thread implementation. The 

Intel Xeon achieved 0.3 GFLOPs performance for the Webbase matrix. It was one o f 

the 3 worst performing matrices in the tests. The average performance of the 13 

matrix test set was approximately 0.5 GFLOPs. The AMD Opteron 2214 performed 

even worse on the Webbase matrix with only 0.2 GFLOPS. W illiams then went on to 

apply optimisations to the naive SMVM code. The first of these optimisations was to 

parallelise the code to run on multiple threads. This allowed the computational load 

to be spread between all processor cores. All further optimisations were applied to 

the new threaded version of SMVM. Figure 4.8 shows how the performance of the 

Intel Xeon and AMD Opteron varied with these optimisations for the Webbase 

matrix. The median results for all the test matrices and all optimisations on both 

architectures are also included to show how poorly SMVM of Internet adjacency 

matrices perform, even in comparison to sparse matrices from other application 

domains.

I Intel Xeon (w ebbase) □ AMD O pteron(w ebbase) 

-A M D  Opteron (Median)

V)
Q.
O
—I
Li.
O

I

Figure 4.8 Webbase matrix performance on Intel Xeon and AMD Opteron [37] (Bars on the 

graph represent the performance of the lA matrix on the Xeon and AMD processor 

respectively. The line graphs represent the median performance of Williams test set, showing a 

large discrepancy between lA matrices and other Sparse matrices.)
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It is clear from Figure 4.8 that rewriting the problem to run on multiple threads 

resulted in the biggest improvement to performance. O ther techniques that appear to 

work well on other sparse matrices seem to do little to increase the webbase matrices 

performance further.

There are a limited number of optimisations that one can apply to the fixed 

architecture of the GPP. The GPP has been designed to perform well over a wide 

range of tasks and situations. However, some problem s, like SMVM, have fallen 

behind with regard to performance due to the increasing gap between computational 

bandwidth and memory bandwidth. For this reason, Gropp et al., [81] have 

condemned the SMVM operator to an ever-decreasing percentage peak of 

performance. Software optimisations are limited in the increase in performance they 

can achieve since they are forced to use the underlying hardware. This problem 

appears to be especially true when looking at the Internet link matrix used in 

W illiam s’ research. One way, however, to increase the performance greatly would be 

to consider custom-made hardware for SMVM.

4.3.2 Specialised hardware for SMVM
Reconfigurable hardware offers the ability to custom ise the hardware for any given 

task. With poor SMVM performance on GPPs, researchers naturally began to 

examine ways to remove the bottleneck in SMVM performance by using customised 

hardware. Back in 1983, Swanson, an employee at Ansys^, designed a co-processor 

system to accelerate SMVM on the Ansys platform on his V A X -11/780 system [87]. 

The idea was that the VAX would off-load certain calculations to use the dedicated 

co-processor in an attempt to accelerate solution time. The system reduced the 

computation time to as little as one-twelfth to one-sixteenth o f the original 

computation time needed for the benchmark calculations. Sw anson’s scheme became 

obsolete quite quickly, however, as large strides forward were made in the design 

and performance of GPP. Despite Swanson’s lack o f success in creating a market for 

his accelerator, he did prove that his idea was a good one. Co-processors could be 

used to solve calculations that ran slowly on the GPP.

 ̂Computer Package for solving Finite Element Analysis problems
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More recently Graphics Processor Units (GPUs) have been used in a similar fashion 

to accelerate graphics applications on PCs. In the past, GPUs were designed only for 

use as graphic pipelines. They were programmed with fixed algorithms for rendering 

graphics. M odem GPUs, however, offer a large amount of programmability for us; 

in any application. For example, NVIDIA GPUs are based on the Tesla - Unified 

Graphics and Computing Architecture [88]. This architecture is a fully 

programmable parallel processor array. Some research has investigated the use of 

GPUs in scientific calculations. Garland presents a “how to” paper for mapping 

SMVM on to manycore GPUs [89] like a modern NVIDIA GPU. He does not 

implement his technique or test it. Bolz et al., do implement a conjugate gradient 

solver on their NVIDIA GPU [90]. They showed that the GPU could achieve 66% 

more SMVMs per second than their 3GHz Pentium 4. They also showed that both 

the GPU and the GPP were bandwidth limited in this calculation. The main problem 

with Bolz’s work is that GPUs natively use a version of single precision floating 

point. GPUs floating point arithmetic is not usually IEEE compliant, as most of them 

round de-normal numbers to zero and use slightly different rounding schemes than 

the IEEE standard. Therefore, the problems run on the GPU would get a different 

answer than problems run on the GPP. This can have serious consequences for linear 

algebra problems. For example, the Conjugate Gradient algorithm can fail to 

converge with even the smallest change in rounding. Goddeke noted that many real 

world scientific calculations need double precision floating point arithmetic [91 ]. 

Goddeke describes a mixed precision defect correction algorithm as a solution for the 

lack o f double precision floating point on GPU. The single point GPU result is 

corrected with a few iterations of double precision correction arithmetic carried out 

on the GPP. Goddeke’s idea was to attain the full accuracy of the GPP, while 

keeping the speed o f the GPU. The results show that by using this mixed precision 

error correction technique the GPU could out perform the GPP by 2.3 times for 

Goddeke test matrices. Goddeke also noted that for small matrices the GPP 

outperformed the GPU, but as the problem out-grew the GPP’s cache, the GPU 

actually maintained a much higher performance. The residuals of the GPU method 

were almost identical to that of the GPP method. This GPU method had to perform 

many more iterations than the GPP, but due to its efficient operation, the GPU still 

outperforms the GPP. This correction method is an interesting way to work around 

the lack of double precision arithmetic available in the GPU. However, results using
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this method may still be different from the reference results obtained from the GPP 

and as such may reduce its usefulness in scientific computing. Both answers would 

be correct but the residuals in Goddeke’s results sometimes differed. This could 

cause slightly different numbers being returned for both methods.

Another approach to floating point acceleration was proposed by W olfe et al. in 1988 

when they described their W hite Dwarf architecture [92]. The white dwarf was a co­

processor unit which could be attached to a SUN 3/160 machine. It consisted of a 

CPU unit which was based on AMD chips, memory and a high speed communication 

bus. Internally, the data path consisted of separate integer and floating point units. 

The floating point units were used for computing the single precision numbers 

needed in the matrix and vector operations. The integer unit was used for all other 

calculations (the W hite Dwarf was designed before double precision arithmetic 

became the norm for scientific calculations). The integer data path also retrieved 

address pointers from memory for use in the floating point units. The architecture 

achieved a sustained 80% floating point unit utilisation. It could compute 

calculations twice as quickly as the stand alone Sun workstation. The result of 

17.8MFLOPs may look small in relation to current standards but, for its time the 

W hite Dwarf was an impressive machine. It once again showed that specialised 

hardware can be used to increase performance in floating point calculations.

In this section, a number of historic floating point accelerators were presented. The 

W hite Dwarf and the Ansys solver show that specialised hardware has been used to 

accelerate poor GPP performance for many years. A m odem approach to floating 

point acceleration was also described in the form of GPU accelerators. Historically, 

GPUs were very difficult to program for non-graphic applications. However, in 

recent years the GPU API has become much easier to use for all sorts of applications. 

The major drawback with these systems is their lack of double precision arithmetic. 

Goddeke shows a way to return a double precision answers using single precision 

arithmetic. The result, however, would not always be identical to that achieved by 

the GPP. In search engines, a small change in ranking score could be pivotal for a 

business, as it could cause them not to show up on the first page of results in a 

search. In the next section SMVM on other specialised FPGA based hardware 

platforms will be discussed.
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4.3.3 SMVM on FPGAs

In the research presented by Gropp et al. [81] GPPs were shown to have ever- 

decreasing percentage peak performance for memory bounded calculations like that 

of SMVM. This is due to the widening gap between computation bandwidth and 

memory bandwidth. Underwood investigated GPP and FPGA floating point 

performance in 2004 [ 12]. He found that the rate of peak achievable floating point 

performance was growing at a significantly faster rate on FPGAs than it was in 

GPPs. He compared the most popular FPGA and GPPs from a number of years 

between 1997 and 2004. 1997 was the first year that FPGAs capable of running 

floating point cores became readily available. Underwood then extrapolated the 

floating point performance of these test systems to future years and found that the 

FPGA would outperform the GPP for all the floating point operators he tested by 

2009. The projected results showed FPGA floating point performance would 

outperform GPP floating point performance.

Craven et al., looked at Underwood’s research and using his data analysed the 

FPGA in terms of cost-performance [93]. His data pointed to FPGA solutions 

becoming cheaper per GFLOP of performance sometime between 2009 and 2012. 

This result came with the stipulation that the Virtex 4 results were removed from the 

test data. Craven claimed that less than expected floating point performance in Virtex 

4 was caused by a reduced number of m ultiplier units. He goes on to state that the 

introduction o f 25x18 bit multipliers in the Virtex-5 family would appear to put the 

FPGA back on track to reach the processors cost-performance ratio by 2009-2012. 

For this reason, a good deal of research has been carried out on floating point 

algorithms on FPGAs in recent years. A great deal of this research has been focused 

on the SMVM operator, due to its poor performance on the GPP.

Unlike the G PP’s single memory configuration which due to a mismatch in memory 

and computational bandwidth cannot fully exploit the available floating point 

arithmetic units available in the GPP, the FPGA is flexible and can be programmed 

to use the very best memory architecture to ensure higher utilisation of the FPGA 

computational bandwidth. M odem large FPGAs have enough I/O pins and logic to 

create highly parallelized hardware platforms which can lead to better performance.

In this section some of the most noteworthy publications in this field will be 

reviewed.
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DeLorimier described an arcliitecture specially designed for SMVM on a Virtex-2 

FPGA [14, 94], In these papers, Delorimier attempts to take advantage o f the large 

memory bandwidth available from FPGA BRAM to increase the performance of 

SMVM calculations. Since memory bandwidth limits SMVM calculation speed on 

GPPs, Delorimier hoped that by using BRAM significant improvements could be 

made. BRA M ’s relatively large memory bandwidth when compared with the 

bandwidth o f commodity memory would be responsible for this performance 

improvement. A large amount of the logic available in the Virtex-2 device used in 

these experiments is utilised as BRAM. The BRAM is used to store the matrix and 

vectors needed for SMVM. The matrix is stored in CRS and the SMVM is computed 

as a series o f dot products which are spread across multiple processing elements 

(PE). DeLorimier experimented with single FPGA solutions. In order to scale the 

system for larger matrices, he also ran tests on a multiple FPGA platform. In these 

experiments he found that he could scale up to 16 FPGAs. However, the 

communication overhead for larger systems became prohibitive if any more FPGAs 

was added to the system. DeLorimier suggested a special type of FPGA with larger 

memory units and less logic would allow the system to accommodate larger 

problems.

The results achieved by DeLorimier’s architecture are impressive, with a sustainable 

1.2 GFLOPS for a single FPGA system and 12GFLOPS for the 16 FPGA system. 

The non-linear scaling is caused by the communication overhead. All results from a 

given iteration of the SMVM need to be broadcast to the other FPGAs before a new 

iteration can be started. A number of very serious drawbacks do exist with 

DeLorimier’s architecture. The most obvious shortcoming is cost as using FPGA 

BRAM as the primary source of memory is expensive. In 2005, when he wrote his 

paper, DeLorimier would have had to pay $96,000 for 16 Virtex-2 FPGAs [65] 

which shows that scaling by the addition of extra FPGAs is not a good idea. Another 

disadvantage of DeLorimier’s architecture is that it does not scale past 16 FPGAs. 

This scaling issue together with the prohibitive cost would be an insuperable problem 

in dealing with large lA matrices.

Zhou and Prasanna also developed an FPGA architecture based on repeated dot 

products [13]. Their system is implemented on a Cray XD l [95]. A block diagram of 

the Cray X D l is in Figure 4.9. The FPGAs in the system are programmed with the
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architecture described by Zhuo and Prasanna. The FPGA architecture utiHses three 

levels of memory. These are the FPGA’s onboard BRAM, SRAM and SDRAM.

Interconnect Network

SRAM

FPGA Pi~1Processor
PO

DRAM
MO

Figure 4.9 Zhuo and Prasanna’s system model [13]

The onboard BRAM is used as a cache. In the GPP cache all values read in from 

memory are stored in the LI cache. Data that is only going to be used once can 

replace data that is going to be used multiple times causing multiple costly cache 

misses. The FPGA has a major advantage over the GPP as only values explicitly 

written into the BRAM are cached. This set-up allows the designer full control of 

cache contents. This level o f control is impossible on a GPP where the operating 

system controls the cache contents. In SMVM the matrix entries are not reused and 

so there is no need to cache them. Instead Zhuo and Prasanna use the BRAM to store 

values from the X and Y vectors. The second level o f memory is the SRAM. This 

memory technology is slower than BRAM, but has a much higher bandwidth and 

lower latency than the third type o f memory which is SDRAM. Small matrices can 

be stored in SRAM and their X and Y values can be stored in BRAM. This 

architecture can scale to any size as the DRAM can be used if the SRAM becomes 

too small for the problem. For larger problems, the X and Y vector need to be split 

up and partial dot products are calculated.

Zhuo and Prasanna’s architecture used dot products to calculate the SMVM. Four 

NZE in CRS format were read in on every clock cycle. All four NZE products must 

be added to the same Y value and so a tree structure is used to accumulate the results.
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This gives a partial result. A reduction circuit is used to add the partial results 

together; see Figure 4.10.

A dder

A dder

A dder

Multipler

Multipler

Multipler

Multipler

R eduction
Circuit

Figure 4.10 SMVM architecture used by Zhuo and Prasanna

Zhuo et a! designed a special reduction circuit that uses only one adder for use in this 

architecture, see Figure 4.11. The reduction circuit contains two a buffers, where a 

is the adder pipeline depth. The first a partial results from each row are placed in one 

of the buffers. Any subsequent partial results from that matrix row are fed directly to 

the adder where they are added to one of the results in the buffer before the new 

partial result is written back to the buffer. Thus, the number of partial results for each 

row is reduced to a. This is done for a rows of the matrix to fill one of the buffers.

AdderIiiput —* Output

Buffer!

Buffer 2

Figure 4.11 Reduction circuit used by Zhuo and Prasanna [96]

The reduction circuitry then begins to fill the other buffer in the same manner, while 

the other buffer is filling, the first buffer reduces the remaining a partial results of 

each row to the final result. Since each buffer contains a rows of the matrix, Read 

After Write hazards can be avoided by servicing these rows in a round robin fashion. 

This circuitry works because it takes the same time to fill the second buffer as it does 

to reduce the first buffer to the final answer. Full details of this reduction circuit are 

available in [96].
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The Zhuo and Prasanna architecture could achieve a sustained 262 MFLOPS at a 

clock rate o f 164MHz for matrices that were stored in DRAM. Speeds of up to 1.05 

GFLOPS were achieved on matrices that could fit in SRAM. Internet Adjacency 

matrices, however, would have to be stored in DRAM and so would only achieve a 

maximum of 164 MFLOPS. Prasanna and Morris ran tests on a SRC06 MAPStation 

[97], They presented the same architecture as described above. However, they 

estimated with post PAR figures that the SRC-06 would perform better than the Cray 

X D l. They estimated a sustained performance in the region of 167-670 M FLOPs for 

their test sets. These results have not been verified in hardware.

El-Kurdi et al. [98] described an accelerator for SMVM calculations on FPGA. Their 

system used the single precision floating point format. El-Kurdi introduced a novel 

striping approach [99]. This striping method was specially designed for his 

architecture. The architecture itself consists of eight processing elements which are 

pipelined together. The matrix stripes are streamed from memory into one of the 

eight processing elements. Meanwhile the X and Y values are passed along the PE 

pipeline until the end of the stripe is reached. The eight processing units, X queue, Y 

queue and resultant Y FIFO all share a single link to memory. A MUX ensures that 

all units receive their relevant data and that new Y values are written back to 

memory. The author claimed that sustained performance of 1.5 GFLOPS would be 

achieved if the architecture had an 8Gb/s link to memory. This architecture would 

contain multiple FPGA and would utilise the rest of the TM4 development board 

[100] that the project uses.

The FIAMMA group, the pre-cursor of the current project, also investigated SMVM 

on the Virtex-II platform [19]. FIAM M A investigated the SPAR architecture, first 

proposed by Taylor [17] in 1995. They implemented the SPAR on a Virtex-II V6000 

FPGA with four independent banks of DDR-266 SDRAM. The SPAR consisted of 

two vector fetch units, a MAC unit, X cache, Y cache and control logic (see section 

5.4). They found a number of the assumptions made by Taylor in her initial paper 

impossible to achieve on FPGA. Taylor had described a three cycle adder and a 

memory latency of 10 cycles. The FIAMMA group found they needed to increase the 

adder pipeline to maintain a high clock rate. They also found 10 cycles to be an 

unrealistic memory latency. The FPGA implementation of the SPAR showed that Y- 

cache misses were a major bottleneck in the system. A matrix banding scheme is
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proposed to reduce the Y-cache misses at the expense of increasing RAW  hazard 

penalties. The system achieved a maximum performance o f 422 M FLOPs which was 

74% of the theoretical peak. The SPAR architecture will be discussed again in 

section 5.4 and its performance with lA matrices is in section 6.4.1.

In this section a number o f architectures specially designed for SM VM  algorithms 

have been presented. DeLorimier designed a system with impressive performance, 

but which was limited in its scalability. El-Kurdi presented a novel striping 

architecture, but published no real performance data for his architecture. Zhuo and 

Prasanna’s architecture is scalable and performs well, but does not contain the 

elements needed to do the rest of the PageRank algorithm. In order to be useful in 

specialised hardware, the system needs to be able to compute SMVM, dot product as 

well as other vector operations as described in the section on PageRank (§3.5.5).

4.4 Arithmetic units on FPGA
In the previous section, FPGA architectures for SMVM were discussed. A number 

multipliers and adders are found at the heart of these units. The precision and speed 

of these arithmetic units dictate the performance and usefulness o f the overall 

system. In this section the capabilities of fixed point/integer arithmetic and floating 

point arithmetic on FPGA will be discussed.

4.4.1 Fixed point/integer arithmetic on FPGA

Traditionally, FPGAs have been known for their good performance on integer 

arithmetic. The FPGA is well-suited to perform large quantities of parallel integer 

arithmetic. In this section some of the research carried out on a num ber of fixed 

point/integer arithmetic units will be discussed.

In 2005, Becvar et al., published a paper looking at various precision fixed point 

arithmetic on the Virtex-II FPGA [101]. Becvar et al. implemented a Carry-Ripple 

adder (CRA), Carry-lookahead adder (CLA), Carry-Skip adder (C-SKIP) and a Carry 

Select Adder (C-Select). These adders were compared with an adder generated by the 

Xilinx ISE 5.2 (Generated). The results obtained from this study are summarised in 

Table 4.1.
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Table 4.1 Summary of Fixed point adders [101]

Name 16 bit 32 bit 64 bit
Area

(Slices)
Delay (ns) Area

(Slices)
Delay
(ns)

Area
(Slices)

Delay
(ns)

CRA 23 13.52 47 23.99 95 40.27
CLA 29 7.97 61 19.06 127 24.84

C-SKIP 23 11.54 47 15.67 95 18.02
C-SELECT 27 13.27 67 16.47 135 23.88
Generated 8 4.05 16 5.09 32 8.38

The results for fixed point addition in Table 4.1 show that the synthesis generated 

fixed-point adder is both faster and smaller than all the other adders tested. Becvar et 

al., conclude that this is due to the fact that the generated fixed-point adder is the 

only adder to use the dedicated carry chain hardware available on the Virtex-11 

FPGA. The Generated adder has a delay of 8.38ns for the 64 bit operand which 

means that the adder can be clocked at approximately 120 MHz on the Vitex-Il 

FPGA.

Becvar et al. also ran a number of tests for a number of different fixed-point 

m ultipliers and the results of these tests are summarised in Table 4.2.

Table 4.2 Summary of Fixed point Multipliers [101]

Name 16 bit 32 bit 64 bit
Area

(Slices)
Delay (ns) Area

(Slices)
Delay
(ns)

Area
(Slices)

Delay
(ns)

Array 364 28.96 1536 53.45 4187 99.97
Wallace 390 19.18 1542 27.18 6164 37.00

Generate-C 134 20.32 49 26.27 2109 29.97
Generated 0 14.87 533 18.54 295 28.94

Once again Becvar et al. found the core generated by the synthesis tool to be the 

most efficient single cycle multiplier. The generated multiplier uses the dedicated 

18x 18 multipliers available on the FPGA. The 64 bit multiplier has a much slower 

clock speed than the single cycle 64 bit adder and so would probably need to be 

pipelined so that they could be used in the same circuit.

Xilinx Core Gen [ 102] has the ability to create fixed point adders and multipliers.

The user sets parameters and the core generator will implement the desired unit. The 

newest version o f the Xilinx fixed point multiplier core shows that a 53x53 multiplier
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can operate at a maximum frequency o f 450MHz on the Virtex-5 FPGA [103], This 

multipUer has a 12 cycle latency which is quite a large latency for a fixed point 

multiplier. The latency o f the multiplier could be reduced i f  a high clock rate is not 

needed. The X ilinx Logicore add/subtract unit [104] is capable o f running at a 

maximum clock frequency of 340 MHz on a Virtex-5 FPGA. This system adds two 

operands o f 100 bits and has a latency o f 9 clock cycles. The X ilinx fixed point cores 

have high clock rates but these are achieved by increasing the latency.

4.4.2 Floating point aritlimetic on FPGA

The IEEE standard 754 for floating point numbers was published in 1985 [40]. The 

IEEE 754 describes a standard approach to floating point arithmetic, including 

precision, range, rounding modes, exception handling, overflow, underflow and 

handling of denormalised numbers. Before the IEEE standard was introduced, every 

manufacturer had their own approach to floating point numbers. Software designers 

found it increasingly difficult to ensure that their systems worked properly on all 

platforms. Since then, the IEEE 754 compliant double precision arithmetic has 

become the standard for scientific applications all over the world. FPGAs 

traditionally had poor performance with floating point arithmetic before the 

introduction o f the Virtex series FPGA. The advent o f large FPGAs, however, has 

allowed floating point performance to steadily improve. As discussed earlier, Gropp 

has shown that floating point performance on FPGAs is increasing at a rate quicker 

than that of floating point on the GPP.

Some of the earliest attempts at implementing floating performance on an FPGA 

were carried out by Fagin et al. [ 105], Shirazi et al. [ 106] and Louca et al. [107]. 

Fagin et al., implemented a single precision floating point adder and multiplier over 4 

FPGAs. Their arithmetic units could run at 4MHz and included logic for rounding 

and denormal numbers. However their multiplier was not pipelined and thus could 

only produce a result every 6 clock cycles. A year later, in 1995 Shirazi et al., 

implemented a half single precision adder and multiplier. The operands were 18 bits 

wide, but Shirazi managed to fit the design on to a single FPGA. In 1996, Louca et 

al., implemented a single precision adder and multiplier. Louca’s adder was fu lly 

pipelined but his multiplier, like that o f Fagin et al, could only handle an input every 

12 cycles. These attempts at implementing floating point arithmetic clearly show that

91



Chapter Four

FPGA based floating point units were still not viable. In 1998 the first fully pipelined 

multiplier was implemented on FPGA by Ligon et al. [ 108], This single precision 

floating point pipelined multiplier was made possible by the larger FPGAs available 

in 1998.

The Virtex-II FPGA first went on the market in 2000. This model was a significant 

step forward in FPGA technology [15], The Virtex-II was the first FPGA to contain 

integrated 18x18 integer multipliers. Researchers quickly noticed that these 

multipliers could be used to speed up fioating point arithmetic units. The hardware 

multipliers also greatly reduced the amount of logic needed for floating point units. 

Roesler et al., showed a 77% reduction in resources needed to implement a single 

precision floating point multiplier when using the inbuilt 18x18 multipliers instead of 

conventional FPGA logic [ 109]. Furthermore, the Virtex-II FPGA was also the first 

FPGA that made FPGA based double precision floating point arithmetic viable. This 

new capability spurred a great deal of research into the area o f double precision 

arithmetic on FPGAs. This research led to the investigations carried out on SMVM 

and other scientific calculations that have been mentioned in the previous sections of 

this chapter. Table 4.3 shows a summary of some of the double precision adders 

available on Virtex-II.

Table 4.3 Summary of double precision floating point Adders on Virtex-II and Virtex-II pro

(N/A = not available)

Name No of 
Slices

no of 18x18 
Multipliers

Latency IEEE STD 
Compliant

Clk MHz
(Speed)

REF

FIAMMA 937 0 6 Yes 110 (-6) [11]
Underwood 1090 0 14 Yes 125 (-5) [12]

Zhuo 892 N/A 14 Yes 170 (Pro) [13]
DeLorimier 790 N/A 13 N/A 140 (-4) [94]

Xilinx 861 0 12 Yes 134 (-6) [110]
Dou 738 0 8 No denormals 177(Pro) [111]

Govindu 1 693 N/A 8 Yes 130 (Pro) [112]
Govindu 2 1383 N/A 23 Yes 200(Pro) [112]

Table 4.3 shows the different trade-offs that exist between slice count, latency, IEEE 

compliance and clock speed. Reducing slice count often comes at the cost of 

reducing clock speed or losing IEEE compliance. Equally so, increasing clock speed 

often can only be achieved by lengthening latency and increasing the size of the
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circuit. The many different flavours of FP adder, shown in Table 4.3, reflect the 

many different requirements of the architectures of the designers. The clock speeds 

o f the Virtex-II Pro implementations tend to be higher than those of the Virtex-II. 

This increased clock speed is to be expected as the Virtex-II pro was designed as the 

next step up from the Virtex-II. Table 4.4 shows a similar table for double precision 

multipliers.

Table 4.4 Summary of double precision floating point Multipliers on Virtex-II and Virtex-II pro

(N/A = not available)

Name No of 
Slices

no of 18x18 
Multipliers

Latency IEEE STD 
Compliant

Clk MHz 
(Speed)

REF

FIAMMA 825 9 7 Yes 114 (-6) [11]
Underwood 1607 9 20 Yes 105 (-5) [12]

Zhuo 835 N/A 11 Yes 170 (Pro) [13]
DeLorimier 3276 N/A 26 N/A 140 (-4) [94]

Xilinx 703 16 8 Yes 105 (-6) [110]
Dou 585 9 5 No denormals 178(pro) [111]

Govindu 1 775 10 11 Yes 130(pro) [112]
Govindu 2 1558 10 23 Yes 2(X)(pro) [112]

The trade-off between size, latency, IEEE compliancy and clock speed can be seen in 

Table 4.4 for the multipliers in the same way as occurred with the adders. The sizes 

of the multiplier and adder cores are much smaller than the devices on which they are 

implemented. Therefore, for the first time, it was possible to implement multiple 

cores in parallel. This parallelisation of floating point cores allows FPGA 

architectures to compete with the GPP despite having a much slower clock rate.

The generations of FPGAs that followed the Virtex-II continued to progress towards 

faster floating point arithmetic. Ehliar et al. [ 113] developed non-IEEE compliant 

single precision floating point cores on Virtex-4. Ehliar’s units did not support 

denormal numbers, Inf code words or NaN code words. His design achieved 250 

MHz in a complete system. Xilinx Logicore double precision fully IEEE compliant 

floating point adder and multiplier achieved a maximum clock rate of 327MHz and 

380MHz respectively when implemented on Virtex-4 [110]. X ilinx’s high clock rate 

is achieved by liberally using the extreme DSP blocks. If none of the Virtex-4 

extreme DSP blocks are used, the clock rate falls to 181MHz and 301 MHz for the 

multiplier and the adder respectively. When Gropp et al., [81] was extrapolating
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Underwood’s results, he found that he had to remove Virtex-4 floating point 

performance. He claimed that FP arithmetic on Virtex-4 did not follow the trends set 

by other generations o f FPGA. This claim was not made because of the clock rate 

that Floating point operators on Virtex-4 FPGAs could achieve, which can be seen 

here to be well above that of the Virtex-II. It was due to the fact that V irtex-4 FPGAs 

do not have the same proportion of built-in multipliers per slice as previous 

generations. This was probably caused by Xilinx moving from simple m ultipliers to 

extreme DSP slices. Gropp et al., also claimed that this problem was fixed with the 

release of Virtex-5.

Virtex-5 is the newest generation of Xilinx FPGA [33]. The changes made to the 

fabric o f the device seem to have increased floating point performance a great deal. 

W ider and more numerous built in extreme DSP units increase multiplier 

performance. The same Logicore [110] floating point multiplier and adder described 

above implemented on the Virtex-4 FPGA can run at a clock rate of 410 M Hz and 

397 M Hz respectively on the Virtex-5 FPGA with liberal use of DSP units. The 

clock rate drops to 237M Hz and 338M Hz for the multiplier and adder respectively if 

no DSP units are used. A num ber of other multiplier combinations use less DSP units 

and can be clocked at 386M Hz and 368MHz respectively.

A great deal of research has been carried out on FPGA with regards floating and 

fixed point arithmetic. Floating point is more complex to implement and takes more 

FPGA logic, but it offers a greater dynamic range. It is for this reason that FPGA 

floating point has become a large area of research in scientific computing.

4.5 Summary
In this chapter a number of works related to this thesis have been reviewed. It is 

hoped that this will help put the results o f this work in context. There are no results 

that can be directly compared to the results obtained by this thesis but a good deal of 

work has been carried out in other related scientific fields like FEA. The chapter 

started with a look at research into alternative PageRank algorithms. Some o f these 

research ideas did show performance improvements over the basic power method but 

this increased performance came at the cost of higher memory requirem ents or a 

lengthy reordering step. The performance of some of the alternative algorithms
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proposed is dependent on matrix structure. However, the power method offers a trade 

off between convergence speed, memory requirements, stability and scalability that 

is difficult to beat.

Next, a num ber of modifications to the power method for PageRank were discussed. 

Some of these modifications affect the stability of the PageRank algorithm like the 

first o f the three methods proposed by Kamvar et al. [70] where the values of 

PageRank were locked as they individually converged. Most o f these modifications 

did not require extra hardware and so could be implemented along with any hardware 

accelerator. This was the case with BlockRank [72], and Markov chain lumping 

theory [74]. BlockRank creates an estimation of the overall PageRank vector which 

may limit its use but the Markov chain lumping theory idea proposed by Lee et al. 

gives the exact PageRank vector.

A great deal o f research has been carried out on software optimisations for SMVM 

on the GPP. Most of these modifications to increase performance revolve around 

increasing data reuse and smarter use o f the cache. The results obtained by W illiam ’s 

on the single lA matrix in his test set shows that these optimisations give little or no 

performance increase for the very sparse IA matrix.

A good deal of research has been carried out on hardware for SMVM. GPUs are 

examples of stream architectures that specialise in high performance computing. 

Traditionally it was very difficult to target these devices for non-graphic applications 

but in newer GPUs advanced APIs have been made available making it much easier 

to run applications on the GPU. However, the GPUs lack of double precision floating 

point arithmetic has limited its usefulness in scientific computing.

The final area examined in this chapter was FPGA arithmetic. M odem FPGAs have 

made it possible to implement complex accelerator architectures. These can include 

highly parallelised architectures that are more suited to SMVM than the GPP 

processor. The major bottleneck in FPGA design is the clock rate. Despite this fact 

the FPGA floating point performance is set to pass the GPP in 2009/2010 [12].

In this section the current state of the art in a number o f key technologies was 

discussed. Although no direct comparison for this project was found there are aspects 

used in this project that have been used in other areas of scientific computing. This
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knowledge will aid with the understanding of the implementation which is presented 

in the next chapter.

96



Design and Implementation

Chapter Five 

5 Design and Implementation

5.1 Introduction
In the preceding chapters a background to the PageRank problem has been presented. 

In chapter 2 an overview of the technologies being used was presented. This was 

followed in chapter 3 with an investigation into Internet search algorithms including 

the PageRank algorithm. In chapter 4 a review of related work was presented. In this 

section the details of the hardware used in this implementation of the PageRank 

architecture are discussed. Details of the hardware architecture are presented in 

section 5.2 to section 5.2.1. A discussion on the precision needed to accurately 

represent the PageRank vector is given in section 6.5 and details o f the software 

architecture are presented in section 5.7. Programming details are also included.

5.2 Architecture
The architecture is designed as a System on a Chip (SoC) for solving problems in 

linear algebra such as calculation of the PageRank vector. A high level depiction of 

the system is presented in Figure 5.1. A soft RISC processor, the M icroblaze, is used 

as the system controller and it is interfaced to all peripherals, arithmetic units such as 

the SMVM, PCI interface and memory controllers via four W ishbone buses.

The arithmetic units consist o f three fully fledged SMVM units and a programmable 

Vector Unit which can compute any vector-vector or vector-scalar operation. Matrix 

by Vector operations can be computed using one, two or three SMVM units if the 

operation has been partitioned in a pre-processing stage. A fully populated system 

comprises three SMVM units and four independent memory spaces. Commodity
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DDR/DDR2/DDR3 memory is used. Thus, four memory controllers are provided for 

the large capacity memory. In most cases, three memory spaces are used for matrix 

storage with the fourth needed for vector storage. High speed caches/buffers are 

provided locally in the SMVM units to reduce the number of accesses to the slow 

DDR memory. The host computer communicates with the FPGA board via a PCI 

bus. Thus, the system includes a PCI interface. The PCI interface allows the host PC 

to populate the memory with matrix and vector data. The arithmetic units can be 

controlled directly by the host PC or via the MicroBlaze processor. There are 3 

separate clock domains in the system, the PCI clock, the memory clock and the 

system clock. The PCI clock domain is used in the PCI interface on the PC side and 

the memory clock domain is used by the memory controllers on the memory side. 

The W ishbone buses, arithmetic units, MicroBlaze and W ishbone interfaces use the 

system clock.
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Figure 5.1 High level view of PageRank hardware architecture
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5.2.1 MicroBlaze

It was decided that a processor would be used as the system controller. This would 

allow the hardware units on the FPGA to be controlled by a C program running on 

the processor. The Virtex-II FPGA can implement a MicroBlaze (MB) soft RISC 

processor. A soft processor is one that is implemented using the FPGA logic. Thus 

including a processor uses FPGA resources. Xilinx offer a hard PowerPC processor 

on a number of their other FPGAs like the Virtex-II pro [114], The PowerPC is 

embedded in the FPGA silicon. Thus, it does not utilise any FPGA resources. The 

PowerPC is not available on the Virtex-II FPGA so the MB was used.

The MB was implemented using the Xilinx Embedded Development Kit (EDK). The 

MB is a 32 bit processor and is designed to connect to an On-chip Perennial Bus 

(OPB). It is through the OPB that the MB communicates with all other hardware 

units. It also is connected to a small RAM module where program code and data are 

stored. The control program for the system is stored in this memory. The MB can be 

easily programmed using C. This is a major advantage as it makes emulating 

operations and reprogramming the system for other algorithms very straightforward. 

W riting programs for the MB is discussed later in section 5.8.3. Figure 5.2 shows a 

block diagram of the MB and associated hardware as it was implemented in this 

architecture.
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Figure 5.2 MicroBlaze controller unit
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The major features of the MB controlling system are the Interrupt controller, the 

debug module and four OPB to W ishbone bridges.

The interrupt controller is connected to the OPB and allows the PC and the hardware 

units to issue interrupts to the MB. The interrupt controller has 9 interrupt lines that 

can be connected to any hardware units on FPGA. If the hardware unit wants to issue 

an interrupt to the MB the unit must set the corresponding interrupt signal high and 

an interrupt handler on the MB corresponding to the interrupt line set will carry out 

the operations required. Once the interrupt handler has been completed the MB will 

clear the interrupt. This allows hardware units to inform the MB that an operation is 

complete. The MB also has an interrupt line connected to the host PC which allows it 

to issue an interrupt when it has completed the operation. This allows the host PC to 

continue working on other calculation while it waits for the FPGA development 

platform to complete the PageRank calculation.

The MDM debug module allows the user to connect to the MB using a JTAG cable. 

This connection can be used to program the MB program memory and to debug 

systems running on the MB.

Finally, four OPB to W ishbone bridges allow for communication between units 

connected to the Wishbone buses and the MB. The MB is designed for use with the 

OPB which is a 32-bit wide bus. The OPB therefore is not wide enough for the data 

being used by the hardware units. It was for this reason that the WB buses were 

implemented to allow data to stream to the hardware units. The MB, as the system 

controller, must be able to communicate with all hardware modules and memory 

interfaces on the WB buses, thus an OPB to WB Bridge was implemented between 

the OPB bus and each of the four WB buses. However, connecting the OPB bus to 

the W ishbone buses is difficult as the OPB bus is only 32 bits wide and uses different 

control signals than the W ishbone bus system. The bridges therefore need to co­

ordinate communication between the two systems. The bridge converts all data and 

control signals to the desired width and implements the correct protocol for both 

buses allowing information to be passed between the two bus systems.
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5.2.2 Wishbone Bus
The Wishbone Bus (WB) is an open source hardware communication bus that was 

designed to provide a standard way for hardware cores to communicate with one 

another [16]. The W ishbone standard does this by standardising the communication 

process between cores. The WB is designed to be simple, flexible and portable. It 

was created to allow designers to release their IP cores with a standard 

communication interface. This means that functional cores with WB interfaces can 

be easily implemented as black boxes in any circuit with a WB.

It was decided to use the WB standard in this project when problems with 

compatibility with other buses became apparent. The Alpha Data development 

platform came with LP-core buses for use with the power PC available on the FPGA. 

However, no bus larger than 32 bits was provided for use with the MicroBlaze.

The WB is a master/slave architecture [16]. The masters initiate data transactions to 

participating slave interfaces. There are a number of ways the WB modules can be 

interconnected including point-to-point, data flow, shared bus or crossbar switch.

Point-to-point interconnects can be used when a master needs to communicate with 

exactly one slave device. The Data-Flow interconnects are used when each unit 

needs to be a slave to one unit and a master to another unit. The Shared Bus topology 

is used when multiple masters need access to one or more common slave interfaces. 

Only one connection can be made at a time using this topology so sometimes masters 

must wait for the bus to become free. Finally the Crossbar Switch allows multiple 

masters to connect to multiple slaves but it allows more than one connection to be 

made at a time so long as it is not to the same slave interface. The Shared Bus 

topology is used in this work since multiple units (masters) need access to multiple 

slaves. It was decided that the Crossbar Switch would require too much logic to 

implement and that none of the buses would require multiple accesses to different 

units. Figure 5.3 shows a high level block diagram o f how the shared bus is 

implemented in this project. The WB standard does not specify how the shared bus 

should be implemented and so a multiplexed bus is used in this work.
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Figure 5.3 Wishbone multiplexed Shared bus with round robin arbiter.

The arbiter uses a round robin scheme to choose which master gets control of the 

bus. It cycles through the each of the masters until it finds a master that needs the

bus. The arbiter then multiplexes the signals from the master to the shared slave bus 

thus giving the master control o f the bus. When the operation is complete the arbiter 

starts to cycle through the masters again until it finds another master in need of the 

bus.

This project has implemented 96, 128 and 192 bit W ishbone buses. The 96 bit bus is 

used in the SPAR and single M AC SCAR units described in Section 5.4 and Section 

5.5 respectively. The NZE of the matrix require 96 bits to represent them and so this 

bus delivers a single NZE every clock cycle. The 192 bit bus delivers two NZE per 

clock cycle to the dual MAC SCAR described in Section 5.5.3. This was 

implemented to utilise the full memory bandwidth with increasing the FPGA clock 

rate. Finally, the 128 bit WB is used on the share vector bus to read/write two 64 bit 

vector entries to/from the X and Y buffers. The 192 bit bus and 128 bit bus contain 

an extra signal which tells the slave how many bits to use when transferring data. 

This is to facilitate writing 32, 64, 96 and 128 bit words across the 128 bit or 192 bit 

bus. This means the bus can be used to set up the 32 bit registers in the slave units 

and to stream data from memory which is converted into 192 bit words in the 

memory interfaces. The W ishbone buses in the system are connected to the
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arithmetic units using master and slave interfaces which means that the arithmetic 

units do not need to deal with implementing the W ishbone standard internally. 

Instead all aspects of the WB standard are enforced in the WB interfaces.

5.2.3 Wishbone Bus Interface

All hardware units in the system communicate across the W ishbone bus. The 

W ishbone interface facilitates this communication by implementing the Wishbone 

protocol. A W ishbone interface can either be a m aster or a slave. A master W ishbone 

interface allows the unit to control the bus. Once a unit has control of the bus it can 

access any unit with a slave interface to read data from it or write data to it. 

Conversely any unit with a slave interface can be accessed using the W ishbone bus 

to write data to it or to read data from it. Some of the hardware units only have a 

slave interface or master interface and others have both. The memory controller is an 

example of a slave unit. It never needs to control the bus. However, the slave 

interface allows all the other units with master interfaces to access the memory 

through the memory controllers slave interface. The arithmetic units have both slave 

and master bus interfaces. Figure 5.4 and Figure 5.5 show the W ishbone bus slave 

and master interface for the SMVM unit respectively.

103



Chapter Five

SMVM Side
WB Slave Interface Adr =0x3FFF

0x00Version

Comnnand

Max Entries

Status

Matnx Adr

X Adr

Y Adr

Bus 0 low Adr

Bus 0 high Adr

Bus 1 low Adr

Bus 1 high Adr

Duration

Vec Bus Util
Control Logic

Unit Registers

WB Bus Side

A ddress

Data In

D ata out 
►

RST CLK

Figure 5.4 Wishbone slave interface for SMVM unit

The WB slave interface in Figure 5.4 has a fixed address space in memory; in this 

case, the addresses 0x3FFFF500 -  0x3FFFF560 map this slave interface. Any unit 

connected to the WB bus can access this slave interface by referencing these 

addresses. If an access cycle begins on the WB bus with a given slave’s address, that 

slave interface responds. After the WB hand shaking is complete (as described in 

section 5.2.2) the data is either read or written to the unit register corresponding to 

the address. M ultiple registers can be written to, or read from, using the WB burst 

operation. Data in the unit registers is available to the rest of the unit, in this case the 

SMVM unit. These registers are used to set up the hardware block (e.g. an SMVM 

unit) for a given calculation. These registers make the arithmetic units highly flexible 

in operation. The Vector Unit for example can be programmed to do any one of 

sixteen operations just by changing a single register entry. The Vector Unit also 

allows the user to set the position o f the data in memory, the rounding mode and 

whether or not the unit should interrupt the MB when the operation is completed. 

This is discussed in more detail in Section 5.3.
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The MB therefore connects to the units via this slave interface. The MB sets up the 

calculation by passing parameters to the arithmetic units registers via their slave 

interfaces. Once the arithmetic unit’s command word is written the arithmetic units 

take control o f the bus via their master interface to read in data needed from memory 

see Figure 5.5.
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Buffer read

FIFO Control

i
Control Logic

WB Bus Side
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Err
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f }
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Figure 5.5 Wishbone Master Interface for SMVM unit

The WB master interface allows a unit to control the W ishbone bus. On the unit side 

(SMVM side in Figure 5.5) the master interface is simply a FIFO with some control 

signals. There are two modes of operation for the master interface - the read mode 

and the write mode. If the unit needs to read data from another unit i.e. memory, it 

must set the read enable signal and put the address o f the data on the address input. 

The control logic then initiates a WB read cycle to get the data from the address 

provided. The data is sent on the bus and placed into the FIFO which causes the 

buffer empty signal to go low. This lets the unit know that the data is available and it 

begins to read the data from the FIFO. Once the required data has been read, the read 

enable signal is set low and this lets the control logic know it can finish the read
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transaction. To write data to another unit or to memory the data is simply placed in 

the FIFO with a valid address on the address line. Logic in the FIFO signals to the 

control logic in the WB master interface to begin a write transaction. Once all the 

data is written the transaction is terminated. In the next section the WB signals and 

memory transactions are discussed.

5.2.4 Wishbone Bus Operations

The WB standard describes three types of bus cycles - single read/write, block 

read/write and read-modify-write. In this implementation only single read/write and 

block read/write operations are needed. The read-modify-write operation is not 

needed due to the functions of the units in this system. The SMVM or Vector unit 

never need to make read-modify-write operations. They either are streaming blocks 

of information in or writing blocks of information out. The SDRAM overhead as 

discussed in Section 2.4 would also make a read-modify-write operation to SDRAM 

prohibitively long.

When a master wants to initiate a single memory read cycle it places the address of 

the data on the address output (A D R _0) and then sets the Strobe (STB) and cycle 

(CYC) signals high and sets the write enable signal (W E _0) low, see Figure 5.6. In 

this implementation of the WB an optional cycle tag instruction (C TI_0) is also set. 

This informs the slave what type of data transfer is being attempted. The C T I_0  

signal is set to 0x1 for single read/write operations and to 0x3 for block read/write 

operations. After these signals have been set, the master must wait for the slave unit 

to reply. This wait state can last numerous clock cycles depending on delays in 

retrieving data. These delays include delays due to bus arbitration, data availability 

and bus latency. The slave units constantly monitor the address line of the W ishbone 

bus and if they see an address in their range on the bus with a valid STB signal they 

place the data on the data lines of the bus and set the acknowledge signal (ACK). 

Upon seeing an ACK signal, the master must latch the data on the data in (DAT_I) 

lines and negate its STB signal in response to the ACK signal. The transaction is now 

complete so the bus is released by negating the CYC signal. The arbiter knows the 

transaction is complete when the CYC signal is negated and so gives the bus to the 

next master in the queue.
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Figure 5.6 Wishbone single read timing diagram

The single write operation is quite similar to the single read. In the write operation 

the master must set the W E _0  signal and put the data to be written on the D A T_0 

bus lines. The slave sets the ACK_1 signal once it has latched the data and so the 

operation can be ended safely. Burst read/write transactions are quite similar to the 

single read/write transactions. Figure 5.7 shows a burst write W ishbone transaction. 

Once again the master must set the STB _0, C Y C _0, W E _0  and C T I_0  signals 

along with assigning the data output channel (D A T _0) with the first piece of data 

and setting the address line (ADR_0). The C T I_ 0  signal is set to 0x3 to tell the slave 

it is a burst transaction. The master unit then waits for the slave unit to acknowledge 

that it has latched the data on the bus. The slave does this by asserting the ACK_1 

signal.
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Figure 5.7 Wishbone block write timing diagram.

After receiving the ACK_I signal from the slave, the master negates the ST B _0 

signal as it did in the single read/write transaction to acknowledge that it received the 

ACK_1 signal. The master can then increment the address and place the next piece of 

data on the D A T _0 lines. The master must wait for an acknowledgement before it 

can move on to the next piece o f data. This is why in Figure 5.7 that D3 remains on 

the data lines for two clock cycles. ACK_I is not set at the end of the first clock cycle 

and so the master must wait until the slave acknowledges receiving the data before it 

can move on. Another important note is that the C T I_0  signal is set to 0x7 for the 

last piece of data in the burst, thus warning the slave interface that this will be the 

last piece of data to be sent in this transaction. When the master receives the ACK_I 

signal for the last piece o f data, the transaction can be terminated by negating the 

C Y C _0 signal. This frees the bus for use by another master.

5.2.5 PCI Interface

The PCI interface allows for communication between the SOC and the host PC, see 

Figure 5.8. The PCI interface is connected to all 4 W ishbone buses to allow it access 

to all 4 banks of DDR. It contains both master and slave W ishbone interfaces. It can 

control the W ishbone buses using the master interface when it needs to write data to 

the banks of memory or if the arithmetic units are being controlled via the host PC. 

The slave interface allows the MicroBlaze to control the PCI interface. This can be

108



Design and Implementation

used to allow the M icroBlaze to communicate with the host PC or to control the 

downloading of data. The PCI interface operates in two different clock domains. The 

local bus interface operates at 66 MHz which is the speed at which the PCI bus 

operates. The W ishbone interfaces, flow control and control registers are clocked 

with the system clock which is the clock the FPGA architecture uses. A pair of 

asynchronous FIFOs is used to avoid any errors associated with crossing the clock 

domain.

Wishbone 
Slave 0

Wishbone 
Slave 1

Control
Registers

Wishbone 
Slave 3Input FIFO

Wishbone 
Master 0To Host PC 

via PU9656 Flow ControlLx>ca1 Bus 
Interface Wishbone 

Master 1

Wishbone 
Master 2Output HFO

Wtshbone 
Master 3

Figure 5.8 Block diagram of PCI interface

5.2.6 Memory Controller

The memory controller is responsible for communication between the W ishbone bus 

and the DDR. The controller consists of a W ishbone slave interface with associated 

slave control registers. These can be used to set parameters for control of the memory 

cycles. Figure 5.9 shows a high level block diagram of the memory controller logic 

and the W ishbone interface. As discussed in the general architecture description, the 

SDRAM have a separate clock from the rest of the system. Therefore there are two 

separate clock domains in the memory controller. The first is clocked at the clock 

speed required by the SDRAM (e.g. 133 MHz for DDR-266; see Table 2.2). The 

second clock in the memory controller is the system clock. This is the clock rate that 

the arithmetic units. W ishbone buses and W ishbone interfaces are capable of 

achieving. Cross-over of data between these two clock domains is handled by an 

asynchronous FIFO. Data is latched in the FIFO in one o f the clock domains. It then
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can be read out of the FIFO in the other clock domain. This asynchronous FIFO is 

also able to deal with varying data word size. The SDRAM, for example, read and 

write 128-bits of data per clock cycle. However, some of the W ishbone buses read 

and write 192-bits of data per clock cycle. This FIFO system can deal with this 

conversion from 128-bits to 192-bit data words where necessary.
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Registers

Wishlx>ne
Slave

Interface

Xilinx Memory 
Interface

DDR Ok

crossing I or data with 
converslo I to required 

Wt wtdth

RFO

System Clk

Figure 5.9 Overview of memory controller

The signal level communication with the SDRAM is accomplished using the Xilinx 

M emory Interface core. This core was generated using the Memory Interface 

Generator (MIG) tool [34]. The MIG tool generates HDL files for user specified 

configuration of SDRAM. These files take care of all the read and write protocols of 

the SDRAM. The memory controller is wired to connect the Xilinx memory interface 

to the Asynchronous FIFO so that data can be read from and written to the SDRAM. 

Once the data has been passed through the Asynchronous FIFO to the W ishbone bus 

it is available to the arithmetic unit that requested the data. In the next few sections 

the arithmetic units implemented in this project will be described.

5.3 Vector Unit
The Vector Unit is a dedicated arithmetic unit that can compute the operations 

detailed in Table 5.1 i.e. practically any vector -vecto r or scalar-vector or scalar- 

scalar operations. A high level diagram of the Vector Unit is shown in Figure 5.10. 

The Vector Unit consists of a single multiply-add unit, 3 master W ishbone interfaces, 

a slave W ishbone interface and a controlling state machine. For simplicity, the 

details o f the state machine have been omitted from Figure 5.10.
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Table 5.1 Vector unit functions

Operation Op-Code C-Code Describtion

NOP 0x0 nop No Operation
z=x 0x1 memcpy M emory Copy

z=<x,y> 0x2 dot Dot Product o f vectors x and y

*X*IIN 0x3 elem Element by Element multiplication o f vector x 
and y

z=ax 0x4 vscale Vector scale, scale vector x by scalar a
z=ax+y 0x5 axpy Vector scale and addition. Scale x by a and add 

vector y
z=ax-y 0x6 axmy Vector scale and addition. Scale x by a and 

subtract vector y
z=wx+y 0x7 wxpy Element by element multiplication o f vector x 

and w and result added to y
z=wx-y 0x8 wxmy Element by element multiplication o f vector x 

and w and subtract y from result
z=<x,x> 0x9 norm Norm squared o f x

z=a*p OxA smult Scalar Multiply
z=a+p OxB sadd Scalar add
z=a-P OxC ssub Scalar subtract

z=a*P+y OxD smadd Scalar multiply and add

N II II R OxE scomp Scalar Compare
z=0 OxF zero Zero memory

Like the slave interface discussed in section 5.2.3, the W ishbone slave interface 

contains a number o f registers which can be used to setup the vector unit. These 

registers include a command register, a vector dimension register, a status register 

and 8 general purpose registers. The general purpose registers are used to store the 

addresses o f the vectors in memory for vector operations or the scalar value in scalar 

operations. The registers are 32 bits wide with a single register being used for 

address data and a pair of registers for double precision scalars. The state machine 

controls how the Vector Unit interprets these registers depending on the operation 

being carried out. Figure 5.10 shows that each input to the multiplier and adder can 

be connected to one of the slave registers or via a W ishbone interface to memory 

depending on the operation ( the “op” signal in Figure 5.10). If the input is a vector 

the address of the vector is available in one of the slave registers, otherwise the scalar 

value is stored in the slave registers. The state machine is responsible for setting the 

calculation up in the correct way depending on the operation requested via the 

command word. Table 5.1 shows the range of functions that the Vector Unit can
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compute, together with the corresponding C function name used by the MB to set up 

the calculation. Many of these functions are needed to compute the PageRank 

algorithm.
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Figure 5.10 Block diagram of Hardware Vector unit

To start the operation, the command word register in the W ishbone slave interface 

must be set after the other slave registers have been given values. The command 

word contains all the information the Vector Unit needs to start calculating the 

answer. The command word is 32 bits long. Each bit in the command word 

corresponds to some aspect o f the calculation and is used to control the hardware; it 

is formed as in Figure 5.11.
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irq mult-add rounding Op-Code o/p i/pl i/p2 i/p3

Bit(s) 31 30-28 27-16 15-12 11-8 7-4 3-0

Figure 5.11 Vector unit command word

If an interrupt is required when the unit has finished bit 31 is set. The IEEE

compliance and rounding mode for the adder and multiplier are set in bits 30, 29-28

respectively. There are four rounding modes to choose from: round to zero, round to 

infinity, round to negative infinity and round to nearest even. Their codes are 

00,01,10,11 respectively. One of the op-codes from Table 5.1 is written to bits 27-16 

of the command word. This controls which operation is being calculated. The 

remainder of the bits are used to signify which of the general purpose registers holds 

the address or the data for the output and input scalars and vectors. There is no need 

to specify if the input is a scalar or a vector as the state machine can infer it from the

requested operation. For example, to compute z=ax+y with an interrupt and IEEE

compliance and round to nearest even rounding mode, the command word is worked 

out as follows:

• Bit[31] =1 -  want interrupt

• Bit[30]=0 -  IEEE compliant

• Bit[29:28]=0x3 -  Round to nearest even

• Bits[27:16]=0x5 -  Operation ax-i-y

• Bits[15:12] = 0x8 -  Address for result in R3

• Bits[l 1:8] = 0x1 -  a is in RO and RO ext

• Bits[7:4] = 0x2 -  address for x is in R1

• Bits[3:0] = 0x4 -  address for y is in R2

• Complete command word is 0xB 0058124

Once the command is given the Vector Unit starts to compute the result. Firstly, if a 

vector is required for the calculation the W ishbone interface accesses the DDR. The 

address of the vector in memory is stored in one of the general purpose registers in 

the slave interface. For scalar operations the value needed is stored in the general 

purpose registers in the slave interface and so this is applied to the adder or multiplier 

input. The data is streamed through the adder and multiplier according to the
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operation being carried out. If the result is a scalar, such as in a dot product 

calculation, the result is stored in one of the general purpose registers. If the result is 

a vector it is streamed out to DDR as it is calculated and a pointer to the vector is 

stored in the general purpose register. Once the input vectors have finished streaming 

through the adder and multiplier, the Vector Unit will generate an interrupt to the 

MicroBlaze, if  it has been set to do so in the command word, and then it returns to its 

idle state.

5.4 SMVM Architecture 1 - SPAR
The SMVM operation performance is pivotal to the performance of the PageRank 

algorithm. In section 3.6 the SMVM operator was described and a discussion of 

storage formats was introduced. The SMVM operation can be column based (i.e. all 

NZE in a column are processed before moving on to another column) or row based 

(i.e. all NZE in a row are processed before moving on to a new row). In this work 

three architectures were implemented and tested - one of which is column based and 

the other two are block row based. The column based architecture, SPAR, is 

described here and the block row based architecture is discussed in section 5.5.

Taylor et al., first described the SPAR architecture in 1995 [17]. The SPAR 

architecture consists of a specialised storage format and a hardware unit optimised 

for SMVM. Taylor found that using specialised hardware together with a specially 

designed storage format could greatly improve the peak performance of SMVM. 

Taylor never built the SPAR architecture. Instead the results were obtained from an 

RTL simulation. The SPAR data format is outlined in Figure 5.12.
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Figure 5.12 SPAR storage format

The matrix is split up into two vectors, the K  vector and the R vector. The K  vector 

contains the NZE of the matrix sorted by column. The end of each column is denoted 

by a zero in the K  vector. The R vector stores the row address of the non-zero entries 

of the matrix. The entries in the R vector that correspond to the column updates 

(zeros) in the K  vectors give the address of the next column being calculated. Taylor 

embedded the column update information in the K and the R vectors. Other 

commonly used sparse matrix storage formats like CRS and CCS (see section 3.6.1) 

use three vectors. Using two vectors instead o f three is advantageous to a streaming 

SMVM architecture as it reduces the number of memory channels needed by the 

matrix.

Figure 5.13 shows a block diagram of the SPAR architecture which is designed to 

work with the sparse matrix representation just described. The SPAR unit as 

described by Taylor consists of a floating point adder and multiplier, a cache, 3 

vector fetch units (VFU) and zero detection logic (ZDL).
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Figure 5.13 SPAR architecture

The Vector Fetch units read in the K, R and X  vectors which contain the matrix NZE, 

the corresponding row address and the X  vector entry for the current column 

respectively. The NZE value is multiplied by the current X value. The result is then 

added to the corresponding row entry in the Y-cache as denoted by the R vector 

entry. There are two delay queues in the system. The first delay queue , Queue 1 in 

Figure 5.13, is used to co-ordinate the multiplier output with the Y-cache output.

This ensures that the product from the multiplier is added to the correct value from 

the Y-cache. The second queue delays the addresses on the write address input o f the
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Y-cache. This ensures the correct write address is available on the Y-cache write 

address line when the addition is complete. The ZDL checks the K  data stream for 

zeros which denote the end of a column. If a zero is found, the multiplier and adder 

are stalled and a new X  value corresponding to the column address in the R vector is 

fetched from memory. Column updates stall the system but once a new value o f X- 

vector has been read in, the system can immediately restart without further 

operations.

An 8 kB, direct mapped, write back cache is used in this implementation of SPAR. 

The SPAR cache is a two-cycle cache. The first cycle is used to check if the data 

needed is in the cache. The data is outputted on the second cycle if the data is in 

cache. If the data is not available in the cache, a Y-miss signal stalls the multiplier 

and K and R vector fetch units. The adder is flushed to ensure lines being used by 

numbers in the adder are not replaced. If the cache line replaced by a Y-cache miss is 

referenced by a number in the adder pipeline, two further Y cache misses would 

occur. The first additional Y-cache miss occurs when the number which was in the 

adder pipeline is written back to the cache. Since the cache line has been replaced a 

Y-cache miss must occur to fetch the correct (previous) line from memory. By this 

time, the new data is now in the adder pipeline and so causes a second similar Y- 

cache miss when the system attempts to write it to the Y-cache. Y-cache misses 

reduce the performance o f the system significantly. Every miss involves a block 

write to memory to write back the current cache line to memory and a block read to 

read in the new cache line. The delay caused by flushing the adder is minimal 

compared to the delay that would be caused by the two additional Y-cache misses. 

Thus the adder is flushed on every Y-cache miss.

The cache has an in-built flush signal which when set causes the entire contents of 

the cache to be written out to memory. This operation is used to flush the cache at the 

end of the SMVM operation. The SPAR’s slave register contains the number of 

NZEs in the matrix. Once the SPAR unit has processed this number of data elements 

it sets the flush signal to terminate the calculation.

Hazard detection logic was added to SPAR to avoid Read After W rite (RAW) 

hazards. RAW hazards occur when a Y value that is currently in the adder pipeline is 

inadvertently referenced again. Because the first operation is incomplete at this point, 

the value in the cache is not up to date when the second operation accesses it. The
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update already in the adder pipeline will be lost, thus making the final answer 

incorrect. Figure 5.14 shows how a RAW hazard could occur in a system with a two 

cycle adder. In step one address 1 is accessed and incremented. This same operation 

occurs again in step two. The current value for address 1 is still in the adder pipeline 

and has not yet been written back to the cache so this second increment instruction 

gets the old value for address 1 (4 in this example) instead of the new value for 

address 1 ( 5 in this example). The value from the first calculation is written back to 

the cache in step three and overwritten by the incorrect value in step four.

Cache

Adder
pipeline

STEP 1 

value
1 4

2 5

STEP 2 

value

1 4+1=5

2 5+1=6

1 4

2 6

STEP 3 

value

1 4+1=5

1 4+1=5

1 5

2 6

2 6+1=7

1 4+1*6

STEP 4 

value
1 S

2 6

- -

2 6+1=7

Figure 5.14 Example of a RAW hazard.

The hazard detection logic in SPAR checks for these RAW hazards. Upon finding a 

possible hazard, it issues a stall command to the input VFU and multipliers. Once the 

adder has flushed its pipeline, the detection unit clears the stall command and allows 

the SPAR unit to continue. In this way, the potential RAW hazard is successfully 

averted.

5.4.1 SPAR Modifications

Initial testing on the SPAR architecture showed that the SPAR as originally 

described by Taylor performed poorly when implemented on FPGA. These poor 

results were largely attributed to the overhead involved in reading and writing to 

SDRAM. A number of modifications were made to Taylor’s design to reduce the 

impact o f these overheads.

The first o f these changes was the inclusion of an X-buffer to reduce the number of 

memory reads associated with Column updates. The new system reads in 1024 X- 

vector values at a time. Column updates only need to access memory if all the values 

in the X-buffer have been used. This reduces the number of Column updates that 

access memory and thus reduces the time taken to do the SMVM calculation.

118



Design and Implementation

The second modification was implemented to reduce the number of Y-cache misses. 

In large matrices, where not all the Y values can fit in the cache, multiple Y values 

are mapped onto the same position in the cache. Initial testing of the SPAR showed 

that lines in the Y-cache were often replaced only to be read back in again moments 

later. Cache line replacements are doubly expensive in terms of cycles used as they 

require the old cache line to be written out before the new line can be read in. To 

reduce these cache misses a simple reordering scheme is introduced. The matrix is 

divided into cache size stripes as in Figure 5.15. The SPAR unit then processes these 

stripes. Since the stripes only contained enough rows to fill the cache, no cache 

misses occur. This scheme does increase the number of X-buffer misses, but since 

the X-buffer is a read only buffer there is no need to write the data out to memory 

before reading the new X values in. This scheme increased the performance of the 

SPAR architecture considerably.

Y-Cache 
Size

Y-Cache 
Size <

93  74  9S 96 07

Figure 5.15 SPAR strip reordering scheme to eliminate Y-cache misses

5.5 SMVM Architecture 2 - SCAR
The SPAR architecture is a column based architecture. All the NZEs from a column 

are processed before moving on to another column. This method gives maximum X  

usage since each column corresponds to a single X  vector entry. In large matrices 

where the y-vector cannot fit in cache there can be many K-cache misses. The V- 

cache misses have a large overhead because they are write-read memory cycles and 

so a great deal of time is wasted reading and writing data to the K-cache.
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In an attempt to reduce the time wasted performing K-cache misses, the second 

SMVM architecture implemented is a block-row based architecture. In row based 

architectures the NZEs are processed in rows instead of columns. This eliminates Y- 

cache misses since all NZE in a row affect the same Y  vector entry. This Y-vector 

locality is gained at the expense of increased X-buffer reads from memory. The X- 

buffer is read only and as such memory accesses have less overhead than the write- 

read cycles of the SPAR unit. The row based architecture is very susceptible to RAW 

hazards since the NZE in a row affect the same Y value. To avoid RAW hazards a 

block-row SMVM algorithm called SCAR was implemented.

Software Controlled Arbitrary Reordering (SCAR) is a block row SMVM 

architecture. The SCAR system uses its own matrix compression/reordering scheme 

in conjunction with a companion architecture. The reordering scheme used is 

designed to ensure that the hardware arithmetic units are running at maximum 

efficiency while avoiding RAW hazards [115]. In order to do this, the SCAR system 

tiles the matrix in a pre-processing stage as shown in Figure 5.16. These tiles are 

processed one at a time by the SCAR unit. Each tile is related to a fragment of the X  

and Y vectors. In Figure 5.16 each tile is colour coded and numbered to show which 

fragment of the X vector is associated with it. For example, tiles 1, 2 and 3 

correspond to the XJ, X2 and X3  fragments of the X vector respectively. Each row of 

tiles is associated with a fragment of the Y vector. Tiles 1, 2 and 3 all are associated 

with the Y1 fragment of the Y  vector. The hardware has local memory buffers to act 

as caches for these fragments of the X and Y vectors.
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Figure 5.16 NxM matrix divided into blocks for SCAR unit

Processing o f the tiles is done on a stripe by stripe, block by block basis. All the tiles 

in a stripe are processed before m oving to a new row  o f tiles, since all tiles in the 

sam e stripe are associated with the sam e fragm ent o f Y  vector. At the end o f a stripe 

the corresponding y-vector fragm ent is com plete and is w ritten to  m em ory. 

S im ultaneously the K-buffer, w hich is im plem ented as a dual port m em ory, is zeroed 

and proceeds to the next stripe o f m atrix tiles. In F igure 5.16 we can see that each tile 

in any given row is associated with d ifferent fragm ents o f  the X  vector. The 

associated fragm ent o f the X  vector is read from  m em ory and placed in the X-buffer 

at the beginning o f every tile. The X  and Y  vector fragm ents are now in the buffers, 

thus the m em ory channel is left free to stream  the m atrix data. Therefore a local copy

121



C hapter Five

of the matrix entries is not needed. The matrix stripes, as well as the tiles within 

them, can be processed in any order as long as the stripe is completed before the next 

stripe is started. Maximum Y  value reuse is achieved using this method.

The VFUs for the X  and Y  buffers share a single channel of memory. Since the Y- 

vector fragment is only written out to memory at the end of a stripe, the Y-vector has 

very low memory bandwidth requirements. Most of the traffic on the bus to the 

shared memory is due to fetching X-vector fragments. As discussed previously this is 

read-only data. The SCAR therefore does not utilise write-then-read memory 

operations like the SPAR does. Both the read and write operations have a much 

smaller overhead than the write-then-read operation used by the SPAR and, as such, 

the SCAR memory operations have a much smaller overhead and bandwidth 

requirement than that of the Y-cache misses in the SPAR architecture.

5.5.1 SCAR Data Structure

The SCAR system uses a data reordering scheme which was designed in conjunction 

with the SCAR hardware architecture. The scheme aims to maximise arithmetic unit 

utilisation which is a measure of efficency. The SCAR data structure only uses one 

vector to store all sparse matrix data. This differs from other sparse matrix storage 

schemes like the SPAR and CRS which use two and three vectors respectively to 

store the matrix. An entry in the SCAR stream is made up of three fields, a 2-bit 

command word, an index field and a payload. Two different SCAR stream entries are 

shown in Figure 5.17. The size of the SCAR word is dependent on precision, X- 

buffer size and Y-buffer size. In this implementation the SCAR data word was set to 

96 bits, 64 bits for double precision NZE, 2 bits for the command and 15 bits each 

for the X and Y address.

94 64

Command Index Payload

10 x_start x_end Row coordinate Column coordinate

Command Index Payload

01 row column Matrix Entry

Figure 5.17 SCAR data words A) block update B) matrix data point
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The first word in the SCAR data stream must be a block update. A block update 

command contains the absolute row and column coordinates of the top left hand 

entry of the block. The matrix blocks of the SCAR architecture are regular and 

dictated by the X and Y buffer size. However since sparse matrix block may not 

contain NZE in every column a small optimisation was made. The block update 

contains the relative addresses to the first and last X  entry to be accessed in the block 

in order to save reading X  values from memory for columns that are not needed, thus 

only X values between these two limits are read into the X-buffer when a new block 

is loaded.. This information is arranged as shown in Figure 5.17 A. If the word 

begins with the 01 command as in Figure 5.17 B, then it is a valid matrix NZ entry.

In that case, the payload would contain the NZE value and the index sub-word would 

contain the position of the entry in the block, relative to the top left hand comer of 

the block. This is also the address of the data in the X and Y  buffers. Figure 5.18 

shows how the mix of absolute and relative addressing can be used to access the 

NZE in the matrix.

Column coordinate,

Row coordinate

r

Matrix

_  _Co|w

Block

i
1
1
1 Row 
1

in \ ’
NZE

x_starl
X -^d

Figure 5.18 absolute and relative addressing as used in the SCAR data format. The column and 

row coordinates contained in the block update contain the absolute address of the matrix in the 

matrix and all other addresses are given relative to the block.
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If the command word is a NOP (i.e. is equal to 00), however, then the index and 

payload sub-words can be anything. The data would pass through the data path, but 

nothing will be added to the Y-buffer. The command word, therefore, is be used to 

decipher the index and payload. Table 5.2 is a summary of possible command words 

and what they mean.

Table 5.2 The 2-bit command sub-word

Value Description
00 No-Operation (used for padding)
01 A valid matrix entry
10 A block update
11 Not used

The non-zero elements in a SCAR block can be ordered using any method. They are 

usually ordered to maximise FPU utilisation. The only goal of the reordering is the 

prevention of RAW hazards. The initial method used to reorder the SCAR stream 

was a simple round robin reordering. In this method, a queue is created for each 

pipeline stage in the adder (e.g. if adder has a 3 stage pipeline, 3 queues are needed). 

Each row in the block is allocated to one of these queues. The queues are then 

padded with NOPs to make them all the same length. The SCAR stream is created by 

taking a value from the top of these queues in a round robin fashion. See Figure 5.19.

Queue 1

Queue 3

SCAR STREAM

Block
update 1

1 2 3 7
Queue 2

4 5 8 NOP

Matrix

 ̂ 1 0.0 0.0 0.0 2 3 ^

7 0.0 0.0 0.0 0.0 0.0

0.0 0.0 8 0.0 0.0 0.0

8 NOP

Figure 5.19 Simple SCAR reordering (using round robin system between the three queues)

RAW hazards are avoided since accesses to each row are always adder latency clock 

cycles apart. This reordering is easily done in software, which proved very efficient 

when working with Finite Element matrices. The very sparse Internet adjacency
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matrices resulted in large amounts of NOPs being added to the data stream. To 

increase the performance of the SCAR, a new reordering scheme was devised called 

opportunistic reordering.

Matrix

{ 1 0.0 0.0 0.0 2 3 ^

SCAR STREAM

Block
u p d a te

Figure 5.20 Opportunistic reordering in SCAR

Figure 5.20 shows a simple example of how opportunistic reordering works. In this 

reordering scheme, data is added to the SCAR stream opportunistically so that all 

data remains at minimum one adder latency away from the last reference to that row. 

This method loosens the constraint used in the simple reordering, where consecutive 

row entries must be exactly the adder latency apart. A better load balancing is 

thereby allowed for between all pipeline positions of the adder, reducing the number 

of NOPs. In the example in Figure 5.20, the 3 NOPs do not have to be inserted into 

the stream that would otherwise be needed with the simple reordering (Figure 5.19). 

The disadvantage of using this scheme is that it takes longer to implement than the 

simple reordering. The effect on performance of the two ordering schemes will be 

presented in the results chapter in Section 6.5.3.

5.5.2 SCAR Hardware

Figure 5.21 shows the high level view of the SCAR architecture [115]. Details o f the 

state machine, vector buffers and memory interfaces are removed for simplicity. The 

SCAR system is composed of 4 main components; the controlling state machine, the 

X-buffer, the Y-buffer and the arithmetic path. The controlling state machine
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coordinates the operations in hardware. It is controlled using embedded codes in the 

input stream encoding, see section 5.5.1. The Y-buffer is a dual port buffer that 

stores the fragment of the Y vector currently being calculated. The X-buffer is a 

cache for the X  vector. At the start of each new block, the X-buffer is filled with all 

the X  vector values that will be needed for that block.

The arithmetic data path consists of a multiplier and adder. In this implementation 

double precision floating point arithmetic units are used. Each matrix entry is 

multiplied by the appropriate X  vector value from the X-buffer and the result is 

added to the appropriate Y  value in the Y- buffer. Equation 15 shows the calculation 

being carried out on every matrix entry (Aij).

y'i = yi+AjjXj (15)

MAC

Arithmetic Path

MULT

ADD

Address
Delay
line

X-BUFFER

Wishbone Interface

Wishbone Interface

Decode

Y-BUFFER

Figure 5.21 Outline of SCAR architecture
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At the end of every row, the Y-buffer is flushed to main memory and zeroed, so that 

it can be used again for the next horizontal ribbon. The delay line is used to 

synchronise the reading and writing from the Y-buffer, if the multiplier and adder 

have a latency greater than one clock cycle.

The double precision floating point adders used in the SCAR have a latency o f 12 

cycles and so the possibility of a Read After W rite (RAW) hazard occurring with the 

Y vector entries exists. Similarly to the SPAR architecture, this hazard happens when 

a value from the Y vector is accessed before the previous operation on that y value 

has been returned from the adder pipeline. An incorrect value would then be added to 

the adder pipeline, causing an incorrect result. No hardware exists to detect such 

hazards in the SCAR architecture. Thus to avoid this hazard, the reordering software 

must ensure that no value is accessed until the previous operation on that value has 

been returned. This reordering can be accomplished with relative ease as described in 

section 5.5.1. This process inserts NOPs into the SCAR stream if no NZE is found 

that will not cause a RAW hazard. Unlike the SPAR architecture, the SCAR 

architecture never stalls in the middle of a block. Once started, a new matrix value or 

NOP is read on every clock cycle until the end of a block is reached. This simplifies 

the state machine at the expense of extra storage requirements, since the NOPS make 

the matrix stream longer (This will be discussed in the results chapter in Section 

6.5.3).

5.5.3 Dual SCAR architecture

In Table 2.3 the clock rate required to utilise the full memory bandwidth was 

presented for an FPGA architecture streaming data from memory. The floating-point 

double precision SCAR requires a 96 bit data word every clock cycle. The SCAR 

system would therefore need a clock of 175 MHz to completely use the memory 

bandwidth provided by a single DDR-266 (Memory used in the development board). 

In section 4.4.2 a number of floating point arithmetic units implemented on Virtex-II 

are presented in Table 4.3 and Table 4.4. None of the arithmetic units implemented 

on Virtex-II could achieve a 175 MHz clock rate. Therefore, increasing the clock rate 

to use the full memory bandwidth available was not possible. Instead parallelisation 

was used and thus a second implementation of the SCAR architecture was created 

with two arithmetic paths, see Figure 5.22.
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This system operates in much the same way as the single arithmetic path SCAR 

system. The Y-buffer is split in two with odd addresses stored in one of the buffers 

and even address stored in the other. The X-buffer is replicated to allow for multiple 

accesses simultaneously. The data is streamed in from memory as before. If the 

address is odd, it is sent to the arithmetic path connected to the Y-buffer full of odd 

address values and otherwise it is sent to the second arithmetic path.

This system can operate on two SCAR data words simultaneously in every clock 

cycle. This is twice the data used by the single SCAR unit. By using twice as much 

data the dual SCAR only needs to go at half the clock rate the single SCAR must 

operate at to fully utilise memory bandwidth. In the case of double precision 

floating-point arithmetic this means the dual SCAR unit must be clocked at 87.5 

MHz to utilise the entire memory bandwidth provided by the DDR 266. However, 

since there are now two adder pipelines there is a greater chance of RAW hazards 

occurring. Using this system effectively doubles the adder latency, thus more NOPs 

need to be added to the stream. The number of NOPs depends on the matrix structure 

and the number of NZE.
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Figure 5.22 Block diagram of Dual SCAR architecture

5.6 SMVM Architecture 3 -  PageRank SMVM
The third and final SMVM architecture presented is a special hardware architecture 

that was developed specifically for the PageRank algorithm as part of this project. It 

is based on the SCAR architecture (Section 5.5). However a number o f changes have 

been implemented to take full advantage of the unique nature of the PageRank link 

matrix. In Section 3.5.5 the PageRank link matrix was described. This matrix is 

always column normalised. This allows the SMVM to be removed from the 

calculation. It is replaced with a single dense vector operation and a num ber of 

additions controlled by a pattern matrix. In this section the equivalency o f these
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operations to SMVM is discussed and the new hardware needed to solve such a 

system is presented.

5.6.1 Removing SMVM from PageRank

SMVM of the column normalised PageRank adjacency matrix and the current 

estimation o f the PageRank vector is a central operation in the solving of the 

PageRank vector using the power method (see Section 3.5.5). Equation 16 states the 

mathematical expression for the power method which is an SMVM operation. It 

shows that the new value of PageRank for a page i (RK(i)) is the sum of NZE in row i 

(Aij) multiplied by the corresponding value of PageRank from the previous iteration 

Figure 5.23 shows a simple example of SMVM in the PageRank algorithm.

Rk = HRk_x 

y=i

The H matrix is a sparse matrix and so is stored using a compression scheme. In the 

SCAR system the NZE of the matrix are stored in a 96 bit word as discussed in 

section 5.5. This 96 bit word contains the 64 bit NZ value and the other 32 bits are 

used to store the NZE position in the matrix and the control word. Therefore, the 

matrix requires NNZ*96  bits o f storage space where, NN Z  is the number of non-zeros 

in the matrix.

Rk -  HRk_Y
"3/8" "0.0 1 1/2 0.0"ri/4"
2/8 1/2 0.0 0.0 1/2 1/4
2/8 0 0.0 1/2 1/2 1/4

vl/2 0.0 0.0 0.0, I 1/ 4J
Figure 5.23 Example of PageRank SMVM

The example in Figure 5.23 would therefore need 7 x 96 bit words to represent it. 

However, since the PageRank adjacency matrix is column stochastic, all values in a 

column are equal. Therefore we can represent H  with a vector Cv of the column
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values and a pattern matrix o f H  called P (i.e. all the NZE in the matrix are replaced 

with ones).

Cv = (l/2  1 1/2 1/2)
/ a  1 1

p =

Figure 5.24 The new column value vector and pattern matrix

This can be expressed mathematically by equation 17 and equation 18. These two 

equations use the same convention as the PageRank algorithm, IP,I is the number of 

outbound links on page i.

0 1 1 0

1 0 0 1

0 0 1 1

1 0 0 0

0
Cv{i ) = \ 1

P,

i f  1/7,1 = 0

i f  \pj\ > 0 (1 7 )

Av fo r
Cv{ j )  j  = l..n

(1 8 )

This system of storing the matrix reduces the number o f bits needed to store the 

matrix by a factor o f 3. The matrix P no longer needs to store NZE values since all 

NZEs are one and so every NZE in the matrix P can be represented just using its 

position in the matrix which using the SCAR compression scheme takes just 32 bits. 

An additional vector Cv is created which is nx 64 bits. However since lA  matrices 

have an average of 10 NZE in every column the Cv vector and P matrix combined 

require less storage space than the H  matrix.

The mathematical equivalent of an SMVM of the H  matrix and the R vector can be 

calculated i f  an element by element vector multiplication o f the Cv and the previous 

R vector is calculated. The result o f this calculation is used in the SMVM 

multiplication with the pattern matrix to give the next estimation for PR, see Figure 

5.25.
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1/8. V 1 0.0 0.0 0.0, l i / s j
Figure 5.25 Replacing SMVM in PageRank

The results of this modified algorithm are the same as that produced originally in 

Figure 5.23. This can be confirmed mathematically by:

R ^ = P T

f!tO) = 'ZPyTU)
7=1

(1 9 )

Substituting for T into equation 19, we get:

7=1

However rewriting equation 18 we can express Ay in terms o f Cv and /?*./.

Aj  =  PijCvU)

7=1

(20)

(21 )

Equation 21 is the same as Equation 16 and so the two methods are equivalent.The 

SMVM used in Figure 5.25 between the P pattern matrix and the vector T  does not 

have to be a SMVM. All the values of the P  matrix are 1 and so the multiplier can be 

removed from the SMVM unit and thus the SMVM unit becomes a pattern adder.
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The inputs o f the adder are dictated by the pattern m atrix. T here is no longer a 

m ultip lication needed in the unit and so it is no longer an SM V M  unit.

5.6.2 PageRank Hardware

T he SM V M  operation is broken up into tw o operations, an elem ent by elem ent 

vector operation and a sparse pattern addition as described above. T he existing 

V ector Unit is capable o f calculating elem ent by elem ent vector m ultip lications so no 

new hardw are is needed to com pute that operation (see T able 5.1). The SM V M  unit 

could  be used to perform  the pattern addition. The pattern m atrix could be m ultiplied 

by 1 and then added to  their respective Y value. H ow ever, this w ould not take 

advantage o f  the m em ory bandw idth that was freed up by rem oving the need to 

stream  N ZE values. T he pattern adder can work ju s t using the addresses o f the N ZE 

since all the entries are one. This allow s for com pression in the data word. In the 

SC A R  data stream  a N ZE data w ord contained a 64 bit N ZE value and the rem aining 

32 bits contain the address and control data. This 64 bit N ZE value is redundant and 

can be replaced w ith m ore NZE address inform ation. This effectively  increases 

bandw idth since m ultiple NZE are being stream ed in on every clock cycle. In this 

solution 2 o ther N ZE addresses are encoded in the data w ord see F igure 5.26.

Command NZE 1 ADDR NZE 2 ADDR NZE 3 ADDR

Figure 5.26 Pattern adder data word

T he reordering used to create the pattern adder data w ord is very like the arbitrary 

reordering used in the SCA R system . Like the SCA R  system , the m atrix is d ivided 

up into blocks. Each o f these blocks is then encoded into a SCA R  stream . H ow ever, 

the top three N ZE from  the next available row  are taken, see F igure 5.27.
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PATTERN ADDER STREAM

Block
update 1.2,3 4,5,nop 9,10,nop 11,12,13

Figure 5.27 Encoding the Pattern adder stream

The three NZE addresses in the pattern adder data word are from the same row in the 

matrix and thus affect the same Y-buffer value. 3 reads to the Y-buffer would be 

required if the NZE in the pattern adder data word came from different rows. Taking 

them from the same row keeps the clock rate o f the Y-buffer at a reasonable rate and 

ensures that the hardware and reordering remain relatively simple. A special NOP 

command can be used if a row contains less than three values. To use this new 

encoding system specialised hardware was developed. Figure 5.28 shows a block 

diagram o f the system.
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Figure 5.28 Block diagram of Pattern adder

The hardware for the pattern adder is relatively simple. It operates much like the 

SCAR hardware described in section 5.5. The pattern adder data is streamed from 

memory through the W ishbone interface. The decode unit breaks the data word up 

into a Y-buffer address and up to 3 X-buffer addresses. The Y-buffer contains the 

partial y-sums for all the rows in the block. The X-buffer contains a fragment o f the 

vector obtained from the element by element multiplication of the previous 

PageRank vector and the matrix column value vector. The X-buffer is queried for 

three values. One of them is summed with the value returned from the Y-buffer. The 

other two X-buffer values are summed together. The results of the two additions are 

then added together with a third adder and the result is written back to the Y-buffer. 

Since all the NZE values come from the same row of the matrix they all affect the 

same Y value and thus the reason they can all be summed together. W hen a block is 

complete the X-buffer fetches the next section of the element by element 

multiplication result. If the block was the last in a matrix row then the data in the Y-
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buffer is written out to memory. That section of the Y value is complete. The Y- 

buffer is then zeroed for the next set of blocks.

The X-buffer in this system must return 3 values every clock cycle. In order to 

achieve this using the FPG A’s on board BRAM the X-buffer is internally duplicated 

as in Figure 5.29. The X-buffer contains 2 dual port rams. The read only port address 

is connected to the NZE address coming on the data word. This provides two of the 

three X values needed. The read/write port is used to populate the dual port ram 

when a block update command is received. However, the Read/write port on one of 

the rams is also used to read the third X  value when the system needs three X values. 

The R/W signal is set to write if the unit is performing a block update and the RAV 

signal is set to read if the input data is a NZE data word. A MUX unit decides if the 

read or write address is needed. The read address comes from the decoded data 

packet and the write address comes from the block update state machine.

Write address NZE 3 ADDRNZE 2 ADDRNZE 1 ADDR
Data in

Dual port ram Dual port ram

X-Buffer

NZE 3 DATA NZE 3 DATA NZE 3 DATA

Figure 5.29 Internal Stucture of X-buffer

This hardware architecture contains an adder tree. If a value from the Y-buffer is in 

the adder pipelines it cannot be accessed again, as this would cause a RAW hazard. 

Long adder latencies increase the likelihood of these errors occurring. The pattern 

adder must use a shorter latency adder than the SCAR unit because data has to be 

processed by two adders before being written back to the Y-buffer. Details of the 

adders used are shown in chapter 6.
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5.6.3 Dual path solution

Like the SCAR architecture, the pattern adder hardware can be built with a dual 

arithmetic path. Doing this effectively halves the clock rate at which the unit must be 

clocked at to use the memory bandwidth. However, this effectively doubles the 

adder-tree latency, increasing the number of potential RAW  hazards in the stream 

and thus increasing the NOPs in the stream. A block diagram o f the dual path pattern 

adder is shown in Figure 5.30. The Y-buffer is split into two parts. The even 

addresses are processed by one arithmetic path and the other arithmetic path 

processes the odd addresses. The X-buffer must be duplicated to allow access from 

both arithmetic paths. Both arithmetic paths work on the same block o f data but 

spread the work between the two adder trees. This parallelisation in the calculation 

effectively doubles the clock rate o f the system.

Arithmetic Path

ADDADD ADDADD

ADD ADD

X-BUFFER X-BUFFER

Decode

Wishbone Interface

Wishbone Interface

Y-BUFFER Y-BUFFER

Figure 5.30 Dual Path Pattern adder
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The W ishbone bus can deliver two data words per clock cycle. The decoder then 

splits the calculation over the two arithmetic paths. Since one arithmetic path is used 

for even buffer address and the other arithmetic path is used for odd addresses there 

is no contention between the two Y-buffers. Both Y-buffers operate independent of 

each other. There are two X-buffers in the system but they are identical. Two X- 

buffers are needed to allow 6 simultaneous queries to the X-buffer. This system can 

process 6 matrix NZE per clock cycle. At the end of a row of blocks the Y-Buffer is 

flushed. Since odd address Y values are in one Y-buffer and even address Y values 

are in the other Y-buffer the Y buffers must be flushed simultaneously, interweaving 

every second value to ensure a correct Y-vector. In practice this is easy since the 

W ishbone bus used for this calculation is 128 bits wide, a single value from each Y- 

buffer can be streamed to memory together.

5.7 Bus Contention on SMVM architectures
Bus contention may arise when two or more units are connected to the same bus and 

must share the bus resources. This can leave units waiting to use the bus if another 

unit is already using the bus. Thus, bus contention reduces the performance. The 

FPGA system described in this chapter contains four W ishbone buses. Three o f these 

buses are used for matrix data in the SMVM units and are not shared. The fourth bus 

is a shared vector bus and so is liable to bus contention. During the SMVM 

calculation using a single SM VM  unit there is only one situation that could lead to 

bus contention. In the single SMVM system the X and Y vectors are stored in the 

memory connected to the shared vector bus. This means that the X and Y vectors in 

main memory cannot be accessed simultaneously. In the SPAR unit this is an issue 

any time the Y-cache and X-cache miss at the same time. In the SCAR and 

PageRank system this only becomes a problem at the end of every stripe o f blocks 

when the Y-vector is written back to main memory. Ideally the X vector for the next 

stripe could be read in while the Y-buffer is flushing. This does reduce performance 

but not to a great extent and definitely does not justify the inclusion of another 

memory channel.

The real problem with bus contention becomes evident when m ultiple SMVM units 

are connected to the same shared vector bus. All the SMVM units must now contend
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for the bus every time a new X-vector is to be read in or Y-vector needs to be written 

out. If there are sufficient NZE in each block of the SCAR and PageRank systems 

this should not be a problem. In previous tests on FEA, the shared vector bus showed 

very little contention issues when operating with 3 SCAR units. However, bus 

contention on the shared vector bus is a limiting factor on the num ber o f SMVM 

units that can be added to FPGA architecture. Internet adjacency m atrices are sparser 

than FE matrices and so bus contention may well be an issue with m ultiple SMVM 

units calculating the PageRank algorithm.

5.8 Software
The software for the FPGA base PageRank system can be divided up into three 

levels, software running on the host PC, the software kernels available on the FPGA 

and the software running on the M icroblaze processor. Each level o f software plays 

its own vital part in the PageRank calculation on FPGA

5.8.1 Software on Host PC

The software running on the host PC is responsible for preparing the data and 

transferring it to the memory banks on the FPGA daughter board. It is mostly coded 

in C, in the form of mex files running in Matlab. The host PC software takes the raw 

adjacency matrix and encodes it into the required format (SPAR or SCAR) format. 

The matrix is written to the banks of DDR memory on the developm ent board via the 

PCI bus. The initial estimate of the PageRank vector is also written down to the card 

along with the dangling node vector and some control data. Once the data is on the 

card the PC host software interrupts the M icroblaze and starts the calculation. The 

M icroblaze issues an interrupt to the host PC when it has finished the calculation.

The software then downloads the result to the host PC. The result can then be used or 

checked for correctness.

5.8.2 Hardware Communication kernels

To facilitate easy reprogramming of the M icroblaze a number of low level kernels 

were written. A hardware communication kernel was written for every hardware unit
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available in the system. This code allows a user to use high level C function calls to 

control hardware units. The user can simply call one of these kernels giving it the 

addresses o f the vectors and matrices being operated upon and the kernel will set up 

the hardware for the desired calculation. The kernel then starts the hardware. When 

the hardware calculation has completed the hardware unit interrupts the MB. The 

kernel then reads the result from the hardware unit and returns it to the user in the 

form of a variable or address. This allows users to use the system with little or no 

knowledge of the underlying architecture. Table 5.3 shows the range of kernels 

available to a user in current system.

Table 5.3 Table of Hardware communication kernel functions

name function name function
smvm sparse matrix by 

vector
eletn vector element by 

element multiply
inemcpy memory copy sadd scalar add

smult scalar multiply ssub scalar subtract
vscale Vector scale dot dot product
axpy vector scale and 

vector addition
axmy vector scale and 

vector subtraction
wxpy vector element 

multiply and vector 
addition

wxmy vector element 
m ultiply and vector 

subtraction
norm norm squared zero zero memory

5.8.3 Programming the MicroBlaze

The MB processor is used to control the whole system. To implement a particular 

problem on the system a simple C program needs to be written to run on the 

Microblaze. This C program will set up all the hardware to carry out the operations 

needed to calculate the algorithm result. The hardware comm unication kernels make 

programming the M icroblaze easy. To calculate the dot product of two vectors a user 

only needs to call the dot product kernel and pass it the two vectors to operate upon. 

The result will be returned to the M icroblaze and stored in one of its local registers 

for use later on in the algorithm. The C code for the MB running the PageRank 

algorithm is shown in Figure 5.31. The kernels make the code easy to understand and 

edit. Any algorithm that uses the functions in Table 5.3 can be program m ed quickly 

and easily on the M icroblaze.
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Figure 5.31 The C code for the PageRank algorithm run on the MicroBIaze

Once the code has been developed it can be compiled and downloaded into the 

Microblaze program memory via the JTAG cable. This means that no rebuilding of 

the system is required to change the algorithm running on it.

5.9 Summary
In this section, hardware design and implementation has been discussed. The 

PageRank solver system was presented. The system comprising of four Wishbone 

buses that connect via four memory controllers to four banks of DDR. A number of 

computation units are also connected to the Wishbone buses. A very versatile Vector 

Unit allows many different vector and scalar operations to be computed on the board. 

In addition to the Vector Unit, three SMVM units are present in the system.

The PageRank calculation is dominated by a large SMVM calculation. Three 

different SMVM architectures were presented. The SPAR architecture was designed 

by Taylor and is a column based architecture. It has been slightly modified to 

maximise its performance on large matrices being streamed from slow DDR 

memory. This was done by splitting the matrix up into stripes that fit in the Y-cache 

and computing the solution for the partial matrix before moving on, thus avoiding 

lengthy Y-cache stalls. The SCAR architecture is a row based architecture. The 

matrix is split up into blocks. The X  vector associated with the block is read into the 

X-buffer and the Y buffer is set to zero. The SCAR unit processes the row and thus 

computes the Y  values for the SMVM. At the end of every row the Y  value is written
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out to memory. The SCAR system only uses X and Y buffers and does not need 

complicated caches like the SPAR architecture. The NZE are reordered to ensure no 

RAW hazards occur. If there is not enough NZE entries to avoid RAW hazards the 

stream is padded with NOPS. The SCAR units therefore do not need to stall, which 

was an issue that caused problems in the SPAR architecture. The final SMVM 

architecture takes advantage o f the unique attributes o f the PageRank adjacency 

matrix. Since all values in a column are equal, the matrix can be replaced with a 

pattern matrix and dense vector of column values. The PageRank algorithm can then 

be reordered to remove the SMVM calculation altogether. It is replaced with a dense 

vector operation and a series o f additions controlled by the pattern matrix. This leads 

to a decrease in storage requirements and an increase in memory bandwidth. The 

pattern addition is done by a tree of adders. This scheme has an advantage over 

SCAR and SPAR because the NZE no longer need to be streamed into the 

architecture which effectively triples the memory bandwidth.

The system is controlled by a M icroBlaze processor. A number o f software kernels 

have been specially designed to make programming algorithms on the M icroblaze 

easy and efficient. The system can be programmed using a simple C program 

running on the M icroBlaze using a set o f hardware comm unication libraries. This 

allows for great flexibility of the system. It can be program med to calculate many 

different matrix calculations by adding a software function to the M icroblaze 

software library.
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Chapter Six 

6 Results

6.1 Introduction
This chapter presents the results o f benchmarks carried out on the architecture for 

computing the PageRank algorithm as described in Section 5. These benchmarks are 

compared against the performance of a state o f the art GPP.

The results presented in this chapter are divided into four main groups. These groups 

are floating point performance on Virtex-II, fixed point performance on Virtex-II, 

floating point performance on Virtex-5 and fixed point performance on Virtex-5. The 

results of all benchmarks for Virtex-II systems are fully implemented designs 

running on the Virtex-II XCV6000 FPGA. However, as discussed earlier the Virtex- 

5 results are extrapolated from the Virtex-II results and the post place and route clock 

information for the system targeted at the Virtex-5 155LX FPGA. The performance 

is measured in Operations per Second (OPS) for fixed point implementations and 

Floating Point Operations per Second (FLOPS) for floating point designs. The OPS 

or FLOPS are calculated by dividing the number o f arithmetic operations carried out 

by the execution time; see equation 22.

number of arithmetic operations
( F L )O P S  = ------------------------ -̂-------------------------  (22)

time

The host PC reads the system time immediately before and just after the FPGA 

calculates the PageRank vector. The elapsed time is the execution time o f the 

PageRank algorithm and is used to work out the (FL)OPS. The number o f arithmetic 

operations carried out is calculated from an analysis o f the PageRank algorithm. The 

PageRank algorithm requires one SMVM, five vector operations and two scalar
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operations per iteration. The vector operations all require 2*N  operations, except for 

the vector-scale operation which only requires N  operations. The SMVM requires 

2*NNZ  operations. The total number o f operations to calculate the PageRank vector 

is given by equation (23).

operations =  {2N N Z  +  9 N  +  2) * iterations  (2 3 )

The benchmarks were carried out using actual lA matrices. These matrices are 

presented in the next section.

It is hoped that these results and comparisons with a state of the art GPP will provide 

insight into the viability of using FPGAs to tackle a full scale Internet ranking 

problem.

6.2 Benchmark Matrices
The matrices used to benchmark the GPP and the FPGA based hardware are real lA 

matrices. They were created from web crawls carried out for the W ebBase and 

W ebGraph projects [116, 117]. These crawls contained as many as 170 m illion links. 

Matrices of this size would not fit in the SDRAM on the development boards and so 

for this reason, only subsections of the crawls were used. The FPGA hardware itself 

does not limit the size of the matrix other than that it must fit in the FPGA board’s 

memory.

The Alpha Data development platform used in these experiments was populated 

with four 256MB DDR SDRAM. Each SDRAM  module could hold up to 22 million 

96-bit words (the size needed to represent a NZE in SCAR). To increase the matrix 

size further, the memory could be replaced with larger SDRAM  modules. The actual 

test matrices used in the benchmarks are outlined in Table 6.1 which shows clearly 

that none of the matrices will fill the SDRAM. The matrices were intentionally made 

smaller than necessary in order to allow for NOPs to be added to the stream, as well 

as to leave space for the other vectors needed by the PageRank algorithm to be 

stored. The lA matrices used have an average o f 14 links per node. Langville states 

that the average node on the Internet contains 10 links [41]. Since the benchmark 

matrices link count is o f this order, the test matrices should correctly represent the 

average lA matrix.
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Table 6.1 Details of Benchmark matrices

Num. Name Nodes No. of Links Source
1 Arabic-2005 500000 9877485 WebGraph
2 cnr-2000 325557 3216152 WebGraph
3 eu-2005 500000 11615380 WebGraph
4 in-2004 500000 5422294 WebGraph
5 Indochina-2004 500000 8147699 WebGraph
6 it-2004 500000 9387335 WebGraph
7 sk-2005 400000 13391888 WebGraph
8 uk-2002 500000 6998368 WebGraph
9 uk-2005 500000 11192060 WebGraph
10 web-mat-1.5M 1500000 12392081 WebBase
11 web-mat-IM 1000000 8686242 WebBase
12 web-Stanford 281903 2312497 WebBase
13 webbase-2001 500000 4214705 WebGraph

In a number of the tests run as part of this work, the results of the lA matrices are 

compared against results achieved by FE matrices. The details of the r a  matrices 

used are in Appendix One. A graphical representation of the lA matrices in Table 6.1 

is also presented for reference.

Table 6.2 outlines the similarity and differences of FE matrices and lA matrices. The 

major difference between the two matrices is scale. lA matrices are over a thousand 

times bigger than FE matrices. The size or sparseness of the lA matrices should not 

in itself have a significantly negative effect on the performance of SMVM. The lA 

matrices are only loosely banded, however, which will reduce performance due to 

the lack of locality of reference. This poor locality of reference will, thus, cause 

increased cache misses in the GPP. Furthermore, it will also affect custom hardware 

performance, as it will increase the number of blocks with NZEs and thus reduce 

performance. This loose banding can be seen in the matrix diagrams in Table 6.2. 

The FE matrix consists of a single tight band along the diagonal of the matrix while 

the Internet adjacency matrix has many NZE away from the diagonal. The lA matrix 

is still somewhat banded around the diagonal, which is due to the URL based 

reordering scheme used to order the matrix (see section 4.2.2).
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Table 6.2 Finite Element and Internet Adjacency matrices compared

Finite Element Matrix. Internet Adjacency matrix
» 10*
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ID
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* 10*

Very Sparse (0.02 -  1.1%) Very Sparse (< 0.01%)
Often Symmetric Never Symmetric
Millions of rows Billions of rows
-72 NZE/columns 4-14 NZE / column

Not tightly bandedUsually tightly banded

6.3 General Purpose Processor results
Obtaining an accurate performance measurement of state-of-the-art technology is 

crucial when testing new hardware’s viability at performing a given task. Currently, 

the 3GHz Intel Xeon (Woodcrest) processor is a top-of-the-range General-Purpose 

Processor (GPP) and so is a good benchmark against which to compare any new 

computational hardware. The Woodcrest is a core-two processor, meaning it has two 

processing cores internally as shown earlier in Figure 2.7. The Woodcrest processor 

is capable of computing four floating-point operations per clock cycle [ 118]. At 3 

GHz, the peak performance reached is 12 GFLOPs. However, this level of 

performance is only sustainable under certain circumstances (e.g. high level of data 

reuse from LI cache). This level of performance is not achievable for the PageRank 

algorithm because of the size of the matrix and vector. The PageRank calculation is 

too big to fit in cache and so requests to memory via the Front Side Bus (FSB) must 

be continuously made. The calculation is therefore limited by the FSB speed. The 

Woodcrest FSB has a theoretical peak memory bandwidth of 10.6 GB/s. If every 

NZE is represented by 96 bits (12 bytes) and requests to memory for X and Y values
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are assumed to be relatively small, the num ber of NZE transferred across the FSB per 

second is given by (24).

NZE/s = = %%mWords /  5 (2 4 )
NZE size \2 B

Since two floating point operations are carried out per NZE, the maximum 

performance achievable by the W oodcrest is about 1.76GFLOPs. In reality, the 

W oodcrest can only achieve about half o f this performance, due to X and Y vector 

fetches and memory controller cycles. Figure 6 .1 shows the performance achieved by 

the GPP for the lA matrices. These tests were done using multi-threaded C code 

based on the benchmark code used by Sweeney [65] and modified for PageRank.

The code was compiled using the Intel compiler. Two versions of the SM VM  code 

were implemented one was a column major SMVM routine and the other was a row 

major SM VM  routine. The highest performance value from these two tests is quoted 

below. W illiams et al. [37] attempted to optimise SMVM routines on the W oodcrest. 

One of his benchmarking matrices, matrix 13 was also used in this work The results 

achieved in this work for matrix 13 are the same as the results obtained by W illiams 

et al [37], Therefore W illiam s’ results act as an independent verification as to the 

quality and accuracy o f the benchmarking results presented in this thesis.

-- 25%

- ■  20 %

-■ 15%

- •  10%

-■ 5%

10 11 12 13

13 GHz Xeon W oodcrest A %  P eak  memory bandwidth

Figure 6.1 General Purpose Processor Benchmark results

The GPP achieves approximately 400 M FLOPs for all matrices except number 12 for 

which it only achieves 150 MFLOPs. Matrix number 12 is the lA matrix retrieved
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from  a crawl o f the S tanford  dom ain in the W ebB ase project [ 116].This m atrix is 

very sparse w ith only 4 links per page, w hich is not standard for an lA m atrix. The 

Stanford m atrix does not appear to be reordered like all the o ther m atrices used. The 

craw ler usually reorders m atrices based on their URLS as they are produced to 

reduce com putation tim e [75]. The S tanford craw ler does not appear, how ever, to 

have reordered the nodes o f the m atrix to increase perform ance.

O verall, the W oodcrest achieves betw een 3% and 4 %  o f  its theoretical com putational 

peak due to m em ory bottlenecks and lim ited parallelisation; see Figure 6.2. The 

W oodcrest relies on heavy reuse o f its cache to achieve peak perform ance. H ow ever, 

lA  m atrices have no data reuse and so the W oodcrest is forced to fetch new data 

from  m em ory repeatedly. S ince the W oodcrest only has one m em ory channel for 

both processors to share (see 2.4.1), the speed o f the FSB becom es critical to  the 

perform ance o f  the system . Even w hen the lim iting FSB is taken into account, the 

W oodcrest only  achieves 25%  o f  its peak perform ance across the FSB. The results 

achieved from  the G PP show  that even the high perform ance cache structure is o f  

little use w ith the PageR ank algorithm , due to its lack o f data reuse. A nother 

approach needs to be taken. The FPG A  w ith its large num ber o f  I/O  pins gives the 

opportunity  to  increase m em ory bandw idth  by parallelisation and thus to im prove the 

perform ance o f  the PageR ank ranking algorithm .
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Figure 6.2 GPP % Peak Computational Performance.
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6.4 Floating Point PageRank Performance on Virtex-ll
The first of the FPGA architecture results to be presented are the floating point 

PageRank performance benchmarks on a Xilinx Virtex-II XCV6000 FPGA. The 

system described in chapter 5 was built and implemented on this device. The system 

was implemented with the three different SMVM architectures discussed in sections 

5.4, 5.5 and 5.6. The results of these benchmarks are presented here. All architectures 

were implemented with double precision floating point multipliers and adders. The 

Virtex-II FPGA supports DDR type commodity memory. The memory used in these 

tests is DDR-266. Each bank of DDR-266 has a maximum memory bandwidth of 

2128 MB/s, as discussed in section 2.4. The peak performance per memory channel 

is 355 double precision M FLOPs assuming that a NZE can be represented by a 96 bit 

word and that to calculate a SMVM each NZE undergoes two floating-point 

operations. The Virtex-II systems have three memory channels which can be used for 

streaming the matrix and a fourth channel which is shared between the SMVM units 

to access the X and Y vectors. The system thus has a peak overall SMVM 

performance o f 1.065 GFLOPS, if memory bandwidth is fully used. This maximum 

performance is not achievable due to the same memory refresh cycles and memory 

latency issues that affect the GPP performance. Bus contention on the shared X/Y 

vector bus is another issue which will be discussed later in section 6.5.1.

The computational bandwidth of the hardware does not always match the bandwidth 

available from memory. The overall system performance is limited by whichever of 

the computational or the memory bandwidth is the smaller. A number of factors 

affect the computational bandwidth for the PageRank algorithm. These factors are 

the number of vector operations (NV_Ops), the number of sparse matrix 

computations (NM_Ops), the peak performance o f the SMVM unit ipJSMVM),  

number of SMVM units (w) and the peak performance o f the Vector Unit ipV). The 

computational bandwidth is given by equation (25).

^ N M _O ps, V NV_Ops , , , ,
Computation BW = -------------- ( p _ S M V M  *m)-\--------------- i p V)  (25)

T otal Ops T otal Ops

Equation (25) will be used throughout the chapter to calculate the peak achievable

performance o f the architectures. The three SMVM architectures were implemented

and tested on Virtex-II FPGA running the PageRank algorithm. The results of these
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tests are presented in the next few sections. This discussion starts with the SPAR 

architecture in section 6.4.1. A single and dual path version o f the SCAR architecture 

is discussed in 6.4.2 and the specialised PageRank architecture is presented in 6.4.3. 

This section concludes with a comparison of the three architectures.

6.4.1 SMVM Architecture 1 -  SPAR

The SPAR architecture is the first of the SMVM architectures to be presented. The 

SPAR architecture uses a 96 bit word to represent each NZE, as 64 bits contain the 

NZE value and the other 32 bits contain the NZE row address. A system containing 

three SPARs was implemented on the Virtex-II FPGA. The FPGA utilisation 

information is displayed in Table 6.3. The system has a clock speed of lOOMHz with 

a 7 cycle double precision floating point adder. The system utilises 84% of the 

available slices.

Table 6.3 FPGA utilisation for floating point SPAR on Virtex-11

Logic name. Utilisation (Available) % used
Slice Flip-Flops 32470 (67584) 48%

4 input LUTs 42873 (67584) 63%
Multipliers 39(144) 27%

Block RAM 103 (144) 71%
Gclk 8 (16) 50%

Occupied slices 28389 (33392) 84%

Each SPAR unit completes an addition and multiplication on every clock cycle, and 

so at lOOMHz, each SPAR unit has a maximum performance o f 200 MFLOPs. The 

system contains three SPAR units and so has a peak SMVM performance of 600 

MFLOPs. The achievable peak performance o f the PageRank algorithm running on 

this system was calculated using equation (25). It was found to be on average 200 

MFLOPs and 500 M FLOPs for the systems with one and three SPARs respectively. 

The three SPAR system does not triple the computational bandwidth of the 

PageRank algorithm since the SMVM operator is only part o f the calculation.

A large gap exists between the computational BW and the memory BW. The 

memory system can support up to 1.06 GFLOPs. The gap in BW is caused by the 

limited clock rate of the SPAR implementation, which can only be clocked at 

lOOMHz. In large systems the inter-connects between logic cells get longer and thus
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the clock rate decreases. The critical path in this design lay in the adder pipeline in 

the SPAR unit. A slightly higher clock rate could possibly be achieved if more 

floorplanning was implemented on the design or if a higher speed grade FPGA was 

used. In section 2.4.2 it was shown that an architecture using a 12B word every clock 

cycle would necessitate a clock rate of 175 MHz in order to fully utilise the memory 

bandwidth available from the DDR-266 SDRAM. The results achieved by the system 

are much lower than even the computational peak and are shown in Figure 6.3 

together with GPP result for comparisons.
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Figure 6.3 SPAR system Benchmark results Vs. GPP results. Primary axis: Performance in 
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SPAR and triangles for three SPAR system).

A single SPAR unit achieved an average o f 70 M FLOPs when computing the 

PageRank vector on the test matrices. This result represents an average of about 35% 

adder utilisation, which is much better than the 3-4% computation BW utilisation 

achieved by the GPP. However, since the GPP clock rate is 30 times higher than the 

FPGA clock rate, it easily out-performs the FPGA architecture. The adder utilisation 

of the SPAR is 35%. Thus, the adder is unused 65% of the time, which can be 

contributed to RAW hazards, see Section 6.5.3.

The SPAR MAC unit is stalled for almost 50% of the calculation duration due to 

RAW hazards. RAW hazards arise when a number is requested from the cache that is 

currently being updated in the adder pipeline. The cache must wait for the adder to 

return the new value before servicing the cache request. Many clock cycles are
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wasted waiting for the updated value to be written back to cache. The SPAR 

architecture is a column-based architecture, which means that it services NZEs one 

column at a time. No RAW hazards occur between NZEs in any given column. 

However, the short column lengths of lA matrices mean that there are not enough 

NZEs to flush the adder between successive columns and thus stalls due to RAW 

hazards are unavoidable in the SPAR architecture when using lA matrices.

The three-SPAR system achieved an average of 110 MFLOPs. Three SPAR units did 

not increase performance by three times the performance achieved by one SPAR unit 

due to RAW hazards prevention in the Y-cache and bus contention on the shared 

vector bus. This bus contention once again stems from the sparseness of lA matrices. 

The SPAR system must use this bus to read in the Y and X vectors. The Y vector is 

read at the beginning o f each stripe of the matrix and written out to memory at the 

end of the matrix stripe. The X-buffer values are read in every 1024 column updates. 

In denser matrices, this fetching of the X vector does not have a major impact on 

performance. lA matrices are so sparse that the SPAR unit finishes columns quickly 

and thus needs to read in new X values quickly. Only one SPAR can access the 

shared vector bus at a time and so the other units have to wait for the first SPAR to 

finish before they can access the shared memory.

6.4.2 SMVM Architecture 2 -  SCAR

The second system tested was the SCAR SMVM system. This system has a single 

arithmetic path with a 1024*DWORD (64 bits) X-buffer and 1024*DWORD Y- 

buffer. The adder used in the SCAR unit was a 12 cycle double precision floating 

point Xilinx adder. This adder was used to remove the critical path of the design out 

of the adder which was the case in the SPAR architecture. In the SCAR architecture 

the critical path was in the memory interface. The FPGA utilisation for a system 

containing three SCARs is shown in Table 6.4. The design takes up 79% of the 

FPGA-slices which makes it slightly smaller than the SPAR unit. The SCAR state 

machine is simpler than the SPAR state machine and this reduction in complexity is 

chiefly responsible for the reduction in overall system size. The SCAR architecture 

contains no RAW hazard detection logic, since this is done by the SCAR reordering 

software, (see section 5.5.1).
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Table 6.4 FPGA utilisation for floating point SCAR on Virtex-II

Logic name. Utilisation (Available) % used
Slice Flip-Flops 32470(67584) 48%

4 input LLfTs 42873 (67584) 63%
Multipliers 60(144) 41%

Block RAM 94(144) 65%
Gclk 8(16) 50%

Occupied slices 27032 (33392) 79%

The system can achieve a clock rate of 100 MHz, which gives each SCAR unit a 

peak performance of 200 MFLOPs. Therefore, using equation (25), the overall 

computational bandwidth of the system running the PageRank algorithm is on 

average 200 MFLOPs, 349 M FLOPs and 500 M FLOPs for a system with one, two 

and three SCAR units respectively. The computational bandwidth is well below the 

peak memory bandwidth of approximately 1 GFLOP. Some small improvements in 

clock rate and thus computational BW might be possible through floor planning and 

handcrafting the layout but these improvements would not be large enough to make 

them worthwhile. The clock rate o f the SCAR system cannot be increased 

significantly so as to fully utilise the peak memory bandwidth. The performance 

results of the PageRank calculation running on the SCAR system are on the primary 

axis of Figure 6.4. The percentage of peak computational bandwidth is on the 

secondary axis of Figure 6.4.
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The average perform ance achieved by the SCA R architecture is 126 M FLO Ps, 180 

M FLO PS and 208 M FLO Ps for a system  containing one, tw o and three SCA Rs 

respectively. The SCA R unit achieves about 1.85 tim es the perform ance achieved b y  

the SPA R architectures. M ultiple SCA R units increase perform ance; how ever, 

perform ance does not scale linearly  with the num ber o f  SCAR units. This 

discrepancy is caused by the sam e bus contention on the shared vector bus that 

reduces m ultiple SPA R u n its’ perform ance. Load balancing betw een the tw o/three 

units m ay also contribute to the lack o f linear scaling perform ance. The effects o f  this 

bus contention and load balancing will be d iscussed later (section 6.5). A lso, the 

SM V M  calculation is only part o f the PageR ank calculation. On average, it accounts 

for 77%  o f the calculation load in our test m atrices. M ultiple SM V M  units increase 

SM V M  perform ance, but do nothing to increase vector operations perform ance, 

w hich is lim ited at a peak com putation bandw idth o f 200 M FLO Ps. The SCAR 

architecture utilises the adder 60% , 50%  and 42%  o f the tim e for the system  with 

one, tw o and three SCA R units respectively. T hese adder utilisation figures are an 

increase on the utilisation o f 3-4%  and -3 5 %  achieved by both the G PP and the 

SPA R units respectively.

6.4.2.1 Matching Computational and Memory Bandwidth

In section 2.4.2, the clock speed needed to use the full m em ory bandw idth is given in 

Table 2.3. The SCA R uses a 12 byte or 96-bit data w ord and so w ould need to run at 

175 M H z to use the m em ory bandw idth  available from  the DD R m em ory. The 

SCA R system  can only achieve 100 M H z on the V irtex-Il FPG A , and so does not 

use the available m em ory bandw idth. An im proved dual M AC SCA R system  was 

im plem ented to use the available m em ory bandw idth. The dual M AC SCA R  system  

as described in section 5.5.3 has tw o arithm etic data paths internally and so can deal 

with tw o data w ords every  clock cycle. T his system , therefore, uses 2 *  12 Byte data 

w ords every clock cycle, w hich infers it can be clocked at 88 M H z and still use the 

entire m em ory bandw idth available. The dual M A C SCA R system  also takes 

advantage o f b igger X and Y buffers than the single SCAR system  does. Increasing 

the buffer size and consequently  the m atrix tile size decreases the num ber o f  X- 

buffer reads and Y -buffer writes. Thus, the im pact o f  the often large m em ory latency 

is reduced; see Table 2.4. The dual M A C  SCA R  system ’s buffers can accom m odate
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2,048 DWORDs. The single SCAR could only accomodate 1,024 DW ORDs. This 

increase in buffer capacity was made possible by the more relaxed timing constraints 

o f the dual MAC SCAR system. Reducing the required clock rate allows more logic 

and longer inter-connects between registers. Thus, this allows more of the device 

logic to be used. The 3xdual MAC SCAR system occupies 98% of the available 

slices on the FPGA. The FPGA utilisation figures for the dual MAC SCAR system 

containing three SMVM units is shown in Table 6.5.

Table 6.5 FPGA utilisation for floating point 3xDual MAC SCAR on Virtex-II

Logic name. Utilisation (Available) % used
Slice Flip-Flops 43720 (67584) 64%

4 input LUTs 53524 (67584) 79%
Multipliers 94 (144) 65%

Block RAM 134(144) 93%
Gclk 8(16) 50%

Occupied slices 33179 (33392) 98%

The dual MAC SCAR system can be clocked at up to 96 MHz, but, as discussed 

earlier, this system only needs to be clocked at 88 MHz. Increasing the clock rate 

further will not increase performance, since the memory bandwidth is fully utilised at 

88 MHz. The dual MAC SCAR system uses the same 12 cycle adder used in the 

single SCAR system. However, because of the dual arithmetic path there are twice as 

many values are in the adder pipeline at any time, thus creating an increased chance 

o f RAW hazards. The system has effectively doubled the adder latency and so it 

becomes more difficult for the SCAR reordering system to use interleaving to reduce 

RAW hazards. Thus, many more NOPs must be introduced to the stream to avoid 

these RAW hazards. The peak performance o f the dual MAC SCAR is 352 MFLOPS 

for a single SMVM unit. Using equation (25) the computational peak of the entire 

PageRank algorithm is calculated as 320 M FLOPs, 575 M FLOPs and 840 MFLOPs 

for the dual MAC SCAR system with one, two and three SMVM units respectively. 

The dual MAC SCAR system with two and three SMVM units has a peak SMVM 

performance of 704 MFLOPS and 1.05GFLOPS respectively. These peak 

performance figures show clearly that the dual MAC SCAR’s SMVM computational 

bandwidth matches the available memory bandwidth. The Vector Unit still does not 

utilise the full memory bandwidth and so reduces the overall peak performance
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figures. The actual performance results are in Figure 6.5. The percentage o f peak 

computational bandwidth of each of the results is also in Figure 6.5.
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Figure 6.5 Performance Benchmarks for Dual MAC SCAR architecture

The dual MAC SCAR implementations achieved an average performance o f 176 

MFLOPS, 247 MFLOPS and 259 MFLOPS for a system containing one, two and 

three SMVM units respectively. The three dual MAC SCAR units performance is 

about 20% better than three single MAC SCAR units. As discussed in section 5.5.3 

the additional MAC in the dual M AC SCAR systems effectively doubles the adder 

pipeline depth. This increases the probability of RAW  hazards (see section 6.5.3). 

Thus, the number of NOPs added to the SCAR stream increases, which limits the 

performance of the dual MAC SCAR. The shared vector bus contention is once again 

evident in the move from two to three SMVM units. The performance of matrices 1,

4, 5, 7, 11 and 12 is lower for three SMVM units than for two SMVM units. The 

three dual MAC SCAR system still achieves a slightly better average performance 

than the two dual MAC SCAR. For this reason, the dual MAC SCAR system with 3 

SMVM units is compared to the highest performing single SCAR system and the 

GPP in Figure 6.6. The bus contention issues will be discussed in more detail later.
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Figure 6.6 Performance Benchmarks for SCAR system Vs. PC

The SCA R and dual M AC SCA R system s perform  well against the G PP, achieving 

55%  and 63%  o f the perform ance o f the G PP respectively. The tw o FPG A  based 

system s achieve this perform ance despite having a clock rate that is 30 tim es slow er 

than that o f the G PP and using m em ory that is less that 50%  the speed o f the D D R 2- 

667 m em ory used by the GPP. The average adder u tilisation is also higher in both the 

SCA R system s than the G PP. The SPA R and the SC A R  architectures are exam ples 

o f generic SM VM  architectures designed for use w ith FE stiffness m atrices rather 

than lA  m atrices. In the next section hardw are specially  designed for the PageR ank 

algorithm  is benchm arked.

6.4.3 SMVM Architecture 3 -  PageRank HW

The PageR ank HW  architecture is designed specially  for use with the PageR ank 

algorithm . It replaces the SM VM  with a dense vector elem ent by elem ent 

m ultiplication and a pattern addition. The results o f  this architecture can not be 

directly com pared with others by using M FLO Ps, because this architecture reorders 

the calculation. The results are instead presented as effective M FLO Ps using a black 

box approach. The operations needed to replace the SM V M  are timed. K now ing that 

every N ZE needs to be operated on tw ice for SM V M , the effective M FLO PS rating 

is then com puted. The system  was im plem ented w ith 3 pattern adders, but due to X- 

buffer replication, the X -buffer size was lim ited to 1024 lines. Increasing the X-
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buffer size fuilher would inhibit three SMVM units being implemented on the 

VirteX'II device. Since each SMVM unit uses a dedicated memory channel, three 

SMVM units use the available matrix memory bandwidth. The Y-buffer contains 

2048 lines; each of which can contain a single double precision word. The adder used 

in the pattern adder is an 8 cycle double precision floating point adder generated by 

Xilinx Core library V8.2.03. The FPGA utilisation details are given in Table 6.6. On 

foot of the SCAR results, the decision was made to implement a dual arithmetic path 

system only, since it used more of the memory bandwidth available to the system. 

Therefore, the PageRank system utilises 100% of the memory bandwidth, which for 

DDR-266 is 2128MB/s per channel. The dual PageRank system uses 32 bits of 

streaming data to represent NZE and so processes six NZE per clock cycles. Thus, 

the PageRank pattern adder has an effective peak performance o f approximately 1 

GFLOPS, 2 GFLOPS and 3 GFLOPS for one, two and three PageRank pattern 

adders respectively. Using equation (25), the peak computational bandwidth of the 

PageRank HW system for the entire PageRank algorithm is 800 MFLOPs, 1.5 

GFLOPs and 2.3 GFLOPs for the PageRank HW with one, two and three pattern 

adders respectively.

Table 6.6 FPGA utilisation for floating point Dual PageRank system on Virtex-II

Logic name. Utilisation (Available) % used
Slice Flip-Flops 34345 (67584) 53%

4 input LUTs 51296 (67584) 75%
M ultipliers 12(144) 8%

Block RAM 122(144) 84%
Gclk 8(16) 50%

Occupied slices 31561 (33392) 93%

The PageRank HW system occupies 93% of the available slices and 84% of the 

Block RAMs. It can run at up to 97M Hz and so can easily match the computational 

bandwidth of the DDR-266. The num ber of multipliers used by the system is greatly 

reduced as compared to the dual M AC SCAR system*. This reduction in multipliers 

used is because the PageRank HW Pattern adder removes the multiplication and does 

it as a dense vector element by element multiplication using the vector unit. The

* Benefits o f  reducing the number o f multipliers include, more freedom for place and route, smaller 
overall design size and would allow the system to be implemented on Virtex-4 which has a smaller 
multiplier to logic ratio than the other Xilinx FPGA families.
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results for system s using one, tw o and three P ageR ank HW  pattern adders are in 

F igure 6.7.
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Figure 6.7 Performance Benchmark for Dual 1024 line X-Buffer PageRank system

The PageR ank HW  show s an increase in perform ance over the dual M AC SCAR 

system  with an average o f 228 M FLO Ps, 270 M FLO Ps and 281 M FLO Ps for the 

PageR ank HW  system  w ith one, tw o and three pattern adders respectively. The 

perform ance increase is due to the fact that the pattern  adder can deal with 6 N ZE per 

clock cycle. This factor reduces the stream  length. H ow ever, the perform ance 

im provem ent is very m odest due to three factors. T he shared bus contention problem  

discussed earlier is still an issue. This problem  is especially  evident in m atrices 3 and 

10, w hich show a reduction in perform ance w hen the third pattern adder is used in 

the system . The second issue is RA W  hazards, w hich occur very frequently  because 

o f the 16 cycle adder tree. T his becom es effectively  a 32 cycle adder when the dual 

arithm etic path is taken into account. The final issue faced by the architecture is the 

sparseness o f the m atrix. The 1024 entry X -buffer reduces the num ber o f NZE 

available to m ake the stream  per block, and so N O PS have to be placed in the stream  

to avoid RAW  hazards. The reordering schem e will choose any N ZE w hich will not 

cause a RAW  hazard. H ow ever, in sm all blocks, the choice is greatly reduced and so 

the reordering softw are m ust pad the stream  w ith N O PS to avoid hazards. S ince all 

o f  the architectures are affected by N O Ps details o f  the N O P frequency and solutions 

to this problem  are d iscussed in section 6.5.3. The adder utilisation is greatly  reduced
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in the PageRank HW due to the very sparse matrix. The PageRank HW takes up to 

three values from the same row on every clock cycle. The lA matrices used in these 

tests often don’t have enough NZE to utilise this scheme to its full potential.

In an attempt to increase performance, a second version of the PageRank HW system 

was implemented. This system aimed to alleviate bus contention on the shared vector 

bus and to reduce the number of NOPs being added to the pattern adder’s stream. 

This system only contained two dual path pattern adder units, but the X-buffer size 

was doubled to store 2048 double precision numbers. The other details of the system 

remained the same. Using fewer pattern adders should have reduced bus contention, 

since there are fewer units accessing the shared bus. The larger X-buffer doubles the 

size o f the blocks and thus should reduce the number of NOPs in the stream by 

increasing the number o f NZEs which the reordering scheme can choose from when 

trying to avoid RAW  hazards. Also, larger blocks should reduce the number o f times 

the pattern adder units need to access the bus to read in new X vector values. The 

FPGA utilisation of this second PageRank system is given in Table 6.7.

Tabic 6.7 FPGA utilisation for modified floating point PageRank system on Virtex-II

Logic name. Utilisation (Available) % used
Slice Flip-Flops 33962 (67584) 50%

4 input LUTs 49509 (67584) 73%
M ultipliers 12(144) 8%

Block RAM 134(144) 93%
Gclk 8(16) 50%

Occupied slices 30874 (33392) 91%

This new system has a slightly smaller number of occupied slices due to the removal 

of a pattern adder, but the block RAM usage has increased from 84% to 93%. The 

system can still achieve 97M Hz clock rate. The peak performance for the entire 

PageRank algorithm, calculated by equation (25), remains 800 M FLOPs and 1.5 

GFLOPs for the m odified PageRank HW with one and two dual path pattern adder 

units respectively. The performance results for this new system are presented in 

Figure 6.8.
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Figure 6.8 Performance Benchmark for Dual 2048 line X-Buffer PageRank system

The second PageRank system with the 2048 double precision word cache has an 

average performance of 255 MFLOPS and 302 MFLOPs for one and two pattern 

adders respectively. This system leaves one of the memory channels unused. If a 

copy of the X vector was made and stored in this unused memory channel, the shared 

bus contention could be alleviated. This alteration should improve the performance 

and will be discussed in section 6.5.1. However, the performance increase achieved 

by this change would be limited, as it would only increase performance in the pattern 

addition portion of the PageRank algorithm. The time taken to perform the vector 

operations would remain the same, as they would not be affected by this change. An 

extra memory copy would also have to be added to the system, which would also 

reduce the performance boost achieved.

The PageRank system performance is compared with the GPP performance in Figure 

6.9. The modified PageRank architecture with the larger X-buffer and only two 

pattern adder units performs equally well or outperforms the original PageRank HW 

architecture with 1024 line X-buffers and 3 pattern adders for all the matrices. The 

PageRank system with the larger cache performs 20% better than the GPP on matrix 

7, despite being clocked at over 30 times slower and using memory that is more than 

half the speed of DDR-667 used by the GPP. In general, however, the GPP performs 

about 20% better on average than the PageRank HW for the set of matrices.

161



C hapter Six
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Figure 6.9 Performance Benchmarks for PageRank system Vs. GPP

6.4.4 SMVM Architectures Compared
A summary of the best performance results obtained from each of the FPGA 

architectures implemented on the Virtex-Il FPGA is presented in Figure 6.10. The 

GPP performance is also included for comparison. The dual PageRank architecture 

achieved the best performance of all the FPGA architectures. It performs on average 

about two and half times better than the SPAR architecture and about 25% better 

than the dual M AC SCAR architecture. The dual PageRank architecture even 

outperforms the GPP on two of the test matrices despite having a clock that runs 30 

times slower than the GPP clock.
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Figure 6.10 Summary of Floating point Benchmarks on Virtex-II

The GPP has a higher average gross FLOPs performance across the range of test 

matrices. This is achieved with a clock rate o f over 30 times the clock rate achievable 

on the Virtex-II FPGA and using a memory that can supply data at over twice the 

speed of the DDR-266 used in the development platform. The average performance 

o f the FPGA architectures as a percentage o f GPP performance is shown in Figure 

6 . 11 .
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Figure 6.11 Average percentage of GPP performance achieved by test architectures

The Dual PageRank HW system with the 2048 row and column block size achieves 

79% of the average performance o f the GPP. The Dual MAC SCAR and SCAR 

architectures achieve an average 63% and 55% of the GPP performance respectively. 

The SPAR architecture achieves less than 30% of the GPP performance. Gross FLOP 

performance results like those in Figure 6.11 can only go so far in measuring the 

perfonnance of a new design. Combining these results with a measure o f the overall 

efficiency of the architecture can be very useful when comparing architectures. In 

Figure 6.12, the percentage adder utilisation or percentage of the peak achievable 

computational bandwidth is shown for the GPP and all the FPGA architectures 

running the PageRank algorithm. The GPP only achieves 3-4% of its computational 

peak performances but this graph takes into account that limiting factor for the GPP 

running the PageRank calculation is its FSB speed and so the GPP is expressed as % 

of peak achievable computational bandwidth for the PageRank algorithm.
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Figure 6.12 % of achievable computational bandwidth or % adder utilisation for the GPP and 

all the FPGA architectures running the complete PageRank solver

The SCAR and the SPAR architectures have the highest adder utilisations in these 

tests with adder utilisation of 42% and 31% respectively; see Figure 6.12. The higher 

adder utilisation of the SCAR unit suggests that row based architectures perform 

better than column based architectures when calculating the PageRank algorithm on 

lA matrices. It was decided because of the poor SPAR results that no further tests 

would be run on the SPAR architecture. The SCAR and the PageRank system both 

exhibited promising results. The SCAR shows the highest adder utilisation and the 

dual M AC SCAR achieved 65% of the GPP performance using DDR-266.

Upgrading to DDR2-667 should be enough to make the dual MAC SCAR exceed the 

GPP performance. The PageRank HW exhibits very poor adder utilisation due to the 

fact that it is a highly paralleled architecture. The lA matrices do not have enough 

NZE to fully utilise the PageRank HW ’s bandwidth without causing RAW hazards. 

The gross FLOPS performance of the PageRank HW is the highest of all the FPGA 

architecture with an average o f 80% of the GPP performance, despite the slower 

memory used in the developm ent platform and the much slower clock rate.

The performance of all the FPGA architectures could be increased with an upgrade to 

faster memory or an increase in clock rate. Throughout this chapter, a number of 

other issues that limited the FPGA architectures performance arose. These issues 

were bus contention on the shared vector bus, NOPs being added to the stream to 

avoid RAW hazards and load balancing between multiple SMVM units. In the next 

section, these issues and the limits they place on the FPGA architecture performance 

are discussed.
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6.5 Performance Limitations
The results thus far have highlighted a number of the problems with solving the 

PageRank Eigenvector problem on FPGA. These problems include bus contention on 

the shared vector bus, NOPS in the data stream and very sparse matrices associated 

with the PageRank problem. NOPS are added to the stream of both SCAR and 

PageRank architecture, to avoid RAW hazards, as discussed in section 5.5.1 and 

5.6.2 respectively. These NOPS reduce the FPU utilisation, since no value is placed 

in the adder pipeline on a NOP cycle. Thus, the performance of the system is 

reduced. Using multiple parallel SMVM units also raises the issue of load balancing. 

For maximum performance, it is important that the NZE data is distributed equally 

among all SMVM units. In the next sections, the causes and effects of bus 

contention, load balancing and RAW hazards will be discussed.

6.5.1 Bus Contention

In section 5.7, the causes of bus contention were discussed. Bus contention occurs in 

this system when more than one SMVM unit requires use of the shared X/Y Vector 

bus at the same time. The bus is arbitrated in a round robin fashion, and so one of the 

SMVM units gets to use the bus while the other units are forced to wait for their turn. 

Sharing a data bus in hardware is common. No problem results if each of the units 

only uses the bus sparingly, as is the case in FE problems where each SCAR utilises 

the shared vector bus an average of 11 % of the time. A three SCAR unit computing 

SMVM on FE matrices described in Appendix One only has activity on the shared 

vector bus 32% of the time. The three-SCAR system performs on average 2.75 times 

faster than the single SCAR matrix when computing SMVM on FE matrices. This 

outcome shows that in FE matrices the shared bus is not overly utilised. The shared 

bus % utilisation for a single SCAR system with X and Y buffers of 2048 lines 

computing SMVM on lA matrices is presented in Table 6.8. On average, the lA 

matrices use the shared bus over two times more than the FE matrices.
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Table 6.8 Shared Vector Bus utilisation in SCAR architecture

Num. Name Duration
(cycles)

Bus usage 
(cycles)

Vector bus 
Utilisation (bus- 
usage/duration)

1 Arabic-2005 17627234 1958879 11.11%
2 cnr-2000 7200037 2048316 28.45%
3 eu-2005 25373217 5661907 22.31%
4 in-2004 10628335 1931251 18.17%
5 Indochina-2004 14444211 1798849 12.45%
6 it-2004 17453016 1858245 10.65%
7 sk-2005 32485443 6765244 20.83%
8 uk-2002 11475177 1456032 12.69%
9 uk-2005 15106095 3542367 23.45%
10 web-mat-1.5M 26818645 10639489 39.67%
11 web-mat-IM 16336374 5852331 35.82%
12 web-Stanford 28671556 38905039 81.75%
13 webbase-2001 6677817 1097817 16.44%

Average: 19170530 6424289 25.68%

The matrices with the highest vector bus utilisation figures are the matrices that 

showed the smallest increases in performance when migrating from single SMVM 

systems to multiple SMVM systems. This result is especially apparent in all three 

SMVM architectures on matrix 12 and less apparent in matrix 2, 10 and 11. These 

matrices use the vector bus for 81%, 28%, 39% and 35% of the SMVM duration 

respectively. The major consideration that leads to excessive use of the shared vector 

bus is the sparsity of the matrix blocks. This sparsity can be caused by overall matrix 

sparsity or by NZE positioning. A partitioned matrix has two types of block, viz Zero 

blocks and Non-Zero (NZ) blocks. Zero blocks contain no matrix data and can be 

ignored. NZ blocks contain NZE and must be processed. A matrix with many NZ 

blocks with few NZE will use the shared vector bus more than a matrix with the 

same amount of NZE with fewer NZ blocks. Therefore, the number of NZE per NZ 

matrix block can affect the amount the shared vector bus is used. The lA matrices are 

very sparse, and their NZE are not tightly banded together and so have many NZ 

blocks with few NZE, thus causing excessive use of the shared vector bus. Figure 

6.13 is a histogram of the NZE per NZ block of the lA matrices and the matrices. 

The bars in the histogram represent the percentage of NZ matrix blocks that contain a 

given number of NZE. Blocks with less than 1000 NZE go into the first category,
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blocks with more than 1000 but less than 2000 go into the second etc. The first bar of 

the histogram, therefore, shows that almost 90% of matrix blocks in lA matrices 

contain less than 1000 entries. This is about 50% more blocks than the FE matrices 

have in this category.
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Figure 6.13 Histogram of NZE per NZ matrix block

The FE matrices contain many more relatively dense blocks when compared with the 

lA matrices. This result occurs because of the loosely banded layout of the lA 

matrices. The X-buffer in the SCAR can store 2048 X  values. To fill this buffer at the 

beginning of a block can take about 1500 clock cycles if the whole X  fragment is 

needed. According to the histogram in Figure 6.13, almost 90% of the blocks in the 

lA matrices contain less than 1000 entries. It is therefore possible to process the 

block quicker than it is to fill the X-buffer on every block update. In a system where 

this is the case, adding a third SMVM unit will have no effect. The first unit reads in 

its X-buffer and then starts to process the block. A second SMVM unit would then 

start filling its X-buffer. However, the first SMVM unit would finish processing its 

block before the second SMVM unit reads in the X-buffer and so waits for the vector 

bus to become free. Once it is free, the first block starts reading the X  values for its
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second block, and so on. A system will always only have one SMVM unit processing 

information and one SMVM unit filling its X-buffer. A third SMVM unit would not 

increase performance as the vector bus is already saturated with read requests.

In the second PageRank HW system, the size of each X-buffer was doubled at the 

expense of the third Pattern adder. One of the four memory interfaces on the FPGA 

was thus left unused. This unused interface could be used to make a copy of the X- 

vector to alleviate the bus contention on the shared vector bus. As discussed earlier 

the performance of the second PageRank HW system would not then be doubled as 

the Pattern addition is only part of the PageRank calculation. An extra memory copy 

would also need to be implemented, which would further reduce the performance 

benefit. This memory copy would make a copy of the X vector at the end of each 

iteration to the second vector memory channel. Thus, each SMVM unit would have 

exclusive access to a copy of the X  vector. This system was not implemented in 

hardware as it would have involved a major redesign of the architecture and the 

results can be extrapolated from results already obtained from the architecture.

Figure 6.14 shows the extrapolated SMVM performance of the dual path PageRank 

system with the 2048 line X-buffer and two vector buses to alleviate bus contention. 

The results include all vector operations needed to achieve a correct SMVM of the 

matrix and vector. The results for the single pattern adder include the element by 

element vector multiplication which makes the pattern adder equivalent to a full 

SMVM unit. A memory copy is added to the second set of results, in addition to the 

element by element multiplication, since the architecture using both vector buses 

needs to share their updated vectors at the end of each iteration.
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Figure 6.14 SMVM Performance of PageRank system with two vector buses to alleviate shared

bus contention.

The architecture with two SMVM units is about 30% faster than the single SMVM 

architecture. However, if the memory copy used to duplicate the X  vector into the 

second vector memory of this system is ignored the two SMVM unit system 

performance increases to 70% faster than the single SMVM unit. This result is a 

great deal bigger than the performance increase achieved between the one and two 

SMVM unit PageRank systems, which shows that bus contention is really a serious 

issue with lA matrices. The memory copy needed to allow the SMVM units to use 

independent copies of the X  vector reduces significantly the performance 

improvements achieved by using two independent memory channels for the X vector. 

Reducing bus contention has little effect on the overall PageRank algorithm 

performance, due to the large number of vector operations being carried out per 

iteration; see Figure 6.15. The two SMVM units now only perform about 10% faster 

than the single SMVM unit system. Matrix 12 doubles performance in both Figure 

6.14 and Figure 6.15 when bus contention is removed. The results are still less than 

50% the average performance of the test set of lA matrices. Matrix 12 has caused 

major problems for all the architectures. Clearly then high performance figures for 

matrix 12 are very difficult to obtain.
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Figure 6.15 PageRank Algorithm performance of PageRank system with two vector buses to

alleviate shared bus contention.

Bus contention in this system happens on the shared vector bus and is caused by the 

very sparse, non-tightly-blocked matrix structure inherent to lA matrices. The 

performance with FE stiffness matrices proves that the SMVM architectures are 

efficient given very sparse matrices that have a defined structure. Using multiple 

memory channels for the shared vector bus only increases performance of the 

PageRank algorithm by 10%. This is due to the extra memory copy needed in the 

algorithm. The Vector Unit is now the bottleneck of this algorithm. Parallelising of 

the Vector Unit would increase the performance o f the overall system which is 

discussed in more detail in section 7.3.

6.5.2 Load Balancing

One of the major challenges in parallelising an algorithm is load balancing the 

operations between all processing nodes. The results presented so far in this thesis 

use a naive matrix partitioning system. The matrix is simply split up into an equal 

number o f rows for each processing element being used. In FE matrices, this process 

proves to be very satisfactory as the matrices are symmetrical, structured and banded 

around the diagonal. The stream length o f the SCAR data stream running on each of 

the three dual MAC SCAR units was measured for each of the FE matrices in 

Appendix One. The average difference between stream lengths on the three SMVM 

system was approximately 3% with a max difference of 20% on a single test matrix. 

This means that on average the three SMVM units load for the FE matrix
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calculations differed by approximately 3%. These load balancing tests were run on 

the lA  matrices on the dual MAC SCAR system with a 2048x2048 block size and the 

results are in Figure 6.16.
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Figure 6.16 Load balancing analysis of the lA matrices in the dual M AC SCAR system

Figure 6.16 clearly shows that LA matrices are not uniform like the FE matrices 

above. Since the three SMVM units run in parallel, the last one to finish dictates 

when the SMVM calculation finishes. The majority o f the lA  matrices show that they 

could benefit from better load balancing techniques. This is especially evident in 

matrix 7, where the second SMVM unit must operate on between 1.5 and 1.7 times 

more data words than the first and third SMVM units. The average load difference 

between the three SMVM units is 10% of the total stream length.

One method that could be used on lA  matrices to more efficiently spread the load 

across the SMVM units would be to split the matrix into stripes the size o f the Y- 

buffer (i.e 2048 rows). The SCAR stream for this stripe can be calculated and then 

written to the memory space associated with SMVM unit that currently has the 

shortest stream. This method should not increase the time to calculate the SCAR 

stream and could have a dramatic effect on load-balancing o f the calculation. Figure 

6.17 shows the effect this new load balancing scheme has on the length o f the dual 

MAC SCAR streams for the three SMVM units. This scheme has reduced the 

difference between the loads on the SMVM units to an average of less than 1 %, 

which should increase the performance of the three SMVM units working in parallel 

by almost 10% on average.
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Figure 6.17 Load balanced calculation of SMVM on lA matrices

6.5.3 Measuring NOP frequency

In order to achieve high performance results using the SCAR and PageRank HW 

architectures, NOPs must be kept to a minimum. NOPs are wasted clock cycles, 

since no results are computed on a NOP cycle. The FPGA runs at over 30 times 

slower than the GPP, and thus it is important that every clock cycle in the FPGA is 

used. In section 5.5.1 two reordering schemes for the SCAR architecture were 

presented. The first o f these is simple modulo-n reordering where n is the adder 

pipeline depth. The second is opportunistic modulo-n reordering.

The simple reordering scheme ensures that all values in a given row are kept exactly 

the adder latency apart and thus allows the SCAR to proceed without RAW hazards. 

This reordering is easily done in software and proved very efficient when working 

with FE matrices for which it was designed. Table 6.9 shows the average percentage 

NOPs in the SCAR stream over the FE and lA matrix test sets using simple and 

opportunistic reordering. These results assume an adder latency of 14 cycles, which 

is the adder pipeline depth in the single M AC SCAR unit. The FE test set only has 

-7%  NOPs in the data stream when simple reordering is used. However, when 

simple reordering is used on the lA matrices, the single M AC SCAR stream contains 

almost 21% NOPs. This means that one-fifth o f the time the SCAR is doing nothing 

so that it can avoid RAW hazards.
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Table 6.9 Nops in SCAR data stream

DATA SET % NOPs in data stream
Simple reordering Opportunistic reordering

Finite Element 6.76% 0.84%
Internet 20.98% 7.92%

Opportunistic reordering was developed to increase the performance of the SCAR 

architecture. Opportunistic reordering organises row NZEs to be at least the adder 

latency apart; see Section 5.5.1. When this reordering scheme is applied to the FE 

matrices, it reduces NOPs in the stream to less than one percent in the 14 cycle adder 

single MAC SCAR system. It also reduces the NOPs in the lA matrices streams to an 

average of around 8%. Performance-wise, the opportunistic reordering boosts the 

SCAR architectures performance by about 12%. Table 6.10 shows the average 

amount of NOPs added to the data stream for all the FPGA architectures. The SPAR, 

as discussed earlier, uses more than half its time avoiding RAW hazards. The SCAR 

systems have about 8%-12% NOPs in their data streams and so could benefit from a 

further reduction. The specialised PageRank HW contains an average of 16% NOPs 

in its data stream. The PageRank HW data word can contain 3 NZE. and so a NOP is 

counted as a data word that contains no NZE, or a data word that is completely 

wasted. The quantity of NOPs in the stream for the PageRank HW increases to about 

35% if the NZE-positions not filled are counted.

Table 6.10 A summary of the average percentage of Nops in FPGA architectures data stream

using opportunistic reordering.

Architecture % NOPs in data stream (approx)

SPAR 55%
single MAC SCAR 8%
dual MAC SCAR 12%
PageRank HW 16%

The number of NOPS caused by RAW hazards in the stream is affected by two 

parameters. These are the matrix structure and the adder latency. Matrix reordering 

schemes can be used to change the order of sparse matrices to increase data locality. 

These schemes attempt to compact the extremely sparse lA matrices into fewer 

blocks. The denser NZE blocks allow more choice in the data reordering schemes
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and thus reduce the number o f RAW hazards. One such matrix reordering scheme is

Reverse Cuthill McKee (RCM ) [83]. RCM aims to reorder matrix nodes to increase

data locality. Figure 6.18 shows the effect that RCM reordering has on the num ber of 

NOPs in the dual MAC SCAR data stream. RCM actually increases the num ber o f 

NOPS in the stream by an average of 4% for the lA matrix set. Matrices 10, 11 and 

12 have an increase o f more than 10% of NOPs in the dual M AC SCAR stream when 

RCM is applied. Matrix 4 did see a slight reduction of 2% in the number o f NOPs in 

the stream. It is clear from this data that RCM is of little use for this particular matrix 

set and so cannot be used to increase performance o f the PageRank algorithm further.
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Figure 6.18 The effect of RCM on the number of Nops in the Dual MAC SCAR stream (lower is

better)

Since reordering the very sparse structure of the lA matrices did not increase 

performance an investigation into the effects o f adder latency on the num ber o f 

NOPS in the data stream was carried out. Shorter pipelined adders should have the 

effect o f reducing RAW  hazards and thus reducing NOPs in the SCAR stream.
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Figure 6.19 Nops in SCAR stream vs. adder latency

Figure 6.19 shows the effects of adder latency on NOP insertion in the SCAR stream. 

It is clear from the graph that opportunistic reordering reduces the num ber of NOPs 

in the stream compared with the simple reordering technique. Figure 6.19 also 

clearly shows the num ber of NOPs in the SCAR stream is directly proportional to the 

adder latency. In order to achieve the most efficient implementation of the SCAR 

architecture for use with lA matrices the adder latency must be reduced. The adder in 

the original version of SCAR was a 14-cycle double precision floating point adder. 

Significant problems were not caused with the FE matrices that have as little as 6% 

and 1% NOPs in the stream using simple and opportunistic reordering respectively. 

The SCAR architecture works much better on these FE matrices than for lA 

matrices. This high-pipelined adder was used to ensure a high clock rate, and thus 

memory bandwidth utilisation. In order to reduce the adder latency and maintain a 

high clock rate, the precision of the calculation will also need to be reduced. In 

section 6.5, the precision considerations for the PageRank calculation will be 

discussed, including the effects o f reducing numeric precision on result accuracy, 

clock rate and the overall architecture performance.
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6.6 Precision
The FPGA architectures described so far have used IEEE double precision floating 

point arithmetic. Thus, the accuracy of the results and scalability of the system are 

guaranteed. The floating-point cores used were generated using Xilinx Core 

Generator [102], As discussed in the preceding section, RAW hazards reduce the 

overall performance of the system. To reduce this risk, a lower latency adder could 

be used. One way to reduce the adder latency is to reduce the precision of the 

calculation. According to Langville, double precision arithmetic is not needed in the 

PageRank problem [41 ]. She argues that a lower precision can be used since only a 

fraction of the PageRank vector is used for any given query and users usually only 

look at about the top 20 results of the results returned by the search engine to a 

query. The argument states that with relatively few pages being returned to the user, 

the probability of two pages of similar rank being returned are reduced. Most queries 

return a handful of highly ranked pages and lots of pages with very low ranking 

scores. Thus it is easy to sort the returned results. However, the weakness of this 

system comes to light in the exceptional query that returns only low ranking pages 

and thus makes it difficult to sort the results. In this case it would be important that 

other scores would help sort the pages effectively. An investigation into arithmetic 

precision and its effects on the ordering of the PageRank vector was conducted and is 

presented here.

6.6.1 Fixed point Emulation

Before hardware was designed and built, a simple fixed-point emulator in C was 

developed to assess the viability and effect of using fixed point arithmetic on the 

PageRank algorithm. The emulator could be set to emulate any fixed-point precision 

needed. All inputs were truncated to the required precision and the result of every 

calculation carried out was truncated to the lower precision. The PageRank 

calculation was emulated and the results were compared with the results obtained 

from the double precision calculations. The absolute value of a page’s PageRank 

score is not important. The relative order of the pages is a better measure of how 

much precision is needed. The % correct order gives the % of pages that appear in 

the right order when the emulated PageRank vector is ordered and compared with the 

ordered PageRank vector calculated using double precision arithmetic.
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Figure 6.20 The fixed-point bits needed vs. percentage correctly ordered

The tests were run for a variety of fixed point precisions ranging from 10 bits all the 

way up to 64 bits for 50000 node subsets of the test matrices. The average number of 

bits needed to correctly order a given percentage o f the nodes is shown in Figure 

6.20. The matrices all contain 50000 rows and columns. Subsets of the test matrices 

were used because fixed point emulation was very slow. Figure 6.20 shows that 

about 40 bits of fixed point precision is needed for these matrices. Only a small 

increase in the percentage of correctly ordered nodes is obtained by increasing the 

precision further. Below 25 bits of fixed point precision, the system does not have 

the resolution to calculate the PageRank vector for these matrices and so 0% of the 

PageRank vector gets to be in the correct order.

The next test was to find the effect of matrix size on the fixed point precision needed. 

The PageRank calculation was calculated for test matrices ranging in size from 5000 

-  50000 rows over a range of fixed point precisions. The fixed point precision 

needed to calculate the PageRank vector to 95 % correct order and 70% correct order 

is in Figure 6.21. Clearly a greater precision is needed to correctly calculate 

PageRank vector for bigger matrices. To achieve a PageRank vector that is 95% in 

the correct order 30 bits are needed for a matrix with 5000 rows and 38 bits are 

needed for a matrix containing 50000 rows. Figure 6.21 and Figure 6.20 both show 

that a greater precision results in a more correctly ordered PageRank vector.
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The matrices used in these tests are relatively small when compared with lA 

matrices. Fixed point emulation is slow and full size lA matrices are hard to obtain, 

so an alternative approach was taken. However, the PageRank vector is an example 

o f a Zipfian distribution [41, 119] and the Zipfian distribution can be used to 

extrapolate the results to a full scale system.
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6.6.2 Zipfian distributions

The Zipfian distribution can be used to estimate the value of the components in a 

power law series. The PageRank vector follows a power law [41 ]. Figure 6.22 shows 

the values of an ordered PageRank vector plotted with a Zipfian distribution.
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Figure 6.22 PageRank Vector following the power law

In the case of PR, the Zipfian distribution gives an approximate PageRank value for 

any page o f rank k in the system containing N  pages. A page o f rank k refers to the 

page with the k'^ largest PageRank value. The equation to calculate the Zipfian 

approximation of a page of rank k is shown in equation 26.

Z =
I k ‘

(26)

The s factor is a customisation factor which is close to 1. This customisation factor 

can be used to fit the Zipfian distribution results to the results obtained from the fixed 

point emulation as shown in Figure 6.23. The Zipfian estimate follows the 95% and 

70% correctly ordered fixed point emulation test very accurately when 5 is set to 1.33 

and 0.64 respectively. The Zipfian estimate is obtained by calculating a Zipfian 

estimate of the PageRank vector of a system of size N. The two smallest values of the
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Zipfian estimate are taken and the difference is calculated. The number of bits 

needed to represent this difference is returned as the Zipfian estimate of precision 

needed.
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Figure 6.23 Fitting Zipfian distributions to emulation graphs

The Zipfian distribution can be used to estimate the precision needed for a PageRank 

vector of any size, once an appropriate s value has been found to match the Zipfian 

estimate to the fixed point emulation precision estimate. Setting s=1.33 fits the 

Zipfian curve to the 95% correctly ordered fixed point emulation graph. Thus, in 

Figure 6.24, the Zipfian estimate of fixed point precision needed is extrapolated for 

systems between 5 billion and 1 trillion pages.
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Figure 6.24 Estimating flxed point precision needed for larger systems with Zipflan distribution

The Internet currently crawled by the Google spiders contains over 1 trillion pages 

[6], From Figure 6.24, 94 bit fixed point precision is required to represent this 

collection accurately. It is possible that lower precision would suffice as only a tiny 

fraction of these pages will be returned at any one time and so differentiating 

between small PageRank scores may not be necessary. In this section it has been 

shown that fixed point arithmetic can be used to calculate the PageRank algorithm.

In the next section the performance benefits of migrating to fixed point arithmetic are 

explored.

6.7 Fixed Point Performance on Virtex-ll
In the preceding section the possibility of reducing arithmetic precision as a means to 

increasing performance was discussed. Lower precision arithmetic units can be 

implemented with shorter pipelines than the floating point equivalent. A short 

pipeline adder should increase performance by removing the NOPs associated with 

RAW hazard avoidance. The Zipfian distribution data in Figure 6.24 shows that it is 

not practical to use fixed point arithmetic for an ever increasing size of matrix. Using 

fixed point arithmetic in large system would increase the memory storage 

requirements and memory bandwidth requirements as a system of 1 trillion pages 

needs 94 bits of precision. This is 30 bits more than is required by floating point 

arithmetic. If the Internet size increase further larger number systems would need to 

be used. However, for smaller subsets of the lA matrix it might be a viable 

alternative to floating point arithmetic.
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In this section a number o f experiments on the FPGA architecture’ s performance are 

presented assuming that a 64-bit fixed point number can be used to represent the 

data. The 64-bit fixed point word was chosen for a number o f reasons. Firstly, and 

most importantly it is more than large enough to represent the test matrices 

adequately. Tests in section 6.6.1 indicate that any fixed point number with more 

than 38-bits o f data should be large enough to represent this data set. Secondly, the 

64-bit fixed point arithmetic unit can be easily substituted for the double precision 

units in the modular FPGA architecture design. This saves a complex and time 

consuming redesign o f the system. Finally, since it is not practical to implement the 

94 fixed point arithmetic unit needed to represent the one trillion page lA  matrix, the 

fixed point solution can only be aimed at smaller collections o f data like that in use at 

a business or home setting. The 64-bit fixed point adder used in these experiments is 

a single cycle adder, which w ill give the maximum possible performance boost to the 

FPGA based PageRank systems.

The fixed point results are presented in three sections. Firstly, in section 6.7.1 a fixed 

point version o f the SCAR system is presented. Secondly, the fixed point version of 

the PageRank HW is discussed in section 6.7.2. Both o f these architectures w ill be 

compared with their floating point equivalent. Finally, this section w ill conclude with 

a comparison o f the performance o f fixed point architectures and the GPP.

6.7.1 Fixed Point SCAR implementation

The dual MAC SCAR system performed about 20% better than the single MAC 

SCAR unit when using floating point arithmetic to calculate the PageRank vector. 

The dual MAC SCAR’s stream also contains about 5% more NOPs due to its longer 

adder latency than the single M AC SCAR. Reducing the adder latency to a single 

cycle should significantly decrease the number o f NOPs in the data stream. Thus, the 

stream with the most NOPs should benefit most from the migration to the single 

cycle fixed point adder. For this reason the dual MAC SCAR was used in these tests 

instead o f the single MAC SCAR unit. The floating point arithmetic units in the dual 

SCAR system were replaced with single cycle fixed point adders and multipliers.

The delay registers on the address signals to the Y-buffer were also removed to 

ensure data coherency. The net result o f this change was a reduction in the number of 

slices occupied by the dual MAC SCAR unit; see Table 6.11. The fixed point
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arithmetic units are a good deal smaller and less complicated than the floating point 

units they replaced.

Table 6.11 FPGA utilisation for fixed point Dual MAC SCAR on Virtex-II

Logic name. Utilisation (Available) % used
Slice Flip-Flops 42280 (67584) 62%

4 input LUTs 40,119(67584) 59%
Multipliers 94(144) 65%
Block RAM 134(144) 93%

Gclk 8(16) 50%
Occupied slices 33179 (33392) 93%

The fixed point arithmetic units reduced the NOPs in the dual MAC SCAR stream to 

an average of less than 2%. That is a reduction of over 10% from the average of the 

floating point version. The remaining NOPs are caused by the reordering scheme. 

The current version of the reordering scheme requires two NOPs to be placed after a 

block update because two cycles are required to stop the data streaming in from 

memory. Having two NOPs directly after the block update ensures that no data is 

received before the new X-buffer vector fragment is read in from memory.
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Figure 6.25 Performance results for the fixed point dual MAC SCAR system on Virtex-II.

The performance results of the fixed-point dual MAC SCAR are in Figure 6.25, 

together with the performance results of the floating point dual MAC SCAR. Figure 

6.25 also shows the % peak performance of each of the systems achieved. It is clear
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Chapter Six

from Figure 6.25 that removing the NOPs in the stream has indeed increased 

performance on every single matrix. Unfortunately, though, the increase is very 

moderate. The average increase is a mere 3%.

The 3% increase is for the overall PageRank calculation and not just the SMVM. The 

system still must contend with many of the issues discussed earlier, namely, bus 

contention on the shared vector bus and the vector-unit bottle neck, which will be 

discussed later in section 7.3.

6.7.2 Fixed Point PageRanl< HW implementation

The second fixed point system implemented was the dual PageRank HW system with 

the larger 2048 line X-buffers. Once again, as was the case in the floating point 

implementation, there is a trade off between the larger X-buffers and having the third 

pattern adder unit on the FPGA. The floating point units are replaced with single 

cycle 64 bit fixed point arithmetic units and details o f the FPGA-utilisation for the 

system is given in Table 6.12.

Table 6.12 FPGA utilisation for fixed point Dual Path PageRank HW with 2048 line X-buffers

on Virtex-II

Logic name. Utilisation (Available) % used
Slice Flip-Flops 32474 (67584) 48%

4 input LUTs 33,954 (67584) 50%
M ultipliers 3 (144) 2%

Block RAM 134(144) 93%
Gclk 8 (16) 50%

Occupied slices 27,705 (33392) 81%

The migration from floating to fixed point arithmetic has significantly decreased the 

num ber o f occupied slices. In Table 6.12 there is a 10% reduction in the num ber of 

occupied slices when compared with the equivalent floating point system in Table 

6.7. The Block RAM usage remains unchanged and is the lim iting factor in this 

design. If more Block RAM were available a third Pattern adder could be 

implemented on the chip. The number of multipliers is greatly reduced as the system 

only contains a single 64 bit fixed point multiplier. The system can still be clocked at 

a maximum clock rate of 97 MHz. The clock rate did not increase because the 

longest path is in the memory controller and so remained unchanged by m igrating to
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fixed point. The results of the benchmarks on this system are shown in Figure 6.26 

together with the corresponding results of the equivalent floating point system.
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Figure 6.26 Performance results for fixed point dual path PageRank HW with 2048 line X-

buffer on Virtex-II

The fixed point system performs on average about 3% better than the equivalent 

floating point system. The number of NOPs in the system is greatly reduced to a 

mere 1.5% of the overall stream length. As was the case with the SCAR system the 

overall speedup is very modest and this can be attributed to the Vector Unit bottle 

neck, bus contention and the very sparse and scattered structure of the lA matrices.

6.7.3 Fixed Point Architecture compared

The fixed point implementation of the dual MAC SCAR and the dual Path PageRank 

HW system did increase the performance of the system when compared with their 

floating point equivalents. Using fixed point arithmetic decreased the number of 

slices needed to implement both systems, due to their reduced complexity. However, 

this reduction in complexity did not lead to any significant increase in achievable 

clock rate or significant increase in performance. The fixed point versions of the dual 

MAC SCAR and PageRank HW decreased the number of NOPs in the system by 

10% and 15% respectively. The increase in performance of both architectures was 

about 3% over that of the floating point equivalent. This disparity between the 

number of NOPs removed and the increase in performance can be attributed to a
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C hapter Six

number of issues that have been discussed eariier, namely, the shared bus contention, 

the very sparse and scattered structure o f the lA matrices and the single path vector 

unit. Figure 6.27 shows the performance of both the fixed and floating point versions 

of dual MAC SCAR and the Dual Path PageRank HW as a percentage of GPP 

performance.

81.922 fixed point Dual PR SYS 2

2  Dual Path PR SYS 2

3 fixed point Dual MAC 
SCAR

3 Dual MAC SCAR 63.3

0 10 20 30 40 50 60 70 80 90 100

% G p p  P e r fo r m a n c e  (FLO Ps)

Figure 6.27 Fixed and Floating point performance as a percentage of GPP performance

Decreasing the precision in this case has done little to increase the performance of 

the overall PageRank algorithm. This poor increase in performance together with the 

impracticality o f using fixed point arithmetic in a full scale system indicates that 

fixed point arithmetic is of little use for increasing the performance o f the PageRank 

algorithm. Significant improvement can be made with this system only if the Vector 

Unit clock speed is increased and memory bandwidth is increased. M igrating the 

design to a newer FPGA family would increase the achievable clock rate and allow 

the design to connect to newer versions of SDRAM. In the next section the 

experiments with the Virtex-5 FPGA are discussed.

6.8 Floating Point Performance on Vlrtex-5
The Virtex-5 FPGA is the newest member of the Xilinx Virtex family available^. It 

differs from previous generations in a number of ways which are discussed in section 

2.3.2. One of the major differences between the Virtex-5 FPGA and the Virtex-II 

FPGA is that it can support the higher speed DDR-2 and DDR-3 SDRAM  modules. 

The Virtex-5 can also achieve a much higher clock rate than that o f the Virtex-Il. As

® Virtex-6 was introduced at time o f writing
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discussed earlier the Virtex-5 FPGA was not used in these benchmarks because a 

suitable development board could not be sourced. Instead the design was 

implemented on the Virtex-II FPGA and a clock cycle counter was used to measure 

the time taken to calculate the PageRank algorithm. The system design was then 

reconfigured and targeted at the Virtex-5 device and using the post map clocking 

information of the Virtex-5 system, the results obtained from the Virtex-II hardware 

experiments were extrapolated to give the projected performance of the Virtex-5 

device.

The system was targeted at Virtex-5 -xcv51xl55 device with a speed grade o f -3.

This was the smallest device that the whole system could fit on. The Virtex-5 devices 

smaller than xcv51xl55, did not have enough DSP48E units in particular. Table 6.13 

compares the Virtex-II v6000 device to the xcv51xl55 FPGA.

Table 6.13 Resources of the Virtex-II v6000 FPGA and Virtex-5 1x155 compared

Part Name. Slices Mult/DSP BRAM User I/O
Virtex-II v6000 33,792 144 1,056Kb 1,104
Virtex-5 1x155 24,320"* 128 6,912Kb 800

The Virtex-5 device has over six times more BRAM than the Virtex-II device. 

Ideally this BRAM could be used to further increase the X and Y buffers and thus 

reduce the overhead associated with reading and writing the X and Y buffer 

respectively to/from memory.

Three versions of the hardware were ported to the Virtex-5 device. These were the 

single MAC SCAR unit, the Dual MAC SCAR unit and the Dual Path PageRank 

HW system with the larger cache. All three systems achieved a maximum clock rate 

of about 250MHz. Since the system is using DDR-2 667, a clock rate of 222MHz is 

required to fully utilise the memory bandwidth when 192 bits (two 96 bit words) are 

used in every clock cycle; see section 2.4. The single MAC SCAR system does not 

use the full memory bandwidth and so it can be clocked at 250MHz. The dual MAC 

SCAR and dual path PageRank HW do utilise the full memory bandwidth when 

running at 222MHz and so this clock speed was used when projecting results for 

these architectures. Changing the clock speed o f the architectures will not increase 

the efficiency or adder utilisation of the architecture and so they remain the same as

Virtex-5 slices differ from Virtex-II slices, see section 2.3.2
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indicated for the Virtex-II system. Figure 6.28 shows the performance data of the 

single MAC SCAR system on the Virtex-5 FPGA with one, two and three SMVM 

units respectively. The GPP results are also given for comparison. As discussed 

earlier the single MAC SCAR unit does not fully utilise the available memory 

bandwidth of the DDR2-667 and so it is clocked at the maximum speed achievable 

for the architecture of 250 MHz.
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Figure 6.28 Performance results for single MAC SCAR system on Virtex-5 with 250MHz clock

The single MAC SCAR architecture has an average performance of 300 MFLOPs, 

445 M FLOPs and 528 M FLOPs for the PageRank algorithm being calculated on one, 

two and three SMVM unit respectively. The system with two and three SMVM units 

outperforms the GPP by an average o f 17% and 40% respectively. As discussed 

earlier the single MAC SCAR does not utilise the full memory bandwidth available 

from the SDRAM. The dual M AC SCAR was designed to fully utilise this 

bandwidth and so it too was implemented on the Virtex-5 platform. The clock rate of 

the dual MAC SCAR system was set at 222 MHz as that is the clock speed needed to 

match the computational and memory band widths. Figure 6.29 shows the 

performance figures of one, two and three dual MAC SCAR units running on the 

Virtex-5 FPGA with DDR-667 SDRAM.
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Figure 6.29 Performance results for dual MAC SCAR system on Virtex-5 with 222MHz clock

The dual MAC SCAR system on Virtex-5 increases the average performance figures 

to 400 MFLOPs, 550 M FLOPs and 575 M FLOPs for one, two and three SMVM 

units respectively. As was the case with the Virtex-II performance results, the dual 

MAC SCAR performs about 10% - 15% better than the single M AC SCAR system. 

A single dual MAC SCAR performs on average 5% better than the Intel Xeon 

W oodcrest processor. Three dual MAC SCAR units can perform about 1.5 times the 

speed of the Xeon W oodcrest. This is despite having a clock rate about 13 times 

slower than that of the Xeon Woodcrest.

The third architecture to show promise in the Virtex-Il results was the specialised 

dual path PageRank HW. Two versions of this HW architecture, with different sized 

caches, were developed on the Virtex-II platform. The version with the larger cache 

was implemented on Virtex-5. Increasing the cache size on the Virtex-II device 

meant that only two SMVM units in the form of pattern adders could be 

implemented. This was due to a shortage o f BRAM on the device. The Virtex-5 

FPGA contains enough BRAM to implement all three SMVM units. However, since 

these Virtex-5 results are extrapolated from the Virtex-2 results it is not possible to 

include the third unit in these results. The performance results for one and two dual 

PageRank HW units on Virtex-5 are presented in Figure 6.30, together with the 

performance of the Intel W oodcrest processor for comparison.
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Figure 6.30 Performance results for dual path PageRank HW system on Virtex-5 with 2048 line

cache and 222MHz clock

The dual path PageRank HW unit outperforms the Intel W oodcrest on every matrix 

with the exception of matrix 12 which has caused problems for all the FPGA based 

solvers and has a much lower performance level than the other matrices on the GPP. 

Matrix 12 as discussed earlier has only 4 NZE per column which is well below the 

average of 10 expected in an lA matrix. Matrix 12 also appears to show no form of 

grouping which is uncommon in lA matrices. The average performance of the dual 

path PageRank HW on Virtex-5 is 588 MFLOPs and 695 M FLOPs for a system 

containing one and two dual path pattern adder units respectively. The average 

performance is about 20% better than that of the dual MAC SCAR system on Virtex- 

5 and 80% better than the Intel W oodcrest computing the PageRank algorithm on the 

test matrices. Figure 6.31 is a summary o f the performance achieved by the three 

FPGA based architectures implemented on Virtex-5 as a percentage of the Intel 

W oodcrest performance.
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Figure 6.31 Summary of performance of FPGA architectures on Virtex-5 as a % of GPP

performance.

It is clear from Figure 6.31 that all three of the FPGA based architectures 

outperforms the GPP when implemented on Virtex-5. This is due to the increased 

memory bandwidth achieved by upgrading from DDR-266 to DDR2-667. The clock 

rate of the FPGA based system has also more than doubled which means that the 

Vector Unit calculates its answer quicker and the system can utilise the extra 

memory bandwidth. The result is that the FPGA, which now uses the same memory 

as the GPP, can perform the PageRank algorithm about 1.8 times quicker than the 

Intel W oodcrest, despite having a clock rate 13 times slower. This is achieved by 

parallelising the PageRank algorithm and increasing the achievable memory 

bandwidth by implementing multiple independent banks of memory.

6.9 Summary
This chapter started with a look at the test matrices being used to benchmark the test 

architectures. They are real lA matrices obtained from crawls by the webgraph 

project. These matrices are compared with the more familiar FE matrices. lA 

matrices are often sparser and less organised than FE matrices. Unlike FE matrices, 

lA matrices are never symmetric. The base line performance for these tests was 

calculated by running the PageRank algorithm on a high end general purpose 

processor, namely the Intel Xeon Woodcrest. The Intel Xeon W oodcrest achieved a 

sustained performance of about 400 MFLOPs which is only about 4% of its 

theoretical computational bandwidth. The calculation is limited by the memory
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bandwidth. Even with its sophisticated cache structure, the Intel Xeon W oodcrest 

could only utilise about 22% of its FSB memory bandwidth.

With the discussion of the Intel Xeon W oodcrest results complete, a number of tests 

were run on two SMVM architectures designed for FE matrices, called SPAR and 

SCAR. The SPAR architecture is a column based approach to SMVM. It achieved a 

sustained performance o f about 110 M FLOP with three SMVM units in parallel. The 

SPAR had an adder utilisation o f about 35% which is much greater than that o f the 

W oodcrest which had 4% adder utilisation. The poor FLOPS performance was 

caused by a low clock rate, RAW hazard avoidance in the adder pipeline and slow 

cache line replacement on misses. The SCAR aimed to alleviate the problems 

inherent in the SPAR architecture by tiling the matrix and interleaving rows to avoid 

RAW hazards. This works very well on FE matrices but is o f limited use in lA 

matrices. The SCAR achieved an average of 208 M FLOPs for the test matrices 

which is about 41% adder utilisation. The SPAR and SCAR do not utilise the full 

memory bandwidth available to the system and so a third system was implemented to 

match the computational bandwidth with the memory bandwidth. This was done by 

adding an extra MAC unit into the SCAR system to create the dual MAC SCAR; see 

Section 5.5.3.

The dual MAC SCAR was a large system occupying 98% of the slices on the Virtex- 

II 6000 FPGA. The dual MAC SCAR increased the performance of the three SCAR 

system to 256 MFLOPs. However, there was a drop in adder utilisation to 28% 

because the dual MAC system effectively increased the adder latency and thus the 

possibility of RAW hazards occurring in the adder pipeline.

The SPAR and SCAR architecture are generic SMVM hardware units. The third and 

final hardware architecture discussed is an architecture designed especially for the 

PageRank algorithm and thus is referred to as the PageRank HW system. This 

system takes advantage of the structure of the lA matrix, where all entries in a 

column are the same. This fact is used to break the SMVM operation into two steps: 

a dense element by element multiplication and a pattern addition. This allows the 

multipliers to be removed from the SMVM unit as well as further compression o f the 

NZE datawords. The PageRank HW architecture consists of two buffers and an adder 

tree which sums up to 6 NZE per clock cycle. Two flavours of this architecture were 

implemented. The first had three dual path pattern adder units and 1024 entries in its
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X-buffer. The second had two dual path pattern adder units and 2048 entries in its X- 

buffer. The second system with the larger X-buffer performed better with an average 

performance of 255 MFLOPS and 302 MFLOPs for one and two pattern adder units 

respectively. The adder utilisation did fall in this system to 19% but it still performed 

better than the other FPGA based architectures due to its high level o f parallelisation. 

The dual path PageRank HW system achieved about 80% the performance 

sustainable on the Intel Xeon W oodcrest. This was despite having a clock 30 times 

slower and SDRAM that had a memory bandwidth of less than half of that of the 

DDR-2 667 used by the W oodcrest. The dual MAC SCAR, single MAC SCAR and 

SPAR achieved approximately 64%, 55% and 29% of the performance achieved by 

the W oodcrest respectively.

The Chapter continued with a discussion of the performance limitations of the 

system. These are shared bus contention, load balancing and NOP frequency. Firstly, 

in a test designed to show the effects of shared bus contention the performance of 

two dual path PageRank HW units calculated using a shared bus and then using 

independent buses. This test showed that if bus contention was removed two dual 

path PageRank HW units would perform 70% quicker than a single unit. This is in 

comparison to the 30% increase in performance achieved with the shared bus system. 

However, when the memory copy needed to duplicate the X-vector is taken into 

account, the performance o f the overall system drops to only 10% faster than the dual 

path PageRank HW system with the shared bus.

Secondly, the load balancing of the data stream to the SMVM units was investigated. 

The stream lengths for each of the SMVM units were compared. In FE matrices it 

was found that the average difference in stream length was 3% with a maximum 

difference in stream length of 20%. However, the lA matrix streams differed by an 

average of 10% with a maximum difference of over 30% in one o f the matrices. A 

modification to the load balancing algorithm decreased this to less than 1 % 

difference in stream lengths between the parallel SMVM units.

Thirdly, the effect of NOPS being introduced into the stream as a method of RAW 

hazard prevention was discussed. The SCAR was designed to work with a simple 

round robin reordering scheme. This proved unsatisfactory when used with lA 

matrices as the stream often contained many NOPs. Another scheme called 

opportunistic reordering was created which greatly reduced the number of NOPs. In
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an attempt to reduce the NOP count further the RCM matrix reordering scheme was 

applied to the test matrices. Although using RCM did increase performance slightly 

it did not have enough o f an effect to justify the time take to reorder the matrix. A 

direct correlation between NOP count and adder latency was established. Since 

floating-point adders are quite complicated it is very hard to reduce their pipeline 

depth. One way of reducing pipeline depth is to reduce precision and so an 

investigation into fixed point arithmetic was carried out.

This investigation into fixed point arithmetic started with fixed point emulation of 

the PageRank algorithm. The num ber of bits needed to calculate the PageRank vector 

for the test matrices was determined to be 38 bits. However, a full scale system 

would take many more. Since it would take too long to emulate fixed point 

arithmetic on a full scale system, a Zipfian distribution curve was used to estim ate 

the number o f bits needed to represent a full scale system of 1 trillion pages in fixed 

point. It was estimated that 94 bits of fixed point precision would be needed. A 94 bit 

number is quite impractical and would increase memory storage requirements. 

However, fixed point arithmetic versions of the SCAR and PageRank HW units were 

produced using a 64 bit fixed point number to investigate the usefulness of fixed 

point in smaller systems.

The fixed-point versions of the dual M AC SCAR and the dual path PageRank HW 

systems show a huge reduction in NOPs from 12% and 16% NOPs to 1% and 1.5% 

respectively. However, the performance increase is very modest at a mere 3% since 

the SMVM operation is only part o f the calculation. The slow clock rate and single 

path Vector Unit are now one o f the critical paths in the hardware.

The final section of this chapter is a look at how these architectures would perform  if 

implemented on newer generations o f FPGA. Implementing the system on a Virtex-5 

FPGA allows the faster DDR-2 667 SDRAM to replace the DDR-266 SDRAM  used 

on the development platform. The Virtex-5 also increases the clock rate to a 

maximum of 250 MHz. The single MAC SCAR, dual M AC SCAR and dual path 

PageRank HW systems were implemented and results extrapolated from the Virtex- 

II data and the new post MAP*' clock rate. All three architectures perform better than 

the Intel W oodcrest. The single M AC SCAR and dual M AC SCAR perform about

" Process used to map the circuit to FPGA architecture.
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40% and 50% faster than the Intel W oodcrest. The dual path PageRank HW system 

is the fastest of all the tested architectures and it can calculate the PageRank vector 

for the test matrices at almost twice the speed of the Intel W oodcrest, despite having 

a clock rate thirteen times slower.

The results presented in this chapter are the first attempts at speeding up the 

PageRank algorithm using an FPGA to the best of the author’s knowledge. It is clear 

that it is possible with modern FPGAs and SDRAM . The viability of the FPGA 

approach will be discussed in the next section with details o f where the author thinks 

more work could be done to improve the result further.
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Chapter Seven

7 Discussion and Conclusions

7.1 Introduction
The m odem  Internet, with over 1 trillion pages [6], has become the global network 

imagined by Licklider in 1962 [1]. One o f the major issues faced by Internet 

engineers is the ranking of pages returned to user queries. This thesis attempts to 

investigate FPGA based hardware for these ranking algorithms. In Chapter 3 this 

ranking was shown to be simply a linear algebra problem. Two ranking algorithms 

were discussed in detail. Firstly, the HITS algorithm, used by the Ask search engine 

was discussed. Secondly, G oogle’s PageRank algorithm was presented. PageRank is 

the most popular search algorithm used on the Internet today. The PageRank 

algorithm is an iterative algorithm which consists o f a single SMVM and nine vector 

operations per iteration. Brin and Page, the creators of PageRank, claimed that about 

50 iterations of the PageRank algorithm are needed to achieve the correct PageRank 

order [49]. Brin and Page used commodity PCs to calculate the PageRank algorithm. 

Research presented in Chapter 4 showed that the GPP performs quite poorly when 

calculating SMVM. It often achieves only about 3-4% of its peak computational 

bandwidth on lA matrices. In Chapter 5 and Chapter 6 a number of FPGA solutions 

for the PageRank algorithm were proposed and discussed. In the rem ainder of this 

chapter these results will be discussed. The Chapter concludes with a look at possible 

future work that might be beneficial to this project.
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7.2 Contribution of this Thesis
In this thesis the viability o f using an FPGA based system to solve the PageRank 

Internet ranking algorithm was investigated. To the best of the author’s knowledge 

this work is the first time this possibility has been investigated. The major findings of 

this thesis can be broken down into four broad categories:

•  Precision considerations for the PageRank algorithm

• Implementation of FPGA hardware suitable for execution the PageRank 

algorithm

• Implementation and benchmarking of two existing SMVM architectures

• Design, Implementation and benchmarking of new FPGA hardware specially 

for the PageRank algorithm

7.2.1 Precision of the PageRank calculation

In Section 6.6, a system for estimating the fixed point precision needed for the 

PageRank algorithm was proposed, through using a fixed point emulator for small lA 

matrices. A Zipfian distribution was fitted to the fixed-point emulation results and 

the results were extrapolated to full size lA matrices. The use of fixed point 

arithmetic was investigated in an attempt to remove NOPs associated with RAW 

hazards in the adder pipeline. Fixed-point adders often have significantly shortened 

adder pipelines and thus should reduce the number of NOPs. Consequently the 

performance of the PageRank calculation should be increased by this process.

Use of the emulation-extrapolation method showed that approximately 95 bits of 

fixed point precision would be needed to ensure that 95% of the pages in the 

PageRank vector for a system of 1 trillion pages were in the correct order. The fixed 

point solution, therefore, would increase the storage requirement of the PageRank 

algorithm as each NZE in the fixed point system would require 31 bits more memory 

than the NZE in the 64 bit floating point system. This would be an increase in 

memory requirements of approximately 50%. Larger data buses would be required 

by the FPGA, which could increase the FPGA resource usage significantly. It was 

therefore decided that a fixed-point arithmetic system for a full scale PageRank 

calculation was impractical. Instead, a fixed point solution may be viable for smaller
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corporate search facilities and so a 64 bit fixed point system was implemented. The 

results of this system were presented in Section 6.7 and they will be discussed in 

Section 7.2.3.

7.2.2 PageRank in Hardware

In Chapter 5, the design and implementation of a hardware platform capable of 

computing the PageRank algorithm was described. The hardware needed to be 

capable of dealing with the very large and sparse matrices associated with PageRank 

algorithm. It was decided that the architecture designed for the FIAMMA project 

[19] was a suitable platform as the only limitation on matrix size was the size of the 

SDRAM used by the system.

The first step in implementing the PageRank algorithm in hardware was to identify 

the operations carried out by the PageRank algorithm. Once identified, a number of 

hardware units were developed to carry out these operations. Software libraries were 

also written to control the hardware units. These libraries allowed the MicroBlaze to 

communicate with hardware units and thus control their operation. In this way, the 

PageRank algorithm written in C code and executed on the MicroBlaze was 

computed by the custom hardware.

A number of variants of the hardware PageRank solver were implemented. The first 

hardware system implemented was a double precision floating point system running 

on a Virtex-II V6000 FPGA. This system contained three SMVM units, an all­

purpose vector unit. Microblaze controller, PC interface and four WB buses and 

memory controllers for connection to four independent banks of SDRAM. The clock 

rate of the implemented design was approximately 100 MHz. The clock rate varied 

with the SMVM unit implemented. Three different SMVM units were implemented 

and tested on this system. Two of these SMVM units were pre-existing, state of the 

art SMVM units. The third was a special SMVM unit designed for use with the 

PageRank algorithm and was designed as part of this work. These units will be 

discussed further in the following two sections.

The second hardware variant for the PageRank algorithm was a 64-bit fixed point 

version on the Virtex-II V6000 FPGA. In this system, all the floating point arithmetic 

units were replaced with fixed point arithmetic units. This reduced the size of the
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system but did not increase the clock rate in any o f the systems implemented because 

the longest path was in the memory controller which remained unchanged by the 

migration to fixed point arithmetic. Two SMVM units were implemented using fixed 

point arithmetic. These were the specialised PageRank HW and the generic SMVM 

unit (SCAR) which had a performed better than the SPAR unit in the double 

precision tests.

The final variant implemented was a double precision floating point system on the 

Virtex-5 1x155 FPGA. Once again, the SCAR and PageRank HW were implemented 

on this platform. The clock rate o f the Virtex-5 systems increased to a maximum of 

250 MHz. This last system also used DDR2-667 memory which is over two times 

faster than the DDR-266 used in the Virtex-II designs.

7.2.3 Implementation and Benchmarking of two Generic Linear 
Algebra Systems

The two generic SMVM systems were the SPAR and SCAR system [17, 115]. The 

SPAR architecture processes the matrix data in a column major format. The SPAR 

was first proposed in 1995. However, to the best o f the author’s knowledge, it was 

never built. This implementation o f SPAR, therefore is the first full scale system to 

contain a SPAR unit and the first implementation o f the SPAR architecture on 

FPGA. The hardware solver system with three SPAR units occupied 84% of the 

33392 slices available on the Virtex-Il FPGA. Initial tests showed that the long 

columns of the lA matrices caused a huge number of Y-cache misses and so a 

modification was made to the SPAR architecture and data ordering. An X-buffer was 

implemented and added to the design to save on costly reads to SDRAM. The matrix 

was divided into bands before encoding using the SPAR data structure. Thus, the 

number of Y-cache misses was greatly reduced. Y-cache misses were very costly, as 

they required the data in the cache line be written out to SDRAM before the new 

cache line could be read in. The hardware system with one and three SPAR SMVM 

units achieved an average performance o f 70 M FLOPS and 110 M FLOPs 

respectively. This was approximately 33% of the peak computational performance 

and only 30% of the performance achieved by the GPP against which it was 

benchmarked. It was clear from these results that the SPAR architecture would be of 

no use with lA matrices and so no further tests were run on the SPAR architecture.

200



Discussion and Conclusions

The second SMVM architecture implemented and benchmarked was the SCAR 

architecture which was designed and built as part of the FIAMMA project for FE 

stiffness matrices. The SCAR architecture is block-row based. The hardware system 

for solving the PageRank algorithm with three SCAR units occupied 79% of the 

Virtex-II V6000 slices. It was, therefore, slightly smaller than the SPAR. The state 

machine in the SCAR was greatly simplified over the SPA R’s state machine, because 

it moved the issue of dealing with RAW hazard detection to the software reordering 

system. The architecture calculating the PageRank vector with one, two and three 

SCARs achieved a performance of 126 M FLOPS, 180 MFLOPS and 208 MFLOPS 

respectively. This performance represented a 1.8x performance improvement over 

that o f the SPAR. The SCAR achieved approximately 55% of the GPP performance 

with a clock rate of 96M Hz which is over 30X slower than the GPP clock rate. The 

SCAR achieved approximately 42% of its theoretical computational bandwidth when 

using lA matrices. These utilisation figures of computational bandwidth were good 

enough to enable the SCAR to easily outperform the GPP when the SCAR 

architecture was migrated to the newer Virtex-5 FPGA with DDR-2 667. The SCAR 

on Virtex-5 actually performed approximately 40%  better than the GPP despite 

having a much lower clock rate (250 MHz vs. 3 GHz).

The architecture with SCAR SMVM units performed at 40% of its peak 

computational peak bandwidth when calculating the PageRank algorithm. However, 

due to the low clock rate of the FPGA system, the computational bandwidth didn’t 

match the available memory bandwidth. In order to eliminate this mismatch and to 

fully utilise the memory bandwidth, a second version of the SCAR system was 

implemented. It was referred to as the dual MAC SCAR as it has two MAC units 

internally. The WB buses in the system were doubled in size to carry two NZEs at a 

time to utilise the two MAC units in the dual MAC SCARs. The memory controller 

was adapted to include a two time domain. In previous versions o f SCAR the 

memory was clocked at the same rate as the rest o f the system. This was changed to 

allow the memory to be clocked at a different rate to the rest of the system. This 

meant that the memory could be clocked at full speed to fill a FIFO and the larger 

WB buses could utilise the data at the same rate. Since the dual MAC SCAR used 

two NZE on every clock cycle the system clock rate could be lower than the memory 

clock rate and still fully utilise the memory bandwidth. The results of the Virtex-II
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system were an average performance o f 176 MFLOPs, 247 MFLOPS and 259 

MFLOPS for a hardware system, containing one, two and three dual SCAR systems 

respectively. This system occupied 98% o f the available FPGA slices making it the 

largest of the systems implemented. The dual SCAR system achieved approximately 

62% of the GPP performance. However, the utilisation of the computational/memory 

bandwidth dropped to 28%. This was due to increased adder latency, bus contention 

and a calculation bottleneck in the Vector Unit (all of which will be discussed in 

Section 7.3). The dual SCAR system was also used to match computational 

bandwidth to memory bandwidth in the Virtex-5 system with the result that the dual 

SCAR system achieved a 1.5 times improvement on the GPP performance.

As discussed in 7.2.2, an investigation into fixed point performance was carried out 

using the dual MAC SCAR. The fixed point system reduced the size of the system by 

about 5%. The clock rate remained unaffected as the longest path was in the memory 

controller. Changing the design to fixed point should remove the 12% of the data 

stream that are NOPs, which were inserted to deal with RAW hazards. However, a 

speed-up of only 3% was achieved. This was due to the fact that RAW hazards only 

affected the SMVM part of the calculation and so the vector operations did not 

benefit from the removal of NOPs from the stream. The issue of shared bus 

contention was also a problem which will be discussed in Section 7.3.

7.2.4 Implementation and Benchmarking of specialised 
PageRank Hardware

The SCAR architecture did outperform the GPP with the lA matrices in the 

PageRank algorithm when implemented on Virtex-5. However, it was the third 

SMVM architecture that performed best. The third architecture was designed to take 

advantage o f characteristics of the lA matrices. The PageRank algorithm requires 

that all values in the column of an lA matrix must be equal and sum to one. Thus 

there is no need to save the value of every NZE. Instead the matrix can be 

represented with a dense vector containing the NZE value, if any, for any given row 

and a pattern matrix. Using this format the SMVM can be achieved by performing a 

dense element by element vector multiplication and then by using the pattern matrix 

to add the various elements associated with a given column. This process was given
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the name “pattern addition” as it removed the need for muhipliers in the SMVM 

units.

Removing the need to store the value of the NZE reduced the number of bits needed 

to represent the NZE. The NZE could now be represented using two 16 bit addresses 

which gave its position in the matrix block. This reduction in memory requirements 

effectively tripled the memory bandwidth. In order to match computational 

bandwidth with available memory bandwidth each of the PageRank HW units must 

process six NZEs per clock cycle. This was done using an adder tree and the 

resulting architecture utilised 93% of the available slices on the Virtex-Il V6000. The 

number of hardware multipliers used dropped from 65% to 8% when compared with 

the SCAR architecture. In order to fit three PageRank units on the FPGA the X and 

Y buffer size had to be reduced to 1024 vector entries, which was half the size of the 

buffers used by the SCAR architecture. Using adder trees allowed multiple NZE to 

be processed per clock cycle but this came at a cost of increasing the overall adder 

latency and thus the number of NOPS in the stream. Increasing the number NZE 

processed per clock cycle also increased the shared bus contention as the units 

processed blocks faster but reading in new X vector fragments and writing out Y 

vector fragments still took the same time as before thus leaving units waiting for use 

of the vector bus.

The hardware architecture with one, two and three PageRank HW units for pattern 

addition performed at 228 MFLOPS, 270 MFLOPs and 281 MFLOPS respectively. 

The poor performance increase when multiple PageRank HW units were added was 

due to the shared vector bus which was now saturated. In an attempt to alleviate this 

issue, one of the PageRank HW units was removed and the size of the X and Y 

buffers were increased to 2048. The results of this version of the architecture were 

better and the new PageRank HW system achieved 255 MFLOPS and 302 MFLOPS 

for the system with one and two PageRank HW units respectively. Although this was 

still well below the peak computational bandwidth, it meant that the FPGA system 

was performing at 80% that of the GPP despite having a clock rate over 30 times 

slower and memory that is clocked at less than half the speed of the DDR2-667 used 

by the GPP. This second version of the PageRank HW was then ported to the Virtex- 

5 FPGA using DDR2-667 and achieved a speed up of over 1.8 times that of the GPP. 

This result was the best result obtained from any of the architectures and it proved
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that in order to achieve sizable speed up hardware designed specially for the 

PageRank algorithm and lA matrices was needed.

The PageRank HW was also implemented in a fixed point version, but like the 

SCAR fixed point version only very moderate performance increases were 

achievable.

7.3 Limitations and Future Work
Throughout the benchmarking work, discussed in the previous section, a num ber of 

limitations on the performance of the architecture were repeatedly mentioned. These 

were NOPs in the data stream, shared bus contention and algorithm bottle neck in the 

vector unit.

Firstly, the NOPs in the data stream were inserted to avoid RAW  hazards and their 

frequency was dependent on matrix structure and the adder latency. Changing the 

structure of the matrix could be achieved using reordering algorithms but these can 

be very costly. In Section 6.5.3, RCM was used in an attempt to decrease the number 

of NOPs and thus increase performance, but it proved to be of little use with the test 

matrices used. If a suitable reordering scheme was found, an increase in performance 

of up to 12% and 16% could be achieved for the SCAR and PageRank HW systems 

respectively. The number of NOPs in the stream could also be reduced by the 

implementation of short pipeline adders. More research into this area, especially on 

the Virtex-5 and Virtex-6 platforms could help with optimising this architecture.

Secondly, shared bus contention proved to be a serious issue in this architecture 

when dealing with lA matrices. This was caused by sparse matrix blocks where 

almost 90% of the matrix blocks contained less than one elem ent per row. In section 

6.5.1 an experiment was carried out to estimate the performance increase that could 

be achieved by removing bus contention. This was done by m aking a copy o f the X 

vector at the end of every calculation and allowing the SMVM units to access their 

own copy of the X vector. The second PageRank HW architecture with two SMVM 

units was used for this, as it had a free memory channel. W hen two independent 

copies of the X vector and Y vector were used, the system with two SMVM units 

performed 70% quicker than the single SMVM unit architecture. This increase, 

however, was reduced to 30% when the time taken to do the memory copy was taken
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into account, showing that bus contention was a real issue in this system. The project 

could benefit from a more in-depth look into ways of reducing this issue. 

Improvements may be achieved by increasing the efficiency of the vector bus. It may 

be possible to implement the memory copy required to have two separate vector 

buses as part of one of the other vector operations carried out in the Vector unit. 

Currently a number of vector operations are carried out on the current estimate of the 

PageRank vector on each iteration. If a feature was added to the Vector unit to allow 

multiple output destinations to be requested for one of these operations the vector 

copy could be done as part of one of these other vector operations. This, however, 

would require a major change to the Vector Unit hardware. Currently, the shared 

vector bus is only 128 bits wide. This is significantly smaller than the matrix data bus 

which is 192 bits wide. This change alone would increase the buses transfer speed by 

50%. However it would do nothing for the latencies in starting and ending a memory 

read or write to SDRAM. It is possible that some improvements could also be made 

in regard to this memory operation start-up latency if the SDRAM controllers and 

WB bus were redesigned to minimise start-up latencies or if pre-fetching memory 

data was implemented.

Finally, the Vector Unit has become a performance bottle neck in this system and 

any future version of the hardware should look into implementing a parallelised 

version of the Vector Unit. Currently, the Vector unit only has a single MAC 

pipeline and does not utilise the full memory bandwidth available. When the 

PageRank algorithm was profiled, the Vector unit was found to perform 24% of the 

operations needed to complete the algorithm. The remaining 76% of the operations 

were carried out by the SMVM unit. For this reason, this work focused on 

accelerating the SMVM operator. Table 7.1 shows the percentage of PageRank 

calculation time spent carrying out operations in the Vector Unit and SMVM unit for 

the different versions of the FPGA hardware.
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Table 7.1 Time spend on operations carried out by the Vector unit and SMVM unit when 

calculating the PageRank algorithm, (flgures in bold indicate vector unit limited architectures)

Hardware Version. %time in Vector unit % time in SMVM unit
W ork Load 24% 76%

3x single MAC SCAR 27% 73%
3x dual MAC SCAR 33% 77%
3x PageRank HW 1 44% 56%
2x PageRank HW 2 47% 53%

Table 7.1 shows that as improvements are made to the SMVM performance, the 

percentage of the calculation spent calculating the vector operations increases. For 

optimal performance vector operation time and SMVM operation time should remain 

proportional to the work load being carried out by each unit. It is clear therefore that 

as the SMVM performance increases the Vector unit becomes a bottleneck. 

Throughout all these tests, the vector operations took the same amount of time to 

complete. The increase in precentage of the calculation spent in the Vector unit was 

caused by an overall reduction in the time taken to complete the algorithm due to the 

increase in SMVM performance.

One method of increasing the performance of the Vector unit would be to parallelise 

the unit’s operations. This could be done by adding a number o f parallel MAC units 

with an adder tree to add the results together at the end. The adder tree may or may 

not be used depending on the operation. It would be needed in the dot product 

operation but would not be needed in the element-by-element multiplication 

operation, for example.

Implementing a parallelised Vector unit on the Virtex-II system would not be 

practical in its current state as the system utilises up to 98% of the device. The large 

Virtex-5 FPGA should easily have enough logic to accommodate a parallelised 

version of the Vector unit. The system could be parallelised to fully use the available 

memory bandwidth. The Virtex-5 system described in Section 6.8 includes 4 banks 

of DDR2-667 and has maximum clock rate of 222 MHz. Since the Vector unit uses 

64 bits per clock cycle, three parallel M AC units would be needed to fully utilise the 

memory bandwidth. If this system was implemented the Vector unit performance 

would increase almost 3 times its current performance. This would give the whole 

PageRank algorithm an increase in performance o f 18-30% depending on which
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system the FPGA was running. This performance increase is sizable and would be 

well worth investigating in future versions o f this hardware.

Another issue that should be addressed is the data word size of the PageRank 

hardware. Currently the system uses a 96 bit data word which consists of three 32 

NZE. This could be reduced to a 64 bit data word if the extra bandwidth was needed. 

This is due to the fact that the system was designed to utilise three NZE from the 

same row o f the matrix. Currently, the row value for each of the NZE was encoded in 

the PageRank hardware dataword. Since they all came from the same row the row 

address only needed to be included once. This was not implemented as part of this 

architecture as the clock rate of the system was unable to increase further to utilise 

the extra memory bandwidth that would be made available and so no performance 

increase would have been apparent. However, in future implementations, if memory 

bandwidth rather than clock rate was to become the major bottleneck this could 

increase the memory bandwidth by 33%.

A final point that is worth mentioning is the power considerations of the project. 

Currently, the issue of power consumption o f the FPGA versus the GPP has not been 

considered. The GPP has a power rating of SOWatts. Since the GPP can run at about 

400 MFLOPS for the PR algorithm the performance per watt rating of the GPP is 

approximately 5 MFLOPSAV. Calculating a similar performance per watt figure is a 

non-trivial task for the FPGA as it is affected by clock rate, logic utilisation and 

temperature. The FPGA however is counted a low-power device and so should have 

a much smaller power requirement than the GPP and thus make it more cost- 

effective to use the FPGA for the PageRank calculation. A studio of the power usage 

of this architecture would need to be carried out before the extent of this reduction in 

cost could be estimated.

This system is a first attempt at calculating the PageRank algorithm on FPGA and as 

such there are many areas where work could be carried out in the future, especially 

as faster FPGAs and memory modules become available. In the preceding 

paragraphs a number of these areas have been discussed with a view to aiding any 

future development of this project. In the author’s opinion, these areas are, in the 

author’s opinion, where the biggest performance increases could be achieved.
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7.4 Final Thoughts
PageRank is a very important algorithm relied on by billions of people to retrieve 

useful information from the vast Internet. This algorithm is simply a linear algebra 

problem. It is widely known that large matrix calculations perform poorly on GPP. 

Thus, in this thesis benchmarks for the PageRank algorithm running on FPGA were 

presented for the first time. A hardware system for solving the PageRank eigenvector 

was described and a number of versions were benchmarked. These included fixed 

and floating point versions as well as versions running on different generations of 

FPGAs. The results were mixed, but promising. The floating point solution proved 

too slow on the Virtex-II FPGA. but when it was targeted at Virtex-5, a number of 

versions of the solver could outperform the GPP by almost 2X. The specialised 

PageRank hardware proved to be the best performing architecture. The SPAR, which 

is a generic SMVM unit, had disappointing results when using column major 

operations. The SCAR which is a block row solver for SMVM fared much better.

The fixed point versions o f the architecture failed to increase the performance 

significantly and required a huge number of bits to represent large matrices. For full 

scale matrices, fixed point solutions are probably not practical but they may be of 

some use on smaller corporate matrices.

Overall, the FPGA increased the performance of the algorithm. However, this 

increase in performance was not large enough to justify a change from GPP to FPGA 

systems for solving PageRank. As FPGA prices drop more and their performance 

increases in future generations, it might yet be viable to accelerate the PageRank 

algorithm with an FPGA.
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Table 9.1 Summary of Finite Element Matrices (Bus Utilisation and FPU Utilisation quoted as a

single SMVM SCAR unit).

Name Rows NNZ Ave.
Row

Length

Sparsity Bus
utilisation

FPU
utilisation

av41092 41092 1683902 41 0.10% 14.76% 58.41%
axle_covered 177330 12641162 71 0.04% 12.29% 79.09%

bm_slsb 71505 2090374 29 0.04% 9.25% 87.88%
bm-ttnb 52061 571967 11 0.02% 16.28% 81.16%
carrier 12174+ 9157985 75 0.06% 8.20% 83.22%
ex35 19716 227872 12 0.06% 15.54% 82.19%

exp_bin-slsb 71505 4109243 57 0.08% 6.40% 90.46%
exp_bm-ttnb 52061 1091873 21 0.04% 9.74% 86.33%

front_axle_5KN 42291 2998741 71 0.17% 3.57% 88.39%
11 22695 1215181 54 0.24% 5.10% 93.05%

lung2 109460 492564 4 0.00% 31.34% 49.62%
ns3da 20414 1679599 82 0.40% 11.45% 84.26%

pkustkOl 22044 979380 44 0.20% 8.82% 85.81%
pkustkOB 63336 3130416 49 0.08% 8.41% 87.88%
pkustk04 55590 4218660 76 0.14% 6.29% 81.16%
pkustkOS 37164 2205144 59 0.16% 8.06% 87.36%
pkustk06 43164 2571768 60 0.14% 8.10% 86.84%
pkustkOS 22209 3226671 145 0.65% 3.41% 89.43%
pkustk09 33960 1583640 47 0.14% 9.10% 86.84%
pkustklO 80676 4308984 53 0.07% 9.02% 86.84%
pkustkl 1 87804 5217912 59 0.07% 8.97% 85.29%
pkustkl2 94653 7512317 79 0.08% 6.72% 78.57%
pkustk 13 94893 6616827 70 0.07% 7.26% 83.22%
pkustkl 4 151926 14836504 98 0.06% 6.28% 86.33%

pli 22695 1350309 59 0.26% 4.61% 93.56%
poisson3Db 85623 2374949 28 0.03% 50.97% 40.84%
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qaSfk 66127 1660579 25 0.04% 10.59% 87.36%
qaSfm 66127 1660579 25 0.04% 10.60% 87.36%

sme3Dc 42930 3148656 73 0.17% 22.08% 72.37%
solid 186 268692 18212700 68 0.03% 9.13% 83.22%
solid 187 268692 18212700 68 0.03% 9.13% 83.22%
solidl91 268692 18285672 68 0.03% 9.10% 83.22%
solid45 61812 2054614 33 0.05% 9.09% 86.84%
solid92 268692 18061226 67 0.03% 9.21% 83.22%
stomach 213360 3021648 14 0.01% 28.41% 56.86%

thermal_69k 68019 1337939 20 0.03% 12.81% 85.81%
torso 1 116158 8516500 73 0.06% 6.64% 86.84%
torso2 115967 1033473 9 0.01% 33.36% 63.06%
torsoB 259156 4429042 17 0.01% 29.30% 63.06%
turbl 246517 17824567 72 0.03% 10.70% 79.09%
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10 Appendix 2: Source Code

Due to the length of the source code of this work it was decided not to include it as 

an appendix. However, a copy of the code may be obtained from the author under 

normal college license agreements by emailing him at mcgettrs@ tcd.ie.
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