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Abstract

Spectroscopy and scattering of mesons containing charm quarks from

lattice QCD

by Graham Moir

We present excited spectra of mesons containing charm-light (D), charm-strange
(D) and charm-charm (charmonium) combinations. We perform these spectroscopic
calculations on two volumes, 16 x 128 and 24% x 128, of dynamical Ny = 2 + 1
configurations generated by the Hadron Spectrum Collaboration. These ensembles
have unphysically-heavy degenerate up and down quarks, resulting in a pion mass of
~ 391 MeV. Our use of distillation and the variational method combined with a large
basis of carefully constructed interpolators allows us to extract and reliably identify
the continuum spin of an extensive set of states up to .J < 4, while also allowing
access to explicit gluonic degrees of freedom. For the first time in a lattice QCD
calculation, we extract charmonium states with exotic quantum numbers 07—, 17"
and 277, and in all three sectors, we identify the lightest hybrid supermultiplet and
evidence for an excited hybrid supermultiplet. Using a non-relativistic interpretation
of some of our interpolators in the open-charm sectors, we calculate mixing angles
for P-wave, D-wave and the hybrid 17, spin-singlet triplet states. We also present
preliminary results for the isospin, I = 3/2, Dm multi-particle spectrum and map
out, via the Liischer formalism, the [ = 0 elastic scattering phase shift. As expected

we do not find a resonance in this channel.
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Chapter 1

Introduction

Since Maxwell’s paper entitled ‘A Dynamical Theory of the Electromagnetic Field’
(1], theoretical physics has undergone many revolutions, and has produced one of the
most successful physical theories to date; the Standard Model of particle physics.
The Standard Model is written in the language of Quantum Field Theory, which is a
mathematical framework that combines two of the major developments of the twen-
tieth century; Special Relativity [2] and Quantum Mechanics [3-5]. The formulation
of these two theories has led to some drastic changes in the way we view nature. For
instance, Special Relativity leads to many unintuitive consequences, such as time
dilation and length contraction, and has led to the inception of space-time as the
fabric of the universe [6], while Quantum Mechanics brings with it the difficulty of
interpretation; the famous (or infamous) ‘no-go’ theorems of Bell [7] and of Kochen
and Specker [8] show the impossibility of using local hidden variables to describe
the theory and seem to suggest an inherit randomness of the universe or a spooky

action at a distance of entangled particles.
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As previously mentioned, the marriage of these remarkable theories is achieved
through Quantum Field Theory which was developed throughout the first half of
the twentieth century. The first reasonably complete theory of Quantum Electro-
dynamics (QED) was achieved by Paul Dirac in the late 1920’s [9]. As the theory
progressed, it was clear that it possessed one major flaw; the self-energy and vacuum
polarization effects led to divergences. This seemingly fatal problem was solved in
the late 1940’s by influential physicists such as Dyson, Schwinger, Tomonaga, Bethe
and Feynman via the introduction of the concept of renormalisation which swept
away the infinities that plagued QED by a redefinition of what is meant by the

observable mass and charge of a particle (see [10] and refs therein).

There are many ways to formulate a Quantum Field Theory such as canonical quan-
tization, the path integral and BRST quantization. Since the path integral approach
produces Feynman rules in their final Lorentz covariant form, it is arguably the most

elegant. In this approach one calculates expectation values of observables O via:
(0]0(6)]0) = / DoO(6)e'S® | (1.1)
A

where the integral is taken over the space of all possible field configurations A. D(¢)
is the measure on this space and the action S(¢) is given by an integral of the
Lagrangian density over the desired space-time. When the action contains no inter-
action terms, the path integral can be performed exactly due to its Gaufiian nature.
On the other-hand, when describing interacting theories, the path integral looses its
Gauflian form and alternate methods are required. Expanding the exponential of the
path integral produces a series of free path integrals that can then be solved exactly.
For this asymptotic expansion to be feasible, the coefficient of the interaction term
in the action, known as the coupling, must be small enough so that each term in

the series contributes less than its predecessor. This method, known as perturbation
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theory, has had immense success in QED where it has matched experimental results
to an incredible degree of accuracy. This consistency with experiment has led many
physicists to disregard or simply ignore a theorem by Rudolf Haag [11] that was
generalized by Arthur Wightman [12] to show that a single Hilbert space represen-
tation is insufficient for describing both free and interacting fields, and an equivalent

theorem by Robert Schrader [13] that applies to the path integral formulation.

Following the success of describing the electromagnetic force as a quantum theory
of fields, the attention of many theorists turned to the application of QFT to the
remaining known forces of nature. The early 1960’s brought about two major devel-
opments, each of which brought closer the unification of Electromagnetism and the
Weak force. The first of these is known as the Nambu-Goldstone theorem [14, 15],
which implies that the spontaneous breaking of a global symmetry brings with it
massless bosons. The second was the use of the gauge principle as a basis to con-
struct QFT’s of interacting fundamental fields [16]. However, in the quest to unify
the Electromagnetic and Weak forces, there was still one missing ingredient; the
Higgs-Mechanism. Although named after Peter Higgs, it was developed by a num-
ber of physicists across a number of papers [17-21]. With all the required pieces in
place, the theory of Electroweak interactions was constructed in the late 1960’s for
which Salam, Weinberg and Glashow were awarded the Nobel prize. The unification
is based on the SU(2) x U(1) gauge group. At high enough energy, the electroweak
symmetry is unbroken and all fundamental particles are massless. As the universe
cools below a critical temperature, the symmetry is broken and the W and Z bosons

acquire a mass.

With the Electromagnetic and Weak forces unified within a single gauge theory, the
focus of many physicists turned quickly to the strong sector. By then, Faddeev and

Popov had already shown how to construct Feynman rules for Yang-Mills gauge
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theories [22], and Feynman had begun to construct the partonic picture of hadron
collisions. A Lagrangian based on the SU(3) gauge group describing the dynamical
behaviour of the strong force was constructed in the early 1970’s and brought with
it two peculiar properties. The first of these, known as asymptotic freedom, was
discovered independently by Politzer. and by Gross and Wilczek. and can be seen
by calculating the one loop S-function of Quantum Chromodynamics (QCD) [23].
It is a consequence of the fact that the anti-screening effect of the gluons overcomes
the screening effect of the quarks. at high energies. The second of these unusual
properties is known as confinement. It implies that all physical observables are colour
singlets, hence restricting experimentalists to indirect methods when attempting to
detect colour charged objects. Although unproven, confinement is widely accepted
as a property of QCD due to strong evidence arising from experiment and from

non-perturbative methods such as Lattice QCD [24].

The Standard Model of particle physics, as it now stands, is based upon the uni-
fication of the strong and electro-weak sectors. Its gauge structure follows that of
the SU(3) x SU(2) x U(1) group and it is consistent with all experimental facts to
date. While the recent discovery of a higgs-like boson at 125 GeV' [25, 26] has ren-
dered the Standard Model complete as a theory, there are still many open questions
surrounding particle physics such as the strong CP and hierarchy problems, or how
to unify gravity with the other forces in a quantum setting. Many extensions to the
Standard Model exist and attempt to address some of these problems but, as of vet.

there is no Grand Unified Theory of Everything.

This thesis is devoted to the exploration of the charm sector of QCD via the non-
perturbative framework of lattice field theory, but before we discuss its lattice for-

mulation let us briefly review QCD in the continuum.



t

Chapter 1. Introduction

1.1 Quantum Chromodynamics

The gauge group of QCD is based upon empirical evidence for the existence of a
colour charge. Both theoretical and experimental evidence points to the existence of
three such colours, suggesting that the fundamental matter fields should belong to a
three dimensional irreducible representation of a gauge group that should be exactly
realized in nature. From all of the simple compact Lie groups, only four have three
dimensional irreducible representations (irreps). Of these, three are isomorphic to
one another; SO(3) = SU(2) = Sp(1), while the fourth is SU(3). Experimental
evidence requires that quarks and anti-quarks should be different states. This con-
dition implies that the triplet representation of the gauge group should be complex,
that is, 3* # 3. Only SU(3) survives this condition since the triplet representation

of SO(3) is real. The well known SU(3) decompositions

3®3" = 168 (1.2)
3®3 = 3*®6 (1.3)
3®3®3 = 16808410 (1.4)
3R3®3I®3 = 34303464660 150154154¢ 15" (1.5)

guarantee that there are colour singlet states in the form of mesons (¢g) and baryons
(qqq), while also ruling out the possibility of some combinations such as diquark (qq,

qq) or four-quark states (qqqq, Gqqq).

Assuming that the strong force can be described by a gauge theory based on the

group SU(3) with colour triplet matter fields, of which there are empirically six,
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restricts us to the following Lagrangian density
6 1S
L=Y 4(iv"Dy~mp)as — 3 ) FL"Fy, . (1.6)
f=1 a=1

where 7, are the Dirac matrices following the Dirac algebra {v,,7.} = 2n,. D, is
the covariant derivative

D// = 0;1 - ig()A[l s (17)

where the vector field A, is a linear combination of the generators of the Lie-algebra
of SU(3), and gy is the bare strong coupling constant. F? is the gluonic field

pv

strength tensor given by

FS, = 0,A5 — 9,A% + gof ™ AL A (1.8)

v

which explicitly shows that the non-abelian nature of SU(3) leads to self-interactions
of the gluonic fields Aj,. fab are the structure constants of SU(3) satisfying the
relation

(X2, AP] = 2ifobexe (1.9)
while the Gell-Mann matrices, \?, are the aforementioned generators of su(3).

The Lagrangian of QCD only specifies the theory at the classical level. Quantization
brings with it a number of complications that arise due to the fact that not all of
the degrees of freedom in the gauge fields are physical. To restrict to solely the
physical degrees of freedom. one must gauge fix (when using a perturbative expan-
sion). However, in the non-abelian case, the gauge fixed path integral contains a
functional determinant, which can be calculated by re-expressing it as a fermionic
path integral. These fictitious fermions are known as ghosts. They are not physical,

but rather a procedure introduced by Faddeev and Popov for maintaining a theory
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with physical degrees of freedom [22]. Once the formulation of the Feynman rules
has been achieved, one has a formal perturbative expansion. Of course, the regu-
larization and renormalisation of the theory must be achieved, but once this is so,
the perturbative definition of the quantum theory that corresponds to the classical

Lagrangian is completed.

Due to renormalisation, the coupling constant of QCD is energy dependent. It
grows as energy is decreased, rendering perturbation theory inapplicable for low
energy QCD. It is clear that non-perturbative effects will play a major role at the
energy scales of hadrons, and in order to probe such non-perturbative phenomena,
we would like to solve the path integral of QCD directly. Unfortunately, no such
solution exists. One alternate approach is to evaluate the path integral numerically

within a discretised finite volume scheme, known as Lattice Field Theory.

1.2 Lattice QCD

The Standard Model contains many non-perturbative phenomena such as the Higgs
mechanism or Confinement, and in order to study them from first principles it is
essential to define the theory beyond a perturbative expansion. Lattice regularisation
provides a setting in which this can be achieved. By replacing continuous space-time
with a regular grid of points. one reduces the degrees of freedom of the path integral
to a countably infinite set. Then, by reducing the infinite extent of the grid to that

of a finite one, the path integral becomes finite dimensional over a lattice A C Z*,
(0]0(¢)|0) = / DpO(¢)e™>'? (1.10)
A

Do(n) = [[ do(n). (1.11)
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This regularisation should not be viewed as an approximation to the continuum
theory, but rather that it provides a definition of a theory whose continuum limit
may correspond to a useful physical theory. Of course, in order to take the continuum
limit, one must renormalise the theory. To achieve this, one sends the lattice spacing
to zero while simultaneously adjusting the bare parameters (in an appropriate way).
Taking the continuum limit also removes the cut-off placed upon the theory by the
discretisation; the shortest physical distance is the lattice spacing a which defines

an ultraviolet momentum cut-off 1/a.

The most common approach to extracting physical parameters from a lattice path
integral is to use numerical methods such as Monte Carlo. Importance sampling
is vital when trying to accumulate gauge field configurations via Monte Carlo, but
it is not very compatible with the integrand in equation (1.10). Due to its imagi-
nary nature, the exponential function oscillates wildly reducing the efficiency of the
importance sampling technique and rendering the process impractical. Fortunately,
this problem has a simple solution via a Wick rotation: a rotation from real time to
imaginary time t — —it resulting in a switch from Minkowski to Euclidean space.

The path integral then becomes
(010(6)]0) = / DoO(6)e=5® | (1.12)
A

which is now suited to Monte Carlo importance sampling techniques.

1.2.1 The Gauge Sector

Requiring the invariance of the action (1.6) under local rotations of the colour indices

of the quark fields enforces the introduction of gauge fields, A,, mathematically

(2
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known as connections. However, on the lattice, one does not use these algebra-
valued fields directly, but instead describes gauge fields through the use of a gauge

transporter

G(x,y) :exp(i/(‘A-ds). (1.13)

where (' is some curve connecting the two space-time points x and y. One then

defines group-valued link variables as
U, = exp(iaA,(n)), (1.14)

which link the lattice point n to the point n + 1. These objects are now considered
as the fundamental variables in the path integral. The change from algebra-valued
to group-valued fields has important consequences. For instance, gauge fixing is no
longer a requirement, since the measure for the gauge fields becomes the so-called

Haar measure, which is automatically finite [27].

The preservation of gauge invariance is key when constructing a lattice action. Only
two types of object achieve this on the lattice. The first is known as the holonomy,
which is a parallel transporter around a non-trivial closed curve, and the other is a
parallel transporter connecting one fermionic field to another. In order to construct
the simplest lattice gauge action, it is sufficient to consider the simplest holonomy,

known as the ‘plaquette’

Uw = U, (n)U,(n+ @)Ul (n+ 1 + )U(n + D). (1.15)
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We can now define the Wilson gauge action as a sum over all plaquettes, with each

plaquette only counted with one orientation

2
Sg = FZZ%{TI‘H —U,(n)]}. (1.16)
90 neA p<v
An obvious way to check that this action is correctly describing the gauge sector
is to perform the naive continuum limit. By using the Campbell-Baker-Hausdorff
formula and Taylor expanding the gauge fields of the form A, (n + ), one can show

that the plaquette reduces to
iy == exp(ia'zF,,,,(n) +10{a>)). (1.17)

Placing this form of the plaquette into the gauge action produces the result

Sg = 3 Y R [1 - Uw(n)]} = 2“—; > ) T [FL(n)] +0(a?), (1.18)

q2
90 neA p<v 0 nea pv

which shows that the Wilson gauge action does indeed reduce to the pure gauge

part of the action (1.6) in the naive continuum limit a — 0.

1.2.2 The Fermionic Sector

When describing fermionic fields on the lattice, the simplest starting point is to
discretise the fermionic part of the action (1.6). This amounts to placing spinor
fields at the lattice points only, n € A, and discretising the derivative appearing

within the Dirac operator. Using a symmetric discretisation, the derivative becomes

1l
All = — [Uv(n, + i) —¢Yn-— [1)] : (1.19)
2a
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yielding the following expression for the free fermionic lattice action

. - v(n+ i) —Y(n—f)

Siree = g U(n +my(n)| . 1.20

; > um) | = (n) (1.20)
neA i

In QCD, fermions live within an external gauge background. We incorporate this

feature by the introduction of gauge fields into the fermionic action. which leads us

to the so-called naive fermion action

) P — ITTah(n —
Sk = a* Z (n) [Z U+ f) = Upn = 4) - ml'(n)] : (1.21)

2a
neA I

Since fermions are anti-commuting, we must use Grassmann numbers to describe
them. They appear in the path integral as a bilinear form allowing us to use the

Matthews-Salam formula [28]

/(17}\ dny ...dn,di, exp (Z i \[,jr)J> = det [M], (1.22)
1,7=1
and to write the fermionic generating functional as
W [6.6] = det [M] e\p< Z oM 19) (1.23)
t.J=1
We can now use Wick’s Theorem to calculate n-point functions of fermionic fields
(Tl M) = (1) Y sign(P) M)}, Mgl ..M}, (1.24)

P(1,2,...n)

where the inverse of the Dirac operator is known as a fermionic propagator.
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The Fourier transform of the lattice Dirac operator for a trivial background gauge

field, U,(n) = 1, can be written as

. 4
M(p) = (I—lz Yusin(ap,) + m, (1.25)

p=1
and the momentum space propagator as

m —ia~' ) v.sin(ap,)

M(p) = — o . (1.26)
mi+a2y sin? (ap,,)
For massless fermions, taking the naive continuum limit leaves us with
= —i L YuPu
MY (p) = L (1.27)

p?

which clearly has a pole at p, = (0.0.0.0), representing the fermion described by
the continuum Dirac operator. However. the momentum space lattice propagator
(1.26) has sixteen poles since it lives in the first Brillouin zone. We now see a funda-
mental problem when discretising fermions; any hermitian Dirac operator (in even
dimensions) which leaves the discretised action local and translationally invariant

will either produce extra unphysical poles or break chirality [29].
As a simple solution to the problem of these unphysical poles, Wilson proposed the
addition of what is commonly known as the Wilson term to the naive fermion action:

W, = arA? (1.28)

where 0 < r < 1 is a bounded free parameter, and the lattice Laplacian is defined
as

Af, = 2:(1‘2 2v(n) —v(n+ ) —Y(n—f)) . (1.29)
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To easily see that this removes the unphysical poles we can look at the Wilson

momentum space Dirac operator

. 4
M (p) = éz Yusin(ap,) + m+a”! Z (1 —cos(ap,)) - (1.30)
p=1 T
It is clear that when p, = 0 the Wilson term disappears. but when p, = 7/a it gives
an extra contribution of 2/a. This removes the unphysical poles in the a — 0 limit
since it acts like a mass term, resulting in a mass of m + 2/a for the unphysical
poles. As expected, this remedy explicitly breaks chiral symmetry even in the chiral

limit m — 0.

In this work we use the Wilson formulation of fermions with a so-called clover
term, as explained in sections 1.2.3 and 2.1. However, there are also many other
formulations of lattice fermions, each with their own strengths and weaknesses. For
example, the Kogut-Susskind fermions (or staggered fermions) [30] keep a remnant
of chiral symmetry but still describe four tastes of fermion. Another example is that
of twisted mass fermions [31-33]. Here an extra term, iuys7>, is added to the Dirac
operator, where y is a real parameter known as the twisted mass, in order for the
determinant of the Dirac operator to be real and positive. The formulation is also

automatically O(a) improved for a so-called mazimal twist.

For further details on the Wilson and alternative formulations of lattice fermions,

see such books as [27, 34, 35].

1.2.3 Improvement

The Wilson fermion action suffers from the most severe form of systematic error,

O(a) discretisation effects. Ideally, one would like to use an action that has O(a™)
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lattice artefacts for some high number n (at least larger than 1) and perform simu-
lations close to the continuum limit. Since it is computationally very expensive to
simulate near the continuum limit, it would be extremely useful to have a scheme of
systematically reducing discretisation effects. Such a scheme exists and is known as
the Symanzik improvement programme [36, 37], but before we discuss this improve-
ment scheme, let us briefly review a method of reducing the large renormalisation of
gauge fields coming from their lattice definition. This is known as tadpole improve-

ment [38].

Tadpole Improvement

Lattice operators are usually designed by mapping them onto analogous operators
in the continuum, and for gauge fields, the mapping is based upon the expansion of

the link variables

. @y .5
Uu(n) =1+ iagA,(n) — TA;I(") + . (181

This expansion is valid for small values of a, but can be misleading since terms
ith a® or higher d ranish as ers of a in tl ' heory: Lapag
with a® or higher do not vanish as powers of a 1 the quantum theory: Lapage
and Mackenzie [38] realised that the contraction of A,’s with each other led to
UV divergences that explicitly cancel the powers of a. These terms, which are
contributions from tadpole diagrams, are then only suppressed by powers of g and
become large. We thus lose our simple intuition between lattice and continuum

operators due to the large renormalisation of lattice gauge variables.

Since these tadpoles come from the high momentum part of the loop integrals. and
hence the high momentum part of the gauge field, they can be removed from the

theory. Integrating out the UV components of the gauge field and by allowing a
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tadpole factor ug to parametrise them, we can write
Uu(n) = ug (14 iaALR) . (1.32)

There are many choices for uy; a common one being that of the expectation value

of the plaquette

1
1

1
Uy = I:']\—7<77 (L//,,,)>:| 5 (133)

This procedure suggests that in order to recover our intuition on the behaviour of

lattice operators, we should rescale the link variable as

(1.34)

This divides out the UV contribution of the gauge field resulting in an object that
behaves in a similar fashion to its continuum analogue. Of course, this procedure is
fully non-perturbative since the tadpole factor is measured from a non-perturbative

lattice calculation and not in perturbation theory.

In this work, we use tadpole improved gauge links when constructing our lattice

actions as described in section 2.1.

Symanzik Improvement

Actions can be built from three types of operator. If the coupling constant of an
operator increases with the scale of the system, it is known as relevant. 1f it decreases,
it is known as irrelevant. If it varies, then the operator is called marginal. On the
lattice, different actions that produce the same results in the continuum limit are said

to be within the same unwversality class, that is, they describe the same physical
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theory. In principle. these actions are constructed from the same set of relevant
and marginal operators, and only differ in their irrelevant operators. However, at
finite lattice spacing, results attained from different discretisations within the same
universality class may differ from each other and from their continuum counterpart.

Of course, the reduction of this effect is highly desirable.

The Symanzik improvement programme can aid against scaling violations by the ad-
dition of irrelevant operators of higher dimension to a given lattice action. Symanzik’s
scheme is most easily explained via example, so we will discuss on-shell O(a) im-
provement of Wilson fermions, but first, let us explore the Symanzik improvement

of the plaquette action.

The standard plaquette action (1.16) consists of the only four dimensional operator
that respects gauge invariance; Tr(F ﬁu). Implementing the Symanzik improvement

scheme amounts to adding all the higher dimensional operators, that respect the

symmetries of the original action, in order to form a new effective action:
Srff = /(141' (L() +al, + (IQL-)_ + ) " (135)

where Lg is the original Lagrangian. The terms L,, for n > 0 are irrelevant opera-
tors built from the fundamental fields such that they have dimension 4 4+ n. Since
only closed loops of gauge links form gauge invariant quantities, one can not add a
dimension five operator to the plaquette action. Thus L; = 0 for any pure gauge

action, meaning that they are automatically O(a) improved.

At dimension six there are three distinct irrelevant operators that can be added to
the action. These consist of the perimeter six-link loops; the rectangle (left), paral-

lelogram (centre) and chair (right) shown in Figure 1.1. The addition of these three
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FIGURE 1.1: The perimeter six-link loops: (left) rectangle, (centre) parallelogram,
(right) chair.

terms, multiplied with some improvement coefficient, to the action is the first step
towards O(a?) improvement. The next step is to fix the improvement coefficients.
An improvement condition is required to achieve this; for example, one can require
that the static potential reproduce the continuum lowest order perturbative result
up to terms of O(a*). At tree-level, Liischer and Weisz [39] found that one can
achieve O(a?) improvement by setting the coefficient of the rectangle ¢, = —1/12
while setting the coefficient of the parallelogram and the chair to zero. In this work,
we use this O(a?) improved formulation to describe the gange sector as described in

section 2.1.

The procedure for improving fermionic actions follows the same mandate as for
gauge actions; one must write all of the irrelevant operators that have dimension
greater than four obeying the symmetries of the original action, and add them to

that action. Here we will discuss on-shell O(a) improvement, so it is sufficient to
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write all the operators of dimension five:

O1(z) = ¥(x)owFu(z)Y(z) (1.36)
Os(x) = ¥(@)D,u(@)Ba(2)Y + ¥()D,(x)D,(x)() (1.37)

Olzl = m'TrlFolzif. (v (1.38)
Oz} = m (LT’(.’I’)‘,’,,B,,(I)L" - LTV(;r)v,,ﬁ,,(.1’)'0‘(;1‘)) (1.39)
Os(z) = m*P(z)yv(z) . (1.40)

where 0, = [Yu,V)/2. Using the field equation, (v,D, + m)¥ = 0, we get the

following two relations:

Oi(x) — Os(x) + 205(x) = 0 (1.41)
O4(z) + 205(z)

|
&

(1.42)

Using these two equations, we can eliminate O (x) and Oy(x) from the set of cor-
rection operators. Noticing that Oz(x) and Os(x) are already present within the
original action allows us to eliminate them from the set by redefining the bare pa-
rameters m and g. This leaves only O;(x) in the set of correction operators. Hence,
to O(a) improve the Wilson fermionic action on-shell, it is sufficient to add the

so-called clover term along with its improvement coefficient ¢, [40]:

a” . ,
B (‘? S5 6 )0, Fu(n)i(n) - (1.43)

n  puv

F,,(n) is a discretisation of the field strength tensor given by the non-unique ex-

pression:

Fuu() = o (Quln) — Quu(n)) - (1.44)

Qv is a sum of four plaquettes as shown in Figure 1.2. Physically, the lattice has
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FIGURE 1.2: A pictorial representation of the clover sum of plaquettes @, .

assigned an anomalous chromomagnetic moment of O(a) to the quarks, and it is the

addition of this Pauli like clover term that corrects for it [-ll].

The next step in the improvement scheme is to determine the appropriate value of
the improvement coefficient ¢y, it needs to weight the correction term just enough
to cancel the O(a) artefacts. Perturbation theory can be used to calculate ¢, [42],
but of course this requires one to work in a regime where the coupling is small which
may not always be useful for calculations in QCD. However, a non-perturbative
scheme for calculating ¢, (and ¢4, the axial current improvement coefficient) using
chiral symmetry, that is, the partially conserved axial current (PCAC) relation in

the continuum limit has been suggested by the Alpha collaboration [43)].

Adding the clover term and appropriately determining cy, is sufficient for O(a)
improvement of on-shell quantities such as hadron masses, but full O(a) improvement
of a correlation function also requires the improvement of its interpolators. For

details on improving interpolators see [27, 35, 43].

In this work, we add the on-shell O(a) improvement term, C,,,, to our Wilson for-

mulation of fermions as described in section 2.1.
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This concludes our brief introduction to Lattice QCD, but before jumping directly
into the details of our calculation, we take a brief moment to set the experimental

scene that motivates our study of the charm sector.

1.3 Experimental Status of the Charm Sector

The charm quark was proposed by Glashow and Bjorken in the mid 1960’s [44], but
there was little or no evidence for its existence. It became a theoretical requirement
in 1970 when the Glashow-Illopoulos-Maiani mechanism (GIM mechanism) required
the existence of a heavy fourth quark in order to explain why flavour changing
neutral currents are suppressed [45]. These predictions were vindicated in 1974 with

the observation of the .J/¢) meson [46, 47].

For the following thirty vears, charm meson spectroscopy had been successfully
described by a relatively simple picture; a bound state of a quark and anti-quark
whose spins are coupled together to form a total spin S, which is then coupled to an
orbital angular momentum L in order to create a state of total angular momentum
J. In this phenomenological model, the states follow a n***!L; pattern. If the
meson is an eigenstate of charge conjugation, i.e. it is its own anti-particle, then
some JPC (where P and (' are the parity and charge conjugation quantum numbers
respectively) combinations are absent from this simplistic set up. Such states are

termed exotic.

Currently, the spectra of open-charm mesons contains a number of well established
states [18]. There are eight D mesons, which are charm-light combinations of isospin
I = 1/2, and six D, mesons, which are charm-strange combinations of non-zero

strangeness and zero isospin. In both sectors there are a number of tentative states
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FIGURE 1.3: The energy range of the planned PANDA experiment and some of
the physics it will explore.

omitted from the Particle Data Group summary tables, suggesting that their exis-
tence needs further confirmation. Many of the well established states can be de-
scribed by the pattern expected from quark potential models [49, 50]. However, a
subset of these states as well as additional states requiring experimental confirma-
tion, do not fit the predictions and are thus unexplained. For example, the masses
and widths of the enigmatic D?%,(2317)* and Dj;(2460)* particles are significantly
lighter and narrower than in quark models [49, 50]. Since the discovery of these
resonances at BABAR [51] and CLEO [52] respectively, there has been much debate
about their nature. Suggestions such as tetra-quarks (two valence quarks and two
valence anti-quarks), molecular mesons and hybrid mesons (in which the gluonic

field is excited) have been put forward, but the situation is far from being resolved.

The spectrum of hidden charm mesons (charmonia) has received much experimental

interest since the discovery of the J/1). There are eighteen well established states
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along with a number requiring further experimental confirmation [48]. Below the
open-charm threshold, the spectrum is well understood in terms of quark models,
but the recent observation of many unexpected resonances close to, or above this
threshold has caught the interest of both the theoretical and experimental com-
munity. For example, the X (3872) resonance [53] is now well established but its
interpretation is still unclear, although recent experiments at the LHCb strongly
suggest that it has J©¢ = 1**. With this assignment, it could still be interpreted
as the ¢¢ bound state x.;(2°P;), but this is unlikely due to its mass; the resonance
appears far from where the Y. (2°P)) is expected and an exotic explanation such as
a DD* molecule or tetra-quark particle seems imminent. The X (4430)* observed
in B — K7 decays at BELLE is another exotic candidate [54]. Due to it being
electrically charged, it can not be a standard c¢¢ meson. Instead, it is thought that
this resonance is of a tetra-quark nature and, like many of the current mysteries

surrounding the charm sector, will require further investigation.

Experimental searches continue at BESIII and at the LHC, while in Darmstadt
the construction of a proton anti-proton collider at GSI/FAIR has begun. This
experiment, known as PANDA, will conduct extensive searches in both the open
and hidden charm sectors as well as looking for exotic states. A summary of the
experiments energy range and some of the physics it hopes to explore is shown in

Figure 1.3.

For a recent review of hadron spectroscopy see [55].
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Lattice Detalils

The main focus of this study is to determine the spectrum of hidden and open-
charm states, including excitations and any states with an intrinsic gluonic compo-
nent. Throughout this thesis, we will refer to eigenstates of the lattice Hamiltonian,
E. as spectroscopic states, which are computed via two-point correlation functions
which fall off in proportion to e=£!. Since the open-charm spectra lie around and
above 2 GeV, and the charmonium spectrum lies above 3 GeV, it is clear that the
corresponding correlation functions will fall off rapidly, even at modest times. Fur-
thermore, correlation functions built from interpolators that excite high-lying states

will suffer from increasing statistical variance.

One way to ameliorate these problems is to use an anisotropic lattice where the
temporal discretisation is finer than the spatial one. Of course it would be more
beneficial to have both the temporal and spatial directions very fine, but the com-
putational cost would rise dramatically. In order to keep the computational cost

down, we use a relatively coarse spatial discretisation.

23
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Previously, the mass of the charm quark was problematic; it was too light for non-
relativistic actions to be valid, but large enough such that am,. < 1 was difficult to
achieve. Recently, a number of successful approaches for simulating the charm quark
were developed, such as the Fermi-lab [56] and HISQ [57] actions. In this work, we
use a discretisation such that the anisotropy, & = as/a; ~ 3.5. This fine temporal
discretisation ensures that we carry out calculations with a;m,. < 1, allowing us to
use the standard relativistic formulation of fermion actions for the charm quark. It

is also encouraging to note that on our ensembles a;m,. < 1.

2.1 Dynamical 2 + 1 Anisotropic Lattices

In this study we use dynamical 2+ 1 anisotropic ensembles generated by the Hadron
Spectrum Collaboration [58, 59]. On these lattices, the gauge sector is described by
a Symanzik-improved (see section 1.2.3) anisotropic action with tree level tadpole-

improved (see section 1.2.3) coefficients

3 5 1 4 1
S,' = ‘— _Pcc’ - _-RHS" —P5 - —R
E Nc&o Z [3ui - 17 } N ; [3u§u,2 . 120t

T

a>4!

(2.1)
where P is the plaquette and R is the 2 x 1 rectangular Wilson loop. N, is the
number of colours and 3 = 2N,./¢g?. The bare anisotropy is given by the parameter
&. and ug and u; are the spatial and temporal tadpole factors dividing the spatial
and temporal gauge links, respectively. The leading discretisation errors associated

i TR g 3 3.0
with this action are O(ag, a;, g*as).
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Volume Neggs Nisres Noyecs
16% x 128 96 128 64
243 x 128 552 32 162

TABLE 2.1: The gauge field ensembles used in the calculation of the charmonium

spectrum. N.rgs and Niges are respectively the number of gauge field configu-

rations and time-sources per configuration used: Nyees refers to the number of
eigenvectors used in the distillation method

The fermionic sector is described via an anisotropic clover action, given by

S = a’ay Z (2)Qu(z) . (2.2)
where
- - Ag s ss’ 5
Q= |motuWituvW, - 5 ((‘,US,F" + ;(UF ) . (2.3)
Here 0, = % [ 7], and the Wilson term is given by

- Q.
o = vll - éﬂ)/lAﬂ . (24)

4!

v is the ratio of the bare fermion anisotropy to the bare gauge anisotropy. The

spatial and temporal clover coefficients are given by

Cs = — (2.5)

1 1
(I/ + E) u,uf 3 (26)

where the fraction a;/a, = 1/€ is set to the desired renormalised gauge anisotropy.

=
weo| S

N | —

On these ensembles the gauge links in the fermion action are three-dimensionally

stout smeared. The smearing parameters, as discussed in section 3.1 , are p = (.22
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Volume Netas Nosres WNeoos
16% x 128 96 128 64
243 x 128 553 16 162

TABLE 2.2: The gauge field ensembles used in the calculation of the open-charm

spectra. N.fqs and Nygcs are respectively the number of gauge field configurations

and time-sources per configuration used; N,..s refers to the number of eigenvectors
used in the distillation method

and n, = 2. In [58], the authors determined the gauge anisotropy from the static

quark potential using the ratio of Wilson loops

N B W2, 9) — a3V (yas)
Res(z,y) = W@+ Lo) — € . (2.7)
Walz,t .
Rs[(l‘-y) — # =y, e—‘(ls‘s(t”t) . (28)

Wal(z + 1,1)

while the fermionic anisotropy was determined via the continuum relativistic disper-

sion relation

. 5 PP

E*p) = m? + o (2.9)
5

and the final tuned values for the bare gauge and

ot

On these ensembles 3 = 1.
fermion anisotropies are 7, = 4.3 and 7y = 3.4. The corresponding values for the

spatial and temporal clover coefficients are ¢, = 1.589 and ¢, = 0.903.

In lattice calculations, all quantities are computed in terms of the lattice spacing
and, in order to make contact with experiment, one must quote results in physical
units. Therefore, a scale setting must be introduced. We set the scale by considering
the ratio of the Q-baryon mass measured on these ensembles, a;mq = 0.2951(22)
to the experimental mass, Mg = 1672.45(29) MeV [48]. From this scale setting,
we find a spatial lattice spacing of ay = 0.122(1) fm and a temporal lattice spacing

approximately 3.5 times smaller, a;' = 5.67(4) GeV. On these ensembles, the pion
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AT

Volume Netos Nigres Nyecs
20°% x 128 603 3 128

TABLE 2.3: The gauge field ensembles used in the calculation of D7 scattering.

Nepgs and Nigres are respectively the number of gauge field configurations and

time-sources per configuration used; N,..s refers to the number of eigenvectors
used in the distillation method

mass is M, ~ 391 MeV. The spectroscopic calculations carried out in this study
are on two-volumes (L/ay)* x (T/a;) = 16® x 128 and 24% x 128. The study of
D scattering was performed on a third volume 20% x 128. The ensembles used
in the calculation of the charmonium spectrum are summarised in Table 2.1, the
open-charm spectra in Table 2.2 and for D scattering in Table 2.3. It is worth
noting that the configurations sampled on our 16® ensembles are separated by twenty
trajectories (after thermalisation) within the Monte Carlo Markov chain. Our 20?
and 24% configurations are again separated by twenty trajectories from four different
Markov chains. A separation of twenty trajectories was determined via a binning
procedure in order to render two consecutively sampled configurations effectively
uncorrelated. To calculate the statistical uncertainty in all of our results, we use the

single elimination jackknife method.

2.2 The Charm Quark

We employ the same relativistic action for the charm quark as was used for the light
and strange quarks. On anisotropic ensembles, the weights of spatial and tempo-
ral derivative terms must be determined so that observables take their experimental
value when calculated in a simulation. As shown in [60], this is important in dynam-

ical simulations to ensure a correct continuum limit. On our ensembles the target
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FIGURE 2.1: Squared energies of the 7. meson as a function of momentum, n?,

calculated on our 162 x 128 volume, for two choices of the bare fermionic anisotropy

7¢ as described in Table 2.4. ~; is the parameter used in the light quark action

and 7, is obtained by ensuring the correct relativistic dispersion relation for the
7 Meson.

ratio of spatial to temporal scales is € = 3.5. In the light meson sector, this was

determined via the pion dispersion relation, leading to a value of &, = 3.444(6) [61].

To determine the anisotropy. &, in the charm sector, we study the dispersion relation
of the 1, meson. This will also allow us to set bare mass of the charm quark. The

relativistic dispersion relation for a meson A, in the continuum, can be written

A

2
(@FE4)? = ((1,771_4)2 - (%) (asp)? . (2.10)

where the momentum is quantised due to the periodic boundary conditions of the

cubic volume
2T
a,p = f(nl..ny.n:) ; (2.11)
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Sector | /3 Us s B T v Mme Cs Ct
light | 1.5 0.9267 1 4.3 3.4 1.265 0.087 1.589 0.902
charm | 1.5 09267 1 43 398 1.078 0.092 1.345 0.793

TABLE 2.4: The bare parameters used in the determination of the 7). dispersion

relation. The light parameters are those previously determined in the light sector

(58], but with the bare mass scaled up to give an approximately correct 7. mass.

The charm parameters are those determined by ensuring that the 7. meson has
the correct dispersion relation with an anisotropy &, = 3.50(2).

with n; € {0,1, ..., L/as— 1}.

Figure 2.1 shows squared energies as a function of the momentum, n?, for the 7.
meson, calculated using the two parameter sets described in Table 2.4. The red
triangular symbols show the dispersion relation when the bare parameter v, is the
same as used in the light quark action (see Table 2.4). In this case, the bare charm
quark mass is chosen such that the 7. meson takes (approximately) its experimental
value. For this set of bare parameters, the physical anisotropy, &, = 3.18(2). Clearly,

since our target value is 3.5, we need to correct for this discrepancy.

The blue squares in Figure 2.1 show the dispersion relation for the 7. meson calcu-
lated using the bare parameter set ‘charm’ in Table 2.4. In order to correct for the
previous discrepancy, the fermion anisotropy is increased to vy = v, = 3.98. These
parameters result in a physical anisotropy &,. = 3.50(2), and a mass of 2965(1) MeV
for the 7. meson, which is within one percent of its experimental value, 2983(1) MeV
[48]. It is encouraging to note that our data agrees with the relativistic dispersion
relation up to momentum of at least i = (2,0, 0), with both fits in Figure 2.1 having
X?/Naot ~ 1. As a check of the consistency of the physical anisotropy in the char-
monium sector, the dispersion relation of the J/1» meson was calculated. The value
obtained, via a fit to this dispersion relation, of the physical anisotropy, deviated by

less than one percent from the value obtained from the 7, dispersion relation.
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2.3 Open-Charm Dispersion Relations

To understand the nature of charmonium and charmed resonances above the open-
charm threshold, we must have full control of heavy-light mesons since scattering
calculations involving these states will be required. As discussed in section 8.1,
to determine properties of resonances on the lattice requires the calculation of the
full spectrum of energy eigenstates, including those composed of more than one
meson. For these calculations to be reliable, all relevant mesons must have relativistic

dispersion relations with consistent physical anisotropies.

When simulating heavy quarks on the lattice, extra complications can arise due to
the large mass scale. However, for mesons moving with modest momenta, the heavy
quark four-momentum will predominantly be aligned with the temporal direction,
and on our anisotropic ensembles, the fine temporal discretisation may reduce the
artefacts associated with heavy quarks. It is well known that when amy is of O(1),
the dispersion relation of the corresponding meson will appear non-relativistic forcing

the kinetic and rest masses to differ [56].

One way to test if the anisotropic lattice has controlled the size of these artefacts
for the charm quark is to determine the dispersion relation of a number of mesons in
the charm-light and charm-strange spectra; if there is a problem with large artefacts
coming from the heavy quark. some or all of the dispersion relations may appear
non-relativistic, or the physical anisotropies measured from the dispersion relations

may significantly differ from each other or those calculated for the 7. meson or pion.

We calculate dispersion relations for a range of charm-light and charm-strange
mesons. We use two sets of interpolators to achieve this. For mesons at rest,
we use the J.-basis interpolators as described in section 3.3, while for mesons with

non-zero momentum, we use the helicity-basis interpolators (up to two derivatives)
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FIGURE 2.2: Squared energies as a function of n? for the lightest S and P-wave
states in the charm-light spectrum. The points correspond to calculated squared
energies and the error bars correspond to statistical uncertainties. Points with no
visible error bar have statistical error smaller than the size of point. The lines

are dispersion relations of the form (2.10), with m fixed to the rest mass of the D
meson and the anisotropy fixed to £p = 3.454 as described in the text.

as described in section 3.3.1. Shown in Figure 2.2 are squared energies as a function
of n? for the six lowest lying states in the charm-light spectrum. Figure 2.3 also
shows squared energies as a function of n?, but this time for the six lowest lying
states in the charm-strange spectrum. The points correspond to calculated squared
energies with the statistical uncertainty shown by the error bars. If no error bar
is visible for a given point, it means the statistical error is smaller in size than the
corresponding point. In both the charm-light and charm-strange sectors, we calcu-
late the anisotropy of the lowest lying states, £p and &p_, by fitting the energies
of the corresponding 0~ meson to equation (2.10). This gives good fits yielding
Ep = 3.454(6) and €p, = 3.453(3). The lines in Figures 2.2 and 2.3 are dispersion
relations of the form (2.10) with m fixed to the rest energy of the relevant meson, and

€ fixed to our measured values of £p = 3.454(6) and &p, = 3.453(3) as appropriate.
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FIGURE 2.3: Squared energies as a function of n? for the lightest S and P-
wave states in the charm-strange spectrum. The points correspond to calculated
squared energies and the error bars correspond to statistical uncertainties. Points
with no visible error bar have statistical error smaller than the size of point. The

lines are dispersion relations of the form (2.10), with m fixed to the rest mass of
the D¢ meson and the anisotropy fixed to {p, = 3.453 as described in the text.

The first point of note is that all of the states in Figures 2.2 and 2.3 follow a
relativistic dispersion relation, at least up to momentum n? = 4. The second point
worth noting is that the physical anisotropies attained from the ground state in
both the charm-light and charm-strange sectors agree with the the other low lving
states in their corresponding spectra, as well as those obtained from the pion and
1. dispersion relations, suggesting that the charm quark mass artefacts are under

control.



Chapter 3

Spectroscopy on the Lattice

In lattice field theory, spectroscopic information is obtained from the two-point

correlation function
1 _
Cylt) = 7 Tr [TO:(t)0!(0) e7H] (3.1)

where T is the time-ordering operator and Z = Trle "#]. O;(t) are known as
interpolating operators (interpolators), and may consist of gauge invariant quanti-
ties, such as the plaquette or colour-singlet combinations of quarks and anti-quarks.
Applying the time translation operator e~*# to the interpolators, and inserting a

complete set of eigenstates of the Hamiltonian yields

Cy(l) = % Z (m|O;|n) (n|(’);|m) g Int g=Emlf—H) (3.2)

n.m

where the discreteness of the spectrum is due to the finite volume, and the temper-
ature T' = 1//3. Taking the zero-temperature limit, that is, where t and (3 — t) are

large, the correlation function will be dominated by the lowest energy states that

33
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have the same quantum numbers as O; (where we have set i = j for convenience)

Ci(t) = [{0|Gi|0)* + [{0]O|1)|? [e75r + e~Er(F-D)]

+ O(e B - Bty 4 O (B2 - BB - 1) (3:3)

The term [(0]O;|0)|? corresponds to the vacuum-disconnected part of the correlator.
This term will vanish in a gauge average unless the interpolator, O;, has the quantum
numbers of the vacuum (JP¢ = 07*). If the interpolator has a small overlap with
the lightest state, E, then the correction terms in (3.3) will have relatively large
coefficients, and a reliable value for the lightest state energy can only be extracted
when t is very large. If 0 < t < /3, then the vacuum-connected part of the correlator

has the asymptotic form
(v,',‘(f) ~ |<O‘O,|1>|2 P_E” . (3-1)
One can then define the so-called effective mass

Meppll) = In [C Cult) } (3.5)

q(t + 1)

which will plateau at the energy of the lightest state E created by the interpolator

O;.

Since we are interested in calculating spectroscopic quantities of charmonium, charm-
light and charm-strange combinations, we must choose interpolators that create
mesonic states from the vacuum. The simplest of which is the set of local interpo-
lators given by

(’)}f,(n) = Us(n) T; ¥p(n) , (3.6)

where we have suppressed spin and colour indices for clarity. Here, n € A is the
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State JEE] r Naming Scheme
Scalar 0t 1 ag
Scalar 0+ Yo bo
Pseudo-Scalar 0—(+) V5 ™
Pseudo-Scalar 0~ Y05 2
Vector 1-) Vi p
Vector 1-) YoYVi P2
Axial-Vector 1+ VsYi ay
Tensor 1) ViYj by

TABLE 3.1: Gamma matrix naming scheme and their corresponding quantum
numbers. The charge conjugation quantum number, C, is only defined for flavour
singlet interpolators.

point of creation of the meson, and f, f' label the quark flavour. T'; is one of the

combinations of gamma matrices shown in Table 3.1.

In general, a two-point function composed of interpolators O}f,(n) and Oy (m) can

be written as

(Ofp(n) O}f,(m)) = — Tr [T Mg/ (njm) T M5 (m|n) ]
+ Tr [T M;j(njn)] [T M7i(mm) ] , (3.7)

using Wick contractions. Both terms in this equation have a simple interpretation.
In the first term, the propagator Mf“fl(n|m) propagates an f quark from space-time
point m to n, while .Mf_,},(mln) propagates an f’ quark in the opposite direction.
This term is referred to as connected, and is shown on the left of Figure 3.1. In
the second term, the propagators are of the form ]\[JTII,(n|n) which is interpreted
as propagation back to the same space-time point. This term is referred to as
disconnected, and is shown on the right of Figure 3.1. Clearly this term is zero when

f # f’, that is, it only contributes for the special case of flavour singlet mesons.
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FIGURE 3.1: A graphical representation of a mesonic correlator, separated into
its connected (left) and disconnected (right) parts. The propagation begins and
ends at space-time points m and n as shown.

A useful constraint to place upon an interpolator is that it should create a state of

definite momentum. This can be achieved via

@”'(ﬁ. T = [1’\ Z e~ tamp O(it, ny) . (3.8)
< 3| neAs3

where the momenta, p, are quantised via p = 27rl::/ L. Here L is the spatial extent
of the lattice and & € Z3. This interpolator is projected onto a definite momentum
and is located on a single time-slice n,. It is thus sufficient to project only one of the
two interpolators in a two-point function (usually the annihilation interpolator) to
the desired momentum in order to achieve a hadronic state of definite momentum,
but, it is important to note that this is only approximate for a finite number of con-
figurations. A correlation function containing a momentum projected interpolator
at the sink will fall off at large times ~ e~%E®) _where the energy of the lightest

state E(p) is related to the mass of the hadron, m, by

E(@) = vm?> + > + O(ap) . (3.9)
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We have now seen how to extract spectroscopic quantities on the lattice. However,
using only the techniques described in this section will lead to a limited spectrum
of states, and for a given amount of configurations, results that are relatively noisy
compared to more modern methods. In the remaining sections of this chapter,
we discuss the recipe used by the Hadron Spectrum Collaboration for extracting
extensive spectra [62], and apply it to the Hidden and open-charm sectors. We
begin with discussions of what is known as smearing; in the following section we
explain our smearing in the gauge sector, and then in section 3.2 we explain our
smearing of the quark fields, and how it leads to a convenient way of constructing

correlation functions.

3.1 Gauge Field Smearing

We know now that hadron masses are extracted from the large time behaviour of
Euclidean correlation functions. However, one major problem is that the signal-
to-noise ratio degrades rapidly at these large times. One can considerably improve
the signal by smoothing or smearing the gauge fields; interpolators constructed on
or from these smeared gauge fields have dramatically reduced mixing with the UV
modes of the theory, and consequently, have greater overlap onto the low-lying states
of interest, allowing the hadron masses to be extracted at smaller times. The use of
such interpolators has been shown to benefit determinations of the glueball spectrum
[63], the torelon spectrum [64] and the static potential [65]. Smearing has also played
an important role in the construction of improved actions, for example, the use of fat
links in a staggered quark action is shown to decrease flavour symmetry breaking [66],

while smearing can be used to construct hyper-cubic fermion actions with improved

rotational invariance [67].
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Most smearing procedures consist of averaging products of links along some short
path connecting the end points of a given link. The simplest such construction is
known as APE smearing [68]. Here, every link is replaced by itself plus a weight p
times a sum of its four neighbouring spatial staples, projected back into SU(3). This
projection is usually performed as follows: given a 3 x 3 matrix V, its projection
U into SU(3) is taken to be the matrix U € SU(3) that maximises the expression
ReTr(UVT). There are two weak points of this construction. Firstly, the projection
step is a rather arbitrary way of remaining within SU(3). Secondly, the lack of
differentiability associated with the projection step inhibits its use in molecular dy-
namics updating schemes, such as the Hybrid Monte Carlo, that require information

on the response of the action to a small change in one of the link variables.

A method of link smearing that alleviates these problems is known as Stout smearing

[69]; it is analytic and naturally remains within SU(3). It is defined via an iterative

procedure
Ur(z) = 4”@ y(g) (3.10)
where
1 i
Qulz) = > (Q;f,(;r) — Q,(z)) - IN Ty (QZ(.T) - Qu(z)) , (11}
Qu(z) = C',,(;r)U;[(.r). (3:12)
and

Cu(®) = pw [Uu(@) Uu(z + ) Ul(z + p)]

+ [Ule = D) Uu(x — 9) U(x — D + f1)] . (3.13)
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C,(x) is a sum over perpendicular staples beginning at point x and ending at point
r + f1, weighted by tunable real parameters p,,. The matrix Q,(x) € SU(N) is
defined to be traceless and hermitian, implying that ¢@«(®) ¢ SU(N), eliminating
the need to arbitrarily project back into the gauge group. The fuzzing step (3.10)

can be iterated n, times to produce what are known as stout links U,(,””).

It is worth noting that an imaginary choice for the weights p,,, does not reduce the
UV fluctuations of the fuzzed links and that the choice of C,(x) is not unique. For

further details on stout smearing and its usual implementation see [69].

On our ensembles, the spatially directed gauge links are stout smeared in order to
reduce the contribution from the high energy UV modes of the gauge field. The use
of this smearing scheme has also allowed the configurations to be generated using

the Rational Hybrid Monte Carlo algorithm [70].

3.2 Correlator Construction and Distillation

We now continue our discussion of smearing, but in this section we focus on smearing
the quark fields. As previously mentioned, in order to measure the energies of low-
lying states, it is of particular importance to construct interpolators that overlap
predominantly with light modes, with smearing being a well established method of

doing so.

A simple way of smearing quark fields is via the application of a smoothing function,
that should effectively remove the noisy short-range modes which do not make a
significant contribution to low-energy physics of interest. One such construction is

that of the Jacobi method [71]. This method is based upon the three dimensional
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gauge-covariant lattice Laplacian
3
— V(1) = 60y — D U@ 08,5, + Ulle = j00,;,] . (314)
g=1

where the gauge fields, U;, can be constructed from a suitable smearing scheme
such as stout smearing (see section 3.1). The suppression of high energy modes
comes from the exponentiation of this operator. Thus, defining the Jacobi smearing

operator as

(3.15)

s (1 + "VQ“))“” .

Tis
where ¢ and n, are tunable parameters, will exponentially suppress the high energy

modes since
2 G ]
lim J(t) = €V . (3.16)
Mg —> ©O
The method of quark smearing used in this work is known as distillation [72], where
the Jacobi smearing operator, J(t), is approximated by the formation of an eigen-

vector representation of V2, and is replaced by the distillation operator
N
Pt} = > f(3) oPe) ui®) , (3.17)
=1

where l'ﬁi)(t) is the i'" eigenvector of V? evaluated on the background of the spatial
gauge fields of time-slice t, once the eigenvectors have been sorted by eigenvalue .
P,,(t) is the projection operator into the N-dimensional subspace. Vy, spanned by
these eigenvectors. and is therefore idempotent. When the dimension of Vy = V,y,
where M = N. x L, x L, x L., the distillation operator becomes the identity
and the quark fields are unsmeared. It is also important to note that correlation
functions constructed with distilled fields have the same symmetry properties as

those constructed using Laplacian smearing techniques [72].
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Distillation is as follows. For simplicity. consider a momentum projected local
mesonic interpolator OF = ¢, where T7 is one of the combinations of gamma

matrices shown in Table 3.1. The application of the distillation operator gives

Ol(t) = Pa(t)Pey(t)e™ T, () Prw(t)Pu(t) , (3.18)

where one sums over repeated spatial indices. The 2-pt correlation function built

from distilled interpolators is given via (suppressing indices)

Ciy(t) = (POPOT'()P(t)U(t) ¥(0)PO)IY(0)P(0)¢:(0) ) . (3.19)

After performing Berezin integration of the quark fields, one then replaces the dis-

tillation operator by its outer product definition (3.17) to produce
Cij(t) = Tr [ #(t)7(t.0) ¢'(0)7(0.1) ] . (3.20)

where

Sap = VIO [I'()],, V() - (3.21)

“th ith

Here, the i column of V(t) contains the i eigenvector of V? evaluated on time-

slice t. ¢ encodes the structure and momentum of the meson, while
Tap(t,0) = V()M ;(t,0)V(0) (3.22)

encodes the propagation of the quarks and is known as a perambulator. ¢ and T
are square matrices of dimension N x N, where N, = 4 is the number of spin
components in a lattice Dirac spinor. Therefore it requires just N x N, operations
of the inverse of the fermion matrix on a vector in order to compute all elements of

7. Once the perambulators have been computed and stored, the correlation of any
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source and sink interpolators can be computed a posteriori.

This method straightforwardly extends to non-local interpolators, interpolators com-

posed of more than two quark fields, and interpolators with a multi-hadron structure.

In summary, we use the distillation method of quark smearing, which has proven
in the past to increase the overlap of interpolators with low-lying states [72, 73].
Once the perambulators have been stored, this method also allows us to compute

any source and sink combination a posteriori, without any further inversions.

3.3 Interpolator Construction

As previously mentioned, two-point correlation functions can be written as the spec-
tral decomposition

n* n
i

Cl}(f) = Z T E’—E”’ 5 (323)

n

where the vacuum-state matrix elements
zZr = (n|O}0), (3.24)

are known as overlaps. In this work, mesonic spectral information will follow from
analysis of two-point correlation functions formed from a large basis of interpolators

having mesonic quantum numbers.

As mentioned earlier, the simplest such interpolators are colour-singlet local fermion
bilinears (3.6). These interpolators allow access to a limited set of quantum numbers,
JPE =07+ 0t*, 17, 1%, 177, and hence a limited number of states. In order to
maximise the spectral information that can be extracted from correlation functions,

we employ a large basis of local and spatially extended distilled interpolators [62, 74];
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three dimensional gauge covariant derivatives are placed inside a fermion bilinear to

construct interpolators of the general form
At T (7 AT S / = )=
Oy = E Ve(Z, )T D;D; ... ¢Yp(Tt), (3.25)

s

where the backward-forward derivative D = 3 - B is chosen in order to have
interpolators of definite charge conjugation symmetry when f = f’. even at non-
zero momentum. A labels the different combinations of gamma matrices as shown

in Table 3.1.

Using continuum SO(3) rotational symmetry, one can construct interpolators of
definite spin, parity and charge conjugation at zero momentum. The strategy is
to form a circular basis of vector-like derivatives and gamma matrices so that they

transform as J = 1. For creation interpolators, we use

i, P Z e(0,+1)D; = ZF%(?I?[(B”). (3.26)
Do =1 Y €(0.0D, = iD.. (3.27)

Then, using the standard SO(3) Clebsch-Gordan coefficients, an interpolator of def-

inite spin, J, and .J,-component, M, can be formed

= s
(Cx DULY™ = S~ (1,m4;1,malJ, M) ¥y Dny D mythypr (3.28)

mi,me

where the choice of T',,, D ,,,, sets the parity and charge conjugation. A note on our

JM contains a combination of gamma

notation is required: an interpolator (I' x D.[,"Ll)
matrices, I', with the naming scheme given in Table 3.1, and n derivatives coupled

to spin Jp, with the overall combination coupled to spin-.J and J.-component M.
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For a two-derivative interpolator. the convention is to first couple the two derivatives

to a definite spin Jp, and then coupling to the vector-like gamma matrix,

(T x D'[fjj)""” — Z (1,ms; Jp, mp|J, M)
my,ma.,m3mp
- R
X (1,mq;1,ma|Jp,mp) ¥f Tmg D my D ma¥ypr (3.29)

[t is instructive to note that, even though the Clebsch-Gordan for 1 @1 — 1 is
anti-symmetric and ﬁmﬁ_))m,z appears to be symmetric, there are still non-zero
interpolators with .JJp = 1 due to the non-abelian nature of QCD. These interpolators
are proportional to the field strength tensor, which does not vanish on non-trivial
configurations. It is interpolators of this type that will be used to probe excited

gluonic degrees of freedom, and identify candidate hybrid mesons in chapter 7.

When considering interpolators containing three derivatives. a decision on how to
couple the derivatives must be made. A natural choice comes from requiring that
the interpolator will have a definite charge conjugation symmetry for f = f'. By
exchanging the quark and anti-quark fields, the charge conjugation operation ef-
fectively acts as a transpose of the operators between the quark fields; for three
derivatives then, one ensures definite charge conjugation by coupling the outermost

derivatives together first since this gives them a definite exchange symmetry

(r X D-[]:i]g../[_))‘]lzu = Z <1 7714. JD. 771DIJ. ]\[)

mi.ma,m3,mgq,mi3zmp

X (1,mg; Jiz, myz|Jp, mp) (1, my; 1, m|J13, my3)

o = = =2
X U'f F"Ll Dm1 D m2 D m;;'ll"'f’ ¢ (330)

It is clear that this formulation can be extended to any number of derivatives. In this
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(dim)

NSONJURN I i ) N

A1) Thi(3) e To(3) & E(2)

TABLE 3.2: Continuum spins, J < 4, subduced into lattice irreps, A(dim), where
dim is the dimension of the irrep.

work all combinations of gamma matrices and derivatives are used up to three deriva-
tives. This provides access to all J¥C combinations for J < 4'. These interpolators
are eigenstates of parity; when there are an even (odd) number of covariant deriva-
tives, the parity is equal to (opposite to) that of the local interpolator containing the
same gamma matrix. When f = f’, the interpolator is also an eigenstate of charge
conjugation. In the case when the quark fields are not of the same flavour but are
degenerate, C-parity is trivially generalised to a G-parity-like symmetry. In the case
where the quark fields are not of the same flavour and are non-degenerate, charge
conjugation, or any generalisation of it, is no longer a symmetry of the system, and
states are labelled only by J”. As a result, states created that would have different
charge conjugation symmetry can mix to form eigenstates of the QCD Hamiltonian,

an effect that will be discussed further in sections 3.5 and 6.5.

Due to the cubic nature of our finite volume, the full three-dimensional rotational
symmetry of the continuum is reduced to that of the cubic group OP. As a conse-
quence, the infinite number of irreducible representations (irreps) labelled by spin
J., are contained within a finite number of lattice irreps. Mesonic states at rest will

belong to one or more of the five single-cover irreps of OP; A}, Ay, E, T} and T5. In

!Except for the exotic combination 4%~ which requires four derivative interpolators
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XK & &+ A+
A 2. 6 I3
Al 4 & B
7| 18 95 22 98
T, | 18 18 22 14
E|l14 12 17 9

TABLE 3.3: The number of interpolators used in each lattice irrep, APC, for the
study of the charmonium spectrum. All combinations of gamma matrices and up
to three derivatives are included.

order for the interpolators described above to be of any use in a lattice calculation,
the various components, M, of a spin J interpolator must be subduced into lattice
irreps [62, 74]; the result of which is shown in Table 3.2 for J < 4. Subduction

proceeds via

O.[il.],\ - Z 5.‘(1‘1’ (I x DIF)yIM — Z Sj(‘_‘,‘\l OIM (3.31)
M M
where A = 1 . . . dim(A) is the row of the irrep A. SK“];] are the subduction

coefficients and are constructed as follows. For a J = 0 interpolator, the subduction
is trivial since spin zero only appears in the one-dimensional irrep A;. Therefore

0,0 : . : 55
Si,1 = 1. J = 1 interpolators can only be faithfully subduced into T, which is

three-dimensional. Hence we use
1.M ;
STI_,\ = O (2-M) » (3.32)

where (2 — M) is used so that 1 < A < dim(7}). Interpolators with J > 2 can be

subduced across multiple irreps and are constructed by iteration starting from the
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A |A- AT
A, | 18 18
Ay | 10 10
T, | 44 44
T, | 36 36
E |26 26

TABLE 3.4: The number of operators used in each lattice irrep, AP, for the
study of the charm-light and charm-strange spectra. All combinations of gamma
matrices and up to three derivatives are included.

J =0 and .J = 1 coefficients via

Sy = D D Syl SN C(A® Ay — A) (Ji, My; Jo, My|J, M) , (3.33)
Xi g, M Mo

where C'(A; ® Ay — A) is the octahedral group Clebsch-Gordan coefficient for A} ®

Ay — A. The explicit values for the subduction coefficients up to J < 4 can be

found in [62].

The number of operators used for each A¥¢ combination for the study of the char-
monium spectrum is shown in Table 3.3. Table 3.4 shows the number of operators

used in each A” for the study of the charm-light and charm-strange spectra.

For irreps that are of a dimension two or higher, the same correlation functions are
calculated for each row, A, of the irrep. We average over these rows in order to

obtain a final value of the correlation function for that irrep.

In summary, in all of our spectroscopic calculations we employ a large basis of

interpolators ranging a variety of spatial structures. A key point in their construction

JPC

is that, in the continuum, they have definite allowing a spin identification

scheme to be set up. We use all combinations of gamma matrices and derivatives

JPC

up to three derivatives, which allows us to access to all combinations up to
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and including states of spin-4. From here on out, we will refer to the interpolators

described in this section as the J,-basis interpolators.

3.3.1 Mesonic Interpolators at Non-Zero Momentum

We now discuss our preferred construction of mesonic interpolators at non-zero mo-
mentum. We use these interpolators in the calculation of the dispersion relations
in the open-charm sector, as described in section 2.3, and in the construction of

multi-hadron interpolators in section 8.1.1.

The construction of interpolators at non-zero momentum is rather more involved
than for interpolators at rest: simply Lorentz boosting interpolators at rest does
not suffice, since one is required to take into account the reduced symmetry of the
system, that is, the little group of allowed cubic rotations that leave the meson
momentum invariant [75]. These so-called in flight interpolators must transform

irreducibly under this reduced symmetry group.

The J.-basis interpolators, O7*  in the continuum with p° = 0. have a definite
spin-J and spin z-component M. However, at non-zero-momentum, M is no longer
a good quantum number unless the momentum is directed along the z-axis. In
[76], the authors show that it is more convenient to work with interpolators of a
definite helicity, that is, the projection of the spin component along the direction
of p. So-called helicity interpolators can be constructed via (in an infinite volume

continuum)

0@ = ), Dy (R) O"(p), (3.34)

M
where O7*(p) is a helicity interpolator with helicity . Df\fi*(l?) is a Wigner-D

matrix, and R is the active transformation that rotates (0,0, |p]) to p.
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Lattice Momentum | Little Group | Irreps (A7)
(0,0,0) or AT, AT, EX T Ty
(7?.0.0) Di(‘4 Al.AQ,Bl.BQ.EQ
(n,n,0) Dic, Ay, As, By, By
(n,n,n) Dics A Ay By
(II m, U) C4 A]. 142
(n,n,m) Cy AL Ay
(n,m,p) C, A

TABLE 3.5: The allowed lattice momenta on a finite cubic lattice along with their

corresponding little groups. The A and B irreps are of dimension one, E two and

T three. Dic, is the dicyclic group of order 4n. Parity is only a good quantum
number for P = (0,0,0). Here n # m # p.

At non-zero momentum in an infinite volume continuum, the little group is the same
regardless of the momentum direction. However, in a finite volume, the particular
lattice little group depends on the star of p [75], that is, the set of all p'related by
allowed lattice rotations. Different stars of p are known as momentum types [76].
The momentum types, their corresponding little groups and their lattice irreps are
shown in Table 3.5. Helicity interpolators are subduced into a given irrep in the
same fashion as described in section 3.3, but of course with different subduction

coefficients; these are given in [76].

R is a matrix required to rotate from (0,0, [p]), which is not necessarily an allowed
lattice momentum, to p, which is an allowed lattice momentum. In practise, we
break R down into two stages, R = R, R,cs, where R, rotates from (0,0, [p]) to
Drey and Ryq is a lattice rotation from pi.; to p. The choice of Ry, is not important
as long as it is consistently used for a given momentum direction. It is useful to
consider the following example. Consider the momentum directions that give p* = 2,
and choose pr.y = (0,1,1). Requiring the final momentum to be p'= (0,1, 1), then

R = R,y is just a rotation from (0,0, p) to p. On the other hand, requiring the final
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momentum to be p'= (1,1,0), then R = Ry R,y where R, is as before and R4

is a lattice rotation from (0,1,1) to (1,1,0).

For further details on helicity interpolators and their (alternate) constructions, see
(61, 76], where they also list the relevant subduction coefficients for several momen-

tum types.

3.4 Analysis of Two-Peoint Functions

In our study of the charmonium and open-charm spectra, we construct correlation
functions built from the J.-basis interpolators. We use all combinations of v matrices
and derivatives up to three derivatives. As discussed in section 3.3, this allows us to
access all JP©) combinations up to spin four, and also gives us a probe of gluonic

degrees of freedom.

For each symmetry channel and flavour sector we compute an N x N matrix of
correlation functions

Ciy = (0l0i(t) O}(0)]0) . (3.35)

where i and j label the interpolators in the basis of a given symmetry channel.
N is the number of interpolators used in a symmetry channel, which is given in
Table 3.3 for the study of the charmonium spectrum, and Table 3.4 for the study
of the open-charm spectra. In each of these symmetry channels we then employ the
variational technique [77, 78]. This method of spectral extraction, which is now in
common usage throughout the lattice community, takes advantage of a redundancy

of interpolators in a given symmetry channel. Practically, this amounts to solving
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the generalised eigenvalue problem
C(t)v"™(t) = M(t)C(to)v"(2) , (3.36)

where A, (ty) = 1, and there is an orthogonality between the eigenvectors of different
states

VIO (t)0" = b (3.37)

The eigenvalues are known as principal correlators and at large times behave like
D= @ L Pl (3.38)

where E, is the energy of the n'" state when the eigenvalues are placed in ascending
order. Typically, we find that the energy gap AFE,, lies outside of the first N states
as suggested in [79]. We solve this generalised eigenvalue problem using singular
value decomposition, but other methods such as Cholesky decomposition has been
previously applied [80]. The spectral decomposition of a given correlation matrix
has the form

Cij=> ——Letnt, (3.39)

where the amplitudes, Z[', are known as overlaps and are given by

Z = (0|O;iln) = (V1 )i5/2E ™02 (3.40)

The choice of ¢, plays a crucial role in the correct extraction of spectroscopic states.
The eigenvectors are forced by the solution procedure to be orthogonal on the metric
C'(to). but since we use a finite number of interpolators in our basis, this orthogo-
nality will only be a good approximation if the correlator at t; is dominated by the

lightest dim(/N) states. This suggests that we should choose t large enough so that
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FIGURE 3.2: Principal correlator fits, according to equation (3.41), to the lightest
four states in the T, ~ irrep of the charmonium spectrum on the 24% x 128 volume.

The data points are given by \"(t) - e"=(!=10) and the fits are for to = 15.

The

error bars show the one sigma statistical uncertainty, while the grey points are

not included in the fits.

the correlator is dominated by the lightest N states, but we must be careful not to

choose a t; too high, as the signal may begin to degrade. In chapter 4, we perform

some systematic tests, one of which is the variation of the spectrum due to different

choices of t.

We fit our principal correlators using either a single exponential or a sum of two

exponentials with the constraint A(t = t,) = 1. The two exponential fit used is

/\" — (1 o A”)(,—En(’—'u) £ AHG—E,,r(f—fn) .

(3.41)



Chapter 3. Spectroscopy on the Lattice 53

where the fit parameters are E,,. E,, and A,. The second exponential is added in
order to mop up the excited state contamination. Empirically, we find that the
contribution of the second exponential decreases rapidly as t; is increased. On
this premise, we do not consider further the parameters E,, and A,. Figure 3.2
shows a selection of fits to principal correlators of the form (3.41), in the 77~
symmetry channel from our calculation of the charmonium spectrum. These are
plotted with the dominant time-dependence due to state n divided out, so we would

see a horizontal line at 1 in the case where a single exponential dominates the fit.

For each principal correlator fit, 3.41, the choice of fit range is chosen to include as
many points as possible such that the fit has x?/(d.o.f) ~ 1. Typically, we find that
the ranges t; = 3 — 8 and t = 20 — 30 satisy this constraint. Variation within these
given ranges for t, and t usually amounts to a less than one percent difference in

the extracted energy, E. and usually lies within our statistical error.

Using the variational technique combined with our large basis of distilled interpola-
tors has proven to be very successful in past studies of the light meson [62, 73, 74]

and baryonic sectors [81, 82].

Now that we have extracted the spectroscopic states. all that remains is the difficult
task of identifying the spin of these states in a reliable manner. This will be the

subject of the following section.

3.5 Spin Identification

The spin identification, for all but the lightest spectroscopic states in a given sec-
tor, has been a long standing problem on the lattice. In principle, the spin of

single-hadron states can be identified by computing the spectrum at finer and finer
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FIGURE 3.3: The normalised correlation matrix, (C;;//C;iCj;), on time-slice

five in the 77~ irrep of the charmonium spectrum on the 243 x 128 volume.

The interpolators are ordered such that those subduced from spin-1 appear first,

followed by spin-3 and spin-4. It is clear that the correlation matrix is observed
to be approximately block diagonal in spin.

lattice spacings and then extrapolating to the continuum limit: when full rotational
symmetry is restored, degeneracies will emerge between different irreps of OF. For
example, due to the pattern of subductions. a state of spin-two will appear as degen-
erate states in the E and T irreps. Two major difficulties arise with this method.
Firstly, in order keep statistical precision under control at successively finer lat-
tice spacings requires the sort of computational power that is currently impractical.
Secondly, and perhaps more fundamentally, the continuum spectrum can exhibit
natural degenerate or near degenerate states, which is especially relevant for mesons
containing heavy quarks since hyperfine splittings are known to be small. For exam-
ple, a state with JP¢ = 4** will have its components distributed across the lattice
irreps. Ay, T}. E and T5. Using this method of spin identification. we would expect

to see degenerate states in each of these irreps as we go to smaller lattice spacings.
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However, this will also be the pattern of energy levels for separate 07, 17" and
27 states. Since states with these quantum numbers are expected to appear within
the same quark model supermultiplet (P-wave), the splitting between these states
is expected to be small. Hence, a 47" state could be misinterpreted as separate

0t*. 17" and 2% states and vice versa.

-

As we will see in chapters 5 and 6, the dense spectrum of excited states would
be impossible to disentangle by only having information on their energies. This is
particularly important for the charm-light and charm-strange spectra; the lack of
charge conjugation symmetry will reduce the number of symmetry channels which
can be used to separate the states. Hence, the spectrum in each symmetry channel

becomes more dense than, for example, in charmonium.

It would be useful to have a method that alleviates these difficulties, and is effec-
tive when using data from only one lattice spacing. Of course, the single lattice
spacing should be fine enough so that rotational symmetry is restored to such a
point that one still describes QCD. Such a method was proposed by the Hadron
Spectrum Collaboration in [62, 74]. The idea is to consider vacuum-state matrix
elements (overlaps) of carefully constructed interpolators as a source of additional
information. Our interpolators are constructed are constructed such that they have
a definite JP(©) in the continuum. They are then subduced into the relevant sym-
metry channels of the lattice. However, it is clear from their construction, that each
interpolator carries a memory of the continuum spin from which it was subduced.
If our lattice is reasonably close to restoring rotational symmetry, then we would
expect an interpolator subduced from spin-.J to predominantly overlap onto states

that have spin-J in the continuum limit [83].

We find this statement to be true, even at the level of the correlation matrix. Figure

3.3 shows the normalised correlation matrix, (Ci;/1/CiCj;), on time-slice five in the
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FIGURE 3.4: The normalised correlation matrix, (C;/,/C;Cj;), on time-slice

five in the T, irrep of the charm-light spectrum on the 243 x 128 volume. The

interpolators are by continuum spin, .J, as shown by the labelling; spin-1 followed

by spin-3 and spin-4. For each value of spin-.J, they are then ordered according to

their symmetry Ct = +, as described in the text. It is clear that the correlation
matrix is observed to be approximately block diagonal in spin.

T, ™ irrep of the charmonium spectrum on our 24% x 128 volume. It is clear that when
the interpolators are ordered according to the spin from which they were subduced,
that the correlation matrix has a block diagonal structure. Figure 3.4 shows a similar
plot, but this time in the 7| irrep of the charm-light spectrum. Flavoured mesons are
not eigenstates of charge conjugation and hence states that would be distinguished
by charge conjugation symmetry can mix. Our interpolator construction (see section
3.3) is designed to have well defined transformation properties under transposition
of the operator. T, in the bilinear, 'Y = £I'.  We denote the eigenvalue under

this transformation as Cr = +1. It is clear from Figure 3.4 that interpolators
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FIGURE 3.5: The overlaps, Z, of a selection of interpolators onto a selection of
states in the 75, ~ irrep of the charmonium spectrum on our 24% x 128 volume. The
states are labelled by their mass in lattice units a;m, and by the continuum spin of
the dominant interpolators. In this plot, the overlaps have been normalised so that
the largest value of an interpolators across all states is equal to unity. The shaded
region near the top of each state shows the one sigma statistical uncertainty.
For each state, the interpolators are coloured according to the continuum spin
of an interpolator: spin-2 is green, spin-3 is blue and spin-4 is orange. A darker
shade of a given colour signifies that the interpolator is proportional to the field
strength tensor. For each state the interpolators are, from left to right: (a; x
DEL)W=3, (a1 x DB 5 5=, (px DYL)I=, (a0 x DY)y ;) =3, (a1 x

DB“}:;:.Z.J::;)W=31. (p x D )I=31 " (a; x D[J*"jazr_,“,:;;)l«f=4l.

with Cr = + and Cr = — have significant overlap with each other. Also evident
from this figure is the block diagonal structure in spin, which suggests. just as
in the charmonium case, that interpolators subduced from, say, spin-1 have little

contribution to the spin-3 and spin-4 states.

This effect is even more evident at the level of individual states. Our overlaps,
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FIGURE 3.6: The overlaps, Z, of a selection of operators onto a selection of
states in the charm-strange (D) Tfr irrep on the 243 volume. In this plot the
overlaps have been normalised so that the largest value for an operator across
all states is equal to unity. The error bars indicate the one sigma statisti-
cal uncertainty. For each state, the operators are coloured from left to right
as: pink (ag x D_r‘.,zlzl):":‘]. red (b x D[Jm‘:())'t']:‘]. blue (b; x D?;ziz.z)l']::‘l. red
(p x D'[ll}:l)“:l]. pink (p x D.[l:i];;:z_.lz‘z)“:l]‘ light blue (p x D'[:‘]] o)/=3l, and

gold (p x D.[?,];,:z.. 1:3)['] =4 The first three operator insertions have negative sym-
metry (Cr = —) and the last four have positive symmetry (Cr = +) as explained
in the text. States are labelled by their mass in temporal lattice units and the
continuum spin of the dominant operators. ‘Hyb’ refers to a state which has rel-
atively strong overlap with operators that are proportional to the field strength

tensor, the commutator of two gauge-covariant derivatives.

3=2,J=

Z" = (0|O;|n), for a given state show a clear preference for overlap onto interpolators
of a single spin. This is evident in Figures 3.5 and 3.6, where we show a selection of
overlaps, Z!", for a selection of states in the T, ~ irrep of the charmonium spectrum,
and the T}" irrep of the charm-strange spectrum, both on the 24? x 128 volume. The
colour scheme in these figures is as follows: J = 0 is black, J = 1 is red, J = 2 is
green, .JJ = 3 is blue and J = 4 is orange. Interpolators that are proportional to the

field strength tensor are coloured in a darker shade in Figure 3.5 and in a lighter
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FIGURE 3.7: A selection of Z-values for states conjectured to have J = 2 in
irreps A=~ of the charmonium spectrum on our 128 x 243 volume. From left
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shade in Figure 3.6. We show only a subset of interpolators and states here, but

similar patterns occur throughout all of the spectra.

To be more quantitative, we can compare overlap values between different irreps.

Our interpolators are constructed to have definite continuum spin, so

<J/, J\IlloJ'MT’O) = Z[J](SJ’J’(SAL]\[' 3 (342)
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FIGURE 3.8: A selection of Z-values for states conjectured to have spin-3 (left)
and spin-4 (right) in irreps A=~ of the charmonium spectrum on our 128 x 243

volume. From left to right, the interpolators in the left panel are (p2 x D_[,2]=2)J=3.

2 - : = » 3 -
(px D.[/]=2)J_3- (ag % D.[;};,:2..1=3)J_3- (ay % D.[?l];;:Q..I::l)JTS* (by % D.[h];;:l.J:?)J .
the interpolator in the right panel is (a; x D.[fl];;zz..lz:s)J:4-
and therefore when subduced to the lattice
(7, M|ON 10y = S 246, . (3.43)

This implies that the value of Z!”! is common to different lattice irreps up to dis-
cretisation effects and a choice of normalisation of the subduction coefficients. This
gives us further information that we can use to identify the spin of a state: we can
compare the Z values obtained independently in different irreps. For example, a

J = 2 state created by a (’).[&]:2} interpolator will have the same Z value in both the
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FIGURE 3.9: A selection of absolute Z-values for the lightest states conjectured to

have J = 2 (left pane), J = 3 (middle pane), J = 4 (right pane) in charm-strange

irreps., A~, on the 243 volume. For each J we show the values of Z for the same

interpolator subduced into different irreps. The vertical size of a box corresponds
to the one-sigma statistical uncertainty on either side of the mean.

E and T irreps. once we suitably normalise the subduction coefficients. If this is
the case, it is also another hint that the discretisation effects are relatively small,

since they have not distorted the Z values significantly.

Figure 3.7 shows a selection of Z values for states conjectured to have continuum
spin-2 in the charmonuim spectrum. In Figure 3.8 we show a selection of Z values
for states conjectured to have continuum spin-3 and 4 in the charmonium spectrum,
while in Figure 3.9 we show a selection of Z values for the lightest states conjectured
to have continuum spin-2, 3 and 4 in the relevant irreps of the charm-strange spec-
trum on the 243 x 128 volume. In all of these figures there is an excellent agreement
between overlaps extracted in different irreps. This observation is apparent across
all of our calculated spectra though, as we expect, there are slight deviations from

exact equality due to discretisation effects.

We do not expect rotational symmetry breaking terms to appear until O(a?) since
there are no dimension five operators composed of quark bilinears that respect the

symmetry of the lattice that do not also transform trivially under the continuum
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FI1GURE 3.10: A simultaneous fit to the four principal correlators of the lightest

47 state of the charmonium spectrum, on the 24% volume using a common mass,

m,,. Plotted are A"(t)-e™=(!=t) data and the fit; the grey points are not included
in the fit.

group of spatial rotations. Hence, we expect the rotational breaking between lattice
irreps to be suppressed in both the spectrum and the overlaps [62, 83]. However,
renormalisation mixing of high mass dimension interpolators (i.e. two and three
derivative interpolators) with lower mass dimension interpolators can give rise to
effects scaling with negative powers of the lattice spacing: we expect these to be
more troublesome for using Z values to determine spin. But, in practise, the effects

are not seen to be large enough to prevent the use of the method. In accordance with
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[62]., we suggest that it is our use of stout smeared gauge fields and distilled quark
fields that renders these mixings relatively small, since the high-energy physics has

been filtered out.

Given that this method of spin identification is feasible, we can confidently identify
the different components of a spin-J meson subduced across different irreps. Then
the question of which value to use as the final mass arises, since fits to principal
correlators in different irreps may differ slightly due to lattice artefacts. Rather
than taking the simplest approach, which would be to average the masses across the
relevant irreps, we perform a joint fit to the principal correlators with a common
mass. To achieve this we allow a different second exponential for each principal
correlator so that the fit parameters are, the common mass m,,. and the sets of pa-
rameters {m/*} and {A2}. This method has proven to be very successful in the past
(62, 73, 81]. Figure 3.10 shows an example of a joint fit to the principal correlators

of the lightest 47~ state in the four irreps A7, 7, 7.7, ~ and E~~. In general the

fits have x2/N9f ~ 1.

In this chapter we have presented the recipe used by the Hadron Spectrum Collabo-
ration in order to extract excited spectra. We use a large basis of local and spatially
extended distilled fermionic bilinears along with the variational method in order to
extract spectra up to and including spin-4. As demonstrated in this section, we can
reliably identify the J¥©) of our extracted states using the vacuum-state overlaps,
Z, and for states of J > 2, we perform joint fits across the relevant irreps to quote

final values for their masses.



Chapter 4

Stability of Spectra

In this chapter we discuss to what extent the extracted spectra changes as the details
of the calculation are varied. while keeping the physics constant. These systematic
tests consist of variations of various parameters, such as the choice of t; in the
variational method, the number of distillation vectors used, and the variation of
hyperfine splittings due to the spatial clover coefficient. As a test case, we use

charmonium, but expect the open-charm sector to behave in a very similar fashion.

4.1 Variational Analysis and the Choice of {

Our choice of ty in the variational technique is guided by the reconstruction method
as described in [62, 80]. Here, the correlation matrix is reconstructed from the
extracted masses and eigenvectors on a given time-slice from equation (3.39). This
reconstructed matrix is then compared to the original data for all ¢t > t,, with the
degree of agreement indicating the acceptability of the spectral decomposition. The
description generally improves as one increases t, until at some point the increase

64
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FIGURE 4.1: Extracted mass spectrum as a function of t; for the lower-lying

states in the 7]~ irrep of the charmonium spectrum on the 243 x 128 volume.

The top left panel shows the lightest ten states and the other panels show the

lightest four states in more detail. Horizontal bands show the masses extracted at

to = 15 with the width £10 from the mean. For large enough but not too large
to the spectrum is seen to be stable under changes in ty.

in statistical noise halts the improvement. This procedure gives an insight as to
the minimal t; for which the correlation matrix is well described by the variational

solution.

Figure 4.1 shows how the lightest ten states in the 77~ irrep of the charmonium
spectrum on our 24% x 128 volume vary according to the chosen t,. The horizontal
bands in this figure show the extracted mass value for each state when ¢, = 15,
while the width of each band shows the one-sigma statistical uncertainty. It is clear
that, for large enough ty, the spectrum appears stable under variations of t;. A

major factor in this stability is due to the second exponential in our fitting form; as



Chapter 4. Stability of Spectra

66

1.65
1.60
1:55
1.50
N 1.45
1.40
1585
1.30
1.:25

FIGURE 4.2: Extracted overlaps, Z. for interpolator (a; x D(m:l)

of ty for the lightest three J = 1 states in the T~ irrep of the charmonium

spectrum on the 243 x 128 volume. The Z values for the 15 and 2"? excited states

have been arbitrarily scaled by factors of 3 and 1.25 respectively to fit on the plot.

Coloured bands show fits to an exponential plus a constant or a constant over an

appropriate range of ty. The Z values are seen to plateau for sufficiently large ¢
but can show significant curvature at small .
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previously explained, the second exponential mops-up the contamination from other

states leaking into the principal correlator due to finite basis. We also find that the

contribution of the second exponential falls rapidly with increasing t.

We expect the overlaps, Z. since they are related to the eigenvectors obtained from

the variational method, to be more sensitive to the variation of ¢;,. Figure 4.2 shows

the extracted overlaps as a function of t, for the lightest three J = 1 states in the

T~ irrep of the charmonium spectrum on the 24% x 128 volume. In Figure 4.3 we

show extracted overlaps as a function of ¢, for the lightest .J = 4 states in the 77~
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FIGURE 4.3: Extracted overlaps, Z. for interpolator (a; x D-[/J;;:B--l:li)"l]‘:l as a

function of ty for the lightest J = 4 state in the T~ irrep of the charmonium

spectrum on the 24% x 128 volume. The horizontal band shows a fit to a constant

over an appropriate range of ty. The Z value is seen to plateau for large ¢, but
shows significant curvature at small ¢.

irrep of the charmonium spectrum on the 24 x 128 volume. As expected. both of
these figures show that the overlaps appear to be more sensitive to the variation of
to than the masses; we have to go to larger t; values for the Z values to stabilise.
For this reason we generally choose t, values between ten and fifteen throughout all
of our spectra. Here, we have shown only masses and Z values as a function of
for charmonium, so it should be noted that we observe very similar results in the

open-charm spectra.

In summary, it appears that the variational technique is reliable as long as tg is

chosen such that the Z values have stabilised: in general, the masses stabilise at
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earlier ¢, values compared to the overlaps. This observation was also apparent in

the calculation of the light isovector meson spectrum [73].

4.2 Number of Distillation Eigenvectors

The distillation method, as described in section 3.2, hinges on the choice of the
number of eigenvectors of the Laplacian to include. Using too few eigenvectors
reduces the computational cost but results in over-smearing and reduces the ability
to extract higher lying states. The unsmeared limit corresponds to Ny..s = 3(L/ay)?,
where the 3 refers to the number of colours. To achieve the same level of smearing on
larger volumes requires the number of eigenvectors to be scaled by a factor equal to
the ratio of spatial volumes [72]. Hence, an optimum use of the distillation method
requires the use of the smallest number of eigenvectors for which the states of interest
can be extracted reliably. Figure 4.4 shows the lowest-lying states in the 7"~ irrep of
the charmonium spectrum on our 16* x 128 volume for a subset of 90 configurations
with 6 time-sources per configuration. It is clear from the figure that the spectrum
becomes stable for N,... > 48. The spectrum degrades in quality for fewer vectors,

which becomes quite apparent for excited states.

In summary, we find that using 64 eigenvectors on the 16% x 128 volume is sufficient
for the spectrum to be stable with respect to the number of eigenvectors. Since,
when the number of eigenvectors is 48, the spectrum appears to become stable, we
scale up to the 24 x 128 volume via 48(24/16)>, which suggests that 162 eigenvectors

are sufficient.
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FIGURE 4.4: Extracted spectrum for the 7|~ irrep of the charmonium spectrum

on the 163 x 128 volume as a function of the number of distillation vectors, Nyees.

using lower statistics than the main 16% results. Horizontal bands correspond

to the masses extracted with Nyees = 64 and give the one-sigma statistical un-

certainty on either side of the mean. The spectrum is observed to be stable for
Nyecs = 48.

4.3 Hyperfine Splittings and O(a,) Effects

An accurate determination of hyperfine splittings for heavy flavour-singlet mesons
has been a long standing problem in lattice QCD [84]. The problem is that this
quantity is known to be extremely sensitive to discretisation effects arising from the

Dirac operator.

On our 163 x 128 ensemble. we determine the hyperfine splitting between the lightest
pseudo-scalar (7.) and vector (J/1) charmonium states to be 80(2) MeV. This is
consistent with our determination on the larger 24 x 128 volume, suggesting that

it is not a finite volume effect. The accepted experimental value is ~ 116 MeV
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[48]. Our determination neglects the contribution of disconnected Wick diagrams.
However, these diagrams are OZI suppressed and are not expected to contribute to
the hyperfine splitting in a significant fashion [84]. We have made some first tests
of their contribution and find a similar result. Another source of systematic error is
due to our unphysically heavy light quarks. but again this is not expected to impact

the hyperfine splitting significantly [85].

The action used for the charm quark in this study, as explained in chapter 2, is O(a)-
improved at tree-level in tadpole-improved perturbation theory. It is expected that
a non-perturbative determination of action parameters would yield a larger value of
the spatial clover coefficient ¢, [86]. We use a value of ¢, = 1.35 in our simulations,
but we increase this to ¢, = 2.0 in order to investigate the effect of a larger value on
the low-lying charmonium spectrum on our 16% x 128 volume. This choice was not
motivated by any calculation. and is chosen only because a non-perturbative value

is expected to be larger than the tadpole-improved tree-level value.

Figure 4.5 shows the lowest-lying S and P-wave states, 0", 177,(0,1,2)"" and
the exotic 177, calculated for the original value of ¢, = 1.35 and the increased
value of ¢, = 2.0. The calculated (experimental) mass values in this figure have
the calculated (experimental) 7. mass subtracted from them, in order to reduce the

small systematic error picked up in setting the bare charm quark mass.

Choosing ¢, = 2.0, which gives a value for the J/v» — 1. splitting of 114(2) MeV,
brings us to within statistical uncertainty of the accepted experimental value of
~ 116 MeV. We also observe significantly better agreement with experiment for the
P-wave states. The spin-2 Y., state is subduced across two irreps, T,”" and E*7.
For the increased value of ¢, the two determinations are still degenerate within
statistical uncertainty. This is consistent with the explanation that the hyperfine

splitting is underestimated due to O(a) effects; as previously mentioned, since all
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FIGURE 4.5: The mass shifts, measured on our 163 x 128 volume, for the lowest-

lving states in a selected set of charmonium lattice irreps as c,. the size of the

chromomagnetic clover term, is varied from tadpole-improved tree-level value of

cs = 1.35 (green) to ¢y = 2 (cyan). Masses presented here are measured relative

to M,,.. Experimental data is shown as solid lines: note that experimentally the
X0 has a significant hadronic width.

dimension-five interpolators consistent with lattice symmetries do not break the
continuum rotation group, any differences between these lattice states should only
arise at O(a?) in a Symanzik-like expansion, and so are expected to be small. The
lightest charmonium state with exotic quantum numbers, 177, is observed only to
have a mild dependence on cq, suggesting that such states high up in the spectrum

will be relatively close to their experimental values.

To be clear, the final results presented in chapters 5 - 8 are calculated with ¢, = 1.35
and not with the increased value of ¢, = 2.0. However, this test allows us to place an
approximate scale of ~ 40 MeV to the size of the systematic uncertainty arising from
the leading order O(ay) lattice artefacts. Of course, for full control of systematic

error further investigation would be required.



Chapter 4. Stability of Spectra 72

We also performed the same test for the hyperfine splittings in the open-charm
spectra. Using the original value of c¢,, we calculate the splitting between the S-
wave pseudo-scalar and vector states to be 124(1) in the charm-light sector, which is
significantly lower than the experimental value of ~ 142 MeV. In the charm-strange
sector, we calculated the hyperfine splitting to be 120(1) MeV using the original
cs value. The experimental value in this case is ~ 143 MeV. When we increased
the value of the spatial clover coefficient to ¢, = 2.0 we again achieve hyperfine
splittings that are comparable with experiment; we get 144(1) in the charm-light
case, and 139(1) in the charm-strange case. Following the same argument as in
the charmonium case, we assign a scale of ~ 20 MeV for our leading O(ay) lattice

artefacts in the open-charm sector.
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Hidden Charm Sector

In this chapter we present the results from our calculation of the charmonuim spec-
trum. Firstly we discuss the results by lattice irrep and compare the spectrum
calculated on the 16® x 128 volume with that calculated on the 24% x 128 volume.
We then show our final spin identified spectrum before proceeding to discuss our
interpretation of the results. We delay our discussion of hybrid mesons until chapter

—

(.

5.1 Results by Irrep and Volume Comparison

The results of the variational analysis applied to the correlation matrix representing
each lattice irrep, APC, is shown in Figure 5.1. The lighter shaded boxes are from
the 16 x 128 volume, while the darker shaded ones are from the 24% x 128 volume.
The size of the boxes indicate the one-sigma statistical uncertainty while the colour
coding indicates the continuum spin as determined via the spin identification scheme
discussed in section 3.5; states identified as spin-0 are coloured black, spin-1 are

73
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coloured red, spin-2 are coloured green, spin-3 are coloured blue and spin-4 are

coloured orange.

On the lattice, states that have continuum spin > 2 have their components split
across several irreps. As described in section 3.5, we can use, not only the masses,
but the corresponding overlap values identify the continuum spin of these states. As
can be seen in Figure 5.1, we generally see no significant mass differences between
components of a continuum spin > 2 state in different lattice irreps. This is an
indication that the extracted spectrum is indeed composed of single-hadron states
as one signature of multi-hadron states would be to disrupt these degeneracies. From
the same figure, it is also evident that the dense spectrum of states above a;m ~ 0.65
would be impossible to disentangle using only the masses. The fact that a successful
spin identification is possible is an indication that the lattice size is large enough
and that the lattice spacing is fine enough for an effective restoration of rotational

symmetry at the hadronic scale.

Figure 5.2 shows the spin identified volume comparison labelled by continuum J7¢.
The states coloured red in the rightmost panel are those that have exotic quantum
numbers. These will be discussed further in chapter 7. This figure includes only
the states that were well determined by the variational procedure. The dashed lines
indicate the lowest thresholds for open-charm decay: the calculated DD and D.D,

non-interacting levels measured on the 16 x 128 volume.

At the level of statistical precision, we observe no significant difference between the
two volumes, even above the open-charm thresholds, which is more evidence that we
are not seeing multi-hadron states. Furthermore, we do not see any states appearing
in energy regions where we would expect non-interacting two-meson states to appear.
This apparent lack of multi-hadron states has also been observed in [62]. where they

use the same technology in the computation of the light isovector spectrum.
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FIGURE 5.1: Extracted charmonium spectra by lattice irrep, A”C, on the 163 x 128

(lighter shading) and 243 x 128 (darker shading) volumes. The vertical size of each

box gives the one sigma statistical uncertainty on either side of the mean and the
colour coding indicates the continuum spin.

5.2 Final Spin Identified Charmonium Spectrum

Figure 5.3 shows our final spin identified charmonium spectrum. We take the values
calculated on our 24% x 128 volume as our final results since these were calculated
with higher statistics and on a larger volume. The green boxes represent states that
were well determined by the variational procedure and the black boxes represent
experimentally determined states. In this figure, the calculated (experimental) value
of the 7. mass has been subtracted from the calculated (experimental) masses in
order to reduce the systematic error from setting the charm quark mass. The green

dashing represents the non-interacting open-charm thresholds, DD and D,D,, as
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FIGURE 5.2: The extracted spin-identified charmonium spectrum labelled by
JPC: the 163 x 128 (open boxes) and 243 x 128 (filled boxes) volumes agree well.
The vertical size of the boxes represents the one-sigma statistical uncertainty on
either side of the mean. The dashed lines indicate the lowest non-interacting DD
and D¢D, levels using the D and D, masses, as measured on our ensembles.

calculated on our 16* x 128 volume. The grey dashing indicates the same thresholds

but for experimental values. The masses are tabulated in Table A.1.

It is clear from Figure 5.3 that the states become less well determined high up
in the spectrum. This is expected because, even though we use a large basis of
interpolators, it is still finite. To better determine these states, we would need to
include interpolators of different radial structures. It is also worth noting that in
order to determine states with J > 5 we would need to include interpolators with

at least four derivatives.

In the next section we give our interpretation of the results, but first we discuss some
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FIGURE 5.3: Summary of the charmonium spectrum up to around 4.5 GeV la-
belled by JP’C. The red and green boxes are the masses calculated on the 243 x 128
volume; black lines are experimental values from the PDG [48]. We show the
calculated (experimental) masses with the calculated (experimental) 7. mass sub-
tracted. The vertical size of the boxes represents the one-sigma statistical un-
certainty. The dashed lines indicate the lowest non-interacting DD and D, D,
levels using the D and D, masses calculated on the 16% x 128 volume (fine green
dashing) and using the experimental masses (coarse grey dashing).

other recent calculations of the charmonium spectrum. In [80], the authors present
a calculation of an excited charmonium spectrum in the quenched approximation.
Apart from our calculation having dynamical light and strange quarks, we also
utilise a larger basis of interpolators. Due to this, we extract a much larger number

of excited states and reliably identify their JC.

[87] presents an N; = 2 calculation of the charmonium spectrum. They also consider

mixing with some light meson and multi-hadron states. The same authors have also
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presented preliminary Ny = 2 results in [85]. They use a range of pion masses
and lattice spacings, but the main drawback is their small interpolator basis, which

makes a robust spin identification of excited states difficult.

In [88], the Fermilab and MILC collaborations investigate quarkonium mass split-
tings using asqtad improved staggered fermions on ensembles with three flavours of
sea quarks. For heavy quarks they employ the Fermilab interpretation of the clover
action for Wilson fermions. Most of their calculated splittings agree well with ex-
periment; For example, they find a value of 116.0 7.4 MeV for the charmonium 15
hyperfine splitting. which is remarkably close to the experimental value of 116.44+1.2

MeV.

5.3 Interpretation of Charmonium Spectrum

Most of the states with non-exotic J©C appear to follow the quark model pattern
of states, n>>*!'L ;. obtained by coupling the spin of the quarks. S, to the angular
momentum of the system, L, in order to produce a total angular momentum (Spin),
J. Here, n is the radial quantum number. This pattern of states forms so-called
supermultiplets of states, which are shown in Table 5.1. The 2°T'L; assignment
of our states is determined by considering operator-state overlaps which was first

described in [89).

In the left panel of Figure 5.3, we present the negative parity sector of our calculated
charmonium spectrum. We calculate the ground state S-wave pair [0~",177] and
their first excitation at M — M, ~ 700 MeV. We observe a second excitation at
M — M, ~ 1150 MeV. There is a complete D-wave supermultiplet at M — A, ~ 850

MeV, just above the DD threshold. Just above M — M, ~ 1200 MeV, there is an
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TABLE 5.1: Supermultiplets for quark-antiquark pairs with spin S and relative

orbital angular momentum L. Also shown are some hybrid supermultiplets, dis-

cussed in chapter 7, where J;’ng are the quantum numbers of the gluonic excita-
tion: exotic JFC are shown in bold.

excited D wave set. In the same energy region there is also parts of what appears
to be a G-wave set, which is indicated by the presence of spin-4 states. We do
not observe the full G wave set as this would require us to observe a spin-5 state.
This is difficult with the current interpolator basis since it would require the use
of four derivative interpolators. Around M — M, ~ 1300 MeV, there are three
states, [(0,2)~",177], that do not appear to fit into the >**!L, pattern suggested
by the quark model. These states have relatively large overlap with interpolators
that are proportional to the field strength tensor, which is something not observed
for states that fit into quark model supermultiplets. Following the suggestions of
[62], we interpret these states as non-exotic hybrid mesons and discuss them further

in chapter 7.

The middle panel of Figure 5.3 shows the positive parity sector of our charmonium
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FIGURE 5.4: Overlaps, Z, for the lightest P-wave supermultiplet with interpola-
tors {7, p}nr X D_[}]:l and {7, p}ng ¥ D,[f]:‘z respectively.

spectrum. Well below the DD threshold at M — M, ~ 500 MeV, we observe a

Ne
P-wave set, [(0,1,2)"*,1*7]. Around M — M, ~ 1000 MeV, there is an excited
P-wave set, and just above this, a full F-wave set [(2,3,4)*",3"7]. The band of
states around M — M, ~ 1400 MeV probably contains part of the second excitation

of the P-wave and several non-exotic hybrids which lies significantly above the first

set of negative parity hybrids.

The right panel of Figure 5.3 shows states with exotic JP¢, 1=F 07~ and 2%~
therefore they can’t consist of solely a quark-anti-quark pair as other degrees of
freedom are needed to produce these .J”“. We delay their discussion until chapter

7.
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As mentioned above, we use operator-state overlaps to assign states into a given
supermultiplet. As a demonstration of this, consider the following interpolators:
(mnr x DIL)7=1 with JPC = 1+= and (png x DYL,)V=012 with JPC = (0,1,2)*,
where pygp = %%(1 — ) and pyr = %')5(1 — 7). These interpolators have the
structure of quark-antiquark pair in a gauge covariant version of a P-wave with S = 0
(mng) or S =1 (pygr). The interpolators (myp x D‘[]‘Z]ZQ)J=2 with JP¢ = 2+ and
(pNR X D[JQ]:Q)‘]:I‘Q'3 with JFC = (1,2, 3)~~ have the structure of a quark-antiquark

pair in D-wave with S =0or § = 1.

Figures 5.4 and 5.5 show the overlaps of these interpolators with states suggested
to be members of the P-wave and D-wave supermultiplets. We observe that these

overlaps are significant, and in general we find that overlaps onto non-relativistic
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interpolators are large. This is not very surprising since the charmonium system is
reasonably non-relativistic. Our interpretation of these states as being in the same
supermultiplet is further supported by the fact that they have very similar Z values,
as shown in Figures 5.4 and 5.5. We expect the Z values of states in the same
supermultiplet to be similar because they correspond to the same underlying spatial

wavefunction with differing internal spin and angular momentum couplings.

It is important to note that we only draw qualitative conclusions from Z values:
lattice regularised matrix elements require renormalisation to be compared with

continuum matrix elements, and this renormalisation can mix interpolators.

5.4 Comparison with Experiment

In Figure 5.3 the green boxes are our calculated states and the black boxes are
experimental states. It can be seen that there is generally good agreement between
our calculated states and the experimental states below the open-charm thresholds.
States above threshold can have relatively large hadronic widths, and our mass values
are only accurate up to this width. There are some discrepancies, but these could
be due to discretisation effects and the use of unphysically heavy quarks. However,
we do not expect the heavy light quark masses to introduce a large error for states
below threshold, but we note that this could be important at and above threshold.
As discussed in section 4.3, we significantly underestimate the S-wave hyperfine
splitting, but we have demonstrated in section 4.3 that this is due to the use of a

tree-level tadpole-improved value of the spatial clover coefficient.

We identify our first excited states in the 0~% and 17~ channels with the experi-

mentally verified 1.(25) and 1(25) states. Slightly further up in the 17~ channel,
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we identify our lowest D-wave state with the experimental 1)(3770) determination.
Even further up in the 17~ channel we show two experimental states 1/(4040) and
1(4160). We have some candidates in this mass region but a definite assignment can
not be made. As noted before, we need to add interpolators with different spatial
structure in order to better determine the high-lying states. Additionally, increasing

the number of distillation vectors may improve high-lying determinations.

The experimentally interesting Y (4260) which lies at M — M, ~ 1300 MeV with
JPC¢ = 177, is one of the states supernumerary to the quark model pattern. One
possible interpretation of this state is a non-exotic hybrid meson. The mass of the
17~ hybrid in our calculation agrees well with the mass of the Y (4260), which sup-
ports the hybrid interpretation. However, we also find conventional charmonia with
JPC = 177 in the same energy region, and hence can not rule out the possibil-
ity of a standard charmonium interpretation. or the possibility of a multi-hadron
or tetra-quark interpretation. An interesting observation is that, our 1=~ hybrid
candidate has a significant overlap onto an operator which has the structure of a
colour-octet quark-antiquark pair with S = 0 in S-wave coupled to the gluonic field,
(m x D‘[IQ}II)" =1, which is in contrast to conventional 17~ mesons which have S = 1.
The interesting point is that the Y (4260) decays to 7*7~.J/¢ [48]. The common
consensus is that such decays should conserve the spin of the heavy quarks. Hence,
one would expect that the Y (4260) has S = 1, at odds with our S = 0 hybrid.
However, the observation by CLEO [90] of a cross-section for ete™ — 77 h, at a
center of mass energy of 4170 MeV suggests that the common consensus could be

mistaken, since the h, has S = 0.

Another of the enigmatic experimental observations is that of the X (3872). It has
been suggested that this is a DD* molecular state, since it sits only a few MeV above

this threshold. Recently, the LHCb experiment [91] has confirmed that this state
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DY 5 . P . oYl _
has JP¢ = 17 This rules out the earlier possibility of the state having J©¢ = 27,
This assignment favours non-standard explanations such as the DD* molecule. In
this work we do not appear to see multi-hadron states and hence would not expect

to observe such a molecular state. To determine such a state would require the

addition of interpolators that overlap strongly with multi-hadron states.



Chapter 6

Open-Charm Sector

In this chapter. the charm-light and charm-strange spectra are presented. Firstly,
we discuss the volume dependence, before moving on to show our final spin identified
spectra. We then proceed to interpret our results and compare to experiment, before
discussing the mixing between spin-singlet and spin-triplet states. The discussion of

hybrid mesons is delayed until chapter 7.

6.1 Volume Comparison in the Charm-Light and

Charm-Strange Sectors

The results of the variational procedure for all lattice irreps in the charm-light and
charm-strange sectors are shown in Figures 6.1 and 6.2 respectively. The states are
labelled by irrep, A (recall that for flavoured mesons, charge conjugation is not
a good quantum number), and by the colour coding shown in the plot. The left

column of each irrep column represents the 243 x 128 volume results, while the right
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FIGURE 6.1: The extracted spectrum of states in the charm-light sector labelled
by irrep AT, For each irrep results from both the 243 x 128 and 16® x 128 volumes
are shown side by side. The vertical size of each box gives the one sigma statistical
uncertainty on either side of the mean and the box colour refers to the continuum
spin assignment as described in the text. The light cyan boxes represent states
that were not very well determined in the variational analysis; ellipses indicate
that additional states may be present in these energy regions but were not robustly
determined.

column represents the 16* x 128 volume. The size of the boxes represents the one-
sigma statistical uncertainty. The colour scheme is as follows: states with J = 0
are coloured black, J = 1 are red, J = 2 are green, J = 3 are blue and J = 4 are
orange. The light cyan boxes represent states that were not very well determined in
the variational procedure but robust enough that a mass could be extracted. The
ellipses in the positive parity sector of each figure represent regions where states may

be present but were not robustly determined.

Components of .J > 2 states are distributed across multiple irreps, and appear at
masses that are degenerate up to discretisation effects. As in the charmonium sector,

we generally see no significant discrepancies between these components in different
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FIGURE 6.2: The extracted spectrum of states in the charm-strange sector la-
belled by irrep AF. For each irrep results from both the 243 x 128 and 163 x 128
volumes are shown side by side. The vertical size of each box gives the one sigma
statistical uncertainty on either side of the mean and the box colour refers to the
continuum spin assignment as described in the text. The light cyan boxes repre-
sent states that were not very well determined in the variational analysis; ellipses
indicate that additional states may be present in these energy regions but were
not robustly determined.

irreps. As discussed in section 3.5, we match up states across irreps by comparing
overlaps. It is clear that the dense spectra of states above a;m ~ 0.5 would be
impossible to disentangle without information other than just the masses, which

again emphasises the importance of the spin identification scheme.

In general, throughout both spectra, we do not observe a significant volume de-
pendence. However, there are some significant exceptions. For the lightest 0" and
1" states (in the A and T irreps respectively), which are determined with very
high statistical precision, we observe a two-sigma difference between the two vol-
umes. One explanation could be that because these states lie precariously close to

thresholds, mixing with multi-hadron states may be important, and could cause the
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observed volume dependence. As previously mentioned, our interpolator basis does
not include any interpolators that look-like two-mesons, and so we do not expect
to be able to reliably determine any multi-hadron energy levels: this suggests that
a mass value is only accurate up to the hadronic width of the given state. In the
charm-strange sector, these two states correspond to where we expect to see the enig-
matic D%,(2317)* and D,;(2460)* levels, and interestingly, the experimental bound
on their widths is quite small, I' < 4 MeV [48]. With these possible exceptions, we

see no clear evidence for the presence of multi-hadronic effects.

6.2 Final Spin Identified Charm-Light and Charm-

Strange Spectra

In Figures 6.3 and 6.4, we show our final charm-light and charm-strange spectra;
in each case we show the well determined spin identified spectra on our 24* x 128
volume, since calculations on this volume were computed with higher statistics, and
on top of that, it is our largest volume, meaning that any finite volume effects will
be less important. In these figures we show the calculated (experimental) masses
with half of the calculated (experimental) 7. mass subtracted in order to reduce
the systematic error from the setting of the bare charm quark mass. In Figure 6.3,
the dashing corresponds to the lowest non-interacting Dr and D K threshold using
our calculated values (coarse green dashing) and experimental values (fine black
dashing). In Figure 6.3, the dashing corresponds to the lowest non-interacting DK
threshold using our calculated values (coarse green dashing) and experimental values
(fine black dashing). The mass values presented in these figures are shown in Tables

A.2 and A.3.



Chapter 6. Open-Charm Sector

89

2000 - o 2ol
e o
]
[T
S'_ i
U 1500+
s | L e
N
N —
o~ ———
R B
v 1000 E
=

500 = - - - - ———

4

Lattice (M~ 400 MeV) |
wesss - Experiment ]
e ——— RS

DK
DR
- S G - i -I)ﬂ—
D |
+ + +
2 3 -

FIGURE 6.3: The charm-light spectrum up to around 3.8 GeV labelled by J%.
The green boxes are our well determined calculated masses on these ensembles
with M, ~ 400 MeV, while the black boxes correspond to experimental masses of
neutral charm-light mesons from the PDG summary tables [48]. We present the
calculated (experimental) masses with half the calculated (experimental) 7. mass
subtracted to reduce the uncertainty from tuning the bare charm-quark mass. The
vertical size of each box indicates the one sigma statistical uncertainty on either
side of the mean. The dashed lines show the lowest non-interacting Dm and DK
thresholds using our measured masses (coarse green dashing) and experimental

masses (fine black dashing).

Many other studies of open-charm spectra have taken place in the lattice community.

Most of these have focused on only the lowest lying S and P-wave states. Examples

of these studies can be found in [92-94]. Only recently have calculations begun to

explore states higher up in the spectrum. In [85, 87], the authors present preliminary

results on N; = 241 dynamical ensembles at the SU(3) point. They calculate states

with J¥ < 3. However, the treatment of the strange quark is quite different from

our approach and M, = My = 442 MeV, making it difficult to compare the results

with ours.

In [95], results are presented from calculations on Ny = 2 + 1 ensembles for a range
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FIGURE 6.4: The charm-strange spectrum up to around 3.8 GeV labelled by J%.
The green boxes are our well determined calculated masses on these ensembles
with M, ~ 400 MeV, while the black boxes correspond to experimental masses of
neutral charm-strange mesons from the PDG summary tables [48]. We present the
calculated (experimental) masses with half the calculated (experimental) 7. mass
subtracted to reduce the uncertainty from tuning the bare charm-quark mass. The
vertical size of each box indicates the one sigma statistical uncertainty on either
side of the mean. The dashed lines show the lowest non-interacting D7 and DK
thresholds using our measured masses (coarse green dashing) and experimental

masses (fine black dashing)

of pion masses from 702 MeV down to 156 MeV. Here the focus is mainly on the

S and P-wave states, although the first excited multiplet in S-wave of D, mesons

is also presented. In this study they use the Fermi-lab method for the charm quark

[56]. In [96]. the same authors present results from a N; = 2 calculation of the

charm-light spectrum on a single volume with M, = 266 MeV, again using the

Fermi-lab method for the charm quark, and this time using the distillation method

of quark smearing. The lowest lying 0%, 1% and 2% states are obtained along with

some excited 0~ and 1~ states. They also investigate the lowest-lying resonances in

the 07 and 17 channels.
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In all of these other studies the interpolator basis is significantly smaller than the
basis that we employ; they do not include a wide range of spatial structures and not
all of the relevant irreps were considered. Another improvement we have made in
this study is the inclusion of interpolators proportional to the field strength tensor,

allowing access to gluonic degrees of freedom.

6.3 Interpretation of Open-Charm Spectra

In this section we give an interpretation of our extracted charm-light and charm-
strange spectra. As previously mentioned, we show our final results in Figures 6.3
and 6.4. In both spectra we observe that most states appear to fit into the n?+1L
pattern expected by quark models. As discussed for the charmonium spectrum,
operator-state overlaps, Z, are used to identify the structure of extracted states and

make n?*1L; assignments.

In the negative parity sector of both spectra we observe a ground state S-wave
pair [07,17]. We find the first excitation of this set around 700 MeV higher. At
M — M, /2 ~ 1400 MeV we find a full D-wave set [(1,2,3)7,27] and the second
excitation of the S-wave set around M — M, /2 ~ 1900 MeV. Around M — M, /2 ~
2000 MeV we see states that appear to be parts of an excited D-wave set and parts
of a G-wave set, [(3,4,5)7.47]. Like in the charmonium sector, we do not see the full
G-wave compliment due to the lack of four derivative interpolators. We interpret the
apparent supernumerary states as hybrid mesons, but delay their discussion until

chapter 7.

In the positive parity sector of the charm-light spectrum we find a full P-wave set,

[(0,1,2)%,1%], sitting around the D K threshold, and in the charm-strange spectrum
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we observe the same set around the DK threshold. Around 600 MeV higher in each
spectrum, we observe the first P-wave excitation, and at M — M, /2 ~ 1700 MeV
we see a full F-wave set, [(2,3,4)%,3%]. The four states around M — M, /2 ~ 1900

MeV in both spectra we interpret as hybrid mesons, and discuss them in chapter 7.

Our interpretation has been given in terms of non-relativistic quark model super-
multiplets, but in the heavy-quark (static) limit, where m; < m, < m,, one can
classify states in a different fashion since the spin of the heavy-quark decouples from
the system. In this picture, the total angular momentum, j, of the light degrees of
freedom is j = L ® s,, where s, = 1/2 is the spin of the light quark. For non-zero
angular momentum, the total angular momentum can take two values j = |L£1/2|.
Now, coupling in the spin of the heavy quark produces multiplets that consist of de-
generate doublets. For example, in S-wave there is one doublet with j” = [(0,1)7],
and in P-wave there are two doublets, j© = [(0,1)"] and [(1,2)*]. The heavy-quark
limit is discussed further in the context of mixing between spin-singlet and spin-
triplet states section 6.5. Even though the charm quark is significantly heavier than
the light and strange quarks, we do not expect it to be heavy enough for this limit
to apply rigorously, although it can provide a useful guide. This is observed in both

spectra, where, for example, the 0~ and 1~ S-wave states are not degenerate.

6.4 Comparison with Experiment

We now compare our extracted spectra to the current experimental situation in the
open-charm sector. We show the experimentally confirmed states as black boxes,
taken from the PDG [48], in Figures 6.3 and 6.4. where the size of the boxes signifies

the uncertainty in the experimental determination. It is clear that in general we see
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good qualitative agreement between our extracted states and the experimental ones,

but some some comments on the quantitative differences are required.

Firstly, it is important to note that, because we do not include multi-hadron states,
our determinations are only accurate up to the hadronic width of a given state. We
also have unphysically light quarks, which adds to the systematic uncertainty, but
below threshold we do not expect these effects to be important in the charm-strange
sector, but near or above thresholds involving mesons containing light quarks, this

this could be important.

As discussed in section 4.3, we significantly undershoot the S-wave hyperfine split-
ting in both the charm-light and charm-strange sectors. We argued that this discrep-
ancy is due to the use of a tree-level tadpole-improved value for the spatial clover
coefficient, and our subsequent tests allowed us to assign an approximate value of
20 MeV to our leading O(ay) systematic uncertainty. In the charm-light spectra, we
find our P-wave states higher than their experimental counterparts. which may be

due to the unphysically heavy light quarks.

In the charm-strange spectrum, two of our P-wave states are consistent with experi-
ment, but the other two states, expected to correspond to the enigmatic D?,(2317)*
and D,;(2460)*, are significantly higher than their experimental counterparts. It
is important to note that the 0T and 17 are very close to, respectively, the DK
and D*K thresholds. It is also worth noting that the calculated and experimental
0" states lie the same distance from their appropriate thresholds. This may sug-
gest that the unphysically heavy light quarks are responsible for the discrepancy.
However, due to the interaction with the threshold, further study is required with

multi-hadron interpolators included.
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6.5 Mixing of Spin-Singlet and Spin-Triplet States

In this section we discuss the mixing between spin-singlet and spin-triplet states in
both the charm-light and charm-strange sectors. Since the charm quark is signifi-
cantly heavier than the light or strange quarks, SU(4) symmetry is badly broken in
QCD. Therefore charm-light and charm-strange mesons are not eigenstates of charge
conjugation, or any generalisation of it. It is the absence of such a symmetry that
allows mixing between spin-singlet ('L ;_; ) and spin-triplet (3L ;_; ) states. A probe

of this mixing may help us quantify flavour symmetry breaking.

Using a two-state hypothesis and assuming energy independent mixing, an expansion
can be made for states A and B in terms of a spin-singlet and triplet basis. Choosing

| B) to be the heavier state gives

|A) = +cos(8)|'Ly—r) +sin(8)]*L,—L) , (6.1)
|BY = —sin(#)|'Ly—r) + cos(8)|*Lj=r) . (6.2)

Within our basis, the interpolators [(p — pP2) X D[LL]] and [{7r.7r2} X D[LL]}
J J=L

only overlap onto the states 3L;_; and 'L;_; respectively in the non-relativistic

limit. There are analogous interpolators, [(/) — pa) X DF]] and [{77 o} X Dg'z]] .
J=1 J=1

which overlap onto the spin-singlet and spin-triplet hybrids.
To determine the mixing angle, #, we take the ratio of the overlap factor of one of
the aforementioned interpolators for state A to the overlap factor for state B, with

the ratio giving either tan(#) or cot(#) depending on the interpolator used.

We extract mixing angles for the lightest pair of P-wave, 17, and D-wave, 27, and
hybrid, 1~ states. These are shown in Table 6.1 for each of the aforementioned

interpolators. #._; refers to the mixing angle in the charm-light sector and 6,._,
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161/°
i ~ (p—p2) ~T ~ Ty Heavy-quark limit
c-1 iy 60.1(0.4) 62.6(0.2) 65.4(0.2) 54.7 or 35.3
2= 26.7(2.2) 22.2(3.7) 18.9(3.9) 50.8 or 39.2
17 (hybrid) | 59.7(1.1) 68.4(0.8) 67.4(0.9)
s 1+ 60.9(0.6) 64.9(0.2) 66.4(0.4) | 54.7or 35.3
2 64.9(1.9) 68.7(2.0) 70.9(1.8) 50.8 or 39.2
1- (hybrid) | 59.9(1.7) 67.9(0.9) 67.3(0.9)

TABLE 6.1: The absolute value of the mixing angles for the lightest pairs of 17,

27 and hybrid 1~ states in the charm-light (c-1) and charm-strange (c-s) sectors.

The angles extracted using different operators are presented; these are labelled

by the gamma matrix structure with the derivative structures described in the

text. Also shown are the mixing angles expected in the heavy-quark limit. The

apparent difference between the charm-light and charm-strange 27 mixing angles
is explained in the text.

the mixing angle in the charm-strange sector. The overall sign of a given mixing
angle is not observable in our calculation, and we thus show their absolute values.
For each pair of states, the variation between mixing angles determined using the
three different operators gives an idea of the size of the systematic uncertainties.
As well as the usual systematics, included are systematics arising from our rather
simplistic assumptions of a two-state hypothesis with energy-independent mixing,
and from assuming that the energy difference between the relevant states is small
enough such that the renormalisation factors for the different interpolators do not
vary substationally over this energy range. The relatively large variation in the 1~
hybrid mixing angles is to be expected since the assumptions are less justified due
to the states lying higher up in the spectrum and there is a relatively large mass
gap between the pair of relevant 1~ states. Also shown in Table 6.1 are the mixing

angles as calculated in the heavy-quark limit [50].

The P-wave and hybrid mixing angles are similar for both the charm-light and

charm-strange sectors, but for the D-wave they appear to be drastically different.
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This is because the dominantly *D, state and the dominantly ' D, state are almost
degenerate, and for the charm-strange states, the mass ordering is flipped compared

to the charm-light states. This means that 6._, ~ 90 — 6,._;.

Our strange quark mass is close to the physical value but the light quarks are
unphysically heavy, resulting in My /M, being close to unity. Therefore SU(3)
flavour symmetry is not badly broken and we expect to find similar mixing angles
in each flavour sector. Hence, the mixing angles in the charm-strange sector should

be closer to their physical values.

All of our mixing angles lie between zero mixing, which corresponds to the flavour
symmetry limit, and the heavy-quark limit values; this is expected since the charm
quark lies at an intermediate scale, larger than the light quarks, but not heavy
enough so that the heavy-quark limit applies. Our results are qualitatively consistent
with other studies [49, 97-101], that in general, find significant mixing between
the spin-singlet and spin-triplet states with, at least for the lightest 17 pair, some

deviation from the heavy quark limit.



Chapter 7

Exotic and Hybrid Mesons

In this section we now discuss the apparent supernumerary states that appear in
Figures 5.3, 6.3 and 6.4. We interpret these states as hybrid mesons and discuss
their appearance in the charmonium, charm-light and charm-strange spectra as well
as discuss a suggested phenomenology by comparing to previous studies of hybrid

mesons.

7.1 Exotic and Hybrid Charmonium Mesons

Figure 7.1 shows the charmonium spectrum calculated on our 24 x 128 volume, for
JPC channels in which we identify candidates for hybrid mesons. We define a hybrid
candidate as any given state with a relatively large overlap onto an interpolator that
is proportional to the commutator of two covariant derivatives, that is, the field

strength tensor.

97
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FIGURE 7.1: Charmonium spectrum calculated on our 24 x 128 volume, up to
around 4.5 GeV showing only J¢ channels in which we identify candidates for
hybrid mesons. Red (dark blue) boxes are states suggested to be members of the
lightest (first excited) hybrid supermultiplet as described in the text and green
boxes are other states. Black lines are experimental values and the dashed lines
indicate the lowest non-interacting DD and D.D, thresholds.

We observe that the lightest exotic meson, that has J”¢ = 17 is almost degenerate
with three states observed in the negative parity sector. These three states are
suggested to be non-exotic hybrids. (0.2)7". 177, Higher in mass, we observe two

s

further mesons with exotic quantum numbers, namely the (0.2)"~ states. We also
observe another 27~ state slightly higher in mass. Above the range shown in our
plots, we find a possible excitation of the 177 state at ~ 4.6 GeV. We observe an
exotic 377 state around 4.8 GeV, while the lightest 07~ exotic does not appear until

above 5 GeV.

Our consideration of hybrid mesons becomes more interesting by the observation that

there are four almost degenerate candidate hybrids, with J7¢ = [(0,1,2)" ", 177].
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These states are coloured red in Figure 7.1; this is the pattern of states expected to
appear in the lightest hybrid supermultiplet of the MIT Bag Model [102], and also
in the P-wave quasi-gluon approach [103], which is where a quark-antiquark pair in
S-wave is coupled to a colour octet P-wave 17~ gluonic excitation. The lightest two
supermultiplet structures expected in this approach are shown in Table 5.1. It is also
interesting to note that the pattern of the lightest set of four hybrids is not what is
expected from the flux-tube or the S-wave quasi-gluon models, and the appearance
of two 27~ states, with one slightly higher in mass than the other, seems to rule out
the flux-tube model altogether, as it does not predict two states so close in mass.
The pattern of J'C of the lightest hybrids is the same as that found in previous
studies of the light meson sector [104]. Furthermore, they appear at a very similar
mass scale to those in the light meson sector, that is, at ~ 1.2 — 1.3 GeV above the

ground state meson of the system.

Thus far, we have claimed that the lightest four hybrid states belong to the same su-
permultiplet, but we have, so far, only based this on considerations of their masses.
To strengthen our claim, we follow [104], and consider the interpolator-state overlaps

(2] )J:().l,'z _which

in more detail. As discussed in [104], the interpolators (pnp x Dj_,
have JPC = (0,1,2)~* have the structure of a colour-octet quark-antiquark pair in
S-wave with S = 1, coupled to an excited chromomagnetic field with Jgp oo = 1+-,
Here g represents that the quantum numbers in question are for the gluonic excita-
tion. The interpolator (myg X D?LI)']:I, with JP¢ = 17~ has the same structure
except that S = 0. Figure 7.2 shows that the four candidate states for the lightest
Charmonium hybrid supermultiplet have large overlap onto the previously discussed
interpolators. As previously discussed, it is expected that the Z values for each of
these interpolators will be similar for states of a given supermultiplet, since the

structure of the interpolators are essentially the same. Figure 7.2 shows that each of

these interpolator-state overlaps are equal in value within statistical precision. This
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FIGURE 7.2: Overlaps, Z, for the proposed lightest charmonium hybrid super-
multiplet with interpolators {7, p}xg X D'[,z]zl.

is further evidence that these states reside within the same supermultiplet, which

has a structure of S-wave quark-antiquark coupled to a gluonic excitation with 1+~

In Figure 7.1, we also point out a set of ten hybrid candidates coloured in blue. If one
continues to consider the P-wave quasi-gluon approach, it is expected that the first
excited hybrid supermultiplet will appear from P-wave colour-octet quark-antiquark
pairs coupled to a 17~ gluonic excitation, giving rise to the set [0F~, (117)3, (277)2,
377, (0,1,2)"*], as shown in Table 5.1. The blue coloured hybrid candidates shown
in Figure 7.1 appear to match this pattern. Interestingly, this pattern was observed
in [104] for the light meson sector, and the consistency between the two sectors may

suggest a common phenomenology is emerging.
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FIGURE 7.3: The negative-parity charm-light (left panel) and charm-strange

(right panel) meson spectra showing only channels where we identify hybrid can-

didates. The red boxes are identified as states belonging to the lightest hybrid

supermultiplet as discussed in the text, while the green state show conventional
charm-light and charm-strange mesons.

It is worth noting that the inclusion of multi-hadron interpolators could modify the

interpretation of states above the open-charm threshold.

7.2 Open-Charm Hybrids

We now move to discuss the apparent supernumerary states in Figures 6.3 and 6.4.
We interpret these states as hybrid mesons due to their relatively large overlap with
interpolators proportional to the commutator of two covariant derivatives. In Figure

7.3 we highlight these states in red.

As in the charmonium sector, we interpret the four states, [(0, 1, 1,2)~], as belonging

to the lightest hybrid supermultiplet. As explained earlier, states belonging to the
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FIGURE 7.4: Overlaps, Z, of the charm-strange states proposed to be members
of the lightest hybrid supermultiplet with interpolators that are proportional to

the field strength tensor, [{ﬂ' p} % D?]Zl] ; subduced into the relevant irreps.

same supermultiplet are expected to have similar interpolator-state overlap values.
In Figure 7.4 we show overlaps for the four candidate hybrid states in the charm-
strange sector, with interpolators [’/T X D[,T:l] ! and [p X D.[IQ}IIJJ. As discussed in
section 6.5, the two 17 hybrids are mixtures of spin-singlet and spin-triplet basis
states, so they overlap with both the {71’ X D[lel and [/) X D{f]zl} interpolators.
Therefore, for these states we plot \/_Z—m . where Z; and Z, are the overlaps with
these two different interpolators. From Figure 7.1 it is clear that the four states have
very similar overlap values, suggesting that they have a common structure, which
is clear evidence for identifying these four states as members of the lightest hybrid
supermultiplet. As in the charmonium sector, the pattern of these four hybrid states
can be explained via the P-wave quasi-gluon picture; an S-wave quark-antiquark pair

coupled to a 17~ gluonic excitation.

In both the charmonium and light meson [104] sectors, the first excited hybrid
supermultiplet is identified. In both the charm-light and charm-strange sectors,
we find candidate positive parity hybrid mesons at ~ 1.5 GeV above the respective
ground states. Four of these states are shown in the positive parity sectors of Figures
6.3 and 6.4, but because we do not robustly identify all states in that energy region,

we can not observe the full set of states in the first excited hybrid supermultiplet.



Chapter 8

Scattering on the Lattice

In this chapter, we turn our attention to scattering on the lattice. We firstly present
the problems that scattering processes present to the lattice practitioner, before
moving on to discuss the formalism that has allowed (at least some) scattering
calculations to be performed in the framework of lattice field theory. We then dis-
cuss our implementation of this framework. and finally, we present a preliminary
calculation of D7 scattering in the isospin, I = 3/2, channel, and map out the cor-

responding phase shift, dy, which considers only the [ = 0 partial wave in the A; irrep.

The scattering matrix, S, is a map between in and out asymptotic states of a given
scattering process. When one assumes asymptotic completeness, that is, that every
state has in and out asymptotes, S becomes unitary. All possible states in a given
physical system (i.e. in its Hilbert space) can be thought of as either bound states or
scattering states. Non-relativistically, bound states appear as poles in the S-matrix
in the upper half of the complex momentum plane, while resonances appear as poles

in the lower half. An important quantity that is related to the scattering matrix is

103
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known as the phase shift 6;,(E), which is given by
S)(E) = e?o(E) | (8.1)

where [ is known as the partial wave, which labels the angular momentum of the in
going state. The scattering phase shift §;(£) measures the shift in the phase of a
scattering wave of a given angular momentum [, as it passes through some potential.
It can be written as §(E) = 0py(E) + 0,5(E) [105], where dy,(E) is the part of the
phase shift due to direct scattering between the particles without an intermediate
resonance being formed. The part entirely due to the formation of the resonance is
encoded within d,.,(E). For narrow resonances, it takes the form

Dok B0} == Yo (ﬁ) ! (8.2)

showing that the phase shift will vary rapidly by 7 when the centre of mass energy.

E is close to the energy of the resonance, E,.,.

In relativistic field theory, the S-matrix is related to the residue of on-shell correla-
tion functions via the LSZ reduction formula. Resonances can then be found as a
pole in the correlation function on the second Riemann sheet. One can then derive

the relativistic analogue of (8.2) [105],

where m,., is the mass of the resonance.

In this study, calculations are performed within a finite volume of discretised Eu-

clidean space-time. The finite volume has dramatic effects on the Kéllén-Lehmann
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spectral function
> - 1
XN 2 0,2 ,
A(p) —/0 dpp(p )[———)2 - (8.4)

The values of momenta allowed in a finite volume discretises the spectrum, hence
transforming the multi-particle branch cut into a series of isolated poles; the spectral
function becomes meromorphic and contains no branch cuts. Since resonances are
poles on the second Riemann sheet, the finite volume effectively removes them,

rendering all would be resonances stable.

Another fundamental difficulty in extracting scattering information, is due to the use
of Euclidean space-time. The Maiani-Testa theorem [106] shows the impossibility
of directly extracting scattering information from Euclidean three-point (or higher)
correlation functions; the form factor of the three-point function loses its complex
phase when Wick rotated, and in Minkowski space it is this complex phase that
contains the scattering information. With the Maiani-Testa theorem ruling out
direct access to scattering information in lattice field theory, indirect methods have
appeared. These are based upon the idea that the resonances, having merged with
the rest of the spectrum, will have some effect on the spectrum of the theory in
a finite volume. The method used in this study has become commonly known as
Liischer’s method [77, 107-110], and will be the subject of the following section.
For a comparison between alternate methods and Liischer’s method, and a nice

discussion of resonances and scattering theory see [105].

8.1 The Luscher Method

The Liischer method was derived over a series of five papers [77, 107, 108, 108, 109],

which will now be summarised briefly. For a more detailed review of these papers
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see [105].

In [107], the effect of a finite volume on single particle states is discussed. Here it was
found that the mass shift, due to the finite volume, of a single particle state is related
to the forward scattering amplitude. Liischer also showed that the entire difference
between the finite volume and infinite volume cases is due to so-called around the
world propagators. Furthermore, his estimations show that only Feynman diagrams
with one around the world propagator contribute significantly to the finite volume

ﬁmL

mass shift, and are of order e~ 2 ™~ where L is the extent of the lattice and m is

the mass of the state in question.

In [108], the emphasis shifts to that of scattering states. The results obtained from
this paper only apply to two-particle scattering states. It was found that the finite
volume effects scattering states in two ways. The first being that around the world
propagators cause a shift in the mass in the same way as for single particle states,
and the second was that the interaction between the two scattering particles also
causes a shift in the mass. It is this second effect that is related to resonances.
It is clear that we require the second effect to be dominant in order to maximise
the chances of extracting resonance parameters from these mass shifts, as they are
expected to be small. In order to safely neglect the effect due to around the world

propagation, relatively large lattice extents, L, must be used.

In the remaining three papers of the series [77, 109, 110], what is now commonly
known as Liischer’s formula is derived. Firstly this formula is derived in two-
dimensions where it is easier to understand. A brief sketch of this derivation is
as follows. In 1+ 1 non-relativistic quantum mechanics the two-particle wave func-
tion is ¢'(r), where r is the relative coordinate between the two particles. Due to the
finite volume, the phase of this wave function is altered in two ways. The first being

the shift due to motion through the finite volume, which in momentum space will be
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el The second is the shift due to the inter-particle potential. These result in the

216(r) - Now, imposing periodic boundary conditions requires

scattering phase shift e
the total phase shift across the volume to vanish, leading us to the two dimensional

version of the Liischer formula
ePL = 20(p) (8.5)

Since one can determine the energy spectrum of the theory numerically on the lattice,
this formula allows one to map out the previously inaccessible phase shift. Obviously
this formula is not applicable in any useful cases since it is two-dimensional, but it
was pioneering in the sense that it showed that a link between lattice observables

and the infinite volume phase shift existed.

Using a similar idea, the four-dimensional Liischer formula was subsequently derived.
Again this was derived in the context of non-relativistic quantum mechanics, but
this time Liischer constructed a map so that the quantum mechanical result can
be carried over to field theory under some special circumstances, with one such
restriction being that the energy of the system in question be below the relevant
inelastic threshold. A brief outline of the derivation is as follows. Consider a finite
volume where the extent of the finite volume is larger than the range of the inter-
particle potential. Denote the region outside of the potential as R. In this region,
the Schrodinger equation takes the same form as the infinite volume case. The radial
wave function obtained from this equation will also be a solution to the Helmholtz
equation,

(A+p*)yY(r)=0. (8.6)

The point is that any eigenfunction of the Hamiltonian will have two asymptotic

forms within the region R; one arising from the Schrodinger equation and the
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other from the Helmholtz equation. Matching these two forms leads to the four-

dimensional Liischer formalism.

Since this derivation is in non-relativistic quantum mechanics, the result still needed
to be mapped to the field theory case. This is done using the Bethe-Salpeter kernel

in [110], resulting in a formalism that can be applied to field theory.

The Liischer formalism is neatly expressed via the following equation,

det [eZ*P _U(p)] =0, (8.7)
where
/i — .
U(p) Mp) =i (8.8)

is a matrix of known functions [110]. The operator M (p) commutes with the rotation
operator of the cubic group, and can thus be block diagonalised, so that each block

only acts on a specific irreducible representation of the cubic group.

Until recently in [61], most calculations using the Liischer formalism were performed
in the A, irrep, only considering the [ = 0 partial wave, therefore neglecting the
effects of higher partial waves. In this scenario, taking the positive parity case as an

example, the matrix equation (8.7), is reduced to a one dimensional form

” S j\[ + [
e = (A = 22— |
Moyo00 — 1

where
Z(1;¢%)

g (8.10)

A [00.00 =



Chapter 8. Scattering on the Lattice 109

Z(1:¢?) is known as the Liischer zeta function and is given by

: 1Y (0, ¢
Zis(Lif) = ) H . (8.11)

ﬁ€23

where Y}, (6, ¢) are spherical harmonics and ¢ = pL/27. It is more instructive to

consider equation (8.9) in the following form

dp) =—o(q) + ™, (8.12)
where
‘3/2
tan(é(q)) = [—Z;(l—(iﬁ)] . (8.13)

The major restriction of this formalism is that it is only valid for elastic scattering
of the type 2 — 2. This restriction is in place for a number of reasons. The most
obvious of these being due to the construction of the formalism in non-relativistic
quantum mechanics; inelastic scattering of type A — B can not be accommodated
in such a set up. This is very restrictive when attempting to map out the phase
shift due to the extremely limited number of states lying below inelastic thresholds

at zero momentum.

In order to somewhat circumvent this problem, the Liischer formalism has been ex-
tended to include moving frames [111, 112]. This extension presents the opportunity
to include states with non-zero momentum, helping to increase the number of energy
levels below inelastic threshold for mapping out the phase shift. The Lorentz boost
from the lab frame to the center of mass frame in effect deforms the cubic volume,

and only some subgroup of the original cubic symmetry group remains. Practically,
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this results in a change to the matrix M(p). It becomes

I+

A[ldm.l’m'(p) = A/ 3/2 Z Z J+l qQ)Clm,js.l’m’ ' (814)

Jj=|l=U| s=-j

where the generalised Liischer zeta function, Zfs(l: ¢?). is given by

[7n 5 (1 Z yIm F) ) (815)

IEPd

Here the summation is over the set P, = {Fe R* : ¥ =y~ '(A + § } When d = 0,
the lab and center of mass frames coincide (y = 1, Py = Z*), and equations (8.14)
and (8.15) revert to their standard non-boosted forms. For more on this extended

set up, see [111, 112].

More recently, further generalisations of the Liischer formalism have emerged. For
example, in [113] they derive a generalised non-relativistic version of the Liischer
formula which includes three particle inelastic channels, while there are ongoing
efforts directed towards a multiple-channel generalisation of the Liischer formula

[114, 115).

This concludes our brief introduction of scattering on the lattice, the Liischer formal-
ism and its extension to moving frames. We will now move to discuss our implemen-
tation of these methods for the case of D7 scattering, beginning with a description

of our construction of multi-hadron interpolators.
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8.1.1 Multi-Hadron Interpolators

As previously explained, the Liischer formalism gives a way of extracting scattering
information on the lattice, which is calculated from the shift in the energy level of a
given state, compared to its non-interacting counterpart. Since these shifts are ex-
pected to be very small, one requires interpolating fields that efficiently describe the
required multi-hadron state, otherwise, the shift could be drastically miscalculated
due to contamination from other states, or in the worst case, lost in the statisti-
cal variance. In general, a multi-hadron interpolator can be constructed from the
product of two single hadron interpolators AT(/:") and B*(l:) via

(AB)IM8 = N™ C(B A, i by A, pias Koy Aoy o) AL, (F1)BY, , (R2) , (8.16)

A p Ao pi2
ke (k)
Ky +ko=P

where (' is the Clebsch-Gordan coefficient for Ay ® Ay — A, and p is the row of
the corresponding irrep. The overall momentum of the state, P, is given by the
sum of the two individual momenta I::l - 1?2. The sum over l?l is a sum over all of
the momenta in the star of l?, that is, all the momenta related to l:i by an allowed

lattice rotation. A range of relevant Clebsch-Gordan coefficients, ', are listed in

[61], where this construction is discussed in greater detail.

One problem encountered when computing multi-hadron two-point functions is that
the interpolator used to describe the state AB may have significant overlap with
excited states AB*. Of course, excited state contributions to the correlator will die
away quicker than the ground state, but even at modest times the excited state can
be present to some degree, and the effective mass plateau will be pushed out to
longer times where the effects of finite temporal extent can be felt. As suggested in

[61], one solution to this problem is to form so-called optimised interpolators. The
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strategy is as follows; using the large basis of interpolators discussed in chapter 3,
one can construct an optimised single A interpolator by variationally diagonalising
a matrix of single-hadron correlation functions. One then takes, as the optimised
interpolator used to describe meson A, a linear combination of the single-hadron
interpolators with weights chosen according to the significance of their coupling to
the state A. One can then build a multi-hadron interpolator that will be dominantly
AB from the optimised A and B interpolators. As shown in [61], for the case of the
pion, the optimised pion interpolator does indeed force the effective mass to plateau
at much earlier times, hence reducing the contamination from excited states and the

finite temporal extent.

In our calculation of the D7 spectrum, we use overall momenta P = [0,0,0], [0,0, 1],
[0,1,1] and [1.1,1]. The various combinations of ki and k, that produce these mo-
menta are shown in Table 8.1. The single hadron interpolators, used to construct the
optimised two-hadron interpolators, that have momentum k = [0,0.0], are those of
section 3.3, while the single hadron interpolators with non-zero momentum, used to
construct optimised interpolators, are those discussed in section 3.3.1. The number

of optimised two-hadron interpolators used within each overall momentum P and

irrep, for the study of D7 scattering, is shown in Table 8.2.

8.2 [=3/2 Dr Multi-Particle Spectrum

It is clear from Figures 6.3 and 6.4 that multi-hadron effects play an important
role in both the charm-light and charm-strange spectra. In both sectors, the P-
wave supermultiplet lies around the lowest non-interacting thresholds, which are the
Dr and DK thresholds in the charm-light sector, and the DK threshold in the

charm-strange sector. We noted that, in both sectors we find a significant volume
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=

P E] ]\’2 A(P)
[0,0,0] O [0,0,0] [0,0.0] AT
(0.0, 1] [0,0,-1] At EY TS
[0,1,1] [0,-1,-1] Af BT, T, T
(1,1,1] [-1,-1,-1] P 5 Y {5 S
[0,0,2] [0,0,2] Af EY T
[0,0,1] Dicy [0,0,0] [0,0,1] A,
[0, —1.0] [0,1.1] Ay, Ey, B,
[0,—1,~1] [1,1,1] Ay, E,, By
[0,0,—1] [0,0,2] A
[0,1,1] Dicy [0,0,0] [0,1.1] A,
[0, 1,0] 0,0, 1] A, B
[—1,0,0] [1,1,1] Ay, B,
[1,1,0] [-1,0,1] A, As, By, By
[0,1,-1] [0,0,2] Ay, B
[1,1,1] Dics [0.0,0] [1,1,1] A,
(1.0,0] (0,1.1] A, E;
[2,0,0] [-1,1,1] Ay, B

TABLE 8.1: The two-hadron interpolators for each overall momentum P and
little group. Example momenta, Ky and ks, that combine to form the overall
momentum, P, are shown. Parity is only a good quantum number for interpolators

overall at rest.

dependence in our determination of the lightest states in the 0" and 17 channels.

This suggested that for a full understanding of these states, we require a handle on

relevant multi-particle states.

The most obvious place to start in the charm-strange sector is to calculate two-point

correlation functions built from interpolators that look-like a DK combination, while

in the charm-light sector it would be to explore correlation functions built from D7

interpolators.
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=g

7 AP) Number of Interpolators
[0,0.0] OP AT 5
[0, 0, 1] Di(74 Al 8
[0,1, 1] Dicy Ay 8
[1,1,1] Dies A 6

TABLE 8.2: The number of optimised two-hadron interpolators for each overall
momenta P and irrep A") used in the calculation of the D7 energy levels. Parity
is only a good quantum number for interpolators overall at rest.

® > J ® > 4
D D D D
& > @
[ 4 > @
n n n n
® > 3 o > &

FIGURE 8.1: The I = 3/2 Wick diagrams computed in our calculation of the D7
spectrum. Recall that on our lattices we have degenerate up and down quarks.

This work is currently ongoing, and what is presented in this section is a preliminary
study of two-point correlation functions composed of interpolators that look-like a
D7 combination in the isospin, I = 3/2, channel. We begin with this channel as a
test case, since we do not expect any resonances to appear and due to the smaller
number of Wick diagrams, which are shown in Figure 8.1, it is computationally
cheaper than the I = 1/2 case, which will also have an annihilation diagram. In the
following section, we then apply the Liischer formalism to map out the (preliminary)

[ = 0 elastic scattering phase shift.
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A P =(0,0,0)

[2,0,01[-2,0,0]
s+
(1,1,11[-1,-1,-1]
tInelastic = == @ =——
fxy 09 [1,1,0][-1,-1,0]
S]
[1,0,0][-1,0,0]
45t
040» [0,0,01[0,0,0]
P, Py

FIGURE 8.2: The Dr spectrum for overall momentum P = (0,0,0) in the Ay

irrep for isospin, I = 3/2, calculated on our 20% x 128 volume. The black boxes

correspond to calculated energy levels, while the red lines correspond to the non-

interacting threshold obtained by adding together the calculated individual values

of the D meson and pion. The green dashing shows the inelastic threshold in this

channel, D*p. The momenta Pp and P, indicate the individual momenta of the
D meson and pion that combine to make up the overall momentum P.

To compute D7 spectroscopic states, we employ the same techniques that were ap-
plied for the charmonium and open-charm spectra; we compute an N x N correlation
matrix composed of two-point correlation functions, which themselves are built from
the optimised interpolators discussed earlier. We include optimised interpolators up
to an overall momentum of P? = 3, and we only consider the relevant A(IH irreps
(see Table 8.2). Our calculation is performed on our 20% x 128 volume, the details

of which are shown in Table 2.3.
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A, P = (1,0,0)

a5+

[1,0,0][-2,0,0]
_ [0,1,1][-1,-1,-1]
= oo [1’1,1][0’_1,71]

Lri L — S [2,0,0][-1,0,0]
S F [0,1,0][-1,-1,0]
_Inelasnc e e [1,1,0][0,-1,0]

Q45+ [0,0,0][-1,0,0]
[1,0,0][0,0,0]
a0t P Pn

FIGURE 8.3: The D spectrum for overall momentum P = (0,0.1) in the A;

irrep for isospin, I = 3/2, calculated on our 20% x 128 volume. The black boxes

correspond to calculated energy levels, while the red lines correspond to the non-

interacting threshold obtained by adding together the calculated individual values

of the D meson and pion. The green dashing shows the inelastic threshold in this

channel, Dzw7. The momenta Pp and P, indicate the individual momenta of the
D meson and pion that combine to make up the overall momentum P.

Once we have computed the correlation matrix, we then apply the variational pro-
cedure in the same fashion as before. However, there is one difference in the role
of the extracted overlap factors, Z. As before, they are used to identify which in-
terpolator(s) has contributed significantly to a given state. In all cases, there is a
clear preference for overlap of our extracted Dm states with a single interpolator.
This allows us to identify the internal momentum structure that has mainly con-
tributed to that state, which is crucial when calculating the energy shift from its

non-interacting counterpart.
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A] P=

Q5F

Inelastic

Q45+

Q40+

FIGURE 8.4: The D spectrum for overall momentum P = (0,1,1) in the A;

irrep for isospin, I = 3/2, calculated on our 20% x 128 volume. The black boxes

correspond to calculated energy levels, while the red lines correspond to the non-

interacting threshold obtained by adding together the calculated individual values

of the D meson and pion. The green dashing shows the inelastic threshold in this

channel, D7w. The momenta Pp and P, indicate the individual momenta of the
D meson and pion that combine to make up the overall momentum P.

(1,1,0)
[2,0,0][-1,-1,0]

[1,1,0][-2,0,0]
[1,0,1][0,-1,-1]

[0,0,1][-1,-1,-1]

[0,0,0][-1,-1,0]
[1,1,0][0,0,0]

(1,1,11(0,0,-1]

[1,0,0][0,-1,0]
P, Py

In Figure 8.2 we show the D7 spectrum, for overall momentum at rest, calculated in

the AT irrep, for isospin I = 3/2. The black boxes show the calculated energy levels,

and the size of each box corresponds to the one-sigma uncertainty. The red lines

correspond to the non-interacting D energy levels, calculated on our ensembles.

The green dashing corresponds to the inelastic threshold, D*p.

In Figure 8.3, we show a similar plot, but this time it is for overall momentum

P = (0,0,1), in the A, irrep. It is important to note that parity is no longer a
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A, P=(1,1,1)

. (2,0,0](-1,-1,-1]
a5k (1,1,1](-2,0,0]
L
Lu sl [0,0,0][-1,-1,-1]
< [1,0,0](0,-1,-1]
S
Inelastic —_— [1,1,0][0,0,-1]
a4+
[1,1,1][0,0,0]
Pp Pn
ant

FIGURE 8.5: The D7 spectrum for overall momentum P = (1,1.1) in the A;

irrep for isospin, I = 3/2, calculated on our 20° x 128 volume. The black boxes

correspond to calculated energy levels, while the red lines correspond to the non-

interacting threshold obtained by adding together the calculated individual values

of the D meson and pion. The green dashing shows the inelastic threshold in this

channel, Dr7. The momenta Pp and P indicate the individual momenta of the
D meson and pion that combine to make up the overall momentum P.

good quantum number for our interpolator construction at non-zero momenta. This
means that the inelastic threshold is D77 for states having non-zero momentum
overall. We show similar plots for overall momenta P = (0,1,1) and P = (1,1,1) in

Figures 8.4 and 8.5 respectively.
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8.3 [=3/2 Dn Phase Shift

We now apply the Liischer formalism and its extension to moving frames, to our D7

spectra. Recall that the formalism can be expressed by the equation
det [E(pm) _yPn ((,2)] ~0. (8.17)

where U is an infinite dimensional matrix of known functions Uj,,.,/,». Here, [ are
the partial waves in the irrep A, and n labels the n'" embedding of that [ in this
irrep. E is a diagonal matrix whose elements are given by Ej ., = €208, 18 i As

explained in section 8.1, U is given by
U = 55— . (8.18)
where the elements of M are obtained via [80]

(PAp), 2 - *A *(1) (P) 2\ QN *(l")
Myt @Voanluw = Y Y Sin Dind (R) My (@) S5, Dri(R) -
/\/

A
m=—L.1 m/==U'.. U

(8.19)
Here, R is a rotation carrying the J. quantisation axis (0,0, P) to P. with D,(,],)/\(R)

relating J, values, m, to helicities, \. The convention for constructing R is given in

th

[76]. S}, L8 the subduction coefficient from helicity, A, to the g™ row of irrep A.

Different magnitudes of helicity give rise to different embeddings n,n’. M, (P) (%)

lm:l'm’

is defined in equation (8.14).

There are infinitely many partial waves to consider in any given irrep. However,
in practise it is very difficult to consider more than the first one or two partial
waves. Fortunately, at low scattering momentum there is a hierarchy in & (pem),

which follows from angular momentum conservation, &(pa,) ~ p?!, such that



Chapter 8. Scattering on the Lattice 120

atECTTl
0.40 0.41 0.42 0.43 0.44 0.45 0.46
:"I“‘TTT'fTTV"Tﬁ‘ﬁ*WﬁfrfrTrr-rrTrr
__l(); +r+
F— [
b ¢ ;
N L
(=] L
(0—3():'
—40 -
- P =(0,0,0)
- P=(1,0,0)
S0P =(1.1.0)
' P=(111)
—60 -

FIGURE 8.6: The phase shift, dg. in the elastic scattering region determined from

the D7 spectrum calculated on our 20% x 128 volume. The error bars represent

the statistical uncertainty. The center-of-momentum frame energies are given in

lattice units and all points lie below the inelastic threshold in their corresponding
symmetry channel.

do > 0 > 4. This implies that we are somewhat justified in only considering the

first partial wave in the A; irreps, [ = 0.

To compute the [ = 0 elastic phase shift, d,, we solve equation (8.17) using the shift
in energy levels obtained from the D spectra. In Figure 8.6 we show d; as a function
of center-of-momentum frame energies. As previously mentioned, resonances show
up as a rapid variation through 180 degrees in the scattering phase shift. and from

Figure 8.6. it is clear that we see no such behaviour, and hence, no resonance.

In [96]. the authors also explore D7 scattering on the lattice. They calculate S-wave
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phase shifts for D7 scattering with J = 0% and D*r scattering with J¥ = 17,
Assuming a Breit-Wigner shape in the J” = 0% channel, they observe a resonance
at a mass of 351(21) MeV above their calculated spin-average 1(Mp + 3Mp-). This
is in agreement with the experimentally observed D*(2400), whose mass is 347(29)
MeV above the experimental spin-average value. In the J” = 1* channel they find a
resonance with a mass of 381(20) MeV above +(Mp+3Mp- ), which lies significantly
lower than the experimental value of 456(40) MeV above %(J\[ p + 3Mp-) for the
D,(2430).

As previously mentioned, our study of Dr scattering is ongoing. The obvious next
step would be to add data points to Figure 8.6 by calculating the D7 multi-hadron
spectrum on different volumes. Looking beyond this, we plan to supplement and
improve on the study in [96] by considering firstly the Dr I = 1/2 channel, and then
by extending our study to include other scattering channels such as the J) = 1(+)

channel.



Conclusions and Outlook

We have computed extensive spectra in the charmonium, charm-light and charm-
strange sectors. The use of distillation, the variational method with a large basis
of carefully constructed interpolators and our spin identification scheme has allowed
us to extract a high number of states across all possible J(©) combinations up to
and including spin four. We calculate these spectra on two volumes, 16 x 128 and

243 x 128.

In the charmonium sector, we find no significant volume dependence and also that
the spectrum is stable with respect to changes in the details of the variational anal-
ysis and variation of the number of eigenvectors. We carried out an investigation of
lattice discretisation effects by varying the spatial clover coefficient, however, a more
complete determination of the systematic uncertainty would require several lattice
spacings. This work is the first time that a dynamical spectrum of charmonium has
been computed that includes the exotic states (07, 17",277). Interestingly, our
determination of these states points to the presence of explicit gluonic degrees of
freedom. Most of the non-exotic spectrum appears to follow the n?**!L; pattern
expected by quark models. However, we do find some states that do not appear to fit
into this classification. We interpret these states as non-exotic hybrids, and identify

the lightest hybrid supermultiplet in the charmonium sector [(0,1,2)""177]. We

122
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also observe an excited hybrid supermultiplet. The pattern of states is consistent
with the interpretation of a colour octet quark-antiquark pair coupled to a P-wave
17~ chromomagnetic excitation. Our results allow an interpretation of the Y (4260)
as a non-exotic vector hybrid meson, but, based only on mass comparisons, we can
not draw definite conclusions. Following the study of [62], we see no clear evidence

for multi-hadron states.

In the open-charm spectra, we observe no significant volume dependence except for
the lightest states in the 0T and 17 channels. In general, both the charm-light
and charm-strange spectra follow the pattern of states expected by quark models.
Although, we do find four states, [(0, 1, 1,2)7], in the negative parity sectors of both
spectra that we interpret as hybrid mesons due to their relatively large overlap onto
interpolators proportional to the field strength tensor. The pattern of these states is
consistent with what is found in the light meson sector [104] and in the charmonium

sector, which is suggestive of common physics throughout QCD.

Via a non-relativistic interpretation of some of our interpolators, we extracted mix-
ing angles between the P and D-wave spin-singlet and triplet states. 17, 27, and the
hybrid 17 states. The results we obtain in the charm-light and charm-strange sec-
tors are very similar but we note that SU(3) flavour symmetry is highly suppressed
on our ensembles. Nevertheless, we expect the flavour symmetry breaking in the

charm-strange sector to be of the correct scale.

We have also presented preliminary results of the isospin I = 3/2 Dm multi-hadron
spectrum calculated on our 20° x 128 volume. We calculate the energy shift of
the multi-hadron states from their non-interacting counterparts below the inelastic

threshold and employ the Liischer formalism to map out the elastic scattering phase



Chapter 9. Conclusions and Outlook 124

shift only considering the [ = 0 partial wave. As expected we find no resonance in
the I = 3/2 channel, but to further map out the phase shift we require calculations

on more volumes.

In the near future we plan to extend our study of D7 scattering to the I = 1/2
channel, where we expect to detect a resonance. In order to better understand the
enigmatic D (2317)* and D,;(2460)* states, we plan to explore DK scattering.
We expect this scattering channel to play an important role in the determination of

these states as they lie very close to the DK threshold.



Appendix A

Tabulated Results

Table A.1 tabulates the masses as presented in Figure 5.3. The calculated 7. mass
has been subtracted in order to reduce the systematic error when setting the mass
of the charm quark. Table A.2 tabulates the masses as presented in Figure 6.3. Half
of the calculated 7). mass is subtracted to reduce the systematic error when setting
the mass of the charm quark. Table A.3 is the same but for masses presented in

Figure 6.4.
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JFC (M — M,,) (MeV)

0" [0 663(3)  1143(13) 1211(13)

17— [ 80.2(1)  698(6)  840(3)  1154(28) 1301(14) 1339(38)
2-F | 860(3)  1334(17) 1350(17)

27~ | 859(5)  1333(18)

37 | 867(3)  1269(26) 1392(12)

4=+ | 1444(10)

4== | 1427(9)

07T | 461.6(7) 972(9)  1361(46) 1488(30)

14= [ 534(1)  1006(9)  1360(38) 1462(51) 1493(19) 1513(39)
1++ | 521.6(9) 1002(10) 1415(14) 1484(48)

2++ | 554(1)  1041(12) 1112(8)  1508(21)

3= | 1142(6)  1564(22)

3++ | 1130(9)

4++ | 1129(9)

1+ | 1233(16)

0t= | 1402(9)

2+= | 1411(40) 1525(18)

TABLE A.1: Summary of the charmonium spectrum calculated on our 24% x 128

volume, as presented in Figure 5.3, with statistical uncertainties shown. Note that

M, ~ 391 MeV in these simulations. The calculated 7. mass has been subtracted

in order to reduce the systematic error from the tuning of the bare charm quark

mass. The masses of states with J > 2 are from joint fits to principal correlators
across the relevant irreps.
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JP M — M, /2 (MeV)

0~ [403(1)  1155(7) 1575(16) 1811(14)

1- | 527(1)  1220(7) 1361(5) 1612(14) 1704(19) 1907(14)
2= [ 1377(5) 1380(5) 1856(15) 1911(29) 1944(19)

3= | 1384(9)  1990(17)

4= | 1968(24) 2028(23)

07 | 854(3)  1505(11) 1861(16)

1+ 1959(3)  992(3)  1563(11) 1565(11) 1849(21) 1919(13)
2+ 11024(3)  1594(10) 1707(5)  1929(13)

3+ | 1708(6)  1718(8)

4+ | 1720(14)

TABLE A.2: Summary of the charm-light meson spectrum calculated on our
243 x 128 volume, as presented in Figure 6.3, with statistical uncertainties shown.
Note that M; ~ 391 MeV in these computations. Half of the calculated 7. mass
has been subtracted in order to reduce the systematic error from the tuning of
the bare charm quark mass. The masses of states with J > 2 are from joint fits

to principal correlators across the relevant irreps.

JP M — M, ]2 (MeV)

0~ [469(1)  1186(8) 1631(13) 1835(15)

1- | 589(5)  1267(6) 1398(5) 1674(13) 1771(16) 1952(13)
2= | 1425(4)  1429(4)  1840(18) 1977(21) 1986(15)

3= | 1452(6)  2030(14)

4- | 2023(14) 2027(16)

07 [920(2)  1543(10) 1945(8)

1+ {1019(3)  1055(5) 1601(10) 1613(9) 1895(16) 1988(34)
2+ | 1087(2)  1651(10) 1736(7)  1998(14)

3t [ 1749(7)  1767(7)

4+ | 1766(14)

TABLE A.3: Summary of the charm-strange meson spectrum calculated on our
243 x 128 volume, as presented in Figure 6.4, with statistical uncertainties shown.
Note that M, =~ 391 MeV in these computations. The calculated 7. mass has
been subtracted in order to reduce the systematic error from the tuning of the
bare charm quark mass. The masses of states with J > 2 are from joint fits to

principal correlators across the relevant irreps.
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