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Abstract
S p ectroscop y  and sca tterin g  o f m esons contain ing  charm  quarks from

la ttice  Q C D

by Graham Moir

We present excited spectra of mesons containing charm-hght (D), charm-strange 

(D ,) and charm-charm (charmoninm) combinations. W'e perform these spectroscopic 

calculations on two volumes. 16'̂  X 128 and 24'̂  x 128. of dynamical Nf  =  2 -(- 1 

configurations generated by the Hadron Spectrum Collaboration. These ensembles 

have unphysically-heavy degenerate up and down quarks, resulting in a pion mass of 

~  391 MeV. Our use of distillation and the variational method combined with a large 

basis of carefully constructed interpolators allows us to extract and reliably identify 

the continuum spin of an extensive set of states up to .7 < 4, while also allowing 

access to explicit gluonic degrees of freedom. For the first time in a lattice QCD 

calculation, we extract charmoninm states with exotic quantum  nmnbers 0'''“ , 1  ̂

and and in all three sectors, we identify the lightest hybrid superniultiplet and 

evidence for an excited hybrid superniultiplet. Using a non-relativist ic interpretation 

of some of our interpolators in the open-charm sectors, we calculate mixing angles 

for P-wave, D-wave and the hybrid 1“ . spin-singlet triplet states. We also present 

preliminary results for the isospin. I  =  3/2. Dn  multi-particle spectrum and map 

out. via the Liischer formalism, the / =  0 elastic scattering pha.se shift. As expected 

we do not find a resonance in this channel.
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Chapter 1

Introduction

Since Maxwell’s paper entitled ‘A Dynamical Theory of the Electromagnetic Field’ 

[1], theoretical physics has undergone many revolutions, and has produced one of the 

most successful physical theories to date; the Standard Model of particle physics. 

The Standard Model is written in the language of Q uantum  Field Theory, which is a 

m athem atical framework tha t combines two of the major de\'eloi)ments of the twen­

tie th  century; Special Relativity [2] and Quantum  Mechanics [3-5]. The formulation 

of these two theories has led to some drastic changes in the way we view nature. For 

instance, Special Relativity leads to many unintuitive consequences, such as time 

dilation and length contraction, and has led to the inception of space-time as the 

fabric of the universe [6], while Quantum Mechanics brings with it the difficulty of 

interpretation; the famous (or infamous) ‘no-go’ theorems of Bell [7] and of Kochen 

and Specker [8] show the impossibility of using local hidden variables to  describe 

the theory and seem to suggest an inherit randomness of the universe or a spooky 

action at a distance of entangled particles.

1
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As previously mentioned, the marriage of these remarkable theories is achieved 

through Quantum Field Theory which was develojjed throughout the first half of 

the twentieth century. The first reasonably complete theory of Quantiun Electro­

dynamics (QED) was achieved by Paul Dirac in the late 1920’s [9]. As the theory 

l)rogressed, it was clear tha t it possessed one major fiaw; the self-energy and vacuiun 

])olarization effects led to divergences. This seemingly fatal problem was solved in 

the late 1940’s l)y influential physicists such as Dyson, Schwinger, Tomonaga. Bethe 

and Feynman via the introduction of the conce])t of renormalisation which swej)t 

away the infinities that plagued QED by a redefinition of what is meant by the 

observable mass and charge of a particle (see [10] and refs therein).

There are many wavs to fornnilate a Quantum  Field Theory such as canonical quan­

tization. the path  integral and BRST quantization. Since the path  integral approach 

l)roduccs Feynman rules in their final Lorentz covariant form, it is arguably the most 

elegant. In this approach one calculates expectation values of observables O  \'ia;

where the integral is taken over the s])ace of all possible field configurations A. V{(p) 

is the measure on this space and the action S{(p) is given by an integral of the 

Lagrangian density ov'er the desired space-time. When the action contains no inter­

action terms, the path integral can be performed exactly due to its GauCian natiu’e. 

On the other-hand, when (lescril)ing interacting theories, the path  integral looses its 

Gauf5ian form and alternate methods are required. Expanding the exponential of the 

path  integral produces a series of free path integrals that can then be solved exactly. 

For this asymi^totic ex]:>ansion to be feasible, the coefficient of the interaction term 

in the action, known as the coupling, nuist be small enough so tha t each term  in 

the series contributes less than its predecessor. This method, known as perturbation

(O|O(0)|O) =  /  VoO{(P)e' ( 1. 1)
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theory, has had immense success in QED where it has matched experimental results 

to an incredible degree of accuracy. This consistency with experiment has led many 

physicists to disregard or simply ignore a theorem by Rudolf Haag [11] that was 

generalized by A rthur W ightman [12] to show that a single Hilbert space rej)resen- 

tation is insufficient for describing both free and interacting fields, and an equivalent 

theorem by Rol^ert Schrader [13] that applies to the path  integral formulation.

Following the success of describing the electromagnetic force as a ((uantum theory 

of fields, the attention of many theorists turned to the application of QFT to the 

remaining know’n forces of nature. The early 1960’s l)rought about two major devel­

opments, each of which brought closer the unification of Electromagnetism and the 

Weak force. The first of these is known as the Nambu-Goldstone theorem [14. 15]. 

which implies tha t the spontaneous breaking of a global symmetry brings with it 

massless bosons. The second was the use of the gauge principle as a basis to con­

struct Q FT 's of interacting fundamental fields [16]. However, in the quest to unify 

the Electromagnetic and Weak forces, there was still one missing ingredient: the 

Higgs-Mechanism. Although named after Peter Higgs, it was developed by a num­

ber of physicists across a number of papers [17-21]. W ith all the required pieces in 

place, the theory of Electroweak interactions was constructed in the late 1960's for 

which Salam, \\'einberg and Glashow were awarded the Nobel prize. The unification 

is based on the SU{2) x U{ l )  gauge group. At high enough energ> ,̂ the electroweak 

symmetry is unbroken and all fmidamental particles are massless. As the universe 

cools below a critical tem perature, the symmetry is broken and the H’ and Z  bosons 

accjuire a mass.

W ith the Electromagnetic and Weak forces unified within a single gauge theory, the 

focus of many physicists turned quickly to the strong sector. By then, Faddeev and 

Popov had already shown how to construct Feynman rules for Yang-Mills gauge
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theories [22]. and Feynm an had begun to  construct the  partonic picture of hadron 

colhsions. A Lagrangian based on the  SU{3)  gauge group descrii)ing the dynam ical 

behaviour of the strong force was constructed  in the early 1970’s and in'ought w ith 

it two peculiar ])roperties. The first of these, known a.s asym ptotic  freedom, was 

discovered inde])endently by Politzer, and by Gross and W ilczek. and can be seen 

by calculating the one loop /^-function of Q uantum  Chrom odynam ics (QCD) [23]. 

It is a consequence of the  fact th a t the anti-screening effect of the  gluons overcomes 

th e  screening effect of the quarks, a t high energies. The second of these unusual 

properties is known as confinement. It implies th a t  all physical observables are colour 

singlets, hence restricting exi)erim entalists to  indirect m ethods when a ttem p tin g  to 

detect colour charged objects. A lthough un])roven. confinement is widely accei)ted 

as a j)roperty of QCD due to  strong  evidence arising from experim ent and from 

non-pertu rbative  m ethods such as L attice  QCD [24].

T he S tandard  Model of j^article j^hysics, as it now stands, is based upon the  uni­

fication of the strong  and electro-w^eak sectors. Its gauge s truc tu re  follows th a t of 

the  SU{3)  X SU{2)  x C/(l) group and it is consistent w ith all experim ental facts to  

date . W hile the recent discovery of a higgs-like boson at 125 G eV  [25, 26] has ren­

dered the S tandard  Model com plete as a theory, there  are still m any open questions 

surrounding particle i)hvsics such as the strong  C P and hierarchy problem s, or how 

to  unify gravity w ith the  o ther forces in a quantum  setting . M any extensions to  the 

S tandarfl Model exist and attemj^t to  address some of these problem s bu t, as of yet. 

there  is no Grand Unified Theory of Everything.

This thesis is devoted to  the exploration of the  charm  sector of QCD via th e  non- 

pertu rbative  framework of lattice field theory, bu t before we discuss its la ttice  for- 

nnilation let us briefly review QCD in the  continuum .



C h ap te r 1. Introduction

1.1 Q uantum  C hrom odynam ics

T he gauge group of QCD is l)ased upon em pirical evifleuce for the existence of a 

colour  charge. B oth theoretical and experim ental evidence points to  the  existence of 

th ree  such colours, suggesting th a t  the fundam ental m a tte r  fields should belong to a 

th ree  dim ensional irreducible representation  of a gauge group th a t should be exactly 

realized in nature . From all of the  sim ple com pact Lie groups, only four have three 

dim ensional irreducible rej^resentations (irreps). Of these, three are isom orphic to 

one another: S 0 { 3 )  SU{2)  ic Sp( l ) .  while the fourth is SU{3) .  Experim ental

evidence requires th a t rjuarks and anti-quarks should be different sta tes. This con­

d ition  implies th a t the  trip le t representation of the  gauge group should be complex, 

th a t is. 3* 7  ̂ 3. Only SU{3)  survives th is condition since the trip le t representation 

of 5 0 ( 3 )  is real. The well known SU{3)  decom positions

3 ® 3* =  1 © 8  ( 1.2 )

3 0 3  =  3 * © 6  (1.3)

3 (83 (8 )3  =  1 © 8 © 8 © 1 0  (1.4)

3(2)3(g)3(8)3 =  3 ® 3 ® 3 ® 6 © 6 * © 1 5 © 1 5 © 1 5 © 1 5 *  (1.5)

guaran tee  th a t  there  are colour singlet s ta tes  in the form of mesons (qq) and l^aiyons 

(qqq),  while also ruling out the  possibility of some com binations such as d iquark [qq, 

qq) or four-quark s ta tes  {qqqq, qqqq)-

A ssum ing th a t the  strong force can be descril)ed by a gauge theory  based on the 

group SU{3)  w ith colour trip le t m a tte r  fields, of which there  are em pirically six.
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restric ts us to  the following Lagrangian density

£  =  E  « / ( n "  A . -  m , ) q ,  -  F r n -  ■ (L6)

where are the Dirac m atrices following the Dirac algebra =  2//̂ ^̂ . is

the  covariant derivative

where tlie vector field .4̂ , is a linear com bination of the  generators of the  Lie-algebra 

of SU(3) ,  and go is the  bare strong  coupling constant. is the  gluonic field

streng th  ten.sor given by

which exi^licitly shows th a t the  non-abelian natu re  of SU{3)  leads to self-interactions 

of the gluonic fields A".  are the s tru c tu re  constan ts of SU{3)  .sati.sfving the 

relation

while the Gell-M ann m atrices. X°. are the  aforem entioned generators of su(3).

The Lagrangian of (JCD only specifies the  theory at the  classical level. Q uantization 

brings w ith it a niunber of com plications th a t arise due to  the  fact th a t not all of 

the degrees of freedom in the  gauge fields are physical. To restrict to  solely the 

])hysical degrees of freedom, one nuist gauge fix (when using a pertu rbative  expan­

sion). However, in the non-abelian case, the  gauge fixed p a th  integral contains a 

functional determ inant, which can be calculated by re-expressing it as a ferniionic 

path  integral. These fictitious fermions are known as ghosts. T hey are not physical, 

bu t ra th e r a procedure in troduced by Faddeev and Popov for m aintain ing a theory

Df, dfi ig^A î , (1.7)

( 1.8)

(1.9)
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with physical degrees of freedom [22], Once the fornnilation of the Fe>imian rules 

has been achieved, one has a formal perturbative expansion. Of course, the regu­

larization and renormalisation of the theory must be achieved, but once this is so, 

the perturbative definition of the quantum theory that corresponds to the classical 

Lagrangian is completed.

Due to renormalisation, the coupling constant of QCD is energy dependent. It 

grows as energy is decreased, rendering i)erturbation theory inapplicable for low 

energy QCD. It is clear that non-perturbative effects will ])lay a major role at the 

energy scales of hadrons, and in order to probe such non-i)erturbative phenomena, 

we would hke to solve the path integral of QCD directly. Unfortunately, no such 

solution exists. One alternate approach is to evaluate the path integral numerically 

within a discrctiscd finite volume scheme, known as Lattice Field Theory.

The Standard Model contains many non-perturbative i^henomena such as the Higgs 

mechanism or Confinement, and in order to study them from first ])rinciples it is 

essential to define the theory beyond a perturbative expansion. Lattice regularisation 

provides a setting in which this can be achieved. By replacing continuous space-time

to  a count ably infinite set. Then, by reducing the infinite extent of the grid to that 

of a finite one, the path  integral becomes finite dimensional over a lattice A C Z"*,

1.2 Lattice QCD

wdth a regular grid of points, one reduces the degrees of freedom of the path integral

V(p0{(p)e ( 1 . 10 )

71
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This regularisation should not be viewed as an approximation to  the  contintuun 

theory, but ra ther  tha t  it provides a definition of a theory whose continuum limit 

m ay correspond to a useful j)hysical theory. Of course, in order to  take the continuum 

limit, one nuist renormalise the  theory. To achieve this, one sends the lattice spacing 

to  zero while sinniltaneously adjusting the bare param eters (in an appropriate  way). 

Taking the  continuum limit also removes the cut-ofT placed upon the theory by the 

discretisation: the shortest physical distance is the  lattice spacing n w'hich defines 

an ultraviolet m om entum  cut-ofT 1/a.

The most common approach to ex tracting physical param eters from a lattice path  

integral is to  u.se numerical m ethods such as Monte Carlo. Im portance sampling 

is vital when trying to accumulate gauge field configurations via Monte Carlo, but 

it is not very compatil)le with the integrand in equation (1.10). Due to its imagi­

nary nature, the ex])onential function oscillates wildly reducing the efficiency of the 

imj)ortance sampling technique and rendering the process impractical. Fortunately, 

this problem ha.s a simple solution via a W ick rotation: a ro tation from real time to 

imaginary time t —if resulting in a switch from Minkowski to  Euclidean space. 

The path  integral then becomes

(0 10(0)1 0) =  J^VoO{d))e ( 1. 12)

which is now suited to  Monte Carlo im portance sampling techniques.

1.2.1 The Gauge Sector

Requiring the invariance of the action (1.6) imder local rotations of the  colour indices 

of the quark fields enforces the introduction of gauge fields. mathematically
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known as connections. However, on the lattice, one does not use these algebra- 

valued fields directly, but instead describes gauge fields through the  use of a gauge 

tran sp o rte r

where C  is some curve connecting the two space-tim e points ,r and y. One then  

defines group-valued link variables as

which link the  lattice point n to  the point n -I- fi. These objects are now considered 

as the fundam ental variables in the  pa th  integral. The change from algebra-valued 

to  group-valued fields has im portan t consequences. For instance, gauge fixing is no 

longer a requirem ent, since the  m easure for the  gauge fields becomes the  so-called 

Haar measure, which is au tom atically  finite [27].

T he preservation of gauge invariance is key when constructing  a  lattice action. Only 

two tyj)es of ob ject achieve th is on the lattice. T he first is known as th e  holonomy, 

w'hich is a parallel transj)o rter arom id a non-trivial closed curve, and the o ther is a 

l)arallel tran sp o rte r  connecting one fermionic field to  another. In order to  construct 

th e  sim plest lattice  gauge action, it is sufficient to  consider the  sim plest holonomy, 

known as the ‘p larjuette’

(1.13)

U,, =  exp(/«^ ,,(« ))- (1.14)

U,. = U,{n)UM + (i)Ul{n + fi -f 0)Ul(n +  />). (1.15)
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We can now define the Wilson gauge action as a  sum over all plaquettes, with each 

p laqnette  only comited with one orientation

An obvious way to  check tha t  this action is correctly descriliing the gauge sector 

is to perform the naive continuum limit. By using the Campbell-Baker-Hausclorff 

fornuila and Taylor exi)anding the gauge fields of the  form Af,{n +  />), one can show 

that  the  plaquette  reduces to

Placing this form of the  p laquette  into the  gauge action produces the result

which shows tha t  the Wilson gauge action does indeed reduce to the  pure gauge 

part of the  action (1.6) in the  naive continuum limit a —)• 0.

1.2.2 The Ferm ionic Sector

W hen describing fermionic fields on the lattice, the sim])lest s ta r ting  point is to 

discretise the  fermionic part  of the action (1.6). This am ounts to placing spinor 

fields at the  lattice points only, n G A, and discretising the derivative a])])earing 

within the Dirac operator. Using a symmetric discretisation, the derivative becomes

(1.16)

=  exp(i(pFf,^{n) +  0(a'^)). (1.17)
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yielding the  following expression for the free fermionic lattice action

In QCD, fernhons live w ithin an ex ternal gauge background. We incorporate this 

feature  by the in troduction  of gauge fields into the  fermionic action, which leads us 

to  the  so-called naive fcjinion action

Since fermions are anti-coninm ting, we m ust use G rassm ann num bers to  describe 

them . T hey aj^pear in the pa th  integral as a bilinear form allowing us to  use the 

Matthews-Salam formula  [28]

and to  w rite  the  fermionic generating functional as

We can now use W ick’s Theorem to  calculate n-point functions of fermionic fields

+  m i l ! { n )  . ( 1-21)

(1.23)

where the  inverse of the  D irac opera to r is known as a fermionic propagator.
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T he Fourier transform  of the  lattice  D irac opera to r for a triv ial background gauge 

field, Ui,{n) = 1, can be w ritten  as

which clearly has a pole at = ((3.0. 0 .0 ). representing the  ferniion described by 

the  continuum  Dirac operator. However, the  m om entum  space lattice  proj:)agator

(1.26) has sixteen poles since it lives in the  first Brillouin zone. We now see a fimda- 

m ental problem  when discretising fermions; any herm itian  Dirac operator (in even 

dimensions) which leaves the  discretised action local and translationally  invariant 

will either produce ex tra  unphysical poles or break chirality  [29].

As a sim ple solution to  the  problem  of these unphysical poles, W ilson proposed the 

addition of what is com m only known as the  Wilson term  to  the naive fermion action:

where 0 <  r  <  1 is a bounded free param eter, and the  lattice  Laplacian is defined 

as

4

(1.25)

and the m om entum  sj)ace {propagator as

7 n - i a

r/)2 +  o - 2 ^ ^ s i n ^ ( f l p ^ , )
(1-26)

For massless fermions, tak ing  the naive continuum  limit leaves us w ith

(1.27)

ir,, =  arAl  , (1.28)

(1.29)
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To easily see th a t this removes the unphysical poles we can lool; at the Wilson 

momentum space Dirac oj^erator

4

Mw{p) = sm{apt, ) +  m +  ^  (1 -  cos(o/;,,)) . (1.30)

It is clear that when p̂ , =  0 the Wilson term  disappears. l:>ut when p̂  ̂ =  n /a  it gives 

an extra contribution of 2/a. This removes the un])hysical poles in the a —>• 0 limit 

since it acts like a mass term, resulting in a mass of rn +  2/a  for the imphysical 

poles. As expected, this remedy explicitly breaks chiral synnnetry even in the chiral 

limit m -> 0.

In this work we use the Wilson fornnilation of fermions with a so-called clover 

term , as explained in sections 1.2.3 and 2.1. However, there are also many other 

formulations of lattice fermions. each with their own strengths and weaknesses. For 

example, the Kogut-Susskind fermions (or staggered fermions) [30] keep a renmant 

of chiral symmetry but still describe four tastes of fermion. Another example is that 

of twisted mass fermions  [31-33]. Here an extra term, if’ added to the Dirac

operator, where /y is a real param eter known as the twisted ma.ss, in order for the 

determ inant of the Dirac operator to be real and positive. The fornnilation is also 

autom atically 0{a)  improved for a so-called maximal twist.

For further details on the Wilson and alternative formulations of lattice fermions, 

see such books as [27, 34, 35].

1.2.3 Im provem ent

The Wilson fermion action suffers from the most severe form of systematic error, 

0 {a )  discretisation effects. Ideally, one would like to use an action that has 0{a")
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lattice artefacts  for some high num ber ii (at least larger th an  1) and perform  sim u­

lations close to  the  eontinum n lim it. Since it is com putationally  very expensive to 

sim ulate near the  continuum  limit, it would be extrem ely useful to have a scheme of 

system atically  reducing discretisation effects. Such a scheme exists and is known a-s 

the  Syrnanzik improvement programme [36, 37], but before we discuss this improve­

m ent scheme, let us briefly review a m ethod of reducing the large renorm alisation of 

gauge fields coming from their lattice  definition. This is known as tadpole improve- 

m,ent [38].

Tadpole Improvement

Lattice operators are usually designed by m apping them  onto analogous operators 

in the  continuum , and for gauge fields, the  m apping is based upon the  expansion of 

ihe  link variables

=  1 +  iagA^,{n) -  +  ... (1.31)

This expansion is valid for small values of a, bu t can be m isleading since term s 

w ith a'̂  or higher do not \'anish as powers of a in the quan tum  theory; Lapage 

and Mackenzie [38] realised th a t the  contraction  of .4^/s w ith each o ther led to 

[ iV  divergences th a t explicitly cancel the  powers of a. These term s, which are 

contributions from tadpole diagrams^ are then  only suppressed by pow'ers of g and 

become large. We thus lose our simple in tu ition  between lattice  and continuum  

operators due to  the large renorm alisation of lattice  gauge variables.

Since these tadpoles come from the  high m om entum  part of the  loop integrals, and 

hence the high m om entum  part of the gauge field, they  can be removed from the 

theory. In tegrating  out the  U V  com ponents of the gauge field and by allowing a
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tadpole factor Uq to param etrise them, we can write

U f , { n )  w U( )  (1 +  . (1.32)

There are many choices for Uq-, a common one being that of the expectation vahie 

of the placinette

This procedure suggests that in order to recover our intuition on the l)ehaviour of 

lattice operators, we should rescale the link variable a.s

This divides out the U V  contribution of the gauge field resulting in an object that 

behaves in a similar fashion to its continuum analogue. Of course, this procedure is 

fully non-perturbative since the tadpole factor is measmed from a non-perturbative 

lattice calculation and not in perturbation theory.

In this work, we use tadpole improved gauge links when constructing our lattice 

actions as described in section 2.1.

Sym anzik  Im provem ent

Actions can be built from three types of operator. If the coupling constant of an 

operator increases with the scale of the system, it is known as relevant. If it decreases, 

it is known as irrelevant. If it varies, then the operator is called marginal. On the 

lattice, different actions tha t produce the same results in the continuum limit are said 

to  be within the same universality class, th a t is, they describe the same physical

(1.33)

(1.34)
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theory. In j^rinciple. these actions are constructed  from the sam e set of relevant 

and  m arginal operators, and onlj' differ in their irrelevant operators. However, at 

finite lattice spacing, results a tta in ed  from different discretisations w ithin the  sam e 

universality  class may differ from each o ther and from their continuum  counterpart. 

O f course, the  reduction of th is effect is highly desirable.

T he Sym anzik improvement j)rograinme can aid against scaling violations by the  ad­

d ition  of irrelevant operators of higher dimension to  a given lattice  action. Sym anzik 's 

schem e is m ost easily explained via exam ple, so we will discuss on-shell Oia)  im­

provem ent of W'ilson fermions, bu t first, let us ex])lore the  Sym anzik im provem ent 

of the  p laque tte  action.

T he s tan d ard  p laqnette  action (1.16) consists of the only four dim ensional operator 

th a t  respects ga\ige invariance; Tr{F'^^ )̂. Im plem entm g the  Sym anzik m iprovement 

schem e am ounts to  adding all the  higher dim ensional ojierators, th a t respect the 

sym m etries of the  original action, in order to  form a new effective action:

where Lq is th e  original Lagrangian. T he term s L„ for n >  0 are irrelevant oj)era- 

to rs built from the fundam ental fields such th a t they  have dimension 4 +  n. Since 

only closed loops of gauge links form gauge invariant quantities, one can not add a 

dim ension five opera to r to  the  p laquette  action. Thus L i =  0 for any pure gauge 

action, m eaning th a t they are au tom atically  0{ a)  imi)ro\-ed.

At dim ension six there  are three distinct irrelevant oj^erators th a t  can be added to 

the  action. These consist of the perim eter six-link loops; the  rectangle (left), paral­

lelogram  (centre) and chair (right) shown in Figure 1.1. T he addition  of these three

(1.35)
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FlGl'RE 1.1: The i)eriineter six-link loops: (left) rectangle, (centre) parallelogram,
(right) chair.

terms, multiplied with some improvement coefficient, to the action is the first step 

towards 0{a^)  improvement. The next step is to fix the improvement coefficients. 

An improvement condition is required to achieve this; for example, one can reciuire 

tha t the static potential reproduce the continuum lowest order perturbative result 

up to  terms of O(a^).  At tree-level, Liischer and W'eisz [39] found that one can 

achieve O(a^) improvement by setting the coefficient of the rectangle Cr =  —1/12 

while setting the coefficient of the parallelogram and the chair to zero. In this work, 

we use this O(o^) improved formulation to describe the gauge sector as desciibed in 

section 2.1.

The procedm e for improving fermionic actions follows the same m andate as for 

gauge actions; one must write all of the irrelevant operators that have dimension 

greater than four obeying the symmetries of the original action, and add them  to 

tha t action. Here we will discuss on-shell 0 (a )  improvement, so it is sufficient to
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write all the operators of dimension five:

Oi(;r) =  ip{x)a^,uF,.uix)xp{x) (1.36)

C>2(;r) =  +  V^(.r)^,,(.x)^p(.r)V.'(.r) (1.37)

0 , { x )  =  7N T r[F ,,(^ )F ,.(.r )] (1.38)

Oi(x) =  m ( t̂{x)')f,'3̂ ,{x)'il) +  0 ( . r ) > ^ , , ( . r ) i ’(.r)) (1-39)

Or,{x) =  tû 'll!{x)'lp{x) . ( l- ‘iO)

where =  [7, ,, 'yj,]/2. Using the field equation, ('),,£>/, +  m)il! =  0, we get the 

following tw'o relations:

0 , {x )  -  02{x)  + -lO^ix)  =  0 (1.41)

0 , { x )  + 20s{x)  =  0 . (1.42)

Using these two equations, we can eliminate 02(x)  and 0 4 {x) from the set of cor­

rection oj)erators. Noticing that 0,i{x) and 0^{x)  are already present within the 

original action allows us to eliminate them from the set by redefining the bare pa­

rameters m  and g. This leaves only Oi(.r) in the set of correction operators. Hence, 

to  (){a) improve the Wilson fermionic action on-shell, it is sufficient to add the 

so-called clover term along with its improvement coefficient c,„, [40]:

^  */’’ ( « •  ( 1--13)

n i i < y

is a discretisation of the field strength tensor given by the non-unique ex­

pression:

F , A n ) - ^ , { Q , A n )  -  Q . , {n ) )  • (1.44)

Qfii, is a sum of four plaquettes as shown in Figure 1.2. Physically, the lattice has
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F ig u r e  1.2: A pictorial representation of the clover  sum of pla^juettes Q / / I / -

assigned an anomalous chromomagnetic moment of 0(a)  to the cniarks. and it is the 

addition of this Pauli like clover term that corrects for it [41],

The next stej) in the improvement scheme is to determine the appropriate value of 

the improvement coefficient Csu,: it needs to weight the correction term just enough 

to cancel the 0(a)  artefacts. Perturbation theory can be used to calculate [42], 

but of course this requires one to work in a regime where the coui)ling is small which 

may not always be useful for calculations in QCD. However, a non-perturi)ative 

scheme for calculating ĉ u, (and Ca . the axial current improvement coefficient) using 

chiral symmetry, tha t is, the paHially conserved axial current (PCAC) relation in 

the continuum limit has i^een suggested by the Alpha collaboration [43].

Adding the clover term and appropriately determining c,u, is sufficient for 0{a)  

improvement of on-shell quantities such as hadron masses, but full 0{a)  improvement 

of a correlation function also requires the improvement of its interpolators. For 

details on improving interpolators see [27, 35, 43].

In this work, we add the on-shell 0(a)  improvement term, to our Wilson for­

m ulation of ferniions as described in section 2.1.
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T his coiichules oiir l)rief iiitrochiction to  L attice  QCD, but l)efore jum ping  cUrectly 

in to  the  details of our calculation, we take a brief m oment to  set the  experim ental 

scene th a t m otivates our s tu d y  of the  charm  sector.

1.3 E xperim ental Status o f the Charm  Sector

T he charm  quark  \va« proposed by Glashow and Bjorken in the  mid 1960’s [44]. but 

there  wa.s little or no evidence for its existence. It becam e a theoretical requirem ent 

in 1970 w'hen the Glashow-Illopoulos-M aiani m echanism  (GIM m echanism ) required 

the  existence of a heavy fourth  (juark in order to  explain why flavour changing 

n eu tra l currents are suppressed [45]. These predictions were v indicated in 1974 with 

the  observation of the  Jjii)  meson [46. 47].

For the  following th irty  years, charm  meson spectroscopy had been successfully 

described by a relatively sim ple picture; a bound s ta te  of a quark and anti-quark 

whose spins are coupled together to  form a to ta l spin S. which is then  coupled to  an 

o rb ita l angular m om entum  L  in order to  create a s ta te  of to ta l angular m om entum  

.7. In th is phenomenological m odel, the  s ta tes  follow a pa tte rn . If the

m eson is an eigenstate of charge conjugation, i.e. it is its own anti-particle , then 

some (where P  and C  are the parity  and charge conjugation quan tum  num bers 

respectively) com binations are absent from this sim plistic set up. Such s ta tes  are 

term ed exotic.

Currently, the  spectra  of open-charm  mesons contains a num ber of well established 

s ta tes  [48]. There are eight D  mesons, which are chai'ni-light com l)inations of isospin 

/  =  1/2, and six D., mesons, which are charm-strange com binations of non-zero 

strangeness and zero isospin. In bo th  sectors there  are a num lier of ten ta tive  sta tes
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F i g u r e  1.3: The euerg>’ range of the planned PANDA experim ent and some of
the  physics it will explore.

om itted from the Particle Data Group summary tables, suggesting that their exis­

tence needs further confirmation. Many of the well established states can be de­

scribed by the pattern  expected from cjuark potential models [49. 50]. However, a 

subset of these states as well as additional states requiring experimental confirma­

tion, do not fit the predictions and are thus unexplained. For example, the masses 

and widths of the enigmatic and £>si(2460)"‘' particles are significantly

lighter and narrower than in quark models [49. 50]. Since the discovery of these 

resonances at BABAR [51] and CLEO [52] respectively, there has been much debate 

about their nature. Suggestions such as tetra-quarks (two valence quarks and two 

valence anti-quarks), molecular mesons and hybrid mesons (in which the gluonic 

field is excited) have been put forward, but the situation is far from being resolved.

The spectrum  of hidden charm mesons (charmonia) has received much experimental 

interest since the discovery of the J/xl). There are eighteen well established states
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along with a number requiring further experimental confirmation [48]. Below the 

open-charm threshold, the sj^ectrum is well understood in terms of quark models, 

but the recent observation of many unexpected resonances close to, or above this 

threshold has caught the interest of both the theoretical and experimental com­

munity. For example, the A'(3872) resonance [53] is now well established but its 

interpretation is still unclear, although recent experiments at the LHCl) strongly 

suggest that it has =  I ’*"'''. W ith this assignment, it could still be interpreted 

as the cc bound state \ci(2^Pi). but this is unlikely due to its mass; the resonance 

appears far from where the \d(2 '^Pi) is expected and an exotic explanation such as 

a DD* molecule or tetra-cjuark particle seems imminent. The .Y(4430)"‘" observed 

in B  A’tt decays at BELLE is another exotic candidate [54], Due to it being 

electrically charged, it can not be a standard cc meson. Instead, it is thought that 

this resonance is of a tetra-quark nature and, like many of the current mysteries 

sinrounding the charm sector, will recjuire further investigation.

Experimental searches continue at BESIII and at the LHC, while in Darmstadt 

the construction of a proton anti-proton collider at GSI/FAIR has l)egnn. This 

experiment, known as PANDA, will conduct extensive searches in both the open 

and hidden charm sectors as well as looking for exotic states. A smnmary of tlie 

experiments energy range and some of the physics it hopes to explore is shown in 

Figure 1.3.

For a recent review of hadron spectroscopy see [55].



Chapter 2

Lattice D etails

The main focus of this study is to determine the spectrtun of hidden and open- 

charm states, inchiding excitations and any states with an intrinsic ghionic compo­

nent. Throughout this thesis, we will refer to eigenstates of the lattice Hamiltonian, 

E. as spectroscopic states, which are computed via two-point correlation functions 

which fall off in proportion to . Since the oj)en-charm spectra lie around and 

above 2 GeV, and the charmonium spectrum  lies above 3 GeV, it is clear tha t the 

corresponding correlation functions will fall off rapidly, even at modest times. Fur­

thermore, correlation functions built from interpolators that excite high-lying states 

will suffer from increasing statistical variance.

One w'ay to ameliorate these problems is to use an anisotropic lattice where the 

tem poral discretisation is finer than the spatial one. Of course it w'ould be more 

beneficial to have both the temporal and spatial directions very fine, but the com­

putational cost would rise dramatically. In order to keep the com putational cost 

down, we use a relatively coarse spatial discretisation.

23
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Previously, the  m ass of the  charm  quark was problem atic; it was too light for non- 

relativ istic  actions to  l)e valid, bu t large enough such th a t anic 1 was difficult to  

achieve. Recently, a  num ber of successful approaches for sinuilating the  charm  quark 

were develoi)ed, such as the  Fermi-lab [56] and HISQ [57] actions. In this work, we 

use a d iscretisation such th a t the anisotropy. ^ =  (ig/cit ~  3.5. This fine tem poral 

d iscretisation  ensures th a t we carry out calculations w ith (ifinc 1, allowing us to 

use the  standard  relativistic form ulation of fermion actions for the  charm  quark. It 

is also encouraging to  note th a t on our ensembles Qsiric < 1-

2.1 D ynam ical 2 + 1 A nisotropic L attices

In th is  study  we use dynaniical 2 + 1  anisotropic ensembles generated by the Hadron 

Spectrum  C ollaboration [58, 59]. O n these lattices, the  gauge sector is descril)ed by 

a Sym an/ik-im proved (see section 1.2.3) anisotropic action w ith tree level tadpole- 

im proved (see section 1.2.3) coefficients

where P  is the p laquette  and R  is the 2 x 1  rectangular W ilson loop. A'V is the 

nm nber of colours and 0  = 2N(./g^■ The bare anisotropy is given by the  param eter 

^0 - ftiid iis ftiifl lit are the spatia l and tem poral tadpole  factors dividing the  spatial 

and tem poral gauge links, respectively. The leading discretisation errors associated 

w ith th is action are 0{oi \ .d^ ,g^ol) .

( 2 . 1 )
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Volume ^  t srcs V̂̂v e c s

16'* X 128 96 128 64
24'* X 128 552 32 162

T a b le  2.1: The gauge field ensembles used in the calculation of the charmonium 
spectrum. Â c/y.s and Ntsrcs are respectively the number of gauge field configu­
rations and time-sources per configuration used: Nvecs refers to the mnnber of 

eigenvectors used in the distillation method

T he fermionic sector is described via an anisotropic clover action, given by

( 2 .2 )

where

Q = mo +  UtW't +  s (2.3)

Here <7̂ ^̂  =   ̂ 7i/]. and the W ilson term  is given l)v

ir„ = V, - (2.4)

u is the  ratio  of the  bare fermion anisotropy to  the  bare gauge anisotropy. The 

spatia l and  tem poral clover coefficients are given by

(2.5)

( 2 .6 )

where th e  fraction (it/Os =  1/^ is set to  the desired renorm alised gauge anisotropy.

O n these ensem bles the  gauge links in the  fermion action are three-dim ensionally  

stou t sm eared. T he sm earing param eters, as discussed in section 3.1 , are p =  0.22
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Vohiine N ^ / g s  Nt srcs vecs

16-* X 128 96 128 64
24^ X 128 553 16 162

64

T a b le  2.2: The gauge field ensenililes used in the calculation of the open-charm 
spectra. Ncfgs ti»d Nfsrrs are respectively the number of gauge field configurations 
and time-soiu’ces per configuration used; Nyecs refers to tlie number of eigenvectors

used in the distillation method

and  Df, =  2. In [58], the  au thors determ ined the  gauge anisotropy from the  s ta tic  

quark  po ten tia l using the ra tio  of W ilson looj)s

while the fermionic anisotro]:)y was determ ined via the  continuum  relativistic disper­

sion relation

O n these ensem bles /i =  1.5, and the final tuned  values for the  bare gauge and 

ferm ion anisotroi)ies are îg — 4.3 and 7/  =  3.4. The corresponding values for the 

spatia l and temj^oral clover coefficients are r ,  =  1.589 and Ct =  0.903.

In lattice  calculations, all quan tities are com puted in term s of the lattice  spacing 

and. in order to  m ake contact with experim ent, one m ust quote results in physical 

units. Therefore, a scale se tting  nuist be introduced. We set the scale by considering 

the  ratio  of the  Q-baryon m ass m easured on these ensembles, a,r/?n =  0.2951(22) 

to  the  experim ental mass. M u  =  1672.45(29) MeV [48]. From th is scale setting, 

we find a sj^atial la ttice  sj^acing of a., =  0 .122( 1) fm and a tem poral la ttice  sj^acing 

approxim ately  3.5 tim es sm aller, =  5.67(4) GeV. On these ensembles, the  pion

(2.7)

( 2 .8 )

(2.9)
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Volume ^  c f q s * t s r c s N̂ ’fees

20'* X 128 603 3 128

Table 2.3: The gauge field ensembles u.sed in the calculation of D tt scattering.
and Ntsrcs are respectively the number of gauge field configinations and 

time-sources per configuration used; Nyg^s refers to the number of eigenvectors
used in the distillation method

m ass is ~  391 MeV'. The spectroscopic calculations carried out in th is study  

are on two-volumes {L/cis)^ x {T/at )  =  16'̂  x 128 and 24^ x 128. T he study  of 

D n  scattering  was perform ed on a th ird  volume 20'* x 128. T he ensem bles used 

in the  calculation of the charm onium  spectrum  are sum m arised in Table 2.1, the 

open-charm  spectra  in Table 2.2 and for D n  scattering  in Table 2.3. It is w orth 

noting  th a t the  configurations sam pled on our 16^ ensembles are separated  by twenty 

tra jec to ries  (after therm alisation) w'ithin the  M onte Carlo M arkov chain. O ur 20'̂  

and 24^ configurations arc again separated  by twenty tra jec to ries  from fo\u‘ different 

M arkov chains. A separation  of twenty tra jecto ries was determ ined via a binning 

procedure in order to  render two consecutively sam pled configurations effectively 

uncorrelated. To calculate the  sta tis tica l uncertain ty  in all of our results, we use the 

single elim ination jackknife m ethod.

2.2 The Charm Quark

We employ the sam e relativistic action for the  charm  quark as was used for the  light 

and strange quarks. O n anisotropic ensembles, the  weights of spatial and tem po­

ral derivative term s m ust be determ ined so th a t  observables take their experim ental 

value when calculated in a  sim ulation. As shown in [60], th is is im portan t in dynam ­

ical sim ulations to  ensure a  correct continuum  lim it. On our ensembles the  target
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F i g u r e  2 .1 : Squared energies o f  th e i j c  m eson as a  function  o f n ion ien tu n i. n ^ ,  

ca lcu la ted  on our 16'̂  x  128 volum e, for tw o choices o f th e hare ferm iouic an isotrop y  
~ , f  as described  in T able 2.4. 7 ; is the param eter used in th e  light quark action  
and ' ) ( . is ob ta in ed  by en sm in g  th e correct re la tiv istic  d ispersion  relation  for th e

7/c m eson.

ratio  of spatia l to  tem poral scales is ^ =  3.5. In the  light meson sector, th is was 

determ ined via the pion dispersion relation, leading to  a value of =  3.444(6) [61].

To determ ine the anisotrojw . in the  charm  sector, we s tudy  the  dispersion relation 

of the r]c meson. This will also allow us to  set bare m ass of the  charm  quark. The 

relativistic dispersion relation for a meson A, in the  continum n, can be w ritten

{ a , E A f  =  { a r m A ?  +  - (2 . 10)

where the m om entum  is quantised due to  the periodic boundary  conditions of the 

cubic volume
2 t t

(isP =  . (2 . 11)
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Sector /3 Us u, ".9 V lUc Cs Ct

light 1.5 0.9267 1 4.3 3.4 1.265 0.087 1.589 0.902
charm 1.5 0.9267 1 4.3 3.98 1.078 0.092 1.345 0.793

T a b l e  2.4: The bare param eters used in tlie determ ination of the t ] c  dispersion 
relation. T he hght param eters are those previously determ ined in the light sector 
[58], bu t with the bare mass scaled up to give an approxim ately correct mass.
T he charm  param eters are those determ ined by enstu'ing th a t the i ] c  meson has 

the correct dispersion relation with an anisotropy =  3.50(2).

w ith  rii G { 0 ,1. . . . , L / ( i s  — 1}.

Figure 2.1 shows squared energies â i a  function of the m om entum , for tlie

meson, calculated using the  two param eter sets described in Table 2.4. The red 

triangu lar symbols show the  dispersion relation when the  bare param eter ')/ is the  

sam e as used in the light quark action (see Table 2.4). In this ca.se. the bare charm  

quark  m ass is chosen such th a t the  meson takes (approxim ately) its experim ental 

value. For th is set of bare j^arameters, the j^hvsical anisotropy, =  3.18(2). Clearly, 

since our target value is 3.5, we need to  correct for th is discrejiancy.

T he blue squares in Figiu’e 2.1 show the  dispersion relation for the  7]c meson calcu­

la ted  using the  bare param eter set ‘charm ’ in Tal)le 2.4. In order to  correct for the  

previous discrej^ancy, the  ferm ion anisotropy is increased to  ')/ = jc  = 3.98. These 

param eters  result in a  physical anisotropy =  3.50(2), and a  ma.ss of 2965(1) MeV 

for the  T]c meson, which is w ithin one percent of its experim ental value. 2983(1) MeV 

[48]. It is encouraging to  note th a t  our d a ta  agrees w ith the relativ istic dispersion

relation  up to  m om entum  of a t least ft =  (2 ,0 ,0 ), w ith both  fits in Figure 2.1 having

As a check of the  consistency of the  physical anisotropy in the  char- 

m onium  sector, the  dispersion relation of the  J /? /’ meson was calculated. T he value 

ob tained , via a fit to  th is dispersion relation, of the  physical anisotropy, deviated  by 

less th a n  one percent from the  value obtained from the  r]c dispersion relation.
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2.3 Open-Charm Dispersion Relations

To understand  the  n a tu re  of charnionium  and charm ed resonances ahove the  open- 

charm  threshold , we nnist have full control of heavy-light mesons since scattering  

calculations involving these s ta tes  will be reriuired. As discussed in section 8.1, 

to  determ ine properties of resonances on the  lattice  requires the  calculation of the 

full spectrum  of energy eigenstates, including those composed of m ore th an  one 

meson. For these calculations to  be reliable, all relevant mesons m ust have relativistic 

dispersion relations w ith consistent physical anisotropies.

W hen sim ulating heavy quarks on the  lattice, ex tra  com plications can arise due to 

the  large m ass scale. However, for mesons moving w ith m odest m om enta, the  heavy 

quark  four-m om entum  will predom inantly  be aligned w ith the tem poral direction, 

and on our anisotropic ensembles, the fine tenijjoral d iscretisation m ay reduce the 

a rte fac ts  associated with heavy cjuarks. It is well known th a t when g w q  is of 0 (1 ), 

the  (lisi)ersion relation of the corresponding meson will appear non-relativistic forcing 

the  kinetic and rest masses to  differ [56].

O ne way to  test if the anisotropic la ttice  has controlled the  size of these artefacts 

for the  charm  quark  is to  determ ine the  dispersion relation of a nm nber of mesons in 

the  charm -light and charm -strange spectra: if there is a problem  w ith large artefacts 

com ing from the  heavy quark, some or all of the  dispersion relations may appear 

non-relativistic, or the  physical anisotropies m easured from the dispersion relations 

m ay significantly differ from each o ther or those calculated  for the  r]c meson or pion.

W'e calculate dispersion relations for a  range of charm -light and charm -strange 

mesons. W'e use two sets of in terpolators to  achieve this. For mesons a t rest, 

we use the  J--basis in terpolators as described in section 3.3, while for mesons with 

non-zero m om entum , we use the  helicity-basis in terpo lato rs (up to  two derivatives)
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F i g u r e  2.2: Squareci energies as a finiction of for the hghtest S  and P-w ave  
states in the charm-hglit spectrum . The j)oints correspond to calculated squared 
energies and the error bars correspond to statistical m icertainties. Points with no 
visible error bar have statistical error smaller than the size of point. The lines 
are dispersion relations of the form (2.10), with in fixed to the rest mass of the D  

meson and the anisotropy fixed to — 3.454 as described in the text.

as descrilied in section 3.3.1. Shown in Figure 2.2 are squared energies as a function 

of n'  ̂ for the  six lowest lying s ta tes  in the  charm -light spectrum . Figm-e 2.3 also 

shows squared energies as a function of but th is tim e for the six lowest lying 

s ta tes  in the  charm -strange spectrum . The points correspond to  calculated squared 

energies w ith the  sta tis tica l im certain ty  shown by the  error bars. If no error bar 

is visible for a given point, it m eans the  sta tis tica l error is sm aller in size th an  the 

corresponding point. In bo th  the  charm -light and charm -strange sectors, we calcu­

late  the  anisotropy of the  lowest lying sta tes, and fitting the energies

of the  corresponding 0“ meson to  equation (2.10). This gives good fits yielding 

=  3.454(6) and =  3.453(3). The lines in Figures 2.2 and 2.3 are dispersion 

relations of the  form (2.10) w ith m  fixed to  the  rest energy of the  relevant meson, and 

^ fixed to  our m easured values of =  3.454(6) and =  3.453(3) as appropriate .
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F i g u r e  2.3: Scjuared energies as a function of for the hghtest S  and P- 
wave states in the charm-strange spectnun. The points correspond to calculated 
squared energies and the error bars correspond to statistical uncertainties. Points 
with no visible error bar have statistical error smaller than the size of point. The 
lines are dispersion relations of the form (2.10). with m fixed to the rest mass of 
the Dg meson and the anisotropy fixed to — 3.453 a.s described in the text.

The first point of note is th a t all of th e  s ta tes  in Figin'es 2.2 and 2.3 follow a 

relativistic dispersion relation, at least up to  niom entiun ri  ̂ = 4. The second j)oint 

w orth noting is th a t the  physical anisotropies a tta ined  from the  ground s ta te  in 

bo th  the  charni-Iight and charm -strange sectors agree w ith the  the  o ther low- lying 

s ta tes  in their corresponding spectra, as well as those obtained from the  pion and 

//c dispersion relations, suggesting th a t the  charm  cjuark m ass artefacts are inider 

control.



Chapter 3

Spectroscopy on the Lattice

In lattice field theory, spectroscoi)ic information is ol)tained from the two-j^oint 

correlation function

Q ( f )  =  ^  Tr [T0,{t)0]{0) e~^^] . (3.1)

where T  is the time-ordering operator and Z  =  Tr[e“^^]. 0,{f)  are known as

interpolating operators (interpolators), and may consist of gauge invariant quanti­

ties, such as the plaquette or colour-singlet combinations of quarks and anti-quarks. 

Applying the time translation operator to the interpolators, and inserting a 

complete set of eigenstates of the Hamiltonian yields

^  E  {MO]\rn) e-^"' , (3.2)
n.m

where the discreteness of the spectrum is due to the finite volume, and the temper­

ature T  =  \/l3. Taking the zero-temperature limit, that is, where t and (/3 — f) are 

large, the correlation function will be dominated by the lowest energy states that

33
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have the same (|uaiituin iiiiinberK as (where we have set i =  j  for convenience)

C„(f) =  |(0|ai0)p + |(0|a, | l)p

+ O  +  O -  '>) . (3.3)

The term  |(0|O,|0)|^ corresponds to the vacuum-disconnected part of the correlator. 

This term  will vanish in a gauge average unless the interpolator. C9,, has the quantum  

numbers of the vacuum {J^ ‘̂  =  0+^). If the interpolator has a small overlap with 

the lightest state, £■[, then the correction terms in (3.3) will have relatively large 

coefficients, and a reliable value for the lightest state energy can only be extracted 

when t is very large. If 0 <§C  ̂ <C / I  then the vacuum-connected part of the correlator 

has the asymptotic form

C„{t) -  | ( 0 | a | l ) p e - ^ ' '  . (3.4)

One can then define the so-called effective mass

Cnit)
[Cu{t +  1 ) J (3.5)

which will plateau at the energy of the lightest sta te  Ei created by the interj^olator

O , .

Since we are interested in calculating spectroscopic quantities of charmonium, charm- 

light and charm-strange combinations, we must choose interpolators tha t create 

mesonic states from the vacuum. The simplest of which is the set of local interpo­

lators given by

=  V - / ( » )  r,- i ’f ' in )  , (3.6)

where we have suppressed spin and colour indices for clarity. Here, 7} € A is the
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State jP iC ) r Naming Scheme
Scalar 0+(+) 1 flo
Scalar 0+(+) 7o bo
Pseudo-Scalar 0-(+) 7T
Pseudo-Scalar 0-(+) 7o75 7T2
Vector l- ( - ) 7i P
Vector l - ( - ) 7o7< P2
Axial-Vector !+(+) 757; (ll
Tensor l + ( - ) l i l j bi

T a b l e  3.1: Ganiina matrix naming scheme and their corresponding qiiantuni 
numbers. The charge conjugation quanttun numl^er. C, is only defined for flavoiu'

singlet interpolators.

point of creation of the meson, and / , / '  label the quark flavour. F, is one of the 

combinations of gamma matrices shown in Table 3.1.

In general, a tw opoin t function composed of interpolators and O f f  {in) can

be w ritten as

( O j r in )  0}^,{7n)) =  -  Tr [ T  M -I {n \m )  T M/^ ,{m\n)  ]

+  Tr [ r  Mjj]{n\n) ] [ T , (3.7)

using Wick contractions. Both terms in this eciuation have a simple interpretation. 

In the first term , the propagator Mjj{ri\7v)  propagates an /  quark from space-time 

])oint rn to n, while propagates an / '  quark in the opposite direction.

This term  is referred to as connected, and is shown on the left of Figtu'e 3.1. In 

the second term, the propagators are of the form Mjj,{n\n)  which is interpreted 

as propagation back to the same space-time point. This term is referred to as 

disconnected, and is shown on the right of Figure 3.1. Clearly this term  is zero when 

/  / ' ,  th a t is, it only contributes for the special case of flavour singlet mesons.
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m n

F i g u r e  3.1: A graphical representation of a niesonic correlator, separated into 
its connected (left) and disconnected (right) parts. The propagation begins and 

ends at space-tinie points m and n as shown.

A useful constraint to place upon an interpolator is tha t  it should create a s ta te  of 

definite moment uui. This can be achieved via

n,) =  0 (T i ,  „ , )  , ( 3 .8 )
neAa

where the m omenta, p. are quantised via p =  2Tik/L.  Here L  is the  sj^atial extent 

of the  lattice and k  G Z'^ This interpolator is projected onto a definite momentum  

and is located on a single time-slice iif. It is thus sufficient to  project only one of the 

two in terpolators in a two-point function (usually the  annihilation interpolator) to 

the  desired m om entum  in order to  achieve a hadronic s ta te  of definite momentum, 

l)ut, it is im jiortant to note tha t  this is only approxim ate for a finite number of con­

figurations. A correlation function containing a m om entum  projected interpolator 

at the  sink will fall off at large times ~  where the energy of the lightest

s ta te  E{p)  is related to the  mass of the  hadron, m,  by

E{p) = \ / m ^  +  +  0{ap) (3.9)
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We have now seen how to extract spectroscopic quantities on the lattice. However, 

using only the techniques descril)ecl in this section will lead to a limited spectnnn 

of states, and for a given amount of configurations, results tha t are relatively noisy 

compared to more modern methods. In the remaining sections of this chapter, 

we discuss the recipe used by the Hadron Spectnnn Collaboration for extracting 

extensive spectra [62], and apply it to the Hidden and open-charm sectors. We 

begin with discussions of what is know’n as smearing-, in the following section we 

explain our smearing in the gauge sector, and then in section 3.2 we explain ovu' 

smearing of the (juark fields, and how it leads to a convenient way of constructing 

correlation functions.

3.1 G auge Field Sm earing

W'e know now that hadron ma.sses are extracted from the large time Ijehaviour of 

Euclidean correlation fimctions. However, one major problem is that the signal- 

to-noise ratio degrades rapidly at these large times. One can considerably improve 

the signal by smoothing or smearing the gauge fields; interpolators constructed on 

or from these smeared gauge fields have dramatically reduced mixing with the U V  

modes of the theory, and consecjuently, have greater overlap onto the low’-lying states 

of interest, allow’ing the hadron masses to be extracted at smaller times. The use of 

such interpolators has been shown to benefit determinations of the glueball spectrum 

[63], the torelon spectrum  [64] and the static potential [65]. Smearing has also played 

an im portant role in the construction of improved actions, for example, the use of fat 

links in a staggered quark action is shown to decrease fia\^our symmetry breaking [66]. 

while smearing can be used to construct hyper-cubic fermion actions with improved 

rotational invariance [67].
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Most smearing procedures consist of averaging products of links along some short 

path  connecting the end points of a given link. The simplest such construction is 

known as A P E  smearing [68]. Here, every link is replaced by itself plus a weight p 

times a sum of its four neighbouring spatial staples, projected l^ack into S U (3). This 

projection is usually performed a« follows: given a 3 x 3 m atrix I", its projection 

U into SU{3) is taken to be the m atrix U G SU(3)  tha t maximises the expression 

'!'ReTi'{UV^). There are two weak points of this construction. Firstly, the projection 

step is a rather arbitrary way of remaining within SU{3).  Secondly, the lack of 

differentiability associated with the projection step inhibits its use in molecular dy­

namics uj^dating schemes, such as the Hybrid Monte Carlo, that recjuire information 

on the response of the action to a small change in one of the link variables.

A method of link smearing that alleviates these problems is known as Stout smearing 

[G9]: it is analytic and natm'ally remains within 5 t/(3 ). It is defined via an iterative 

procedure

(3.10)

where

n,{x) = c,{x)ulix) , (3.12)

and

0(^-) = E

+  [Ul{x -  u) -  0) U^{x -  0 + /'/)] . (3.13)
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C,,{x) is a sum  over perpendicular staples beginning at point x  and eufling at point 

X  +  /}, weighted by tunab le  real param eters The m atrix  Q ,,(x) G S U { N )  is 

defined to  be traceless and herm itian , im plying th a t G SLI{N) ,  elim inating

the  need to  arb itra rily  project back into the gauge group. T he fuzzing step  (3.10) 

can be ite rated  tim es to  produce w hat are known as stotit links

It is w orth noting th a t an im aginary choice for the weights does not reduce the 

U V  fluctuations of the  fuzzed links and th a t the  choice of Cf,{x)  is not imicjue. For 

fu rther details on stout sm earing and its usual im plem entation see [69].

On our ensembles, the  spatially  directed gauge links are s tou t sm eared in order to 

reduce the  contribu tion  from the  high energy U V  m odes of the gauge field. The use 

of th is  sm earing scheme has also allowed the  configurations to  be generated using 

the  Rational Hybrid M onte Carlo algorithm [70].

3.2 Correlator C onstruction and D istillation

w e now continue our discussion of sm earing, bu t in this section we focus on sm earing 

the  cjuark fields. As previously m entioned, in order to  m easure the  energies of low- 

lying sta tes, it is of particu lar im portance to  construct in terpolators th a t overlap 

predom inantly  w ith light m odes, w ith sm earing being a well established m ethod of 

doing so.

A sim ple way of sm earing quark fields is via the application of a smoothing function, 

th a t should effectively remove the  noisy short-range m odes which do not make a 

significant contribu tion  to  low-energy physics of interest. One such construction is 

th a t of the  Jacobi method [71]. This m ethod is based upon the  th ree dim ensional
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gauge-covariaiit lattice Laplaciaii

- V l ^ { t )  = + U](x -  l t ) 5 ^ _ i ^ ]  , (3.14)
. ; = i

where the gauge fields, Uj, can be constructed from a suitable smearing scheme 

such as stout smearing (see section 3.1). The suppression of high energy modes 

conies from the ex])onentiation of this operator. Thus, defining the Jacobi smearing 

operator as

^  ( i  .  . (3,15)

where a and n„ are tunable parameters, will exponentially suppress the high energy 

modes since

hm J{t) =  . (3.16)
U a  OC

The method of (juark smearing used in this work is known as distillation [72], where 

the Jacobi smearing operator, J{t),  is approximated by the formation of an eigen­

vector representation of V^, and is rej)laced by the distillation operator

N

P.y{ t )  =  , / ( A )  i f  it) l f \ t )  . (3.17)
i = \

where is the i'^ eigenvector of evaluated on the backgrotmd of the spatial

gauge fields of time-slice f, once the eigenvectors have l)een sorted by eigenvalue A. 

Pjry{t) is the i^rojection operator into the A'-dimensional subspace, V'v, spanned by 

these eigenvectors, and is therefore idemj^otent. When the dimension of Va- =  Vm , 

where M  =  Nc x x  Ly x L, .  the distillation operator becomes the identity 

and the quark fields are unsmeared. It is also im portant to note that correlation 

functions constructed with distilled fields iiave the same synnnetry ])roi)erties as 

those constructed using Laplacian smearing techniques [72],
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Distillation is as follows. For simplicity, consider a momentum projected local 

mesonic interpolator 0 \  =  where P' is one of the combinations of gamma

m atrices shown in Table 3.1. The application of the distillation oj^erator gives

o \[ t)  =  r ; , ( f )  p„„(/)0„.(f) . (3.18)

where one sums over repeated spatial indices. The 2-pt correlation fimction built 

from distilled interpolators is given via (suppressing indices)

c , ( / )  =  ( m P [ t ) r { t ) P m { t )  0(O)P(O)F(O)P(O)0(O) ) . (3.19)

After performing Berezin integration of the quark fields, one tlien re])laces the dis­

tillation operator by its outer product definition (3.17) to produce

C,j{t) =  Tr [<^>^(/)r(^0) 0'(O)r(O,/) ] . (3.20)

where

=  ' ' ' ( f ) [ r ' (0 ]„ s l ' ( f )  . (3-21)

Here, the column of V^{t) contains the eigenvector of e\'aluated on time- 

slice t. (}) encodes the structure and momentum of the meson, while

(3.22)

encodes the propagation of the quarks and is known as a perambulator. <p and r  

are square matrices of dimension N  x Â  ̂ where N„ =  4 is the numl^er of spin 

components in a lattice Dirac spinor. Therefore it recjuires just N  x N„ operations 

of the  inverse of the fermion m atrix on a vector in order to  compute all elements of 

T.  Once the peram bulators have been computed and stored, the correlation of any
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som'ce and sink interpolators can be computed a posteriori.

This method straightforwardly extends to non-local interpolators, interpolators com- 

I)Osed of more than two quark fields, and interpolators with a multi-hadron structure.

In summary, we use the distillation method of quark smearing, which has proven 

in the j^ast to  increase the overlap of interpolators with low-lying states [72, 73]. 

Once the i)erambulators have been stored, this method also allows us to compute 

any som'ce and sink combination a posteriori, w ithout any further inversions.

3.3 Interpolator C onstruction

As previously mentioned. two-j)oint correlation functions can be written as the spec­

tral decomposition

are known a.s overlaps. In this work, mesonic spectral information will follow from 

analysis of two-point correlation fmictions formed from a large basis of interpolators 

having mesonic quantum  numbers.

As mentioned earlier, the simplest such interjjolators are colour-singlet local ferniion 

bilinears (3.C). These interpolators allow access to  a limited set of quantum  numbers, 

j P ( C )  _  Q - + ^  Q + + _  2 ^ + + ^  1 + + ^  limited number of states. In order to

maximise the spectral information that can be extracted from correlation functions, 

we employ a large Ijasis of local and spatially extended distilled interpolators [62. 74]:

(3.23)

where the vacuum -state m atrix elements

( 3 .24 )
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three (Umen.sional gauge covariant derivatives are placed inside a ferniion bilinear to 

construct interpolators of the general form

O fj, = , (3.25)

where the backward-forward derivative D  =  ^  ^  is chosen in order to have

interjiolators of definite charge conjugation synunetry when /  =  f .  even at non­

zero momentum. A  labels the different combinations of ganmia matrices as shown 

in Tal)le 3.1.

Using continuum 5 0 (3 ) rotational symmetry, one can constrtict interpolators of 

definite spin, parity and charge conjugation at zero momentum. The strategy is 

to form a circular basis of vector-like derivatives and gamma matrices so that they 

transform as J  =  1. For creation interpolators, we use

U n = ± l =  ^  (3.2G)

=  I ■ (3.27)
i

Then, using the standard 5 0 (3 ) Clebsch-Gordan coefficients, an interi)olator of def­

inite spin, J ,  and J^-component, M ,  can he formed

. (3-28)
7711,7712

 ̂ y
where the choice of r„,j D  ,,,2 sets the parity and charge conjugation. A note on om- 

notation is required: an interpolator (F x contains a combination of gamma

matrices, F, with the naming scheme given in Table 3.1, and n derivatives coupled 

to  spin Jo,  with the overall combination coupled to spin-,7 and Jj-com ponent M .
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For a two-derivative interpolator, the convention is to first couple the two derivatives 

to  a definite spin Jo-, and then coupling to the vector-like gamma matrix.

{ YxDf X' '  = E
m i , 7712 .m3 ,m £ )

_ ^ ^ ^

X (1, m i ;  1, m2\JDr ^ d ) r,„,, D D  • (3.29)

It is instructive to note that, even though the Clebsch-Gordan for 1 ® 1 ^  1 is 

anti-symnietric and appears to be symmetric, there are still non-zero

interj^olators with Jo  =  1 due to the non-abelian nature of QCD. These interpolators 

are j^roportional to the field strength tensor, which does not vanish on non-trivial 

configurations. It is interpolators of this type tha t will be used to j^robe excited 

gluonic degrees of freedom, and identify candidate hybrid mesons in chapter 7.

W hen considering interpolators containing three derivatives, a decision on how to 

couple the derivatives nuist l)e made. A natm al choice comes from requiring that 

the interpolator will have a definite charge conjugation symmetry for /  =  / ' .  By 

exchanging the ciuark and anti-quark fields, the charge conjugation o])eration ef­

fectively acts as a transpose of the operators between the quark fields; for three

derivatives then, one ensures definite charge conjugation by coupling the outermost

derivatives together first since this gives them a definite exchange synnnetry

( r  X ) ' "  =  E  <!• ’" “ I-'-
m  1 .m  2, m 3 , /7i4. ?n 13 rn d

X { l ,m2;Jx ' i .mr i\ Jo .m o)  (1 ,  m j ;  1, mal  J 1 3 , Wi; , )
_ ^ ^  ^ ^  ^ ^

X xpj D D  1̂12 D  msWf' * (3.30)

It is clear tha t this foniiulation can be extended to  any nnnii)er of derivatives. In this
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J A (dim)
0 ^ i ( l )
1 ri(3 )
2 T2{‘S ) ® E { 2 )
3 3"i(3) 0  72(3) 0  -42(1)
4 ^ i ( l )  © 71̂(3) 0  ?2(3) 0  E{2)

T a b l e  3.2: Contiimum sjjins, J  <  4, siibduced into lattice irrcps. A(diiii), where 
dim is the dimension of tlie irrep.

work all combinations of gannna matrices and derivatives are used up to  three deriva­

tives. This provides access to all combinations for J  <  4 '. These interpolators 

are eigenstates of parity; when there are an even (odd) number of covariant deriva­

tives, the parity is equal to (opposite to) tha t of the local interpolator containing the 

same gamma matrix. When /  =  / ' .  the interpolator is also an eigenstate of charge 

conjugation. In the case when the quark fields arc not of the same flavour l)ut arc 

degenerate, C-parity is trivially generalised to a G'-parity-like symmetry-. In the case 

where the quark fields are not of the same flavour and are non-degenerate, charge 

conjugation, or any generalisation of it, is no longer a symmetry of the system, and 

states are labelled only by As a result, states created that would have different 

charge conjugation synunetry can mix to form eigenstates of the QCD Hamiltonian, 

an effect that will be discussed further in sections 3.5 and 6.5.

Due to the cubic nature of our finite volume, the full three-dimensional rotational 

symmetry of the continuum is reduced to tha t of the cubic group Of;*. As a conse­

quence, the infinite number of irreducible representations {irreps) labelled by spin 

J ,  are contained within a finite number of lattice irreps. Mesonic states at rest will 

belong to one or more of the five single-cover irreps of Oj;’; A i , A 2 , E,  and T2 . In 

^Except for the exotic coiiibiiiatioii 4+“ . which requires four derivative interpolators
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A A“+ A— A++ A+“
12 6 13 5

-42 4 6 5 5
18 26 22 22

T2 18 18 22 14
E 14 12 17 9

Table 3.3: The number of interpolators used in each lattice irrep, for the 
study of the charnioniuni spectnnn. All combinations of gannna matrices and up

to three derivatives are included.

order for the  interpolators described above to  be of any use in a lattice calculation, 

the  various conij^onents, M , of a spin J  interpolator nnist be subduced into lattice 

irrej^s [62, 74]; the  result of which is shown in Table 3.2 for J  < 4. Subduction 

proceeds via

( r  x . (3.3i)
M  M

where A =  1 . . . dini(A) is the row of the  irrep A. are the  subduction

coefficients and are constructed as follows. For a J  =  0 iuterj^olator. the  stibduction

is trivial since spin zero only appears in the  one-dimensional irrep A i.  Therefore

5^'J’ i =  1. . 7 = 1  interjiolators can only be faithfully subduced into which is 

three-dimensional. Hence we use

= 5,,̂ 2- m ) , (3.32)

where (2 — M )  is used so tha t  1 <  A <  d im (r i ) .  Interpolator's with J  > 2 can be 

subduced across multiple irreps and are constructed by iteration starting  from the



Chapter 3. Spectroscopy on the Lattice 47

A A - A+
-4i 18 18
-4-2 10 10

44 44
T2 36 36
E 26 26

Ta ble  3.4: T lie minilier of operators used in each lattice irrep, for the  
study of the charm-light and charm-strange spectra. All com binations of gam m a  

m atrices and up to tiiree derivatives are included.

J  =  0 and .7 =  1 cocfficicnts via

S -’v x  = Z  Z  A , ^  A) { .h ^ M u J .2 .M 2 \J .M )  , (3.33)
A 1 . A 2

where C (A i (g) A2 ->  A) is the octahedral group Clebsch-Gordan coefficient for Ai (g) 

A2 A. T he ex])licit values for the subduction cocfficicnts up to J  <  4 can be 

found in [02].

The number of oj)erators used for each com bination for the study of the char- 

m onium  spectrum  is shown in Table 3.3. Table 3.4 shows the munber of operators 

used in each for th e study of the charm-light and charm -strange spectra.

For irreps that are of a dim ension two or higher, the sam e correlation functions are 

calculated for each row, A, of the irrep. W'e average over these rows in order to  

obtain a final value of the correlation function for that irrep.

In summary, in all of our spectroscopic calculations we em ploy a large basis of 

interpolators ranging a variety o f spatial structures. A key point in their construction  

is that, in the continuum , they have definite allowing a spin identification  

schem e to be set up. W'e use all com binations of gam m a m atrices and derivatives 

up to  three derivatives, which allows us to access to  all com binations up to
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and iiichuUng s ta tes  of s])iii-4. From here on ou t, we will refer to  the in terpolators 

described in th is section as the  J^-hasis in terpolators.

3.3.1 M esonic Interpolators at Non-Zero M om entum

We now discuss our i)referred construction of mesonic in terpolators at non-zero mo­

m entum . W'e use these in terpolators in the calculation of the  dispersion relations 

in the open-charm  sector, as described in section 2.3, and in the construction of 

m ulti-hadron in terpolators in .section S .l.f .

T he construction of interi)olators at non-zero m om entum  is ra th e r more involved 

than  for in terpolators at rest; sim ply Lorentz boosting in terpolators at rest does 

not suffice, since one is required to  take into account the  reduced synnnetry  of the 

system , th a t is, the little group of allowed cubic ro tations th a t leave the meson 

m om entum  invariant [75]. These so-called in flight in terpolators m ust transform  

irredncibly under th is reduced sym m etry  group.

The Jj-basis  in terpolators, , in the continuum  with p =  0, have a definite 

spin-.7 and spin z-com ponent M . ffowever, at non-zero-m om entum . M  is no longer 

a go(xl quan tum  num ber unless the m om entum  is directed along the  2 -axis. In 

[7G], the  au thors show th a t it is more convenient to  work w ith interi)olators of a 

definite helicity, th a t is, the projection of the spin com ponent along the  direction 

of p. So-called helicity inter})olators can be constructed  via (in an infinite volume 

continuum )

0-’- \ p )  = ^  0 -’- ‘̂ {p) . (3.34)
M

where O'^-^(p) is a helicity in terpo lato r w ith helicity A. is a Wigner-T?

m atrix , and B  is the active transform ation  th a t ro ta tes  (0,0. |^ )  to  p.
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Lattice IMomentnni Little Group Irreps
(0,0,0) 0 ^
(n .0 ,0 ) Dic4 Ai.  A2, Bi ,  B2, E2
(/?, n, 0) Dic2 Ai,  A2, Bi ,  B2
{n ,n ,n ) Dica A1.A2, E2
{n, jn, 0) C4 -4 i, A2
(n, n, m) C4 Ai,  A2
(n, rn.p) C2 A

T a b l e  3.5: T he allowed lattice mom enta on a finite cubic lattice along w ith their 
corresponding little groups. The A and B  irreps are of dimension one. E  two and 
T  three. Dic„ is the dicyclic group of order An. Pai'ity is only a good quantum  

m unber for P  =  (0 ,0 .0 ). Here n ^  m ^  p.

At non-zero momentum in an infinite volume continuum, the little group is the same 

regardless of the momentum direction. However, in a finite volume, the ])articular 

lattice little group depends on the star of [75], that is, the set of all p related by 

allowed lattice rotations. Different stars of p are known as momentum types [7G]. 

The momentum types, their corresponding little groups and their lattice irreps are 

shown in Tahle 3.5. Helicity interpolators are subduced into a given irrep in the 

same fashion as described in section 3.3, but of course with different subduction 

coefficients; these are given in [76].

R  is a m atrix required to ro tate from (0,0, ]/7]), wdiich is not necessarily an allow^ed 

lattice momentum, to p. wdiich is an allow'ed lattice momentum. In practise, we 

break R  down into tw'o stages, R  = RiatRref: where R,-ef rotates from (0, 0. \p\) to 

Pref and Riat is a lattice rotation from Prej to p. The choice of Riat is not im portant 

as long as it is consistently used for a given momentum direction. It is useful to 

consider the following example. Consider the momentum directions tha t give p^ = 2, 

and choose Pref — (0, 1, 1). Requiring the final momentum to he p = (0, 1, 1), then 

R = Rref is just a rotation from (0, Q,p) to p. On the other hand, requiring the final
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m om ent mil to  be p  =  (1 ,1 ,0 ), then  R  =  RiaiRref  where R,e j  as before and Riat 

is a lattice  ro ta tion  from (0 ,1 ,1 ) to  (1 ,1 ,0 ).

For fu rther details on helicity in terpolators and their (alternate) constructions, see 

[61, 76], where they also list the relevant subduction coefficients for several m om en­

tu m  types.

3.4 Analysis of Two-Point Functions

In our s tudy  of the charm onium  and open-charm  spectra, we construct correlation 

functions built from the J^-basis in terpolators. W'e use all com binations o f') m atrices 

and  derivatives uj) to three derivatives. As discussed in section 3.3. th is allows us to 

access all com binations up to  spin four, and also gives us a probe of gluonic

degrees of freedom.

For each synim etry  channel and flavour sector we com pute an N  x N  m atrix  of 

correlation functions

-  (0 |0 ,(f )  0](O)1O) . (3.35)

where i and j  label the in terpolators in the basis of a given sym m etry  channel. 

N  is the num ber of in terpolators used in a sym m etry  channel, which is given in 

Table 3.3 for the study  of the  charm onium  spectrum , and Table 3.4 for the s tudy  

of the open-charm  spectra. In each of these sym m etry  channels we then  employ the 

variational technique [77, 78]. This m ethod of spectral extraction, which is now in 

comm on usage throughout the  lattice  com m unity, takes advantage of a redundancy  

of in terpolators in a given sym m etry  channel. Practically, th is am ounts to  solving
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the  generahsecl eigenvahie prol)lein

C { t y \ t )  =  K { t ) C { t o V { t )  . (3.36)

where A„(fo) =  1, and there  is an o rthogonahty  between the  eigenvectors of different 

s ta tes

vy^C{to)v^ =  . (3.37)

T he eigenvahies are known a« principal correlators and at large tim es behave like

A„(f) =  (1 +  . (3.38)

where E„ is the  energy of the  s ta te  when the  eigenvalues are placed in ascending 

order. Typically, we find th a t the energy gap lies outside of the  first A" s ta tes  

as suggested in [79]. We solve th is generalised eigenvalue proljleni using singular 

value decom position, but o ther m ethods such as Cholesky decom position has been 

previously applied [80]. The spectral decom position of a given correlation m atrix  

has th e  form
y n

n ”

where the  am plitudes, Z " , are known as overlaps and are given by

Z'l =  (0 |C > ,»  =  ( F “ ^ ) - • (3-40)

The choice of to plays a crucial role in the correct ex traction  of spectroscopic sta tes.

The eigenvectors are forced by the  solution procedure to  be orthogonal on the  m etric 

C (/o). bu t since we use a finite num ber of in terpolators in our basis, th is orthogo­

nah ty  will only be a  good approxim ation if the  correlator a t to is dom inated  by the 

lightest dim(iV) sta tes. This suggests th a t we should choose to large enough so th a t
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F i g u r e  3.2: Priiicijjal correlator fits, according to equation (3.41). to the lightest 
four states in the Tj irrep of the charmoniuin spectrum on the 24'̂  x 128 v'ohinie. 
The flata points are given by A"(/) • and the fits are for to =  15. The
error bars show the one sigma statistical uncertainty, while the grey points are

not included in the fits.

the correlator is dominated by the lightest N  states, but we must i:)e careful not to 

choose a to too high, as the signal may begin to degrade. In chapter 4, we perform 

some systematic tests, one of which is the variation of the spectrum  due to different 

choices of to-

We fit our principal correlators using either a single exponential or a sum of two 

exponentials with the constraint X(t — to) = 1. The two exponential fit used is

(3.41)
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where the fit param eters arc and .4„. The second exponential is added in

order to rnop up the excited state  contaniination. Empirically, we find that the 

contribution of the second exponential decreases rapidly as to is increased. On 

this premise, we do not consider further the param eters E„> and Figure 3.2 

shows a selection of fits to principal correlators of the form (3.41), in the 

synnnetry channel from our calculation of the charnionium spectnm i. These are 

plotted with the dominant time-dependence due to sta te  n divided out, so we would 

see a horizontal line at 1 in the case where a single exponential dominates the fit.

E'er each principal correlator fit, 3.41, the choice of fit range is chosen to include as 

many points as pos.sible such that the fit has \ ^ / {d .o . f )  ~  1. Typically, we find that 

the ranges =  3 — 8 and f =  20 — 30 satisy this constraint. Variation within these 

given ranges for t^ and t usually amounts to a less than one j^ercent difi'erence in 

the extracted energy. E,  and usually lies within our statistical error.

Using the variational technique combined with our large basis of distilled interpola­

tors has proven to be very successful in past studies of the light meson [62, 73, 74] 

and baryonic sectors [81, 82].

Now that we have extracted the spectroscopic states, all tha t remains is the difficult 

task of identifying the spin of these states in a reliable manner. This will be the 

subject of the following section.

3.5 Spin Identification

The spin identification, for all but the lightest spectroscopic states in a given sec­

tor, has been a long standing problem on the lattice. In principle, the spin of 

single-hadron states can be identified by computing the spectrum  at finer and finer
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1)

F ig i r e  3.3; The iiornialisecl correlation matrix, (Cij/^CaCjj).  on tinie-slire 
five in the T-^ irrep of the charmoniuni spectrum on the 24'* x 128 volume.
The inter])olators are ordered such that those subduced from spin-1 appear first, 
followed by spin-3 and spin-4. It is clear that the correlation matrix is observed 

to be api)roximately block diagonal in spin.

la ttice  spacings and  then  ex trapo la ting  to  the  continuum  limit: when full ro ta tional 

sym m etry  is restored, degeneracies will emerge betw een different irreps of O};;*. For 

exami)le. due to  the  p a tte rn  of subductions. a s ta te  of spin-two will appear a»s degen­

e ra te  s ta tes  in the  E  and T -2 irreps. Two m ajor difficulties arise w ith th is m ethod. 

Firstly, in order keep sta tis tica l precision under control at successively finer la t­

tice spacings requires the  sort of com putational power th a t is currently  im practical. 

Secondly, and  perhaps more fuuflam entally, the continuum  spectrm n can exhibit 

na tu ra l degenerate or near degenerate sta tes, which is especially relevant for mesons 

contain ing heavy quarks since hyperfine sp littings are known to be small. For exam ­

ple, a s ta te  w ith =  4++ will have its com ponents distril)u ted  across the lattice  

irreps. A i . T i . E  and T2 . Using th is m ethod of spin identification, we would expect 

to  see degenerate s ta tes  in each of these irreps as we go to  sm aller lattice spacings.
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However, this will also be the pattern  of energy levels for separate I"*""'' and 

2++ states. Since states with these quantum  numbers are expected to appear within 

the same cjuark model supermultiplet (P-wave), the splitting between these states 

is expected to be small. Hence, a 4++ state could be misinterpreted as separate 

O"'"''. and 2"*'̂  states and vice versa.

As we will see in chapters 5 and 6, the dense spectrum of excited states would 

be impossible to disentangle by only having information on their energies. This is 

particularly im portant for the charm-light and charm-strange spectra; the lack of 

charge conjugation symmetry will reduce the number of synnnetry channels which 

can be used to separate the states. Hence, the spectrum  in each symmetry channel 

becomes more dense than, for example, in charmonium.

It would be useful to have a method that alleviates these difficulties, and is effec­

tive when using data  from only one lattice spacing. Of course, the single lattice 

spacing should be fine enough so that rotational synnnetry is restored to such a 

point tha t one still describes QCD. Such a method was proposed by the Hadron 

Spectrum  Collaboration in [62. 74]. The idea is to consider vacuum-state m atrix 

elements (overlaps) of carefully constructed interpolators as a source of additional 

information. Our interpolators are constructed are constructed such tha t they have 

a definite in the contimumi. They are then subduced into the relevant sym­

m etry channels of the lattice. However, it is clear from their construction, tha t each 

interpolator carries a memory of the contimnun s])in from which it was subduced. 

If our lattice is reasonably close to restoring rotational symmetry, then we would 

expect an interpolator subduced from spin-.7 to predominantly overlap onto states 

that have sp in-J in the continuum limit [83].

We find this statem ent to be true, even at the level of the correlation matrix. Figure 

3.3 shows the normalised correlation matrix, (C ,j /s/CuCjj),  on time-slice five in the
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F i g u r e  3.4: The uormahsed correlation matrix. (Cij/y/CiiCj]). on tinie-slice 
tivo in the irrep of the charm-light spectrum on the 24'̂  x 128 volume. The 
interpolators are by continuum spin. J , as shown by the labelling; sj)in-l followed 
by spin-3 and spin-4. For each value of spin-J, they ai'e then ordered according to 
their synnnetry Cp =  ± . as described in the text. It is cleai' that the correlation 

matrix is observed to be aj^proximately block diagonal in spin.

T] irrep of the charm oniuni spectrum  on our 24^ x 128 voluine. It is clear th a t when 

th e  in terpolators are ordered according to  the spin from wdiich they  were sul)chicecl, 

th a t the  correlation m atrix  has a block diagonal s trnc tiu ’e. Figure 3.4 shows a sim ilar 

plot, but th is tim e in the irrep of the  charm -light spectriun. Flavoured mesons are 

not eigenstates of charge conjugation and hence s ta tes  th a t would be distinguished 

by charge conjugation sym m etry can mix. O ur in terpolator construction (see section 

3.3) is (iesigncd to  have well defined transform ation  pro])erties im der transposition  

of the oi^crator. F, in the bilinear, F^ =  ± F . W e  denote the  eigenvalue under 

th is transform ation as Cp =  ± 1 . It is clear from Figiu'e 3.4 th a t in terpolators
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06768(7) [J=3] 0.6772(5) [J=2] 0.762(3) [J=2] 0.769(3) [J=3] 0.777(2) [J=4]

F i g u r e  3.5: The overlaps, Z,  of a selection of interpolators onto a selection of 
s tates in the T2 irrep of the charm onium  spectrum  on om’ 24^ x 128 vohune. The 
states are labelled by their mass in lattice nnits atm.  and by the continm ini spin of 
the  dom inant interpolators. In this plot, the overlaps have been normalised so tha t 
the  largest value of an interpolators across all sta tes is equal to \mity. T he shaded 
region near the top of each s ta te  shows the one sigma statistica l uncertainty. 
For each state , the interpolators are coloured according to  tiie continuum  spin 
of an  interpolator: spin-2 is green, spin-3 is blue and spin-4 is orange. A darker 
shade of a given colour signifies th a t the in terpolator is proportional to  the field 
strength  tensor. For each s ta te  the in terpolators are, from left to  right: (o] x 
^ [ l | l ) [ J = 2 ] ^  ( m  («1  X

with (T'r =  +  and (?r =  — have significant overla]) with each other. Also evident 

from this figure is the block diagonal structiu'e in spin, which suggests, just as 

in the charmonimn case, that interpolators snbduced from, say, spin-1 have little 

contribution to the spin-3 and spin-4 states.

This effect is even more evident at the level of individual states. Our overlaps.
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[1 r i
0.4415(4) [J=l] 0.5968(32) [J= iHybl 0.5697(21) [J=3] 4]

F i g i  r e  3.C: T h e  overlaps. Z.  of a selection of o p e ra to rs  o n to  a selection  of 
s ta te s  in th e  c h an n -s tran g e  (D ,)  irrep  on th e  24'^ volum e. In th is  plot the  
overlaps have been norm alised  so th a t  th e  largest value for an  o p e ra to r across 
all s ta te s  is equal to  unity. T h e  e rro r bars ind ica te  th e  one sigm a s ta t is t i ­
cal uncerta in ty . For each s ta te , th e  o p e ra to rs  are  coloured from left to  right
as: p ink (ao x red x b lue (6i x red

( / )  X pink {p X iP ^  7 = 2 ) ^ '^ ” '^^'

gold (p X T h e first th ree  o p e ra to r insertions have negative sym ­
m etry  (C r =  —) and  th e  last four have positive  sy n n n e try  (Cp =  + )  as explained 
in th e  te x t. S ta te s  a re  labelled by th e ir  m ass in tem p o ra l la ttice  u n its  an d  the  
con tinuum  sp in  of th e  dom inan t o p era to rs . ‘H y b ’ refers to  a s ta te  which has rel­
a tively  s tro n g  overlap  w ith  o p e ra to rs  th a t  are  p ro p o rtio n a l to  th e  field s tren g th  

tenso r, th e  co n n n u ta to r of tw o gauge-covariant derivatives.

Z " =  (0|O , |/?). for a  given s ta te  show a  clear preference for overlap onto in terpolators 

of a single spin. T his is evident in F igures 3.5 and 3.6, where we show a selection of 

overlaps. Z ", for a selection of s ta tes  in th e  T2 irrep of the  charm oniuni spectrum , 

and  the  irrep of the charm -strange spectrum , bo th  on the  24‘̂ x 128 volume. T he 

colour scheme in these figures is as follows: J  =  0 is lilack. J  =  1 is red. J  =  2 is 

green, J  =  3 is blue and J  =  4 is orange. In terpo lato rs th a t are proportional to  the 

field s treng th  tensor are coloiu'ed in a darker shade in Figure 3.5 and in a lighter
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FiGl^RE 3.7: A selection of Z-vahies for states conjectured to have J  =  2 in 
irreps A of the charnioniuni spectrum  on o\u' 128 x 24'̂  vohune. From left 
to right, the interpolators are (« i x {p2 x (P  ̂ E)̂ f=2 y~^^

,[3] ,[3] \ J = 2

shade in Figure 3.6. We show only a subset of in terpo lato rs and sta tes here, but 

sim ilar p a tte rn s  occur th roughout all of the  spectra.

To be more ([uantitative, we can com pare overlap values between different irreps. 

O ur inter])olators are constructed  to  have definite continuum  spin, so

(3.42)



C hap ter 3. Spectroscopy on the Lattice GO

N

1 h

Oh

(I) a,ni4^= 0.6770(7) 
Q a,W7-|= 0.676(1) 
Q a,mT,=  0.6768(7) 
I  0.774(2)
I  a,/W7-|= 0.767(3) 
i a ,m T ,=  0.7690)

©
© ©

xlO

^xlO

tit
xio

x50

Ai  T\ T2 A j  T\ Tj A i  T\ Ti A j  T\ T2 Aj  T\ Tj 

J  = 3

2.0

1.5

N 1.0

0.5

0.0

Q a,m,4  ̂= 0.763(4) 
Q a,inT  ̂= 0.776(3) 
Q a,nir, = 0.777(2) 
Q a , n i i  = { ) . l l  \ (A)

Q

A\ h T2 E 

J  =  4

FigI RE 3.8: A selection of Z-values for states conjectured to have spin-3 (left) 
and spin-4 (right) in irreps A of the charnioniuni spectrum on our 128 x 24'̂  
volume. From left to right, the interpolators in the left panel are (p2 x

(/> X («, « <«l X ('<■ X[3]
the interpolator in the right panel is («i x 7=3 )\j=i

and therefore when subduced to  the lattice

(3.43)

This implies th a t the  vahie of is connnon to  different lattice  irreps ui) to  dis­

cretisation effects and a choice of norm alisation of the  subduction coefficients. This 

gives us further inform ation th a t we can use to  identify the spin of a sta te : we can 

comj)are the  Z  values obtained independently  in different irreps. For example, a 

J  =  2 s ta te  created by a in terpo la to r will have the  sam e Z  value in bo th  the
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F i g u r e  3.9: A selection ofabsohite Z-vahies for the lightest states conjectnred to 
have J  =  2 (left pane). J  =  3 (middle pane). J  =  4 (right pane) in charm-strange 
irreps. A“ , on the 24'̂  volume. For each ,/ we show the values of Z  for the same 
interpolator suhduced into different irreps. The vortical size of a box corresponds 

to the one-sigma statistical uncertainty on either side of the mean.

E  and Tj irreps, once we suitably normalise the subduction coefficients. If this is 

the case, it is also another hint tha t the discretisation effects are relatively small, 

since they have not distorted the Z  values signihcantly.

Figure 3.7 shows a selection of Z  values for states conjectured to have continuum 

spin-2 in the charmonuini spectnun. In Figure 3.8 we slunv a selection of Z  values 

for states conjectured to  have contintuun spin-3 and 4 in the charmonimn spectrum, 

while in Figiu'e 3.9 we show a selection of Z  values for the lightest states conjectured 

to have contimuim spin-2, 3 and 4 in the relevant irreps of the charm-strange spec­

trum  on the 24''̂  x 128 volume. In all of these figures there is an excellent agreement 

between overlaps extracted in different irreps. This observation is api)arent across 

all of our calculated spectra though, as we expect, there are slight fleviations from 

exact equality due to discretisation effects.

We do not expect rotational symmetry breaking terms to appear until 0{a^)  since 

there are no dimension five operators composed of quark bilinears that respect the 

synnnetry of the lattice that do not also transform trivially under the continmun



C hap ter 3. Spectroscopy on the Lattice 62

2.0 2.0

0 5 10 15 20 25 15 20 250 10

f / Of  f / a ,

2,5

2,0 2.0

1.5

1.0  1.0

0 10 15 20 25 0 10 15 20 25
t / a ,  t / O r

F i g u r e  3.10: A simultaneous fit to the four principal correlators of the lightest 
4 state of the charnionimn spectrum, on the 24^ volume using a connnon mass.

Plotted are A” (/) • data and the fit; the grey points are not included
in the fit.

group of si)atial ro tations. Hence, we expect the  ro ta tional breaking between lattice  

irreps to  l)e suppressed in bo th  the  spectrum  and the  overlaps [62. 83]. However, 

renorm alisation mixing of high mass dim ension in terpolators (i.e. two and three 

derivative interjiolators) w ith low’er m ass dim ension in terpolators can give rise to  

effects scaling wdth negative powers of the  lattice spacing: we expect these to  be 

m ore troul)le.some for using Z  values to  determ ine spin. But, in practise, the  effects 

are not seen to  be large enough to  prevent the use of the  m ethod. In accordance with
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[62], we suggest th a t it is our use of stou t sm eared gauge fields and distilled quark  

fields th a t renders these m ixings relatively small, since the  high-energy physics has 

been filtered out.

Given th a t th is m ethod of spin identification is fea.sible, we can confidently identify 

the  different com ponents of a sp in -J  meson subduced across different irre])s. T hen 

the  (}uestion of which value to  use as the final mass arises, since fits to  principal 

correlators in different irreps may differ slightly due to  la ttice  artefacts. R ather 

th an  tak ing  the  simjilest approach, which would be to  average the  masses across the  

relevant irreps, we perform  a jo in t  f i t  to  the  principal correlators w ith a com m on 

mass. To achieve th is we allow a different second exponential for each principal 

correlator so th a t the fit param eters are, the  connnon mass nin- and the  sets of pa­

ram eters {m '^ }  and {-4;)}. T his m ethod has prov^en to  be very successful in the  past 

[62. 73, 81]. Figure 3.10 shows an exam ple of a joint fit to  the  principal correlators 

of the lightest 4 s ta te  in the fom' irreps .T 2 and E  . In general the

fits have ~  1.

In this chap ter we have presented the recipe used by the  H adron Spectrum  Collabo­

ration  in order to  ex tract excited spectra. We use a large basis of local and spatially  

extended distilled fermionic bilinears along w ith the variational m ethod in order to 

ex tract spectra  up to  and including spin-4. As dem onstrated  in th is section, we can 

relial)ly identify the of our ex tracted  s ta tes  using the  vacum n-state overlaps,

Z , and for s ta tes  of J  >  2, we perform  joint fits across the  relevant irreps to  quote 

final values for their masses.



Chapter 4

Stability of Spectra

In this chapter we (hscuss to what extent the extracted spectra changes as the details 

of the calculation are varied, while keeping the physics constant. These systematic 

tests consist of v'ariations of various parameters, such as the choice of to in the 

variational method, the number of distillation vectors used, and the variation of 

hyperfine si^littings due to the spatial clover coefficient. As a test case, we use 

charmonium, but expect the open-charm sector to l)ehave in a very similar fashion.

4.1 Variational Analysis and the Choice of to

Our choice of to in the variational technique is guided by the reconstruction method 

as descriljed in [C2, 80]. Here, the correlation m atrix is reconstructed from the 

extracted masses and eigenvectors on a given time-slice from equation (3.39). This 

reconstructed matrix is then compared to the original data  for all t > to, with the 

degree of agreement indicating the acceptability of the spectral decomposition. The 

description generally improves as one increases to until at some point the increa.se

64
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F ig i r e  4.1: Extracted mass spectrum  as a function of to for the lower-lying 
states in the irrep of the charmonium spectrum  on the 24^ x 128 volume. 
T he to]) left panel shows the lightest ten states and the other panels show the  
lightest four states in more detail. Horizontal bands show the masses extracted at 
to =  15 with the width ± \ a  from the mean. For laige enough but not too large 

/o the spectrum  is seen to be stable under changes in /().

ill s ta tis tica l noise halts the im provem ent. This procedure gives an insight as to  

the  m inim al / q for which the  correlation m atrix  is well described by the  variational 

sohition.

Figure 4.1 shows how the lightest ten  s ta tes  in the  Tj irrep of the  charm onium  

spectrum  on our 24'  ̂ x 128 volum e vary according to  the  chosen to- T he horizontal 

bands in th is figure show the  ex trac ted  m ass value for each s ta te  when fo =  15, 

while the  w id th  of each band shows the  one-sigma s ta tis tica l uncertainty. It is clear 

th a t, for large enough t^, the  spectrum  appears stab le  under variations of Iq. A 

m ajor factor in th is stab ility  is due to  the  second exponential in our fitting  form; as
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F i g u r e  4.2: Extracted overlaps, Z.  for interpolator («i x fis a function
of fo for the hghtest three J  =  1 sta tes in the Tj irrep of the charmoniuui 
spectrum  on the 24^ x 128 volume. The Z  values for the 1*' and 2"'̂  excited states  
have been arbitrarily scaled by factors of 3 and 1.25 respectively to fit on the j)lot. 
Coloured l>ands show fits to an exponential plus a constant or a constant over an 
appropriate range of to. The Z  values are seen to plateau for sufficiently large to 

but can show significant curvature at small to-

j^reviously explained, the second exponential mops-up  the contam ination  from other 

s ta tes  leaking into the principal correla tor due to  finite basis. W’e also find th a t the 

contribu tion  of the second exponential falls rapidly w ith increasing to-

W'e expect the  overlaps. Z .  since they  are related to  the  eigenvectors ob tained  from 

th e  variational m ethod, to  be more sensitive to  the  variation of to- Figure 4.2 shows 

the  ex tracted  overlaps a.s a function of to for the  hghtest th ree J  =  1 s ta te s  in the 

Tj irrep of the charm onium  spectrum  on the  24^ x 128 vohuiie. In Figure 4.3 we 

show ex tracted  overlaps as a function of to for the  lightest ,7 =  4 s ta tes  in the
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F'KUUJE 4.3: Extracted overlap.s. Z.  for interpolator («i x ^ 7 3̂ = 2  ,7 = 3 )7 ” '̂ a 
fiinctioii of /() for the lightest .7 =  4 state in the Tj irre]) of the charnioni\nii 
spectrtini on the 24'̂  x 128 volume. The horizontal hand shows a fit to a constant 
over an apj)ropriate range of t[j. The Z  value is seen to plateau for large t[) hut 

shows significant curvature at small /q.

irrep of the channonin in  sp e rtn im  on the  24’̂ x 128 vohmie. As exi)ected. bo th  of 

these figures show th a t the  overlaps ap])ear to  be more sensitive to  tlie variation of 

/o th an  the  masses; we have to  go to  larger fo values for the  Z  values to  stabilise. 

For th is reason we generally choose fd values between ten and fifteen throughout all 

of our spectra. Here, we have shown only masses and Z  \'alues as a fimction (if /o 

for charnionium , so it should be noted th a t we observe ver\' sim ilar results in the 

open-charm  sjjectra.

In sum m ary, it a])pears th a t the  variational techni(}ue is reliable an long a.s is 

chosen such that the  Z  values have stabilised; in general, th e  masses stabilise at

6 8 12 1410 16
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earher fo vahies com pared to  the  overlaps. This observation was also apparen t in 

th e  calculation of th e  light isovector meson spectrum  [73].

4.2 Num ber of D istillation Eigenvectors

T he distillation  m ethod, as described in section 3.2, hinges on the choice of the 

num ber of eigenvectors of the  Laplacian to  include. Using too few eigenvectors 

reduces the  com putational cost but results in over-smearing and reduces the ability 

to  ex tract higher lying sta tes. The uusnieared limit corresponds to  AV™ =  3(L/fl,,)'^ 

where the 3 refers to  the num ber of colours. To achieve the sam e level of sm earing on 

larger vohunes requires the  num ber of eigenvectors to  be scaled by a factor ecjual to 

the  ra tio  of spatial volumes [72]. Hence, an  optim um  use of the distillation  m ethod 

recjuires the  vise of the  sm allest m unlier of eigenvectors for which the  s ta tes  of interest 

can l)e ex tracted  reliably. Figiu'e 4.4 shows the lowest-lying s ta tes  in the  T'j irrep of 

the  charm oiiium  spectrum  on our 16'̂  x 128 volume for a subset of 90 configurations 

w ith 6 tim e-sources per configuration. It is clear from the  figure th a t the  spectrum  

becomes stal)le for i\\,ecs >  -18. T he spectrum  degrades in quality  for fewer vectors, 

which becomes quite apparen t for excited sta tes.

In sunnnary, we find th a t using 64 eigenvectors on the  16'̂  x 128 volume is sufficient 

for the  sj^ectrum to be stal)le w ith respect to  the  num ber of eigen\-ectors. Since, 

when the num ber of eigenvectors is 48, the  spectrum  appears to  become stable, we 

scale up to  the 24'  ̂x 128 volume via 48(24/16)^, which suggests th a t 162 eigenvectors 

are sufficient.
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F i g u r e  4 .4 :  Extracted spectn in i for the irrep of the charnioniuni spectrum  
on the 16'̂  x 128 vohune as a function of the number of distillation vectors, N y e c s :  

using lower statistics than the main 16  ̂ results. Horizontal bands corresjjond 
to the masses extracted with A'vecs =  64 and give the one-sigm a statistical mi- 
certainty on either side of the mean. The spectrum  is observed to be stable for

^ \ ' e c s  >  48.

4.3 Hyperfine Splittings and 0 { a s )  Effects

All accurate  detern iination  of hyperfine sp littings for heavy flavoiir-singlet mesons 

has l)een a long stand ing  problem  in la ttice  QCD [84]. T he problem  is tlia t this 

q uan tity  is known to  be extrem ely sensitive to  discretisation effects arising from the 

D irac operator.

O n our 16^ x 128 ensemble, we determ ine tlie hyperfine sp litting  between the lightest 

pseudo-scalar (r/c) and vector {J/ ip)  charm onium  sta tes  to  l:)e 80(2) MeV. This is 

consistent w ith our determ ination  on the  larger 24^ x 128 volume, suggesting tha t 

it is not a finite volume effect. T he accepted experim ental value is ~  116 MeV



C hap ter 4. Stability o f Spectra 70

[48]. O ur determ ination  neglects the contribu tion  of disconnected W ick diagram s. 

Hcjwever, these diagram s are OZI su])pressed and are not expected to  con tribu te  to 

th e  hyperfine sp litting  in a significant fashion [84]. We have m ade some first tests 

of their contribu tion  and find a sim ilar result. A nother source of system atic error is 

due to  our unphysically heavy light cjuarks, but again th is is not expected to  im pact 

th e  hy])orfine sp litting  significantly [85].

T he action used for the charm  quark  in th is study, as explained in chapter 2. is 0 (a ) -  

im proved at tree-level in tadj^ole-improved pertm ’bation  theory. It is expected tha t 

a non-pertu rbative  determ ination  of action param eters would yield a larger value of 

th e  spatia l clover coefficient r ,  [86]. We use a value of c, =  1.35 in our sim ulations, 

b u t we increase th is to  Cg = 2.0 in order to  investigate the  effect of a  larger value on 

th e  low-lying charm onium  sp ec tn n n  on our 16'̂  x 128 volume. This choice was not 

m otivated  l)y any calculation, and is chosen only because a non-pertu rbative  value 

is exj^ected to  be larger th an  the  tadpole-im proved tree-level value.

F igm e 4.5 shows the lowest-lying S  and P-wave sta tes. O""^.! ,(0 ,1 ,2 )+ +  and

the  exotic 1“ +, calculated for the original value of Cg =  1.35 and the  increased 

value of f ,  =  2.0. The calculated  (experim ental) m ass values in this figure have 

the  calculated (experim ental) i]c m ass sub trac ted  from them , in order to  reduce the 

small system atic error j^icked up in se tting  the bare charm  quark mass.

Choosing Cg =  2.0, which gives a value for the J / ' i p  — r]c sp litting  of 114(2) MeV. 

brings us to  w ithin sta tis tica l uncertain ty  of the accepted experim ental value of 

«  116 MeV. We also observe significantly b e tte r  agreem ent w ith experim ent for the 

P-w ave sta tes. The spin-2 \c 2 s ta te  is sul)duced across two irreps, T.^~  ̂ and 

For the increased \-alue of c*. the  two determ inations are still degenerate within 

sta tistica l uncertainty. This is consistent w ith the  explanation th a t the  hyperfine 

sp litting  is underestim ated due to  0{ a)  effects; as previously m entioned, since all
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P ' l G l ' H E  4 .5 : T h e m ass sh ifts, m easured on onr IG'̂  x 128 volum e, for th e low est- 
lying sta te s  in a se lected  set o f charm oninm  la ttice  irreps as r , .  the size o f th e  
ch rom om agnetic  clover term , is varied from tadpole-im proved  tree-level value o f  
Cs — 1-35 (green) to  (■« =  2 (cyan ). M asses presented  here are m easured relative  
to  M il,.. E xp erim en ta l d a ta  is shown as solid  lines; n ote  that ex iier im en ta lly  th e  

\(<) has a significant hadronic w idth .

(liineiisioii-five in terpolators  consistent with lattice syinnietries do not break the 

contininnn ro ta tion  grouj), any difi'erences between these lattice s tates slioidd only 

arise at ()[d^) in a Synianzik-like expansion, and so are expected to l>e small. The 

lightest charnioninni s ta te  with exotic (jnantnni ntnnbers, is observed only to 

have a mild dependence on c.,, suggesting that such sta tes  high nj) in the spec tnnn  

will be relatively close to their exjierimental values.

To l)e clear, the final results presented in chapters 5 - 8  are calculated with c, =  1.35 

and not with the increased value of c,, =  2.0. However, this test allows us to place an 

approxim ate scale of ~  40 MeV to the size of the  systematic micertainty arising from 

the leading order 0(a.,)  lattice artefacts. Of course, for full control of system atic 

error further investigation would be re(}uired.
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We also perform ed the same test for the  hyperfine sp littings in th e  open-charm  

spectra. Using the  original value of c«, we calculate the  sp litting  between the  S-  

wave pseudo-scalar and vector s ta tes  to  be 124(1) in the  charm -light sector, which is 

significantly lower th an  the experim ental value of ~  142 MeV. In the  charm -strange 

sector, we calculated the  hyperfine sp litting  to  be 120(1) MeV using the  original 

C‘s value. The experim ental value in th is ca.se is «  143 MeV. W hen we increased 

the  value of the  spatial clover coefficient to  Cg =  2.0 we again achieve hyperfine 

s])littings th a t are com parable w ith experim ent; we get 144(1) in th e  charm -light 

case, and 139(1) in the  charm -strange case. Following the sam e argum ent as in 

the charm onium  case, we assign a scale of ~  20 MeV for our leading O (0 s) la ttice  

artefacts in the  open-charm  sector.



Chapter 5

Hidden Charm Sector

111 this chapter we present the results from our calculation of the charmonuim spec­

trum . Firstly we discuss the results by lattice irrep and compare the spectrum 

calculated on the 16'̂  x 128 volume with tha t calculated on the 24'̂  x 128 volume. 

We then show our final spin identified spectrum before proceeding to discuss our 

interpretation of the results. We delay our discussion of hybrid mesons until C'hapter

5.1 Results by Irrep and Volume Comparison

The results of the variational analysis applied to the correlation m atrix representing 

each lattice irrep, is shown in Figure 5.1. The lighter shaded l)oxes are from 

the 16  ̂ X 128 volume, while the darker shaded ones are from the 24^ x  128 volume. 

The size of the boxes indicate the one-sigma statistical uncertainty while the colour 

coding indicates the continuum spin as determined via the spin identification scheme 

discussed in section 3.5; states identified as spin-0 are coloured black, s])in-l are

73
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coloured red, spiii-2 are coloured green, spin-3 are coloured blue and spin-4 are 

coloined orange.

On the lattice, states that have continuum spin >  2 have their components split 

across several irreps. As described in section 3.5, we can use, not only the masses, 

but the corresponding overlap values identify the continuum spin of these states. As 

can l)e seen in Figure 5.1, we generally see no significant mass differences between 

comi)onents of a continuum spin > 2 state  in different lattice irreps. This is an 

indication that the extracted spectrum  is indeed composed of single-hadron states 

as one signature of multi-hadron states would be to disrupt these degeneracies. From 

the same figure, it is also evident that the dense spectrum  of states above atui ~  0.65 

would be impossil)le to disentangle using only the masses. The fact that a successful 

sjMn identification is possible is an indication tha t the lattice size is large enough 

and that the lattice s])acing is fine enough for an effective restoration of rotational 

.synnnetry at the hadronic scale.

Figure 5.2 shows the sjjin identified volume comparison labelled by continuum . 

The states coloured red in the rightmost panel are those that have exotic quantum 

numbers. These will be discussed fiu'ther in chapter 7. This figure includes only 

the states that were well determined by the variational procedure. The dashed lines 

indicate the lowest thresholds for open-charm decay: the calculated D D  and DgDs 

non-interacting levels measured on the 16'̂  x 128 volume.

At the level of statistical precision, we observe no significant difference l)etween the 

two volmnes, even above the open-charm thresholds, which is more evidence that we 

are not seeing multi-hadron states. Furtherm ore, we do not see any states appearing 

in energy regions where we would expect non-interacting two-meson states to appear. 

This a])parent lack of nuilti-hadron states has also been observefl in [62], where they 

use the same technology in the com putation of the light isovector sj^ectnnn.
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F i g u r e  5 .1 :  Extracted charmoniiim spectra by lattice irrep, on the 16'^x 128 
(lighter shading) and 24^ x 128 (darker shading) vohiines. The vertical size of each 
t)ox gives the one sigma statistical uncertainty on either side of the mean and the 

colour coding indicates the continuum spin.

5.2 Final Spin Identified C harm onium  Spectrum

Figure 5.3 shows our final spin identifie(i charm onium  spectrum . We take the  values 

calculated  on our 24^ x 128 volume as our final results since these were calculated  

w ith higher sta tis tics  and on a larger volume. T he green boxes represent s ta tes  th a t 

were well determ ined by the  variational procedure and the  lilack boxes represent 

experim entally  determ ined sta tes. In th is figure, the  calculated (experim ental) value 

of the  J]c m ass has been sub trac ted  from the  calculated (experim ental) masses in 

order to  reduce the system atic error from se tting  the  charm  c}uark mass. The green 

dashing represents the  non-in teracting open-charm  thresholds, D D  and D^Dg, as
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F i g u r e  5 .2:  The extracted spin-identified charmoniinn spectrum latieUed liy 
the IG'̂  x 128 (open boxes) and 24'̂  x 128 (filled boxes) vohunes agree well. 

The vertical size of the boxes represents the one-signia statistical uncertainty on 
either side of the mean. The dashed lines indicate the lowest non-interacting DD  

and DgDs levels using the D and Dg masses, as measiued on our ensembles.

calculated on our 16'̂  x 128 volnine. The grey dashing indicates the same thresholds 

but for experimental values. The masses are tabulated in Tal)le A.I.

It is clear from Figme 5.3 tha t the states become less w-ell determined high up 

in the spectrum. This is expected because, even though we use a large basis of 

interpolators, it is still finite. To better determine these states, we would need to 

include inter])olators of different radial structures. It is also w'orth noting that in 

order to determine states with J  > 5 we would need to include interpolators wdth 

at least four derivatives.

In the next section we give oiu' interj)retation of the results, but first we discuss some
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F i g u r e  5.3;  Sumnmry of the charmonimii spectnuii up to around 4.5 G e V  la­
belled by . The red and green boxes are the masses calculated on the 24'* x 128 
volume; black lines are experimental values from the PDG [48]. We show the 
calculated (experimental) masses with the calculated (experimental) ?/c mass sub­
tracted. The vertical size of the boxes represents the one-sigma statistical un­
certainty. The dashed lines indicate the lowest non-interacting D D  and D^Dg 
levels using the D  and D , masses calculated on the IG'* x 128 volume (fine green 

dashing) and using the experimental masses (coarse grey dashing).

o ther recent calculations of the  charm oniuni spectrum . In [80], the  au tho rs present 

a  calculation of an excited charnionium  spectrum  in th e  quenched ajiproxim ation. 

A part from our calculation having dynam ical light and strange quarks, we also 

utilise a larger basis of interpolators. Due to  this, we ex tract a nuich larger num ber 

of excited s ta tes  and reliably identify their .

[87] presents an N j  = 2 calculation of the charm onium  spectrum . They also consider 

m ixing w ith some light meson and m ulti-hadron sta tes. The sam e au tho rs have also
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presented prehniinary A7 =  2 resuUs in [85]. They nse a range of pion masses 

and lattice spacings, but the main drawl)ack is their small interpolator basis, which 

makes a robust spin identification of excited states difficult.

In [88], the Ferniilab and MILC collaborations investigate quarkonium mass split­

tings using asqtad improved staggered fermions on ensembles with three flavours of 

sea quarks. For heavy quarks they emj)loy the Ferniilab interpretation of the clover 

action for Wilson fermions. IVIost of their calculated splittings agree well w'ith ex- 

])eriment; For example, they find a value of 116.0 ± 7 .4  MeV for the (harmonium 15 

hyperfine splitting, w'hich is remarkiibly close to the ex])erimental value of 11C.4± 1.2 

MeV.

5.3 Interpretation of Charm onium  Spectrum

Most of the states with non-exotic apj^ear to follow the quark model pattern  

of states. obtained by coupling the .spin of the quarks. S. to  the angular

momentum of the .system. L, in order to i)roduce a to tal angular momentum (Spin).

Here, n is the radial quantum  number. This pattern  of states forms so-called 

supejinultiplets of states, which are shown in Table 5.1. The assignment

of our states is determined by considering operator-state overlaps which was first 

described in [89].

In the left panel of Figure 5.3, we present the negative parity sector of our calculated 

charmonium spectrum. We calculate the ground sta te  5-wave pair [0“ "̂ . 1 ] and

their first excitation at M  — M,,,. ~  700 MeV. We observe a second excitation at 

M  — ~  1150 MeV. There is a complete D-wave superm ultiplet a t M  — ~  850

M e \\ just above the D D  threshold, .lust above M  — ~  1200 MeV. there is an
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T a b l e  5.1:  Supenimltiplets for quark-anticniark pairs with spin S  and relative 
orbital angular niouientum L.  Also shown are some hybrid supermultiplets. dis­
cussed in chapter 7, where Jg” ® are the quantum numbers of the ghionic excita­

tion; exotic are shown in bold.

excited D  wave set. In the same energy region there is also parts of what appears 

to be a G-wave set, which is indicated l)y the presence of spin-4 states. We do 

not observe the full G  wave set as this would rec}uire us to observe a spin-5 state. 

This is difficult with the current interpolator basis since it would require the use 

of four derivative interpolators. Around M  — Mr,,. ~  1300 MeV, there are three 

states, [(0,2)“ + , l  ], tha t do not appear to fit into the pattern  suggested

by the quark model. These states have relatively large overlap with interpolators 

tha t are proportional to the field strength tensor, which is something not observed 

for states that fit into quark model supermultiplets. Following the suggestions of 

[62], we interpret these states as non-exotic hybrid mesons and discuss them further 

in chapter 7.

The middle panel of Figtu'e 5.3 shows the positive parity sector of our charmonium
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F i g u r e  5.4; Overlaps, Z, for the lightest F-wave superimiltiplet with interpola­
tors { tt. p } m h  X  ^ . / i i  ^ ” <1 { ti- . p I n r  X  D ĵI_.2 respectively.

spectrum . Well below the D D  threshold at M  — M,j .̂ ~  500 MeV. we observe a 

P-wave set, [((), 1, 2)++, 1+“ ]. Around M  — ~  1000 MeV, there is an excited

P-wave set, and ju st above this, a full F-wave set [(2. 3 ,4)++. 3+“ ]. The band of 

s ta tes  around M  — M,j .̂ ~  1400 MeV probably contains i:)art of the second excitation 

of the P-wave and several non-exotic hybrids whicii lies significantly above the first 

set of negative parity  hybrids.

T he right panel of Figure 5.3 shows sta tes w ith exotic , 1“ “'‘,0 ''‘“ and 2+“ ; 

therefore they can 't consist of solely a quark-anti-cjuark pair as o ther degrees of 

freedom are needed to  j^roduce these . We delay their discussion until chapter 

7.
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F i g u r e  5 .5 ; O v erlap s, Z .  for th e  lig h te s t D -w ave s iip e rn n iltip le t w ith  in te rp o la ­

to rs  {7t,/)}nh X a n d  x  D^fl_2 respec tive ly .

As m entioned above, we use opera to r-sta te  overlaps to assign s ta tes  into a given 

superm ultip let. As a  dem onstration of th is, consider the following interpolators: 

{ttnr X w ith .7̂ *“' =  1+“ , and {p n r  x j p <̂ =  1,2)++,

where P n r  = ^ '/((l — ">0 ) ^nfl P n r  =  ^75(1 ~  7o)- These in terpolators have the 

s tru c tu re  of quark-antiquark  pair in a  gauge covariant version of a P-wave with 5  =  0 

( t tnr )  or S' =  1 ( p n r )- The in terpolators {iTNji x =  2“ + and

{ P n r  X ~  (1^2,3) have the s truc tu re  of a  quark-antiquark

pair in D-wave w ith 5  =  0 or 5  =  1.

Figures 5.4 and 5.5 show the overlaps of these in terpolators w ith s ta tes  suggested 

to  be m em bers of the P-wave and D-wave superm ultiplets. We ol)serve tha t these 

overlaps are significant, and in general we find th a t overlaps onto non-relativistic
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iiiterpolatorK are large. This is not very surj)rising since the charnioniuni system is 

reasonably non-relativistic. Our interpretation of these states as being in the same 

superm ultiplet is further supported l)y the fact th a t they have very similar Z  values, 

as shown in Figures 5.4 and 5.5. We expect the Z  values of states in the same 

superm ultiplet to be similar because they correspond to the same underlying sjiatial 

wavcfunction with differing internal spin and angular momentum couplings.

It is im portant to note that we only draw qualitative conclusions from Z  values; 

lattice regularised m atrix elements require renormalisation to be compared with 

continuum matrix elements, and this renormalisation can mix interpolators.

5.4 C om parison w ith  E xperim ent

In Figm'e 5.3 the green boxes are our calculated states and the black boxes are 

experimental states. It can l)e seen that there is generally good agreement between 

our calculated states and the experimental states below the open-charm thresholds. 

S tates above threshold can have relatively large hadronic widths, and our ma.ss values 

are only accurate up to this width. There are some discrepancies, but these could 

be due to discretisation effects and the use of unphysically heavy quarks. However, 

we do not exj^ect the heavy light quark masses to introduce a large error for states 

below threshold, l)ut we note tha t this could be im portant at and above threshold. 

As discussed in .section 4.3, we significantly underestim ate the 5-\vave hyi)erfine 

splitting, but we have dem onstrated in section 4.3 th a t this is due to the use of a 

tree-level tadpole-improved value of the sj)atial clover coefficient.

We identify our first excited states in the 0“ ^ and 1 channels with the experi­

mentally verified iJc(‘2S)  and il!{2S) states. Slightly further up in the 1 channel,
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we identify our lowest D-wave state  with the experimental V^3770) deterniination. 

Even further up in the 1 channel we show two experimental states i/';(4040) and 

i/)(4160). We have some candidates in this mass region but a definite assignment can 

not be made. As noted before, we need to add interpolators with different spatial 

structure in order to  better determine the high-lying states. Additionally, increasing 

the number of distillation vectors may improve high-lying determinations.

The experimentally interesting 1"(4260) which lies at M  — ~  1300 MeV w'ith

=  1 , is one of the states supernumerary to the quark model pattern. One

possible interpretation of this state  is a non-exotic hybrid meson. The mass of the 

1 hybrid in our calculation agrees well with the mass of the >'(4260), which sup­

ports the hybrid interpretation. However, we also find conventional charmonia with 

= 1 -  in the same energy region, and hence can not rule out the possibil­

ity of a standard charmonium interpretation, or the possibility of a nmlti-hadron 

or tetra-quark interpretation. An interesting observation is that, our 1 hybrid 

candidate has a significant overlap onto an operator which has the structure of a 

colour-octet cjuark-antiquark pair with 5  =  0 in S-wave coupled to the gluonic field. 

( tt X which is in contrast to conventional 1 mesons which have 5  =  1.

The interesting point is th a t the >'(4260) decays to [48]. The common

consensus is tha t such decays should conserve the spin of the heavy quarks. Hence, 

one would expect tha t the y'(4260) has 5  =  1, at odds with our 5  =  0 hybrid. 

How'ever, the observation by CLEO [90] of a cross-section for e+e“ -> n'^n~hc af a 

center of mass energy of 4170 MeV suggests tha t the common consensus could be 

mistaken, since the he has 5  =  0.

A nother of the enigmatic experimental observations is that of the X(3872). It has 

been suggested tha t this is a  DD* molecular state, since it sits only a few MeV above 

this threshold. Recently, the LHCb experiment [91] has confirmed that this state
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has =  I"'"'". This rules out the earlier possibility of the state having .

This assignment favoiu’s non-standard explanations such as the DD* molecule. In 

this work we do not appear to see multi-hadron states and hence would not expect 

to obser\e such a molecular state. To determine such a state would require the 

addition of interpolators tha t overlap strongly with nuilti-hadron states.



Chapter 6

Open-Charm Sector

In this chapter, the charm-Ught and charm-strange sj^ectra are presented. Firstly, 

wo discuss the vohune dependence, before moving on to show our final spin identified 

spectra. We then proceed to interpret our results and compare to experiment, before 

discussing the mixing between spin-singlet and spin-triplet states. The discussion of 

hybrid mesons is delayed until chapter 7.

6.1 V olum e C om parison in th e Charm -Light and  

C harm -Strange Sectors

The results of the variational procedure for all lattice irreps in the charm-light and 

charm -strange sectors are shown in Figures 6.1 and 6.2 respectively. The states are 

labelled by irrep, (recall tha t for flavoured mesons, charge conjugation is not 

a good quantum  number), and by the colour coding shown in the plot. The left 

column of each irrep column represents the 24'̂  x 128 volume results, while the right

85
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F i g i  r e  6.1: The extracted spectnuii of states in the charm-hght sector labelled 
by irrep A ’̂. For each irrej) results from both the 24  ̂x 128 and 16'̂  x 128 volumes 
are shown side by side. The vertical size of each box gives the one sigma statistical 
uncertainty on either side of the mean and the box colour refers to the continmun 
spin assignment as described in the text. The light cyan boxes represent states 
that were not very well determined in the variational analysis; ellipses indicate 
that additional states may be present in these energy regions but were not robustly

determined.

cohinui represents the IG'* x 128 volume. The size of the boxes represents the one- 

sigina statistical micertainty. The colotu' scheme is a.s follows: states with J  =  0 

are coloured black, J  =  1 are red, J  =  2 are green. J  =  3 are blue and J  =  4 are 

orange. The light cyan l)oxes rei)resent states that were not very well determined in 

the variational procedure but robust enough that a mass could l)e extracted. The 

ellipses in the positive parity sector of each figure represent regions where states may 

l)e present l)ut were not robustly determined.

Components of J  >  2 states are distributed across multiple irreps, and appear at 

masses that are degenerate up to discretisation effects. As in the charmonium sector, 

we generally see no significant cliscreiwncies between these components in different
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F igure 6.2; The extracted spectrum of states in the charm-strange sector la­
belled by irrep For each irrep results from both the 24  ̂ x 128 and 16'̂  x 128 
volumes are shown side by side. The vertical size of each box gives the one sigma 
statistical luicertainty on either side of the mean and the box colour refers to the 
continuum spin assignment as described in the text. The light cyan boxes repre­
sent states that were not very well determined in the variational analysis; ellipses 
indicate that additional states may be present in these energy regions but were

not robustly determined.

irreps. As discussed in section 3.5. we match up states across irreps by comparing 

overlaps. It is clear that the dense spectra of states above o,??! ~  0.5 would be 

impossible to disentangle without information other than just the masses, which 

again emphasises the im portance of the spin identification scheme.

In general, throughout both spectra, we do not observe a significant volume de­

pendence. However, there are some significant exceptions. For the lightest 0"'' and 

I"* states (in the and irreps respectively), which are determined with very 

high statistical precision, we observe a two-sigma difference between the two vol­

umes. One explanation could be tha t because these states lie precariously close to 

thresholds, mixing with multi-hadron states may be im portant, and could cause the
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observed vohinie dependence. As previously m entioned, our in terpo lato r ba.sis does 

not include any in terpolators th a t look-like two-niesons, and so we do not expect 

to  be able to  reliably determ ine any m ulti-hadron energy levels; th is suggests th a t 

a mass value is only accurate up to  the  hadronic w idth  of the given sta te . In the 

charm -strange sector, these two s ta tes  corresjiond to  where we expect to  see the  enig­

m atic ^ * 0(2317)"*" and D,i(24C0)"‘' levels, and interestingly, the experim ental bound 

on their w idths is quite  small. F <  4 MeV [48]. W ith  these possible excej)tions, we 

see no clear evidence for the presence of nuilti-hadronic effects.

6.2 Final Spin Identified Charm -Light and Charm- 

Strange Spectra

In Figures 6.3 and G.4. we show our final charm -light and charm -strange sjiectra: 

in each case we show the  well determ ined s])in identified spectra  on our 24'  ̂ x 128 

\'olume. since calculations on th is volume were com jiuted w ith higher sta tistics, and 

on top of th a t, it is our largest volume, m eaning th a t  any finite volume effects will 

be less in jportan t. In these figures we show the calculated  (experim ental) masses 

w ith half of the  calculated (experim ental) i]c mass sub trac ted  in order to  reduce 

the  system atic error from the  se tting  of the  bare charm  quark  mass. In Figm-e 6.3, 

the  dashing corresponds to  the lowest non-interacting D n  and D ,,K  threshold  using 

our calculated values (coarse green dashing) and experim ental values (fine black 

dashing). In Figure 6.3, the dashing corresponds to  the  lowest non-in teracting D K  

threshold using our calculated values (coarse green dashing) and experim ental values 

(fine black dashing). T he mass values presented in these figures are shown in Tables 

A .2 and A.3.
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F i g u r e  6.3: T he charni-Ught spectrum  up to  around 3.8 GeV labelled by . 
T he green boxes are our well determ ined calculated masses on these ensembles 
w ith I'l/jr ~  400 IvIeV, while the black boxes correspond to  experim ental masses of 
neutral charm -light mesons from the PDG  sunnnary tables [48]. We present the 
calculated (experim ental) masses with half the calculated (experim ental) i]c mass 
subtracted  to  reduce the uncertainty from tuning the bare charrn-qtiark mass. The 
vertical size of each box indicates the one sigma statistica l uncertainty on either 
side of the mean. The dashed lines show the lowest non-interacting D n  and D s K  
thresholds using our m easured masses (coarse green dashing) and experim ental

masses (fine black dashing).

Many other studies of open-cliarm spectra have taken i)lace in the lattice community. 

Most of these have focused on only the lowest lying S  and P-wave states. Examjiles 

of these studies can be foiuid in [92-94]. Only recently have calculations begun to 

explore states higher up in the spectnnn. In [85, 87], the authors present preliminary 

results on N f =  2 +  1 dynamical ensembles at the SU{3)  point. They calculate states 

with <  3. However, the treatment of the strange quark is quite different from 

our approach and M„ =  M k  =  442 MeV, making it difficult to compare the results 

with ours.

In [95], results are presented from calculations on =  2 - I -  1 ensembles for a range
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FlGl'RE 6.4:  T he ch arm -stran g e  sp e c tn u n  up  to  aroinicl 3.8 G eV  labelled  by 
T h e  green boxes are  our well de te rm ined  ca lcu la ted  m asses on these  ensem bles 
w ith  M t̂  ~  400 M eV, while th e  black boxes correspond  to  exp erim en ta l m asses of 
n eu tra l ch arm -strange  m esons from  th e  PD G  su n n u ary  tab les [48]. We presen t the  
ca lcu la ted  (ex jjerim ental) m asses w ith  half th e  ca lcu la ted  (experim en tal) i]c m ass 
su b tra c te d  to  reduce the  u n ce rta in ty  from tu n in g  th e  bare  ch arm -q u ark  m ass. T he 
vertical size of each box ind ica tes th e  one sigm a s ta tis tic a l u n ce rta in ty  on e ith er 
side of th e  m ean. T he <lashed lines show the  lowest no n -in te rac tin g  D t t  and 
th resho lds using our niea.sured m asses (coarse green dashing) an d  experim en ta l

m asses (fine black dashing)

of pion masses from 702 MeV down to 156 M e\^ Here the focus is mainly on the 

S  and P-wave states, although the first excited multiplct in 5-wave of D,, mesons 

is also presented. In this study they use the Fermi-lab method for the charm quark 

[56]. In [96]. the same authors present results from a A'y =  2 calculation of the 

charm-light spectnun on a single volume with — 266 MeV. again using the 

Fermi-lab method for the charm quark, and this time using the distillation method 

of quark smearing. The lowest lying 0^. and 2^ states are obtained along with 

some excited 0~ and states. They also investigate the lowest-lying resonances in 

the 0^ and 1+ channels.
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In all of these other studies the interpolator basis is significantly smaller than the 

basis tha t we employ: they do not include a wide range of spatial structures and not 

all of the relevant irreps were considered. Another improvement we have made in 

this study is the inclusion of interpolators pro])ortional to the field strength tensor, 

allowing access to gluonic degrees of freedom.

6.3 Interpretation  of O pen-C harm  Spectra

In this section we give an interpretation of om' extracted charm-light and charm- 

strange spectra. As previously mentioned, we show our final results in Figures 6.3 

and 6.4. In both spectra w’e observe tha t most states appear to fit into the 

pattern  expected by fjuark models. As discussed for the charmonium spectrum, 

operator-state overlaps, Z, are used to identify the str\ict\n-e of extracted states and 

make assignments.

In the negative parity sector of both spectra we observe a ground state 5-wave 

pair [0“ , 1“ ]. We find the first excitation of this set around 700 MeV higher. At 

M  — ~  1400 MeV we find a full D-wave set [(1,2. 3)~, 2“ ] and the second

excitation of the 5-wave set around M  — ~  1900 MeV. Around M  — ~

2000 MeV we see states th a t appear to  be parts of an excited D-w-ave set and parts 

of a G-wave set, [(3,4, 5)“ . 4“ ]. Like in the charmonium sector, we do not see the full 

G-wave compliment due to  the lack of four derivative interpolators. We inter])ret the 

apparent supernum erary states as hybrid mesons, but delay their discussion imtil 

chapter 7.

In the positive parity sector of the charm-light spectrum  we find a full P-wave set, 

[(0,1,2)+, 1+], sitting aromid the D gK  threshold, and in the charm -strange spectrum



C hapter 6. Open-Charm Sector 92

we observe the same set around the D K  threshold. Around 600 MeV higher in each 

si)cctrum, we observe the first P-wave excitation, and at M  — M r^j2  ~  1700 MeV 

we see a full F-wave set, [(2 .3 ,4)“'', S"*"]. The four states around M  — ~  1900

MeV in both spectra we interpret as hybrid mesons, and discuss them in chapter 7.

Our interi)retation has been given in terms of non-relativistic quark model super- 

multiplets, but in the heavy-quark (static) limit, where nii < <C /7ic, one can 

classify states in a different fashion since the spin of the heavy-quark decouples from 

the system. In this picture, the total angular momentum, j ,  of the light degrees of 

freedom is j  =  L (gi Sq, where =  1/2 is the spin of the light quark. For non-zero 

angular momentum, the total angular momentum can take two values j  = |L ±  1/2|. 

Now. coupling in the spin of the heavy quark i)roduces nmltiplets that consist of de­

generate doublets. For example, in 5-wave there is one doublet with j ‘’ — [(0, 1)“ ]. 

and in P-wave there are two doublets, j ' '  =  [(0. 1)'*'] and [(1,2)'^]. The heavy-quark 

limit is discussed further in the context of mixing between spin-singiet and spin- 

triplet states section C.5. Even though the charm quark is significantly heavier than 

the light and strange quarks, we do not expect it to be heavy enough for this limit 

to apply rigorously, although it can provide a useful guide. This is observed in l)oth 

spectra, where, for example, the 0“ and 1“ 5-wave states are not degenerate.

6.4 Com parison w ith  Experim ent

W'e now compare our extracted spectra to the current experimental situation in the 

open-charm sector. We show the experimentally confirmed states as black boxes, 

taken from the PDG [48], in Figures 6.3 and 6.4. where the size of the boxes signifies 

the uncertainty in the experimental determination. It is clear tha t in general we see
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good qiiahtative agreement between oiu’ extracted states and the experimental ones, 

but some some connnents on the quantitative differences are required.

Firstly, it is im portant to note that, because we do not include nuilti-hadron states, 

oiu' determinations are only accurate up to the hadronic width of a given state. We 

also have unphvsically light quarks, which adds to the systematic uncertainty, but 

below threshold we do not expect these effects to be im portant in the charm-strange 

sector, but near or above thresholds involving mesons containing light quarks, this 

this could be im portant.

As discussed in section 4.3, we significantly undershoot the 5-wave hyperfine split­

ting in both the charm-light and charm-strange sectors. We argued that this discrej)- 

ancy is due to the use of a tree-level tadpole-improved value for the spatial clover 

coefficient, and our subsequent tests allowed us to assign an approxim ate value of 

20 MeV to our leading 0(o.,) systematic imcertainty. In the charm-light spectra, we 

find our P-wave states higher than their experimental counterparts, which may l)e 

due to the unphvsically heavy light quarks.

In the charm-strange spectrum, two of our P-wave states are consistent with experi­

ment, but the other two states, expected to correspond to the enigmatic Z)*q(2317)^ 

and D5i(2460)^, are significantly higher than their experimental counterparts. It 

is im portant to note tha t the O'*' and I"*" are very close to, respectively, the D K  

and D*K  thresholds. It is also worth noting th a t the calculated and experimental 

0“̂ states lie the same distance from their appropriate thresholds. This may sug­

gest that the unphysically heavy light quarks are responsible for the discrepancy. 

However, due to the interaction with the threshold, further study is required with 

multi-hadron interpolators included.
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6.5 M ixing of Spin-Singlet and Spin-Triplet States

In this section we discuss the m ixing between spin-singlet and spin-trip let s ta tes  in 

l)oth the  cliarm -light and charm -strange sectors. Since the  charm  quark  is signifi­

can tly  heavier than  the  light or strange quarks, 5 t/(4 )  sym m etry  is badly broken in 

QCD. Therefore charm -light and charm -strange mesons are  not eigenstates of charge 

conjugation, or any generalisation of it. It is the  absence of such a  sym m etry  tha t 

allows mixing between spin-singlet and spin-trip let s ta tes. A probe

of th is mixing may help us cjuantify flavour synnnetry  breaking.

: a tw o-state hypothesis and assum ing energy independent mixing, an expansion 

can  l)e m ade for s ta tes  A  and B  in term s of a spin-singlet and trip let basis. Choosing 

\B)  to be the heavier s ta te  gives

|.4) =  -hcos(/9)|^I./= i)-F  sin(6')|'^Z..;=z.) , (G.l)

\B) =  - s in ( 0 ) |i l ;= O + f o s ( /^ ) | ' 'l , /= L )  . (6.2)

W ith in  om- basis, the  in terpolators [p — fh) x D^i x D̂ lc u m  1 /I .  / I 2  f  ^  J - ' l
J  =  L

only overlap onto the s ta tes  and ^1/=/, respectively in the  non-relati\’istic

l[2ll

which overlap onto the spin-singlet and spin-triplet hybrids.

lim it. There are analogous in terpolators, {p — P2 ) x D \ '  and {71. 7:2 } x D\
,/=!

To determ ine the mixing angle. 6, we take the  ratio  of th e  overlap factor of one of 

the  aforem entioned inter])olators for s ta te  A  to  the overlap factor for s ta te  5 ,  w ith 

th e  ratio  giving either tan(0) or coX{6) depending on the  in terpo lato r used.

We ex tract mixing angles for the lightest pair of P-wave, 1'*', and Z)-wave, 2“ . and 

hybrid, 1“ sta tes. These are shown in Tal)le 6.1 for each of the  aforem entioned 

in terpolators. refers to  the  m ixing angle in the  charm -light sector and Ocs
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J‘̂ ~  ( p  -  P2 ) ~  7T

\e\r
~  TTo H eavy-quark limit

c-1 1+
2 -

1“ (hybrid)

60.1(0.4)
26.7(2.2)
59.7(1.1)

62.6(0.2)
22.2(3.7)
68.4(0.8)

65.4(0.2)
18.9(3.9)
67.4(0.9)

54.7 or 35.3
50.8 or 39.2

c-s 1+
2 -

1“ (hybrid)

60.9(0.6)
64.9(1.9)
59.9(1.7)

64.9(0.2)
68.7(2.0)
67.9(0.9)

66.4(0.4)
70.9(1.8)
67.3(0.9)

54.7 or 35.3
50.8 or 39.2

T a b l e  6.1: The absohite vahie of the m ixing angles for the lightest pairs of 1 + . 
2 ~  and hybrid 1“ states in the charm-light (c-1) and charm-strange (c-s) sectors. 
The angles extracted using different operators are presented; these are lal)elled 
by the gannna m atrix structure with the derivative strtictures described in the 
text. Also shown are the m ixing angles expected in the heavy-quark limit. The 
apparent difference between the charm-light and charm-strange 2“ m ixing angles

is explained in the text.

th e  mixing angle in the charm -strange sector. T he overall sign of a given m ixing 

angle is not observable in oiir calculation, and we thus show their absolute values. 

For each j)air of sta tes, the variation between m ixing angles determ ined using the  

three different operato rs gives an  idea of the  size of the  system atic uncertain ties. 

As well a.s the  usual system atics, included are system atics arising from our ra ther 

sim plistic assum ptions of a tw 'o-state hypothesis w ith energy-independent mixing, 

and  from assum ing th a t the  energy difference between the  relevant s ta tes  is small 

enough such th a t the  renorm alisation factors for the  different in terpo lato rs do not 

vary substationally  over th is energy range. T he relatively large variation in the  1” 

hybrid m ixing angles is to be expected since the  assum ptions are less justified due 

to  the s ta tes  lying higher up in the spectrum  and thei'e is a  relatively large m ass 

gap between the  pair of relevant 1“ sta tes. Also shown in Table 6.1 are the  mixing 

angles as calculated in the  heavy-quark limit [50].

T he P-wave  and hybrid m ixing angles are sim ilar for bo th  the  charm -light and 

charm -strange sectors, bu t for the  D-wave  they  appear to  be d rastically  different.
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T his is because the cloiiiiiiantly ^D 2 s ta te  and the dom inantly  ^D-i s ta te  are almost 

degenerate, and for the  charm -strange sta tes, the nia.ss ordering is flipped conij^ared 

to  the charm -light sta tes. This m eans th a t 6c~s ~  90 — Oc-i-

O ur strange ciuark m ass is close to  the physical value l)ut the  light quarks are 

unphysically heavy, resulting in M k / M tt bping close to  unity. Therefore SU{3)  

flavour synnnctry  is not badly broken and we expect to  find sim ilar mixing angles 

in each flavour sector. Hence, the  m ixing angles in the  charm -strange sector should 

l)e closer to their physical values.

All of our m ixing angles lie between zero mixing, which corresponds to  the  flavour 

synnnetry  lim it, and the heavy-quark limit values: th is is expected since the  charm  

cjuark lies at an interm ediate scale, larger than  the  light quarks, but not heavy 

enough so th a t the heavy-quark limit applies. O ur results are qualitatively  consistent 

w ith other studies [49. 97-101], th a t in general, find significant m ixing between 

the  spin-singlet and spin-trip let s ta tes  with, at lea.st for the lightest I"*" pair, some 

deviation from the heavy quark limit.



Chapter 7

Exotic and Hybrid M esons

In this section we now discuss the apparent supernnnierary states tha t appear in 

Figures 5.3, 6.3 and 6.4. We interpret these states as hybrid mesons and discuss 

their appearance in the charmonium, charni-hght and charm-strange spectra a.s well 

as discuss a suggested phenomenology l)y comparing to previous studies of hybrid 

mesons.

7.1 E xotic and H ybrid Charm onium  M esons

Figure 7.1 shows the charmonimn spectnun calculated on our 24'̂  x 128 v'olume, for 

channels in which we identify candidates for hybrid mesons. We define a hybrid 

candidate as any given state  with a relatively large overlap onto an interpolator that 

is proportional to the com m utator of two covariant derivatives, that is, the field 

strength tensor.

97
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I
^  500

Q - +  ] —  2 “ + 0 ^ ^  T "  2 ^ +  3 ^ “  0 ^ '  2 ^ "

F i G i ’HE 7 . 1 :  Chanuoniuin H i) ect rmn calculated on our 2 4'* x  1 2 8  vohinu'. up to 
around 4.5 GeV showing only channels in which we identify candidates for 
hybrid mesons. Red (dark blue) boxes are states suggested to l>e members of the 
light(>st (first excited) hybrid supernuiltiplet as d(’scribed in the text and green 
boxes are other states. Black lines are experimental values and the dashed lines 

indicate the lowest non-interacting D D  and D^Ds  thresholds.

W'e observe that the liglitest exotic meson, that lias = 1 is almost degenerate 

with tlu’ee sta tes  oi)served in the negative j)arity sector. These three sta tes  are 

suggested to be non-exotic hybrids. (0 .2 )—*̂. l~~.  Higher in mass, we observe two 

fiu'ther mesons with exotic (juantmn mnnbers. namely the (0. 2)"*"“ states. We also 

observe another s ta te  slightly higher in mass. Above the range shown in our 

plots, we hnd a i)ossil)le excitation of the 1 s ta te  at ~  4.G GeV, W'e observe an 

exotic 3“ ^ s ta te  aroimd 4.8 GeV, while the  lightest 0 exotic does not aj)pear until 

above 5 GeV.

Our consideration of hybrid mesons becomes more interesting by the  observation that 

there are fotir almost degenerate candidate hybrids, with ,J^’̂  =  [((). 1, 2)~‘'‘. 1 ].
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These states are coloured red in Figure 7.1; this is the pattern of states expected to 

appear in the lightest hybrid supermultiplet of the MIT Bag Model [102], and also 

in the P-wave quasi-gluon approach [103], which is where a quark-anticiuark pair in 

5-wave is coupled to a colour octet P-wave 1"*"“ gluonic excitation. The lightest two 

superm ultiplet structures expected in this approach are shown in Tal)le 5.1. It is also 

interesting to note tha t the pattern  of the lightest set of four hybrids is not what is 

expected from the flux-tube or the 5-wave qua.si-gluon models, and the appearance 

of two 2~̂ ~ states, with one slightly higher in mass than the other, seems to rule out 

the flux-tube model altogether, as it does not predict two states so close in mass. 

The pattern of of the lightest hybrids is the same as that found in previous 

studies of the light meson sector [104]. Furthermore, they ajipear at a very similar 

mass scale to those in the light meson sector, that is, at ~  1.2 — 1.3 GeV above the 

gromid state meson of the system.

Thus far, we have claimed tha t the lightest four hybrid states belong to the same su­

permultiplet, iMit we have, so far, only based this on considerations of their masses. 

To strengthen our claim, we follow [104], and consider the interpolator-state overlaps 

in more detail. As discussed in [104], the interpolators {p,\n x which

have =  (0 ,1 ,2)“ ''' have the structure of a colour-octet (juark-anticjuark pair in
P  o5-wave with 5 = 1 ,  coupled to an excited chromomagnetic field with Jg^ ” = I"*"". 

Here g represents that the cniantum numl^ers in cjuestion are for the gluonic excita­

tion. The interpolator ( tta’/ j  x  with = 1 has the same structure

except th a t 5  =  0. Figure 7.2 shows that the four candidate states for the lightest 

Charmonium hybrid supermultiplet have large overlap onto the previously discussed 

interpolators. As previously discussed, it is expected tha t the Z  values for each of 

these interpolators will be similar for states of a given superm ultiplet, since the 

structure of the interpolators are essentially the same. Figure 7.2 shows that each of 

these interpolator-state overlaps are equal in value within statistical precision. This
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1  ■
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1

Q-+ p +  2-*{T2) 2-*{E)
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FlGl'RE 7.2: Overlaps, Z. for the proposed lightest charmonuim hybrid super-
[21

n m l t i i j l e t  w i t h  i n t e r p o l a t o r s  { tt, x  - D / i j -

is further evidence tha t these states reside within the same superniultiplet, which 

has a structure of 5-wave quark-antiquark coupled to a gluonic excitation with l+~.

In Figure 7.1, we also point out a set of ten hybrid candidates coloured in l)lue. If one 

continues to consider the P-wave quai>i-gluon ai)proacii. it is expected that the first 

excited hybrid superniultiplet will appear from P-wave colour-octet quark-antiquark 

pairs coupled to a 1'*'“ gluonic excitation, giving rise to the set (l■'■“ )'^ (2+“ )^, 

3"*"“ , (0. 1. as shown in Table 5.1. The blue coloured hybrid candidates shown

in Figure 7.1 appear to match this pattern. Interestingly, this pattern  was observed 

in [104] for the light meson sector, and the consistency between the two sectors may 

suggest a common phenomenology is emerging.

6 -

N  4  -

2 -
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F i g u r e  7.3: The iiegative-parity charm-light (left panel) and charni-strange 
(right panel) meson spectra showing only channels where we identify hybrid can­
didates. The red boxes are identified as states belonging to the lightest hybrid 
snpermnltiplet as discussed in the text, while the green state show conventional 

charm-light and charm-strange mesons.

It is worth noting that the inclusion of multi-hadron interpolators could modify the 

interpretation of states above the opeu-charm threshold.

7.2 O pen-C harm  H ybrids

We now move to discuss the apparent supernumerary states in Figures 6.3 and 6.4. 

W’e interpret these states as hybrid mesons due to their relatively large overlap with 

interpolators proportional to  the com mutator of two covariant derivatives. In Figure

7.3 we highlight these states in red.

As in the cliarmonimn sector, we interpret the four states, [(0,1,1, 2)“ ], as belonging 

to  the lightest hybrid supernndtiplet. As explained earlier, states belonging to the
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O' 2TT2) 2TE)

F igure 7.4: Overlap.s. Z, of the charm-strange states proposed to be members 
of the hghtest hybrki siipermultiplet with interpolators that are proportional to

the field strength tensor, { tt, p} x subciuced into the relevant irreps.

sam e supennultip let are expected  to  have similar interpolator-state ov'erlap values.

In Figure 7.4 we show overlaps for the four candidate hybrid states in the charm-

strange sector, w ith interpolators 7T X and As discussed in

section G.5. the two 1 hybrids are m ixtures of spin-singlet and spin-triplet basis

states, .so they overlap w ith both  the and P X A /= i interpolators.

Therefore, for these sta tes we plot - I -  where and are the overlaps with  

these two different interpolators. From Figure 7.4 it is clear that the four sta tes have 

very similar overlap values, suggesting that they have a com m on structure, which  

is clear evidence for identifying these four states as m embers of the lightest hybrid  

superm ultiplet. As in the charm onium sector, the pattern of these foiu' hyljrid states  

can be explained via the P -w ave quasi-gluon picture: an 5-w ave quark-antiquark pair 

coupled to a l+ “ gluonic excitation.

In both the charmonium and light m eson [104] sectors, the first excited  hybrid  

superm ultii)let is identified. In both  the charm-light and charm -strange sectors, 

we find candidate positive parity hybrid me,sons at ~  1.5 G eV alcove the respective  

ground states. Four of these sta tes are shown in the positive jiarity sectors of Figures 

6.3 and G.4. l)ut because we do not robustly identify all sta tes in that energy region, 

we can not observe the full set of sta tes in the first excited  hybrid superm ultiplet.



Chapter 8

Scattering on the Lattice

In this chapter, we turn  our attention to scattering on tiie lattice. We firstly ])resent 

the prol)lems that scattering processes present to the lattice practitioner. l)efore 

moving on to discuss the formalism that has allowed (at lea-st some) scattering 

calculations to  be performed in the framework of lattice field theory. We then dis­

cuss our implementation of this framework, and finally, we present a preliminary 

calculation of D n  scattering in the isospin. I  =  3/2, channel, and map out the cor­

responding phase shift. (5n, which considers only the / =  0 partial wave in the A\ irrep.

The scattering matrix, S, is a map between in and out asym ptotic states of a given 

scattering process. When one assumes asymptotic completeness, tha t is, that every 

sta te  has in and out asymptotes, S  becomes unitary. All possible states in a given 

physical system (i.e. in its Hilbert space) can be thought of as either bound states or 

scattering states. Non-relativistically, bound states appear as poles in the S-inatrix 

in the upper half of the complex momentum plane, while resonances appear as poles 

in the lower half. An im portant quantity th a t is related to the scattering matrix is

103
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known as the  phase shift 5t{E),  which is given by

S, {E)  = ( 8 . 1)

where / is known as the partial wave, which labels the  angular m om entum  of the  in

going sta te . T he scattering  j)hase shift Si{E)  mea.snres the shift in the phase of a 

scattering  wave of a given angular m om entum  I. a.s it passes through some potential. 

It can be w ritten  as S{E)  =  Shg{E) +  Sres{E) [105]. where Si,g(E) is the  part of the 

phase shift due to  direct scattering  between the  particles w ithout an interm ediate 

resonance being formed. The part entirely due to  the form ation of the resonance is 

encoded w ithin Sres{E).  For narrow resonances, it takes the form

showing th a t the  ])ha.se shift will vary rapidly by tt when the  centre of mass energy. 

E,  is close to  the  energy of the  resonance, Ercs-

In rolativistic field theory, the  5 -m atrix  is related  to  the  residue of on-shell correla­

tion functions via the  LSZ reduction formula. Resonances can then  be found as a 

pole in th e  correlation function on the  second R iem ann sheet. One can then  derive 

the  relativ istic  analogue of (8.2) [105],

where nires is the  mass of the resonance.

In this study, calculations are perform ed w ithin a finite volume of discretised E u­

clidean space-tim e. The finite volume has dram atic  effects on the  K allen-Lehm ann

(8 .2 )

(8.3)
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spectral function

A(p) = f  ^  -■ . (8.4)
io

T he values of m om enta allowed in a finite \'olum e discretises the  spectrum , hence 

transform ing the  nm lti-particle  branch cut into a series of isolated poles; the  spectral 

function becomes m erom orphic and contains no branch cuts. Since resonances are 

poles on the second R iem ann sheet, the finite volume effectively removes them , 

rendering all would be resonances stable.

A nother fundam ental difficulty in ex tracting  scattering  inform ation, is due to  th e  use 

of Euclidean space-tim e. The M aiani-Testa theorem  [106] show's the im possibility 

of directly  ex tracting  scattering  inform ation from Euclidean three-point (or higher) 

correlation functions; the  form factor of the  three-point function loses its com plex 

phase when W ick ro ta ted , and in Minkowski space it is th is com plex phase th a t 

contains the  scattering  inform ation. W ith  the  M aiani-Testa theorem  ruling out 

direct access to  scattering  inform ation in lattice  field theory, indirect m ethods have 

api^eared. These are ba.sed upon th e  idea th a t  the  resonances, having m erged w ith 

the  rest of the  spectrum , will have some effect on the spectrum  of the  theory  in 

a finite volume. The m ethod used in th is study  has become com m only known as 

Liischer’s m ethod [77, 107-110]. and  will be the subject of the  following section. 

For a  com])arison betw^een a lte rn a te  m ethods and Liischer’s m ethod, and a nice 

discussion of resonances and scattering  theory see [105].

8.1 The Liischer M ethod

The Liischer m ethod was derived over a series of five i^apers [77. 107, 108, 108. 109], 

which will now be siunm arised briefly. For a m ore detailed  review' of these pajjers
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see [105].

In [107], the  effect of a finite vohune on single particle  s ta tes  is discussed. Here it was 

found th a t the  mass shift, due to  the  finite volume, of a single particle  s ta te  is related  

to  the  forward scattering  am plitude. Liischer also showed th a t the  en tire  difference 

betw een the  finite volume and infinite volume cases is due to  so-called around the 

world propagators. Furtherm ore, his estim ations show th a t only Feynm an diagram s 

wdth one around the world ]>ropagator con tribu te  significantly to  th e  finite volume 

m ass shift, and are of order e~ 2'"'-^. where L  is the extent of the  la ttice  and m  is 

the  m ass of the s ta te  in question.

In [108], the  emi)ha.sis shifts to  th a t of scattering  states. The results ob tained  from 

th is  paper only apply to  tw o-particle scattering  states. It was found th a t the  finite 

volume effects scattering  s ta tes  in two ways. T he first being th a t around the  world 

p ropagators cause a sliift in the  m ass in th e  sam e way as for single particle  sta tes, 

and  the  second was th a t the  in teraction betw een the  two scattering  particles also 

causes a shift in the mass. It is th is second effect th a t is related  to  resonances. 

It is clear th a t we require the second effect to  be dom inant in order to  m axim ise 

the  chances of ex tracting  re.sonance param eters from these mass shifts, as they  are 

expected to  be small. In order to  safely neglect the  effect due to  around the  world 

propagation , relatively large lattice  extents, L, m ust be used.

In the rem aining three papers of the  series [77, 109, 110]. what is now comm only 

known as Liischer's fornnila is derived. F irstly  th is formula is derived in two- 

dim ensions where it is easier to  understand . A l)rief sketch of th is deri\'ation  is 

as follows. In 1 - I -  1 non-relativistic quan tum  m echanics the  tw o-particle wave func­

tion  is V^(r), where r is the  relative coord inate between the two particles. Due to  the 

finite volume, the phase of this wave function is a lte red  in two ways. T he first being 

the  shift due to  m otion through the finite volume, which in m om entum  space will be
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The second is the shift due to the inter-particle potential. These result in the 

scattering phase shift Now. imposing j)eriodic Ijoundary conditions requires

the total phase shift across the volume to vanish, leading us to the two dimensional 

version of the Liischer formula

Since one can fletermine the energy spectrum  of the theory numerically on the lattice, 

this formula allows one to map out the previously inaccessible phase shift. Obviously 

this fornuila is not applicable in any useful cases since it is two-dimensional, but it 

was j:)ioneering in the sense that it showed tha t a link between lattice observables 

and the infinite volume phase shift existed.

Using a similar idea, the four-dimensional Liischer fornuila was sul)sequently derived. 

Again this was derived in the context of non-relativistic (}uantum mechanics, but 

this time Liischer constructed a m ap so tha t the quantum mechanical result can 

be carried over to  field theory under some special circumstances, with one such 

restriction being th a t the energy of the system in question be l)elow the relevant 

inelastic threshold. A brief outline of the derivation is as follows. Consider a finite 

volume where the extent of the finite volume is larger than the range of the inter- 

particle potential. Denote the region outside of the potential as R. In this region, 

the Schrodinger equation takes the same form as the infinite volume case. The radial 

wave fmiction obtained from this equation will also be a solution to the Helmholtz 

equation,

( A+p2) ^( r )  =  0 .  (8.6)

The point is tha t any eigenfunction of the Hamiltonian will have two asym ptotic 

forms within the region R\ one arising from the Schrodinger equation and the
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o ther from the Hehiihohz equation. M atching these two forms leads to  the  four- 

dim ensional Liischer formalism.

Since th is derivation is in non-relativistic quan tum  mechanics, the  result still needed 

to  be m apped to  the field theory ease. This is done using th e  B ethe-Salpeter kernel 

in [110], resulting in a formalism th a t can be applied to  field theory.

T he Liischer formalism is neatly  expressed via the following equation.

is a m atrix  of known functions [110]. The operator M( p)  com m utes w ith the ro tation  

opera to r of the  cubic groui), and can thus be block diagoualised. so th a t each i)lock 

only acts on a specific irreducible re])resentation of the cubic grouix

in the  .4i irrep, only considering the  / =  0 partial wave, therefore neglecting the 

effects of higher partial waves. In th is scenario, taking the positive parity  case as an 

exam ple, the  m atrix  equation (8.7), is reduced to  a one dim ensional form

(let -  U{p)] = 0 . (8.7)

where

( 8.8 )

Until recently in [61], m ost calculations using the Liischer form alism  were perform ed

(8.9)

where

(8 . 10)
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Z{l :q^)  is known as the Liischer zeta function  and is given l)y

(8 . 11)

where are spherical harm onics and q =  pL/ 2n.  It is m ore instructive to

consider ecjuation (8.9) in the  following form

T he m ajor restriction of th is formalism is th a t  it is only valid for elastic scattering  

of the  type  2 —> 2. This restriction is in place for a num ber of reasons. The most 

obvious of these being due to  the construction of the  form alism  in non-relativistic 

quan tum  mechanics; inela.stic scattering  of type A ^  B  can not l)e acconunodated 

in such a set up. This is very restrictive when a ttem p tin g  to  maj) out the  phase 

shift due to  the  extrem ely lim ited num ber of s ta tes  lying below inelastic thresholds 

a t zero m om entum .

In o rder to  som ew hat circum vent this problem , the  Liischer form alism  has been ex­

tended  to  include moving frames [ i l l ,  112]. This extension presents the  opportun ity  

to  include s ta tes  w ith non-zero m om entum , helping to  increase the  num ber of energy 

levels below inelastic threshold  for m apping out the  pha.se shift. The Lorentz boost 

from the  lab fram e to  the  center of m ass fram e in effect deforms th e  cubic volume, 

and only some subgroup of the  original cubic sym m etry  group rem ains. Practically,

S{p) =  —(p{q) +  nn . (8 . 12)

where

(8.13)
Zoo{l;q )̂
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th is results in a change to the m atrix M{p).  It becomes

I  1 \ /  J  jj
=  E  E  (8.14)

j  =  \ l - l ' \  s = - j

where the generalised Liischer zeta function, is given iw

Z f j s u h  = E  -  d ' y .  (8.15)
rePrf

Here the summation is over the set Pj = { f  € : f  = 7 “ ^(n +  |)} .  When d =  0.

the lab and center of mass frames coincide ('y =  1, =  Z^), and equations (8.14)

and (8.15) revert to their standard non-boosted forms. For more on tliis extended 

set up, see [111, 112],

More recently, further generalisations of the Liischer formalism have emerged. For 

example, in [113] they derive a generalised non-relativistic version of the Liischer 

formula which includes three particle inelastic channels, while there are ongoing 

efforts directed towards a nniltiple-channel generalisation of the Liischer formula 

[114. 115].

This concludes our brief introduction of scattering on the lattice, the Liischer formal­

ism and its extension to moving frames. We  will now move to discuss our implemen­

tation of these methods for the case of Dn  scattering, beginning with a description 

of our construction of multi-hadron interpolators.
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8.1.1 M ulti-H adron Interpolators

As previously explained, the Liischer form alism  gives a way of ex tracting  scattering  

inform ation on the  lattice, which is calculated from the  shift in the  energy level of a 

given sta te , com pared to  its non-in teracting coun terpart. Since these shifts are ex- 

])ected to  be very small, one requires in terpolating  fields th a t efficiently describe the 

recjuired m ulti-hadron sta te , otherwise, the  shift could l)e drastically  m iscalculated 

due to  contam ination from other sta tes, or in the worst case, lost in the s ta tis ti­

cal variance. In general, a nm lti-hadron in terpo la to r can be constructed  from the 

product of two single hadron in terpolators -4^(A') and B ^ k )  via

k i + k 2  = P

where C  is the Clebsch-Gordan coefficient for Ai (g) A2 —>■ A. and // is the row of

sum  of the  two individual m om enta k\ -f- k'2 - The sum  over kj is a sum  over all of 

the  m om enta in the  s ta r  of ki, th a t  is, all th e  m om enta related  to  A’, by an allowed 

la ttice  ro ta tion . A range of relevant Clebsch-G ordan coefficients, C , are listed in 

[61], where th is construction is discussed in greater detail.

One problem  encountered when com puting nuilti-hadron tw o-point functions is th a t  

the  in terpo la to r used to  describe the  s ta te  A B  m ay have significant overla]) w ith 

excited s ta tes  AB*. Of course, excited s ta te  contributions to  the  correlator will die 

away quicker th an  the ground s ta te , bu t even at m odest tim es the  excited s ta te  can 

be present to  some degree, and the  effective mass p lateau  will be pushed out to  

longer tim es where the  effects of finite tem poral extent can be felt. As suggested in 

[61], one solution to  th is problem  is to  form so-called optim ised interpolators. T he

the  corresponding irrej). The overall m om entum  of the sta te . P , is given by the
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s tra teg y  is as follows: using the  large basis of in terpolators discussed in chapter 3, 

one can construct an optim ised single A  in terpolator by variationally  diagonalising 

a m atrix  of single-hadron correlation functions. One then  takes, as the  optim ised 

in terpo la to r used to describe meson .4, a  linear com bination of the single-hadron 

intcr])olators w ith weights chosen according to  th e  significance of their coupling to 

the  s ta te  A. O ne can then  l>uild a m ulti-hadron in terpo la to r th a t will be dom inantly  

A B  from the  optim ised A  and B  in terpolators. As show^n in [61], for the  case of the 

pion. the optim ised ])ion in terpolator does indeed force the  effective mass to  jMatcau 

at nuich earlier tim es, hence reducing the contam ination  from excited s ta tes  and the 

finite tem poral extent.

In our calculation of the D n  spectrum , we use overall m om enta P  =  [0.0,0], [0,0,1], 

[0, 1. 1] and [1. 1. 1]. The various com binations of A’l and  k' 2  th a t produce these m o  

m enta are shown in Table 8.1. The single hadron in terpolators, used to  construct the 

optim ised tw o-hadron in terpolators, th a t have m om entum  k  = [0,0.0], are those of 

section 3.3. while the single hadron in terpolators w ith non-zero m om entum , used to 

construct optim ised in terpolators, are those discussed in section 3.3.1. The num ber 

of optim ised tw o-hadron in terpolators used w ithin each overall m om entum  P  and 

irrep, for the s tudy  of Dir scattering, is shown in Table 8.2.

8.2 I  — 3/2 Dtt Multi-Particle Spectrum

It is clear from Figures 6.3 and 6.4 th a t m ulti-hadron effects play an im portan t 

role in bo th  the  charm -light and charm -strange spectra. In bo th  sectors, the  P- 

wave sui)erm ultiplet lies around the  lowest non-in teracting  thresholds, which are the 

D n  and D gK  thresholds in the  charm -light sector, and  the  D K  threshold  in the 

charm -strange sector. We noted th a t, in bo th  sectors ŵ e find a significant volume



Chapter 8. Scat tering on the Lattice 113

p A-i f<2 ,\{P)

[0,0.0] Ot’ [0,0,0] [0,0,0] A t
[0,0,1] [ 0 , 0 , - i ]
[0, 1, 1] [ 0 , - l , - l ] 4+  T +  T ~  T ~,^2 '-‘ I 5-̂ 2
[1,1^1] [ - 1 , - 1 , - ! ] A t . T ^ . T , - , A 2
[0,0,2] [0,0,2] A t , E \ T , -

[0,0,1] Dic4 [0,0,0] [0,0,1] Ax
[o, - i . o] [0, 1, 1] A \ , E'2, B\

[ 0 , - l , - l ] [ l a , l ] A\,  E i .  B 2

[ 0 , 0 , - l ] [0.0, 2] A]

[0,1,1] Dic2 [0,0,0] [0.1.1] A\
[0.1.0] [0,0,1] A i . B ,

[ - 1 .0 ,0 ] [1,1.1] A i . B2
[1,1.0] [ - 1 ,0 ,1 ] .4]. -42. B i . B 2

[ 0 ,1 , - 1 ] [0,0,2] A „ B y

[1,1,1] DiC3 [0.0.0] [1-1,1] AI
[1.0.0] [0. 1.1] A 1 . E 2

[2,0,0] [ - 1 ,1 ,1 ] A u E2

T a b le  8.1: Tlie two-hadron interpolators for each overall nionient>un P  and 
little gronp. Example momenta. A’l and A’2, that combine to form the overall 
momentinn, P.  are shown. Parity is only a good quantum nimiber for interpolators

overall at rest.

dependence in our determination of the lightest states in the 0^ and 1^ channels. 

This suggested that for a full understanding of these states, we recjuire a handle on  

relevant multi-particle states.

The most obvious place to start in the charm-strange sector is to calculate two-point 

correlation fimctions built from interpolators that look-like a D K  combination, while 

in the charm-light sector it would be to explore correlation functions built from D t: 

interpolators.
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p A(P) Number of Interpolators
[0,0.0] 01;' 5

[0,0,1] Dic-4 8

[0,1,1] Dic2 -4i 8

[1,1,1] DiC3 -4i 6

T a b le  8.2: The iminber of oi)timised two-hadron in terpolators for each overall 
m om enta P  and irrep used in the calculation of the D k energy levels. Parity  

is only a good ciuantuni num ber for interpolators overall a t rest.

• -------------- ►-------------- •  • --------------- ►--------------- •
D D D D

• ------------->-------------•

• -------------►-------------•
n n n n

• -------------------> ------------------- •  • -------------------- > -------------------- •

F ig i r e  8.1: The I  =  3 /2  Wick diagram s com]:)uted in our calculation of the Dn  
spectrum . Recall tha t on our lattices we have degenerate tip and down cjuarks.

This work is currently ongoing, and what is presented in this section is a preliniinary 

study of two-j^oint correlation functions composed of interpolators that look-like a 

D n  combination in the isospin. I  =  3/2, channel. We begin with this channel as a 

test case, since ŵ e do not expect any resonances to apj^ear and due to the smaller 

number of Wick diagrams, which are shown in Figure 8.1. it is com putationally 

cheaper than the 7 =  1/2 case, which will also have an annihilation diagram. In the 

following section, we then apply the Liischer formalism to map out the (preliminary) 

/ =  0 elastic scattering phase shift.
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Ai P = (0,0,0)

Q55

tq  Q5D 

6

a-t>

Inelastic

[2 ,0 ,0 ] [ -2 ,0 ,0 ]

[1,1,0 ] [ -1, -1,0 ]

[ 1,0 ,0 ] [ - 1,0 ,0 ]

[0 ,0 ,0] [0 ,0 ,0 ] 

Pd Pr

F ig i 'U E  8.2; Tlie D tt sijectrum for overall iiioiiientum P  =  (0 ,0 .0 ) in the .4^  

irrep for iso.spiii, /  =  3 /2 , calculated on our 20'̂  x 128 volume. The black boxen 
correspond to calculated energy levels, while the red lines correspond to the non­
interacting threshold obtained by adding together the calculated individual values 
of the D  meson and pion. The green dashing shows the inelastic threshold in this 
chaimel, D*p. The momenta P o  and indicate the individual momenta of the 

D  meson and pion that combine to make up the overall momentum P.

To compute D n  spectroscopic states, we employ the same teclmiciues tha t were ap- 

i:)lied for the charmoiiiiim and oi^en-charm sj^ectra; ŵ e comjiute an N  x N  correlation 

m atrix composed of two-point correlation functions, which themselves are built from 

the ojitimised interpolators discussed earlier. We include optimised interpolators uj) 

to an overall momentum of P~ = 3, and we only consider the relevant irreps 

(see Table 8.2). Our calculation is performed on our 20* x 128 volume, the details 

of w'hich are shown in Table 2.3.
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A, P = 0,0 ,0)
Q55h

  [1,0 ,0 ] [-2,0 ,0 ]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ■ ‘  I________________ [0 ,1,1] [ - 1, -1, -1]

Q-t)

Inelastic

[ 1,1, 1) [ 0 , -1, -1]

[2 ,0 ,0 ] [-1,0 ,0 ] 
[0 ,1,0 ][ -1,-1,0 ]

[ 1,1,0] [ 0 ,-1,0 ] 

[0 ,0 ,0 ] [-1,0 ,0 ]

[ 1,0 ,0 ] [0 ,0 ,0 ] 

Pd Pn

F ig u r e  8 .3 ; T h e Dw  siiec lru m  for overall in om eiitn iii P  =  ( 0 ,0 ,1 )  in  the  
irrep for isosp in , I =  3 /2 .  ca lcu la ted  on  our 20'  ̂ x  128 volum e. T h e ijlack boxets 
corresspond to  ca lcu lated  energy levels, w hile th e  red lines corresj)ond to  th e non- 
in teracting tliresliold  ob ta in ed  by ad din g  togeth er the ca lcu la ted  individtial values 
o f th e D  m eson  and pion. T h e green d ash in g  sh ow s th e in elastic  threshold  in this  
channel, D n n .  T h e m om enta P o  and in d icate th e individual m om enta  o f th e  

D  m eson  and pion that conil)ine to  m ake up th e overall m om entum  P.

O nce we have conii^uted the correlation m atrix , we then  aiijily tlie variational pro­

cedure in the  sam e fashion as before. However, there is one difference in the  role 

of the  ex tracted  overla]^ factors, Z.  As before, they are used to  identify which in- 

ter]3olator(s) has contributed significantly to  a given sta te . In all eases, there  is a 

clear preference for overlap of our ex tracted  D n  s ta tes  w ith a single in terpolator. 

Tliis allows us to  identify the in ternal m om entum  stru c tu re  th a t has m ainly con­

trib u ted  to  th a t s ta te , which is crucial when calculating the  energy shift from its 

non-in teracting counterpart.
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Q55

( ! • «

Q43

[ 1 ,1 ,0 ] [ - 2 ,0 ,0 ] 
[ 1 ,0 , 1] [ 0 , -1 , -1]

[0 ,0 , 1] [ - 1, -1, -1]

__________________________________________[0,0,0][-l,-l,0]
Inelastic [1,1,0] [0,0,0]

[ 1,1, 1] [ 0 ,0 ,-1]

[1 ,0 ,0 ] [ 0 ,-1,0 ] 

Pd Pn

F i g u r e  8.4: The D n  .spectrum for overall m om eutiuii P  =  ( 0 , 1 . 1)  in the A i  
irrep for isospiu, I  =  3 /2 , calculated on our 20'̂  x 128 volume. T he black boxes 
correspond to calculated energy levels, while the red lines correspond to the non- 
interacting threshold obtained by adding together the calculated individual values 
of the D  meson and pion. The green dashing shows the inelastic threshold in this 
channel, D tttt. The m om enta Pjj  and P̂ r indicate the individual m om enta of the  

D  meson and pion that combine to make up the overall m om entum  P.

In Figure 8.2 we show the D n  spectrum , for overall niomentmn at rest, calculated in 

the irrep, for isospin I  =  3/2. The black boxes show the calcnlatefl energy’ levels, 

and the size of each box corres])onds to the one-sigiiia uncertainty. The red lines 

correspond to the non-interacting D n  energy levels, calculated on our enseml)les. 

The green dashing corresponds to  the inelastic threshold, D*p.

In Figure 8.3, ŵ e show a similar plot, but this time it is for overall momentum 

P  — (0 ,0 ,1), in the Ai irrep. It is im portant to note tha t parity is no longer a
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Q55

_______________ I- .■■■■■■ ■■ I---------------------------- [0,0,0][-l,-l,-l]

       [1,0 ,0 ] [0 , -1, -1]

Inelastic----------------------------- ----------------------------[1,1,0][0,0,-1]

[1, 1,1][0 ,0,0] 

Pd Pn

F i g u r e  8.5: T he Dtt si)ectnim  for overall iiioiiieiit\uii P  = (1 ,1 .1 ) iu the A i  

irrej) for isosi)iii, 1 — 3 /2 , calculated on our 20'* x 128 vohniie. T he black boxes 
correspond to calculated energy levels, while the red lines correspond to the non- 
in teracting threshold obtained by adding together the calculated indivichial v'alnes 
of the D  meson and j^ion. The green dashing shows the inelastic threshold in this 
channel, D nn . The mom enta Po  and P„ indicate the individual m om enta of the 

D  meson and jnon tha t combine to make up the overall m om entum  P.

good quantum  number for our interj^olator construction at non-zero m om enta. T his  

means tliat the inelastic threshold is D tttt for sta tes having non-zero m om entum  

overall. We show similar plots for overall m om enta P  =  ( 0 . 1 , 1 )  and P  =  ( 1 . 1 , 1 )  in 

Figures 8.4 and 8.5 respectively.



C hapter 8. Scattering on the Lattice 119

8.3 /  =  3/2 D tt Phase Shift

W'e now apply the Liischer formalism and its extension to moving frames, to our Dn  

sj^ectra. Recall tha t the formalism can be expressed by the equation

det

where U  is an infinite dimensional m atrix of known functions UimJ'.u’- Here. I are 

the partial waves in the irrep A, and n labels the eml)edding of that / in this 

irrep. E is a diagonal m atrix whose elements are given by — e^'^’Su'Sn.n'■ As

explained in section 8.1. U  is given by

where the elements of M  are obtained via [80]

A A '
rn =  — l . . . l  — —

(8.19)

Here. /? is a rotation carrying the quantisation axis (0,0. P) to P , with D ^^ iR )  

relating values. /??, to  helicities, A. The conv'ention for constructing R  is given in 

[76]. S^p is the subduction coefficient from helicity, A, to the //”' row of irrej) A. 

Different magnitudes of helicity give rise to different embeddings n,n '. *’'- /̂ .̂;/m/(<7 )̂ 

is defined in equation (8.14).

There are infinitely many partial waves to consider in any given irrej:). However, 

in i)ractise it is very difficult to consider more than the first one or two i^artial 

waves. Fortmiately, at low scattering momentum there is a hierarchy in 8i{pcm)^ 

which follows from angular momentum conservation, 6i{pcm) ~  such that
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0.40 0.41

-1 0
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Q J - 2 0

U D -30

-40

-50

-60
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P
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P
P

(0, 0,0)
(1,0,0)
( 1, 1, 0)
( 1 , 1 , 1)

atEcI cm
0.42 0.43 0.44

T
0.45 0.46

F i g i  k e  8 . 6 :  The phase shift. <5o. in the elastic scattering region deterniined from 
the Dtt spectrum calculated on our 20'̂  x 128 volume. The error bars re])resent 
the statistical imcertaintv. The center-of-momentuni frame energies are given in 
lattice iniits and all points lie below the inelastic threshold in tlieir corresjjonding

synnnetry channel.

(5() 3> S2 S> (̂ 4. Tliis implies tha t we are soniewliat justified in only considering the 

first partial wave in the Ai irreps, I =  0.

To compute the / =  0 elastic pha.se shift, ^o, we solve equation (8.17) using the shift 

in energy levels obtained from the D n  spectra. In Figure 8.6 we show d'o as a function 

of center-of-niomentum frame energies. As previously mentioned, resonances show 

up as a rapid variation through 180 degrees in the scattering phase shift, and from 

Figure 8.6. it is clear that we see no such behaviour, and hence, no resonance.

In [96]. the authors also explore D tt scattering on the lattice. They calculate 5 -wave
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phase shifts for Dtt scattering with =  O"'" and D*n scattering with J^’ = I"*". 

Assuming a Breit-Wigner shape in the =  O"*" channel, they ol)serve a resonance 

at a mass of 351(21) MeV above their calculated spin-average \ { M d  +  ' i M o ' ) -  This 

is in agreement with the experimentally observed D*(2400), whose mass is 347(29) 

MeV above the experimental spin-average value. In the =  1+ channel they find a 

resonance with a mass of 381(20) MeV above j { M d  + 3 M o ’ ). which lies significantly 

lower than the experimental value of 456(40) MeV al)ove \ { M d  + 'SMo') for the 

Di(2430).

As previously mentioned, our study of D n  scattering is ongoing. The obvious next 

step would be to add data  points to Figure 8.6 by calctilating the D n  multi-hadron 

s])ectrum on different volumes. Looking beyond this, we plan to  supplement and 

improve on the study in [96] by considering firstly the Dn  7 = 1 / 2  channel, and then 

by extending our study to include other scattering channels such a.s the 

channel.



Conclusions and Outlook

W'e have coiiiputefl extensive spectra in tlie charnioniuni, charni-hght and charm- 

strange sectors. The use of distillation, the variational method witli a large basis 

of carefully constructed interjjolators and our spin identification scheme has allowed 

ns to extract a high number of states across all j^ossil^le combinations up to

and including spin four. W'e calculate these spectra on two volumes. IG'̂  x 128 and 

24'  ̂ X 128.

In the charmonium sector, ŵ e find no significant volume (lei)endence and also that 

the spectrum  is stable with respect to clianges in the details of the variational anal­

ysis and variation <jf the number of eigenvectors. We carried out an investigation of 

lattice discretisation effects by varying the spatial clover coefficient, however, a more 

complete fletermination of the systematic uncertainty would require several lattice 

s])acings. This work is the first time tha t a dynamical si)ectrum of charmonium has 

been computed tha t includes the exotic states l^'*', 2"''~). Interestingly, our

determ ination of these states points to the i)resence of explicit gluonic degrees of 

freedom. Most of the non-exotic spectrum  appears to follow the pattern

expected by quark models. However, we do find some states that do not appear to fit 

into this classification. W'e interpret these states as non-exotic hybrids, and identify 

the lightest hybrid supermultiplet in the charmonium sector [(0. 1. 2)“ + l ]. We

122
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also observe an excited hylnid supermultiplet. The pattern  of states is consistent 

with the interj)retation of a colour octet quark-antiquark pair coupled to a P-wave 

chromoniagnetic excitation. Our results allow an interpretation of the >'(4260) 

as a non-exotic vector hybrid meson, but. based only on mass comparisons, we can 

not draw definite conclusions. Following the study of [62], we see no clear evidence 

for multi-hadron states.

In the open-charm spectra, we observe no significant volume dependence except for 

the lightest states in the 0+ and 1+ channels. In general, both the charm-light 

and charm -strange spectra follow the pattern  of states expected l)v quark models. 

Although, we do find four states, [(0.1,1, 2)“ ], in the negative parity sectors of both 

spectra that we interpret as hybrid mesons due to  their relatively large overlap onto 

interpolators ])roportional to the field strength tensor. The ])attern of these states is 

consistent with what is found in the light meson sector [104] and in the charmonium 

sector, which is suggestive of common physics throughout QCD.

\ ’ia a non-relativistic interpretation of some of our interpolators, we extracted mix­

ing angles between the P  and D-wave spin-singiet and trij^let states, l"*̂ , 2~, and the 

hybrid 1“ states. The results we obtain in the charm-light and charm-strange sec­

tors are very similar but we note that SU{3)  flavour symmetry is highly sui)i)ressed 

on our ensembles. Nevertheless, we expect the flavoiu' synnnetry breaking in the 

charm -strange sector to be of the correct scale.

W'e have also presented preliminary results of the isospin 7 =  3 /2  Dn  multi-hadron 

spectrum  calculated on our 20'  ̂ x 128 volume. We calculate the energy shift of 

the multi-hadron states from their non-interacting counterparts below the inelastic 

threshold and employ the Liischer formalism to map out the elastic scattering phase
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.shift only considering the / =  0 ])artial wave. As expected we find no resonance in 

the /  =  3 /2  channel, but to further map out the phase sliift we recjuire calculations 

on more volumes.

In the near future we plan to extend oiu’ study of D tv scattering to the 7 =  1/2 

channel, where we expect to detect a resonance. In order to l:>etter understand the 

enigmatic D,,o(2317)^ and D,i(2460)^ states, we plan to explore D K  scattering. 

W'e expect this scattering channel to play an im portant role in the determ ination of 

these states as they lie very close to the D K  threshold.



A ppendix A

Tabulated Results

Table A .l tab u la tes  the  ina.sses as presented in Figure 5.3. T he calculated i ] c  mass 

has been su l)tracted  in order to reduce the system atic error when se tting  th e  mass 

of the  charm  quark. Table A .2 tab u la tes  the  masses as presented in Figure 6.3. Half 

of the  calculated i ] c  m ass is sub trac ted  to  reduce the system atic error when setting  

the  m ass of the  charm  quark. Table A.3 is the same bu t for masses presented in 

Figure 6.4.
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{M -  M„ ) (MeV)
Q-+ 0 663(3) 1143(13) 1211(13)
1— 80.2(1) 698(6) 840(3) 1154(28) 1301(14) 1339(38)
2-+ 860(3) 1334(17) 1350(17)
2— 859(5) 1333(18)
3— 867(3) 1269(26) 1392(12)
4“ + 1444(10)
4— 1427(9)
0++ 461.6(7) 972(9) 1361(46) 1488(30)
1+- 534(1) 1006(9) 1360(38) 1462(51) 1493(19) 1513(39)
1++ 521.6(9) 1002(10) 1415(14) 1484(48)
2++ 554(1) 1041(12) 1112(8) 1508(21)
3+- 1142(6) 1564(22)
3+ + 1130(9)
4++ 1129(9)
1-+ 1233(16)
0+- 1402(9)
2+- 1411(40) 1525(18)

T a b l e  A .l; Sumuiary of the charmoninni spectrmii calculated on our 24^ x 128 
volume, as presented in Figvire 5.3, with statistical uncertainties shown. Note that 
M tt a  391 MeV in these simulations. The calculated 7]f mass has been subtracted 
in order to reduce the systematic error from the timing of the bare charm quark 
mass. The masses of states with J  > 2 are from joint fits to principal correlators

across the relevant irreps.
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M  -  M ^ J 2  (MeV)
0“ 403(1) 1155(7) 1575(16) 1811(14)
1- 527(1) 1220(7) 1361(5) 1612(14) 1704(19) 1907(14)
2 - 1377(5) 1380(5) 1856(15) 1911(29) 1944(19)
3“ 1384(9) 1990(17)
4 - 1968(24) 2028(23)
0+ 854(3) 1505(11) 1861(16)
1 + 959(3) 992(3) 1563(11) 1565(11) 1849(21) 1919(13)
2+ 1024(3) 1594(10) 1707(5) 1929(13)
3+ 1708(6) 1718(8)
4+ 1720(14)

T a b l e  A .2; Snniinary of tlie charm-light meson spectrnm calculated on our 
24^ X 128 volume, as presented in Figure 6.3. with statistical uncertainties shown. 
Note that i\/,r ~  391 MeV in these computations. Half of the calculated /?c mass 
has been subtracted in order to reduce the systematic error from the tuning of 
the baie charm quark mass. The nia,sses of states with J  > 2 are from joint fits 

to principal correlators across the relevant irreps.

M  -  M,, /2  (MeV)
0“ 469(1) 1186(8) 1631(13) 1835(15)
1- 589(5) 1267(6) 1398(5) 1674(13) 1771(16) 1952(13)
2 - 1425(4) 1429(4) 1840(18) 1977(21) 1986(15)
3" 1452(6) 2030(14)
4 - 2023(14) 2027(16)
0+ 920(2) 1543(10) 1945(8)
1 + 1019(3) 1055(5) 1601(10) 1613(9) 1895(16) 1988(34)
2+ 1087(2) 1651(10) 1736(7) 1998(14)
3+ 1749(7) 1767(7)
4+ 1766(14)

T a b l e  A .3: Summary of the charm-strange meson spectrum calculated on our 
24^ X 128 volume, as presented in Figure 6.4, with statistical uncertainties shown. 
Note that rs 391 MeV in these computations. The calculated t]c mass has 
been subtracted in order to reduce the systematic error from the tuning of the 
bare charm quark mass. The masses of states with J  > 2 are from joint fits to 

principal correlators across the relevant irreps.
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