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Sum m ary

This thesis is dedicated to the study of a new family of integrable 
lattice models for strongly correlated electrons, namely the Hubbard- 
Shastry models. The techniques of exactly solvable models, and in 
particular those of integrable systems, are used. The models are con
structed through the quantum inverse scattering method and are stud
ied in one dimension through their Bethe ansatz solution.

The main results of this thesis are as follows:

1. The construction of the Hubbard-Shastry lattice models. It is 
found that there are two subfamilies of hermitian models, each 
of which have two special points where the models are also parity 
invariant. These are the Hubbard model, the A- and B-niodels, 
and the 5u(2|2) spin chain.

2. The thermodynamic Bethe ansatz study of the Hubbard-Shastry 
models. The thermodynamic Bethe ansatz equations are ob
tained and simplified, and their study in various limits is used 
to reveal properties of the models tha t are otherwise hidden.

3. A detailed study of the zero tem perature properties of the A- and 
B-models. The ground state phase diagrams are obtained and 
excitations above each phase are examined. It is found that the 
A-model behaves as an itinerant ferromagnet while the B-model 
is a Mott insulator of spin-singlets.

4. The development of a general formalism for the study of the 
thermodynamics of Bethe ansatz solvable models. New results 
include general temperature expressions for the dressing of en
ergy, spin and charge of excitations, and general temperature 
expressions for the thermodynamic variables.



iv



Acknowledgem ents

It is a pleasure to thank Sergey Frolov for his supervision of my doc

toral studies. I am very grateful to him for the subtle blend of guid

ance and freedom th a t he gave to me, for his support, and his gen

erosity with his time. I am also grateful to him for introducing me 
to the beautiful subject of integrability, and for sharing with me his 

perspective on science.

I am very grateful to my examiners Frank G ohm ann and Michael Pear- 
don for carefully reading this thesis and for their interesting questions 

and discussion during the viva voce.

I acknowledge valuable discussions with Niklas Beisert, Dm itri Bykov, 

Fabian Essler, Holger Frahm, Andreas Kliimper, Marcio M artins and 

Ryo Suzuki.

My studies were funded by Science Foundation Ireland under grant 

No. 09/R FP/PH Y 2142, and for this I am grateful.

In addition I would like to thank my family for their love and support 

since the day I was born. I wish to dedicate this thesis to my parents 

John and Mary Quinn.



ii



Contents

1 Introduction 1

1.1 Summary of the A -m odel.......................................................................  4
1.2 Summary of the B -m odel.......................................................................  6
1.3 Extended m o d e ls ....................................................................................  7
1.4 Outline of the thesis ..............................................................................  8

2 Integrable lattice m odels 11
2.1 The Hubbard model .............................................................................. 12

2.2 Extended Hubbard m o d e ls ....................................................................  13
2.3 Opposite models ....................................................................................  16
2.4 Dynamical sy m m etry .............................................................................. 17

2.5 Quantum inverse scattering m e th o d .................................................... 19

2.6 Hubbard-Shastry m o d e ls .......................................................................  22

3 Exact solution 29

3.1 Thermodynamic Bethe a n s a tz .............................................................  31

3.2 Excitations about eq u ilib riu m .............................................................  37

3.3 Thermodynamic v a r ia b le s ....................................................................  49

3.4 Zero te m p e ra tu re ....................................................................................  51

4 Therm odynam ics of the H ubbard-Shastry m odels 59

4.1 Bethe equations and the string liy p o th e s is ........................................  59

4.2 Free energy and the TBA equations.................................................... 63

4.3 Simplification of the TBA equations.................................................... 66

4.4 Various l im i t s ........................................................................................... 71

iii



C O N T E N T S

4.4.1 Limits of tem perature ............................................................  71
4.4.2 Limits of magnetic field and chemical potential ..................  72
4.4.3 Limits of the coupling c o n s ta n t ................................................ 73

4.5 TBA for the opposite models ............................................................  78

5 The A -m odel at zero tem perature 81
5.1 The m o d e l..................................................................................................  81
5.2 Ground state phase d ia g ra m .................................................................. 85
5.3 Excitations ...............................................................................................  86

6 The B -m odel at zero tem perature 91
6.1 The m o d e l..................................................................................................  91
6.2 Ground state phase d ia g ra m .................................................................. 95
6.3 Excitations ...............................................................................................  98

7 Integrable extensions of th e  H ubbard-Shastry m odels 109
7.1 The H am iltonians........................................................................................ 109
7.2 Bethe eq u atio n s ........................................................................................... 112
7.3 TBA e q u a tio n s ........................................................................................... 114
7.4 Ground state phase d ia g ra m .................................................................... 118

8 Outlook 121

A C onventions, definitions and notations 125

B Graded vector spaces 129

C Shastry’s R -m atrix 131

D Algebraic lim it of the T B A  equations 135

E The t - J  model: the lim it o f strong Coulom b repulsion 137

Bibliography 139

iv



Chapter 1 

Introduction

The quest to understand strongly correlated electrons in low-dimensional systems 
represents an important frontier in the field of condensed m atter physics [1]. 
There exist a range of materials whose behaviour is strongly correlated and for 
which a proper understanding has yet to be established. Prominent in this list 
are the high-Tc superconductors [2], itinerant ferromagnets [3] and heavy fermion 
systems [4],

The complete description of a solid is a complex many body problem. Sim
plifications and exact methods are crucial for progress to be made. In particular, 
exactly solvable models provide a bedrock on which more realistic models can 

be constructed and examined. The most important such model is tha t of free 
particles. It can be solved in any dimension for both bosons and fermions. The 
physics of the majority of metals can understood bj  ̂ considering the effect of in

teractions on an exact free solution. An important example is Landau’s much 

celebrated theory of the Fermi liquid [5].

Strongly correlated materials however are those which cannot be understood 
by reducing the complexity to a non-interacting picture. The collective behaviour 

of the constituents can drive the material into unexpected phases, and interact

ing exactly solvable models are invaluable for getting insight into such effects. 

The Hubbard model [6] is a prominent example. Indeed it has become a corner
stone of investigations into strongly correlated electronic behaviour. The model 

is defined on a lattice and its Hamiltonian has two contributions: a kinetic term 
which describes the hopping of electrons and an interaction term which captures
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1. INTRODUCTION

Coulomb repulsion by penalising doubly occupied sites. The model is integrable 
in one dimension, and describes a Mott insulator [7], which can be seen through 
its Bethe ansatz exact solution [8, 9].

The Hubbard model is an effective tight binding model in which all the physics 
is projected onto a single band of electrons. That systems of strongly correlated 
electrons can be accurately described by such an effective lattice model is an 
assumption that is central to this thesis. This hypothesis has been the basis 
for great amount of work over recent decades, in particular since the discovery 
of unconventional superconductivity by Miiller and Bednorz in 1986 [10], and 
subsequent arguments put forward that this physics can be captured by such 
single band tight binding models [11, 12]. The subject of strongly correlated 
electron behaviour is nevertheless a field with many open problems. This is due 
in no small part to the great difficulty involved in extracting information from 
even such relatively simple models.

In this thesis we investigate a new family of models for strongly correlated 
electrons which are exactly solvable in one dimension. These are the Hubbard- 
Shastry lattice models which were introduced by the author in [13]. In particular 
we focus on two members of this family which we refer to as the A-model and 
the B-model. Like the Hubbard model they describe a single band of electrons 
interacting on a lattice, but the models are quite distinct and the physics they 
exhibit is different. We will see tha t in one-dimension the A-model exhibits 
features of itinerant ferromagnetism, while the B-model is a special Mott insulator 
in which the electrons are paired into spin-singlets.

The A- and B-models have Hamiltonians which are more involved than that 
of the Hubbard model. Both have correlated hopping terms, where the magni
tudes of the hopping amplitudes depend on the occupation of the lattice sites by 
other electrons. In addition they have extra effective interactions th a t take into 
account processes such as nearest neighbour Coulomb interaction, spin exchange 
of two neighbouring electrons, and the pair hopping of two electrons from one 
site to a neighbouring site. The relative contributions of these terms are strongly 
constrained by the integrabihty of the models. Like the Hubbard model they 
both have one free coupling constant, after we discount the overall normalisation 
of the Hamiltonian.
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We do not attempt to directly physically motivate the models. Rather we 
are interested in them as they are exactly solvable and so have the potential to 
provide insight into some class of non-perturbative physics.

In one dimension the models can be obtained from Shastry’s R-matrix, the 
same object that governs the integrability of the Hubbard model [14]. Normally 
an R,-matrix depends on two spectral parameters through their difference, and 
is thus invariant under shifts of the spectral parameters. Shastry’s R-matrix is 
special hoAvever as it is of a non-difference form [15], and so the actual value 
of the spectral parameters are important. This was noted in particular by [16, 
17], who used this extra variable to construct a one-parameter extension of the 
Hubbard model. Their extension is hermitian for purely imaginary values of this 
parameter and is in fact also hermitian along another line for complex values of 
the parameter. The model is parity invariant only for special distinct values of 
the parameter however and these correspond, in addition to the Hubbard model, 
to the A- and B-models, and the su(2|2) spin chain.

The models are thus constructed to be exactly solvable in one-dimension by 
Bethe ansatz [18]-[22]. In Bethe ausatz solvable models the complexity of cal
culating the spectrum is reduced to the solution of the Bethe equations, a set 
of polynomials whose degree scales linearly with the length of the system. Each 
solution corresponds to an eigenstate of the model and gives directly the associ
ated energy eigenvalue. In the thermodynamic limit the roots of these equations, 
in general complex, align into patterns on the complex plane known as Bethe 
strings. This gives rise to a physical picture: the different types of Bethe strings 
can be understood as the particle content of the model. The free energy can thus 
be written and its minimisation gives access to the equilibrium state. In this way 
one goes from the full information about the spectrum that the Bethe equations 
provide to the physically interesting region.

In this thesis we focus on determining the ground state properties, which 
appear in the zero temperature limit, as these shed most insight into the behaviour 
of the models. By working in the grand canonical ensemble we can control the 
density and magnetisation of the ground state, by coupling to them through a 
chemical potential jj, and magnetic field B  respectively. The ground state phase
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1. INTRODUCTION

diagrams are determined and the behaviour of excitations above each phase are 
investigated.

We pay particular attention to the dressing of the spin and charge of the ex
citations, which is quite non-trivial in general. A comment is in order here. The 
zero tem perature long-range physics of many one-dimensional models of electrons 
may be captured by the Luttinger hquid, see e.g. [23]. In the Luttinger liquid 
spin-charge separation is exhibited, the excitations carry either spin or charge 
and propagate at different velocities. Let us stress however tha t individual quasi
particle excitations need not exhibit spin-charge separation, even at zero temper
ature. In general these carry both spin and charge, the magnitude of which varies 
with the momentum of the excitation. This is compatible with the Luttinger liq
uid description as the excitations therein are wave-like. They are composed of 
infinitely many excited quasi-particles carrying infinitesimal energies, and in this 
limit spin-charge separation may be seen. The non-trivial dressing of spin and 
charge beyond the Luttinger regime does not appear to have received much a t
tention. This leads us to speculate that these features may account for some of 
the anomalous behaviour observed in experimental studies of strongly correlated 
materials. It would be interesting to consider issues such as the unusual temper
ature dependence of resistivity, the Hall coefficient, and spin excitations in this 
context, see e.g. [24, 25].

Let us now summarise the results of our investigations of the A- and B-models.

1.1 Sum m ary o f th e  A -m od el

First we comment on the model’s Hamiltonian. The kinetic term is of a compli
cated correlated hopping type, and does not reduce to free fermions for any value 
of the coupling constant. Moreover, the parity invariance of the kinetic term is not 
straightforward, despite the fact tha t the spectrum of the model is explicitly par
ity invariant. It is necessary to supplement the naive parity transformation with 
a change of basis generated by a non-trivial unitary transformation. In the limit 
of weak coupling constant the model reduces to the su(2|2)-spin chain [26], the 
model of graded permutations. In the strong coupling limit the Hubbard on-site 
interaction is the dominant term in the Hamiltonian. Here the model behaves
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1.1 Sum m ary of th e  A -m odel

as a ferromagnetic t -J  model however, in contrast with the antiferromagnetic 

behaviour of the Hubbard model in this limit.

The ground state of the model is spin-polarised for the full range of electron 

density and as such the model describes an itinerant ferromagnet. It contains only 

spin-np electrons for a magnetic field B  > 0, only spin-down electrons for B < 0 

and exactly at 5  =  0 there is degeneracy between all levels of magnetisation. This 
behaviour is reminiscent of the ferromagnetic Heisenberg spin chain. That the 

behaviour extends to all fillings however is quite non-trivial, especially considering 
that the Hamiltonian of the model contains only nearest neighbour terms. The 

phase diagram is presented in Figure 5.3 for fi < 0 and B  > 0. The density 
increases for increasing /i either side of half-filling. There is a range of /U for 

which the ground state is half-filled indicating tha t this is an insulating phase.

Now we come to the excitations above the ground state. At half-filling all 
excitations carrying charge are gapped. Gapless excitations only exist for B =  0 
and these are magnons and their bound states, and at low energies they have 
quadratic dispersion. The simplest excitation carrying charge is an electron
like excitation. This is gapped at half-filling but becomes gapless with linear 
dispersion away from half-filling. It carries the charge and spin of an electron for 

all fillings and all values of B  and its spin is aligned with that of the spin-polarised 
ground state. There is no elementary excitation of the opposite spin however. 

Such an excitation should in fact be regarded as a compound excitation of the 

ahgned electronic excitation and a magnon. There are further excitations which 

are bound states of electronic and magnonic excitations but these are gapped 

throughout the parameter space. The excitations that behave as magnons at half

filling retain their quadratic dispersion away from half-filling but get dressed with 

some charge in addition to their spin. As consequence of the quadratic dispersion, 

the spectrum of low-lying excitations cannot be linearised at any filling in zero 

magnetic field and the system cannot be approximated by a Luttinger lic^uid. This 

is evidenced by the existence of the gapless electronic excitation away from half

filling and the lack of spin-charge separation. In the presence of a magnetic field 

the dressed magnons become gapped, and there are then no low-lying excitations 

tha t decrease the magnetisation of the ground state without decreasing the filling.
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1. IN T R O D U C T IO N

1.2 Sum m ary of the B-m odel

In the B-model each of the interaction terms appearing in the Hamiltonian appear 
at the same order of magnitude. Unlike the Hubbard and A-models, there is no 
value of the coupling constant for which the Hubbard interaction is dominant. 
This is a consequence of a hidden dynamical su(2|2) symmetry tha t the model 
exhibits for all values of the coupling. This includes, in addition to two sets of 
bosonic su(2) generators tha t act independently on the charge and spin degrees 
of freedom, a set of fermionic generators that mixes these degrees of freedom. 
In the weak coupling limit this dynamical symmetry becomes singular and the 
model reduces to free fermions. In the strong coupling limit on the other hand 
the model is equivalent to the Essler-Korepin-Schoutens (EKS) model [27] with 
its coupling [7 =  4.

The B-model describes a Mott insulator, like the Hubbard model, but the form 
of the ground state is quite different. The ground state phase diagram is presented 
in Figure 6.2. For B  =  0 the magnetisation is zero and all of the electrons are 
paired into spin-singlets. For ji < —2 the energy cost of having any particles in 
the ground state is too high but as ju increases beyond this value the ground state 
starts to fill with spin-singlets. The density increases with increasing up to 
some value /xq < 0 at which point the ground state becomes half-filled. Beyond 
fio the density does not change for a range of //, which indicates that in this 
regime the model is insulating. Although the spin-singlets are paired electrons 
they have no binding energy. The pairs can be broken by an introducing an 
arbitrarily small field B. The ground state then contains a mix of spin-singlet 
pairs and spin-polarised electrons, and is magnetised. When B  reaches 2 + fi all 
of the spin-singlets pairs get broken and the ground state becomes maximally 
spin-polarised.

The B-model has gapless excitations spin carrying so long as the ground state 
is not spin polarised. There are also gapless charge carrying excitations away 
from half-filling. In general all excitations carry both spin and charge to some 
extent. A special regime however is at half-filling with B =  0, where the ground 
state has zero magnetisation and is in an insulating phase. Here a strong form 
of spin-charge separation emerges: all excitations are scattering states of gapless
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1.3 E xtended m odels

spinons and gapped holons. The picture is similar to that of the Hubbard model 
[9], the difference is tha t here the spinons are dressed electrons and the holons 
are dressed spin-singlets whereas in the Hubbard model the spinons are dressed 
magnons and it is the holons that are dressed electrons. If one goes away from 
half-filling or introduces a magnetic field then the spin and charge become energy 
dependent. Keeping the magnetic field zero and going away from half-filling the 
dressed spin-singlet becqmes gapless. It remains pure spin but the charge it carries 
increases, and increases further with increasing energy. In particular, away from 
half-filling the magnitude of the charge carried by a particle excitation is greater 
than tha t carried by a hole excitation. The electrons are also gapless here but 
get dressed with a charge in addition to their spin. The dressed charge of an 
excited electron does go to zero however as its dressed energy goes to zero, and 
so these excitations are compatible with the spin-charge separated excitations of 
a Luttinger liquid. If on the other hand a magnetic field is applied at half-filling, 
then the spin-singlets get dressed with some spin in addition to their charge, but 
with a polarisation opposite to tha t of the applied field. Here the dressed electrons 
remain pure spin, and so the magnetic field has the effect of depleting the charge 
carriers. Let us conclude by remarking that the dressed electrons display an 
“hourglass” dispersion and tha t away from half-filling and in the absence of a 
magnetic field it can be clearly seen tha t the spin-singlets are held together by 
spin-spin interactions.

1.3 E xtended  m odels

The interactions of the A- and B-models just discussed are strongly constrained by 
their integrability. Physically it is interesting to consider the effect of decoupling 
the relative strengths of the interactions. Perturbing some interactions may allow 
new phases to develop, and understanding these effects may reveal much about 
the microscopic physics that gives rise to such phases.

For example, recall that in the B-model the coupling constant enters in such 
a way tha t all interactions are of the same order of magnitude. As the Hubbard 
interaction is generally thought to be the dominant interaction it would be inter
esting to examine the effect of increasing it. Indeed the resulting two parameter
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1. INTRODUCTION

model interpolates between the B-, H ubbard, EKS, and t - J  models and so it 

might be a useful toy model for studying transitions between the phases they 

exhibit. A nother direction would be to investigate if there is a perturbation  to 

the B-model th a t gives a binding energy to the paired electrons th a t make up 

the ground state. As we know th a t the electrons are held together by spin-spin 

interactions, it would be natu ra l in this regard to  consider the effect of increasing 

the m agnitude of the anti-ferrom agnetic spin exchange interaction. As to the A- 

model, let us recall th a t the phase diagram was very simple. For now one can only 

speculate on w hat new and interesting behaviour variations of the interactions 

would open up.

N aturally it is to be expected th a t in general such extensions destroy the 

integrability of the models. There do however exist certain special cases where 

they do not. In particular it is possible to decouple the H ubbard interaction 

for both the weak coupling limit of the A-model and the strong coupling limit 

of the B-model while preserving integrability. This is fortunate as the Hubbard 

interaction is perhaps the most physically im portan t and it is desirable to be able 

to control it.

Remarkably, these integrable extensions of the A- and B-models are in fact 

the same model up to the overall sign of the Hamiltonian. Furtherm ore they 

are equivalent to the EKS model. The formalism th a t we use to the study the 

therm odynam ics of the H ubbard-Shastry models can be naturally  adopted to 

the EKS model, and allows us to obtain simplified therm odynam ic Bethe ansatz 

equations. We obtain the  ground sta te  phase diagram  and find th a t the role 

played by the decoupled H ubbard interaction is quite straightforward, it am ounts 

to a shifting of the chemical potential. For the B-model in particular we see th a t 

this has no dram atic effect on the physics.

1.4 Outline of the thesis

Let us conclude the introduction with an outline of the thesis. The work is based 

prim arily on the au tho r’s two papers [13, 28].

C hapter 2 contains an investigation of the subject of integrable lattice models 

for strongly correlated electrons. F irst the H ubbard model is introduced. Then
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1.4 O utline o f the thesis

considerations are made on what extensions of the model may give rise to inter

esting physics, and it is here th a t the origin of the H ubbard-Shastry models is 

identified. Symmetry plays an im portant role in the discussion and we proceed to 

discuss dynam ical symmetry. The quantum  inverse scattering m ethod is outlined 

and is used to construct the H ubbard-Shastry models. The Bethe equations are 

examined and the herm itian and parity  invariant models are identified.

In chapter 3 a general formalism for the exact solution of Bethe ansatz solvable 

models is presented. Focus is placed on obtaining therm odynam ic quantities and 

to investigating excitations about equilibrium. The zero tem perature limit is also 

considered in some detail.

The foundations for the study of the therm odynam ics of the H ubbard-Shastry 

models are then made in chapter 4. In particular the therm odynam ic Bethe ansatz 

equations are obtained, simplified, and examined in various limits.

Chapters 5 and 6 contain detailed studies of the A- and B-models respectively. 

General features are first examined a t the level of the both  the Hamiltonian and 

the Bethe equations. The m odel’s exact solutions are used to construct the ground 
sta te  phase diagram  and to investigate excitations at zero tem perature.

The integrable extensions of the A- and B-models are studied in chapter 7. 

Their equivalence is shown, and the TBA equations and ground sta te  phase dia

gram are obtained.

In appendix A our conventions, definitions and notations are summarised. 

A ppendix B presents the formalism th a t we use for graded vector spaces. The 

sym m etry algebra su(2|2)c is discussed in appendix C and Shastry’s R-m atrix is 

explicitly presented. The solution to  the algebraic limit of the TBA equations is 

presented in appendix D. Finally in appendix E it is shown how the t - J  model 

appears from a general model in the limit of strong Coulomb repulsion.
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Chapter 2 

Integrable lattice m odels

There is great difficulty involved in determining the properties of an arbitrary 
lattice model. Complexity grows rapidly with system size and exact diagonalisa- 
tion is only possible for very small systems. Beyond models which are essentially 
non-interacting, it is difficult to get a clear picture of a model’s physics. In one 
dimension however a special class of models enjoy the property of integrability. 
This which allows direct access to their physics by means of an exact solution.

In this thesis we focus our attention on lattice models of strongly correlated 
electron systems. This leads us to consider lattice models with four states per site: 
the site can be either empty, occupied by an electron with spin-up or spin-down, 
or the site can be doubly occupied containing both a spin-up and a spin-down 
electron. Due to the fermionic nature of electrons these states generate a four 
dimensional graded vector space. Let us denote this space by V and write its 
basis as

ki) |0)) 1̂ 2) c |cj|0), jea) o  cj|0), \e^) o  c | |0 ) , (2.1)

where cj., are the canonically anticommuting fermionic operators which respec
tively create and annihilate electrons of spin a = t , and |0) is the vacuum state. 
The states {|ei), |e2)} are graded with respect to {jea), |e4)}, and by convention 
we call the first pair even and the second pair odd. Our conventions for graded 
vector spaces follow closely those of [29, 9] and are presented in Appendix B. In 
this thesis we focus on models on a periodic one-dimensional lattice of length L,
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2. INTEGRABLE LATTICE MODELS

with Hilbert space given by the L-fold tensor product of V

H  =  (2.2)

Such models are well suited to  capture the physics arising from the strong corre

lations of electrons.

2.1 The Hubbard m odel

A central role in the study of strongly correlated electronic behaviour is played 

by the H ubbard model [6]. The model has a kinetic term  th a t captures the 

hopping of electrons around the lattice and an interaction term  th a t penalises 

having a spin-up electron and a spin-down electron on the same site. In this way 

the model describes mobile electrons subject to Coulomb repulsion. The model 

exhibits a m etal insulator transition, becoming an insulator a t half-filling. It is 

known as a M ott insulator [7] as the insulating phase is driven purely by electronic 

correlations. Moreover, the model is integrable in one dimension and its exact 

solution [8] provides a clear understanding of the nature of the M ott transition. 

The book [9] provides an extensive review of the one-dimensional H ubbard model. 

The Ham iltonian of the one-dimensional Hubbard model is

L L

H  =  E  =  E  { T « + . +  , (2^3)
j= l j= l

where L  is the length of the chain and the kinetic and potential term s are given

by

^^j,k — ~  3̂ ) ( 2 -4 )

cr=t,4-

V f ,  =  +  (2-5)

Here the fermionic operators carry an index to label the site on which they act. 

The operator rij o- =  ' ^ \ c r ^ j ,a  is the local particle number operator for electrons of 

spin a  a t site j ,  and in w hat follows we also use i i j  =  iij -f- -I- The coupling 

constant u is u =  t/ /4 i,  and the hopping param eter t  is set to 1.

12



2.2 E x tended  H u b b ard  m odels

The Hamiltonian (2.3) has a lot of symmetry. Beyond possessing parity and 
translational invariance it is invariant under a spin su(2) and a charge su(2), the 
generators of which are given respectively by

(2 .6 )
s+
77 +

= =1 s ; , S -

= z U -

1

v" =

where

S7
Vj = ^{nj -  1) . (2.7)

To gain control over the electron density and the magnetisation it is useful to 
consider the more general Hamiltonian

H - / / , N - 2 B S %  (2.8)

with N =  = 2t7̂  +  L. Here the chemical potential /i and magnetic field
B  break the charge and spin su(2) respectively. Each leave a u(l) subalgebra 
unbroken as [H, N] = 0 and [H, =  0. We will see in section 2.4 that the su(2)
symmetries have been dynamically broken. Let us observe that

V " =  E  =  E   ̂ (2^9)
3 = 1  j = l

The Hubbard Hamiltonian is most commonly presented in a form that hides the 
charge su(2) symmetry with fi =  —2u and 5  =  0 in (2.8).

2.2 Extended Hubbard m odels

The Hubbard model is an effective model for the behaviour of electrons in a solid. 
For a given material the effective model on T-L, given by (2.2), can be obtained by 
integrating out all degrees of freedom except for those corresponding to a single 
band of electrons, and in the process projecting the physics onto Ti. In practice 
this is a very difficult task, especially if the electrons exhibit strong correlations 
and so mean field techniques cannot be used. It is of course not to be expected 
that the resulting Hamiltonian is that of the Hubbard model (2.3), in general

13



2 . I N T E G R A B L E  L A T T I C E  M O D E L S

all possible processes will enter the effective model w ith some coefficient. W hile 

the physics of the H ubbard model may be typical of a class of behaviour on 7i, 

it is likely th a t there is a range of behaviour th a t it does not capture. In this 

thesis we identify and study exactly solvable models which may be viewed as 

representatives for other possible classes of behaviour.

Let us consider a general model on T-L. If the model is completely arb itrary  

then there is little th a t can initially be said. Physics is described by the languages 

we have at our disposal, for example symmetry, geom etry and topology. Here we 

wish to focus on symmetry^, in particular as we are considering models in one 

dimension. Firstly, as electrons have spin-1/2 it is natu ra l to have an su(2) 

sym m etry on the sta tes \e^) and \e^) of (2.1). For the other two states \e\) 

and 162) to be related by sym m etry it is also natu ra l to have an su(2) acting 

on them , as indeed was the case for the H ubbard model (2.6). An interesting 

question now is w hether all four states can be related by sym m etry? Here we 

recall th a t the sta tes {Ics), le4 )} are graded with respect to { |ei), 1̂ 2)}, i.e. one 

set is fermionic while the  other is bosonic. Thus a superalgebra is needed and the 

natural candidate is su(2|2), which has, along with the two su(2) algebras, a set 

of fermionic generators th a t act between them . The sym m etry su(2|2) is however 

very restrictive, it constrains the Ham iltonian to act as graded perm utations on 

states a t neighbouring sites [26]. For a model which has two states per site, such 

as the Heisenberg model, there is not much ex tra  freedom beyond perm utations, 

but in the present case these fall far short of taking full advantage of the richness 

of the H ilbert space.

It is a remarkable fact th a t su(2|2) adm its an exceptional central extension 

su(2|2)c. The extension explicitly breaks the supersym m etry but the algebra 

nevertheless mixes the four sta tes (2.1). Interestingly the H ubbard model can be 

directly related to su(2|2)c [31]. Moreover, there is a family of models th a t orig

inate from this exceptional sym m etry algebra. These are the H ubbard-Shastry 

models which are the  main subject of this thesis. A discussion on su(2|2)c is 

presented in appendix C and the relationship to  the H ubbard-Shastry models is 

developed in section 2.6.

^The following discussion is motivated by a similar consideration in [30]
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2.2 E xtended Hubbard m odels

For now let us make some general considerations on the form of possible 

nearest neighbour Hamiltonians acting on H.  First we introduce some additional 
interactions complementing the Hubbard interaction . These are

(n^ -  l)(nfc -  1) -  i  ,

= i(s;s,- + s-s+) + s,̂ ŝ

1 1^Ik = 'Hk + V] r]l) =  +

The charge-charge interaction has the interpretation of nearest neighbour 
Coulomb repulsion because physically one should think of a site with one electron 
on it as being charge neutral, and so a site with electron density less than one is 
positively charged, and a site with electron density greater than one is negatively 
charged. The spin-spin interaction is the familiar spin-exchange term of the 
Heisenberg XXX spin chain. The pair hopping interaction relates to the
simultaneous hopping of two electrons from one site to a neighbouring site. Let 
us remark these interactions are expressed naturally in terms of the generators of 
the two su(2) algebras (2.6).

Now we write a general nearest neighbour Hamiltonian for a one-dimensional 
lattice of length L

L

H =  E  +  '‘H +  Koc V g v , +  KSS + Kp„ V™  , )  .
j=l

=  - ^  [cl^Ck ,a{ro +  T ir ij +  Tsiifc -F T s U j ^ ^ ^ i i k - a )  (2 .1 0 )
(7

+ (^0  +  +  T2rik,-a +  f^n j^a^k-a )  ■

We see tha t there is much freedom in this general expression. It could be made 
even more general, for example the spin-spin interaction could be made

anisotropic by decoupling the term within it, or one could even consider
breaking the spin symmetry of the kinetic term. A complete study, say by numeric 
methods, of (2.10) is an overly daunting task. The Hubbard-Shastry models

15



2. IN T E G R A B L E  L A T T IC E  M O D E L S

provide slices in the param eter space and, through their integrability, clear insight 

into the corresponding physics.

Let us m ention here some other integrable models defined on % .  The EKS 

model [27] is an integrable extension of the su(2|2) spin chain in which the Hub

bard interaction is decoupled. We will discuss this model in some detail in chapter 

7. Another is the supersymmetric-U model [32, 33]. This model is based on the 

four dimensional representation of su (2 |l)  and so does not have a sym m etry act

ing between the charge degrees of the freedom. Its quantum  generalisation has 

also been investigated [34, 35]. Then there are the Alcaraz-Bariev models [36] dis

cussed in the O utlook in chapter 8. These are based on the quantum  deformation 

of su(2|2)c [37], and can be regarded as quantum  generalisations of the Hubbard- 

Shastry models. Discussions similar to this can be found in the introduction to

Given a Ham iltonian one can study either the model determ ined by H  or —H . 

For example instead of the H ubbard model one could consider

This is the a ttractive H ubbard model and its physical properties are very different 

from the repulsive case, see e.g. [9]. For the H ubbard-Shastry models, which are 

not constructed purely from physical reasoning but rather to  have rich sym m etry 

on T -L , one has a choice for the sign of the Hamiltonian. W ith a view to cap tu r

ing some interesting physics the sign is generally chosen so th a t there is a cost 

for a doubly occupied site relative to a singly occupied site, m irroring Coulomb 

repulsion. Nevertheless it may be of interest to consider both  possibilities.

Although the properties depend strongly on the choice of sign the two cases 

are closely related. Let us dem onstrate this first for the case of the  H ubbard 

model. Under a unitary  transform ation generated by

[37, 38].

2.3 O pposite  m odels

L

(2 . 11 )

L

(2 .12 )
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2.4  D yn am ica l sy m m etry

with Q an arb itrary  real param eter, the kinetic term  in (2 .11), k = j  + 1, trans

forms as

T ,-, ^  U l( a )T , . ,U i( a )  =  -  +  e— , (2.13)
r r = t 4 .

while the interaction is invariant. Thus the Hamiltonian (2.11) is unitary 

equivalent to
L

{ T „ + . - 4 u V " , . )  (2.14)
j = l

under U i( 7r). In m om entum  space the transform ation Ui(o;) corresponds to a 

shift p ^  p' = p + a  as (2.13) is diagonalised as —2 ^ p C o s(p  +  a)(np-|- +  np.4̂ ). 

The a ttractive Hubbard model is conventionally w ritten as (2.14) so th a t states 

with p' =  0 then minimize the kinetic part of the Hamiltonian.

For the general H am iltonian (2.10) the unitary transform ation U i( 7r) maps 

T jj+ i  —T j while leaving the interaction term s invariant. Thus we choose

to write the Hamiltonian th a t has the opposite spectrum  as

H = -Ul(7r)HUi(7T).  (2.15)

In w hat follows we refer to H  as the opposite Hamiltonian.

Let us rem ark th a t for the H ubbard-Shastry models a particularly direct re

lationship between the models and their opposite models appears at the level of 

the therm odynam ic Bethe ansatz equation and this is discussed in section 4.5.

2.4 D ynam ical sym m etry

Sym m etry has played an im portant role in our discussion. Before we progress we

would like to discuss dynamical symmetries. We call a sym m etry dynamical if

the generators have explicit time dependence but are nevertheless conserved.

For example, suppose a set of sym m etry generators A j  do not commute with 

the Ham iltonian of a system but rather satisfy

[H ,A ,] =  A,A,-, (2.16)
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2. IN T E G R A B L E  LA TTIC E M ODELS

for some scalars \ j  G R. Then recaUing Heisenberg’s equation of motion for an 
operator 0{t)

dO{t) dO{t)
dt dt 

we note that the set of operators

Aj(t)  = (2.18)

are conserved, i.e. that they have zero total time derivative. If the operators 
Aj{t)  satisfy the same symmetry algebra as the Aj ,  then we say that the system 
has a dynamical symmetry, or that the symmetry is dynamically broken. The 
dynamical symmetry lifts the spectral degeneracy of states related by the sym
metry generators in an exact way. If say |^) is an eigenstate of H with energy 

then the states Aj{t)\'iJj) are eigenstates with energy E.  ̂+ Xj. As an equation, 
this statement takes the form

H\^P) = E^\^)  => H { A , { t m ) = { E ^  + X j ) { A , { t m ) .  (2.19)

In addition this shows that hermiticity of the Hamiltonian requires Xj € M.
More explicitly, let us consider a Hamiltonian with a spin su(2) symmetry. 

The generators (2.6) satisfy

[S^S^] =  ± S ^ , [S+,S-] =  2S% (2.20)

and commute with H°. In we introduce a magnetic field to the model coupling
to the spin as

H = H° -2 B S %  (2.21)

then
[H,S^] =  [H,S^] = 0, (2.22)

and the su(2) symmetry is explicitly broken. The symmetry is not completely
destroyed however, it is rather dynamically broken. The conserved dynamical 
symmetry generators are

S+{t) = , S -(t) =  , S^{t) = S" , (2.23)

and can be easily seen to satisfy the su(2) algebra (2.20).
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2.5 Q uantum  inverse scattering m ethod

In an analogous way a model w ith a charge su(2) symmetry, such as the 

models we consider in this thesis, has this sym m etry dynam ically broken if a 

chemical potential is introduced to  the model. Let us conclude this discussion 

by mentioning th a t in chapters 6 and 7 we will meet two models which have a 

dynamical su (2 |2) symmetry.

2.5 Q uantum  inverse scatterin g  m eth od

Having made some general remarks we come to the core of this chapter which is 

the construction of integrable lattice models on H. In this section we review the 

setup of the quantum  inverse scattering m ethod [20, 21, 9], the technique we use 

to achieve this. The resulting models come equipped with a set of commuting 

operators th a t allow for their exact solution. O ur discussion is close in spirit to 

th a t of [29, 39, 9]. We will deal generally w ith graded vector spaces B and will 

use the convention of the fermionic R-operator [39]. The R-m atrix lies a t the 

heart of the method, and in the next section we will use the su (2 l2 )c invariant 

Shastry’s R -m atrix [14] to construct the H ubbard-Shastry models.

For a given graded vector space V, an R-m atrix is an operator

R  =  ® e ^ : V ® V - > V ® V  (2.24)

for which

R,k =  (2.25)

satisfies the Yang-Baxter equation

R-12(2i, 22)R-13(-2i, 2;3)R-23(^2, -̂ s) =  R-23(22, 23)R-13(-Zl, -23)Ri2(^l, Z2) , (2.26)

an operator equation on Vi (8 V2 ® V3. Here R and V are given indices to indicate 

which spaces the R-matrices act on in the triple tensor product. The R-m atrix 

is endowed with two spectral param eters, which we label by Zj for each Vj on 

which they act. Let us make some restrictions for our discussion here. We will 

consider only R-matrices which reduce to the graded perm utation operator when
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2. INTEGRABLE LATTICE MODELS

the spectral param eters are set equal. We further require th a t the R-m atrix 

satisfies the com patibility condition of Kulish and Sklyanin [40]

6(R (^ i ,Z2)) = 0 ,  (2.27)

where e gives the grading of the operator (B.5).

From the R-m atrix we construct an operator, called the transfer m atrix, acting 

on % th a t will be the generating function for a set of com muting operators which 

will provide the integrability of the model. Indeed from this set we will obtain
the m odel’s Hamiltonian. Let us first introduce an auxiliary space, denoted as

Va, in addition to  the Vj composing % w ith j  labelling the site. The transfer 

m atrix  is defined as

t{z-Za) =  Str„Ria(2l, Za)R-2a(2:2, 2a) • • ■ R-La(2L,2a) , (2.28)

where z = {z\,  Z2 , ■ ■ ■, z l } ,  and it obeys the im portan t property th a t

[t(z;2:„),t(2;2^)] =  0 . (2.29)

Expanding t(f'; z'^) about Za gives

(̂2 ; z 'J  =  I0 +  (z'^ — Za)I\ + {z'^ — Z a f h  + • ■ • (2.30)

and thus the commuting set =  0 for all j , k  > 0. Let us prove eq. (2.29).
Considering the object

T-{z, Zfl) R ia('‘'l) -̂ a) 1̂ 2(1 (■̂ 2! Zq̂  ■ ■ ■ RLa(-2'ti Z^) , (2.31)

we see th a t it satisfies

^ a i a 2 ( ^ d i  7 ^ a 2 ) ^ a 2 ( ' ^ ?  ^ c l 2 ( ^ i  ^ 0 , 1 )  ( ^ ?  Z^^ ) T q 2 (-S^j - ^0 2  ) ^ a i a 2 ( ^ a i  5 ^ a 2 )

(2.32)

as a consequence of the Yang-Baxter equation (2.26) and the com patibility con

dition (2.27). M ultiplying this equation by R;7ia2(^“i ’ ■̂ 2̂ ) ^-nd taking the super 
trace one obtains equation (2.29) upon identifying Za^ as Za and Za^ as z' .̂

To define an integrable la ttice model acting on the H ilbert space we select 

an operator from the com muting set and choose it to be a Hamiltonian. Let us
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2.5 Q uantum  inverse sca tter in g  m eth od

restrict ourselves to a homogeneous chain, for which the spectral param eters at 

each site are set equal to some value zq'- zq =  {zo , . . . ,  zo}- A useful object is 

logt(zo; Za), and expanding it about Zo gives

logt(i*o; -a) =  logt(io; ^o) +  {za -  2:o)t(2o; -o) dz 2 = 20

First note th a t t(zo; -o) =  s tra (P i„  . . .  P/.a) and is thus proportional to the shift 

operator. We will identify the second term  as a Hamiltonian

H  =
\ — 1 d t ( 2 o, z')

dz Z = Z 0

(2.33)

where JV represents the freedom to choose a normalisation. We have th a t

I

dz 12 = ^ 0
^  ^ S t r f l P l a  • • ■ P j  — 1  a  R - j a ( ' 2 0 )  ^ j + 1  a  ■ ■ ■ P l o

i=l 2 = 20

— S t r g P j - j - 1  (j . . . P / ^ n P l a  ■ ■ • P j  —1 a  R i a  (-20)
z= zo

— ^   ̂P j+ 2 j+ l  • • • P L j + lP l j + 1  ■ ■ • P j  —I j+ l  StFflPj+1 a j _ R'jia(~05
J=1 2 = 20

using the cyclicity of the super trace and the identity (B .ll) ,  and similarly th a t

t(£o; ô)  ̂ =
1

dim(V)^
1

dim(V)^

s t r a ( P L a  ■ ■ • P l a )

str^j (P j(jP j-|-iq) P j _ i j -(-i . . .  P i  j-i-iP^j-i-i. . .  P j-|-2 j+ i)

for any j .  The Hamiltonian (2.33) thus decomposes to a sum of nearest neighbour 

term s H  =  Z^!=i H j j+ i with

H
iM

j j+ i dim(V)'
rS tr^  ( P j  a P j- ) - i  a )  S tr^  f  P j- ) - i  a R ,ja (2 ;o , 2 ) 'j

\  U.Z z = z q /

— iA /"P jj+ i^ ^ R jj+ i( 2 o, 2 )
(2.34)

2 = 2 0

and H l l +1 = H ^ i. In term s of the coefficients of the R -m atrix (2.24) we have

H,,+i =
2 = 2 0

E pt? ^ (2.35)
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2. INTEGRABLE LATTICE MODELS

In conclusion, we now have the machinery to extract an integrable homo
geneous lattice model with a nearest neighbour Hamiltonian from an R-matrix 
satisfying the Yang-Baxter equation (2.26). Often it is possible to go much further 
and to use the integrability to simplify the spectral problem. This is the subject 
of the algebraic Bethe ansatz, in which equation (2.32) plays a central role in 
determining the eigenvalues of the transfer matrix. One considers a general state 
and determines under which conditions it is an eigenstate of the transfer matrix. 
The conditions that are obtained are the Bethe ansatz equations. We will not go 
into any more detail here, but rather refer the reader to the texts [20, 21, 9].

2.6 H ubbard-Shastry m odels

The Hubbard-Shastry models are obtained from a particular R-matrix found by 
Shastry [14], Originally this R-matrix was constructed to bring the Hubbard 
model into the realm of the quantum inverse scattering method. Later it was 
found [31] to be equivalent to the su(2|2)c invariant R-matrix [41] which appears 
as a building block of the AdSs x scattering S-matrix playing an important 
role in the AdS/CFT spectral problem, see [42, 43] for a review.

Representations of su(2|2)c depend on the values of the central elements of 
the algebra, which can be conveniently parametrized by variables satisfying

x " * " - I - — x ~  ^  =  4 i u .  ( 2 . 3 6 )
x+ x~

This constraint defines a torus, with u a free parameter that characterises its 
elliptic modulus. We will restrict our attention to u being real. The spectral 
parameters of Shastry’s R-matrix R(.xf,.x^) can be understood as the variables 
parametrising the two 4-dimensional fundamental representations upon which the 
R-matrix acts. Further details on the algebra su(2|2)c and an explicit expression 
for Shastry’s R-matrix are presented in appendix C.

Shastry’s R-matrix gives rise to a family of models as any point x^  on the torus 
(2.36) can be used to obtain a homogeneous integrable model with a coupling 
constant u. In particular the Hubbard model corresponds to the point x~ = l/x+  
(here x'^ —)■ oo, see (H) in eqs. (2.43)) and u is precisely the couphng constant 
that appears in the Hubbard Hamiltonian (2.3). We refer to the more general
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2.6 H ubbard-Shastry m odels

family of models as to the Hubbard-Shastry models. In general however the 
corresponding Hamiltonian may be neither hermitian or parity invariant.

The transfer matrix (2.30) constructed from Shastry’s R-matrix has been di- 
agonalised by the algebraic Bethe ansatz [44, 45, 43]. The eigenvalues of t  are 
given by [46]

N
Vk
Vk-x t (2.37)

k = l

+e Vk-xt

N
i<t> JJI" V k - X g  

k = l  

N
Vk
Vk-x t

+̂_i_ 1 1 2i
( X g  - X -  ) { l - X g  X j )  J.+ 

(xt  - x j  ) ( l - x t  X~^ )  X g  _

- e ‘ * n

X

k = l  

( Mn
d=T-

n
j=i

■2iu N

j - x t  ^+2iu
fc=i

Vk + : ; f - - x t - - ^  

Vk + i^- ct  ^+4zu

Mn
j=i

W j —x t  V+6iu
+2iu

where 0 G K is an arbitrary twist which should satisfy the condition exp{i(f)L) = 1 
for a periodic spin chain, N  is the number of electrons in the eigenstate, and yk 
and Wj are the corresponding Bethe roots. ̂  For a homogeneous chain, setting the 
spectral parameters at each site equal to the spectral parameter at the auxiliary 
site x f  =  =  x"  ̂ the eigenvalue (2.37) becomes that of the shift operator

N

= n
k = l

i(t>yk ^  
Vk  -

(2.38)

This is naturally identified with ^nd so the momentum is given by

gjpfc _  gi<^^ — X

Vk -
  , -TT < Pk < TT .
X ~

(2.39)

The Bethe equations, which constrain the Bethe roots yk so that (2.37) corre
sponds to an eigenstate of the transfer matrix, are given by

M
Vk

N
■r-r Wk — Vj -r i n  _  i  r

W k  — V i  — i u  -*■-*-i=l  ̂ j= ljr

Vj  +  i  U

n
j=i

M

W j  +  2 U

Vk  — W j  — Z U 

Wk
Wk — Wj  

= i . j ^ k  ^ ^

+ < N / 2 ,

(2.40)

2i  u

^Our notations are related to the ones adopted in [9] as pj kj, Wj O  Aj.
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2. INTEGRABLE LATTICE MODELS

where Vk = ^{Vk + 1/Vk)-
We will re tu rn  to examine the physical consequences of the Bethe equations 

in chapter 4. For now we will to  use them  to investigate the space of H ubbard- 

Shastry models. In particular we consider w hat restrictions are placed on the

let us examine hermiticity. We observe from the expression for the Ham iltonian 

(2.33) th a t the model is herm itian if the eigenvalue of the shift operator (2.38) 

is a phase. Exam ining the Bethe equations (2.40) for =  2 and M  =  1 we 

see th a t there are two possibilities, either pi = pi  and p 2 = P2 or pi = P2 , and 

correspondingly either =  Vi and V2 =  V2 or Vi = V2 - Here bar denotes complex 

conjugation. Both possibilities lead to the condition

and the relations for v have two solutions: y = y and y  =  \ j y .  Considering

constraint equation (2.36) implies th a t is a phase. Thus we conclude th a t

herm itian H ubbard-Shastry models correspond to two lines in the param eter

Next we consider the restriction imposed by parity  invariance. At the level 

of the Bethe equations parity invariance am ounts to a sym m etry under p —̂ —p, 

and there are two ways this can be realised

These transform ations strongly constrain x"^ and 0, as p and y  are related through 

(2.39). Requiring also com patibility w ith the  constraint equation (2.36), one finds 

th a t there are four possible solutions leading to  four parity  invariant models, each 

of which satisfy the requirement to  be herm itian

param eters x ^  by the requirem ents of herm iticity and parity  invariance. First

(2.41)

first y = y, we see th a t eq. (2.41) implies th a t is a phase. On the other 

hand, pu tting  y = I j y  into eq. (2.41) gives ^  =  |^ ,  and com patibihty with the

space, determ ined by either ^  or x~^x being a phase.

p ^  - p ,  y ^  - y ,  w ^  - w ,
1

p —p,  y —>•— , w —w .
y

(2.42)

(H) x~̂  =  \ j x  =  00,
(A) x'^ = —\ j x  =  i(u +  x / r + l ? )
(B) x~̂  = —x~  =  i(u +  yj l  +  u^), 4> =  , n =  0 ,1 .

(p =  riTT, (2.43)
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2.6 H ubbard-Shastry m odels

The fourth solution a:"'" =  =  oo corresponds to the su(2|2) spin chain, but this

point is highly degenerate and to get the correct Bethe equations for the model 

from (2.40) one should send the roots Vk and to infinity in a proper way. 

Technically it is similar to the way we obtain the Bethe equations for the su(2|2) 

spin chain in section 7.2 from the weak coupling limit of the A-model. Indeed, 

as the su(2|2) spin chain appears in this limit we will not discuss it further for 

now. Later in chapter 7 the model will be discussed in some detail as the weak 

coupling hm it of the A-model.

Now we obtain the dispersion relation for the models. These we get from the 

eigenvalues of the Hamiltonian (2.33). Let us be exphcit and write the Hamilto

nian in term s of the param eters as

where x  is considered as a function of through the constraint (2.36) and the 

norm alisation is chosen to be

The sign of the Hamiltonian is fixed for each of the  special models by requiring 

the  H ubbard interaction term  to  have a positive coefficient for positive u. Then 

from the eigenvalues of the transfer m atrix (2.37) w ith =  1 we obtain the 

following dispersion relations

(A) £{p) = 2sin{p + 4>) — 2 \ / l  -I- =  — 2 cos(p) — 2 \Z T T u ^ , (2.46)

Here we have choosen 0 h =  and 0 b =  — f  as these lead to the minus

sign in front of the cosp term s in the dispersion relations.

Consequently, the direct calculation from the R -m atrix a t O’" =  l / x '^  does 

not give the H ubbard Ham iltonian (2.3) but rather one must perform the unitary 

transform ation generated by U i ( —7t / 2 ) to obtain it. Let us rem ark th a t it is 

this transform ation th a t is responsible for the tw isting th a t appears in the charge

(2.44)

(2.45)

(H) £{p) — 2s\i\{p + (j)) — 2\x =  —2 cos(p) — 2 u ,

(B) £{p) = 2cos{p + (b) =  —2 cos{p).
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2. INTEGRABLE LATTICE MODELS

su(2) generators (2.6). Similarly, to obtain the Hamiltonians for the A- and B- 
models one must apply U i(7r) and U i(—tt/2) respectively to the corresponding 
results from the R-matrix calculation.

These then are the Hubbard-Shastry models that will be of interest to us: 
the Hubbard model, the A-model, and the B-model. As the Hubbard model has 
already been extensively studied, we focus on the latter two. We construct their 
Hamiltonians through equation (2.35) from the explicit expression for Shastry’s 
R-matrix (C.8 ), giving the Hamiltonian density as a 16 x 16 matrix. To obtain the 
more physical form in terms of the fermion creation and annihilation operators 
Cfc t ’ we rewrite it using the following identification

c | =  e? -  , c-f =  , c |  =  , c; =  ,

c | ig) /4 -H- , c-|- ® /4 O  Ci.i , c | (g) /4 O  cj , C4. ® /4 O  C14 ,

P  • /4 (8) c | ■ 7® •<-)■ C2 .J. , P  ■ I 4 <S) ■ P  0  C2,-|- ,

P -h <S >c l - P  o  4^^, ^  C2 4 ,

where I4 is the 4 x 4  identity matrix, and P  = J2i ® is the graded
identity. Taking into account the above mentioned twists by Ui ((/>), the resulting 
expressions for the A-model and B-models are related to the general Hamiltonian 
(2 .10) by setting

2 cosh 2u 2

(2.48)

=  r ) I^CC =  - I^ S S  =  =   7—  , rr, A rjxcoshzy coshi/ (2.47)
To = 1 , Ti =  T2 =  — 1 — z tanh u , = 2i tanh u ,

for the A-model, and

kh = —î 'CC =  i^ss = '̂PH =  2 tanh ly,

To = 1, Ti =  T2 =  -1  + sech u , Tz = - 2ti .

for the B-model, where we have reparametrised the coupling constant as

u = sinhi^. (2.49)

Finally let us remark that a general expression for the Hubbard-Shastry 
Hamiltonian was derived in [16, 17], see eq. (12.229) of [9]. In the parametrization 
(12.109) used in [9] the A-model Hamiltonian (up to a unitary transformation)
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corresponds to I =  itt/A, and the B-model corresponds to jd =  tt/4. The line 
x~^x~ a phase corresponds to the line Re{fi) = 0, and the hne / x~  a phase 
corresponds to the hne Re{fx) =  vr/4.
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Chapter 3 

Exact solution

Integrable models have an exact solution tha t greatly reduces their complexity. 

The Bethe ansatz technique allows access to the non-perturbative behaviour of a 

model like no other method. By yielding analytic expressions it provides a clear 

picture of the physics exhibited.

An efficient way to determine thermodynamic quantities and the excitation 

spectnmi of integrable models in the thermodynamic limit was proposed by C. 

N. Yang and C. P. Yang for the case of the Bose gas with the delta-function 

interaction [19]. For the further development of this technique see [20, 22, 47]. 

In this approach one starts with the Bethe ansatz equations and describes their 

solutions in the thermodynamic limit. Complex roots of the Bethe equations 

for large length spin chains arrange themselves in regular patterns called Bethe 

strings. Assuming that all Bethe roots form strings of various kinds one can 

bring Bethe equations into a set of equations involving only the real parts of the 

roots. The procedure of classifying the strings and deriving the Bethe equations 

for the strings is called the string hypothesis. Equilibrium can then be accessed 

by minimising the free energy, which can be written explicitly in terms of the 

densities of the strings rapidities. This yields a set of coupled non-linear integral 

equations, called the Thermodynamic Bethe Ansatz (TBA) equations, from which 

the equilibrium and excitation properties of the model can be calculated. For 

the Hubbard model the string hypothesis and TBA equations were derived by 

Takahashi [48].
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3. EXACT SOLUTION

In this chapter we review this technique, presenting it in a very general form 

apphcable to a wide class of integrable models. Firstly in section 3.1 we outline 

the procedure by which one obtains the TBA equations. Here we rely on the 

ability to make a string hypothesis and so we restrict our attention to models for 

which this is possible.

Next in section 3.2 we present a detailed treatm ent of the study of excitations 

about equilibrium. There are some novel features of the formalism so let us briefly 

outline these. Firstly, individual particle and hole excitations are considered and 

explicit non-zero temperature expressions for dressed quantities such as energy, 

momentum, spin and charge are obtained. The resulting expressions include 

an important contribution that did not appear in previous studies which were 

restricted to particle-hole excitations [19, 20]. Secondly, the dressing of spin 

and charge of excitations [49, 50] is examined in some detail and a formula for 

the induced charge of the system that results from an excitation is provided. 

Thirdly, the focus is put on working with the Bethe strings as opposed to the 

roots of the original Bethe equations, and this allows a natural extension of the 

formalism for excitations presented in e.g. [19, 20] for the Bose gas, a model 

for which the Bethe roots do not form Bethe strings. Fourthly and perhaps the 

most convenient aspect of the formalism, when considering excitations at zero 

temperature the need to explicitly deal with mode numbers [51, 52] is overcome. 

Instead, possible restrictions on allowed excitations are related to properties of 

the kernels appearing in the Thermodynamic Bethe Ansatz equations.

The calculation of thermodynamic variables is next discussed in section 3.3. 

In particular we consider the charge densities, the susceptibilities, and the spe

cific heat. We obtain expressions for them, valid at any temperature, in terms of 

quantities tha t satisfy sets of integral equations. These make it possible to evalu

ate derivatives of the free energy, without explicitly having to take the derivative 

numerically.

Finally in section 3.4 we consider the important limit of zero temperature. 

Here the equilibrium state becomes the ground state and the formalism simplifies 

dramatically.
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3.1 T herm odynam ic B eth e  ansatz  

B ethe equations

Let us consider a one-dimensional lattice model with Ham iltonian H , on chain of 

length L, whose spectrum  is determ ined by a set of nested Bethe ansatz equations

Nb

,  . (3.1)
b j=l

We use indices a, b and so on to distinguish between the different types of Bethe 

roots corresponding to the different levels of the  Bethe ansatz, and the indices j ,  

k. are used to  distinguish between different roots of the same type. Here (pa is a 

constant which appears in particular as we have not excluded self-scattering from 

the product on the right hand side. For periodic boundary conditions and in the 

absence of a twist, =  0 if S a u ( O )  =  1 and =  1 if S a a ( O )  =  — 1. The roots 

are param etrised by a rapidity variable for which the scattering matrices are of 

a difference form: Sabiva.k^^b.j) =  Sab{Va,k — Vb.j)- For roots which do not carry 

mom entum  there is no term  in the Bethe equations, and by convention we 

set Pa = 0 for such roots.

To each Â a appearing in the Bethe equations (3.1) there is a corresponding 

conserved charge N,,. In general it may be convenient to  consider a different, 

more physical, set of conserved charges^ N j which are some linear combinations 

of the  Na- Let us write this as

N. =  5 ] w; N . ,  (3.2)
a

and we call w* the charge of a Bethe root of type a under N j. We stress th a t a 

and i are indices th a t take values in two distinct sets.

Each solution of the Bethe equations corresponds to an eigenstate of the 

model. In fact as the charges Nj are diagonal on these eigenstates, the Bethe 

equations give the spectrum  of the more general model H  — /XjNj, where we 

have introduced chemical potentials Hi for each of the conserved charges, and the

'̂ Scc for example section 4 where charge and spin are the conserved quantities of interest 
and are related to the conserved quantities enumerating the Bethe equations through eq. (4.2).
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3. EXACT SOLUTION

repeated index i is summed over. The energy of each eigenstate is determ ined by 

the corresponding solution of the Bethe equations through

Na

, (3.3)
a j = l

where £a is the dispersion relation for roots of type a.

Before we proceed let us make a general remark. Sometimes there are solutions 

to  the Bethe equations which include roots a t v =  oo. Such roots are insensitive 

to the finite roots w ithin the  solution and correspond to  (dynamical) symmetries 

of the model: the addition of such a root to a solution corresponds to the action 

of some sym m etry generator on the associated eigenstate. Sometimes it is useful 

to restrict a tten tion  to solutions which do not include roots a t y =  oo. The 

eigenstates one obtains from the Bethe equations are then highest weight states 

of the m odel’s sym m etry algebra.

String h ypothesis

In the limit of large L the roots of the Bethe equations align into regular patterns 

known as Bethe strings. We use greek indices a , /3, 7 to  label between different 

strings patterns. Each string can be param etrised by a single real param eter, 

which we write as Va,k, where again k distinguishes between different strings of 

the same type. The rapidity  of each root composing the string is then some 

function of Vâ k- Let us assume th a t in the L 00 limit every solution of 

the Bethe equations corresponds to  a particular configuration of Bethe strings. 

For large spin chain length L the Bethe equations can be rew ritten for string 

configurations by fusing together the  Bethe equations

N g

( -1 )^ “ =  n  n  ■ (3-4)
p j= l

The Bethe equation for each string is obtained from the product of the equations 

of the roots composing the string, and the string S-matrices S„p are appropriate 

products of Sab constructed by grouping together the Bethe roots on the right 

hand side into their string configurations. The number of equations in (3.4) is
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much smaller than  the number of equations in (3.1). T hat each solution of (3.4) 

nevertheless gives a solution of the full set (3.1) is the consistency condition for 

the string hypothesis. The set of real roots Va^k appearing in the string Bethe 

equations (3.4) are referred to as the string Bethe roots. As the Bethe strings 

provide a classification of the solutions of the  Bethe equations we can regard them  

as the particle content of the model. Q uantities for the Bethe strings such as tpa, 

pa,  £a and Wq are found by summing the contributions of the roots composing 

the strings.

T herm odynam ic lim it

To take the therm odynam ic limit it is useful to  introduce the counting function 

Za(v).  It is constructed by taking the logarithm  of the string Bethe equations 

(3.4), and treating them  as a function of the string Bethe root

Nfl

L a a Z a i v )  =  TTifa + L  Pa{v) + EE <Pa0(v,V0j),  (3.5)
15 j=l

where

<Pa0 =  ^ ^ O g S a 0  (3.6)

is the phase of the S-matrix. The counting functions allow one to  enum erate the 

Bethe strings because evaluates to an integer on each of the a-string  Bethe 

roots. We refer to these integers as the mode num ber of the Bethe strings. For a 

given root we denote the corresponding mode number as la.k =  ^Za{vn^k)-  

Moreover the counting function may evaluate to an integer for a rapidity

which is not th a t of a string of type a ,  and we call such mode numbers holes. Note 

the appearance of cr  ̂ in the  definition of the counting function. For momentum 

carrying strings =  s i g n ( ^ )  and this guarantees th a t the counting function is 

an increasing function of v.  For an n;-string which does not carry momentum, (Tq 

is determ ined by requiring the counting function to  be increasing. Let us remark 

th a t to  fully define the counting function (3.5) it is necessary to specify the branch 

of the logarithm . This does not affect the study of equilibrium properties, and 

of course should not affect the physics, bu t it will be im portant for the study
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of excitations and we will return to this issue when we begin to discuss them in 

section 3.2.

Taking the thermodynamic limit L —> oo with N a /L  fixed, one gets equations 

for the densities of particles and holes

1
Pa +  Pa — 27T

dpa
dv

(3.7)

where L p a ^ v  (respectively LpaAv)  is the number of integers corresponding to 

particles (respectively holes) tha t the counting function Lzaj2'n evaluates to over 

a range Aw. Repeated indices are summed over and * denotes convolution (see 

appendix A for the precise definition) over the domain of the rapidity of the 

appropriate string, which we denote by The kernels are defined by

, K,ap{v) =  Sa/3(t;) . (3.8)

Since the counting functions are all defined to be increasing functions it follows 

that the densities of all particles and holes in the equations (3.7) are positive.

The equations for the densities can be used to determine the total number 

of particles and holes for each type of string, which we call the range of mode 

numbers. Indeed, integrating equations (3.7) and multiplying by L one gets the 

range

Na + Na = L ^  + K p N p , (3.9)
Z7T

where is the number of holes of type a  in the state, and Apa =  1 * | ^ |  for 

momentum carrying strings and Ap^t =  0 for strings tha t do not carry momentum. 

The defined as =  1 ★ are constants. Note that all roots of the string 

Bethe equations are counted in the range, including those which correspond to 

V = oo. Furthermore since TVq >  0 eqs. (3.9) imply the following selection rules

< L  +  knpNp (3.10)
Z7T

which restrict the allowed N„ appearing in the string Bethe equations.
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3.1 T herm odynam ic B eth e ansatz

Equilibrium  sta te

To access the thermodynamic behaviour let us introduce the partition function 
of the model. In the grand canonical ensemble it is given by

Z = tr
H -  H i N ,

e x p  I -
T

(3.11)

where T  is the temperature. The partition function can be simphfied by work
ing directly with the Bethe ansatz eigenstates. In the thermodynamic limit the 
eigenvalues of the Hamiltonian H and the conserved charges Nj become

N a

E  ^  ^ ^  ^ ^ L  P q  ★  Set 1

a j = l

These provide us with a simplification as they depend only on the densities, which 
are macroscopic quantities, rather than on microscopic information such as the 
mode numbers of the Bethe strings composing the eigenstate. In particular, let 
us recall that for each interval Av  of rapidity of an a-string there are Lp^Av  
strings with rapidity in Av  and Lp^Av  holes. Then there are

^  [L{p^ + P a ) ^ v ) \

{LpaAv)\{LpaAv)\

possible reordering of the strings and holes of the a-strings with rapidity in A?;, 
and the eigenvalues (3.12) are insensitive to this. As L is large we can use Stirling’s 
formula to simplify this expression giving, to leading order,

ASa ~  Lpa log (l +  — ) + Lpa log (l +  — ) . (3.14)
P a Pa

The integral 50. = 1 * ASa is the entropy of an a-string and gives the correspond
ing weight in the partition function for a macroscopic state described through 
the densities. Thus on diagonalising the argument of the trace in the partition 
function (3.11) we get

Z = y  V[p]e -^ ,  (3.15)
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where the trace is replaced by an appropiately normalised functional integral 

f  V[p] which samples all sets of densities satisfying the selection rules (3.10). 

Here

f  =  e a * P a - T s  (3.16)

is the free energy, = £a — denotes the energy carried by an a-string, and 

s =  Yla S a / L  is the entropy density.
The equilibrium s ta te  is the dom inant contribution to the partition  function. 

In the limit L ^  oo this corresponds to the stationary  phase 6 f  = 0 of  (3.15). 

In the zero tem perature limit the equilibrium sta te  becomes the ground state  of
the model. Taking the variation of the equation for densities (3.7) gives

Spa + Spa = Ka0*Spp ,  (3.17)

and also the variation of the entropy density is

(55 =  J ] ]  1 ( 5 p o , l o g ^  + (5pa + Spa)log ( l  +  ^ ) )  . (3.18)^  ^  p n  p a  '

Then imposing 5 f  = 0 requires

log>"a =  ^  -  log ( l +  : ^ )  * . (3.19)

Here we have introduced the functions Yq. = ^ ,  which we will refer to as Y-
“  P a  ’

functions. These equations (3.19) are the conditions for equilibrium and are 

known as the therm odynam ic Bethe ansatz (TBA) equations. W ith  their solution 

one can further solve eq. (3.7) for the equilibrium densities. It is useful to also 

introduce the pseudo-energy defined as

ea = T \ o g Y a-  (3.20)

Both quantities and will be useful and we will use them  interchangeably.

We now obtain a rewriting of the expression for the free energy th a t involves 

the Y-functions instead of the densities. To this end we first rewrite the  entropy 

densities, using eq. (3.7), as



3.2 E xcitations about equilibrium

Expression (3.16) can then be simpHfied using the TBA equations (3.19) giving

dp
2 t t di;

log (1 + ^ ) .  (3.21)

The calculation of the free energy is an im portant step in the exact solution 

of the model, as it gives access to all therm odynam ic properties. To obtain it one 

needs to  first solve the TBA equations (3.19). This is by no means a straight

forward task  as they are a large set, usually infinite in num ber, of non-linear 

integral equations, with dependence on tem perature and the coupling constants 

and chemical potentials of the model. In general these cannot be solved analyt

ically and one m ust resort to numerical methods. A useful approach to solving 

the TBA  equations when they are infinite in num ber is outlined in [53].

The free energy gives access to the therm odynam ic variables in the standard 

way. In particular, the charge densities n^, the susceptibilities Xi^ and the specific 

heat capacity c are given by the following derivatives

_  d f  _  d ^ f  __
d T ^ -   ̂  ̂ ^

We will discuss the calculation of these quantities in some detail in section 3.3. 

F irst however we tu rn  our attention to  analysis of excitations.

3.2 E xcitations about equilibrium

Now we consider excitations about the equilibrium sta te  outlined above. Let us 

restrict our atten tion  to excitations where the numbers of excited roots are much 

smaller than  the numbers of particles in the equilibrium state.

We first re tu rn  to a point th a t was skipped above, the  choice of the branch 

for the counting function (3.5). The choice of branch affects the formahsm one 

obtains for the excitations and we present here w hat appears to be an optimal 

choice. In particular, in order to  obtain a reasonable expression for the dressed 

m om entum  of a string it is necessary to  keep track of the branch of each log 

term  in eq. (3.5). Moreover, the choice of branch is guided by the behaviour 

of the pseudo-energies for the equilibrium state. The branch of log and the
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range of momentum are chosen so that the counting function is continuous 

about the minimum of e^.

Let us be specific about the strings we will consider. For strings with rapidity 

variable defined on R we assume that the pseudo-energy is even, and monotonic 

on the interval (0, oo). Then there are two cases, and we give explicit expressions 

for the phase in each

•  Type 1: ea{v)  has a minimum at v =  0, and is increasing on the interval 

(0 ,oo),

y  log Sap{v,  t) =  2 -Kha0  +  TTCap +  ~  t) =  4 >a0 {v, t) , (3.23)

and the range o(pa{v)  is chosen so that it is continuous for v  along ( —00, 00).

•  Type 2: € a { j ) )  has a minimum at v  =  ± 00, and is decreasing on the interval 

(0 ,oo),

-  log Saffiv, t) =  2 -Kba0  -  TTCap sign(-y) -h - t )  =  (papiv, t ) , (3.24)
I

and the range of Pa{v)  is chosen so that Pa{—oo) =  Pa(-l-oo), and it is 

discontinuous only at w =  0.

Here
r v  j

I ^(1/3(0 1 Oq-^(oo) 1 1 (3.25)
J o  7T

bai3  is an integer capturing the freedom in the choice of branch, and the Cap 

are defined such that is as close to zero as possible subject to the

constraint that Cag is an even integer if Sq,^(0) =  1 and Cap is an odd integer 

if Srt/3(0) =  —1. Note that if S„^(±oo) =  1 (which is the case for rational S- 

matrices) then Ca/3 =  Kap- For type 1 strings <^q^(±oo, i) =  7t(cq^ ±  Kag) and 

the range of is ( p a g i + ^ i t )  — <l>a0 {—oo, t )  =  2 TTKa0 - For type 2 strings it is 

worth stressing that the scattering phase (pap is no longer of a diflierence form 

with this choice of the branch of logSa^j. It is mildly broken so that, for models 

with Cap =  the counting function and scattering phases would be continuous 

everywhere but at u =  0, the maximum of e^. The jump discontinuity of the
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scattering phase at =  0 is equal to =  2-KCap,  which is

equal to 2nKa0 if Sa/3(±oc) =  1.

These two cases capture the behaviour of m ost strings of Bethe ansatz solvable 

models. For strings th a t are not captured modifications of the subsequent analysis 

will have to be made^. In the next chapter we will see th a t the y-particles of 

the H ubbard-Shastry models must be considered carefully because their rapidity 

variable is not defined on M.

W ith  this technical point taken care of we now consider excitations above 

the equilibrium state. For definiteness we choose any one of the states which 

in the therm odynam ic limit contribute to  the equilibrium sta te  as a reference 

state. Let us say th a t the reference sta te  consists of Na  o-strings with rapidities 

Va.k  ̂ — 1? • • •) ^a-  This choice of reference s ta te  is unim portant as we shall see 
th a t all quantities of interest depend only on macroscopic quantities such as the 

densities.

Now consider a general excited sta te  and let us say th a t it consists of 

rt-strings wdth rapidities v^.k > =  1, • ..  , Na- These rapidities also satisfy the

string Bethe equations (3.4)

N g

^  Y l  Sa0 (Va,k -  V0j )  . (3.26)
/3 i = i

The rapidities of the excited sta te  can be divided into two groups. The first 

group consists of rapidities with mode numbers la.k which coincide w ith some of 

the mode numbers of the particles of the reference state. They are close to the 

corresponding rapidities of the reference state, th a t is, the difference between the 

rapidities w ith the same mode number is of order 1 /L .  We denote these rapidities 

as j . , k = 1 , N'^. The second group consists of the remaining rapidities, 

those which have mode numbers not coinciding with any mode num ber of the 

particles of the reference state. There are =  N'a ~  of strings of type a  

in this group. These rapidities will be denoted as Vaj. The reference state  also 

contains strings w ith mode numbers different from any Ia,k: the mode numbers

 ̂ For instance there are models where the counting function is not always monotonic. So 
long as it oscillates only a finite number of times however this should not affect the description 
of excitations above equilibrium.
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of the particles of the excited state. These correspond to holes of the excited 

sta te  and their rapidities will be denoted as Vx^. For a string of type a  there are 

Nl^ =  N a  — N'^ of them. One can th ink about the excited sta te  as being obtained 

by adding strings to, and removing strings from, the reference state. Let

be the to tal num ber of strings added to  the reference state, and let 

]\T  ̂ =  ^he to ta l num ber of strings removed from the reference state.

Thus the equations (3.26) can be rew ritten in the form

Uj  Sar,Kfe-^;r,)
'p - rN ^  C (  "  ^  \

( - 1 ) ^ - = n n  - V0,), (3.28)rij -  V,.)

where the product H /3 I I ^ i  includes the product it is

equal to (•, Wr, ) and reduces to S a0 { - , v g j )

in the therm odynam ic limit.

Here we have made an implicit assum ption th a t the mode numbers of every 

string in the reference s ta te  are also mode numbers of the excited state. This is 

justified a t non-zero tem peratu re as one can always choose the reference sta te  so 

th a t this is the case^ At zero tem perature however, specifically at half-filling, 

it may happen th a t the mode num ber of a string in the reference sta te  is not a 

mode num ber of the excited s tate , either due to a change in the range of mode 

numbers or an overall shift of the range of the counting function. For example 

if the range is decreased for an excitation and all mode numbers correspond to 

particles then some strings are necessarily removed, and moreover there is no 

excited s ta te  rapidity one can assign to them . We will return  to  discuss this 

when we trea t the zero tem peratu re limit.

'^Indeed the densities p{v), p{v) axe related to the numbers of particles and holes with 
rapidity in an interval du about v.  At non-zero temperature both the densities of particles 
and holes are non-trivial for all v and the particles and holes within cach interval dv can be 
rearranged. Thus one can always choose a reference state at non-zero temperature such that a 
finite number of particles and holes have required mode numbers.
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Let us relate the rapidities of the reference state Bethe roots to those with 

corresponding mode number in the excited state through

Ca\ f ^a,k)  in  r > n \
-  Vc,,k =  7; F  ’ (3-29)

ZTT L

where we have introduced Cq which are of order 1. It is possible to obtain a 

closed equation for Cq by subtracting the logarithm of the Bethe equations of the 

ground state (3.4) from those of the excited state (3.27) for Bethe roots with the 

same mode number. Expanding (3.27) and taking the thermodynamic limit one 

obtains

CaiPa "I" Pq) ~  C0P0 * 0oa "I" 0ar i (3.30)

with the help of the equation for densities (3.7). Here we have taken into account 

that

S „ p { v ) S p „ , { - v )  =  l  => =  (3.31)
z7^  ̂ at

and introduced the notation

yv
Xa =  5 ]  Xa, (t5a, ) , X ,. ) , (3.32)

j=l J=1

for any quantity A"’q, in particular

AT’'
0aa(^') =  ~

j=l j=l

The function F a  =  —Ca{pa +  Pa ) ,  which we refer to as the shift function [54, 20], 

is an important object and it satisfies the following closed eciuation

“  1 ~  ■ (3.34)

Another form of this equation which will prove useful is

^ ^ (pasi 4 ĉit /n o r \
QaPa -  CaPp * ■ (3-35)
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Dressed energy

The change in the energy of the excited state from the equilibrium state is given

by

No. Na ^

A E  =  X ] ( X ] “  X  ^c,iVa,k)j -)■ 6a -  6r + ^C aPa * , (3-36)
a k = l  k = l

where = ^Caiv),  and summation over a is assumed, and we have used the 
notation (3.32). Differentiating the TBA equations (3.19) and integrating by 
parts one gets

^  = (log y ,) ' -  , (3.37)

and substituting into (3.36) gives

A E  = e , - e ,  + T ^ C a P .  * ((log F J ' -  ^ (log YgY) , (3.38)
Z7T 1 -h  j  ^

Dependence of A E  on can be eliminated through eq. (3.35) yielding

T  1
A E  =  + —  CTc, (log(l + — )) '*  ((/>aa ~  0ar) • (3.39)

Then integrating by parts gives ^

A E  = e ^ - e , - T  log(l +  ;^ ) *  (K„a-K^r) +7"log(l +  r7^ ) ( k a a - k a r )  , (3.40)

where = Ya{v'^^^) is equal to evaluated at the value of v corresponding
to the maximum of the pseudo-energy, and recall kap =  1 * Finally
we use again the TBA equations (3.19) to obtain

=  X  + - I I  ( s + ^ l o g ( l  +  ^ ) k ^ r , )  • (3.41)
j=i  ̂ j=i ^

Hence the dressed energy of an a-string is

Ea{v) = ea{v)+ Tlog{l + y ^ ) k ^ a -  (3.42)

^Lct us remark that the jump discontinuity of 4>a0 for type 2 strings is 2iTCa0-, which is 
equal to 2TTkag only if Sq;3(±oc) =  1.
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3.2 E x c ita tio n s  ab o u t eq u ilibrium

Note th a t the last term  in the formula is rapidity independent and does not con

tribu te  to the to tal energy in a particle-hole excitation. In previous studies of 

excitations a t non-zero tem perature, see e.g. [20], only particle-hole excitations 

were considered and the dressed energies were given just by the pseudo-energies 

€a(v),  and tlie rapidity independent term  was neglected. Let us stress however 

th a t this term  is im portant, in particular so th a t in the limit of infinite tem per

atu re the dressed energies take their bare values Ea  =  Cq. as is expected. This 

follows as the functions become constant in the limit T  —>■ oo because the 

driving term s drop out of the TBA equations (3.19).

D ressed  m om entum

In a similar way the change in the momentum of the excited sta te  from the 

equilibrium sta te  is given by

Let us first rem ark th a t the momentimi of a sta te  is defined modulo 27t and thus, 

as the mom entum of the reference sta te  is fixed, the change in m om entum  is also 

defined modulo ‘In .  To simplify expression (3.43) we substitu te  (3.7) into (3.30) 

and get

1 dPn
Pa. —  P t + • (3.43)

(3.44)

M ultiplying by p^, integrating, and taking the sum over a  we find

(3.45)

and thus

(3.46)

Hence we identify the dressed m om entum  of an added a-string  as

P a Pa Pp *  ■ (3.47)

and a removed one with the opposite sign.
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3. EXACT SOLUTION

To examine the range of dressed momentum it is useful to note that

=  27r(p„ +  P a ) , (3.48)

which is seen using eqs. (3.7) and (3.31). For a-strings of type 1 the range 

of dressed momentum is over (Pfv(O) — 'n'iua + f ia) ,Pn{0)  +  +  ^a ) )  where

^q(O) =  Pq(0) +  2'nn^h0a +  =  1 * and fta =  1 * On the other

hand for strings of type 2 the range is split into two parts. Recall that the bare 

momentum of a type 2 Q-string has a jump at u =  0 and that it increases from 

Pa(o'aO) to Pq(—CT(jO). The range of dressed momentum in this case is thus over 

(Pa(c7„0),P„((T„0) +  7r(n„ +  n„))  and (P«(-cTaO) -  7r(n„ +  n„), Pa(-CTaO)). In 

general this may result in a gap in the dressed momentum.

Let us remark that the dressed momenta depend on the choice of branch of 

logSa/3, i.e. the in eqs. (3.23), (3.24). Considering only strings of type 1 and 

2 the dressed m omenta (3.47) can be written as

P a =  P a ~  P 0 *  ^I 3 a  ~  ~  ^  , (3.49)
0 o f type 1

where one is free to choose the integers Terms for c^a with ^  of type 2 do not 

contribute as we restrict ourselves to parity invariant models and so the densities 

are even. It is of course possible to describe any excitation with a definite choice of 

b/3a, e.g. one can set all b^a =  0. However in this case some excitations would have 

unnatural description which would require considering particle-hole excitations 

with zero energy contributing only to the total momentum. For irrational 

one can achieve any value of dressed momentum by choosing b^a appropriately. 

Let us remark that one is free to choose bpa independently for each added and 

removed a-string and one may refer to the set bjSaj, bp^., where 0  runs over all 

strings that interact w ith the excited string, as the branch of the excitation.

Dressed phase shift

Now we turn our attention to the scattering phase shift. Consider first the count

ing function for an a-string of the excited state

N b

La^Zaiv)  =  7T(pa +  L Pa{v) +  4>aa.{v) -  (f)aT{v) - h  EE (papiv. v 'p j ) , (3.50)
0  i = i

dPg
dw
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3.2 E x c ita tio n s  ab ou t eq u ilibrium

Expanding v'  ̂j in the final term about its equilibrium value, replacing the sums 
by integrals, and noting equations (3.30, 3.47), one gets

L GaZa =  +  L Pq +  Fq . (3.51)

Recall tha t here is the shift function which is determined through the closed
set of equations (3.34). Exponentiating equation (3.51) and evaluating it at a 
rapidity v corresponding to a mode number of the excited state it takes the form

I _ (3 52)

An added a-string with rapidity v has dressed momentum Pa{v) and so its scat
tering phase shift is =  Fa{v) +  ttc/Jq,. Similarly a removed cv-string with 
rapidity v has dressed momentum —P„{v) and so its scattering phase shift is
Sa = — TT̂Pa- Clearly the phase shifts 6 are defined modulo 2tt.

As the equations (3.34) are linear it is natural to introduce the set of fimctions 
satisfying the following system of equations

‘J’a/9 =  ’ (3.53)

where it is understood that * K..,,Qj(u,i) =  J  dw {w,v). Then
Fa =  ~  ^’ar 9'1'id hence WB refer to the as dressed scattering phases. In
terms of these functions equation (3.52) takes the following physically intuitive 
form

n (3.54)
3=1 J=1

It is worth mentioning that the dressed scattering phases are in general not of a 
difference form, and in particular <J>Q̂ (w,f) ^  0. This is a reflection of the fact 
that an excitation has nontrivial scattering with the equilibrium state.

Dressed charge

Each a-string carries a bare charge w^ under each of the conserved operators 
Nj. These quantities too get dressed for excitations above the equilibrium state. 
Recall first tha t the bare charge carried by an o-string is Now we
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3. EXACT SOLUTION

introduce an object which we call the pseudo-charge of an a-string.

It satisfies the  following set of integral equations

=  <  +  T— ^  . (3.55)

Let us consider the dressing for a specific charge and so we mom entarily sup

press the index i. The change in the to ta l charge of the excited s ta te  from the 

equilibrium sta te  is

JV„ Nc,  ̂ ^

AW  =  X ]  ( X ]  “  X ]  j  W a  -  W r  -f- , (3.56)
ol k—l k=l

where here we are being formal as w^ has no rapidity dependence. Indeed the 

final term  is zero, bu t let us further analyse it nevertheless. Recalling th a t (nPn =  

— we have

, / / -fa / , ,/ ( \ '
Q rv P rv  W -  —  —  - - - - - - - - - - - -  ~k W -  — - - - - - - - - - - - - - - - - - - - ★  “ h  - - - - - - - - - - - -  ' k  \ \ r v R  ( - - - - - - - - - - - -  Ia “ 1 +  ^  1 +

~  I ĵ y J  l  +  Yn *   ̂ 1 y m a x  ( '

Here =  LOa{v''^^ )̂ is defined similarly to  both  functions being evaluated 

at the value of v  corresponding to  the maximum of the pseudo-energy. This allows 

one to write the to tal change in charge as

N "•* ’ 1 mn V *'t,m ax . ,2, max

A i r  =  V  (cji (Va. )  -   fcaa ) "  V  U  (Vv ) ~  )
/   ̂ V O j ' “ j ' 1 I Y ^ m a x  “ “ j  / /  -y \ 3̂-' 1 i y ^ m a x  “u/
j= l “ j= l “

where we have reinstated  the index i. We would hke to present an interpretation 

of this change as

A W ‘ =  E  n i  ( v , ,)  -  Y .  H 't (« ,)  +  A W L  . (3.57)
J=1 j=l
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3.2 E xcitations about equilibrium

Here the excited strings are assigned a dressed charge

=  ~  (3.58)

which they carry, while the final term

(h ^ ) '  <'■“ >
is understood as an induced charge of the system. An interesting feature here is 

tha t the dressed charge carried by an excited string depends in general on the 

string ’s rapidity. In the limit of infinite tem peratu re the functions become 

constant and the dressed charges take their bare values while the induced charge 

goes to  zero. The zero tem perature limit will be discussed in section 3.4 where it 

is seen th a t the induced charge resides a t the edge of the Fermi sea.

The above is the interpretation we shall adopt in this paper but let us mention 

th a t the  final term  in eq. (3.57) can be redistributed among the added and 

removed roots using ~  ^ar- In particular, integrating by parts  this final

term  one obtains back

=  - E w ; , .  (3.60)
j = i  j = i

via the curious identity

One may wonder why we insist on the in terpretation of eq. (3.57) over th a t of 

eq. (3.60). These are two ways of interpreting AH'® th a t imply different physics. 

T hat the change in charge can be split as in eq. (3.57) and th a t the dressed charge 

is related to  the dressed energy as ~  quite convincing. An im portant

factor also is th a t spin-charge separation has been observed experim entally [55] 

and to  account for it requires an understanding of the dressing of charge th a t 

extends to  non-zero tem peratures. Equation (3.60) does not provide this.
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3. EXACT SOLUTION

Sum m ary o f th e  exc ited  sta te  form alism

Let us finish this detailed section with a sum m ary of the  principle features of 

the excited sta te  formalism. Excitations of a finite number of strings above the 

equihbrium sta te  were investigated by examining the resulting shifts of the string 

Bethe roots (3.29). These shifts satisfy a closed set of non-linear integral equations 

(3.30), and with the aid of these equations all the features of an excitation can 

be extracted.

Let us clear the notations we have been working w ith and param etrise an 

excited s ta te  by N'^ added particles with rapidities k  = 1 , . . .  ,N ^ ,  and by 

holes w ith rapidities k — 1 , . . . ,  Here the indices p^ and h^ include 

the inform ation of the type of string. The excitation can be encoded in a set of 

Bethe equations for which the pseudo-vacuum is the equilibrium sta te

ATP Afl'

J = 1  J = 1

iVh 7VP

( _ 1) - V a  _ (-3 0 3 ^

j=i i=i

Let us stress th a t these Bethe equations are only valid for large L. The m om entum  

is given through eq. (3.47)

Pa = Pa — (t>8a for particle excitations, (3.64)

Pa =  —pa +  /̂ |8 * (Pda for hole excitations, (3.65)

and the scattering phases ^ a 0 are determ ined through the closed set of equations

(3.53). Due to  interactions w ith the equilibrium sta te  the energy of each excited

root gets dressed (3.42)

Ea = ^a + T’log(l +  particle excitations, (3.66)y^m ax

Ea =  —€a — T lo g (l -I- ax)^^Q ^ole excitations. (3.67)y m a x
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3.3 Therm odynam ic variables

Here =  T l o g Y a  are the psuedo-energies and the constants and are 

defined after eq. (3.40). Similarly, for each conserved operator N* the corre

sponding charge of the excited root gets dressed and is given by (3.58)

i, max , T-1uj o  (^E
 ' ~  ° for particle excitations, (3.68)

1 +  o.jii

^t,max (\E
=  - u J a  +  1 for hole excitations, (3.69)

1 +  Cl

where are the pseudo-charges determ ined through the closed set of equations

(3.55) and the constant is defined above eq. (3.57). The to ta l change in

charge N j for the excitation also has a contribution AH^nd given in eq. (3.59). 

This is an induced charge of the system th a t is not carried by the excited roots, 

bu t ra ther is due to a back-reaction of the  densities. In the limit of infinite 

tem perature T  —>■ oo the dressed energy and dressed charge take their bare values. 

The limit of zero tem perature requires special a tten tion  and is discussed in section 

3.4.

3.3 T herm odynam ic variables

Now we discuss the calculation of the therm odynam ic variables. In particular 

we consider the charge densities n*, the susceptibilities Xi^ the specific heat 

capacity c, which are defined through eq. (3.22).

Let first show th a t the definition of charge density as a derivative of the free 

energy is consistent with

rii =  v j l * p a -  (3.70)

Taking the derivative of the free energy (3.21) gives

d ^ i  2 tx du

where we have used the shorthand 9^^ =  Substitu ting for | ^ |  through the 

equation for densities (3.7), and simplifying using the equation for dressed charge

(3.55), this becomes ^  =  —w^ *  Pa-  Thus as expected we obtain (3.70).

log Y g  
l + Y„ (3.71)
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3. EXACT SOLUTION

There is an important observation to be made here. The formula (3.70) allows 
for the calculation of the charge density without the need to explicitly take a 
derivative of the free energy. As the free energy must generally be calculated 
numerically, so too must its derivatives. CalcTilating derivatives by taking finite 
differences is not however a reliable approach, as it may be difficult to obtain 
accurate results. This is especially true in regimes where there is noteworthy 
behaviour. Instead it is better to re-express the derivatives in terms of quantities 
that obey closed sets of integral equations [56], as is the case for the densites pa 

on the right hand side of (3.70).
Now we consider the calculation of the susceptibilities

^  i ^  
duf dfii *  dfii

Here we wish to rewrite dfi^Pa in terms of quantities that do not require derivatives 
to be taken numerically. This can be achieved by taking the derivative of the 
equation for densities (3.7)

Convoluting both sides of this equation with the dressed charge and simplifying 
with eq. (3.55) one obtains

t o  i Pa^^.i'̂ a
W q  ^  ^ | ,^ P a c  =  -U J a c  *  Y m  V

“ (3.74)
—  . m 2 Pa +  Pa /  1 y

-h

where prime denotes the derivative with respect to the rapidity variable. Here 
the terms and Ya satisfy the set of integral equations eq. (3.37). Finally we 
can write the susceptibility as follows

»  =  =  (3-75)

where we have introduced the velocity Vq =
Lastly we examine the specific heat. To simplify the calculation we note that 

the free energy factorises f  =  T  f { T ) ,  and so

c =  - T d y  =  - 2 T d r f  -  T^d^f" , (3.76)
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3.4  Zero tem p era tu re

where Here

(3.77)

and so
1 A ' n  r)rr^  1M  O'

d £  ^
t J (3.78)

This can be simphfied through the temperature derivative of the TBA equations

and the equation for densities (3.7) giving d r f  =  Pa-, and thus we obtain

Now in an analogous manner to our consideration above for the susceptibilities, 
we can rewrite the specific heat by convoluting the temperature derivative of the 
equation for densities with and simplifying using eq. (3.79)

3.4 Zero tem perature

The limit of zero temperature is interesting both physically and mathematically. 
From a physical point of view the limit takes the equilibrium state to the ground 
state. The absense of thermal fluctations here allows for a clear picture of the 
behaviour of a model to be obtained. On the mathematical side this is manifest 
as a dramatic simplification the TBA equations. The equations become linear 
in the limit, and their solution here provides a platform for understanding the 
solution for general T.  Chapters 5 and 6 provide detailed studies of the zero 
temperature limits of the Hubbard-Shastry A- and B-models, and in them much 
of what is indicated here is made precise.

(3.79)

c  —  *  d r  p a  —  ■ (3.80)

(3.81)

Here T9t ( ^ )  is determined through the set of integral equations (3.79).
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3. EXACT SOLUTION

Examining the TBA equations (3 . 19) in the zero temperature limit we see 
that it is better to work with the pseudo-energies = T  log rather than with 
the functions directly. Indeed, in the limit T  —>• 0 we see that the functions 
Ya become singular

l im r ^ o e a ( 'y )  <  0 l im r ^ o  ^cv(w) =  0 =» l im ^ ^ o  Prv(w) =  0 ,
limT-+o ea('t’) > 0 lim r-^o  y^(u) = oo =4> lim r_>o Pq(^ )̂ =  0 .

Let us remark here that ea{v) < 0 implies that there are no holes for a-strings 
with spectral parameter v in the ground-state whereas en{v) > 0 implies tha t 
there are no particles of a-strings with spectral parameter v in the ground-state. 
For each a-string let us define the following subintervals of

Q a  =  { v  : e a ( v )  <  0 } ,
(3 .83)

Q a  =  { v  : e a { v )  >  0 } .

We say that an cv-string is at half-filling if = Xq., which implies from ( 3 .82) 

that there are no holes in the ground state for such strings. Let us next denote 
the boundaries between and Qa- For increasing v we label as the point
where v goes from to Qa, and as q~ the point where v goes from Qa to Qa- 
Then in the zero temperature limit

1
1 + ya(t^) ^

and

^  -  9a) -  -  9a) (3-85)

where 6 is the Dirac delta function. These two formulae lead to many simplifi
cations of the equations in the preceding sections of this chapter. The relations 
( 3 .82) also lead to following zero tem perature hmit of the TBA equations ( 3 . 19)

=  G a +  ^ 0  *(3  ̂ • ( 3 .86)

Let us remark that in addition to linearity of the TBA equations at zero 
temperature there are often further simplifications. If ep{v) > 0 for all v for 
some /5-strings, then the respective pseudo-energies do not contribute on the 
right hand side of the equations ( 3 .86) .  This can represent a notable further 
simplification of the equations.

1 i f  V e  Q a  

0 V e  Q a  '
( 3 .84)
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3.4 Zero tem perature

G round sta te  phase diagram

Due to the sharp behaviour (3.82) of the densities a t zero tem perature it is pos

sible to  construct a phase diagram. The various phases are determ ined by iden

tifying which string types occupy the ground state. A relevant phase space is 

th a t generated by the various chemical potentials and coupling constants th a t 

appear in the model. For each a-string  th a t can exist in the ground sta te  useful 

phase boundaries are the lines along which it enters the ground sta te  and lines 

along which the a-string  reaches half-filling. The first set are determ ined by the 

condition min^ €n(v) =  0, while the second set are determ ined by max„ e^iv)  =  0.

E xcita tion s at zero tem perature

Now we tu rn  our attention to excitations a t zero tem perature. F irst consider the 

situation where all strings are away from half-filling. Here the problem mentioned 

in the paragraph above eqs. (3.27), (3.28) does not arise and the zero tem perature 

limit of the formalism for excitations above equilibrium is straightforward. The 

to tal change in energy for an excitation, given by (3.41), reduces to

N"® A'’’

AE = J2 S
j= l J=1

as for each string a t less than  half-filling > 0 implies =  oo. This is the 

familiar picture in which the pseudo-energies play the role of the dressed energies. 

Similarly the change in charge (3.57) becomes

AM " =  Y .  <  ( s ) -  E  . (3.88)
J  =  1 J = 1

The Hmit of the induced charge can be taken using eq. (3.85) giving

=  ^C a{q„)Pa{qaW aiQa)  ~  ^ C a { q ^ ) P a i Q a W M )  ■ (3-89)

We thus see th a t the induced charge is due to the shift of the rapidities a t the 

boundaries of the intervals Q q- This can be understood as a back-reaction of the 

density, which here a t zero tem perature occurs a t the edge of the Fermi sea.
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3. EXACT SOLUTION

Now we turn to the situation of having some strings in the ground state at 
half-filling, let us say tha t < 0 for some 7-strings. Here one must be careful 
to only consider excitations for which the N.y satisfy the selection rules (3.10) as 
there are no holes for 7-strings. Put another way, some of the 7-strings in the 
ground state may have no corresponding mode number in the excited state, due 
to a decrease in the range of mode numbers, and are thus necessarily removed. 
On the other hand an increase in the range of mode numbers will mean that there 
are some holes in the excited state that do not correspond to removed strings and 
are thus not dynamical. This situation requires one to reconsider the nature of 
the excitations.

Let us outline a convenient prescription for dealing with excitations that 
change the range of mode numbers of strings which are at half-filling. If the 
range increases we choose to consider only excitations for which all the extra 
mode numbers are filled. In our terminology this means that in such an excita
tion these extra mode numbers always correspond to added strings and thus all 
holes of the excited state correspond to removed strings. Obviously if the range 
decreases in an excitation then the removed mode numbers always correspond to 
removed strings. We refer to such added and removed strings as singular strings. 
Such singular strings have rapidities that approach in the limit L —>• 00 

because they correspond to mode numbers at the edges of the range. We refer to 
the remainder of the added and removed strings as physical strings. Note that 
this prescription does not limit the freedom to capture all possible excitations. 
Indeed any excitation for which not all the extra mode numbers are filled can be 
considered as a limit of an allowed excitation where the rapidities of the necessary 
number of physical removed strings approach

An excitation could also result in an overall shift of the mode numbers. This 
would correspond to the removal of some singular strings at one end of the range 
and the addition of singular strings at the other. It can be seen however, that 
for each of the quantities of interest to us, tha t this transfer of singular strings is 
not important.

Let us thus break the added and removed strings into two types, physical and 
singular

+  AT̂>-, (3.90)
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3.4  Zero tem p era tu re

where we use p and s to denote physical and singular respectively. Let us further 

denote the changes in numbers of physical and singular strings as

where the right hand side here is the change in the range of mode numbers of 

7 -strings found from eq. (3.9), and we use 7 ' as a dummy index to make it clear 

th a t the sum is only over strings which are a t half-filling. Let us remark th a t 

there may be a restriction on the mimber of physical roots one can excite as only 

solutions to eq. (3.92) for which 5 N ^  is an integer for each half-filled string are 

allowed.

Now consider again the change in energy fornmla (3.41) which here takes the 

form

Sphtting the strings between their physical and singular subsets this becomes

where all the constant term s have cancelled due to  (3.92). The singular strings 

may also have non-zero dressed m om entum  and non-trivial dressed scattering. 

These can be redistributed among the physical strings according to the solution 

of (3.92). For example, if the solution to eq. (3.92) is 6 N ^  =  then

the dressed mom entum and dressed scattering take the following form for the 

half-filled phase

(3.91)

Then our prescription is th a t

(3.92)

=  E  -  E  ■ (3-93)
.m ax

(3.94)

■ (3-95)
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Finally let us consider again the change in charge. As for the energy, the contri

butions of the singular roots cancel all constant terms appearing in the dressed 

charge (3.58). Also the derivative in (3.59) is zero at zero temperature for half

filled strings and so such strings do not give rise to an induced charge of the 

system. The formula for the change in charge thus takes the form

where denotes the induced charge due to the back-reaction of the strings

which are away from half-filling. Let us conclude by remarking tha t regardless of 

whether some strings are at half-filling the dressed energy and dressed charge of 

excited roots take their pseudo values in the zero tem perature limit.

T herm odynam ic variables at zero tem perature

Let us describe the zero temperature limit of the susceptibilities. Using (3.85) to 

take the limit of eq. (3.75) we obtain

where to get to the second line we used that for the equilibrium

only a-strings tha t exist in the ground state contribute to the zero temperature 

susceptibilities, as is only defined for such strings.

Finally let us examine the zero temperature limit of the specific heat. Taking 

the zero temperature limit of eq. (3.79) and comparing it with eq. (3.86) we 

observe that

(3.96)

state of parity invariant models, and we write v^ =  VQ,(g„). Let us remark that

(3.97)
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3.4 Zero tem perature

Substituting this into the eq. (3.81) for the specific heat and using (3.85) to take 
the hmit we find

T ^O  T ^ \ 2 T T V a { q - )  2T tVa {q +)
(3.98)

T -vb  TTv L
=  lim

T"—vn ^ ^
n

The expression on the right hand side here is not well defined, as the pseudo
energies go to zero a.t v = q^. Thus it appears that the zero temperature limit of 
the specific heat must be taken more carefully.
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Chapter 4 

Therm odynam ics of the  
Hubbard-Shastry models

hi the previous chapter we outhned a general m ethod for the exact solution 

of a Bethe ansatz solvable model. Now we focus in on the H ubbard-Shastry 
models, and in particular on the parity invariant A- and B-models identified in 

(2.43). This is not a straightforward application of the general formalism as these 

models have Bethe roots w ith a non-trivial rapidity structure. The derivation of 

the TBA equations for the models is thus done in some detail. The equations 

are then  simplified and analysed in various limits. In this chapter we deal mainly 

w ith the technical details of the Bethe ansatz solution. The results obtained here 

are used to examine the zero tem perature properties of the A- and B-models in 

the following two chapters.

4.1 B ethe equations and the string hypothesis

Let us begin by recalling the Bethe equations for the H ubbard-Shastry models

Af

j  =  l

N  . M  ,
_ - j - r  Wk  - V j  - l U  -p -r  Wk  - W i  +  2^  U

u'k ~  1’j  +  'i u Wk — wi — 2r u ’ ’ ’ ~  2

The m om entum  p  is in defined through eq. (2.39). For each of the A-, B- and

H ubbard models is given in Table 4.1, along with the dispersion relations

M <
N

(4.1)

^ f c = l , . . . , i V < L
Vk — w-j +  i u
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4. THERMODYNAMICS OF THE HS MODELS

S{p). The rapidity variable v of momentum carrying roots is related to the 

momentum through y with v =  |( y  +  l/y ) , and so is a double valued

function of v. We refer to these roots as y-particles.

A-model B-model Hubbard
gipiv)

^{P)

^l + J/X  +
1 / - X +

—2 cosp — 2 \/ l  +

y + x +

y - x +
—2 cosp

i y
—2 cosp — 2u

Table 4.1: Momenta and dispersion relations of Hubbard-Shastry models with 
V =  ^ { y  +  l / y ) ,  and x"*" =  i(u + Vl + u )̂-

The conserved charges for the models are Nc =  N  and =  Sz and their 

corresponding chemical potentials are respectively Hc = and — 2B,  see eq. 

(2.8). The eigenvalues of these charges are related to N  and M  as

iV, =  iV, N, = , (4.2)

and so the y and Bethe roots are charged as

^^ =  1 ’ w^ =  0, w^ =  - l .  (4.3)

It is convenient to introduce the following functions

x^{v) =  v +  v ^ ^ l - |o:a(?;)| >  1, -y G C , (4.4)

with a cut =  (—1,1), and

^b(w) =  u +  W l  — , Im(xB(u)) >  0 , V E C , (4.5)

with a cut I® =  ( - 00, - 1) U ( 1, c x d ).  Let us also define and to be

respectively the upper and lower edges of For values of v on the cuts we

define x{v) =  x{v +  ?'0). Both functions solve the equation

1
^'{v)  +  - T - T  =  2 w  , x[v)
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4.1 B eth e equations and the string hypothesis

and the param eters x* of the A- and B-models can be uniformly w ritten as 

=  x(zu), x~  =  l / x { —iu)  where x  = xa  and x  = xb for the A- and the 

B-model, respectively.^

Since y + l / y  = 2viov  any given v one has two possible corresponding y-roots 

and they can be param etrized as

y+ =  , y -  =  , (4.6)
X[V)

so th a t the set of complex y-roots is divided into these two subsets. Here and in 

what follows x{v) = x a {v ) for the H ubbard and A-models, and x(v) = x b (v ) for 
the B-model. The two types of y-roots y± in tu rn  lead to two branches p±(v)  and 

S±(v)  of the mom entum p and the energy £  as functions of v.

The string hypothesis states th a t each root of the Bethe equations in the 

therm odynam ic limit is a member of the following types of Bethe strings:

1. y-particle; w^ =  1, w^ =  1/2, a single charge spin-up excitation param etrized 

by its real momentum p. The  reality of p implies tha t

|y| =  l ,  | f | < l ,  u G R  for Hubbard and A -m odels,
(4.7)

y G K , |t'| >  1, 1) e  R for B -m odel.

Since these v are on the cut of the corresponding function x, the y± roots 

can be w ritten  also as

y± =  x{v  ±  iO ). (4.8)

This formula implies th a t the m om entum  and energy p±{v)  and £±{v)  can 

be thought of as the values of the functions Py{v) =  p+{v) and £y = £+{v) 

on the upper and lower edges of the cut of x{v).  One finds for all the mod

els th a t moving around the cut of x{v)  in the counter-clockwise direction 

increases the mom entum Py, and therefore > 0 and ^  <  0 for v on 

the cut.

 ̂ The parameters of the two families of Hermitian (but in general not parity-invariant) 
Hubbaxd-Shastry models can be written as =  x(A -I- iu) ,  x~ =  l / x { X  — i u)  where A is an 
arbitrary real number. For the models w ith being a phase x =  x \ ,  and for the ones with
x ^ / x ~  being a phase x =  xb- Then the Hubbard and the su(2|2) spin chain m odel’s parameters 
correspond to A =  -|-cx).
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4. THERM ODYNAM ICS OF THE HS MODELS

2. M|uio-string: =  2M, =  0, a spinless charge 2M bound state
composed of 2M  roots yj and M  roots Wj and parametrised by S R

Vj = V + {M + 2 — 2j) ui,  v - j  = V — {M + 2 — 2 j )u i ,  (4.9)

Wj = V + {M + 1 — 2j) ui,  j  =  1 , . . . ,  i \ / , (4-10)

where the roots yj are expressed through Vj as

Vj = , y - j  =  l / x { v - j ) , j  =  1 , . . . ,  Af . (4.11)

As a result, the momentum and the dispersion relation for the M|t>it;-string 
are

M  M

P m \v w { v )  =  ^ \ p +  { v j )  +  p -  (w_j)] , £ m \v w { v )  =  [ £ +  { v j )  +  £ -  { v - j ) ]  .

i = i  i = i
(4.12)

One can check for all the models that < 0 for any real v.

3. M|i«-string: =  0, =  —A/, a chargeless spin —M  bound state
composed of M  roots Wj and parametrised by w G R

Wj = w + {M + 1 — 2j) ui ,  j  = (4-13)

This family includes the l |u ’-string which has a single real root w.

This has been formulated for the Hubbard model in some detail in [48, 57, 22]. We 
present a summary illustrating the root configurations in figure 4.1. The string 
hypothesis for the Hubbard and A-models differs from the one for the B-model
only by the location of the rapidity of the y-particle. This is accommodated by
the functions xa,b (^), and in terms of these all the formulae look the same.

The string Bethe equations are then constructed by fusing together the Bethe 
equations for the string configurations

OO ^ A i \ v w  OO ^ N \ w

1 =  SM{vy,k — v m j ) J J  J J  SM{vy.k — ,
M = 1  j = l  N = 1  1=1

I ^ y  OO ^ N \ v w

— 1 =  jQ  SM{vM,k — Vyj) P J  SniNi^M.k — vn î) , (4.14)
j = l  N = 1  1=1

N y  OO ^ N \ w  ^

- 1 = n  -  V, , )  n  n  ■
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4.2 Free energy and the T B A  equations

V+ V-  l|j'u> 2\vv> 3|i;iu • • • l|u' 2\w 3|w • • •

F ig u re  4.1: An illustration of string hypothesis for the Huhbard-Shastry models. 
The horizontal line represents the real axis while the imaginary direction extends 
vertically. The y± refer to the two branches of the y-particle and the x mark 
the corresponding value of the t;-rapidity variable, which take valties on ( — 1,1) 
for the A-model, and on (—oo, - 1 )  U ( l ,oo)  for the B-model. The circles mark the 
rapidities of w  roots. The l\,I\vw and M \w  strings have real centres that take vahies 
on M. The A/|?;w-strings are momentum carrying and their momentum PM\y-u, and 
dispersion obtained by smnming the contributions of the roots of which
they ai’e composed.

The S-niatrices here are given by 

-  ■ A/
S m { v )  =  --------- — ----------—  ,  S m n { v )  =  S m + n { v ) S n - m { v )  "TT =  S n m { v ) ,

V +  l u  M  -*--*■
j = i

and are related to the S-iiiatrices S„^, used predoniiiiaiitiy in chapter 3. Let us 
note the relationship between the S-niatrices S, used predominantly in chapter 3, 
and S  through the examples

4.2 Free energy and the TBA  equations

To take the thermodynamic limit we first introduce the counting function, as this 
allows us to define particles and holes. The counting functions for the M \vw  

and A/|w;-strings are defined as outfined in chapter 3 but the definition of the 
counting function of the y-particle recjuires special attention. The rapidity of the 
y-particle is defined on a closed contour and so the counting function is too. Recall 
from section 3.2 how^ever th a t the counting function is only allowed to have one

discontinuity, at the maximum of the pseudo-energy. This is not enough to define

63



4. THERMODYNAMICS OF THE HS MODELS

a counting function for the y-particle th a t is monotonously increasing, and so we 
must be careful about how the densities are defined in order to ensure tha t they 

are positive. Let us restrict ourselves to the parity invariant Hubbard-Shastry 

models and let us assume without loss of generality^ th a t the maximum of €y { v )  

is on the edge Then we define the counting function as

L a + Z y { v )  =  -Kify +  L P y { v )  - |-  EE ( f>y0{v,Vp^n) , (4.16)
/3 n = l

A Bwhere the range of p is chosen to be continuous everywhere along except at 

the value v — Wmax € the value of v corresponding to the maxinunn of (y{v), 
and the scattering phases (j)y0 are defined as in eq. (3.23) for the case y+ — Xa 
anfl as in eq. (3.24) for the case y+ — Xb- For the Hubbard-Shastry models 
a+ =  s ig n (^ ^ ) =  — 1 and (r_ =  s ig n (^ ^ ) =  1 and so Zy is an increasing function 
of V for V G and it is a decreasing function of v  for v  £  This ensures

tha t the counting function is increasing on the contour th a t is clockwise around 

the cut of Xa .b {i’) (i-«̂ - tha t goes along 1 + ’̂  on the upper side and oppositely 
along on the other), with the excejjtion of the point at which it
is discontinuous.

Now we introduce the densities of particles and holes. Again the densities for 
the M \vw  and j'l/|u)-strings are defined in the standard way, but when introducing 
the densities for the y-particles it is necessary to include the factor a± in their 

definition so tha t they are positive on the edges of the cut. From equation 
(4.16) we then have

dp±1
P± + P± =

27T d?; +  K±/3 * Pf5 1 (4 -17)

where

and

K±/3 =  o ±K:±p , K ,±0{v) =  logS± ^(t;) , (4 .18)
ZTTZ av

= = (4.19) ̂ \ p A v ) i f u e i -  \p-(t;) i f?;el_

^This is the case for both the A- and B-models. The alternative possibility applies to the 
Hubbard model and proceeds in exactly the same manner mider interchange of +  and —.
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4.2 Free energy and the T B A  equations

Let us remark that K+s =  — K_a as S+r =  S_/3, and so

—  1 ®    0  5

for all ^-strings. The equations for densities then take the form

dp+

(4.20)

P + + P +  

P - + P -

PM\vw PM\vw ~

1
27T

1
dv

dp-

1
2tt

dv 
d.pM\

—  K m  *  { p m \ v w  +  P m | i o )  5

+ * (p m | V W  +  pM\
(4.21)

dv K m  * (p+ +  p_) — K m n  * pN\ i

P m \w +  pM\w — K m  * [p+ +  P - )  — K m n  *  P n \w ,

where the kernels K  = ^ ^ l o g 5  are given explicitly in equations (A.3), (A.4) 
of appendix A, and repeated M  and N  are summed from 1 to co. Our definitions 
and conventions for convolutions are also outlined in appendix A.

Next we introduce the y-functions Ya = pa/Pa and pseudo-energies =  
T logy^. A remark is in order here. The densities p± are not to be regarded 
as two branches of the one function as we were forced to distinguish them by 
including the factor of a± in their definition. In the functions Y± these factors 

cancel however and so they can be viewed as the values of a function Yy{v) on 
the upper and lower edges of its square-root branch cut coinciding with the cut 

of x{v)

Y+{v) ^  Yy{v +  i O ) , Y^{v) = Yy { v - i O) .  (4.22)

Now we can obtain the conditions for equilibrium by minimising the free 

energy. As outlined in chapter 3 the resulting TBA equations are

logF,=

log Ym\ vw  

log Ym \,

f  ^  IJ — 1 +  —
I 1  ̂N \ v w  r-  -h log  f -  * Ajv,

T

£M\vw

T +  log 1 + Y,N\vw
* K NM log +

1

2 M B  , f  1
+  log 14-

T Y,N\w
N M K m

K M  :

(4.23)
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4. THERM ODYNAM ICS OF THE HS MODELS

The minimized free energy is then

® ^  + y i : )  * ^

Let us observe that, due to the square-root branch cut of £y and the singular 
nature of the kernels K m  aX v  =  the F-functions have infinitely-many
square-root branch points on the ?;-plane. To be precise, Y’{v) has branch points 
located at v = ±1 + 2k u i ,  k E. Z, while Ym \vw and Ynf\yj have branch points 
located at v = ± l  + M u i  + 2 k u i  and v = ±1 — M u i  — 2 k u i , k e N.

4.3 Sim plification of the T B A  equations

We refer to the TBA equations written in the form (4.23) as the canonical ones.
They can however be rewritten in a simpler “local” form which eliminates the 
infinite sums over the y-functions. To achieve this we introduce the following 
useful kernels

{K +  5)~}^ (v) =  Smn^(v) -  Imn s { v ) , s{v) = - -  ^  , (4.25)

with I m n  = ^m +i ,n  +  ^m - i ,n  , M  >  2 and Here {K + is the
kernel tha t is inverse to Kf^Q + 5n q :

OO OO

' ^ { K  + S)J]^ -k {I<NQ + Sn q ) = ^  (î QAT +  Sq n ) ■* {K + ^)jvM =  > (4-26)
JV=1 N=1

which can be also written in the following convenient form

OO OO

' ^ { K  + 5)jJjv * K nq = ^  -k {K  -F (5)^^  ̂ =  I mq s . (4-27)
N=1 N=1

Here and throughout this section we use the convention Sm n {v) = 8m n ^{v ) when 
this will not cause confusion. The inverse kernel obeys the useful identities

OO OO

^  {K + 6)-^^ = 5 , (4.28)
N=1 N=l
£n \vw * {K + 5) ĵ m  ~  £ y ® s  = Si m {£+ ~  £■-) ■ (4.29)
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4.3 Sim plification o f th e T B A  equations

Now we can proceed with simphfying the canonical TBA equations. S ub tract

ing the TBA equations (4.23) for 7y±-particles gives

log ^  , (4.30)

due to  the  analyticity of the kernel s{t — v) for real v. Then applying the inverse

kernel to  the equations for the vw-  and ly-strings, and using eq. (4.30) the

identities above, gives the simplified TBA equations

log Ymivw = h i N  log (l +  Yat|„ui) * 5 -  (5mi log (1 +  Fj/) ® s , (4.31)

log Ym \w = I m n  log ( l  +  IWiu,) * s -  Smi  log ^1 +  ® s . (4.32)

Here the kernel {K  +  d)“  ̂ has annihilated the ji and B  dependent terms. Note 

however th a t the large M  asym ptotics of the F-functions are not fixed by the 

simplified equations, whereas it follows from the canonical TBA equations (4.23) 

th a t
^OgYu\vw 2ii  logVMiu; 2 S

hm -----— —̂  =  —-=r , hm -------------=  -7 7̂- • (4.33)Ai—^ 0 0  A4 T  M—^ 0 0  A / T
The dependence of the F-functions on jj, and B  is thus obtained by imposing 

(4.33) on solutions of the simplified equations (4.31), (4.32).

The simplified TBA equations can be used to com pute the infinite sums ap

pearing in the canonical equations for y-particles. We show how to do this on the 

example of strings. Since a similar sum appears in expression (4.24) for the 

free energy we do the com putation by assuming th a t we are given a kernel 

satisfying the identity^

0 0

{K + — I m n S * — ^Ml , (4-34)
N = l

where is any kernel. We want to  com pute the following sum

log f  1 +  —------^  ■ (4.35)
V ^ M \ v w J

 ̂ This m ethod was applied in [58] to more general kernels bu t under an assum ption of 
-functions approaching 1 at large M.
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4. THERM ODYNAM ICS OF THE HS MODELS

To this end (4.31) is rew ritten in the form

=  / A / 7 v l 0 g ( l  +  7 7 ^ ) * 5
^  N \vw

- S m , +  log (1 +  i ) ) s .

y

where on the left hand side of this equation we replaced Ym \vw by =

to make sure it asym ptotes to  1 a t large M.  This does not change 

the equation because the kernel s integrates to  1/2, th a t is l ^ s  =  1/2. This 

replacement is necessary because a t the next step we m ultiply this equation by 

JfJv/i take the sum over M , and use the identities (4.29) and (4.34) to get

=  log(^l +  — ^ - k j e ^ M - l o g ( l  + - k S j e  
V ^A4\vw  J  \  ^ l \ v w  J

' — log l +  —
T  \ Y  ,

From this equation and the definition of we im mediately obtain

l o g  1 +  77 ----------------------------=  l o g  ( l  +  V ilu u ;)  *  ----------^ ~
\  ^M\vwJ

+  log ■

(4.36)

A similar formula can be derived for the infinite sum with yjv/|u)-functions

log
1 \  2.13 {  1 \

1 +  — -----  ] *  — log ( l  +  ^lliu) *   —  *  +  log ( 1 +  —  I ® S *  .
^M\w /  V J

In our case =  K u ,  =  s, and subtracting these two equations gives 

'^M \vw  1- “ I”  j l  -\- B  S \ \1 ‘ m \ V W  T  r  T ~  -  L i UUJ , i . \UW

log — ---- —  * = log 1 ^  V * ^  ^  ^i +  V  •*-
A f  I u )

The infinite sum is substitu ted  for in the TBA equation (4.23) for y-particles to 

give the  simplified equation for F+YL

iogy+ y_ =  -------------  — ---------+  2 log ' .s.
1 i +  ri|u,
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Combining the equations for F+ /y_ and V+yi gives

logr, =  (4.37)

It is also possible to simplify the sum appearing in the free energy expression 
(4.24) using eq. (4.36). First we rewrite (4.36) as

log ( 1 +  =  log (l +  Viiuti;) * ^  +  log (1 +  Yy) ® S-k
\  ^hl\vw /

(4.38)

Then we notice that

d p N \ v w  .  ^  dpy - _ / d p +  d p .
( ^^ +1) mN^ ----]----- ~1 1 ' ' J W i * '  I 1 1d^’ dt’ \  av di)

and therefore in this case J(fM =  ~  Thus eq.(4.38) becomes

V yM\vwJ dt> dv T  di)

+  log(l +  y , ) ® . s * ^ ^ ^ ^ .  (4.39)

Taking into accoimt that 1 * s^- ? one gets

/  = r i „ g ( l  +  ^ ) ® ^ +  r i o g ( i  +  y „ ) ® . * i ^  (440)

Finally using eq. (4.37) and the identity

c  ^  ^  Pl\vw ^  Py / .  , H \£ y ® s - k ~ ^ — =  ^ i|u ^ * s® -7 ^  , (4.41)
dv dt;

the free energy can be rewritten as

/  =  -P  +  ^  ^  toe ( ‘ + ^ )  ® ( ^  -  << * ^ )  (4 « )

T' d
-  log (1 +  ̂ ,27t  ̂ dv

69
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or with dependence on the l|?i)-string in the form

d  Pi |i;iD 
S ----

(4.43)

Let us collect together the simplified TBA equations

(4.44)

^ogVM\vw{v) =  /MArlog ( l +  -  (5mi log(l +  Fy)®s, (4.45)

These must be supplemented with the large M  asymptotics (4.33) tha t capture 
the // and B  dependence of the solutions. In the case of the Hubbard model one 
can easily check tha t the TBA equations and the free energy (4.43) match exactly 
the ones in [9]. To be precise one finds the relations

where eo, ctq and po are the ground state energy per site, the density of U'-strings, 
and the density of roots of single charge excitations for the half filled repulsive 
Hubbard model, respectively, see eqs.(5.69) and (5.70) of [9].

It will happen tha t the sign of the final terms in equations (4.45), (4.46) play 

an im portant role in understanding the physics of the models. Through equation 

(4.30) these signs follow from the relative magnitude of £+ and 5_. Let us thus 

note that

y

(4.48)

(4.47)

S -  — £+ = —AVI — v'  ̂ < 0 for the Hubbard model

4u \ / l  —
— (5+ =  ----    — > 0 for the A model.

(4.49)

> 0 for the B model.

70



4 .4  V arious lim its

4.4 Various lim its

The free energy (4.43) together with the TBA equations (4.44)-(4.46) and their 

large M  asymptotics (4.33) contain all the information about the equilibrium 

states of the Hubbard, A- and B-models in the thermodynamic limit. In general 

one needs to numerically solve the infinitely many coupled non-linear integral 

TBA equations to extract this information. In various limits however the equa

tions simplify and one can make analytic progress.

It is convenient here to introduce the following simplifying notations

t>=J:  A  =  ^ ,  A  = | .  (4.50)

4.4.1 L im its of tem perature

Zero temperature limit

Let us first consider the important limit of zero temperature. Here we lay the 

foundation for the studies of the A- and B-models in this limit in the following 
two chapters.

We saw in section 3.4 that the TBA equations simplify in the T  ^  0 limit 

due to the singular behaviour (3.82) of the densities pa{v), Pa{v). In particular 

let us recall tha t there are no «-strings in the ground state if ea{v) > 0 for all v.

W ith this fact one can rule a lot of strings out of the ground state by considering

the simplified TBA equations (4.44)-(4.46). From the equations for M\vtu and 

M\w  strings we see that

> 0 and eM|io > 0 for M > 2 ,

as the right hand sides of these equations are strictly positive. Moreover, the 

sign of the extra term in the TBA equations for the case M  =  1 follows from 

the inequalities (4.49). For the A- and B-models one has that yi|u, > 1, while 

> 1 for the Hubbard model.

W ith this insight we turn to the canonical TBA equations (4.23), as they are 

more convenient to work with since they contain fi and B  explicitly. Restricting
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4. THERMODYNAMICS OF THE HS MODELS

ourselves to the A- and B-models, and w riting the equations in term s of the 

pseudo-energies, they take the form

~  ~  ~  ^  ~  ^\\vw *Qi\-u-w '

^M\vw — £m \vw — 2Mfj, +  6y ®Q^ K m  — €i\yyj K \ m  , (4-51)

^M\w =  2 M B  +  6y ®Qy K m  ■

Here we see th a t there are ju st two functions, €y and ei\vw, th a t determ ine all the 

others. This represents a m ajor simplification compared to  the  infinitely many 

functions th a t one has to solve for a t non-zero tem perature.

Infinite temperature limit

In the infinite tem perature limit one expects many of the details of a system to  get 

hidden behind therm al fluctuations. We find th a t in this limit all the H ubbard- 

Shastry models become identical. F irst let us consider the limit T  ^  oo w ith /3c 
and Ps fixed. Here the  driving term s of the TBA equations (4.44)-(4.46) become 

rapidity independent, and thus so do the K-functions and Y+ = Y -  =  Yy. The 
TBA equations then become recursion relations and their solution is given by

cosh Pc 
cosh Ps 

and the free energy is

^ ^ “ cosh/3 /
sinh(7\/ -f- l)l3c 

sinh Pc

2

1 ) ^M\w
sinh(7\/ -t- V)Ps 

sinh Ps
-  1

/  =  - f i  -  T l o g { l  +  Y y ) - ' ^ l o g { l  +  Y i \ y ^ )

= —T log (2e^'' cosh - I -  l )  .

In the stric t infinite tem perature limit however —>• 0 and /3s —>• 0. Thus 

/  —>• —T lo g 4  as expected for a model w ith four degrees of freedom per site.

4.4.2 Limits of m agnetic field and chemical potential 
Strong magnetic field limit > oo

In the limit B  ^  oo the F-functions for M \w  strings diverge. This can be seen 

from the  canonical TBA equations (4.23). Note th a t the  final term  on the  right 

hand side of the equation for M |w -strings behaves as

log(l -|- — ) ® K m  —> —£ y ® K M  ,
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in the limit B —)■ oo because y  —)• 0 from its TBA equation. Therefore

Ym Iw

and the free energy simplifies to

f  r> i ^ y  ^ l \ v w  * '5)® ,Z7T u?;

The electron density is one and the magnetisation per site is one-half, and thus 
the ground state is full of spin-up electrons as expected.

Large chem ical potential lim it /x —> —cxd

The analysis of the limit jjL —¥ — oo is similar to the limit B —> oo. Here the 
y-functions for i\/|t)if;-strings behave as

V  I —  ̂ p-2M /3c yM\vw e

The free energy becomes

1 _ dpy
2n ' dv

and, as this has no dependence on ij,, the ground state is empty. This is as 
expected, since a large chemical potential means a large energy cost for having a 
particle in the system.

4.4.3 Lim its of the coupling constant

Now we examine the weak and strong coupling limits of the TBA equations for 
the Hubbard-Shastry models of interest to us. We will work primarily with the 
simphfied version of the TBA equations (4.44)-(4.46). As the kernels s(w) and 
K(v)  have explicit dependence on u, it will be useful to rescale the variable v to 
v /u  and introduce a notation for functions that take a rescaled argument

y,(v) = n(^v), = = (4.52)

Here ŵ e have also altered s{v) and K m {v ) by a factor of u for convenience as 
they generally appear together with dt;. Note that after rescaling the variable in 
the TBA equations they take the same form with Yk replaced by yk  and s by s.
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Weak coupling limit of the Hubbard and B-models: free fermions

From the Ham iltonians of the Hubbard model (2.3) and the B-model (2.48), (6.1) 

it is clear th a t they reduce to  free fermions in the weak coupling u ^  0 limit. 

Here the limit is analysed on the level of the TBA equations. We find as expected 

th a t TBA equations can be solved and th a t an exphcit expression for the free 

energy can be obtained.

Let us consider the u 0 limit w ithout rescaling the variable v }  F irst 

note th a t limu->.o s('y) =  f<̂ ('̂ ’)- Next for v on the intervals =  (—1,1) and 

I® =  ( - 0 0 , - 1 )  U ( l,o o ), for the H ubbard and B-model respectively, one finds 

the following limits

hm£^+(w) =  A , hm £_(v) =  - A ,  hni ^^i|„u,(ti) =  2A , (4.53)
U-J-O u—>0 u->0

dp+ 2 2 4
hm —— (u) =  —— , hm —— [v) = — , h m — ^ =  — ,
u->o dv A u->o du A u-t-o dw A

where for the H ubbard model A =  2y / l  — and for the  B-model A =  —2 y  1 — ^ .  

Then in this limit the TBA equations become a set of algebraic equations

lo g y A / |, ;u ,  =  - / j v / i v l o g  ( l  -t- F at|vw ) +  ^ < 5 M i l o g | i ^ ,  ( 4 .5 4 )

log Ym\w =  7^1 M N  log ( l  +  +  -^M l log " ^  ■

The general solution to  these algebraic TBA equations is well-known and is given 

in appendix D.

In the lim it u ^  0 the  free energy (4.43) simplifies dram atically

^ iog((i + y_)v'i + nk,) ,

^It is worth pointing out that if in the Hubbard case one would rescale v then the naive 
u ^  0 limit would lead to a constant solution of the TBA equations and to divergent integrals 
in the free energy expression (4.43), while for the B-model one would lose all information about 
y±-functions.
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and substitu ting  the solution (D .l) one obtains

/ d Z ?  /  2 cos p-\-u-\- B  . 2 cos  p + u — B  . \
£  log ((1 +  +  e ^ ^ ) )  .

This is the expected result for free electrons [22].

W eak cou p lin g  lim it o f  th e  A -m odel: su(2|2) sp in  chain

The weak coupling limit of the A-model is studied in detail in section 7.2 in the 

more general context of the Bethe equations of the extended models. Here we 

point out how the limit can be taken a t the level of the TBA equations. To 

take the limit it is necessary to first rescale v to w/u as otherwise one finds th a t 

most of the functions in (4.53) exhibit singular behaviour a t w =  0. On rescaling 

the rapidity the the cut ( — 1 , 1) —)• (—0 0 , 00 ) as u -> 0 and so 3^±(u) can be 

considered as distinct functions defined on independent complex planes. In this 

way the TBA equations (7.11) with 0 =  0 can be obtained w ithout going back to 

the Bethe ansatz for the su(2|2) spin chain.

S tron g  cou p lin g  lim it o f  th e  H ubbard  and A -m odel: su(2) sp in  chain

Here we consider the models in the limit of infinite coupling. The analysis is cjuite 

similar for the H ubbard and A-models and so these are examined together.

I t is well known th a t the strong coupling limit of the less than  half-filled 

H ubbard model is the t -J model (see appendix E for a discussion), which at 

half-filling takes the form of the antiferromagnetic XXX spin chain

H =  - 2 u -  J  - 2 B S \  (4.55)
j = i   ̂ '

where for convenience we use J  = —\- The free energy and TBA equations for 

this Ham iltonian are known to be [22]:

/
OO

dv log(l -h 3̂ 1 (w)) 5{v) ,
-00

log y M  (v) = I m n  log ( 1 -h  3 ^ n )  ★ s  (u ) -h  6M l  , lim ^  .
1 M ->oo A'l I

(4.56)
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4. THERM ODYNAM ICS OF THE HS MODELS

The Hubbard free energy and TBA equations reduce to these as u —> oo.

Likewise we will see that in the strong coupling limit the free energy and 
TBA equations of the A-model reduce to (4.56) with J  — Thus it is natural 
to conclude that the strong coupling limit of the half-filled A-model is the ferro
magnetic XXX spin chain with Hamiltonian given by (4.55) with J  = \- Indeed 
in appendix E we show this to be the case.

First let us observe that £ y  ^  S y  ^  — 2u, ★  s — >  and ★  s — >•

— as u ^  oo. Then from TBA equation (4.44) it follows that Y y  0, and so

1  ̂ 1 log(l + — )®s = log - irs - { £ + - £ _ )  i s  (4.57)
l y  K+

through equation (4.30). The free energy and TBA equations for the Hubbard 
and A-models thus simplify to

/  =  -/X -  2u + ^  log (1 +  yi|^) * s , (4.58)

logFi\f|,„(y) =  / M N l o g  (l +  Y n |„ ;)  * s -  ^ { £ +  -  £ - ) i s ,  (4.59)

with K = —1 for the Hubbard model and k = 1 for the A-model. Since n enters 
only the first term of the free energy it follows that the electron density is one, i.e. 
the limit takes the model to half-filling. These resemble quite closely the corre
sponding equations for the XXX spin chain (4.56). Before the exact equivalence 
is shown let us remark that the sign of the final term in (4.59) gives an indication 
of whether one should expect an antiferromagnetic or ferromagnetic spin chain. 
From (4.49) we thus expect the Hubbard model to exhibit antiferromagnetic be
haviour and the A-model to exhibit ferromagnetic behaviour.

Next note the strong coupling limits

\ f 27rs(v) for the Hubbard model,y_, ^ for the A-m odel.

Rescaling the kernel 5 and F-functions as in (4.52), eq.(4.59) takes the form

2 7T S f ^
yMlw(^) =  -̂ AfN log (l -I- 3̂ at|u,) *5 (v) + k Sm i — — •
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To take into account the rescaling in the  final term  of equation (4.58) note

log (1 +  yi|^) = y d U o g (l +  3^i|,„(^)) J  ^ d v s { t , u v ) ( ^ ^ ~ { v ) - ^ ^ { v ) ^  ,

j  dt;s(i,ui;) j^£g^ 27T5(i).

Hence under the  identification yM\w =  3^m the free energy and TBA equations 

for the H ubbard and A models do indeed reduce to those for the XXX spin chain 

(4.56) with J  =  — J  =  ^ respectively.

Let us comment on the attractive versions of the models. Here —)■ £y —)■ 2u,

^  TBA equation (4.44) imphes Yy ^  oo.
It follows th a t the free energy (using the form (4.42)) and TBA equations simphfy 

to

f  =  - f l  +  ^  log ( l  +  Fii^^) ★ 5 ,

logyA |̂„ (̂^0 = j^MN i0g(l *S+ ^ { £ +  ~  £ - )  i  S ,

w ith K =  — 1 for the attractive H ubbard model and /̂  =  1 for the attractive 

A-niodel. Since there is no B dependence in the equations the m agnetisation 

vanishes. As the inequalities in (4.49) are reversed in going to the opposite 

models one sees th a t in the strong coupling limit the attractive H ubbard model is 

an antiferrom agnetic XXX chain while the attractive A-model is a ferromagnetic 

XXX chain. Note th a t these are charge 5u(2) chains, governed by rj of (2.6), as 

opposed to spin chains. For the strongly attractive A-model one thus expects a 

discontinuity of the density at T  =  0, w ith the model being em pty for /i <  0 and 

having all sites doubly occupied for fi >  0.

Strong coupling lim it o f the B-m odel: extended  su(2|2) spin chain

The strong coupling limit of the B-model is studied in detail in section 7.2. The 

analysis is similar to th a t for the weak coupling limit of the A-model above. Note 

th a t if V is rescaled to v / u  then the cut (—cx), —1)U(1, oo) —>• (—oo, oo) as u —>• oo. 

Again 3^±( '̂0 can be considered as distinct functions defined on their own complex 

planes, and one obtains the TBA equations (7.11) for the extended B-model w ith 

0 =  0 .
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4. THERM ODYNAM ICS OF THE HS MODELS

4.5 T B A  for the opposite m odels

In section 2.3 we discussed the relationship between a model and its opposite, 
the model defined by reversing the sign of the Hamiltonian. In this appendix we 
discuss a relationship between the Hubbard-Shastry models and their opposites at 
the level of the TBA equations. In particular we show how the TBA equations and 
free energy for the attractive Hubbard-Shastry models can be straightforwardly 
obtained from those for the repulsive models, which are those identified in (2.46). 
Our results match with the derivation of the TBA equations for the attractive 
Hubbard model in [59].

As the Hamiltonians of the opposite models differ only by their sign the models 
share the same set of Bethe equations. The only change to the thermodynamic 
Bethe ansatz analysis is that the sign of the dispersion relation is reversed. Hence 
the TBA equations for the attractive models are given simply by

1 ^l\vw * , 1  ̂ Yl\vw / .logFj, =  — ^ ^ -------- +  lo g ------------------------------------ (4.60)
1 + y\\w

log Ya/|™;(^̂ ) =  / a/ at log (̂ 1 *S-(5A/il0g(l +yj/)®S, (4.61)

log Ym\w{v) = I m n  log ( l  +  * s -  Smi log(l +  i r )® ^  , (4.62)

and they are supplemented with the large M  asymptotics

,. logyA'/|««; 2/i \ogYM\w 2B
lim  hm ------------------------------------- (4.63)

M -^oo M  T  M ^ o o  M  T

Here and in what follows tilded quantities refer to the attractive models, and 
untilded ones to the corresponding repulsive ones. The free energy of the attrac
tive models are given by either (4.42) or (4.43) with the replacement Ey —> —£y,

El\vw  ̂ Yy  ̂  ̂ ^nd Yl^yyj y Yl^yyj.
Let us note that these TBA equations (4.60 - 4.62) are identical to those of 

the repulsive models (4.44 - 4.46) under the identification

Yy , Yj^^yyj Yj^^y] , Y ^ \ w  Y ^ \V W  1 /^' ^  ^  /^' (4.64)

By using this identification one can relate the free energy of the attractive models 
to those of the repulsive one. For convenience let us write — ^tt/ 2 5  where
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is an electron energy aX p = tt/2 . From (2.46), £,r/2  =  ~2u for the Hubbard 

model, =  —2 \ / l  +  for the A-model and £ ’„ /2  =  0 for the B-model. Then

taking into account the identity (4.41) one finds

/( / i ,  B,  T) = £^/2 . (4.65)

Since £tt/2 depends only on u this will not affect the physical properties as they 

are related to  derivatives of / .  In fact 5,r/2 be removed by redefining the 

H ubbard interaction potential (2.5) as follows

V jc  ^  ^ f . k  +  \  =  - \ )  +  “  \ )  > (4-66)

which is the potential used in [9].

The same relation between the free energies of the attractive and repulsive 

models can be also found by using the Woynarovich transform ation [60] which is a 

superposition of the parity  transform ation and the partial particle-hole transfor

m ation of the spin-up electrons, see [9] for detail. Under the transform ation the 

H ubbard potential (2.5) transform s as —>• — — and all the other kinetic

and potential term s just change their signs. The relation (4.65) then follows from 

the definition of free energy and th a t N  —2S^ - I -  1 and S* - I -  |  under

the Woynarovich transform ation.
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Chapter 5 

The A-model at zero temperature

In this chapter we present oiir detailed investigation of the A-model. A summary 

of our findings can be found in the introduction 1.1.

5.1 The model

The A-model Hamiltonian is given through the parameters (2.47) with u =  sinh u

u A  _  f r j . A  2 c O S l ^  -  > ( \ / C C  _ ^ S S  > \ r P H

^  V coshiy coshi/^
j=l

(T

-itanhz^(c].^CA:,^ -

It is easy to check that this hermitian but the issue of parity invariance is some

what subtle. The transformation

4,, 4_̂+l,a ,
is not a symmetry of the Hamiltonian but is instead equivalent to a replacement 

u  — V .  This replacement can however also be realised as a unitary transforma

tion. More generally, the Hamiltonian (5.1) is unitary equivalent to the following
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-0— 0- -J o- -o \ -  - \ -------- 1~
i) ii) iii) iv)

F igure 5.1: The four cases of an electron hopping between sites j  and k: i) no 
electrons of the opposite spin on either site, ii) an electron of the opposite spin on 
site j  only, iii) an electron of the opposite spin on site k only, iv) electrons of the 
opposite spin on both sites.

one

L

H ^ (a) =  U^(q) H ^ U 2 (q!) , U 2 (q) =  exp ^  , (5.3)
j = i

H  (a) =  +  cosh cosh ^  ’
j = i

~  ~  y  ] ^ 1,(7 ~  ^ j . - c r  ~~ ^ k , - a )
a

-  sin a  tanh u{c]^^ck^„ +  {rvj^-a ~  n* _^)

-zc0satanhi/(c]_^cfc,<^ -  (rij_<, -  W k . - a f  ,

where a  is an free real parameter. If one chooses a  =  tt one gets

H" (̂7r) =  with u ^ —u ^

and so the parity transformation (5.2) should be supplemented with the change 

of basis generated by U2(7t) in order to have an invariance of the model. Let us 

remark that with the choice a  =  ± 7t/2  one removes the imaginary term from the 

Hamiltonian.

The kinetic part of the Hamiltonian is of a comphcated correlated hopping 

type. It is instructive to see hoŵ  it acts in various cases. For an electron of a 

given spin to hop between two neighbouring sites, the sites cannot contain other 

electrons of that spin. They can however contain electrons of the opposite and 

there are four cases to consider, as illustrated in Figure 5.1. The kinetic density 

T ^ ) . { a )  acting on each of the cases takes the form
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5.1 The model

ii) —ze“®“ tanh u c|̂ Cfc.o- +  tanh u c[

iii) —ze'" tanh u ^Ck.cr + ie~'‘° tanh v c\

IV c[aCk.a +  claCj,^-

Note the different sign between cases i) and iv), while for free electrons all the 
cases would be the same as case i). This reflects the strong electron correlation 
in the A-model which cannot be reduced to free electrons for any coupling.

The A-model inherits spin and charge su(2) symmetries from the su(2|2)c 
structure. The spin su(2) generators take the same form as those for the Hubbard 
model (2.6) whereas the charge su(2) generators take the following untwisted form

L L L

3 = 1  i = i  j = i

Next we present yet another way to write the Hamiltonian of the A-model. If 
we apply the unitary transformation

L

Us =  exp 7t ^  j  , (5.5)
j = i

to the Hamiltonian (5.3) with a  =  tt/ 2 we obtain

( t  I 2cosh2;y 2 . gg _ y j C C  ,

j = i

= - J 2  +  cl^cj^a) ( l  -  (1 -  ( - I F  tanh u) ,

(5.6)

In this form the correlated hopping term has a contribution that alternates along 
alternating bonds of the lattice. The unitary transformation generated by (5.5) 
can be understood as shifting the momenta of doubly occupied sites by tt while 
leaving the momenta of singly occupied sites unchanged. Acting on the charge 
su(2) generators (5.4) the transformation has the effect of twisting the generators
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5. THE A-MODEL AT ZERO TEM PERATURE

to  the form (2.6). Let us stress however th a t (5.5) is not diagonal on the level of 

the Bethe ansatz solution.

In the weak coupling limit the A-model reduces to  the su(2|2) spin chain. 

This has received much study due to an interesting generalisation identified in 

[27]. A key observation is th a t commutes w ith in this lim it and so one 

can extend the model. We will return  to a discussion of the su(2|2) spin chain and 

its extension in chapter 7. In the strong coupling limit the H ubbard interaction 

term  dom inates and the model thus shares the stric t strong coupling lim it of the 

H ubbard model. The strong coupling limit of the  less than  half-filled model is 

analysed in appendix E and is found to be a ferromagnetic t-J model, in contrast 

w ith the antiferrom agnetic behaviour of the H ubbard model.

Let us now tu rn  to the diagonal description of the model provided by Bethe 

ansatz. The Bethe equations are given in (2.40) w ith the m om entum  p related to 

the rapidity variable through

^ip(v) ^  i - X A { v ) { u  +  Vl  + u^)  

x a { v )  -  i {u  +  v T + l? )  ’

where X a {v ) defined in (4.4). The corresponding dispersion relation is given by

£  =  —2cosp  — 2 \ / l  +  , (5.8)

and it is clear th a t it is invariant under the parity  transform ation p —p. Indeed, 

this property was used to identify the model in section 2.6. W ith formulae (5.7) 

and (5.8) the results of chapter 4 can be used to  investigate the therm odynam ics 

of the A-model. For the readers convenience we present plots of Sy{v) = £{v)  

and £i\vw = £{v + iu) + £{v — iu) in Figure 5.2.

From the Bethe equations we can again see the symmetries of the model. 

F irst we note th a t to any set of roots th a t solve the Bethe equations we can add 

a w>-root a t oo, and the resulting set will also be a solution. Adding the root 

decreases the spin of the  corresponding eigenstate by one w ithout changing its 

energy, mom entum or charge. It thus has the same affect as acting w ith the  spin 

lowering operator S “ on the eigenstate, and reflects the spin su(2) sym m etry 

of the model. Next we observe the we cannot add a single D-root a t oo as its 

values are restricted to  the cut X^. This reflects the  fact th a t th e  A-model does
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Figure 5.2: A-inodel: Plots of £ y { v )  and S\\yyj{v) for u — 1 /2 ,1, 2. In the plots of 
£ y { i ^ )  the y-j- branch is represented by a solid line and the i/_ branch is represented 
by a daslied line.

not have a fermionic syiiiinetry. One can however add two complex conjugate 

?;-roots, whose real parts take their value at oo. As we already understand the 
spin syninietry it makes sense to add a iv-root a t cx) also, so tha t the addition of 
the three leaves the si)in of the state  unchanged. T hat such a combination can 
be added to any solution of the Bethe equations is made possible by the freedom 
to choose the imaginary parts the of ?;-roots. The (‘ombination will increase the 
charge of the state  by two, while from the plot of £i\vw iii Figure 5.2 we can 
infer tha t it will not change the energy of the state, and through (5.7) we can 
see tha t it will not affect the momentum either. Adding such a combination 
thus corresponds to acting with the charge raising operator and reflects the 
untwisted charge su(2) symmetry of the A-model, see eq. (5.4).

5.2 G round sta te  phase diagram

The ground sta te  of the A-niodel is determined by the zero tem perature TBA 

equations (4.51). Examining the equations numerically we see tha t ei\yuj < 0 is not 

consistent with B  > 0. There are thus no l|?;w-strings in the zero tem perature 
ground sta te  and so we can remove the contributions of 11 t;u)-strings from the 

right hand sides of (4.51). The ec}uations then reduce to

€y = Sy // B  ,

^ M \ v w  ‘2  A 1 1̂ 1 - f -  C y  ® Q y  M  1

^M\w =  2 M B  + (y ®Q^ K m  ■
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Figure 5.3: A-model: Zero temperature phase diagram 
in the //B-plane. Tlie phases identified are: I) empty 
band, II) partially filled and spin polarised band, III) 
half-filled and spin-polarised band. The line separating 
phases I and II is /x + i? =  2 — 2 \/l - I -  u^, and the line 
separating phases II and III is /x -I- i? =  —2 — 2 \/l - I -  u .̂

Hence the y-particles are the only strings which have a non-zero density and so
the ground state  is spin polarised. As y-particles have charge 1 and spin ^ the
magnetisation of the ground state is half of the density. Subbing the dispersion 

relation (5.8) into the equation for y-particles it becomes

€y — —2 cos jy — 2 \/l- l-u 2  — // — 5 .  (5.10)

The determ ination of the phase diagram is now a straightforward process. The 
ground sta te  is em pty for n < —2 — 2 \ / l  +  — B,  then partially filled up to
// =  2 — 2 \ / l  +  — B,  and saturated with y-particles thereafter. The phase
diagram for the >l-model for /i <  0, S  > 0 is presented in Figure 5.3. Let us 
remark tha t the line B  = 0 is singular at T  =  0 as the magnetisation has a 
discontinuity there.

5.3 E xcitations

Now we examine the zero tem perature excitations of the A-model. To do so we 

need to first identify which strings are of which type, as discussed at the beginning 
of section 3.2. Analysing the TBA equations (5.9) we see th a t the A/|uu;-strings 
are type 1 strings while the il/|u)-strings are of type 2. The y-particles should 

be treated as type 1 strings from the discussion at the beginning of section 4.2. 

Then the phase shifts are given by

4 ^ y , M \ v w { p ' ^ b y , M \ v w  “1“ © A /(^  0  i — '^ ^y ,M \w  "1“ f )  ,

and the dressed mom enta by

dp
P y  ) f ^ M \v w  P M \ v w  ] ^ A /  ^ ^ y i , ^ ^ y ^ A I \ v w  “t” 1) i

d» " ■
P m \w  ® Q y  " 1“  1 )  )
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5.3 E xcitations

where 6y,A/|u, and hy_M\vw tli? integers tha t determine the branch of the exci
tation.

Let us first consider excitations above the half-filled phaise III. One does not 
have to introduce singular strings through eq. (3.92) as the range of mode num
bers for y-particles N y  +  N y  =  L does not change for an excitation. T hat k y ^  =  0 

for all /^-strings, see eq. (4.20), is a reflection of this. Moreover the dressed 

energies can be written explicitly as

dy Sy / i  ^ ‘2 A I j.1, ^M\w ^ M \ v w  2 A I B , (o.l2)

while the dressed momenta are branch independent and simplify to

P y 1 P m \v v ! 0 , P m \w  P M \ v w • (o.l3)

Here the identities (A.9) have been used. The dressed charge and sjiin are equal 
to their bare values. Thus the y-particles behave a.s electrons and are gaj)ped, and 
so there is an energy cost to remove them from the ground state. Their dressed 

energy and momentum take their bare values and so are related as

(y =  —2 cos Py — 2 \ / l  -f- — p — B  . (5.14)

The 11 unstring is the magnon and the A/|?/;-strings are their bound states. In 

=  0 magnetic field they have quadratic dispersion at low energies, e\i\u, ~  
while in a 5  > 0 magnetic field they are gapped. The M\vw-  

strings are not dynamical. In the strong coupling u ^  cx) limit the energy gap 

for removing an electron goes to infinity and the physics becomes th a t of the 

ferromagnetic spin chain^

Now we consider excitations above phase II where the filling ranges between 

0 and 1. The dressed energies are given by (5.9) and the dressed momentum by 

(5.11), and here the choice of branch becomes im portant. For convenience we 

choose =  0, by^M\w = ~1 for all M .  The range of dressed momentum
is then (—7r,7r) for y-particles, (0,2;: — 27rny) for A/|uu;-strings and (0,27rny) 

for il/|ui-strings. These should be considered modulo 2n and it is convenient to

 ̂ The ferromagnetic spin-diaiii Hamiltonian appears at order see appendix E, and so it 
is necessary to rescale tlie energies approjiriately.
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F igu re 5.5: A-model: Plots of ei|„,(Pi|„,), wj, (Pi|^) and ,(Pi|„,) at u =  1 and 
S  =  0 .

plot the dressed nioinenta of the il/|t;u;-striiigs and the A/|u;-strings in the range 

(0, 27t). It should be kept in mind th a t the other branches of the  excitations 
are obtained by shifts of 2 'nU y. Plots of dressed energy as functions of dressed 
momentum for y-particles, yi/|u>-strings and A/|i)U)-strings for various filling at 

5  =  0 and u =  1 are given in Figures 5.4 and 5.5. The velocity can easily be 
read from the plots as the derivative of dressed energy with respect to dressed

momentum. Away from half-filling the dressed charge and spin of some strings
gain dependence on rapidity. They are given by

=  11 ^M|i™ =  — VVa/  , =  —VVa/  ,
1 1 1 (5.15)

where W m {v ) =  — 1 ®Qy  K m  is a non-negative function th a t goes to zero both 

at half-filling and zero filling. We see th a t the y-particle behaves as an electron



5.3 E xcitations

in this phase also, but that it is now gapless. In B =  0 magnetic field the M\w- 
strings retain their quadratic dispersion away from half-filling but they are no 
longer pure spin, they gain charge opposite to tha t of an electron as their energy 
increases. The dressed spin and charge of a l|zi;-string is plotted as a function 
of its dressed momentum for various fillings at 5  =  0 and u =  1 in Figure 5.5. 
In a B >  0 magnetic field the i\/|tt;-strings become gapped. The AI\vw-stnngs 
become dynamical in phase II but they are gapped throughout.

89



5. THE A-MODEL AT ZERO TEM PERATURE

90



Chapter 6 

The B-m odel at zero tem perature

In th is  chap ter we present our detailed  investigation of the  B-m odel. A sum m ary 

of our findings can be found in the  in troduc tion  1.2.

6.1 T he m odel

T he B-m odel H am iltonian  is given th rough  the  p aram eters  (2.48) w ith  u =  sinh;^

= E  + (6-1)
J =  1

a

Like for the  A-m odel, the  kinetic  term  is of a  correla ted  hopping type. Let analyse 

it by considering how it ac ts on th e  four cases illu s tra ted  in F igure 5.1. T he m odel 

is clearly p a rity  invarian t and so cases ii) and iii) are identical. T he kinetic  density  

T®j,(a) acting  on each of th e  cases takes th e  form

i), iv) -  c l  aCj^a,

ii)> iii) +  4 ,aC j,a).

B oth  cases i) and iv) preserve the  num ber of doubly  occupied sites, while for 

hopping in cases ii) and  iii) th e  num ber will be e ither increased or decreased by 

1. We conclude th a t  hopping processes th a t  c reate  or destroy doubly  occupied 

sites are suppressed.
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6. THE B-MODEL AT ZERO TEM PERATURE

The B-model possesses a rich symmetry structure. It has spin and charge 
su(2) symmetries and the generators take the same form as for the Hubbard model 
(2.6). Moreover the model has a dynamical su(2|2) symmetry for all values of 
the coupling constant u. In addition to the bosonic su(2) symmetries the algebra 
0u(2|2) includes fermionic symmetries. Let us first define the following onsite 
operators

(6 .2 )

where /? =  >/tanh i^/2. The fermionic supercharges are then given by

L L L L

= 2 i  =  E 2 ' , . ,  = =
j = i  j = i  j ^ i  j = i

We will soon see that the four Qo,o- create/annihilate an electron with
momentum p = 0, while the other four create/annihilate an electron
with momentum p =  tt. Let us thus write the eight supercharges equivalently as

Qo,a =  Q . ,  Ql. = Qi, =  =  (6-3)

They satisfy the 5u(2|2) algebra with central charge cothi/:

=  -{Q.4,Ql,-r} = s+, {Qo,t,Q/),J =
{Q o.J .) Q |t,'|-}  ~  ~  { Q o , f  ~  ■) {Q o ,4 .! Q w .t }  ~  ^  { Q o , t i  Q ^ r .i}  =  V  J

{Qo,t.Qo,t} -  77"̂ +  coth i / , { Q o4 , Q ô }̂ =  - S ^ - r y ^  +  coth^ ,

{Q7T,t-Ql,t} ^  + 77  ̂+ coth 1/, + T7̂ +  cothi/, (6.4)

and all other anti-commutators vanish. The fermionic generators Q do not com
mute with the Hamiltonian but instead

Q] =  h . Q Q ,  [N, Q] =  u q Q ,  [S^ Q] =  s q Q ,

with Hq , Uq and Sq given in Table 6.1, and so one can introduce a corresponding 
set of operators Q{t) =  that are conserved. It is not difficult to check
that the Q{t) also satisfy the su(2|2) algebra (6.4) and so represent a dynamical
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6.1 The m odel

Qo.t Qo.; Q tt.T Q tt.I Q i,t Qo.|
l lQ 2 2 -2 -2 -2 -2 2 2
U Q -1 -1 -1 -1 1 1 1 1

’̂ Q -1 /2 1/2 -1 /2 1/2 1/2 -1 /2 1/2 -1 /2

T able 6.1: Coinmutators of supercharges of the B-moclel with H , N  and S^.

sym m etry o f the m odel, see section 2.4. Let us recall that dynam ical sym m etry  

leads to exact relationships between the energies of eigenstates rather than to  

degeneracies in the spectrum . For exam ple if |^ ) is an eigenstate w ith  energy 

then the energy of the sta te QIV )̂ is given through H^QIV') =  + hQ)Q\i>).

In particular it follows that the ground sta te  of is in the kernel of Qn,t’ ^ o ,i’ 

QTr.t and
T he operators (6.2) allow us to  rewrite the kinetic term  of the B-m odel in a 

particularly sim ple fashion. One can easily check that

+ l ~  ~  tanh V + +  Q] + \,„Qj.rr +  + ■
(7

Let us observe that w ith this form tanh u  com pletely factorises out of the Hamil

tonian (6.1), and the coupling constant only appears im plicitly through the oj)- 

erators (6.2).

N ext we discuss the lim its of coupling. In the weak coupling lim it the Hamil

tonian reduces to that o f free electrons on the lattice. T he dynam ical synm ietry  

of the m odel becom es singular here, as the central charge of the algebra diverges: 

coth 1/ —)■ oo. In the strong coupling lim it note that [H ® , V^] =  0, as for the  

weak coupling lim it of the A-m odel. T his lim it m aps onto the EKS m odel [27] 

and will be discussed in detail in chapter 7.

Now we turn to the diagonal description. T he B ethe equations are given by

(2.40) and the m onientiun p  is related to  the rapidity variable as

e - < ” > =  £ 5 ( £ l ± * i ± 4 + £ )  ,  (e.5)
■̂b { v ) -  i ( u  +  \ / l  -h u^)

where .TB(t’) defined in (4.5). T he m od el’s dispersion relation is given sim ply by

S  =  —2 cos p . (6.6)
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F igu re  6.1: Plots of £ y { v )  and £i\vwi'v) for the B-model for u =  1 /2 ,1 ,2 .  In the 
plots of £y{v) the y+ branch is represented by a solid line and the y -  branch is 
represented by a dashed line.

As the function a;B(f) has two branches so does £ y{ v )  — £ { v ) ,  and for the readers 
convenience we present jjlots of £y{v )  and £\\vw =  £ { v  +  m) + £ { v  — iu) in Figure 
6 . 1 .

We can now argue the physical interpretation of the supercharges (6.3). From 
the dispersion relation (6.6) we see th a t an electron th a t decreases the energy 

by 2 has momentiun zero, while an electron tha t increases the energy by 2 has 
nionientiun tt. A s and add charge 1 and spin + |  and —̂  respectively 
to a sta te  while decreasing its energy by two, they must correspond to adding an 

electron with momentum zero and spin, respectively up and down, to the state. 
Similarly Qo,^ corresponds to removing an electron with momentum zero, while 

Qjr and Q;r,(r correspond respectively to adding and removing an electron with 
momentum tt.

Finally let us examine the symmetries of the model through the Bethe equa

tions. As we saw for the A-model, it is possible to add a W)-root to any solution 
and it has the effect of acting with the spin 5u(2) lowering operator S “ on the 
corresponding eigenstate. Unlike the A-model however, here we can also add a 

single f-root a t oo. Indeed one can be added a t either ii =  c x d  ±  ?0, i.e. at either 
side of the cut I®. From equation (6.5) we see th a t

p(oo +  z 0 ) = 0 ,  p(c» —iO) =  7T, (6.7)

and so from equation (6.6) (see also the plot of £y  in Figure 6.1) we get

f (o o  +  z0) =  - 2 ,  £ ( o o - i 0 )  =  2. (6.8)

94



6.2 G round  sta te  p h ase d iagram

F igu re  6 .2 : B-model: Zero temperature phase diagram in 
the /iS-plane. The phases identified are: I) empty band, II) 
partially filled and spin polarised band, III) half-filled and spin- 
polarised band, IV) partially filled and partially spin polarised 
band, V) half-filled and partially spin polarised band. The 
value /io ranges between 0 in the limit of weak coupling, and 
-2-1-2 log 2 a  —0.6137 in the limit of strong couphng.

Adding the roots increase the charge of the s ta te  by 1 while decreasing the spin 

by 1/2, and so correspond to the action of Qq^ and Q j ^ c r  =  oo - I -  ?'0 and

V = oo — iO respectively. The fermionic operators of the opposite spin are realised 

by adding a w-root at oo in addition to a t'-root. Moreover adding a ly-root and 

two w-roots, one oo-l-zO and one oo —iO, increases the charge by two wdiile leaving 

the spin unchanged. The com bination does not change the energy of the sta te  

but it does shift its mom entum by tt. This then corresponds to the tw isted charge 

su (2 ) raising operator 77+ of (2 .6 ), and completes the symmetries of the model.

6.2 G round sta te  phase diagram

The ground sta te  of the B-model is determined by the set of zero tem perature 

TEA equations (4.51). Only y-particles and l|vti;-strings can have non-zero den

sities. Let us construct the phase diagram on a case by case basis. The result is 

presented in Figure 6.2.

F irst we consider the question of when l|t)iy-strings begin to appear in the 

ground state, this determines the boundary between phase IV and phases I, II 

and III. W hen there are no l|vw -strings then ei|^„,(t>) >  0 for all v. Thus the 

term s w ith do not contribute to the right hand side of the TEA  equations 

(4.51) and they become

€y S y  j l  ^ l \ v w  ^ l \ v w  ^  ® Q y  (^'^)

The phase boundary is determ ined by the condition th a t min„ ^i\vw{v) =  0. Note 

th a t € y { v )  is even and a monotonically increasing function of v  around the cut 

(1 , 0 0 ) from the minimum of S y { v )  at w =  00  -I- iO to the maximum of £ y { v )  at 

D =  0 0  — iO, th a t is e+{v) and e_(u) are decreasing and increasing for positive

IV V
- 2
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6. THE B-MODEL AT ZERO TEM PERATURE

V respectively. Also is even and a monotonically decreasing function^
for positive v. Thus the minimum of is at ?; =  ± c x d . By evaluating the
pseudo-energies at ±00 one can see that they have finite asymptotics, which we 
denote by for an a-string. In this regard let us remark that for a function 
f{v)  which asymptotes to /°° one has

for any finite A. The asymptotics can be used to determine the phase boundaries, 
let us consider separately the following cases: i) Qy = 0,  the boundary between 
phases I and IV, ii) Qy C a proper subset, the boundary between phases
II and IV, iii) Qy = I® UX^, the boundary between phases III and IV. We have

i) Evaluated at u =  00 the TBA equations (6.9) reduce to the linear equations

From the conditions > 0 and = 0 it follows that the boundary of 
phases I and IV is the point = (—2,0).

ii) Evaluated at u =  00 the TBA equations (6.9) reduce to the linear equations

From the condition = 0 it follows that the boundary of phases II and 
IV is the line B = 2 + ^.

iii) Evaluated at ?; =  00 the TBA equations (6.9) reduce to the linear equations

From the conditions < 0 and = 0 it follows that the boundary of 
phases III and IV is the point (/x, B) = (0, 2).

^This second property is seen via the identity £i\yw =  —Sy ® K \  =  —Cy ® K i ,  where the 
first equahty follows from shifting the contours of integration and the second from the fact that 
the constant terms in €y cancel when integrated over both edges of the cut. This implies that 
^i\vw — — €y ®Q^ A'l, where Qy  is the complement of Qy  in the contour I®  U l®  around
the cut, and it follows that the derivative of ei|i,iu(t;) is negative for v  €  (0, c x d ) .

6 - =  - 2 - / x- 5 ,  6-  =  2 - / x- B ,  6?;;^ = - 4  -  2/i.
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6.2 G round sta te  phase diagram

Next let us determine the phase boundaries for y-particles. Neglecting for a 

moment the contribution from l|uzo-strings, the relevant TBA equation takes the 

form

€ y  =  £ y  —  ^  —  B  ■

Recalling the dispersion relation (6.6) one can see that the line fi = —2 — B  
separates phases I and II and the line ji = 2 — B  separates phases II and III. Note 

that neither of these lines enter the region, located in the previous paragraph, 
for which l|t>u!-strings appear in the ground state. Thus neglecting the \\vw- 
strings in the determination of the y-particle phase boundaries turns out to be 
self-consistent.

Finally we consider when the ground state becomes half-filled. Let us begin 

by establishing that this happens when Qi\yw =  K- Half-filling corresponds to 
ric =  1, where iic =  is the charge density, Uy = 1 i  +1 i  q_ is

the average number of y-particles per site and = 1 P \ \v w  is the average
number of l|u?i;-strings per site. The equation for the density of l|i;?/;-strings in 
the zero temperature limit provides a useful relation

27T
dpi|t

dt>
-  Q+P+ -  K l i  Q_ p ^  -  ^ 2  (6 .10)

Integrating over M this gives

^ l \ v w  1 '^Qi\vu>  ̂ ( '̂^^)

and so Qi\vw =  ® implies Qi\vw =  0  and thus Uc =  1. Moreover, it is clear that 
Q i \v w  C R, a proper subset, implies ric < 1. Thus the boundary between phases 

IV and V is determined by setting Q\\mu =  R and varying Qy.  First consider the 
case Qy — 0 .  Here e+ >  0 and evaluating the TBA equations (4.51) at v = oo 

one finds tha t =  —B,  and thus B  = 0. Therefore the boundary is the point 

{p, B)  =  {po,0) where po is the solution to the equation ei|^u,(0) =  0, with 

determined by the integral equation

—  ^ l \ v w  2 / /  -^2 •
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6. THE B-MODEL AT ZERO TEM PERATURE

Using the identities 5 +  * s =  A \ and £\\vw =  ~£y ® -^"1 this equation can be

inverted

r 4 t y  1 -  ^
f io = - { £ y ® s ) { 0 )  =  -  d t ------7 5 — s ( t ) .  (6.12)

-'|t|>i u +  r

Evaluating this integral one finds th a t î q ranges from =  0 a t weak coupling 

to  He = 2 log 2 — 2 —0.6137 a t strong couphng. Next for the case Qy =

, examining the asym ptotics of the TBA equations as above yields th a t 

the boundary is the point [ n ,B )  = (0,2). Thus phases II, III, IV and V all 

meet here. Furtherm ore it follows th a t a t this point ei|„^(t>) =  0 for all v and 

hence there are neither particles nor holes of \ \vw  strings in the  ground sta te  

here. To fill in the picture the line joining (//o,0) and (0,2) m ust be determ ined 

numerically from the coupled integral equations

£y t-̂  B  ^l\vw ^ .A 15 ^l\vw £l\vw ^y ®Qy ^l\vw ^  - ^ 2  ;

param etrised by the interval Qy C I f  A practical way to achieve this is to

introduce the derivative with respect to v of these equations

^ V ~ ^ y ~  ^'\\vw  =  ^ l \ v w  +  4  ®'?!/ *  -^2,

where here we have used — v) = — v), integrated by parts, and

used th a t €y{v) — 0 on the boundary of Qy. Then for a given interval Qy the 

corresponding point (//, B)  is found by identifying the asym ptotics =  —2B,  

= - 2 - h + B  with

+
'Q+, t>0 JQ ~ , t> 0

6.3 Excitations

Now we investigate the excitations at zero tem perature. First we observe th a t 

the Jlf|yu>-strings are type 2 strings, the M |u;-strings are of type 1, and the y- 

particles should be trea ted  as type 2 strings from the discussion a t beginning of 

section 4.2.
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6.3 Excitations

First we focus on excitations over the ground state  wlien it is half-filled and 

has zero magnetisation. This is the subregion of phase V where /io < < 0 and

5  =  0. Here the TBA equations 6.9 can be solved explicitly with solution

^ l \ vw  — 5 H i  M>2\ vw  — 1 ) / /  1 Cy — ^  j ^Kl \w — 0  .

(6.13)

The A/|?;w’-strings for M  > 2  and the A/|u>-strings are not dynamical. The 

strings are half-filled and so we use the prescription (3.92) for handling excitations 

which change the range of mode numbers and get

6Ntu M \v w (6.14)
M = 2

Thus only excitations with + SN^  even are allowed, as nnist be an

integer.

To calculate the dressed momenta let us make the branch choice =  1

and bi\rw.y = 0. Then we get

D _  , 1 -r
■* l | im ;  7T - j-  o  ]27t dv

= - P y  ® s , P a/> 2 |™  =  {M -  1)7T mod 2n ,

“i” Py Pl\vw   ̂ , f*M\w 0 ,
(6.15)

where we have introduced the useful functions

■ra + *i:;)r(i-̂ i)iT{v)  =  Bi * s{v) = Uog

7T r 7TV
\I/(t;) =  0 2  s{v) — Bi(t;) ^  2 arctan exp (— )

(6.16)

The range of Pi|„„, is ( - | ,  | )  while the range of Py is ( - ^ ,  - f ) U ( | ,  y ) -  Let 

us remark tha t when taken modulo 27t the range of Py will have an overlap. The 

singular l|i)w-strings appearing through eq. (6.14) have rapidity =  0 and so 

carry momentum 0. The dressed charge and spin are

M>2\ vw =  2 M - 2 ,  =

U ! ' =  —  

" 2
LO ^  ’ ^ 'm \w 1

(6.17)
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Figure 6.3: Plots of E ^ i P u )  and E s{ P s )  for the half-filled B-model at f.1 =  0, 
5  = 0.

and we observe th a t the excitations are spin-charge separated in this phase. The 

removed l|viy-strings get dressed as holons while addeti y-particles get dressed as 

spinons. The energies and momenta of the holons, antiholons and spinons are

£ / h  ^ l \ v w  ®  5  ” 1" ^ /  , P \ \ v w  P y  ®  ^  •>

“1“ ^2\vw ^ y  ®  ^  > P\\ P l\vw  P2\vw  ^  s ig n  -)- P y ®  S ,

E s  € y  ^ l \ v w  ^  ^  5 P s  P y  “ t“  P y  P l \ v w  ^  ^  •

(6.18)

Here an antiholon is identified as a composite excitation of a holon and a 2 |du’- 

string because a 2|?;u;-string is not dynamical. Let us remark th a t through eqs. 

(6.13), (6.15) and (6.17) it can be seen tha t its addition can also be regarded as 

the action of the charge su(2) raising operator on a state. Similarly the spinon 

s is a composite of a spinon s  and a l|u;-string. Plots of £'h(Ph) and E s { P s )  

are given in Figure 6.3 for various values of u. The velocities can again easily 

be read from the slopes. The holons are gapped for // > //q- The gap goes to 

zero in the weak coupling u —> 0 limit, while the gap has a maximal value of 

2 — 2 log 2 0.6137 at // =  0 in the strong coupling u —> c» limit. The spinons

are gapless and display an “hourglass” dispersion. The similarity to experimental 

data  on spinon scattering in some cuprate materials, say Fig. 2 of [25], cannot 

go unremarked. In the strong coupling u —> oo limit the two lower wings join 

difTerentiably at tt and the upper wings can be understood as the contributions 

of dressed electrons on doubly occupied sites, see chapter 7.
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6.3 E xcitations

Next let us calculate the dressed scattering phases to examine the scattering 

of the holons and spinons. F irst we present explicitly the bare scattering phases

<Pl\vw.l\vw{v,t) = 271 -  7TSign(t>) +  02('U -  t)  ,

4>i\vw,M>2\vw{v,f) = 2ii -  27Tsign(?;) +  Q i m {v -  t ) ,

4>l\vw,y{v,t) = 4)yA\vw{v,t) =  -7Tsign(z;) +  Q i { v  -  t) ,

(pl\vwM\w{v,t) =  0 , (j)y,y{v,t) =  0 , (j)y.M\w{v,t) =  -Tl  Slgn{v) +  0m(w -  t) .

To calculate the dressed scattering it will be necessary to redistribute the contri

butions of the  singular strings as in eq. (3.95). Solving eqs. (3.53) for 

^M\vw^i\vw and we get

=  7T -  7TSign(ll) +  T(t>) +  T  {v ~  t) ,

^M>2\vwMvw{V:t) =  -27Tsign('y) +  0A/_i(u) +  0M -l(w  “  t ) , (6.19)

=  -7T -  7Tsign(w) -  (t;) -  ^»(u -  f) ,

where the identity Trsign * K i  = Qi  has been used. As we are interested in the

scattering phase shift, which is defined modulo 2n,  sign(t>) can be dropped from 

(6.19). Taking into accoimt the scattering phases of singular strings the dressed 

scattering phases are

=  ^  -  T(i; -  0  ,

i'lJ, t) =  t) =T^ - t )  ,

t) =  7T + G u - l i v  -  t) , 3)JJ^|,„(?;, t ) = 7 T  + Q m {v -  t)  ,

" ^ M \ v w , N \ w i ^ ,  i) =  0 , t )  =  0 ,

=  ^MiVTT +  B m n {v ~  t) — ©m+n(^' “  0  “  ©M+W-2('i^ “  t) ,

-  Q m n { v  -  t )  .

Let us com pute explicitly the phase shifts for the charge trip le t and charge singlet 

excitations.

Charge triplet, holon-holon scattering. Here two l|t'U ’-strings w ith rapidities V\

and V2 are removed. Let us say th a t V\ has a greater velocity than  V2 , and 

let us denote th is as v\ y  V2 - Then

Fi \vw {v )  =
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6. THE B-MODEL AT ZERO TEM PERATURE

and the phase shift is
(̂ CT =  7T +  T ( w i  -  V2 ) . ( 6 .2 0 )

Charge singlet: holon-antiholon scattering. Here two l|wu;-strings with rapidities 
V\ >- V2 are removed and a 2|w?i;-string with rapidity v is added. The rapidity v 
of the added 2|v-u;-string can be fixed through eq. (3.52) using P2 \vw = 0,

F2\v̂ u =

=  7T -  0 i ( t ;  -  Wi) — 0 i ( u  -  V2 ) +  Q 2 {v  -  v)  , 

and so F2 \vw{v) =  tt gives v =  Here

F i \ vw {v )  =  -«>?|L,i|„̂ (t̂ ,«i) -  <J>l|L,i|̂ (̂̂ ,̂'y2) + 

and thus
<̂ cs =  'T{v, -  V2 )  -  01 . (6.21)

Let us remark that these results as functions of the rapidity are the same as those 
of the half-filled Hubbard model [61], see e.g. eqs. (7.124) and (7.126) of [9]. The 
scattering shifts for the spin triplet, singlet and spin-charge excitations can be 
computed similarly and also agree with those of the Hubbard model, eqs. (7.139), 
(7.141) and eq. (7.145) of [9].

Now let us consider the less than half-filled phase while still keeping B  = 0. In 
Figure 6.2 this is the portion of phase IV along the /i-axis. The magnetisation is 
zero and the filling is 2ni|„^. Here again €m\w = 0 and =  0 for i\/|^i;-strings 
but to find the dressed energies and momenta of M\vw-stvings and y-particles one 
must solve the TEA equations (6.9) numerically. Taking all ba/s = 0, the dressed 
momentum for y-particles takes values in 7rr7i|„u; < \Py\ < t t  +  7rni|„„,, for l|ury- 
strings in 7rni|,„j, <  |Pi|„,„| < t t , for M|w?i;-strings with M >  3 odd in 27rni|,„„ < 
\ P m \v w \ <  and for 7 \ f  |wu;-strings with M  even in t t  - H  27rni|„m <  \ P m \v w \ <  2 7 t .  

These ranges should be considered modulo 27t but it is more convenient in plots 
to use the ranges specified here. The other branches are obtained by shifts of 
27rni| .̂u,. The dressed spins of the excited strings take their bare values while the 
equations for dressed charge are

 ̂ ^\\vw *<?i|vuj ’ ^M\vw 2iVf ^l\vw ^Q\\vw ) ^M\w ® • (6.22)
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Figure 6.5: B-model: Plots of dressed energy ^y{Py) and dressed charge ujy{Py) 
at u =  1 and B =  0 for various fillings.

These are rapidity dependent for the y-particles and M |uit;-strings. Let us rem ark 

however th a t a t w =  ±oo  the dressed charges take the values they have a t half

filling (6.17)

o;^(±oc) =  0 , u;J|,^(±cx,) =  l ,  u;^>2|,^,(±oo) =  2M  -  2. (6.23)

In Figure 6.4 the dressed energy and dressed charge of a l |i ;u ’-string as a function 

of its dressed m om entum  is p lotted  for various fillings at u =  1. The corresponding 

plots for ^-particles are given in Figure 6.5 and the “hourglass” behaviour about 

7T is seen again. Both excitations are gapless. The M |uti;-strings w ith M  > 2 

are dynam ical but have a gap of —2(M  — 1)//. The ll?;?/>strings remain spinless 

bu t ^/-particles with non-zero energy here have dressed charge in addition to  their 

spin. At low energies the charge carried by a y-particle scales with its energy, 

and moreover the m agnitude of the charge carried increases sharply as the filling
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is decreased. Thus the excitations are not spin-charge separated at non-zero 
energies away from half-filling. Nevertheless, in the limit of zero energy the 
excitations carry either spin or charge and so this is compatible with spin-charge 
separated wave-like excitations that one may expect in the continuum limit, as 
in the Luttinger liquid. Let us remark that, as can be seen from Figure 6.4, the 
charge of a zero-energy l|t>?i;-string becomes greater than 1 at less than half-filling 
and thus we expect that the charge carried by a charge-wave gets increased at 
reduced filling. Moreover we note that the magnitude of the charge carried by a 
particle excitation is greater than that carried by a hole excitation.

It is noteworthy that at B =  0 one can clearly see that the l | t ’ii;-string is a 
spin-singlet bound state. Let us show this. The spin singlet excitation is achieved 
by adding two y-particles with rapidities V\ and V2 , and adding a l|w-string with 
rapidity w which we initially take to be arbitrary. The relevant dressed phase 
shifts are

~  ' ^ Q i \ v w  )

=  -7T sign(t;)  -h 0 i ( w , t )  -  (A ' 2  ^ i \ v w . y ) { v , t ) ,

=  7T +  0 i ( w  -  t )  , =  7T +  ©i(?; -  t )  , =  7T -  ©2(?; -  t )  .

The rapidity w is fixed to tw = gq (3 .52) as Pi|,„ =  0. The scattering
phase shift is

Fy{vi) = %^y{vi,vi) + %^y{vuV2) + 7T +  ©1 . (6.24)

Note that ©i (±m) =  ±?oo and so the final term gives rise to a pole of the S-matrix 
at vi = V2 — 2iu. Although the first two terms cannot be obtained explicitly it can 
be seen analytically that they cancel the pole through the term ©1 in for
V G Qi\vw, while for v ^ Qi\vw the pole remains. The pole corresponds to a bound 
state of a y_- and a y+-particle as ImP_(w) > 0 for Imt> 7  ̂ 0 and ImP+(w) < 0 
for Imt) 0. The bound state, with rapidity w, thus corresponds to a spin singlet 
excitation with

— i u  , V2 =  V +  i n   ̂ w = v . (6.25)

and the changes of energy and momentum are

A E  = ei|„^,(u), A P  = Pi\yy,{v) for v ^  Qi\^^ . (6.26)
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at u = 1 and /i =  0 for various values of magnetisation m.

Here tiie identity Ki{v  +  m — iO) +  K\{v  — iu +  zO) =  5(w) +  K 2 {v) was used 
to obtain the energy and eq. (3.47) was used to obtain tlie momentum. Hence 
the bound state is indeed an added l|vii;-string. Tliis indicates tha t spin-spin 
interactions are responsible for the pairing of tlie electrons into l|uiu-strings.

Let us consider briefly the effect of a S  > 0 magnetic field at half-filling, the 
interior of phase V in Figure 6.2. Here there are both l|uii.’-strings and ^/-particles 
in the ground state and it has a magnetisation between 0 and 1/2. The l|t)'i/;- 
strings are at half-filling^ and so excitations must satisfy (6.14), from which it 
follows that only excitations with even are allowed. The l|wt«-strings
are gapped and have dressed charge 1 while the y-particles have dressed charge 
zero and are gapless. The M  > 2|wu;-strings are non-dynamical while the M\w-  
strings are dynamical but gapped. The spin dressing equations for y-particles 
and l|t>u,’-strings are

=  2 “ ’ ^l\vw = ^l®Qv ■ (6.27)

Let us remark that cjy{±oo) = 1, ix!®| ĵ (̂±oo) =  — |  and thus at zero temperature 
the dressed spin jumps as soon as a magnetic field is introduced. This is true for 
any filling. Plots of the dressed energy and dressed spin of a l|i>u)-string are given 
in Figure 6.6 for various magnetisations at u =  1 and /x =  0. The corresponding 
plots for y-particles are given in Figure 6.7.

^Therc are no holes for llvw-strings here. There arc less of them than there are at B =  0 
as their range of mode numbers is decreased by the presence of the j/-particles.
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We conclude by comparing our findings to studies, respectively [62] and [63], of 
related models the supersymmetric i-J model [26, 64, 65] and EKS model [27, 63]. 
These share similar phase diagrams, indeed in the limit of strong coupling the B- 
model reduces to the EKS-model with coupling f/ =  4, and the supersymmetric 
t-J model also shares their common ground state. Thus the excitations are ex
pected to be very similar and this is the case. The dressing of spin and charge of 
excitations, which we describe in detail, is suggested at in [62] and is not discussed 
in [63]. In particular we do not observe the existence of an electronic excitation 
carrying charge 1 and spin |  for any filling as claimed in [63]. In our language the 
excitation they consider is understood as a y_-particle and it carries this charge 
and spin only at zero filling where it is undressed. An interesting feature of the 
EKS model is the presence of gapless excitations for f/ < 41n2 ~  2.77. They 
call these excitations localons, and in our language they correspond to M\vw-  
strings with M  > 2. These are gapped throughout the B-model however, as is 
to be expected due to the presence of a charge gap at half-filling. Let us com
ment on a difi'erence between the B-model and its strong coupling limit related 
to the hourglass-like dispersion of the y-particles, see Figures 6.3 and 6.5. In 
the u —> oo limit the dispersion curves split into two branches, one upper one 
lower, that touch tangentially at one point. These correspond to the y+ and y_ 
branches of the ^/-particle respectively. For the supersymmetric t-J  model exci
tations corresponding to the upper branch do not appear. For finite u however 
the structure of the excitation is no longer of an upper and lower branch but 
rather of left and right moving excitations. Finally we should comment on the
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advantages of our formalism over those of say [62, 63]. By working directly with 
the Bethe strings we obtain a clear description of excitations over the pseudo
vacuum reference state instead of the somewhat unnatural reference state which 
is the preferred choice of [62, 63] because it makes it easier to work with Bethe 
roots. Furthermore, overcoming the need to deal directly with mode numbers 
and using dressing equations (3.55) to determine the dressing of spin and charge 
allowed us to straightforwardly identify the nature of the excitations.
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Chapter 7 

Integrable extensions of the  
Hubbard-Shastry models

hi this chapter we discuss the integrable extensions of the Ikibbard-Shastry mod

els. These correspond to decoupling the Hubbard interaction for the weak cou

pling limit of the A-model and the strong coupling limit of the B-model, and so 

they have one free coupling constant. We find that the two resulting models are 

equivalent to one another, and also equivalent to the Essler-Korepin-Schoutens 

(EKS) model [27]. We investigate this at the level of both the Hamiltonian and 

the Bethe equations. The thermodynamics are considered and a simplification 

of the TEA equations for the EKS model is obtained. The ground state phase 

diagram is also examined.

7.1 The H am iltonians

Let us present the integrable extended models. The construction follows tha t of 

[27] and the model H^° below is indeed the one they studied. The key observation 

is that if [H , V^] =  0 for a given model then H  and can be diagonahsed 

simultaneously and it is natural to add a term 4 g to the Hamiltonian, where 

g is a new coupling constant. This allows one to decouple the term capturing 

onsite Coulomb repulsion from the other terms in the Hamiltonian. Since the 

number of doubly occupied sites is conserved if [H, N] =  0, then g can be thought 

of as a chemical potential for doubly occupied sites. Furthermore if the original
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7. INTEGRABLE EXTENSIONS OF THE HS MODELS

model is integrable and commutes w ith the transfer m atrix  then  the resulting 

model is integrable too.

This is the case for the weak coupling limit of the A-model and the strong 

coupling limit of the B-model. We consider also the extensions of the opposite 

models as we can choose g so th a t the coefficient of the H ubbard interaction is 

positive for these also.

The extended H amiltonians for the weak coupling limit of the  A-model and 

its opposite model (see equation (2.15)) are

H*"(8) =  E  (T tj+ . +  2((2 0 + l ) V « ^ . + V j ; « , - V j « ^ , + V ' : « j ) ( 7 J )

j = l

<7

The Ham iltonian H ^°(g) is the one for the EKS model (with g =  U/4.), and eq. 

(7.2) shows th a t for g <  1/2 it should be thought of as a model w ith effective 

attractive on-site Coulomb interaction. The models have a dynam ical su(2|2) 

symmetry. W hen g =  0 the models reduce to the su(2|2) spin chain and the 

sym m etry becomes exact, and the Hamiltonians commute w ith the  supercharges

L L

Q s ,( t  ~  ''y o'*-j,ct) 1 Q<i,(T ~  'y ] 1 c ^ -3 )

and their herm itian conjugates. These have the clear physical in terpretation 

th a t they annihilate (and their herm itian conjugates create) electrons on singly 

occupied and doubly occupied sites respectively. Com puting the com m utators

[V " , Q .,.] =  ^Qs,a , [V " , Qd,a] = - \ Q d , a  , (7.4)

one finds

[H^°(0) , Qs,a] = 2g Q .,. , [H ^°(g ), Q^..] =  -2 g  , (7.5)

and thus the su (2 |2) sym m etry is dynam ically broken for g 7  ̂ 0 .
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The extended Hamiltonians for the strong coupling lim it of the B-model and 

its opposite model are

H “*(£i) =  E  (T |;r+ . +  2 ( ( 2 0 + l ) V ' ' ^ , - V C C , + V | f ^ , + V ™ O ) T ^ 6 )
J =  1

H “*(0) =  E  ( T j r + . + 2 ( ( 2  0 - l ) V S « + V ‘: f ^ , - V “ ^ . - V ' 7 „ ) ) z ^ 7 )
i= i

(1 -  .

CT

These too have a dynam ical su(2|2) symmetry. Taking the limit u ^  oo for the 

supercharges (6.3) of the B-model they become

L L

Q o,(T ^  ^ ) Q tt.ct ^   ̂ crt'j,(T • C^'®)
j= l j=l

These generate a dynam ical sym m etry for g =  0 as discussed in section 6.1, and 

also provide a dynam ical sym m etry for the extended B-models as can be seen 

through

[H®°°(g), Qo,ct] =  2(g - I -  1) Qo,o-, [H®°°(g), Q,r.cr] =  —2(g - I -  1) Qjr.o- • (7.9)

The H am iltonians and symmetries of the extended A- and B-models look 

somewhat different, bu t they are in fact equivalent. The models are related by 

the unitary  transform ation (5.5) as

H ® -(g) =  U ^ H ^ ° ( 0 - 1 ) U 3 ,  H ^ -(g )  =  U^H-^«(g +  l ) U 3 .  (7.10)

It follows in particu lar th a t the EKS model and the extended B-model are equiv

alent up to  a shift of the coupling g by 1. Let us remark th a t the unitary  transfor

m ation untw ists the supercharges (7.8) of the extended B-model bu t leaves those 

in (7.3) unchanged, and it so matches the two sets.
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7.2 B ethe equations

Let us first consider the Bethe equations for the models without the extension, 
i.e. with 0 =  0. In order to take the limit of the Bethe equations (2.40) some 
care is required. As discussed in section 4.4.3 it is best to first rescale v —>• v/u,  
w —> w/n  and then take the appropriate limits of u. Then the resulting Bethe 
equations are^

. , M
, i p+ , ,L  (  .  ̂\  TT I

V z+ k - t y  z+k - W j - i’ j= .\  ’

- j- r  Wfc -  Z + j  +  y-j- Wfc -  +  I  ^  W k  -  W j  +  2z

1=1 -  z + j  -  i  Wk -  Z . , j  -  i  W k - W j - 2 i '

M .

Z -  k — Wj  — i j=i ^

where Of =  — 1 for weak coupling limit of the A- and opposite A models, and a  =  1 
for the strong coupling limit of the B- and opposite B models. The dispersion 
relations for the models are

£+°{v) =  —2 cosp+(t>) — 2 =  —47t.^i(u) , £^°{v) =  —2 cosp^{v) — 2 =  0,

=  —2cos/)+(t’) =  47T.^i(t;) — 2 , £^°°{v) =  —2cosj9_(?;) =  2 ,

and the respective dispersion relations for the opposite models have the opposite 
sign. In the limiting process the y-ioots decouple into two sets

p+: \y+ = x{uv) : Im {v )  > 0} U {y_ =  /  : Im {v )  < 0} ,
>- x(uw)

P- : {y -  =   ̂ -■■■ : Im {v )  >  0} U {y+ =  x(uv) : Xm{v) < 0} ,
.r̂ u V)

with the momenta as presented in the Bethe equations above. The corresponding 
t>-roots are labelled z+ and z_. Note that the 2_-roots have been frozen, while 
the z+-roots retain non-trivial momentum dependence.

The decouphng of the y-roots and the emergence of a third level to the Bethe 
ansatz equations is indicative that the models have an integrable extension. The

^These Bethe equations coincide with those derived in [66] with the BFFB grading.
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conserved num ber N  has spht into two independently conserved numbers N+ 

and N - .  Recall th a t the conservation of the H ubbard interaction implies th a t 

the to ta l num ber of doubly occupied sites is conserved. It is clear th a t this must 

be N - ,  the num ber of frozen roots. Indeed this is understood as 2+-roots being 

a first level of electrons th a t occupy em pty sites, and th a t 2_-roots are an extra 

level th a t combine with a ^+-root and a t/;-root to make a site doubly occupied. 

As a consistency check note th a t there are a t most M  2_-roots as each must 

satisfy the same polynomial of degree M ,  and as 2M  < N+ + 7V_, th a t for each 

2_ root there exists a corresponding z+-root and ty-root.

Next we make the observation th a t i\/|t>u;-strings are composed of M  +  1 z+- 

roots and M  — 1 2_-roots. Let us illustrate this for the case of the l | t ’iy-string. 

Recalling equation (4.11), yi = x{v +  i) and ?/_i =  x{v-i) ’

y-roots are of type. For longer strings the  logic extends naturally. This has 

an im portant implication. The l | t ”u;-string here corresponds to a bound pair 

of a spin-up electron and a spin-down electron, each on a singly occupied site. 

Indeed, the H ubbard interaction favours singly occupied sites and thus extending 

the models can favour electron pairing.

Now consider how the coupling constant g enters the analysis. Since z+ corre

sponds to  a singly occupied site the H ubbard term  shifts its dispersion relation as 

£ +  - ^  £ +  — 2q. Similarly the dispersion relation for 2:_ is shifted as —>■£’_  -I- 2g  

because it corresponds to a doubly occupied site. An M |t’u>-string is composed 

of ilf +  1 z+-roots and M  — 1 2_-roots and so its dispersion relation is shifted 

as £m\vw £m\vw ^  4 g , while an M |ty-string does not contain z±-roots and so is 

unaffected.

Now we can see the equivalence of the models on the level of the Bethe equa

tions. Indeed the two sets corresponding to  a  =  ±1 are identical for lattices of 

even length L. Moreover shifting g g — 1 takes the dispersion relations for the 

B-model to the dispersion relations for the opposite A-model. Similarly, shifting 

g —>• g - l -1 takes the dispersion relations for the  opposite B-model to the dispersion 

relations for the A-model. Thus the spectra of the related models are identical 

for lattices of even length.
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7.3 T B A  equations

To access the thermodynamics let us consider the free energy

/ ( / / ,  B , T )  =  J dv{£+ -  I I -  B -  2q)p+ +  j  Av{£^ -  B  +  2g)p_

OO n  OO n

+  ^   ̂ I  di (̂£'j\/|,;u, 2,M II 4g)pj\/|^ty +  ^   ̂ I B  T s ,
M=1 M=1

where the dispersion relations for M|vw-strings are given by

=  - 4 7 T ^ M + i( u )  , =  47T^M +i(^^) ~  4  ,

with the signs being opposite for the opposite models. The effect of g is to shift 
the chemical potential, differently for different string types. The canonical TBA 
equations follow straightforward^

log   +  log ■ f - * i^iv,

1 - I -  1, B  +  2q
log3^_ = ----------Tf,----------- +  log 1 *

,  , ,  S m \v w - ‘̂ M  p - A q  ^  \  a
log  y M \ v w  — ----   Tf,----------------- !■ log  I 1 +  —-------  1 ★ ^ n M +  log — ----j— *  ;

J  ̂ ~yN\vw''  ̂ 3T

log yM\w —  ----- ^ log ( 1 +  —  ) * ^NM  +  log ■
J-  ̂ y N \ w ^  ^

(7.11)
Simplifying these equations as in section 4.3 they become

l o g 3 ^ +  =  -------------------------   +  l o g  1  .
1 +  y\\w

log 3^- =  -------------  +  log * S ,
J- I +  y\\w

log yM\vw = ImN log (l +  * S +  5m\ log  ̂ * S ,

1 +  5T
log yM\w =  I m N log (l +  3̂ W|U)) * s  +  5m \ log * 5 ,

(7.12)
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A o A o B o o B o o

— 4 7 tJ^ i 4 7 tJ? i  -  2 2  — 4 7 t . ^ i

£ - 0 0 2 - 2

£ l \ v w - 4 7 T . ^ 2 47T .^ 2 47T .^ 2  — 4 4  — 47T .^ 2

S - \ -  ^ l \ v w  ^  ^ — 4 7 T S A t T 5 4 7 T S — 4 7 T S

S — £ \ \ v w  ^ 4 7 T i? i — 4 7 T 5 4 7 T 5  — 4 7 T .^ i 4 7 T 5  —  A t i A i  +  4 47T .^ 1 — 4  7TS — 4

{ J ,  Ca ) ( 2 , 1 ) ( - 2 , - 1 ) ( - 2 , 0 ) ( 2 , 0 )

Table 7.1: Driving terms of the TBA equations (7.12), and constants for the free 
energy.

with the familiar large M  asym ptotics

log3^M|i.u) 2/^ log3^M|u, 2 S
liM --------- —■ =  — , hm -----—----- =  —— .Af—¥oo M T  A /- + 0 0  M T

The driving term s in these equations are simplified and presented explicitly in 

Table 7.1.

Taking into account th a t

— —  =  - 2 ' k ^ i { v )  ,  — —  =  0 ,  — j - ! —  =  - 2 - n ^ M + i [ v ) ,
dy du dw

one finds th a t the minimized free energy is

/  =  —7"log ^1 +  — ^ * .̂ 1 — Tlog ^1 +  ^ * J^A/+i • (7-13)

Com puting the infinite sum in the  second term  as in section 4.3 one gets

/  =  -  M -  2g -  2c^ +  J  log 2

-  r ( l o g ( l  +  ^ )  * S  +  log(l +  ^ )  +  log(l + 3 ^ 1 |^ ^ )  *  j^ i :*rs) ,

(7.14)

where J  and Ca are given in Table 7.1 and they follow from the identities

27TS ★ =  log 2 , 27T5 . ^ 3  =  1 — log 2 . (7-15)

The free energy can be also w ritten with dependence on the l|u>-string 

f  =  — H +  J  log 2 — r (  log(l +  3^+) * s +  log(l +  3^_) * .^2 * 5  +  log(l +  3 î|u,) * .^ 1  * s)
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Since the extended opposite A-model is the EKS model the TBA equations 

and free energy above describe its equilibrium states in the therm odynam ic limit. 

Our canonical TBA equations look very different from those derived in [63], be

cause we used the BFFB grading for the Bethe equations while [63] used the 

BBFF grading. The sets of equations nevertheless are equivalent. Identifying the 

functions a  , /3 ,7  used there w ith our Y-functions as

Oil =  1/ 0̂ +, p 2 = y ~ , c^M+i = yM \w , Pi =  ^ /y \ \vw , im ~ \  =  yM\vw ■,
(7.16)

we find th a t our simplified equations for 3-+, , M  > 1 and yM\vw , M  > 2
agree with the equations (3.13) from [63], and our equation for y ^ / y ^  agrees 

w ith their eq. (3.10) combined with eq. (3.8) for n =  1. Finally the canonical 

equation for yi\^w follows from the com bination A"i*l0g (l +  0 'i)-l-(5-|-A '2)*l0g^i 
and their eqs. (3.8, 3.9).

Let us also m ention th a t the simplified equations for and are pre
sented in [67] in eq. (5.7), and we m atch our equation for with theirs. The 

equation for y _  however in [67] does not contain the crucial coupling dependent 

term  40/T .

Strong coupling lim it

There are two natura l ways to take the large g limit of the extended model 

TBA equations (7.11). Taking the strict g —> 00 hm it with all other param eters 

fixed will lead to  a half-filled model, due to  the dominance of the  H ubbard term  

favouring singly occupied sites.

A lternatively one can take —>• — 00 simultaneously w ith g —> 00 and retain

the possibility for em pty sites in the  H ilbert space. In particular, if one redefines 

the chemical potential as ji through

//. =  /x +  2g, (7.17)

the effect is th a t the models have been extended with the term  4g 

rather than  the term  4 g V ^ . Then the extension does not give a cost to  em pty 

sites. Let us proceed w ith the  discussion of this limit w ith the redefinition of 

the chemical potential and retu rn  afterwards to the stric t g —>• 00 limit. Note
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7.3 T B A  eq u ation s

then th a t —>• oo, and yM\vw —> oo for A/ >  2, as g —> oo w ith ft fixed. The 

equations (7.11) thus take the following simplified form

log3^+ = ------------------- +
J J- +  yi\w

log +  log (̂ 1 +  * -̂ 2 +  log (̂ 1 +  ^  j  * ,

log y M \w  — h ' l N  log ( l  +  y N \ w )  * s +  log (̂ 1 +  — ,̂ ~k 5
y ,

which are the TBA equations of the supersyram etric t-J  model [65]. The expres

sion for free energy (7.13) simplifies to

/  =  - T lo g  ^1 +  r i o g  ^1 +  *-^2 • (7.18)

Now consider the g —> oo hm it with fx fixed. From the TBA ecjuations (7.11) 

and (7.12) note th a t —> oo and 3̂ i|t.u, —̂ 0, and thus the simphfied equations

become

log y +  =  — — -  log ( i  +  ^  s ,

log y M \ w  = h l N  log ( l  +  3^AT| «))  ★ S  +  d j \ / i  log ^1 +  -k 5  ,

where y M \ v w  have decoupled. These can be simplified further by relabelhng:

3̂ 1 =  ^ / y+  and yM  =  3^a/-i|ui for M  > 2 .  Then the Y-functions form one set

/ N - 27T J s
log3^M =  log (1 +  +  ()mi—7̂ — ,

and the free energy is given by

/  =  -  // -  2g -  2ca +  J lo g 2  -  r i o g ( l  +  3^i) * s  . (7.19)

This is none other than  the set of TBA equations for the XXX-spin chain (4.56). 

Comparing the values of J  from Table 7.1 it follows th a t the g oo hm it of the 

A-model and opposite B-model is a ferromagnetic spin chain, while the B-model 

and opposite A-model become the antiferrom agnetic spin chain.
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7. I N T E G R A B L E  E X T E N S I O N S  O F T H E  H S M O D E L S

Figure 7.1: Extended B-model: Zero temperature phase di
agram in the ^B-plane. The phases identified are: I) empty 
band, II) partially filled and spin polarised band. III) half-filled 
and spin-polarised band, IV) partially filled and partially spin 
polarised band, V) half-filled and partially spin polarised band.
Here g parametrises the strength of the Hubbard interaction 
and iĴc = —2 + 2 log 2 ss —0.6137.

7.4 Ground sta te  phase diagram

Now we examine the ground sta te  phase diagram. As the models are equivalent 

we choose to focus on the extended B-model. This allows us to understand the 

effect of varying the strength  of the H ubbard interaction for the B-model. The 

result is presented in Figure 7.1.

Let us break the analysis into two parts. F irst we consider the case g >  0. 

As in section 4.4.1 there are no M\vw-  or M |iy-strings for M  > 2  in the ground 

sta te  a t zero tem perature. There are also no l|?i;-strings as y+ < either, and 

from this there are no ^--particles either. The TBA equations for the dressed 

energies are then

— 2g  — /I — i?  — -^i ,

-  4g -  2^ -  e+ -kq^ J^i -  -^2 ,

which differ from equations (4.51) only by a shift of ^  by 2g. Thus the phase 

diagram  will be th a t of the strong coupling limit of the B-model w ith // shifted 

as ^  — 2g. The remaining issue then is how phases III and V are separated

for the range € (—2g,0). Recall th a t the half-filled phase is determ ined by 

the condition th a t <  0 for all v E R,  and the transition  to  the half-filled

spin polarised phase is when e + ( t’) <  0 and e i |„ ^ ( t ')  =  0 for all u  G M. From 

the large v  asym ptotics of (7.20) it follows th a t the phase boundary is the line 

B  =  jj  -\- 2 2g.

Now consider 0 <  0. Here one can no longer say th a t y+{v) < 3^-(f) for 

all V and so there is the possibility of l|u>-strings and z_-particles entering the 

ground state. Recall however th a t there can be no ?;;-particles, and consequently 

no ^--particles, unless there are 2+-particles. If however we assume th a t e+ <  0 

we find this pu ts restrictions on and B  th a t result in ei|n, >  0 and e_ >  0. Thus

2 + 2(

IV
- 2 - 2 i
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7.4  G round sta te  p h ase d iagram

equations (7.20) govern the dressed energies for g <  0 also, and again the phase 

diagram  is th a t of the strong coupling limit of the B-model shifted by ^  /i —2g. 

Let us remark th a t phase V will disappear when g =  — 1 +  log 2 and th a t phase 

IV will disappear when g =  — 1.

The phase diagram  for the EKS model (extended opposite A-model) is ob

tained from the one for the extended B-model by shifting the coupling g above 

by 1, see (7.10). For B  = 0 our results agree with [27]. The corresponding phase 

diagrams for the extended A- and opposite B-models are obtained by using the 

relationships between opposite models discussed in section 4.5.

We will not examine the zero tem perature excitations because the above anal

ysis shows th a t they can be naturally  inferred from those in section 6.3. A study 

for the EKS model at B  =  0 w'as performed in [63] and w'e compare our findings 
to theirs a t the end of section 6.3.

119



7. INTEGRABLE EXTENSIONS OF THE HS MODELS

120



Chapter 8 

O utlook

In this thesis we have begun the study of a new family of exactly solvable models 

for strongly correlated electrons; the Hubbard-Shastry models. Given the wealth 

of work that has been done for the Hubbard model, there are many directions 

for future studies. Let us discuss some of those which arise naturally from the 

investigations carried out in this thesis.

To better vmderstand the physical properties of the models, it would be de

sirable to study the correlations they exhibit. The investigation of finite size 

corrections at zero temperature would be a first step in this direction, see for 

example [9, 20]. This however is not a straightforward task.

In this thesis we have accessed the thermodynamics of the models through the 

Thermodynamic Bethe Ansatz (TBA). While this approach provides a convenient 

and physically attractive description of the thermodynamics, it does have some 

drawbacks. For non-zero temperature, the TBA equations involve an infinite 

number of unknown functions and so it is a non-trivial problem to obtain and 

control solutions. Even more troubling however, the approach reUes on a string 

hypothesis for the behaviour of Bethe roots in the limit of large lattice length L, 

and in general this cannot be proven. Moreover it is known for some models that 

the string configurations receive corrections of order 1/L  [68]. These corrections 

are to the imaginary parts of the Bethe roots, and do not cause problems at order 

1/L  since they naturally cancel for all quantities of interest. They do however 

cause serious difficulties for the study of effects w’hich appear at order 1/L^ [69].
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8. OUTLOOK

In particular, tliey hinder the investigation of finite size corrections for models 

which contain Bethe strings in their ground state.

There is another approach to the thermodynamics of integrable lattice models 

tha t overcomes the above difficulties. It is based on an observation tha t the free 

energy per site is given by the largest eigenvalue of the Quantum Transfer Matrix 

(QTM). The diagonalization of the QTM is achieved by the algebraic Bethe ansatz 

and is used to derive a finite set of non-linear integral ecjuations which determine 

the free energy. Moreover the QTM approach naturally encodes the finite size 

behaviour of Bethe roots, and allows direct access to finite size properties [70]. 

The QTM approach was carried out for the Hubbard model in [71, 72, 9], and 

the physical quantities computed by solving numerically the finite set of non

linear integral equations were shown to agree with those of the TBA with high 

precision [53]. For some models, see [67] and reference therein, one can set up a 

fusion hierarchy with the QTM and derive the TBA equations, and thus prove 

the equivalence of the two approaches. It would clearly be useful apply the QTM 

approach to the Hubbard-Shastry models.

Another worthwhile direction would be to investigate the models numerically. 

Beyond providing an important check of the exact results, these would allow one 

to examine the models as one moves away from integrability. In this regard let 

us mention the Density Matrix Renormalisation Group method [73] and related 

variational techniques, see the reviews [74, 75]. These provide efficient methods 

for simulating one-dimensional lattice models with local Hamiltonian densities, 

and would allow for a different perspective on the physics of the models.

Indeed, it would be interesting to examine effect of breaking the integrability 

of the models. In section 1.3 of the introduction we considered the effect of 

decoupling the interactions of the models, and numerical simulations would allow 

much scope to study this. Moreover, it would be highly desirable to investigate the 

behaviour models in two-dimensions. This represents a huge challenge however, 

due to a lack of efficient methods available here. Indeed even though the Hubbard 

model has received much study over many years, there is as yet no firm consensus 

on its properties in two dimensions.
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In addition to the further investigation of the models we examine in this thesis, 
there are also related sets of models that may be worthy of study. For example, 
it would be of interest to analyse the general parity-breaking Hubbard-Shastry 
models. The forrnahsm that we have developed can straightforwardly be adapted, 
and in our general considerations we have taken care to mention wherever parity 
invariance is assumed.

Another interesting direction is provided by a set of integrable models con
structed by Alcaraz and Bariev [36]. Recently it was realised tha t these can be 
constructed from a quantum deformation of Shastry’s R-matrix [37], and so pro
vide anisotropic deformations of the symmetries of the Hubbard-Shastry models. 
From a physics point of view, this corresponds to a freedom to introduce an effec
tive spin-orbit coupling to the models. There has been no study of the properties 
of these model as of yet, but some progress has been made on formulation of a 
string hypothesis [76, 77].

Finally, let us consider models for the Kondo lattice [78, 79, 80]. Here Kondo 
does not refer to the geometry of the lattice, but instead indicates that the Hilbert 
space at each site is identical to tha t of the impurity site of the Kondo chain. In 
addition to describing a single band of electrons, there is a localised spin included 
at each site, and so the number of states is doubled to 8. This can be conveniently 
represented by assigning a spin to the pseudo-vacuum at each site, e.g. | t)> I 4-)- 

Kondo lattice models are relevant for the study of heavy fermion systems, where 
the localised spin arises from an effective description of a two-band theory.

Integrable models for the Kondo lattice arise in a natural way within the 
framework we have presented for the Hubbard-Shastry models. They can be 
realised on the 8-dimensional atypical representation of su(2|2)c, whereas the 
Hubbard-Shastry models were realised on the fundamental four dimensional rep
resentation. The R-matrix for the 8-dimensionaI representation was constructed 
in [81], and it can be used to generate integrable models through the quantum 
inverse scattering method as outlined in section 2.5. The symmetries of the 8- 
dimensional representation match exactly the symmetries of the 8 states of the 
Kondo lattice model, and so it would be interesting to investigate the physics 
that these models exhibit.
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A ppendix A

C onventions, definitions and  
notations

M atch in g  th e  n o ta tio n s  and con ven tion s o f  tlie  B e tlie  an sa tz  an a lysis

Our notations and conventions come from [58], and here we compare them to 
those of [9].

In the Bethe ansatz we denote particles momenta as pj and auxiliary roots as 
Wj, so they are related to the ones in [9] as pj ■H- kj, Wj -H- Aj.

In the string hypothesis a i\/|i(;-string is a A string of length M , a iw-particle is 
a A-string of length 1, a M |yu’-string is a k-A string of length M,  and y-particles 
could have been called A;-particles.

In the TBA equations the Y-functions are related to the ones in [9] as Ym \w
Vm , y M \ v w  ^  v ' m , Y_{sin{k)) C{k). |A:| <  tt/2  and y+(sin(fc)) o  C{k), \k\ >

If g (or h) is a function of a single variable then one just drops u (or ?; or both), e.g. 
if y =  g{t) then g-k h = dt g(t)h(t,v).  However, if g or h is a kernel defined 
through a function of one variable then it should be understood as g{f, v) =

7t / 2 .

C on volu tion s

The symbol ★ denotes the following “convolution”

g { t - v ) .
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A. CONVENTIONS, DEFINITIONS AND NOTATIONS

W hen we meet expressions of the form gap ★ hp-y, the convolution is under

stood to be over the domain of the rapidity  of the /3-string. The y-particles of the 

H ubbard-Shastry models have a non-trivial domain of rapidity  and so we intro

duce some special notations for them. The symbol ® is used to denote a contour 

integral in the counter-clockwise direction around the branch cuts of Xa {v ) and 

Xb(i’). Explicitly, for the H ubbard and A-models one has

9ny®hyy = dt  {ga - { u , t ) h^^ { t , v )  -  ga+{u, t )h+^{t , v) )  = g „ - i h ^ ^ - g a + i h + ^  ,

while for the B-model

gay®hy~^ I dt  i) /i—y{t,v^ (li, i ) , v )) ga—* h —y

where

9a±{u,  t) =  gay{u, t  ±  iO) , h±y{t,  v) =  hyj{ t  ±  iO, v ) ,

and ★ and i  denote convolutions with the integration over \t\ < 1 and |f| >  1 

respectively. For generality we use the convolution * defined as

g * h  = g i h  for the H ubbard and A — m odels, (A.2)

g * h  = g * h  for the B — m ode l.

K e rn e ls  a n d  S -m a tr ic e s

The Bethe equations and TBA equations of the H ubbard-Shastry models involve 

several S-matrices and kernels which we list here

/ X 1 ^  /  X 1 u  A ' /  ^  . X V — i u M  , ,
K m {v ) =  — —  log S m {v ) =  -  , S m {v ) =  ■ , (A.3)

2 m  dv Ti v + l u M

1 d
K m n {v ) =  —  \ ogSMN{v)  =  K m +n {v ) +  K N - u i v )  +  2 KN-M+2j{v)  ,

^ J = 1

(A.4)
M- l

S m n {v ) =  S m +n {v ) S n - m {v ) SN^M+2j{vY  =  S n m {v ) , (A.5)
j=l

/  \  \ d  V 1 , / T r U  Z7T \  . ,

2u
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Also useful are the functions

Q m { v )  =  2 a r c t a n ( ^ ^ ) ,

M - l

& M n { v ) =  Q m + n [ v ) +  Q n - m { v ) +  2 ^ 2  ^ N - M + 2 j { v )  ■

j = l

Som e u sefu l id en titie s  in vo lv in g  kernels

1 ^ A a /  =  1 ,  K m K n  =  K m +n  , ^ ~  2 ’

K i  — S -k K 2 =  S , — s  * K m  — S - k  K m + 2  =  0  .

dpj/ _ ^ P M \ v w  c  t, '  c

®  = ----------- —  , Oy ®  K m  =  —OM\vw ■

7 T  s i g n  *  K m  =  0 j \ /  ■

(A.7)

(A.8)

(A.9)

(A.IO)
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A ppendix B 

Graded vector spaces

In this thesis adopt the conventions for graded vector spaces given in [29, 9]. Let 

us summarise them in this appendix.

A graded vector space can be decomposed as V =  Vq 0  Vi and is equipped 

with the structure of parity. The subspaces Vi are called homogeneous and we 

call Vo e  Vo even and Vi G Vi odd. Parity is a function e ; V* —> Z 2 defined on 

the homogeneous components of V:

Thus if dimVo =  m  and dimVi =  n, a basis { e \ , . . . ,  e^,, . . . ,  em+n} for V can

be chosen such that the first m  elements are even and the remaining n elements 

are odd. We define e„ =  e{en)-

The definition of parity can be extended to elements in End(V). First we 

e  End(V) such that = S^Ca- Then the set {e^ : a , =  1 , . . . ,  m +  n} is a 

basis of End(V) and we define e(e^) =  +  ep. An element A =  € End(V)

is called homogeneous with some parity 6a =  e{A) if and only if

Of particular interest is End('H) =  End(V®-^). This is the space of operators 

acting on the Hilbert space H. A seemingly natural basis for this space is (g) 

. . .  18) : Qi,pi = 1 . . . .  ,m  + n ior i = 1 , . . . ,  L},  but taking account of the

e{vi) = i, z =  0 ,1  for Vi e  Vj. (B.l)

for all a , /3. (B.2)
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B. GRADED VECTOR SPACES

operators grading with respect to such a basis is however non-trivial. To do this 
it is we define the graded local projection operators:

Ej^ =  (-!)("“+"«)n= i (g) . . .  (g) (g) ef ® (g). . .  ® (B.3)

These obey the following properties which follow straight from their definition

(B̂ 4)

We represent a homogeneous operator A G End(V) acting on the j-th  site of %  as 
Aj = We call an operator B =  (g) € End(V (g) V) homogeneous
if

^  for all a , p , - f , S ,  (B.5)

and when acting on sites of Ti  we write it as

By = . (B.6)

In particular the graded permutation operator is given by P = (—l)^“^̂ (5“(5 ê (̂g:e^
and takes the form

P,, =  ( - i r “E ,^E ,f. (B.7)

This satisfies the following identities

P t j  =  P j i ,  (B.8)

P j j  =  dim(V).id, (B.9)

P , /  =  id, j  ^  k ,  (B.IO)

P ,,E ,f  = E,^P,^, (B .ll)

P,,Efcf = EfcfPy, l ^ j , k .  (B.12)

Finally the super trace is defined as

str(A) =  (B.13)

This is cyclic for graded operators, just as the trace is for ungraded operators.
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A ppendix C

Shastry’s R -m atrix

Shastry’s R-matrix underhes the integrabihty of the Hubbard-Shastry models. 
OriginaUy it was constructed to as the R-matrix for the Hubbard model [14], 
but was later found to be equivalent to the su(2|2)c invariant R-matrix [41, 31]. 
In this appendix we present the su(2|2)c symmetry algebra and give the explicit 
expression for Shastry’s R-matrix that we use to construct the Hubbard-Shastry 
models.

Following the conventions^ of [42], the centrally extended 5u(2 |2) algebra, written 
concisely as su(2 |2)c, is generated by two sets of (bosonic) su(2) rotation genera
tors Lq  ̂, Ra^, supersymmetry generators Qq", Qa"", and three central elements 
H, C and subject to the following relations

Here J represents any generator carrying an index. The first two lines indicate

The 5u (2 |2 ) c  algebra

= (C.l)

how the indices c and 7  of a generator transform under the action of and Rq^.

^Their coupling constant g is related to our u through u =
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C . S H A S T R Y ’S R -M A T R IX

Both the latin  and greek indices take two values. The generators C and are

called the centrally extended elements as the algebra reduces to th a t of su(2|2)

for su (m |n) is special to the case m =  n =  2 as only here are the anti-sym m etric 

tensors tab and defined. In the classification the  Lie superalgebras su(2|2)c 

can be found as the limit a  —> 0 of the exceptional algebra c)(2,1; a) [82].

The algebra su(2|2)c has a rich representation theory. Let us describe the 

fundam ental four dimensional unitary  representations th a t we will identify with 

V for the lattice model. As the generators H , C, and are central they have 

well defined eigenvalues H, C, C, and these will param etrise the representations. 

Introducing a four dimensional basis { |e i), |e 2 ), lea), |e4 )} the generators can be 

realised as

where a, b, c and d are complex numbers constrained by (C.l )  to satisfy

and for unitary  representations to further satisfy d* =  a and c* =  b. The eigen

values of the central elements are

when C =  =  0. Let us remark th a t the freedom to introduce the C and C ’*’

K > c }  =  -  ¥ a \ ^ c )

^ a W a )  =  0 
Q a“leb) =  a(5^|e^)

=  bec./3e“'’|eb)

R-a^le„) =  0

(C.2)

ad — be =  1, (C.3)

/ / =  ad +  be , C  =  ab, C  =  ed , (C.4)

and so for unitary  representations H  is real and C and C are complex conjugate. 

From eqs. (C.3), (C.4) the central charges are constrained through

(C.5)

A convenient param etrization of a, b, c and d is given by

2Ct+ ^  ’
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where the parameter rj reflects a freedom in the choice of basis vectors {|ea), |ed)} 
and the parameters satisfy the constraint

—  x ~  ^  =  4iu (C.6)
x+ x^

which follows from eq. (C.3). The parameter ^ is a phase for unitary representa
tions. In this parametrisation the central charges take the form

2uVx+ x~ J 2u^ ' ( n n \

4iCu \ x +

T he su(2|2)c invariant R -m atrix

Invariance of an R-matrix under the action of the su(2|2)f completely fixes it up 
to an overall scalar factor. We refer the reader to [31, 41, 42] for details and here 
we present the resulting R-matrix. Following [42] we write the R-matrix as

10

R (x f ,x ^ )  =  , (C.8)
fc=i

where A i , . . . ,  Aio form a basis of su(2) (g) 5 u(2 ) invariant matrices acting in the 
tensor product V(a:f) (g) V (x f)

A 1 1 1 1
— e i i i i  -I- - 0 1 1 2 2  +  - e i 2 2 1  +  2 ^ 2 1 1 2  +  2 ^ 2 2 1 1  +  ^ 2 2 2 2  )

_ 1 1 1 1
A 2 — - ^ 1 1 2 2  ~  2 ^ 1 2 2 1  — 2 ^ 2 1 1 2  +  2 ^ 2 2 1 1  i

A _  1 1 1 1A 3  — 6 3 3 3 3  +  2 ^ 3 3 4 4  +  2 ^ 3 4 4 3  +  2 ^ 4 3 3 4  +  “ 4̂433 +  6 4 4 4 4  ,

A 1 1 1 1
A 4 — 2^3344 — 2®3443 ~  ^®4334 +  ^^4433 ,

A 5 =  61133 +  ^1144 - f  62233 +  ^2244 ,

A e  =  6 3 3 1 1  +  6 3 3 2 2  +  6 4 4 1 1  +  6 4 4 2 2  )
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C. S H A S T R Y ’S R -M A T R IX

^ 7  =  e i3 2 4  — e i4 2 3  — 6 2 3 1 4  +  ^ 2413  5

■^8 =  6 3 1 4 2  —  6 3 2 4 1  —  6 4 1 3 2  +  6 4 2 3 1  ,

Ag =  61331 +  61441 +  62332 +  62442 ,

■^10 =  6 3 1 1 3  +  6 3 2 2 3  +  6 4 1 1 4  +  6 4 2 2 4  ■

Here the symbols are equal to e f (g) e^. The coefficients a.k are given by

ai =  1 ,

_ o  (^ r .

 ̂ -  X ^ ) { X " [ ~  l ) X2
X'l -  X2 f]ifl2

^3 _ -i. ?.Ti -  .rf 7]iT]2
X ^  -  X 2 f j i f l2  -  x 2 ) ( x : [ x ^  -  l)xf f ] i f j 2

«4 = ---- =------T -------  ̂ ^

with

Xy -  X ^  771772 ( 2 :1  -  X 2 ) { x ' ^ x ^  -  l ) x- ^  7717/2 ’

x i  -  X^ fl2
05 —  + —X’l -  x j  772

x^  -  X2 m  
<1'6 — —=----- -+ —

07

X i  -  x ^  771 

1 (xj~ -  1
4 m {x^  -  X2 ) { x ^ X 2 -  1) 771772’

-  x : ^ ) { x ^ x t  -

_ Sj -  fl2
Xi -  Xj 7]i

X o  —  x t  7?1

aio = ^ ----- + —
X i  -  x j  rj2

x.
fii =  ( ^ Y  \ l  i { x i  -  x t ) , 77i = ? 7i
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A ppendix D

Algebraic lim it o f the T B A  
equations

In this appendix we present the solution to an algebraic limit of the TBA equa

tions (4.54). These equations appear in the weak coupling limit for the Hubbard 

and B-models, as was discussed in section 4.4.3. The also appear, with A replaced 

by —2, as the large v asymptotics of the simplified TBA equations (4.44-4.46) for 

the B-niodel for any u. The general solution to the equations (4.54) is well-known, 

see e.g. [22], and can be written in the form

The constants and are fixed by the large M  asymptotics (4.33) of Y-

functions f  =  /^c, f  =  /?«, and the two remaining functions are

then found from equations (4.54) for ?/±-particles

sinh
sinh 0̂̂  (cosh /?c +  e cosh /5.,)

V 2 cosh Pc cosh /Sg cosh + cosh^ pc +  cosh^ Ps +  sinh^ /3a 
sinh ps (cosh Pc + cosh pg)

\ / 2 cosh Pc cosh Pf. cosh +  cosh^ Pc + cosh^ Pf, + sinh^ P^
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D. ALGEBRAIC LIMIT OF THE TBA  EQUATIONS

with (3a  =  Y -  explicit solution to the algebraic equations (4.54) is then

g2̂ JA cosh/?s sinh(M/3c +  /3c) +  sinh M/3c +  sinh(M/?c +  2/3c))^
4 sinh  ̂Pc (2 cosh /3c cosh Ps cosh /3a +  cosh  ̂/3c +  cosh  ̂/3s +  sinh  ̂0a )

 ̂ ^  cosh/3csinh(i\f/3s +  /3s) +  sinh(M/3s +  2/3*) +  sinhM^s)^
4 sinh  ̂/3s (2 cosh/3c cosh/3s cosh/3a +  cosh  ̂/3c +  cosh  ̂0s + sinh  ̂/3a) 

4e“^̂  cosh pc cosh /3s +  2 cosh 2/3c +  +  1
4e“^̂  cosh ̂ c cosh /3s + (2 cosh 2/3s +  1) +  1 ’

y _ = e - 2 ^ ' ^ y + .  (D.l)

In addition these formulae determ ine the large v  asym ptotics of the extended A- 

and B-models. Here A =  —2g for the A- and opposite A-models, and A =  —2 —2g 

for the B-model and A =  2 — 2g for the opposite B-model.
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Appendix E 

The t - J  model: the hmit of strong  
Coulomb repulsion

In  th is  appendix  we consider th e  effect of large on-site Coulom b on th e  following 

general H am iltonian

H(7. <. k) = E  (t « + i + 47 V« + C (V« , -  V fj;, + V ™ ,)) ,
J =  1

Tj.fc =  -  Z !  + c \  aCj.a) ( l  “  ( l  ~  . (E .l)
<7

As in teresting  special cases th is  includes the  A -m odel for which 7  =  cosh 7/, 

C =  —2 / cosh ;/ and Kj =  ( —1)-̂  tanhz/, and th e  ex tended  B-m odel for which 

7  =  0, C =  2 tan h  u and Kj =  1 / cosh v.

In the  large 7 lim it th e  H ubbard  te rm  dom inates and the  m odels are half

filled. I t  is useful to  shift th e  chem ical p o ten tia l  ̂ yu -I- 27 to  s tu d y  the  less 

th a n  half-filled m odels, as th is  will rem ove th e  term  p roportiona l to  N  from 

th e  H ubbard  in terac tion  (2 .9 ). T hen  let us w rite  the  H am iltonian  (E .l)  as 

H (7 ,C )^ )  =  47 nj;-|-nj4 +  H (0,C ,/^) and no te  th a t  in the  s tr ic t 7  -> 00

lim it any s ta te  th a t  does not contain  doubly occupied sites is a  ground s ta te  and 

there  is huge degeneracy. Taking th e  sub-leading term s into account in ^ p e rtu r

b a tio n  theory  in a s ta n d a rd  way, see e.g. section 2.A and  p articu la rly  equations 

(2 .A .26 , 2 .A .30) of th e  book [9], th e  effective large 7 H am iltonian  is

1 J"  ^

H * ” ''^(7, C, k )  =  P o  H(0, C, « )  P o  +  ^  X ]  P o  H(0, C, k )  H(0, C, « )  P o  ,
j = i
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R E P U L S IO N

where P q =  11^=1 (1 ~  projector onto the m odel’s H ilbert space of
dimension 3^ where there are no doubly occupied sites. As happens for the similar 

analysis of the H ubbard model, the second term  in the above expansion gives rise 

to three-site term s as well as two-site terms. The three site-term s however will 

be suppressed in the physically interesting regime where the model is close to 

half-filling and so we will ignore them  here, as is generally done.

The effective H am iltonian is thus

L

C, «)  =  P o  +  (C +
J=1

2

This is the t-J  model with coupling ■/ =  C +  ^ -  For the A-model J  1 / u  

for large u, and it behaves as a ferromagnetic t-J model. For the B-model J  ~  

2 ta n h i/ -I- for large g, and a t =  oo the leading contribution is the

supersym m etric t -J  model.

K nj-rij+i
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