

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in part, the material for valid purposes, providing the copyright owners are acknowledged using the normal conventions. Where specific permission to use material is required, this is identified and such permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising from use of the thesis for whatever reason. Information located in a thesis may be subject to specific use constraints, details of which may not be explicitly described. It is the responsibility of potential and actual users to be aware of such constraints and to abide by them. By making use of material from a digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms & Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from Trinity College Library is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for your research use or for educational purposes in electronic or print form providing the copyright owners are acknowledged using the normal conventions. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

The Hydrogeology and Restoration of a Raised Bog

Volume II of II Appendices

By

Shane Regan

Department of Civil, Structural & Environmental Engineering, University of Dublin, Trinity College

> Presented in fulfilment of the requirement for the degree of Doctor of Philosophy March 2013

TRINITY COLLEGE 2 4 MAY 2013 Mesis 10063.2

Appendices

Appendix A: Geo-Hydrological Framework

Figure A1. Peat-till outcrop at marginal drain – confluence of drain CT2 and TD2	1
Figure A2. Clara West subsoil distribution map (1992)	2
Figure A3. Clara West subsoil distribution map (2010)	3
Figure A4. Clara West top of subsoil elevation contour map	4
Figure A5. Clara West subsoil distribution and top of subsoil elevation contour map	5
Figure A6. Clara West peat depth contour map (present day situation)	6
Figure A7. Location of piezometers installed to till subsoil in the Clara region	7
Figure A8. Location of piezometers and surface water monitoring points in Clara West hydrologic system	8
Figure A9. Location of piezometers and surface water monitoring points in Clara West hydrologic system	
- subsidence analysis area	9
Figure A10. Location of piezometers and surface water monitoring points in Clara West hydrologic system	
- Restoration Area	10
Figure A11. Piezometers installed on high bog between 1990 and 2003	11
Figure A12. Piezometers installed on high bog between 2009 and 2011	12
Table A1. Subsoil piezometer/ piezometer nests	13
Table A2. High bog piezometer nests	14
Table A3. Geological core logs from piezometer installations	19
Table A4. TCD-QUB site investigation information	20
Table A5. Restoration Area site investigation information	21

Appendix B: Hydrological Characterisation

Part A. Cutover bog and marginal areas

Figure B1. Clara West drainage system and surface water level and flow instrumentation	22
Figure B2. Clara West drainage system and surface water level and flow instrumentation	
- Restoration Area	23
Figure B3. SG1 hydrograph and electrical conductivity measurements (06-06-10 to 24-10-11)	24
Figure B4. SG2 hydrograph and electrical conductivity measurements (06-06-10 to 09-08-11)	24
Figure B5. SG3 hydrograph and electrical conductivity measurements (06-06-10 to 09-08-11)	25
Figure B6. SG4 hydrograph and electrical conductivity measurements (06-06-10 to 09-08-11)	25
Figure B7. 914 hydrograph (14-10-09 to 24-09-11)	26
Figure B8. 918 hydrograph (14-10-09 to 24-09-11)	26
Figure B9. 923hydrograph (14-10-09 to 04-10-11)	27
Figure B10. Restoration Flume rating curve	28
Figure B11. Restoration Flume: measured Q versus rated Q	29
Figure B12. Restoration Flume: measured Q versus flume equation Q	29
Figure B13. Original EPA Weir rating curve	30
Figure B14. Original EPA Weir: measured Q versus rated Q	31
Figure B15. Adjusted EPA Weir: measured Q versus rated Q	31
Figure B16. Adjusted EPA Weir rating curve	32
Figure B17. FB2 Flume Weir rating curve	34
Figure B18. FB2 Flume: measured Q versus rated Q	35

Figure B19. FB2 Flume: measured Q versus flume equation Q	35
Figure B20. Bog Weir rating: measured Q versus H (head above weir notch)	36
Figure B21. Bog Weir: measured Q versus rated Q	37
Figure B22. Bog Weir – stage (m) betwen13-01-11 and 05-01-11 (water balance period)	38
Figure B23. Bog Weir – discharge (L/s) betwen13-01-11 and 05-01-11 (water balance period)	39
Figure B24. EPA Weir – stage (m) betwen13-01-11 and 05-01-11 (water balance period)	40
Figure B25. EPA Weir – discharge (L/ s) between 13-01-11 and 05-01-11 (water balance period)	41
Figure B26. Restoration Flume - stage (m) betwen13-01-11 and 05-01-11 (water balance period)	42
Figure B27. Restoration Flume – discharge (L/s) between 13-01-11 and 05-01-11 (water balance period)	43
Figure B28. FB2 Flume - stage (m) between 01-06-11 and 05-01-11 (water balance period)	44
Figure B29. FB2 Flume – discharge (L/s) between 01-06-11 and 05-01-11 (water balance period)	45
Figure B30. Plan view of flume design (not to scale)	46
Figure B31. Profile view of flume design (not to scale)	46
Table B1. Restoration Flume rating equation	28
Table B2. Original EPA Weir rating equation	30
Table B3. Adjusted EPA Weir rating equation	32
Table B4. Field measured Q and rated Q rates from the EPA Weir	33
Table B5. FB2 Flume rating equation	34
Table B6. Bog Weir rating table	35

Part B. High bog

Figure B32. DTM of Clara West high bog and location of high bog catchment areas	47
Figure B33. High bog catchment areas and high bog topography	48
Figure B24. Slope gradients (%) on Clara West high bog	49
Figure B35. Flow path length distribution	50
Figure B36. Flowlines and 100m DTM grid	51
Figure B37. Flow path lengths in high bog catchment areas and distribution of 'wet' ecotopes	52

Appendix C: Hydrogeological Analysis

Figure C1. CLBH2 hydrograph from hydrological year 2009-2010	53
Figure C2. CLB92 hydrograph from hydrological year 2009-2010	53
Figure C3. CLBH5 hydrograph from hydrological year 2009-2010	54
Figure C4. Hydrograph for high bog subsoil piezometer nest 907 for hydrological year 2009-2010	55
Figure C5. Hydrograph for high bog subsoil piezometer nest 908 for hydrological year 2009-2010	55
Figure C6. Hydrograph for high bog subsoil piezometer nest 909 for hydrological year 2009-2010	56
Figure C7. Hydrograph for high bog subsoil piezometer nest 910 for hydrological year 2009-2010	56
Figure C8. Hydrograph for high bog subsoil piezometer nest 911 for hydrological year 2009-2010	57
Figure C9. Hydrograph for high bog subsoil piezometer nest 912 for hydrological year 2009-2010	57
Figure C10. Hydrograph for high bog subsoil piezometer nest 906 from hydrological year 2009-2010	58
Figure C11. Hydrograph for high bog subsoil piezometer nest 915 from October 2010 to January 2011	58
Figure C12. Hydrograph for high bog subsoil piezometer nest 920 from October 2010 to January 2011	59
Figure C13. Hydrograph for high bog subsoil piezometer nest 921 from hydrological year 2009-2010	59
Figure C14. August 2010 potentiometric surface contour map - till groundwater body	60
Figure C15. January 2011 potentiometric surface contour map - till groundwater body	61
Figure C16. January 2011 potentiometric surface contour map – deep peat	62

Figure C17. Hydrogeological cross-section through monitoring Transect 1	63
Figure C18. Hydrogeological cross-section through monitoring Transect 2	64
Figure C19. Hydrogeological cross-section through monitoring Transect 3	65
Figure C20. Hydrogeological cross-section through monitoring Transect 4	66
Figure C21. Hydrogeological cross-section through monitoring Transect 5	67
Table C1. Max, min and mean water levels from piezometers installed in till subsoil (August 2009 to April 2012)	68
Table C2. Max, min and mean water levels from piezometers installed in till subsoil in GSI boreholes	
(August 2009 to April 2012)	68
Table C3. Max, min and mean water levels from piezometers installed into the sand lense (August 2009	
to April 2012)	69
Table C4. Max, min and mean water levels from piezometers installed at the base of peat in the 1990s	
(August 2009 to April 2012)	69
Table C5. Max, min and mean water levels from piezometers installed at the base of peat by ten Hegglar	
et al (2003) (August 2009 to April 2012)	70
Table C6. Max, min and mean water levels from piezometers installed at the base of peat in high bog as	
part of PhD study (August 2009 to April 2012)	70
Table C7. Max, min and mean water levels from piezometers installed at the base of peat in high bog as	
part of PhD study (August 2009 to April 2012)	70

Appendix D: Groundwater-Surface-Water Interactions

Figure D1. Restoration Area Flume: Stage level in drain and groundwater level in till subsoil piezometer	
920 in cutover bog (water balance period)	71
Figure D2. Restoration Area Flume: Stage level in drain and groundwater level in till subsoil piezometer	
910 on high bog (water balance period)	72
Figure D3. EPA Weir: Stage level in drain and groundwater level in till subsoil piezometer 920 in cutover	
bog (water balance period)	73
Figure D4. EPA Weir: Stage level in drain and groundwater level in till subsoil piezometer 910 on high	
bog (water balance period)	74
Figure D5. FB2 Flume: Stage level in drain and groundwater level in till subsoil piezometer 915 in cutover	0
bog (water balance period)	75
Figure D6. EPA Weir: Stage level in drain and groundwater level in till subsoil piezometer 910 on high	
bog (water balance period)	76
Figure D7. Hydrochemical investigation points	77
Figure D8. Calcium concentrations (mg/ L) - see table $D1 - D4$	78
Figure D9. Silica concentrations (mg/ L) - see table $D5 - D8$	79
Figure D10. Strontium concentrations (μ g/ L) - see table D9 – D12	80
Figure D11. Oxygen 18 (‰) in groundwater (till and bedrock) - see table D13 - D16	81
Figure D12. Strontium concentrations (µg/ L) and oxygen 18 (‰) in groundwater (till and bedrock)	82
Figure D13. Strontium (Sr) and calcium (Ca) water source analysis	83
Figure D14. Strontium (Sr) and Silica (SiO ₂) water source analysis	84
Figure D15. Silica (SiO ₂) and calcium (Ca) water source analysis	85
Figure D16. Strontium (Sr) and stable oxygen isotope (O ¹⁸) water source analysis	86
Figure D17. Electrical conductivity (μ S/ cm) versus flow rate (L/ s) in instrumented groundwater-fed	
drains	87
Figure D18. Calcium (mg/ L) versus flow rate (L/ s) in instrumented groundwater-fed drains	88

Figure D19. Silica (mg/L) versus flow rate (L/s) in instrumented groundwater-fed drains	89
Figure D20. Strontium (mg/L) versus flow rate (L/s) in instrumented groundwater-fed drains	90
Figure D21. Oxygen 18 (‰) versus flow rate (L/s) in instrumented groundwater-fed drains	91
Figure D22. EPA Weir flow rate hydrograph and groundwater contribution (water balance period:	
13-01-11 to 05-12-11)	92
Figure D23. FB2 Flume flow rate hydrograph and groundwater contribution (water balance period:	
01-06-11 to 05-12-11)	93
Figure D24. Restoration Flume flow rate hydrograph and groundwater contribution (Water balance	
neriod: 10-01-11 to 05-12-11)	94
Figure D25, EPA Weir base flow hydrograph and groundwater level in subsoil piezometer 920 (water	
halance period: 13-01-11 to 05-12-11)	95
Figure D26 FB2 Flume base flow hydrograph and groundwater level in subsoil piezometer 915 (water	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
balance period: 01-06-11 to 05-12-11)	96
Eigure D27 Restoration Area Elume base flow hydrograph and groundwater level in subsoil niezometer	70
Prigure D27. Restoration Area Fluine base now hydrograph and groundwater rever in subson prezoneter	07
920 (water balance period: 10-01-11 to 05-12-11)	91
Figure D28. Restoration Area Fiume base now hydrograph and groundwater level in subson piezometer	0.0
926 (13-01-11 to 31-08-11)	98
Figure D29. Recharge catchment – defineated based on groundwater flow to EPA weir and Restoration	00
Flume catchment	99
Table D1. Calcium concentrations from piezometers installed to till subsoil and date of water sampling	100
Table D2. Calcium concentrations from piezometers installed in peat, sand and date of water sampling	100
Table D3 Calcium concentrations from drains (1) where there is a perched groundwater table and (2)	
where there is no groundwater contribution	101
Table D4 Calcium concentrations from drains at (1) low flow and (2) high flow. Note: Minimum and	
maximum values	101
Table D5 Silica concentrations from piezometers installed to till subsoil and date of water sampling	102
Table D6. Silica concentrations from drains (1) where there is a perched groundwater table and (2) where	102
there is no groundwater contribution	102
Table D7 Silica concentrations from niezometers installed in next sand and date of water sampling	102
Table D7. Silica concentrations from drains at (1) low flow and (2) high flow. Note: Minimum and	105
navinum volues	103
Table D0. Strontium concentrations from niezometers installed to till subsoil and date of water sampling	103
Table D9. Strontium concentrations from piezometers installed in next send and date of water sampling	104
Table D10. Strontium concentrations from plezometers installed in peak, sand and date of water sampling	104
Table D11. Strontium concentrations from drains (1) where there is a perched groundwater table and (2)	105
where there is no groundwater contribution	105
Table D12. Strontium concentrations from drains at (1) low flow and (2) high flow. Note: Minimum and	105
Table D13 δ^{18} O values (%) from niezometers installed to till subsoil limestone bedrock and date of	105
vistor compline	106
water sampling Table D14 S^{18} or alway (9) from nigrometers installed in past lowesting always and and data of water	100
Someting	107
Sampling Table D15 S^{18} O values (9) from drains (1) where there is a number of any draster table and (2) and are	107
table D15. 0 Values (700) from drains (1) where there is a perched groundwater table and (2) where	100
there is no groundwater contribution Table D1(S^{18}) are large (0) from drains of (1) from f and (2) bit h from Nata Marine 1	108
Table DTo. σ = O values (∞) from drains at (1) low flow and (2) high flow. Note: Minimum and	100
maximum values.	108

Appendix E: Subsidence

Figure E1. Subsidence analysis area and underlying surface water catchment areas	109
Figure E2. High bog topography in subsidence analysis area in 1992 (100m grid)	110
Figure E3. High bog topography in subsidence analysis area in 2002 (100m grid)	111
Figure E4. High bog topography in subsidence analysis area in 2008 (100m grid: LiDAR elevations)	112
Figure E5. High bog topography in subsidence analysis area in 2011 (100m grid: Trimble GPS survey)	113
Figure E6. High bog topography and February 2012 phreatic water table in catchment divide area	114
Figure E7. Decrease in surface ground level (m) between 1991 and 2011	115
Figure E8. Decrease in surface ground level (m) between 1991 and 2002	116
Figure E9. Decrease in surface ground level (m) between 2002 and 2011	117
Figure E10. Decrease in surface ground level (m) between 2008 and 2011	118
Figure E11. High bog surface level oscillation between 2 nd September 2011 and the 8 th April 2012	119
Figure E12. High bog surface level oscillation with underlying subsoil geology	120
Figure E13. High bog surface level oscillation type	121
Figure E14. Measured surface level elevation at grid point H11 and fitted cosine transformation curve.	122
Figure E15. Measured surface level elevation at grid point I11 and fitted cosine transformation curve.	122
Figure E16. Measured surface level elevation at grid point L14 and fitted cosine transformation curve.	122
Figure E17. Peat Column oscillation between 2 nd September 2011 and the 8 th April 2012	123
Figure E18. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest 910 (note: bog grid point 110 is located c. 50m north of piezometer nest).	124
Figure E19. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest 909 (note: bog grid point J13 is located adjacent to the piezometer nest).	124
Figure E20. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest tdJ12 (note: bog grid point J12 is located adjacent to the piezometer nest).	124
Figure E21. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at	
piezometer nest 908 (note: bog grid point L12 is located adjacent to the piezometer nest).	124
Figure E22. Ground level subsidence trend between 1991 and 2011	125
Figure E23. Ground level subsidence trends of individual grid points between 1991 and 2011	126
Table E1. Ground level elevations from 1991, 2002, 2008 and 2012	149
Table E2. Ground level oscillations between September 2011 and April 2012	150
Table E3. Borehole levels used to control bog surface level elevations	151
Table E4. OPW bog grid post oscillation in Clara West subsidence analysis area	151
Table E5. Surface level oscillation in Clara West subsidence analysis area	152
Table E6. Measured and estimated peat thickness at grid points in subsidence analysis area	153

Appendix F: Subsurface drainage

Figure F1. CLBH5 Hydrograph: 1990/1992, 1996/1997 and 2009/2010	155
Figure F2. CLBH6 Hydrograph: 1990/1992, 1996/1997 and 2009/2010	156
Figure F3. CLBH9 Hydrograph: 1990/1992, 1996/1997 and 2009/2010	157
Figure F4. CLCD3Hydrograph: 1990/1992 and 2009/2010	158
Figure F5. Flow line locations and underlying subsoil geology, groundwater catchment and potentiometric surface in till	159
Figure F6. Hydrogeological cross-section through flow line 1	160
Figure F7. Hydrogeological cross-section through flow line 2	161
Figure F8. Hydrogeological cross-section through flow line 3	162

Figure F9. Flow line locations, high level potentiometric surface in till and 2008-2011 ground level	163
Figure F10. Flow line locations, subsoil geology, high level potentiometric surface in till and 2008-2011	
ground level	164
Figure F11. Flow line locations, subsoil geology, high level potentiometric surface in till and 1991-2011	
ground level	165

Appendix G: The Water Balance

Figure G1. Clara Bog drainage system: surface water catchment areas	166
Figure G2. Groundwater and surface water catchment area to Restoration Flume	167
Figure G3. Groundwater and surface water catchment area to EPA Weir	168
Figure G4. Groundwater and surface water catchment area to FB2 Flume	169
Figure G5. Groundwater catchment area to EPA Weir and Restoration Flume	170

Appendix H: Conceptual Model and Model Design

Figure H1. Conceptual Clara West hydrological model (not to scale).	171
Figure H2. Model domain with position of Clara West high bog and distinguishing Clara West high bog	
Features	172
Figure H3. Finite element grid design of model area	173
Figure H4. Finite element grid design of model area - finer node spacing in drainage system area	173
Figure H5. Layer 1 (acrotelm) transmissivity distribution in model domain	174
Figure H6. Layer 2 (peat) transmissivity $< 0.001 \text{ m}^2/\text{ day distribution in model domain}$	174
Figure H7. Layer 2 (peat) transmissivity > 0.01 m ² / day distribution in model domain	175
Figure H8. Layer 2 (peat) transmissivity distribution in model domain	176
Figure H9. Layer 2 (peat) aquifer thickness distribution in model domain	177
Figure H10. Layer 2 (peat) resistance < 1500 days distribution in model domain	178
Figure H11. Layer 2 (peat) resistance > 3000 days distribution in model domain	179
Figure H12. Layer 2 (peat) resistance > 6000 days distribution in model domain	179
Figure H13. Layer 2 (peat) transmissivity and location of transmissive sand zone in layer 3	
	180
Figure H14. Layer 4 (till) – location of transmissivity zones	181
Figure H15. Layer 4 (till) – location of resistance (c3) zones	182
Figure H16. Layer 5 (limestone) – location of high transmissivity zones	183
Figure H17. Layer 2 distribution of residuals (size of disc is relative to the size of the residual)	184
Figure H18. Layer 4 distribution of residuals (size of disc is relative to the size of the residual)	184
Table H1. Calculated model heads, field-measured heads (mean) and residuals from layer 2 (peat aquifer) calibration	185
Table H2. Calculated model heads, field-measured heads (mean) and residuals from layer 5 (till aquifer) calibration	185
Table H3. Residuals from measured head and calculated head in layer 4 aquifer for three different	
transmissivity input hydraulic parameters	186
Table H4. Residuals from measured head and calculated head in layer 2 aquifer for three different	
transmissivity input hydraulic parameters	187

Appendix I: Clara West Groundwater Flow Model: Steady State

Figure I1. Topographic profile and modelled potentiometric surfaces through flowline 1	188
Figure I2. Flow path of water particle in layer 4; profile through flow line 1	188
figure 13. Flow path of water particle in layer 2; profile through flow line 1	189
Figure I4. Topographic profile and modelled potentiometric surfaces through flow line 2	189
Figure 15. Flow path of water particle in layer 4; profile through flow line 2	190
Figure I6. Flow path of water particle in layer 2; profile through flow line 2	190
Figure 17. Topographic profile and modelled potentiometric surfaces through flow line 3	191
Figure 18. Flow path of water particle in layer 4; profile through flow line 3	191
Figure I9. Flow path of water particle in layer 2; profile through flow line 3	192
Figure 110. Topographic profile and modelled potentiometric surfaces through flow line 4	192
Figure I11. Flow path of water particle in layer 4; profile through flow line 4	193
Figure 112. Topographic profile and modelled potentiometric surfaces through flow line 5	193
Figure 113. Flow path of water particle in layer 4; profile through flow line 5	194
Figure I14. Flow path of water particle in layer 2; sand lense area (N-S orientation)	194
Figure 115. Flow path of water particle in layer 4; Western Mound area (N-S orientation)	195
Figure I16. 3D image of layer 4 potentiometric surface - view looking northwest	196
Figure 117. 3D image of layer 4 potentiometric surface with flow lines - view looking southeast	197
Figure I18. 3D image of layer 4 potentiometric surface with flow lines - view looking westwards	198
Figure I19. 3D image of layer 4 potentiometric surface - view looking northwest	199
Figure I20. 3D image of layer 4 potentiometric surface with flow lines - view looking southwest	200
Figure I21. Potentiometric surface contours in layer 2 (peat aquifer). Contour interval is 0.5 m.	201
Figure I22. Potentiometric surface contours in layer 4 (till aquifer). Contour interval is 0.5 m.	202
Table I1. Clara West steady state water balance for entire model area (flow rate)	203
Table I2. Clara West steady state water balance for entire model area (flux)	204
Table 13. Steady state water balance for groundwater catchment area measured at FB2 Flume (flow rate)	205
Table I4. Steady state water balance for groundwater catchment area measured at FB2 Flume (flux)	206
Table 15. Steady state water balance for groundwater catchment area measured at Restoration Area Flume	
(flow rate)	207
Table I6. Steady state water balance for groundwater catchment area measured at Restoration Area Flume	
(flux)	208
Table I7. Steady state water balance for groundwater catchment area measured at EPA Weir (flow rate	209
Table 18. Steady state water balance for groundwater catchment area measured at EPA Weir (flux)	210
Table 19. Steady state water balance for groundwater catchment area under high bog underlain by till	
(flow rate)	211
Table I10. Steady state water balance for groundwater catchment area under high bog underlain by till	
(flux)	212
Table I11. Steady state water balance for groundwater catchment area under high bog underlain by	
lacustrine clay (flow rate)	213
Table I12. Steady state water balance for groundwater catchment area under high bog underlain by	
lacustrine clay (flux)	214
Table 113. Steady state water balance for groundwater catchment area under high bog underlain by	
lacustrine clay and no sand (flow rate)	215
Table 114. Steady state water balance for groundwater catchment area under high bog underlain by	
lacustrine clay and no sand (flux)	216

Appendix J: Clara West Groundwater Flow Model: Prediction

Figure J1. Dam/ peat infill location (green shaded area), cross-section locations, 0.5 m layer 4	
potentiometric surface after restoration works and underlying topography elevation	217
Figure J2. Cross secction 1 through infill area with model potentiometric surface	217
Figure J3. Cross section 2 through infill area with model potentiometric surface	218
Figure J4. Cross section 3 through infill area with model potentiometric surface	218
Figure J5. Cross section 4 through infill area with model potentiometric surface	218
Figure J6. Topographic profile and modelled potentiometric surfaces following restoration works through	
flow line1	219
Figure J7. Flow path of water particle in layer 4 following restoration works; profile through flow line 1	219
Figure J8. Flow path of water particle in layer 2 following restoration works; profile through flow line 1	220
Figure J9. Topographic profile and modelled potentiometric surfaces following restoration works through	
flow line 2	220
Figure J10. Flow path of water particle in layer 4 following restoration works: profile through flow line 2	221
Figure J11. Flow path of water particle in layer 2 following restoration works: profile through flow line 2	221
Figure J12. Topographic profile and modelled potentiometric surfaces following restoration works through	
flow line 3	222
Figure 113. Flow nath of water particle in layer 4 following restoration works: profile through flow line 3	222
Figure 115. Flow nath of water particle in layer 2 following restoration works: profile through flow line 3	223
Figure J16. Topographic profile and modelled potentiometric surfaces following restoration works through	
flow line 4	223
Figure J17. Topographic profile and modelled potentiometric surfaces following restoration works through	
flow line 5	224
Figure J18. Flow path of water particle in layer 4 following restoration works; profile through Western	
Mound from West to East	224
Figure J19. Flow path of water particle in layer 2 following restoration works; profile through Western	
Mound from West to East	225
Figure J20. Flow path of water particle in layer 4 following restoration works; profile through sand lense	
area from North to South	225
Figure J21. 3D image of layer 4 potentiometric surface following restoration works - view looking	
Southwards	226
Figure J22. 3D image of layer 4 potentiometric surface following restoration works - view looking	
Southeast	227
Figure J23. 3D image of layer 2 potentiometric surface following restoration works - view looking	
Westwards	228
Figure J24. 3D image of layer 2 potentiometric surface following restoration works - view looking	
Southeast	229
Figure J25. Rise of potentiometric surface in layer 4 following blocking of marginal drains.	230
Figure J26. Potentiometric surface and flow lines in layer 4 following blocking of marginal drains	231
Figure J27 Rise of potentiometric surface in layer 4 following blocking of marginal drains and installation	
of facebank dam and dam in restoration area	232
Figure J28 Potentiometric surface and flow lines in layer 4 following blocking of installation of dams	233
Figure J29. Rise in potentiometric surface contours in layer 1 (acotelm aquifer) following restoration	
works. Contour interval is 0.25 m.	234
Figure J30. Rise in potentiometric surface contours in layer 1 (acrotelm aquifer) following restoration	
works. Contour interval is 0.1 m.	235

Figure J31. Rise in potentiometric contours in layer 2 (peat aquifer) following restoration works. Contour interval is 0.5 m.	236
Figure J32. Rise in potentiometric surface contours in layer 2 (peat aquifer) following restoration works. Contour interval is 0.25 m.	237
Figure J33. Rise in potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.5 m.	238
Figure J34. Rise in potentiometric surface contours in layer 4 (till aquifer) following restoration works.	239
Figure J35. Rise in potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.5 m. Model boundaries set to fixed-head conditions.	240
Figure J36. Potentiometric surface contours in layer 2 (peat aquifer) following restoration works. Contour interval is 0.5 m.	241
Figure J37. Potentiometric surface and flow lines in layer 2 (peat aquifer) following restoration works. Contours are at 0.5 m intervals.	242
Figure J38. Potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.5 m. White lines are flow line locations.	243
Figure J39. Potentiometric surface and flow lines in layer 4 (till aquifer) following restoration works. Contours are at 0.5 m intervals.	244
Figure J40. Rise in GWT (layer 4) at piezometer location 909 following Restoration Area infill. Period is 1000 days.	245
Figure J41. Rise in GWT (layer 4) at piezometer location CLCD3 following Restoration Area infill. Period is 1000 days.	245
Figure J42. Rise in GWT (layer 4) at piezometer location 920 following Restoration Area infill. Period is 1000 days.	246
Figure J43. Rise in GWT (layer 4) at piezometer location CLBH5 following Restoration Area infill. Period	
is 1000 days.	246
Figure J44. FB2 groundwater catchment analysis area	247
Figure J45. Restoration Area Flume groundwater catchment analysis area	247
Figure J46. EPA Weir groundwater catchment analysis area	248
Figure J47. Groundwater catchment to Brook Stream (no-flow model boundary condition)	248
Figure J48. Groundwater catchment to Brook Stream (fixe-flow model boundary condition)	249
Figure J49. Water balance area underlain by till subsoil (no-flow model boundary condition)	249
Figure J50. Water balance area underlain by sand subsoil (no-flow model boundary condition)	250
Figure J51. Water balance area underlain by lacustrine subsoil (no-flow model boundary condition)	250
Table J1. Prediction model water balance to Brook Stream outlet (flow rate)	251
Table J2. Prediction model water balance to Brook Stream outlet (flux)	252
Table 13 Prediction model water balance for area underlain by till (flow rate)	253
Table 14. Prediction model water balance for area underlain by till (flux)	254
Table 15. Prediction model water balance for area underlain by sand/ lacustrine clay (flow rate)	255
Table 16. Prediction model water balance for area underlain by sand/ lacustrine clay (flux)	255
Table 17. Prediction model water balance for area underlain by lacustrine clay (flow rate	250
Table J7. Frediction model water balance for area underlain by facustrine clay (flow fac	257
Table J9. Prediction model water balance to Brook Stream outlet (flow rate) – fixed-head model boundary conditions	258
Table J10. Prediction model water balance to Brook Stream outlet (flux) – fixed-head model boundary conditions	260

Appendix A

Geo-Hydrological Framework

Appendix A. Geo-hydrological Framework – till subsoil outcrop

Figure A1. Peat-till outcrop at marginal drain – confluence of drain CT2 and TD2 (see appendix B for location map)

Appendix A. Geo-hydrological Framework: Subsoil and Peat Depth Contour Maps

Figure A2. Clara West subsoil distribution map as mapped by Bloejtes (1992) with OPW grid

Figure A3. Clara West subsoil distribution map (2010)

Figure A4. Clara West top of subsoil elevation contour map

Figure A5. Clara West subsoil distribution and top of subsoil elevation contour map

Figure A6. Clara West peat depth contour map (present day situation)

Appendix A. Hydrogeological Investigation: Location of Instrumentation

Figure A7. Location of piezometers installed to till subsoil in the Clara region

Figure A8. Location of piezometers and surface water monitoring points in Clara West hydrologic system

Figure A9. Location of piezometers and surface water monitoring points in Clara West hydrologic system - subsidence analysis area

Figure A10. Location of piezometers and surface water monitoring points in Clara West hydrologic system - subsidence analysis area

Figure A11. Piezometers installed on high bog between 1990 and 2003

Figure A12. Piezometers installed on high bog between 2009 and 2011

Appendix A. Geo-hydrological Framework

Table A1. Subsoil piezometer/ piezometer nests

ID	Easting	Northing	Elevation (ToP) Malin mOD	Upstand (m)	Substrate	Field Installation Depth (mbGL)
CLCD1	224857.39	230122.38	52.85	1.56	Subsoil	n/t
CLCD3	224032.75	230169.55	55.71	0.48	Subsoil	8.92
CLBH3	225375.06	230974.27	61.50	0.16	Subsoil	12.84
CLBH2A	225391.68	230789.08	55.53	0.62	Rock	12.91
CLBH2B	225391.66	230789.04	55.53	0.62	Subsoil	5.68
CLBH2C	225391.63	230788.95	55.52	0.61	Peat	0.93
CLBH5A	223979.80	229682.87	52.91	0.26	Rock	8.45
CLBH5B	223980.51	229682.70	52.86	0.179	Till	4.25
CLBH6A	224994.48	230381.29	53.92	0.72	Rock	21.41
CLBH6B	224994.54	230381.33	53.80	0.60	Till	12.15
CLBH6C	224994.48	230381.20	53.80	0.60	Peat	7.32
CLBH9A	222883.81	229600.21	56.99	0.18	Rock	11.49
CLBH9B	222883.97	229600.04	57.01	0.20	Till	5.10
CLBH10A	224702.11	229425.74	49.26	0.437	Rock	14.61
CLBH10B	224702.12	229425.65	49.18	0.36	Till	6.94
CLBH11A	224826.66	229839.90	51.03	0.663	Rock	14.23
CLBH11B	224826.57	229839.84	51.09	0.72	Till	6.92
CLBH11C	224826.70	229839.81	51.06	0.691	Peat	3.79
CLBH12A	224706.00	227835.00	47.21	0	Rock	5.27
CLBH12B	224706.00	227835.00	47.21	0	Peat	2.18
ST3-1	224663.00	229676.01	50.41	0.781	Till	9.19
tL12	223617.51	230144.01	57.63	0.378	Peat	8.62
tl 12	223617 87	230144 18	57.73	0.521	Peat	0.48
tl 12	223620.12	230151 52	58.20	1 164	Subsoil	9.40
906	223591.14	229604.69	56.57	0.122	Subsoil	6.95
906	223591.02	229604.97	56.91	0.414	Peat	2.80
906	223591.33	229604 91	56.99	0.527	Peat	1.50
906	223591.18	229604.98	56.76	0.294	Peat	0.50
907	223579.03	229657 42	57.58	0 115	Subsoil	8.00
907	223578.59	229657.09	57.98	0.451	Peat	5.80
907	223578 45	229656 95	57.92	0.366	Peat	4.00
907	223578.30	229656 74	57.84	0.284	Peat	2.00
907	223578 83	229657 33	57.94	0.411	Peat	0.50
908	223556 41	229953.82	58.12	0.62	Subsoil	9.45
908	223555 46	229954 21	58.00	0.641	Peat	4 27
908	223555 56	229953 63	57.98	0.468	Peat	0.50
909	223777 27	220000.00	57 31	0.400	Subsoil	8 20
909	223777 65	22000.04	56.98	0.558	Poat	5.70
909	223777 /1	229900.04	56.95	0.530	Peat	4.00
909	223777 63	220086.00	56.82	0.433	Peat	4.00
909	223111.03	229900.09	55 55	0.435	Subsoil	6.30
010	223000.00	230003.76	55.55	0.290	Boot	5.00
910	223000.30	230003.70	55.59	0.312	Peal	5.00
910	223000.34	230003.03	55.59	0.297	Peat	3.20
910	223000.10	230003.81	55.73	0.441	Peat	0.50
911	223899.06	230099.84	50.69	0.115	Subsoli	6.00
911	223899.06	230099.37	57.08	0.471	Peat	4.00
911	223898.94	230099.40	57.05	0.441	Peat	3.00
911	223898.99	230099.21	57.03	0.443	Peat	0.50

912	223880.99	229857.04	54.32	0.365	Subsoil	6.10
912	223880.03	229857.45	54.49	0.446	Peat	5.60
912	223879.88	229857.19	54.56	0.51	Peat	3.00
912	223879.85	229857.39	54.48	0.423	Peat	0.50
913	223842.47	229610.52	55.30	0.096	Subsoil	4.00
915	223885.08	229809.74	52.14	0.331	Peat	3.30
915	223884.97	229809.72	52.53	0.722	Peat	1.50
915	223884.84	229809.74	52.59	0.777	Peat	1.00
915	223886.13	229814.96	52.22	0.457	Subsoil	6.35
920	224095.25	229730.91	50.87	0.119	Peat	2.20
920	224095.14	229731.06	51.03	0.274	Peat	1.20
920	224095.43	229730.71	50.87	0.115	Peat	1.00
920	224095.42	229730.82	51.34	0.516	Subsoil	5.06
924	223040.03	229526.76	58.64	0.251	Subsoil	4.21
925	224046.47	229417.57	54.21	0.91	Subsoil	3.75
926	224318.44	229600.64	50.09	0.07	Subsoil	7.00
927	224236.87	229697.45	50.20	0.32	Subsoil	7.16
927	224236.43	229697.57	50.02	0.15	Sand	2.85
928	223590.48	229502.51	57.11	0.196	Subsoil	2.52
929	222761.03	229813.78	56.63	0.72	Subsoil	4.54
934	223338.67	229625.19	59.06	0.27	Till	6.13
935	223684.77	229263.88	56.34	0.15	Till	1.80
 936	223136.00	230766.00	 56.32	0.10	Till	 5.80

Table A2. High bog piezometer nests (historic)

ID	Easting	Northing	Elevation (ToP) Malin mOD	Upstand (m)	Туре	Field Installation
46	224015	229986	54.89	0.29	Piezo D	4.19
46	224015	229986	55.08	0.50	Piezo F	6.53
46	224015	229986	54.90	0.33	Piezo A	0.95
46	224015	229986	55.21	0.30	Phreatic	0.73
47	223988	230010	55.53	0.812	Piezo F	6.19
47	223989	230007	55.04	0.515	Piezo E	5.66
48	223956	230036	54.94	0.140	Piezo F	8.84
51	224057	229943	55.53	0.761	Phreatic	0.26
51	224056	229943	55.18	0.499	Phreatic	0.76
51	224056	229944	55.29	0.568	Piezo E	6.33
51	224057	229943	55.40	0.585	Piezo S	8.90
54	224188	229969	55.21	0.451	Phreatic	0.56
54	224191	229978	55.01	0.258	Piezo F	8.39
54	224192	229978	55.12	0.483	Piezo C	4.06
54	224193	229978	55.00	0.285	Piezo D	4.75
54	224193	229978	55.02	0.386	Piezo E	6.15
54	224193	229978	55.07	0.314	Piezo F	8.25
55	224250	230095	55.79	0.810	Piezo C	3.03
55	224242	230099	55.64	0.442	Phreatic	0.56
55	224242	230099	55.52	0.361	Piezo S	9.41
55	224242	230099	55.33	0.236	Piezo A	1.03
56	224176 230161 55.66		0.486	Phreatic	0.51	
56	224177 230161		55.75	0.268	Phreatic	1.00
56	224177	230161	55.99	0.683	Piezo S	9.04
56	224177	230161	55.70	0.410	Piezo D	4.39

FG	22/177	220162	FF 60	0.252	Diaza E		0 12
50	224177	230102	55.62	0.352	Plezo F		0.13
56	224176	230162	55.59	0.231	Piezo E		6.29
57	223920	229992	55.19	0.466	Piezo C		2.59
57	223920	229992	55.36	0.485	Piezo E		5.30
57	223920	229995	55.07	0.201	Piezo D		4.20
57	223920	229995	55.04	0.178	Piezo C		2.77
57	223920	229995	55.03	0.130	Phreatic		0.25
57	223920	229995	55.05	0.196	Piezo E		5.46
57	223920	229995	54.99	0.090	Piezo A		0.99
57	223920	229995	55.04	0 160	Piezo F		6 14
57	223920	220000	55.02	0.153	Piezo F		4 72
57	222020	220006	54.00	0.100	Diozo D		2.25
57	223920	229990	54.99	0.129	Piezo D		3.55
59	223991	229907	54.10	0.000	Piezo C		5.19
59	223991	229907	54.54	0.303	Piezo E		5.98
59	223991	229907	54.52	0.053	Piezo D		4.72
59	223990	229917	55.31	0.866	Phreatic		0.39
60	224022	229868	54.14	0.350	Phreatic		0.57
61	224045	229840	53.73	0.176	Piezo D		4.10
61	224045	229840	53.81	0.187	Piezo C		2.75
61	224045	229840	53.73	0.081	Piezo F		5.69
61	224046	229840	53.82	0.249	Phreatic		0.95
62	224060	229822	54.20	0.420	Phreatic	n/t	
63	224072	229807	54.05	0.205	Piezo F		4 20
63	224072	220807	53.07	0.174	Piezo C		2.65
66	223063	220807	53.99	0.728	Phroatic		1.01
67	223903	229007	53.00	0.230	Phreatic		0.97
07	223950	229700	53.35	0.030	Phreatic		0.67
67	223957	229788	53.38	0.100	Piezo F		4.56
67	223957	229788	53.41	0.130	Piezo B		2.48
67	223957	229788	53.46	0.175	Piezo D		3.83
70	224030	230149	55.40	0.626	Piezo F		5.65
70	224030	230149	55.20	0.488	Piezo C		2.79
70	224030	230149	55.23	0.466	Piezo D		4.31
70	224030	230149	55.20	0.439	Phreatic		0.78
82	224821	230012	51.07	0.10	Piezo F		4.46
82	224821	230012	51.08	0.11	Piezo C		2.69
83	224811	230016	51.50	0.10	Piezo E		4.44
83	224811	230016	51.42	0.02	Piezo F		5.06
83	224811	230016	51.46	0.00	Piezo C		2.88
86	224741	230040	53 75	0.05	Piezo E		6.42
86	224741	230040	53 71	0.00	Diozo E		7 / 1
86	224741	230040	53.71	0.00	Diozo E		7.41
00	224740	230039	53.75	0.00	Piezo F		7.42
80	224741	230040	53.72	0.05	Piezo C		2.91
86	224741	230040	53.70	0.03	Piezo D		4.59
87	224645	230070	55.19	0.19	Piezo F		6.36
87	224645	230071	55.32	0.320	Piezo S		8.46
87	224645	230071	55.41	0.410	Piezo E		4.26
87	224645	230071	55.32	0.320	Phreatic		0.14
88	224550	230102	55.59	0.12	Piezo S		9.33
88	224550	230102	55.55	0.07	Piezo D		4.56
88	224551	230103	55.52	0.04	Piezo B		2.88
89	224442	230095	55.65	0.15	Piezo F		8 4 4
89	224442	230095	55 71	0.19	Piezo S		9.10
89	224442	230095	55.64	0.11	Piezo E		6.43
80	224442	230005	55.70	0.11	Phroatic		0.43
09	224440	200090	55.79	0.27	Filleatic		0.37

89	224442	230095	55 63	0 10	Piezo E		4 91
90	224281	230086	55.46	0.10	Phreatic		0.03
90	224201	230086	55.48	0.07	Piezo F		4 4 1
90	224201	230086	55 50	0.15	Diezo C		2.06
90	224201	230086	55 51	0.30	Piezo S	> 10.0	2.00
91	224200	220000	55 35	0.27	Piezo B	- 10.0	2 45
01	224250	229990	55 32	0.40	Piezo D		2.4J
01	224250	229990	55.52	0.303	Piezo D		4.17
02	224250	229990	55.42	0.404	Piezo F		0.74
92	224060	230210	55.91	0.310	Piezo S		5.30
92	224060	230210	55.85	0.289	Piezo S		5.72
92	224060	230211	55.90	0.367	Piezo F		4.91
92	224060	230211	55.90	0.373	Piezo D		4.29
92	224060	230211	55.87	0.37	Piezo B		2.14
92	224060	230211	55.84	0.325	Piezo C		2.68
93	223916	230255	56.95	0.27	Phreatic		0.74
93	223916	230256	57.04	0.355	Piezo S		10.65
93	223916	230256	56.89	0.154	Piezo D		4.62
93	223916	230257	56.68	0.092	Piezo C		3.46
93	223917	230257	56.79	0.201	Piezo F		8.98
93	223916	230257	56.79	0.164	Piezo E		8.40
93	223916	230257	56.82	0.185	Piezo B		2.84
94	223774	230301	57.84	0.699	Piezo F		8.80
94	223774	230301	57.81	0.694	Piezo E		6.81
94	223773	230301	57.66	0.53	Piezo E		5.51
94	223773	230301	57.66	0.534	Piezo D		3.47
94	223772	230302	57.60	0.481	Phreatic		1.02
94	223774	230304	57.63	0.495	Piezo B		1.66
94	223774	230305	57.37	0.168	Piezo D		4.61
94	223774	230305	57.37	0.152	Piezo S		11.33
94	223774	230305	57.30	0.075	Piezo C		2.95
95	223631	230350	57.81	0.185	Piezo F		10.02
95	223631	230350	58.47	0.74	Phreatic		0.46
95	223632	230349	58.02	0.361	Piezo S		11.28
95	223631	230350	57.82	0.122	Piezo E		4.66
95	223631	230350	57.79	0.113	Piezo C		2.91
96	223488	230396	58.21	0.714	Piezo S		12.09
96	223488	230396	58.04	0.479	Piezo D		4.28
96	223488	230396	58.01	0.509	Piezo C		2.26
96	223488	230396	57.97	0.459	Piezo C		2.46
96	223488	230396	57.81	0.166	tbc		6.27
96	223488	230396	57.89	0.258	Piezo E		8.21
96	223488	230396	57.99	0.433	Piezo F		10.36
97	223332	230237	58.24	0.261	Piezo S		10.90
97	223332	230238	58.08	0.15	Piezo E		4.63
97	223332	230238	57.97	0.041	Piezo C		2.96
98	223175	230079	58.32	0.18	Piezo A		1.26
98	223175	230079	58 45	0.32	Piezo S		12.03
98	223175	230079	58 29	0.02	Piezo E		4 56
98	223175	230079	58.22	0.200	Piozo C		2.90
90	2220175	220075	59.04	0.131	Phroatic		0.26
00	222007	2200092	50.54	0.071	Diozo C		2 72
00	222900	223303	50.52	0.22	Piezo D		3.73
00	222900	223303	50.40	0.177	Piezo D		4.59
99	222900	229903	50.40	0.133	Die Te		0.29
33	222900	229903	20.35	0.062	Flezo F		9.20

				and the second second	Sector Sector		
99	222985	229984	58.42	0.105	Piezo E		7.46
99	222981	229986	58.71	0.318	Piezo A		1.23
901	224122	230399	56.45	0.497	Piezo S		9.26
901	224122	230400	56.35	0.337	Piezo D		4.28
901	224122	230400	56.31	0.232	Piezo B		1.52
901	224122	230400	56.25	0.141	Phreatic		0.16
901	224122	230399	56.35	0.238	Piezo F		8.16
902	224090	230305	56.04	0.119	Phreatic		0.33
902	224090	230305	56.07	0.18	Phreatic	n/k	
902	224090	230305	56.07	0.121	Piezo B		2.45
902	224090	230305	56.10	0.161	Piezo D		4.45
902	224091	230304	56.19	0.333	Piezo S		8.42
902	224091	230304	56.04	0.129	Piezo D		4.97
902	224091	230304	56.04	0.148	Piezo E		5.38
902	224091	230304	56.07	0.166	Piezo F		8.28
904	223490	230081	57.80	0.508	Piezo F		2.52
904	223490	230081	57.75	0.506	Piezo D		2.25
904	223491	230081	57.72	0.461	Piezo B		4.33
904	223491	230081	57.68	0.349	Piezo C		7.95
904	223491	230081	57.94	0.53	Phreatic		0.47
905	223322	229905	57.82	0.279	Piezo B		2.59
905	223322	229905	57.83	0.289	Piezo D		4.48
905	223322	229905	57.81	0.291	Piezo A		1.23
905	223322	229905	57.94	0.416	Piezo F		7.58
94	223779	230299	57.62	0.506	Phreatic		0.93
94	223778	230299	57 49	0.466	Phreatic		0.53
94	223778	230299	57 49	0.398	Phreatic		1 45
94	223778	230299	57 84	0.78	Piezo F		9.82
94	223778	230299	57 49	0 442	Piezo A		1.06
94	223778	230299	57 49	0.401	Piezo A		1.00
94	223778	230300	57.49	0.363	Phreatic		0.96
CWG1	224036	230149	55 55	0.635	Phreatic		1 42
CWG3	224000	230370	56.43	0.735	Piezo A		1.42
CWG3	224020	230370	56.42	0.646	Phreatic		0.31
CWG3	224328	230370	56.27	0.541	Phreatic		0.77
CWG3	224328	230370	56.46	0.341	Piezo E		7.65
CWG3	224328	230370	56.27	0.546	Phroatic		0.03
P101	224020	220070	54.34	1 050	Phroatic		1.14
ST3_1	224010	229027	50.41	0.781	Piozo S		0.10
+1	224003	229070	56.86	0.701	Piezo S		9.19
+10	223720	220088	55.00	1 096	Piezo 5		7.20
+10	223934	229900	55.91	0.477	Plezu F		0.52
+12	223934	229909	55.50	0.477	Phreatic Diago S		0.52
+2	224010	229991	50.10	0.409	Piezo 5		7.20
10	223972	230028	54.70	0.405	Piezo		3.00
	223981	230052	55.06	0.242	Piezo		5.28
t04	223949	229956	55.09	0.349	Piezo S		7.83
t04	223949	229956	55.25	0.508	Phreatic		0.49
CDJ	223759	230097	57.25	0.439	Piezo S		8.56
50/ td50	223985	230134	55.44	0.099	Piezo S		7.56
50/ td50	223985	230134	55.34	0.029	Phreatic		1.15
50/ td50	223986	230134	55.39	0.154	Piezo E		6.39
50/ td50	223986	230134	55.28	0.078	Piezo D		4.82
50/ td50	223985	230135	55.73	0.442	Piezo F		6.64
td6	223767	230123	57.51	0.508	Piezo F		8.51

td6	223767	230123	57.40	0.372	Phreatic	0.63
td8	223752	230075	57.75	0.744	Piezo F	8.28
td9	223736	230027	57.83	0.932	Piezo F	8.13
td9	223736	230028	57.38	0.482	Phreatic	0.52
tdJ12	223807	230083	57.53	0.429	Piezo S	6.33
tdJ12	223807	230083	57.60	0.5	Phreatic	0.50
tdK12	223711	230114	57.37	0.849	Piezo S	9.40
914	223882	229835	51.81	0.708	Piezo F	3.00
914	223882	229835	51.88	0.778	Piezo C	1.50
914	223882	229835	52.19	1.089	Phreatic	1.00
916	223933	229764	51.21	0.327	Piezo F	1.40
916	223933	229764	51.21	0.327	Phreatic	1.00
917	223948	229735	52.81	0.34	Piezo F	2.20
917	223949	229736	52.86	0.389	Phreatic	1.70
918	223595	229610	56.66	0.934	Piezo F	2.40
918	223594	229610	56.70	0.973	Phreatic	1.00
919	223593	229593	57.72	0.617	Piezo F	1.35
921	224169	229684	50.43	0.486	Piezo F	2.10
921	224169	229684	50.08	0.136	Piezo C	1.20
921	224169	229684	50.12	0.172	Phreatic	1.00
922	223908	229817	51.50	0.68	Phreatic	0.32
923	224081	229744	50.42	0.44	Piezo B	2.10
923	224081	229744	50.51	0.441	Phreatic	2.10
923	224081	229744	50.24	0.16	Piezo F	2.10
930	223997	229807	50.90	0.80	Phreatic	0.20
931	224115	229727	50.42	0.51	Phreatic	0.49
932	224335	229660	50.07	1.17	Phreatic	-0.17
933	224345	229679	50.07	1.21	Phreatic	-0.21
937	224111	230183	55.96	0.66	Piezo S	8.75
938	224118	229748	50.84	1.06	Phreatic	0.44
939	224171	229761	51.37	1.44	Piezo F	3.00

Table A3. Geological core logs from piezometer installations

Г			GL Peat Peat Depth Subs		Subsoil		Base of screen	Screen	T				
10	D	Easting	Northing	Elevation D	Depth	Elevation	Depth	Subsoil Log	Туре	Comment	(mbGL)	length (m)	Date
	913	223842.48	229610.52	55.20	0.5	54.7		Light grey, silty CLAY with gravel and	Till	Piezometer drilled into gravel		4	1 24-Jun-09
							0.5 - 1.6	cobbles					
								Light grey, wet, sandy, gravelly CLAY with					
							1.6 - 3.0	gravels and cobbles					
							3.0 - 3.4	Grey, wet, clayey sandy GRAVEL					
								Grey, wet, clayey sandy GRAVEL with					
							3.4 - 4.2	cobbles					
	915	223886.07	229815.07	51.76	3	48.761	3.0 - 6.35	Sility clayey GRAVEL with sand	Till	Piezo installed to gravel layer and backfilled with sand & gravel and sealed with peat	5.7	4 0.3	3 13-Apr-10
	920	224095.37	229730.74	50.74	2.3	48.442		Blueish gray, stiff, damp CLAY with sand	Lac	Refusal at boulder/rock - piezo installed to gravel layer	4.	7 0.3	3 13-Apr-10
							2.3 - 4.1	immediately below peat		and backfilled with sand & gravel and sealed with peat			
							4.1 - 4.4	Medium grey, silty, clayey GRAVEL	Till				
								Medium grey, wet, stiff, silty, sandy	Till				
							4.4 - 5.2	GRAVEL with cobbles					
	924	224236.99	229697.25	49.86	2.43	47.426	2.43 -2.8	Light brown, stiff, damp, gravelly CLAY	Till	Piezo installed to gravel layer and backfilled with sand	4.2	1 0.3	3 1-Mar-10
							2.6 - 2.8	Silty gravelly SAND		& gravel and sealed with peat			
							2.8 - 3.6	Gravelly silty CLAY					
							3.6 - 4.4	Silty GRAVEL					
	925	224048.00	229419.00	53.48	1.6	51.88	1.6 - 1.95	Grey gravelly CLAY		Piezo installed to gravel layer and backfilled with sand	3.7	5 0.3	3 1-Mar-10
							> 1.95	Grey silty clayey GRAVEL		& gravel and sealed with peat			
1	926	224318.50	229600.82	50.04	2.55	47.494		Blueish great, stiff, damp CLAY with some		Stiff refusal at base of core - piezo installed into silty		7 0.3	3 1-Mar-10
							2.55 - 6.35	sand	Lac	gravel layer and sealed with sand and bentonite			
							> 6.35	Grey, stiff, wet silty GRAVEL	Till				
	927	224236.99	229697.25	49.86	2.85	47.006		Medoim grey, well sorted, medium grained	Sand	Piezo installed to gravel layer and backfilled with sand	2.8	5 0.3	3 13-Apr-10
							2.85 - 3.0	SAND		& gravel and sealed with bentonite			
							3.0 - 5.5	Blueish grey, stiff, damp, plastic CLAY	Lac				
								Blueish grey, stiff, damp, plastic CLAY with					
							5.5 - 6.35	sand and gravel	Lac				
							6.35 - 7.0	Grey, silty, clayey GRAVEL with sand	Till				
	928	223590.48	229502.56	56.91	1.4	55.511		Greenish brown/ grey CLAY with sand and	Till	Piezo installed to gravel layer and backfilled with sand	2.5	2 0.3	3 13-Apr-10
							1.4 - 1.8	gravel		& gravel and sealed with bentonite			
							1.8 -2.7	Dark grey, wet, sandy GRAVEL with cobbles					
	929	222760.89	229813.59	55.91	1.05	54.861	1.05 - 1.25	Medium brown, sandy CLAY	Till	Piezo installed to gravel layer and backfilled with sand	3.	9 0.3	3 13-Apr-10
								Medium grey, sdamp, soft, sandy CLAY		& gravel and sealed with bentonite			
							1.25 - 2.3	with gravels and cobbles					
								Medium grey, wet, clayey SAND with					
							2.3 - 2.6	gravels and cobbles					
							> 2.6	Dark grey, sandy GRAVEL with cobbles					
	934	223340.00	229626.00	58.90	5.22	53.68	5.22 - 5.7	Blueish grey, stiff, damp, gravelly CLAY	Till	Gravel encountered at base of core - piezo pushed into	6.3	2 0.3	28-Sep-10
							> 5.7	Blueish grey, stiff, wet, clayey GRAVEL		this and sealed with sand and bentonite			
	935	223694.00	229269.00	55.77	0.4	55.37		Light brown, stiff, dry CLAY with some sand		Solid refusal at base of core - piezo installed into gravel	1.	8 0.3	28-Sep-10
							0.4 - 1.3	and gravel	Till	layer and sealed with sand and bentonite			
								Light brown, stiff, damp, sandy clayey					
							1.3 - 1.8	GRAVEL with cobbles	Till				
	936	223136.00	230766.00	56.26	4.6	51.66		Blueish grey, stiff, damp, plastic CLAY with		Stiff refusal at base of core - piezo installed into	5.8	B 0.3	28-Sep-10
							4.6 - 5.4	occasional gravels	Lac	gravelly clay layer and sealed with sand and bentonite			
								Blueish-light grey, stiff, damp, gravelly CLAY					
1							5.4 - 5.9	with cobbles	Till				

Table A4. TCD-QUB site investigation information

					Peat Depth		Γ		
ID	Easting	Northing	Elevation	Peat Depth	Elevation	Subsoil Type	Subsoil Log	Comment	Date
CG1	224036	230179	55.45	3.05	52.4	Till	Light grey, soft, damp, sandy CLAY with gravel	Elevated area; north of CLCD3	17/06/2010
0000	224114	220276	EE 04	0.25	46.40		Blueish grey, soft, wet, CLAY; sandy in parts with occasional	Edge of 'bog pool' area	17/06/2010
1002	224114	230270	55.64	9.55	40.49	Lacustrine ciay	Blueish grev sandy CLAY with occasional angular gravels and	Centre of 'bog pool' area: dry after	17/00/2010
CG3	224179	230276	55.8	8.8	47	Lacustrine clay	shell fragments at top	sustained dry period	17/06/2010
							Blueish grey, sandy CLAY with occasional angular gravels and	Margin of 'bog pool' area; phreatic	
1							mollusc shells 20cm below peat; clay is drier/ stiffer and sandier	tubes and CO2 monitoring device in	
CG4	224236	230268	55.8	8.8	47	Lacustrine clay	with depth	area - researcher unknown	17/06/2010
							Plusish arou soft plastic CLAY: you little sand: no aroual or shall	In area of dense 'day' vegetation:	
CG5	223560	230030	57 72	84	49 32	Lacustrine clay	framents	eastern boundary of Western Soak	17/06/2010
							Blueish grey, soft, plastic CLAY; very little sand; no gravel or shell	In area of dense 'dry' vegetation;	
CG6	223517	230062	57.7	8.1	49.6	Lacustrine clay	fragments	close to piezometer nest 904	17/06/2010
							20 of blueich area of alactic CLAV with some condition	South of piezometer nest 908;	
CG7	223500	220080	57 75	5 55	52.2	Lac/Till	30 cm of blueish grey, soft, plastic CLAY with some sand overlying	also boundary of Western Soak	17/06/2010
100.	220000	220000	01.10	0.00	U.L.		No subsoil recovered - stiff and grinding/ gravelly refusal felt in	allos boundary or troblem boan	
CG8	223393	229925	57.67	8.2	49.47	Titl	gouge core; some sand grains at base of peat recovered	At boundary of the Western Soak	17/06/2010
								Core through tension crack; crack	
000	222550	220975	55 72	6.0	48.92	Tall	No subsoil recovered - stift and grinding/ gravely refusal feit in	nas closed in as a result of dry	17/06/2010
GC10	223559	229675	57.16	9.25	40.02	Till	No subsoil recovered - solid thump refusal felt in gouge core	Area of dry bog pools	07/07/2010
GC11	223615	230155	57.34	8.95	48.39	Titl	Dark grey, wet, silty, sandy CLAY with angular gravels	North of Pz tL12	07/07/2010
							No subsoil recovered - stiff and grinding/ gravelly refusal felt in		
GC12	223575	230189	57.42	9.3	48.12	Till	gouge core		07/07/2010
							20 cm of blueich grev coft wat plastic CLAV with some sand	South of niezometer nest 96	
GC13	223526	230235	57.76	9.5	48.26	Lac/Till	overlying blueish/ dark grey, stiff, sandy CLAY with gravel	boundary of till to lacustrine clay	07/07/2010
1							No subsoil recovered - stiff and grinding/ gravelly refusal felt in	Boundary of 'dry area'; lots of	
GC14	223526	230155	57.58	8.45	49.13	Till	gouge core	methane 'bubbling' in core hole	07/07/2010
1							Manufacture and a stiff and a stid through a fact to be as use		
GC15	223553	230098	57.6	8	49 6	Till	core: whitish arey sand and gravel at base of peat recovered	East of Pz 904	07/07/2010
0010	LLOUDO	200000	01.0	0	40.0		Blueish grey, soft, wet, CLAY; sandy in parts with occasional		
GC16	223661	230064	57.29	9.4	47.89	Lacustrine clay	angular gravels		07/07/2010
-	000710				10.00		Blueish grey, stiff, wet, CLAY; sandy in parts with occasional		07/07/0040
GC17	223710	230014	56.88	8.2	48.68	Lacustrine clay	angular sand and gravels	Northwest of PZ t1	07/07/2010
GC18	223879.6	229867.7	54.595	6.34	48.255	Till	doude core	11m north of Pz912	09/08/2010
							35 cm of blueish grey, soft-stiff, wet (drier towards base), plastic		
GC19	223881.1	229944.9	54.983	7.28	47.703	Lac/Till	CLAY overlying stiff 'grinding' refusal	_	09/08/2010
0000	222022.4	220066.0	E4 707	7.01	46 077	1.00	Plusish arou stiff upt plastic CLAV	1 fm east of P3 t10	00/08/2010
GC20	223933.4	229900.0	54.787	7.58	40.977	Lac	Blueish grey, stiff, wet, plastic CLAY	Close to bog lake	09/08/2010
10021		200012	01.0	1,00			6cm of dark grey, silty SAND with angular gravels overlying		
GC22	223977	229984	54.81	7.9	46.91	Sand/Lac	blueish grey, soft-stiff, wet, plastic CLAY	Close to bog lake	09/08/2010
00000	222065	220052	EA 74	7.00	47.00	Sand/Los	5cm of dark grey, silty SAND with angular gravels overlying	Close to beg lake	00/08/2010
6623	223903	229900	54.71	7.02	47.08	Sanu/Lac	blueisn grey, solt-suit, wei, plastic CLAT	Terminal of geophysics transect:	09/08/2010
GC24	223959.5	230036	54.767	6.7	48.067	Lac	Blueish grey, stiff, wet, plastic CLAY	close to Pz 48	09/08/2010
								Terminal of geophysics transect;	
GC25	223943.1	230117.1	55.633	6.19	49.443	Lac	Light grey, stiff, wet, plastic CLAY with some sand grains	close to piezo nest	09/08/2010
GC26	224006 1	230159	55 209	7 25	47 950	Lac	2cm light grey CLAY recovered	28m west of CLCD3	09/08/2010
0020	22.1000.1	200100	00.200	1.20		200	20 cm of darkish grey, soft, wet (drier towards base), plastic CLAY	Terminal of geophysics transect;	
GC27	224063.8	230181.2	55.317	6	49.317	Lac/Till	overlying stiff 'grinding' refusal	33m east of CLCD3	09/08/2010
1							10cm of dark grey, silty CLAY with sand overlying 15cm of dark		
GC28	224112	230185	55.49	8 45	47.04	Sand/Lac	CLAY	East of Pz 92	09/08/2010
10020	22.4112	200100	00.40	0.40	41.04	CurrarEso	No subsoil recovered - stiff and grinding/ gravelly refusal felt in	Bog grid point L11; peat depth the	
GC29	223649	230242	57.46	8.58	48.88	Till	gouge core	same as recorded in 1991	09/08/2010
GC30	223730	230192	57.25	9.53	47.72	Lac	Blueish grey, soft-stiff, wet-damp, plastic CLAY (drier with depth)	Close to had pool	09/08/2010
Gusi	223739	230131	57.14	6.75	40.35	F 11H	Light grey white, wet, son, sandy CLAT with graver	Terminal of geophysics transect:	09/08/2010
GC32	223771.8	230094.1	56.804	7.88	48.924	Till	Light grey/ white, wet, stiff, sandy CLAY with gravel	close to Pz td5	09/08/2010
GC33	223723	230079	57.25	9.3	47.95	Lac	Blueish grey, soft, wet, plastic CLAY	Close to bog pool	09/08/2010
	004004	000050 5	51.005	7.00	17.075			In wet area with good sphagnum	07/00/0040
GC34	224001	230058.5	54.895	7.52	47.375	Lac	Blueish grey, soft, damp, plastic CLAY - no sand grains	growth	27/08/2010
GC35	224066.3	230052.9	54,915	7.94	46.975	Sand/Lac	overlying blueish grey, sfiff, damp, plastic CLAY	In dry area with trees	27/08/2010
							3cm of coarse white sand/gravel overlying 12cm of blueish grey,		
							sfiff, damp, plastic CLAY, overlying 5cm of sandy CLAY, overlying	-	07/00/05 10
GC36	224019.1	230006.7	54.748	6.4	48.348	Sand/Lac	lac clay	Dry area north of new bog lake	27/08/2010
							45cm of light grey, wet, soft silty CLAY (sandier at top) overlying		
GC37	224059.5	229942	54.752	8.12	46.632	Sand/Lac	35cm of dark grey, soft, wet, sandy CLAY overlying plastic lac clay	Dry area, close to Pz51	27/08/2010
GC38	224074.2	229825	53.901	> 4.3	u/k	u/k	Peat too dry to core > 4.3 mbGL	Dry area, close to Pz63	27/08/2010
GC39	224082.4	229855.8	53.932	> 6.8	u/k	u/k	Peat too dry to core > 6.8 mbGL	Dry area	27/08/2010
GC40	223962.2	229862.7	54.098	7.2	46.898	Lac	Blueish grey, stiff, damp, plastic CLAY - no sand grains	South of bog lake	27/08/2010
GCAN	223008 4	220945 7	61 264	2.4	47 064	Lac	Blueich grev stiff damp plastic CLAV - sittier at too	Adjacent to face-bank drain and Pro22	27/08/2010
0041	223900.4	223013./	31.301	3.4	47.301	Lac	80cm of blueish grey, stiff, damp, plastic CLAY (siltier at top)	, LULL	21100/2010
GC42	223893.8	229815.5	51.438	3.22	48.218	Lac/Till	overlying Till (gtrinding/gravelly refusal)	Adjacent to face-bank drain	27/08/2010

Table A5. Restoration Area site investigation information

Core ID	E	asting	Northing	Elevation	Peat Dept	Subsoil Elevation	Description/ comment	Subsoil Type
	1	223951	229720	52.59	0.60	51.99	Stiff refusal	Till
	2	223972	229765	52.05	2.80	49.25	Stiff refusal	Till
	3	223999	229797	51.17	2.80	48.37	Lacustrine Clay	Lac
	4	224030	229767	51.22	2.80	48.42	Stiff refusal	Till
	5	224008	229753	51.61	2.70	48.91	Stiff refusal	Till
	6	224026	229714	50.49	0.75	49.74	Stiff refusal in drain	Till
	7	223994	229712	52.27	0.10	52.17	Mix peat and clay	Till
	8	223999	229720	52.13	0.25	51.88	Mix peat and clay	Till
	9	223988	229731	52.27	2.40	49.87	Stiff refusal	Till
	10	224042	229688	51.30	1.05	50.25	Stiff refusal	Till
	11	224061	229660	51.27	2.20	49.07	Lacustrine Clay	Lac
	12	224067	229702	50.86	2.60	48.26	Lacustrine Clay	Lac
	13	224055	229740	50.73	2.50	48.23	White/ Ight grey, unconsolidated, sandy Clay	Till
	14	224081	229744	49.97	2.40	47.57	Medium grey, soft, wet, sandy Clay	Lac
	15	224107	229754	50.20	2.10	48.10) In drain - bank height c.0.5-0.8 m	Lac
	16	224111	229714	50.03	1.40	48.63	In drain - bank height c.0.5-1.0 m	Till
	17	224097	229671	51.24	2.40	48.84	Medium grey, soft, wet, sandy Clay	Lac
	18	224110	229641	51.16	0.20	50.96	Stiff refusal	Till
	19	224129	229695	50.44	1.30	49.14	Rock/ boulder refusal	Till
	20	224143	229656	50.40	1.30	49.10	Stiff refusal	Till
	21	224177	229674	50.13	2.05	48.08	Blueish grey, soft, plastic Clay	Lac
	22	224217	229651	50.36	1.80	48.56	Stiff refusal	Till
	23	224279	229629	50.07	2.60	47.47	Stiff refusal	Till
	24	224309	229623	50.08	2.90	47.18	Blueish grey, stiff, sandy Clay with shells	Lac
	25	224284	229602	49.84	2.70	47.14	Blueish grey, stiff, sandy Clay with shells	Lac
	26	224262	229582	49.67	1.90	47.77	Stiff refusal in drain	Till
	27	224218	229575	49.99	1.55	48.44	Blueish grey, stiff, sandy Clay; no shells	Lac
	28	224203	229603	49.96	1.65	48.31	Light grey, stiff, plastic Clay; no shells	Lac
	29	224159	229622	49.52	1.00	48.52	Light grey, soft, wet, plastic Clay; no shells	Lac
	30	224188	229639	50.23	2.20	48.03	Light grey, soft, wet, plastic Clay; no shells	Lac
	31	224232	229622	49.85	2.30	47.55	15cm lac overlying sandy Clay (till?)	Lac
	32	224419	229723	50.96	3.95	47.01	10cm Marl overling lac clay with shells	Marl
	33	224362	229737	50.49	3.45	47.04	10cm Marl overling lac clay with shells	Marl
	34	224333	229759	50.43	3.58	46.85	8cm Marl overling lac clay with shells	Mari
	35	224276	229768	50.51	3.70	46.81	. 2cm Mari overling lac clay with shells	Mari
	36	224222	229784	50.57	4.00	46.57	Lac clay with shells and organic matter; in drain	Lac
	3/	224204	229/6/	50.46	3.70	46.76	Ducies and demonstrations and the	Lac
	30	224242	229742	50.08	3.40	40.08	Blueisn grey, soft, damp Clay; no snells	Lac
	39	224204	229725	49.98	3.20	40.70	Wet, plastic Clay with shells	Lac
	40	224342	229701	50.37	3.52	40.83	Wet, plastic Clay; with shells	Lac
	42	224312	229090	50.34	3.00	40.74	Lac clay with few shells	Lac
	43	224270	229728	50.01	3.35	46.86	Blueish grev wet stiff clavey SAND: no shells	Till
	44	224170	229740	50.11	2 80	47 35	Stiff refusal	Till
	45	224132	229733	50.10	2.00	48 53	Blueish grey, damp, stiff Clay with sand and gravel	Till
	46	224156	229703	50.26	1.50	48.76	Stiff refusal	Till
	47	224152	229697	49.75	1.10	48.65	Stiff refusal	Till
	48	224191	229718	50.06	3.10	46.96	Blueish grey, soft, wet, plastic Clay: no shells	Lac
	49	224205	229687	50.09	2.70	47.39	Rock/ boulder refusal	Till
	50	224237	229697	49.86	2.85	47.01	5cm clay overlying bleish-grey clayey Sand	Till
	51	224252	229670	49.90	3.05	46.85	Stiff refusal	Till
	52	224286	229679	49.95	3.08	46.87	Stiff refusal	Till
	53	224299	229653	50.08	3.15	46.93	Blueish grey, stiff, sandy Clay: one shell fragment	Lac
	54	224345	229645	50.63	1.50	49.13	Stiff refusal	Till
	55	224249	229791	51.12	4.50	46.62	20cm Marl overling lac clay with laminations	Marl
Pz 920		224095	229731	50.74	2.20	48.54	Stiff refusal	Till
Pz 921		224169	229684	49.94	2.10	47.84	Lacustrine Clay	Lac
Pz 939		224182	229762	49.94	2.80	47.14	Gritty refusal	Sand/ Lac Clay
Pz 926		224318	229601	50.04	2.55	47.49	Blueish grey, stiff, damp, sandy Clay	Lac
Pz 917		223948	229736	52.47	2.20	50.27	Stiff refusal	Till

Appendix B

Hydrological Characterisation

Appendix B. Hydrological Characterisation: Clara West Drainage System

Figure B1. Clara West drainage system and surface water level and flow instrumentation

Figure B2. Clara West drainage system and surface water level and flow instrumentation - Restoration Area

Appendix B. Hydrological Characterisation – surface water level hydrographs

Figure B3. SG1 hydrograph and electrical conductivity measurements (06-06-10 to 24-10-11)

Figure B4. SG2 hydrograph and electrical conductivity measurements (06-06-10 to 09-08-11)

Figure B5. SG3 hydrograph and electrical conductivity measurements (06-06-10 to 09-08-11)

Figure B7. 914 hydrograph (14-10-09 to 24-09-11)

Figure B8. 918 hydrograph (14-10-09 to 24-09-11)

Figure B9. 923hydrograph (14-10-09 to 04-10-11)

Figure B10. Restoration Flume rating curve

Table B1. Restoration Flume rating equation

Rating Equation						
Slope no. 1	$Q = C (h - a)^n$ $Q = 0.079 (h-a)^{1.194}$	С 0.079	а 0 188	n 1 194		
Slope no. 2	$Q = 27.994 (h-a)^{3.401}$	27.994	0.188	3.401		
Slope no. 3	Q = 0.192 (h-a) ^{1.237}	0.192	0.188	1.237		
Range						
	Stage level					
Slope no. 1	0 - 0.252					
Slope no. 2	0.252 - 0.292					
Slope no. 3	> 0.292					

Figure B11. Restoration Flume: measured Q versus rated Q

Figure B12. Restoration Flume: measured Q versus flume equation Q

Figure B13. Original EPA Weir rating curve

Table B2. Original EPA Weir rating equation

Rating Equation						
	Q = C (h - a) ⁿ	С	а	n		
Slope no. 1	Q = 0.0101 (h-a) ^{0.235}	0.0101	0.179	0.235		
Slope no. 2	Q = 113.65 (h-a) ^{3.465}	113.65	0.179	3.465		
Slope no. 3	Q = 1.115 (h-a) ^{1.522}	1.115	0.179	1.522		
Range						
	Stage level					
Slope no. 1	0 - 0.236					
Slope no. 2	0.236 - 0.28					
Slope no. 3	> 0.28					

Figure B14. Original EPA Weir: measured Q versus rated Q

Figure B15. Adjusted EPA Weir: measured Q versus rated Q

Figure B16. Adjusted EPA Weir rating curve

Table B3. Adjusted EPA Weir rating equation

Rating Equation						
	Q = C (h - a) ⁿ	С	а	n		
Slope no. 1	Q = 0.00977 (h-a) ^{0.152}	0.00977	0.034	0.152		
Slope no. 2	Q = 0.839 (h-a) ^{1.171}	0.839	0.034	1.171		
Range						
	Stage level					
Slope no. 1	0 - 0.046					
Slope no. 2	> 0.046					

Original								
			Rated Q	Slope				
SG WL	H-a	Meas. Q (l/s)	(L/s)	(log)		Туре	Date	Measured
0.198	0.019	4	3.98		1	V-A	06-Jul-11	EPA
0.228	0.049	5	4.97		1	V-A	29-Apr-11	EPA
0.24	0.061	7	7.03		2	V-A	30-Mar-11	EPA
0.246	0.067	9	9.73		2	V-A	05-Apr-11	EPA
0.259	0.080	18	17.98		2	V-A	10-Jan-11	EPA
0.260	0.081	18.0	18.77		2	V-A	05-Jan-11	TCD
0.27	0.091	28	28.10		2	V-A	26-Jan-11	EPA
0.32	0.141	60.22	56.54		3	DG	17-Nov-10	TCD
0.335	0.156	65.72	65.95		3	DG	10-Nov-10	TCD
Adjusted								
			Rated Q	Slope			_	
SG WL	H-a	Meas. Q (l/s)	(L/s)	(log)		Туре	Date	Measured
0.040	0.006	4.5	4.49		1	V-A	09-Aug-11	TCD
0.046	0.012	5.0	4.99		1	V-A	23-Aug-11	EPA
0.050	0.016	6.6	6.62		2	V-A	15-Jul-11	TCD
0.051	0.017	9.0	7.11		2	V-A	29-Sep-11	EPA
0.060	0.026	12.0	11.69		2	Bk-Stp	12-Aug-11	TCD
0.060	0.026	10.0	11.69		2	V-A	11-Aug-11	EPA
0.068	0.034	18.0	16.00		2	V-A	19-Sep-11	EPA
0.075	0.041	18.0	19.92		2	V-A	14-Nov-11	EPA
0.105	0.071	37.5	37.90		2	V-A	11-Jan-12	TCD
0.106	0.072	38.0	38.52		2	V-A	09-Dec-11	EPA
0.140	0.106	60.5	60.59		2	V-A	04-Jan-12	TCD
0.174	0.140	87.0	83.92		2	V-A	03-Jan-12	EPA

Table B4. Field measured Q and rated Q rates

Note: V-A is velocity area, DG is dilution gauging and Bk-Stp is bucket and stop watch.

Figure B17. FB2 Flume Weir rating curve

Table B5. FB2 Flume rating equation

Rating Equation				
	Q = C (h - a) ⁿ	с	а	n
Slope no. 1	Q = 0.0948 (h-a) ^{1.27}	0.0948	0.211	1.27
Slope no. 2	Q = 13.73 (h-a) ^{3.077}	13.73	0.211	3.077
Slope no. 3	Q = 0.159 (h-a) ^{1.177}	0.159	0.211	1.177
Range				
	Stage level			
Slope no. 1	< 0.275			
Slope no. 2	0.275 - 0.308			
Slope no. 3	> 0.308			

Figure B18. FB2 Flume: measured Q versus rated Q

Figure B19. FB2 Flume: measured Q versus flume equation Q

Figure B20. BG Weir rating: measured Q versus H (head above weir notch)

Table B6. Bog Weir rating table

	BW Level	Measured	н	Calculated	
Date	(m)	Discharge (m ³ /s)	(estimate)	Discharge (m ³ /s)	Difference
11-Feb-11	0.333	0.0108	0.177	0.01061	0.0002
5-Feb-11	0.360	0.0078	0.150	0.00701	0.0008
17-Feb-11	0.376	0.0056	0.134	0.00529	0.0004
25-Feb-11	0.410	0.0026	0.100	0.00254	0.0000
7-Mar-11	0.435	0.0011	0.075	0.00124	-0.0001
27-Mar-11	0.452	0.0005	0.058	0.00065	-0.0002
22-Apr-11	0.471	0.0001	0.039	0.00024	-0.0001
17-Jun-11	0.490	0.00004	0.020	0.00005	0.0000
25-Jun-11	0.480	0.00041	0.045	0.00035	0.0001
4-Jul-11	0.500	0.00006	0.025	0.00008	0.0000
17-Jul-11	0.460	0.00096	0.065	0.00087	0.0001
23-Jul-11	0.480	0.00043	0.045	0.00035	0.0001
9-Aug-11	0.482	0.00034	0.043	0.00031	0.0000
24-Sep-11	0.440	0.00156	0.085	0.00169	-0.0001
24-Oct-11	0.392	0.00444	0.133	0.00519	-0.0008
13-Nov-11	0.428	0.00178	0.097	0.00236	-0.0006
11-Jan-12	0.395	0.00401	0.130	0.00490	-0.0009

Figure B21. BG Weir: measured Q versus rated Q

Figure B22. Bog Weir – stage (m) betwen13-01-11 and 05-01-11 (water balance period)

Figure B23. Bog Weir – discharge (L/s) betwen13-01-11 and 05-01-11 (water balance period)

Figure B24. EPA Weir – stage (m) betwen13-01-11 and 05-01-11 (water balance period)

Figure B25. EPA Weir – discharge (L/s) between 13-01-11 and 05-01-11 (water balance period)

Figure B26. Restoration Flume - stage (m) betwen13-01-11 and 05-01-11 (water balance period)

Figure B27. Restoration Flume – discharge (L/ s) between 13-01-11 and 05-01-11 (water balance period)

Figure B28. FB2 Flume – stage (m) between 01-06-11 and 05-01-11 (water balance period)

Figure B29. FB2 Flume – discharge (L/ s) between 01-06-11 and 05-01-11 (water balance period)

Appendix B. Hydrological Characterisation – Flume Design

Figure B30. Plan view of flume design (not to scale)

Flume design – Front View

Appendix B. Hydrological Characterisation: High bog drainage system

Figure B32. DTM of Clara West high bog and location of high bog catchment areas

Figure B33. High bog catchment areas and high bog topography

Figure B24. Slope gradients (%) on Clara West high bog

Figure B35. Flow path length distribution

Figure B36. Flowlines and 100m DTM grid

Figure B37. Flow path lengths in high bog catchment areas and distribution of 'wet' ecotopes

Appendix C

Hydrogeological Analysis

Appendix C: Hydrogeological Analysis: Borehole hydrographs

Figure C1. CLBH2 hydrograph from hydrological year 2009-2010

Figure C2. CLB92 hydrograph from hydrological year 2009-2010

Figure C3. CLBH5 hydrograph from hydrological year 2009-2010

Appendix C: Hydrogeological Analysis: High bog hydrographs

Figure C4. Hydrograph for high bog subsoil piezometer nest 907 for hydrological year 2009-2010

Figure C6. Hydrograph for high bog subsoil piezometer nest 909 for hydrological year 2009-2010

Figure C8. Hydrograph for high bog subsoil piezometer nest 911 for hydrological year 2009-2010

Figure C9. Hydrograph for high bog subsoil piezometer nest 912 for hydrological year 2009-2010

Appendix C: Hydrogeological Analysis: Cutover bog hydrographs

Figure C12. Hydrograph for high bog subsoil piezometer nest 920 from October 2010 to January 2011

Figure C13. Hydrograph for high bog subsoil piezometer nest 921 from hydrological year 2009-2010

60

Figure C14. August 2010 potentiometric surface contour map – till groundwater body

Figure C15. January 2011 potentiometric surface contour map – till groundwater body

Figure C16. Mean deep peat potentiometric surface contour map

Hydrogeological Cross Section through Transect 1 August 2011

Hydrogeological Cross Section through Transect 2 August 2011

Figure C18. Hydrogeological cross-section through monitoring Transect 2

64

Hydrogeological Cross Section through Transect 3 August 2010

Figure C19. Hydrogeological cross-section through monitoring Transect 3

Hydrogeological Cross Section through Transect 4 August 2010

Figure C20. Hydrogeological cross-section through monitoring Transect 4

Hydrogeological Cross Section through Transect 5 August 2011

Scale: 1:25

Figure C21. Hydrogeological cross-section through monitoring Transect 5

Appendix C. Hydrogeological Analysis: Water level data

Table C1. Max, min and mean water levels from piezometers installed in till subsoil (August 2009 to April 2012)

ID	No. measurements	Max WL (Malin mOD)	Min WL (Malin mOD)	Mean WL (Malin mOD)	Fluctuation (m)
906	56	56.28	55.72	55.96	0.56
907	55	56.34	55.81	56.02	0.53
908	56	56.69	56.27	56.45	0.42
909	58	55.17	54.39	54.60	0.78
910	59	54.60	53.98	54.25	0.63
911	47	55.06	54.70	54.91	0.36
912	20	53.35	52.48	52.66	0.87
tL12	15	56.42	56.12	56.26	0.30
913	55	54.59	53.78	54.26	0.81
915	30	51.95	51.62	51.69	0.34
920	34	50.79	50.47	50.59	0.32
924	30	57.35	56.62	56.91	0.73
925	27	52.76	52.07	52.52	0.69
926	31	49.94	49.56	49.76	0.38
927	37	50.19	49.90	50.02	0.29
928	32	56.35	55.72	56.09	0.63
929	31	55.53	54.91	55.16	0.62
934	13	57.86	57.18	57.36	0.67
935	11	55.50	55.18	55.34	0.32
CLCD1	9	52.79	52.57	52.73	0.23
CLCD3	54	53.55	53.10	53.32	0.45
ST3-1	36	50.38	50.17	50.29	0.20

Table C2. Max, min and mean water levels from piezometers installed in till subsoil in GSI boreholes (August 2009 to April 2012)

ID	No. measurements	Max WL (Malin mOD)	Min WL (Malin mOD)	Mean WL (Malin mOD)	Fluctuation (m)
CLBH2	20	54.96	54.55	54.70	0.41
CLBH5	47	52.01	51.20	51.59	0.81
CLBH6	30	53.80	53.56	53.67	0.24
CLBH9	33	56.45	56.03	56.25	0.42
CLBH10	13	48.85	48.45	48.62	0.40
CLBH11	28	50.70	50.57	50.64	0.13

Table C3. Max, min and mean water levels from piezometers installed into the sand lense (August 2009 to April 2012)

ID		No. measurements	Max WL (Malin mOD)	Min WL (Malin mOD)	Mean WL (Malin mOD)	Fluctuation (m)
	927	10	49.77	49.48	49.68	0.29
	937	9	54.078	53.858	53.958	0.22

Table C4. Max, min and mean water levels from piezometers installed at the base of peat in the 1990s (August 2009 to April 2012)

		Max WL	Min WL	Mean WL	Fluctuation	Underlying
ID	N	(Malin mOD)	(Malin mOD)	(Malin mOD)	(m)	subsoil
54	7	54.31	54.18	54.26	0.13	Lac
56	6	54.96	54.92	54.93	0.05	Lac
67	5	52.29	51.77	52.17	0.52	Till
82	4	50.66	50.58	50.61	0.08	Lac
83	3	50.81	50.73	50.76	0.07	Lac
86	4	53.38	53.12	53.25	0.26	Lac
87	4	54.74	54.64	54.70	0.10	Lac
88	4	55.22	55.14	55.19	0.08	Lac
89	3	55.16	54.97	55.08	0.19	Lac
91	5	54.59	54.52	54.55	0.07	Lac
94	4	56.46	56.39	56.44	0.06	Lac
95	5	56.98	56.90	56.93	0.08	Lac
97	5	56.46	56.35	56.40	0.11	Lac
98	5	57.57	57.48	57.54	0.09	Lac
99	6	56.58	56.43	56.52	0.15	Lac
47	12	54.03	53.85	53.96	0.19	Lac
48	13	54.46	54.27	54.41	0.19	Lac
50	16	54.38	54.25	54.34	0.13	Lac
55	17	54.62	54.45	54.54	0.17	Lac
57	18	54.52	54.27	54.43	0.26	Lac
59	17	53.97	53.50	53.75	0.47	Sand/ lac
61	14	52.46	52.17	52.35	0.30	Sand/ lac
63	13	52.49	52.20	52.31	0.29	Sand/ lac
70	28	53.87	53.61	53.74	0.25	Lac
90	13	54.90	54.78	54.85	0.12	Lac
92	18	54.46	54.24	54.33	0.22	Till
93	14	55.48	55.29	55.39	0.19	Lac
96	14	56.52	56.20	56.38	0.33	Lac
901	15	55.67	55.58	55.62	0.09	Lac
902	16	55.29	55.16	55.23	0.13	Lac
903	15	55.08	54.86	54.98	0.21	Lac
904	19	57.04	56.91	56.93	0.13	Lac
905	19	57.26	57.06	57.16	0.20	Till

ID	N	Max WL (Malin mOD)	Min WL (Malin mOD)	Mean WL (Malin mOD)	Fluctuation (m)	Underlying subsoil
t1	12	55.96	55.78	55.86	0.18	Lac
t2	13	54.16	53.98	54.10	0.18	Till
t3	11	53.38	53.17	53.32	0.21	Lac
t4	19	54.25	54.01	54.17	0.24	Sand/ lac
t5	13	56.18	55.87	55.97	0.31	Till
t6	21	56.28	56.03	56.16	0.25	Till
t8	11	56.82	56.63	56.73	0.19	Lac
t9	30	56.59	56.41	56.51	0.18	Lac
t10	21	54.37	54.11	54.29	0.26	Lac
t13	17	54.04	53.77	53.95	0.27	Lac
tdj12	22	56.52	56.21	56.35	0.31	Till
tdk12	13	56.58	56.38	56.48	0.20	Lac
tdL12	31	56.75	56.51	56.62	0.24	Till

Table C5. Max, min and mean water levels from piezometers installed at the base of peat by ten Hegglar et al (2003) (August 2009 to April 2012)

Table C6. Max, min and mean water levels from piezometers installed at the base of peat in high bog as part of PhD study (August 2009 to April 2012)

ID	N	Max WL (Malin mOD)	Min WL (Malin mOD)	Mean WL (Malin mOD)	Fluctuation (m)	Underlying subsoil
914	48	51.43	51.12	51.24	0.31	Lac
915	45	51.81	51.51	51.69	0.30	Till
916	18	51.16	50.94	51.01	0.22	Till
917	7	51.38	50.91	51.14	0.47	Till
918	42	55.95	55.70	55.79	0.26	Till
920	47	50.86	50.48	50.65	0.39	Lac
921	26	49.91	49.60	49.83	0.31	Lac
923	19	50.17	50.12	50.14	0.04	Sand/ lac
927	9	50.01	49.80	49.89	0.21	Sand/ lac
939	9	50.02	49.73	49.96	0.29	Sand/ lac

Table C7. Max, min and mean water levels from piezometers installed at the base of peat in high bog as part of PhD study (August 2009 to April 2012)

ID	Max WL D N (Malin mOD)		Min WL (Malin mOD)	Mean WL (Malin mOD)	Fluctuation (m)	Underlying subsoil
906	51	56.16	55.71	55.93	0.45	Till
907	20	56.18	55.98	56.01	0.20	Till
908	54	57.01	56.75	56.88	0.26	Till
909	48	55.83	55.22	55.61	0.61	Till
910	54	55.03	54.17	54.81	0.86	Till
911	46	55.15	54.81	55.04	0.35	Till
912	53	53.56	52.31	52.94	1.25	Lac/ till
937	3	54.33	54.13	54.27	0.21	Sand/ lac

Appendix D

Groundwater-Surface-Water Interactions

Appendix D. Groundwater-Surface-Water Interactions – Stage and Groundwater Level Hydrographs

Figure D1. Restoration Area Flume: Stage level in drain and groundwater level in till subsoil piezometer 920 in cutover bog (water balance period)

Figure D2. Restoration Area Flume: Stage level in drain and groundwater level in till subsoil piezometer 910 on high bog (water balance period)

Figure D3. EPA Weir: Stage level in drain and groundwater level in till subsoil piezometer 920 in cutover bog (water balance period)

Figure D4. EPA Weir: Stage level in drain and groundwater level in till subsoil piezometer 910 on high bog (water balance period)

Figure D5. FB2 Flume: Stage level in drain and groundwater level in till subsoil piezometer 915 in cutover bog (water balance period)

Figure D6. EPA Weir: Stage level in drain and groundwater level in till subsoil piezometer 910 on high bog (water balance period)

Appendix D: Groundwater-Surface-Water Interaction – Investigation Points and Hydrochemical Results

Figure D7. Hydrochemical investigation points

Figure D8. Calcium concentrations (mg/ L) - see table D1 - D4

Figure D9. Silica concentrations (mg/ L) - see table D5 - D8

Figure D10. Strontium concentrations ($\mu g/L$) - see table D9 – D12

Figure D11. Oxygen 18 (‰) in groundwater (till and bedrock) - see table D13 – D16

Figure D12. Strontium concentrations (µg/ L) and oxygen 18 (‰) in groundwater (till and bedrock)

Appendix D: Groundwater-Surface-Water Interaction – Hydrochemical Source Analysis

Figure D13. Strontium (Sr) and calcium (Ca) water source analysis

Figure D14. Strontium (Sr) and Silica (SiO₂) water source analysis

Figure D15. Silica (SiO₂) and calcium (Ca) water source analysis

Figure D16. Strontium (Sr) and stable oxygen isotope (O¹⁸) water source analysis

Appendix D: Groundwater-Surface-Water Interaction – Hydrochemical and Drain Flow Rate Analysis

Figure D17. Electrical conductivity (μ S/ cm) versus flow rate (L/ s) in instrumented groundwater-fed drains

Figure D18. Calcium (mg/ L) versus flow rate (L/ s) in instrumented groundwater-fed drains

Figure D19. Silica (mg/ L) versus flow rate (L/ s) in instrumented groundwater-fed drains

Figure D20. Strontium (mg/ L) versus flow rate (L/ s) in instrumented groundwater-fed drains

Figure D21. Oxygen 18 (‰) versus flow rate (L/s) in instrumented groundwater-fed drains

Appendix D: Groundwater-Surface-Water Interaction – Hydrograph Base Flow Separation

Figure D22. EPA Weir flow rate hydrograph and groundwater contribution (water balance period: 13-01-11 to 05-12-11)

Figure D23. FB2 Flume flow rate hydrograph and groundwater contribution (water balance period: 01-06-11 to 05-12-11)

Figure D24. Restoration Flume flow rate hydrograph and groundwater contribution (Water balance period: 10-01-11 to 05-12-11)

Appendix D: Groundwater-Surface-Water Interaction – Base Flow and Groundwater Level

Figure D25. EPA Weir base flow hydrograph and groundwater level in subsoil piezometer 920 (water balance period: 13-01-11 to 05-12-11)

Figure D26. FB2 Flume base flow hydrograph and groundwater level in subsoil piezometer 915 (water balance period: 01-06-11 to 05-12-11)

Figure D27. Restoration AreaFlume base flow hydrograph and groundwater level in subsoil piezometer 920 (water balance period: 10-01-11 to 05-12-11)

Figure D28. Restoration Area Flume base flow hydrograph and groundwater level in subsoil piezometer 926 (13-01-11 to 31-08-11)

Appendix D: Groundwater-Surface-Interactions – Recharge Catchment

Figure D29. Recharge catchment - delineated based on groundwater flow to EPA Weir and Restoration Flume catchment

Appendix D: Groundwater-Surface-Water Interaction – Chemical Analysis Results

Ground	lwater (under	cut bog)	Groundwater (under high bog)					
ID	Date	mg / L		ID	Date	mg / L		
925	16/10/2010	138.95		934	16/10/2010	88.95		
926	16/10/2010	88.94		934	04/10/2011	113.78		
926	24/10/2011	129.75		907	16/10/2010	94.25		
926	17/02/2012	104		907	17/02/2011	105.14		
927	16/10/2010	85.85		909	23/09/2010	97.7		
927	24/10/2011	113.29		909	17/02/2011	114.34		
928	04/10/2011	142.81		910	21/07/2010	71.89		
935	24/10/2011	69.06		910	17/02/2011	82.77		
906	16/10/2010	109.31		CLCD1	16/10/2010	87.55		
906	17/02/2011	133.49		CLCD3	21/07/2010	114.82		
915	23/09/2010	101.6						
920	23/09/2010	68.9						
920	17/02/2012	54						
927	17/02/2012	87						
BH5-BR	21/07/2010	129.37	(Lst)					
BH5	21/07/2010	125.11						
BH5	17/02/2011	151.24						
BH9	17/02/2011	141.32						

Table D1. Calcium concentrations from piezometers installed to till subsoil and date of water sampling

Table D2. Calcium concentrations from piezometers installed in peat, sand and date of water sampling

Peat	Water (high bo	g)	Peat V	Vater (cutover	bog)
ID	Date	mg / L	ID	Date	mg / L
904-mp	04/10/2011	1.28	906-dp	16/10/2010	77.39
904-dp	04/10/2011	5.42	914-dp	23/09/2010	55.2
907-dp	16/10/2010	32.97	920-dp	17/02/2012	20
908-dp	17/02/2012	3	927-dp	24/10/2011	57.59
909-dp	23/09/2010	2.1	927-dp	17/02/2012	54
912-dp	23/09/2010	19.8			
937-dp	17/02/2012	8		Sand lense	
t10	16/10/2010	2.53	ID	Date	mg / L
t13	04-Oct-11	3.28	927	09-Aug-11	47.83
td4	16/10/2010	6.48	927	24-Oct-11	48.70
td4	04-Oct-11	10.27	937	09-Aug-11	53.87
td6-dp	17/02/2012	11			
tdK12	24-Oct-11	3.75			

GW	seepage drain	8	Surface water (no GW influence)			
ID	Date	mg / L	ID	Date	mg / L	
931	24/10/2011	145.21	Bog-Dr	avergae	1.07	
Dr-918	27/08/2010	58.49	FB-Dr	21/07/2010	2.54	
Dr-930	27/08/2010	73.27	Bog-Lk	27/08/2010	1.07	
Dr-923	27/08/2010	69.24	920-ro	24/10/2011	5.10	
Dr-CT3	16/10/2010	143.18	FB-Dr (924)	27/08/2010	0.37	
			Pz-933	16/10/2010	7.99	

Table D3. Calcium concentrations from drains (1) where there is a perched groundwater table and (2) where there is no groundwater contribution

Table D4. Calcium concentrations from drains at (1) low flow and (2) high flow. Note: Minimum and maximum values.

Surfa	ice Water (low fl	ow)	Surfac	Surface Water (high flow)					
ID	Date	mg/L	ID	Date	mg / L				
Dr-914	27/08/2010	69.59	Dr-914	17/02/2010	10.80				
SG5	27/08/2010	87.09	SG5	17/02/2010	11.32				
SG4	27/08/2010	74.65	SG4	23/09/2010	20.16				
SG8	22-Apr-11	135.09	Rest-Fl	24-Oct-11	17.19				
EPA-W	17-Jun-11	90.52	FB2-Fl	18-Oct-11	19.37				
FB2-F1	17-Jun-11	85.92	EPA-W	04-Oct-11	31.20				
Rest-Fl	04-Jul-11	86.90							

Crounday	tor (under ou	t hog)		Crounda	ator (under hi	th bog)
Groundwa	Dete	ma / I		Groundw	Data	ma / I
ID	Date	mg / L		ID	Date	mg/L
913	17/02/2012	3.25		934	16/10/2010	2.24
925	16/10/2010	2.32		934	04/10/2011	2.88
925	24/10/2011	0.75		907	16/10/2010	3.69
926	16/10/2010	4.37		907	17/02/2011	4.6
926	24/10/2011	7.71		908	21/07/2010	2.42
926	17/02/2012	7.13		909	17/02/2011	5.75
927	16/10/2010	4.08		910	21/07/2010	2.81
927	24/10/2011	6.67		910	17/02/2011	4.5
928	04/10/2011	4.12		910	17/02/2012	4.95
935	24/10/2011	2.80		CLCD1	16/10/2010	3.90
906	16/10/2010	2.79		CLCD1	17/02/2012	6.45
906	17/02/2011	4.45		CLCD3	21/07/2010	1.53
906	17/02/2012	5.78		Tl12	17/02/2012	1.31
915	23/09/2010	3.2				
915	17/02/2012	4.63				
920	23/09/2010	2.4				
920	17/02/2012	2.03				
927	17/02/2012	6.22				2.1
BH10-R	17/02/2012	5.76	(Lst)			
BH10	17/02/2012	2.01				
BH11-R	17/02/2012	4.43	(Lst)			
BH11-ss	17/02/2012	5.73				
BH5-R	21/07/2010	1.86	(Lst)			
BH5	21/07/2010	1.76				
BH5	17/02/2011	2.43				
BH5	17/02/2011	3.56				

Table D5. Silica concentrations from piezometers installed to till subsoil and date of water sampling

Table D6. Silica concentrations from drains (1) where there is a perched groundwater table and (2) where there is no groundwater contribution

GW	GW seepage drains			Surface water (no GW influence)				
ID	Date	mg / L	ID	Date	mg / L			
931	24/10/2011	7.72	Bog-Dr	avergae	0.26			
Dr-918	27/08/2010	1.51	FB-Dr	21/07/2010	0.89			
Dr-930	27/08/2010	2.27	Bog-Lk	27/08/2010	0.17			
Dr-923	27/08/2010	2.74	920-ro	24/10/2011	0.17			
Dr-CT3	16/10/2010	1.03	FB-Dr (924)	27/08/2010	1.81			
Dr-918	17/02/2012	3.39	Pz-933	16/10/2010	0.59			
			905-sw	17/02/2012	0			

Peat V	Water (high bo	og)	Peat Water (cutover bog)
ID	Date	mg / L	ID Date mg / L
909-DP	23/09/2010	0.9	914-DP 23/09/2010 2.0
912-DP	23/09/2010	0.5	906-DP 16/10/2010 2.37
td4	16/10/2010	0.23	927-DP 24/10/2011 4.39
t10	16/10/2010	0.18	927-dp 17/02/2012 5.55
907-DP	16/10/2010	1.59	920-dp 17/02/2012 5.4
904-E	04/10/2011	< 0.21	906-dp 17/02/2012 3.96
t13	04-Oct-11	< 0.21	
92-dp	17/02/2012	1.01	Sand lense
937-dp	17/02/2012	2.62	ID Date mg / L
904-dp	17/02/2012	0	927-sd 09-Aug-11 <0.21
tl12-dp	17/02/2012	0.52	927-sd 24-Oct-11 1.77
td6-dp	17/02/2012	0.51	937-sd 09-Aug-11 <0.21
908-dp	17/02/2012	1.06	
94-dp	17/02/2012	0	
910-dp	17/02/2012	0.44	
td9-dp	17/02/2012	0.46	
tl12-mp	17/02/2012	2.32	

Table D7. Silica concentrations from piezometers installed in peat, sand and date of water sampling

Table D8. Silica concentrations from drains at (1) low flow and (2) high flow. Note: Minimum and maximum values.

Surfa	ce Water (low fl	ow)	Surfa	Surface Water (high flow)					
ID	Date	mg/L	ID	Date	mg / L				
Dr-914	27/08/2010	2.25	Dr-914	23/09/2010	0.49				
SG5	27/08/2010	3.40	SG5	23/09/2010	0.50				
SG4	27/08/2010	2.26	SG4	23/09/2010	0.65				
SG8	22-Apr-11	3.22	Rest-Fl	24-Oct-11	0.51				
EPA-W	17-Jun-11	3.59	FB2-Fl	18-Oct-11	0.81				
FB2-Fl	17-Jun-11	4.10	EPA-W	04-Oct-11	1.31				
Rest-Fl	04-Jul-11	5.11							

Table D9.	Strontium	concentrations	from	piezometers	installed	to till	subsoil	and	date of	water	
sampling											

Groundwater (under cut bog) ID Date μg / L 925 16/10/2010 130.88 925 24/10/2011 55.251 926 16/10/2010 206.23 926 24/10/2011 305.11 927 16/10/2010 168.53 927 24/10/2011 240.51 928 04/10/2011 204.57 935 24-Oct-11 114.6 906-SS 16/10/2010 147.86 915-SS 23/09/2010 140.2	Groundw	Groundwater (under high bog)					
ID	Date	μg / L	ID	Date	μg / L		
925	16/10/2010	130.88	934	16/10/2010	105.19		
925	24/10/2011	55.251	934	04/10/2011	173.11		
926	16/10/2010	206.23	907-SS	16/10/2010	129.84		
926	24/10/2011	305.11	908-SS	21/07/2010			
927	16/10/2010	168.53	909-SS	23/09/2010	127.7		
927	24/10/2011	240.51	910-SS	21/07/2010	144.4		
928	04/10/2011	204.57	CLCD1	16/10/2010	212.69		
935	24-Oct-11	114.6	CLCD3	21/07/2010	284.9		
906-SS	16/10/2010	147.86	907-SS	17/02/2011	160.47		
915-SS	23/09/2010	140.2	908-SS	17/02/2011	46.49		
920-SS	23/09/2010	101.4	909-SS	17/02/2011	151.78		
BH5-BR	21/07/2010	129.8	910-SS	17/02/2011	138.30		
BH5-SS	21/07/2010	131.0					
906-SS	17/02/2011	189.89					
BH5-SS	17/02/2011	121.51					
BH9-SS	17/02/2011	196.76					

Table D10. Strontium concentrations from piezometers installed in peat, sand and date of water sampling

Peat V	Water (high bo	og)	Peat Water (cutover bog)					
ID	Date	μg / L	ID	Date	μg / L			
909-DP	23/09/2010	4.7	914-DP	23/09/2010	76.5			
912-DP	23/09/2010	25.9	906-DP	16/10/2010	79.91			
td4	16/10/2010	5.68	927-DP	24/10/2011	118.87			
t10	16/10/2010	2.99						
907-DP	16/10/2010	48.47			144			
904-Е	04/10/2011	7.04			-8-al			
904-F	04/10/2011	21.87						
t13	04-Oct-11	13.07						
td4	04-Oct-11	20.353						
tdK12	24-Oct-11	4.19						

GW	seepage drain	S	Surface water (no GW influence)				
ID	Date	μg / L	ID	Date	μg / L		
931	24/10/2011	247.98	Bog-Dr	average	2.37		
Dr-918	27/08/2010	75.44	FB-Dr	21/07/2010	9.51		
Dr-930	27/08/2010	105.45	Bog-Lk	27/08/2010	7.05		
Dr-923	27/08/2010	104.63	920-ro	24/10/2011	26.24		
Dr-CT3	16/10/2010	208.37	FB-Dr (924)	27/08/2010	0.00		
			Pz-933	16/10/2010	15.80		

Table D11. Strontium concentrations from drains (1) where there is a perched groundwater table and (2) where there is no groundwater contribution

Table D12. Strontium concentrations from drains at (1) low flow and (2) high flow. Note: Minimum and maximum values.

Surface Water (low flow)			Surface Water (high flow)			
ID	Date	μg / L	ID	Date	μg / L	
Dr-914	27/08/2010	93.71	Dr-914	17/02/2010	12.74	
SG5	27/08/2010	195.95	SG5	17/02/2010	20.91	
SG4	27/08/2010	100.99	SG4	23/09/2010	24.54	
SG8	22-Apr-11	169.82	Rest-Fl	24-Oct-11	40.00	
EPA-W	17-Jun-11	108.00	FB2-Fl	18-Oct-11	35.41	
FB2-Fl	17-Jun-11	101.00	EPA-W	04-Oct-11	48.39	
Rest-Fl	04-Jul-11	174.00				

Groundwater (under cut bog)		Groun	ndwater (under high bog)		
ID	Date	d ¹⁸⁰ (‰)	ID	Date	d ¹⁸⁰ (‰)
913	14/10/2009	-5.82	934	16/10/2010	-5.01
925	16/10/2010	-6.45	934	04/10/2011	-5.65
925	24/10/2011	-6.18	907	14/10/2009	-5.15
926	16/10/2010	-4.72	907	16/10/2010	-4.93
926	24/10/2011	-4.76	907	17/02/2011	-5.09
927	16/10/2010	-4.98	908	14/10/2009	-5.90
927	24/10/2011	-4.94	908	21/07/2010	-5.54
928	16/10/2010	-6.61	908	17/02/2011	-5.52
928	04/10/2011	-6.58	909	14/10/2009	-5.28
935	16/10/2010	-7.03	909	23/09/2010	-5.66
935	24-Oct-11	-6.53	909	17/02/2011	-5.59
906	14/10/2009	-5.71	910	14/10/2009	-6.09
906	16/10/2010	-6.02	910	21/07/2010	-5.90
906	17/02/2011	-5.77	910	17/02/2011	-6.40
915	23/09/2010	-5.60	911	14/10/2009	-5.33
920	23/09/2010	-4.29	CLCD1	30/09/2009	-4.82
BH11	30/09/2009	-5.51	CLCD1	16/10/2010	-4.95
BH2	30/09/2009	-6.50	CLCD3	14/10/2009	-5.91
BH3	30/09/2009	-6.78	CLCD3	16/10/2011	-5.52
BH5	30/09/2009	-6.53			
BH5	21/07/2010	-6.60	Groundwater (bedrock)		
BH5	17/02/2011	-6.26	ID	Date	d ¹⁸⁰ (‰)
BH9	30/09/2009	-6.55	BH11	30/09/2009	-4.4
BH9	17/02/2011	-6.48	BH12	30/09/2009	-5.79
			BH2	30/09/2009	-4.52
			BH5	30/09/2009	-6.44
			BH5	21/07/2010	-6.29
			BH9	30/09/2009	-6.01

Table D13. δ ¹⁸O values (‰) from piezometers installed to till subsoil, limestone bedrock and date of water sampling

Table D14. δ ¹⁸O values (‰) from piezometers installed in peat, lacustrine clay, sand and date of water sampling

Peat Water (high bog)			Peat Water (cutover bog)			
ID	Date	d ¹⁸⁰ (‰)	ID	Date	d ¹⁸⁰ (‰)	
70	14/10/2009	-6.83	906-dp	14/10/2009	-5.75	
902	14/10/2009	-5.57	906-dp	16/10/2010	-5.88	
904-dp	14/10/2009	-7.07	914-dp	14/10/2009	-5.49	
904-mp	04/10/2011	-6.48	914-dp	23/09/2010	-5.59	
904-dp	04/10/2011	-7.41	927-dp	24/10/2011	-5.30	
904-mp	14/10/2009	-5.78				
905-dp	14/10/2009	-6.93				
907-dp	14/10/2009	-4.88		Lacustrine o	elay	
907-dp	16/10/2010	-5.03	ID	Date	d ¹⁸⁰ (‰)	
907-mp	14/10/2009	-5.28	93	14/10/2009	-6.93	
908-dp	14/10/2009	-5.84	96	14/10/2009	-6.91	
909-dp	14/10/2009	-6.00	902	14/10/2009	-6.73	
909-dp	23/09/2010	-5.64				
909-mp	14/10/2009	-5.46				
910-dp	14/10/2009	-6.13		Sand lense	e	
910-mp	14/10/2009	-6.16	ID	Date	d ¹⁸⁰ (‰)	
911-dp	14/10/2009	-5.68	927	24-Oct-11	-5.26	
912-dp	14/10/2009	-5.65				
912-dp	23/09/2010	-6.50				
912-mp	14/10/2009	-5.62				
93-dp	14/10/2009	-5.91				
96-dp	14/10/2009	-6.76				
96-mp	14/10/2009	-5.87				
t10	16/10/2010	-7.03				
t13	04-Oct-11	-7.34				
td4	14/10/2009	-6.77				
td4	16/10/2010	-6.78				
td4	04-Oct-11	-7.03				
td6	14/10/2009	-6.43				
td9	14/10/2009	-6.74				
tdJ12	14/10/2009	-6.17				
tdK12	24-Oct-11	-7.03				

Table D15. δ ¹⁸O values (‰) from drains (1) where there is a perched groundwater table and (2) where there is no groundwater contribution

GW seepage drains			Surface	e water (no GW	influence)
ID	Date	d ¹⁸⁰ (‰)	ID	Date	d ¹⁸⁰ (‰)
931	24/10/2011	-5.01	905-PH	14/10/2009	-4.59
Dr-918	30/09/2009	-5.10	905-sw	14/10/2009	-4.33
Dr-918	27/08/2010	-4.68	907-PH	14/10/2009	-4.75
Dr-923	27/08/2010	-5.35	907-ph	16/10/2010	-6.00
Dr-930	27/08/2010	-6.06	908-Ph	14/10/2009	-5.35
Dr-CT3	16/10/2010	-5.70	911-ph	14/10/2009	-4.85
			920-ro	24/10/2011	-4.50
			93-ph	14/10/2009	-6.17
			Bog-Dr	30/09/2009	-4.99
			Bog-Dr	24/10/2011	-4.75
			Bog-Lk	14/10/2009	-4.45
			Bog-Lk	27/08/2010	-5.80
			CWG1	14/10/2009	-4.47
			FB-Dr	21/07/2010	-5.49
			FB-Dr	27/08/2010	-3.13
			Pz-933	16/10/2010	-5.99

Table D16. δ ¹⁸O values (‰) from drains at (1) low flow and (2) high flow. Note: Minimum and maximum values.

Surface Water (low flow)			Surface Water (high flow)		
ID	Date	d ¹⁸⁰ (‰)	ID	Date	d ¹⁸⁰ (‰)
EPA-W	17-Jun-11	-6.36	EPA-W	04-Oct-11	-5.13
FB2-Fl	17-Jun-11	-5.59	FB2-Fl	18-Oct-11	-4.97
Rest-Fl	17-Jun-11	-5.65	Rest-Fl	24-Oct-11	-4.80
SG8	22-Apr-11	-6.39			

Appendix E

Subsidence

Figure E1. Subsidence analysis area and underlying topographic catchment areas

Figure E2. High bog topography in subsidence analysis area in 1992 (100m grid)

Figure E3. High bog topography in subsidence analysis area in 2002 (100m grid)

Figure E4. High bog topography in subsidence analysis area in 2008 (100m grid: LiDAR elevations)

Figure E5. High bog topography in subsidence analysis area in 2011 (100m grid: Trimble GPS survey)

Figure E6. High bog topography and February 2012 phreatic water table in catchment divide area

Figure E7. Decrease in surface ground level (m) between 1991 and 2011

Figure E8. Decrease in surface ground level (m) between 1991 and 2002

Figure E9. Decrease in surface ground level (m) between 2002 and 2011

Figure E10. Decrease in surface ground level (m) between 2008 and 2011

Appendix E. Subsidence: Subsidence Analysis Area

Figure E11. Ground level oscillation: September to April 2011

Figure E12. Ground level oscillation with underlying subsoil geology: September to April 2011

Figure E13. Ground level oscillation type

Appendix E. Subsidence: Fitted Cosine Curves to Ground Level Oscillation

Figure E14. Measured surface level elevation at grid point H11 and fitted cosine transformation curve.

Figure E15. Measured surface level elevation at grid point I11 and fitted cosine transformation curve.

Figure E18. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest 910 (note: bog grid point I10 is located c. 50m north of piezometer nest).

Figure E19. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest 909 (note: bog grid point J13 is located adjacent to the piezometer nest).

Figure E20. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest tdJ12 (note: bog grid point J12 is located adjacent to the piezometer nest).

Figure E21. Bog ground level elevation versus (a) phreatic water level and (b) deep peat water level at piezometer nest 908 (note: bog grid point L12 is located adjacent to the piezometer nest).

Appendix E: Subsidence – Ground Level Subsidence Trend

223400 223500 223600 223700 223800 223900 224000 224100 224200 224300 224500 Figure E22. Ground level subsidence trend between 1991 and 2011

Subsidence trend at bog grid point E11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point E12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point F9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point F10. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point F11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point F12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point F13. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point G8. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point G9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point G10. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point G11. Note: Mean September 2011 elevation used.

Subsidence trend at bog grid point G12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point G13. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H7. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H8. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H10. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point H13. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point I7. Note: Mean 2011-2012 elevation used. 2008 LiDAR elevation appears unusually large – omitted from trend.

Subsidence trend at bog grid point I8. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point I9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point I10. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point I12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point I14. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J7. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J8. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J10. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J13. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J14. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J15. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point J16. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K7. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K8. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K10. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K13. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K14. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K15. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point K17. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L9. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L10. Note: September 2011 elevation used.

Subsidence trend at bog grid point L11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L13. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L14. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L15. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L16. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point L17. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M11. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M12. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M13. Note: Mean 2011-2012 elevation used. Mound area – LiDAR may not measure ground surface accurately.

Subsidence trend at bog grid point M14. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M15. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M16. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M17. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point M18. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point N14. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point N15. Note: Mean 2011-2012 elevation used.

Subsidence trend at bog grid point N16. Note: Mean 2011-2012 elevation used.

Appendix E: Subsidence: Ground Level Oscillations

id	2011	2008	2002	1991	id	2011	2008	2002	1991
e11	55.38	55.34	55.43	55.47	19	57.65	57.77	57.76	57.83
e12	54.92	55.04	55.06	55.29	110	57.59	57.66	57.65	57.86
f9		55.84	55.86	55.83	111	57.33	57.47	57.50	57.66
f10		55.59	55.62	55.82	112	57.14	57.22	57.36	57.78
f11		55.34	55.34	56.15	113	57.36	57.50	57.65	57.83
f12		54.94	54.96	55.21	114	57.55	57.61	57.77	58.07
f13		54.34	54.38	54.91	115	57.64	57.73	57.82	58.04
g8		55.88	55.94	56.17	116	58.00	58.04	58.12	58.52
g9		55.72	55.73	55.99	117	59.26	59.27	59.31	59.37
g10		55.54	55.53	55.76	m11	57.66	57.74	57.79	57.94
g11		55.18	55.08	55.44	m12	57.58	57.63	57.70	57.86
g12		54.79	54.84	55.15	m13	57.42	57.70	57.78	57.93
g13	54.20	54.21	54.27	55.00	m14	57.62	57.66	57.90	58.01
h7	56.42	56.49	56.43	56.51	m15	57.57	57.63	57.76	57.98
h8	56.22	56.29	56.28	56.56	m16	57.60	57.66	57.75	58.05
h9	55.93	56.09	56.13	56.31	m17	58.19	58.23	58.31	58.56
h10	55.69	55.77	55.82	56.11	m18	58.76	58.79	58.91	59.21
h11	55.13	55.16	55.20	55.52	n14	57.68	57.70	57.77	57.84
h12	54.84	54.88	54.90	55.30	n15	57.55	57.59	57.61	57.98
h13	54.64	54.65	54.72	55.18	n16	57.69	57.70	57.73	58.05
i7	56.65	56.81	56.70	56.80					
i8	56.54	56.65	56.55	56.80					
i9	56.43	56.45	56.50	56.68	EXTH	RA Points	s - April	l 2012	
i10	56.54	56.59	56.56	56.72	D8		56.18	56.13	56.10
i11	56.32	56.36		56.55	D9		55.95	56.04	56.09
i12	55.67	55.70	55.80	56.15	D10		55.49	55.52	55.67
<i>i13</i>	FILL	55.18	55.40	56.07	D11		55.18	55.20	55.36
i14	54.49	54.59	54.84	55.91	D12		54.81	54.85	54.98
j7	56.84	57.00	56.98	57.09	D13		52.08	52.11	52.15
j8	56.91	57.00	56.97	57.16	E8		56.00	55.82	56.06
j9	56.62	56.75	56.82	57.01	E9		55.93	55.96	56.12
j10	56.68	56.76	56.78	56.97	E10		55.65	55.69	55.86
j11	56.97	56.99	57.00	57.25	E13		53.00	53.08	53.54
j12	57.01	57.11	57.28	57.72	F7		56.16	56.18	56.22
j13	56.51	56.54	56.64	57.84	F8		55.86	55.80	55.86
j14	55.53	55.57	55.70	56.44	G7		56.25	56.21	56.37
j15	56.68	56.74	56.79	57.86	G14		53.68	53.88	54.69
j16	57.29	57.32	57.29	57.83	H6		56.93	56.94	56.93
k7	57.39	57.52	57.48	57.65	H14		53.45	53.69	54.85
k8	57.39	57.47	57.41	57.58	16		56.91	56.80	56.90
k9	57.11	57.18	57.25	57.40	J6		57.11	57.17	57.13
k10	57.10	57.20	57.24	57.39	K5		57.41	57.45	57.35

Table E1. Ground level elevations from 1991, 2002, 2008 and 2012

k11	57.14	57.24	57.32	57.48	K6	57.43	57.39	57.45
k12	57.02	57.11	57.19	57.68	L8	57.86	57.73	57.92
k13	57.04	57.08	57.16	57.81	M9	57.93	57.92	58.04
k14	57.02	57.08	57.11	57.63	M10	57.79	57.81	57.92
k15	57.35	57.40	57.50	57.96	N11	58.06	57.91	57.99
k16	57.77	57.84	57.92	58.33	N12	57.91	57.92	58.08
k17	57.73	57.86	57.95	58.24	N13	57.73	57.79	57.97

Table E2. Ground level oscillations between September 2011 and April 2012

10	02 5 11	09 100 12	08 4 12	Banga (m)	ID	02-Sep-	08. Jan. 12	08. Apr. 12	Range (m)
E11	U2-Sep-11	CE 20	55 216	nange (m)	11/	55 505	55 5/12	55 5/6	0.04
E11	55.378	55.28	55.210	0.10	J14	55.505	55.540	55.540	0.04
EIZ	54.904	54.937	54.959	0.05	115	57.002	50.755	50.00	0.00
F9	55.698	55.755	55.631	0.12	110	57.295	57.299	57.270	0.02
F10	55.444	55.502	55.522	0.08	K7	57.388	57.429	57.42	0.04
F11	55.325	55.166	55.176	0.16	K8	57.313	57.39	57.353	0.08
F12	54.927	54.911	54.83	0.10	К9	57.109	57.064	57.035	0.07
F13	54.353		54.251	0.10	K10	57.058	57.101	57.069	0.04
G8	55.619	55.771	55.768	0.15	K11	57.078	57.158	57.121	0.08
G9	55.595	55.712	55.622	0.12	K12	57.018	57.034	57.016	0.02
G10	55.452	55.472	55.415	0.06	K13	56.85	57.061	56.852	0.21
G11		55.131	55.087	0.04	K14	57.023	56.965	56.976	0.06
G12	54.631	54.722	54.699	0.09	K15	57.256	57.349	57.39	0.13
G13	54.169	54.214	54.236	0.07	K16	57.766	57.739	57.778	0.04
H7	56.417	56.338	56.304	0.11	K17	57.733	57.898	57.843	0.17
H8	56.159	56.221	56.242	0.08	L9	57.621	57.648	57.607	0.04
H9	55.929	55.999	55.961	0.07	L10	57.592	57.508	57.51	0.08
H10	55.683	55.717	55.674	0.04	L11	57.326	57.24	57.189	0.14
H11	55.053	55.148	55.063	0.10	L12	57.111	57.158	57.17	0.06
H12	54.827	54.862	54.821	0.04	L13	57.335	57.378	57.346	0.04
H13	54.796	54.655	54.666	0.14	L14	57.553	57.614	57.593	0.06
17	56.579	56.653	56.622	0.07	L15	57.638	57.734	57.715	0.10
18	56.544	56.54	56.524	0.02	L16	57.998	58.023	58.036	0.04
19	56.364	56.43	56.35	0.08	L17	59.269	59.192	59.281	0.09
110	56.447	56.541	56.485	0.09	M11	57.658	57.675	57.557	0.12
111	56.323	56.336	56.224	0.11	M12	57.575	57.591	57.515	0.08
112	55.589	55.684	55.629	0.09	M13	57.339	57.433	57.403	0.09
113	55.309	55.339	55.33	0.03	M14	57.606	57.637	57.466	0.17
114		55.138	55.018	0.12	M15	57.572	57.692	57.638	0.12
J7	56.839	56.847	56.87	0.03	M16	57.601	57.625	57.664	0.06
J8	56.885	56.907	56.88	0.03	M17	58.301	58.195	58.221	0.11
9	56.617	56.603	56.606	0.01	M18	58.858	58.765	58.781	0.09
J10	56.591	56.677	56.574	0.10	N12		57.736	57.642	0.09
J11	56.853	56.987	56.83	0.16	N14	57.683	57.622	57.518	0.17
J12	57.005	57.106	57.034	0.10	N15	57.548		57.521	0.03
J13	56.513	56.593	56.505	0.09	N16	57.597	57.693	57.64	0.10

Appendix E: Rate of Subsidence – Ground Level Oscillations

id	02-Sep-11	08-Jan-12	11-Jan-12	08-Apr-12
915	52.218	52.200	52.217	52.212
CLBH5	52.869	52.848	52.868	52.863
906			56.585	56.587
909	57.342			57.336
Offset (m):		0.018	0.001	0.006

Table E3. Borehole levels used to control bog surface level elevations

Table E4. OPW bog grid post oscillation in Clara West subsidence analysis area

Post	08-Jan-12	08-Apr-12	Fluctuation (m)	Post	08-Jan-12	08-Apr-12	Fluctuation (m)
E11	55.952	55.949	0.003	J14	56.237	56.21	0.027
F9	56.319	56.33	-0.011	J15	57.298	57.299	-0.001
F10	56.205	56.21	-0.005	J16	57.849	57.845	0.004
F11	55.989	56.002	-0.013	K7	57.944	57.961	-0.017
F12	55.353	55.357	-0.004	K8	57.978	57.987	-0.009
G8	56.412	56.433	-0.021	K9	57.592	57.599	-0.007
G9	56.152	56.163	-0.011	K10	57.588	57.589	-0.001
G10	56.042	56.048	-0.006	K11	57.716	57.707	0.009
G11	55.516	55.522	-0.006	K12	57.482	57.485	-0.003
G12	55.33	55.312	0.018	K13	57.487	57.485	0.002
G13	54.915	54.912	0.003	K14	57.605	57.616	-0.011
H8	56.949	56.956	-0.007	K15	57.966	57.976	-0.010
H9	56.731	56.75	-0.019	L9	58.321	58.329	-0.008
H10	56.492	56.502	-0.010	L10	58.176	58.182	-0.006
H11	55.729	55.72	0.009	L11	57.843	57.852	-0.009
H12	55.215	55.218	-0.003	L12	57.746	57.748	-0.002
H13	55.319	55.309	0.010	L13	57.921	57.928	-0.007
I7	57.148	57.16	-0.012	L14	58.273	58.275	-0.002
18	57.095	57.099	-0.004	L15	58.269	58.249	0.020
19	56.853	56.863	-0.010	L16	58.575	58.595	-0.020
I10	56.954	56.966	-0.012	L17	59.486	59.503	-0.017
I11	56.743	56.755	-0.012	M11	58.198	58.187	0.011
I12	56.338	56.308	0.030	M12	58.117	58.127	-0.010
I14	55.659	55.642	0.017	M13	58.11	58.101	0.009
J7	57.372	57.387	-0.015	M14	58.032	58.035	-0.003
J8	57.462	57.478	-0.016	M15	58.023	58.03	-0.007
J9	57.138	57.146	-0.008	M16	58.274	58.291	-0.017
J10	57.197	57.208	-0.011	M17	58.796	58.811	-0.015
J11	57.254	57.257	-0.003	N12	58.362	58.361	0.001
J12	57.421	57.405	0.016	N14	58.424	58.423	0.001
J13	56.94	56.931	0.009				

ID	02-Sep-11	08-Jan-12	08-Apr-12	Range (m)	ID	02-Sep-11	08-Jan-12	08-Apr-12	Range (m)
E11	55.378	55.28	55.216	0.16	J14	55.505	55.548	55.546	0.04
E12	54.904	54.937	54.959	0.05	J15	56.678	56.733	56.68	0.06
F9	55.698	55.755	55.631	0.12	J16	57.293	57.299	57.278	0.02
F10	55.444	55.502	55.522	0.08	K7	57.388	57.429	57.42	0.04
F11	55.325	55.166	55.176	0.16	K8	57.313	57.39	57.353	0.08
F12	54.927	54.911	54.83	0.10	K9	57.109	57.064	57.035	0.07
F13	54.353		54.251	0.10	K10	57.058	57.101	57.069	0.04
G8	55.619	55.771	55.768	0.15	K11	57.078	57.158	57.121	0.08
G9	55.595	55.712	55.622	0.12	K12	57.018	57.034	57.016	0.02
G10	55.452	55.472	55.415	0.06	K13	56.85	57.061	56.852	0.21
G11		55.131	55.087	0.04	K14	57.023	56.965	56.976	0.06
G12	54.631	54.722	54.699	0.09	K15	57.256	57.349	57.39	0.13
G13	54.169	54.214	54.236	0.07	K16	57.766	57.739	57.778	0.04
H7	56.417	56.338	56.304	0.11	K17	57.733	57.898	57.843	0.17
H8	56.159	56.221	56.242	0.08	L9	57.621	57.648	57.607	0.04
H9	55.929	55.999	55.961	0.07	L10	57.592	57.508	57.51	0.08
H10	55.683	55.717	55.674	0.04	L11	57.326	57.24	57.189	0.14
H11	55.053	55.148	55.063	0.10	L12	57.111	57.158	57.17	0.06
H12	54.827	54.862	54.821	0.04	L13	57.335	57.378	57.346	0.04
H13	54.796	54.655	54.666	0.14	L14	57.553	57.614	57.593	0.06
17	56.579	56.653	56.622	0.07	L15	57.638	57.734	57.715	0.10
18	56.544	56.54	56.524	0.02	L16	57.998	58.023	58.036	0.04
19	56.364	56.43	56.35	0.08	L17	59.269	59.192	59.281	0.09
I10	56.447	56.541	56.485	0.09	M11	57.658	57.675	57.557	0.12
I11	56.323	56.336	56.224	0.11	M12	57.575	57.591	57.515	0.08
I12	55.589	55.684	55.629	0.09	M13	57.339	57.433	57.403	0.09
I13	55.309	55.339	55.33	0.03	M14	57.606	57.637	57.466	0.17
I14		55.138	55.018	0.12	M15	57.572	57.692	57.638	0.12
J7	56.839	56.847	56.87	0.03	M16	57.601	57.625	57.664	0.06
J8	56.885	56.907	56.88	0.03	M17	58.301	58.195	58.221	0.11
J9	56.617	56.603	56.606	0.01	M18	58.858	58.765	58.781	0.09
J10	56.591	56.677	56.574	0.10	N12		57.736	57.642	0.09
J11	56.853	56.987	56.83	0.16	N14	57.683	57.622	57.518	0.17
J12	57.005	57.106	57.034	0.10	N15	57.548		57.521	0.03
J13	56.513	56.593	56.505	0.09	N16	57.597	57.693	57.64	0.10

Table E5. Surface level oscillation in Clara West subsidence analysis area

Appendix E: Rate of Subsidence: Measured and Estimated Peat Thickness Change

10			Peat		
ID	1991	2002	2008	2012	Depth
e11	8.5	8.455	8.37	8.321	Measured
e12	7.831	7.6	7.541	7.5	Estimated
f9	8.5	8.49	8.46	8.425	Measured
f10	8.548	8.347	8.308	8.25	Estimated
f11	8.5	7.688	7.68	7.675	Measured
f12	8.283	8.031	8.013	8	Estimated
f13	6.858	6.33	6.288	6.25	Estimated
g8	9.149	8.919	8.789	8.75	Estimated
g9	9.2	8.943	8.93	8.922	Measured
g10	8.688	8.457	8.428	8.4	Estimated
g11	8.4	8.18	8.14	8.091	Measured
g12	8.3	7.99	7.94	7.872	Measured
g13	7.75	7.022	6.97	6.964	Measured
h7	9.043	8.958	8.953	8.95	Estimated
h8	9	8.717	8.7	8.682	Measured
h9	9.15	8.966	8.88	8.839	Measured
h10	5.2	4.914	4.86	4.807	Measured
h11	6.872	6.552	6.512	6.5	Estimated
h12	7.688	7.283	7.268	7.25	Estimated
h13	7.775	7.314	7.255	7.25	Estimated
i7	9.247	9.145	9.117	9.1	Estimated
i8	9.056	8.807	8.804	8.8	Estimated
i9	8.55	8.372	8.32	8.3	Estimated
i10	6.679	6.514	6.509	6.5	Estimated
i11	7.714		7.524	7.5	Estimated
i12	5.2	4.853	4.75	4.734	Measured
i14	7.43	6.358	6.11	6.05	Estimated
j7	9.8	9.685	9.61	9.58	Measured
j8	9.553	9.365	9.323	9.3	Estimated
j9	8.6	8.411	8.27	8.207	Measured
j10	9.293	9.1	9.043	9	Estimated
j11	9.4	9.145	9.07	9.022	Measured
j12	6.4	5.963	5.79	5.718	Measured
j13	6.15	4.95	4.85	4.847	Measured
j14	7.3	6.56	6.43	6.408	Measured
j15	7.227	6.161	6.107	6.1	Estimated
j16	7.1	6.6	6.59	6.569	Measured
k7	9.471	9.3	9.261	9.25	Estimated
k8	9.54	9.374	9.36	9.35	Estimated
k9	9.641	9,489	9.401	9.35	Estimated

Table E6. Measured and estimated peat thickness at grid points in subsidence analysis area

k10	10.5	10.348	10.26	10.211	Measured
k11	10.072	9.913	9.832	9.75	Estimated
k12	8.75	8.262	8.18	8.104	Measured
k13	9.949	9.298	9.219	9.2	Estimated
k14	7.907	7.382	7.357	7.3	Estimated
k15	7.22	6.761	6.66	6.65	Estimated
k16	7.402	6.989	6.912	6.85	Estimated
k17	6.397	6.105	6.017	6	Estimated
19	10	9.928	9.87	9.818	Measured
110	10.5	10.29	10.27	10.25	Measured
11	8.6	8.439	8.34	8.266	Measured
112	9.3	8.884	8.74	8.678	Measured
113	7.5	7.316	7.15	7.05	Measured
114	4.8	4.504	4.34	4.323	Measured
115	7.8	7.583	7.49	7.475	Measured
116	6.9	6.497	6.42	6.416	Measured
17	5.3	5.239	5.2	5.199	Measured
m11	10.115	9.969	9.915	9.85	Estimated
m12	9.619	9.457	9.389	9.35	Estimated
m13	8.897	8.749	8.517	8.4	Estimated
m14	7.773	7.662	7.423	7.4	Estimated
m15	7.456	7.236	7.106	7.1	Estimated
m16	7.725	7.426	7.335	7.3	Estimated
m17	6.839	6.59	6.509	6.5	Estimated
m18	5.929	5.63	5.509	5.5	Estimated
n14	8.857	8.789	8.717	8.7	Estimated
n15	8.732	8.364	8.342	8.3	Estimated
n16	8.157	7.834	7.807	7.8	Estimated

Appendix F

Subsurface drainage

Figure F1. CLBH5 Hydrograph: 1990/1992, 1996/1997 and 2009/2010

155

Figure F2. CLBH6 Hydrograph: 1990/1992, 1996/1997 and 2009/2010

CLBH9 Hydrographs

Figure F3. CLBH9 Hydrograph: 1990/1992, 1996/1997 and 2009/2010

Figure F4. CLCD3 Hydrograph: 1990/1992 and 2009/2010

Figure F5. Flow line locations and underlying subsoil geology, groundwater catchment and potentiometric surface in till

Figure F6. Hydrogeological cross-section through flow line 1

Figure F7. Hydrogeological cross-section through flow line 2

Figure F8. Hydrogeological cross-section through flow line 3

Figure F9. Flow line locations, high level potentiometric surface in till and 2008-2011 ground level

Figure F10. Flow line locations, subsoil geology, high level potentiometric surface in till and 2008-2011 ground level

Figure F11. Flow line locations, subsoil geology, high level potentiometric surface in till and 1991-2011 ground level

Appendix G

The Water Balance

Figure G1. Clara Bog drainage system: surface water catchment areas

Figure G2.Groundwater and surface water catchment area to Restoration Flume

Figure G3.Groundwater and surface water catchment area to EPA Weir

Figure G4.Groundwater and surface water catchment area to FB2 Flume

Figure G5.Groundwater catchment area to EPA Weir and Restoration Flume

Appendix H

Conceptual Model and Model Design

Appendix H: Conceptual Hydrological Model

Figure H1. Conceptual Clara West hydrological model (not to scale). Note: P is precipitation, ET is evapotranspiration, Q_o is overland flow, Q_{out} is runoff outflow, Q_t is the total subsurface inflow to the drain, Q_p is flow through peat, Q_s is flow through sand, Q_g is groundwater flow through till and limestone, I is infiltration and R is recharge to the till groundwater body.

Appendix H: Model Design: Grid Generation

Figure H2. Model domain with position of Clara West high bog and distinguishing Clara West high bog features (highlighted in red). Note: black dotes are model nodes and blue lines are drains with fixed-head boundary conditions.

Figure H3. Finite element grid design of model area

Appendix H: Model Design – hydraulic parameter input

Figure H5. Layer 1 (acrotelm) transmissivity distribution in model domain

Figure H6. Layer 2 (peat) transmissivity $< 0.001 \text{ m}^2/\text{ day distribution in model domain}$

Figure H8. Layer 2 (peat) transmissivity distribution in model domain

Figure H9. Layer 2 (peat) aquifer thickness distribution in model domain

Figure H10. Layer 2 (peat) resistance < 1500 days distribution in model domain

Figure H11. Layer 2 (peat) resistance > 3000 days distribution in model domain

Figure H12. Layer 2 (peat) resistance > 6000 days distribution in model domain

Figure H9. Layer 3 (sand) - location of transmissivity zones

Figure H13. Layer 2 (peat) transmissivity and location of transmissive sand zoe in layer 3

Figure H14. Layer 4 (till) - location of transmissivity zones

Figure H15. Layer 4 (till) – location of resistance (c3) zones

Figure H16. Layer 5 (limestone) - location of high transmissivity zones

Appendix H: Model Design – calibration

Figure H17. Layer 2 distribution of residuals (size of disc is relative to the size of the residual)

Figure H18. Layer 4 distribution of residuals (size of disc is relative to the size of the residual)

ID	Calculated	Observed	Residuals	ID	Calculated	Observed	Residuals
88	54.98	55.2	-0.22	907	55.981	56.01	-0.029
89	55.018	55.16	-0.142	td8	56.508	56.72	-0.212
901	55.721	55.62	0.101	tdj12	56.209	56.34	-0.131
905	57.203	57.16	0.043	td9	56.598	56.51	0.088
95	56.657	56.93	-0.273	t1	56.286	55.87	0.416
90	54.59	54.84	-0.25	td2	53.935	54.08	-0.145
904	56.886	56.93	-0.044	921	49.855	49.79	0.065
55	54.575	54.54	0.035	t13	53.938	53.93	0.008
902	54.949	55.23	-0.281	t3	53.769	53.28	0.489
94	55.8	55.64	0.16	47	53.974	53.96	0.014
91	54.787	54.55	0.237	48	54.053	54.39	-0.337
56	55.074	54.93	0.144	61	52.735	52.35	0.385
93	55.403	55.38	0.023	920	50.952	50.62	0.332
Tl12	56.588	56.61	-0.022	909	55.755	55.63	0.125
54	54.272	54.25	0.022	910	54.782	54.77	0.012
92	54.247	54.32	-0.073	t10	54.146	54.25	-0.104
908	56.853	56.86	-0.007	57	54.551	54.43	0.121
tdk12	56.67	56.48	0.19	906	55.791	55.91	-0.119
70	54.253	53.73	0.523	td4	54.141	54.15	-0.009
939	50.29	49.98	0.31	66	51.773	52.3	-0.527
50	54.011	54.34	-0.329	912	53.104	52.95	0.154
903	54.847	54.78	0.067	916	50.557	51.01	-0.453
td6	55.807	56.15	-0.343	914	50.85	51.24	-0.39
td5	56.037	55.99	0.047	915	51.779	51.67	0.109
911	55.045	55.01	0.035				

Table H1. Calculated model heads, field-measured heads (mean) and residuals from layer 2 (peat aquifer) calibration

Table H2. Calculated model heads, field-measured heads (mean) and residuals from layer 5 (till aquifer) calibration

ID	Calculated	Observed	Residuals	ID	Calculated	Observed	Residuals
ST3-1	50.248	50.28	-0.032	907	55.979	56.02	-0.041
934	57.176	57.3	-0.124	928	56.28	56.05	0.23
926	49.547	49.77	-0.223	920	50.203	50.61	-0.407
T112	56.14	56.29	-0.15	909	55.018	54.63	0.388
935	55.817	55.36	0.457	910	54.24	54.23	0.01
925	52.072	52.47	-0.398	906	55.772	55.95	-0.178
908	56.386	56.43	-0.044	CLBH5	51.567	51.56	0.007
CLCD3	53.701	53.32	0.381	913	53.774	54.23	-0.456
927	50.174	50.02	0.154	912	52.86	52.84	0.02
911	54.574	54.93	-0.356	915	51.796	51.74	0.056

ID	T = 4	T = 8	T = 12
906	-0.16	-0.18	-0.18
907	0.15	-0.03	-0.07
908	0.42	0.07	-0.30
909	0.73	0.32	0.22
910	0.28	-0.08	-0.10
911	-0.04	-0.50	-0.50
912	-0.14	-0.02	0.14
913	-0.25	-0.50	-0.55
915	-0.08	0.02	0.16
920	-0.43	-0.42	-0.39
925	-0.27	-0.47	-0.52
926	-0.32	-0.31	-0.16
927	0.12	0.15	0.19
928	0.86	0.28	0.18
934	0.37	-0.02	-0.32
CLCD3	0.38	0.41	0.39
ST3-1	0.03	-0.06	-0.05
tl12	0.33	-0.09	-0.43
BH5	-0.24	-0.14	0.17
Av.	0.09	-0.08	-0.11
Std		0.0.5	0.00
Dev.	0.35	0.26	0.28

Table H3. Residuals from measured head and calculated head in layer 4 aquifer for three different transmissivity input hydraulic parameters

Note: T = 4 implies residuals are from analysis when transmissivity was set to 4 m^2/day

Appendix I

Clara West Groundwater Flow Model Steady State

Appendix I: Steady State Model - 2D Cross-Sections

Figure I2. Flow path of water particle in layer 4; profile through flow line 1

Figure I3. Flow path of water particle in layer 2; profile through flow line 1

Figure I5. Flow path of water particle in layer 4; profile through flow line 2

Figure I7. Topographic profile and modelled potentiometric surfaces through flow line 3

Figure 18. Flow path of water particle in layer 4; profile through flow line 3

Figure I9. Flow path of water particle in layer 2; profile through flow line 3

Figure I10. Topographic profile and modelled potentiometric surfaces through flow line 4

Figure I11. Flow path of water particle in layer 4; profile through flow line 4

Figure I13. Flow path of water particle in layer 4; profile through flow line 5

Figure 115. Flow path of water particle in layer 4; Western Mound area (N-S orientation)

Appendix I: Steady State Model - 3D Cross-Sections

Figure I16. 3D image of layer 4 potentiometric surface - view looking northwest

Figure 117. 3D image of layer 4 potentiometric surface with flow lines - view looking southeast

Figure I18. 3D image of layer 4 potentiometric surface with flow lines – view looking westwards

Figure 119. 3D image of layer 4 potentiometric surface - view looking northwest

Figure I20. 3D image of layer 4 potentiometric surface with flow lines – view looking southwest

Appendix I: Steady State Model – layer 2 and layer 4 potentiometric surface maps

Figure i21. Potentiometric surface contours in layer 2 (peat aquifer). Contour interval is 0.5 m.

Figure i22. Potentiometric surface contours in layer 4 (till aquifer). Contour interval is 0.5 m. White lines are flow line locations.

Appendix I: Steady State Water Balance Computations

1. Entire model domain

Table I1. Clara West steady state water balance for entire model area (flow rate)

		Inflow	Outflow	In - Out
Pre	cipitation	742.21		742.21
Dra	ain system 1		348.35	-348.35
Sur	n topsystems	742.21	348.35	393.87
	Leakage			
1	Lateral flow			
	Boundary flow	8.38	29.14	-20.76
	Total (error)	784.02	784.02	0
	Leakage	406.53	33.43	373.1
2	Lateral flow			
	Boundary flow	0.33	11.04	-10.71
	Total (error)	442.9	442.74	0.17
	Leakage	398.27	36.04	362.23
3	Lateral flow			
	Boundary flow	12.15	86	-73.86
	Total (error)	506.08	506.09	0
	Leakage	384.04	95.67	288.38
4	Lateral flow			
	Boundary flow	136.53	424.67	-288.14
	Total (error)	872.71	872.54	0.17
	Leakage	352.2	352.13	0.07
5	Lateral flow			
	Boundary flow			
	Total (error)	352.2	352.13	0.07
Uni	ts:	m³/ day		
Мо	del area:	2034644 m ²		

Table I2. Clara West steady state water balance for entire model area (flux)

	Inflow	Outflow	In - Out
Precipitation	0.36		0.36
Drain system 1		0.17	-0.17
Sum topsystems	0.36	0.17	0.19
Leakage			
1 Lateral flow			
Boundary flow	0.00	0.01	-0.01
Total (error)	0.39	0.39	0.00
Leakage	0.20	0.02	0.18
2 Lateral flow			
Boundary flow	0.00	0.01	-0.01
Total (error)	0.22	0.22	0.00
Leakage	0.20	0.02	0.18
3 Lateral flow	0.01	0.04	0.04
Boundary flow	0.01	0.04	-0.04
Total (error)	0.25	0.25	0.00
Leakage	0.19	0.05	0.14
4 Lateral flow			
Boundary flow	0.07	0.21	-0.14
Total (error)	0.43	0.43	0.00
Leakage	0.17	0.17	0.00
5 Lateral flow			
Boundary flow			
Total (error)	0.17	0.17	0.00
Units: mm/ day			

2. Groundwater catchment areas as measured by Clara West flow measurement structures

Table I3. Steady state water balance for groundwater catchment area measured at FB2 Flume (flow rate)

		Inflow	Outflow	In - Out
Pre	ecipitation	196.21		196.21
Drain system 1			71.63	-71.63
Su	m topsystems	196.21	71.63	124.58
	Leakage			
1	Lateral flow	1.67	5.05	-3.38
	Boundary flow	4.43	6.61	-2.18
	Total (error)	202.45	202.45	0
	Leakage	119.16	0.15	119.01
2	Lateral flow	0.11	0.27	-0.16
	Boundary flow	0.24	1.42	-1.18
	Total (error)	119.72	119.65	0.07
	Leakage	117.82	0.21	117.61
3	Lateral flow	0.15	1.46	-1.32
	Boundary flow	0.67	31.88	-31.21
	Total (error)	150.73	150.73	0
	Leakage	117.18	32.09	85.08
4	Lateral flow	6.65	40.75	-34.1
	Boundary flow	95.38	137.44	-42.06
	Total (error)	275.81	275.74	0.07
	Leakage	65.47	56.61	8.86
5	Lateral flow	2.51	11.35	-8.84
	Boundary flow			
	Total (error)	67.98	67.96	0.01
Ur	its:	m³/ day		
M	odel area:	459599 m ²		

Table I4. Steady state water balance for groundwater catchment area measured at FB2 Flume (flux)

		Inflow	Outflow	In - Out
Pr	ecipitation	0.43		0.43
Dr	ain system 1		0.16	-0.16
Su	m topsystems	0.43	0.16	0.27
	Leakage			
1	Lateral flow	0.00	0.01	-0.01
	Boundary flow	0.01	0.01	0.00
	Total (error)	0.44	0.44	0.00
	Leakage	0.26	0.00	0.26
2	Lateral flow	0.00	0.00	0.00
	Boundary flow	0.00	0.00	0.00
	Total (error)	0.26	0.26	0.00
				and the second second
	Leakage	0.26	0.00	0.26
3	Lateral flow			
	Boundary flow	0.00	0.07	-0.07
	Total (error)	0.33	0.33	0.00
	Leakage	0.25	0.07	0.19
4	Lateral flow	0.01	0.09	-0.07
	Boundary flow	0.21	0.30	-0.09
	Total (error)	0.60	0.60	0.00
	Leakage	0.14	0.12	0.02
5	Lateral flow	0.01	0.02	-0.02
	Boundary flow			
	Total (error)	0.15	0.15	0.00
Ur	its: mm/ day			

		Inflow	Outflow	In - Out
Pre	ecipitation	396.55		396.55
Dra	ain system 1		175.99	-175.99
Su	m topsystems	396.55	175.99	220.56
	Leakage			
1	Lateral flow	0.88	0.28	0.61
	Boundary flow	8.38	29.14	-20.76
	Total (error)	406.12	406.12	0
	Leakage	200.71	0.3	200.4
2	Lateral flow	3.48	0.13	3.36
	Boundary flow	0.33	11.04	-10.71
	Total (error)	207.98	207.85	0.13
				5 Sec. 14
	Leakage	196.38	3.46	192.93
3	Lateral flow			
	Boundary flow	12.15	86	-73.86
	Total (error)	271.61	271.61	0
	Leakage	182.15	63.08	119.07
4	Lateral flow	55.45	44.55	10.91
	Boundary flow	136.53	424.67	-288.14
	Total (error)	719.73	719.62	0.11
	Leakage	187.32	345.59	-158.28
5	Lateral flow	173.32	14.99	158.33
	Boundary flow			
	Total (error)	360.64	360.58	0.06
Ur	its:	m³/ day		
M	odel area:	459599 m ²		

Table I5. Steady state water balance for groundwater catchment area measured at Restoration Area Flume (flow rate)

Table I6. Steady state water balance for groundwater catchment area measured at Restoration Area Flume (flux)

		Inflow	Outflow	In - Out
Pr	ecipitation	0.42		0.42
Dr	ain system 1		0.18	-0.18
Su	m topsystems	0.42	0.18	0.23
	Leakage			
1	Lateral flow	0.00	0.00	0.00
	Boundary flow	0.01	0.03	-0.02
	Total (error)	0.43	0.43	0.00
	Leakage	0.21	0.00	0.21
2	Lateral flow	0.00	0.00	0.00
	Boundary flow	0.00	0.01	-0.01
	Total (error)	0.22	0.22	0.00
	Leakage	0.21	0.00	0.20
3	Lateral flow			
	Boundary flow	0.01	0.09	-0.08
	Total (error)	0.29	0.29	0.00
	Leakage	0.19	0.07	0.13
4	Lateral flow	0.06	0.05	0.01
	Boundary flow	0.14	0.45	-0.30
	Total (error)	0.76	0.76	0.00
	Leakage	0.20	0.36	-0.17
5	Lateral flow	0.18	0.02	0.17
	Boundary flow			
	Total (error)	0.38	0.38	0.00
Ur	its: mm/ day			

		Inflow	Outflow	In - Out
Pre	ecipitation	304.76		304.76
Dr	ain system 1		105.6	-105.6
Su	m topsystems	304.76	105.6	199.16
	Leakage			
1	Lateral flow	3.09	1.23	1.86
	Boundary flow	5.47	21.85	-16.38
	Total (error)	313.58	313.58	0
	Leakage	184.89	0.25	184.64
2	Lateral flow	0.26	0.42	-0.16
	Boundary flow	0.31	5.45	-5.14
	Total (error)	187.54	187.45	0.09
	Leakage	181.32	2.08	179.24
3	Lateral flow	8.13	12.96	-4.83
	Boundary flow	2.25	45.29	-43.03
	Total (error)	236.58	236.58	0
	Leakage	176.25	44.87	131.38
4	Lateral flow	17.03	26.98	-9.95
	Boundary flow	99.19	187.31	-88.12
	Total (error)	411.22	411.12	0.1
				ㅋㅋ 가장성
	Leakage	151.96	118.75	33.2
5	Lateral flow	10.53	43.69	-33.16
	Boundary flow			
	Total (error)	162.49	162.44	0.05
Ur	nits:	m ³ /day		
M	odel area:	459599 m^2		

Table I7. Steady state water balance for groundwater catchment area measured at EPA Weir (flow rate)

Table I8. Steady state water balance for groundwater catchment area measured at EPA Weir (flux)

		Inflow	Outflow	In - Out
Pre	ecipitation	0.41		0.41
Dra	ain system 1		0.14	-0.14
Su	m topsystems	0.41	0.14	0.27
	Leakage			
1	Lateral flow	0.00	0.00	0.00
	Boundary flow	0.01	0.03	-0.02
	Total (error)	0.42	0.42	0.00
	Leakage	0.25	0.00	0.25
2	Lateral flow	0.00	0.00	0.00
	Boundary flow	0.00	0.01	-0.01
	Total (error)	0.25	0.25	0.00
	Leakage	0.24	0.00	0.24
3	Lateral flow			
	Boundary flow	0.00	0.06	-0.06
	Total (error)	0.32	0.32	0.00
	Leakage	0.24	0.06	0.18
4	Lateral flow	0.02	0.04	-0.01
	Boundary flow	0.13	0.25	-0.12
	Total (error)	0.55	0.55	0.00
	Leakage	0.20	0.16	0.04
5	Lateral flow	0.01	0.06	-0.04
	Boundary flow			
	Total (error)	0.22	0.22	0.00
Un	its: mm/ day			

3. Steady state water balances for areas of high bog underlain by till, sand/ lacustrine clay and lacustrine clay

Table I9. Steady state water balance for groundwater catchment area under high bog underlain by till (flow rate)

		Inflow	Outflow	In - Out
Pre	ecipitation	135.65		135.65
Dr	ain system 1		46.58	-46.58
Su	m topsystems	135.65	46.58	89.07
				a secondaria a
	Leakage			
1	Lateral flow	9.1	8.76	0.35
	Boundary flow		0.63	-0.63
	Total (error)	144.79	144.79	0
	Leakage	88.81	0.03	88.78
2	Lateral flow	0.64	0.3	0.33
	Boundary flow	0.01	0.16	-0.16
	Total (error)	89.51	89.46	0.05
	Leakage	88.97	0.05	88.91
3	Lateral flow	1.34	0.87	0.47
	Boundary flow		6.83	-6.83
	Total (error)	97.19	97.19	0
	Leakage	89.44	6.88	82.55
4	Lateral flow	72.15	111.76	-39.61
	Boundary flow	23.31	26.35	-3.03
	Total (error)	194.49	194.44	0.05
	Leakage	49.45	9.59	39.86
5	Lateral flow	27.65	67.5	-39.85
	Boundary flow			
	Total (error)	77.1	77.09	0.02
Ur	nits:	m³/ day		
M	odel area:	302246 m ²		

	Inflow	Outflow	In - Out
Precipitation	0.45		0.45
Drain system 1		0.15	-0.15
Sum topsystems	0.45	0.15	0.29
Leakage			
1 Lateral flow	0.030	0.029	0.001
Boundary flow		0.002	-0.002
Total (error)	0.479	0.479	0.000
Leakage	0.294	0.000	0.294
2 Lateral flow	0.002	0.001	0.001
Boundary flow	0.000	0.001	-0.001
Total (error)	0.296	0.296	0.000
Leakage	0.294	0.000	0.294
3 Lateral flow	0.004	0.003	0.002
Boundary flow		0.023	-0.023
Total (error)	0.322	0.322	0.000
Leakage	0.296	0.023	0.273
4 Lateral flow	0.239	0.370	-0.131
Boundary flow	0.077	0.087	-0.010
Total (error)	0.643	0.643	0.000
Leakage	0.164	0.032	0.132
5 Lateral flow	0.091	0.223	-0.132
Boundary flow			
Total (error)	0.255	0.255	0.000
Units: mm/ day			

Table 110. Steady state water balance for groundwater catchment area under high bog underlain by till (flux)

		Inflow	Outflow	In - Out
Pre	ecipitation	271.53		271.53
Dra	ain system 1		167.29	-167.29
Su	m topsystems	271.53	167.29	104.24
	Leakage			
1	Lateral flow	9.47	19.21	-9.74
	Boundary flow	5.38	9.81	-4.43
	Total (error)	286.42	286.41	0
	Leakage	90.1	0.04	90.07
2	Lateral flow	0.09	1.49	-1.4
	Boundary flow	0.28	0.39	-0.11
	Total (error)	90.66	90.58	0.09
	Leakage	88.65	0.19	88.46
3	Lateral flow	0.04	13.56	-13.53
	Boundary flow	2.25	2.82	-0.56
	Total (error)	91.3	91.31	-0.01
	Leakage	74.74	0.35	74.38
4	Lateral flow	64.28	82.22	-17.95
	Boundary flow		8.72	-8.72
	Total (error)	148.87	148.8	0.07
				전 : 상 : 성원 : 영
	Leakage	57.51	9.86	47.65
5	Lateral flow	40.41	88.02	-47.61
	Boundary flow			
	Total (error)	97.92	97.88	0.04
Ur	its:	m³/ day		
M	odel area:	603894 m ²		

Table I11. Steady state water balance for groundwater catchment area under high bog underlain by lacustrine clay (flow rate)

	Inflow	Outflow	In - Out
Precipitation	0.45		0.45
Drain system 1		0.28	-0.28
Sum topsystems	0.45	0.28	0.17
Leakage			
1 Lateral flow	0.016	0.032	-0.016
Boundary flow		0.016	-0.007
Total (error)	0.474	0.474	0.000
Leakage	0.149	0.000	0.149
2 Lateral flow	0.000	0.002	-0.002
Boundary flow	0.000	0.001	0.000
Total (error)	0.150	0.150	0.000
Leakage	0.147	0.000	0.146
3 Lateral flow	0.000	0.022	-0.022
Boundary flow		0.005	-0.001
Total (error)	0.151	0.151	0.000
Leakage	0.124	0.001	0.123
4 Lateral flow	0.106	0.136	-0.030
Boundary flow		0.014	-0.014
Total (error)	0.247	0.246	0.000
Leakage	0.095	0.016	0.079
5 Lateral flow	0.067	0.146	-0.079
Boundary flow			
			0.000

Table I12. Steady state water balance for groundwater catchment area under high bog underlain by lacustrine clay (flux)

		Inflow	Outflow	In - Out
Precipitation		63.13		63.13
Drain system 1			45.38	-45.38
Sum topsystems		63.13	45.38	17.75
	Leakage			
1	Lateral flow	0.19	1.1	-0.91
	Boundary flow			
	Total (error)	63.32	63.32	0
	Leakage	16.84		16.84
2	Lateral flow	0.02	0.05	-0.03
	Boundary flow			
	Total (error)	16.86	16.83	0.03
		4.6.70		16.70
	Leakage	16.78	0.50	16.78
3	Lateral flow		0.59	-0.59
	Boundary flow		16.0	0.00
	Total (error)	16.78	16.8	-0.02
	Lookago	16.2		16.2
4	Leakage	0.79	22.76	12.07
4	Lateral now	9.70	22.70	-12.57
	Total (arror)	25.00	25.97	0.01
	Total (error)	23.35	23.37	0.01
	Leakage	3.22		3.22
5	Lateral flow	2.43	5.65	-3.22
	Boundary flow			
	Total (error)	5.65	5.65	0
Units:		m³/ day		
Model area:		141346 m ²		

Table I13. Steady state water balance for groundwater catchment area under high bog underlain by lacustrine clay and no sand (flow rate)

Table I14. Steady state water balance for groundwater catchment area under high bog underlain by lacustrine clay and no sand (flux)

		Inflow	Outflow	In - Out		
Precipitation		0.45		0.45		
Drain system 1			0.32	-0.32		
Sum topsystems		0.45	0.32	0.13		
	Leakage					
1	Lateral flow	0.001	0.008	-0.006		
	Boundary flow					
	Total (error)	0.448	0.448	0.000		
	Leakage	0.119		0.119		
2	Lateral flow	0.000	0.000	0.000		
	Boundary flow					
	Total (error)	0.119	0.119	0.000		
	Leakage	0.119		0.119		
3	Lateral flow		0.004	-0.004		
	Boundary flow					
	Total (error)	0.119	0.119	0.000		
		0.445		0.445		
	Leakage	0.115	0.464	0.115		
4	Lateral flow	0.069	0.161	-0.092		
	Boundary flow	0.104	0.104	0.000		
	lotal (error)	0.184	0.184	0.000		
	Lookago	0.022		0.022		
5	Leakage	0.023	0.040	0.023		
5	Boundary flow	0.017	0.040	-0.023		
	Total (error)	0.040	0.040	0.000		
		0.040	0.040	0.000		
Unite mm/day						
Units: mm/ day						

Appendix J

Clara West Groundwater Flow Model Prediction

Appendix J: Prediction Model - 2D Cross-Sections

Figure j1. Dam/ peat infill location (green shaded area), cross-section locations, 0.5 m layer 4 potentiometric surface after restoration works and underlying topography elevation

Figure j3. Cross section 2 through infill area with model potentiometric surface

Figure j4. Cross section 3 through infill area with model potentiometric surface

Appendix J: PredictionModel Model - 2D Cross-Sections

Figure J6. Topographic profile and modelled potentiometric surfaces following restoration works through flow line1

Figure J7. Flow path of water particle in layer 4 following restoration works; profile through flow line 1

Figure J8. Flow path of water particle in layer 2 following restoration works; profile through flow line 1

Figure J9. Topographic profile and modelled potentiometric surfaces following restoration works through flow line 2

Figure J10. Flow path of water particle in layer 4 following restoration works; profile through flow line 2

Figure J11. Flow path of water particle in layer 2 following restoration works; profile through flow line 2

works through flow line 3

Figure J13. Flow path of water particle in layer 4 following restoration works; profile through flow line 3

Figure J15. Flow path of water particle in layer 2 following restoration works; profile through flow line 3

Figure J16. Topographic profile and modelled potentiometric surfaces following restoration works through flow line 4

Figure J17. Topographic profile and modelled potentiometric surfaces following restoration works through flow line 5

Figure J18. Flow path of water particle in layer 4 following restoration works; profile through Western Mound from West to East

Figure J19. Flow path of water particle in layer 2 following restoration works; profile through Western Mound from West to East

Figure J20. Flow path of water particle in layer 4 following restoration works; profile through sand lense area from North to South

Appendix J: Prediction Model - 3D Cross-Sections

Figure J21. 3D image of layer 4 potentiometric surface following restoration works - view looking southwards

Figure J22. 3D image of layer 4 potentiometric surface following restoration works - view looking southeast

Figure J23. 3D image of layer 2 potentiometric surface following restoration works - view looking westwards

Appendix J: Prediction Model – alternative management scenarios

Figure J25. Rise of potentiometric surface in layer 4 following blocking of marginal drains.

Figure J26. Potentiometric surface and flow lines in layer 4 following blocking of marginal drains. Note: red flow line indicates quick transport rate of water particle and yellow line is fixed-head boundary applied to Brook Stream and Bog Road Drain

Figure J27 Rise of potentiometric surface in layer 4 following blocking of marginal drains and installation of facebank dam and dam in restoration area

Figure J28 Potentiometric surface and flow lines in layer 4 following blocking of installation of dams. Note: red flow line indicates quick transport rate of water particle and yellow line is dam location.

Appendix J: Prediction Model – rise in groundwater table

Figure J29. Rise in potentiometric surface contours in layer 1 (acotelm aquifer) following restoration works. Contour interval is 0.25 m.

Figure J30. Rise in potentiometric surface contours in layer 2 (acrotelm aquifer) following restoration works. Contour interval is 0.1 m.

Figure J31. Rise in potentiometric contours in layer 2 (peat aquifer) following restoration works. Contour interval is 0.5 m.

Figure J32. Rise in potentiometric surface contours in layer 2 (peat aquifer) following restoration works. Contour interval is 0.25 m.

Figure J33. Rise in potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.5 m.

Figure J34. Rise in potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.25 m.

Figure J35. Rise in potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.5 m. Model boundaries set to fixed-head conditions.

Appendix J: Prediction Model – layer 2 and layer 4 potentiometric surface maps

Figure J36. Potentiometric surface contours in layer 2 (peat aquifer) following restoration works. Contour interval is 0.5 m.

Figure J37. Potentiometric surface and flow lines in layer 2 (peat aquifer) following restoration works. Contours are at 0.5 m intervals.

Figure J38. Potentiometric surface contours in layer 4 (till aquifer) following restoration works. Contour interval is 0.5 m. White lines are flow line locations.

Figure J39. Potentiometric surface and flow lines in layer 4 (till aquifer) following restoration works. Contours are at 0.5 m intervals.

Figure 40. Rise in GWT (layer 4) at piezometer location 909 following Restoration Area infill. Period is 1000 days.

Figure 41. Rise in GWT (layer 4) at piezometer location CLCD3 following Restoration Area infill. Period is 1000 days.

Figure 42. Rise in GWT (layer 4) at piezometer location 920 following Restoration Area infill. Period is 1000 days.

Figure 43. Rise in GWT (layer 4) at piezometer location CLBH5 following Restoration Area infill. Period is 1000 days.

Appendix J: Model Water Balance Analysis Area

1. Steady state model

Figure J44. FB2 groundwater catchment analysis area

Figure J45. Restoration Area Flume groundwater catchment analysis area

Figure J46. EPA Weir groundwater catchment analysis area

2. Prediction model

Figure J48. Groundwater catchment to Brook Stream (fixe-flow model boundary condition)

Figure J49. Water balance area underlain by till subsoil (no-flow model boundary condition)

Figure J50. Water balance area underlain by sand subsoil (no-flow model boundary condition)

Figure J51. Water balance area underlain by lacustrine subsoil (no-flow model boundary condition)

Appendix J: Prediction Water Balance Computations

	Inflow	Outflow	In - Out
Precipitation	312.49		312.49
Drain system 1		235.05	-235.05
Sum topsystems	312.49	235.05	77.44
Leakage			
1 Lateral flow	2.1	0.25	1.85
Boundary flow		0.07	-0.07
Total (error)	352.17	332.45	19.72
Leakage	97.08	37.58	59.5
2 Lateral flow	0.21	0.17	0.03
Boundary flow		0.12	-0.1
Total (error)	134.41	133.22	1.19
Leakage	95.34	37.12	58.2
3 Lateral flow	1.3		1.
Boundary flow		0.48	-0.4
Total (error)	132.28	130.92	1.3
Leakage	93.32	35.64	57.6
4 Lateral flow	24.61	33.03	-8.4
Boundary flow		27.62	-27.6
Total (error)	145.76	143.44	2.3
Leakage	47.15	27.83	19.3
5 Lateral flow	6.62	23.71	-17.0
Boundary flow			
Total (error)	53.76	51.54	2.2
Units:	m³/ day		
Model area:	735933 m ²		

Table J1. Prediction model water balance to Brook Stream outlet (flow rate)

		Inflow	Outflow	In - Out
Pre	ecipitation	0.42		0.42
Dr	ain system 1		0.32	-0.32
Su	m topsystems	0.42	0.32	0.11
				6
	Leakage			
1	Lateral flow	0.003	0.000	0.003
	Boundary flow		0.000	0.000
	Total (error)	0.479	0.452	0.027
	Leakage	0.132	0.051	0.081
2	Lateral flow	0.000	0.000	0.000
	Boundary flow		0.000	0.000
	Total (error)	0.183	0.181	0.002
				tertr petite
	Leakage	0.130	0.050	0.079
3	Lateral flow	0.002		0.002
	Boundary flow		0.001	-0.001
	Total (error)	0.180	0.178	0.002
				in the second second
	Leakage	0.127	0.048	0.078
4	Lateral flow	0.033	0.045	-0.011
	Boundary flow		0.038	-0.038
	Total (error)	0.198	0.195	0.003
	Leakage	0.064	0.038	0.026
5	Lateral flow	0.009	0.032	-0.023
	Boundary flow			
	Total (error)	0.073	0.070	0.003
Ur	nits: mm/ day			

Table J2. Prediction model water balance to Brook Stream outlet (flux)

	Inflow	Outflow	In - Out
Precipitation	143.88		143.88
Drain system 1		89.57	-89.57
Sum topsystems	143.88	89.57	54.32
Leakage			
1 Lateral flow Boundary flow	0.76	2.51	-1.75
Total (error)	150.38	146.47	3.93
Leakage	54.39	5.74	48.6
2 Lateral flow	0.02	0.05	-0.03
Total (error)	60.12	59.76	0.3
Leakage	53.97	5.71	48.2
3 Lateral flow	0.02	0.32	-0.
Boundary flow			
Total (error)	59.72	59.35	0.3
Leakage	53.32	5.73	47.5
4 Lateral flow	6.63	43.89	-37.2
Total (error)	61.06	60.38	0.6
Leakage	10.76	1.11	9.6
5 Lateral flow	1.66	10.82	-9.1
Boundary flow			
Total (error)	12.42	11.94	0.4
Units:	m³/ day		
Model area:	321517 m ²		

Table J3. Prediction model water balance for area underlain by till (flow rate)

		Inflow	Outflow	In - Out
Pre	ecipitation	0.45		0.45
Dra	ain system 1		0.28	-0.28
Su	m topsystems	0.45	0.28	0.17
	Leakage			
1	Lateral flow	0.002	0.008	-0.005
	Boundary flow			
	Total (error)	0.468	0.456	0.012
	Leakage	0 169	0.018	0 151
2	Lateral flow	0.000	0.000	0.000
~	Boundary flow	0.000	0.000	0.000
	Total (error)	0 187	0 186	0.001
	iotal (error)	0.107	0.100	0.001
	Leakage	0.168	0.018	0.150
3	Lateral flow	0.000		-0.001
	Boundary flow			i a por teces i
	Total (error)	0.186	0.185	0.001
	Leakage	0.166	0.018	0.148
4	Lateral flow	0.021	0.137	-0.116
	Boundary flow			
	Total (error)	0.190	0.188	0.002
	Leakage	0.033	0.003	0.030
5	Lateral flow	0.005	0.034	-0.029
	Boundary flow			
	Total (error)	0.039	0.037	0.001
Ur	its: mm/ day			

Table J4. Prediction model water balance for area underlain by till (flux)

Table J5. Prediction model water balance for area underlain by sand/ lacustrine clay (flow rate)

		Inflow	Outflow	In - Out
Pr	ecipitation	75.38		75.38
Dr	ain system 1		56.65	-56.65
Su	m topsystems	75.38	56.65	18.73
	Leakage			
1	Lateral flow	3.79	1.1	2.69
	Boundary flow			
	Total (error)	79.62	75	4.62
	Leakage	17.25	0.45	16.8
2	Lateral flow	0.09	0.09	0
	Boundary flow			
	Total (error)	17.77	17.5	0.27
	Leakage	16.96	0.42	16.53
3	Lateral flow	0.96	5.04	-4.07
	Boundary flow			
	Total (error)	18.04	17.71	0.32
	Leakage	12.25	0.12	12.14
4	Lateral flow	27.53	17.1	10.43
	Boundary flow			
	Total (error)	43.46	42.87	0.6
	Leakage	25.65	3.68	21.97
5	Lateral flow	6.9	27.92	-21.02
	Boundary flow			
	Total (error)	32.55	31.59	0.95
Ur	nits:	m³/ day		
M	odel area:	167515 m ²		

	Inflow	Outflow	In - Out
Precipitation	0.45		0.45
Drain system 1		0.34	-0.34
Sum topsystems	0.45	0.34	0.11
Leakage			
1 Lateral flow	0.023	0.007	0.016
Boundary flow			
Total (error)	0.475	0.448	0.028
Leakage	0.103	0.003	0.100
2 Lateral flow	0.001	0.001	0.000
Boundary flow			
Total (error)	0.106	0.104	0.002
Leakage	0.101	0.003	0.099
3 Lateral flow	0.006		-0.024
Boundary flow			an an least states
Total (error)	0.108	0.106	0.002
Leakage	0.073	0.001	0.072
4 Lateral flow	0.164	0.102	0.062
Boundary flow			
Total (error)	0.259	0.256	0.004
Leakage	0.153	0.022	0.131
5 Lateral flow	0.041	0.167	-0.125
Boundary flow			
Total (error)	0.194	0.189	0.006
Units: mm/ day			

Table J6. Prediction model water balance for area underlain by sand/ lacustrine clay (flux)

	Inflow	Outflow	In - Out
Precipitation	82.68		82.68
Drain system 1		63.1	-63.1
Sum topsystems	82.68	63.1	19.58
Leakage			
1 Lateral flow	0.52	2.06	-1.54
Boundary flow			
Total (error)	83.2	83.08	0.13
Leakage	17.91		17.91
2 Lateral flow	0.01	0.09	-0.08
Boundary flow			
Total (error)	17.92	17.74	0.18
Leakage	17.65		17.65
3 Lateral flow			
Boundary flow			
Total (error)	17.65	17.48	0.17
Leakage	17.48		17.48
4 Lateral flow	3.01	13.4	-10.4
Boundary flow			
Total (error)	20.49	20	0.49
Leakage	6.6		6.6
5 Lateral flow	0.77	7	-6.24
Boundary flow			
Total (error)	7.36	7	0.36
Units:	m³/ day		
Model area:	183740 m^2		

Table J7. Prediction model water balance for area underlain by lacustrine clay (flow rate)

	Inflow	Outflow	In - Out
Precipitation	0.45		0.45
Drain system 1		0.34	-0.34
Sum topsystems	0.45	0.34	0.11
Leakage			
1 Lateral flow	0.003	0.011	-0.008
Boundary flow			
Total (error)	0.453	0.452	0.001
Leakage	0.097		0.097
2 Lateral flow	0.000	0.000	0.000
Boundary flow			
Total (error)	0.098	0.097	0.001
Leakage	0.096		0.096
3 Lateral flow			
Boundary flow			
Total (error)	0.096	0.095	0.001
Leakage	0.095		0.095
4 Lateral flow	0.016	0.073	-0.057
Boundary flow			1410
Total (error)	0.112	0.109	0.003
Leakage	0.036		0.036
5 Lateral flow	0.004	0.038	-0.034
Boundary flow			
Total (error)	0.040	0.038	0.002
Units: mm/ day			

Table J8. Prediction model water balance for area underlain by lacustrine clay (flux)

	Inflow	Outflow	In - Out
Precipitation	344.25		344.25
Drain system 1		272.34	-272.34
Sum topsystems	344.25	272.34	71.9
Leakage			
1 Lateral flow	1.37	0.2	1.17
Boundary flow	0	0.13	-0.13
Total (error)	382.1	382.1	0
Leakage	109.43	36.49	72.95
2 Lateral flow	0.18	0.2	-0.02
Boundary flow	0.01	0.21	-0.2
Total (error)	145.76	145.76	0
Leakage	108.87	36.14	72.73
3 Lateral flow			
Boundary flow	0.01	0.41	-0.4
Total (error)	143.92	143.92	0
Leakage	107.37	35.04	72.33
4 Lateral flow	14.45	42.59	-28.14
Boundary flow		19.47	-19.47
Total (error)	175.41	175.41	0
Leakage	78 3	53 59	24 72
5 Lateral flow	10.1	34.82	-24.72
Boundary flow	10.1	54.02	-24.72
Total (error)	88.41	88.41	0
Units:	m³/ day		
Model area:	814588 m ²		

Table J9. Prediction model water balance to Brook Stream outlet (flow rate) – fixed-head model boundary conditions

		Inflow	Outflow	In - Out
Pre	cipitation	0.42		0.42
Dra	ain system 1		0.33	-0.33
Sur	n topsystems	0.42	0.33	0.09
	Leakage			
1	Lateral flow	0.002	0.000	0.001
	Boundary flow		0.000	0.000
	Total (error)	0.469	0.469	0.000
	Leakage	0.134	0.045	0.090
2	Lateral flow	0.000	0.000	0.000
	Boundary flow	0.000	0.000	0.000
	Total (error)	0.179	0.179	0.000
	Leakage	0.134	0.044	0.089
3	Lateral flow			
	Boundary flow		0.001	0.000
	Total (error)	0.177	0.177	0.000
	Leakage	0.132	0.043	0.089
4	Lateral flow	0.018	0.052	-0.035
	Boundary flow		0.024	-0.024
	Total (error)	0.215	0.215	0.000
			0.000	0.000
	Leakage	0.096	0.066	0.030
5	Lateral flow	0.012	0.043	-0.030
	Boundary flow			
	Total (error)	0.109	0.109	0.000
Un	its: mm/ day			

Table J10. Prediction model water balance to Brook Stream outlet (flux) – fixed-head model boundary conditions