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Summary

We investigate the link between the non-linear macroscopic rheology of wet 

foams and the microscopic interactions at the bubble-scale, within the gen­
eral framework of foams as a complex system. This rheology has been found 
to be w'ell described in simulation by the soft disk model, which represents 

the bubbles in a two-dimensional foam as a series of overlapping disks, inter­
acting via an elastic repulsion and a viscous dissipation. We simulate linearly 
sheared systems over a large range of strain rates, showing, for the first time 
in sinuilation, the transition between two regimes well-known from experi­
ment; a low'-strain regime with swirling, strongly non-affine motion, and a 
high strain rate regime comprising of laminar flow.

For the low' strain rate regime, w’e find the scaling of shear stress with 

strain rate to be well described by a Herschel-Bulkley equation with fit pa­
rameters dependent on packing fraction, prior to the onset of lane motion. 
We show, for the first time, that a constitutive law, originally developed for 

dense granular flows and modified for foams, accurately describes the rheol­
ogy of foams in two-dimensional simulations, for all strain rates independent 
of packing fraction. From an empirical fit to this model, w'e find a scaling 

exponent for the coefficient of viscous friction comparable to that found in 

experiment for three-dimensional foams. We also extrapolate a static angle 

of repose for linearly sheared foam, which we compare with values found from 
experiment and simulation for foams in different geometries.

We find the change in bubble dynamics at the onset of laminar flow' to 

have a large impact on the foam rheology. For the high strain rate regime, we 
find the foam flow to no longer be well characterised by the Herschel-Bulkley 

equation, instead finding the shear stress to scale with the strain rate con-
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sisteiit witli viscous drag between bubble layers sliding past one another, in 

agreement w'ith theoretical models for laminar flow, with no free j^arameters.
We probe the dynamics at the bubble scale further by considering the 

non-affine fluctuations of bubble displacements over time. We observe the 

bubbles to undergo shear-induced diffusion, and extract diffusion constants 

from the mean square displacements as a function of strain rate. For the 
low strain rate regime, we find the bubble motion to be well-described by 
a deformation-relaxation model, relating bubble displacements to the bulk 

rheology.
We perform the first soft disk model simulations aimed at investigating 

the the rheology of foams in narrow' channels. We identify a channel width 
beyond which the rheology w'ell approximates bulk behaviour. We find the 

shear and normal stresses to depend on channel width, and propose an ex­
planation for their scaling based on a simple geometric model. W'e find a 
constitutive law to continue to describe da ta  well for all packing fractions 
and strain rates for a fixed channel width, but find that it fails to collapse 
the da ta  for all chamiel w'idths.

Finally, we investigate the statistical properties of fluctuations and fat­
tailed distributions of shear stress changes and disk velocities. We show, for 
the first time, that the shear stress fluctuations in the soft disk model exhibit 
volatility clustering and long-range memory, familiar in the study of economic 

markets and complex systems. We apply tw'o modes of analysis, inspired by 
the similarities betw'een fluctuations in our model and fluctuations in financial 

returns. The first is a rescaling argument used to compare time-dependent 
properties as a function of relative position within a trend, first applied in 

the analysis of S&P 500 stock market data, w'hich w'e use to quantitatively 

link topological changes in the foam to fluctuations in the shear stress. The 

second is a theoretical framework relating generalised difl’usion coefficients 

to the autocorrelation fimction, using the Fokker-Planck equation, w'hich we 

apply successfully to  asset price fluctuations from the Dow Jones Index, and 
preliminarily to bubble displacement fluctations in the soft disk model.
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Preface

The first tim e I encountered the s tudy  of complex dynam ics was as an un­

dergraduate  studen t, during my final year research project in U niversitat 

Potsdam . Sj^ecifically, I was to  exam ine clim ate da ta  for the  last one hun­

dred or so years, m odelling the w eather d a ta  points as a spatia lly  correlated 

network and utilising rudim entary  complex network theory.

As an undergraduate , the seeming power and scope of th is approach in­

stan tly  seized my atten tion . M eteorological system s are notoriously com­

plex [1], in the  true  sense of complexi fy  - th a t is. the  pro])erty of a system  

com posed of m any units where certain  global tra its  encom passing th e  sys­

tem  as a whole cannot be reduced to  a simple averaging of the  properties of 

its constituents [2]. This may be sununarised succinctly, by describing the  

system  as more than  the  sum of its parts.

In such system s, order and disorder are found to  coexist, w ith large scale 

system ic regularities intertw ined w ith seemingly erratic  evolutionary events 

[2]. C lim ate system s provide a classical example, where satisfactory  w'eather 

forecasts are lim ited to  horizons of only a few days. P u t simply, although 

in theory  a complex system  m ight be fully determ inable, in practice small, 

unexpected variances can have huge aggregate effects th a t  become difficult 

or impossible to  predict analytically.

It is w ithin precisely these properties th a t I believe there  to  exist a n a tu ­

ral synergy betw'een foams and complex system s. The flow of foam involves 

a complex interplay between local interactions, and their propagative effects 

u ltim ately  determ ine the bulk properties of the  system . An entire research 

field is devoted to  understand ing  the  m acroscopic response of foam to ap­

plied forces. It is clear th a t  th is response is intrinsically connected to  the

xix



microscopic dynamics of the system, and yet no widely-accepted theory has 

emerged on how these tw'o areas are linked. In this thesis we aim to inves­

tigate how' microscopic dynamics can be linked to macroscopic properties, 

using novel methods.

XX



Chapter 1

Introduction

In this chapter, we will give a brief, general introduction to foams. We 

will then introduce foam rheology. and give an overview of experiments and 
simulations in the field that we feel will be strongly relevant to the discussions 
put forth in this thesis. Finally, we will introduce complexity and complex 
dynamics, and discuss foams as a complex system rich in emergent behaviour.

1.1 A general in troduction to  foams

hi physics, the first cjuestion asked is often a battle  between how? and why?. 
As tlie majority of this thesis shall be dedicated to the former, we shall begin 

with the latter, and ask: w’hy study foams?

Foams are ubicjuitous in everyday life. From washing the dishes, lathering 
shampoo and spreading shaving foam, through to carbonated drinks and the 

head on a pint of stout, liquid foams surround us. Their role and use can be 

as lighthearted as bubblebath, or as sombre as fire extinguishers. Solid foams 

too, such as polystyrene packaging, foam m attresses and housing insulation 

to list just a few' examples, are encountered on a daily basis.
In industry, the role of foams cannot be overstated. Foams play a cru­

cial role in mineral flotation (the process by w'hich minerals are extracted 

from ore) and enhanced oil recovery, both nnilti-billion dollar industries [3]. 

Mineral flotation, for instance, is estim ated to consume approximately 6%

1



2 C hap ter 1. In troduction

of the  w orld’s annual energy resources [4]. As a rough estim ation, if the  en­

ergy industry  is w orth 10% of a global economy valued at $70 trillion dollars 

annually  [5], m ineral ex traction  therefore costs approxim ately  $420 billion 

dollars a year. This is roughly the  sam e size as the  entire sem i-conductor 

industry  [6].

In addition to  these practical reasons, from a theoretical standpo in t foams 

have long been studied  as a m odel s tru c tu re  for how space is filled. Single 

layers of bubbles floating on liquid were used by Bragg as a model system  for 

atom ic crystal struc tu res in m etals [7]. In the  n a tu ra l world, the  first uni­

cell organism s are thought to  have s ta rted  as bubbles on the ocean floor [8]. 

C harles Darwin rem arked on the  foam-like hexagonal s tru c tu re  of bees’ hon­

eycomb [9], a com parison which has also been m ade for geological s truc tu res 

such as the G ian t’s Causeway in Ireland [10]. Indeed, at the far end of the  

scale from the  atom s whence we s ta rted , initial theories on ou ter space and 

the  “ae ther” proposed th a t  space was partioned  in Kelvin cells, fam iliar from 

foam froth [11,12].

For all its w idespread industria l and com m ercial uses, the  m aterial prop­

erties of foam are relatively poorly understood. Particularly , in th is thesis, 

we wish to  investigate how its flow properties relate  to  the  s tru c tu re  th a t 

theo rists  find so appealing. F irst, we m ust define w hat we m ean by a foam.

1.1.1 W hat is a foam?

Formally, a liquid foam is a tw'O-phase m ateria l consisting of a continuous 

liquid phase enclosing a dispersed gaseous phase [13]. T he typical liquid 

foam stud ied  is aqueous foam, consisting of air dissolved in a m ix tu re  of 

w ater and a su rfactan t.

Liquid foams are a specific exam ple of a broader classification of m aterials 

called colloids. Colloids in general are tw o-phase m aterials, w ith one phase 

dispersed in another [14], Exam ples can include solid foams (gas in solid), 

em ulsions (liquid in liquid) and suspensions (solid in liquid). Colloids can 

share sim ilar properties when it comes to  flow behaviour. M any of these 

properties u ltim ately  arise from in teractions a t the microscopic level between
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elem ents of the  dispersed phase. Foams m ay also be considered as frictionless 

g ranular m edia, and their struc tu re  and packing can resemble th a t  of o ther 

g ranular m edia [15].

1.1.2 W et and dry foam s

Foams are typically  described in term s of their liquid fraction, (pi, defined 

as th e  ratio  of the  volume of the liquid phase to  the  vohmie of the  foam. 

D epending on (pi, foams may be referred to  as either wet or dry. Exam ples 

of dry  and wet foams are shown in Figure 1.1.

Dry foams have a liquid fraction, in general, of 0; <  10%. In dry foams, 

bubbles are separa ted  by th in  films of liquid. These films meet along curved 

lines known as Plateau borders, nam ed after the  blind Belgian physicist 

Joseph P la teau . P la te a u ’s life work, "'Statique Experimentale et Theorique 

des Liqmdes soumis aux seules Forces M oleculaires ', published in 1873, lays 

out a set of rules developed from experim ental observation, which govern the  

strvictm'e of dry foams in eciuili\)rium [16]. These are, for th ree  dimensions:

1. Film s can intersect only th ree at a tim e, and nnist m eet at an angle of 

2ir/3 radians. These intersections are known as P la teau  borders.

2. Vertices in the  foam consist of the  intersection of exactly four P la teau  

borders, form ing a synnnetrical te trahedron  whose angles all equal (p = 

cos“ '(  —1/3).

3. The films (and P la teau  borders) obey the  Young-Laplace law, which re­

lates the  pressure difference between two bubbles to  the surface tension 

in the  film betw'een them  and the  radius of curvature  of the  film [13]. 

It m ay be sunnnarised. as observed by P la teau , th a t at any point on a 

film in equilibrim n, th e  curvature  of the  film is constant.

T he final point has a corollary th a t a free bubble will always be spheri­

cal. P la te a u ’s rules w'ere developed from experim ental observation, and la te r 

explained by asserting th a t a foam will always adopt a s truc tu re  to  m in­

imise its surface energy E  =  F.4, w'here A  is the  area of its films and F is
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Figure 1.1: D ry  a n d  w et foam s, (a) A three dimensional dry foam con­
sisting of commercial surfactant, air and water, resting on a glass plate and 
photographed from beneath. Vertices meet at well defined angles described 
by P la teau ’s rules [16]. (b) A close-up photograph of the head on a pint 
of Guinness, which is an example of a wet foam. The bubbles are predomi­
nantly spherical, with refraction patterns due to neighbouring bubbles visible 
on their surfaces. Images courtesy of G. Ryan.
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the  surface tension. These rules generate the  fam iliar foam structu res seen 

in Figure 1.1 (a). In this thesis, we are concerned w ith wet foams, where 

P la te a u ’s requirem ent of fourfold vertices has been relaxed, and stable ver­

tices (in reality hciuid-filled junctions) of higher order can appear [3].

Wet foams have a high liquid fraction; for th ree dim ensional wet foams, 

it ranges approxim ately betw een 15% ^  0/ ^  36%. In such foams, the  

bubbles in the  dispersed gas phase are w'ell described by splieres, packed in 

th ree dimensions, see Figure 1.1 (b). For ease of com parison w ith different 

system s well m odelled by the  packing of spheres, such as granular m edia, we 

often instead use the com plem ent of the  liquid fraction, the packing fraction 

(/), where 0  =  1 — <?!)(. In foam experim ents th is is also called the  gas fraction 

or som etim es the  volume fraction.

Below a packing fraction of «  64%. packings of disordered spheres do 

not (in general) fill enough volume to  form a m echanically stable s tru c tu re  

[10]. Above 0  «  64%, called the  jamming transition or random, close packing. 

the spheres begin to  fill enough space to  m aintain  the m inim um  nm nber of 

average contacts, (z),  necessary for m echanical rigidity, (2) =  4 [17].

1.1.3 The study o f foams

The study  of foams may be split into four m ain subject areas; drainage, 

coarsening, struc tu re  and rheology. D rainage concerns the  flow of licjuid 

through the P la teau  borders of a foam under gravity. D rainage is m ost 

relevant for wet foams where the  bubbles are larger th an  the capillary length 

(as the  cajiillary force opposes drainage m ider gravity) [3].

Coarsening refers to  the  diffusion of gas betw een bubbles driven by pres­

sure differences. As a result, large bubbles tend  to  get larger, and small 

bubbles tend  to  get sm aller or d isappear altogether. Coarsening has a larger 

effect in dry foams, as it is easier for gas to  diffuse through th in  films of 

liquid [13].

T he final two areas are s tru c tu re  and rheology, and it is these two areas 

which we focus on in this thesis. S truc tu re  refers to  the  topological arrange-
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shearnormal

Ax
y=L

Figure 1.2: S im p le  s c h e m a tic  o f  l in e a r  s h e a r .  A shearing force Fshear 
is applied in the  x-direction to  the  m aterial. The shear stress a  is given by 
^Shear/^) wliere A  is the  area of the plane of flow. T he norm al stress II is 
given by FNormai/-4, where FNonnai is the  norm al force. T he shear s tra in  7  is 
the  fractional displacem ent of the  shearing plane w ith w’id th  L  of the  sample, 
i.e. 7  =  A x j L .

m ent of the  bubbles w ith in  a foam. This topology changes under deform ation 

and flow'. Rheology is the  s tudy  of precisely th a t.

1.2 R heology o f Foams

Rheology, from the  Greek rheo- m eaning “to  flow'” , is the  s tudy  of how' m ate­

rials deform and flow in response to  an applied stress [13]. Foam  rheology is a 

particu larly  fascinating topic - liquid foams consist of a gas phase dispersed 

in a liquid phase, and when they  flow' the  complex m otion of the  bubbles 

w ithin the  liquid have dram atic  effects on the  flow properties of the  m aterial.
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1.2.1 Stress and strain in linear shear

Figure 1.2 shows a schematic diagram of an apphed force generating a simple 
linear shear. The shear stress, a, is defined as the component of the applied 

force parallel to the shearing plane per unit area,

=  ( 1 . 1 )

The n.orm.al stress, IT, is defined as the force normal to the shearing plane 

per unit area,

n  =  -P ^N onna l ^ ^ 2 )

Stress thus has units of N/m"^, i.e. the same units as pressure. In sim­
ple linear shear, the stram, is the fractional displacement of the shearing 

boundary with respect to the width of the channel, y =  L,

, .  ^
Strain is unitless, and often expressed as a percentage.
The shear and normal stresses given by Equations (1.1) and (1.2) are spe­

cial cases. The general description of stress (and indeed strain) are tensorial. 
Consider, for instance, the stress at a point P{x,  y, z). This stress can be rep­
resented by an infinitesimal cube, with three stress components on each of 
its six sides, denoted by a^j, see Figure 1.3. In this notation, i , j  G {x , y ,  z},  
w'here a^j is the stress along plane i in the j  direction.

In static equilibrium, i.e. no net force on the material in the absence of 
an applied body force, a^j =  aji, and the stress is described by the stress 

tensor aj-

(7t  = ^ x y  ^ y y  ^ y z

P  x z  ^ y z  ^ z z ' ^

(1.4)
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yy

yz.
' y x

zy

'x y

Z

Figure 1.3: T h e  s tre s s  te n so r . An infinitesimal cube around point
P{x , y , z ) .  The stress tensor can be represented by three components of 
fTy , for i , j  E {x,  y, z},  at each face of the cube.

In our work, we are concerned with the elements of the stress tensor acting 

on the boundaries in the y  plane, defined via Equations (1.1) and (1.2) as

<7 = CTxy and n = U y y .

A key question for foam rheologists (not to be confused with theologists, 
w'ho, thanks to  the QW ERTY keyboard, receive more citations than  they 

should for foam physics) to ask is: if a foam is linearly sheared, how’ is the 

resulting strain related to the shear stress?
A simple assumption would be th a t foams behave like a homogeneous 

liquid, with the bubbles suspended in the surfactant solution and the prop­

erties of the solution determining the nature of the flow. Many homogeneous 

liquids, including water, obey Newton’s equation when subjected to  a simple 
shear, which postulates tha t the shear stress a  of a fluid is directly propor-
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tional to the velocity gradient dv/dy  of the fluid in the direction perpendicular 
to the shear (y-direction),

a = C v ^  (1.5)
dy

The proportionality constant Cy is called the consistency, which is a gen­

eral term, dependent on the viscosity. Although Newton first introduced

this expression in 1687, it wasn’t until the nineteenth century tha t Navier
and Stokes independently developed a full three-dimensional mathematical 
description of flow', including viscosity, now' known as the Navier-Stokes ecjua- 
tions [18]. A fluid obeying these equations is referred to as Newtonian. Since 
the shear strain over some small time A t  can be expressed as

A '  =  —  (1.6)
y

and thus

dy

one can express dv/dy  in term s of the strain rate 7 , yielding (from Eq 

1.5)

o  =  iff  ( 1.8 )

where Cy for Newtonian fluids is simply the viscosity, -q. From this, we see 
that for Newtonian fluids, the rate at which the system is sheared is directly 
proportional to the applied stress.

W hat about foams? In experiment, foams are observed to be non-Newtoman; 

tha t is, they do not conform to the Navier-Stokes equations for viscous liq­
uids [19]. This is not surprising, as they are far from homogeneous liquids. 

The interactions betw'een bubbles within the foam lend the material a degree 

of rigidity and elasticity. Bubbles in licjuid foam do not experience static 

friction, however, so this structure can readily undergo rearrangements and 
flow' under shear.
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For low strain of less than  a few percent, the foam deforms elastically. 

In this regime the shear stress can be related to the strain via the elastic 

modulus Go, where

For such small strains, the deformations are reversible. At a certain yield 

stress, ay,  how'ever, the foam yields and begins to flow. During this flow', the 
foam undergoes irreversible topological changes, know'ii as T1 transitions. 

Foams are therefore an example of yield stress fluids: solid below a yield 

stress with fluid-like properties above the yield stress.

1.2.2 T h e H ersch el-B u lk ley  eq u ation

The flow' of foam and the relationship between shear stress and strain rate 
can be described empirically by the Herschel-Bulkley equation,

Cy is once again the consistency, a function of the viscosity, and n is know'n 
as the Herschel-Bulkley exponent [3]. The second term  is often referred to 

as the viscous stress, a^isc = cr — cry. The relation was first formulated by 
Herschel and Bulkley, in their 1926 study of the response of rubber [20]. The 

simple case of n =  1 is a so-called Bingham flmd. This exponent is typically 
fomid to have values betw'een 0.25 < n < 0.7 for aqueous foams [21-29]. The 

Herschel-Bulkley relation has also been observed to hold for emulsions and 

granular media [27,30-33].

We can conclude th a t w'hile sharing similarities with both viscous liquids 
and elastics solids, a foam is neither. Hence it is often catagorized as a so- 

called visco-elastic liquid. For low' strain, the material deforms elastically via 
Equation (1.9). Past some yield strain j y ,  w'ith an associated yield stress 

(Ty =  Go7y, the m aterial yields and flows. A schematic representation of 
this stress-strain relationship is show'n in Figure 1.4. In this flow'ing regime.

l '

(1,9)

( 1. 10)
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Figure 1.4: S tress versus s t ra in  fo r  a v is c o -e la s tic  m e d iu m . Once the 
stress exceeds the yie ld stress a y ,  the m aterial deforms and begins to  flow.

foams behave like a sheaT-th-inning f l u id ,  which means tha t the ir effective 

viscosity, r/pfj,

r/e ff =  -

( 1.11)

is a decreasing function of strain rate [13,34]. We are fam ilia r w ith  such 

liquids from  everyday life, as the ir properties are often useful. For instance, 

shaving foam is a visco-elastic fluid. When it  sits on your hand i t  remains 

rig id, bu t once a stress is applied it  spreads easily across your face.

The strongly non-linear, macroscopic response to  shear originates from 

complex, microscopic interactions between bubbles in the flowing foam. Prob­

ing the nature of these interactions and a ttem pting  to  lin k  them to the bulk 

rheology o f the foam is the main aim of th is thesis.
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1.2.3 Foams in two and three dim ensions

As is the case in many areas of physics and mathematics, one of the first 
steps in understanding such complex behaviour and interplay is to  reduce 

the dimensionality of the system. In this thesis we focus exclusively on 
simulations in two-dimensions (2D), although we reference many experiments 

performed for three-dimensional (3D) foams.

Initially, 2D foams were introduced as a model system for numerical and 
theoretical studies [35,36] of foams, as they present simpler systems to treat 

mathematically. More recently, there have been a variety of experiments 
involving quasi-2D foams, consisting of a single layer of bubbles [23-26], 
depicted in Figure 1.5. The motivation for studying rheology of 2D foams 
stems from the behef tha t theories explaining these simpler 2D systems could 
be exj)anded to 3D foams with more complicated structures. This behef 

seems justified: compared with their 3D covmterparts, 2D foams are seen, 
for example, to  share similar scalings of yield stress [13, 37, 38] and elastic 
modulus [17] with packing fraction. In addition, both 2D and 3D foams 
are well-described by the Herschel-Bulkley equation with similar exponents 

[21,23,25,26,29].
Focusing on two dimensions presents a number of advantages, in addition 

to being a simpler starting point for theorists. In experiments, it is nmcli 
easier to process images and track bubble positions and motion in 2D. In 

3D, more limited or more difficult techniques must be used, such as X-ray 
tomography, required to resolve the centres and dimensions of the cells [41], 

or confocal microscopy with refractive index-matched enmlsions [42]. In sim­

ulations, the decreased average contact number between bubbles (from 14 to 

6) reduces the intensiveness of calculations and allows for the study of larger 
system sizes [43]. Nevertheless, despite the reduction of complexity in 2D 
compared to 3D, 2D retains subtleties which we shall explore in the coming 
chapters.
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Figure 1.5: T h re e  ty p e s  o f 2D  foam  (side  v iew ), (a) Monolayer of 
hubbies sitting at an air/liquid interface. This configuration is also called 
a Bragg raft, after its namesake who prc)j)osed it as a model for atomic 
arrangements in a crystal [7]. (b) Bubbles floating in a licjuid, confined by 
a single top j)late (confined Bragg raft), (c) Bubbles confined between two 
glass plates (also know'u as a Hele-Shaw' cell). The bubbles in (b) and (c) 
are subject to a drag force as they move across the plate(s), w'hich has been 
found to scale as a pow'er-law function of their velocities [39,40].

1.2.4 Experim ental geom etries

Also of importance in rheological experiments and simulations is the geome­

try of the system. When investigating linear shear, tw'O main geometries are 

used, schematic 2D examples of w'hich are shown in Figure 1.6. The first is a 
simple linear cell, Figure 1.6 (a). In experiments, this cell has a finite length 

and width. It can have a single shearing boundary and a stationary bound­

ary. Alternatively both boundaries can be set in opposing motion. Both 

produce linear velocity profiles across the channel, and thus the strain rate is 
constant throughout the foam. In simulation, periodic boundary conditions 

are often used in some or all dimensions.
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F igure 1.6: L in e a r  a n d  c ir c u la r  C o u e t te  g e o m e tr ie s ,  (a) L inear ge­
om etry. Black arrows indicate the  m otion of the  shearing boundary, (b) 
C ircular C ouette  geometry, for 2D foams, analagous to  a cross-section of the 
cylindrical C ouette  geom etry for 3D.

T he o ther geom etry is a circular C otiette geometry, Figure 1.6 (b). Here, 

the  foam sam ple is contained between two concentric circles (or cylinders, in 

3D). One or bo th  of these cylinders ro ta te , shearing the  foam. This leads to 

a shear stress across the  sam ple which decays as 1 /r^ , where r  is d istance 

from the  centre of the  cylinder. One advantage to  th is system , however, is 

th a t  there  is no finite m axim um  shear th a t  can be achieved in experim ent, 

unlike linear cells.

In a discussion of geometry, we shall also include the  presence or absence 

of a slip condition a t the  shearing boundary, and the  presence or absence of 

a top  p late  for 2D foams, see Figure 1.5. Both of these factors can affect the 

flow and velocity profiles of the  foam under shear.

In the  case of the  former, rough walls are typically used to  ensure a no-slip 

condition a t the shearing boundary. In the  case of the  la tte r , the  presence 

of a top  p late  imposes a drag  force on each bubble in contact w ith it, which 

has been found to  scale as a power-law function of their velocities [39,40]. 

In 3D th is is a negligible effect, as the  m ajority  of the  bulk is not in contact 

w'ith the  walls. Conversely, th is has a large effect in 2D, as every bubble is 

sub ject to  th e  additional drag force. T he presence of a top  p late  has been 

a ttr ib u te d  as the  m ain cause of shear localisation (i.e. flow in one region, bu t 

no t another) in 2D foams [44-47].

FOAM
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1,2.5 Summary

We have seen tha t rheological systems can be described in terms of many 

different param eters and cjualities. In this thesis, we consider:

• S im u la tio n s  of w’et foams in 2D.

•  These foams are confined in a linear channel, with semi-periodic bound­

ary conditions.

• They are sheared at a constant strain rate.

•  There are two w'ell-defined, rough boundaries.

•  There is no top-plate drag, or equivalent mechanism, implemented.

These parameters are consistent with a range of foam rheology experi­

ments in the literature [29,48 50].
The model we use to simulate wet 2D foam is the w'idely used soft disk 

model, first conceived by Durian [36,51] and implemented w’ith the modifi­
cations of Langlois [52]. We summarise their findings in Section 1.4.1, and 
we give a detailed account of the implementation of the model in this thesis 

in Chapter 2.

1.3 A n overview  of foam rheology  

experim ents

In this section, we give a brief overview' of some of the experimental w'ork 

which has been done in the field of ŵ et foam rheology. We shall pay particular 

attention to literature focused on interactions at the bubble level, and their 
effect on flow'.
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1.3.1 C lassification of w et foam rheology by Princen  

et al.

We shall s ta r t our overview w ith the  works of H.M. Princen, in his four 

papers Rheology o f foam s and highly concentrated em ulsions I - IV  [27,53 55] 

and his work w ith Schwartz [56]. T he first of the  four, published in 1983, 

notes “while experim ental work on the  rheology of these system s is scant, 

there  appears to  be a v irtual lack of theoretical understand ing  of how the 

rheological properties are linked in a q uan tita tive  way to  system  param eters” .

To th a t end, Princen w'as the  first to  theoretically  model the  behaviour 

of 2D foam by considering the  bubbles as m onodisperse cylinders of low' 

thickness (or disks). He also envisioned the  first stress- and strain-controlled 

shear experim ents, although acknowledging th a t they  w'ere not possible for 

a system  of cylinders [53]. He perform ed extensive theoretical analysis and 

experim ental m easurem ents (in conjunction w ith Kiss [27]) of properties of 

foams and emulsions such as yield stress, elastic m odulus and effective (or 

shear) viscosity.

Princen was also the  first to  classify and illu stra te  w'hat is now known 

as th e  T1 transition , so nam ed shortly  thereafter by W eaire and Rivier [57]. 

His representation of w hat he called a “M ode I to  M ode II tran sitio n ” is 

reproduced in Figure 1.7. We now know' th a t these rearrangem ents are in­

trinsically  linked to  the  nonlinear response of the  foam. Princen, how'ever, 

trea ted  them  as a geom etrical ad justm ent to  his m odel, which comprised 

of layers of bubbles sliding past one another in lanes, often referred to  as 

lam inar flow.

Finally, Schwartz and Princen extended their m odel of layered bubbles 

sliding past one another. T hey modified B re th e rto n ’s [39] theoretical ap­

proach to  the  m otion of long bubbles in tubes, tak ing  the  prim ary dissipative 

force in a linearly-sheared 2D foam to  be the  viscous d issipation due to  the 

extension of soap films as the  foam flows. From  this, they  form ulated a rela­

tionship  between stress and s tra in  ra te , finding a Herschel-Bulkley exponent 

of n  =  2 /3  [56]. This exponent was corroborated  by Reinelt and K raynik’s 

sim ilar model [58]. In experim ents in the  cylindrical C ouette  geometry, P rin-
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Figure 1.7: A T1 tr a n s i t io n .  Figure reproduced from [53]. Princen w'as the 
first to characterise these structural changes for w'et foams, which he called 
a “Mode I to Mode II transition” .
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Figure 1.8: E xcess e n e rg y  p e r  face t o f  a  c o m p re sse d  b u b b le  in  2D .
Figure reproduced from [59]. Excess energy e per facet n for the tessellating 
cases n = 3 ,4 ,6 , versus where ^ is a dimensionless displacement pro­
portional to compression. For small compressions in 2D, Lacasse observed 
scaling with a pow'er law exponent of 2 (see inset, plotted on a log scale), 
consistent with harmonic repulsion between bubbles.

cen and Kiss instead found an exponent of n =  1/2 [27]. They a ttribu ted  the 
discrepancy to disjoining pressure effects, although with the benefit of hind­

sight it is likely due to the investigation of strain rates over w'hich laminar 
flow was a questionable assumption.

1.3.2 Deformation of droplets by Lacasse et al.

In relating bubble dynamics to macroscopic rheology, it is im portant to quan­

tify the forces governing bubble-bubble interaction. Lacasse et al. studied 

emulsion droplets compressed between multiple plates [59]. For tw'o plates, 

this compression was solved for analytically. For n plates, the compression 

was found numerically, using Brakke’s Surface Evolver [60]. They found th a t.
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Figure 1.9: V isc o u s  d r a g  betv^^een b u b b le  la y e rs . Figure reproduced 
from [22], showing the  form ation of fihiis between bubbles as layers slide 
past one another.

while in 3D the  compression depends on the  num ber of neighbours, in 2D 

the  compression w'as well described by harm onic elastic repulsion for small 

deform ations.

T he interfacial energy of a circular droplet in 2D is given by the  line 

tension (tha t is, th e  2D surface tension) tim es the length of the perim eter. 

F igure 1.8 shows th e  dhnensionless excess energy, t, versus dimensionless 

displacem ent, directly proportional to  compression. T he excess energy is 

defined for 2D as f =  ~  where R is the  radius of a circular droplet

and I is the  perim eter of the  compressed droj)let. Thus, e =  0 for an uncom ­

pressed droplet. For harm onic repulsion, e ~  which Lacasse et  al. find 

for compressions up to  approxim ately 5% [59], see Figure 1.8 (inset).

This analysis forms the basis for the choice of elastic repulsion scaling in 

our sinm lations of 2D foams, in troduced in Section 2.1.

1.3.3 Experiments of Denkov et al.

The experim ents of Denkov et  al. in Sofia U niversity have characterised 

extensively the  chemical properties of foam su rfac tan ts and their effect on 

foam rheology. so much so th a t a t present th e  s tan d ard  surfactan t solution 

used for ease of com parison between experim ents in the  field is often referred 

to  as the  “B ulgarian recipe” .

In experim ent, Denkov et  al. have m easured exponents for the  Herschel- 

Bulkley equations, classifying them  by mobi le  and im m ob i l e  interfaces. For
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Figure 1.10: C o m p a r is o n  o f  v isc o u s  d r a g  law  th e o r y  w i th  e x p e r im e n t ,  
fo r  e m u ls io n s  a n d  fo a m s . Figure reproduced from [22]. (a) Viscous stress 
a — o y  (here called r  — t q ) plo tted  versus s tra in  ra te  7  for oil in water 
emulsions, for packing fractions 4> =  0.83, (p =  0.96. (b) Dim ensionless stress 
for foams and emulsions stablised w ith synthetic  su rfactan ts, versus capillary 
num ber Ca =  ?7 /?3 2 7 / r .  T is the  surface tension, and R 32 is the  so-called 
Sauter mean radius R 3 2 =  / (^^ ), the  ratio  of the  th ird  m om ent and the
second m om ent of the  size d istribu tion  of bubble radii R. T he dimensionless 
capillary  nm nber C a  is thus directly p roportional to  s tra in  rate . Denkov 
et al. observed excellent agreem ent betw een their model and experim ental 
results, for lam inar-type flow, finding the  viscous drag  proportional to

imm obile, rigid interfaces, an exponent of n  w 0.3 was found. For mobile in­

terfaces, w ith lubricated  sliding m otion of bubbles past one another, Denkov 

et al. found an exponent n w 0.5 for foams and emulsions [21,22,61].

Recently, they have proposed a model based on th is sliding m otion for mo­

bile interface, ordered 3D foams and concentrated  emulsions. D uring steady  

flow, the  s tru c tu re  periodically rearranges, and con tact films form and disap­

pear upon transien t bubble collisions (see Figure 1.9). They found excellent 

agreem ent for their model, particu larly  noting th a t they  collapsed d a ta  for 

foams of different bubble sizes w ith no free param eters [22], see F igure 1.10. 

However, th is m odel linking bubble dynam ics to  bulk rheology again assum es 

lam inar flow. W hile th is type of flow is observed in experim ents of Denkov 

and others a t high s tra in  ra te , is not consistent w ith observed low s tra in  ra te  

flow, where the  bubbles move in m ore tu rbu len t p a tte rn s  [29,48,62], We 

investigate th is flow regime in C hap ter 3.
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Figure 1.11: D is t r ib u t io n  o f  s tr e s s  d ro p s  in  a  s h e a r e d  fo am . Figure 
reproduced from [63]. D ata  for th ree different s tra in  rates, =  0.031s“ ' 
( a ) ,  ", =  0.31.s“ ' (■), 7 = 0.48s"' (O)- The sohd Une has a slope of —0.8. 
Dennin suggests trunca ted  power law’ scaling for stress falls.

1.3.4 Experim ents of D ennin  et al.

Dennin and co-workers have perform ed extensive experim ents on w'et foams 

m ider linear shear in 2D and 3D, and in linear and cylindrical geom etries 

[23.25,62.63]. They m easured frecjuency of T1 transitions [23], response of 

the  shear stress to linear and oscillatory s tra in  [63,64], the  effect of channel 

dim ensions [50], and the  m inim um  stra in  for w'hich the s teady-sta te  flow’ of 

foam can poten tially  be considered as having equivalent tim e- and ensemble- 

averages [65], among m any o ther properties.

Of particu lar in terest to  our work in th is thesis are the  m easurem ents by 

D ennin et al. of shear stress fluctuations in 2D foams. M otivated by m ea­

surem ents initially m ade by Diu'ian in sim ulation, covered in Section 1.4.1, 
Dennin exam ined d istribu tions of stress falls A ct, see Figure 1.11. He found 

a tru n ca ted  power law scaling of P { A a )  ~  Acr“ °'*, consistent w ith a fat 

tailed d istribu tion  often associated w ith  avalanche-like rearrangem ents [63]. 

Lauridsen and Dennin then  went on to  exam ine the  frequency of structvu’al 

rearrangem ents during shear in an a ttem p t to  relate  bubble-scale in teractions
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F igure 1.12: E x p e r im e n ta l  s e tu p  o f  l in e a r  s h e a r .  Figure reproduced 
from [48]. (a) Schem atic top  view of the  experim ental setup. Two coun- 
te rro ta tin g  w'heels are partia lly  im m ersed in the  fluid, separated  by a gap, 
linearly shearing the  foam. T he red line shows the  average velocity profile 
during steady  s ta te  flow, (b) Side view', relating angular velocity uj to  stra in  
rate .

to  th e  rheology, finding a qualita tive  alignm ent between spikes in th e  num ber 

of T1 transitions, and falls in the  macroscopic shear stress [23].

1.3.5 Bubble fluctuation experim ents o f K atgert et  
al. and IVLobius e t  al.

T he experim ents of K atgert et al. and M obius et al. in the  Leiden group 

concerned steadily  sheared foam in bo th  linear and cylindrical C ouette  ge­

om etries. T he rheological m easurem ents were carried out in a C ouette  cell, 

w'hilst in the  linear ap p ara tu s  (show'n in Figure 1.12), they  perform ed a novel 

and extensive study  of bubble fluctuations in tim e using image analysis.

By shearing two layers of bubbles in a 2D foam past one ano ther in a 

circular C ouette  geometry, they  m easured the  viscous drag  force experienced 

by bubbles sliding past one ano ther, as a function of their relative velocity. 

T hey found th is dissipative force to  scale w'ith the relative velocity to  the 

power of an exponent approxim ately  equal to  0.7, very close to  the  bubble- 

w’all drag coefficient m easured, and theoretically  proposed by B retherton  to  

be 2 /3  [39] as discussed in Section 1.3.1. This yields a second scaling rela-
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tionship for the forces governing bubble-bubble interaction, in conjunction 

w4th the work of Lacasse (Section 1.3.2).

In addition to measuring the bubble-bubble interaction in experiment for 

the first time, Mobius et al. subsequently used image analysis to resolve the 

flow' of individual bubbles in time [29]. From this, they were able to cal­

culate displacement distributions, and study the scaling of the mean scjuare 

displacements (As^) over a tim e interval At.  Their results are shown in 

Figure 1.13.
At short times, they observe fat-tailed distributions consistent w'ith strong, 

non-afhne flow (that is, flow tha t deviates from the mean flow'). They found 
tha t the Inibbles undergo a process akin to random-w'alk diffusion, induced by 
rearrangements due to shear, at sufficiently long times. This allowed them to 
fit diffusion constants, and they went on to propose a deformation-relaxation 
argument relating bubble fluctuations to macroscopic rheology. Inspired by 
this method, we expand on this work in Chapter 3.

1.3 .6  E xp erim en ts o f P ou liq u en  et  al. and L espiat et  

al.

Poulicjuen and co-w'orkers have recently developed a constitutive relation for 
dense granular flows, w'hich has been successful in predicting, in comple­

menting experiments performed by Jop et al,  the flow behaviour and shape 
of velocity profiles without any fitting param eters [32].

The model, which w'e define m athematically in Section 2.3, relates the 

shear stress to the strain rate via the so-called /  param eter. This param e­
ter, which is the sqTiare root of the Coulomb number from granular media 

literature [66], can be viewed as the ratio of the deformation timescale to 

the typical timescale of rearrangement in the medimn. In the original form 
of Pouliquen et al,  the la tter is governed by friction between grains and the 

confining pressure.

Lespiat et al  show'ed tha t this constitutive model also holds for foams, 

w'ith modification. In the absence of static friction, they assert tha t the 

rearrangement rate is governed by the viscous dissipation and the normal
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Figure 1.13: E v o lu t io n  o f  m e a n  s q u a re  b u b b le  d is p la c e m e n ts  in  t im e .
F igure reproduced from [29]. M obius et al. used image analysis to  track 
individual bubble m otion in a flowing 2D foam, (a) P robability  d istribu tions 
of bubble displacem ents evolving in tim e. A t short tim es, the  d istribu tions 
are fat-tailed; a t long tim es the  d istribu tions tend  to  Gaussian, (b) M ean 
square displacem ents, norm alised by average bubble diam eter, versus tim e 
lag. T he slope 1 region corresponds to  the  onset of shear-induced diffusion.
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Electrodes

Figure 1.14: In c l in e d  p la n e  l in e a r  s h e a r  fo r g ra in s  a n d  fo a m s , (a)
The experim ental se tup  of Jop et al. [32]. The setup  is tilted  until the  grains 
l)egin to  flow, j)ast the s ta tic  angle of repose, (b) The analagous experim ental 
setup for foams of Lespiat et al. [30]. The system  is inverted, w ith buoyancy 
for foams tak ing  on the  role of gravity for grains, and the  bubbles flowing 
upw'ards.

pressure, and find good agreem ent for their experim ental results for bo th  

foams and granular m edia [30].

In bo th  cases, the  relation w’as investigated using an inclined plane exper­

im ental setup, as shown in Figures 1.14 (a) and (b). For a  granular m edium , 

the  plane is tilted  until the  grains begin to  flow, and a velocity profile is 

ex tracted  as a function of channel width. The ratio  of the  shear and norm al 

forces can be ex tracted  from the  tilt angle. For foams, buoyancy plays the 

role of gravity, and th e  foams flow’ up the plane.

In bo th  ex})eriments, the  angle w'here the  m aterial ju st begins to  flow 

corresponds to  the  static angle of repose [67]. F ittin g  to  the  functional form 

proposed for the  scaling of the  constitu tive model w ith s tra in  ra te  allow^s one 

to  ex trac t a value for the  angle of repose in a linear geometry, which w'e shall 

cover in greater detail in Sections 2.3.3 and 4.2.1.

1.3.7 The non-local continuum  m odel o f Goyon et  al.

A popular model for foam flow in 2D, which up until now w’e have not dis­

cussed, is the  continuum  model. Unsurprisingly, such a model considers a
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Decreasing microchannel width

Figure 1.15: V e lo c ity  p ro f i le s  p r e d ic te d  b y  th e  n o n - lo c a l  m o d e l, fo r 
v a ry in g  c h a n n e l  w id th ,  w . Figure reproduced from [31]. The non-local 
model expands th e  continuum  m odel using a coordination length associated 
w ith non-afRne bubble m otion. The solid black lines ind icate  the  m odel’s 
predictions as a fvmction of channel w idth  (left to  right) and surface roughness 
(top to  bo ttom ). T hey are seen to  accvirately cap tu re  the  behaviour of the 
m easured d a ta  and the finite size effects of narrow  channels.

foam flow as a continuum , i.e. a hom ogenous fluid w'hose flow is described by 

modified diff'erential equations of fluid m echanics [45]. It has been successful 

in describing, for instance, th e  occurence of shear localisation in 2D flow' [68].

As such, th is m odel m ay perhaps be considered the  an tithesis to  this 

thesis, w'hich is concerned precisely w'ith deviations and fluctuations from the 

m ean flow. Recently, how'ever, Goyon et al. have in troduced  the  so-called 

non-local m odel - a m odification to  the  continuum  m odel to  take  into account 

long-range spacial cooperativety  they  observe in the  flow' of emulsions [31].

Ordinarily, the  continuum  m odel is a purely local m odel, w'here the flow 

properties are a function of the  position x  w ith no consideration for events 

happening  nearby. It has been observed, however, th a t  topological changes 

in a foam induce fu rther topological changes nearby. T his effect is particu ­

larly im portan t when the  characteristic  length associated w'ith shear, or the 

channel dim ensions, are of the  order of the  bubble size [69]. Goyon et al.
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define a fluidity, / ,  where for the bulk /  =  1/c^, w'here is th e  consistency 

from the  Herschel-Bulkley relation, Equation  (1.10). The fluidity /  is defined 

to  obey a non-local scaling governed by a non-locality length T hey found 

their m odification successfully described velocity profiles of flow in narrow' 

channels, w'ith no free param eters, show'n in Figure 1.15.

Such a model m ay provide a stepping stone betw'een the  analysis in this 

thesis and th e  continuum  model for foam flow.

1.4 A n overview  of foam rheology  

sim ulations

In the previous section we exam ined experim ental work on the  rheology of 

wet foams and dense granular flows. We shall now tu rn  to  sim ulations which 

have been perform ed in a effort to  model and understand  these system s. 

Once again, we shall focus on papers which have aim ed to  relate  individual 

dynam ics to  m acroscopic rheology. s ta rtin g  w ith th e  developm ent of the  soft 

disk m odel as a sim ulation of 2D wet foams under shear.

1.4.1 Durian, Langlois et aL, and the Soft Disk M odel

Early sinnilations of foams m ade use of cellular representations of foarns in 

quasistatic sim ulations. By “quasistatic  ” we refer to  sim ulations where the 

foam is a t all tim es in a s ta te  of energetic equilibrium , w ith  small p e rtu rb a ­

tions from a stab le  s ta te  followed by energy m inim isation. These include the  

sim ulations of W eaire and K erniode [70-72], PLA T sinm lations of Bolton, 

W eaire and H utzler [35,38,73-75], and sim ulations using B rakke’s Surface 

Evolver [60].

As im plied by th e  name, cjuasistatic sim ulations are not w'ell-designed for 

cap tu ring  the  dynamics  of a system . Furtherm ore, w'hile dry  foams are well 

described by P la teau 's  rules, wet foams are not found to  obey such rigid 

geom etrical strictu res. D urian was among the  first to  tackle the  dynam ics of 

wet foams using a sim pler, non-cellular representation  of th e  bubbles. This 

model is referred to  as the  soft disk model (or, also, the bubble m odel).
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Figure 1.16: S tress  an d  s tra in  ra te  in th e  sim u la tions of D u rian  and  
Langlois et al.. (a) Stress versus strain rate in Durian’s original soft disk 
model, using the mean field approximation for viscous drag. He found that 
the relationship was well described by that of a Bingham fluid, with the 
Herschel-Bulkley exponent n =  1. Figure reproduced from [51]. (b) Stress, 
minus the yield stress, versus dimensionless strain rate De oc 7 , for the soft 
disk simulations of Langlois et al. The introduction of individual viscous 
drag forces had a dramatic effect. Langlois et al. found the flow behaviour to 
be well described by a Herschel-Bulkley equation fit wdth an exponent of 0.54, 
in much better agreement with experiment. Figure reproduced from [52].
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Figure 1.17: E lastic  energy  fall d is trib u tio n s . Durian looked at distri­
butions of falls in the elastic energy. AE,  in the system, similar to the stress 
falls examined by Dennin and shown in Figure 1.11. He also noted truncated 
power law scaling, which he attributed to avalanche-like rearrangement be­
haviour. Figure reproduced from [36].

The soft disk model represents the bubbles in foam as a series of disks, 
confined in some geometry. These disks are referred to as “soft” because 
they are allowed to overlap. Overlapping disks are subject to tw'o forces: an 
elastic rej)ulsion related to their overlaps, and a viscous dissipation. Durian 
chose a harmonic elastic repulsion, and used a mean-field approximation for 
the viscous force. A bubble experienced a dissipative force directly propor­
tional to the mean flow' velocity in its vicinity. The system w'as subjected 
to a constant strain rate imposed by a moving boundary, and the rheology 
investigated.

Durian found that the foam responded as a Bingham fluid, that is a 
fluid w'hich obeys the Herschel-Bulkley equation (1.10) with exponent 77 =  1, 
see Figure 1.16 (a) [51]. Durian noted that this qualitatively agreed with 
Bingham-plastic-like behaviour of foams at high strain rate, and attributed 
this scaling to his choice of linear local law's, namely a harmonic repulsion
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directly proportional to the overlaps between disks and a viscous drag directly 
proportional to the mean velocity.

Langlois et al. went on to improve on the sinuilations of Durian. In 
addition to greatly increasing the system size (by an order of magnitude or 

more), they modified the simulation to remove the mean-field approximation. 

Now, the viscous dissipation experienced by a bubble i in contact w'ith a 

bubble j  was set to be directly proportional to the relative velocity betw'een i 
and j ,  thus dynamically changing in time in a fashion similar to the harmonic 

repulsion force.

The results were dram atic, see Figure 1.16 (b). W ithout the mean field 
approximation, strongly non-linear flow w'as resolved, with a Herschel-Bulkley 

exponent of n =  0.54±0.01 found by Langlois et al,  in closer agreement with 
values measured for foams and emulsions in experiment (Section 1.3).

The soft disk model makes no attem pt to model foams as the liquid 
fraction decreases to the dry limit, where bubbles are polygonal, subject to 

elongation and deformation, and no longer w'ell described by disks or spheres. 
How'ever, for wet foams, and indeed some other granular media, the model 
has been shown to capture the key characteristics of flow [76- 80]. We use 
the soft disk model, as implemented by Langlois et ai,  in this thesis. We 
define the model in nuich greater detail in Chapter 2.

Returning to D urian’s original work. Durian [36] and later Ono et al. [81] 
looked at fluctuations in the elastic energy. Specifically, Durian was inter­
ested in the distribution of energy drops, and how' these related to structural 

rearrangements, see Figure 1.17. He found a truncated  power law scaling for 
elastic energy falls A E ,  described by an exponent P { A E )  oc AE~°'^  [36]. He 
associated this power law scaling with avalanche-like rearrangements in the 

foam. Dennin later investigated analogous falls in the shear stress and their 

relationship w'ith T1 transitions, as mentioned in Section 1.3.4.

These results, although somewhat qualitative, a ttem pt to link microscopic 

bubble rearrangements to the foam rheology. We develop a quantitative 
approach to the investigation of stress fluctuations in Chapter 5.
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Figure 1.18: S h e a r  in d u c e d  d if fu s io n  a n d  th e  S to k e s - E in s te in  r e la ­
t io n .  Diffusion constants, D.  associated w ith shear induced rearrangem ents, 
versus s tra in  rate, The black triangles represent the  S tokes-E instein equa­
tion as envisaged for foams by Ono et al. [81], which they  found to  agree w ith 
their diffusion constan ts w ith one fit param eter. Figure reproduced from [81].

1.4.2 Sim ulations of Ono et  al.

Building on the  work of D urian. Ono et al. perform ed extensive soft disk 

model sim ulations, focusing on the  velocity fluctuations of bubbles under 

shear [81]. They observed th a t m otion of individual bubbles transverse to  the  

m ean flow was diffusive. This diffusion differs from therm al diffusion, where 

the random -w alk m otion is caused by v ibrations proportional to  tem pera tu re , 

h istead , successive rearrangem ents under shear are found to  evolve diffusively 

in long tim e. Ono et al. were the  first to  m easure such shear-induced diffu­

sion,  fitting  diffusion constan ts D{''f) as a fmiction of s tra in  ra te , shown in 

Figure 1.18.

T hey found D  to  scale non-hnearly  w ith s tra in  ra te , and noted, fu rther­

more, th a t  D  did not have a  sim ple power law relationship w ith  7 . Ono 

et al. also identified a critical s tra in  ra te , exceeding the  typical ra te  of re­

arrangem ent in the system . T hey noted th a t  past th is critical s tra in  rate , 

fluctuations were essentially dom inated  by the  tiniescale of deform ation, ob­

serving th a t  spatial correlations decayed exponentially  in the  lim it of high
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stra in  rate. This change in m acroscopic behaviour past some critical ra te  of 

deform ation shall play a  key role in argum ents we m ake in C hap ter 3.

T he sim ulations of O no et al. were the  m ost extensive of their kind using 

the  soft disk model, and their s tudy  of fluctuations bears direct relevance 

to  th is thesis. How^ever, we note th a t they  were perform ed using D urian ’s 

im plem entation of the soft disk model, w ith a m ean field approxim ation. 

This approxim ation was show'n to  have a dram atic  effect on bulk rheology 

by Langlois et al. [52], and was later shown to  cause spurious correlations in 

fluctuations by Tighe et al. [79].

1.4.3 Jam m ing in the soft disk model: Olsson and 

Teitel, and O ’Hern et al.

The soft disk m odel comprises of in teracting  disks governed by an elastic 

repulsion and a viscous dissipation. There is no a ttrac tiv e  force in the  system , 

w ith the  system  instead held together in m echanical stab ility  by the confining 

geometry.

To understand  such system s im der shear, it is im portan t to  understand  

their s tru c tu ra l properties. Particularly , w hat, for a given arrangem ent of 

disordered spheres in a confining volume, determ ines w hether a packing will 

be m echanically stab le? In 2D, a disk needs (in general) no fewer th an  3 

con tac ts to  prevent m ovem ent. In 3D, a sphere needs 4 contacts. In recent 

years, packings of disordered disks and spheres have been stud ied  close to  the 

so-called jamming transition^ th a t is the  packing fraction at w'hich a packing 

just  reaches m echanical stability. At th is point, th e  sudden appearance of a 

finite shear stiffness signals a transition  between a flowing liquid and a rigid, 

d isordered visco-elastic sta te .

P roperties such as elastic m odulus, yield stress and average con tact num ­

ber have been found to  scale w ith packing fraction cf) scaled by the  jam m ing 

or random -close-pack packing fraction (f)c, see Figure 1.19. In 2D, the  elastic 

m odulus. Go, and the  average im m ber of contacts of a disk, Z  — Zc where 

Zc =  4, are found to  obey square root scaling w ith (j) — 4>c [17].
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Figure 1.19: E lastic  m odulus and con tact num ber close to  jam m ing.
Figure reproduced from [17]. (a) Elastic modulus G q versus packing fraction 
4> — 4>c, where (f)c ~  0.84 is the onset of jannning, for a range of polydispersities 
in 2D and 3D. a  denotes the coefficient of elastic repulsion, with o- =  2 for 
harmonic repulsion. The solid line for a  =  2 denotes slope 0.5 on a logscale. 
(b) Contact number Z  minus contact number at jamming transition, Z c ,  

versus (f) —  (j)c- The solid line denotes slope 0.5 on a logscale.
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Figure 1.20: In v e rse  v isco s ity  v e rsu s  sh e a r  s tre s s  in  sy s te m s  n e a r
ja m m in g , (a) Inverse shear viscosity, 7j, versus shear stress, c , for a range of 
packing fractions, p, inset, calculated using the soft disk model, (b) Rescaling 
by the packing fraction minus the packing fraction at jamming, here called 
p  —  P c ,  collapses the da ta  onto two master curves, p  >  p c  and p  <  p c -  Their 
scaling exponents, /? and A, are calculated from the scaling of rj with p  and 
a  respectively. Figures reproduced from [77].
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Static  soft disk packings have been extensively stud ied  by O ’Hern et 

al. [17,76], in order to  characterise packing behaviours close to  the jam ­

ming tran sition  and to  classify a so-called critical point J  for foams, m od­

elled after therm odynam ic phase transitions. The struc tu res  are calculated 

by m inim ising the  po ten tia l energy of the overlapping disks via conjugate 

gradient descent. O ’Hern et al. suggest th a t the  janm iing  point is “a point 

of m axim al disorder and m ay control behaviour in its vicinity” . As such, in 

C hap ter 2 we probe packing fractions in our sim ulations tow ards, bu t not 

below, random  close packing, and ex trapo la te  scaling behaviour based on 0 c, 

sim ilar to  O ’Hern et al.

Olsson and Teitel expanded on the  work of O ’Hern et al.  ̂ considering 

dynam ic sim ulations using the  soft disk model [77]. Furtherm ore, they  added 

an additional ingredient to  the soft disk model: a miiform shear flow in the 

event th a t disks do not touch. This allows the  sim ulation of system s below 

(pc- They showed th a t the inverse shear viscosity i]~^. where r/ =  a / 7  could 

be rescaled using 4> — (f>c to collapse onto two m aster curves, above and below 

the jam m ing density  (pc for a range of packing fractions, see Figure 1.20. 

The scaling strongly suggests th a t J  is a second-order phase transition  [77], 

illustrated  in the  inset of Figiu'e 1.21.

1.4.4 The Leiden m odel, in sim ulations by Tighe et 
al.

M otivated by the  w'ork of Olsson and Teitel, and in com plem ent to  the  exper­

im ents of K atgert et a l ,  the  Leiden group have recently  published a theory  

connecting the  scaling of velocity fluctuations in a foam  to  the  scaling of the  

viscous shear stress near jam m ing [79]. A schem atic representation of the  

outcom e of their theory  is reproduced in Figure 1.21 (a).

Their theory suggests four regimes: a yield stress regime, where Eq 

(2.4) holds; a transition  regime, close to  jam m ing, w'here the  exponent of a 

Herschel-Bulkley type  relation scales w ith bo th  n ex — and n oc 7 ^^;

a critical regime w ith n oc 7 ^/^; and finally a viscous regim e w ith n  oc 7 .
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Figure 1.21: T h e  L e id e n  m o d eL  F igure reproduced from [79], (a)
Schem atic representation  of th e  four regim es of the  Leiden model, YS: yield 
stress, T: transition , C: critical, V: viscous. The blue curve depicts the  
scaling of the  viscous stress, w hilst the red curve describes the  bubble fluctu­
ations in term s of average velocity divided by s tra in  rate , |A t> |/7 , versus 7 . 
A4> = 4> — (j)c, where (f) is the  packing fraction and (f)c th e  jam m ing transition , 
(b) Collapse of the  d a ta  of T ighe et al. for the  “tran s itio n ” and “critical” 
regimes, for a range of packing fractions and s tra in  rates.
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W ith  th ree flow regimes (excluding the  regim e below the  yield stress), 

they  note th a t  it is impossible to  collapse all d a ta  onto one curve, showing 

a collapse and excellent agreem ent of their sim ulated  d a ta  w ith their theory 

across a range of s tra in  rates and packing fractions for the “tran sitio n ” and 

“critical” regimes (Figure 1.21 (b)) [79].

T ighe et al. note th a t their m odel could explain the  range of values for 

n found in the  litera tu re , based on the range of stra in  rates an individual 

experim ent examines. It indeed yields a convincing collapse for a range 

of system  param eters, b u t some questions rem ain. Despite classifying four 

regimes, d a ta  for only three are presented, w ith  the  viscous regime where 

fj ~  7 om itted . Their derivation requires th e  disassociation of the  elastic 

and viscous com ponents of the shear stress in to  dom inant regimes, but does 

not address w hat (if any) interplay exists betw een these two quantities during 

the  transien t, “critical” regime.

Of in terest to  us in th is thesis is th a t, beyond the  initial power balance as- 

.sumption th a t the power supplied is d issipated  by viscous effects ~  |A up  - 

an argum ent, incidentally, w'hich is again apj^licable to  layers of bubbles slid­

ing j)ast one another in the  vein of Schwartz and Princen [56] and Reinelt and 

Kraynik [58] - their m odel has no fu rther dependence on the  na tu re  of fluctu­

ations w ith respect to the  rheological response. R ather, they  show th a t  their 

model is not inconsistent w ith d istribu tions of fluctuations, provided th a t 

scaling is applied only to  the variance of the  fluctuation d istribu tions [79] 

and noting th a t it does not cap tu re  the  change in their character, which has 

been observed in sim ulation to  be rate-dependen t [82].

We a ttem p t to  link displacem ents to  rheology directly  in C hap ter 3, and 

shall look at the  tim e evolution of displacem ent d istribu tions a t short tim es 

in C hap ter 6. O ur m otivation for th is is tied  to  th e  s tudy  of “emergence” , a 

property  of complex system s w'hich we shall now' introduce.

1.5 Foam as a com plex system

The trad itional approach of physics in understand ing  a phenom enon, as noted 

by P ietronero  [83], is to  consider the  sim plest system s and to  study  them  in
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great detail. This so-called “reduction ist” approach focuses on elem entary 

building blocks and applies, very successfully, in a great deal of physical sys­

tem s. T he existence of these blocks inherently  implies a characteristic  scale 

associated w ith the  system : atom s, molecules, or some o ther m acroscopic 

property.

There are m any situa tions, how’ever, w'here know'ledge of individual ele­

m ents is not sufficient to  characterise the  w'hole system . Such system s, in 

physics, are called complex. In physics, com plexity is thus closely related  to  

emergence. Em ergence refers to  often non-linear properties of a system  of 

in teracting  particles or agents th a t are not sim ply inherent in their individ­

ual characteristics, or derivable from them  by simple averaging procedures. 

C om plexity in physics initially  arose in the  study  of solid s ta te  physics, clas­

sified in sp irit, if not in nam e, by A nderson [84]. E n titled  “More is different” , 

the  paper questions th is reductionist approach, arguing th a t n a tu re  is o rgan­

ised in a hierarchical way, w ith individual elem ents and collective em ergent 

behaviour every tim e one moves from one hierarchy to  the  next.

T he study  of com plexity and complex system s in m athem atics, physics, 

biology and the  social sciences has exploded in recent years, facilitated  by von 

N eum ann’s prediction th a t  high perform ance com puting would revolutionise 

non-linear m athem atics [85]. W eaire and H utzler argue th a t 2D liquid foams, 

particu larly  wet foams, are an ideal test-bed  for com plexity [86]. They fea­

tu re  complex topological rearrangem ent, non-linear flow' profiles, and fractal 

scaling observed in ageing and evolution [72]. M any of these properties are 

generic, occuring independent of the  foam ’s constituents.

C an we then  say th a t a foam is a complex system ? As we shall show' 

in th is thesis, foams possess m any of the  tra its  found for complex system s. 

Power-law scaling, which we have already  seen to  emerge in the  experim ents 

of D ennin and the  sim ulations of D urian, and fat-tailed, non-G aussian dis­

tribu tions, like those seen in the  experim ents of M obius et al. are key com­

ponents of complex system s.

In addition, complex system s m ay have some or all of the  following fea­

tu res [87]:
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•  C o m p le x  s y s te m s  m a y  b e  o p e n . Com plex system s are usually 

open, in th a t  they  exist in a therm oclynam ic gradient and dissipate 

energy. Sheared foams are open system s, w ith the  work done to  shear 

the  foam dissipated  in viscous interactions. Such system s are usually 

far from energetic equilibrium .

•  C o m p le x  s y s te m s  m a y  f e a tu re  c a s c a d in g  fa ilu re s . Due to strong  

coupling betw'een com ponents in complex system s, a failure in one or 

m ore com ponents can lead to  failures in m any others, w ith a wide 

ranging effect on th e  system  as a whole [88]. Avalaiiche-like topological 

rearrangem ents are an exam ple of th is phenom enon in foams.

•  C o m p le x  s y s te m s  f e a tu r e  n o n - l in e a r  r e la t io n s h ip s .  In linear 

system s, the  response is always directly j)roportional to  the cause. In 

complex system s, strongly  non-linear coupling can lead small changes 

to  have large effects, projjortional effects or even no effect at all. This 

is som etim es referred to  as the  Butterfly Effect. As we shall see for 

foams, the  non-linear response of the stress w ith stra in  ra te  arises from 

such coupling.

•  C o m p le x  s y s te m s  r e la t io n s h ip s  c a n  c o n ta in  fe e d b a c k  lo o p s .

B oth negative (dam ping) and positive (am plifying) feedback are alw'ays 

found in complex system s. The effects of an elem ent’s behaviour are 

fed back to  in such a w'ay th a t the  element itself is altered.

•  C o m p le x  s y s te m s  m a y  e x h ib i t  m e m o ry  o r  h y s te re s is .  We shall 

see th a t foam s possess long-m emory correlations, w ith the  s ta te  of the  

system  a t a given tim e having a propagative effect on its fu ture sta te .

•  C o m p le x  s y s te m s  m a y  f e a tu r e  n e s te d  o r  s c a le -f re e  b e h a v io u r .

In fluctuations of shear stress in our foam sim ulations, we shall observe 

in the identification of trends th a t nested trends can be identified on 

nm ltiple different tim escales.

We  conclude th a t  a foam is well-described as a complex system . We can 

fram e our discussion of foam properties in the context of A nderson's hierar-
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chies, by considering the two general scales in our system: the m icroscopic  
local rearrangm ents and interactions between neighbouring bubbles, and the 

m acroscopic global or bulk response of the system.

1.6 C onclusions and O utlook

In this chapter, we have introduced foams as a material and as a complex 

system. We have introduced rheology, and outlined the system tha t we shall 

study in simulation in an effort to link foam rheology to  the complex dynamics 
at the bubble scale. Finally, w'e have given a brief overview of some of 
the experiments and simulations we shall make reference to throughout this 

tliesis.
We now look forw'ard. In Chapter 2, we shall rigorously define the sim­

ulation we study, and w'e shall investigate the macroscopic rheology that 
emerges from our model, comparing it to experimental and simulation results 
for foams, ennilsions and granular media. This will provide a framework for 
the investigation of the origins of this rheology, in subsequent chapters.



Chapter 2

M acroscopic Rheology in Soft 
Disk Sim ulations

The first step in understancUng any physical system is to express its key traits 
as simply as possible. This j^hilosophy is encapsulated by computer sinnila- 
tioii. In simulation, we attem pt to model complex physical processes using a 
minimal set of basic ingredients and assmnptions, in order to determine the 
dependencies of the physical system.

In this thesis, we wish to investigate the relationship between the non­
linear response of a foam under shear and the interactions at the bubble 
scale. To do this, we utilise com puter simulations, modelling the foam as 
a packing of overlapping disks. We shall see that, despite our model being 

governed by tw'o simple, linear interaction forces, a rich, non-linear rheology 
emerges.

In this chapter, we shall define in detail the simulation model w'e use 

to investigate the flow properties of ŵ et foams, namely the soft disk model 

introduced in Section 1.4.1. We then present results from the model for 

the scaling of the shear and normal stresses with strain rate and packing 
fraction. W'e find excellent agreement between our simulated rheology and 

experimental results for foams, providing us with a solid framew'ork for the 

investigation of the origin of this macroscopic rheology at the microscopic 
level.

41
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Figure 2.1: S c h e m a tic  o f  b u b b le - b u b b le  in te r a c t io n ,  for overlapping 
bubbles i and j ,  described by position vectors ri and rj respectively.

2.1 The soft disk m odel

We perform  sim ulations using the  soft disk model, hrst developed by D in ian  

[36,51], as im plem ented by Langlois et al. [52]. T he model is widely used in 

foam rheology, and has been shown to cap tu re  m any of the key features of licj- 

uid foams found in experim ent. In th is section, w'e define the  im plem entation 

of the  model used for th is thesis, in term s of its governing forces, param eters 

and geometry. A fu rther discussion of the technical im plem entation of serial 

and parallelised com puter code is included in A ppendix A.

2.1.1 Interaction  forces

T he soft disk m odel represents a 2D foam as a series of overlapping disks, 

confined in some geometry. T he disks are subject to  two types of forces when 

they  overlap. The first is a sim ple spring force, where the  displacem ent of the  

spring corresponds to  the  radial overlap of the  disks. The resulting  elastic 

repulsive force Fe acting on bubble i due to  bubble j  is given by:
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where k. is the coefficient of elasticity, n;j is the norm al vector betw'een bubbles 

i and j .

and the overlap A^j is given by:

R, and Rj  are the  radii of overlapping bubbles i and j ,  centered at r; 

and Tj respectively, shown schem atically in F igure 2.1. /?o is the  average 

bubble radius of the  entire packing. The ratio  ■ in Equation  (2.1) takes 

into account th a t larger bubbles are easier to  deform  than  sm aller bubbles. 

For our sim ulations, we use a linear. Hookean repulsion between the  disks, 

d irectly  proportional to  their overlaps. Experim ents by Lacasse et al., in­

troduced in Section 1.3.2, have shown th a t th is is a good approxim ation to 

the  force exerted by spherical bubbles in contact, provided the  deform ation 

is small [59].

In addition to  the  repulsion the  bubbles are subject to  a viscous drag  

force when they  are in contact.

Here q  is the  dissipation constant for bubble-bubble in teraction, and Vj and 

Vj are the  respective bubble velocities. Thus the  dissipitave force is directly  

p roportional to  the  bubbles’ relative velocity.

As m entioned in Section 1.4.1, early sim ulations of the  D urian model 

used a mean-field approxim ation for the  viscous dissipation experience by 

the  bubbles [36,51,77,81], m otivated by the  reduction  in com putational in­

tensiveness. T he drag  force was taken to  be d irectly  proportional to  the  

m ean flow velocity, assinned to  be linear, as a function of channel w idth. 

Following the w'ork of Langlois et al. and others, w'e do not use the  m ean

otherw ise
(2.3)

F d  =  - Q ( v i  -  Vj). (2.4)
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field approximation for the viscous dissipation as it has recently been shown 

to cause spurious correlations [79].

As in previous simulations on foam flow [51,52,79], we impose the drag 
force to be linear to  the relative bubble velocity. This is an approximation, 

in the interest of retaining a simple model using linear forces. We shall 

return  to a discussion of this approximation in Section 3.1. The model also 

neglects any dissipation due to the stretching of the films [21]. Furthermore, 

the model contains no equivalent of the attractive capillary force normally 

found in wet foams, instead relying on the system to be constrained by its 

geometry.

2.1.2 System  geom etry

The simulated systems comprise of bubbles, represented by circular disks, 
tha t are confined in a rectangular geometry with senii-periodic boundary 
conditions in the horizontal direction. The bubbles at the lower boundary 
have their positions fixed and are stationary. The bubbles at the upper 
boundary have their y coordinates fixed, and are given a constant velocity 
V  in the x  direction. This corresponds to a constant applied strain rate of 
7 =  1//L to the entire system, where L is the width of the channel as depicted 

in Figure 2.2.
We have simulated systems ranging from tens of disks, up to packings of 

12000 disks. For the purposes of our analysis, the system size w'e consider 

(unless otherwise specified) consists of 1500 bubbles in the bulk, 80 bubbles 

in the walls and a channel width of L =  33(d), where (d) is the average 
disk diameter. In Chapter 4 we investigate the effect of varying the system 

dimensions.

The distribution of disk sizes is known as the dispersity of the sample. A 
sample containing disks tha t are all the same size is monodisperse. In all of 

the results presented, we consider disordered, polydisperse samples, with the 

disk radii uniformly distributed in the range

E  =  /?o(l ± 0 .3 ), (2.5)
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Figure 2.2: B u b b le  t r a j e c to r i e s  o f a  l in e a r ly  s h e a r e d  fo a m , fo r a  low  
s t r a in  r a t e .  Black tra ils represent the ])ositions of th e  bubble centres during 
a to ta l s tra in  of A 7 =  0.04. Swirls in the bubble tra jec to ries indicate strongly 
non-affine displacem ent fluctuations.

where Ro is the  average bubble radius, set as a sinm lation param eter. 

Polydisperse sam ples are studied in order to  avoid crystallisation effects, 

w’hich are well known to  occur for m onodisperse foams [7,89].

In the  soft disk model, the  packing fraction, (p, is defined as

1 ^
( 2 .6 )

i

where N  is the  to ta l num ber of disks, A  is their area of confinement and 

d, is the  d iam eter of disk i. The disks are random ly placed and A  gradually  

reduced until th e  desired packing fraction is achieved. In our sim ulations, w'e 

consider a range of packing fractions above the  jannn ing  transition  in 2D of 

</)e «  0.84 [17].
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When comparing the packing fraction in soft disk model simulation re­

sults to  the liquid fraction measured in experimental results, it is im portant 

to note that they are not quite equivalent. The above definition for packing 

fraction, whilst being widely-used and accepted, double-counts overlaps be­

tween disks to return artificially high values. For instance, it is possible to 
define a simulation packing fraction greater than 1.0 , which is not possible 

in a physical system. We discuss this discrepancy and possible corrections in 

Appendix B. For the purposes of presenting our results in this thesis, we use 

packing fraction as defined by Equation (2.6).

2.1.3 Strain rate, characteristic tim escales and 

D eborah num ber

As discussed in the previous section, the strain rate is imposed by the 
moving boundary, such th a t 7 =  V/ L.  We then allow the resulting elastic 
and viscous dissipative forces, caused by the motion of the wall, to  propagate 
through the system. Each bubble is allowed to move independently subject 
to the forces in Equations (2.1) and (2.4), with the respective position and 
velocity resolved at each simulation time step using the Verlet algorithm. We 
define this algorithm in Appendix C. Following a transient regime, a steady 

state, linear velocity profile is established, see Figure 2.3.
As a type of molecular dynamics simulation, timescales play an imj^ortant 

role in the properties of the soft disk model. We will briefly discuss three 
relevant timescales here, namely the inertial and viscous timescales, and the 
characteristic timescale of the deformation process.

The inertial timescale, a measure of the characteristic time of the motion 

of disks with respect to  their masses and inertias, is given by

Tj 77Z()/C(^, (2.7)
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Figure 2.3: A  ty p ic a l  v e lo c ity  p ro file  fo r t h e  s te a d y  s t a t e  flow  in  a  
so f t  d isk  m o d e l  s im u la t io n . Here, the  velocity profile has been averaged 
over a stra in  of 7  =  375, in the steady -sta te  flow. We consider the  region 
betw een the  vertical dashed lines as w ithin the  bulk flow, away from the  
effects of the  boundaries, for analysis perform ed in C hap ter 3.

where rrih is the  average mass of a bubble and cj  is the coefficient of 

viscous dissij^ation defined in Equation (2.4). T he viscous tim escale, related  

to  the  ra te  of dissipation of energy due to  drag, is defined as

Tv =  C d / K ,  (2.8)

where k is the  coefficient of elastic repulsion from Equation (2.1). Finally, 

the  characteristic  tim e of th e  deform ation process is sim ply the  inverse of the  

s tra in  ra te , 7 “ '.

In order to  accurately m odel the  physical system , where bubbles are es­

sentially  massless, we ensure th a t inertia  is negligible in the  system , i.e. th a t 

the  dynam ics in the  system  are overdam ped. This is achieved by choosing 

a very small ratio  of the  inertial tim escale to  the viscous timescale. In our 

sim ulations the ratio  t^ /t^  is set to  Ti/T^ = Kruh/cj = 0.015.

It is convenient, for a dimensionless presentation  of the  results, to  in tro­

duce the  Deborah numher, De, which is defined as the  ratio  of the  charac­

teristic  tim e of the  m aterial th a t is sheared to  the  characteristic  tim e of the
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deform ation process 7  ^  Since inertia  is negligible in our sim ulation, the 

characteristic tim e scale for the  foam is ~  c^/k  and we have

De =  7 Q/K. (2.9)

In order to  accurately  resolve the  m otion of the disks in sim ulation, the 

tim estep used to  perform  the  Verlet calculations should be much shorter 

th an  the shortest tim escale in the system . This has the  effect th a t  for high 

stra in  rates, the  sinm lation tim estep m ust be reduced, as the  inverse s tra in  

ra te  rapidly becomes the  shortest tim escale in the  system . We list the  tim e 

resolutions used in A ppendix D.

2.1.4 Stress and the elastic m odulus

We calculate the  stress in the  system  due to  shear by sum m ing the  forces 

acting on the boundaries. T he two-dim ensional shear stress a  is m easured by 

taking the  sum  of the  forces along the  x  direction th a t act on the  boim dary 

bubbles, divided by the  length of the  channel, at each ou tpu t tim e step. 

Analogously, the  norm al stress II is found by sunm iing the  forces on the 

boundary  bubbles along the  y  direction. The stresses are m easured on both  

boundaries.

As in troduced in Section 1.2, and depicted schem atically in Figure 1.4, 

for low' stra ins, below some yield strain 7 >', the  foam deform s elastically, as 

described by E quation  (1.9). A fter the  stress exceeds the  yield stress, a y ,  

the  foam yields and begins to  flow'.

We m easure the  s ta tic  shear m odulus Go from the  stress-stra in  curves 

averaged over m ultiple different realisations for each value of packing fraction 

(f). Each realisation is allowed to  relax to  m echanical equilibrium , before 

being sheared at a very low' s tra in  rate. For small stra ins (less th an  th e  yield 

stra in  of a few percent) the  deform ation is approxim ately  linear in stra in  

such th a t o =  Gq7 , see Figure 2.4 (a). We non-dim ensionalise our results for
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Figure 2.4: T h e ela stic  m od u lu s, G q. (a) Stress, normalised by the coeffi­
cient of elastic repulsion k  from Equation (2.1), versus strain, for a very low 
strain rate simulation. This sample has been relaxed to mechanical equilib­
rium before being sheared. The solid line marks the value of Go calculated 
for this packing, (b) G q / k  p lotted as a function of packing fraction (j). The 
solid line plots a two-param eter fit to the pow’er law' relation Go oc (0 — 
w'here 4>c is the januning point. We find 0c =  0.84, in good agreement w’ith 
the literature for 2D foams [17]. This relation has been found to hold for 
foams wdth harmonic interaction in both 2D and 3D simulations [17].
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Figure 2.5: S h e a r  s tre s s  v e rsu s  s tra in .  Shear stress, normalised by the 
elastic modulus Go, versus strain, for De = 7.56 x 10“® and 4> = 0.95. The 
stress oscillates about the mean, which we calculate from the data  and which 
is shown here by the horizontal black line.

stress using the appropriate value of Go for the simulation, which varies as a 
function of packing fraction. Figure 2.4 (b), via

Go oc ( ( ? ! . - ( 2 . 1 0 )

w'here 0c is the jamming transition, and a  is the exponent of repulsive 
interaction - in our case a  =  1, for harmonic interactions [3].

After an initial transient regime, the foam reaches a steady-state flow, 
with the stress fluctuating about a mean value w'hich is independent of time. 
Figure 2.5 shows a typical example of shear stress versus strain for steady 

state  flow, with De = 7.56 x 10“®. The black horizontal line delineates the 

average shear stress calculated from the data. We calculate the mean stresses 

in the steady state  flow, for high strains far beyond the yield strain.

We now use these results to investigate two relations: the Herschel- 
Bulkley equation (Equation (1.10)), and the model put forward by Jop et 
al. [32] introduced in Section 1.3.6.
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Figure 2.6: S h ea r s tre s s  v e rsu s  D e b o ra h  n u m b e r. The normalised 
shear stress (t/Gq versus close to five decades of Deborah number, for 
(f) =  0.95. The black line is a fit to the Herschel-Bulkley equation (1.10) 
up to De  =  2.0 X 10“ ,̂ with n =  0.51 ±  0.01, ay  =  (3.4 ±  0.1) x  10”^Go 
and Cy =  (2.04 ±  0 .0 4 )G ’o(crf /K )" .  The Herschel-Bulkley equation is found 
to inadeciuately describe the data for high strain rates. We return to this in 
Chapter 3.

2.2 T he H erschel-B ulkley relation for 

packings of different densities

As introduced in Chapter 1.2, the Herschel-Bulkley equation (1.10) is an 

empirical relation th a t has been found to describe well the flow of foams and 
other non-Newtonian fluids.

Figure 2.6 shows average shear stress <t, normalised by G’o, plotted as a 
function of Deborah number (which is simply the non-dimensionalised strain 
rate 7 , see Equation 2.9), for a packing fraction of <̂ =  0.95. The range of 

these simulations covers nearly five decades of strain rate. This range poses 

several technical challenges, discussed in more detail Appendix D. We do 

not probe Deborah numbers beyond De ^  0.5. At this point, voids s ta rt to 

appear in the sheared foam (see Figure D .l). This is a known limitation of
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the soft disk model and is ascribed to the simplification of the model that 

non-overlapping disks do not experience viscous interactions [90].
The Herschel-Bulkley relation is found to describe the flow profile well 

for low strain rates, yielding an exponent of n =  0.51 ±  0.01 for (p =  0.95, 

in agreement with the range of experimental results observed [21,22,27]. 

However, as the strain rate increases the relation is found to no longer hold. 

We shall discuss this in more detail in Chapter 3. For now', we shall focus 

on the dependence of the yield stress ay  and the Herschel-Bulkley exponent 
n  with packing fraction cf), for the regime w'hich w'e shall refer to as the 

“Herschel-Bulkley regime” .
Figure 2.7 plots the shear and normal stresses as a function of Deborah 

number, for five different packing fractions, 0 € {0.85,0.88,0.92,0.95,0.98}. 

These values of shear stress a and normal stress H have been normalised by 
the appropriate value of Go(^), see Figure 2.4 (b). For comparison, the axes 
and symbols in both plots are identical. The black circles in Fig 2.7 (a) are 
identical to those in Figure 2.6.

The solid lines in Fig 2.7 (a) show fits to the Herschel-Bulkley equation 
(1.10), a = ay  + Cy'j", over the range 5 x 10“® < De  <  2 x 10“ .̂ For higher 
values of De,  we once again find tha t the Herschel-Bulkley equation fits the 
data  poorly. Again, we postpone discussion of this regime until Chapter 3, 
and shall instead focus on the low' strain rate regime where we observe the 

Herschel-Bulkley equation to w'ell describe the flow' properties.
In Figure 2.8, we plot the yield stress ay  and exponent n, taken from the 

fits in Figure 2.7 (a), as a function of (f) — 4>c- We use 0c =  0.84, from our fit 
in Figure 2.4 (b) and in agreement w'ith the literature [17].

It has been found th a t, for foams and enmlsions in 3D, the yield stress 

scales W'ith packing fraction [3,37], via

(yy = ^{4> -  ( 2 . 11 )

for packing fractions in the range 0.7 <  0 <  0.95. At lower values of 

(p, Saint-Jalmes et al. a ttribu ted  deviation from this square root scaling to
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Figure 2.7: S h ear a n d  n o rm a l s tre s s  as a  fu n c tio n  o f  p ack in g  fra c tio n .
(a) Shear stress a, norinahsed by Go{4>), versus De for five vahies of packing 
fraction: (p = 0.85, ( O) ;  </, =  0.88, ( A) ;  ^  = 0.92, (V); 4> = 0.95, ( • ) ;  (/> =  0.98, 
(□). The sohd hnes show fits to tlie Herschel-Bulkley equation (1.10) up to 
De = 2.0 X 10“ .̂ Once again, for all packing fractions the Herschel-Bulkley 
equation is found to fit poorly as one approaches high strain rate, (b) Normal 
stress n , normalised by 6'o(</>), versus De.
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Figure 2.8: Y ie ld  s t r e s s  a n d  H e r s c h e l-B u lk le y  e x p o n e n t  v e rs u s  p a c k ­
in g  f r a c t io n ,  (a) a y / n, versus 0  —0c- T he solid line shows a one-param eter 
fit f { x )  =  mx,  w ith m =  0.033 ±  0.003. In experim ent, yield stress in foams 
and em ulsions is found to  be approxim ately  linear at low packing fraction, 
in qualita tive  agreem ent w ith our findings [13,33]. The yield stress then  
rapidly  increases for dry  foams at high packing fraction (or low liquid frac­
tion). We rem ind the  reader th a t  our values for 4> ranging up to  (/) =  0.98 
are h igher th an  their equivalent experim ental gas fraction, see A ppendix B. 
(b) Herschel-Bulkley exponent, n, versus (f) — 4>c. T he solid line plots a linear 
regression fit, f { x)  =  -0 .8 5 (± 0 .0 3 )x  - I -  0.606(it0.003). All values lie w ithin 
the  range reported  in experim ent [21-29].
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rapid drainage of the wet foams making measured values of packing fraction 

unreliable [37].
In contrast, we find ay  to increase approximately linearly with 4> for 2D, 

shown in Figure 2.8 (a). Quasistatic simulation results in 2D have found 

tha t, for wet foams, the yield stress initially increases linearly with pack­

ing fraction. As the foam approaches the dry limit, the yield stress then 
dram atically increases [13,38].

This behaviour is not surprising: for an increased packing fraction, the 

foam gains more rigidity and more elasticity. In the limit of 0 —)• (f)̂ , the foam 
(in general) loses mechanical stability (below random close pack), and the 
yield stress falls to zero. We do not observe a rapid increase in yield stress 
as w'e reach higher packing fraction. The linear trend continues even for 

(f) =  1.05,1.10, not presented here. We attribu te  this to the soft disk model, 
ultimately, being a model appropriate for w et foams. The model makes no 
attem pt to capture the physical behaviom' of dry foams as the licjuid fraction 

tends to zero, where the bubbles are no longer well represented by disks. Our 
results compare well with (juasistatic simulation results for low provided 
one accounts for effective j)acking fractions our values of 0 represent (see 
Appendix B). Comparing with experhnents in 2D is more difficult, as it is 
not straightforward to define a liquid fraction for a 2D foam either traj^ped 
between tw'o plates, or in contact with a licjuid reservoir (see Figure 1.5).

In Figure 2.8 (b), w'c see th a t the Herschel-Bulkley exponents calculated 

scale inversely proportional to (j) — 4>c- All values for n  measin’ed fall w'ithin 
the range reported in experiment and simulation [21-29]. To our knowledge 

this is the first time the Herschel-Bulkley exponent has been calculated as a 

function of packing fraction, using the soft disk model. The closest compara­

ble study is that of Tighe et al. [79]. Their model expects tha t the exponent 

should scale independent of packing fraction within their critical regime, and 

should increase with packing fraction w'ithin their transient regime, see Fig­
ure 1.21 (a). Our results do not agree with their model, for the range in 

which we have fitted the equation. We note tha t our values fall within the 

range n = 0.5 ±  0.1, close to their expected exponent for the critical regime, 

and also tha t the model of Tighe et al. concerns only the elastic component
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of the shear stress. A weak dependence of the viscous component of the shear

2.3 A con stitu tive  m odel of foam rheology

In this section, we apply a modified version of the constitutive law of Jop, 
Forterre and Pouliquen [32], developed as a continuum model for dense gran­
ular flows, to foam flow data. This is the first time this has been done for 

foam data  in siumlation. We find tha t their model provides a good collapse 

of the da ta  presented in Section 2.2, for all packing fractions, and find our 
data  to agree well with comparable experiments of Lespiat et al. in 3D [30].

2.3.1 O rigin o f th e  m od el for granular m ed ia

The consit\itive model builds on work showing tha t, for graimlar flows, the 
shear stress a is proportional to the normal stress 11, via a coefficient of 

proportionality /i(/):

/  is a dimensionless param eter, called the inertial number for granular 
media, given by

where d is the average particle diameter, and ps the coefficient of static 

friction. For granular systems, I  can be interpreted as the ratio between two

stress on the packing fraction could perhaps explain the discrepancy.

a = p{I)Yl. ( 2 . 1 2 )

(2.13)

timescales: the characteristic timescale of deformation I / 7 , and an inertial 

timescale {cfps/U)°-^ [32],

2.3 .2  A d a p tin g  th e  m od el for foam s

For foams, and in our simulations, the inertial timescale is negligible, as 

discussed in Section 2.1.3. Furthermore, there is no static friction. Motivated
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Figure 2.9: C o n s t i tu t iv e  m o d e l co llapse  fo r  f ive  p a c k in g  fra c t io n s .
ju.(/) =  a /n  versus i ,  for five packing fractions over nearly five decades of 
stra in rate. Data and symbols identical to Figure 2.7. The solid line plots 
the fit to  Equation (2.15) over the same range as our Herschel-Bulkley fits 
(Section 2.2), w ith  /.i* =  0.060±0.002 (shown also as the asym ptotic lim it for 
zero strahi rate by the horizontal dashed line), k =  0.42 ±0 .02  and exponent 
a =  0.45 ±0.02. A lthough the data collapses in the high stra in rate regime, it 
is no longer well described by the empirical scaling for I  from Equation (2.15).

by these differences, we instead use the viscous timescale, q /11 , w'here c j is 

the coefficient o f viscous drag from Equation (2.4). This yields

In  Figure 2.9, we rescale the data from Figure 2.7, p lo tting  / i ( / )  =  c r/Il, 

also called the coefficient o f viscous fric tio n , versus I  for five different packing 

fractions, (p G {0 .85,0.88,0.92,0 .95,0.98}, over nearly five decades o f strain 

rate. The data collapses remarkably w'ell for all packing fractions and strain 

rates.
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Figure 2.10: C om parison  o f coefR cient o f v iscous friction in sim ula­
tion  and exp erim en t, (a) fi{I) — fi* versus / ,  for our sinnilations. //* is 
calculated from the fit to the data in Figure 2.9. The solid line, with a log-log 
scale, shows the pow'er-law' scaling a =  0.45 ±  0.02. (b) /i( /)  — j.L* versus / ,  
for the experiments of Lespiat et al. [30]. Our results compare favourably 
to their result of a =  0.38, for foams (blue) and immersed granular material 
(red) in 3D.

We find //( /)  is well fit by the empirical functional form

f i{l ) = Ij* + k l \  (2.15)

where is the static value for ratio of shear to normal stresses, i.e. // =  //* 

w'hen 7 =  0, k is a proportionality coefficient, and a is a scaling exponent. 
The solid line in Figure 2.9 plots the fit to Equation (2.15) over the same 
range as our Herschel-Bulkley fits (Section 2.2), with fi* =  0.060 ±  0.002 

(shown also as the asymptotic limit for zero strain rate by the horizontal 
dashed line), k =  0.42 ±  0.02 and a = 0.45 ±  0.02. Although the data  

collapses in the high strain rate regime, it is no longer ŵ ell described by the 

empirical scaling for I  from Equation (2.15). We attribu te  this to  a change 
in the flow behaviour in this regime, which we discuss in Chapter 3.

Figure 2.10 (a) replots our data in the form — versus /. Comparing 

our results w'ith the experiments of Lespiat et al., we find good agreement.
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For 3D foams subjected  to  linear shear, they  find / j{I) — iJ* oc shown 

in Figure 2.10 (b) reproduced from [30].

2.3.3 The angle of repose

T he static angle o f repose is the  angle a pile of grains at rest on a plane 

makes w ith th a t  plane, see Figure 2.11 (a). The angle of repose for sand, for 

instance, is visible on a large scale in arrays of sand dunes, whose downwind 

faces tend  to  have slopes close to  the  angle of repose for dry sand of about 

30° — 34° [91]. For granular m edia, th is angle is rela ted  to  the  coefficient 

of s ta tic  friction j.is =  a / \ \  [67]. This friction o])poses the  sliding m otion of 

grains down a pile as more grains are added.

For foams, where the bubbles are essentially massless, we instead look at 

piles formed by bubbles rising under the  effect of buoyancy and coming to  

rest against a plane. Such wet foams are observed to  have a s ta tic  angle of 

repose, in p lanar and circular geometries (Figure 2.11 (b)) in experim ent [30] 

and sim ulation [92], even in the  absence of s ta tic  friction.

At zero s tra in  rate . / / ( / )  =  //*, and Ecjuation (2.12) retu rns the  s ta tic  

angle of repose a  . where

a  =  ta n “  ̂ ^  =  ta n “  ̂ //*. (2-16)

From our da ta , we can com pute a s ta tic  angle of repose for foams. We 

find a  = 3.4 ±  0.2°. In a 3D linear geometry, Lespiat et al. find a value 

of 4.6 ±  1.0° in experim ent [30], whilst Peyneau et. al find 5.76 ±  0.22° for 

sim ulations [92]. In experim ents and sim ulations using the  2D ro ta ting  drum  

geom etry featured  in Figure 2.11, our group find a value of 4 .8±0.5° [93]. The 

slightly lower value we obtain  from our soft disk m odel sim ulations com pared 

to  o ther values m ight be caused by the  effects of different system  geometries. 

We retu rn  to  th is discussion of the  angle of repose in Section 4.2.1.

O ur results, showing th a t  a constitu tive law developed for dense granular 

flow's also describes the flow of foams in sinnilation, provide further support 

for the  analogy of foams as granular media.
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F igure 2.11: T h e  a n g le  o f  r e p o s e , (a) Schem atic representation of the  angle 
of repose a . In th is schem atic gravity is acting downwards, and the  shear 
and norm al stresses generated by the  particles’ weight. The balance betw'een 
norm al and shear stresses controls a ,  via t a n a  =  FshearZ-fNormai =  <7/11. (b) 
T he s ta tic  angle of rej)ose of a wet, 2D foam in a ro ta ting  drum  geometry. 
For foams, where the bubbles are essentially massless, the  buoyancy plays 
the  role of w'eight. After having been subject to  oscillatory m otion in the 
d rum , the  foam comes to  rest a t a non-zero angle of repose, shown by the  
red line. P hotograph  courtesy of V. Poulichet.

2.4 C onclusions and O utlook

T he soft disk m odel, which ŵ e have defined in th is chap ter and which we shall 

use extensively in th is thesis, has been seen to  accurately  cap ture  m any of the 

key features of bulk wet foam rheology. It cap tu res th e  visco-elasticity of the  

m edium , w ith a yield stress scaling w ith packing fraction in agreem ent w ith 

experim ent, in the  wet lim it. It reproduces the  non-linear scaling of stress 

w'ith s tra in  ra te  em pirically described by the  Herschel-Bulkley equation, w ith 

exponents in the  range of values reported  in the  experim ental literature . 

Furtherm ore, w’e have shown th a t  it cap tu res scaling of the  m acroscopic 

friction coefficient f i{I) w ith  dimensionless s tra in  ra te  / .  This constitu tive 

m odel w'as first show'ii to  hold by Jop et al. for granular m edia in experim ent,
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and later by Lespiat et al. for foams in 3D experim ents. Here, we have shown 

for the  first tim e th a t this scaling is also found in 2D foam sinm lations.

All of these results are im portan t, in the overall context of th is thesis. 

We aim to  stTidy the  complex dynam ics in the  flow of foams, and in th is 

respect sim ple models such as the soft disk m odel are crucial. Unlike the  

m ore challenging experim ental equivalents, in these m odels it is easy to  track  

the  dynam ics, and to  obtain  good s ta tis tics  over m any decades of variation. 

Large volumes of high-quality d a ta  are v ital in the  s tu d y  of com plex system s, 

where one often relies on s ta tis tica l m easures. T he soft disk m odel accurately  

captures these quintessential features of foam flow, strongly  validating it as 

an appropriate  model of how bul)ble-scale in teractions propagate. This makes 

it an ideal tool for a ttem p ting  to  understand  com plexity in foams.



62 C hapter 2. Macroscopic Rheology in Soft Disk Simulations



Chapter 3

M icroscopic Dynam ics, 
R elaxation and Flow

In the jn'evious chapter, we liave defined the sinnilation model utilised to 
study 2D foam rheology. and we have shown that it captures the strongly 
non-linear, visco-elastic behaviour known for foams from ex})eriments. At 

a local level, the model is extremely simple, w'here interacting bubbles are 
governed by two linear forces. Yet, from the aggregation of these interac­
tions throughout the system, we see a rich landscape of complex dynamics 
emerging.

It is from these complex dynamics tha t the non-linear response, often de­
scribed by the Herschel-Bulkley ec}uation, originates. Ultimately, the shear- 
thinning rheology originates from dissipative bubble rearrangements tha t re­

lax transient elastic stresses and from non-linear viscous dissipation between 
bubbles. The main aim of this thesis is to find meaningful w'ays of relating 

the complex dynamics at the bubble scale to the rheology of foams. In this 

chapter, we shall look at fluctuations in bubl)le displacements during shear, 

and relate these to the shear stress via a deforniation-relaxation argument 

w'hich has been used to calculate the viscosities of Newtonian fluids [94].
The link betw'een the shear-induced dynamics on the bubble scale and the 

resulting non-linear bulk response is not entirely resolved. Moreover, the va­

lidity of the Herschel-Bulkley relation itself has been called into question [79].

63
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Previous w'ork on the  relation betw'een bubble m otion and bulk stresses in 

sheared foams has often focused on the  extrem es of low' or high shear ra te  

regime. For the  la tte r, m odels [21] based on P rincen’s work [53] have been 

proposed th a t  assum e an ordered foam s tru c tu re  th a t flow's along the  crystal 

planes. For low shear rates, deform ation-relaxation type models [29,79] have 

been put forward as well as a theory  based on fluidity [95], which has been 

m otivated by recent experim ents th a t  exhibited non-local rheology in emul­

sions [31,96]. How'ever, th e  tran sition  betw'een these two regimes is not w'ell 

understood. W hile it is known from experim ents [97] and sim ulations [81] 

th a t the  dynam ics on the  bubble scale undergo a change from in te rm itten t 

rearrangem ents to  a m ore lam inar-type flow, the  corresponding regimes of 

validity of the  rheological m odels m entioned above is unclear. Furtherm ore, 

the m ean field approxim ation used in m any foam sim ulations [36,51,77,81] 

has recently been show'ii to  differ from  sim ulations w ithout th is approxim a­

tion [79].

We address th is issue using our sinnilations w ithout the  m ean field ap­

proxim ation, j)robing the  flow over nearly five decades of s tra in  rates. In 

doing so, we succeed, for the  first tim e in sim ulations of w'et foam rheology, 

in cap turing  the  full tran sition  from low stra in  rate , non-affine How' to  high 

s tra in  ra te , lam inar flow. In the  Sections 3.2 and 3.3 we focus on the  for­

mer, and we shall see how' dissipitave rearrangem ents in the  foam under flow 

leads to  shear-induced diffusion of the  bubbles w'ith a characteristic  relax­

ation tim e intrinsically linked to  th e  flow' properties. In the  Section 3.4, w'e 

investigate the tran sition  to  the  high s tra in  ra te  regime, w'here we see the  

Herschel-Bulkley equation no longer holds, and w'here a d ram atic  change in 

microscopic dynam ics leads to  d istinctly  different rheology.

3.1 Origin o f non-linear rheology

Two different aspects of foam flow con tribu te  to  the  complex bulk rheology. 

F irst, the  drag  force experienced by neighbouring bubbles sliding past each 

o ther is nonlinear [22,48] and  governed by a pow'er law' of the  relative velocity: 

A v “ . D epending on the  n a tu re  of th e  surfac tan t, the  exponent a lies in the
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range a  w 0.2 — 0.5. Denkov and co-workers [21,22,61] have showm in 
experiments and theoretical w'ork tha t the viscous stress is directly related 

to this non-linear viscous interaction betw'een the bubbles, at least for high 
strain rates. Their model prediction is based on the flow of ordered foams in 

experiments carried out by Princen [53].

The other source of non-linearity is more subtle. As the foam is sheared, 

bubbles compress and built-up stress is relaxed through local bubble rear­
rangements. The interplay between elastic loading and subsequent dissipa­

tive relaxation leads to interm ittent bubble dynamics w'ith transient sw'irls. 

Therefore, at least for low strain rates, bubbles do not move smoothly along 
the direction of shear, seen clearly in Figure 2.2.

This appears to  be the reason why the macroscopic stress scales differently 
than  the viscous dissipation between bubbles, as w'as shown both in experi­
ments [48] and simulations [52] w'hich probed the low strain rate regime.

A recent model by Tighe et al. [79] predicts a viscous regime at high 
strain rates where the shear stress simply scales with the local bubble-hubble 
dissipation. At low strain rates, the competition between elastic and viscous 
forces leads to an effective Herschel-Bulkley exponent low'er than expected 
from the local drag law.

We show tha t the results from the soft disk model, as detailed below, are 
consistent with recent experimental observations in both the low and high 
strain rate regime.

3.2 N on-affine m otion  of disks under shear

In a flowing foam bubbles undergo continuous rearrangements wdiich leads 
to random motion with respect to the steady-state mean flow (v)(y). In this 

section, w'e analyse this so-called non-affine motion for a system of =  1500 

bubbles in the bulk, with Â waii =  80 bubbles making up the walls, and the 
channel width L — 33{c/), where {d) is the average bubble diameter. The 

packing fraction is set to </> =  0.95. For the purposes of our analysis of bubble 

fluctuations, we consider only bubl)les with y-coordinates of 0.2L < y < 0.8L,
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Figure 3.1: N on-affine  v e lo c ity  v e c to r  field for low  s tr a in  ra te . Visual­
isation of a soft disk model simulation, with De = 3.79 x 10'^ and (p = 0.95. 
The arrows show the instantaneous non-afhne velocity vectors of the bub­
bles, that is their velocities minus the steady-state mean flow (v(y)). We see 
complex, swirling patterns and strongly non-affine motion in this low strain 
rate regime. The wall bubbles have no arrows, as their non-affine velocities 
are imposed by the simulation to be zero.

to avoid edge effects due to close proximity to the boundary. We return to a 

discussion of what happens close to the boundaries in Chapter 4.

3.2.1 M ean Square D isplacem ents

Fluctuations from the steady-state mean flow can be quantified by non-affine 

displacements [29,62,81] A s(A f) over some time interval A^, which are de­
fined as follows

As(AO =  r{t + At )  -  r(^) -  (v)(y)A i, (3.1)
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where r{t) is the  tra jec to ry  of a bubble. In a linear shear geom etry the 

average velocity of the  foam, (fx)(y), changes linearly w'ith y,  as shown in 

F igure 2.3. We note th a t, for constant stra in  rate , th e  tim e interval is 

directly  proportional to  the  stra in  interval A 7  - as a dimensionless quantity, 

the  la tte r  is often a more convenient choice of variable.

Figure 3.1 shows a visualisation of the  non-affine flow of bubbles in our 

sinm lations, for De = 3.79 x 10“  ̂ and 4> = 0.95. T he black arrow's plot 

the  instan taneous non-affine velocity vectors of the  bubbles, th a t is, their 

individual velocities minus {vx){y),  during linear shear. The strongly non- 

affine displacem ents and swirling, transien t m otion show'n are characteristic  

for th e  sim ulations, in the low stra in  rate  regime. W hile an individual vortex 

in th e  bubble m otion is transien t, in general these vortices form and dissipate 

continuously over short tim escales th roughou t the  s teady  s ta te  flow'.

For our analysis, we concentrate on the non-affine m otion in the  y  di­

rection, transverse to  flow. Longitudinal m otion presents difficulties when 

sub trac ting  the m ean flow. In calculating the  m ean flow we average the 

displacem ents of the bubbles into bins. The longitudinal m ean flow is thus 

discretised, and there  can be small errors ujjon sub trac tion  when the  bub­

bles’ y-coordinates change. These errors, w'hile small, accum ulate throughout 

calculations. The m ean flow in the transverse direction is zero, and the fluc­

tuations  in the  m ean flow w ith tim e are smaller, producing much sm oother 

sta tistics.

From the  non-affine displacem ents. Equation (3.1), ŵ e can com pute the  

m ean square displacem ent (As^) transverse to the  shear direction. Fig­

ure 3.2(a) show's the change of (As^) w'ith stra in  A-, at De  =  7.6 • 10“ ,̂ 

which is again in the low' s tra in  rate , Herschel-Bulkley regime.

T he corresponding probability  d istribu tion  functions (PD Fs) in Figure 3.2(b) 

of the  transverse non-affine displacem ents Asy{At)  reflect the  qualita tive  

change in behaviour as a function of stra in  interval. At low' stra in  intervals 

A 7 , w'e see a fat-tailed  d istribu tion . Such d istribu tions are often encountered 

in the  s tudy  of complex system s, and we w'ill re tu rn  to  a much more detailed 

discussion of them  in C hap ter 6 . T he m ajority  of the  bubbles move very lit­

tle relative to  the bulk flow' of the m edium; hence the  P D F  of the  non-affine



68 Chapter 3. Microscopic Dynamics, Relaxation and Flow

10°

10°
Ay

-2

U-
Q
Q.

- 4

- o oocax

0 20 40-40 -20

Figure 3.2: N on-afRne d isp lacem ents at low strain  rate, (a) Trans­
verse mean square displacement A s y { A t ) / c f ,  non-dimensionalised by the 
average bubble diameter d, plotted as a function of strain A 7  =  at 
De = 7.6 ■ 10“ .̂ The black lines indicate the super-diffusive and diffusive 
regimes, where the logarithmic slopes are 1.8 and 1, respectively, (b) The 
distributions of the non-affine displacements transverse to  the shear direction 
As y{ A t ) / (ASy)^'^ for three different strains A 7  at De = 7.6-10“  ̂ as indicated 
by the dotted vertical lines in (a). The distributions are shifted for clarity 
and are normalised by their respective widths. (Q ) =  3.4 • 10“ '̂ ; (A)
A 7  =  2.3 • 10“ ;̂ ( 0 ) A 7  =  1.46. The black curve is a fit to a Gaussian.The 
initially fat tail distributions converge to a Gaussian with increasing strain
A " -
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displacem ents has a strong peak a t 0. However, w'hen a rearrangem ent does 

occur it causes a very large movement relative to  the  bulk flow, leading to 

fat tails.

In con trast, a t high A 7 , we obtain  a G aussian PD F, a signature of diffu­

sion. We shall focus on th is diffusion in the  next section. At the  crossover 

betw'een the  two regimes we observe exponential tails, sim ilar to  those found 

in the  experim ents of M obius et al. [29].

The m ean square displacem ents (As^), as a function of s tra in  interval 

A 7 , follow the  same trend  for a wide range of D eborah num bers, as shown 

in Figure 3.3. Note th a t the  curves do not he on top  of each other. We 

conclude from this th a t the fluctuations are not rate-independent, th a t  is, 

shearing twice as fast does not cause the sam e fluctuations to  occur, ju s t tw'ice 

as quickly. This affords im m ediate insight into the  origin of non-linearity  

in foam rheology: the stress cannot scale linearly w ith s tra in  ra te  (as for 

N ew tonian fluids, or Bingham  fluids past a certain  yield stress regime [13]) 

when the  m otion of the  bubbles - which u ltim ately  affects their in teractions 

w ith the walls and thus the  stress - is non-triv ially  rate-dependent.

For a given stra in , we find the  fluctuations of the  bubbles to  decrease 

w ith s tra in  rate , which again agrees w ith experim ental observations [29].

3.2.2 Shear-induced diffusion in foams

In therm al system s, particles are subject to  diffusion over tim e due to  random  

v ibrational m otion associated with their therm al energy. In general, the  m ean 

square displacem ent of particles, (As^), diffusing in tim e A / can be described 

by the  diffusion equation,

(As^) =  2nDA^'^“ , (3.2)

where n  is the num ber of dimensions, D  is the  diffusion constant and du. 

is the  anomalous diffusion exponent [98].

For norm al diffusion d .̂ =  1, and one recovers the  fam iliar B row nian 

m otion or random  walk, i.e. (As) oc \ / t .  We call th is th e  diffusive regime.  

This regime corresponds to  regions of slope 1 in logscale plots of (Aa"^) against
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Figure 3.3: M ean square d isp lacem ent versus strain  interval. (As^) 
plotted as a function of A-y, for a range of Deborah numbers (cx strain rates): 
De:{ + ) 7.6 • lO"®; (x ) 7.6 ■ IQ-^; (v ) 6.1 • IQ-''*; (□) 1.5 ■ IQ-^; (■) 4.6 • IQ-^; 
(0) 6.1 • 10“'̂ ; (T) 6.8 • 10“ ;̂ (a )  7.6 • 10“ .̂ The black line indicates a slope 
of 1 which corresponds to diffusion. At high strain rates a plateau emerges 
as a result of lane motion, discussed further in Section 3.4.

A'} (analagous to A t  for constant strain rate 7 ), as is plotted in Figures 3.2 

(a) and 3.3.
For transport through porous media, fractal networks, and other complex 

systems such as financial m arkets (see Chapter 6 ), anomalous diffusion has 

been observed [98]. Here, can have a value less or greater than  1, cor­

responding to  a subdiffusive (slope< 1 ) or superdtffusive regim.e (slope> 1 ) 
respectively.

In Figures 3.2 (a) and 3.3, linear regions of slope 1 are visible for suffi­

ciently high A 7 , consistent with diffusion. Furthermore, as shown in Fig­

ure 3.2 (b), w'e recover Gaussian distributions for non-affine displacements at 
high strain  intervals. The Gaussian function is a solution of the linear diffu­

sion equation ^  =  D 'V^P{x,y).  From these observations, the conclusion is 

draw'll th a t the bubbles undergo diffusion.
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However, unhke sim ilar colloidal system s such as glasses, w'hich have 

therm al in teractions and thus undergo therm al diffusion, foams are ather- 

m al system s. In foams, th is diffusive m otion is instead due to  a process 

called shear-induced diffusion, where diffusion of bubbles over tim e results 

solely from the  topological s truc tu ra l rearrangem ents caused by the  shear­

ing of the  foam. For a sufficiently large stra in , the  non-affine m otion of an 

individual bubble undergoing successive rearrangem ents as the  foam flows 

is w ell-described by a random  walk, where the  “steps” are irreversible T1 

transitions.

It is in teresting  to  note th a t, for short tim es, w'e observe the m ean square 

displacem ents to  be superdiffusive. scaling as approxim ately  ® (Figure 3.2 

(a)). A scaling w ith would correspond to  ballistic m otion, which we w'ould 

not expect since in our model the disks are at all tim es in contact w ith neigh­

bours and thus subject to  a dissipative force. Superdiffusion has been found 

to  arise in system s featuring fat-tailed  d istribu tions such as Levy flights [99]. 

Here, then , it is perhaps not surprising th a t our fat-tailed , strongly nonaffine 

m otion generated  by T1 transitions scales superdiffusively a t short times. 

Superdiffusion has been a ttr ib u ted  to  active cell tran sp o rt properties, where 

average local m otion is expedited above th a t of a random -w alk diffusion by 

topology or chemical in teractions [1 0 0 ].

From our m ean square displacem ents, we can thus calculate stra in  ra te  

dependent diffusion constants, We use the  relevant, simplified form of

Ecjuation (3.2),

(A 4 )  =  2D (o)A f, (3.3)

fitting  to  the  d a ta  in the  diffusive regime.

As seen from Figure 3.4, the diffusion constan t D  increases w ith stra in  

rate . This behaviour is exj)ected since diffusion is a direct result of shear- 

induced rearrangem ents whose rate  is increasing w ith 7 .

At low s tra in  rates, w'e find th a t D  is approxim ately  linear in 7  as is 

expected in a quasista tic  regime w'here all the  displacem ents scale w ith the 

strain ; i.e. as the  s tra in  ra te  is doubled, the  ra te  of rearrangem ents doubles
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Figure 3.4: D iffusion  c o n s ta n ts  v e rsu s  D e b o ra h  n u m b e r. Normalized 
diffusion constant Dcd/{K(f)  as a function of De. At low De, D  oc De. For 
De > 0.03 D  is starting to decrease due to bubbles starting to be trapped in 
lanes.

which in turn  leads to twice as much diffusion. In experiments on two- 
dimensional foams this quasistatic regime [29, 97] has not been observed, 

presumably due to the fact tha t creep due to coarsening would dom inate at 
these low' strain rates.

At around De  «  10“^, the increase of D  becomes nonlinear, w^iich is also 

observed in experiments [29] and simulations of the Durian bubble model [81]. 
A power law' scaling for D  has been suggested in experimental work by both 

Wang et al. [62] and Mobius et al. [29]. We observe there to be a nontrivial 

scaling of D  over a larger range of strain rates than  examined in these papers, 
in agreement with simulations of Ono et al. [81].

At yet higher Deborah numbers we see, once again, tha t the behaviour 

of the system undergoes a qualitative change, at around the same Deborah 

number where we found the Herschel-Bulkley equation to no longer accu­

rately describe the data (Section 2.2), and the empirical fit to the Pouliquen 

model collapse to fail (Section 2.3).



3.3. A deformation-relaxation model for foam flow at low strain rate 73

Here, finally, we can glean an insight into why this occurs. This change in 

behaviour arises from a change in dynamics at the bubble level. The bubbles 

start to become trapped in moving lanes parallel to the shear direction, as 
show'n in Figure 3.8. We postpone the discussion of this high strain rate 

regime until later in this chapter. For now', we shall simply highlight tha t 

this lane motion is the origin of the plateau in the mean square displace­

ment starting  at approximately A 7 =  1, seen in Figure 3.3. These plateaus 
occur at approximately an average displacement (As) «  0.2(d), a fraction 

of a diameter, indicating the bubbles become trapped in lanes. At large 

strains, lane switching of the bubbles eventually causes transverse diffusion, 
on a different timescale. For this reason, the diffusion constant decreases for 

Deborah numbers greater than  0.03. We shall return to this transition to 
lane motion in Section 3.4.

3.3 A deform ation-relaxation m odel for 

foam flow at low strain rate

We now relate the rearrangement rate, nieasmed from the non-affine bubble 
fluctuations, to the rheology of the simulated foam in an approach similar 
to previous experimental [29] and theoretical w'ork [79,95]. This approach is 
akin to a deformation-relaxation model that is usually used to describe the 
microscopic origin of viscosity in Newtonian fluids.

3.3.1 The relaxation tim e

In New'tonian fluids, viscosity rj can be related to  the dissipation rate per 
unit volume [94]. Consider a small volume within a flowing Newtonian liquid, 

dimensions A x  by Ay by Az .  The work done to m aintain the flow' (velocity 
v) of the liquid in the z-direction is given by:

—  =  F v  =  { a A x A y ) { j A z ) . (3.4)
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Figure 3.5: S c h e m a tic  r e p r e s e n ta t io n  o f  t h e  r e la x a t io n  t im e  m o d e l  
fo r  N e w to n ia n  f lu id s . The small volume of fluid, A x A y A z ,  m idergoes 
sm all s tra in  steps, 6^, and then  relaxes fully by dissipating the  elastic energy 
generated. The model can be used to  estim ate the  viscosity rj of New'tonian 
fluids, of the  order of inverse picoseconds [94].

T he dissipation ra te  per unit volume w is thus:

w  =  (T7 . (3.5)

Com bining E quations (1.8) and (3.5), one obtains w =  T he viscous 

d issipation can be visualised by im agining the continous stra in  as a series of 

sudden, tiny jum ps. A fter each such jum p, the  work done to  shear the  foam 

is dissipated  by the  collisions of the  molecules in the  fluid, dissipating the  

elastic energy. These deform ation-relaxation cycles occur on the  tim e scale 

of the  microscopic relaxation tim e From this analysis it follows th a t  the 

viscosity of therm al fluids ry cx where the relaxation tim e depends on the  

tem pera tu re . [94].

P rio r studies of colloidal glasses found microscopic relaxation tim es th a t  

scaled non-linearly w ith the  inverse local stra in  ra te , bu t no direct and quan­

tita tiv e  connection to  rheology had been established [101,102]. M obius et 

al. applied the  sam e relaxation tim e analysis to  foam flow', by tracking  the  

bubbles using image analysis softw'are and resolving each of the  bubbles’ po-
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sitions and velocities as functions of tim e [29]. In foams, which are atherm al, 

the  relaxation is not driven by tem pera tu re  b u t is entirely  shear-induced 

(ignoring coarsening on long tim e scales) and one m ay in terp re t the corre­

sponding relaxation tim e scale as the  typical inverse rearrangem ent ra te  of 

the  bubbles, wdiich depends on the  local stra in  rate.

We use the  diffusion constan t as a m easure of the  ra te  of plastic, dis­

sipative rearrangem ents l / t r -  Following the  theoretical w'ork of M artens et 

al. linking the  size of cooperative regions in am orphous flow' to  the  diffusion 

coefficient [103], we postu la te  th a t D (x l / t r-  M ore precisely, we define the 

relaxation tim e to  be the  onset of the  diffusive regime w'here (Asy) oc A /. A 

sim ilar relation betw'een relaxation tim e and diffusion constan t has also been 

observed in sheared colloidal system s [101].

This allows us to  plot the  m ean scjuare displacem ents from Figure 3.3 

versus a rescaled tim e axis oc A ///r -  which is sim ply D (7 )A //rf “̂, where the 

average bubble d iam eter d appears on dim ensional grounds. T he result is 

shown in Figure 3.6.

At all D eborah num bers we find th a t the  curves converge to  the  diffuse 

regime w’hen the  m ean scjuare displacem ent exceeds {ASy ) / d ‘̂ «  0.18, which 

is close to  the Lindem ann criterion. The criterion was first pu t forward by 

Lindem ann to  explain the m elting transition  in crystalline solids, s ta ting  

th a t  m elting would occur when j)articles had sufficient therm al energy th a t  

their root m ean square v ibrational am plitudes exceeded 10% of their nearest 

neighbour distance on the la ttice  [104]. In colloidal system s th is is equivalent 

to  cage-breaking [101].

The corresponding relaxation tim e is given by

^  =  0 . 0 9 ^ ,  (3.6)

as indicated in Figure 3.6.

Experim ents of two-dim ensional foams have shown a collapse of the  non- 

affine fluctuations, (Asy)  over two decades in shear ra te  [29]. W hile we see an 

approxim ate collapse for low' D eborah num bers over two decades, th is does 

not hold for the whole range of shear rates th a t  w'ere probed. Nevertheless,
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Figure 3.6: M e a n  s q u a re  d is p la c e m e n ts  r e s c a le d  b y  d iffu s io n  c o n ­
s ta n t s .  M ean sc}uare displacem ents in the transverse direction for different 
De:{ + ) 7.6 • IQ-®; (♦) 1.5 ■ lO” ^; (x )  7.6 ■ lO"^; ( Q )  1-5 ■ 10“ ;̂ (V) 6.1 ■ IQ-^; 
(□ ) 1.5 ■ 10-2; (A) 3.0 ■ 10-2; (B) 4 g . ^0-2; (^ ) 6,1 . 10-2. T he tim e axis 
is rescaled w'ith the  diffusion constan t (d)^. T he onset of the  diffu­
sive regime occurs approxim ately  at A t D / d ?  =  h, where b «  0.09. The 
corresponding m ean square displacem ent is a t O.lSc?^.

the  onset of the  diffusive regime is ŵ ell characterised  by the  Lindernann 

criterion for all D eborah num bers.

3.3.2 R elating local relaxation to  the bulk  
deform ation

We can associate a characteristic  s tra in  7c with tr, such th a t

Tc (3.7)
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In  the d e fo rm a tion -re laxa tion  ansatz [94], we re la te  the characte ris tic  s tra in  

7c to  the shear stress by the e lastic m odulus Gq,

a  =  a - G’o7c, (3.8)

where a is a dimensionless constant o f p ro p o rtio n a lity . C om b in ing  Equa­

tions (3.6), (3.7) and (3.8), we have:

cr =  a-  Go 7 - (3.9)

We now' have tw'o expressions fo r the  stress cr, E qua tion  (1.10) and Equa­

tio n  (3.9), b o th  shown for com parison in  F igure  3.7. The  form er is the  

em p irica l H ersche l-B u lk ley equation, w h ile  the  la tte r  is obta ined  solely from  

measurements o f the bubble-bul^ble dynam ics, nam ely the bubble rearrange­

ment ra te  l / t r -  We note th a t a is the  on ly  f i t t in g  param eter in  th is  model 

fo r E qua tion  (3.9) and is o f o rder 1 (a =  0.24). W e see th a t our derived 

expression describes the  measmed stresses very well and is ind is tingu ishab le  

from  a f i t  to  the  em p irica l H ersche l-B u lk ley ecjuation (E qua tion  (1.10)).

However, beyond De  =  0.005 the p red ic tion  from  E qua tion  (3.9) is no 

longer adequate to  describe the  data. T h is  tra n s itio n  is m arked by a ve rtica l 

line  in  F igu re  3.7. The physica l reason fo r th is  is th a t at th is  po h it the  re­

laxa tion  tim e  t r  becomes greater than  the  inverse s tra in  ra te  (F igu re  3 .7 (b)). 

In  o the r words, to  the  r ig h t o f th is  line the shearing tim escale 7 “  ̂ is shorte r 

than  the  re la xa tio n  tim e  and prevents the  foam  from  fu lly  re lax ing  a fte r 

rearrangements.

Th is  tra n s it io n  can also be observed by decomposing the  shear stress a  

in to  the e lastic and viscous co n tr ib u tio n s  (ct/j) and {cfy),  as w'as done by 

T ighe  et al. [79]. We p lo t these stress com ponents versus De  as shown in  

F igure 3.7(c).

The e lastic forces are due to  the overlap between the  bubbles, w'hich 

does no t change s ign ifican tly  w ith  s tra in  rate. The viscous forces increase 

m ono ton ica lly  as expected, a lthough  in  a non-linear fashion. A t De  w  0.005 

we see a crossover at w hich ( ay)  s ta rts  to  dom inate. C uriously, w'e also
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Figure 3.7; C o m p a r iso n  o f d e fo rm a tio n - re la x a tio n  a n s a tz  w ith  s tre s s  
v e rsu s  D e b o ra h  n u m b e r , (a) Shear stress versus De, w ith Herschel- 
Bulkley fit (as in Figure 2.6) in black. The purple triangles correspond 
to  ^  with a =  0.24. (b) Relaxation tim e tr (x )  and inverse
strain rate (black line) plotted versus Deborah number. The vertical line at 
De  =  0.005 marks the transition between tr < 7 ”̂  ̂ and tr > 7 “ ^ (c) Elastic 
{( ê ) (V) and viscous {ay) (■) components of the shear stress versus De. (d) 
Normal stress H ( +  ) and shear stress ex (♦) versus De. Second vertical line 
a t De — 0.09 corresponds to Yi = a.



3.4. Rheology a t high s tra in  ra te 79

obsei've th a t  tlie elastic com ponent of the  shear stress begins to  decrease a t 

th is point. We will re tu rn  to  th is in C hap ter 4.

T he rheology before th is crossover is well described by a Herschel-Bulkey 

fit w ith  exponent 0.51 which is consistent w ith the Leiden group model [79], 

falling in their “critica l” regime.

O ur results differ from experim ents of M obius et al., w'here the relaxation 

tim e has been observed to  be proportional to  the viscous stress [29]. We 

believe th is d iscrepancy is due to  lim itations of the experim ents. A lthough 

the  dynam ics w'ere m easured in a linear geometry, the rheology was m easured 

in a  C ouette  geom etry which was later showm to exhibit a non-local rheology 

[105].

3.4 R heology at high strain rate

From the  previous section, it is clear th a t the relaxation tim e ansatz th a t  

links shear-induced diffusion and shear stress breaks down when De > 0.005. 

T he viscous forces dom inate  and the deform ation tim e scale I / 7  becomes 

shorte r th an  the  relaxation  tim e scale tj.-

3.4.1 The transition  betw een non-affine m otion and 
lam inar flow

At th is point we see a dram atic  change in the  bubble dynamics. Instead of 

in te rm itten t, sw'irl-like m otion of the  bubbles (Fig 2.2), w'e observe a lam inar- 

type flow, where bubbles fiow predom inantly  along the shear direction (Fig 

3.8). This sfiear-induced ordering is somew'hat siu’prising, given the polydis- 

persity  of the  foam.

R etu rn ing  to  th e  m ean square displacem ents {Asy{At ) ) ,  we can see too  

th a t there  has been a m arked change in tlieir d istributions, characteristic  

of the  change in dynam ics. Figure 3.9 (a) shows {Asy{At ) )  versus A 7  for 

De — 7.6 • 10“ ^. A fter some (average) tim e trap p ed  in a lane, indicated by 

the  p la teau  w'here {Asy{Af ) )  «  0 .2 (d), the bubble escapes and continues to  

diffuse, a lbeit th is  tim e in a random  walk whose step is now the  transition
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Velocity \/

Figure 3.8: L a m in a r  flow . Bubble tra jectories of a linearly sheared foam, 
at De  =  7.6 • 10“ .̂ Black tra ils  represent the positions of the  bubble centres 
during  a to ta l s tra in  of =  38. The bubbles move predom inantly  along 
th e  shear direction w ith  reduced transverse motion. Collective, swirly bubble 
rearrangem ents have ceased.

betw een lanes. T he black vertical lines m ark different values of s tra in  interval 

A 7 , a = 0.379, h = 0.758, c =  5.682, d =  37.879, e =  189.39 and /  =  757.58, 

for which we calcu late P D F s and plot them  in Figure 3.9 (b).

In Figure 3.9 (b), we see th a t the  PD Fs of m ean square displacem ents are 

now dram atically  different from those shown in Figure 3.2 (b). For c larity  of 

discussion, we norm alise the  displacem ents by the  bubble lane w idth, equal 

to  0.92(d). This value is ob tained  by noting th a t  although the  channel is 

L  =  33(d), there  are  36 bubble lanes due to  the  compression of the  system , 

as visible in F igure 3.8.

At short tim es, e.g. for a and b in Figure 3.9, we observe G aussian 

d istribu tions w ith w idths less th an  a lane w idth. Here, the  bubbles are 

sub jec t to  norm al diffusion, over short distances w ithin a lane. For c and 

d, w ith in  th e  p lateau , we see approxim ately G aussian d istribu tions, w ith
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Figure 3.9: M ean square d isp lacem ents for high strain  rate lane m o­
tion . De  =  7.6 • 10“  ̂ (a) Transverse mean square displacement A s y { A t ) /  

plotted as a function of strain A 7  =  The vertical black lines illustrate
values of A 7  for which w'e calculate PDFs, shown in (b). These values are 
a =  0.379, b = 0.758, c =  5.682, d = 37.879, e =  189.39 and /  =  757.58. 
(b) The distribvitions of the non-affine displacements transverse to  the shear 
direction Asy{At )  for six different strain intervals A 7  as indicated by the 
vertical lines in (a) and listed above. The distributions are shifted for clarity 
and are normalised by bubble lane width, which is given by 0.92(d). Clear 
peaks at integer values of bubble lane width show tha t the bubbles tend to 
move between lanes, i.e. the lane motion is persistent throughout the whole 
sample. As the strain interval increases, the bubbles diffuse between lanes.
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additional fat tails. Here, while the m ajority remain confined within a lane, 

a few bubbles begin to escape. Finally, for e and / ,  past the plateaus, many 

of the bubbles (on average) have diffused between lanes. We see strong peaks 

in the distributions at integer values of bubble lane w'idth, consistent with 

jum ps between discrete y-coordinates set by the lane positions. Over time, 
these peaked functions become enveloped by normal diffusion on a different 

timescale to diffusion in the early motion depicted in a and b.

3.4.2 V iscous scaling via the local drag law

We have seen th a t in this high strain rate  regime, with strongly ordered 
lane motion, the Herschel-Bulkley equation (1.10) no longer describes the 
variation of the shear stress with strain rate. Such an ordered flow pattern  
features in the models proposed by Princen [53] and Denkov [22,61].

In this case, the shear stress may be directly related to  tlie local drag 
law (Equation (2.4)). Suppose the lanes are approxim ately one bubble di­
ameter wide, and tha t the force on these lanes is governed primarily by the 
viscous drag between them. Then, a ^  ^  =  Q 7, yielding (from
Equation (2.9)):

a = K ■ De  (3.10)

This analysis leads to the conclusion tha t for high Deborah nmnbers the
stress ought to scale simply with the local bubble-bubble drag (in our case, 

linearly). We compare the prediction (Equation (3.10)), which contains no 
free param eters, with our da ta  as showm in Figure 3.7(a) and find good

agreement. The onset of this linear regime {De = 0.09) coincides with the

crossover at which the shear stress becomes larger than  the normal stress 

as shown in Figure 3.7(d). Note th a t the transition to  the viscous regime 

does not occur when the viscous contribution of the shear stress exceeds the 

elastic one {De = 0.005) as predicted by Tighe et al. [79].

The Herschel-Bulkey fit becomes inadequate at around De = 0.02, which 
falls into the interm ediate regime, where the stress is neither described by the
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viscous prediction (E quation  (3.10)) nor the  deform ation-relaxation ansatz 

(Ecjuation (3.9)).

T he lim ita tions of th e  soft disk m odel as outlined in A ppendix D prevent 

us from probing D eborah num bers larger th an  0.5.

3.5 C onclusions and O utlook

We have analysed b o th  th e  m acroscopic flow properties and dynam ics on 

the bubble scale over a wide range of s tra in  rates in sinm lations of tw'O- 

dim ensional foam flows and identified th ree  regimes. In the  first regime, 

for D eborah num bers up to  0.005, the  m acroscopic deform ation tim e scale 

1 / 7  exceeds th e  microscopic relaxation tim e. In addition, the  elastic com­

ponent of the  stress dom inates over the  viscous one (see Figure 3.7(c)). The 

bubble m otion is non-affine and in te rm itten t, leading to  shear-induced dif­

fusion. In th is  regime, the  shear stress can be described from a microscopic 

deform ation-relaxation  model. The apparen t viscosity is p roportional to  a 

microscopic relaxation  tim e. This tim e corresponds to  an inverse ra te  of dis­

sipative bubble rearrangem ents and is ob tained  from the  m easurem ent of the 

diffusion constan t.

For high s tra in  rates, wiien the  D eborah num ber exceeds 0.09, the  bubbles 

move in lanes. At the  onset of th is regime, the  shear stresses become larger 

th an  the  norm al stresses. The rheology is consistent w ith a prediction based 

on the  local bubble-bubble  drag  law, which is linear in our sim ulation, so 

th a t cr oc 7 .

T here is one decade in D eborah num ber between these two distinct regimes. 

In th is in term ediate  regim e the  bubble dynanncs changes sm oothly from non- 

affine, swirly m otion, to  fully developed lane m otion. This is reflected in the 

transverse m ean square  disj^lacement winch develops a p lateau  th a t widens 

w ith increasing s tra in  ra te  (see Figure 3.3). Therefore, the  bubbles become 

trap p ed  in lanes for longer tim es as th e  D eborah num ber increases.

We note th a t  b o th  the  em pirical Herschel-Bulkley law (Section 2.2) and 

the  em pirical fit for / / ( / )  (Section 2.3) provide a good description of the 

variation in stress up to  D eborah num ber 0.02, wiiich lies about halfway
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into the in term edia te  regime. For the low stra in  ra te  regime, these em pirical 

scalings describe the  d a ta  well. At high stra in  ra te  and the  advent of lam inar 

flow, the d a ta  is b e tte r  described V)y drag  laws sim ilar to  those theorised by 

Princen and Denkov et ai ,  and observed to  hold in experim ent.

O ur sinm lations cap ture , for the first tim e, the  transition  from non-linear 

tu rbu len t flow to lam inar flow observed for foams in experim ent. In our 

analysis so far, we have focused on bulk flow behaviour - macroscopic stresses 

for large system s, and fluctuations in flow aw'ay from the  shearing boundaries. 

We now tu rn  the  discussion to  the  effects of finite system  size, by considering 

channels of varying w'idth.



Chapter 4 

The Effect of F inite System  
Size

111 C hapter 2, we presented results from soft disk model simulations over a 
large range of strain rates, and for five different packing fractions. One thing 
we kept constant, however, was the system size. W hat happens w'hen we 
change this system size? hi Chapter 3, we analysed the diffusive motion of 
disks under shear, in a central region away from the boundaries, asserting 
th a t this region represents "bulk” behaviour, aw'ay from the influences of the 
boundaries. Can we make this assumption?

In this chapter we address these questions. F inite size effects are a concern 
in all systems, experimental and simulated. In simulations, these are often 

overcome by using periodic boundary conditions. Indeed, 2D linearly-sheared 

molecular dynamics simulations can make use of Lees-Edwards boundary 
conditions to ensure periodic boundary conditions in both x- and y-directions 

[79, 106]. In a system with Lees-Edw'ards boundary conditions, shear is 

achieved by imposing a velocity in the flow' direction on the periodic cells 

aligned tranverse to the flow' direction, illustrated schematically in Figure 4.1. 

This allow’s the application of a linear shear without boundaries.
Experiments, however, alw'ays have boundaries! In this chapter we specif­

ically investigate the effect of boundaries in our soft disk simulations. We 
vary the channel width L  of the systems in order to probe the w'ay shear and

85
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F igure 4.1: S c h e m a tic  i l lu s t r a t io n  o f  L e e s -E d w a rd s  b o u n d a r y  c o n ­
d i t io n s .  T he central cell, outlined in red, represents the  sim ulated system , 
which is surrounded by periodic copies. A velocity is imposed on th e  cells 
highlighted in blue and yellow, generating a linear shear while m ain tain ing  
periodic boundary  conditions.

norm al stresses change as a function of L. We find th a t, exceeding L Rs 30(d), 

where (d) is the  average bubble diam eter, the  flow properties of the  flows are 

identical, identifying an upper bound for the  m inim um  w idth at which bulk 

properties are observed.

We also re tu rn  to  the  constitu tive model in troduced in C hap ter 2, investi­

gating  the  rescaling of shear and norm al stresses in term s of the  dim ensionless 

/  param eter, as a function of channel w idth. We find th a t  the  constitu tive  

m odel collapses our d a ta  for a given channel w idth for all packing fractions. 

However, it does not collapse d a ta  for different channel widths. From fits to  

these collapses, we com pute the  s ta tic  angle of repose as a function of chan­

nel w idth, which we com pare to  experim ental m easurem ents of the  angle of 

repose for finite system  size.



4.1. Simulations of narrow channels 87

Chaimel width L Number of disks N N W a l l  I N
2(d) 1200 1
4(rf) 1200 0.5
8{d) 1200 0.25
16(d) 1380 0.12
33(d) 1500 0.05
44(d) 2000 0,04

Table 4.1: S y s te m  d im en sio n s  for d iffe re n t c h a n n e l-w id th  s im u la ­
tio n s . The first cohnnn lists the channel width in terms of average disk 
diameter {d). Columns 2 and 3 list the immber of disks in the bulk and in 
the walls, respectively.

4.1 Sim ulations of narrow channels

In the m ajority of the analysis presented in this thesis, we focus on channel 
dimensions with 80 bubbles in the walls, and channel widths of approximately 
33 average bubble diameters. These systems contain 1500 disks not part of 
the walls. We now extend our analysis to vary the channel width L. hi doing 
so, we also vary the length of the walls, i.e. the number of bubbles tha t 
make up the walls. We do this for statistical reasons: although it might be 
aesthetically pleasing to keep the walls a constant length and vary only the 
channel width, doing so would mean a reduction in the number of disks in 
the system for a given packing fraction <p. This leads to reduced statistics 

and noisier signals for measures such as the shear stress a.
For the results presented here, we use a range of w'all lengths and num­

bers of disks, w'hich w'e list in Table 4.1. In summary, w'e examine systems 

comprising of N  disks, where 1200 < N  < 2000. controlling the channel 

width by varying the ratio of N  and the number of w’all disks Â waii- Tw’o 
examples are displayed in Figure 4.2 (a) and (b), which show visualisations 
of simulations with L ~  8{d) and L ~  16(ii) respectively, for <p =  0.98 and 

similar Deborah numbers.
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Figm e4.2: V isu a lisa tion s o f tw o narrow -channel sim ulations. Packing 
fraction 0  =  0.98. (a) L =  8 (rf), with De = 3.36 x 10““*, N  = 1200 and 

N  = 0.25. Approximately one third of the channel length is shown, 
(b) L =  16(rf), with De = 1.66 x 10 -^  N  =  1380 and A^waii/A' =  0.12. 
Approximately two thirds of the channel length is shown.

4.1.1 F in ite system  size and “bulk” behaviour

The first question w'e nmst address is, when is the channel sufficiently wide 

th a t simulations for different widths give similar results? Figure 4.3 plots 
shear stress a  and normal stress II versus Deborah number, for six channel 

w'idths. The data  for L  =  33(d) (black) and L = 44(d) (cyan) are visually 
indistinguishable, and, indeed, in the case of the shear stress are well-fit 
w ith the same Herschel-Bulkley param eters, from Equation (1.10). We thus 

conclude th a t L  =  33(d), used in our previous analysis, is sufficiently wide 

to be considered as an appropriate model for bulk flow.

For L = 16(d), and narrow'er channels, the shear and normal stresses do 

not collapse. For low' values of L, we find (7 ( 7 ) to decrease, and 11(7 ) to 
increase. The second question, then, is: can w'e explain this behaviour?
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Figme 4.3: S tre ss  v e rsu s  D e b o ra h  n u m b e r, for v a ry in g  ch a n n e l
w id th . Shear stress a (lower cm'ves) anil normal stress II (upper curves) 
are shown for 4> =  0.95, for channel widths: L — 2(rf), (x ); L  =  4(rf), 
(■); L = 8{d), ( A) ;  L = 16(rf), (□); L = 33(d), ( • ) ;  L =  44(rf), (O). a  
is observed to increase for increasing L, up until L =  33{d). II is found 
to decrease with increasing L in the same range. The data for L = 33(d) 
and L =  44(rf) are observed to overlap, indicating bulk behaviour has been 
reached by L = 33(d).

4.1.2 A m odel for the dependence of stress on system  

size

We attribu te  this scaling of a  and fl with L  to structural considerations. 

First, we shall focus on a, by considering a simple, analytically tractable 

model. Consider a system similar to our sinmlations, comprising of tw'o w'alls 

and two lanes, where the bubbles are nionodisperse and constrained to move 
in lanes (i.e., only their x-coordinates can change), see Figure 4.4 (a). In 
such a system, the average elastic component of the shear stress (cTg) =  0. 

This arises due to geometrical synnnetry. As Princen et al. [56] and Denkov
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Figure 4.4: S chem atic illu stra tion  o f sim ple m odel w ith  im posed  lane 
m otion . Here, we use a model of monodisperse disks, confined to move in 
lanes with a hnear velocity profile, evolving as (a) through to (c). In such 
a system, the sum of the elastic components of the forces Fg, shown in (a) 
and (c) by the horizontal red arrows, is zero due to symmetry. The system 
passes through a sta te  of maximal normal stress, with maximum possible 
overlaps when the disk centres align, as show'n in (b). Any deviations from 
this configuration, i.e. non-affine motion, will cause a reduction in the normal 
stress.
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et al. [22], am ongst others, have show'n, and as w'e have seen in C hap ter 3, 

the  viscous com ponent of th e  stress for lane m otion scales as a sim ple drag 

law, which in our case is described by {(Jy) oc 7.

This envisaged system  provides us w'ith a lower bound for the  shear stress. 

Focusing on the  elastic com ponent of the  shear stress, we now' ask: w'hat 

increases the  average shear stress? T he answ'er is anyth ing  th a t  introduces 

asym m etry. There are tw'o m ain sources of asym m etry  in our model. The first 

is polydispersity. This is kept at a constan t ratio  for all of our sim ulations, 

and in troduces a finite elastic com ponent of the  shear stress.

T he second is non-affine m otion. If we consider our toy model as having a 

linear velocity profile, combined w ith each disk moving at the  sam e velocity 

as th e  o thers in its lane and constrained to move in th a t  lane, it is clear to 

see th a t  the  model has no non-affine m otion. We postu la te  th a t increasing 

the  non-affine m otion increases ((Tg), evidence for which w'e have already seen 

in Section 3.3.2. In Figure 3.7, ((7e) is seen to  decrease as De  increases - a 

decrease which begins at the  onset of lane motion.

Non-affine m otion is curtailed  near the boundaries, which have fixed 

y-coordinates and inhibit transverse rearrangem ents in their vicinity. T he 

boundaries them selves encourage the  form ation of bubble lanes (ecjuivalent 

to  planes of crystallisation at boundary w'alls, for 3D system s), a phenom enon 

which has also been seen in experim ent [107]. As th e  channels are widened, 

tlie disks have m ore freedom to undergo rearrangm ents in the  direction tra n s­

verse to  flow, and (de) increases. Note th a t a t high s tra in  rate , where {oy) 

dom inates, the curves for all channel w'idths collapse, as th is effect on (cTe) 

becomes negligible w ith respect to  a  (or, pu t ano ther w'ay, system s of every 

size begin to  move in lanes).

W hat about the  norm al stress, II? We follow th e  sam e argum ent, using 

the  sam e toy model system . For sim ple shear w ith a linear velocity jjrofile, 

the system  flows through stages depicted by Figure 4.4 ( a ) ^ (c ) .  At stage 

(b), the  system  has the highest possible norm al stress achievable w ith th a t  

rnnnber of disks. Any non-affine m otion w'ill decrease th is value of II. Once 

again, the  larger the  system , the less confined the  disks are w ith respect to  

transverse m otion, and thus the  lower the  value of I I .
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Figure 4.5: C o n s ti tu t iv e  sca lin g  for n a rro w  ch an n e ls . We plot da ta  for 
five channel dimensions (L =  2(d), blue; L =  4(d), red; L =  8(d), green; 
L = 16(d), orange; L =  33(d), black) and five packing fractions (0 =  0.85, 
(□); 4) = 0.88, (■); =  0.92, (x ); 0 =  0.95, ( • ) ;  0 =  0.98, (A)). We
omit data  for L =  44(d) for clarity - as discussed in Section 4.1, the scaling 
behaviour is identical for L =  33(d) and L  =  44(d).

We now return to the constitutive model, which we found to provide a 
good description for our stress data as a function of diniensionless param eter 

1 in Section ??.

4.2 C onstitu tive m odel for narrow channels

Qualitatively, Figure 4.3 might already lead one to expect th a t the scaling 

used for collapse in Section ??, namely

,010 '

//( /)  = ^  = fi* + k r  where I = (4.1)
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should not collapse stress data for different channel widths L, given the 

different scalings of a and II with L discussed in the last section.

In Figure 4.5, we plot ^{I )  versus I  for data over a range of packing 

fractions and channel widths. As expected, the data  does not collapse for all 

channel widths, showing a spread at low I  (wiiere the (ag) dominates) and a 
collapse at high I  (where the {ay) dominates).

How'ever, the data  is well described by Equation (4.1) if w’e consider each 

channel width individually, see Figure 4.6. The solid lines show best fits to 
Ecjuation (4.1), for data  up to De = 2.0 x 10“^, in line with our previous 

Herschel-Bulkley and constitutive model analysis (see Sections 2.2 and ??). 

It is noteworthy tha t the constitutive model provides a good description of 
the flow for all packing fractions for fixed channel w idth L.

4.2.1 The angle of repose

In Figure 4.7 we plot the angle of repose a = ta n “ '//* (L ) and exponent 

a(L), obtained from the fits to  Eciuation (4.1) shown in Figure 4.6. We 
find a smooth variation of this data, with asymptotic values in the limit
Lj(d)  oc.

The variation of the angle of repose a  with channel w idth L/{d)  is well 

described by the empirical functional form a{L/{d))  =  ftoo +  I  j{J)  +  r  ’ 

show’u by the black line in Figure 4.7 (a), with a^o =  3.7±0.1, q =  —11.6±0.1 

and r =  3.9±0.1. In the limit L/(d)  —>• cx), n{L/ (d) )  —> a^c- From our fit, we 
thus extrapolate the asymptotic angle of repose in the limit of infinite channel 
width for our soft disk sinmlations to be = 3 .7±0.1°. This value is lower 

than experimental and simulated values reported in the literature [30,92], as 
already discussed in Section 2.3.3.

A puzzling result of this analysis is the scaling of the angle of repose 

a  with L for narrow channels. From our simulations, w'e see th a t the static 

angle of repose decreases as system size decreases. This appears to contradict 

results found in the literature, as follow's.

In linear geometry experiments for 3D foams, Lespiat et al. list an an­

gle of repose of q =  4.6 ±  1° that does not depend on system dimensions.
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Figure 4.6: C o n stitu tiv e  m odel collapses for six  different channel
w id th s. We expand Figure 4.5, plotting each channel width as a separate 
subfigure: (a) L = 2(d); (b) L  =  4(d); (c) L  =  8(d); (d) L = 16(d); (e) 
L = 33(d); and (f) L = 44(d). D ata for five different packing fractions 
are shown: 0 =  0.85, (□); (j) — 0.88, (■); (p =  0.92, (x) ;  cf) =  0.95, ( • ) ;  
(p — 0.98, (a) .  The solid lines show fits to Equation (4.1), for da ta  up to 
De =  2.0 X 10“^, in line with our previous analysis (see Section 2.2).
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Figure 4.7. A n gle  o f  repose and exp on en t a versus channel w id th .
(a) Angle of repose versus L. The black line shows a fit to the empirical
functional form a{L/{d))  = + with =  3.7 ±  0.1, q =L/{d)  +  r  ’
— 11.6 ±  0.1 and r =  3.9 ±  0.1. For narrow channels, the angle of repose is 
observed to decrease. As channel width L  increases, we find from our fit a  
tends asym ptotically to a value of a^o = 3.7 ±  0.1°, lower than experimental 
and simulated values reported in the literature [30,92]. (b) Exponent a versus 
L. The black line shows a fit to the empirical functional form f {x )  = ,
with u = 0.449 ±0.003 and v = 0.51 ±0.02. We find a = u = 0.449±0.003 in 
the asymptotic limit of infinite channel width L, similar to the experimental 
result of a =  0.38 found for foams [30]. As L  decreases, a increases. From a 
simple scaling argum ent based on two bul:)ble layers sliding past one another, 
we would expect a ( l )  Rs 1; we find a( l )  =  0.92 ±  0.02 from our fit.
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Figure 2.10 (b), reproduced from [30], plots //( /)  — for a range of channel 
thicknesses /;, 2.5 < h/{d) < 24, collapsing well onto one master curve with 

H* = tan(4.6 ±  1°), independent of system size.

For rotating drum experiments, see Figure 2.11 (b), our group has found 

finite size effects to increase the static angle of repose measured. This was 

supported by soft disk sinnilations modified to include a buoyancy term  and 
a circular geometry, where the angle of repose was found to decrease towards 

Q =  4.8 ±  0.5° as the system tended towards infinite size [93].
We suggest tha t these differences are likely due to the three different ge­

ometries studied. Lespiat et al. study a 3D pile of bubbles at the instant they 

begin to flow up a linear channel under the influence of buoyancy (Figure 1.14 
(b)). The rotating d rum ’s 2D circular geometry is markedly different due to 
the presence of curvature. Our simulations are different again, with the foam 
confined in a 2D linear geometry with no free surface. Our angle of repose is 
instead calculated from a ratio of forces on the boundaries - forces which, as 
we liave seen in Figure 4.3. show different dependencies on channel width L.

4.2.2 T he power law scaling exponent

In contrast to the collapse of the foam d a ta  over varying channel dimensions 
for one value of /  exponent a =  0.38 found by Lespiat et a l, we find a range 

of values for a as a function of channel width L, shown in Figure 4.7 (b). We 
find the data  to be well described by a fit to the empirical functional form 
a{L/{d)) = , w ith a^o = 0.449 ±  0.003 and u = 0.51 ±  0.02, shown by

the black line in Figure 4.7 (b).

In the limit L/{d) oo, a{L/{d))  —̂ a^o- As for the angle of repose, 
from our fit we extrapolate the asym ptotic value of exponent a in the limit 

of infinite channel w idth, finding aoc =  0.449 ±  0.003.
For narrow channels, a is found to increase. We note tha t channel width 

in our model is defined as the perpendicular distance from the line of centres 

of the wall disks to line of centres of the lower w'all disks. Therefore, channel 

width L ^  l{d) would correspond to two walls sliding past one another, with 

no bulk bubbles between them. This is similar to the theoretical models of
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bubble planes sliding past one ano ther proposed by Princen [53] and Denkov 

et al. [22,61], as introduced in Section 1.3. For our m odel’s viscous in terac­

tions, th is yields the  scahng cr oc 7 , as discussed in Section 3.4.2. S ubstitu ting  

th is approxim ation into E quation  (4.1), we obtain

From th is, we w'ould expect a{L  =  1(d)) «  1. O ur fit finds a ( l )  =  1 - 0 ^5 1 =  

0.92 ±  0.02, in reasonable agreem ent w'ith th is  sim ple scaling argum ent.

4.3 C onclusions and O utlook

We have seen th a t the boundaries in our system  play an im portan t role in 

the flow properties of our foam. For channels narrow'er th an  channel w'idth 

L w 30(r?), the  shear stress is found to  decrease, whilst the  norm al stress is 

fomid to  increase. We explain th is scahng behaviom ' by m eans of a simple 

model of foam conhned to  move in lanes in a narrow  chaimel. Finally, we 

find the constitu tive model to  collapse d a ta  for a given value of L, bu t fail 

to  collapse all d a ta  for all w idths due to  the  effects of finite system  size.

We investigate finite size effects specifically because our system  contains 

rigid boundaries, sim ilar to  m any experim ental system s. A n a tu ra l follow-up 

to  th is analysis would be to  sim ulate the  sam e system s, im plem enting Lees- 

Edw ards boundary  conditions [106], Figure 4.1. It w'ould be in teresting  to  

investigate w'hether the  tendency tow ards lane m otion for narrow' channels is 

a p roperty  of solid boundaries cm 'tailing transverse m otion, or w hether it also 

arises in flow' p a tte rn s  th a t are periodic in th e  transverse direction, where the  

w idth  of the  repeated  cell is small (as would be the  case for Lees-Edwards 

conditions applied to  our narrow  channels).

(4.2)
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Chapter 5

Stress Fluctuations

We have seen thus far that the complex behaviom' of a system of interacting 
units (particles, agents), like the soft disk model, is often due to the nonlinear 
propagation of interactions between these units at the local level.

In this chaj)ter, we now present a study of the global stress fluctuations 
in the soft disk model. We have seen in Chapter 2 tha t this model w'ell 
describes the average flow properties of a foam \mder shear. In particular, it 
has been showm to reproduce the empirical Herschel-Bulkley relationship for 
the variation of the average value of the stress with strain rate for flowing 

foams [52,77,79,81,82], provided the simulation is in the low-strain rate 
regime and has i\ot yet transitioned to laminar flow.

In experiments and simulations of flowing foams, often such average, 
steady-state values are the key quantities of interest. However, the char­

acter of fluctuations can provide additional information about the system. 

Indeed, w'e might expect to see evidence of the system's non-linearity in such 

fluctuations. Although, in general, far more focus has been placed in the lit­

erature on investigating the dependencies of foam properties via their means, 

these fluctuations have been studied for two-dimensional foams to a degree 
in the past.

We return  to the origin of the soft disk model for the earliest of these 

studies. Durian examined the distribution of elastic energy changes occurring 

due to structural rearrangements [36]. He noted avalanche behaviour in the

99
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disk rearrangem ents, and  suggested power law scaling for small, negative 

elastic energy changes w ith  an exponential cutoff at large energy changes.

Lauridsen et al. perform ed a sim ilar analysis for experim ents of two- 

dim ensional flowing foams in a cylindrical C ouette  geom etry, w ith sim ilar 

results to  D urian, bu t now for stress drops [23]. D ennin went on to  look at 

the  s ta tis tics  of these stress drops, hr particu lar, he m easured the num ber of 

irreversible rearrangem ents (T1 events) in th e  foam and com pared their oc- 

curances to the  variations of the shear stress w ith  s tra in , noting a correlation 

betw'een T1 events and stress changes [63].

In this chapter we look at the  fluctuations of shear stress about the  m ean 

obtained  for our sim ulations, at very low stra in  rate . P robab ility  d istribu tion  

functions of stress changes are found to  show asym m etry  betw een stress rises 

and falls, w ith fat tails for stress drops. We find the  m agnitude  (or volatility) 

of stress changes to  exhibit clustering, suggestive of long-m em ory ])rocesses 

(see A ppendix E). Such long-range correlations are encountered in complex 

system s as diverse as economic m arkets [108,109]. online b e tting  [110], seis­

mology [111], and in ternet traffic [112].

Finally, we aim to  expand upon the  work of D urian , Lauridsen et al. 

and Dennin, relating  fluctuations in the  stress to  changes in the  topological 

s tru c tu re  of the  foam in a novel, quan tita tiv e  way. We use a rescaling m ethod 

used in the econophysics connnunity  to  analyse so-called m icrotrends in the 

da ta , and apply th is to  the  analysis of con tact changes of the  bubbles as 

stress is built up and released [113]. T his provides an a lternative  rou te  to 

link dynam ics a t the  bubble scale w ith the  m acroscopic response.

5.1 Sim ulation details and definitions

For the  analysis we perform  in th is chap ter, we once again use a soft disk 

m odel sim ulation, as described in Section 2.1. Here, we shall define the  

param eters of the  sim ulation used for the  results presented, and discuss the  

m easurem ent of topological changes in the  system  as a function of tim e.
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5.1.1 Soft disk m odel param eters

We shall, in the  coming sections, exam ine the stress fluctuations in a system  

defined using th e  following param eters. The s tra in  ra te  is set to  be very low, 

w ith De  =  7.6 x 10” ®. T his choice is m otivated  by our findings in C hap ter 3: 

to  s tudy  the  n a tu re  of stress fluctuations and their link to  bubble dynam ics, 

we wish to  m axim ise the  non-affine m otion. We also want to  ensure th a t 

the  characteristic  ra te  of deform ation does not overwhelm relaxation tim es 

associated w ith  o ther processes in the system . Choosing a low stra in  ra te  

accom plishes b o th  of these aims. We note th a t a t th is s tra in  ra te  the  diffusion 

constant for the  m ean square displacem ents of the  disks is linear w ith stra in  

ra te  (see Figure 3.4), and the  sim ulation approaches the  quasistatic  lim it [82].

The system  geom etry studied here is the sam e as in C hap ter 3, w ith 

packing fraction cp = 0.95, N  =  1500 bubbles in the  bulk, Mvaii =  80 bubbles 

in th e  wall and a channel w idth of L =  33(d),  i.e. we are m easuring biilk 

properties, see C h ap te r 4. Much of the  analysis we will perform  in this 

chapter, particu larly  regarding the  correlations in th e  system , benefits from 

large sta tistics. Consequently, d a ta  are taken in flne resolution over a to ta l 

sinuilation run  tim e, well past the  initial transien t regime and in the  steady  

sta te , of 1 X  10®T^,.

5.1.2 C ontact changes

hi C hap ter 3, we used non-afflne displacem ents of the  bubbles as a m easure of 

local dynam ics, hi th is chapter, we take a different approach to  ciuantifying 

in teractions on the  bubble scale, by instead analysing topological changes in 

the foam.

In order to  rela te  s tru c tu ra l changes in the  disk packing to  changes in 

macroscoi)ic p roperties such as shear stress, we m easure the  contact changes 

in the  system , th a t  is th e  num ber of neighbour changes over some tim e win­

dow' t.2  — tl-

We calcu late these neighbour changes by generating a contact m atrix , 

C'{t), for each sim ulation tiniestep. C{t)  is an N  x  N  m atrix , where N  is the  

num ber of disks in th e  system . If disk i and disk j  are in contact a t tim e
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Figure 5.1: T h e  c o n ta c t  m a tr ix .  A scheuiatic representation  of a small 
sam ple of disks in contact, w ith the corresponding con tact m atrix . Disks are 
coloured by their coordination num ber. By definition, the  diagonal elem ents 
of C (t) are always 1.

/, the  corresponding m atrix  elem ent =  1. If they  are not, Cij{t)  =  0.

We define disks i and j  as “in con tac t” num erically when their overlap A ;j, 

given by Equation  (2.3), is g reater th an  zero.

If disk i is in contact w ith disk j ,  then  j  is in contact w ith i. Consequently 

C'{t) is a synm ietric m atrix . From the  definition we  have chosen for contact, 

we note th a t  a bubble will alw^ays be “in con tac t” w ith itself, and so the  

diagonal elem ents of C{t)  are always 1. Figure 5.1 shows a small sam ple 

system , w ith its corresponding contact m atrix. T he disks are coloured by 

their coordination num ber (i.e., their num ber of contacts).

By sub trac ting  C{t i )  from C{t 2 ), sum m ing the  m agnitude of the  elem ents, 

and dividing by 2 for double counting, w'e calculate the  num ber of contact
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changes between tim es t2 and fi as a m easure of the  topological change in 

the  system .

5.2 D istribution  of stress changes

Figure 5.2 (a) shows the  shear stress, non-diniensionalised by the  elastic 

m odulus Go, p lo tted  versus s tra in  for a subsection of our d a ta  in the  steady 

sta te . N ote th a t for constant stra in  rate , s tra in  is d irectly  p roportional to 

tim e, hi Figure 5.2 (b), a zoomed image of the  d a ta  shows the  fluctuations 

about the  m ean stress.

W’e can im m ediately see th a t  there  exists a qualita tive  difference between 

increasing anrl decreasing trends. Stress rises a t low stra in  ra te  generally have 

a slope close to  the  elastic m odulus. This is consistent w’ith  the  relationship 

for slow elastic loading of system , given by E quation  (2.4), nam ely a = Gq7 - 

h i con trast, the  falls display steeper slopes and sparser point poj)ulation. 

The points are evenly spaced in tim e, indicating m ore rap id  drops in stress.

We investigate this by defining the  stress change, Aa{ t , S t ) ,  over tim e 

windows St (exjiressed in term s of sim ulation tim estep  r ,̂, as defined by E qua­

tion (2 .8 )) as;

Acr{t ,6t)  = a{t)  — a{t  — St). (5.1)

We plot the  probability  d istribu tion  function of A a { t , S t )  in Figure 5.3. 

For low' values of St = 1.25 x lO^r^, as shown in F igure 5.3, th e  P D F  is 

asynnnetric. Stress rises on average are m ore frecjuent and m ore narrowdy 

d istribu ted . The sim ple assum ption th a t all rises have a slope of Go (based 

on Figure 5.2) w'ould result in A ct/ G o =  A 7  =  0.00125, for the  param e­

ters used in this sim ulation. This value lies close to  th e  m ajo rity  of points 

found, given the  log scale, bu t there is some deviation from it. D eviation 

below th is value is easily explained: any dissipative rearrangem ents should 

reduce the  slope from a  =  G 0 7 . Values higher th an  th is  are relatively infre- 

cjuent, although certain ly  not negligible, and a ttr ib u te d  to  the form ation of 

tem porary, unstab le in term ediate s truc tu res under shear.
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Figure 5.2: S tre s s  v e rsu s  s tra in ,  (a) Stress, non-dimensionahsed by the 
static  shear modulus C?o, versus strain for low strain rate De =  7.6 x 10~®. 
(b) Magnified display of stress versus strain for a small subset of the data. 
The measured stress fluctuates about an average steady state  value, marked 
by the horizontal black line in both images. Stress rises generally have a 
slope close to  the elastic modulus Go, shown as a guide to the eye in (b), 
consistent w'ith slow', elastic loading. Stress falls occur more rapidly, as may 
be seen by the low'er density of data  points.
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Figure 5.3: P r o b a b i l i ty  d i s t r ib u t io n  o f  s t r e s s  c h a n g e s . D istribu tion  of 
stress changes A a  =  — — St),  for St = 1.25 x lO^r^,. The ciistriljution is
asym m etric. T he stress rises are m ore narrow ly (listril)\it ed, w’hilst the  stress 
falls exhibit fat tails. The sim ple assm nption th a t  all rises have a slope of 
d o  w’ould result in A a / C o  =  A-, =  0.00125, for th e  param eters used in this 
sim ulation. The inset show's the  d istribu tion  of stress changes for a larger 
value of St = 2 X  10'*x„. In th is case 6i is sufficiently large th a t  a{t )  and 
a{ f  — 6i) are uncorrelated, recovering a G aussian d istribu tion  (solid line).

Stress falls are found to  exhibit fat tails, associated wath avalanche-like 

behaviour and sim ilar to the  results of D urian [36] in sim ulation and Laurid- 

sen et al. in experim ent [23].

T he choice of tim e window St  is im portan t. Figure 5.3 (inset) shows the  

d istribu tion  for St = 2 x  lO'^r^, sufficiently large th a t  the  changes in stress are 

s ta tis tica lly  uncorrelated, leading to  a G aussian d istribu tion . Likewise, for 

a choice of St th a t is too  small (eg. of the  order of the  sinuilation tim estep 

Tg =  2.5 X 10~^r^) the  d istribu tion  is dom inated  by m nnerical noise and a 

G aussian d istribu tion  is again recovered.

This asym m etry  has not been shown before, for the  soft disk model. We 

shall re tu rn  to  a discussion of th e  origin of th is asym m etry  in Section 5.4.
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Figure 5.4: V o la ti l i ty  c lu s te r in g  in  s tr e s s  c h a n g e s . Changes in stress, 
A ct , versus tim e, for 6t =  F luctuations are w ithin slowly varying
envelopes, w ith large changes tend ing  to  follow large changes, and small 
changes tending  to  follow small changes. Such so-called volatili ty clustering  
is a p roperty  of long-m em ory processes [108,114].

5.3 Power-law correlations in the soft disk  

m odel

In th is section, we show stress fluctuations in the  soft disk m odel to  ex­

h ib it so-called volati li ty clustering  and long-range correlations. We expand 

on these term s in detail in A ppendix E. We then  com pare them  w ith  sim i­

lar scaling observed in the  econophysics literatu re , where these phenem ona 

are com m only studied, as m otivation for subsequent analytical m ethods em ­

ployed.
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Figure 5.5: A u to c o r r e la t io n  o f  s t r e s s  c h a n g e s . A utocorrelation, A{ t ), 
of stress changes. A a , and stress change volatility, |Act| versus tim e lag r . 
\Vlu\e A{~)  decays vapidly to  zero for A a , for ^Aa) tire decay is much slower.

5.3.1 V o la tility  c lu ster in g  and long-range m em ory

For a given choice of St, th e  stress change Aa{ t ,  St) yields a tinieseries, which 

we plot in term s of T y  in Figure 5.4. Here, we choose St =  7.5r^. T he stress 

changes display clear volatility  clustering (see A ppendix E), w ith fluctuations 

occuring w ithin slowly varying envelopes. Large changes in stress tend  to  

follow larges changes, and small changes tend  to  follow small changes.

Volatility clustering is a w'ell-known property  of long-m em ory processes, 

w'here th e  autocorrelation function A{ t ) of some tinieseries x{t)

( ( - ^ ( 0 - / ^ ) ( - g ( ^  +  ^ ) - / ^ ) )  ^5 2)

w ith // =  {x{t)) and =  {{x{f) —  ^)^), varies as

.4 (r) ~  r  ^ for r  oo, 0 <  /? <  1, (5.3)
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Figure 5.6: L ong  m e m o ry  in  th e  a u to c o r re la t io n  o f s tre s s  ch an g e
v o la tility . The autocorrelation of |A a| on a log scale is found to  vary as 
A { t ) ~  over two decades, similar to the long-nieniory scaling exponent 
found for the S&P 500 financial market in econophysics literature [115].

where r  is the time lag [108,114], see also Appendix E.

Figure 5.5 shows the autocorrelation functions of stress changes, A a ,  and 
stress change volatility, |A(t|, versus r ,  for 6t =  7.5Ty. For A a  (grey curve), 

the autocorrelation decays rapidly to zero, showing the stress changes to be 
uncorrelated. In contrast, |Act| (black curve) decays nuich more slowly.

We can see this long-memory clearly by plotting the autocorrelation of 

|A(t| on a log-log scale, shown in Figure 5.6. |A<t| varies as A { t ) ~  over 
more than two decades. The autocorrelation function is subject to finite size 

errors when r  is no longer small with respect to the length of the timeseries. 

We compute the autocorrelation up to  a time lag r  =  5x  IO^Tj;, approximately 
5% of the to tal simulation time.

Wfe also estim ate the Hurst exponent for both A ct and |A ct|, see Appendix 

E. For A ct we find H  =  0.54, close to  the value of 0.5 expected for a random 

walk. For |A ct| we find H  =  0.89, consistent with long memory.
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W hat does this tell us about the system? We show a ciuantitive charac­

terisation of the timescale within the system over which it evolves. Although 

in doing so one risks a connnon pitfall with correlation and causation, it is 

not unreasonable to infer, given oiu' additional knowledge of the system, tha t 

large magnitude drops in shear stress tend to induce further large m agnitude 
drops over relatively long periods of time.

5.3.2 Com parison w ith  a different com plex system : 
the Dow Jones Index

In the previous section, we have shown that volatility clustering and long- 
memory are to be found in the fluctuations of the shear stress in the soft disk 

model. This is the first time this has been shown for foam rheology. How^ever, 
these properties are heavily studied in the literature for other complex sys­
tems. such as financial markets [108.116] and in information transfer across 

computer networks [117]. In econophysics and the study of log price returns 
particularly, long-memory is the subject of extensive analysis and debate. 
Anything tha t might j^rovide predictive power in the realm of stock m ar­
ket prices is much sought after, desj^ite theories such as the efficient market 
hypothesis arguing th a t such advantages should be impossible [118].

The log-price returns are a measure of the fractional change in the price 
of an asset, defined as

x(/',dY) =  l n f i ^ ^ y ^ ,  (5.4)
s(t')

where s(t') is the price as a fimction of time t', and St' the period over 

which the return is calculated. To remove the long-term increasing trend 

in stock market values, the logarithm of price changes is taken, ensuring 

Ecjuation (5.4) fluctuates about a constant mean (zero). These log price 
returns are analagous to  our stress changes Aa{t ,St ) .

In econophysics literature, the autocorrelation function of log-price re­

turns decays exponentially, whilst the volatility of log-price returns exhibits 
long memory scaling w'ith a similar exponent to our model [109,113, 115].
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Figure 5.7: L ong  m e m o ry  sca lin g  in  sh e a r  s tre s s  a n d  log p r ic e  r e ­
tu rn s .  (a) A c t  versus time, from the soft disk model, (b) x{t, 1 day) versus 
time, for the Dow .Jones Index (1993-2012). In both (a) and (b), we can 
see similar volatility chistering. (c) Autocorrelation R { t ) of A a  versus r. 
(d) Autocorrelation H { t ) of x{t, 1 day) versus r . Long-range memory wdth a 
similar exponent (/? =  0.2 for stress changes, /3 =  0.3 for daily returns from 
the Dow Jones Index [109], and f3 = 0.2 for minute-by-minute returns for 
the S&P 500 [115]) is observered for both volatility in stress changes, and 
volatility in log price returns.

In Figure 5.7 we compare log price returns and the autocorrelation of their 

volatility to the stress data  we have shown in Figures 5.4 and 5.6. On the 
left, Figure 5.7 (a) and (c), we show' the volatility clustering and powder law 
scaling of the autocorrelation for stress changes from our model. On the 

right, Figure 5.7 (b) and (d), w'e show similar clustering and a similar scaling 
of the autocorrelation function for daily log price return data  for the Dow' 

Jones Index, over the period 1993 to 2012, from the Tickwrite database [119]. 

Visually, the resemblance is striking, and the similarities have motivated our 
analysis in the coming section and the next chapter.
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We have also estim ated the Hurst exponent for the Dow Jones Index 
(1993-2012). For the returns r(^ ',lm in ), H  =  0.51, whilst for the volatil­

ity of the returns |x(f', lm in)| we find H = 0.87. Again, this is consistent 

with uncorrelated values for x{t',  Iniin), with long memory behaviour in the 

volatility |x(f', lm in)|, and very similar to our stress change data  from Sec­

tion 5.3.1. There is some variation of II  reported in the literature for the 

Dow' Jones Index, as it has been shown to depend on the range of years 
considered due to changes in trading frequency with technology [120]. Our 
estim ated values are broadly consistent with similar studies [121,122].

The physical origin of long-range memory processes and volatility clus­
tering is widely debated in the literature [123]. Heterogeneity in time scales 

(for instance, rates of information arrival in flnancial markets, or the balance 
between long-term investors and short-term  traders) has been suggested as 
a possil)le mechanism for the generation of such processes [124].

Multiple tiniescales also feature in our simulations of flowing foam. They 

include inertial, viscous and shear tiniescales. and tiniescales associated with 
disk rearrangements and swirling, vortex-like motion (as shown in Figure 3.1). 
Long memory could be due to  the aggregation of processes with different 
tiniescales [125].

5.4 Stress fluctuations and topological 

changes

In Section 5.2, we saw asymm etry in the distributions of stress changes 

Aa( t ,6 t ) ,  for low St. In Section 5.3.1, we saw tha t stress change volatil­

ity, \Aa{t,  5t)\, displayed clustering and long-range memory similar to well- 

known behaviour of log price returns in financial data. Motivated by this 

similarity, in this section we compare the asymmetric stress rises and falls 
using a rescaling analysis first applied to S&P 500 stock market data  by Preis 

and Stanley [113]. In doing so, we relate topological changes in the foam to 

fluctuations in the macroscopic stress.
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Figure 5.8; S t r u c tu r a l  ch an g es v e rsu s  sh e a r  s tre s s , in  s im u la tio n  a n d  
e x p e r im e n t ,  (a) Stress/Go versus strain (top, red), and contact changes 
versus strain  (bottom , blue) over a time interval of 3 x lO^Xy. Local maxima 
in the contact changes are observed to align with corresponding falling trends 
in the shear stress. Some of these alignments are highlighted by the vertical 
dashed lines, (b) T1 transitions compared with shear stress in experiments 
carried out by Dennin, reproduced from [23]. hi our simulations and in 
D ennin’s experiments, cjualitative correlations between topological changes 
and stress falls are observed.
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As we mentioned in the introduction to this chapter, this has been stud­
ied before, qualitatively, in experiment by Lauridsen et al. [23]. We observe 

analagous behaviour in simulation too. Figure 5.8 (a) shows stress versus 

strain, and contact changes versus strain, as defined in Section 5.1.2. The 

time window over wdiich the contact changes are calculated is 3 x lO^r^. Ver­

tical dashed lines highlight local maxima in the nimiber of contact changes. 

These align well w'ith falls in the stress, showing the dissipation of energy due 

to irreversible rearrangements. We reproduce Dennin's experimental findings 
for T1 transitions [63] in Figure 5.8 (b), noting the agreement of our results 
with his findings.

The aim of this rescaling is to improve on these qualitative results, wdiich 
we achieve by implementing a more quantitative analysis of these structural 
changes with respect to fluctuations in the stress, statistically comparing all 
trends.

5.4.1 Preis  and S tan ley  rescaling m eth od

hi their paper ''Switching phenomenon in a system with no switches" [113], 
Preis and Stanley attack a key question in the analysis of log price returns, 
conunon to  our results from the soft disk model: what causes an upward trend 
to suddenly “switch” to a downward trend, and vice versa? To do this, they 

wish to compare what they call “microtrends” in their da ta  - regions of rising 
(or falling) returns. Such microtrends can occur over different times, and can 

have different magnitudes, similar to stress rises and falls in our data. The 

challenge, then, is to quantitatively compare these trends with one another.
Preis and Stanley compare these rises and falls using a rescaling argument, 

first applied to S&P 500 stock market data [113], and which we shall apply 

to our stress changes in the next section. By finding a rescaled time with 

which they could collapse the trends, they could then apply the same collapse 
to other time-dependent properties of the system in order to examine their 

variations as a function of relative position within a microtrend.

We outline their analytical method as we have implemented it, in terms 

of shear stress, as follow's.
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Figure 5.9: R esca lin g  s tre s s  in ic ro tre n d s . Local maxima and minima are 
located using a moving window of width 2A/. The three circles mark a local 
minimum and two local maxima, respectively. A trend is said to  be the series 
of values for stress betw'een each local mininnnn and successive maximmn, 
for rises, and vice versa, for falls. Time t (directly proportional to strain) is 
rescaled to e(f), via Equations (5.7) and (5.8), such tha t each trend starts  at 
e =  0 and ends at e =  1.

A value of the shear stress as a function of time, a{t), is defined to  be a 

local maximum, amaxif-, if there is no higher value of stress within the 
interval t — A t  < t < t + A t  (Figure 5.9). Thus

amaxi^, ^ 0  =  max{a{t) \t  -  A t  < t < t + At},  (5.5)

and analogously

= min{(r(f)|^ — A t  < t < t + Af}. (5.6)

Following Preis and Stanley we now introduce a renormalised tiniescale, 
e, between alternating pairs of local maxima and minima, as follow's: let 

t^^n tmax be the times at which a local minimum and a successive local
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m axim um  occur. If tmm <  tmax, the  m icro trend  is defined as a rise; if 

^max <  imin, th e  m icrotrend is defined as a fall. The rescaled tim e e is given 

by

£(0 ^ (5-7)
^ m a x  ^ m in

for a stress rise, and

e(f) =   ̂ (5.8)
I m a x  ^ m in

for a stress fall.

Defining e in th is way scales all stress m icrotrends to  the sam e tim e in­

terval, e €  [0;1]- iiow tipply tliis tim e rescaling to  th e  tim e-dependent 

contact changes C{ t ) .  This enables us to  m onitor s tru c tu ra l rearrangem ents 

of our disks, which are the  cause of stress fluctuations, as tliey occur w ithin

a trend , allowing averaging over all rises and falls in the  d a ta  irrespective of

the individual m agnitudes and durations of trends.

5.4.2 Application to stress fluctuations

Figure 5.10 (b) plots contact clianges versus rescaled tim e e, see E qua­

tions (5.7) and (5.8). The sca tte r d a ta  are the  contact changes for all trends. 

The average and s tandard  deviation of th e  sca tte r d a ta  are overplotted, show­

ing a clear correlation between struc tu ra l rearrangem ents and relative posi­

tion w ithin a rise or fall.

During the  rises, after an in itial period of large num bers of contact changes, 

tlie curve levels out. consistent w ith a p ictu re  of slow elastic loading involv­

ing few s tru c tu ra l rearrangem ents. Surprisingly, th e  m axim um  num ber of 

contact changes tends to  occur not at th e  beginning of a fall, as nnght be 

expected, bu t instead tow^ards the  end of th e  fall. T he derivative of contact 

changes is m axim um  a t the  boundaries between rising and falling trends. 

This could suggest th a t at th e  beginning of a stress fall, the system  be­

comes unstab le and undergoes rearrangem ents to  reduce its energy, bu t does 

not im m ediately reach th e  lowest energy sta te . A lthoiigh m any of the  disks
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Figure 5.10: C o n ta c t  c h a n g e s  v e rs u s  r e s c a le d  t im e  e. T he contact 
changes are calcvilated over a tim e interval of 3 x and norm alised
by the  average to ta l num ber of contacts, A t̂otah com puted from the  data . 
N t o i a \  =  4145, corresponding to  an average contact num ber of 5.15 per disk. 
T he d a ta  from [1:2] corresponds to  fall da ta , offset by 1 to  align the beginning 
of the  fall d a ta  w ith the  end of the  rise data . The d a ta  from [0:1] and [2:3] are 
identical, shown for illustrative purposes. T he overlayed points, w'ith error 
bars, show’s the  m ean and s tan d ard  deviation of the  sca tte r d a ta  respectively.

might have succeeded in reaching a more relaxed configuration, regions of 

“tra p p e d ” stresses m ay still rem ain. Thus, the  system  tends to  undergo a 

series of further rearrangem ents, seen at the beginning of the  rises, as these 

disks are “shuffled” by the  shearing boundary  and the  trap p ed  stresses are 

released.

5.5 Conclusions and Outlook

The non-linearity in the  soft disk model arises from irreversible s tru c tu ra l 

rearrangem ents as the disk packing is sheared. Previous sim ulation w'ork has
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shown power-law scaling and avalanche-like behaviour in stress drops [36], 

and in experiments Dennin has qualitatively linked structural rearrangements 

(i.e. T1 transitions) to changes hi the shear stress [63]. We successfully 
expand upon this work, showing asymmetric distributions for shear stress 
changes over short times, consistent w'ith tw'o distinct mechanisms: slow' 

elastic loading as the stress increases, and rapid, dissipative rearrangements 

as the stress decreases.
We utilise a rescaling argument from econophysics literature to quantify, 

for the first time, structural rearrangements in a foam under shear as a 

function of position within these stress rises and falls. This analysis supports 
the previous hypothesis of two distinct mechanisms for rises and falls, linking 
them directly to changes in topology. Few' contact changes occur during the 

majority of the rises, as we expect for an elastic loading mechanism. We 
find that the highest number of contact changes occur, not at the beginning, 
but towards the end of the falls, consistent with a picture of a few initial 
rearrangements rapidly propagating throughotit the system.

We note tha t the average number of contact changes in rises and falls can 
vary by as much as a factor of 2. This is not a small relative variation, and 
could potentially have a bearing on theories of foam flow based on bubble 

rearrangement rates, such as fluidity models, where such rearrangement rates 
are often taken as approximately constant [95].

Furthermore, we show' for the first time tha t the magnitude of stress 

changes displays clustering in time and long-range memory, similar to prop­
erties found for price fluctuations in financial markets [109]. Several key 
differences exist, however, betw'een these price fluctuations and the stress 

fluctuations obtained from the soft disk model. Firstly, the price returns in 

financial data  are not in a steady state. Secondly, log-price returns display 

symmetric distributions, unlike the stress changes in our model. Finally, our 

simulations have explicit local interactions and a well-defined driving force 
applied at one boundary. Nevertheless, the soft disk model features some of 

the complex dynamics and emergent behaviour seen in financial market data, 

and gives hope tha t detailed knowledge of trader interactions is not needed 
to understand key features of stock data. We note tha t the soft disk model
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is an example of one of many similar models, widely used in the study of - 

among others - foams [13], suspensions [126], granular media [127] and soil 

mechanics [128]. Although designed for specific purposes, such models might 
offer insights into the mechanisms of complexity in fields beyond those for 

which they were initially conceived.



Chapter 6

G eneralised Diffusion and the  
Fokker-Planck Equation

In the previous chapter, we have seen tha t our simulations displayed some 
of the statistical properties and long-memory scaling familiar from the study 
of econophysics, but previously unobserved in the study of foam rheology. 
Motivated by this, we successfully ajjplied a rescaling argument developed 
for the analysis of stock market returns in the econophysics literature to our 
shear stress fluctuations. We now ask, can we also extend a more general 
analysis, which we originally developed for financial data, to our foam data?

W hen introducing the nature of financial markets, it is usual to outline 
the character of the probability distribution function for log price returns 

and the autocorrelation functions for the log price returns and the square of 

the log price returns. These are then discussed separately. The probability 
distribution function for log price returns exhibits fat tails w'ith a power law 

exponent of the order of 4 [115,116,129].

The normalised autocorrelation function is essentially zero for log price 

returns after a short time of the order of a few minutes [115,116,130]. The 

autocorrelation fmiction for the volatility (or magnitude) of the log price re­
turns also falls aw'ay from its value at zero time but then exhibits a slowly 
decaying, long-memory region, suggesting the presence of correlations ex­

tending to times of the order of a few w’eeks [115,116,131-133].

119
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In developing models, most emphasis has focused on the probability dis­

tribution function, perhaps because it has an immediate impact on the cal­

culation of risk via the detailed character of the fat tails [134,135]. Less 

emphasis has been placed on the calculation of expressions for the autocorre­
lation functions. Yet, using the basic framework of statistical physics, it can 

be shown tha t the correlation functions and the distribution functions are 

complementary facets of the basic Fokker-Planck equations tha t describe the 

underlying dynamics [136-138]. So from the one basic approach it should 
be possible to compute not just the probability distribution function but 

also the correlation functions. The implication of this statem ent is tha t the 
param eters tha t characterize the distribution function are related to those 
characterizing the correlation functions.

In Section 6.1, we present a generalised model for relating the normalised 
autocorrelation function B { t ) (see Appendix E) to the temporal evolution of 
the distribution of a random variable, via generalised diffusion coefficients.

In Section 6.2, we apply this model to  the log price returns for the Dow 
Jones Index (1993-2012), linking the fat-tailed retiu’n distributions to long- 
memory in the autocorrelation of the return volatility. Finally, we return to 
the fat-tailed PDFs we found for mean square displacements in Chapter 3. In 
Section 6.3, we present an initial attem pt to use the same generalised model 
to relate these strongly non-affine dynamics to long-memory in the soft disk 

model.

6.1 G eneralised diffusion m odel

\Ve shall now derive a generalised diffusion model, relating correlations in 

a time-dependent variable to  the tem poral evolution of the variable’s dis­
tribution. In theory, this approach is valid for any time-dependent process 

provided one has a functional form for the variable’s distribution.
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6.1.1 The Fokker-Planck equation

The normalised autocorrelation function R{t ), is defined as a function of 

time-lag r  by

R{t ) = (G’(r) -  { x{ t ) f ) f a f ,  (6.1)

with ^

C { t )  = {x{i)x{f + t ) )  = lim I  x{t )x{t  + T ) d t ,  (6.2)
T - » 0 0  J q

and at =  s j { x ‘̂{t)) -  {x{t )y.
The temporal evolution of the average of some function M{x,  t) of a ran­

dom variable x{t) is described by

d{M{x, f ) )  / d M \  ^  , , d M{ x )
E  , (8.3)di \  dt  /  ^  \  ' dx

'  ^ rj =  l  '

where D„{xJ)  are the generalised n-th order diffusion coefficients [139]. 
Dn(x, t )  is given by

, w  1 r  ([;c(f + A / ) - . r ( / ) ] " ) ^ ( , ) = ^
» „ ( ! , / )  =  -  j , m  ---------------------- ------------------- . ( M )

For both financial data and for the soft disk model, our time-dependent 
variables measure a change in value over a certain time-window 6t, as a 

fimction of the “global” time i. For financial data, this describes the log 

price retm iis x{t ,St)  = lo g (^ ^ ^ ^ ). For our foam simulations, this describes 
both the change in stress Aa{t ,6t )  (Equation (5.1)) and the transverse dis­

placements A s y { t , S t ) .  We incorporate this dependency of a choice of time 
w'indow, or lag, by extending Ec}uation (6.4) to

n  . 1 r  ([x( /  +  A^,()7) - x ( f , ( ) 0 ] " ) x ( U t ) = xD„(x, t )  = — hm ---------------------- ;------------------------ . (6.5)
^  ^  n! At
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Tlie generalised Fokker-Plank equation relates the  d istribu tion  of the  vari­

able x{t )  to  the  diffusion constan ts [139] via

=  £ ( - 1 ) ” ( ^ )  [ D n { x , t ) p { x , t ) ] .  (6.6)
n=l ^ ^

If we know a suital)le form for p{x,  t) and how' it varies in tim e, ŵ e can 

calculate tim e (lej)endent diffusion coefficients and thus calculate how the 

au tocorrelations scale in tim e via Ecjuation (6.3).

Choosing M  =  x,  Equation (6.3) gives

=  ( A ( x , 0 ) -  (6.7)

N ote th a t in the  above equation and in the  theoretical discussion th a t 

follow's we have used t to  refer to  the  tim e-w indow or tim e-lag, previously 

called St,  in order to  sim phfy the  notation . {x{t)) corresponds to  the  mi- 

norm alized correlation function G{t)  (see Equation (6.2)), i.e.

C{f )  = (x(O)x(O +  t)) = xq (x(0)^(i=o)=xo 

Choosing M  = x^ gives

= 2 { x D i { x , t ) ) +  2{D2{x , t ) )  . (6.9)

If one determ ines how Di {x , t )  and D 2 {x, t )  vary w'ith x  and t, one can 

then  a tte m p t to  solve Ecjuations (6.7) and (6.9) for (x) and  (x^), respectively. 

This in tu rn  yields the scaling of th e  au tocorrelation  fim ctions for the  linear 

and scjuared re tu rns w ith tim e, via Equation (6.2) [139].

6.1.2 T he choice of probabihty d istribution  function

T he probability  density  function of log-price re tu rns has been described [109, 

136-138] using th e  form
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Z{t)  and P{t) are tw'o finictions via w'hich w'e try  to  captvu'e the  tim e 

dependence of p{x, t).  T he natu re  of th is d istribu tion  is such th a t in the  

lim it I3x^/a —>• 0 it reduces to  a G aussian d istribu tion  function. For such a 

d istribu tion , the  variance cr^(f) is given

=  {x‘̂ {t)) = J  dxp{x , t ) x ‘̂
^  ^  f oo if a  <  3 /2  (6.11)

p r f iH F i if a  >  3 /2 .

Here, we exploit another sim ilarity betw een the  behaviour of log-price 

retiu 'ns and the  fluctuations in the soft disk model. The form of d istribu tion  

in E quation  (6.10) yields fat-tails for short tim es, and (provided either /3, 

X  or bo th  decay at long tim e) tends to  a G aussian in long tim e. Such a 

d istriln ition  cap tures the behaviour of the  m ean scjuare displacem ents w'e 

found in C hap ter 3. We retu rn  to  th is in Section 6.3.

In order to  proct'ed. we now need m ore detailed  inform ation regarding 

the scaling of and D2 - For this, we nnist forgo generality and tu rn  our 

a tten tio n  to  the  first application of the  model, to  Dow Jones Index log-price 

returns.

6.2 Application to Dow Jones financial data

In th is section we shall first com plete our theoretical model, tak ing  into 

account results for the  functional form of the  diffusion constan ts known for 

financial da ta . We shall then  present results from the  application of the  m odel 

to Dow' Jones m inute by m inute da ta , 1993-2012, taken from the  T ickw rite 

6 da tabase  (over 1.7 million d a ta  points) [119].
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6.2.1 Inserting Di and D2 for log-returns.

For a m om ent, let us sim phfy the  argum ent and assume th a t Di  and D 2  are 

independent of tim e, in hne w ith the  analysis of Queiros et al. [136]. Linear 

and quadra tic  relationships for Di {x)  and D 2 {x),  of the form

D i(x , Im in) =  —2 k D C x  (6.12)

and

D 2 {x, In iin) =  D[ \  +  Cx^) ,  (6.13)

where k. D  and C  are constan ts, have been show’n to  hold for daily 

d a ta  [136]. Di(.x, Im in) and D 2 {x,  Im in) are thus related  via

Di {x)  =  —KdD2 {x) / dx.  (6.14)

We show in the next section th a t  these relationships hold for our m inute- 

by-m inute Dow Jones data .

T he problem  w ith a tim e independent diffusion constan t D 2  is th a t  it 

essentially leads to  an exponential decay of the  volatility w ith tim e, which 

does not reflect em pirical da ta . We shall thus introduce a tim e dependence 

in the  coefficients, b u t continue, in line w ith the  litera tu re  [109,136] and our 

own findings (Section 6.2.2), to  assum e th a t D\ { x , i )  and D 2 {x, t )  are linear 

and quadra tic  in x,  respectively. Ŵ e now' have

Di { x , t )  = —b{t)x,  (6.15)

and,

I M x ,  t) = D{t )  ^1 -h > (6-16)

including the  term s b{t) and D{t )  of yet unspecified forms.
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At this state ŵ e will assume Equation (6.14) still holds. This immediately 

results in

b{t) = (6.17)
a

We  assiune tha t D{t) is dependent only on P{t) raised to some pow'er 7 ,

viz:

D{t) = D{0{t))  =  Do0'^{f), (6.18)

where Dq is constant, leading to b{t) = Using this ansatz w'e

obtain the solution

(6.19)
a

leading to the scaling

0{i) 3C t ~ ^  and hence D{t) oc and h{t) oc t~^ (6.20)

in the limit t oc.
In the following section w'e see how the above results compare with em­

pirical rleductions from our Dow Jones data.

6.2.2 Results

Figure 6.1 (a) shows the probability distribution function for one minute log- 

price returns for the Dow Jones over the period 1993-2012. We have removed 

the mean (which is a very small correction for the da ta  considered here, of the 
order of 10“ '̂ ), so th a t the distribution is centred around x =  0. The data  

is well described by the proposed probability function of Equation (6.10), 

with fitted powder law' exponent a  =  1.84 ±  0.04. The tail exponent is thus 

— 2a ~  3.7, similar to values obtained for other datasets [115,129]. Since the 
powder law tail is most pronoimced in the one-minute data, we keep it fixed 

in all the fits of log-price returns for different time wdndows, i.e. 10, 100 and 

400 minutes, as shown in Figures 6.1 (b), (c) and (d).
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Figure 6.1: P lots o f the probability density distribution for log price 
returns for tim e lags 1, 10, 100 and 400 m inutes. The transition from 
a distribution with what appears to be a cusp to a Gaussian shape as time 
increases is clearly visible. The solid lines are fits to the probability function 
of Equation (6.10), resulting in an exponent a =  1.84 ±  0.04 (Dow Jones 
minute by minute data, 1993-2012, taken from the Tickwrite 6 database 
(over 1.7 million points)).
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Figure 6.2: V a r ia t io n  o f  /3 a s  a  fu n c t io n  o f  t h e  t im e  lag , fo r log- 
p r ic e  r e tu r n s .  The d a ta  is obtained from fits of the  Dow Jones m inute 
by m iim te d a ta  to  th e  d istri\)ution function of Ecjuation (6.10) as shown in 
Figure 6.1. For tim es less th an  about 10 m inutes the  d a ta  is well described 
by 0{t)  cx ^“ '-34 while for larger tim es /?(/) varies as (D ata  shown on 
double logarithm ic scale.)

Initial values of Z{t )  are obtained from reading off P (0 ,/)  =  \ / Z { t )  for 

the  various tim e windows. We then  perform  a one free param eter fit to  Ecjua- 

tion (6 .1 0 ) to  ob tain  an in itial guess for /?(/), followed by a two param eter 

fit to  ob tain  final values for Z{t )  and ^{t ) .  The resulting  cm've for (i{t) is 

shown in Figure 6.2 in a double-logarithm ic plot.

T he d a ta  is best described by tw'o power-law' regimes. For small tim es 

10 min) /3 varies as t for larger tim es it varies as t C orre­

spondingly we ob tain  from Equation (6.20) th a t  for tim es up to  abou t 10 

m inutes 7  ~  —1/4, while for larger tim es we have 7  =  0 .

Since the  exponent a  = 1.84 of the probability  d istribu tion  of log-returns 

exceeds 3 /2 , w'e see from Equation  (6.11) th a t cr^(f) ~  For small

tim es w'e thus obtain  ~  corresponding to  a super-diffusive  regime
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(as in troduced in Section 3.2.2), while for larger tim es cr^(/) ~  t and norm al

diffusion prevails, sim ilar to  results found for S&P 500 financial d a ta  [116].

We have also com puted the  generalised diffusion constan ts Di { x , t )  and 

D 2 {x, t )  for our Dow' Jones (1993-2012) da tase t, using the  functional form of 

E quations (6.15) and (6.16), respectively. Figure 6.3 shows, as an exam ple, 

Di{x,  1 niin) and D 2 {x, 1 m in). Di  and D 2  evaluated for larger tim es show' 

the  sam e variation w ith :r, albeit w ith different prefactors. Figure 6.4 shows 

th a t the  pre-factor b{t) is well described by b{t) oc over the  range from 1 

to  100 m inutes. For larger tim e lags our d a ta  proved to  be too noisy to  allow' 

for a m eaningful com parison of b and /3.

From fits to  our d a ta  for D 2 {x, i )  to  Ecjuation (6.16), w'e obtained  the  

prefactor to  the  q uad ra tic  in x.  i.e. D{i)j3{i )/a.  Values of th is fitted  prefactor 

as a function of tim e are also shown in Figure 6.4. We see th a t  the  values 

scale like b{t) and we can indeed overlay b{t) and / a  for a value of

K =  1, justify ing E quation  (6.17).

Let us re tu rn  to  the  tim e interval from one to  ten m inutes, where 13 varies 

as and thus 7  ~  —0.25. Interestingly we see th a t this corresponds to

7  ~  — l /2 a .  In th is regime we m ay then  choose

This conjecture is consistent w ith the Fokker-Plank ecjuation for the  fluc­

tuations  being equivalent to  a non-linear equation.

This equation  has been proposed by Gell-M ann and Tsallis in the  context 

of non-extensive s ta tis tica l m echanics [140]. By varying the  param eter a,  the  

equation has been found to  fit p robability  d istribu tion  functions for a wide 

range of system s from science and economics.

( 6 .21 )

( 6 .22 )
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Figure 6.3: Generalized diffusion coefficients Di, (a), and D2, (b), 
com puted from m inute by m inute Dow Jones data over the period  
1993 - 2012 . Lines are least-square fits to the data and suggest that Di is 
linear in the x coordinate (i.e. the log-return r) and D2 is quadratic.
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F igure  6.4: F i t  p a ra m e te rs  fo r  D i  a n d  D 2 v e rs u s  t im e .  E m p irica l values 
fo r b{ t ) / 2  ob ta ined from  f it t in g  the generalised d iffus ion  constants 
to  E qua tion  (6.15). The data  is well approx im ated  by a power law  w ith  
exponent -1. A lso shown in  th is  graph is the  va ria tio n  o f the  f it te d  p re facto r 
o f the quad ra tic  in  D 2 { x , t ) ,  i.e. D P / a  &t t =  1 m inu te . T h is  graph thus 
jus tifie s  E qua tion  (6.17).

Now le t ’s re tu rn  and look again at E qua tion  (6.9) fo r the  co rre la tion  

f im c tio n  (x^) using the generalized d iffus ion  coefficients defined by Equa­

tions (6.15) and (6.16) respectively. We have

,  2 /J ( ,)  ( 1  +  M ( 1  -  . (6.23)
at  \  Q J

Assum ing the  power law  expressions E qua tion  (6.20) fo r D { t )  and /3(#) w'e 

have

=  2D o/3(0" ( 1  +  ^ ( 1  -  2K )(a ;2(f))^ . (6.24)
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Let us first consider the regime t >  10 m inutes, where 7  =  0 and P{t )  =  

w ith /32 =  const.  This results in

=  2d A \  +  — (1 -  2 K . ) { x \ t ) ) r ^ ]  . (6.25)
at  \  a  )

The solution  of this equation is given by

=  ^  =X q

 2 a  i +  c o n s t .  X /2Do^(1-2k)
1-2Do^ ( 1 - 2 k)

(6.26)

But now we recall that the correlation function we actually require is 

i.e. R{ t )  o f Equation (6.1), applied to x^.  N oting that the non­

conditional average (x^(/))^ ~  0 .̂2 {t) in the limit of / —̂ oc, where the first 

term of the RHS of Ecjuation (6.26) is the dom inant term, we obtain

/? ,2 (0  ^  const. X /20ô ( i -2 k)̂  (g 27)

R ecalling that k ~  1, we find that Rx^[f) scales as / - 2^o02 /q j]jp  ratio  

2 I)o0 2 /o: is obtained  from o\U' fits for D 2 {x, t ) ,  as it is tw ice the prefactor of 

the term  at / =  1 m inute (see Figure 6.4). We finally obtain

R.,2{t) oc r ° • ^  (6.28)

in good agreem ent w ith our data, as shown in Figure 6.5.

We now recall our introduction of a tim e dependent function Di { x ,  f),  see 

Ecjuation (6.15). T he tim e dependence of b{t),  b{t) — b\ / t ,  leads im m ediately  

to a power law for the autocorrelation function,

{x) /  xo =  {t /  to)~^K (6.29)

Figure 6.6 shows a one-param eter fit of this power law to our data for 

i <  10 m inutes, using the value b\ =  0.89, as obtained from our data for b{t),
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Figure 6.5: A u to co rre la tio n  o f th e  m ag n itu d e  (vo latility ) of m inu te- 
b y -m in u te  D JIA  log re tu rn s  |x(?, 1 m in)| (d a ta  from  1993-2012), 
p lo tte d  on a log-log scale. Power law regimes may be identified for the 
ranges of 0.1 to 10 days, and exceeding 30 days, with approximate exponents 
of —0.1 and —0.9, respectively.

see Figure 6.4. We see that this approximation provides a not unreasonable 
empirical fit to the data.

6.3 Application to  soft disk m odel 

simulations

In this section, we shall present some preliminary findings in applying our 
generalised diffusion model to our simulation results. The parameters used 
are identical to those outlined in Section 5.1.1.

First, we shall briefly discuss the choice of simulation parameter to anal­
yse. Then, we shall show that our mean square displacement distributions 
from Chapter 3 are well described by the time-dependent functional form of 
Equation (6.10). From this, we calculate /3(i). Finally, we shall once again
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Figm e 6.6; N o rm a l iz e d  a u to c o r r e la t io n  f u n c t io n  fo r m in u te -b y -  
m in u te  D o w  J o n e s  d a t a  o v e r  th e  p e r io d  1993 -2 0 1 2 . The solid line 
shows a fit to  an exponential decay, w ith a decay constan t of 31 seconds. 
T he dashed line shows a one-i)aram eter ht to  { x ) / x q  =  w ith bj
fixed, hi =  0.89.

see long-m emory in the  soft disk model, th is tim e in the  bubble dynam ics 

directly.

6.3.1 C hoosing an analogy to  log returns

O ur initial m otivation for a})plying a generalised diffusion m odel developed 

for financial d a ta  to  our soft disk model sinnilations was exceedingly s tra ig h t­

forward: we noted th a t  log-price returns initially  displayed fat tails, tending  

towards a G aussian d istribu tion  at long tim e, and underw ent diffusion. As 

we have seen in C hap ter 3, transverse m ean scjuare displacem ents of disks 

under shear share all of these properties. We know from C hapter 5 th a t 

volatility clustering and long-range m em ory can be found in the model also.

This long-memory, however, was found for the stress changes. These are 

indeed related  to  th is displacem ents, bu t alm ost certain ly  not trivially! In 

this section, we shall focus solely on displacem ents. T he j)roblem w ith this
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choice, however, is in quantifying the behaviour of the displacements versus 
time in order to calculate the autocorrelation function. Each disk is described 

by its own position vector r(f'), and thus has its own transverse displacement 
thneseries A s y { t ' , t )  =  r y { t '  + t) — r y { t ' ) .  How do we consider the motion of 

all disks? Focusing on only a single disk will result in poor statistics. We 

cannot consider them  sequentially, as this will result in spurious correlations 

of the order of the length of time sampled per disk, defeating the purpose.

In the correlation analysis th a t follow's, we choose a simple average, tha t is 
we calculate the correlations for average transverse displacement { A s y ) { f  , t )  

over a time window t. This quantity  is perhaps a naive choice, as it loses 

information w'hen opposite motion in the system averages to zero. Neverthe­
less, we find it to  capture enough information in the system for our initial 

analysis. In a sense, it is not too different from the Dow Jones Index; the 
index is itself a weighted average of 30 different stock fluctuations [141].

6.3.2 M ean square displacem ent d istributions

We retvu'n now to the mean square displacement distributions from Sec­
tion 3.2,1. Figure 6.7 shows distributions for De =  7.6 x 10~®, over time 
hitervals t of (a) 2.5Ty, (b) 125t^, and (c) 5000r.i,. The solid black lines show 
fits to the functional form of the distribution given by Equation (6.10). The 

exponent a  = 1.75 is calculated from (a), the finest resolution of da ta  we 
have, and then kept constant for all t, in line with our analysis in Section 6.2.

We see tha t at low' time lags. Equation (6.10) provides a good fit to the 

data. In Figure 6.7 (c), the displacements have begun to approach Gaussian 

distribution, as we begin to transition to the diffusive regime examined in 

Section 3.2.2. Equation (6.10) still provides a not-unreasonable fit to the 

majority of the data, considering th a t the logscale emphasises deviations at 

the tails.
From these fits to  Equation (6.10), w'e find values for P{t) for our soft disk 

sinmlations, shown in Figure 6.8 on a log-log scale. The solid line plots a fit 

to the data for powder law scaling /? ~  with ip =  1.57, w'hich describes 

the data  well over the range probed.
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Figure 6.7: Plots of the probability density distribution for mean  
square displacem ents for D e = 7.6 x 10“® and tim e lags 2.5, 125, 
5000 Tv. The solid lines are fits to the probability function of Equa­
tion (6.10), resulting in an exponent a  =  1.75 ±  0.03. At long time lags, 
the distribution tends towards a Gaussian distribution, shown by the dashed 
line in (c).
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Figure 6.8: V a r ia t io n  o f  ,5 as a  fu n c t io n  o f  th e  t im e  lag  fo r m e a n  
s q u a r e  d is p la c e m e n ts .  T he d a ta  is obtained from fits of the  m ean square 
d isplacem ents to  the  d istrib \ition  f\m ction of E q\iation (6.10) as shown in 
Figure 6.7. We plot in order to non-dim ensionalise our results, equiv­
alent to  considering m ean square displacem ents A s / { d ) .  The solid line plots 
a fit to  th e  d a ta  for power law' scaling /3 ~  w'ith ip — 1.57. This corre­
sponds to  sujjerdiffusive scaling over the  entire range of the  d a ta  shown. Tlie 
highest tim e lag shown, t =  12500r.y, is approxim ately  the  point where the 
tails of the  displacem ents become w'ell-described by a G aussian distribu tion .

This value of corresponds to  superdiffusive scaling over the  entire  range 

of the  d a ta  shown. This is consistent w'ith the  superdiffusive regime we had 

previously observed in 3.2.1. The highest tim e lag shown, t =  12500r^, is 

approxim ately  the  point w'here the  tails of the  displacem ents becom e well- 

described by a G aussian d istribu tion , i.e. the onset of the  diffusive regime.
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Figure 6.9: V o la tility  c lu s te r in g  in  th e  av e ra g e  tra n s v e rs e  d isp la ce ­
m e n t v e rsu s  tim e . Average transverse displacement {Asy{At))  for A t  = 
Ir^,, versus time, for De — 7.6x 10“®. Average displacements calculated, as in 
Chapter 3, for bubbles whose y-coordinates fall within 0.2L < y < 0.8L, i.e. 
away from the boundaries. We see volatility clustering, similar to clustering 
seen for shear stress fluctuations in the soft disk model and log price returns 
in the Dow Jones Index, as shown in Figures 5.7 (b) and (d) respectively.

6.3.3 V olatility  clustering and long-range m em ory in 

displacem ents

We now consider the average transverse displacement {Asy){t' ,  t), introduced 
in Section 6.3.1. Similarly to previous analysis, w'e w'ish to avoid the ef­
fects of the l)oundaries on the transverse displacements. Therefore, {Asy)  is 

calculated, as in Section 3.2.1, for bubbles wdiose y-coordinates fall w'ithin 

0.2L < y < 0.8L, w'here L  is the channel width.

Figure 6.9 plots {Asy) versus time t ' , for a time lag t = 2.57^. We observe 

volatility clustering, similar to clustering seen for shear stress fluctuations in 

the soft disk model and log price returns in the Dow Jones Index, as show'n in 

Figxires 5.7 (b) and (d) respectively. As expected, the average value of {Asy)
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Figure 6.10: A u to c o rre la tio n s  o f  th e  av e rag e  tra n s v e rs e  d isp la c e m e n t 
a n d  m a g n itu d e  (v o la tility )  o f th e  av e ra g e  tra n s v e rs e  d isp la c e m e n t
The a\itocorrelation of (A.Sy) (teal) is observed to  decay more rapidly than  the 
autocorrelation of its magnitude, |(A5y)| (orange). The solid line provides 
a guide to  the eye for long-memory scaling .4(^) oc which is clearly
seen to describe the scaling of |(Asy)| well over nearly three decades. The 
autocorrelation of |(Asy)| then sharply decays to zero, at a value of time 
? ~  1 X 10^ consistent with the onset of Gaussian distributions and normal 
diffusion.

is zero, because the mean transverse flow' is zero. The fluctuations at such a 

short time scale are small, of the order of less than one percent of a bubble 

diameter. We probe longer time scales using the autocorrelation function.
In Figure 6.10 we plot the normalised autocorrelation function for the av­

erage transverse displacement (As^) (teal), and the volatility (or magnitude) 
of the average transverse displacement |(Asy)| (orange). We observe tha t, 

similar to the effect of considering the volatility on long-range memory tha t 

we have already seen in both stress fluctuations and log-price returns, the 
volatility |(Asy)| decays more slowly than (As^). |(Asy)| is well described
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by power law scaling with an exponent of —0.2 over nearly three decades, 

show'n by the solid black line as a guide to the eye in Figure 6.10.

The Hurst exponent (see Appendix E) for (Asy) is estim ated to he H = 

0.93. For |(Asy)|, we find a value of / /  =  0.97. As one might expect from 
Figure 6.10, both values are consistent with the long memory condition 0.5 < 

/ /  <  1.0 .

The Hurst exponents highlight a key difference w'e have found for the 

average transverse displacement in comparison with the results for stress 

changes and log price returns. We compare these values in Table 6.1. We 
find tha t ( A s y ) ,  unlike A ct and ,c(/, Imin), does not decay rapidly to zero 

in an exponential-like fashion, instead itself displaying long memory tha t is 
merely amplified by considering the autocorrelation of its magnitude.

W hat this implies is, unlike for stress or log-returns. if we know' that w'e 
have a p o s itiv e  average transverse displacement at some time r ,  then we 
know that it is probable tha t we shall have another p o s itiv e  displacement 
at r  - I -  6 t . some short time S t  later. Naively, one could attribu te  this to a 
bias inherent in the cjuantity w'e have chosen to look at. namely the simple 
average tran.sverse displacement. At short tiniescales, of the order of r^, if the 
average motion is in one direction, it is very likely tha t the average motion 
will continue (although it will proljably slow down) in that direction for some 
finite time. Put another way, the average velocity is a continuous function. 

In contrast, both stress and log-returns can conceivably have discontinuities. 
In the case of the former, this can occur w'hen bubbles lose contact with 

one another. In the case of the latter, price choices are discrete. A more 

quantitative anaylsis of this is necessary.
Nevertheless, w'e can extract some interesting information from even this 

preliminary analysis. The autocorrelation function of | (As^) | no longer show's 

long-memory, instead decaying rapidly to zero, at a time lag of approximately 

^ ~  1 X lO' r̂ ,̂. As w'e have seen in Figures 6.7 and 6.8, this corresponds to 

the onset of shear induced diffusion, identifying perhaps another method of 
classifying wiien a system has reached the diffusive regime, in complement 

to our method shown in Figure 3.6.
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System H urst exponent H urst exponent, volatility
Stress changes. A ct 0.54 0.89
Log price returns, x{t ,  Im in) 0.51 0.87
Average displacem ent, ( A s y ) 0.93 0.97

Table 6.1; H u r s t  e x p o n e n ts  fo r s t r e s s  c h a n g e s , lo g -p r ic e  r e t u r n s  a n d  
a v e ra g e  t r a n s v e r s e  d is p la c e m e n t .  Stress changes and log-returns show 
sim ilar behaviour, w'ith the H  ~  0.5 for A ct and Im in) indicating luicorre- 
lated  tim eseries. W hen com puted for their volatihties, |A c r |  and |x(^, Im in)], 
long-m emory emerges, w'ith I I  = 0.89 and I I  = 0.87 respectively. For {Asy),  
long m em ory is observed for b o th  the  unm odified tim eseries, and its volatility.

From  our results for bo th  log-returns and m ean square displacem ents 

w'e see th a t long-m em ory is associated w ith fat-tailed  d istribu tions, a result 

sui)ported by the  litera tiu ’e [109,116,142]. This is po ten tially  of relevance to  

understanding  the origin of long-m em ory in the  stress fluctuations shown in 

F igure 5.6, noting th a t  we observed fat-tailed d istribu tions for stress falls in 

Figure 5.3.

6.4 C onclusions and O utlook

We present a general model for relating the  scaling of the norm alised au to ­

correlation fm iction for a tim e-dependent variable to  the  tem poral evolution 

of d istribu tions of th a t variable, via generalised diffusion coefficients and the 

Fokker-Planck equation.

We then  analyse Dow Jones financial d a ta  over the  period 1993-2012, O ur 

theoretical approach is successful in describing the  d istribu tions and diffusion 

of the  log price retu rns, and in delivering a power law for the  volatility  of 

log-returns for large tim e lags. However, the  in troduction  of tim e dependence 

in b{t), E quation  (6.15), also yields a pow'er law' for th e  autocorrelation of log 

re tu rns, which is typically  described as an exponential decay [115,116,130]. 

Unlike an exponential decay, which is bounded as t tends to  zero, the power 

law diverges for short tim es. For very small tim es, the  simple m odel presented 

here m ay break down and b{t) m ight no longer scale inversely w ith tim e.
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Indeed some m ight be surprised th a t th is m odel fits as well as it does over 

the  en tire  tim e period of our d a ta , given the  lim ited num ber of param eters 

involved. Further generalisations to  include, for exam ple, skewness in the 

d a ta  m ight be considered for fu ture  work.

We finally present an initial application of th e  m odel to  m ean square 

displacem ents in soft disk sim ulations. W'e find the  d istribu tions of transverse 

displacem ents to  be well-described by the  sam e functional form as for log- 

retu rns, scaling superdiffusively up until th e  onset of norm al diffusion and 

G aussian d istribu tion , in agreem ent w'ith our analysis in C hap ter 3. We once 

again find volatility  clustering and long-range m em ory in the  model, this 

tim e for the  average transverse disi)lacem ent. From here, the  next challenge 

is to  analyse the diffusion of the  disj^lacements in term s of functional forms 

for D \  and D 2 , in order to  solve the  Fokker-Planck eciuation and ex tract an 

exponent for the  scaling of the  au tocorrelation  at long tim es.
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Chapter 7

Outlook

Each chapter of tliis thesis has couchuled w ith sections sum m arising our 

m ain fincUngs. and suggesting futiu’e work regarding the m ethods and results 

presented in th a t chapter. We have extensively investigated the dynam ics, 

fluctuations and rheology in the soft disk model for 2D foams, w ithin the  

general theoretical fram ework of foams as a complex system . In so doing, 

we have successfully qTiantified new ways of linking the  m acroscopic, non­

linear rheology of foams, well known from experim ent, to  the  microscopic 

in teractions at the  bubble scale.

In th is chapter, we shall give a general overview of po ten tia l fu ture  w’ork, 

building on the advances presented in th is thesis. We consider th ree general 

areas, w’hich w'e feel are opportune  for fu rther investigation. In Section 7.1, 

we discuss an emergent property  of foam flow which has yet to  be well char­

acterised: the swirling, vortex-like m otion of bubl)les at low stra in  rate. In 

Section 7.2, we consider the  extension of the  soft disk m odel to  a soft sphere 

model, in three dimensions. Finally, in Section 7.3, w’e discuss the  extension 

of the  soft disk sim ulations to  model the  rheology of foams containing fibres, 

used in industrial applications such as th e  m anufacture of paper.

143
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7.1 V orticity in the soft disk m odel

In considering foams as complex systems, as introduced in Section 1.5, we 
have discussed their emergent behaviour; th a t is, the non-linear properties 

of foams tha t are not simply inherent in, or derivable from, the individual 

bubble-bubble interactions. Instead, this emergent behaviour is observed at 

different hierarchical levels, due to some complex, collective aggregation or 
organisation of these interactions. Throughout this thesis we have focused 
on two hierarchies: the microscopic bubble scale, and the macroscopic rheo- 

logical res]:)onse. Examples of macroscopic emergent behaviour we have seen 
include the non-linear, Herschel-Bulkley-like scaling of the shear stress tha t 
arises desjute only simple, linear local interactions (see Chapters 2 and 3), and 
long memory scaling of the volatility in stress fluctuations, over tiniescales 
much greater than the tiniescales associated with viscous and elastic inter­
actions in the model at the bubble scale (see Chapter 5).

These are not the only hierarchies one may consider. An intermediate 
hierarchy, betw'een th a t of the microscopic scale bubble interactions and tha t 
of the macroscopic scale rheology, is tha t of the swirling, non-affine, vortex­
like motion of the bubbles at low' strain rate, seen in Figure 7.1. These 

vortices emerge and dissipate continuously as the foam is sheared. This 
rotational flow, typically featuring radii of rotation much larger than a bubble 
diam eter, is yet another example of emergent behaviour in the soft disk 

model.
By developing a quantitative description of the vortex motion in the soft 

disk model, one could then investigate the properties of these vortices. A 

good initial approach could be to relate foam flow to more general liquid flow. 
In fluid mechanics, the vorticity is a pseudovector field, lD, th a t describes local 

rotational flow'. It is calculated by the curl of the fluid’s velocity field v

Cj = V  X V, (7.1)

w'here V is the del operator [18]. Similar to fluids, in principle one can 

calculate the vorticity pseudovector field for soft disk model simulations as
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X

Figure 7.1: V o r t ic e s  in  s o ft  d isk  m o d e l  flow . V isualisation of a soft disk 
model sinm lation. w ith  D e =  3.79 x 10^^ and 0  =  0.95. The arrows show 
the  instan taneous non-afRne velocity vectors of the  bubbles, th a t is their 
velocities m inus the  s teady -sta te  m ean flow (v(y)). Regions of ro ta tional 
flow, or vortices, form and dissipate continuously th roughout shear.

a function of tim e, from the  velocity fields such as the exam ple p lo tted  in 

Figure 7.1.

W ith  a qua lita tive  m easure of the  vortices, it would be possible to  address 

a range of questions. For instance, w'hat are the  d istribu tions of their radii 

and angular velocities? Over w'hat tim escale do they  typically form and 

disperse? Do their presence, size and shape depend on channel dimensions, 

polydispersity. packing fraction and s tra in  rate?  U ltim ately, the  aim w'ould 

be to  link properties of the  vortices to  fluctuations and non-linearity in the 

macroscopic rheology.
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7.2 Towards a soft sphere m odel

As in troduced  in Section 1.2.3, 2D foams were in itially  in troduced as a model 

system  for num erical and theoretical studies of foams, as they  present sim pler 

system s to  tre a t m athem atically  and com putationally. Expansion of sim u­

lations and theory  to  3D, however, rem ains principle goal of foams, colloids 

and granular m edia research.

In recent years, extensive work has been done on packing of disordered 

spheres in 3D, close to  the janun ing  transition  [17,143,144]. M odels, such as 

the  granocentric m odel [143], have been proposed to  explain the d istribu tions 

of contacts in such packings, and spatial correlations such as an analogy to 

the  Aboav-W eaire law [13] in 3D (i.e. cells w ith m any neighbours tend  to 

be surrounded by cells w ith few neighbours, and vice versa). These sim u­

lations have been quasistatic , where the  positions of the  spheres have been 

determ ined  by energy m inim isation using conjugate gradient descent.

Advances in com puting power, and the  addition of parallel processing, 

have been such th a t we believe it is now feasible to  overcome challenges 

which have previously m ade dynam ic sim ulations in 3D im practical. Indeed, 

recently, Seth et al. presented results using a dynam ic sinm lation of soft 

spheres [145], the  first s tudy  of its kind.

W ith  regard to  the  sim ulation of foams, there  are two m ain challenges 

when it comes to  extending the soft disk model to  3D. The first is connected 

w ith the  n a tu re  of the  in teraction  forces between in teracting  circular or spher­

ical particles, as calculated by Lacasse et al. for enmlsions [59], in troduced 

in Section 1.3.2. In 2D, and as im plem ented in our sinm lations, th e  repulsion 

betw een in teracting  bubbles is well approxim ated by a harm onic in teraction, 

for small compressions. However, in 3D, Lacasse et al. found th a t  th e  re­

pulsive force exerted by droplet i on droplet j  depends non-triv ially  on the 

num ber of neighbours a droplet i has. One could assume, for the  sake of 

sim plification, th a t  in teractions could be m odelled independent of contact 

num ber, as Seth et al. did [145]. However, an investigation of the  efTect of 

th is sim plification, still ou tstand ing , would be interesting, as a com plem ent 

to  th e  work of Lacasse et al.
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The second challenge in implementing a 3D foam simulation is techni­

cal, related to the increased com putational intensiveness. Adding another 

dimension necessitates a large increase in the number of particles in the sys­

tem, in order to investigate the bulk properties of th a t system aw'ay from the 
boundaries. For instance, if we wished to consider an equivalent 3D system 

to our 2D systems presented in Chapter 2, the number of particles N  w'ould 
increase by as much as a factor of 30. Furthermore, the average contact 
number of a sphere in 3D increases to 14, from 6 for disks in 2D [34]. As only 

overlapping particles interact, the average number of calculations per sim­
ulation timestep is directly proportional to the average number of contacts 
in the system. From the above, we can estim ate tha t for equivalently large 

3D systems, the com putational intensiveness increases by approximately tw'o 
orders of magnitude. Comi)utational resomces and methods, however, have 
now advanced to the point where this is no longer an insurmountaV:)le increase.

Consider Durian's original simulations, performed in 1995 [51]. These 
sinmlations were carried out. initially, for ~  40 bubbles in 2D. In 2008. Lan- 
glois et al. presented results for system sizes of 1500 bubbles [52]. Following 
Moore’s Law [146], w’hich states that coni])uter power increases by a factor 
of 2 every 1.5 years, today our brute-force computing pow'er is 64 times th a t 
of D urian’s in 1995, and 8 times that of Langlois’ in 2008. An order of mag­
nitude increase in capability has already been achieved through advances in 

processor technology alone.
Fiu'thermore. what is achievable in sinnilation has been greatly enhanced 

by the advent of readily accessible parallel processing, as discussed in Ap­
pendix A. Using our CUDA implementation of the soft disk model code, 
we have achieved an order of magnitude increase in simulation speeds for a 

system size of 1500 bubbles in 2D, compared to serial code. The increase 

over serial implementation due to parallelisation becomes relatively larger as 

system size increases, lending itself well to the demands of 3D simulation.

We have seen a rich landscape of complex behaviour emerge from our sim­
ple 2D model. While it is straightforward to extend Newtonian interactions 

from 2D to 3D. non-linear emergent behaviour is not so easily translated. Ex­

tension of the soft disk model to 3D may generate new emergent behaviour
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Figure 7.2; S c h e m a tic  i l lu s tra t io n  o f a  h y p o th e tic a l m o d e l for fib res 
in  foam . The large blue disks represent bubbles, as simulated in our model. 
The smaller green disks are joined together sequentially by a Lennard-Jones- 
like attraction, representing a fibre. This fibre interacts via elastic and viscous 
forces with the bubbles and other fibres.

unseen in 2D, potentially granting yet further insight into the microscopic 
origins of the macroscopic rheology of foams.

7.3 T he rheology of foams containing fibres

Foams containing fibres in suspension are used in the manufacture of pa­

per [147]. Typically, paper is produced using aqueous solutions of fibres, 

extruded into sheets, drained and dried. The quality of the paper produced 
is determined, in part, by the spacial distribution of these fibres. A uniform 
distribution, with minimal clumping, produces higher quality paper. These 

fibres can be added instead to foams. It has been found th a t the bubbles 

in the foam act as spacers betw'een the fibres, reducing clumping, and pro­

ducing a more uniform distribution and thus better paper than  the aqueous 
solutions.

As an industrial fabrication process, there is naturally a large interest in 

optimising this procedure. Currently, this optimisation is based on purely
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em pirical results. O pen questions exist, such as how the  d istribu tion /d isper- 

sity of the  fibres th roughout the foam depends on packing fraction, strain  

ra te  during processing, and the ratio  of the  fibre lengths to  the bubble sizes. 

Further questions include the  effect of the  stiffness of the  fibres on their 

in teraction  w ith the  foam, w'hether the  suspensions feature shear-induced 

anisotropy or diffusion of the  fibres and their alignm ents in the  foam, and 

the effect of the fibres on the  Herschel-Bulkley exponent and yield stress of 

the foam.

All of these questions have im portan t practical ram ifications and can, in 

principle, be investigated by modified soft disk model sinm lations. T he fibres 

could hypto thetically  be m odelled as chains of very small disks, added to  a 

regular im plem entation of the  soft disk m odel, see Figure 7.2. These disks are 

held together, sequentially, by the  addition of a relatively strong a ttrac tive  

Lennard-Jones-like po ten tia l between neighbouring disks in a chain. These 

chains would then  be free to  move th roughout the sim ulated foam, subject 

to  ela.stic and viscous in teractions with the  bubbles and o ther fibres.

Such an im plem entation would be the  first sinm lation model for what 

would constitu te  a new' branch of foam physics, concerning th e  effect th a t 

the inclusion of fibres and am orphous polym ers has on the properties of liquid 

foam.
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A ppendix A 

Parallel Processing Using  
C U D A

Even during my four years of postgraduate studies. I liave noticed a marked 
increase in what is achievable solely due to increases in technological capac­
ity and computing power. We have been extremely fortunate to have access 
to the Lonsdale supercomputer cluster in the Trinity Centre for High Per­
formance Computing, which has facilitated the com putational hours (and 

storage space!) necessary for many of the results presented in this thesis.
Initially, all of the computations performed using the soft disk model used 

serial C code, making u.se of the Verlet algorithm (see Appendix C). My 

much-abused laptop proved insufficient to perform large scale calculations, 
so these w'ere run on the Lonsdale cluster, in 4-day windows. Most of the 

results for 0 =  0.95, the first packing fraction we studied, w'ere produced 

from consecutive 96 hour sinmlations. The longest simulation run, for the 

second-low'est strain rate ŵ e present first in Chapter 2, took approximately 
tw'o and a half months, which was necessary to reach the steady state for 

such a low' strain rate.

In conjunction w'ith Steve Hardiman of the Foams and Complex Systems 

group, w'ith whom I shared a mutual interest in parallel programming, we 

decided to attem pt to implement a CUDA version of the soft disk model 
code. CUDA, w'hich stands for Compute Unified Device Architecture, is an

151
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Figure A .l: R e a l- t im e  C U D A  soft d isk  m o d e l s im u la tio n  o f lin e a r  
sh e a r . The disks are coloured by their elastics energies; bhie for low elastic 
energy, red for high. On the right, the stress is plotted as a function of strain 
in real time.

initiative by com puter graphics card manufacturer NVIDIA designed to  allow’ 
l)arallel processing and high performance computing without the need for the 

formidable com puter architecture usually required.
Every modern com puter comes equipped with a graphics card - a piece 

of hardware specifically designed to render 3D graphics. These cards can 

have hundreds or even thousands of “cores” - small computer processors in 

their own right, complete with their own virtual memory. These processors 

are optimised for linear algebra, and are not normally accessible by the user 
or the operating system. On CUDA-compatible cards, NVIDlA’s compiler 
nvcc allows modified C programs to make use of these cores with specific 

code syntax. More information on CUDA progranmiing can be found on 

N VlDlA ’s excellent website [148].

We have successfully implemented a parellelised version of the soft disk 

code, using CUDA-enabled C code. Below', we provide a commented ex­
ample of one of the functions used in the CUDA version of our model, 

cuda-upper^walLdata. This function calculates the forces acting on the mov-
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ing boundary. We distinguish between the Host (the central processor of 

the  com puter th a t  the  niain{ } routine is executed on) and the  Device (the 

CUDA enabled graphics card to  which the  parallel processes are sent).

//The function call cuda_upper_wall_data, from the
maln{} routine in the CUDA C code. The device_ 
variables are arrays defined on the Device.
These arrays are updated by copying from the 
Host to the Device using the routine 
cudaMemcpyHostToDeVice .

cuda_upper_wal1_data(device_forces, device_forcesv, 
device_blockupforce , device_blockUPPERxforcev , 
device_blockUPPERxforcee);

//The function definition cuda_upper_wall_data, from 
the CUDA code kernel. From this point , we are 
working on the Device, hence the arrays no 
longer being distinguished as device_. 
BLOCKSPERGRID and THREADSPERBLOCK are two key 
parameters for pare11isation. They determine how 
the workload is split between CUDA cores, with 

BLOCKSPERGRID groups of cores each executing 
THREADSPERBLOCK threads. Optimum choices of 
BLOCKSPERGRID and THREADSPERBLOCK are set by the 
Device hardware. The function calls a kernel 

function upper_wall_data_kernel, with the 
argument <<< >>> providing instructions for the 
distribution of the parallel threads.

void cuda_upper_wall_data (force *forces, force * 
forcesv, float *blockupforce, float * 
blockxforcev , float *blockxforcee)

{
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upper_wall_data_kernel <<< BLOCKSPERGRID ,
THREADSPERBLOCK >>> (forces, forcesv, 
blockupforce , blockxforcev , blockxforcee 
);

//The kernel function definition. This function Is 
run BLOCKSPERGRID+THREADSPERBLOCK times, 
simultaneously. Each array element j, 
corresponding to a different disk in the 
simulation, is uniquely identified by its thread 
and block number.

__global__ void upper_wall_data_kernel(force *forces, 
force *forcesv, float *blockupforce, float * 

blockxforcev, float *blockxforcee)
{

int j = threadldx.x + blockDim.x*blockIdx.x + 
1 ;

//The __shared__ variables are shared between all 
threads and blocks.

__shared__ float s_forcesz[THREADSPERBLOCK]; 
__shared__ float s_forcesvx[THREADSPERBLOCK]; 
__shared__ float s_forcesx[THREADSPERBLOCK];

//Calculating the forces on the upper wall. Many of 
the threads for this particular function will 
return zero , but if j is in the wall it will 
return a value.

if(j>=NBUBBLES+NWALL/2+l && j<=NBUBBLES+NWALL 
) {
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s_forcesz[threadldx.x] = forces[j].z; 
s_forcesvx[threadldx.x] = forcesv[j].

X ;

s_forcesx[threadldx.x] = forces[j].x 
- forcesv[j].x;

} else {
s_forcesz[threadldx.x] = 0.0; 
s_forcesvx [threadldx.x] = 0.0; 
s_forcesx[threadldx.x] = 0.0;

>

//The __syncthreads() command tells the process to 
stop and wait for all threads to complete , at 
this point .

__syncthreads () ;

int t ;

//An efficient routine for summing all elements of
the shared arrays into the first element of the 
array, over all threads on one block.

for (t=blockDim.X/ 2 ; t>0; t/=2) { 
if (threadldx.X < t) {

s_forcesz [threadldx.x] +=
s_forcesz[t+threadldx.x 
] :

s_forcesvx [threadldx.x] + =
s_forcesvx[t+threadldx.x 
] ;
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s_forcesx[threadldx.x] +=
s_forcesx [t + threadldx.x 
] :

}
__syncthreads() ;

//Finally, we sum over all blocks and return the
value of the forces on the wall. These values 
are returned to the Device array.

if (threadldx.X == 0) {
blockupforce [blockldx.x] += s_forcesz 

[0] ;
blockxforcev[blockldx.x] += 

s_forcesvx [0] ; 
blockxforcee[blockldx.x] += s_forcesx 

[0] ;
}

return ;
}

//In order for the main{> routine to access the 
Device arrays, we must call
cudaMemcpyDeviceToHost in main{} to copy the 
memory to the Host.

ret = cudaMemcpy(blockupforce, device_blockupforce, 
BLOCKSPERGRID*sizeof(float), 
cudaMemcpyDeviceToHost);

i f (ret != cudaSuccess) printf("Cudaumemoryucopyubacku 
error\n");



157

The successful parallehsation of our simulation has two main benefits. 
Firstly, and most importantly, for a system size of 1500 disks, it increases 

the speed of the calculations by a factor of 10 or more. For larger systems, 
the relative increase in speed increased, as parallelisation lends itself well to 

increased system size. Using the CUDA code, a system of 12000 disks can 

be sinmlated at the same rate as a 1500 disk system using the serial code.

Secondly, the speed increase afforded by the CUDA code enables real­
time visual output for the soft disk model simulation. A screenshot of this is 

shown in Figure A.I. This output shows the packing as it is sheared, and can, 

for instance, colour disks based upon their stress values or elastic energies. 

We can also plot, for instance, the shear stress as the system is strained.
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A ppendix B

Effective Packing Fraction

The packing fraction in the  soft disk m odel is defined by Ecjuation (2.6), th a t 

is

where N  is the  num ber of disks, rf, is the  cham eter of disk i, and A  is the 

area of confinement. For consistency, bo th  th roughout th is tliesis and for the 

purposes of com parisons w ith the works of o thers using th e  soft (hsk model. 

we use th is definition exclusively for all results. How'ever, we note th a t this 

definition yields a value for (p which is not directly  equivalent to  the packing 

fraction calculated in experim ent.

W hy is th is so? Consider the  definition above. It is possible, given th a t 

disks are perm itted  to  overlap, th a t the  sum  of the areas of the  disks exceeds 

the  value of A, the  confining area. This w'ould yield a value of 0  >  1.0, which 

is not possible for physical system s. This is due to  the  fact th a t the  area 

w ithin an overlap is double-counted, in the  above definition.

(B .l)
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Figure B .l: A  s c h e m a tic  i l lu s t r a t io n  o f  o v e r la p p in g  d isk s  o f  d if f e re n t
r a d i i .  The radial overlap A jj, shown, is given by E quation  (2.3). E qua­
tion (B.3) describes the  area of the shaded region, A^j.

T his discrepancy becom es relatively larger as packing fraction increases, 

due to  increased overlaps. We can see this by defining an average radial 

overlap, (A ), as

where A,_, is the  radial overlap between disks i and j  as defined in Eciua- 

tion (2.3) and depicted  in F igure B .l, C{i )  is th e  to ta l num ber of contacts a t 

tim e t, and T  is the  tim e window in the  s teady -sta te  flow' th a t  the  average 

radial overlap is calculated  over. Figure B.2 plots (A) as a function of s tra in  

ra te  and packing fraction, showing the  average radial overlap to  increases 

bo th  w ith increasing s tra in  ra te , and increasing packing fraction.

In order to  re la te  the  sim ulation packing fraction to  an equivalent experi­

m ental packing fraction, one could look a t the average num ber of neighbours 

a disk has as a function of packing fraction, see Figure B.3. In the  d ry  lim it, 

the average contact num ber of a 2D foam {z) =  6. For the  soft disk model, 

this lim it is not reached until (j) w 1.3 [144],

T N  A '
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Figure B.3: Average contact num ber versus packing fraction . Data 
courtesy of C. O’Donovan, from [144]. In the dry lim it, the average contact 
number (z) = 6. Tliis hmit is not reached until packing fraction cf) =  1.30, 
for the soft disk model definition of packing fraction.
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In principle, ano ther approach is to  cori’ect for the  double-counting of the 

overlaps com putationally  by explicitly calculating the  excess areas. The area 

of the  overlap, A^j, between two disks, of radii /?, and Rj,  whose centres are 

separa ted  by a d istance d (see Figure B .l) , is given by [149]:

This expression is som ew hat unwieldy, bu t conceptually  simple; the  ef­

fective packing fraction is to ta l area  of the  disks m inus the  tim e-averaged 

sum  of the  double-counted overlaps, divided by the  confining area A.  We 

neglect contributions from three-bubble intersections, i.e. areas th a t  are 

trip le-counted, which are assum ed to  be small. This seems likely, as from 

Figure B.2 we see th a t  the  radial overlap for two bubbles in con tact is of 

th e  order of only a few percent of a bubble diam eter. The effective packing 

fraction is p lo tted  versus packing fraction in Figure B.4.

We see th a t  as (f) increases, 4>* deviates from (f) m ore w'idely, as expected. 

In the  lim it (p ^  oc, the  effective packing fraction 1. This arises from

A^j = sin ' -  y/s~(s~^aJ{sr^^R^

-  a){sj  - (B.3)

w'ith

a + 2R
(B.4)

and

1
^ J { - d  + R, +  Rj){d -  R,  +  Rj){d  +  R, -  Rj){d + R,  + Rj).  (B.5)

Simple!

We now' define an effective packing fraction, 4>*, as

(B.6)



163

co
u«]

O)c
o

(U>
ua>

*♦—

LU

1.1

1.05

1

0.95

0.9

0.85

0.85 0.9 0.95 1 1.05 1.1
Packing Fraction (J)

Figure B.4: Effective packing  fraction . As paclcing fraction increases, 
the relative error between the defined packing fraction (shown by tlie sohd 
lilack line of slope 1) and effective packing fraction increases. The effective 
jiacking fraction tends towards a value of 0* =  1, illustrated by the horizontal 
dashed line. Note that at (pc ~  0.84, random close packing, the disks are just 
touching and the overlaps, on average, equal zero. Thus, here, 0 = 0* =  0 .̂

the definition of 0*: it is not possible for the sum of the areas of the disks 
confined in an area A, minus the sum of the overlaps betw'een those disks, to 
exceed A. At 0c «  0.84, random close packing, the disks are just touching 
and the overlaps, on average, equal zero. Thus, here, 0 = 0* =  0 .̂

Taking this correction into accoTuit, the highest packing fraction w'e present 
in this thesis. 0 = 0.98, has an effective packing fraction of approximately 
0* = 0.94, which (unlike 0.98) is still well w'ithin the w'et limit for 2D foams.

We note, however, unlike the packing fraction 0, which is well-defined 
as a constant for a given system configuration, 0* contains time dependent 
terms wdrich must be time-averaged, and is therefore poorly defined over 
short times.
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A ppendix C 

Verlet Integration

Verlet integration is a numerical method used to integrate Newton's ecjuation 
of motion [150]. Our implementation of the soft disk model uses second-order 
Verlet integration to update the positions x(^) and velocities v(^) of bubbles 
at each simulation timestep. as follows.

Let us denote the position and velocity at timestej) n as and resj^ec- 
tively. The acceleration n„ is given by the second derivative of the j)osition 
with respect to time.

The Verlet algorithm uses the central difference approximation applied 
to this second derivative

A t A t
A t

(C.2)
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Thus the updated position is given by

Xn-{-\ ^n—1 . (C.3)

Here, Af is the simulation timestep, and a„ is calculated from the forces 
acting on the bubble at time n, F„, via Newton’s second law F„ = ma„. The 
velocity Vn at each step n is given by

^  X n + l  -  Xr,-,
2 A t   ̂ ’

For the second order Verlet algorithm, one needs two prior positions, x-n 
and Xn_i, to calculate the updated position Xr,+\. For this reason, the first 
integration step must be performed using the simple Euler method, w'here 
(for initial conditions Xi, t>i)

X2  =  X \  +  t ’l A /  

l>2 =  V\  +  t t iA / . , (C.5)

with Oi determined by the initial forces, again via Newton’s second law.



A ppendix D

Tim e R esolutions and Limits of 
the Soft Disk M odel

In this appendix we discuss briefly the com putational considerations neces­
sary to ensure tha t our system correctly captures the motion of the disks 
under shear. We also examine the efl^ect on the model at very high strain 
rates, where the model "breaks down” .

D .l  C hoosing an appropriate tim e  

resolution

As mentioned in Section 2.1.3, it is im portant, when realising a simulation, 

to ensure th a t the rate at wdiich the calculations are performed is sufficient 
to capture the behaviour of the system. That is, if the shortest timescale in 

the siumlation (e.g. the fastest oscillation in the system) is, say, one second, 

positions and velocities should be updated much more frequently than every 
second in order to fully resolve the motion.

In the soft disk model, w'e use the Verlet algorithm (Appendix C). This 

assumes, over some simulation timestep, r^, tha t each disk's motion is well 

approximated by linear motion. The first check we impose, when running 

a simulation, is that the overlap between the disks never becomes too large
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Deborah number 1/7 Ts
De < 0.015 
0.015 < D e <  0.2 
0.2 < D e <  0.5

> 66.67ti,
> 5r^
> 2Ty

0.0027r„
0.000225r^,
0.000021r^

Table D.l: Sinuilation time resolutions, compared to the characteristic time 
of deformation, as a function of Deborah number range.

(~  the average disk radius). Consider the case where is chosen to be too 
large, such that a disk can sometimes travel distances larger than a radius 
in Tg. In this situation, using tlie Verlet algorithm, it is possible for disks to 
pass through one another entirely! This is allowed by the parameterisation 
of the model (because w'as chosen to be too large), but it does not capture 
the behaviour of the physical system w'e are trying to model.

For increasingly high Deborah number sinuilations, where De = 7q / k  
from Equation (2.9), the characteristic timescale of deformation I /7 de­
creases. This necessitates a reduction of for high Deborah nmnber. Table 
D.l lists the sinmlation timesteps we use, and the characteristic tirnescales of 
deformation, as functions of the Deborah number range presented in this the­
sis. The tirnescales are expressed in terms of the viscous timescale, Ty =  cj/ k 
(Equation (2.8)).

D .2 M odel behaviour at very high strain  

rate

In this thesis, we present results over a large range of strain rates, up to 
the limit De < 0.5. At very high strain rates, voids begin to appear in the 
foam, see Figure D .l, and the model is no longer suited to describing the 
flow of foams observed in experiment. This is a known limitation of the 
soft disk model: it is ascribed to the simplification of the model that non­
overlapping disks do not experience viscous interactions [90]. Essentially, 
with only repulsive forces, at very high strain rates there are no attractive 
forces present to pull these voids closed. In a real foam, at this strain rate
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Velocity \/y

X

Figure D .l: V oids in  th e  so ft d isk  m o d e l. A visuahsation of a soft disk
model simulation for De = 0.756. The black dots show the bubble centre 
positions. At such very high strain rates, voids ap])ear in the foam, some of 
which are highlighted by the red circles. At this point, the model is no longer 
a good representation of a flowing foam.

the bubbles would deform and elongate [21], which is not accounted for by 
the soft disk model. Above De = 0.5, we find the soft disk model to enter 

into a new’ regime that does not seem to have an equivalence in foams.
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A ppendix E 

Long M em ory Processes

In this Appendix, we define some of the m athem atical terms we use in the 
discussion of long-range correlations throughout the thesis, and introduce the 

Hurst exponent as a cjuantitative measure of long memory in a timeseries.

E .l  A u tocorre la tion

hi simple terms, the antocorrelation function measures the similarity of a 
time-dependent signal with itself some time later. It is a widely used m athe­

matical tool to identify re{)eating patterns and persistent (or anti-persistent) 
correlations within a timeseries. Typically referred to as simply “the auto­

correlation function'’, the normalised autocorrelation function A { t ) for some 

time dependent process x{t ) ,  over some time lag r ,  is defined as

=  (E.l)

with the mean /.i =  {x{t ))  and variance =  {{x{t )  — /x)^). We use 

angled braces ()  to denote a time average. For ergodic systems, this is 

interchangeable with an ensemble average for long times [99]. A{t )  is defined 

such tha t when A = the signal is said to be perfectly correlated, when 

A = —1 perfectly anticorrelated, and 4̂ =  0 statistically uncorrelated.

171



172 A ppendix E. Long M emory Processes

T he norm alised au tocorrelation  assiunes th a t x( t )  is covariance station­

ary. In sim ple term s, th is is an assum ption th a t ii and a  are independent of 

tim e for x{t).  In the  system s studied  in th is thesis (m ean-subtracted  stress 

fluctuations, log-price re tu rns and average transverse displacem ents), ~  0, 

and a  is constant. A m ore in-depth  discussion of s ta tio n a rity  can be found 

in [99], but is not necessary for our analysis presented and thus om itted  here.

E.2 V olatility  clustering and long m em ory

Volatility clustering is a p roperty  of tim eseries d a ta , which was described 

by M andelbrot succintly as “large changes tend  to  follow large changes, and 

sm all changes tend  to  follow small changes” [151]. Such a p roperty  is vi­

sually  d istinctive, w ith fluctuations observed to  c luster into slowly varying 

envelopes.

V olatility clustering is a characteristic  p roperty  of so-called long m em ory  

processes. Simply speaking, a tim eseries exhibits long m em ory if values from 

th e  d istan t past have a significant effect on the present. In a long m em ory 

])rocess, the  au tocorrelation  function A{r)  is found to  vary as

A { t ) ~  for T ^  oo, 0 <  /3 <  1, (E.2)

where r  is the  tim e lag. This power law' scaling can imply correlations 

th a t  persist well past the  tim escales of individual actions w ithin a complex 

system . In the  case of financial system s, for instance, and m inute-by-m inute 

price d a ta  whose correlations decay exponentially in under a m inute, the  

volatility  (or m agnitude) of the  prices have been found to  show' correlations 

lasting  days or even m onths [108,116].

T he exact causes of long m em ory are not understood  and its origin is the  

topic of much debate  in the  litera tu re . It has been postu la ted  th a t hetero­

geneity  in tim escales in a system  could be one such origin. G ranger [125] 

suggested th a t  th e  aggregation of tim eseries w ith different persistence lev­

els ( th a t is, w ith  correlations decaying on different tim escales) could result 

in long range memory. This hypothesis was suppo rted  by A nderson and
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Bollerslev [152] as a possible explanation for volatility clustering in the ag­

gregation of information flows, w'ith the arrival rate of information governing 

the heterogeneity.
Another argument put forward is related to behaviour sw'itclung. It has 

been show'u tha t the sw'itching of traders in financial markets between tw'o 

different strategies causes large aggregate fluctuations [153]. Liu et al. point 
out tha t the presence of sw'itching alone can generate clustering, but is not 

sufficient for long-memory. They argue tha t if the time spent in each strategy 

is drawn from a heavy-tailed distribution, then long memory can arise [142].
Numerous further theories and variations on the above have been put 

forward. In the context of this thesis, we shall simply note two things. 
First, that long-range memory scaling arises non-trivially in systems with 

complex interactions between timescales, which prominently feature heavy­
tailed distributions. Second, that these tra its  are inherent in soft disk model 
fluctuations, and tha t the soft disk model reproduces this scaling despite be­
ing unlike any other model currently under investigation in the econophysics 
literature.

E.3 T he H u rst ex p o n en t

A quantitative measure of long range dependence can be obtained via the 

Hurst exponent. In a long memory process x{t),  the variance {X{n)'^) of 

a running sum of n m ean-subtracted values, X{n) ,  of such a process scales 
non-linearly as a function of n, via

(E.3)

where

X{n)  = (x (l) -  + (x(2) - / i )  +  ... +  (j;(n) - / i ) .  (E.4)

H is called the Hurst exponent. For long memory, or persistent processes, 

0.5 < / /  < 1.0. For normal diffusion, e.g. an uncorrelated random walk, H = 
0.5. For anti-persistent processes, such as Kolmogorov’s energy spectrum for
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turbulence [99], 0.0 < H < 0.5. The Hurst exponent of white noise is H  — 0, 
and / /  =  1 for a linearly increasing function of time.

E.3.1 From N ile flooding to  fractal geom etry

The Hurst exponent was originally developed in hydrology, in order to predict 

the optimal dam size needed for the Nile river’s volatile rain and drought 

conditions. An indication of just how' vital the Nile was to the lives of those 
in the region, the Nile’s annual w'ater level has been measured at Roda Island, 
near Cairo, for over 5000 years. It has been recorded in writing for 1300 
years between 622AD and 1922AD, just prior to the construction of the Nile 

dams [154], making it likely the earliest examj^le of a statistical dataset. 
Remarkably, the first missing arniual observation occurs in 1285. Hurst first 
calculated his exponent for the longest contiguous sample of data, spanning 
662 years (622AD-1284AD), finding N  = 0.74 [155].

Mandelbrot later generalised H urst’s analysis to  a generalised Hurst ex­
ponent^ as a measm'e for fractal geometry [156]. H urst’s initial approach 

to solving a practical problem of how high one nmst build a dam has since 
developed into its own field of mathematics.

E.3.2 R escaled range (R /S ) analysis

We estimate the Hurst exponent using a method known as the rescaled range 

(R/S)  analysis, originally used by Hurst and still the conventional choice 
in the literature. The rescaled range Q{n) = R{n) /S{n)  can be viewed as a 
statistical measure of the variability of a timeseries over some sample size n, 

as a function of n. It is given by the range R{n)  (that is, R{n) = Xmax — 3:min, 
over the sample size n), divided by the standard deviation of the sample 
S{n). Q{n)  scales with n via the Hurst exponent.

Q{n) ~  n^ . (E.5)
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We outhne th e  steps by which we im plem ent th is calculation as follows, 

in line w ith the  m ethod  proposed by W eron [121]. Consider a tim eseries 

Xi, X2 , ■ ■ ■ x n  of N  m easured values. F irst, we calculate the  sam ple m ean

1 ^

i=l

Next, w'e create a new m ean ad justed  sequence j/j =  Xj — /x. T hen , w'e 

calculate the  cum ulative sum  of n  values of the  series as a function of n:

n =  Y.y^- (e .7)2 ...

1=1

The range is the  difference between the  m axim um  and m ininnm i values 

of the  cum ulative sum

R{n)  = rnax{z\ ,  22 . . .  2 „) — n}i7}{z\, Z2  ■ ■ ■ z„). (E.8)

T he s tandard  deviation series S{7i) is given by

S{n)  =
n 

1= 1

Finally, the  rescaled range Q{n)  is given by

Q{n)  = oc n "  (E.IO)5(rO
and H  can be obtained  from linear regression fits to  logQ  vs log n. Anis 

and Lloyd [157] and Peters [158] have shown th a t small corrections for fi­

n ite  sam ple size effects give a b e tte r  estim ate  of the  H urst exponent. We 

im plem ent their corrections, detailed  fully in [121], in our estim ation.
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