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Summary

We investigate the link between the non-linear macroscopic rheology of wet
foams and the microscopic interactions at the bubble-scale, within the gen-
eral framework of foams as a complex system. This rheology has been found
to be well described in simulation by the soft disk model, which represents
the bubbles in a two-dimensional foam as a series of overlapping disks, inter-
acting via an elastic repulsion and a viscous dissipation. We simulate linearly
sheared systems over a large range of strain rates, showing, for the first time
in simulation, the transition between two regimes well-known from experi-
ment: a low-strain regime with swirling, strongly non-affine motion, and a
high strain rate regime comprising of laminar flow.

For the low strain rate regime, we find the scaling of shear stress with
strain rate to be well described by a Herschel-Bulkley equation with fit pa-
rameters dependent on packing fraction, prior to the onset of lane motion.
We show, for the first time, that a constitutive law, originally developed for
dense granular flows and modified for foams, accurately describes the rheol-
ogy of foams in two-dimensional simulations, for all strain rates independent
of packing fraction. From an empirical fit to this model, we find a scaling
exponent for the coefficient of viscous friction comparable to that found in
experiment for three-dimensional foams. We also extrapolate a static angle
of repose for linearly sheared foam, which we compare with values found from
experiment and simulation for foams in different geometries.

We find the change in bubble dynamics at the onset of laminar flow to
have a large impact on the foam rheology. For the high strain rate regime, we
find the foam flow to no longer be well characterised by the Herschel-Bulkley

equation, instead finding the shear stress to scale with the strain rate con-



vi

sistent with viscous drag between bubble layers sliding past one another, in
agreement with theoretical models for laminar flow, with no free parameters.

We probe the dynamics at the bubble scale further by considering the
non-affine fluctuations of bubble displacements over time. We observe the
bubbles to undergo shear-induced diffusion, and extract diffusion constants
from the mean square displacements as a function of strain rate. For the
low strain rate regime, we find the bubble motion to be well-described by
a deformation-relaxation model, relating bubble displacements to the bulk
rheology.

We perform the first soft disk model simulations aimed at investigating
the the rheology of foams in narrow channels. We identify a channel width
beyond which the rheology well approximates bulk behaviour. We find the
shear and normal stresses to depend on channel width, and propose an ex-
planation for their scaling based on a simple geometric model. We find a
constitutive law to continue to describe data well for all packing fractions
and strain rates for a fixed channel width, but find that it fails to collapse
the data for all channel widths.

Finally, we investigate the statistical properties of fluctuations and fat-
tailed distributions of shear stress changes and disk velocities. We show, for
the first time, that the shear stress fluctuations in the soft disk model exhibit
volatility clustering and long-range memory, familiar in the study of economic
markets and complex systems. We apply two modes of analysis, inspired by
the similarities between fluctuations in our model and fluctuations in financial
returns. The first is a rescaling argument used to compare time-dependent
properties as a function of relative position within a trend, first applied in
the analysis of S&P 500 stock market data, which we use to quantitatively
link topological changes in the foam to fluctuations in the shear stress. The
second is a theoretical framework relating generalised diffusion coefficients
to the autocorrelation function, using the Fokker-Planck equation, which we
apply successfully to asset price fluctuations from the Dow Jones Index, and

preliminarily to bubble displacement fluctations in the soft disk model.
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Preface

The first time I encountered the study of complex dynamics was as an un-
dergraduate student, during my final year research project in Universitat
Potsdam. Specifically, I was to examine climate data for the last one hun-
dred or so years, modelling the weather data points as a spatially correlated
network and utilising rudimentary complex network theory.

As an undergraduate, the seeming power and scope of this approach in-
stantly seized my attention. Meteorological systems are notoriously com-
plex [1], in the true sense of complexity - that is, the property of a system
composed of many units where certain global traits encompassing the sys-
tem as a whole cannot be reduced to a simple averaging of the properties of
its constituents [2]. This may be summarised succinctly, by describing the
system as more than the sum of its parts.

In such systems, order and disorder are found to coexist, with large scale
systemic regularities intertwined with seemingly erratic evolutionary events
[2]. Climate systems provide a classical example, where satisfactory weather
forecasts are limited to horizons of only a few days. Put simply, although
in theory a complex system might be fully determinable, in practice small,
unexpected variances can have huge aggregate effects that become difficult
or impossible to predict analytically.

It is within precisely these properties that I believe there to exist a natu-
ral synergy between foams and complex systems. The flow of foam involves
a complex interplay between local interactions, and their propagative effects
ultimately determine the bulk properties of the system. An entire research
field is devoted to understanding the macroscopic response of foam to ap-

plied forces. It is clear that this response is intrinsically connected to the

X1X



microscopic dynamics of the system, and yet no widely-accepted theory has
emerged on how these two areas are linked. In this thesis we aim to inves-
tigate how microscopic dynamics can be linked to macroscopic properties,

using novel methods.



Chapter 1

Introduction

In this chapter, we will give a brief, general introduction to foams. We
will then introduce foam rheology, and give an overview of experiments and
simulations in the field that we feel will be strongly relevant to the discussions
put forth in this thesis. Finally, we will introduce complexity and complex

dynamics, and discuss foams as a complex system rich in emergent behaviour.

1.1 A general introduction to foams

In physics, the first question asked is often a battle between how? and why?.
As the majority of this thesis shall be dedicated to the former, we shall begin
with the latter, and ask: why study foams?

Foams are ubiquitous in everyday life. From washing the dishes, lathering
shampoo and spreading shaving foam, through to carbonated drinks and the
head on a pint of stout, liquid foams surround us. Their role and use can be
as lighthearted as bubblebath, or as sombre as fire extinguishers. Solid foams
too, such as polystyrene packaging, foam mattresses and housing insulation
to list just a few examples, are encountered on a daily basis.

In industry, the role of foams cannot be overstated. Foams play a cru-
cial role in mineral flotation (the process by which minerals are extracted
from ore) and enhanced oil recovery, both multi-billion dollar industries [3].

Mineral flotation, for instance, is estimated to consume approximately 6%
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of the world’s annual energy resources [4]. As a rough estimation, if the en-
ergy industry is worth 10% of a global economy valued at $70 trillion dollars
annually [5], mineral extraction therefore costs approximately $420 billion
dollars a year. This is roughly the same size as the entire semi-conductor
industry [6].

In addition to these practical reasons, from a theoretical standpoint foams
have long been studied as a model structure for how space is filled. Single
layers of bubbles floating on liquid were used by Bragg as a model system for
atomic crystal structures in metals [7]. In the natural world, the first uni-
cell organisms are thought to have started as bubbles on the ocean floor [8].
Charles Darwin remarked on the foam-like hexagonal structure of bees” hon-
eycomb [9], a comparison which has also been made for geological structures
such as the Giant’s Causeway in Ireland [10]. Indeed, at the far end of the
scale from the atoms whence we started, initial theories on outer space and
the “aether” proposed that space was partioned in Kelvin cells, familiar from
foam froth [11,12].

For all its widespread industrial and commercial uses, the material prop-
erties of foam are relatively poorly understood. Particularly, in this thesis,
we wish to investigate how its flow properties relate to the structure that

theorists find so appealing. First, we must define what we mean by a foam.

1.1.1 What is a foam?

Formally, a liquid foam is a two-phase material consisting of a continuous
liquid phase enclosing a dispersed gaseous phase [13]. The typical liquid
foam studied is aqueous foam, consisting of air dissolved in a mixture of
water and a surfactant.

Liquid foams are a specific example of a broader classification of materials
called colloids. Colloids in general are two-phase materials, with one phase
dispersed in another [14]. Examples can include solid foams (gas in solid),
emulsions (liquid in liquid) and suspensions (solid in liquid). Colloids can
share similar properties when it comes to flow behaviour. Many of these

properties ultimately arise from interactions at the microscopic level between
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elements of the dispersed phase. Foams may also be considered as frictionless
granular media, and their structure and packing can resemble that of other

granular media [15].

1.1.2 Wet and dry foams

Foams are typically described in terms of their liquid fraction, ¢;, defined
as the ratio of the volume of the liquid phase to the volume of the foam.
Depending on ¢;, foams may be referred to as either wet or dry. Examples
of dry and wet foams are shown in Figure 1.1.

Dry foams have a liquid fraction, in general, of ¢; < 10%. In dry foams,
bubbles are separated by thin films of liquid. These films meet along curved
lines known as Plateau borders, named after the blind Belgian physicist
Joseph Plateau. Plateau’s life work, “Statique Ezpérimentale et Théorique
des Liquides soumis auz seules Forces Moléculaires”, published in 1873, lays
out a set of rules developed from experimental observation, which govern the

structure of dry foams in equilibrium [16]. These are, for three dimensions:

1. Films can intersect only three at a time, and must meet at an angle of

27 /3 radians. These intersections are known as Plateau borders.

2. Vertices in the foam consist of the intersection of exactly four Plateau
borders, forming a symmetrical tetrahedron whose angles all equal ¢ =
cos™1(=1/3).

3. The films (and Plateau borders) obey the Young-Laplace law, which re-
lates the pressure difference between two bubbles to the surface tension
in the film between them and the radius of curvature of the film [13].
It may be summarised, as observed by Plateau, that at any point on a

film in equilibrium, the curvature of the film is constant.

The final point has a corollary that a free bubble will always be spheri-
cal. Plateau’s rules were developed from experimental observation, and later
explained by asserting that a foam will always adopt a structure to min-

imise its surface energy F = I'A, where A is the area of its films and T is
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Figure 1.1: Dry and wet foams. (a) A three dimensional dry foam con-
sisting of commercial surfactant, air and water, resting on a glass plate and
photographed from beneath. Vertices meet at well defined angles described
by Plateau’s rules [16]. (b) A close-up photograph of the head on a pint
of Guinness, which is an example of a wet foam. The bubbles are predomi-
nantly spherical, with refraction patterns due to neighbouring bubbles visible
on their surfaces. Images courtesy of G. Ryan.
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the surface tension. These rules generate the familiar foam structures seen
in Figure 1.1 (a). In this thesis, we are concerned with wet foams, where
Plateau’s requirement of fourfold vertices has been relaxed, and stable ver-
tices (in reality liquid-filled junctions) of higher order can appear [3].

Wet foams have a high liquid fraction; for three dimensional wet foams,
it ranges approximately between 15% < ¢; < 36%. In such foams, the
bubbles in the dispersed gas phase are well described by spheres, packed in
three dimensions, see Figure 1.1 (b). For ease of comparison with different
systems well modelled by the packing of spheres, such as granular media, we
often instead use the complement of the liquid fraction, the packing fraction
¢, where ¢ = 1 — ¢;. In foam experiments this is also called the gas fraction
or sometimes the volume fraction.

Below a packing fraction of ¢ ~ 64%, packings of disordered spheres do
not (in general) fill enough volume to form a mechanically stable structure
[10]. Above ¢ ~ 64%, called the jamming transition or random close packing,
the spheres begin to fill enough space to maintain the minimum number of

average contacts, (z), necessary for mechanical rigidity, (z) = 4 [17].

1.1.3 The study of foams

The study of foams may be split into four main subject areas: drainage,
coarsening, structure and rheology. Drainage concerns the flow of liquid
through the Plateau borders of a foam under gravity. Drainage is most
relevant for wet foams where the bubbles are larger than the capillary length
(as the capillary force opposes drainage under gravity) [3].

Coarsening refers to the diffusion of gas between bubbles driven by pres-
sure differences. As a result, large bubbles tend to get larger, and small
bubbles tend to get smaller or disappear altogether. Coarsening has a larger
effect in dry foams, as it is easier for gas to diffuse through thin films of
liquid [13].

The final two areas are structure and rheology, and it is these two areas

which we focus on in this thesis. Structure refers to the topological arrange-
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Figure 1.2: Simple schematic of linear shear. A shearing force Fspear
is applied in the x-direction to the material. The shear stress ¢ is given by
Fshear/A, where A is the area of the plane of flow. The normal stress II is
given by Fxormal/A, where FNormal 1S the normal force. The shear strain v is
the fractional displacement of the shearing plane with width L of the sample,
e = Ag/L.
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ment of the bubbles within a foam. This topology changes under deformation

and flow. Rheology is the study of precisely that.

1.2 Rheology of Foams

Rheology, from the Greek rheo- meaning “to flow”, is the study of how mate-
rials deform and flow in response to an applied stress [13]. Foam rheology is a
particularly fascinating topic - liquid foams consist of a gas phase dispersed
in a liquid phase, and when they flow the complex motion of the bubbles

within the liquid have dramatic effects on the flow properties of the material.
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1.2.1 Stress and strain in linear shear

Figure 1.2 shows a schematic diagram of an applied force generating a simple
linear shear. The shear stress, o, is defined as the component of the applied
force parallel to the shearing plane per unit area,

T F‘Shear

= —. (1.1
o Y (1.1)

The normal stress, 11, is defined as the force normal to the shearing plane

per unit area,

FNormal
[I'= i 1.2
¥ (1.2)

Stress thus has units of N/m?, i.e. the same units as pressure. In sim-

ple linear shear, the strain, v is the fractional displacement of the shearing

boundary with respect to the width of the channel, y = L,

A_AI
S 7

Strain is unitless, and often expressed as a percentage.

(1.3)

The shear and normal stresses given by Equations (1.1) and (1.2) are spe-
cial cases. The general description of stress (and indeed strain) are tensorial.
Consider, for instance, the stress at a point P(x,y, z). This stress can be rep-
resented by an infinitesimal cube, with three stress components on each of
its six sides, denoted by o;;, see Figure 1.3. In this notation, 7, j € {z,y, 2},
where o;; is the stress along plane 7 in the j direction.

In static equilibrium, i.e. no net force on the material in the absence of
an applied body force, o,; = 0j;, and the stress is described by the stress

tensor or:

Or = |02y Oyy Oy (1.4)

Ogs Oy Tz
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Figure 1.3: The stress tensor. An infinitesimal cube around point
P(x,y,z). The stress tensor can be represented by three components of
oij, for 1,5 € {x,y, 2}, at each face of the cube.

In our work, we are concerned with the elements of the stress tensor acting
on the boundaries in the y plane, defined via Equations (1.1) and (1.2) as
0 = 04y and II = oy,

A key question for foam rheologists (not to be confused with theologists,
who, thanks to the QWERTY keyboard, receive more citations than they
should for foam physics) to ask is: if a foam is linearly sheared, how is the
resulting strain related to the shear stress?

A simple assumption would be that foams behave like a homogeneous
liquid, with the bubbles suspended in the surfactant solution and the prop-
erties of the solution determining the nature of the flow. Many homogeneous
liquids, including water, obey Newton’s equation when subjected to a simple

shear, which postulates that the shear stress ¢ of a fluid is directly propor-
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tional to the velocity gradient dv/dy of the fluid in the direction perpendicular
to the shear (y-direction),
= CL,Z—Z (1.5)
The proportionality constant ¢, is called the consistency, which is a gen-
eral term, dependent on the viscosity. Although Newton first introduced
this expression in 1687, it wasn’t until the nineteenth century that Navier
and Stokes independently developed a full three-dimensional mathematical
description of flow, including viscosity, now known as the Navier-Stokes equa-
tions [18]. A fluid obeying these equations is referred to as Newtonian. Since

the shear strain Ay over some small time At can be expressed as

JAN
Ay == (1.6)
Y
and thus
dv
A= —, 17
- (17)

one can express dv/dy in terms of the strain rate ¥, yielding (from Eq
1.5)

o=ny (1.8)

where ¢, for Newtonian fluids is simply the viscosity, . From this, we see
that for Newtonian fluids, the rate at which the system is sheared is directly
proportional to the applied stress.

What about foams? In experiment, foams are observed to be non-Newtonian;
that is, they do not conform to the Navier-Stokes equations for viscous lig-
uids [19]. This is not surprising, as they are far from homogeneous liquids.
The interactions between bubbles within the foam lend the material a degree
of rigidity and elasticity. Bubbles in liquid foam do not experience static
friction, however, so this structure can readily undergo rearrangements and

flow under shear.



10 Chapter 1. Introduction

For low strain of less than a few percent, the foam deforms elastically.
In this regime the shear stress can be related to the strain via the elastic

modulus GGy, where

Go=—. (1.9)

For such small strains, the deformations are reversible. At a certain yield
stress, oy, however, the foam yields and begins to flow. During this flow, the
foam undergoes irreversible topological changes, known as T1 transitions.
Foams are therefore an example of yield stress fluids: solid below a yield

stress with fluid-like properties above the yield stress.

1.2.2 The Herschel-Bulkley equation

The flow of foam and the relationship between shear stress and strain rate

can be described empirically by the Herschel-Bulkley equation,

o =0y +e7"- (1.10)

¢, 1s once again the consistency, a function of the viscosity, and n is known
as the Herschel-Bulkley exponent [3]. The second term is often referred to
as the wviscous stress, oyise = 0 — oy. The relation was first formulated by
Herschel and Bulkley, in their 1926 study of the response of rubber [20]. The
simple case of n = 1 is a so-called Bingham fluid. This exponent is typically
found to have values between 0.25 < n < 0.7 for aqueous foams [21-29]. The
Herschel-Bulkley relation has also been observed to hold for emulsions and
granular media [27,30-33].

We can conclude that while sharing similarities with both viscous liquids
and elastics solids, a foam is neither. Hence it is often catagorized as a so-
called visco-elastic liquid. For low strain, the material deforms elastically via
Equation (1.9). Past some yield strain vy, with an associated yield stress
oy = (Gy7vy, the material yields and flows. A schematic representation of

this stress-strain relationship is shown in Figure 1.4. In this flowing regime,
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Figure 1.4: Stress versus strain for a visco-elastic medium. Once the
stress exceeds the yield stress oy, the material deforms and begins to flow.

foams behave like a shear-thinning fluid, which means that their effective

VISCOSItY, Neff,

Teff =

Cis

it (1.11)

2[99

,'7(1—71)

is a decreasing function of strain rate [13,34]. We are familiar with such
liquids from everyday life, as their properties are often useful. For instance,
shaving foam is a visco-elastic fluid. When it sits on your hand it remains
rigid, but once a stress is applied it spreads easily across your face.

The strongly non-linear, macroscopic response to shear originates from
complex, microscopic interactions between bubbles in the flowing foam. Prob-
ing the nature of these interactions and attempting to link them to the bulk

rheology of the foam is the main aim of this thesis.
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1.2.3 Foams in two and three dimensions

As is the case in many areas of physics and mathematics, one of the first
steps in understanding such complex behaviour and interplay is to reduce
the dimensionality of the system. In this thesis we focus exclusively on
simulations in two-dimensions (2D), although we reference many experiments
performed for three-dimensional (3D) foams.

Initially, 2D foams were introduced as a model system for numerical and
theoretical studies [35,36] of foams, as they present simpler systems to treat
mathematically. More recently, there have been a variety of experiments
involving quasi-2D foams, consisting of a single layer of bubbles [23-26],
depicted in Figure 1.5. The motivation for studying rheology of 2D foams
stems from the belief that theories explaining these simpler 2D systems could
be expanded to 3D foams with more complicated structures. This belief
seems justified: compared with their 3D counterparts, 2D foams are seen,
for example, to share similar scalings of yield stress [13,37,38] and elastic
modulus [17] with packing fraction. In addition, both 2D and 3D foams
are well-described by the Herschel-Bulkley equation with similar exponents
[21,23, 25, 26, 29].

Focusing on two dimensions presents a number of advantages, in addition
to being a simpler starting point for theorists. In experiments, it is much
easier to process images and track bubble positions and motion in 2D. In
3D, more limited or more difficult techniques must be used, such as X-ray
tomography, required to resolve the centres and dimensions of the cells [41],
or confocal microscopy with refractive index-matched emulsions [42]. In sim-
ulations, the decreased average contact number between bubbles (from 14 to
6) reduces the intensiveness of calculations and allows for the study of larger
system sizes [43]. Nevertheless, despite the reduction of complexity in 2D
compared to 3D, 2D retains subtleties which we shall explore in the coming

chapters.
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Figure 1.5: Three types of 2D foam (side view). (a) Monolayer of
bubbles sitting at an air/liquid interface. This configuration is also called
a Bragg raft, after its namesake who proposed it as a model for atomic
arrangements in a crystal [7]. (b) Bubbles floating in a liquid, confined by
a single top plate (confined Bragg raft). (c) Bubbles confined between two
glass plates (also known as a Hele-Shaw cell). The bubbles in (b) and (c)
are subject to a drag force as they move across the plate(s), which has been
found to scale as a power-law function of their velocities [39,40].

1.2.4 Experimental geometries

Also of importance in rheological experiments and simulations is the geome-
try of the system. When investigating linear shear, two main geometries are
used, schematic 2D examples of which are shown in Figure 1.6. The first is a
simple linear cell, Figure 1.6 (a). In experiments, this cell has a finite length
and width. It can have a single shearing boundary and a stationary bound-
ary. Alternatively both boundaries can be set in opposing motion. Both
produce linear velocity profiles across the channel, and thus the strain rate is
constant throughout the foam. In simulation, periodic boundary conditions

are often used in some or all dimensions.
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FOAM

(a) (b)

Figure 1.6: Linear and circular Couette geometries. (a) Linear ge-
ometry. Black arrows indicate the motion of the shearing boundary. (b)
Circular Couette geometry, for 2D foams, analagous to a cross-section of the
cylindrical Couette geometry for 3D.

The other geometry is a circular Couette geometry, Figure 1.6 (b). Here,
the foam sample is contained between two concentric circles (or cylinders, in
3D). One or both of these cylinders rotate, shearing the foam. This leads to
a shear stress across the sample which decays as 1/r?, where r is distance
from the centre of the cylinder. One advantage to this system, however, is
that there is no finite maximum shear that can be achieved in experiment,
unlike linear cells.

In a discussion of geometry, we shall also include the presence or absence
of a slip condition at the shearing boundary, and the presence or absence of
a top plate for 2D foams, see Figure 1.5. Both of these factors can affect the
flow and velocity profiles of the foam under shear.

In the case of the former, rough walls are typically used to ensure a no-slip
condition at the shearing boundary. In the case of the latter, the presence
of a top plate imposes a drag force on each bubble in contact with it, which
has been found to scale as a power-law function of their velocities [39,40].
In 3D this is a negligible effect, as the majority of the bulk is not in contact
with the walls. Conversely, this has a large effect in 2D, as every bubble is
subject to the additional drag force. The presence of a top plate has been
attributed as the main cause of shear localisation (i.e. flow in one region, but
not another) in 2D foams [44-47].
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1.2.5 Summary

We have seen that rheological systems can be described in terms of many

different parameters and qualities. In this thesis, we consider:

e Simulations of wet foams in 2D.

These foams are confined in a linear channel, with semi-periodic bound-

ary conditions.

They are sheared at a constant strain rate.

There are two well-defined, rough boundaries.

There is no top-plate drag, or equivalent mechanism, implemented.

These parameters are consistent with a range of foam rheology experi-
ments in the literature [29,48-50].

The model we use to simulate wet 2D foam is the widely used soft disk
model, first conceived by Durian [36.51] and implemented with the modifi-
cations of Langlois [52]. We summarise their findings in Section 1.4.1, and
we give a detailed account of the implementation of the model in this thesis

in Chapter 2.

1.3 An overview of foam rheology

experiments

In this section, we give a brief overview of some of the experimental work
which has been done in the field of wet foam rheology. We shall pay particular
attention to literature focused on interactions at the bubble level, and their

effect on flow.
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1.3.1 Classification of wet foam rheology by Princen

et al.

We shall start our overview with the works of H.M. Princen, in his four
papers Rheology of foams and highly concentrated emulsions I-1V [27,53-55]
and his work with Schwartz [56]. The first of the four, published in 1983,
notes “while experimental work on the rheology of these systems is scant,
there appears to be a virtual lack of theoretical understanding of how the
rheological properties are linked in a quantitative way to system parameters”.

To that end, Princen was the first to theoretically model the behaviour
of 2D foam by considering the bubbles as monodisperse cylinders of low
thickness (or disks). He also envisioned the first stress- and strain-controlled
shear experiments, although acknowledging that they were not possible for
a system of cylinders [53]. He performed extensive theoretical analysis and
experimental measurements (in conjunction with Kiss [27]) of properties of
foams and emulsions such as yield stress, elastic modulus and effective (or
shear) viscosity.

Princen was also the first to classify and illustrate what is now known
as the T1 transition, so named shortly thereafter by Weaire and Rivier [57].
His representation of what he called a “Mode I to Mode II transition” is
reproduced in Figure 1.7. We now know that these rearrangements are in-
trinsically linked to the nonlinear response of the foam. Princen, however,
treated them as a geometrical adjustment to his model, which comprised
of layers of bubbles sliding past one another in lanes, often referred to as
lamanar flow.

Finally, Schwartz and Princen extended their model of layered bubbles
sliding past one another. They modified Bretherton’s [39] theoretical ap-
proach to the motion of long bubbles in tubes, taking the primary dissipative
force in a linearly-sheared 2D foam to be the viscous dissipation due to the
extension of soap films as the foam flows. From this, they formulated a rela-
tionship between stress and strain rate, finding a Herschel-Bulkley exponent
of n = 2/3 [56]. This exponent was corroborated by Reinelt and Kraynik’s

similar model [58]. In experiments in the cylindrical Couette geometry, Prin-
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Figure 1.7: A T1 transition. Figure reproduced from [53]. Princen was the
first to characterise these structural changes for wet foams, which he called
a “Mode I to Mode II transition”.
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Figure 1.8: Excess energy per facet of a compressed bubble in 2D.
Figure reproduced from [59]. Excess energy € per facet n for the tessellating
cases n = 3,4,6, versus &, where £ is a dimensionless displacement pro-
portional to compression. For small compressions in 2D, Lacasse observed
scaling with a power law exponent of 2 (see inset, plotted on a log scale),
consistent with harmonic repulsion between bubbles.

cen and Kiss instead found an exponent of n = 1/2 [27]. They attributed the
discrepancy to disjoining pressure effects, although with the benefit of hind-
sight it is likely due to the investigation of strain rates over which laminar

flow was a questionable assumption.

1.3.2 Deformation of droplets by Lacasse et al.

In relating bubble dynamics to macroscopic rheology, it is important to quan-
tify the forces governing bubble-bubble interaction. Lacasse et al. studied
emulsion droplets compressed between multiple plates [59]. For two plates,
this compression was solved for analytically. For n plates, the compression

was found numerically, using Brakke’s Surface Evolver [60]. They found that,
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Figure 1.9: Viscous drag between bubble layers. Figure reproduced
from [22], showing the formation of films between bubbles as layers slide
past one another.

while in 3D the compression depends on the number of neighbours, in 2D
the compression was well described by harmonic elastic repulsion for small
deformations.

The interfacial energy of a circular droplet in 2D is given by the line
tension (that is, the 2D surface tension) times the length of the perimeter.
Figure 1.8 shows the dimensionless excess energy, €, versus dimensionless
displacement, &, directly proportional to compression. The excess energy is
defined for 2D as ¢ = 77{? — 1, where R is the radius of a circular droplet
and [ is the perimeter of the compressed droplet. Thus, ¢ = 0 for an uncom-
pressed droplet. For harmonic repulsion, ¢ ~ £%, which Lacasse et al. find
for compressions up to approximately 5% [59], see Figure 1.8 (inset).

This analysis forms the basis for the choice of elastic repulsion scaling in

our simulations of 2D foams, introduced in Section 2.1.

1.3.3 Experiments of Denkov et al.

The experiments of Denkov et al. in Sofia University have characterised
extensively the chemical properties of foam surfactants and their effect on
foam rheology, so much so that at present the standard surfactant solution
used for ease of comparison between experiments in the field is often referred
to as the “Bulgarian recipe”.

In experiment, Denkov et al. have measured exponents for the Herschel-

Bulkley equations, classifying them by mobile and immobile interfaces. For
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Figure 1.10: Comparison of viscous drag law theory with experiment,
for emulsions and foams. Figure reproduced from [22]. (a) Viscous stress
o — oy (here called 7 — 79) plotted versus strain rate 4 for oil in water
emulsions, for packing fractions ¢ = 0.83, ¢ = 0.96. (b) Dimensionless stress
for foams and emulsions stablised with synthetic surfactants, versus capillary
number Ca = nR3,y/T". T is the surface tension, and Rss is the so-called
Sauter mean radius Rsy = (R3)/(R?), the ratio of the third moment and the
second moment of the size distribution of bubble radii R. The dimensionless
capillary number C'a is thus directly proportional to strain rate. Denkov
et al. observed excellent agreement between their model and experimental
results, for laminar-type flow, finding the viscous drag proportional to 4465,

immobile, rigid interfaces, an exponent of n ~ 0.3 was found. For mobile in-
terfaces, with lubricated sliding motion of bubbles past one another, Denkov
et al. found an exponent n ~ 0.5 for foams and emulsions [21,22,61].
Recently, they have proposed a model based on this sliding motion for mo-
bile interface, ordered 3D foams and concentrated emulsions. During steady
flow, the structure periodically rearranges, and contact films form and disap-
pear upon transient bubble collisions (see Figure 1.9). They found excellent
agreement for their model, particularly noting that they collapsed data for
foams of different bubble sizes with no free parameters [22], see Figure 1.10.
However, this model linking bubble dynamics to bulk rheology again assumes
laminar flow. While this type of flow is observed in experiments of Denkov
and others at high strain rate, is not consistent with observed low strain rate
flow, where the bubbles move in more turbulent patterns [29,48,62]. We

investigate this flow regime in Chapter 3.
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Figure 1.11: Distribution of stress drops in a sheared foam. Figure
reproduced from [63]. Data for three different strain rates, ¥ = 0.031s7!
(A), ¥ =0.31s"! (M), 5 = 0485~ (O). The solid line has a slope of —0.8.

Dennin suggests truncated power law scaling for stress falls.

1.3.4 Experiments of Dennin et al.

Dennin and co-workers have performed extensive experiments on wet foams
under linear shear in 2D and 3D, and in linear and cylindrical geometries
[23,25,62,63]. They measured frequency of T1 transitions [23], response of
the shear stress to linear and oscillatory strain [63,64], the effect of channel
dimensions [50], and the minimum strain for which the steady-state flow of
foam can potentially be considered as having equivalent time- and ensemble-
averages [65], among many other properties.

Of particular interest to our work in this thesis are the measurements by
Dennin et al. of shear stress fluctuations in 2D foams. Motivated by mea-
surements initially made by Durian in simulation, covered in Section 1.4.1,
Dennin examined distributions of stress falls Ao, see Figure 1.11. He found
a truncated power law scaling of P(Ac) ~ Ac~"8 consistent with a fat
tailed distribution often associated with avalanche-like rearrangements [63].
Lauridsen and Dennin then went on to examine the frequency of structural

rearrangements during shear in an attempt to relate bubble-scale interactions
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(b)

Figure 1.12: Experimental setup of linear shear. Figure reproduced
from [48]. (a) Schematic top view of the experimental setup. Two coun-
terrotating wheels are partially immersed in the fluid, separated by a gap,
linearly shearing the foam. The red line shows the average velocity profile
during steady state flow. (b) Side view, relating angular velocity w to strain
rate.

to the rheology, finding a qualitative alignment between spikes in the number

of T1 transitions, and falls in the macroscopic shear stress [23].

1.3.5 Bubble fluctuation experiments of Katgert et

al. and Mobius et al.

The experiments of Katgert et al. and Mobius et al. in the Leiden group
concerned steadily sheared foam in both linear and cylindrical Couette ge-
ometries. The rheological measurements were carried out in a Couette cell,
whilst in the linear apparatus (shown in Figure 1.12), they performed a novel
and extensive study of bubble fluctuations in time using image analysis.

By shearing two layers of bubbles in a 2D foam past one another in a
circular Couette geometry, they measured the viscous drag force experienced
by bubbles sliding past one another, as a function of their relative velocity.
They found this dissipative force to scale with the relative velocity to the
power of an exponent approximately equal to 0.7, very close to the bubble-
wall drag coeflicient measured, and theoretically proposed by Bretherton to

be 2/3 [39] as discussed in Section 1.3.1. This yields a second scaling rela-
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tionship for the forces governing bubble-bubble interaction, in conjunction
with the work of Lacasse (Section 1.3.2).

In addition to measuring the bubble-bubble interaction in experiment for
the first time, Mobius et al. subsequently used image analysis to resolve the
flow of individual bubbles in time [29]. From this, they were able to cal-
culate displacement distributions, and study the scaling of the mean square
displacements (As?) over a time interval At. Their results are shown in
Figure 1.13.

At short times, they observe fat-tailed distributions consistent with strong,
non-affine flow (that is, flow that deviates from the mean flow). They found
that the bubbles undergo a process akin to random-walk diffusion, induced by
rearrangements due to shear, at sufficiently long times. This allowed them to
fit diffusion constants, and they went on to propose a deformation-relaxation
argument relating bubble fluctuations to macroscopic rheology. Inspired by

this method, we expand on this work in Chapter 3.

1.3.6 Experiments of Pouliquen et al. and Lespiat et

al.

Pouliquen and co-workers have recently developed a constitutive relation for
dense granular flows, which has been successful in predicting, in comple-
menting experiments performed by Jop et al., the flow behaviour and shape
of velocity profiles without any fitting parameters [32].

The model, which we define mathematically in Section 2.3, relates the
shear stress to the strain rate via the so-called I parameter. This parame-
ter, which is the square root of the Coulomb number from granular media
literature [66], can be viewed as the ratio of the deformation timescale to
the typical timescale of rearrangement in the medium. In the original form
of Pouliquen et al., the latter is governed by friction between grains and the
confining pressure.

Lespiat et al. showed that this constitutive model also holds for foams,
with modification. In the absence of static friction, they assert that the

rearrangement rate is governed by the viscous dissipation and the normal
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Figure 1.13: Evolution of mean square bubble displacements in time.
Figure reproduced from [29]. Mébius et al. used image analysis to track
individual bubble motion in a flowing 2D foam. (a) Probability distributions
of bubble displacements evolving in time. At short times, the distributions
are fat-tailed; at long times the distributions tend to Gaussian. (b) Mean
square displacements, normalised by average bubble diameter, versus time
lag. The slope 1 region corresponds to the onset of shear-induced diffusion.
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Figure 1.14: Inclined plane linear shear for grains and foams. (a)
The experimental setup of Jop et al. [32]. The setup is tilted until the grains
begin to flow, past the static angle of repose. (b) The analagous experimental
setup for foams of Lespiat et al. [30]. The system is inverted, with buoyancy
for foams taking on the role of gravity for grains, and the bubbles flowing
upwards.

pressure, and find good agreement for their experimental results for both
foams and granular media [30].

In both cases, the relation was investigated using an inclined plane exper-
imental setup, as shown in Figures 1.14 (a) and (b). For a granular medium,
the plane is tilted until the grains begin to flow, and a velocity profile is
extracted as a function of channel width. The ratio of the shear and normal
forces can be extracted from the tilt angle. For foams, buoyancy plays the
role of gravity, and the foams flow up the plane.

In both experiments, the angle where the material just begins to flow
corresponds to the static angle of repose [67]. Fitting to the functional form
proposed for the scaling of the constitutive model with strain rate allows one
to extract a value for the angle of repose in a linear geometry, which we shall

cover in greater detail in Sections 2.3.3 and 4.2.1.

1.3.7 The non-local continuum model of Goyon et al.

A popular model for foam flow in 2D, which up until now we have not dis-

cussed, is the continuum model. Unsurprisingly, such a model considers a
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Decreasing microchannel width

Decreasing surface roughness

Figure 1.15: Velocity profiles predicted by the non-local model, for
varying channel width, w. Figure reproduced from [31]. The non-local
model expands the continuum model using a coordination length associated
with non-affine bubble motion. The solid black lines indicate the model’s
predictions as a function of channel width (left to right) and surface roughness
(top to bottom). They are seen to accurately capture the behaviour of the
measured data and the finite size effects of narrow channels.

foam flow as a continuum, i.e. a homogenous fluid whose flow is described by
modified differential equations of fluid mechanics [45]. It has been successful
in describing, for instance, the occurence of shear localisation in 2D flow [68].
As such, this model may perhaps be considered the antithesis to this
thesis, which is concerned precisely with deviations and fluctuations from the
mean flow. Recently, however, Goyon et al. have introduced the so-called
non-local model - a modification to the continuum model to take into account
long-range spacial cooperativety they observe in the flow of emulsions [31].
Ordinarily, the continuum model is a purely local model, where the flow
properties are a function of the position x with no consideration for events
happening nearby. It has been observed, however, that topological changes
in a foam induce further topological changes nearby. This effect is particu-
larly important when the characteristic length associated with shear, or the

channel dimensions, are of the order of the bubble size [69]. Goyon et al.
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define a fluidity, f, where for the bulk f = 1/¢,, where ¢, is the consistency
from the Herschel-Bulkley relation, Equation (1.10). The fluidity f is defined
to obey a non-local scaling governed by a non-locality length . They found
their modification successfully described velocity profiles of flow in narrow
channels, with no free parameters, shown in Figure 1.15.

Such a model may provide a stepping stone between the analysis in this

thesis and the continuum model for foam flow.

1.4 An overview of foam rheology

simulations

In the previous section we examined experimental work on the rheology of
wet foams and dense granular flows. We shall now turn to simulations which
have been performed in a effort to model and understand these systems.
Once again, we shall focus on papers which have aimed to relate individual
dynamics to macroscopic rheology, starting with the development of the soft

disk model as a simulation of 2D wet foams under shear.

1.4.1 Durian, Langlois et al., and the Soft Disk Model

Early simulations of foams made use of cellular representations of foams in
quasistatic simulations. By “quasistatic” we refer to simulations where the
foam is at all times in a state of energetic equilibrium, with small perturba-
tions from a stable state followed by energy minimisation. These include the
simulations of Weaire and Kermode [70-72], PLAT simulations of Bolton,
Weaire and Hutzler [35,38,73-75], and simulations using Brakke’s Surface
Evolver [60].

As implied by the name, quasistatic simulations are not well-designed for
capturing the dynamics of a system. Furthermore, while dry foams are well
described by Plateau’s rules, wet foams are not found to obey such rigid
geometrical strictures. Durian was among the first to tackle the dynamics of
wet foams using a simpler, non-cellular representation of the bubbles. This

model is referred to as the soft disk model (or, also, the bubble model).
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Figure 1.16: Stress and strain rate in the simulations of Durian and
Langlois et al.. (a) Stress versus strain rate in Durian’s original soft disk
model, using the mean field approximation for viscous drag. He found that
the relationship was well described by that of a Bingham fluid, with the
Herschel-Bulkley exponent n = 1. Figure reproduced from [51]. (b) Stress,
minus the yield stress, versus dimensionless strain rate De o 7, for the soft
disk simulations of Langlois et al.. The introduction of individual viscous
drag forces had a dramatic effect. Langlois et al. found the flow behaviour to
be well described by a Herschel-Bulkley equation fit with an exponent of 0.54,
in much better agreement with experiment. Figure reproduced from [52].
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Figure 1.17: Elastic energy fall distributions. Durian looked at distri-
butions of falls in the elastic energy, AF. in the system, similar to the stress
falls examined by Dennin and shown in Figure 1.11. He also noted truncated
power law scaling, which he attributed to avalanche-like rearrangement be-
haviour. Figure reproduced from [36].

The soft disk model represents the bubbles in foam as a series of disks,
confined in some geometry. These disks are referred to as “soft” because
they are allowed to overlap. Overlapping disks are subject to two forces: an
elastic repulsion related to their overlaps, and a viscous dissipation. Durian
chose a harmonic elastic repulsion, and used a mean-field approximation for
the viscous force. A bubble experienced a dissipative force directly propor-
tional to the mean flow velocity in its vicinity. The system was subjected
to a constant strain rate imposed by a moving boundary, and the rheology
investigated.

Durian found that the foam responded as a Bingham fluid, that is a
fluid which obeys the Herschel-Bulkley equation (1.10) with exponent n = 1,
see Figure 1.16 (a) [51]. Durian noted that this qualitatively agreed with
Bingham-plastic-like behaviour of foams at high strain rate, and attributed

this scaling to his choice of linear local laws, namely a harmonic repulsion



30 Chapter 1. Introduction

directly proportional to the overlaps between disks and a viscous drag directly
proportional to the mean velocity.

Langlois et al. went on to improve on the simulations of Durian. In
addition to greatly increasing the system size (by an order of magnitude or
more), they modified the simulation to remove the mean-field approximation.
Now, the viscous dissipation experienced by a bubble 7 in contact with a
bubble j was set to be directly proportional to the relative velocity between ¢
and j, thus dynamically changing in time in a fashion similar to the harmonic
repulsion force.

The results were dramatic, see Figure 1.16 (b). Without the mean field
approximation, strongly non-linear low was resolved, with a Herschel-Bulkley
exponent of n = 0.54+0.01 found by Langlois et al., in closer agreement with
values measured for foams and emulsions in experiment (Section 1.3).

The soft disk model makes no attempt to model foams as the liquid
fraction decreases to the dry limit, where bubbles are polygonal, subject to
elongation and deformation, and no longer well described by disks or spheres.
However, for wet foams, and indeed some other granular media, the model
has been shown to capture the key characteristics of flow [76-80]. We use
the soft disk model, as implemented by Langlois et al., in this thesis. We
define the model in much greater detail in Chapter 2.

Returning to Durian’s original work, Durian [36] and later Ono et al. [81]
looked at fluctuations in the elastic energy. Specifically, Durian was inter-
ested in the distribution of energy drops, and how these related to structural
rearrangements, see Figure 1.17. He found a truncated power law scaling for
elastic energy falls AF, described by an exponent P(AE) o« AE~%7 [36]. He
associated this power law scaling with avalanche-like rearrangements in the
foam. Dennin later investigated analogous falls in the shear stress and their
relationship with T1 transitions, as mentioned in Section 1.3.4.

These results, although somewhat qualitative, attempt to link microscopic
bubble rearrangements to the foam rheology. We develop a quantitative

approach to the investigation of stress fluctuations in Chapter 5.
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Figure 1.18: Shear induced diffusion and the Stokes-Einstein rela-
tion. Diffusion constants, D, associated with shear induced rearrangements,
versus strain rate, 4. The black triangles represent the Stokes-Einstein equa-
tion as envisaged for foams by Ono et al. [81], which they found to agree with
their diffusion constants with one fit parameter. Figure reproduced from [81].

1.4.2 Simulations of Ono et al.

Building on the work of Durian, Ono et al. performed extensive soft disk
model simulations, focusing on the velocity fluctuations of bubbles under
shear [81]. They observed that motion of individual bubbles transverse to the
mean flow was diffusive. This diffusion differs from thermal diffusion, where
the random-walk motion is caused by vibrations proportional to temperature.
Instead, successive rearrangements under shear are found to evolve diffusively
in long time. Ono et al. were the first to measure such shear-induced diffu-
sion, fitting diffusion constants D(5) as a function of strain rate, shown in
Figure 1.18.

They found D to scale non-linearly with strain rate, and noted, further-
more, that D did not have a simple power law relationship with 4. Ono
et al. also identified a critical strain rate, exceeding the typical rate of re-
arrangement in the system. They noted that past this critical strain rate,
fluctuations were essentially dominated by the timescale of deformation, ob-

serving that spatial correlations decayed exponentially in the limit of high
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strain rate. This change in macroscopic behaviour past some critical rate of
deformation shall play a key role in arguments we make in Chapter 3.

The simulations of Ono et al. were the most extensive of their kind using
the soft disk model, and their study of fluctuations bears direct relevance
to this thesis. However, we note that they were performed using Durian’s
implementation of the soft disk model, with a mean field approximation.
This approximation was shown to have a dramatic effect on bulk rheology
by Langlois et al. [52], and was later shown to cause spurious correlations in
fluctuations by Tighe et al. [79].

1.4.3 Jamming in the soft disk model: Olsson and
Teitel, and O’Hern et al.

The soft disk model comprises of interacting disks governed by an elastic
repulsion and a viscous dissipation. There is no attractive force in the system,
with the system instead held together in mechanical stability by the confining
geometry.

To understand such systems under shear, it is important to understand
their structural properties. Particularly, what, for a given arrangement of
disordered spheres in a confining volume, determines whether a packing will
be mechanically stable? In 2D, a disk needs (in general) no fewer than 3
contacts to prevent movement. In 3D, a sphere needs 4 contacts. In recent
years, packings of disordered disks and spheres have been studied close to the
so-called jamming transition, that is the packing fraction at which a packing
Just reaches mechanical stability. At this point, the sudden appearance of a
finite shear stiffness signals a transition between a flowing liquid and a rigid,
disordered visco-elastic state.

Properties such as elastic modulus, yield stress and average contact num-
ber have been found to scale with packing fraction ¢ scaled by the jamming
or random-close-pack packing fraction ¢., see Figure 1.19. In 2D, the elastic
modulus, Gy, and the average number of contacts of a disk, Z — Z. where

Z, = 4, are found to obey square root scaling with ¢ — ¢, [17].
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Figure 1.19: Elastic modulus and contact number close to jamming.
Figure reproduced from [17]. (a) Elastic modulus G, versus packing fraction
¢ — .. where ¢, ~ 0.84 is the onset of jamming, for a range of polydispersities
in 2D and 3D. a denotes the coefficient of elastic repulsion, with a = 2 for
harmonic repulsion. The solid line for a = 2 denotes slope 0.5 on a logscale.
(b) Contact number Z minus contact number at jamming transition, Z,,
versus ¢ — ¢.. The solid line denotes slope 0.5 on a logscale.



34 Chapter 1. Introduction
! "2 —o— p=0.830
T o w.. —®P-083
& o ¢ Egg; ems s —a-p=0836
B 10~l o . ) o-® ..’E' :52 E‘.:_ —a— p=0.838 |
= e o‘mﬁ . -;_, — p=0.840
8 & 5 m mf. :Gm -t g - p=0.841
E o . ;Li‘é i iB —o— p=0.842
o o L o i//+8 —e— p=0.844
8 o . . 11 ¢ T 1 L —g— p=0.848
= 10~ [ ' —a— p=0.852 4
o ___ p=0856
&2 ¢ o p-0.860
<:>) EP — p=0.864
R=! e p=0.868
103 X e o &L 10 ().()(3]2
107 10 10~ 107
(a) shear stress o
a
10° : ;
p.=0.8415 eeee
&
10% ¢ p=1.65 -0 3
= fg BLE 48
Q< 10} s e
3L )
| P = Pe l”#? g
-—\g , emxoeqa® . ?
7 10°¢ *
= EP
KA
1ot L
~ Zﬁ‘/A p > pC
10° " . . L
10 10" 2 10"
z=ollp-pd

(b)

Figure 1.20: Inverse viscosity versus shear stress in systems near
jamming. (a) Inverse shear viscosity, 7, versus shear stress, o, for a range of
packing fractions, p, inset, calculated using the soft disk model. (b) Rescaling
by the packing fraction minus the packing fraction at jamming, here called
p — pe, collapses the data onto two master curves, p > p. and p < p.. Their
scaling exponents, 5 and A, are calculated from the scaling of n with p and
o respectively. Figures reproduced from [77].
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Static soft disk packings have been extensively studied by O'Hern et
al. [17,76], in order to characterise packing behaviours close to the jam-
ming transition and to classify a so-called critical point J for foams, mod-
elled after thermodynamic phase transitions. The structures are calculated
by minimising the potential energy of the overlapping disks via conjugate
gradient descent. O’Hern et al. suggest that the jamming point is “a point
of maximal disorder and may control behaviour in its vicinity”. As such, in
Chapter 2 we probe packing fractions in our simulations towards, but not
below, random close packing, and extrapolate scaling behaviour based on ¢.,
similar to O'Hern et al..

Olsson and Teitel expanded on the work of O'Hern et al., considering
dynamic simulations using the soft disk model [77]. Furthermore, they added
an additional ingredient to the soft disk model: a uniform shear flow in the
event that disks do not touch. This allows the simulation of systems below

¢.. They showed that the inverse shear viscosity 7~}

, where n = 0/ could
be rescaled using ¢ — ¢. to collapse onto two master curves, above and below
the jamming density ¢., for a range of packing fractions, see Figure 1.20.
The scaling strongly suggests that J is a second-order phase transition [77],

illustrated in the inset of Figure 1.21.

1.4.4 The Leiden model, in simulations by Tighe et

al.

Motivated by the work of Olsson and Teitel, and in complement to the exper-
iments of Katgert et al., the Leiden group have recently published a theory
connecting the scaling of velocity fluctuations in a foam to the scaling of the
viscous shear stress near jamming [79]. A schematic representation of the
outcome of their theory is reproduced in Figure 1.21 (a).

Their theory suggests four regimes: a yield stress regime, where Eq
(2.4) holds; a transition regime, close to jamming, where the exponent of a
Herschel-Bulkley type relation scales with both n o« (¢ —¢.)'/? and n oc 41/3;

a critical regime with n o 4'/2; and finally a viscous regime with n o 7.
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Figure 1.21: The Leiden model. Figure reproduced from [79]. (a)
Schematic representation of the four regimes of the Leiden model, YS: yield
stress, T: transition, C: critical, V: viscous. The blue curve depicts the
scaling of the viscous stress, whilst the red curve describes the bubble fluctu-
ations in terms of average velocity divided by strain rate, |Av|/¥, versus 7.
A¢p = ¢ — ¢., where ¢ is the packing fraction and ¢, the jamming transition.
(b) Collapse of the data of Tighe et al. for the “transition” and “critical”
regimes, for a range of packing fractions and strain rates.
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With three flow regimes (excluding the regime below the yield stress),
they note that it is impossible to collapse all data onto one curve, showing
a collapse and excellent agreement of their simulated data with their theory
across a range of strain rates and packing fractions for the “transition” and
“critical” regimes (Figure 1.21 (b)) [79].

Tighe et al. note that their model could explain the range of values for
n found in the literature, based on the range of strain rates an individual
experiment examines. It indeed yields a convincing collapse for a range
of system parameters, but some questions remain. Despite classifying four
regimes, data for only three are presented, with the viscous regime where
o ~ % omitted. Their derivation requires the disassociation of the elastic
and viscous components of the shear stress into dominant regimes, but does
not address what (if any) interplay exists between these two quantities during
the transient, “critical” regime.

Of interest to us in this thesis is that, beyond the initial power balance as-
sumption that the power supplied o4 is dissipated by viscous effects ~ |Av|? -
an argument, incidentally, which is again applicable to layers of bubbles slid-
ing past one another in the vein of Schwartz and Princen [56] and Reinelt and
Kraynik [58] - their model has no further dependence on the nature of fluctu-
ations with respect to the rheological response. Rather, they show that their
model is not inconsistent with distributions of fluctuations, provided that
scaling is applied only to the variance of the fluctuation distributions [79]
and noting that it does not capture the change in their character, which has
been observed in simulation to be rate-dependent [82].

We attempt to link displacements to rheology directly in Chapter 3, and
shall look at the time evolution of displacement distributions at short times
in Chapter 6. Our motivation for this is tied to the study of “emergence”, a

property of complex systems which we shall now introduce.

1.5 Foam as a complex system

The traditional approach of physics in understanding a phenomenon, as noted

by Pietronero [83], is to consider the simplest systems and to study them in
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great detail. This so-called “reductionist” approach focuses on elementary
building blocks and applies, very successfully, in a great deal of physical sys-
tems. The existence of these blocks inherently implies a characteristic scale
associated with the system: atoms, molecules, or some other macroscopic
property.

There are many situations, however, where knowledge of individual ele-
ments is not sufficient to characterise the whole system. Such systems, in
physics, are called complex. In physics, complexity is thus closely related to
emergence. Emergence refers to often non-linear properties of a system of
interacting particles or agents that are not simply inherent in their individ-
ual characteristics, or derivable from them by simple averaging procedures.
Complexity in physics initially arose in the study of solid state physics, clas-
sified in spirit, if not in name, by Anderson [84]. Entitled “More is different”,
the paper questions this reductionist approach, arguing that nature is organ-
ised in a hierarchical way, with individual elements and collective emergent
behaviour every time one moves from one hierarchy to the next.

The study of complexity and complex systems in mathematics, physics,
biology and the social sciences has exploded in recent years, facilitated by von
Neumann’s prediction that high performance computing would revolutionise
non-linear mathematics [85]. Weaire and Hutzler argue that 2D liquid foams,
particularly wet foams, are an ideal test-bed for complexity [86]. They fea-
ture complex topological rearrangement, non-linear flow profiles, and fractal
scaling observed in ageing and evolution [72]. Many of these properties are
generic, occuring independent of the foam’s constituents.

Can we then say that a foam is a complex system? As we shall show
in this thesis, foams possess many of the traits found for complex systems.
Power-law scaling, which we have already seen to emerge in the experiments
of Dennin and the simulations of Durian, and fat-tailed, non-Gaussian dis-
tributions, like those seen in the experiments of Mdobius et al. are key com-
ponents of complex systems.

In addition, complex systems may have some or all of the following fea-
tures [87]:
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e Complex systems may be open. Complex systems are usually
open, in that they exist in a thermodynamic gradient and dissipate
energy. Sheared foams are open systems, with the work done to shear
the foam dissipated in viscous interactions. Such systems are usually

far from energetic equilibrium.

e Complex systems may feature cascading failures. Due to strong
coupling between components in complex systems, a failure in one or
more components can lead to failures in many others, with a wide
ranging effect on the system as a whole [88]. Avalanche-like topological

rearrangements are an example of this phenomenon in foams.

e Complex systems feature non-linear relationships. In linear
systems, the response is always directly proportional to the cause. In
complex systems, strongly non-linear coupling can lead small changes
to have large effects, proportional effects or even no effect at all. This
is sometimes referred to as the Butterfly Effect. As we shall see for
foams, the non-linear response of the stress with strain rate arises from

such coupling.

e Complex systems relationships can contain feedback loops.
Both negative (damping) and positive (amplifying) feedback are always
found in complex systems. The effects of an element’s behaviour are

fed back to in such a way that the element itself is altered.

¢ Complex systems may exhibit memory or hysteresis. We shall
see that foams possess long-memory correlations, with the state of the

system at a given time having a propagative effect on its future state.

e Complex systems may feature nested or scale-free behaviour.
In fluctuations of shear stress in our foam simulations, we shall observe
in the identification of trends that nested trends can be identified on

multiple different timescales.

We conclude that a foam is well-described as a complex system. We can

frame our discussion of foam properties in the context of Anderson’s hierar-



40 Chapter 1. Introduction

chies, by considering the two general scales in our system: the microscopic
local rearrangments and interactions between neighbouring bubbles, and the

macroscopic global or bulk response of the system.

1.6 Conclusions and Outlook

In this chapter, we have introduced foams as a material and as a complex
system. We have introduced rheology, and outlined the system that we shall
study in simulation in an effort to link foam rheology to the complex dynamics
at the bubble scale. Finally, we have given a brief overview of some of
the experiments and simulations we shall make reference to throughout this
thesis.

We now look forward. In Chapter 2, we shall rigorously define the sim-
ulation we study, and we shall investigate the macroscopic rheology that
emerges from our model, comparing it to experimental and simulation results
for foams, emulsions and granular media. This will provide a framework for

the investigation of the origins of this rheology, in subsequent chapters.



Chapter 2

Macroscopic Rheology in Soft

Disk Simulations

The first step in understanding any physical system is to express its key traits
as simply as possible. This philosophy is encapsulated by computer simula-
tion. In simulation, we attempt to model complex physical processes using a
minimal set of basic ingredients and assumptions. in order to determine the
dependencies of the physical system.

In this thesis, we wish to investigate the relationship between the non-
linear response of a foam under shear and the interactions at the bubble
scale. To do this, we utilise computer simulations, modelling the foam as
a packing of overlapping disks. We shall see that, despite our model being
governed by two simple, linear interaction forces, a rich, non-linear rheology
emerges.

In this chapter, we shall define in detail the simulation model we use
to investigate the flow properties of wet foams, namely the soft disk model
introduced in Section 1.4.1. We then present results from the model for
the scaling of the shear and normal stresses with strain rate and packing
fraction. We find excellent agreement between our simulated rheology and
experimental results for foams, providing us with a solid framework for the
investigation of the origin of this macroscopic rheology at the microscopic

level.

41
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Figure 2.1: Schematic of bubble-bubble interaction, for overlapping
bubbles 7 and j, described by position vectors r; and rj respectively.

2.1 The soft disk model

We perform simulations using the soft disk model, first developed by Durian
[36,51], as implemented by Langlois et al. [52]. The model is widely used in
foam rheology, and has been shown to capture many of the key features of lig-
uid foams found in experiment. In this section, we define the implementation
of the model used for this thesis, in terms of its governing forces, parameters
and geometry. A further discussion of the technical implementation of serial

and parallelised computer code is included in Appendix A.

2.1.1 Interaction forces

The soft disk model represents a 2D foam as a series of overlapping disks,
confined in some geometry. The disks are subject to two types of forces when
they overlap. The first is a simple spring force, where the displacement of the
spring corresponds to the radial overlap of the disks. The resulting elastic

repulsive force F, acting on bubble ¢ due to bubble j is given by:

2Ry

Fe = /{R—i+—]2injnij, (21)
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where & is the coefficient of elasticity, n;; is the normal vector between bubbles

7 and 7,
r; — I‘j
nj = ————, (2.2)
! |r; — rj]
and the overlap A;; is given by:
Aij _ (Rz + R]) — |I‘i — I‘j‘ if (Rl + R]) < |I‘i =T (23)
0 otherwise

R; and R; are the radii of overlapping bubbles ¢ and j, centered at r;

and rj respectively, shown schematically in Figure 2.1. R, is the average

bubble radius of the entire packing. The ratio R?fORJ in Equation (2.1) takes
into account that larger bubbles are easier to deform than smaller bubbles.
For our simulations, we use a linear, Hookean repulsion between the disks,
directly proportional to their overlaps. Experiments by Lacasse et al., in-
troduced in Section 1.3.2, have shown that this is a good approximation to
the force exerted by spherical bubbles in contact, provided the deformation
is small [59)].

In addition to the repulsion the bubbles are subject to a viscous drag

force when they are in contact,

Fd = —Cd(Vi — Vj). (24)

Here ¢, is the dissipation constant for bubble-bubble interaction, and v; and
v; are the respective bubble velocities. Thus the dissipitave force is directly
proportional to the bubbles’ relative velocity.

As mentioned in Section 1.4.1, early simulations of the Durian model
used a mean-field approximation for the viscous dissipation experience by
the bubbles [36,51,77,81], motivated by the reduction in computational in-
tensiveness. The drag force was taken to be directly proportional to the
mean flow velocity, assumed to be linear, as a function of channel width.

Following the work of Langlois et al. and others, we do not use the mean
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field approximation for the viscous dissipation as it has recently been shown
to cause spurious correlations [79].

As in previous simulations on foam flow [51,52,79], we impose the drag
force to be linear to the relative bubble velocity. This is an approximation,
in the interest of retaining a simple model using linear forces. We shall
return to a discussion of this approximation in Section 3.1. The model also
neglects any dissipation due to the stretching of the films [21]. Furthermore,
the model contains no equivalent of the attractive capillary force normally
found in wet foams, instead relying on the system to be constrained by its

geometry.

2.1.2 System geometry

The simulated systems comprise of bubbles, represented by circular disks,
that are confined in a rectangular geometry with semi-periodic boundary
conditions in the horizontal direction. The bubbles at the lower boundary
have their positions fixed and are stationary. The bubbles at the upper
boundary have their y coordinates fixed, and are given a constant velocity
V' in the x direction. This corresponds to a constant applied strain rate of
4 = V//L to the entire system, where L is the width of the channel as depicted
in Figure 2.2.

We have simulated systems ranging from tens of disks, up to packings of
12000 disks. For the purposes of our analysis, the system size we consider
(unless otherwise specified) consists of 1500 bubbles in the bulk, 80 bubbles
in the walls and a channel width of L = 33(d), where (d) is the average
disk diameter. In Chapter 4 we investigate the effect of varying the system
dimensions.

The distribution of disk sizes is known as the dispersity of the sample. A
sample containing disks that are all the same size is monodisperse. In all of
the results presented, we consider disordered, polydisperse samples, with the

disk radii uniformly distributed in the range

R = Ro(1+0.3), (2.5)
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Figure 2.2: Bubble trajectories of a linearly sheared foam, for a low
strain rate. Black trails represent the positions of the bubble centres during
a total strain of A+ = 0.04. Swirls in the bubble trajectories indicate strongly
non-affine displacement fluctuations.

where Ry is the average bubble radius, set as a simulation parameter.
Polydisperse samples are studied in order to avoid crystallisation effects,
which are well known to occur for monodisperse foams [7,89].

In the soft disk model, the packing fraction, ¢, is defined as

e 11 Z (ds/2)?, (2.6)

where N is the total number of disks, A is their area of confinement and
d; is the diameter of disk . The disks are randomly placed and A gradually
reduced until the desired packing fraction is achieved. In our simulations, we
consider a range of packing fractions above the jamming transition in 2D of
¢ ~ 0.84 [17].
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When comparing the packing fraction in soft disk model simulation re-
sults to the liquid fraction measured in experimental results, it is important
to note that they are not quite equivalent. The above definition for packing
fraction, whilst being widely-used and accepted, double-counts overlaps be-
tween disks to return artificially high values. For instance, it is possible to
define a simulation packing fraction greater than 1.0, which is not possible
in a physical system. We discuss this discrepancy and possible corrections in
Appendix B. For the purposes of presenting our results in this thesis, we use

packing fraction as defined by Equation (2.6).

2.1.3 Strain rate, characteristic timescales and

Deborah number

As discussed in the previous section, the strain rate ¥ is imposed by the
moving boundary, such that 4 = V/L. We then allow the resulting elastic
and viscous dissipative forces, caused by the motion of the wall, to propagate
through the system. Each bubble is allowed to move independently subject
to the forces in Equations (2.1) and (2.4), with the respective position and
velocity resolved at each simulation time step using the Verlet algorithm. We
define this algorithm in Appendix C. Following a transient regime, a steady
state, linear velocity profile is established, see Figure 2.3.

As a type of molecular dynamics simulation, timescales play an important
role in the properties of the soft disk model. We will briefly discuss three
relevant timescales here, namely the inertial and viscous timescales, and the
characteristic timescale of the deformation process.

The inertial timescale, a measure of the characteristic time of the motion

of disks with respect to their masses and inertias, is given by

75 ="Myl o, (2.7)
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Figure 2.3: A typical velocity profile for the steady state flow in a
soft disk model simulation. Here, the velocity profile has been averaged
over a strain of v = 375, in the steady-state low. We consider the region
between the vertical dashed lines as within the bulk flow, away from the
effects of the boundaries, for analysis performed in Chapter 3.

where my is the average mass of a bubble and ¢4 is the coefficient of
viscous dissipation defined in Equation (2.4). The viscous timescale, related

to the rate of dissipation of energy due to drag, is defined as

Ty = Byl R, (2.8)

where k is the coefficient of elastic repulsion from Equation (2.1). Finally,
the characteristic time of the deformation process is simply the inverse of the
strain rate, 4L

In order to accurately model the physical system, where bubbles are es-
sentially massless, we ensure that inertia is negligible in the system, i.e. that
the dynamics in the system are overdamped. This is achieved by choosing
a very small ratio of the inertial timescale to the viscous timescale. In our
simulations the ratio 7;/7, is set to 7;/7, = kmy/c5 = 0.015.

It is convenient, for a dimensionless presentation of the results, to intro-
duce the Deborah number, De, which is defined as the ratio of the charac-

teristic time of the material that is sheared to the characteristic time of the
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1

deformation process ¥~ ". Since inertia is negligible in our simulation, the

characteristic time scale for the foam is ~ ¢;/x and we have

De = dt3/ K. (2.9)

In order to accurately resolve the motion of the disks in simulation, the
timestep used to perform the Verlet calculations should be much shorter
than the shortest timescale in the system. This has the effect that for high
strain rates, the simulation timestep must be reduced, as the inverse strain
rate rapidly becomes the shortest timescale in the system. We list the time

resolutions used in Appendix D.

2.1.4 Stress and the elastic modulus

We calculate the stress in the system due to shear by summing the forces
acting on the boundaries. The two-dimensional shear stress ¢ is measured by
taking the sum of the forces along the = direction that act on the boundary
bubbles, divided by the length of the channel, at each output time step.
Analogously, the normal stress II is found by summing the forces on the
boundary bubbles along the y direction. The stresses are measured on both
boundaries.

As introduced in Section 1.2, and depicted schematically in Figure 1.4,
for low strains, below some yield strain -y, the foam deforms elastically, as
described by Equation (1.9). After the stress exceeds the yield stress, oy,
the foam yields and begins to flow.

We measure the static shear modulus GGy from the stress-strain curves
averaged over multiple different realisations for each value of packing fraction
¢. Each realisation is allowed to relax to mechanical equilibrium, before
being sheared at a very low strain rate. For small strains (less than the yield
strain of a few percent) the deformation is approximately linear in strain

such that o = Gy, see Figure 2.4 (a). We non-dimensionalise our results for
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Figure 2.4: The elastic modulus, Gy. (a) Stress, normalised by the coeffi-
cient of elastic repulsion s from Equation (2.1), versus strain, for a very low
strain rate simulation. This sample has been relaxed to mechanical equilib-
rium before being sheared. The solid line marks the value of Gy calculated
for this packing. (b) Gy/k plotted as a function of packing fraction ¢. The
solid line plots a two-parameter fit to the power law relation Gy (¢ — ¢.)%>,
where ¢, is the jamming point. We find ¢. = 0.84, in good agreement with
the literature for 2D foams [17]. This relation has been found to hold for
foams with harmonic interaction in both 2D and 3D simulations [17].
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Figure 2.5: Shear stress versus strain. Shear stress, normalised by the
elastic modulus Gy, versus strain, for De = 7.56 x 107% and ¢ = 0.95. The
stress oscillates about the mean, which we calculate from the data and which
is shown here by the horizontal black line.

stress using the appropriate value of Gy for the simulation, which varies as a

function of packing fraction, Figure 2.4 (b), via

G o< (¢ — @)™ (2.10)

where ¢, is the jamming transition, and « is the exponent of repulsive
interaction - in our case o = 1, for harmonic interactions [3].

After an initial transient regime, the foam reaches a steady-state flow,
with the stress fluctuating about a mean value which is independent of time.
Figure 2.5 shows a typical example of shear stress versus strain for steady
state flow, with De = 7.56 x 107%. The black horizontal line delineates the
average shear stress calculated from the data. We calculate the mean stresses
in the steady state flow, for high strains far beyond the yield strain.

We now use these results to investigate two relations: the Herschel-
Bulkley equation (Equation (1.10)), and the model put forward by Jop et
al. [32] introduced in Section 1.3.6.
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Figure 2.6: Shear stress versus Deborah number. The normalised
shear stress o/Gy versus close to five decades of Deborah number, for
¢ = 0.95. The black line is a fit to the Herschel-Bulkley equation (1.10)
up to De = 2.0 x 1072, with n = 0.51 £ 0.01, oy = (3.4 £ 0.1) x 102G,
and ¢, = (2.04 £ 0.04)Go(cq/k)". The Herschel-Bulkley equation is found
to inadequately describe the data for high strain rates. We return to this in

Chapter 3.

2.2 The Herschel-Bulkley relation for

packings of different densities

As introduced in Chapter 1.2, the Herschel-Bulkley equation (1.10) is an
empirical relation that has been found to describe well the flow of foams and
other non-Newtonian fluids.

Figure 2.6 shows average shear stress o, normalised by G, plotted as a
function of Deborah number (which is simply the non-dimensionalised strain
rate 7, see Equation 2.9), for a packing fraction of ¢ = 0.95. The range of
these simulations covers nearly five decades of strain rate. This range poses
several technical challenges, discussed in more detail Appendix D. We do
not probe Deborah numbers beyond De =~ 0.5. At this point, voids start to

appear in the sheared foam (see Figure D.1). This is a known limitation of
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the soft disk model and is ascribed to the simplification of the model that
non-overlapping disks do not experience viscous interactions [90].

The Herschel-Bulkley relation is found to describe the flow profile well
for low strain rates, yielding an exponent of n = 0.51 £ 0.01 for ¢ = 0.95,
in agreement with the range of experimental results observed (21,22, 27].
However, as the strain rate increases the relation is found to no longer hold.
We shall discuss this in more detail in Chapter 3. For now, we shall focus
on the dependence of the yield stress oy and the Herschel-Bulkley exponent
n with packing fraction ¢, for the regime which we shall refer to as the
“Herschel-Bulkley regime”.

Figure 2.7 plots the shear and normal stresses as a function of Deborah
number, for five different packing fractions, ¢ € {0.85,0.88,0.92,0.95,0.98}.
These values of shear stress ¢ and normal stress II have been normalised by
the appropriate value of Gy(¢), see Figure 2.4 (b). For comparison, the axes
and symbols in both plots are identical. The black circles in Fig 2.7 (a) are
identical to those in Figure 2.6.

The solid lines in Fig 2.7 (a) show fits to the Herschel-Bulkley equation
(1.10), 0 = oy + ¢,7", over the range 5 x 107% < De < 2 x 1072, For higher
values of De, we once again find that the Herschel-Bulkley equation fits the
data poorly. Again, we postpone discussion of this regime until Chapter 3,
and shall instead focus on the low strain rate regime where we observe the
Herschel-Bulkley equation to well describe the flow properties.

In Figure 2.8, we plot the yield stress oy and exponent n, taken from the
fits in Figure 2.7 (a), as a function of ¢ — ¢.. We use ¢. = 0.84, from our fit
in Figure 2.4 (b) and in agreement with the literature [17].

It has been found that, for foams and emulsions in 3D, the yield stress

scales with packing fraction [3,37], via

o
e ﬁ0(¢ o ¢c>0'5» (211)

for packing fractions in the range 0.7 < ¢ < 0.95. At lower values of

¢, Saint-Jalmes et al. attributed deviation from this square root scaling to
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Figure 2.7: Shear and normal stress as a function of packing fraction.
(a) Shear stress o, normalised by Gg(¢), versus De for five values of packing
fraction: ¢ = 0.85, (0); ¢ = 0.88, (A); ¢ = 0.92, (V); ¢ = 0.95, (®); ¢ = 0.98,
(O). The solid lines show fits to the Herschel-Bulkley equation (1.10) up to
De = 2.0 x 1072, Once again, for all packing fractions the Herschel-Bulkley
equation is found to fit poorly as one approaches high strain rate. (b) Normal
stress II, normalised by Go(¢), versus De.
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Figure 2.8: Yield stress and Herschel-Bulkley exponent versus pack-
ing fraction. (a) oy /k, versus ¢ — ¢.. The solid line shows a one-parameter
fit f(z) = mx, with m = 0.033 £ 0.003. In experiment, yield stress in foams
and emulsions is found to be approximately linear at low packing fraction,
in qualitative agreement with our findings [13,33]. The yield stress then
rapidly increases for dry foams at high packing fraction (or low liquid frac-
tion). We remind the reader that our values for ¢ ranging up to ¢ = 0.98
are higher than their equivalent experimental gas fraction, see Appendix B.
(b) Herschel-Bulkley exponent, n, versus ¢ — ¢.. The solid line plots a linear
regression fit, f(z) = —0.85(%0.03)z + 0.606(£0.003). All values lie within
the range reported in experiment [21-29].
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rapid drainage of the wet foams making measured values of packing fraction
unreliable [37].

In contrast, we find oy to increase approximately linearly with ¢ for 2D,
shown in Figure 2.8 (a). Quasistatic simulation results in 2D have found
that, for wet foams, the yield stress initially increases linearly with pack-
ing fraction. As the foam approaches the dry limit, the yield stress then
dramatically increases [13,38].

This behaviour is not surprising: for an increased packing fraction, the
foam gains more rigidity and more elasticity. In the limit of ¢ — ¢, the foam
(in general) loses mechanical stability (below random close pack), and the
yield stress falls to zero. We do not observe a rapid increase in yield stress
as we reach higher packing fraction. The linear trend continues even for
¢ = 1.05,1.10, not presented here. We attribute this to the soft disk model,
ultimately, being a model appropriate for wet foams. The model makes no
attempt to capture the physical behaviour of dry foams as the liquid fraction
tends to zero, where the bubbles are no longer well represented by disks. Our
results compare well with quasistatic simulation results for low ¢, provided
one accounts for effective packing fractions our values of ¢ represent (see
Appendix B). Comparing with experiments in 2D is more difficult, as it is
not straightforward to define a liquid fraction for a 2D foam either trapped
between two plates, or in contact with a liquid reservoir (see Figure 1.5).

In Figure 2.8 (b), we see that the Herschel-Bulkley exponents calculated
scale inversely proportional to ¢ — ¢.. All values for n measured fall within
the range reported in experiment and simulation [21-29]. To our knowledge
this is the first time the Herschel-Bulkley exponent has been calculated as a
function of packing fraction, using the soft disk model. The closest compara-
ble study is that of Tighe et al. [79]. Their model expects that the exponent
should scale independent of packing fraction within their critical regime, and
should increase with packing fraction within their transient regime, see Fig-
ure 1.21 (a). Our results do not agree with their model, for the range in
which we have fitted the equation. We note that our values fall within the
range n = 0.5 £ 0.1, close to their expected exponent for the critical regime,

and also that the model of Tighe et al. concerns only the elastic component
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of the shear stress. A weak dependence of the viscous component of the shear

stress on the packing fraction could perhaps explain the discrepancy.

2.3 A constitutive model of foam rheology

In this section, we apply a modified version of the constitutive law of Jop,
Forterre and Pouliquen [32], developed as a continuum model for dense gran-
ular flows, to foam flow data. This is the first time this has been done for
foam data in simulation. We find that their model provides a good collapse
of the data presented in Section 2.2, for all packing fractions, and find our

data to agree well with comparable experiments of Lespiat et al. in 3D [30].

2.3.1 Origin of the model for granular media

The consitutive model builds on work showing that, for granular flows, the
shear stress o is proportional to the normal stress I, via a coefficient of

proportionality u([l):

o = (DL (2.12)

I is a dimensionless parameter, called the inertial number for granular
media, given by

7 -

wen = T/ p )0

where d is the average particle diameter, and p, the coeflicient of static

(2.13)

friction. For granular systems, I can be interpreted as the ratio between two
timescales: the characteristic timescale of deformation 1/4, and an inertial
timescale (d?p,/I1)°5 [32].

2.3.2 Adapting the model for foams

For foams, and in our simulations, the inertial timescale is negligible, as

discussed in Section 2.1.3. Furthermore, there is no static friction. Motivated
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Figure 2.9: Constitutive model collapse for five packing fractions.
pu(l) = o /11 versus I, for five packing fractions over nearly five decades of
strain rate. Data and symbols identical to Figure 2.7. The solid line plots
the fit to Equation (2.15) over the same range as our Herschel-Bulkley fits
(Section 2.2), with p* = 0.060=£0.002 (shown also as the asymptotic limit for
zero strain rate by the horizontal dashed line), & = 0.42 +0.02 and exponent
a = 0.45+0.02. Although the data collapses in the high strain rate regime, it
is no longer well described by the empirical scaling for I from Equation (2.15).

by these differences, we instead use the viscous timescale, ¢;/I1, where ¢, is

the coefficient of viscous drag from Equation (2.4). This yields

CdY
F= o (2.14)
In Figure 2.9, we rescale the data from Figure 2.7, plotting u(I) = o/I1,
also called the coefficient of viscous friction, versus [ for five different packing
fractions, ¢ € {0.85,0.88,0.92,0.95, 0.98}, over nearly five decades of strain
rate. The data collapses remarkably well for all packing fractions and strain

rates.
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Figure 2.10: Comparison of coefficient of viscous friction in simula-

*

tion and experiment. (a) u(/) — p* versus I, for our simulations. p* is
calculated from the fit to the data in Figure 2.9. The solid line, with a log-log
scale, shows the power-law scaling a = 0.45 + 0.02. (b) u(I) — p* versus I,
for the experiments of Lespiat et al. [30]. Our results compare favourably
to their result of a = 0.38, for foams (blue) and immersed granular material
(red) in 3D.

We find p(7) is well fit by the empirical functional form

w(I) = p* + kI°, (2.15)

*

where p* is the static value for ratio of shear to normal stresses, i.e. =
when ¥ = 0, k is a proportionality coefficient, and a is a scaling exponent.
The solid line in Figure 2.9 plots the fit to Equation (2.15) over the same
range as our Herschel-Bulkley fits (Section 2.2), with ux = 0.060 £+ 0.002
(shown also as the asymptotic limit for zero strain rate by the horizontal
dashed line), ¥ = 0.42 £ 0.02 and a = 0.45 £ 0.02. Although the data
collapses in the high strain rate regime, it is no longer well described by the
empirical scaling for I from Equation (2.15). We attribute this to a change
in the flow behaviour in this regime, which we discuss in Chapter 3.

Figure 2.10 (a) replots our data in the form p(I)—p* versus I. Comparing

our results with the experiments of Lespiat et al., we find good agreement.
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For 3D foams subjected to linear shear, they find pu(I) — pu* o 1°3, shown
in Figure 2.10 (b) reproduced from [30].

2.3.3 The angle of repose

The static angle of repose is the angle a pile of grains at rest on a plane
makes with that plane, see Figure 2.11 (a). The angle of repose for sand, for
instance, is visible on a large scale in arrays of sand dunes, whose downwind
faces tend to have slopes close to the angle of repose for dry sand of about
30° — 34° [91]. For granular media, this angle is related to the coefficient
of static friction py = /Il [67]. This friction opposes the sliding motion of
grains down a pile as more grains are added.

For foams, where the bubbles are essentially massless, we instead look at
piles formed by bubbles rising under the effect of buoyancy and coming to
rest against a plane. Such wet foams are observed to have a static angle of
repose, in planar and circular geometries (Figure 2.11 (b)) in experiment [30]
and simulation [92], even in the absence of static friction.

At zero strain rate, u(/) = p*, and Equation (2.12) returns the static

angle of repose «, where

a = tan™! % = tan™' p*. (2.16)

From our data, we can compute a static angle of repose for foams. We
find @ = 3.4 £ 0.2°. In a 3D linear geometry, Lespiat et al. find a value
of 4.6 £ 1.0° in experiment [30], whilst Peyneau et. al find 5.76 £+ 0.22° for
simulations [92]. In experiments and simulations using the 2D rotating drum
geometry featured in Figure 2.11, our group find a value of 4.8+0.5° [93]. The
slightly lower value we obtain from our soft disk model simulations compared
to other values might be caused by the effects of different system geometries.
We return to this discussion of the angle of repose in Section 4.2.1.

Our results, showing that a constitutive law developed for dense granular
flows also describes the flow of foams in simulation, provide further support

for the analogy of foams as granular media.
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(a)

Figure 2.11: The angle of repose. (a) Schematic representation of the angle

of repose . In this schematic gravity is acting downwards, and the shear
and normal stresses generated by the particles” weight. The balance between
normal and shear stresses controls a, via tan @ = Fspear/ FNormal = 0/I1. (b)
The static angle of repose of a wet, 2D foam in a rotating drum geometry.
For foams., where the bubbles are essentially massless, the buoyancy plays
the role of weight. After having been subject to oscillatory motion in the
drum, the foam comes to rest at a non-zero angle of repose, shown by the
red line. Photograph courtesy of V. Poulichet.

2.4 Conclusions and Outlook

The soft disk model, which we have defined in this chapter and which we shall
use extensively in this thesis, has been seen to accurately capture many of the
key features of bulk wet foam rheology. It captures the visco-elasticity of the
medium, with a yield stress scaling with packing fraction in agreement with
experiment, in the wet limit. It reproduces the non-linear scaling of stress
with strain rate empirically described by the Herschel-Bulkley equation, with
exponents in the range of values reported in the experimental literature.
Furthermore, we have shown that it captures scaling of the macroscopic
friction coefficient p(/) with dimensionless strain rate /. This constitutive

model was first shown to hold by Jop et al. for granular media in experiment,
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and later by Lespiat et al. for foams in 3D experiments. Here, we have shown
for the first time that this scaling is also found in 2D foam simulations.

All of these results are important, in the overall context of this thesis.
We aim to study the complex dynamics in the flow of foams, and in this
respect simple models such as the soft disk model are crucial. Unlike the
more challenging experimental equivalents, in these models it is easy to track
the dynamics, and to obtain good statistics over many decades of variation.
Large volumes of high-quality data are vital in the study of complex systems,
where one often relies on statistical measures. The soft disk model accurately
captures these quintessential features of foam flow, strongly validating it as
an appropriate model of how bubble-scale interactions propagate. This makes

it an ideal tool for attempting to understand complexity in foams.
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Chapter 3

Microscopic Dynamics,

Relaxation and Flow

In the previous chapter, we have defined the simulation model utilised to
study 2D foam rheology, and we have shown that it captures the strongly
non-linear, visco-elastic behaviour known for foams from experiments. At
a local level, the model is extremely simple, where interacting bubbles are
governed by two linear forces. Yet, from the aggregation of these interac-
tions throughout the system, we see a rich landscape of complex dynamics
emerging.

It is from these complex dynamics that the non-linear response, often de-
scribed by the Herschel-Bulkley equation, originates. Ultimately, the shear-
thinning rheology originates from dissipative bubble rearrangements that re-
lax transient elastic stresses and from non-linear viscous dissipation between
bubbles. The main aim of this thesis is to find meaningful ways of relating
the complex dynamics at the bubble scale to the rheology of foams. In this
chapter, we shall look at fluctuations in bubble displacements during shear,
and relate these to the shear stress via a deformation-relaxation argument
which has been used to calculate the viscosities of Newtonian fluids [94].

The link between the shear-induced dynamics on the bubble scale and the
resulting non-linear bulk response is not entirely resolved. Moreover, the va-

lidity of the Herschel-Bulkley relation itself has been called into question [79)].

63
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Previous work on the relation between bubble motion and bulk stresses in
sheared foams has often focused on the extremes of low or high shear rate
regime. For the latter, models [21] based on Princen’s work [53] have been
proposed that assume an ordered foam structure that flows along the crystal
planes. For low shear rates, deformation-relaxation type models [29,79] have
been put forward as well as a theory based on fluidity [95], which has been
motivated by recent experiments that exhibited non-local rheology in emul-
sions [31,96]. However, the transition between these two regimes is not well
understood. While it is known from experiments [97] and simulations [81]
that the dynamics on the bubble scale undergo a change from intermittent
rearrangements to a more laminar-type flow, the corresponding regimes of
validity of the rheological models mentioned above is unclear. Furthermore,
the mean field approximation used in many foam simulations [36,51,77,81]
has recently been shown to differ from simulations without this approxima-
tion [79)].

We address this issue using our simulations without the mean field ap-
proximation, probing the flow over nearly five decades of strain rates. In
doing so, we succeed, for the first time in simulations of wet foam rheology,
in capturing the full transition from low strain rate, non-affine flow to high
strain rate, laminar flow. In the Sections 3.2 and 3.3 we focus on the for-
mer, and we shall see how dissipitave rearrangements in the foam under flow
leads to shear-induced diffusion of the bubbles with a characteristic relax-
ation time intrinsically linked to the flow properties. In the Section 3.4, we
investigate the transition to the high strain rate regime, where we see the
Herschel-Bulkley equation no longer holds, and where a dramatic change in

microscopic dynamics leads to distinctly different rheology.

3.1 Origin of non-linear rheology

Two different aspects of foam flow contribute to the complex bulk rheology.
First, the drag force experienced by neighbouring bubbles sliding past each
other is nonlinear [22,48] and governed by a power law of the relative velocity:

Av®. Depending on the nature of the surfactant, the exponent « lies in the
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range a ~ 0.2 — 0.5. Denkov and co-workers [21,22,61] have shown in
experiments and theoretical work that the viscous stress is directly related
to this non-linear viscous interaction between the bubbles, at least for high
strain rates. Their model prediction is based on the flow of ordered foams in
experiments carried out by Princen [53].

The other source of non-linearity is more subtle. As the foam is sheared,
bubbles compress and built-up stress is relaxed through local bubble rear-
rangements. The interplay between elastic loading and subsequent dissipa-
tive relaxation leads to intermittent bubble dynamics with transient swirls.
Therefore, at least for low strain rates, bubbles do not move smoothly along
the direction of shear, seen clearly in Figure 2.2.

This appears to be the reason why the macroscopic stress scales differently
than the viscous dissipation between bubbles, as was shown both in experi-
ments [48] and simulations [52] which probed the low strain rate regime.

A recent model by Tighe et al. [79] predicts a viscous regime at high
strain rates where the shear stress simply scales with the local bubble-bubble
dissipation. At low strain rates, the competition between elastic and viscous
forces leads to an effective Herschel-Bulkley exponent lower than expected
from the local drag law.

We show that the results from the soft disk model, as detailed below, are
consistent with recent experimental observations in both the low and high

strain rate regime.

3.2 Non-affine motion of disks under shear

In a flowing foam bubbles undergo continuous rearrangements which leads
to random motion with respect to the steady-state mean flow (v)(y). In this
section, we analyse this so-called non-affine motion for a system of N = 1500
bubbles in the bulk, with Nw.; = 80 bubbles making up the walls, and the
channel width L = 33(d), where (d) is the average bubble diameter. The
packing fraction is set to ¢ = 0.95. For the purposes of our analysis of bubble

fluctuations, we consider only bubbles with y-coordinates of 0.2L < y < 0.8L,
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Figure 3.1: Non-affine velocity vector field for low strain rate. Visual-
isation of a soft disk model simulation, with De = 3.79 x 107° and ¢ = 0.95.
The arrows show the instantaneous non-affine velocity vectors of the bub-
bles, that is their velocities minus the steady-state mean flow (v(y)). We see
complex, swirling patterns and strongly non-affine motion in this low strain
rate regime. The wall bubbles have no arrows, as their non-affine velocities
are imposed by the simulation to be zero.

to avoid edge effects due to close proximity to the boundary. We return to a

discussion of what happens close to the boundaries in Chapter 4.

3.2.1 Mean Square Displacements

Fluctuations from the steady-state mean flow can be quantified by non-affine
displacements [29,62,81] As(At) over some time interval At, which are de-

fined as follows

As(At) = r(t + At) — r(t) — (v)(y)At, {3.1]
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where r(t) is the trajectory of a bubble. In a linear shear geometry the
average velocity of the foam, (v,)(y), changes linearly with y, as shown in
Figure 2.3. We note that, for constant strain rate, the time interval At is
directly proportional to the strain interval Ay - as a dimensionless quantity,
the latter is often a more convenient choice of variable.

Figure 3.1 shows a visualisation of the non-affine flow of bubbles in our
simulations, for De = 3.79 x 107® and ¢ = 0.95. The black arrows plot
the instantaneous non-affine velocity vectors of the bubbles, that is, their
individual velocities minus (v,)(y), during linear shear. The strongly non-
affine displacements and swirling, transient motion shown are characteristic
for the simulations, in the low strain rate regime. While an individual vortex
in the bubble motion is transient, in general these vortices form and dissipate
continuously over short timescales throughout the steady state flow.

For our analysis, we concentrate on the non-affine motion in the y di-
rection, transverse to flow. Longitudinal motion presents difficulties when
subtracting the mean flow. In calculating the mean flow we average the
displacements of the bubbles into bins. The longitudinal mean flow is thus
discretised, and there can be small errors upon subtraction when the bub-
bles” y-coordinates change. These errors, while small, accumulate throughout
calculations. The mean flow in the transverse direction is zero, and the fluc-
tuations in the mean flow with time are smaller, producing much smoother
statistics.

From the non-affine displacements, Equation (3.1), we can compute the
2
v
ure 3.2(a) shows the change of (As?) with strain Ay at De = 7.6 - 107°,

which is again in the low strain rate, Herschel-Bulkley regime.

mean square displacement (As?) transverse to the shear direction. Fig-

The corresponding probability distribution functions (PDFs) in Figure 3.2(b)
of the transverse non-affine displacements As,(At) reflect the qualitative
change in behaviour as a function of strain interval. At low strain intervals
A7, we see a fat-tailed distribution. Such distributions are often encountered
in the study of complex systems, and we will return to a much more detailed
discussion of them in Chapter 6. The majority of the bubbles move very lit-

tle relative to the bulk flow of the medium: hence the PDF of the non-affine



68 Chapter 3. Microscopic Dynamics, Relaxation and Flow

<Asy2>/d2
—
S,
w

1074 |

10" 107 1072 10" 10°

PDF

Figure 3.2: Non-affine displacements at low strain rate. (a) Trans-
verse mean square displacement As,(At)/d?, non-dimensionalised by the
average bubble diameter d, plotted as a function of strain Ay = YAt at
De = 7.6 - 107°. The black lines indicate the super-diffusive and diffusive
regimes, where the logarithmic slopes are 1.8 and 1, respectively. (b) The
distributions of the non-affine displacements transverse to the shear direction
Asy(At)/<As§)0'5 for three different strains Ay at De = 7.6-107° as indicated
by the dotted vertical lines in (a). The distributions are shifted for clarity
and are normalised by their respective widths. () Ay = 3.4 -107%; (a)
Ay =23-107% (0) Ay = 1.46. The black curve is a fit to a Gaussian.The
initially fat tail distributions converge to a Gaussian with increasing strain
Ax.
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displacements has a strong peak at 0. However, when a rearrangement does
occur it causes a very large movement relative to the bulk flow, leading to
fat tails.

In contrast, at high Ay, we obtain a Gaussian PDF, a signature of diffu-
sion. We shall focus on this diffusion in the next section. At the crossover
between the two regimes we observe exponential tails, similar to those found
in the experiments of Mobius et al. [29].

The mean square displacements (Aeg) as a function of strain interval
A~, follow the same trend for a wide range of Deborah numbers, as shown
in Figure 3.3. Note that the curves do not lie on top of each other. We
conclude from this that the fluctuations are not rate-independent, that is,
shearing twice as fast does not cause the same fluctuations to occur, just twice
as quickly. This affords immediate insight into the origin of non-linearity
in foam rheology: the stress cannot scale linearly with strain rate (as for
Newtonian fluids, or Bingham fluids past a certain yield stress regime [13])
when the motion of the bubbles - which ultimately affects their interactions
with the walls and thus the stress - is non-trivially rate-dependent.

For a given strain, we find the fluctuations of the bubbles to decrease

with strain rate, which again agrees with experimental observations [29)].

3.2.2 Shear-induced diffusion in foams

In thermal systems, particles are subject to diffusion over time due to random
vibrational motion associated with their thermal energy. In general, the mean
square displacement of particles, (As?), diffusing in time At can be described

by the diffusion equation,

(As?) = 2nDAt™, (3.2)

where n is the number of dimensions, D is the diffusion constant and d,,
is the anomalous diffusion exponent [98].

For normal diffusion d, = 1, and one recovers the familiar Brownian
motion or random walk, i.e. (As) oc v/£. We call this the diffusive regime.

This regime corresponds to regions of slope 1 in logscale plots of (As?) against
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Figure 3.3: Mean square displacement versus strain interval. (As?)
plotted as a function of A~, for a range of Deborah numbers (o strain rates):
De:(+) 7.6-107%; (x) 7.6-107%; (v) 6.1-1073; (O) 1.5-107%; (M) 4.6 - 1072,
(0) 6.1-107% (¥) 6.8-1072; (A) 7.6 - 1072, The black line indicates a slope
of 1 which corresponds to diffusion. At high strain rates a plateau emerges
as a result of lane motion, discussed further in Section 3.4.

A~ (analagous to At for constant strain rate 5), as is plotted in Figures 3.2
(a) and 3.3.

For transport through porous media, fractal networks, and other complex
systems such as financial markets (see Chapter 6), anomalous diffusion has
been observed [98]. Here, d,, can have a value less or greater than 1, cor-
responding to a subdiffusive (slope< 1) or superdiffusive regime (slope> 1)
respectively.

In Figures 3.2 (a) and 3.3, linear regions of slope 1 are visible for suffi-
ciently high A~, consistent with diffusion. Furthermore, as shown in Fig-
ure 3.2 (b), we recover Gaussian distributions for non-affine displacements at
high strain intervals. The Gaussian function is a solution of the linear diffu-
sion equation %t}z = DV?P(z,y). From these observations, the conclusion is

drawn that the bubbles undergo diffusion.
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However, unlike similar colloidal systems such as glasses, which have
thermal interactions and thus undergo thermal diffusion, foams are ather-
mal systems. In foams, this diffusive motion is instead due to a process
called shear-induced diffusion, where diffusion of bubbles over time results
solely from the topological structural rearrangements caused by the shear-
ing of the foam. For a sufficiently large strain, the non-affine motion of an
individual bubble undergoing successive rearrangements as the foam flows
is well-described by a random walk, where the “steps” are irreversible T1
transitions.

It is interesting to note that, for short times, we observe the mean square
displacements to be superdiffusive, scaling as approximately ¢'* (Figure 3.2
(a)). A scaling with ¢* would correspond to ballistic motion, which we would
not expect since in our model the disks are at all times in contact with neigh-
bours and thus subject to a dissipative force. Superdiffusion has been found
to arise in systems featuring fat-tailed distributions such as Lévy flights [99].
Here, then, it is perhaps not surprising that our fat-tailed, strongly nonaffine
motion generated by T1 transitions scales superdiffusively at short times.
Superdiffusion has been attributed to active cell transport properties, where
average local motion is expedited above that of a random-walk diffusion by
topology or chemical interactions [100].

From our mean square displacements, we can thus calculate strain rate
dependent diffusion constants, D(5). We use the relevant, simplified form of
Equation (3.2),

(As2) = 2D(%)At, (3.3)

fitting to the data in the diffusive regime.

As seen from Figure 3.4, the diffusion constant D increases with strain
rate. This behaviour is expected since diffusion is a direct result of shear-
induced rearrangements whose rate is increasing with 7.

At low strain rates, we find that D is approximately linear in 5 as is
expected in a quasistatic regime where all the displacements scale with the

strain; i.e. as the strain rate is doubled, the rate of rearrangements doubles
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Figure 3.4: Diffusion constants versus Deborah number. Normalized
diffusion constant Dcy/(kd?) as a function of De. At low De, D x De. For
De > 0.03 D is starting to decrease due to bubbles starting to be trapped in
lanes.

which in turn leads to twice as much diffusion. In experiments on two-
dimensional foams this quasistatic regime [29,97] has not been observed,
presumably due to the fact that creep due to coarsening would dominate at
these low strain rates.

At around De =~ 1073, the increase of ) becomes nonlinear, which is also
observed in experiments [29] and simulations of the Durian bubble model [81].
A power law scaling for D has been suggested in experimental work by both
Wang et al. [62] and Mébius et al. [29]. We observe there to be a nontrivial
scaling of D over a larger range of strain rates than examined in these papers,
in agreement with simulations of Ono et al. [81].

At yet higher Deborah numbers we see, once again, that the behaviour
of the system undergoes a qualitative change, at around the same Deborah
number where we found the Herschel-Bulkley equation to no longer accu-
rately describe the data (Section 2.2), and the empirical fit to the Pouliquen

model collapse to fail (Section 2.3).
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Here, finally, we can glean an insight into why this occurs. This change in
behaviour arises from a change in dynamics at the bubble level. The bubbles
start to become trapped in moving lanes parallel to the shear direction, as
shown in Figure 3.8. We postpone the discussion of this high strain rate
regime until later in this chapter. For now, we shall simply highlight that
this lane motion is the origin of the plateau in the mean square displace-
ment starting at approximately Ay = 1, seen in Figure 3.3. These plateaus
occur at approximately an average displacement (As) =~ 0.2(d), a fraction
of a diameter, indicating the bubbles become trapped in lanes. At large
strains, lane switching of the bubbles eventually causes transverse diffusion,
on a different timescale. For this reason, the diffusion constant decreases for
Deborah numbers greater than 0.03. We shall return to this transition to

lane motion in Section 3.4.

3.3 A deformation-relaxation model for

foam flow at low strain rate

We now relate the rearrangement rate, measured from the non-affine bubble
fluctuations, to the rheology of the simulated foam in an approach similar
to previous experimental [29] and theoretical work [79,95]. This approach is
akin to a deformation-relaxation model that is usually used to describe the

microscopic origin of viscosity in Newtonian fluids.

3.3.1 The relaxation time

In Newtonian fluids, viscosity 7 can be related to the dissipation rate per
unit volume [94]. Consider a small volume within a flowing Newtonian liquid,
dimensions Az by Ay by Az. The work done to maintain the flow (velocity

v) of the liquid in the z-direction is given by:

dw
dt

= Fv = (0 AzAy)(7Az). (3.4)
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Figure 3.5: Schematic representation of the relaxation time model
for Newtonian fluids. The small volume of fluid, AzAyAz, undergoes
small strain steps, 07, and then relaxes fully by dissipating the elastic energy
generated. The model can be used to estimate the viscosity n of Newtonian
fluids, of the order of inverse picoseconds [94].

The dissipation rate per unit volume w is thus:

W= o7. (3.5)

Combining Equations (1.8) and (3.5), one obtains w = n4%. The viscous
dissipation can be visualised by imagining the continous strain as a series of
sudden, tiny jumps. After each such jump, the work done to shear the foam
is dissipated by the collisions of the molecules in the fluid, dissipating the
elastic energy. These deformation-relaxation cycles occur on the time scale
of the microscopic relaxation time ¢,.. From this analysis it follows that the
viscosity of thermal fluids 1 o ¢,, where the relaxation time depends on the
temperature. [94].

Prior studies of colloidal glasses found microscopic relaxation times that
scaled non-linearly with the inverse local strain rate, but no direct and quan-
titative connection to rheology had been established [101,102]. Mobius et
al. applied the same relaxation time analysis to foam flow, by tracking the

bubbles using image analysis software and resolving each of the bubbles’ po-
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sitions and velocities as functions of time [29]. In foams, which are athermal,
the relaxation is not driven by temperature but is entirely shear-induced
(ignoring coarsening on long time scales) and one may interpret the corre-
sponding relaxation time scale as the typical inverse rearrangement rate of
the bubbles, which depends on the local strain rate.

We use the diffusion constant as a measure of the rate of plastic, dis-
sipative rearrangements 1/t,. Following the theoretical work of Martens et
al. linking the size of cooperative regions in amorphous flow to the diffusion
coefficient [103], we postulate that D o 1/t,. More precisely, we define the
relaxation time to be the onset of the diffusive regime where (As?) oc At. A
similar relation between relaxation time and diffusion constant has also been
observed in sheared colloidal systems [101].

This allows us to plot the mean square displacements from Figure 3.3
versus a rescaled time axis o At/t,, which is simply D(%)At/d*, where the
average bubble diameter d appears on dimensional grounds. The result is
shown in Figure 3.6.

At all Deborah numbers we find that the curves converge to the diffuse
regime when the mean square displacement exceeds (As2)/d* ~ 0.18, which
is close to the Lindemann criterion. The criterion was first put forward by
Lindemann to explain the melting transition in crystalline solids, stating
that melting would occur when particles had sufficient thermal energy that
their root mean square vibrational amplitudes exceeded 10% of their nearest
neighbour distance on the lattice [104]. In colloidal systems this is equivalent
to cage-breaking [101].

The corresponding relaxation time ¢, is given by

2

d
t, = o.ogm, (3.6)

as indicated in Figure 3.6.

Experiments of two-dimensional foams have shown a collapse of the non-
affine fluctuations, (As,) over two decades in shear rate [29]. While we see an
approximate collapse for low Deborah numbers over two decades, this does

not hold for the whole range of shear rates that were probed. Nevertheless,
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Figure 3.6: Mean square displacements rescaled by diffusion con-
stants. Mean square displacements in the transverse direction for different
De:(+) 7.6-1075; (4) 1.5-107%; (x) 7.6-107% (O) 1.5-1073; (V) 6.1-1073;
(0) 1.5-107% (a) 3.0-107%; (M) 4.6 - 1072 (O) 6.1 - 1072 The time axis
is rescaled with the diffusion constant D(%)/(d)?. The onset of the diffu-
sive regime occurs approximately at AtD/d* = b, where b ~ 0.09. The
corresponding mean square displacement is at 0.18d7.

the onset of the diffusive regime is well characterised by the Lindemann

criterion for all Deborah numbers.

3.3.2 Relating local relaxation to the bulk

deformation

We can associate a characteristic strain 7. with ¢,., such that

W = Fey. (3.7)
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In the deformation-relaxation ansatz [94], we relate the characteristic strain

7. to the shear stress by the elastic modulus Gy,
o =a- Gy, (3.8)

where a is a dimensionless constant of proportionality. Combining Equa-
tions (3.6), (3.7) and (3.8), we have:

4. (3.9)

We now have two expressions for the stress o, Equation (1.10) and Equa-
tion (3.9), both shown for comparison in Figure 3.7. The former is the
empirical Herschel-Bulkley equation, while the latter is obtained solely from
measurements of the bubble-bubble dynamics, namely the bubble rearrange-
ment rate 1/t,. We note that a is the only fitting parameter in this model
for Equation (3.9) and is of order 1 (a = 0.24). We see that our derived
expression describes the measured stresses very well and is indistinguishable
from a fit to the empirical Herschel-Bulkley equation (Equation (1.10)).

However, beyond De = 0.005 the prediction from Equation (3.9) is no
longer adequate to describe the data. This transition is marked by a vertical
line in Figure 3.7. The physical reason for this is that at this point the re-
laxation time ¢, becomes greater than the inverse strain rate (Figure 3.7(b)).

1 is shorter

In other words, to the right of this line the shearing timescale 5~
than the relaxation time and prevents the foam from fully relaxing after
rearrangements.

This transition can also be observed by decomposing the shear stress o
into the elastic and viscous contributions (o) and (oy), as was done by
Tighe et al. [79]. We plot these stress components versus De as shown in
Figure 3.7(c).

The elastic forces are due to the overlap between the bubbles, which
does not change significantly with strain rate. The viscous forces increase
monotonically as expected, although in a non-linear fashion. At De ~ 0.005

we see a crossover at which (oy) starts to dominate. Curiously, we also
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Figure 3.7: Comparison of deformation-relaxation ansatz with stress
versus Deborah number. (a) Shear stress versus De, with Herschel-
Bulkley fit (as in Figure 2.6) in black. The purple triangles correspond
to & = %7 with @ = 0.24. (b) Relaxation time ¢, (x) and inverse
strain rate (black line) plotted versus Deborah number. The vertical line at
De = 0.005 marks the transition between t, < 4~! and ¢, > 47!, (c) Elastic
(og) (V) and viscous (oy) () components of the shear stress versus De. (d)
Normal stress II (+) and shear stress o () versus De. Second vertical line

at De = 0.09 corresponds to Il = o.
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observe that the elastic component of the shear stress begins to decrease at
this point. We will return to this in Chapter 4.

The rheology before this crossover is well described by a Herschel-Bulkey
fit with exponent 0.51 which is consistent with the Leiden group model [79],
falling in their “critical” regime.

Our results differ from experiments of Mobius et al., where the relaxation
time has been observed to be proportional to the viscous stress [29]. We
believe this discrepancy is due to limitations of the experiments. Although
the dynamics were measured in a linear geometry, the rheology was measured
in a Couette geometry which was later shown to exhibit a non-local rheology
[105].

3.4 Rheology at high strain rate

From the previous section, it is clear that the relaxation time ansatz that
links shear-induced diffusion and shear stress breaks down when De > 0.005.
The viscous forces dominate and the deformation time scale 1/4 becomes

shorter than the relaxation time scale t,.

3.4.1 The transition between non-affine motion and

laminar flow

At this point we see a dramatic change in the bubble dynamics. Instead of
intermittent, swirl-like motion of the bubbles (Fig 2.2), we observe a laminar-
type flow, where bubbles flow predominantly along the shear direction (Fig
3.8). This shear-induced ordering is somewhat surprising, given the polydis-
persity of the foam.

Returning to the mean square displacements (As,(At)), we can see too
that there has been a marked change in their distributions, characteristic
of the change in dynamics. Figure 3.9 (a) shows (As,(At)) versus Ay for
De = 7.6 - 1072, After some (average) time trapped in a lane, indicated by
the plateau where (As,(At)) = 0.2(d), the bubble escapes and continues to

diffuse, albeit this time in a random walk whose step is now the transition



80 Chapter 3. Microscopic Dynamics, Relaxation and Flow

A Velocity V

-
>

B I i e e e B R S
ML AR Sl g 530N A v R A € LA SN B 1 4 8 SR A s W I b, <y R
AL g S A B PN YAY SR G O T R VBT el EAR T AP (it il Iy et vty by e
. ST N L AT 5 e S et B3 It <SS R WA PP At AT v LIS R P et
3 A ety (3 S A A @ L] LR A ] A A By b Rt S A A At W Ay e VS
—— 1 B T M e i S T A et S B At 4 B s e ST b D VW Y
PG St LIl P C s - YA LAty SO P
At B sy A B 8 R KRS £ M SO M A Yo\ PR A8 g A (ot <
T B At A AT Uy PN A B L P bt e & 5] 1 VT P AT P B 7 WA s PP
O T ke T e 1 B U e A T i B LD R et B A . B N - B >
A L T T VI L L W A i R, 1 Ve A1 0 A Y N AL A TN
L Bt A s Y g 70 M W e e | e N et St P e AN g e L
L A g P Bty G Bt A PG SO T | ALY LD V) It A A P AU el Wt Rt ok
g i T A 3 PNy M S N S 1 T M e e Ry A I O e N
B e R |l A PP g LT S A g Y P [l [ PR g BRI " St Py N e S Y 5 g W
y P M 2 AR LA P S et v e g I gk M u e (5 W AA SN 4t 1) S S e, e B A
AP G e, e e SR LT s e AT AP ) SORIING M NI L DA S 1 AT Py,
D e el ane et e R e e T it o Tt S 2L 2
PINTETS A e AN Y e O e B RN S et L W o PA AR S N A P e 4
A VTR TN bty S W 1L Py Y AN - 1 L B e N Y A § I O Sl gl 8 S AR ARy
o sr e b P B S TN o A s s VA 2 S g P Vg o L e R Y O g
B e e e i e s N
'-W- T A Y A o L gl o S AL gy P S A A D e Ay
V3 + 4 AT ALl P O A ﬂﬁ”}w‘mm‘ .
qu-..mmu 2
A A P B
o wme
e+ iy AR T A P o A . A LY T o
AR O et T VTR A L G 1 ot A G Al Vg S (e AT B 8

e S B L P B
A AL AR 15 e S AADAAI A S S A A D NP S e
a5 B0 - ».
— AR
&
>
X

Figure 3.8: Lammar flow. Bubble trajectories of a linearly sheared foam:,
at De—= 7.
during a total strain of Ay = 38. The bubbles move predominantly along

6 - 107“. Black trails represent the positions of the bubble centres

the shear direction with reduced transverse motion. Collective, swirly bubble
rearrangements have ceased.

between lanes. The black vertical lines mark different values of strain interval
Ay, a= 0379, b= 0758, c=50682 d = 37879, e= 189.39 and f = 757.58,
for which we calculate PDF's and plot them in Figure 3.9 (b).

In Figure 3.9 (b), we see that the PDFs of mean square displacements are
now dramatically different from those shown in Figure 3.2 (b). For clarity of
discussion, we normalise the displacements by the bubble lane width, equal
to 0.92(d). This value is obtained by noting that although the channel is
L = 33(d), there are 36 bubble lanes due to the compression of the system,
as visible in Figure 3.8.

At short times, e.g. for a and b in Figure 3.9, we observe Gaussian
distributions with widths less than a lane width. Here, the bubbles are
subject to normal diffusion, over short distances within a lane. For ¢ and

d, within the plateau, we see approximately Gaussian distributions, with
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Figure 3.9: Mean square displacements for high strain rate lane mo-
tion. De = 7.6 - 1072 (a) Transverse mean square displacement As,(At)/d*
plotted as a function of strain Ay = 4At. The vertical black lines illustrate
values of Ay for which we calculate PDFs, shown in (b). These values are
a = 0.379, b= (.758, ¢ = 5.682, d = 37.879, e = 189.39 and f = 7H7.58.
(b) The distributions of the non-affine displacements transverse to the shear
direction As,(At) for six different strain intervals A+ as indicated by the
vertical lines in (a) and listed above. The distributions are shifted for clarity
and are normalised by bubble lane width, which is given by 0.92(d). Clear
peaks at integer values of bubble lane width show that the bubbles tend to
move between lanes, i.e. the lane motion is persistent throughout the whole
sample. As the strain interval increases, the bubbles diffuse between lanes.
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additional fat tails. Here, while the majority remain confined within a lane,
a few bubbles begin to escape. Finally, for e and f, past the plateaus, many
of the bubbles (on average) have diffused between lanes. We see strong peaks
in the distributions at integer values of bubble lane width, consistent with
jumps between discrete y-coordinates set by the lane positions. Over time,
these peaked functions become enveloped by normal diffusion on a different

timescale to diffusion in the early motion depicted in a and b.

3.4.2 Viscous scaling via the local drag law

We have seen that in this high strain rate regime, with strongly ordered
lane motion, the Herschel-Bulkley equation (1.10) no longer describes the
variation of the shear stress with strain rate. Such an ordered flow pattern
features in the models proposed by Princen [53] and Denkov [22,61].

In this case, the shear stress may be directly related to the local drag
law (Equation (2.4)). Suppose the lanes are approximately one bubble di-
ameter wide, and that the force on these lanes is governed primarily by the
viscous drag between them. Then, o ~ %—d- = cd% = ¢g7, yielding (from
Equation (2.9)):

o=k-De (3.10)

This analysis leads to the conclusion that for high Deborah numbers the
stress ought to scale simply with the local bubble-bubble drag (in our case,
linearly). We compare the prediction (Equation (3.10)), which contains no
free parameters, with our data as shown in Figure 3.7(a) and find good
agreement. The onset of this linear regime (De = 0.09) coincides with the
crossover at which the shear stress becomes larger than the normal stress
as shown in Figure 3.7(d). Note that the transition to the viscous regime
does not occur when the viscous contribution of the shear stress exceeds the
elastic one (De = 0.005) as predicted by Tighe et al. [79].

The Herschel-Bulkey fit becomes inadequate at around De = 0.02, which

falls into the intermediate regime, where the stress is neither described by the
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viscous prediction (Equation (3.10)) nor the deformation-relaxation ansatz
(Equation (3.9)).
The limitations of the soft disk model as outlined in Appendix D prevent

us from probing Deborah numbers larger than 0.5.

3.5 Conclusions and Outlock

We have analysed both the macroscopic flow properties and dynamics on
the bubble scale over a wide range of strain rates in simulations of two-
dimensional foam flows and identified three regimes. In the first regime,
for Deborah numbers up to 0.005, the macroscopic deformation time scale
1/4 exceeds the microscopic relaxation time. In addition, the elastic com-
ponent of the stress dominates over the viscous one (see Figure 3.7(c)). The
bubble motion is non-affine and intermittent, leading to shear-induced dif-
fusion. In this regime, the shear stress can be described from a microscopic
deformation-relaxation model. The apparent viscosity is proportional to a
microscopic relaxation time. This time corresponds to an inverse rate of dis-
sipative bubble rearrangements and is obtained from the measurement of the
diffusion constant.

For high strain rates, when the Deborah number exceeds 0.09, the bubbles
move in lanes. At the onset of this regime, the shear stresses become larger
than the normal stresses. The rheology is consistent with a prediction based
on the local bubble-bubble drag law, which is linear in our simulation, so
that o o 7.

There is one decade in Deborah number between these two distinct regimes.
In this intermediate regime the bubble dynamics changes smoothly from non-
affine, swirly motion, to fully developed lane motion. This is reflected in the
transverse mean square displacement which develops a plateau that widens
with increasing strain rate (see Figure 3.3). Therefore, the bubbles become
trapped in lanes for longer times as the Deborah number increases.

We note that both the empirical Herschel-Bulkley law (Section 2.2) and
the empirical fit for (/) (Section 2.3) provide a good description of the

variation in stress up to Deborah number 0.02, which lies about halfway



84 Chapter 3. Microscopic Dynamics, Relaxation and Flow

into the intermediate regime. For the low strain rate regime, these empirical
scalings describe the data well. At high strain rate and the advent of laminar
flow, the data is better described by drag laws similar to those theorised by
Princen and Denkov et al., and observed to hold in experiment.

Our simulations capture, for the first time, the transition from non-linear
turbulent flow to laminar flow observed for foams in experiment. In our
analysis so far, we have focused on bulk flow behaviour - macroscopic stresses
for large systems, and fluctuations in low away from the shearing boundaries.
We now turn the discussion to the effects of finite system size, by considering

channels of varying width.



Chapter 4

The Effect of Finite System

Size

In Chapter 2, we presented results from soft disk model simulations over a
large range of strain rates, and for five different packing fractions. One thing
we kept constant, however, was the system size. What happens when we
change this system size? In Chapter 3, we analysed the diffusive motion of
disks under shear, in a central region away from the boundaries, asserting
that this region represents “bulk” behaviour, away from the influences of the
boundaries. Can we make this assumption?

In this chapter we address these questions. Finite size effects are a concern
in all systems, experimental and simulated. In simulations, these are often
overcome by using periodic boundary conditions. Indeed, 2D linearly-sheared
molecular dynamics simulations can make use of Lees-Edwards boundary
conditions to ensure periodic boundary conditions in both x- and y-directions
[79,106]. In a system with Lees-Edwards boundary conditions, shear is
achieved by imposing a velocity in the flow direction on the periodic cells
aligned tranverse to the flow direction, illustrated schematically in Figure 4.1.
This allows the application of a linear shear without boundaries.

Experiments, however, always have boundaries! In this chapter we specif-
ically investigate the effect of boundaries in our soft disk simulations. We

vary the channel width L of the systems in order to probe the way shear and
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Figure 4.1: Schematic illustration of Lees-Edwards boundary con-
ditions. The central cell, outlined in red, represents the simulated system,
which is surrounded by periodic copies. A velocity is imposed on the cells
highlighted in blue and yellow, generating a linear shear while maintaining
periodic boundary conditions.

normal stresses change as a function of L. We find that, exceeding L ~ 30(d),
where (d) is the average bubble diameter, the flow properties of the flows are
identical, identifying an upper bound for the minimum width at which bulk
properties are observed.

We also return to the constitutive model introduced in Chapter 2, investi-
gating the rescaling of shear and normal stresses in terms of the dimensionless
I parameter, as a function of channel width. We find that the constitutive
model collapses our data for a given channel width for all packing fractions.
However, it does not collapse data for different channel widths. From fits to
these collapses, we compute the static angle of repose as a function of chan-
nel width, which we compare to experimental measurements of the angle of

repose for finite system size.



4.1. Simulations of narrow channels 87

Channel width L || Number of disks N | Ny /N
2(d) 1200 1
4(d) 1200 0.5
8(d) 1200 0.25
16(d) 1380 0.12
33(d) 1500 0.05
44(d) 2000 0.04

Table 4.1: System dimensions for different channel-width simula-
tions. The first column lists the channel width in terms of average disk
diameter (d). Columns 2 and 3 list the number of disks in the bulk and in
the walls, respectively.

4.1 Simulations of narrow channels

In the majority of the analysis presented in this thesis, we focus on channel
dimensions with 80 bubbles in the walls, and channel widths of approximately
33 average bubble diameters. These systems contain 1500 disks not part of
the walls. We now extend our analysis to vary the channel width L. In doing
so, we also vary the length of the walls, i.e. the number of bubbles that
make up the walls. We do this for statistical reasons: although it might be
aesthetically pleasing to keep the walls a constant length and vary only the
channel width, doing so would mean a reduction in the number of disks in
the system for a given packing fraction ¢. This leads to reduced statistics
and noisier signals for measures such as the shear stress o.

For the results presented here, we use a range of wall lengths and num-
bers of disks, which we list in Table 4.1. In summary, we examine systems
comprising of N disks, where 1200 < N < 2000, controlling the channel
width by varying the ratio of N and the number of wall disks Nw.;. Two
examples are displayed in Figure 4.2 (a) and (b), which show visualisations
of simulations with L ~ 8(d) and L ~ 16(d) respectively, for ¢ = 0.98 and

similar Deborah numbers.
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(b)

Figure 4.2: Visualisations of two narrow-channel simulations. Packing
fraction ¢ = 0.98. (a) L = 8(d), with De = 3.36 x 10~4, N = 1200 and
Nwan/N = 0.25. Approximately one third of the channel length is shown.
(b) L = 16(d), with De = 1.66 x 107, N = 1380 and Nyu/N = 0.12.
Approximately two thirds of the channel length is shown.

4.1.1 Finite system size and “bulk” behaviour

The first question we must address is, when is the channel sufficiently wide
that simulations for different widths give similar results? Figure 4.3 plots
shear stress ¢ and normal stress II versus Deborah number, for six channel
widths. The data for L = 33(d) (black) and L = 44(d) (cyan) are visually
indistinguishable, and, indeed, in the case of the shear stress are well-fit
with the same Herschel-Bulkley parameters, from Equation (1.10). We thus
conclude that L = 33(d), used in our previous analysis, is sufficiently wide
to be considered as an appropriate model for bulk flow.

For L = 16(d), and narrower channels, the shear and normal stresses do
not collapse. For low values of L, we find o(¥) to decrease, and II(%) to

increase. The second question, then, is: can we explain this behaviour?
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Figure 4.3: Stress versus Deborah number, for varying channel
width. Shear stress o (lower curves) and normal stress I (upper curves)
are shown for ¢ = 0.95, for channel widths: L = 2(d), (x); L = 4(d),
(W); L = 8(d), (A); L = 16(d), (O); L = 33(d), (®); L = 44(d), (O). o
is observed to increase for increasing L, up until L = 33(d). II is found
to decrease with increasing L in the same range. The data for L = 33(d)
and L = 44(d) are observed to overlap, indicating bulk behaviour has been
reached by L = 33(d).

4.1.2 A model for the dependence of stress on system
size

We attribute this scaling of o and II with L to structural considerations.
First, we shall focus on o, by considering a simple, analytically tractable
model. Consider a system similar to our simulations, comprising of two walls
and two lanes, where the bubbles are monodisperse and constrained to move
in lanes (i.e., only their x-coordinates can change), see Figure 4.4 (a). In
such a system, the average elastic component of the shear stress (o.) = 0.

This arises due to geometrical symmetry. As Princen et al. [56] and Denkov
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Figure 4.4: Schematic illustration of simple model with imposed lane
motion. Here, we use a model of monodisperse disks, confined to move in
lanes with a linear velocity profile, evolving as (a) through to (¢). In such
a system, the sum of the elastic components of the forces F,, shown in (a)
and (c) by the horizontal red arrows, is zero due to symmetry. The system
passes through a state of maximal normal stress, with maximum possible
overlaps when the disk centres align, as shown in (b). Any deviations from
this configuration, i.e. non-affine motion, will cause a reduction in the normal
stress.
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et al. [22], amongst others, have shown, and as we have seen in Chapter 3,
the viscous component of the stress for lane motion scales as a simple drag
law, which in our case is described by (o,) o 4.

This envisaged system provides us with a lower bound for the shear stress.
Focusing on the elastic component of the shear stress, we now ask: what
increases the average shear stress? The answer is anything that introduces
asymmetry. There are two main sources of asymmetry in our model. The first
is polydispersity. This is kept at a constant ratio for all of our simulations,
and introduces a finite elastic component of the shear stress.

The second is non-affine motion. If we consider our toy model as having a
linear velocity profile, combined with each disk moving at the same velocity
as the others in its lane and constrained to move in that lane, it is clear to
see that the model has no non-affine motion. We postulate that increasing
the non-affine motion increases (o.), evidence for which we have already seen
in Section 3.3.2. In Figure 3.7, (0.) is seen to decrease as De increases - a
decrease which begins at the onset of lane motion.

Non-affine motion is curtailed near the boundaries, which have fixed
y-coordinates and inhibit transverse rearrangements in their vicinity. The
boundaries themselves encourage the formation of bubble lanes (equivalent
to planes of crystallisation at boundary walls, for 3D systems), a phenomenon
which has also been seen in experiment [107]. As the channels are widened,
the disks have more freedom to undergo rearrangments in the direction trans-
verse to flow, and (o.) increases. Note that at high strain rate, where (o,)
dominates, the curves for all channel widths collapse, as this effect on (o)
becomes negligible with respect to ¢ (or, put another way, systems of every
size begin to move in lanes).

What about the normal stress, II?7 We follow the same argument, using
the same toy model system. For simple shear with a linear velocity profile,
the system flows through stages depicted by Figure 4.4 (a)—(c). At stage
(b), the system has the highest possible normal stress achievable with that
number of disks. Any non-affine motion will decrease this value of II. Once
again, the larger the system, the less confined the disks are with respect to

transverse motion, and thus the lower the value of II.
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Figure 4.5: Constitutive scaling for narrow channels. We plot data for
five channel dimensions (L = 2(d), blue; L = 4(d), red; L = 8(d), green;
L = 16(d), orange; L = 33(d), black) and five packing fractions (¢ = 0.85,
(D) ¢ = 0.88, (M); ¢ = 0.92, (x); 6 = 0.95, (®); ¢ = 0.98, (2)). We
omit data for L = 44(d) for clarity - as discussed in Section 4.1, the scaling
behaviour is identical for L = 33(d) and L = 44(d).

We now return to the constitutive model, which we found to provide a
good description for our stress data as a function of dimensionless parameter

I in Section ?77.

4.2 Constitutive model for narrow channels

Qualitatively, Figure 4.3 might already lead one to expect that the scaling
used for collapse in Section 77, namely
o

u(l) = 0= H + kI where 1 = (4.1)
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should not collapse stress data for different channel widths L, given the
different scalings of ¢ and II with L discussed in the last section.

In Figure 4.5, we plot u(l) versus I for data over a range of packing
fractions and channel widths. As expected, the data does not collapse for all
channel widths, showing a spread at low / (where the (0.) dominates) and a
collapse at high I (where the (0,) dominates).

However, the data is well described by Equation (4.1) if we consider each
channel width individually, see Figure 4.6. The solid lines show best fits to
Equation (4.1), for data up to De = 2.0 x 1072, in line with our previous
Herschel-Bulkley and constitutive model analysis (see Sections 2.2 and 77).
It is noteworthy that the constitutive model provides a good description of

the flow for all packing fractions for fixed channel width L.

4.2.1 The angle of repose

In Figure 4.7 we plot the angle of repose @ = tan~!pu*(L) and exponent
a(L), obtained from the fits to Equation (4.1) shown in Figure 4.6. We
find a smooth variation of this data, with asymptotic values in the limit
L/{d) — oc.

The variation of the angle of repose o with channel width L/(d) is well
described by the empirical functional form a(L/(d)) = o + L—/—(a?)T
shown by the black line in Figure 4.7 (a), with a,, = 3.7£0.1, ¢ = —11.6£0.1
and r = 3.920.1. In the limit L/{d) — oo, a(L/(d)) = aw. From our fit, we
thus extrapolate the asymptotic angle of repose in the limit of infinite channel
width for our soft disk simulations to be a,, = 3.7+0.1°. This value is lower
than experimental and simulated values reported in the literature [30,92], as
already discussed in Section 2.3.3.

A puzzling result of this analysis is the scaling of the angle of repose
a with L for narrow channels. From our simulations, we see that the static
angle of repose decreases as system size decreases. This appears to contradict
results found in the literature, as follows.

In linear geometry experiments for 3D foams, Lespiat et al. list an an-

gle of repose of @ = 4.6 + 1° that does not depend on system dimensions.
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Figure 4.6: Constitutive model collapses for six different channel
widths. We expand Figure 4.5, plotting each channel width as a separate
subfigure: (a) L = 2(d); (b) L = 4(d); (c) L = 8(d); (d) L = 16(d); (e)
L = 33(d); and (f) L = 44(d). Data for five different packing fractions
are shown: ¢ = 0.85, (O); ¢ = 0.88, (M); ¢ = 0.92, (x); ¢ = 0.95, (@);
¢ = 0.98, (A). The solid lines show fits to Equation (4.1), for data up to
De = 2.0 x 1072, in line with our previous analysis (see Section 2.2).
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Figure 4.7: Angle of repose and exponent a versus channel width.
(a) Angle of repose versus L. The black line shows a fit to the empirical

1 ‘ ‘ = / 1 y = - —
functional form a(L/(d)) = ax + —q—L/(d) oy with o = 3.7+ 0.1, ¢

—11.6 £0.1 and » = 3.9 £ 0.1. For narrow channels, the angle of repose is
observed to decrease. As channel width L increases, we find from our fit o
tends asymptotically to a value of a,, = 3.7+ 0.1°, lower than experimental
and simulated values reported in the literature [30,92]. (b) Exponent a versus
L. The black line shows a fit to the empirical functional form f(r) = %X
with © = 0.449+0.003 and v = 0.51£0.02. We find a = u = 0.449+£0.003 in
the asymptotic limit of infinite channel width L, similar to the experimental
result of a = 0.38 found for foams [30]. As L decreases, a increases. From a
simple scaling argument based on two bubble layers sliding past one another,
we would expect a(1l) ~ 1; we find a(1) = 0.92 + 0.02 from our fit.
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Figure 2.10 (b), reproduced from [30], plots p(I) — pu* for a range of channel
thicknesses h, 2.5 < h/(d) < 24, collapsing well onto one master curve with
" = tan(4.6 £ 1°), independent of system size.

For rotating drum experiments, see Figure 2.11 (b), our group has found
finite size effects to increase the static angle of repose measured. This was
supported by soft disk simulations modified to include a buoyancy term and
a circular geometry, where the angle of repose was found to decrease towards
a = 4.8 £ 0.5° as the system tended towards infinite size [93].

We suggest that these differences are likely due to the three different ge-
ometries studied. Lespiat et al. study a 3D pile of bubbles at the instant they
begin to flow up a linear channel under the influence of buoyancy (Figure 1.14
(b)). The rotating drum’s 2D circular geometry is markedly different due to
the presence of curvature. Our simulations are different again, with the foam
confined in a 2D linear geometry with no free surface. Our angle of repose is
instead calculated from a ratio of forces on the boundaries - forces which, as

we have seen in Figure 4.3, show different dependencies on channel width L.

4.2.2 The power law scaling exponent

In contrast to the collapse of the foam data over varying channel dimensions
for one value of I exponent a = 0.38 found by Lespiat et al., we find a range
of values for a as a function of channel width L, shown in Figure 4.7 (b). We
find the data to be well described by a fit to the empirical functional form
a(L/(d)) = 225 with a = 0.449 + 0.003 and u = 0.51 £ 0.02, shown by
the black line in Figure 4.7 (b).

In the limit L/(d) — oo, a(L/(d)) = a. As for the angle of repose,
from our fit we extrapolate the asymptotic value of exponent a in the limit
of infinite channel width, finding a,, = 0.449 + 0.003.

For narrow channels, a is found to increase. We note that channel width
in our model is defined as the perpendicular distance from the line of centres
of the wall disks to line of centres of the lower wall disks. Therefore, channel
width L ~ 1(d) would correspond to two walls sliding past one another, with

no bulk bubbles between them. This is similar to the theoretical models of
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bubble planes sliding past one another proposed by Princen [53] and Denkov
et al. [22,61], as introduced in Section 1.3. For our model’s viscous interac-
tions, this yields the scaling o o 7, as discussed in Section 3.4.2. Substituting

this approximation into Equation (4.1), we obtain

o cay\"* o\

Zok () ~ ke (2) 4.2

1 ( I ) (ca) n) )
From this, we would expect a(L = 1(d)) ~ 1. Our fit finds a(1) = 22 =

0.92 £ 0.02, in reasonable agreement with this simple scaling argument.

4.3 Conclusions and Outlook

We have seen that the boundaries in our system play an important role in
the flow properties of our foam. For channels narrower than channel width
L ~ 30(d), the shear stress is found to decrease, whilst the normal stress is
found to increase. We explain this scaling behaviour by means of a simple
model of foam confined to move in lanes in a narrow channel. Finally, we
find the constitutive model to collapse data for a given value of L, but fail
to collapse all data for all widths due to the effects of finite system size.

We investigate finite size effects specifically because our system contains
rigid boundaries, similar to many experimental systems. A natural follow-up
to this analysis would be to simulate the same systems, implementing Lees-
Edwards boundary conditions [106], Figure 4.1. It would be interesting to
investigate whether the tendency towards lane motion for narrow channels is
a property of solid boundaries curtailing transverse motion, or whether it also
arises in flow patterns that are periodic in the transverse direction, where the
width of the repeated cell is small (as would be the case for Lees-Edwards

conditions applied to our narrow channels).
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Chapter 5

Stress Fluctuations

We have seen thus far that the complex behaviour of a system of interacting
units (particles, agents), like the soft disk model, is often due to the nonlinear
propagation of interactions between these units at the local level.

In this chapter, we now present a study of the global stress fluctuations
in the soft disk model. We have seen in Chapter 2 that this model well
describes the average flow properties of a foam under shear. In particular, it
has been shown to reproduce the empirical Herschel-Bulkley relationship for
the variation of the average value of the stress with strain rate for flowing
foams [52, 77,79, 81, 82], provided the simulation is in the low-strain rate
regime and has not yet transitioned to laminar flow.

In experiments and simulations of flowing foams, often such average,
steady-state values are the key quantities of interest. However, the char-
acter of fluctuations can provide additional information about the system.
Indeed, we might expect to see evidence of the system’s non-linearity in such
fluctuations. Although, in general, far more focus has been placed in the lit-
erature on investigating the dependencies of foam properties via their means,
these fluctuations have been studied for two-dimensional foams to a degree
in the past.

We return to the origin of the soft disk model for the earliest of these
studies. Durian examined the distribution of elastic energy changes occurring

due to structural rearrangements [36]. He noted avalanche behaviour in the
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disk rearrangements, and suggested power law scaling for small, negative
elastic energy changes with an exponential cutoff at large energy changes.

Lauridsen et al. performed a similar analysis for experiments of two-
dimensional flowing foams in a cylindrical Couette geometry, with similar
results to Durian, but now for stress drops [23]. Dennin went on to look at
the statistics of these stress drops. In particular, he measured the number of
irreversible rearrangements (T1 events) in the foam and compared their oc-
curances to the variations of the shear stress with strain, noting a correlation
between T1 events and stress changes [63].

In this chapter we look at the fluctuations of shear stress about the mean
obtained for our simulations, at very low strain rate. Probability distribution
functions of stress changes are found to show asymmetry between stress rises
and falls, with fat tails for stress drops. We find the magnitude (or volatility)
of stress changes to exhibit clustering, suggestive of long-memory processes
(see Appendix E). Such long-range correlations are encountered in complex
systems as diverse as economic markets [108,109], online betting [110], seis-
mology [111], and internet traffic [112].

Finally, we aim to expand upon the work of Durian, Lauridsen et al.
and Dennin, relating fluctuations in the stress to changes in the topological
structure of the foam in a novel, quantitative way. We use a rescaling method
used in the econophysics community to analyse so-called microtrends in the
data, and apply this to the analysis of contact changes of the bubbles as
stress is built up and released [113]. This provides an alternative route to

link dynamics at the bubble scale with the macroscopic response.

5.1 Simulation details and definitions

For the analysis we perform in this chapter, we once again use a soft disk
model simulation, as described in Section 2.1. Here, we shall define the
parameters of the simulation used for the results presented, and discuss the

measurement of topological changes in the system as a function of time.
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5.1.1 Soft disk model parameters

We shall, in the coming sections, examine the stress fluctuations in a system
defined using the following parameters. The strain rate is set to be very low,
with De = 7.6 x 107%. This choice is motivated by our findings in Chapter 3:
to study the nature of stress fluctuations and their link to bubble dynamics,
we wish to maximise the non-affine motion. We also want to ensure that
the characteristic rate of deformation does not overwhelm relaxation times
associated with other processes in the system. Choosing a low strain rate
accomplishes both of these aims. We note that at this strain rate the diffusion
constant for the mean square displacements of the disks is linear with strain
rate (see Figure 3.4), and the simulation approaches the quasistatic limit [82].

The system geometry studied here is the same as in Chapter 3, with
packing fraction ¢ = 0.95, N = 1500 bubbles in the bulk, Nw.; = 80 bubbles
in the wall and a channel width of L = 33(d), i.e. we are measuring bulk
properties, see Chapter 4. Much of the analysis we will perform in this
chapter, particularly regarding the correlations in the system, benefits from
large statistics. Consequently, data are taken in fine resolution over a total
simulation run time, well past the initial transient regime and in the steady

state, of 1 x 1007,

5.1.2 Contact changes

In Chapter 3, we used non-affine displacements of the bubbles as a measure of
local dynamics. In this chapter, we take a different approach to quantifying
interactions on the bubble scale, by instead analysing topological changes in
the foam.

In order to relate structural changes in the disk packing to changes in
macroscopic properties such as shear stress, we measure the contact changes
in the system, that is the number of neighbour changes over some time win-
dow ty — ty.

We calculate these neighbour changes by generating a contact matrix,
C(t), for each simulation timestep. C(t) is an N x N matrix, where N is the

number of disks in the system. If disk ¢ and disk j are in contact at time
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Figure 5.1: The contact matrix. A schematic representation of a small
sample of disks in contact, with the corresponding contact matrix. Disks are
coloured by their coordination number. By definition, the diagonal elements
of C(t) are always 1.

t, the corresponding matrix element C;;(t) = 1. If they are not, Cy;(t) = 0.
We define disks ¢ and j as “in contact” numerically when their overlap A,;,
given by Equation (2.3), is greater than zero.

If disk 7 is in contact with disk j, then j is in contact with . Consequently
C'(t) is a symmetric matrix. From the definition we have chosen for contact,
we note that a bubble will always be “in contact” with itself, and so the
diagonal elements of C(t) are always 1. Figure 5.1 shows a small sample
system, with its corresponding contact matrix. The disks are coloured by
their coordination number (i.e., their number of contacts).

By subtracting C(¢;) from C(t5), summing the magnitude of the elements,

and dividing by 2 for double counting, we calculate the number of contact
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changes between times t, and ¢, as a measure of the topological change in

the system.

5.2 Distribution of stress changes

Figure 5.2 (a) shows the shear stress, non-dimensionalised by the elastic
modulus Gy, plotted versus strain for a subsection of our data in the steady
state. Note that for constant strain rate, strain is directly proportional to
time. In Figure 5.2 (b), a zoomed image of the data shows the fluctuations
about the mean stress.

We can immediately see that there exists a qualitative difference between
increasing and decreasing trends. Stress rises at low strain rate generally have
a slope close to the elastic modulus. This is consistent with the relationship
for slow elastic loading of system, given by Equation (2.4), namely 0 = Gy7.

In contrast, the falls display steeper slopes and sparser point population.
The points are evenly spaced in time, indicating more rapid drops in stress.

We investigate this by defining the stress change, Ao(t,dt), over time
windows 0t (expressed in terms of simulation timestep 7, as defined by Equa-
tion (2.8)) as:

Aco(t,dt) = o(t) — o(t — dt). (5.1)

We plot the probability distribution function of Ao (t,dt) in Figure 5.3.

For low values of 6t = 1.25 x 10?7, as shown in Figure 5.3, the PDF is
asymmetric. Stress rises on average are more frequent and more narrowly
distributed. The simple assumption that all rises have a slope of Gy (based
on Figure 5.2) would result in Ao/Gy = Ay = 0.00125, for the parame-
ters used in this simulation. This value lies close to the majority of points
found, given the log scale, but there is some deviation from it. Deviation
below this value is easily explained: any dissipative rearrangements should
reduce the slope from o = Gyy. Values higher than this are relatively infre-
quent, although certainly not negligible, and attributed to the formation of

temporary, unstable intermediate structures under shear.
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Figure 5.2: Stress versus strain. (a) Stress, non-dimensionalised by the
static shear modulus Gy, versus strain for low strain rate De = 7.6 x 1076.
(b) Magnified display of stress versus strain for a small subset of the data.
The measured stress fluctuates about an average steady state value, marked
by the horizontal black line in both images. Stress rises generally have a
slope close to the elastic modulus Gy, shown as a guide to the eye in (b),
consistent with slow, elastic loading. Stress falls occur more rapidly, as may
be seen by the lower density of data points.
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Figure 5.3: Probability distribution of stress changes. Distribution of
stress changes Ao = o(t)—o(t—0dt), for 6t = 1.25x 10°7,. The distribution is
asymmetric. The stress rises are more narrowly distributed, whilst the stress
falls exhibit fat tails. The simple assumption that all rises have a slope of
Gy would result in Ao /Gy = Ay = 0.00125, for the parameters used in this
simulation. The inset shows the distribution of stress changes for a larger
value of 6t = 2 x 10%7,. In this case 0t is sufficiently large that o(t) and
o(t — o0t) are uncorrelated, recovering a Gaussian distribution (solid line).

Stress falls are found to exhibit fat tails, associated with avalanche-like
behaviour and similar to the results of Durian [36] in simulation and Laurid-
sen et al. in experiment [23].

The choice of time window 4t is important. Figure 5.3 (inset) shows the
distribution for 6t = 2 x 107, sufficiently large that the changes in stress are
statistically uncorrelated, leading to a Gaussian distribution. Likewise, for
a choice of 0t that is too small (eg. of the order of the simulation timestep
7, = 2.5 x 10737,) the distribution is dominated by numerical noise and a
Gaussian distribution is again recovered.

This asymmetry has not been shown before, for the soft disk model. We

shall return to a discussion of the origin of this asymmetry in Section 5.4.
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Figure 5.4: Volatility clustering in stress changes. Changes in stress,
Ao, versus time, for 6t = 7.57,. Fluctuations are within slowly varying
envelopes, with large changes tending to follow large changes, and small
changes tending to follow small changes. Such so-called wvolatility clustering
is a property of long-memory processes [108,114].

5.3 Power-law correlations in the soft disk

model

In this section, we show stress fluctuations in the soft disk model to ex-
hibit so-called wvolatility clustering and long-range correlations. We expand
on these terms in detail in Appendix E. We then compare them with simi-
lar scaling observed in the econophysics literature, where these phenemona
are commonly studied, as motivation for subsequent analytical methods em-

ployed.
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Figure 5.5: Autocorrelation of stress changes. Autocorrelation, A(7),

of stress changes, Ao, and stress change volatility, |Ac

versus time lag 7.
While A(7) decays rapidly to zero for Ao, for |Ac| the decay is much slower.

5.3.1 Volatility clustering and long-range memory

For a given choice of dt, the stress change Ao (t, dt) yields a timeseries, which
we plot in terms of 7, in Figure 5.4. Here, we choose dt = 7.57,. The stress
changes display clear volatility clustering (see Appendix E), with fluctuations
occuring within slowly varying envelopes. Large changes in stress tend to
follow larges changes, and small changes tend to follow small changes.
Volatility clustering is a well-known property of long-memory processes,

where the autocorrelation function A(7) of some timeseries ()
x(t) —p)(x(t+7)— p
Alr) = ((( /)(E(2 ) — 1)
with p = (z(t)) and X2 = ((z(t) — p)?), varies as

(5.2)

A(T)~1# for 7300, 0<fB<]1, (5.3)
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Figure 5.6: Long memory in the autocorrelation of stress change
volatility. The autocorrelation of |Ag| on a log scale is found to vary as
A(T) ~ 7792 over two decades, similar to the long-memory scaling exponent
found for the S&P 500 financial market in econophysics literature [115].

where 7 is the time lag [108,114], see also Appendix E.
Figure 5.5 shows the autocorrelation functions of stress changes, Ao, and
stress change volatility, |Aco|, versus 7, for 4t = 7.57,. For Ao (grey curve),

the autocorrelation decays rapidly to zero, showing the stress changes to be

uncorrelated. In contrast, |[Ac| (black curve) decays much more slowly.

We can see this long-memory clearly by plotting the autocorrelation of
|Ac| on a log-log scale, shown in Figure 5.6. |Ac| varies as A(7) ~ 7792 over
more than two decades. The autocorrelation function is subject to finite size
errors when 7 is no longer small with respect to the length of the timeseries.
We compute the autocorrelation up to a time lag 7 = 5x 10%7,, approximately
5% of the total simulation time.

We also estimate the Hurst exponent for both Ao and |Ao|, see Appendix
E. For Ao we find H = 0.54, close to the value of 0.5 expected for a random

walk. For [Ac| we find H = 0.89, consistent with long memory.
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What does this tell us about the system? We show a quantitive charac-
terisation of the timescale within the system over which it evolves. Although
in doing so one risks a common pitfall with correlation and causation, it is
not unreasonable to infer, given our additional knowledge of the system, that
large magnitude drops in shear stress tend to induce further large magnitude

drops over relatively long periods of time.

5.3.2 Comparison with a different complex system:

the Dow Jones Index

In the previous section, we have shown that volatility clustering and long-
memory are to be found in the fluctuations of the shear stress in the soft disk
model. This is the first time this has been shown for foam rheology. However,
these properties are heavily studied in the literature for other complex sys-
tems, such as financial markets [108,116] and in information transfer across
computer networks [117]. In econophysics and the study of log price returns
particularly, long-memory is the subject of extensive analysis and debate.
Anything that might provide predictive power in the realm of stock mar-
ket prices is much sought after, despite theories such as the efficient market
hypothesis arguing that such advantages should be impossible [118].

The log-price returns are a measure of the fractional change in the price

of an asset, defined as

s(t' + ot')
s(t")

where s(¢') is the price as a function of time t', and 0t the period over

g, 88') = In (5.4)

which the return is calculated. To remove the long-term increasing trend
in stock market values, the logarithm of price changes is taken, ensuring
Equation (5.4) fluctuates about a constant mean (zero). These log price
returns are analagous to our stress changes Ao(t,t).

In econophysics literature, the autocorrelation function of log-price re-
turns decays exponentially, whilst the volatility of log-price returns exhibits

long memory scaling with a similar exponent to our model [109, 113, 115].
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Figure 5.7: Long memory scaling in shear stress and log price re-
turns. (a) Ao versus time, from the soft disk model. (b) z(t,1 day) versus
time, for the Dow Jones Index (1993-2012). In both (a) and (b), we can
see similar volatility clustering. (c) Autocorrelation R(7) of Ao versus 7.
(d) Autocorrelation R(7) of z(¢,1 day) versus 7. Long-range memory with a
similar exponent (8 = 0.2 for stress changes, 3 = 0.3 for daily returns from
the Dow Jones Index [109], and 5 = 0.2 for minute-by-minute returns for
the S&P 500 [115]) is observered for both volatility in stress changes, and
volatility in log price returns.

In Figure 5.7 we compare log price returns and the autocorrelation of their
volatility to the stress data we have shown in Figures 5.4 and 5.6. On the
left, Figure 5.7 (a) and (c), we show the volatility clustering and power law
scaling of the autocorrelation for stress changes from our model. On the
right, Figure 5.7 (b) and (d), we show similar clustering and a similar scaling
of the autocorrelation function for daily log price return data for the Dow
Jones Index, over the period 1993 to 2012, from the Tickwrite database [119].
Visually, the resemblance is striking, and the similarities have motivated our

analysis in the coming section and the next chapter.



5.4. Stress fluctuations and topological changes 111

We have also estimated the Hurst exponent for the Dow Jones Index
(1993-2012). For the returns r(¢',1min), H = 0.51, whilst for the volatil-
ity of the returns |z(¢, lmin)| we find H = 0.87. Again, this is consistent
with uncorrelated values for x(¢', lmin), with long memory behaviour in the
volatility |z(¢', lmin)|, and very similar to our stress change data from Sec-
tion 5.3.1. There is some variation of H reported in the literature for the
Dow Jones Index, as it has been shown to depend on the range of years
considered due to changes in trading frequency with technology [120]. Our
estimated values are broadly consistent with similar studies [121,122].

The physical origin of long-range memory processes and volatility clus-
tering is widely debated in the literature [123]. Heterogeneity in time scales
(for instance, rates of information arrival in financial markets, or the balance
between long-term investors and short-term traders) has been suggested as
a possible mechanism for the generation of such processes [124].

Multiple timescales also feature in our simulations of flowing foam. They
include inertial, viscous and shear timescales, and timescales associated with
disk rearrangements and swirling, vortex-like motion (as shown in Figure 3.1).
Long memory could be due to the aggregation of processes with different

timescales [125].

5.4 Stress fluctuations and topological

changes

In Section 5.2, we saw asymmetry in the distributions of stress changes

Ao(t,dt), for low d6t. In Section 5.3.1, we saw that stress change volatil-

ity, |Ac(t,dt)|, displayed clustering and long-range memory similar to well-
known behaviour of log price returns in financial data. Motivated by this
similarity, in this section we compare the asymmetric stress rises and falls
using a rescaling analysis first applied to S&P 500 stock market data by Preis
and Stanley [113]. In doing so, we relate topological changes in the foam to

fluctuations in the macroscopic stress.
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Figure 5.8: Structural changes versus shear stress, in simulation and
experiment. (a) Stress/Gy versus strain (top, red), and contact changes
versus strain (bottom, blue) over a time interval of 3 x 10?7,. Local maxima
in the contact changes are observed to align with corresponding falling trends
in the shear stress. Some of these alignments are highlighted by the vertical
dashed lines. (b) T1 transitions compared with shear stress in experiments
carried out by Dennin, reproduced from [23]. In our simulations and in
Dennin’s experiments, qualitative correlations between topological changes
and stress falls are observed.
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As we mentioned in the introduction to this chapter, this has been stud-
ied before, qualitatively, in experiment by Lauridsen et al. [23]. We observe
analagous behaviour in simulation too. Figure 5.8 (a) shows stress versus
strain, and contact changes versus strain, as defined in Section 5.1.2. The
time window over which the contact changes are calculated is 3 x 10%7,. Ver-
tical dashed lines highlight local maxima in the number of contact changes.
These align well with falls in the stress, showing the dissipation of energy due
to irreversible rearrangements. We reproduce Dennin’s experimental findings
for T1 transitions [63] in Figure 5.8 (b), noting the agreement of our results
with his findings.

The aim of this rescaling is to improve on these qualitative results, which
we achieve by implementing a more quantitative analysis of these structural
changes with respect to fluctuations in the stress, statistically comparing all

trends.

5.4.1 Preis and Stanley rescaling method

In their paper “Switching phenomenon in a system with no switches” [113],
Preis and Stanley attack a key question in the analysis of log price returns,
common to our results from the soft disk model: what causes an upward trend
to suddenly “switch” to a downward trend, and vice versa? To do this, they
wish to compare what they call “microtrends” in their data - regions of rising
(or falling) returns. Such microtrends can occur over different times, and can
have different magnitudes, similar to stress rises and falls in our data. The
challenge, then, is to quantitatively compare these trends with one another.

Preis and Stanley compare these rises and falls using a rescaling argument,
first applied to S&P 500 stock market data [113], and which we shall apply
to our stress changes in the next section. By finding a rescaled time with
which they could collapse the trends, they could then apply the same collapse
to other time-dependent properties of the system in order to examine their
variations as a function of relative position within a microtrend.

We outline their analytical method as we have implemented it, in terms

of shear stress, as follows.
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Figure 5.9: Rescaling stress microtrends. Local maxima and minima are
located using a moving window of width 2A¢. The three circles mark a local
minimum and two local maxima, respectively. A trend is said to be the series
of values for stress between each local minimum and successive maximum,
for rises, and vice versa, for falls. Time t (directly proportional to strain) is
rescaled to €(t), via Equations (5.7) and (5.8), such that each trend starts at
¢ = 0 and ends at ¢ = 1.

A value of the shear stress as a function of time, o(t), is defined to be a
local maximum, o,,.,(t, At), if there is no higher value of stress within the
interval t — At <t <t+ At (Figure 5.9). Thus

Omaz(t, At) = max{o(t)|t — At <t <t + At}, (5]

and analogously

Omin(t, At) = min{o(t)|t — At <t <t + At}. (5.6)

Following Preis and Stanley we now introduce a renormalised timescale,
€, between alternating pairs of local maxima and minima, as follows: let

tmin and t,,,. be the times at which a local minimum and a successive local
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maximum occur. If t,,in < ftmae. the microtrend is defined as a rise; if
tmaz < tmin, the microtrend is defined as a fall. The rescaled time € is given
by

t— tin
e(t) = —_tmin (5.7)
tmar tmin
for a stress I'iSG, and
L—1
) =" 5.8
( ) tmar tmin ( )

for a stress fall.

Defining ¢ in this way scales all stress microtrends to the same time in-
terval, ¢ € [0,1]. We now apply this time rescaling to the time-dependent
contact changes ('(¢). This enables us to monitor structural rearrangements
of our disks, which are the cause of stress fluctuations, as they occur within
a trend, allowing averaging over all rises and falls in the data irrespective of

the individual magnitudes and durations of trends.

5.4.2 Application to stress fluctuations

Figure 5.10 (b) plots contact changes versus rescaled time e, see Equa-
tions (5.7) and (5.8). The scatter data are the contact changes for all trends.
The average and standard deviation of the scatter data are overplotted, show-
ing a clear correlation between structural rearrangements and relative posi-
tion within a rise or fall.

During the rises, after an initial period of large numbers of contact changes,
the curve levels out, consistent with a picture of slow elastic loading involv-
ing few structural rearrangements. Surprisingly, the maximum number of
contact changes tends to occur not at the beginning of a fall, as might be
expected, but instead towards the end of the fall. The derivative of contact
changes 1s maximum at the boundaries between rising and falling trends.
This could suggest that at the beginning of a stress fall, the system be-
comes unstable and undergoes rearrangements to reduce its energy, but does

not immediately reach the lowest energy state. Although many of the disks
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Figure 5.10: Contact changes versus rescaled time ¢. The contact
changes are calculated over a time interval of 3 x 10%7,, and normalised
by the average total number of contacts, Niya, computed from the data.
Niotal = 4145, corresponding to an average contact number of 5.15 per disk.
The data from [1:2] corresponds to fall data, offset by 1 to align the beginning
of the fall data with the end of the rise data. The data from [0:1] and [2:3] are
identical, shown for illustrative purposes. The overlayed points, with error
bars, shows the mean and standard deviation of the scatter data respectively.

might have succeeded in reaching a more relaxed configuration, regions of
“trapped” stresses may still remain. Thus, the system tends to undergo a
series of further rearrangements, seen at the beginning of the rises, as these
disks are “shuffled” by the shearing boundary and the trapped stresses are

released.

5.5 Conclusions and Outlook

The non-linearity in the soft disk model arises from irreversible structural

rearrangements as the disk packing is sheared. Previous simulation work has
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shown power-law scaling and avalanche-like behaviour in stress drops [36],
and in experiments Dennin has qualitatively linked structural rearrangements
(i.e. T1 transitions) to changes in the shear stress [63]. We successfully
expand upon this work, showing asymmetric distributions for shear stress
changes over short times, consistent with two distinct mechanisms: slow
elastic loading as the stress increases, and rapid, dissipative rearrangements
as the stress decreases.

We utilise a rescaling argument from econophysics literature to quantify,
for the first time, structural rearrangements in a foam under shear as a
function of position within these stress rises and falls. This analysis supports
the previous hypothesis of two distinct mechanisms for rises and falls, linking
them directly to changes in topology. Few contact changes occur during the
majority of the rises, as we expect for an elastic loading mechanism. We
find that the highest number of contact changes occur, not at the beginning,
but towards the end of the falls, consistent with a picture of a few initial
rearrangements rapidly propagating throughout the system.

We note that the average number of contact changes in rises and falls can
vary by as much as a factor of 2. This is not a small relative variation, and
could potentially have a bearing on theories of foam flow based on bubble
rearrangement rates, such as fluidity models, where such rearrangement rates
are often taken as approximately constant [95].

Furthermore, we show for the first time that the magnitude of stress
changes displays clustering in time and long-range memory, similar to prop-
erties found for price fluctuations in financial markets [109]. Several key
differences exist, however, between these price fluctuations and the stress
fluctuations obtained from the soft disk model. Firstly, the price returns in
financial data are not in a steady state. Secondly, log-price returns display
symmetric distributions, unlike the stress changes in our model. Finally, our
simulations have explicit local interactions and a well-defined driving force
applied at one boundary. Nevertheless, the soft disk model features some of
the complex dynamics and emergent behaviour seen in financial market data,
and gives hope that detailed knowledge of trader interactions is not needed

to understand key features of stock data. We note that the soft disk model
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is an example of one of many similar models, widely used in the study of -
among others - foams [13], suspensions [126], granular media [127] and soil
mechanics [128]. Although designed for specific purposes, such models might
offer insights into the mechanisms of complexity in fields beyond those for

which they were initially conceived.



Chapter 6

Generalised Diffusion and the
Fokker-Planck Equation

In the previous chapter, we have seen that our simulations displayed some
of the statistical properties and long-memory scaling familiar from the study
of econophysics, but previously unobserved in the study of foam rheology.
Motivated by this, we successfully applied a rescaling argument developed
for the analysis of stock market returns in the econophysics literature to our
shear stress fluctuations. We now ask, can we also extend a more general
analysis, which we originally developed for financial data, to our foam data?

When introducing the nature of financial markets, it is usual to outline
the character of the probability distribution function for log price returns
and the autocorrelation functions for the log price returns and the square of
the log price returns. These are then discussed separately. The probability
distribution function for log price returns exhibits fat tails with a power law
exponent of the order of 4 [115,116,129].

The normalised autocorrelation function is essentially zero for log price
returns after a short time of the order of a few minutes [115,116,130]. The
autocorrelation function for the volatility (or magnitude) of the log price re-
turns also falls away from its value at zero time but then exhibits a slowly
decaying, long-memory region, suggesting the presence of correlations ex-

tending to times of the order of a few weeks [115,116,131-133].

119
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In developing models, most emphasis has focused on the probability dis-
tribution function, perhaps because it has an immediate impact on the cal-
culation of risk via the detailed character of the fat tails [134,135]. Less
emphasis has been placed on the calculation of expressions for the autocorre-
lation functions. Yet, using the basic framework of statistical physics, it can
be shown that the correlation functions and the distribution functions are
complementary facets of the basic Fokker-Planck equations that describe the
underlying dynamics [136-138]. So from the one basic approach it should
be possible to compute not just the probability distribution function but
also the correlation functions. The implication of this statement is that the
parameters that characterize the distribution function are related to those
characterizing the correlation functions.

In Section 6.1, we present a generalised model for relating the normalised
autocorrelation function R(7) (see Appendix E) to the temporal evolution of
the distribution of a random variable, via generalised diffusion coefficients.

In Section 6.2, we apply this model to the log price returns for the Dow
Jones Index (1993-2012), linking the fat-tailed return distributions to long-
memory in the autocorrelation of the return volatility. Finally, we return to
the fat-tailed PDFs we found for mean square displacements in Chapter 3. In
Section 6.3, we present an initial attempt to use the same generalised model
to relate these strongly non-affine dynamics to long-memory in the soft disk

model.

6.1 Generalised diffusion model

We shall now derive a generalised diffusion model, relating correlations in
a time-dependent variable to the temporal evolution of the variable’s dis-
tribution. In theory, this approach is valid for any time-dependent process

provided one has a functional form for the variable’s distribution.



6.1. Generalised diffusion model 121

6.1.1 The Fokker-Planck equation

The normalised autocorrelation function R(7), is defined as a function of

time-lag 7 by

R(1) = (G(7) = (x(t))*)/0?, (6.1)
with

T
)= @it)zit 4+ 7)) = lim /0 x(t)z(t + 7)dt, (6.2)

T—o0
and oy = /(22(t)) — (x(t))2

The temporal evolution of the average of some function M (x,t) of a ran-

dom variable z(t) is described by

d(M(x,t)) /oM = ~OM(x) . )
dt _<w>+;<m“”mm>‘ (6:3)

where D, (z,t) are the generalised n-th order diffusion coefficients [139].

D, (x,t) is given by

| 1 (et + At — 2()])e@y=e
et = mi}l_l)lo Al ’

(6.4)

For both financial data and for the soft disk model, our time-dependent
variables measure a change in value over a certain time-window dt, as a
function of the “global” time ¢. For financial data, this describes the log

price returns z(t, 6t) = log(sgz‘;”). For our foam simulations, this describes

both the change in stress Ac(t,dt) (Equation (5.1)) and the transverse dis-
placements As,(t,6t). We incorporate this dependency of a choice of time

window, or lag, by extending Equation (6.4) to

£ 0t) — x(t, 08)|™) n(t.50)=x
Dz il = = lim ([t + At 01) — 2(t, 66)]")a(t.ot) .

n! At=0 At L
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The generalised Fokker-Plank equation relates the distribution of the vari-
able z(t) to the diffusion constants [139] via

8p(8?t) - ;(_1)" ((i) [D,(z, t)p(x, t)). (6.6)

If we know a suitable form for p(z,t) and how it varies in time, we can
calculate time dependent diffusion coefficients and thus calculate how the
autocorrelations scale in time via Equation (6.3).

Choosing M = x, Equation (6.3) gives

d <I>1‘(t:0)=10

- — (D, 1)} . (6.7)

Note that in the above equation and in the theoretical discussion that
follows we have used t to refer to the time-window or time-lag, previously
called dt, in order to simplify the notation. (z(t)) corresponds to the un-

normalized correlation function G(t) (see Equation (6.2)), i.e.

G(t) = (x(0)z(0 + t)) = xo (2(?)) 2(1=0)=z, (6.8)

Choosing M = x* gives

d (z?)
dt

=2 (xDy(x,t)) + 2(Da(z,1)) . (6.9)

If one determines how D;(x,t) and Dy(x,t) vary with z and ¢, one can
then attempt to solve Equations (6.7) and (6.9) for (x) and (x?), respectively.
This in turn yields the scaling of the autocorrelation functions for the linear

and squared returns with time, via Equation (6.2) [139].

6.1.2 The choice of probability distribution function

The probability density function of log-price returns has been described [109,
136-138] using the form

(6.10)
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Z(t) and [((t) are two functions via which we try to capture the time
dependence of p(x,t). The nature of this distribution is such that in the
limit Bx?/a — 0 it reduces to a Gaussian distribution function. For such a

distribution, the variance o(t) is given

o> (t) = (a*(t)) = [dzple, i)z

a2 | xifa<3)/2 (6.11)
- dz - ‘
Ale) (1+z2)a m if a > 3/2

Here, we exploit another similarity between the behaviour of log-price
returns and the fluctuations in the soft disk model. The form of distribution
in Equation (6.10) yields fat-tails for short times, and (provided either /3,
x or both decay at long time) tends to a Gaussian in long time. Such a
distribution captures the behaviour of the mean square displacements we
found in Chapter 3. We return to this in Section 6.3.

In order to proceed, we now need more detailed information regarding
the scaling of Dy and D,. For this, we must forgo generality and turn our
attention to the first application of the model, to Dow Jones Index log-price

returns.

6.2 Application to Dow Jones financial data

In this section we shall first complete our theoretical model, taking into
account results for the functional form of the diffusion constants known for
financial data. We shall then present results from the application of the model
to Dow Jones minute by minute data, 1993-2012, taken from the Tickwrite
6 database (over 1.7 million data points) [119].



124 Chapter 6. Generalised Diffusion and the Fokker-Planck Equation

6.2.1 Inserting D; and D, for log-returns.

For a moment, let us simplify the argument and assume that D, and D, are
independent of time, in line with the analysis of Queiros et al. [136]. Linear

and quadratic relationships for Di(z) and Dy(x), of the form

Di(xz,1min) = —2kDCx (6.12)

and

Dy(z, 1min) = D(1 + Cz?), (6.13)

where x, D and (' are constants, have been shown to hold for daily

data [136]. D;(x,1min) and Ds(z, lmin) are thus related via

Di(z) = —kdDs(z)/dx. (6.14)

We show in the next section that these relationships hold for our minute-
by-minute Dow Jones data.

The problem with a time independent diffusion constant ), is that it
essentially leads to an exponential decay of the volatility with time, which
does not reflect empirical data. We shall thus introduce a time dependence
in the coefficients, but continue, in line with the literature [109,136] and our
own findings (Section 6.2.2), to assume that D;(z,t) and Ds(x,t) are linear

and quadratic in x, respectively. We now have

Di(z,t) = =b(t)x, (6.15)

and,

(6.16)

Do(z,t) = D(t) (1 + W) ,

«

including the terms b(¢) and D(t) of yet unspecified forms.
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At this state we will assume Equation (6.14) still holds. This immediately

results in

D)5(t)

b(t) = 2 (6.17)

i
We assume that D(t) is dependent only on 3(t) raised to some power 7,
Viz:

D(t) = D(B(1)) = Do (1), (6.18)

where Dy is constant, leading to b(t) = %B”“. Using this ansatz we

obtain the solution

Ao~ =
g0+ — g(rtD) 0(“0 )y + 1)t (6.19)

leading to the scaling

B(t) o ¢~ and hence D(t) t~57 and b(t) o< t™! (6.20)
in the limit ¢t — oo.
In the following section we see how the above results compare with em-

pirical deductions from our Dow Jones data.

6.2.2 Results

Figure 6.1 (a) shows the probability distribution function for one minute log-
price returns for the Dow Jones over the period 1993-2012. We have removed
the mean (which is a very small correction for the data considered here, of the
order of 107%), so that the distribution is centred around z = 0. The data
is well described by the proposed probability function of Equation (6.10),
with fitted power law exponent a = 1.84 + 0.04. The tail exponent is thus
—2a =~ 3.7, similar to values obtained for other datasets [115,129]. Since the
power law tail is most pronounced in the one-minute data, we keep it fixed
in all the fits of log-price returns for different time windows, i.e. 10, 100 and
400 minutes, as shown in Figures 6.1 (b), (¢) and (d).
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Figure 6.1: Plots of the probability density distribution for log price
returns for time lags 1, 10, 100 and 400 minutes. The transition from
a distribution with what appears to be a cusp to a Gaussian shape as time
increases is clearly visible. The solid lines are fits to the probability function
of Equation (6.10), resulting in an exponent a = 1.84 + 0.04 (Dow Jones
minute by minute data, 1993-2012, taken from the Tickwrite 6 database
(over 1.7 million points)).
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Figure 6.2: Variation of 3 as a function of the time lag, for log-
price returns. The data is obtained from fits of the Dow Jones minute
by minute data to the distribution function of Equation (6.10) as shown in
Figure 6.1. For times less than about 10 minutes the data is well described
by B(t) x t~!3* while for larger times 3(t) varies as t~'. (Data shown on
double logarithmic scale.)

Initial values of Z(t) are obtained from reading off P(0,t) = 1/Z(t) for
the various time windows. We then perform a one free parameter fit to Equa-
tion (6.10) to obtain an initial guess for 3(¢), followed by a two parameter
fit to obtain final values for Z(t) and 3(t). The resulting curve for 5(t) is
shown in Figure 6.2 in a double-logarithmic plot.

The data is best described by two power-law regimes. For small times
(t <~ 10 min) 3 varies as ¢t~ 134 for larger times it varies as t~". Corre-
spondingly we obtain from Equation (6.20) that for times up to about 10
minutes v ~ —1/4, while for larger times we have v = 0.

Since the exponent a = 1.84 of the probability distribution of log-returns
exceeds 3/2, we see from Equation (6.11) that o2(t) ~ S71(t). For small

~ 134

times we thus obtain o2(t) , corresponding to a super-diffusive regime
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(as introduced in Section 3.2.2), while for larger times o*(¢) ~ ¢ and normal
diffusion prevails, similar to results found for S&P 500 financial data [116].

We have also computed the generalised diffusion constants D(z,t) and
Dy(z,t) for our Dow Jones (1993-2012) dataset, using the functional form of
Equations (6.15) and (6.16), respectively. Figure 6.3 shows, as an example,
Di(x,1 min) and Dy(x,1 min). D; and D, evaluated for larger times show
the same variation with z, albeit with different prefactors. Figure 6.4 shows
that the pre-factor b(t) is well described by b(t) x ¢! over the range from 1
to 100 minutes. For larger time lags our data proved to be too noisy to allow
for a meaningful comparison of b and 3.

From fits to our data for D,(x,t) to Equation (6.16), we obtained the
prefactor to the quadratic in x, i.e. D(t)3(t)/«. Values of this fitted prefactor
as a function of time are also shown in Figure 6.4. We see that the values
scale like b(t) and we can indeed overlay b(t) and kD(t)3(t)/« for a value of
k = 1, justifying Equation (6.17).

Let us return to the time interval from one to ten minutes, where 3 varies
as t713 and thus v ~ —0.25. Interestingly we see that this corresponds to

v =~ —1/2c. In this regime we may then choose

D(t) = Do ZV(t). (6.21)

This conjecture is consistent with the Fokker-Plank equation for the fluc-
tuations being equivalent to a non-linear equation,
: 2
% = —%Dl(x, t)P + DO%PH/“ . (6.22)
This equation has been proposed by Gell-Mann and Tsallis in the context
of non-extensive statistical mechanics [140]. By varying the parameter «, the
equation has been found to fit probability distribution functions for a wide

range of systems from science and economics.
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Figure 6.3: Generalized diffusion coefficients D, (a), and D,, (b),
computed from minute by minute Dow Jones data over the period
1993-2012. Lines are least-square fits to the data and suggest that D is
linear in the z coordinate (i.e. the log-return r) and D, is quadratic.
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Figure 6.4: Fit parameters for D, and D, versus time. Empirical values
for b(t)/2 obtained from fitting the generalised diffusion constants D;(z,t)
to Equation (6.15). The data is well approximated by a power law with
exponent -1. Also shown in this graph is the variation of the fitted prefactor
of the quadratic in Dy(z,t), i.e. DS/ at t = 1 minute. This graph thus
justifies Equation (6.17).

Now let’s return and look again at Equation (6.9) for the correlation
function (z?) using the generalized diffusion coefficients defined by Equa-
tions (6.15) and (6.16) respectively. We have

d(x*(t))ay
dt

— 2Dt) (1 + g(—t)u - 2/{)(.L‘2(t)>) : (6.23)

«

Assuming the power law expressions Equation (6.20) for D(t) and ((t) we

have

2F Wis = 9DyBl2) (1 + 59(1 - 2ﬁ)<$2(t)>> : (6.24)
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Let us first consider the regime ¢ > 10 minutes, where v = 0 and 3(t) =

Bot~t, with By = const. This results in

Az Ules _ py (1 + P20 2m><:r2(t>>t—1) - (6.25)

The solution of this equation is given by

(@2 (t))ay = S5 =

—ﬂ’—t%-(onst » $2D0%2 (1-2x)
1-2D 22 (125

(6.26)

But now we recall that the correlation function we actually require is
R,2(t), i.e. R(t) of Equation (6.1), applied to z?. Noting that the non-
conditional average (z%(t))? ~ G,2(t) in the limit of ¢ — oo, where the first

term of the RHS of Equation (6.26) is the dominant term, we obtain

R,2(t) ~ const. X 2P0’ (1=20), (6.27)

Recalling that x ~ 1, we find that R,2(t) scales as t~2P°%2/@ The ratio
2Dy33/a is obtained from our fits for Dy(x,t), as it is twice the prefactor of

the 22 term at ¢ = 1 minute (see Figure 6.4). We finally obtain

B.a(t) oc t792, (6.28)

in good agreement with our data, as shown in Figure 6.5.
We now recall our introduction of a time dependent function D;(z,t), see
Equation (6.15). The time dependence of b(t), b(t) = by /t, leads immediately

to a power law for the autocorrelation function,

(@) /2o = (t/to) ™" (6.29)

Figure 6.6 shows a one-parameter fit of this power law to our data for

t < 10 minutes, using the value b; = 0.89, as obtained from our data for b(¢),
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Figure 6.5: Autocorrelation of the magnitude (volatility) of minute-
by-minute DJIA log returns |z({,1 min)| (data from 1993-2012),
plotted on a log-log scale. Power law regimes may be identified for the
ranges of 0.1 to 10 days, and exceeding 30 days, with approximate exponents
of —0.1 and —0.9, respectively.

see Figure 6.4. We see that this approximation provides a not unreasonable

empirical fit to the data.

6.3 Application to soft disk model

simulations

In this section, we shall present some preliminary findings in applying our
generalised diffusion model to our simulation results. The parameters used
are identical to those outlined in Section 5.1.1.

First, we shall briefly discuss the choice of simulation parameter to anal-
yse. Then, we shall show that our mean square displacement distributions
from Chapter 3 are well described by the time-dependent functional form of

Equation (6.10). From this, we calculate 3(¢). Finally, we shall once again
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Figure 6.6: Normalized autocorrelation function for minute-by-
minute Dow Jones data over the period 1993-2012. The solid line
shows a fit to an exponential decay, with a decay constant of 31 seconds.
The dashed line shows a one-parameter fit to (z)/zo = (t/to)™" with b,
fixed, b; = 0.89.

see long-memory in the soft disk model, this time in the bubble dynamics

directly.

6.3.1 Choosing an analogy to log returns

Our initial motivation for applying a generalised diffusion model developed
for financial data to our soft disk model simulations was exceedingly straight-
forward: we noted that log-price returns initially displayed fat tails, tending
towards a Gaussian distribution at long time, and underwent diffusion. As
we have seen in Chapter 3, transverse mean square displacements of disks
under shear share all of these properties. We know from Chapter 5 that
volatility clustering and long-range memory can be found in the model also.

This long-memory, however, was found for the stress changes. These are
indeed related to this displacements. but almost certainly not trivially! In

this section, we shall focus solely on displacements. The problem with this
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choice, however, is in quantifying the behaviour of the displacements versus
time in order to calculate the autocorrelation function. Each disk is described
by its own position vector r(t'), and thus has its own transverse displacement
timeseries As,(t',t) = r,(t' +t) — r,(t'). How do we consider the motion of
all disks? Focusing on only a single disk will result in poor statistics. We
cannot consider them sequentially, as this will result in spurious correlations
of the order of the length of time sampled per disk, defeating the purpose.
In the correlation analysis that follows, we choose a simple average, that is
we calculate the correlations for average transverse displacement (As,)(t',t)
over a time window t. This quantity is perhaps a naive choice, as it loses
information when opposite motion in the system averages to zero. Neverthe-
less, we find it to capture enough information in the system for our initial
analysis. In a sense, it is not too different from the Dow Jones Index; the

index is itself a weighted average of 30 different stock fluctuations [141].

6.3.2 Mean square displacement distributions

We return now to the mean square displacement distributions from Sec-
tion 3.2.1. Figure 6.7 shows distributions for De = 7.6 x 107°, over time
intervals t of (a) 2.57,, (b) 1257, and (c) 50007,. The solid black lines show
fits to the functional form of the distribution given by Equation (6.10). The
exponent a = 1.75 is calculated from (a), the finest resolution of data we
have, and then kept constant for all ¢, in line with our analysis in Section 6.2.

We see that at low time lags, Equation (6.10) provides a good fit to the
data. In Figure 6.7 (c), the displacements have begun to approach Gaussian
distribution, as we begin to transition to the diffusive regime examined in
Section 3.2.2. Equation (6.10) still provides a not-unreasonable fit to the
majority of the data, considering that the logscale emphasises deviations at
the tails.

From these fits to Equation (6.10), we find values for 3(¢) for our soft disk
simulations, shown in Figure 6.8 on a log-log scale. The solid line plots a fit
to the data for power law scaling 3 ~ t=¥, with v = 1.57, which describes

the data well over the range probed.
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Figure 6.7: Plots of the probability density distribution for mean
square displacements for De = 7.6 x 107 and time lags 2.5, 125,

5000 7y.

The solid lines are fits to the probability function of Equa-

tion (6.10), resulting in an exponent a = 1.75 + 0.03. At long time lags,
the distribution tends towards a Gaussian distribution, shown by the dashed

line in (c).
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Figure 6.8: Variation of § as a function of the time lag for mean
square displacements. The data is obtained from fits of the mean square
displacements to the distribution function of Equation (6.10) as shown in
Figure 6.7. We plot 3(d*) in order to non-dimensionalise our results, equiv-
alent to considering mean square displacements As/(d). The solid line plots
a fit to the data for power law scaling 5 ~ t=%, with ¢» = 1.57. This corre-
sponds to superdiffusive scaling over the entire range of the data shown. The
highest time lag shown, ¢t = 125007,, is approximately the point where the
tails of the displacements become well-described by a Gaussian distribution.

This value of ¢ corresponds to superdiffusive scaling over the entire range
of the data shown. This is consistent with the superdiffusive regime we had
previously observed in 3.2.1. The highest time lag shown, ¢ = 125007,, is
approximately the point where the tails of the displacements become well-

described by a Gaussian distribution, i.e. the onset of the diffusive regime.
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Figure 6.9: Volatility clustering in the average transverse displace-
ment versus time. Average transverse displacement (As,(At)) for At =
17,, versus time, for De = 7.6x 107%. Average displacements calculated, as in
Chapter 3, for bubbles whose y-coordinates fall within 0.2L <y < 0.8L, 1.e.
away from the boundaries. We see volatility clustering, similar to clustering
seen for shear stress fluctuations in the soft disk model and log price returns
in the Dow Jones Index, as shown in Figures 5.7 (b) and (d) respectively.

6.3.3 Volatility clustering and long-range memory in

displacements

We now consider the average transverse displacement (As,)(t',t), introduced
in Section 6.3.1. Similarly to previous analysis, we wish to avoid the ef-
fects of the boundaries on the transverse displacements. Therefore, (As,) is
calculated, as in Section 3.2.1, for bubbles whose y-coordinates fall within
0.2L <y < 0.8L, where L is the channel width.

Figure 6.9 plots (As,) versus time t', for a time lag t = 2.57,. We observe
volatility clustering, similar to clustering seen for shear stress fluctuations in
the soft disk model and log price returns in the Dow Jones Index, as shown in

Figures 5.7 (b) and (d) respectively. As expected, the average value of (As,)
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Figure 6.10: Autocorrelations of the average transverse displacement
and magnitude (volatility) of the average transverse displacement
The autocorrelation of (As,) (teal) is observed to decay more rapidly than the
autocorrelation of its magnitude, |(As,)| (orange). The solid line provides
a guide to the eye for long-memory scaling A(t) o t~%2, which is clearly
seen to describe the scaling of [(As,)| well over nearly three decades. The
autocorrelation of [(As,)| then sharply decays to zero, at a value of time

t ~ 1 x 10* consistent with the onset of Gaussian distributions and normal
diffusion.

is zero, because the mean transverse flow is zero. The fluctuations at such a
short time scale are small, of the order of less than one percent of a bubble
diameter. We probe longer time scales using the autocorrelation function.
In Figure 6.10 we plot the normalised autocorrelation function for the av-
erage transverse displacement (As,) (teal), and the volatility (or magnitude)
of the average transverse displacement |(As,)| (orange). We observe that,
similar to the effect of considering the volatility on long-range memory that
we have already seen in both stress fluctuations and log-price returns, the

volatility |(As,)| decays more slowly than (As,). [(As,)| is well described
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by power law scaling with an exponent of —0.2 over nearly three decades,
shown by the solid black line as a guide to the eye in Figure 6.10.

The Hurst exponent (see Appendix E) for (As,) is estimated to be H =
0.93. For |[(As,)|, we find a value of H = 0.97. As one might expect from
Figure 6.10, both values are consistent with the long memory condition 0.5 <
H < 1.0.

The Hurst exponents highlight a key difference we have found for the
average transverse displacement in comparison with the results for stress
changes and log price returns. We compare these values in Table 6.1. We
find that (As,), unlike Ao and z(¢, 1min), does not decay rapidly to zero
in an exponential-like fashion, instead itself displaying long memory that is
merely amplified by considering the autocorrelation of its magnitude.

What this implies is, unlike for stress or log-returns, if we know that we
have a positive average transverse displacement at some time 7, then we
know that it is probable that we shall have another positive displacement
at 7 + 07, some short time 07 later. Naively, one could attribute this to a
bias inherent in the quantity we have chosen to look at, namely the simple
average transverse displacement. At short timescales, of the order of 7., if the
average motion is in one direction, it is very likely that the average motion
will continue (although it will probably slow down) in that direction for some
finite time. Put another way, the average velocity is a continuous function.
In contrast, both stress and log-returns can conceivably have discontinuities.
In the case of the former, this can occur when bubbles lose contact with
one another. In the case of the latter, price choices are discrete. A more
quantitative anaylsis of this is necessary.

Nevertheless, we can extract some interesting information from even this
preliminary analysis. The autocorrelation function of [(As,)| no longer shows
long-memory, instead decaying rapidly to zero, at a time lag of approximately
t ~ 1 x 10%,. As we have seen in Figures 6.7 and 6.8, this corresponds to
the onset of shear induced diffusion, identifying perhaps another method of
classifying when a system has reached the diffusive regime, in complement

to our method shown in Figure 3.6.
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System Hurst exponent | Hurst exponent, volatility
Stress changes, Ao 0.54 0.89
Log price returns, x(¢, lmin) 0.51 0.87
Average displacement, (As,) 0.93 0.97

Table 6.1: Hurst exponents for stress changes, log-price returns and
average transverse displacement. Stress changes and log-returns show
similar behaviour, with the H ~ 0.5 for Ao and z(¢, lmin) indicating uncorre-
lated timeseries. When computed for their volatilities, |Aco| and |z (¢, Imin)|,
long-memory emerges, with H = 0.89 and H = 0.87 respectively. For (As,).
long memory is observed for both the unmodified timeseries, and its volatility.

From our results for both log-returns and mean square displacements
we see that long-memory is associated with fat-tailed distributions, a result
supported by the literature [109,116,142]. This is potentially of relevance to
understanding the origin of long-memory in the stress fluctuations shown in
Figure 5.6, noting that we observed fat-tailed distributions for stress falls in

Figure 5.3.

6.4 Conclusions and Outlook

We present a general model for relating the scaling of the normalised auto-
correlation function for a time-dependent variable to the temporal evolution
of distributions of that variable, via generalised diffusion coefficients and the
Fokker-Planck equation.

We then analyse Dow Jones financial data over the period 1993-2012. Our
theoretical approach is successful in describing the distributions and diffusion
of the log price returns, and in delivering a power law for the volatility of
log-returns for large time lags. However, the introduction of time dependence
in b(t), Equation (6.15), also yields a power law for the autocorrelation of log
returns, which is typically described as an exponential decay [115,116,130].
Unlike an exponential decay, which is bounded as t tends to zero, the power
law diverges for short times. For very small times, the simple model presented

here may break down and b(¢) might no longer scale inversely with time.
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Indeed some might be surprised that this model fits as well as it does over
the entire time period of our data, given the limited number of parameters
involved. Further generalisations to include, for example, skewness in the
data might be considered for future work.

We finally present an initial application of the model to mean square
displacements in soft disk simulations. We find the distributions of transverse
displacements to be well-described by the same functional form as for log-
returns, scaling superdiffusively up until the onset of normal diffusion and
Gaussian distribution, in agreement with our analysis in Chapter 3. We once
again find volatility clustering and long-range memory in the model, this
time for the average transverse displacement. From here, the next challenge
is to analyse the diffusion of the displacements in terms of functional forms
for Dy and Ds, in order to solve the Fokker-Planck equation and extract an

exponent for the scaling of the autocorrelation at long times.
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Chapter 7

Outlook

Each chapter of this thesis has concluded with sections summarising our
main findings, and suggesting future work regarding the methods and results
presented in that chapter. We have extensively investigated the dynamics,
fluctuations and rheology in the soft disk model for 2D foams, within the
general theoretical framework of foams as a complex system. In so doing,
we have successfully quantified new ways of linking the macroscopic, non-
linear rheology of foams, well known from experiment, to the microscopic
interactions at the bubble scale.

In this chapter, we shall give a general overview of potential future work,
building on the advances presented in this thesis. We consider three general
areas, which we feel are opportune for further investigation. In Section 7.1,
we discuss an emergent property of foam flow which has yet to be well char-
acterised: the swirling, vortex-like motion of bubbles at low strain rate. In
Section 7.2, we consider the extension of the soft disk model to a soft sphere
model, in three dimensions. Finally, in Section 7.3, we discuss the extension
of the soft disk simulations to model the rheology of foams containing fibres,

used in industrial applications such as the manufacture of paper.
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7.1 Vorticity in the soft disk model

In considering foams as complex systems, as introduced in Section 1.5, we
have discussed their emergent behaviour; that is, the non-linear properties
of foams that are not simply inherent in, or derivable from, the individual
bubble-bubble interactions. Instead, this emergent behaviour is observed at
different hierarchical levels, due to some complex, collective aggregation or
organisation of these interactions. Throughout this thesis we have focused
on two hierarchies: the microscopic bubble scale, and the macroscopic rheo-
logical response. Examples of macroscopic emergent behaviour we have seen
include the non-linear, Herschel-Bulkley-like scaling of the shear stress that
arises despite only simple, linear local interactions (see Chapters 2 and 3), and
long memory scaling of the volatility in stress fluctuations, over timescales
much greater than the timescales associated with viscous and elastic inter-
actions in the model at the bubble scale (see Chapter 5).

These are not the only hierarchies one may consider. An intermediate
hierarchy, between that of the microscopic scale bubble interactions and that
of the macroscopic scale rheology, is that of the swirling, non-affine, vortex-
like motion of the bubbles at low strain rate, seen in Figure 7.1. These
vortices emerge and dissipate continuously as the foam is sheared. This
rotational flow, typically featuring radii of rotation much larger than a bubble
diameter, is yet another example of emergent behaviour in the soft disk
model.

By developing a quantitative description of the vortex motion in the soft
disk model, one could then investigate the properties of these vortices. A
good initial approach could be to relate foam flow to more general liquid flow.
In fluid mechanics, the vorticity is a pseudovector field, &, that describes local

rotational flow. It is calculated by the curl of the fluid’s velocity field o

&=V X7, frl]

where V is the del operator [18]. Similar to fluids, in principle one can

calculate the vorticity pseudovector field for soft disk model simulations as
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Figure 7.1: Vortices in soft disk model flow. Visualisation of a soft disk
model simulation, with De = 3.79 x 107> and ¢ = 0.95. The arrows show

the instantaneous non-affine velocity vectors of the bubbles, that is their

velocities minus the steady-state mean flow (v(y)).
flow, or vortices, form and dissipate continuously throughout shear.

Regions of rotational

a function of time, from the velocity fields such as the example plotted in

Figure 7.1.

With a qualitative measure of the vortices, it would be possible to address

a range of questions. For instance, what are the distributions of their radii

and angular velocities?

Over what timescale do they typically form and

disperse? Do their presence, size and shape depend on channel dimensions,

polydispersity, packing fraction and strain rate? Ultimately, the aim would

be to link properties of the vortices to fluctuations and non-linearity in the

macroscopic rheology.
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7.2 Towards a soft sphere model

As introduced in Section 1.2.3, 2D foams were initially introduced as a model
system for numerical and theoretical studies of foams, as they present simpler
systems to treat mathematically and computationally. Expansion of simu-
lations and theory to 3D, however, remains principle goal of foams, colloids
and granular media research.

In recent years, extensive work has been done on packing of disordered
spheres in 3D, close to the jamming transition [17,143,144]. Models, such as
the granocentric model [143], have been proposed to explain the distributions
of contacts in such packings, and spatial correlations such as an analogy to
the Aboav-Weaire law [13] in 3D (i.e. cells with many neighbours tend to
be surrounded by cells with few neighbours, and wvice versa). These simu-
lations have been quasistatic, where the positions of the spheres have been
determined by energy minimisation using conjugate gradient descent.

Advances in computing power, and the addition of parallel processing,
have been such that we believe it is now feasible to overcome challenges
which have previously made dynamic simulations in 3D impractical. Indeed,
recently, Seth et al. presented results using a dynamic simulation of soft
spheres [145], the first study of its kind.

With regard to the simulation of foams, there are two main challenges
when it comes to extending the soft disk model to 3D. The first is connected
with the nature of the interaction forces between interacting circular or spher-
ical particles, as calculated by Lacasse et al. for emulsions [59], introduced
in Section 1.3.2. In 2D, and as implemented in our simulations, the repulsion
between interacting bubbles is well approximated by a harmonic interaction,
for small compressions. However, in 3D, Lacasse et al. found that the re-
pulsive force exerted by droplet i on droplet j depends non-trivially on the
number of neighbours a droplet 7 has. One could assume, for the sake of
simplification, that interactions could be modelled independent of contact
number, as Seth et al. did [145]. However, an investigation of the effect of
this simplification, still outstanding, would be interesting, as a complement

to the work of Lacasse et al.
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The second challenge in implementing a 3D foam simulation is techni-
cal, related to the increased computational intensiveness. Adding another
dimension necessitates a large increase in the number of particles in the sys-
tem, in order to investigate the bulk properties of that system away from the
boundaries. For instance, if we wished to consider an equivalent 3D system
to our 2D systems presented in Chapter 2, the number of particles N would
increase by as much as a factor of 30. Furthermore, the average contact
number of a sphere in 3D increases to 14, from 6 for disks in 2D [34]. As only
overlapping particles interact, the average number of calculations per sim-
ulation timestep is directly proportional to the average number of contacts
in the system. From the above, we can estimate that for equivalently large
3D systems, the computational intensiveness increases by approximately two
orders of magnitude. Computational resources and methods, however, have
now advanced to the point where this is no longer an insurmountable increase.

Consider Durian’s original simulations, performed in 1995 [51]. These
simulations were carried out, initially, for ~ 40 bubbles in 2D. In 2008, Lan-
glois et al. presented results for system sizes of 1500 bubbles [52]. Following
Moore’s Law [146], which states that computer power increases by a factor
of 2 every 1.5 years, today our brute-force computing power is 64 times that
of Durian’s in 1995, and 8 times that of Langlois’ in 2008. An order of mag-
nitude increase in capability has already been achieved through advances in
processor technology alone.

Furthermore, what is achievable in simulation has been greatly enhanced
by the advent of readily accessible parallel processing, as discussed in Ap-
pendix A. Using our CUDA implementation of the soft disk model code,
we have achieved an order of magnitude increase in simulation speeds for a
system size of 1500 bubbles in 2D, compared to serial code. The increase
over serial implementation due to parallelisation becomes relatively larger as
system size increases, lending itself well to the demands of 3D simulation.

We have seen a rich landscape of complex behaviour emerge from our sim-
ple 2D model. While it is straightforward to extend Newtonian interactions
from 2D to 3D, non-linear emergent behaviour is not so easily translated. Ex-

tension of the soft disk model to 3D may generate new emergent behaviour
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Figure 7.2: Schematic illustration of a hypothetical model for fibres
in foam. The large blue disks represent bubbles, as simulated in our model.
The smaller green disks are joined together sequentially by a Lennard-Jones-
like attraction, representing a fibre. This fibre interacts via elastic and viscous
forces with the bubbles and other fibres.

unseen in 2D, potentially granting yet further insight into the microscopic

origins of the macroscopic rheology of foams.

7.3 The rheology of foams containing fibres

Foams containing fibres in suspension are used in the manufacture of pa-
per [147]. Typically, paper is produced using aqueous solutions of fibres,
extruded into sheets, drained and dried. The quality of the paper produced
is determined, in part, by the spacial distribution of these fibres. A uniform
distribution, with minimal clumping, produces higher quality paper. These
fibres can be added instead to foams. It has been found that the bubbles
in the foam act as spacers between the fibres, reducing clumping, and pro-
ducing a more uniform distribution and thus better paper than the aqueous
solutions.

As an industrial fabrication process, there is naturally a large interest in

optimising this procedure. Currently, this optimisation is based on purely
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empirical results. Open questions exist, such as how the distribution/disper-
sity of the fibres throughout the foam depends on packing fraction, strain
rate during processing, and the ratio of the fibre lengths to the bubble sizes.
Further questions include the effect of the stiffness of the fibres on their
interaction with the foam, whether the suspensions feature shear-induced
anisotropy or diffusion of the fibres and their alignments in the foam, and
the effect of the fibres on the Herschel-Bulkley exponent and yield stress of
the foam.

All of these questions have important practical ramifications and can, in
principle, be investigated by modified soft disk model simulations. The fibres
could hyptothetically be modelled as chains of very small disks, added to a
regular implementation of the soft disk model, see Figure 7.2. These disks are
held together, sequentially, by the addition of a relatively strong attractive
Lennard-Jones-like potential between neighbouring disks in a chain. These
chains would then be free to move throughout the simulated foam, subject
to elastic and viscous interactions with the bubbles and other fibres.

Such an implementation would be the first simulation model for what
would constitute a new branch of foam physics, concerning the effect that
the inclusion of fibres and amorphous polymers has on the properties of liquid

foam.
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Appendix A

Parallel Processing Using
CUDA

Even during my four years of postgraduate studies, I have noticed a marked
increase in what is achievable solely due to increases in technological capac-
ity and computing power. We have been extremely fortunate to have access
to the Lonsdale supercomputer cluster in the Trinity Centre for High Per-
formance Computing, which has facilitated the computational hours (and
storage space!) necessary for many of the results presented in this thesis.

Initially, all of the computations performed using the soft disk model used
serial C code, making use of the Verlet algorithm (see Appendix C). My
much-abused laptop proved insufficient to perform large scale calculations,
so these were run on the Lonsdale cluster, in 4-day windows. Most of the
results for ¢ = 0.95, the first packing fraction we studied, were produced
from consecutive 96 hour simulations. The longest simulation run, for the
second-lowest strain rate we present first in Chapter 2, took approximately
two and a half months, which was necessary to reach the steady state for
such a low strain rate.

In conjunction with Steve Hardiman of the Foams and Complex Systems
group, with whom I shared a mutual interest in parallel programming, we
decided to attempt to implement a CUDA version of the soft disk model

code. CUDA, which stands for Compute Unified Device Architecture, is an
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Figure A.1: Real-time CUDA soft disk model simulation of linear
shear. The disks are coloured by their elastics energies; blue for low elastic
energy, red for high. On the right, the stress is plotted as a function of strain
in real time.

initiative by computer graphics card manufacturer NVIDIA designed to allow
parallel processing and high performance computing without the need for the
formidable computer architecture usually required.

Every modern computer comes equipped with a graphics card - a piece
of hardware specifically designed to render 3D graphics. These cards can
have hundreds or even thousands of “cores” - small computer processors in
their own right, complete with their own virtual memory. These processors
are optimised for linear algebra, and are not normally accessible by the user
or the operating system. On CUDA-compatible cards, NVIDIA’s compiler
nvce allows modified C programs to make use of these cores with specific
code syntax. More information on CUDA programming can be found on
NVIDIA’s excellent website [148].

We have successfully implemented a parellelised version of the soft disk
code, using CUDA-enabled C code. Below, we provide a commented ex-
ample of one of the functions used in the CUDA version of our model,

cuda_upper_wall_data. This function calculates the forces acting on the mov-
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ing boundary. We distinguish between the Host (the central processor of
the computer that the main{ } routine is executed on) and the Device (the

CUDA enabled graphics card to which the parallel processes are sent).

//The function call cuda_upper_wall_data, from the
main{} routine in the CUDA C code. The device_
variables are arrays defined on the Device.
These arrays are updated by copying from the
Host to the Device using the routine

cudaMemcpyHostToDevice.

cuda_upper_wall_data(device_forces, device_forcesv,
device_blockupforce, device_blockUPPERxforcev,

device_blockUPPERxforcee) ;

//The function definition cuda_upper_wall_data, from
the CUDA code kernel. From this point, we are
working on the Device, hence the arrays no
longer being distinguished as device_.
BLOCKSPERGRID and THREADSPERBLOCK are two key
parameters for parellisation. They determine how

the workload is split between CUDA cores, with
BLOCKSPERGRID groups of cores each executing
THREADSPERBLOCK threads. Optimum choices of
BLOCKSPERGRID and THREADSPERBLOCK are set by the
Device hardware. The function calls a kernel
function upper_wall_data_kernel, with the
argument <<< >>> providing instructions for the

distribution of the parallel threads.

void cuda_upper_wall_data(force *forces, force x*
forcesv, float *blockupforce, float *

blockxforcev, float *blockxforcee)
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upper_wall_data_kernel <<< BLOCKSPERGRID,
THREADSPERBLOCK >>> (forces, forcesv,
blockupforce, blockxforcev, blockxforcee

D

//The kernel function definition. This function is
run BLOCKSPERGRID*THREADSPERBLOCK times,
simultaneously. Each array element j,
corresponding to a different disk in the
simulation, is uniquely identified by its thread

and block number.

__global__ void upper_wall_data_kernel(force x*forces,
force *forcesv, float *blockupforce, float =*

blockxforcev, float *blockxforcee)

int j = threadIdx.x + blockDim.x*blockIdx.x +
1;

//The __shared__ variables are shared between all
threads and blocks.
__shared__ float s_forcesz[THREADSPERBLOCK];
__shared__ float s_forcesvx [THREADSPERBLOCK];
__shared__ float s_forcesx [THREADSPERBLOCK];

//Calculating the forces on the upper wall. Many of
the threads for this particular function will
return zero, but if j is in the wall it will
return a value.

if (j>=NBUBBLES+NWALL/2+1 && j<=NBUBBLES+NWALL
A |
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s_forcesz[threadIdx.x] = forces[j].z;
s_forcesvx[threadIdx.x] = forcesv[j].
X3

s_forcesx[threadIdx.x] forces[j].x

- forcesv[jl.x;

} else {
s_forcesz[threadIdx.x] = 0.0;
s_forcesvx[threadIdx.x] = 0.0;
s_forcesx[threadldx.x] = 0.0;
}
//The __syncthreads() command tells the process to

stop and wait for all threads to complete, at

this point.

__syncthreads () ;

int t;

//An efficient routine for summing all elements of
the shared arrays into the first element of the

array, over all threads on one block.

for (t=blockDim.%x/2; t>0; ©t/=2) {
if (threadIdx.x < t) {
s_forcesz[threadIdx.x] +=
s_forcesz[t+threadIdx.x
13
s_forcesvx[threadIdx.x] +=

s_forcesvx[t+threadIdx.x

3




156 Appendix A. Parallel Processing Using CUDA

s_forcesx[threadIdx.x] +=
s_forcesx[t+threadIdx.x
1;
)
__syncthreads () ;

//Finally, we sum over all blocks and return the
value of the forces on the wall. These values

are returned to the Device array.

if (threadIdx.x == 0) {
blockupforce[blockIdx.x] += s_forcesz
(0];

blockxforcev[blockIdx.x] +=
s_forcesvx [0];
blockxforcee[blockIdx.x] += s_forcesx

[ol;

return;

//In order for the main{} routine to access the
Device arrays, we must call
cudaMemcpyDeviceToHost in main{} to copy the

memory to the Host.

ret = cudaMemcpy(blockupforce, device_blockupforce,
BLOCKSPERGRID*sizeof (float),
cudaMemcpyDeviceToHost) ;

if (ret != cudaSuccess) printf ("Cuda_ memory  copy,back,

exrror\n®);
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The successful parallelisation of our simulation has two main benefits.
Firstly, and most importantly, for a system size of 1500 disks, it increases
the speed of the calculations by a factor of 10 or more. For larger systems,
the relative increase in speed increased, as parallelisation lends itself well to
increased system size. Using the CUDA code, a system of 12000 disks can
be simulated at the same rate as a 1500 disk system using the serial code.

Secondly, the speed increase afforded by the CUDA code enables real-
time visual output for the soft disk model simulation. A screenshot of this is
shown in Figure A.1. This output shows the packing as it is sheared, and can,
for instance, colour disks based upon their stress values or elastic energies.

We can also plot, for instance, the shear stress as the system is strained.
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Appendix B

Effective Packing Fraction

The packing fraction in the soft disk model is defined by Equation (2.6), that

18

N
¢ = %Z((I,/Q)er. (B.1)

where N is the number of disks, d; is the diameter of disk 7, and A is the
area of confinement. For consistency, both throughout this thesis and for the
purposes of comparisons with the works of others using the soft disk model,
we use this definition exclusively for all results. However, we note that this
definition yields a value for ¢ which is not directly equivalent to the packing
fraction calculated in experiment.

Why is this so? Consider the definition above. It is possible, given that
disks are permitted to overlap, that the sum of the areas of the disks exceeds
the value of A, the confining area. This would yield a value of ¢ > 1.0, which
i1s not possible for physical systems. This is due to the fact that the area

within an overlap is double-counted, in the above definition.
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Figure B.1: A schematic illustration of overlapping disks of different
radii. The radial overlap A;;, shown, is given by Equation (2.3). Equa-
tion (B.3) describes the area of the shaded region, A,;;.

This discrepancy becomes relatively larger as packing fraction increases,
due to increased overlaps. We can see this by defining an average radial

overlap, (A), as

(B.2)

By=2>

t

q N N

where A;; is the radial overlap between disks 7 and j as defined in Equa-

tion (2.3) and depicted in Figure B.1, C'(¢) is the total number of contacts at
time ¢, and 7 is the time window in the steady-state flow that the average
radial overlap is calculated over. Figure B.2 plots (A) as a function of strain
rate and packing fraction, showing the average radial overlap to increases
both with increasing strain rate, and increasing packing fraction.

In order to relate the simulation packing fraction to an equivalent experi-
mental packing fraction, one could look at the average number of neighbours
a disk has as a function of packing fraction, see Figure B.3. In the dry limit,
the average contact number of a 2D foam (z) = 6. For the soft disk model,
this limit is not reached until ¢ ~ 1.3 [144].
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Figure B.2: The variation of average overlap with strain rate and
packing fraction. Average radial overlap (A), normalised by the aver-
age disk diameter (d), versus packing fraction ¢. Data shown for Deborah
numbers: De = 5 x 1078, (); De = 5 x 1077, x; De = 1 x 107°, A; and
De = 1x107%, [. The average overlap is seen to increase both with Deborah
number, and with packing fraction.
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Figure B.3: Average contact number versus packing fraction. Data
courtesy of C. O’Donovan, from [144]. In the dry limit, the average contact

number (z) = 6. This limit is not reached until packing fraction ¢ = 1.30,
for the soft disk model definition of packing fraction.
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In principle, another approach is to correct for the double-counting of the
overlaps computationally by explicitly calculating the excess areas. The area
of the overlap, A;;, between two disks, of radii R; and R;, whose centres are

separated by a distance d (see Figure B.1), is given by [149]:

Ay = RZsin™! <—2—;l—%—> - \/si(sl —a)(s; — R;)?

+R2sin! <i> sl e < RO (B.3)
j 2R, \/ 3\8; J J
with
a+ 2R, a+2R;
55=— G ! (B.4)
and

1
% = (—Z\/(—d R +R)d—Ri+R)(d+R —R)d+ R +R,). (BS5)

Simple!

We now define an effective packing fraction, ¢*, as

1 T 1 N N
5= — e Z o ;ZAU(t). (B.6)

This expression is somewhat unwieldy, but conceptually simple: the ef-
fective packing fraction is total area of the disks minus the time-averaged
sum of the double-counted overlaps, divided by the confining area A. We
neglect contributions from three-bubble intersections, i.e. areas that are
triple-counted, which are assumed to be small. This seems likely, as from
Figure B.2 we see that the radial overlap for two bubbles in contact is of
the order of only a few percent of a bubble diameter. The effective packing
fraction is plotted versus packing fraction in Figure B.4.

We see that as ¢ increases, ¢* deviates from ¢ more widely, as expected.

In the limit ¢ — oo, the effective packing fraction ¢* — 1. This arises from
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Figure B.4: Effective packing fraction. As packing fraction increases,
the relative error between the defined packing fraction (shown by the solid
black line of slope 1) and effective packing fraction increases. The effective
packing fraction tends towards a value of ¢* = 1, illustrated by the horizontal
dashed line. Note that at ¢. ~ 0.84, random close packing, the disks are just
touching and the overlaps, on average, equal zero. Thus, here, ¢ = ¢* = ¢..

the definition of ¢*: it is not possible for the sum of the areas of the disks
confined in an area A, minus the sum of the overlaps between those disks, to
exceed A. At ¢. ~ 0.84, random close packing, the disks are just touching
and the overlaps, on average, equal zero. Thus, here, ¢ = ¢* = ¢...

Taking this correction into account, the highest packing fraction we present
in this thesis, ¢ = 0.98, has an effective packing fraction of approximately
¢* = 0.94, which (unlike 0.98) is still well within the wet limit for 2D foams.

We note, however, unlike the packing fraction ¢, which is well-defined
as a constant for a given system configuration, ¢* contains time dependent
terms which must be time-averaged, and is therefore poorly defined over

short times.
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Appendix C

Verlet Integration

Verlet integration is a numerical method used to integrate Newton's equation
of motion [150]. Our implementation of the soft disk model uses second-order
Verlet integration to update the positions x(¢) and velocities v(t) of bubbles
at each simulation timestep, as follows.

Let us denote the position and velocity at timestep n as x,, and v,, respec-
tively. The acceleration a, is given by the second derivative of the position

with respect to time,

d*z,,
dt?

The Verlet algorithm uses the central difference approximation applied

ap =

(C.1)

to this second derivative

LIpnt1 — Tp Ly — Tp-1

At At
At

>
&2

Lnt1l — 21’7) + Tph

A2

(C2)
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Thus the updated position x, is given by

Tpt1 = 2Ly — Tn1 + anAL2. (C.3)

Here, At is the simulation timestep, and a, is calculated from the forces
acting on the bubble at time n, F),, via Newton’s second law F,, = ma,. The

velocity v, at each step n is given by

Tn41 — Tp-
2At '

For the second order Verlet algorithm, one needs two prior positions, x,

’Un =

(C.4)

and x,_1, to calculate the updated position x,_;. For this reason, the first
integration step must be performed using the simple Euler method, where

(for initial conditions xy, v;)

Ty = 11+ At
Vo = U + (I]At. (Cnr))

with a; determined by the initial forces, again via Newton’s second law.



Appendix D

Time Resolutions and Limits of
the Soft Disk Model

In this appendix we discuss briefly the computational considerations neces-
sary to ensure that our system correctly captures the motion of the disks
under shear. We also examine the effect on the model at very high strain

rates, where the model “breaks down”.

D.1 Choosing an appropriate time

resolution

As mentioned in Section 2.1.3, it is important, when realising a simulation,
to ensure that the rate at which the calculations are performed is sufficient
to capture the behaviour of the system. That is, if the shortest timescale in
the simulation (e.g. the fastest oscillation in the system) is, say, one second,
positions and velocities should be updated much more frequently than every
second in order to fully resolve the motion.

In the soft disk model, we use the Verlet algorithm (Appendix C). This
assumes, over some simulation timestep, 7, that each disk’s motion is well
approximated by linear motion. The first check we impose, when running

a simulation, is that the overlap between the disks never becomes too large
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Deborah number 1/% T
De < 0.015 > 66.677, 0.00277,
0.015 < De < 0.2 RO T 0.0002257,
02 < De< 5 > 27, 0.0000217,

Table D.1: Simulation time resolutions, compared to the characteristic time
of deformation, as a function of Deborah number range.

(~ the average disk radius). Consider the case where 7 is chosen to be too
large, such that a disk can sometimes travel distances larger than a radius
in 7. In this situation, using the Verlet algorithm, it is possible for disks to
pass through one another entirely! This is allowed by the parameterisation
of the model (because 7, was chosen to be too large), but it does not capture
the behaviour of the physical system we are trying to model.

For increasingly high Deborah number simulations, where De = Ac¢4/k
from Equation (2.9), the characteristic timescale of deformation 1/4 de-
creases. This necessitates a reduction of 7, for high Deborah number. Table
D.1 lists the simulation timesteps we use, and the characteristic timescales of
deformation, as functions of the Deborah number range presented in this the-
sis. The timescales are expressed in terms of the viscous timescale, 7, = ¢4/k
(Equation (2.8)).

D.2 Model behaviour at very high strain

rate

In this thesis, we present results over a large range of strain rates, up to
the limit De < 0.5. At very high strain rates, voids begin to appear in the
foam, see Figure D.1, and the model is no longer suited to describing the
flow of foams observed in experiment. This is a known limitation of the
soft disk model: it is ascribed to the simplification of the model that non-
overlapping disks do not experience viscous interactions [90]. Essentially,
with only repulsive forces, at very high strain rates there are no attractive

forces present to pull these voids closed. In a real foam, at this strain rate
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y A Velocity V

Figure D.1: Voids in the soft disk model. A visualisation of a soft disk
model simulation for De = 0.756. The black dots show the bubble centre
positions. At such very high strain rates, voids appear in the foam, some of
which are highlighted by the red circles. At this point, the model is no longer
a good representation of a flowing foam.

the bubbles would deform and elongate [21], which is not accounted for by
the soft disk model. Above De = 0.5, we find the soft disk model to enter

into a new regime that does not seem to have an equivalence in foams.
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Appendix E

Long Memory Processes

In this Appendix, we define some of the mathematical terms we use in the
discussion of long-range correlations throughout the thesis, and introduce the

Hurst exponent as a quantitative measure of long memory in a timeseries.

E.1 Autocorrelation

In simple terms, the autocorrelation function measures the similarity of a
time-dependent signal with itself some time later. It is a widely used mathe-
matical tool to identify repeating patterns and persistent (or anti-persistent)
correlations within a timeseries. Typically referred to as simply “the auto-
correlation function”, the normalised autocorrelation function A(7) for some

time dependent process x(t), over some time lag 7, is defined as

air) = EO =Wl =) il

with the mean p = (z(t)) and variance ¥? = ((z(t) — p)?). We use

angled braces () to denote a time average. For ergodic systems, this is
interchangeable with an ensemble average for long times [99]. A(7) is defined
such that when A = 1, the signal is said to be perfectly correlated, when

A = —1 perfectly anticorrelated, and A = 0 statistically uncorrelated.

17
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The normalised autocorrelation assumes that x(t) is covariance station-
ary. In simple terms, this is an assumption that x and ¢ are independent of
time for x(¢). In the systems studied in this thesis (mean-subtracted stress
fluctuations, log-price returns and average transverse displacements), u ~ 0,
and o is constant. A more in-depth discussion of stationarity can be found

in [99], but is not necessary for our analysis presented and thus omitted here.

E.2 Volatility clustering and long memory

Volatility clustering is a property of timeseries data, which was described
by Mandelbrot succintly as “large changes tend to follow large changes, and
small changes tend to follow small changes” [151]. Such a property is vi-
sually distinctive, with fluctuations observed to cluster into slowly varying
envelopes.

Volatility clustering is a characteristic property of so-called long memory
processes. Simply speaking, a timeseries exhibits long memory if values from
the distant past have a significant effect on the present. In a long memory

process, the autocorrelation function A(7) is found to vary as

A(T) ~7? for 7500, 0<fB<1, (E.2)

where 7 is the time lag. This power law scaling can imply correlations
that persist well past the timescales of individual actions within a complex
system. In the case of financial systems, for instance, and minute-by-minute
price data whose correlations decay exponentially in under a minute, the
volatility (or magnitude) of the prices have been found to show correlations
lasting days or even months [108,116].

The exact causes of long memory are not understood and its origin is the
topic of much debate in the literature. It has been postulated that hetero-
geneity in timescales in a system could be one such origin. Granger [125]
suggested that the aggregation of timeseries with different persistence lev-
els (that is, with correlations decaying on different timescales) could result

in long range memory. This hypothesis was supported by Anderson and
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Bollerslev [152] as a possible explanation for volatility clustering in the ag-
gregation of information flows, with the arrival rate of information governing
the heterogeneity.

Another argument put forward is related to behaviour switching. It has
been shown that the switching of traders in financial markets between two
different strategies causes large aggregate fluctuations [153]. Liu et al. point
out that the presence of switching alone can generate clustering, but is not
sufficient for long-memory. They argue that if the time spent in each strategy
is drawn from a heavy-tailed distribution, then long memory can arise [142].

Numerous further theories and variations on the above have been put
forward. In the context of this thesis, we shall simply note two things.
First, that long-range memory scaling arises non-trivially in systems with
complex interactions between timescales, which prominently feature heavy-
tailed distributions. Second, that these traits are inherent in soft disk model
fluctuations, and that the soft disk model reproduces this scaling despite be-
ing unlike any other model currently under investigation in the econophysics

literature.

E.3 The Hurst exponent

A quantitative measure of long range dependence can be obtained via the
Hurst exponent. In a long memory process z(t), the variance (X(n)?) of
a running sum of n mean-subtracted values, X (n), of such a process scales

non-linearly as a function of n, via

(X (n)?) ~n?*t, (E.3)

where

X(n) = (2(1) =) + (2(2) = p) + .. + (2(n) — p). (E4)

H is called the Hurst exponent. For long memory, or persistent processes,
0.5 < H < 1.0. For normal diffusion, e.g. an uncorrelated random walk, H =

0.5. For anti-persistent processes, such as Kolmogorov’s energy spectrum for
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turbulence [99], 0.0 < H < 0.5. The Hurst exponent of white noise is H = 0,

and H =1 for a linearly increasing function of time.

E.3.1 From Nile flooding to fractal geometry

The Hurst exponent was originally developed in hydrology, in order to predict
the optimal dam size needed for the Nile river’s volatile rain and drought
conditions. An indication of just how vital the Nile was to the lives of those
in the region, the Nile’s annual water level has been measured at Roda Island,
near Cairo, for over 5000 years. It has been recorded in writing for 1300
years between 622AD and 1922AD, just prior to the construction of the Nile
dams [154], making it likely the earliest example of a statistical dataset.
Remarkably, the first missing annual observation occurs in 1285. Hurst first
calculated his exponent for the longest contiguous sample of data, spanning
662 years (622AD-1284AD), finding N = 0.74 [155].

Mandelbrot later generalised Hurst’s analysis to a generalised Hurst ex-
ponent, as a measure for fractal geometry [156]. Hurst’s initial approach
to solving a practical problem of how high one must build a dam has since

developed into its own field of mathematics.

E.3.2 Rescaled range (R/S) analysis

We estimate the Hurst exponent using a method known as the rescaled range
(R/S) analysis, originally used by Hurst and still the conventional choice
in the literature. The rescaled range Q(n) = R(n)/S(n) can be viewed as a
statistical measure of the variability of a timeseries x; over some sample size n,
as a function of n. It is given by the range R(n) (that is, R(n) = Tmax — Tmin,
over the sample size n), divided by the standard deviation of the sample

S(n). Q(n) scales with n via the Hurst exponent,

Q(n) ~n". (E.5)



E.3. The Hurst exponent 175

We outline the steps by which we implement this calculation as follows,

in line with the method proposed by Weron [121]. Consider a timeseries

1, o, ...xn of N measured values. First, we calculate the sample mean
1 X

Next, we create a new mean adjusted sequence y; = x; — . Then, we

calculate the cumulative sum of n values of the series as a function of n:

s = Zyi. (E.7)
i=1

The range is the difference between the maximum and minimum values

of the cumulative sum

R(n) = max(z1,22...2,) — min(z1,22...2,). (E.8)

The standard deviation series S(n) is given by

(E.9)

= R(n) x n¥ (E.10)

and H can be obtained from linear regression fits to log @) vs logn. Anis
and Lloyd [157] and Peters [158] have shown that small corrections for fi-
nite sample size effects give a better estimate of the Hurst exponent. We

implement their corrections, detailed fully in [121], in our estimation.
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