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Sum m ary

W'liile the static nature of foams has been well studied, the dynamic nature of a 

foam how it evolves and responds to external forces and changing environments

is less well understood. We will present results from the analysis of two such 

asj)ects of foam physics: the drainage of liciuid through the foam, and the stability 

of foam.

Drainage, or the flow of the liquid phase through the network of channels and 

films tha t constitutes the foam, is usually one of the most influential processes 

affecting a foam. Foam drainage can be modelled using the Foam Drainage Equa­

tion (FDE), which describes the variation of the liquid content of the foam as a 

function of space and time.

We will present a complete treatm ent - analytical, numerical, and experimen­

tal of the process of foam fractionation, w'hich uses a flowing foam to separate 

solutions based on surface activities. It has widespread use in industries such as 

mining and biochemistry (for exam])les, recovering more material from tailings 

and extrac'ting proteins, respectively). Our analysis was carried out on a model 

system — an inverted U-tube — and is based on modifications to the elementary 

FDE. We successfully predicted the flow behaviour of om- model fractionation set­

up, and showed that our model can be generalised to other fractionation set-ups.



W'e will also present analysis of the efficiency of such set-ups, based on the nec­

essarily finite size of column components in experimental and industrial settings. 

The model represents both a useful tool for analysing and studying the physics of 

fractionation, and a platform to build more extensive analyses upon.

We also carried out the first in-situ  analysis of the chemical and physical pa­

ram eters of liquid metal foams, again using a modified form of the FDE. While 

previous methods reciuired the solidification and destruction of the molten foam 

samples, our method used X-ray radioscopy (to measure the time- and space- 

dependent liquid content of the foam), cou])led with fits of numerical solutions of 

the FDE. We will present, for the first time, direct measurements of the surface 

tension and viscosity of the liquid metal in these advanced foams. W"e will also 

comment on the effects of particle additions in these foams, and how the viscosity 

may be dram atically influenced by their presence.

The stability of foams is also of great interest in many processes, whether one 

wishes to maintain foams or destroy them. \ \¥  carried out the first large-scale 

study of the stabihty and lifetime of individual soap hhns, ftnding the lifetimes 

well described by the Weibull distribution. Environmental exposure was found to 

be of large importance to the longevity of the soap films, with drastic reductions 

in lifespan found in a secondary laboratory experiment. This result has contact 

with research on environmental effects in fractionation experiments.
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Chapter 1

Introduction to foams

1.1 W h a t is a foam ?

From getting in the shower first thing in the morning to drinking a cold beer at the 

end of a long working day, foams are commonplace in almost every aspect of our 

lives. And yet we hardly ever give them any serious thought, overlooking a rich 

and deej) research area which links many fields, from pure mathematics and crys­

tal formation through chemical engineering and materials engineering (touching 

almost everything in between). Foams can be used as a model for other complex 

systems [1]. and have even been i)roposed as a model for the fundamental structure 

of spacetime [2].

Foams have therefore found many im portant uses in industry and materials 

research. As the scope of foam applications grows, the need to create strong inter­

disciplinary links betw'een novel research and the existing body of foams research 

becomes ever greater. In this work, we will present results from research under-

1



2 Chapter 1. Introduction to foams

taken to forge such hnks between theoretical models of draining foams and real- 

world uses of foams — an industrial process of foam fractionation and experiments 

aiming to create foams from liciuid metal.

So, then, what is a foam? Foams are dynamic collections of bubbles, arranged in 

fascinating structures th a t change and evolve steadily in time. The most commonly 

encountered foams are disordered, as bubbles of many sizes (polydisperse) are 

mixed together. However, through careful preparation, they can be made to form 

into complex and elegant ordered structures [3]. They are multi-phase systems, 

with a gaseous phase dispersed through a liquid phase. The most connnonly 

encountered foams have air as the gaseous phase, with the liquid phase consisting 

of water mixed with a surfactant such as soap (think of washing the dishes).

While, at first glance, foams often appear quite static, there is a constant and 

complex dance of several interacting and competing processes. We will examine 

our foams in terms of this dynamic nature, specifically focusing on the movement 

of liquid through the foam. We shall do this by building on foam drainage theory, 

linking it intim ately with experimental observations and computer modelling. We 

will also briefly look at the stability and lifetimes of bubbles, as the deterioration 

of foams has significant effects in many industrial and experimental systems.

1.2 Processes that shape foams

As we have mentioned, foams are complicated and dynamic systems shaped by 

various processes. Each could be the subject of a lifetime’s work and, thus, it 

becomes im portant to understand where and w'hen we may focus our attention on 

a single process.



1.2. Processes tha t shape foams 3

(a) (b)

F ig u re  1.1: Foams take diverse forms, and can be found in both day-to-day and more 
advanced contexts, (a) The foamy head of a beer is one of the most famihar 
(and welcome) foams. (6) A tom ographic reconstruction of an AlMgCu 
m etal foam, based on X-ray radioscopy (courtesy of M anas Mukherjee. 
H elm holtz-Zentnun B erlin).

There are several major i)rocesses which affect the evolution of a foam over 

time.

1. D rainage. The licphd in the channels --  and, to a lesser extent, the Hlms — 

th a t make up the foam flows under the influence of an external force. This 

force is most often gravity, although centrifuges have been used to increase 

drainage. Due to the ubiciuitous presence of gravity on Earth, removing 

or reducing drainage requires si)ecial measures, including parabolic flights, 

sounding rockets and space flight. Drainage will be discussed in greater detail 

in Part I.

2. R up ture. As foams age, the films that make up the bubbles age and thin. 

As the film thickness progresses to a critical value, bubbles may rupture.



4 Chapter 1. Introduction to foams

causing rearrangements and redistribution of liquid throughout the foam. 

The ageing of films and bubbles, and the associated rupturing, may have a 

strong influence on industrial scale processes such as fractionation. As such, 

we will discuss it in Part II

3. C oarsening. As the pressure of the gas in a bubble is dependent on size 

(with smaller bubbles having a higher internal pressure than larger ones), 

in a polydisperse foam there will necessarily be pressure differences betw^een 

bubbles of different sizes. This leads to a phenomenon analogous to Ost- 

wald ripening, with larger bubbles getting larger and smaller bubbles getting 

smaller. We will comment on coarsening w'here relevant, although it plays a 

very limited role in the experimental systems we will consider in this work 

(see, for example, Section 4.2).

4. R heology. W hen a foam is subjected to an applied shear, it may flow. 

Foam flow' is a rich topic for research, but as rheology plays a minor role in 

our research w'e will not take it into account.

In this thesis, we will consider drainage in detail. The theory behind drainage 

— as w'ell as the drainage process itself will also be considered through the triple­

pronged (or ‘Trinity’) method: mathem atical analysis, numerical sinuilations and 

modelling, and experimental verification. The effect of varying licjuid fraction on 

the stability of individual bubbles and ensemble foams will also be examined. As 

all the results presented in the current work hinge on the variation of the liquid 

content of foams, we shall now' explain foams through the lens of ‘liquid fraction’.
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1.3 C lassifying foam s by liquid fraction: w et to  

dry

One of the  most direct ways of classifying a foam is by its liquid content. The liquid 

content is usually represented by the liquid fraction 0, where a liquid fraction of 

0 =  0.1 m eans th a t 10% of the  volume th a t the  foam occTipies consists of liquid. 

The gas fraction which is simply 1 — 0  - is som etim es used. Licjuid fraction is 

generally not uniform, varying under the  influence of processes such as drainage. 

As such, it is more accurately considered as a function of position x  and tim e t, 

0 (x ,f). In C hapter 2, we will introduce m athem atical models which describe this 

variation.

The values of 0  range from less than  one ])ercent for a ‘d ry ’ foam to  over twenty 

IJercent for a ‘w et' foam. At each of these extrem es — the wet and dry lim its -  

foams take on the form of different interesting (and im portan t) structures. In the 

dry limit, foams api)roxim ate the  division of s])ace into cells, while, in the wet limit, 

they api)roach the  close-packing of si)heres. This variation is shown in Figure 1.2.

An im portan t factor in determ ining w hether a foam in ecjuilibrium under grav­

ity will be wet or dry is the average size of its constituent bubbles. If a bubble is 

w ithin the cai)illary length /q from the licjuid surface, it will be wet (i.e., have a 

liciuid fraction larger th an  about 20%). /q is defined as

where 7 is the  surface tension of the  liquid, g is acceleration due to  gravity 

and A/"j is the density difference of the gas and liciuid. /o is the length over which

( 1.1)
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(b)

•  •

(d )

Figure 1.2: The differences between wet and dry foams are readily apparent. Typi­
cally. 3D foams are polydisperse. consisting of bubbles of many different 
sizes. Dry foams are shown on top and wet foams on bottom , (a) and 
(c) are obtained from experiments, while {b) and (d) are from computer 
sinmlations. (a) courtesy of M. Boran. (c) courtesy of A. Meagher, (b) 
and (o?) are taken from sim ulations carried out by Kraynik et al. [4].
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F igu re 1.3: Some example polyhedral cells (with 12. 13. and 16 faces from left to  right).
as found by M atzke [6] in a painstaking experim ental study of disordered 
foam. This study was recently revisited com putationally by Kraynik et al. 
[7], who foimd all 36 polyhedra identified by Matzke in sinmlations. Image 
courtesy of R. Gabbrielh.

cap illa ry  forces ba lance  d ra in ag e  over gravity. T h e  cap illa ry  leng th  is therefo re  

of g rea t im p o rtan ce  w hen designing  experim en ts  th a t  requ ire  a wet foam . If th e  

bubb le  d iam ete r is fi, th e n  we can  d e te rm in e  th e  num ber of layers of bubb les th a t  

will be  wet l ^ / d  ( the  so-called P rin cen  num ber [5]). L arger bubb les in equ ilib rium  

u nder grav ity  form  a d ry  foam  (a lth o u g h  those  p a rts  of the  foam  w ith in  Iq of th e  

liquid  siu'face m ay still be  w e tted  by cap illa ry  action).

1.3.1 T h e dry lim it

In th e  d ry  lim it, com m only  tak en  to  be 0  <  0.01 [5], th e  ind iv idual soap films m ay 

be th o ugh t of as in fin itesin ially  th in , cm 'ved surfaces. T hese  surfaces c o n s titu te  

th e  faces of po lyhedra l cells. M any different po lyhedra l cells have been observed 

exi)erinrentally  (a th o ro u g h  list w as com piled  by M atzke [6]) and  in s im ulations of 

ran d o m  foam s [7]. Som e exam ples of M atzk e’s p o lyhed ra  can  be seen in F igu re  1.3.
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The shape of these polyhedral cells of dry foams is governed by geometrical and 

topological restrictions, first stated by Plateau [8] in the 19*’’ century’. P lateau’s

rules are as follows (a graphical explanation can be seen in Figure 1.4):

• Faces (film s) m ust m eet th ree at a tim e. Three cells meet symmetrically 

at every edge (more precisely, three films, each shared between two of the 

three cells). The angles at which the films meet must, therefore, be 120 

degrees everywhere.

• E dges m ust m eet four at a tim e. Six cells meet syninietrically at every 

corner (four edges meet, each shared by three cells as described in the first 

rule). The angle between edges is, therefore, arccos( —1 /3 )  ~  109.43  

degrees.

Despite the seemingly intuitive nature of the rules (arising from local surface 

tension equilibrium at the points in question), it was not until 1976 tha t Taylor [10] 

proved rigorously tha t they held for minimal surfaces (i.e., surfaces that minimise 

their area), of w'hich foams are an example.

Finally, the Young-Laplace equation must be taken into account when con­

sidering the surfaces tha t constitute the cell faces. This equation describes the 

ca])illary pressure (or i)ressure difference) across the interface between tw'o fiuids 

(water and air in an aqueous foam, for example). It expresses the balance of forces 

on some small element of the film in terms of the pressure difference Ap, where

( 1.2 )

^Both the original text and an English translation of the work may be found at 
http://www .susqu.edu/brakke/Plat.eauBook/PlateauBook.htm l
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Drv Finuii

'? ■  A
'iii

et Fonin

F igure 1.4; P la teau ’s rules of equilibrium require three films to  meet to  make an edge.
and four edges to  meet in a tetrahedral junction. The rules hold for dry 
foams and for foams with small values of licjuid fraction, bu t foams con­
taining large am ounts of liquid (‘w'ef foams) can contain junctions of more 
th an  four edges (or six cells) [9].

F igu re 1.5: A Plateau  border in schematic form, showing the cross-sectional shape 
of the border. The curved shape of the P lateau border results from the 
Young-Laplace equation.

Phiteau
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F igure 1.6: A photograph of the surface of a foam. The curvatures of the hlms are 
made visible by the reflections of light on the surface. Note the complex 
nature  of the surfaces. Accurately describing foams often requires the use 
of com puter modelling due to this complexity. As a result, full mnnerical 
descriptions of foams have only been possible in recent years as com puting 
power has increased.

Here, ") is surface tension and Ri and / ? 2  are the two principal radii of curvature. 

In the general case, Hi differs from /?2 - For the case of a sphere or spherical surface, 

i?i =  i?2-

The surface m ay therefore have a complicated form which can be difficult to 

describe m athem atically, depending on local topology and forces. (An exam ple 

can be seen in Figure 1.6.) Therefore, it is necessary to  use numerical sinndations 

for almost all detailed analysis and study of foam structures. A more in-depth  

look a t software used in these sim ulations may be found in Section D .l.
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1.3.2 T he w et limit

In the wet lim it, th e  bubbles becom e spherical (see Figures 1.2c and  1.2d). As 

such, the  foam begins to  share features w ith sphere packings [11]. N ote th a t the 

actual sphericity of the  bubbles will depend on the ir size (as larger bubbles are 

‘softer’, or more com pressible). It is im portan t to  note th a t a d istinction exists 

between a foam in th e  wet limit and  a ‘bubbly liquid’. Increasing the liciuid fraction 

past the wet limit leads to  loss of contact between neighbovuing bubbles, and the 

resulting system  (w'hile still of scientific interest) is no longer considered a foam. 

As such, we will not e laborate  on it further. The wet lim it defines a m axim um  

liciuid fraction - 4>c =  0.36 [5] - -  which corresponds to  a random  close packing of 

spheres [11],

As observed w ith  dry foams, there are some restric tions on the j^ossible struc­

tures th a t such ‘sphere ]>ackings’ may take (restrictions th a t also arise in the 

ideahsed models used in granular m edia research [1]). Firstly, each sphere must 

be in contact w ith at least th ree of its neigiiboTirs. Spheres th a t do not meet this 

criterion are term ed ‘ra tt le rs ’, as they  can ‘ra ttle  arom id’ in cages m ade of other 

spheres. Secondly, despite the  m inim um  contact num ber being three, the  average 

m nnber of sphere con tacts in a disordered packing should be a t least six for a me­

chanically stable packing [11]. This arises from simple consideration of degrees of 

freedom, w ith two confining forces needed for each of the three x, y, 2  spatial axes. 

(This is not an exact result, nor m athem atically  i)roven, but is approxim ately  valid 

in practice and  widely used in sphere packing research. It is, however, possible to 

design stable, ordered struc tu res w ith fewer contacts.)
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F ig u r e  1.7: A tomographic reconstruction of a 3D monodisperse foam (courtesy of 
A. Meagher). Tomography of this type allows the internal structure of 
foams to be exam ined and visualised. Previous techniques involved visually 
identifying crystal structures by refraction in the surface layers, limiting 
exam ination of the internal sections of foams.

Bragg and Nye [12] were the first to observe that wet foams consisting of small 

bubbles readily form crystalline structures, driven solely by surface tension. Recent 

experiments [13] suggest tha t the face-centred cubic (fee) structure predominates. 

Ongoing experiments by Meagher et al. [14] using X-ray tomography to explore the 

internal structure of monodisperse foams (i.e., all bubbles have equal volume) may 

shed some light on this phenomenon. An example of a tomographic reconstruction 

of a 3D foam can be seen in Figure 1.7.
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1.3.3 B etw een the two limits

Neither the dry nor the wet limit fully describes a real foarn, with experimental 

and real-world foams tending to fall somewhere between the two. It is therefore 

necessary to consider licjuid fractions in the intermediate regime.

As we start to add liquid (in infinitesimal amounts) to a foam in the dry 

limit, the first changes occur in the edges where the films meet. These cell edges 

swell to form the so-called Plateau Borders (see Figure 1.4 and Figure 1.5 for an 

illustration of what these borders look like). Initially, we may still treat the films as 

infinitesinially thick (i.e., we may neglect the litjuid content of the films), provided 

we are close to the dry limit.

For small enough liquid fractions. P la teau’s rules are still approximately cor­

rect. Further liquid fraction increases lead to violations of the rules, and our 

ability to mathematically describe the foam surface precisely becomes more and 

more limited.

As we continue towards the wet limit, the cells of the foam become deformed 

si)heres. with the nature of the deformation dei)endent on how the foam is confined. 

Foams in this regime are not easy to describe and, outside of the wet and dry 

limits, we nmst rely on numerical simulations to describe and analyse foams. Some 

idealised models may also be employed, such as the representation of bubbles by 

overlapping spheres [15].

The region of interm ediate licjuid fraction also contains a lot of the interesting 

physics of foam drainage. Licjuid fraction in this range is too large to be ignored, 

and yet still small enough to be handled by analytical drainage models. The 

approach taken in our theoretical analysis (as outlined in Chapter 2 and discussed
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in detail in A ppendix 2.2) involves trea ting  the foam as a continuous m ediinn (i.e., 

a macroscopic model of drainage), building upwards from the drainage through a 

single P la teau  border. T he model is simple enough to  be explorable numeric’ally in 

reasonable am ounts of com puting time, while still retain ing  enough of the  inherent 

physics to  make m eaningful com parisons w ith experim ents and real-world system s 

of interest.

1.4 Foam structure for finite values of liquid  

fraction

The variation of liquid fraction has a significant effect on many different foam 

characteristics. In la ter chapters, we will exam ine drainage - how liquid fraction 

changes in space and tim e under gravity, outlined in Part I and th e  lifetime of 

ageing foams (P art II).

W e will outline here a simple exam ple of the  effects changing liquid fractions can 

have on a foam: the i)roblem of identifying m ininuun-energy structures. A lthough 

the most com monly encountered foams are disordered, one can generate ordered 

foams using m onodisperse bubbles. Such ordered foams are often used in research 

on m inim al-energy surfaces [3].

T he problem  of how best to  partition  space is a long-standing one. W hile often 

considered a purely m athem atical concern, there are several real-world applications 

of solutions to  th is problem , such as in the design of buildings and applications 

where packing efficiency is at a premium.
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F ig u re  1.8: The W ater Cube, built for the Beijing Olympics. The design of this 
building is based around the W eaire-Phelan foam structure, the current 
best space-partitioning foam structure. Image courtesy of Chris Suderman 
(Creative Commons).

The variation of lifiuici fraction between the wet and dry limits also has a 

significant effect on the structiu'es of lowest energy and on the mechanical stability 

of these structures.

The humble honeybee long ago solved the problem of partitioning 2D space into 

ecjual-area cells while minimising the amoiuit of m aterial used to build the walls 

(or surface length). Hexagonal honeycomb structures have been mathematically 

proven to be the most efficient structure for 2D. But what is the counteri)art in 

3D? How can we partition space into cells of equal volume while minimising surface 

areal

Various foams have been put forward as the structure of lowest energy. Lord 

Kelvin proposed the first such solution in 1887 [16]. The Kelvin structure consists 

of a body-centred cubic (bcc) space-filling arrangement of truncated octahedrons
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(a 14-sided polyhedron with six square faces and eight hexagonal faces). This 

structure was long thought to be the most efficient 3D structure. However, more 

than  a century later, Weaire and Phelan computed a structure with a lower surface 

area [16, 17], beating Kelvin’s structure by 0.3% (a substantial reduction in this 

context). The Weaire-Phelan structure is shown in Figure 1.9, alongside the Kelvin 

structure.

The Weaire-Phelan structure differs from the Kelvin structure in that it con­

sists of two different cells (an irregular dodecahedron with pentagonal faces and a 

tetrakaidecahedron with two hexagonal and twelve pentagonal faces), albeit with 

the same volume. As of publication of this work, it is still the most efficient struc­

ture known for the partition of 3D space. It has, however, not been mathematically 

proven to be optimal. Recent experimental work has lead to the first laboratory 

realisation of a Weaire-Phelan foam [18].

Previous simulations of minimal energy surfaces have' used dry foams (zero 

licjuid fraction simulations) [3, 7]. However, foams in experiments always liave a 

finite liquid fraction 0 and, as such, we need to include this in oiu' simulations. This 

liquid fraction can have significant effects on the stability of foam structures, with 

certain structures only experimentally accessible below specific threshold values of 

0. While dry foams have been extensively studied, wet foams have not, largely 

due to the large increase in computer power reqiured to accurately model the 

Plateau border network. Examples of dry (i.e., starting simulation) and wet foam 

sinmlations can be seen in Figure 1.10. It is apparent by visual inspection tha t the 

wet foam is more representative of a real Weaire-Phelan foam than  the starting 

simulation.
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( c )  (d )

Figure  1.9: T he top row ((a) and (6)) shows the Kelvin foam, while the bottom  ((c) 
and (d)) shows a W eaire-Phelan foam. In both cases, the left image is 
experim ental, while the right is from simulation. It is readily apparent 
th a t the W eaire-Phelan is a more complex structure, consisting of two 
different (but equal-volume) bubble types.

We conducted Surface Evolver sinmlations to find the limits of stability of the 

Kelvin and W^eaire-Phelan foam structures as liquid fraction is increased. (A de­

tailed introduction to the Surface Evolver software may be found in Ap])endix D .l.) 

W'e tracked the surface energy per bubble E  as (f) is varied, which points to insta­

bilities in the foam structure. The per-bubble energy is most useful for comparing 

different ordered structures, as it is independent of foam structure (e.g., the nuni-
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(a) (b)

F igu re  1.10: The difference in the structu re  of a foam with increasing hquid fraction 
is shown here, (a) shows a dry foam witli zei'o hquid fraction, (b) sliows 
a foam with a hquid fraction of 1%. Note tlie curved faces in the foam 
(most apparent in (b). which show how real foams differ from simple 
Voronoi tessellations of space [15]). The structures were calculated using 
the Surface Evolver.

her of bubbles in a unit cell). A plot of energy per bubble is shown in Figure 1.11. 

N ote th a t the  value of the  surface energy per bubble (equivalent to the  surface area 

in these sim ulations) for a Kelvin foam in the dry limit E  ~  5.35 plays a role 

in th e  derivation of models of foam drainage, which will be outlined in C hap ter 2. 

Taking the  derivative of th is curve, we may define a stab ility  threshold  as

d(f)
=  0 . :i.3)

Below th is threshold, increasing liquid fraction reduces the  average energy of 

th e  bubbles in the  foam, as reported  by the Surface Evolver. Increasing (j) past 

th is  point increases the surface energy of the  sim ulated foam. The real foam would 

resist such energy increases and would change s truc tu re  (e.g., by losing contacts 

or by rearranging bubbles) to  reduce energy again.
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Figure  1.11: As licjiiid fraction is increased, the surface energy per bubble initially 
increases. However, after a certain point (dependent on the foam struc­
ture). further increases in liquid fraction lead to increased energy. The 
inset shows th a t, while the W eaire-Phelan is the lowest-energy dry foam, 
by 0 =  0.01 the Kelvin foam is clearly the s tructine  of lowest energy.

A plot of dE/dcf) for both Kelvin and Weaire-Phelan foams is show'ii in Fig­

ure 1.12. The Kelvin foarn crosses the threshold at 0 =  0.11 ±  0.01, wdiile the 

W eaire-Phelan crosses at 0 =  0.14 ±  0.01. These values agree well with published 

results for the stability of these structures by Phelan et al. [19]

We may also predict wdiich structure is preferred for a specific liquid fraction 

from our energy calculations. Wdiile the W^eaire-Phelan foam is the lowest energy 

structure for perfectly dry foams, this is not the case as liquid fraction changes. 

W'e find that by 0 =  0.01 the Kelvin foam has become the structure of lowest 

energy.
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Figure 1.12: As liquid fraction is increased, the surface energy per l^ubble initially 
decreases. However, at some point, fin ther increases in (f) increase the 
energy per bubble. For the Kelvin foam, this transition occins at 0  =  
0.11 ±  0.01. and. for W eaire-Phelan. it occurs at 0  =  0.14 ±  0.(J1.

1.5 Su m m ary

Despite their famihar nature and deceptively simple api)earance, foams are integral 

to many industries and avenues of research, hi this work, we will necessarily neglect 

some of this ubiquity and instead focus on a handful of examples which cover a 

range of the applications of foams — from modelling industrial processes, through 

advanced materials research, and on to use as a tool in teaching statistics.

Our work focused on the flow of liquid through the channels tha t make up 

foams, and how th a t drainage affects the physics and overarching behaviour of the 

systems we study. We will show how such mathem atical analysis can be explored
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by numerical simulation and probed via experiment, and will provide thorough 

analyses of the steps rec^uired to move from these foundations to full models of 

real systems of interest.

We will introduce elementary foam drainage theory, and show how it can be 

used for modelling and analysis of experimental and industrial set-ups used in the 

industrial process of fractionation. Our analysis will then be extended to provide 

guidelines for the design and operation of industrial fractionation processes. We 

will also compare drainage theory to experimental data, and use such comparisons 

to show how im portant foam characteristics can be determined in a novel way. 

In a world where the finite nature of our resources is becoming painfully obvious 

to all, this ‘Trinity’ approach has the potential to provide real improvements to 

I)rocesses of enormous importance.

The liquid fraction of a foam has significant effects on the lifetime and stabihty 

of foams. We shall present experiments and statistical analysis of the lifetimes of 

ageing soap films. This stability has im portant implications for the design and 

operation of experiments in which the deterioration of foam plays a role.

A note on sty le

One of the first choices one must make when preparing a document like this is the 

writing style. I find the personal or active voice — using ‘I ’ and ‘w'e’ - both  more 

pleasant to read and easier to follow (from a narrative standpoint).

Even though I have been the primary driver of the research contained within 

this Thesis, I w'ould be doing a great disservice to many people — my supervisor, 

co-w'orkers, colleagues and even friends if I did not acknowledge their interac-
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tions, inputs and assistance. Research is seldom a purely individual effort. For 

those reasons, and for clarity of language, I will therefore use ‘we’ throughout this 

Thesis.



Part I 

Foam Drainage





Chapter 2

Introduction to foam drainage 

theory

T he m athem atical m odelhiig of foam drainage (inchidiiig the case of fractionation, 

which will be discussed in a la ter section) goes back to  the 1960s'. Leonard 

and Lemlich [21] had all th e  elem ents of the  model th a t prevails today, bu t did 

not condiict the m athem atical analyses th a t w'ould have exi>osed its rich variety 

of non-im iform and tim e-dependent solutions. Only uniform  profiles of steady 

drainage were considered. The la ter contributions of G ol’dfarb et al. [22], Verbist 

et al. [23], Koehler and Hilgenfeldt [24], Cox et al. [25], and Saint-Jaim es and 

Langevin [26] developed the  field in its full generality. Models of foam drainage 

have previously been applied w ith qualitative and sem i-quantitative success to  a 

range of experim ents -  including “free drainage” and “forced drainage” [27, 28]

^Although brief theoretical discussions of the  process of drainage had been presented by 
Bikerm an [20] in 1953, no serious modelling weis attem pted .
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and foamabihty tests [29] in a single column. (For a more thorough summary of 

early foam drainage theory, see the work of Weaire et al. [28].)

In this Chapter, we will introduce the basic ideas behind foam drainage theory 

and present a theoretical model for the drainage process. We will also discuss some 

m athem atical solutions of the resulting foam drainage equation and show (using 

a simple example) how drainage theory may be used to understand exj)erimental 

results.

2.1 M odelling foam  drainage

Under the action of gravity, liquid will flow through a foam s])ecifically through 

a network of Plateau borders (PBs) as sketched in Figvu’e 2.1. The viscosity, 

surface tension and pressure differences within the foam will affec't the flow.

While liquid flowing through a pipe cannot afl'ect the geometry of the pipe, 

the PB network will change and swell to accommodate additional liquid and, thus, 

change the value of the local liquid fraction in time and sj)ace <p{x. i). We therefore 

need a model that can describe the licjuid fraction of the foam the amount of 

the foam volume consisting of liquid — as a function of both time and position.

As the liquid drains through the foam under the influence of gravity, it is 

countered by viscous drag forces. Dissipation occurs in both the PBs and the 

nodes (or junctions) where the PBs meet. Different flow characteristics will be 

observed depending on the nature of the dissipation, which, in turn, depends on 

the surface characteristics of the foam.

Wliich dissipative model is more applicable to a given foam is largely depen­

dent on the surfactant type used. In the case of a foam stabilised by a surfactant
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Liquid flow

A
Gravity

F igu re  2.1: When a foam is subject to an external force, such as gravity, the liquid in 
that foam flows through the network of channels and nodes (the Plateau 
border network). The hgure shows this process in a wet Kelvin foam, with 
the red arrows indicating the flow of liquid.

with mobile interfaces, liquid draining through the PBs will undergo plug flow-. 

The main source of dissipation will thus be in the nodes [24], where the liquid 

is redistributed n od e-d om in ated  drainage. Conversely, a foam with immo­

bile interfaces (such as those discussed in Section 2.4) will experience Poiseuille- 

type flow in the PBs, leading to dissipation forces mainly in the channels [23] -

chann el-dom in ated  drainage.

This difference may be understood intuitively by considering the licjuid flow as 

laminar. If the interfaces are immobile or rigid, there will be no flow on the walls
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and a maximum flow in the centre of the PB (Poiseuille flow), resulting in a large 

velocity gradient tha t, in turn, leads to dissipative shear forces acting against the 

flow. As the PBs contain more wall area than the nodes, the large m ajority of this 

type of dissipation will occur in the PBs, and the contribution of the nodes may be 

neglected. This is channel-dominated drainage. Conversely, if the interfaces are 

mobile, then we can expect plug flow in the PBs and the majority of the dissipative 

forces will be due to shear in the nodes (as the liciuid flows out into multiple PBs, 

as shown in Figure 2.1). We may, therefore, neglect the contribution of the PBs, 

resulting in node-dominated drainage.

Recently, work has been undertaken to explore the regions between these two 

extremes [30] to derive models th a t can include contributions from both dissipation 

mechanisms (applicable to surfactant mixtures in real foams, for example). In this 

work, we will present theoretical models based on channel-dominated drainage 

theories, as outlined in Section 2.2. Channel-dominated drainage has the great 

benefit of being easily explored analytically.

2.2 T he Foam D rainage E quation

The channel-dominated Foam Drainage Equation (FDE), first presented by Verbist 

et al. [23], describes how the liquid fraction 0(x, t )  changes as a function of position 

X and time t.  The full form of the FDE is given by

( 2 . 1 )

where
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•  ~ is the surface tension, p is the density of the hquid phase, and g is accel­

eration due to  gravity,

•  ?7* =  3 X 50 X r/, where 3 is a geom etric factor arising from averaging over 

the PB network, 50 is a ‘drag coefficient’ valid for Poiseuille-type flow in a 

PB, and r/ is the  bulk liquid viscosity,

•  C  is a geom etrical constant relating to  the cross-sectional shape of the PBs,

•  and Iv — 5.35V"(j~^^  ̂ is the to ta l length of PBs per un it volume of foam. Here, 

Vb is the average volume of a bubble in the foam and the constant 5.35 arises 

from geometric consideration of a Kelvin foam. Similar values are fotmd for 

a large variety of different foam structu res (to w ithin 2%) [7].

We may estim ate the bubble volmne Vb from m easured PB lengths by again 

approxim ating the bulibles in the  foam as Kelvin cells. A Kelvin cell w ith edge 

length L  has vohune H  =  S^/nL^.

A  full derivation of the  FD E may be found in A ppendix A. As the  full equation 

is quite unwieldy, w'e w'ill gather the assorted constants into two constants — C] 

and C-2 leading to  a final FDE:

( 2 .2 )

where Ci and C2 are given by

(2.3)

(2.4)
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Cl has dim ensions of velocity and C2 /C 1 dim ensions of length, c ^ j c x  is (to w ithin 

a constant of order unity) equal to  the  Princen or capillary length, i.e., th e  height 

of th a t section of wet foam th a t exists due to  capillarity  when a  foam is in contact 

w ith underlying liquid [5] under acceleration due to  gravity. Ci is (again, to  w ithin 

a constant of order unity) equal to  an im portan t constant in elem entary drainage 

theory  [5]; in steady uniform  drainage, the  liquid fraction is p roportional to the 

flow velocity w ith the constant of proportionality  given by 1/cj (as can be seen in 

Ecjuation 2.3.2).

Numerically solving the FD E results in a description of how the  licjuid frac­

tion 0(x, t )  evolves over tim e from some given s tarting  conditions (liquid fraction 

profiles). An exam ple of such a solution for the case of an ac[ueous foam w ith 

a standard  surfactant (sodium  dodecyl sulfate, or SDS) in contact w ith a liquid 

reservoir is shown in Figure 2.2.

2.3 Exam ple solutions o f  the FD E

Here we will present some solutions of the  FD E and use one to  conduct a sim­

ple analysis of real-world experim ental d a ta  (shown in Section 2.4). W hile many 

boundary  conditions for the  FDE recpiire num erical in tegration or o ther approxi­

m ations to  be made, in several cases analytic solutions exist. N ote th a t all of the 

exam ples given here are derived from the  channel-dom inated FD E described in 

the  previous Section.
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Position from to p  (c^)

0,2Liquid fraction

Time (C2/C7)

F ig u r e  2 .2 : N iunerically  in teg ra tin g  th e  full F D E  allows us to  visualise an d  explore 
foam  system s w hich have no ana ly tica l so lu tion available. T he figure shows 
an  exam ple num erical solution for a freely d ra in ing  aqueovis foam stal^ilised 
w ith  a s tan d a rd  su rfac tan t (sodium  dodecyl sulfate, or SDS). T h e  foam is 
in con tac t w ith  a liquid and  s ta r ts  from  an in itia lly  uniform  liquid fraction 
profile (excej)t w here in con tac t w ith  th e  pool). T h e  axes are scaled in 
te rm s of our p aram ete rs  ci and  C 2 -

2.3.1 A  foam  in equilibrium

When the foam is in equilibrium (i.e., when d(t)/dt = 0), a liquid fraction profile 

can be analytically found. Looking at E(iuation 2.2, we note that the term inside
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the parentheses is simply a flow rate. If the foam is in equilibrimn, then we can 

set this flow to zero, such that

Ci0^ -  == 0 (2.5)

throughout the entire foam. This gives the following solution for the liquid 

fraction profile:

(2-̂ )( 2 c 2  +  Cl V 0 1  [ X  +  a " i ) ) 2

where 0i =  (l){xi) is the value of liciuid fraction at some position in the foam. 

If the foam is floating on liquid, w'e can set (p{xi =  0) =  = 0.36, as discussed in

Section 1.3.2. In Chapter 3, ŵe will look at draining foams where the local flow 

rate has a finite value.

2.3 .2  Forced drainage —  so litary  w ave so lu tion

A common process in experiment and industry is forced drainage, where liciuid is 

added to a foam and propagates through the PB network, wetting the foam in the 

process. We will comment on this process in an industrial context when discussing 

foam fractionation in Chapter 3, specifically in Section 3.4.2.

Verbist et al. [23] suggested solutions of the FDE for the case of forced drainage 

on a dry foam, where the propagating wetting front is a solitary wave moving with 

some constant velocity v. The solution is (in our notation):
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F ig u re  2.3: Analytical solutions of the FD E (Equation 2.3.2) for a dry foam undergoing 
forced drainage show the shape of the solitary wave moving through the 
foam. Note the propagation of the wave front from left to  right (i.e.. from 
the top of the foam downwards) with increasing time, and the constant 
wave shape.

Figure 2.3 shows mimerical sohitions of the FDE for a dry foam undergoing 

forced drainage. The wave front propagates from from left to right (i.e., from the 

top of the foam dow'iiwards) as time progresses, with a constant velocity.

In the case w'here the liquid is added to an already wet foam, the analytic 

solution becomes implicit (see [23]). However, mnnerical solutions may still be 

calculated as before, which will be discussed in Section 3.4.2.
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2.3 .3  Linear ap proxim ation  to  th e  F D E

It is possible to  reduce the  FD E to  a first-order ecjuation in x  by neglecting any 

contribu tion  from surface tension (which causes pressure variations in the foam). 

T his approxim ation is more valid in th e  dryer regions of th e  foam (farther above 

th e  litiuid surface th an  the capillary length given by E quation  1.1), as can be seen 

in Figure 2.4.

S tarting  from Eciuation 2.2, and setting  surface tension 7 to  zero (which sets 

C2 to  zero), we have

d(p d(p^

Kraynik [31] presented a solution for the linear approxim ation  of the FDE, 

reproduced here in our notation:

where Xa is an offset in space (the point where all linear profiles converge) and 

f a is an offset in tim e. In the  next Section, we will use E quation  2.8 to  show how 

foam drainage theory  m ay be used to  analyse free drainage experim ents.

2.4 Exam ple of analysis using the FD E —  a 

linear case

(We would like to  thank  C. S tubenrauch  for kindly providing the  experim ental 

d a ta  we use th roughou t th is section.)
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F ig u re  2.4: P lo tting  ntnnerical solutions of the full foam drainage equation (i.e.. liquid 
fraction as a function of position and time, with the base of the foam on the 
right) clearly shows th a t the dryer top parts of the foam are reasonably 
linear at all times. Here, the hrst-order approxim ation of the FD E is 
sufficient.

We will now look at how one can apply a linear approximation of the FDE to 

experimental da ta  and extract useful information about the foam (a dry run, so 

to speak, for the analysis of drainage exi)erinients presented in C hapter 4).

Carey and Stubenrauch [32] recently presented w’ork analysing free drainage of 

aqueous foams using mixtures of various surfactants (one non-ionic, C 1 2 DMPO, 

and one ionic, C 1 2 TAB). They found that all surfactant mixtures tested showed 

Poiseuille-type flow' and, as such, ŵ e w'ould expect solid agreement betw'een their 

experimental da ta  and solutions of the channel-dominated FDE.

The exi)erimental data consists of measurements of liquid fraction (at different 

heights throughout the foam sample) taken at regular time intervals using a mea-
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surement technique based on electrical conductivity. As svicli, we have a full set of 

liquid fraction profiles (f){x, t) for nniltiple foams, each with a different svu'factant 

mix. We will present results based on one such set of profiles — a foam generated 

with 1:1 mix of C 1 2 DMPO and C 1 2 TAB surfactants.

We start our analysis by noting th a t the data appears to be linear (as shown in 

Figure 2.5) and that the linear approximation to the FDE discussed in Section 2.3.3 

should be valid. The linear FDE has a known analytical solution [31], presented 

in Equation 2.8.

This ecjuation allow's us to quickly compute a full liquid fraction profile, pro­

vided we know C i ,  and ta- Recall tha t Ci = 7 ^  =  ------- ^ -------. For the ex-
 ̂ I v V  5 . 35 V~ ^ ' ^ x l 5 0 r ,

periniental data  imder examination here, the density and viscosity of the solution 

will be effectively equivalent to that of pure water at the surfactant concentrations 

used (twice the critical micelle concentration). Therefore, the only vmknown value 

in Cl is the bubble volume VV

We now set out to determine these values from the experimental data. First, 

we differentiate Equation 2.8 with respect to x:

=  J  ! _  (2 9)
dx  2r, ( -  („ ■ ' ■ '

Note th a t the spatial offset Xa is no longer present. Equation 2.9 allows us to 

calculate the sloj^e of the linear profile at some time t, provided we know' ta and 

the bubble volume V),. Ŵ e can also calculate the slopes directly from the da ta  and 

fit Equation 2.9 to those slopes, treating tg and as fitting parameters. This is 

shown in Figure 2.6.
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Figure 2.5: Liquid fraction profiles showing the evolution of 0(x, t) for a foam stabilised 
using a 1:1 mix of C 1 2 DM PO and C 1 2 TAB surfactants. Note the linear 
nature  of the profiles.

W ith best-fit values for t a  and known, we can re tu rn  to  Equation 2.8 to  work 

out Xq. We fit th is equation to  the  experim ental da ta  for every available tim e t ,  

which provides a series of estim ates of Xq. These can be averaged to  arrive at a 

final value.

W ith  Xq, t a ,  and V t ,  now known (taking values Xq =  —0.12 ±  0.01 cm, t a  =  

— 20 ±  2s, and I4 =  8.4 ±  0 .7 m m “ '̂  for th is experim ental d a ta), we can use 

Eciuation 2.8 to  directly calculate licpiid fraction profiles for our foam (as there are 

no free param eters). Figure 2.7 shows such a recreation p lo tted  together w ith the 

original d a ta , w ith excellent agreem ent observed. Figure 2.8 shows the  same data, 

bu t zoomed out slightly to  show Xq (the convergence point or spatial offset).
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F ig u r e  2 .6 : For every m easurem ent tim e t  in our experim ental data , we can num erically  
com pute a linear slope o f the liquid fraction. W e then  fit E quation  2.9 to  
these num erical slopes, allow ing us to  determ ine t(, and — via ci V;,.

From visual inspection of Figures 2.7 and 2.8, we can see th a t our recreated 

curves m atch the experim ental d a ta  very closely. We also have a second measure 

of the  goodness of our recreation available - the bubble volume V̂ .

From our fits of E quation 2.9, we find the value Vb =  8.4 ±  0.7 m m “ .̂ We were 

also j)rovided wdth m easurem ents of the average lengths of the P la teau  borders on 

the  w'alls of the tube  containing the foam LpBw-  A fter rescaling these m easure­

m ents for edge effects [33], we arrive at a value for the length  of a P la teau  border 

inside the  bulk foam:

L p b  =  ( 2 .1 0 )
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F igure 2.7: For inucli of the rmiiiiiig time of the experiment, our recreation agrees very 
closely with experimental data. The theoretical curves are calculated from 
Equation 2.8. with parameters extracted from fits as discussed.

We nnist next relate L p b  to  btibble volume VJ,. We do th is by approxim ating 

the sam ple foam w ith a Kelvin foam. T he volimie of a btibble in a Kelvin foam 

(by geom etric considerations) is given by

For the  m easurem ents of L p s  provided w ith  the experim ental data , th is  leads 

to  a value of Vh =  8.2 ±  0.8 m m “ ^, in agreem ent w ith the  value found from our 

fits. This agreem ent between our linear FD E and experim ental d a ta  confirms the 

findings of C arey and S tubenrauch  [32] — th a t th e  foams used in their experim ents
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Theoretical s o lu tio n ------
Experimental data -
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F igu re  2.8: After calculating the various fit param eters, we are able to  recreate the 
original experim ental da ta  from Equation 2.8. as it now has no free pa­
ram eters for 4>{x, t ) .  The figure shows the full solution, including the finite 
offset Xa =  —0.12 ±  0.01 cm. Good agreement is seen between the original 
experim ental da ta  (dashed lines) and the recreated solution (solid lines).

are well-described using cliaimel-dominated drainage theory, exhibiting Poiseuille- 

like flow.

It is hopefully clear from this Section tha t, even with a simplified drainage 

model, we can still arrive at useful and valid comparisons to experiment. This is a 

recurring theme when working with drainage theory, and will be seen again in our

work on foam fractionation (Chapter 3) and analysis of metal foams (Chapter 4).



Chapter 3

Foam Fractionation

3.1 Introduction  to  foam  fractionation

Foam fractionation is the process in which a foam rises in a cohnnn and overflows 

at the toj). The hcjnid coUected from the overflowing foam, when it is cohapsed, 

is relatively richer in the surface-active components of the licjuid that was used to 

generate the foam. This process is of wides])read practical importance in chemical 

engineering and biotechnology [34].

A resurgent mining industry, coupled with novel applications to the study of 

biological systems [35-37] (such as protein-stabilised foams), has lead to a greater 

need for a solid theoretical understanding of the underlying physics and chemistry 

of fractionation. While the theory behind the process has been studied in the 

literature since at least the 1960s (the work of Lemlich [38], for example, contains 

fairly complete descriptions of the various industrial processes and makes steps 

towards mathematical modelling), it has enjoyed something of a renaissance in

41
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recent years. Major contributions with apphcations to the present work have come 

from Jameson (and collaborators) [39] and Stevenson (and collaborators) [40 -43], 

both from wdthin the fields of chemical and process engineering.

Also relevant to the present work, an avenue of research based on foam drainage 

theory and the FDE has been undertaken by Neethling et al. [44]. They presented 

results for a single fractionation column with overflow' building up a model from 

the chamiel-dominated FDE - and presented numerical and experimental results 

which confirmed the key points of their analysis. This approach has significant 

merit, as there is a large body of research on foam drainage which may be appli­

cable to fractionation. In this way, we can see a potential opportunity to bridge 

disparate research efforts by physicists and engineers, and move the understanding 

of fractionation forw^ard.

A ttem pts to derive a firm analytical model for fractionation processes have 

often been hampered by difficulties in describing the theoretical foam overflow 

reliably. Capturing the overflow recjuires consideration of column geometry, foam 

drainage and coarsening, rupture of bubbles, and the rlieology of the overflowing 

foam itself. Reducing such complex behaviour to more m athem atically-tractable 

boundary conditions is one of the main results of this chapter. It is therefore 

desirable to explore a model system which is representative of the fractionation 

process, and which involves bomidary conditions tha t are realistic while being less 

challenging to theory than  the more typical overflow from an open column.

Once we have such a model in place, we can move on to understanding frac­

tionation in greater detail, w'hich will aid the process of maximising the efficiency 

of industrial designs. As the process is used on the industrial scale, reducing 

inefficiency at the design stage and during operation may allow significant im-
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provem ents to  ou tp u t and m ay reduce w aste of m aterials and energy (a pressing 

concern in m odern tim es).

3.2 A m odel system  for foam  fractionation

The m odel we chose for study  is an inverted U -tube system, shown in schem atic 

form in Figure 3.1. An inverted U -shaped tu b e  connects two liquid reservoirs. 

Foam is generated  by a gas sparger in th e  left-hand reservoir, rises th rough  the 

left-hand (inflow) leg and th rough  the U-bend, and flows downwards in th e  right- 

hand leg into the  righ t-hand  collection reservoir^ As the foam is in contact w ith  a 

liquid surface at bo th  ends of the  tube, we have well-defined boundary conditions. 

This allows us to  sidestep th e  challenge of m athem atically  describing an overflowing 

foam, and opens th e  jjroblem of continuous foam fractionation to  m athem atical 

exam ination. U-tui)e system s are also am enable for experim ental work (used, for 

exam ple, by M artin  et al. [45]). T he U -tube makes it easier to  collect outflowing 

foam and make accurate  m easurem ents of the  foam. This will be fu rther detailed 

in Section 3.2.5, which describes our experim ents on a real U-tube.

We assum e th a t there is a steady flow of bo th  gas and li(iuid from left to  right, 

and th a t the  gas flow ra te  is constant. T he key (juestion, therefore, is: what is the 

liquid flow  rate that is delivered? This m ust vary w ith the  gas flow ra te  and o ther 

physical and chem ical param eters of the foam, such as bubble size, surface tension 

and viscosity.

'I n  a real fractionation colum n of this type, the  left reservoir would hold the  solution contain­
ing surface-active molecules and th e  right reservoir would contain a more concentrated solution 
(the concentration difference would depend on th e  column set-up). As will be explained, our 
model does not consider th is concentration directly.
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F ig u re  3.1: Schematic illustration of the inverted U-tube set-up for the study  of foam 
fractionation. Gas is sparged into a surfactant solution reservoir a t a con­
stan t rate, generating foam which flows through the tube. The foam prefer­
entially carries the surface-active components of the solution, leading to  an 
increase in concentration in the outflow reservoir. This mode of operation 
is term ed “simple m ode” [46] as there is no independent liquid feed.
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A proportion  of the surface-active molecules in the inflow reservoir become 

trapped  a t the  film surfaces as the  foam is generated. These molecules are carried 

through th e  tube  w ith  the moving foam and, hence, are delivered a t a ra te  deter­

m ined by th e  gas flow. However, the in terstitia l dilu te liquid does not flow through 

the tube  a t the  same ra te  (due to  drainage through the  foam). W hen considering 

the  efficiency of a column, we may seek to  ensure as m any of the surface-active 

com ponents are carried w ith the foam as possible, while minimising the  delivery 

of the  d ilu te solution. This will be discussed in greater detail in Section 3.3

We shall exam ine the behaviour of the U -tube using the  steady-sta te  version of 

the FDE introduced in C hapter 2.2. (A derivation of the full tim e-dependent FDE 

can be foimd in Apj)endix A.) A great advantage of the elem entary FD E is th a t, 

w ith it, m any problem s may be trea ted  analytically  in a relatively straight-forw ard 

fashion. W ith  a full analytical theory in place, we can begin to  understand  the 

process of fractionation in greater detail. Much of the analysis can also be extended 

to the more general case and, eventually, to  other fractionation columns.

We will present immerical solutions which corroborate the findings of the  an­

alytic theory, and prelim inary experim ents to  test it. We will also analyse the 

dependence of the results on the  length of the  two legs. W'e v/ill derive a m etric of 

perform ance for fractionation cohnnns, and show how it may be used to  maximise 

the efficiency of U -tube set-ups. Finally, we will outline how to  extend these results 

to  o ther types of fractionation colunni, w ith  examples.
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3.2.1 Basis o f the theory

The steady-state form of the FDE relates local values of liciuid flux J  (volume 

flow rate per unit cross-sectional area) to liquid fraction 0, and is given by simply 

setting the time derivative of Equation 2.2 to zero, resulting in

= (3.1)

where the quantity inside the parentheses is a local flow rate J  and (as before) 

Cl and c' 2  are given by

Cl =  (3.2)
IvV

C 2  -  9  1 / 2  -

In our model fractionation set-up we have a driving gas velocity V', which must 

be taken into account when considering the to tal flow rate. There is an additional 

flux term  resulting from the transport of liquid through the U-tube simply due to 

the motion of the foam. This is given by the gas velocity nuiltiplied by the local 

liquid fraction V  x (f).

The gas velocity V  is, more precisely, the result obtained by dividing the con­

stant gas flux by the gas fraction 1 — 0 and, hence, is a function of position in 

the colunm. However, as the FDE is formulated for foams with a relatively low 

licjuid fraction (0 1), we may treat this velocity as constant and neglect the

small variation arising due to changing licjuid fraction. As we w'ill see, this is a
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fair approximation, as the variation of liciuid fraction in the legs of the U-tube is 

limited.

The flow of gas and liquid wall be treated as one-dimensional, i.e., we do not 

allow for any variation across the finite cross-section of the tube. Such variations 

are certainly detectable in experimental systems, but will be neglected here to 

allow' the derivation of analytical results (and the numerical verification of those 

results).

In the following, x  denotes the upward vertical coordinate for both the left 

(upward flow) and right (downward how) legs, with x =  0 at the liquid surfaces 

and X = L at the top (i.e., x  refers to a height above the surface of the liquid 

reservoirs). We take both legs to be of equal length for simplicity of notation, 

however this is not required by the analysis. We will also denote the liquid fraction 

in each leg separately, by 0/ and 0^ respectively.

In the left-hand tube, both liquid and gas flow in the direction of increasing x. 

Our modified FDE thus takes the form

J  = 4>,{V -  Ci(f)i) -  C20,1/2 d(f)i
dx

(3.4a)

(3.4b)
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while, for the righ t-hand side — where b o th  liciuid flux and gas velocity now 

flow in the  direction of decreasing x  — we have

W hen describing foam fractionation, we will present results scaled by the con­

stan ts  Cl and 0-2 (introduced in Section 2.2). This allows meaningful com parison 

between foams th a t may have largely different physical and chemical characteris­

tics, sim ply by calculating these constan ts and scaling appropriately. The reader 

may also apply our results to  a system  of interest in a similar m anner. In this 

C hapter, we use the  following (fairly typical) values for the param eters th a t make 

up Cl and  C2 '. rj =  0.001 Pa s, 7 =  0.05 N m, p = 1000kg m “ '̂ , and V;, w 4 x 10“  ̂m^, 

giving Cl «  3.2 x 10“  ̂m s“  ̂ and C2  ~  4.7 x 10“'"’ ni^ s“ ^ This gives a value for 

C2 /C 1 ~  1.47 X 10“  ̂m.

\M iile our num erical results are presented in term s of these units, it can be 

helpful to  have a feel for the sizes of the  fractionation colunms involved. Unless 

otherw ise noted, the  sim ulated columns have leg lengths between 10 cm and 1 m, 

and are driven w ith gas velocities between approxim ately 1 m m  s“  ̂ and 25 mm s~^ 

E xperim ental appara tu s will be described in the apjiropriate sections.

W hen deriving an analytic theory, we neglect the  effect of a flnite bend, instead 

assum ing th a t liquid fraction m ay be equated a t the top  of the two columns. This 

approxim ation  will be exam ined by sim ulation in an appropria te regime of flow

- J  =  4>r{-V -  CiCpr) -  C a ^ y ^ ^
ax

^  = +  4>rV -  j ) . (3.5b)

(3.5a)
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param eters (see Section 3.2.4) by numerically in tegrating over the entire column, 

including the bend. A brief analysis of the expected error from this assum ption 

can be found in Section C .l.

Keeping these approxim ations in mind, the boundary  conditions for the  U -tube 

model are therefore taken  to  be

(t)i{L) = (pr{L) (3.6)

and

0,(0) =  0 .(0 ) =  0c =  0.36, (3.7)

where 0c is, as before, th e  critical liquid fraction commonly taken for the liquid 

fraction at the liquid interface [5]. The key results are insensitive to  th is precise 

value.

3.2 ,2  A nalysis  o f  th e  lim iting  case: L ^  oo

We begin our analysis of the  problem  posed in the  previous section by considering 

the lim iting case of infinitely long legs, i.e., where L —>■ c x d . W orking in such a limit 

will allow some sim plifications to  be made, allowing im portan t lim iting results to  

be derived.

We take the gas velocity V  to be fixed, and take the liquid flux J  to  be variable. 

D eterm ining the relationship  between V  and J  i.e., J{V)  — will be one of our 

first objectives. It is intuitively obvious th a t the  flux J  will be dependent on the 

leg length L, although we will first consider only the lim iting infinite leg case.
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We shall show tha t,  in this limit, and with the above boundary  conditions,

1/2
=  (3.8)

4ci

which is the value for which the  expression in parentheses in Equation 3.4b has 

two coincident roots for 0 ;.

The roots in question for Ec^uation 3.4b are

V ±
01,2 — ---------- ^ , (3.9)

2ci

while the corresponding roots for Equation 3.5b are

- V ± ^ V ^  + Ac,J
---------------■ (3.10)

2ci

All of these roots, w'hen real, are significant for being constant-i)rofile solutions. 

Since these do not fit the boundary conditions, such solutions are not used directly 

here. On the right-hand side, only 03 is positive and, therefore, 04 is largely 

irrelevant (as negative liciTiid fraction is not physically meaningful).

We integrate Ecjuation 3.5b to obtain

^  _  C2 ^ r d ( t ) r

C] J ( p ^ { 0 )  i ^ r  ~  03)(0r ~ 04)

The integral in Ecjuation 3.11 must diverge as L —)• oc, and this requires 

4>r{L) —>■ 03- This further implies (from Equation 3.6) tha t 0;(L) 03. In this

way, the  right leg sets an approximate boundary condition for consideration of the 

left-hand leg.
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Again, we will have vise for the integrated form (of Equation 3.4b)

Cl { 4̂1 — 0 l ) ( 0 /  “  0 2 )/J <f),
(3.12)

Consider the case J  < Jq, for which the roots 0i and 02 are real. By the same 

argument as given above, we require (pi{L) —)• 0i. But there is no finite value of 

,7 in this range for which 0i =  03, as required by Equation 3.6, hence no such 

sohition is possible.

We now' tu rn  to the case J  >  Jq, for which 0 i  and 02 are complex. For any 

given J  m this range, the denominator in Ecjuation 3.12 has a minimum (finite) 

value and, hence, the integral in Equation 3.12 cannot diverge.

The remaining possibility is tha t J  —> Jq as L —> ex;. The integral

is indeed divergent, as recjuired. Thus, Equation 3.8 nuist hold in the limiting 

case.

All of this may be seen more clearly by examining the immerical solutions 

(sec Section 3.2.4), but a formal derivation such as the above is desirable. T hat 

derivation becomes apparent when the nature of the approach to the limit of 

infinite L  is analysed, finding the a])i)ropriate asymptotic form for J{L)  using the 

above integrals.

(Alternatively, there exist analytic solutions of Equation 3.12 and Equation 3.11. 

The full derivations are protracted and can be found in Appendix B.)

(3.13)



52 Chapter 3. Foam Fractionation

We now note a subtle feature of these solutions which may cause concern. For 

J  =  Jo, (pi —>■ 01 (=  02) as X —>■ oo. How can this be compatible with the boundary 

condition (Ecjuation 3.6), since 0i 7̂  03?

We may resolve this apparent paradox by noting that, for any finite large L, 

the liquid flux may be expressed by

J  = Jq (3.14)

where e is small and results from the effects of finite leg lengths.

There is only an apparent asymptote at 0i(Jo), eventually crossed by the solu­

tion, which then decreases to the reciuired value, close to 03. Figure 3.2 illustrates 

this behaviour clearly using numerical solutions for the liquid fraction profile of 

the left leg. For J  < Jq this inflection does not exist, confirming that no solution 

can exist. The existence of the inflection was also discussed by Xeethling et al. 

[44]. The basic J  =  Jo condition has been identified in various forms by other 

recent authors (and there is also at least one nnich older statem ent by Desai 

and Kumar [47])— on this same subject, but the effect of the finite leg sizes (con­

tained in e) has not yet been analysed. \ \^  will examine this leg dependence in 

Section 3.3.2.

For large L, 0 is close to 03 in most of the right-hand tube and we may define 

the corresponding liquid velocity there as

(3.15)
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F ig u r e  3.2: As f 0. the length of the left leg L\ —)• oc. The graphed solutions 
are for the left leg. except where indicated otherwise. The predicted ap­
parent asymptotic behaviour is clear, especially in the smallest e value 
solution. The curves here are solutions of Equation 3.4b for the left leg 
and Equation 3.5b for the right. Length is presented in units of C2 /C1 . 
The lif}uid fluxes are provided in terms of ci and are J q  ~  8.4ci x 1 0 “ .̂ 
fi «  1.7ci X 10-2. f2 «  1.7ci X l()-3. and 63 ss 1.7ci x lQ-1

This enables ns to arrive at the simple result

v = ( 2 { y / 2 - l ) ^  ~  1.207K (3.16)

relating gas and licjuid velocities in the right-hand leg.

This is a somewhat surprising result, in that the two velocities are related by a 

numerical constant. It is not inevitable on purely dimensional grounds, since the
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theory contains a param eter (ci) which has the dimension of a velocity. A similar 

argument holds for the left leg, where J  =  v/(})\. This leads to a liquid velocity 

of i; =  V/2.  A similar result was presented by Neethling et al. [44] who derived 

it for an overflowing single leg cohurm, taking the limit wdiere the height of the 

overflowing foam section (i.e., how far the overflowing foam extends past the exit 

of the tube) tends to zero.

3.2.3 G eneralisation of the infinite leg power law

W'e will take a step towards practical reality by generalising the pow^er-law (which 

has often been empirically adjusted to describe particular surfactant systems [48]) 

at the heart of the equation.

We first modify Ecjuation 3.4a by replacing the explicitly cjuadratic term with 

an exponent r; (and changing the other terms as needed). The value of the ex­

ponent n is related to the prevailing dissipation mechanism for the flow of liciuid 

through the foam, as discussed in Chapter 2. Our drainage model is based on 

channel-dominated drainage theory, leading to r? =  2 [23]. The alternative dissi­

pation mechanism of purely node-dominated drainage results in r? =  3/2  [24]. In 

practice, n is often foimd from experiments and dej)ends on the surfactant used. 

n has been found to take values varying from 1.92 to 2.29 for surfactants giv­

ing rise to more-or-less rigid interfaces (chamiel-dominated drainage) [48, 49], and 

1.56 to 1.64 for surfactants with more-or-less mobile interfaces (node-dominated 

drainage) [24, 49].
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The modified form of Equation 3.4a is

(3.17)

where bi and 62 are constants (equal to C] and C2 respectively for n = 2). A 

similar modification may be made to the equations for the right leg. We begin by 

identifying constant profile solutions of the equation for the left-hand column, i.e., 

solutions for d(j)/dx =  0 , which have the form

where bi is a constant containing physical param eters and n >  1 (note that 

61 =  Cl if n =  2 , as it is in our model).

As before, we require coincident roots of this ecjuation (for (pi) as a condition 

for a matched solution in the limit L —>• oc. A full analytical formulation for 

the solution itself is not available in the general case, but is unnecessary in what 

follows.

The generalised results for J  and v obtained from this condition are

(3.18)

(3.19)

and

V = k{n)V, (3.20)

where, again, k is a numerical constant dependent on the value of n.
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Figure 3.3: The dependence of liquid velocity v is proportional to the ga.s velocity V" 
as V = k{n)V. where n is the exponent chosen for the power law at the 
heart of the drainage equation. The constant of proportionality k{n) is 
a diniensionless number given by Equation 3.21. For the node-dominated 
drainage model (fully mobile interfaces) n = 3/2 [24]. For the channel- 
dominated drainage model (rigid interfaces), as used in the main body of 
this article, n = 2.

Thus, in the general case, the (luadratic form for J{V)  is lost biit v remains 

proportional to V.  The constant of proportionaUty k{n) is given by



3.2. A model system for foam fractionation 57

where the constant d{n)  is the real positive root of

rf" +  d -  (n -  1) =  0 . (3.22)

The form of k{n)  can be seen in Figure 3.3.

3.2,4 Num erical illustration

In order to  validate and illustrate the analytical results discussed above, we will 

compare them  with mmierical simulations.

The Foam Drainage Ecjuation (FDE) in its appropria te  form is now solved for 

the entire U-tube, including a finite semicircular bend (a case for which there is 

no analytical equivalent).

The U-tube can then  be thought of as a one-chmensional system, with the 

relevant component of gravity acting downwards in the left (input) leg of length 

L,  u])wards in the right leg (also of length L)  and varying in the bend of length 

D.  W’e thus write the (stationary) drainage equation for lifiuid fraction 0  as a 

function of the new position variable 2 :

The function g{z)  represents the variation of gravity and is dehned piecewise

as

J  =  0 ( y  -  Ci^(2)0) -  — .
dz

(3.23)

+  1

i { L < z < L  + B

- 1 if L + B  < z < 2L + B .
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In more physical terms this one-ciimensional model implies tha t the liciuid frac­

tion across a cross-section of the tube will be homogenous. How'ever, in a real 

foam inhoniogeneities will arise in the bend as gravity no longer acts parallel to 

the fiow direction (indeed, at the top of the bend gravity will be perpendicular to 

the flow). This can lead to the formation of a liquid bounciary layer at the bot­

tom  of the bend walls, and this “hold-up” of liquid will cause a reduction in the 

liquid fraction in the right/outflow leg w'hen compared to theoretical predictions, 

w'ith the size of the (liscrei)ancy dependent primarily on the geometry of the bend 

section (i.e., how much liquid can pool on the bend surface). Modeling the effects 

of this non-uniformity will not be imdertaken in this work.

The boundary conditions are set as before i.e., both ends of the tube are in 

contact with a hquid reservoir — (p{z =  0) =  4>{z = 2L + B)  = (po = 0.3G.

We require pairs of (V, J )  tha t lead to a licjuid profile consistent with these 

boundary conditions. Fixing \ ' and integrating from left to right, starting from 

00 =  0.36, we use standard fitting techniques to determine the value of J  for which 

the right-hand boundary condition is satisfied as well. This fitting of J  is carried 

out using the MIGRAD minimiser from CERN’s MINUIT software [50]. For more 

information on this software, see Ai)pendix D.3. The integration is performed using 

Heun’s method (explicit improved Euler method) [51]. This method is simple to 

implement and allowed rapid iteration on the numerical models which allowed 

more complete exploration of the problem space. Results from these integrations 

were tested against solutions calculated using M athematica to ensure their validity.

In this way, we find the vahd pairs of (V, J)  for a given U-tube setup (e.g., leg 

length, bend radius, physical param eters of the surfactant solution). Results from 

these simulations are presented in Figures 3.4, 3.5 and 3.6.
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Figure 3.4 shows a nTmierical computation of a full liquid profile for a U-tube 

system with a ratio of bend to leg length of 5/8, i.e., very similar to that used in 

some of our experiments (see Section 3.2.5). Note that the profile includes a full 

treatment of the bend, and that the bend and both legs have finite length. The 

analytic constant profile solutions for the left and right legs (Equations B.3 and 

B.5 respectively) are also plotted, highlighting the key difference in the left leg - - 

the presence of an inflection point.

Figures 3.5 and 3.6 show, respectively, the variation of the liciuid flux ,7 with 

the gas velocity V and the variation of the liquid velocity v with the gas velocity 

V.  for a U-tube system with ratio of bend length to leg length of 1/4. Despite 

the flnite system dimensions in the simulations, the analytical predictions made 

l)y Equations 3.8 and 3.16 for the limit of infinite legs and zero bend radius are 

found to be in excellent agreement. Section C.l gives a quantitative estimate of 

the effect of finite bend radius.
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L B = JtR R
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F ig u re  3.4: A numerical computation of a liquid profile for a U-tube system with bend 
to leg length ratio (5/8) very similar to that used in our experiments (see 
Section 3.2.5). Note tha t the profile includes a full treatment of the bend, 
and that the bend and both legs have finite length. The analytic constant- 
profile solutions for the left and right legs (Equations B.2 and B.5. respec­
tively) are also plotted, highlighting the key difference in the left leg due 
to finite leg length — the presence of an inflection point.
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F i g u r e  3 .5 : T h e analy tic  p red ic tion  given in E quation  3.8 for th e  re la tionsh ip  betw een 
liquid flux and  gas velocity - -  J  =  y ^ /4 c i  (solid line) — shows excellent 
agreem ent w ith  values ca lcu la ted  from  m uuerical solutions of E q u atio n s 3.4 
and  3.5 (po in ts). T h e  m ethod  used to  ca lcu late  these values is described 
in Section 3.2.4. N ote th a t  th e  ana ly tica l p rediction is m ade for th e  lim it 
of infinite leg leng th  and  zero bend  length, while th e  sim ulations carried  
ou t used a tu b e  w ith  ra tio  of bend  length  to  leg length  of 1 /4  (w ith  leg 
length  L ^  1 4 ^ ) .
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F ig u re  3.6: Equation 3.16 predicts a linear dei^endence of liqiiid velocity v on gas veloc­
ity V.  As in Figure 3.5. simulation results (points) and analytic predictions 
(solid line) match extremely vî ell. Note that the analytical prediction is 
made for the limit of infinite leg length and zero bend length, while the 
simulations carried out used a tube with ratio of bend length to leg length 
of 1/4 (with leg length L «  14§^).
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3.2 .5  E x p er im en ts

(The author would like to thank A rthur M arguerite and Aaron Meagher for ex­

perimental support for this section).

Experiments were undertaken to test some of the key predictions made by the 

theory described above, which can be summarised as follows:

1. The ratio of the liquid fractions in the legs (measured sufficiently far from the 

liquid reservoirs) is approximately constant, and given by 0 i/0 s  =  — 

1) ~  2.4142 for rigid interfaces (by substituting Equation 3.8 into Ecjua- 

tions 3.9 and 3.10) and by a different constant in other cases.

2. Equation 3.19 predicts that the dependence of lifiuid flux J  on gas velocity 

V  is a power law. Again the power law exi)onent u is dependent on the 

surfactant used (i.e., if the foam has mobile or rigid interfaces).

3. The dependence of the liciuid velocity v on the gas velocity V  is jjredicted 

by Equation 3.20 to be linear, with slope dei)endent on ri.

The design of the experiments allowed us to check all three predictions. U- 

tube setups of the tyj)e shown in Figure 3.1 were assembled, w ith internal tube 

diameters of 5.8 mm and 15.7nnn. The lengths of the tube legs used were between 

0.4m  and 0.64m (for a to tal system length of 1.0m to 1.7m).

Foams were ])roduced from aqueous solutions of sodium dodecyl sulfate (SDS) 

and Fairy Liquid (a commercial detergent), with concentrations above the crit­

ical micelle concentration (CMC). As SDS solutions are often unstable in light 

(releasing dodecanol into solution, which in turn  leads to changes in the surface
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m obihty), fresh batches of the  surfactant were produced regularly to  minimise this 

effect. For the  SDS experim ents presented here, the solution was freshly prepared 

every other day and the  experim ents were carried out as close to  the  i)reparation 

tim e as possible to  ensure consistency between runs.

Gas was blown th rough  a ceramic filter, resulting in a polydisperse foam flow­

ing through the  tube  (average bubble diam eter approxim ately 1 .0 mm). Once the 

foam had filled the entire tube, and the gas velocity had  reached a steady state, 

experim ental m easurem ents were taken. For the  surfactan t mix used in our ex­

perim ents, the  foam param eters were as follows: r/ =  0.001 Pa s, 7  =  0.032 N m, p  =  

1000 kg ni~^, and  ~  5.4 x 10“ °̂ n r \  For these values, we get Ci ~  8 x 10“ '' m s“  ̂

and ('2 1.5 x 10” '̂  m^

O ur analytical model of fractionation does not consider the  effect of variations 

in bubble volume in space or time. In real-world foams, bubble volumes will 

change due to  coarsening and coalescence (although the effect of coarsening can 

be slowed using non-diffusing gases such as perfluorohexane [14]), and this variation 

may account for a t least some of the  discrei)ancies observed between prelim inary 

expt'rinients and  our model. M easurem ents taken during our experim ents suggest 

a variation in bubble size of up to  1 .2 Vb in the  worst case (i.e., the  lowest gas 

velocity and hence the  highest residence tim e spent by bubbles in the U -tube). 

Higher gas velocities reduce this tim e, and therefore lessen the effect of coarsening. 

No rup tu res were observed throughout the experim ents.

Gas velocity was m easured by visually tracking individual bubbles in the foam. 

Liquid velocity was m easured by adding fluorescein (a fluorescent dye) to  the 

surfactan t solution in the  left reservoir (see Figure 3.1) and tracking the moving 

front using UV lighting. Liquid flux was m easured by collecting the  outflowing
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foam in a beaker and measuring the mass of liquid collected over time to infer a 

liquid volume flow rate Q. The liquid flux is then simply J  = Q/ A  where A is 

the cross-sectional area of the tube. Liquid fraction was estimated (to within a 

constant) from the thickness dpB of a Plateau border at the tube surface. Liquid 

fraction should be proportional to the square of this quantity, at least in the dry 

limit. We simply measured dps  in both legs, and took the squared ratio of these 

values as an approximate measure of the ratio of the corresponding liquid fractions.

Results from our experimental measurements can be seen in Figures 3.7 and 3.8. 

Figure 3.7 shows the relationship between the gas velocity V  and the liquid flux 

J . The data is very well described by a power-law fit to Equation 3.19, with 

exponent = 2.3 ±  0.2. This corresponds to a value of n =  L80 ±  0.15. Fairy 

Liquid has been associated with fairly rigid interfaces (i.e., n ^  2) in previous 

foam drainage experiments [25. 28]. so the theoretical expectation is approximately 

realised. It would be interesting to repeat these experiments in combination with 

other drainage experiments that more directly determine n.

Figure 3.8 shows the dependence of the licjuid velocity v on the gas velocity V.  

Again, the general theoretical prediction {v =  k{n)V)  is verified, with a linear fit 

describing the data w'ell. The fitted slope is k =  1.23 ±  0.07. From Figure 3.3 we 

can see that this slope corresponds to a value of n =  2.0 ±  0.4, consistent with the 

value from the J{V)  relation.

Measurements for the Plateau border thickness were taken approximately halfway 

u]) each tube leg (see Figure 3.4 for a numerical calculation of a full liquid fraction 

profile, noting the non-constant (p in the left leg) for an SDS foam. Multiple mea­

surements were taken and averaged, giving 0i/03 = 2.5 ±0.5. The relatively large 

error in this measurement is larger than the variation in the left-leg liquid fraction
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F ig u r e  3 .7: Experimentally determined variation of licjuid flux J  (in a U-tube with in­
ternal diameter 15.7 mm and leg length 0.64 m) as a fimction of gas velocity 
V̂  The foam was produced from an aqueous .solution of the commercial de­
tergent ‘Fairy Liquid’. The solid line shows a fitted j)ower law (as predicted 
by Equation 3.19) with exponent =  2.3 ±  0.2.

(Figure 3.4), thus the precise point at which the measurements were taken is of 

hmited influence. The theoretical prediction for this value is l / { \ / 2 — 1) w 2.4142 

as outlined above, assuming n = 2.

In summary, we find general agreement betw'een theory and experiment on 

points 1-3 above. However, the value of the power-law index n that was inferred 

w'as not in accord with expectations for the surfactant used (i.e., SDS-stabilised 

foams have been observed to have high surface mobility [52], and as such would 

tend to be better described by node-dominated drainage).
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F ig u re  3 .8 : Experim entally cietermined variation of liciuid velocity x’ (in a U -tube with 
internal diam eter 15.7 nnn and leg length 0.64 m) as a function of gas veloc­
ity V . The foam was produced from an aqueous solution of the commercial 
detergent ‘Fairy Licjuid’. The solid line shows a linear fit (as predicted by 
Eciuatiou 3.20). with slope 1.23 ± 0 .07 . This slope corresponds to  a power- 
law exponent of n = 2.0 ±  0.4 (see Figure 3.3).

3.3 Perform ance m etrics for th e  U -tu b e  

fractionation  colum n

Performance in a fractionation cohunn can be considered in terms of enrichment 

(the ratio of concentration between the solution at the end of the column and the 

feed at the start) or recovery (the fraction of the desired product tha t is recovered 

from the outflowing foam).
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As an iUustrative example of how the analytic models outlined in previous sec­

tions may be ai)plied to column performance, we will look at the recovery perfor­

mance of the U-tube, which may be considered to be the incTease in concentration 

between the input reservoir and the collected outflowing foam. As our model does 

not include chemical concentrations, we will use an approximation for the recovery.

Let us aim to increase the concentration of the sin'face-active components in 

the outflow. The amount of surface-active molecules that are carried through the 

colunm will be related to the available area of film surfaces and, therefore, to the 

gas velocity V  (as increasing the gas velocity will cause more bubbles to move 

through the column and, hence, more surface-attached molecules). However, the 

foam has a finite licjuid fraction and, thus, liquid that does not contain much of the 

components to be concentrated will also be carried through the column, reducing 

the outflow concentration. We can therefore construct a simple proxy for the 

recovery performance of the column - the ratio of I" (representing the amount 

of surface-active components carried through the cohmm) to J  (rejjresenting the 

other components carried through):

I" y
(3.24)

J ( L )  J„  +  ( ( L ) 2 -

Our use of V  to represent the proportion of surface active components car­

ried through the foam hinges on two assumptions (both of note in experimental 

systems). The bubbles must spend enough time in the liquid reservoir to reach 

equilibrium with the surfactant solution (i.e., adsorption processes reach an equi­

librium). This will depend on the specific chemical make-up of the foam system 

under consideration and, due to the time-dependent nature of the process, cannot
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easily be quantified in our existing model. We also assume that the surfactant con­

centration in the solution is not majorly impacted by the gas flow rate V  (i.e., the 

depletion effect can be ignored). Again, this will depend on the precise chemistry 

of the solutions being used. If these assmnptions are not true then the amount 

of surfactant per surface area will decrease as the gas velocity increases, leading 

to a more complicated relationship between V  and the aniomit of surface-active 

components carried through the colunm (as the total amount will still increase, 

but at a lower rate as V  increases).

In order to compute this metric, we will need to derive the dependence of 

fiux on finite inflow leg length, e{L). In our analytic model of fractionation, the 

behaviour of the inflow leg is deflned in part by a top boundary condition, set in 

the finite case by the outflow (right) leg. Therefore, we first turn our attention to 

finite size effects in the right leg.

3.3.1 L im iting behaviour o f  liquid fraction in th e  right leg

In order to fix an up])er boundary condition for the top of the left leg, we first 

consider the right leg. The e(juation for the variation of liquid fraction is

(3.25)

Writing J  = Jq + (with Jq = F^/4ci), we obtain

dcpr

dx
(3.26)
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Here, 03 and 04 represent the roots of the expression in parentheses in Equa­

tion 3.25, and are:

03  =  (3.27)
2ci

04  =  (3.28)
2ci

hi the hmit of infinite leg lengths, 0r —)■ 0s as x —>■ cxd. For large enough leg

length Lr, we may assume A 0 =  (0^ — 0s) is small, as 0^ asym ptotes to this value,

and we can therefore approximate Equation 3.26 by

f/A0 Cl (03 -  0 4 ) ^ ^  OOA

neglecting terms of order e .̂ Then

^  + V 2  (3 30)
ax \  C2 J

Accordingly, A 0 decreases exponentially with height x and we can write a 

decay length as
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Therefore, by increasing leg length from L,i to 2Ld the liquid fraction is de­

creased by a factor 1/e. The error in this length is of order e .̂ For ^  this 

implies tha t, at the top of the leg.

and tha t, for such a case, it would be a good approximation to take (f>r — 

therefore fixing the boundary condition for the top of the left leg at the same

solution and the simple exponential may be seen in Figure 3.9.

W ith an ap])roach to defining upj^er boiuidary conditions for the finite-leg U- 

tube, we can tu rn  our attention back to the left leg.

3.3 .2  F in ite  size effects o f  th e  left leg

Our next step in calculating the performance metric is to determine f(L/), i.e., 

to (juantify the effect of fim ie length for the left leg of the inverted U-tube. As 

discussed in Section 3.3.1, the length of the right-hand (output) tube Lr has a 

relatively small effect on the boundary conditions of the U-tube above a certain 

threshold length, given by Equation 3.31. As such, provided Lr is set to a suf­

ficiently large value, L; dictates the nature of e. The effect of finite length is to 

increase J  from the minimum value Jq, as shown in Equation 3.33.

(3.32)

value tha t was found for the limit of infinite legs. A comparison of a full numerical

J[Li) =  Jo +  t { L , f . (3.33)
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0.4
R igh t  leg  profile  (n u m e r ic a l )  

e x p (L /L d )  +  4)3
0.35

0.3

co 0.25
o
CO

0.2

0.15

0.05

0 2 6 8 10 124
H e ig h t  (un i ts  Cj/C,)

F ig u re  3.9: A niunerical solution for the licjuid profile in the right leg (solid line) is 
compared to the exponential model given in Ecjuation 3.32 (dashed line). 
The exponentially decaying curve tracks th(> numerical solution well, and 
both curves tend to (p̂ . as expected, over api)roximately the same distance.

This increase in J  leads to  a decrease in efficiency as more dilu te solution is 

carried through the  U-tube. 

We can define an integral for the  leg length based on E quation 3.4 (using the 

liquid flux given in Ecjuation 3.33):
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After setting the bounds of integration to appropriate vahies and solving (with 

some assumptions, discussed in Appendix C.2), we arrive at an asymptotic expres­

sion for Lf.

Li = (3.35)

where

7T C.2 

V 2ci 
2 C2

/^2  -------T x " ” ’
v / 0 c C i

ami ,,3 =

A comjilete derivation of this resuh may be found in Apjiendix C.2. Rearrang­

ing the relation in terms of ({Li),  we arrive at an equation describing the effect of 

left leg length on licjuid flux;

, ( t , )  =  ^  . (3.36)

From these equations, w'e can see that e(L/) oc 1/L; (to first order) - -  increasing 

Li  will decrease e(L/), w ith e(L/) —>■ 0 as L/ —>• cxd. Eciuation 3.33 may be compared 

to nmnerical solutions. This is shown in Figure 3.10, with good agreement over a 

wide range of Lj.
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Sim ulation  
Infinite length limit (Jn) 

J{L) theory
D evia tion  (percent)2 .7 0

4 .0
3 .5
3 .0
2 .5
2.0b  2 .6 0

X

5 .0
0.02 .5 0c 0 .0 30.01 0.02 

1/L| (units C1 /C2 )

2 .4 0
"D

cr

2 .3 0

2.20
0.02 0 .0 2 5 0 .0 30 0 0 0 5 0.01 0 .0 1 5

1/L| (units c^/cg)

F ig u r e  3 .1 0 : L iq u id  flu x  J  increases ais the  le ft leg len g th  L ; is decreased (as p red ic ted  
by th e o ry ), thus  decreasing the  e ffic iency o f the  fra c tio n a tio n  process. 
T he  a n a ly tic  resu lts  fo r J ( L / ) .  g iven by E q u a tio n  3.33 (w ith  e{Li) .  set by 
E q u a tio n  3.36). show good agreem ent fo r a w ide  range o f L /. w ith  devia ­
tio ns  from  the  num erica l resu lts  o n ly  becom ing s ign ifican t fo r legs sho rte r 
th a n  a p p ro x im a te ly  IOOC2 /C 1 . T h e  inset shows the  re la tive  d iffe rence (in  
percentage) between num erica l resu lts  and the  th e o re tica l p re d ic tio n .

We iiiay also explore the behaviour of e{Li )  nvunerically. Fixing the gas velocity 

V , we set J  =  Jo +  for some and integrate the fiux ecjuation (Equation 3.4). 

We then take the point at which the liquid fraction 0  =  03 to be the leg length 

L;(ei), as this is the value of the liquid fraction at the top of the right leg (see 

Section 3.3.1 for the origin of 03  in this context).
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F ig u re  3.11: As f —> 0. the length of tlie left leg L/ —> oc (taking the length of the leg to 
i)e the height where (}> = 4>̂ ). The figure shows numerical results for L(e^) 
on a log-log plot. The slope of — ̂  corresponds to L oc as predicted 
by Equation 3.35 for finite values of V  (in this case. V =  0.12ci).

We can use this method to see how L;(e,) —>■ oc as e* —>• 0, shown in Fig­

ure 3.11. The figure shows (on a log-log plot) the shape of L{e^). As predicted by 

Ecjuation 3.35, we observe a slope of — corresponding to Z oc .

Figure 3.2 shows the variation of the left leg liquid fraction profiles with e, 

and tha t decreasing e brings the finite leg solution closer to the infinite leg result, 

J{L)  = Jo (as predicted).
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V (u ni t s  Cl)
0.0 0.1 0 2 0.3

l o g ( V /J )

5 0  L ( u n i t s  C2/C ,)

F ig u re  3 .12 ; Our metric of efficiency as given by Equation 3.24 - V j  J  — is inversely 
proportional to gas velocity V  (as J  oc V^)  and proportional to leg length  
L/.  P lotting with a logarithmic z-axis shows how efhciency can be dra­
m atically increased l)y decreasing V".

3.3 .3  R esu lts  for p erform an ce m etrics

As discussed above, the performance of the U-tube fractionation colunm will de­

pend on both the gas velocity and the length of the inflow leg L/. Plotting Equa­

tion 3.24 (substituting Equations 3.33 and 3.36), and using the same physical 

param eters previously discussed, gives us Figure 3.12.

Figure 3.12 contains a lot of usefid information about our metric of efficiency. 

Firstly, reducing gas velocity V  increases efficiency. Secondly, for any given V,  

reducing Li can lead to large performance drops. This can be seen more clearly in 

Figure 3.f3.

These figures allow us to make the following recommendations for fractionation 

column operation: firstly, the gas velocity V  should be reduced as much as possible 

(taking into account desired output rates and physical limitations of the foam);
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F ig u r e  3 .1 3 : F ixing V  lets us see th e  d ram a tic  effect varying L/ can liave on per­
form ance. T he m axim um  perform ance occurs in th e  infinite leg limit 
(w here J  — Jq). shown along w ith  a line ind icating  90% of theo re tical 
m axim um  j)erform ance. R educing th e  leg length  below apj)roxim ately  
l()()c2 /c i  leads to  a d rastic  d rop  in perform ance from th e  theo re tical m ax- 
iiiuun.

and, secondly, the length of the inflow leg L/ should be chosen carefully to ensure 

that operation is (for example) in the 95% regime or better. There may of course 

exist physical lim itations on gas velocity and column size in real fractionation 

cohmms.
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3.4 A lternate fractionation columns

3.4.1 Fractionation colum n com ponents —  the skim m er

Wliile we have had success in our analysis of the U-tube, we have not yet gener­

alised our approach to other types of fractionation columns. Any real industrial 

process will likely diverge from our idealised model and, as such, it is worthwhile 

to attemjit to analyse a very different column in the same manner.

In certain fractionation applications, a further goal is to remove the surface- 

active components of the liquid phase as quickly as possible (for example, removing 

excess proteins from aquaria). In those cases, “skimmers” are often employed. 

These devices collapse and remove foam from the tO]) of a straight column and, with 

the foam, licjuid which is rich in surface-active molecules. A schematic showing a 

column with a skinnner can be seen in Figure 3.14.

We will now consider the case in which a skimmer provides the boundary 

condition at the top of a single vertical column. The skinuner removes foam, and 

with it liquid, at some rate Jg =  (ptV, where V  is gas velocity and is the liquid 

fraction at the top of the cohunn. Conservation of mass then gives

J s =  c!>tV =  4>tVi, (3.37)

where Jg is the flux resulting from the action of the skimmer and vi is the liquid 

velocity at the top of the colunm. V[ = V at the top.
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 >
S k im m ed  foam  
( c o n t in u o u s  flux)

Liquid velocity  V 

G a s  velocity  V

Gas (sparging)
 >►

F igure 3.14: The skimmer removes liquid from the toj) of the column at a coiistaut 
rate (by collapsing the foam). There is therefore a finite liquid flux Jg- 
which must equal J{V)  at the skimmer. This allows us to define a top 
boundary condition for the skinnner-variant column.

The a])propriate boundary condition is therefore

*  =  (3-38)

We will proceed to calculate Jg in the same manner as before. We first de­

termine the infinite leg solution, then add corrections for the effect of finite leg 

length.

In the infinite leg Hmit, Jg = Jq (see Appendix C.3). The arguments for J  =  Jo 

in the left leg of the full U-tube model hold again here. Then, considering a finite 

leg length L, we will have a liquid flux of the form Js(L )  =  Jq +  as before

(the form of (s{L) is different from the U-tube case, and will be outlined below^).
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0/ can, therefore, be w ritten  as

(3.39)

In the hm it of infinite leg length, the  left leg of the  U -tube and the  skimm er

by the  bend and skim m er respectively). T he asym ptotic value for licjuid fraction 

is therefore =  Vj2ci  (as J  = J q in the  infinite hm it). This implies th a t the 

liciuid fraction at th e  skinnner (pt is half the  asym ptotic value, as

This agrees w ith previous work by Neethling et al. [44], who noted this relation 

for overflowing single colunms. Figure 3.15 shows a numerically solved liquid 

fraction profile for a single colum n w ith  skinnner in which (pi =  4>i/2 may be seen.

We can derive a fornmla for Li{V),  following the  same procedure outlined in 

Section 3.3.2 and Apj^endix C.2. We arrive at an exj^ression w’ith  a sinular form 

to  th a t in E quation 3.35, as follows;

where /xj and fi2 are th e  same as in the U -tube, as only th e  top  boundary  

condition has changed. The last te rm  (//a in the U -tube) does depend on the

colunm  share the  sam e solution (as we neglect the upper boundary  conditions set

Li —  ̂ +  1-12 + (3.41)



3.4. A lte rn a te  fra c tio n a tio n  co lum ns 81

0.4

0.35

0.3

co 0.25
o
03

0.2
• g

cr 0.15— I

0.05

50 100 150 2000
Distance from skimmer (units Cj/Ci)

F ig u re  3 .15 : A  m nnerical soh ition  for a frac tiona tion  colum n inc lud ing  a skim m er 
(solid line). The boundary cond ition  at the top  o f the colunui (i.e.. the 
left-m ost side) where the foam contacts the skim m er is given by Equa­
tion  3.38. The bo ttom  boundary cond ition  requires the liq u id  fraction  
to  go to  (pc — 0.36 where the foam contacts the liqu id  reservoir. The 
re la tion ((>( =  <p\/2 can clearly be seen here (dashed lines). For the values 
o f Cl and C2 used in our sim ulations (see Section 3.2.1). the length o f the 
skinnner cohnnn is found to  be 30 cm.

to p  b o u n d a ry  c o n d itio n , w h ich  changes fro m  4>i{L) =  0s (fo r the  fu l l U -tu b e ) to  

(pi{L) — (f)t. I t  thus  changes to  ^/4 , g iven by:
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A full derivation may be found in Appendix C.3. From here, we follow the 

same procedure as used for the U-tvibe — solving Ecjuation 3.41 for — leading 

to Equation 3.43 as follows:

^s{Li) =  ^
W e can then calculate a similar metric of efficiency for the skinuner, in this case 

V/Js-  Figure 3.16 shows nmnerical solutions for the skinuner column, along with 

theoretical predictions for Js{L) (following from Equation 3.41, as in the U-tube 

set-up). Good agreement can be seen over a wide range of leg lengths L.
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F ig u r e  3 .16 : Analytic and numerical results for the skinnner system  show good agree­
ment over a wide range of leg lengths. D eviations from the numerical 
results become more significant as the legs becom e shorter (i.e.. as the 
assumptions made in the derivation of the theory exert a larger inlluence; 
see Appendix C.2). The inset shows the relative difference (in percentage) 
b('tween nmnerical results and the theoretical prediction.

3.4.2 A nalysing fractionation m odes using forced 

drainage

Throughout this work we have looked only at the so-called ‘simple’ mode of frac­

tionation [38], with no liciuid feed independent of the main solution reservoir. 

However, some fractionation columns incorporate a solution feed into the colinnn 

(analogous to forced drainage experiments). Such designs aim to ensure that all 

the surface-active components fully adsorb on to the bubble surfaces, increasing
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(j) =  (p A

J  — J  Jin 
Gas velocity V

0  ~  0c

F igure 3.17: Modelling stripping and enriching mode requires the consideration of ex­
tra  flux term s to  represent liquid added through the elevated feed. Note 
th a t for large enough Jj„. J '  is negative. In real fractionation columns, 
there may be one or more such feeds and. in some cases, the output of 
the column is added back (in what is term ed ‘reflux’). Such modifications 
aim to  improve the performance of the fractionation process.

the  enrichm ent perform ance of the  column. An exam ple is shown in schematic 

form in Figure 3.17.

This may be analysed in a straightforw ard m anner, building off the  preceding 

results for the  simple U -tube which apply above the ])oint a t which the  additional 

liquid is introduced. We assum e L 2 (the length of the  leg segment above the  liquid 

addition) is large enough to  take J  =  Jq, as discussed in Section 3.3.2.
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We may m odel th e  left (inflow) leg of such a column using numerical solutions 

based on E quation  3.4, w ith J  replaced by J{z):

=  (3 4̂4)
C20,

where

{ J  — Jin if 0 <  2 <  Li 

J  if 2 >  L \

This differential ecjuation can be solved numerically, resulting in liquid traction 

I)rofiles for the  left leg. The right (outflow) leg solution rem ains identical to  th a t 

of the simple U -tube. An exam ple numerical solution is shown in Figure 3.18, w ith 

a solution for the  sam e cohunn leg w ithout forced drainage for com parison.

The additional flux can be chosen to increase the  liquid fraction in the  lower 

])art of the  leg (w ithin lim its of stability). Controlling the  liquid fraction in this 

m anner m ay allow the  colum n adsorption efhciency to  be improved. In order to 

gain the m ost from the  additional licjuid flow, the length Li m ust be sTifficiently 

long to ensure com plete adsorption. Large increases in enrichm ent are possible 

using forced drainage as reported  by M artin et al. [45].
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F ig u r e  3 .18: Nmiierical solutions for the left (inflow) leg clearly show the effect of 
forced drainage, with a dramatic increase in liquid fraction around the 
point where additional flow is added (in this case, z ~  140c2/ci). Two 
regimes are clearly visible, demarcated by the change in J(z ) .  In both  
curves, the base liquid flux is Jq the limiting value for the case of 
infinitely long legs.

3.5 C onclusions and O utlook

Despite widespread use of foam fractionation in several industrial and commercial 

applications [34], only limited attem pts have been made to create complete analytic 

models of the process.

We have presented a complete model system for fractionation — that of an 

inverted U-tube. This model has ])roven itself to be a rich source of analytical 

results, both in limiting and finite cases. The limiting case of infinite leg lengths
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provides a useful starting point for a thorough analysis, leading to several key 

results:

• the limiting value of the liquid flux J  as L —> oo is cpadratic in the gas flow 

velocity V {Jq = V ‘̂ /{Aci))]

•  the ratio of liquid velocity v to gas velocity V  is linear; and

• such results may be generalized to other forms of the foam drainage equation, 

giving other pow'er laws for J (for example).

In all cases, numerical simulations were carried out and agreed closely with 

analytic predictions. Preliminary experimental tests were also conducted and pre­

dicted behaviours were observed (namely quadratic J (V)  and linear f(V")).

We also provided an alternate boundary c'ondition in the form of the single 

column with skinnner. The analytic approach used to examine the U-tube is 

shown to be valid in the skimmer set-up. and numerical results again agree closely 

with predictions.

\Mien building a model for jjrocesses like fractionation - as used in industry 

and chemical engineering — it is im portant to consider real-world uses. We have 

therefore attem pted to keep the model and analysis as widely applicable as possible 

and to in mind the constraints that exist in industry. W ith tha t in mind, we 

analysed the effects of varying leg length on the operational efficiency of foam 

fractionation. Our results predict how the e term in the liquid flux equation 

J  = Jo + varies with left leg length. As before, numerical simulations w'ere 

carried out and agree closely with our analytical results. Real-world columns 

often include multiple licjuid inflows to inijjrove efficiency and performance [45],
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and we have carried out prehminary work on integrating nniltii)le flows into our 

model.

Our model may therefore allow the operators of such columns in both experi­

mental and industrial contexts to make design and operation decisions to improve 

the efficiency of their set-ups, and provides an alternative theoretical foimdation 

from which to analyse fractionation. It has the added benefit of being based on 

elementary drainage theory (the Foam Drainage Ecjuation), which renders a large 

body of existing research available to researchers of fractionation.

Future w'ork on our model should largely focus on increasing its applicability to 

real-world colunms. Including chemical effects such as adsorption time may allow 

simple limits to be placed on column size (a length below which the efficiency 

of the colunm is reduced, as not all surface active molecules are carried through 

the foam but, instead, drain out of the foam). We also note that the current 

analysis and mmierical simulations were carried out using a steady-state form of 

the FDE. Re-introducing time-dependent changes in the liquid fraction could allow 

us to examine the approach to the steady-state and any other time-dependent 

phenomena in the fractionation process.
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Drainage of liquid m etal foams

4.1 Introduction  to  m etal foams

111 recent years, m etal foams have become a subject of great interest in m aterials 

engineering [53], w ith  prom ising api)lications arising in many areas, including ve­

hicle design and advanced prosthetics. Large-scale production has. however, been 

hindered by an incom plete understanding  of the  j^rocesses by which m etal foams 

stabilise and  solidify, and how these processes influence the final s tru c tu re  of the 

foam. T his is still a m ajor challenge, as exam ining the m olten system  m -situ  and 

verifying proposed m echanism s requires sophisticated experim ental set-ui)s.

Tw'o m ain m echanism s of film and foam stab ility  have been proposed for m etal 

foams. Some au thors postu la te  th a t high bulk viscosity is essential [54], while 

others consider the influence of solid particles to  be res{)onsible [55-58]. These 

particles are theorised to  partially  wet the liquid surface and therefore accum ulate 

on surfaces, building a kind of ‘netw’ork’ of interconnected particles, stabilising

89
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the system. Unfortunately, these possible mechanisms are difficult to isolate from 

each (jther, as the presence of solid particles in the melt induces a higher viscosity. 

Detailed analyses of m etal foams in the liquid (molten) state have yet to be carried 

out. The existing results are based on m icrostructure analysis of solidified samples, 

models, or simulations.

For such simulations and modelling, knowledge of melt param eters such as the 

liquid viscosity and surface tension is required. The standard approach has been to 

assume that the param eters taken from the bulk licjuid m atrix m aterial are valid for 

the metal foam. However, the contribution of the foam structure itself nmst also 

be considered. S tandard measurement techniques for viscosity and surface tension 

require the destruction of the sample structure and are therefore not generally 

useful. Compounding our difficulties, the values of surface tension and viscosity of 

metallic melts (e.g., aluminium) available in the literature are usually for very pure 

metallic melts, while the molten metal used in foaming experiments will contain 

impurities such as oxides.

Here, w'e outline a m ethod that allows us to extract values for surface tension 

and viscosity from experimental data by iteratively solving the Foam Drainage 

Equation (which describes the flow of liquid in a foam), as presented in Chapter 2. 

Parabolic flights offer the unicjue possibility of performing exj)eriments in varying 

gravity conditions, allowing the creation of a foam with a homogeneous liquid 

fraction (density profile) under microgravity, which is a well-defined initial state for 

our simulations. Brunke and Odenbach [59] made early steps towards considering 

liquid metal foams, showing qualitatively tha t numerical solutions of drainage 

theories captured the essence of an evolving metal foam.
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4.2 Experim ents on m etal foams

T he au thor would like to  thank  Francisco G arcia-M oreno and the rest of the group 

a t the  In s titu te  of A pplied M aterials, Helm holtz Zentrum  Berlin, for providing the 

experim ental d a ta  used for th is analysis as described below, and for m any fruitful 

conversations about the experim ents and d a ta  analysis techniques required.

As liquid m etal foams are a challenging m aterial to  work w ith, we will first 

outline the appara tu s  and techniques used to  contain and m easure the  evolving 

foam. The stan d ard  no ta tion  used to  describe m etal alloys is based on the  compo­

sition of th a t alloy. For exam ple, the  alloy AlSi6Cu4 is com posed of 6% Silicon. 4% 

Copper and. therefore, 90% Aluminium. The presence of any additives, such as 

stabilising particles or blowing agents, will be noted where applicable (e.g., AlSi9 

-t- 0.6 wt.%  T iH 2 is an alloy consisting of 91% A lum inium  and 9% Sihcon. w ith 

0.6 % by weight of T iH 2  blowing agent).

4.2.1 E xperim ental apparatus and procedures

T he X-ray tran sp aren t furnace used in m icrogravity experim ents is shown in Fig­

ure 4.1. Developed and  m anufactiu 'ed in cooperation w ith the Swedish Space Cor­

poration  [60], it can reach tem peratu res of up to  700 °C w ith high tem peratu re  

homogeneity (±1 K). It allows precursor samples to  be foamed to  a m axim um  size 

of 20 X 10 X 20 nun^, expanding by a factor of 5 for a relative density (ecjTiivalent 

to  liquid fraction) of 0.2.

Several different foam able precursor m aterials were used, falling into two cat­

egories defined by alloy and preparation  m ethod:
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•  AlSi6Cu4 +  0.6 wt.% of T iH 2 , prepared by mixing the  elem ental powders 

w ith  the blowing agent T iH 2 , com pacting the  mix using cold isostatic com­

pression and finally casting using the  th ixocasting  m ethod [61].

•  AlSiQ +  0.6 wt.%  of T iH >2 w ith  5, 10 and 20 vol.% SiC particles were prepared 

using the  so-called FO R M G R IP m ethod [62].

T he samples j)repared were approxim ately 20 x 10 x 4 mm^ in size to  fit into 

the foaming crucible. The AlSi6Cu4 samples were foamed at 650 °C and AlSi9 

samples containing SiC particles at 700 °C.

T he furnace was coupled w ith  a micro-focus X-ray source and a fiat panel 

detector, bo th  provided by H am am atsu Japan . T he X-ray source has a Sjim  

d iam eter spot, allowing relatively high resolution imaging. T he fiat-panel detector 

consisted of a 2240 x 2368 pixel array, w ith 50 pm  pixel size. It could be oj)erated 

at a m axinnm i cap ture ra te  of 8 frames per second by sacrificing overall resolution 

(using 4x4 binning or squares of 16 pixels as pseudo-pixels, the effective sensitivity 

of th e  detector could be increased to  allow higher fram e rates). Each detector 

pixel contained image inform ation from a sani])le area of 12.5 x 12.5 pm^ for all 

the  experim ents (taking into account the  4-fold m agnification).

This set-u}) allowed X-ray radioscopy of the  foaming process m -situ  [63], and 

is shown in schem atic form in Figure 4.1.

4.2.2 Liquid fraction analysis

X -ray radioscopic im agery was captured  th roughout the  fiights, and images were 

analysed to  obtain  the variation of hquid fraction in the  sam ples. Assuming th a t 

the  density of a solid foam corresponds to  the liquid fraction of the  liquid foam.
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X-ray source furnace detector

F ig u re  4 .1 : The X-ray radioscopy set-up used during the parabolic flights. On the 
left, a CAD schematic shows the micro-focus X-ray source, the foaming 
furnace and the  detector. On the right, a photograph shows a foam sample 
inside the furnace. Images courtesy of Francisco Garcia-Moreno, Helmholtz 
Zentrum  Berlin.

the analysis provides 2D liquid fraction d istribu tions of the  evolving foam (0(x, z))  

by applying B eer-L am bert’s a ttenuation  law to the intensity / (x ,  z) ob tained  from 

the X-ray images:

I { x , z )  = Ioex\ ){- f i (p{x, z) ) ,  (4.1)

where // is the  mass-specific absorption coefficient of the base alloy and /q the 

initial beam  intensity. S tric tly  speaking, this law is in general only applicable for 

m onochrom atic X-rays due to  the w avelength-dependent absorption coefficients of 

different m aterials. But it is applicable for polychrom atic X-rays and one single 

m aterial, as is the case here. For a constant foam dep th  d in beam  direction, the 

tim e dependent licjuid fraction of the  foam can be calculated by

( 4 2 )
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where luquid is the tran sm itted  intensity after a ttenuation  of beam  by hquid 

m etal of thickness d (i.e., the  m elt before it has foamed, at 100% hquid fraction). 

The key ex ternal factor affecting drainage is gravity, which acts in the  (vertical) 

^-direction only. We can therefore average all pixel values in the  horizontal x- 

direction to  arrive at an in tegrated  hquid fraction profile which is a function of 

position 2  and tim e t only (the density  values in the ^-direction are already aver­

aged by th e  beam  traversing th e  sam ple). This averaging process gives sm oother, 

more representative profiles and can be calculated with:

h l ( / ( i q u i d / / o )

A series of radioscopic im ages — w ith the  corresponding gravity levels -  were 

recorded, allowing qualitative observation of the  foaming process (see Figure 4.2). 

These images cover the changes in the  foam struc tu re  during one parabola, i.e., 

1 > 1.8 ^  > 0 5 —> 1.8 (/ —)■ 1

Pronounced gravity-induced drainage was observed near th e  com pletion of the 

foam expansion of an AlSi6Cu4 foam at 650 °C during the first 1.8 g phase. T ran­

sition to  m icrogravity induced a homogeneous liquid fraction d istribu tion  all over 

the foam in a few seconds, followed by a strong drainage to  the bo ttom  of the 

foam a t th e  transition  from 0 —> 1.8 T he radioscopic images of th is tran si­

tion were used as inpu t for th e  quan tita tive  analysis presented in Section 4.2.2. 

F igure 4.3 shows two X -ray images ex tracted  from a radioscopy series of the  ex­

panded  AlSi6Cu4 foam obta ined  in-situ  during the tran sitio n  from 0 —>• 1.8 (/. 

Large changes in the foam are apparen t even though the  images are separated  by 

ju s t one second, em phasising the  rap id ity  of the  liquid flow due to  drainage. As

M z J )  =
ln (
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plane
trajectory

0 20 40 60 80

T im e (s)

F ig u re  4 .2 : An outline of a parabolic flight. The tem perature T{t)  of the melt dur­
ing the parabola is shown by the dashed line, with the gravity g[i) in 
blue (bottom ). The radioscopic images on top show the evolution of an 
AlI\Ig6Cu4 foam sample. Note th a t the gravity profile g{t) is inverted, 
with m icrogravity at the top and hypergravity at the bottom . It should 
also be noted th a t there is not a sm ooth variation of gravity, with some 
‘jitter" observed throughout. In some cases, this may lead to negative val­
ues of gravity during microgravity stages of the flight. Images coiu'tesy of 
Francisco Garcia-M oreno. Helmholtz Zentrum  Berlin.
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F ig u r e  4 .3 : X -ray radioscopic im ages of an  AlSi6Cu4 liquid m etal foam  (w ith 0.6 w t.%  
T iH 2 blowing agent), during  th e  tran s itio n  from 0 g (left) to  1.8 g  (right). 
T h e  tim e betw een im ages is one second. T he arrow  ind icates a ru p tu red  
bubble. N ote the  swift increase in pooled hquid  m etal collecting a t th e  b o t­
to m  of th e  foam. Im ages courtesy  of Francisco G arcia-M oreno. H elm holtz 
Z entrum  Berlin.

the upper part of the foam dries out. melt is collected at the bottom , leadhrg to  a 

vertical liquid fraction gradient. Desj^ite the  large liquid rearrangem ent, most of 

the  bubbles can still be identified. Coalescence of bubbles was lim ited in this tim e 

period, w ith ju st a few events observed (one exam ple is indicated by an arrow').

In Figure 4.4, the variation of drainage in AlSi9 foams w ith concentration of 

SiC particles is shown (from left to  right, 5, 10 and 20 vol.% of SiC particles, 

respectively, a t 700 °C, after the 0 ^  1.8 g transition). The liciuid flow is visibly 

reduced as more particles are added. This can be clearly seen in the  greatly  reduced 

am ount of m elt collected at the  bo ttom  of the  20% SiC sample as com pared to  the 

5% SiC sample.
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+5% SiC +10% SiC +20% SiC

10 mm

F ig u re  4.4 : Drainage in AlSi9 foams varies dram atically with concentration of SiC par­
ticles (from left to right. 5. 10 and 20 vol.% of SiC particles, respectively) at 
700 °C, after the 0 —> 1.8 5 transition. The liquid flow is visibly reduced as 
more particles are added (most obviously in the amount of melt collecting 
at the bottom  of the foam). Images courtesy of Francisco Garcia-Moreno. 
Helmholtz Zentrum  Berlin.

4.3 D eterm in ing  m elt param eters from  

num erical so lutions

4.3,1 N um erical analysis o f radioscopic im ages

The experimental data (after processing using the algorithm outlined in Sec­

tion 4.2.2) consists of a series of liquid density profiles for each exi)eriment, i.e., 

for each value of the SiC concentration studied. An examj)le of the licjuid fraction 

profiles studied may be seen in Figure 4.5.

The data  consists of approximately 25 seconds of usable profiles, captured at 

a rate of 4 8 {)er second (depending on the experimental configuration used). As 

the frame-rate is relatively low, there can be large variations between profiles. Due
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F ig u r e  4 .5 : E xperim en ta lly  ob ta ined  liquid fraction  profiles of an  AlSi6Cu4 foam 
recorded over a  parabolic  flight. T h e  profiles s ta r t  in m icrogravity  (w ith 
tim e increasing from right to  left), afte r th e  precursor had  fully m elted  and 
expanded  to  fill th e  foam ing crucible. T he density  of th e  foam is relatively  
hom ogeneous and  rem ains so un til approx im ate ly  t = 2 seconds, w hen we 
en ter a  hypergrav ity  phase of th e  parabo lic  flight. T h e  onset of d ra inage 
is readily  ap p a ren t from th e  im ages, and  th e  foam  tends quickly tow ards 
a final d ra inage profile a t i =  8 seconds.
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to the limited ninnber of bubbles making up the foam melt, any bubble rupture 

can have a large effect on the liquid profiles due to the ensuing rearrangements. 

Previous research by Garcia-Moreno et al. [64] suggests a ra te  of 2.5-5 bubble 

ruptures per second for the sample sizes used in these experiments.

Rather than  using all of this data  to determine a single set of values for the 

param eters of the system, we split the data  into nmltiple subsets. Each of these 

subsets is defined by the start time and duration, with subsets allowed to overlap 

(i.e., one subset may start at t = 0 and run for 5 seconds, while another starts at 

t = 2). This decision was taken to mitigate the effect of noise in the experimen­

tal profiles — even if one subset contains spurious data  due to (for example) a 

large bursting bubble, we can still determine useful values for surface tension and 

viscosity from other subsets. This process is graphically ex])lained in Figure 4.6. 

The shorter lengths of each subset also minimises any effect of coarsening on the 

sample. As we do not have 3D information on the melts available (instead work­

ing from 2D projections), we camiot directly measiu'e the bubble volume from 

the experimental data. We instead calculated an average bubble vohnne from the 

radioscopic images using the Kelvin foam ai)proxiniation discussed in Section 2.2 

(i.e., noting tha t a Kelvin cell v.dth edge length L has volume and approx­

imating our foam as a collection of Kelvin cells). We took nmltiple measurements 

of edge lengths from each image and analysed images from different times during 

the experiment. This was done to minimise the effect of changing bubble volume 

on our numerical solutions, and to reduce the error of coarsening on the bubbles 

tha t made up the liquid metal foams. Over the time-scales of our image secjuence 

subsets, coarsening appeared to have a quite limited effect, w'ith average bubble 

size increasing only by a factor of 1.05 -  1.1.
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Height (from bottom ), m

F ig u re  4 .6 : Conducting multiple fits over different subsets of the same drainage profiles 
allows us to  minimise the effect of noise or bursting bubbles on the final 
results. In the figure, we see three fit sections. The blue sections are ‘good’, 
and should be well fitted. However, the red section is ‘bad ’, with spikes in 
the profile which may throw off the fits. By calculating all three fits we can 
still ex tract some useful results. In the real fits, these sections are allowed 
to  overlap and the process is repeated for sections of different length.

The s ta rtin g  profile from each subset was set as the ‘seed’ profile for our sim­

ulations, and we chose s ta rtin g  values for the  surface tension and viscosity. From 

these s ta rtin g  conditions, we could ninnerically in tegrate the  Foam D rainage Ecjua- 

tion  (E quation  2.1) to  generate a prediction of how th a t foam would evolve^. We 

used the  experim entally  m easured gravity values to  take into account the  varia­

tion of gravity during the  experim ent. The value g{t) was set at every tim e-step

^This may be considered a more complex variant of the process outlined in Section 2.4, as we 
are working with the full FDE rather than a linear approximation.
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during the evaluation, using a precise m easurem ent, if available, and in terpolating 

otherwise.

We then  fitted  the in tegrated  numerical solution to  experim ental d a ta  starting  

from the same ‘seed’ profile. This fit was used to  update  our initial guesses for 

the  surface tension and viscosity. The process was repeated  until we were satis­

fied th a t a best-fit had been achieved. Note th a t this approach required many 

such num erical solutions, as each h ttin g  itera tion  changed the  initial conditions of 

the  integration. An exam ple of a final fit is shown in Figure 4.7, w ith the  differ­

ences between the  experim ental d a ta  and sim ulations p lo tted  in residual form in 

Figure 4.8.

Numerical in tegration was carried out using an explicit finite difference m ethod 

w ith forward differences. This approach is com putationally  efficient to  solve, which 

is im portan t as our algorithm  requires m any com plete solutions to  j)ower th e  fitting 

process. W hile implicit in tegration m ethods are usually preferred due to  improved 

stability, previous work foimd th a t explicit m ethods are sufficiently stable for our 

use [65]. Space- and tim e-steps were chosen to  balance speed w ith num erical 

ac'curacy.

We com pared the sim ulation to  experim ents on a grid defined by A t  (the in ter­

val a t which experim ental profiles were captured) and A 2  (the vertical resolution 

of the detector). This com parison (over m ultiple experim ental profiles, depending 

on the duration  of the  sinuilated evolution) provided the basis for using a fitting 

algorithm  to  choose the  best pair of 7 , 7/ values for the  experim ental system . We 

conducted the  fits using the  M IGRAD minim iser from C E R N ’s M INU IT soft­

ware [50]. By conducting m ultiple fits, each w ith a different s ta rting  point and 

evolution length, we were able to arrive at a more representative value for each
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F ig u re  4 .7 : An example of a final fit for an AlSi9 +  5 vol.% SiC liquid m etal foam.
with experim ental d a ta  shown in green and the nm nerical solution shown 
in red. Both liquid fraction curves s ta rt from the same base liquid fraction 
profile (starting  at 141 s)

param eter and provide some measure of the error using the standard deviations. 

For more information on this software, see Appendix D.3.
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F ig u re  4.8: By plotting the residuals between the experim ental da ta  and fitted simu­
lations for an AlSi9 +  5 vol.% SiC liquid m etal foam (i.e.. the d a ta  shown 
in Figure 4.7) we can see how the fits under- and over-estimate the liquid 
fraction profile. In this figure the m agnitude of the residual is given by the 
size of the circle, with positive residuals in red and negative in blue. We 
can see. therefore, th a t in th is case the fit tends to  over-estimate the li(|uid 
fraction closer to  the bottom  of the foam, and th a t the residuals become 
larger as tim e progresses.

4.3.2 R esu lts from num erical solutions

We calculated surface tension and viscosity by treating them as fit parameters 

in a fit between numerical calculations and experimental data. By averaging the 

results over many fitting nms, we extracted values for experimental systems with 

varying amounts of SiC. The obtained results for foams of AlSi6Cu4, A lSill and 

A1S19 + 5, 10 and 20 vol.% SiC are presented in Table 4.1, together with bulk 

values for comparison extracted from the literature. Note that the errors of the
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analysed foam properties shown are the standard deviations of the results taken 

over many fitting runs.

The viscosity of the AlSi6Cu4 foam was found to be 25 and 30 times higher 

than that of bulk cast A1 and AlSi7, respectively. For the AlSill foam, viscosity 

was foimd to increase by more than 35 times (in comparison to the corresponding 

bulk alloy). An even higher viscosity increase was measured for AlSi9 +  SiC foams, 

with values 65 to 120 times higher than pure Al, and 75 to 140 times higher than 

bulk AlSi9 alloy, depending on the particle content. There is also a trend of 

increasing viscosity corresponding to increasing SiC concentration, with viscosity 

almost doubling as particle content is increased from 5 to 20 vol.%.

The surface tensions of the AlSi6Cu4 and AlSill foams at 650 °C are up to 

25 % lower than the literature values for bulk Al, AlSi7 and AlSi9 at 700 °C [67]. 

The surface tensions of foams of the alloy AlSiO +  SiC at 700 °C are up to 38 % 

lower than the corresponding bulk values witlu)ut i)articles [67]. There is also a 

small trend of increasing siu'face tension with increasing SiC concentration, but 

the trend is comjiarable to the standard deviations.

The errors presented for our fitted values are calculated by taking the standard 

deviations of all the fitting run results. However, there may be other errors arising 

from uncertainty in other parameters in the FDE. Most importantly, we assume a 

constant average bubble volume over the fitting duration of each subset. If there 

was in fact some small variation in this volume it w'ould affect the fitted values. To 

quantify any potential error arising from this effect we ran fits to the same subsets 

of data, varying deliberately the bubble volume each time (0.914, l-OH, 1.1V<,). We 

found that a 10% change in bubble volume led to approximately 2 3% changes 

in surface tension and viscosity. This error could not account for the very large



A lloy Form ation path T em perature Surface T ension V iscosity
(°C) [ N/ m ) (rnPa s)

AlSiGCu4 (+0.5 wt.%  oxides) PM, thixocast. foam G50 0.78 ±  0.02 31 ±  4
A lS ill (+0.5 wt.%  oxides) PM, foam 650 0.65 ±  0.02 37 +  3

AlSi9 + 5  vol.% SiC bulk, foam 700 0.53 ±  0.05 80 ±  10
AlSi9 +10 vol.% SiC bulk, foam 700 0.57 ±  0.04 120 +  10
AlSi9 +20 vol.% SiC bulk, foam 700 0.61 ±  0.04 150 ±  20

A1 bulk, cast 660 _ 1.38 [66]
A1 bulk, cast 700 0.869 [67] 1.23 [68]

AlSiT bulk, cast 700 0.857 [67] 1.08 [69]
AlSi7 (+0.5  wt.%  oxides) PM precursor 700 - 1.7 [70]

AlSiO bulk, cast 700 0.854 [67] 1.08 [69]
A lS ill bulk, cast 650 - 1.16 [71]
A lS ill bulk, cast 700 0.849 [67] 1.06 [69]

T ab le 4.1: Results for surface tension and viscosity for AlSifiCu4. A lSill. and AlSi9 + 5. 10 and 20 vol.% SiC foams
obtained from fitting mmierical solutions of the foam drainage equation to experimental liquid density profiles. 
Bulk values for aluminium and aluminimn alloys from literature are listed for comparison. PM indicates an 
alloy formed using the ‘powder-melt’ technique.
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values of viscosity m easu red , suggesting  th a t  these resu lts  are  q u ite  insensitive  to  

lim itod bubble  volum e varia tion .

4.3.3 D iscussion o f num erical results 

V iscosity

\ \ ’hil“ o p era tio n a l te m p e ra tu re  [71, 72] an d  alloy com position  [69] have been  ex­

perim enta lly  show n to  have slight effects on the  viscosity  of m o lten  m eta ls, th ey  

cannot account for th e  large, o rder-o f-m agn itude  increases in v iscosity  found in 

the  m icrogravity  exp erim en ts  on foam s.

We tu rn , therefore , to  th e  p a rtic le  con ten t of th e  m elt (e ither in th e  form  of 

added jjarticles or oxides) and  to  s tru c tu re  of th e  foam  itself, consisting  of th in  

films and  P la te a u  borders.

R ejjroducing Ecpiation 2.1 here for clarity , we propose ad d itio n a l te rm s for th e  

effective v iscosity  co n ta in ed  in th e  Foam  D rainage E q u a tio n

d(f) I d  .X
~dt ~  ^  V 5 ^ * ^ ^ /  ~  ^

Tlie effective viscosity  r/* =  3 x 50 x 1]^^, w here is th e  bulk  m elt viscosity. 

T h e  factor 3 in r f  arises from  th e  3D n a tu re  of the  P la te a u  b o rd er netw ork  and  50 

from  th e  channel geom etry. T h e  a d d itio n  of stab ilis ing  partic les  (or th e  presence of 

oxides) will fu rth e r  augm en t th e  effective viscosity, lead ing  to  an  effective viscosity  

for the  liquid m eta l in  th e  foam  w ith  th e  form

ri* =  3 x 5 0 x  S  X P  X rjug. (4.5)
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A lloy T e m p e ra tu re P S

A lSill -1-0.5 wt.% oxides 650 °C 1.6 [70] 25
AlSiO +10 vol.% SiC 700 °C 2.0 [73] 55
AlSiD +20 vol.% SiC 700 °C 3.2 [73] 42

Table 4.2: Experimentally determined values for the particle factor P  (the increase in 
viscosity of bulk alloy by the addition of particles) allow us to calculate 
S (the contribution of the altered foam structure) from oiu' numerically- 
calculated values generated from the fits to experimental data.

Here, P  is a factor related to the presence of solid particles in the melt (as 

the bulk viscosity will be changed from that of a pure metal by the addition of 

particles) and S  is a structural component related to changes to the foam structure 

due to the presence of particles.

P  has been determined experimentally for several of the foams under consid­

eration in this work, allowing us to calculate the contribution of S as well. The 

parameters determined in this manner are summarised in Ta\)le 4.2.

We find 5 ^ 1  for all foamed structures. This structural effect is likely made up 

of several contributing processes, outlined in Figure 4.9. The j)resence of particles 

in the liquid flowing through the borders will be limited by the reduced area of 

the borders (from particles adsorbing onto the walls) and from particle-particle 

interactions (jamming of freely-flowing particles with fixed particles) [56].

Particles slow down drainage due to the increased viscosity of the associated 

melts, but explaining foam stability solely by this increased viscosity is too sim­

plistic. Particles also adhere to gas/m etal interfaces and prevent rupture of such 

films. In this way rather than  just slowing down the decay — the lifetime of 

foams can be increased massively. Therefore, particles have a dual fimction: they 

first stabilise thin metal films in which the melt, then lead to the high effective
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Figure 4.9: The structural effects leading to the factor S  increase the effective melt 
viscosity in multijjle ways, from hindering flow (e.g.. janmiing between 
mobile particles and fixed particles) to reducing the effective area of the 
Plateau borders.

viscosity quantified in the j)resent work. We will look more closely at an analogous 

form of film stability in aqueous foams in Chapter 5.

Surface Tension

Like viscosity, the surface tension of aluminium is weakly affected by an addition of 

silicon [67]. The present measurements show th a t further alloying and/or addition 

of particles reduces surface tension. Surface tensions of liquid A lS ill, AlSi6Cu4 

and, especially, AlSi9 -f SiC foams are lower than  the values of the corresponding 

bulk alloy found in the literature. The presence of partially wetting solid particles 

in the melt surfaces can indeed modify the values of surface tension [56, 64]. A
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lower surface tension would enhance foam stability as the total interfacial energy 

is decreased. However, since the measured effect is rather small compared to 

the increase of viscosity, surface tension is unlikely to play a dominant role in 

foam stabilisation (although it will contribute to the enhanced stability of the 

foam). Finally, variations of the concentration of surface adsorbed particles over 

the surfaces will lead to surface tension gradients, creating stabilising and restoring 

forces in a manner analogous to the Marangoni effect (see Chapter II for more 

details).

4.4 Conclusions and O utlook

Metal foams are j)romising advanced materials, with potential applications in areas 

as varied as prosthetics and vehicle design [74]. However, analysing such foams 

in their molten state has proven difficult due to the hostile environment of liquid 

metal. Current methods rely on destructive ex-situ tests, which make reasoning 

about the processes that affect formation more difficult, hindering the develoi)ment 

of these materials.

W'e jjresent here the first analysis of metal foam viscosity and surface tension 

based entirely on in-sthi, non-destructive measurements and novel applications of 

numerical sinmlations. Our approach has the potential to allow more detailed 

measurement of key properties of metal foams, providing valuable direction for 

experimentalists and engineers. X-ray radioscopic da ta  for metal foams undergoing 

free drainage during parabolic flights was collected and processed. We iteratively 

flt numerical solutions of the Foam Drainage Equation to subsets of these data, 

allowing melt viscosity and surface tension to vary as free param eters of the fft.
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By averaging miiltij)le fits, we determined values for these key param eters without 

destroying the foam or otherwise interfering with it in the liciuid state.

From these results, several points become immediately obvious. observed 

increased viscosity of all examined alloys when comparing foams to bulk molten 

metal. This is likely due to the changes in foam structure arising from the presence 

of oxide layers or SiC particles. Addition of particles has been seen to increase 

viscosity in bulk molten metal but, even factoring this into account, we still ob­

serve viscosity increases of over an order of magnitude. Previous work has also 

qualitatively observed dram atic increases in viscosity in this m anner [70]. The 

presence of oxides and SiC particles appears to reduce surface tension, but this 

effect is nnich smaller than that observed for viscosity.

Going forward, we note that while our method is used here to analyse metal 

foams, it is conqjletely general in its a[)i)roach. It requires only time-dependent 

li([uid fraction profiles and could be applied to other systems of interest, such as 

polymeric foams [75, 76]. W’e note again the non-invasive nature of this approach, 

which does not require direct contact measurements from the foam (which could 

damage or destroy the samples). By using a more sensitive (and faster) X-ray fiat 

j)anel detector, time resolution could be further im])roved, allowing for improve­

ments in the determ ination of the viscosity and surface tension.
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Chapter 5 

Statistical analysis of soap film  

lifetim es

5.1 Introduction  to  foam stability

While most familiar bubbles and foams tend to be ephemeral in nature bursting 

and collapsing as we watch given the right conditions, foams may be remarkably 

stable, lasting for periods of months [77]. There are several ways to increase the 

stability and longevity of foams, usually involving the removal of one or more of 

the causes of foam decay*. Firstly, the environment the foam is contained in has 

a significant effect. Humidity and tem perature may increase evaporation of liquid 

from the foam, while particles in the atmosphere (such as dust) can easily trigger 

the rupture of a soap film. The process of foam drainage decreases the licjuid

'O f course, tlie converse is also true, and foam decay may usually be hastened by the inverse 
processes.
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contcnt of the foam, weakening it and amplifying the effects of other destabiliz­

ing mechanisms. The chemical composition of the foam (e.g., the concentration 

of surfactants) also has a significant effect. The main stabilizing mechanism of 

surfactant-based foams is the Marangoni effect [5], which redistributes surfactant 

molef'ules over the entire soap film in response to surface tension gradients, coim- 

teracting thinning of the films and resisting film rupture. In this Chapter, we will 

consider the stability of the individual components of a foam — the thin films th a t 

make up the interfaces between bubbles -  and how' they age and weaken.

To consider the stability of a foam — an issue of great practical importance 

in industrial applications (where it may be desirable to increase foam stability 

or decrease it) we must first understand the stability of the individual films 

that make up a foam. Much of the previous work on soap fihn stability and 

lifetimes has dealt with micro-scale films, or single films [78]. In many real-world 

foams, the constituent films tend to be larger, and it is not clear whether or not 

previous results can be extrapolated to larger scales. Here, we will present an 

experiment wdiich took a statistical approach to determining soap film lifetimes. 

The experiment was designed to remove as much outside influence on the films as 

possible, focusing in on the ageing of static films.

During 2009, we carried out an experiment on soap film lifetimes as part of a 

public exhibition on foams^. This experiment was designed to take advantage of 

the projected large attendance in order to generate large data  sets wdiich would 

lend themselves well to rigorous statistical analysis of many individual soap films,

and will be described in detail in Section 5.2

^The exhibition was liosted in the Science Gallery, Dublin, and was titled ‘BUBBLE’. More 
information about the gallery may be found at w w w .scien cega llery .com .
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We had a secondary aim (inspired, in part, by the pubhc nature of the experi­

ment) of presenting a pedagogically useful example of unpredictability. There has 

been mounting concern that physicists are not taught statistics and probability 

well [79“81]. This issue has been noted in other fields as well - the discovory of 

widespread errors due to the incorrect application of certain statistical methods in 

medical research [82] is a prime example. As research generates ever-increasing vol­

umes of d a ta  [83], a good understanding of statistics and probability will become 

even more im portant. This experiment provided an ideal platform for obser\'ation 

and further statistical analysis. It also made contact with the general theory of 

failure (such as electrical breakdown or fracture under stress [84]) in materials.

Previous experiments on the lifetimes of soap films were on a nmch reduced 

scale. Ramme [85] presented a study of 42 bubl)les which were exposed to the 

atnujsphere during experimentation. W'e studied a far greater number of bubbles 

which were protected from environmental influences throughout. More impor­

tantly, we collected sufficient data to determine a lifetime distribution. We were 

able to determine the probability distributions that govern such film lifetimes, 

which may allow predictions to be made about the more general cases. We will 

also conmient on possible mechanisms of ruptm'e.

5.2 Experim ental set-up

(The author would like to thank Brendan Bulfin for assistance in running the 

exi)eriment, and Aaron Meagher for design of the apparatus).

Due to the public nature of the exhibition, the experiment was designed to be 

engaging and to allow visitors to take i)art. Visitors were given the task of filling a
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perspex tube with eciually-spaced jjarallel soap films, or a “bamboo” foam [3, 5, 86, 

87]. Design decisions were made to increase repeatability and reproducibility as 

much as possible given the public setting of the experiment (including supervision 

by an assistant, and the use of a guide to ensure correct tube position and angle). 

When the perspex tube was correctly positioned, air was bubbled into the tube 

at a constant gas flow to create a foam (containing approximately 10-20 films). 

The position of the tube was chosen to ensure tha t the foams created by different 

visitors were as similar as possible. The tube was then corked (with stoppers 

wetted from the same soap solution) to isolate it from the environment. The 

number of circular films remaining in each tube was recorded every day. Over 

the course of the exhibition, 150 samples were created in this manner for a to tal 

soap-film count of 2,586. This data provided the foundation on which statistical 

analysis could be based.

The apparatus used is shown in schematic form in Figure 5.1. Air fiow was 

provided using a consumer aquarium pump (and rubber tubing) which injected air 

into a solution of approximately 3 parts in 11 conmiercial dish-washing detergent 

(Fairy Lic^uid). A constant gas pressure lead to tlie formation of api)roximately 

eciual-vohune gas bubbles. The rising bubbles were then collected in a perspex 

tube with an internal diam eter of 16 mm. If the ratio of tube diameter to bub­

ble diameter (referred to as A in the literature) is in the range 0.44 1.25, the 

bubbles self-order into a regular bamboo-like structure [3, 88-90] consisting of 

equidistantly-spaced parallel soap films.

For the set-up used in the exhibition, we found it useful to place the tube at an 

angle as shown in Figure 5.1. We required monodisperse bubbles with a volume 

sufficient to ensure adequate spacing between films (1 to  2 cm). Increasing the gas
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S am pleT ube

Guide (on retort stand)

Soap solution

Punnp
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F ig u re  5.1: A schem atic representation of the creation of parallel and equally-spaced 
soap hlms in a tube. The bubble volume is controlled by the tilt angle 
of the tube (approxim ately 35 degrees, as m easured on the guide) and by 
constant gas flow from a consumer aquarium  pimip. For the former control 
mechanism to be effective, the bubbles need to be in contact with the tube 
wall as they emerge from the rubber tubing.

flow rate to achieve this spacing can lead to turbulence [91], which would prevent 

formation of the required ordered structures. By using a low gas flow rate  and 

holding the tube at a fixed angle (approximately 35°) with the aid of a guide, we 

were able to create foams of the required quality [92], At this angle, the bubbles 

are ‘pinned’ to the sloi)ed wall as they are generated, allowing them to grow larger 

than w'ould be possible w'ith purely vertical tubes. Consumer aquarimn i)unips 

proved sufficient for this purj)ose.

The tube was then labelled with the name of the participant and the date the 

sample was created, and displayed vertically on a wall in the Gallery (see Figure 5.2 

and 5.3). The tubes were mounted vertically, as orienting the tubes horizontally 

(and hence vertically orienting the films) would result in films of non-uniform
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Figure  5.2: A close-up of a single sample created by a member of the public. The 
parallel soap films th a t define a bamboo foam are clearly visible. The 
corks used to  seal the tube were w etted in the same solution th a t was used 
to  create the foam. The identifying label can be seen to  the right of the 
image.

thickness due to the drainage of licjnid from the films under gravity. Furthermore, 

liquid would gatlier in the meniscus at the low'er i)art of the film and, without the 

guarantee of an acciu'ate horizontal tube dis])lay, liquid could drain from the films 

and gather at one end of the tube.

Foam samples were created mainly over the first month of the exhibition, with 

new samples added when all films in an existing sample burst (thus maintaining 

a full rack of tubes). The day-to-day environment of the Gallery was outside 

our control (for example, tem perature and humidity levels could vary daily) and, 

due to the duration of the experiment, these effects may have been exacerbated 

by changing weather (going from Summer to Autumn). Another issue involved 

physical interference with experimental samples by members of the public (for
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F ig u re  5.3: A snapshot of the public display of tubes containing soap films in the 
Science Gallery. The gaps show where samples were removed after all hlms 
had burst in the corresponding tubes. The tubes were aligned vertically 
to  ensure the  liquid content of the horizontal films remained constant and 
to minimise drainage of liquid from the films.

example, children playing with the samples). Where j)ossible, steps were taken to 

m itigate such effects through the use of barriers and notices, but quantifying the 

effect is likely impossible.

Every day, the to tal number of films contained in every tube was manually 

counted. Because the soap films became very thin as the experiment progressed, 

every tube had to be carefully examined (complicating visual measurements, a 

burst film may leave a soap ring behind where it contacted the tube). To avoid 

miscounts, hlms were recorded only if they w’ere seen to produce a reflection.
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When making comparisons between results from bamboo foams and more 

commonly-encountered foams an im portant caveat must be kept in mind. In most 

foams, the large majority of films are connected with a network of liquid chan­

nels which allow the redistribution and drainage of liquid through the foam. This 

movement of liquid can counter the effects of films drying out and thinning (driven 

by variations in the capillary pressure). However in a bamboo foam the horizontal 

films are effectively independent from each other (aside from very limited drainage 

through the films on the surface of the tubes [86, 93]).

5.3 D ata  analysis and resu lts

In order to analyse the aggregate lifetime data, we nmst first determine which 

distribution function best describes it. The distributions most widely applied to 

lifetime data are the Weibull distribution, the Gamma distribution and the log­

normal distribution [94]. Our da ta  forms a strongly asymmetric distribution, ruling 

out any synnnetric distribution function (including Gaussian distributions). To 

determine which distribution best describes our data, we applied the two-sample 

Kolniogorov-Smirnov test [95].

This non-parametric test determines if two samples are drawn from the same 

distribution. We used the Kohnogorov-Smirnov test to compare the empirical 

distribution to the best fit of each candidate distribution, with the mill hypothesis 

th a t the data  tested are from the same continuous probability distribution. The 

Weibull distribution was the only candidate to pass the Kohnogorov-Smirnov test. 

More information on the Kohnogorov-Smirnov test and the Weibull distribution 

can be found in Appendices E.2 and E.3 respectively.
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Figure  5.4: The distribution of initial film coiuits with a fitted normal distribution.
The da ta  is well described by the distribution, with the m ajority of samples 
sta rting  out with betw'een 11 and 23 films. The noise is likely due to the 
large num ber of participants in the  experiment.

None of the distributions perfectly describe the initial stages of the decay, 

underestim ating the number of failures in the first few days. This is likely due to 

the experimental conditions, as incorrectly-corked samples may deteriorate more 

rapidly. The effects of atmospheric exposure were quantified using a small control 

group, and will be discussed in Section 5.4.

Figure 5.4 shows the distribution of the initial number of films in the tubes. 

The soUd line is a fit to a normal distribution. This fit, and other fits in this Chap­

ter, were carried out using maxinuun likelihood estimation. For a more detailed 

overview^ of this technique, see Appendix E .l. From Figure 5.4 we can see tha t the 

m ajority of samples started  wdth an initial number of films betw^een 11 and 23.

We first consider the distribution of the bursting of films. \ \^  calculated the 

day-to-day differences in the film counts for every sample. This difference tells us 

how many films burst each day in each sample. Figure 5.5 show^s a histogram of
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Figure 5.5: Looking at each individual tube rather than the entire experiment, we 
can calculate a distribution of the number of films that burst in a 24- 
hour period. Summing these daily distributions gives us the aggregate 
distribution for the entire exhibition run. The x-axis corresponds to the 
number of films that burst in a sample over the course of a single day. The 
y-axis shows the munber of times this happened throughout the entire 
experiment. We can see that large bursting events were rare (for example, 
although we observed single films bursting approximately 1000 times, only 
two observations of 11 films bursting were made).

the number of occurrences of the different counts of film bursts, i.e., how many 

times n films burst in a sample in one day. By plotting on a log-linear scale, we 

see tha t approximately 90% of events involve only one or two biu'sts, with some 

large events as outliers.

From our daily records of the number of films in every tube, and our knowledge 

of the ages of the films, we were able to  compute a lifetime distribution for the
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F ig u re  5.6: D istribution of lifetimes of individual films given by a fitted Weibull prob­
ability d istribution (given by Equation E.4). with k — 1.55 ±  0.05 and 
A =  19.2 ±  0.5. Despite some noise in the lifetime data, it is well-fitted 
by this d istribution. The failure to  capture the first days is likely due to 
im proper initial tube sealing, leading to  quicker film deaths.

hhns. which is shown in Figure 5.6. Note th a t  although the number of films in 

every sample was recorded every day, it was not feasible to track individual films 

over their lifetimes. T he  da ta  was fitted to a Weibull distribution using maximum 

likehhood estimation in Mat lab (see Appendix E . l  for more details) and is shown 

as a solid line in Figure 5.6.

The differences between the fit and the  da ta  were found to follow a n()rmal 

distribution, suggesting th a t  the differences can be a t tr ibu ted  to random  factors 

such as the experimental environment.

Integrating the d a ta  results in a far smoother cunndative i)robability d istribu­

tion, shown in Figure 5.7 (which also shows a fit to Equation E.5). The fits in 

Figures 5.6 and 5.7 result in a value for the shape param eter of k =  1.55 ±  0.05. 

This vahie for k  (i.e., A’ >  1) corresponds to  a failure ra te  (the frequency with
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F ig u re  5 .7 : In tegration of the d a ta  from Figure 5.6 results in a smoothing of the data.
The red line shows a fit to  the cunnilative Weibull distribution (Equa­
tion E.5). with the same Weibull param eters as in Figure 5.6. A fit of the 
log-normal d istribution is also p lotted (blue line), and it is readily apparent 
th a t the Weibull distribution describes the data  nnich better.

which some component of a system fails) tha t increases with time. In our case, 

it represents the frequency of films bursting. Experimental observations of the 

ageing films showed that they became thinner and, hence, more delicate over the 

course of the experiment.

There are several possible explanations for this ageing, including evaporation 

and drainage of liquid from the films. Evaporation is influenced by the quality of 

the seal on the sample tubes, and by the ambient tem perature and humidity. Due 

to the nature of the experiment, these variables were outside our control. Because 

drainage in bamboo foams occurs only in the thin wetting films along the tube 

walls [86], it is very limited. Visual observations show'ed th a t most films became
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black films (i.e., the film thickness decreases to approximately 20 nm or less) after 

2 -3 weeks, suggesting that most of the liquid has drained or evajjorated by then.

To determine the possible influence of interactions between films — such as 

avalanches (where a film bursting triggers its neighbouring films to burst) and 

stabilization mechanisms -  the average lifetime as a function of the initial number 

of films in the sample tube (local average) was plotted together with the average 

of all film lifetimes (global average). If interactions have a large influence on the 

lifetime of films, we expect the average lifetime to change with the number of films 

in the sample. For example, we might expect more avalanches when films are closer 

together. Figure 5.8 plots the comparison between the global average and local 

average for tubes with initial film counts in the range 11-23. Tubes with other 

initial film counts were excluded from the comj^arison due to limited statistics 

outside this range (see Figure 5.4). There is good agreement l)etween the local 

and global averages over all initial film counts, and the average lifetime appears 

constant with respect to the initial film count, pointing to a limited effect from 

avalanches, intra-film stabilization mechanisms and other film-film interactions. 

We may also probe the potential effects of such mechanisms by looking for history- 

dependence in our samples. In other words, does the luunber of films that have 

already burst in a sample affect the expected lifetime of the remaining films? If we 

consider all samples that had N films at some time t, we can see whether there is 

any correlation between the starting film counts for those samples and their final 

ages. We did not find any significant dependency of this type in our data — if 

a sami)le is 10 days old and contains 10 films it is likely to survive for the same 

amount of time going forward whether it started with 11 films or 20 films.
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F ig u r e  5.8: The effects of interactions between films was investigated by calculating 
the average film lifetime as a function of starting population. The average 
film lifetime appears to be independent of the initial number of films in the 
sample, as can be seen by comparison to the global average (solid line).

5.4 Effects o f exposure to  atm osphere

To examine the effects of exposure to the environment on the lifetimes of the 

films, w'e carried out a smaller-scale laboratory experiment consisting of a total of 

70 films spread over 5 tubes. The samples were ])rei)ared using the same apparatus 

as in the main experiment, but with the sample tubes left uncorked at one end. 

This exposed the films to several disruptive forces, including (but not limited to) 

increased evaporation, airborne contam inants and air flow. Figure 5.9 shows the 

larg(! difference uncorking the tubes made on the lifetimes of the films. All films
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in the uncorked tubes burst within two days, while the average film lifetime in a 

corked tube was over 16 days, with some films lasting 60 days. This rapid film 

death  may explain the discrepancy between the fitted Weibull distribution and the 

first few days of experimental data. Improperly sealed tubes would experience a 

greater exposure to the environment, leading to much shorter film lifetimes than 

would otherwise be expected.

Similar variations in lifetimes were achieved in a small-scale study of bubble 

lifetimes undertaken by Ranune [85] by increasing the viscosity of the surfactant 

solution used in his experiment. While our experiment did not vary the chemical 

composition of the foam, increasing viscosity would hinder the drainage of licjuid 

from the films (as commented on in Part I), suggesting tha t loss of liciuid is a 

prim ary cause of him instability, present in our control in increased evaporation 

losses.
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F igure 5.9: By plotting the percentage of surviving films as a function of time for 
both the corked tubes from the main Science Gallery experiment and the 
micorked tubes from our additional exjjeriments. we can see the dramatic 
decrease in lifetime arising from exposure to the atmosphere. All other 
aspects of the experiment were kept the same, with the uncorked tubes 
filled with identical solution and using the same apparatus.

5.5 P ossib le  m echanism s o f rupture

A film thins through drainage and evaporation [78] vmtil it reaches a minimum 

thickness. The dependence of potential energy on film thickness may contain two 

minima, corresponding to the common black film and Newton black film (with film 

thickness ~  20 nm or w 5nm , respectively). A thin film in such a state is stabilised 

by the balance between the van der Waals attraction and various repulsive forces 

(for example electrostatic interactions [96]). Furthermore, the film is stabilised
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against external perturbations by the Marangoni effect (a local increase in film 

area leads to a tem porary increase in surface tension, which, in turn, creates a 

restoring force which brings the film back to equilibrium). Black films are fragile 

and easily rupture due to environmental effects such as airborne contaminants 

and air flow. In our experiment, these effects were reduced by sealing the films 

in sample tubes. However, even in these protected conditions, the film lifetime is 

finite. W liat causes the films to rupture?

An often-invoked model is rui)ture induced by thermally excited capillary waves [78, 

97] on both surfaces of the film. These waves can move the interfaces temporarily 

closer together, and the increased van der Waals attraction then leads to rupture 

(overcoming the repulsive forces). This mechanism is illustrated in Figure 5.10. 

Recent work on the related area of bubble coalescence points to the importance 

of hydrodynamic interactions [98]. It is not clear how the models for film rup­

ture can give rise to the Weibull distribution, which we found to have a width of 

aj^proxiniately 20 days compared to a mean Him lifetime of over IG days.
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F igu re 5.10: W hile no theories of film ageing, film instability, or film death are univer­
sally accepted, several models exist in the literature [78]. The prim ary 
mode of film rup tu re  is believed to  be the growth of surface waves (also 
known as capillary waves or corrugations). As the film thins, destabiliz­
ing forces overcome stabilizing forc:es and surface waves begin to  grow. 
The fastest growing wave will burst the film at the  thinnest point (as the 
films are not homogeneous).

5.6 C onclusions and outlook

W'hile soap film stal)ility has been measured in the past (for example, by Ramrne 

[85]), previous studies used small sample sizes with a limited number of films. Our 

experiment collected data for over 2,500 films, allowing for the first time thorough 

statistical analysis of film lifetimes.

We were able to identify the most likely candidate probability distribution for 

soap film lifetimes, with statistical analysis showing tha t the data is w'ell described 

by the Weibull distribution. The final fits of the Weibull distribution to our data 

give a shape j)arameter A’ > 1, indicating tha t there is a process by which the 

films age and become more likely to burst as time goes on (and tha t the expected 

failure rate will increase over time). This is consistent with experimental observa-
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tions of the soap films and is likely due to some combination of evaporation and 

drainage of liciuid out of the films. Our results also show that soap films can be 

siu'prisingly stable given the correct circumstances, with a 16-day average lifetime 

and with some films surviving for nearly two months. We also note th a t our shape 

param eter k is approximately 3/2, hinting to a square-root dependence cm time 

for the film bursting process (or more i)recisely, a square-root de])endence damped 

by a decaying exponential function). Keeping in mind the caveat noted j^reviously 

(arising from the difference in structure between our samples and more complex 

foams) this dependency could be the basis for a model of the ageing and death of 

foams.

We also carried out a second experiment, in which films were exposed to the 

environment. We cannot overstate the effect of such atmospheric exposure, with 

every film in the second grouj) destroyed within two days (an approximately 30-fold 

reduction in lifetimes). This may suggest that in (for example) industrial processes 

such as foam fractionation, foam coarsening and rupture effects may vary widely 

between sm'face bubbles and those inside the foam (with the outer layer effectively 

shielding those inside). Li et al. [99] (see also [100]) have presented research on the 

effects of humidity on the process of foam fractionation (see Chapter 3.1), noting 

tha t the stability of foams in fractionation columns shows a strong dependence on 

exj)osure to the environment and the resulting evaporation. Researchers in these 

fields may be able to use our exj)erimental approach to quantify the difference 

between exposed and protected ])arts of their foams.

Repeating this experiment in more rigorous conditions, and with more infor­

mation about individual films — such as individual film lifetimes and positions 

relative to the exterior of the bamboo foam may allow for a more detailed anal-



132 Chapter 5. Statistical analysis of soap film lifetimes

ysis, to include potential effects of avalanches (i.e., where a film bursting triggers 

the bursting of neighbouring films) and leakage of samples (where those films clos­

est to corks would likely burst preferentially). Using this experimental approach 

with more complex foams could allow further insight into any possible theoretical 

models for film decay and bursting. Finally, and on a personal note, the public 

nature of the exhibition was rewarding for the author and for members of the pub­

lic. Much academic research exists in a rarefied world, removed completely from 

the general public. In this work, we were able to engage with visitors who had 

little to no experience with the scientific method and let them feel part of a real 

research effort. Even though the samples were created by members of the public, 

and kept in the non-ideal circumstances of a public exhibition, we were able to 

extract useful results due to the large amoimt of data  collected, showing that this 

public-experiment approach still has scientific merit. Outside of the direct aims of 

the experiment, the research on him stability presented here has some important 

]:)oints of contact with other work presented in this thesis and with the general 

issue of foam deterioration and decay.
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Coda

In this Tiiesis. we have explored im portant subsets of the wide field of foams the 

drainage of liquid through the complex network of P lateau  borders integral to all 

foams, and the effects tha t the changes in liquid have on the longevity and stability 

of foams. These processes are of great practical importance in many areas.

D rainage

We have created a thorough analytical model for the industrial process of foam 

fractionation. S tarting from a simple geometry (the inverted U-tube), we created 

a model based on elementary foam drainage theory (using a modified version of 

the Foam Drainage Equation).

Throughout our analysis, we aimed to keep the model as widely applicable as 

I)ossible and to keep in mind industrial constraints. To this end, we analysed the 

effects of varying leg length on the operational efficiency of foam fractionation.

133
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ConijMrisons to numerical simulations and experiments confirmed the validity of 

our fractionation model. Real-world columns often include multiple liquid inflows 

to improve efficiency and performance [45], and we have carried out preliminary 

work on integrating multiple flows into our model.

Our model may therefore have application in the design and operational effi­

ciencies of both experimental and industrial uses of fractionation. As it is based 

on elementary drainage theory — the Foam Drainage Eciuation it provides a 

solid foundation from which to extend theory, and makes a large body of existing 

drainage research available to the fractionation field.

Future work on our model should largely focus on increasing this applicability 

to real-world columns. Including chemical effects such as adsorption time may 

allow simple limits to be placed on column size (a length below which the efficiency 

of the cohnnn is reduced, as not all surface active molecules are carried through 

the foam, but instead drain out of the foam). A])])lying the full, time-dependent 

form of the FDE could allow us to study how the fractionation cohmm approaches 

the steady-state, and predict how’ the efficiency of the cohnnn is affected by such 

behaviour. Other aspects of fractionation such as solution concentration also 

have a time-dependent aspect, wdiich could be better understood by application of 

the full FDE.

We also presented analysis of drainage in metal foams promising advanced 

materials with strong potential in areas such as prosthetics and vehicle design [74]. 

While current methods for analysing such foams rely on destructive ex-situ tests 

(which make it difficult to understand the dynamic nature of these systems), we 

have developed a m ethod wdiich allows analysis of draining metal foams in the 

liquid state. By fitting numerical solutions of the full FDE to liquid fraction
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{)rofiles calculated from X-ray radioscopy, we were able to extract values for the 

surface tension and viscosity of the molten foam in-situ, without destroying or 

otherwise interfering with the foam.

We applied our m ethod to drainage profiles for freely-draining foams generated 

from several different metal alloys (the profiles w'ere captured on parabolic flights). 

We observed dram atic increases in viscosity for all examined alloys when comparing 

foams to bulk molten metal, likely due to changes in the foam structure due to 

the presence of oxide layers or stabilising particles on the surfaces.

Going forward, there are several potential directions in which to take our 

research, and some enhancements to the m ethod coidd be made. Our analysis 

m ethod is completely general in its approach (requiring only time-dependent liq­

uid fraction profiles), and could, therefore, be a])plied to other systems of interest 

such as i)olynieric foams [75, 76]. Improvements to the X-ray detectors used could 

allow better time and space resolution, leading to more data available for om fitting 

routines (and. hence, more accurate values for the viscosity and surface tension). 

W'hile we have used the FDE in an elementary form, modifications to the basic 

('(luation have been proposed which take into account more changes to the foam 

(such as a changing number of bubbles). Including such modifications may allow 

corrections to the data, again improving the fit (luality. Finally, and perhaps most 

challenging, 3D tomograj)hic scans of a draining foam could greatly enhance our 

knowledge of the foam structure, including direct measurement of bubble vohunes 

over time.
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Stability

The deterioration of foams over time (or, indeed, the lack of deterioration) is a 

major concern in many industrial processes utilising foams. However, this is a 

complicated phenomenon, depending on both the make-up of the foam and its 

surroundings - including atmospheric effects such as humidity, tem perature and 

airborne particles.

We conducted a public experiment on soap film lifetimes, consisting of over 

2,500 films which were sealed in tubes to minimise atmospheric effects. This large 

sami)le size allowed for the first thorough statistical analysis of the ageing and 

hfetimes of films (previous w'ork used much smaller sample sizes). Our analysis 

showed that the data  is well descrii:>ed by the Weibull distribution, and that soap 

films can be surprisingly stable given the correct circumstances (a 16-day average 

lifetime with some hlms surviving for nearly two months).

A second laboratory experiment explored the effect of atmospheric exposure 

by creating identical samples but not sealing them. This lead to the bursting 

of every film within two days — an approximately 30-fold reduction in lifetimes. 

This suggests tha t, in processes such as foam fractionation, foam coarsening and 

rupture effects may vary widely between surface bubbles and those inside the 

foam. The dependence on exposure to the environment of the stability of foams 

in fractionation columns has been noted [99].

Repeating this experiment in more rigorous conditions, and with more infor­

m ation about individual films — such as individual film lifetimes and positions 

relative to the exterior of the bamboo foam — may allow for a more detailed 

analysis of these effects.
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The Stability of a Draining Foam

In the introduction to this Thesis we commented on the complex interplay of forces 

th a t drive the evolution of a foam. We have discussed two of these forces - the 

drainage of liquid through the Plateau border network, and the ageing and ru])ture 

of the films th a t make up the foam. In many real-world foams these two forces 

feed into each other, with drainage changing the local licjuid content of the foam 

(and, hence, changing the likelihood of film rupture), and with film and bubble 

ruptures changing the structure of the draining foam.

The stability of foams is of paramount importance in many api)lications. Hut- 

zler et al. [29] have further noted the importance of modeling foam and film stabil­

ity when attem pting to analytically describe the Bikerman foam test ^ The work 

of Li and Stevenson [99] has pointed to a strong effect of humidity on the overall 

performance of fractionation columns casting into doubt, perhaps, comparisons 

between experiments conducted in laboratories with large humidity differences.

Our current drainage theories do not take into accomit the stability and rup­

ture of bubbles in the foam. This can easily lead to uuphysical results, such as a 

foam with liquid fractions far below wdiat could realistically be sustained in ex­

perimental systems. Approximations can be made in numerical simulations (by 

simply removing those parts of the foam that fall below threshold liquid fractions), 

but incorporating film stability into analytical models of drainage would be a great 

imjirovement.

'This test uses a similar set-up to our fractionation models, in which a gas is S])arge<i into 
a tube at some gas velocity V.  Rather than overflowing however, the foam decays in the tube, 
reaching a metastable state (in which the rate of foam bursting is balanced by foam creation) at 
some height. This height will be different for different foams and, as such, allows comparisons 
to be made between them.
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Our experiments on fihn stabihty (while cjuite simple in design) have two ma­

jor contributions to this problem. Firstly, while the experiments presented in this 

Thesis only examined the simplest case — a binary choice between a completely 

seak'd foam and a completely exposed foam it is immediately apparent how ma­

jor an effect atmospheric exposure has on fihn lifetimes (see Figure 5.9). Further 

experiments could be designed to probe the intermediate regions, with a focus on 

humidity control most immediately applicable to current research efforts in frac­

tionation. Our experimental set-up allow's for easy control of other processes that 

may affect stability, such as initial liquid fraction and polydispersity. Secondly, and 

from a more theoretical perspective, the Weibull distribution found for the ageing 

and death of our soap films could be of use in extending drainage theory. We may 

be able to add a term to the average bubble volume Vh{xJ) to take into account 

the changing number of bubbles over time based on this distribution. Employing a 

more probabilistic approach to fihn death would seem to be an improvement over 

simple threshold values. However, as noted in Section 5.2, there are key differ­

ences between the structure of otu' experimental bamboo foams and more common 

foams. Further experiments will be necessary to determine if and how this lifetime 

distribution varies with the underlying foam structure.

C losing R em arks

Throughout this thesis we have attempted to grovuid our models and theories with 

comparisons and applications to real-world systems.

Keeping experimental and industrial applications in mind focused and directed 

our research on fractionation, helping to guide theoretical work towards a general
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model of the process, including considerations of efficiency and operational con­

straints. And, despite the humble beginnings of our research into film lifetimes, 

we found common ground with fractionation researchers, who are working on the 

demanding issues of environmental influences on industrial-scale processes.

Our research on the properties of metal foams closely linked elementary drainage 

theory to cutting-edge experimental techniques, and allowed, for the first time, di­

rect analysis of the licjuid melt properties m-situ. Again, the use of the w'ell-tested 

foam drainage theoretical model allowed us to understand more fully the stabilising 

processes in experimental foams.

The results we have presented show the significant utility of drainage theory for 

examining experimental systems and the potential it has for modelling real-world 

processes. This approach is integral to the Trinity method linking analytical, 

numerical and experimental results - and provides a solid foundation to build 

future work on. W'e hope, as well, that the public nature of the experiments pre­

sented in Chapter 5, and the success of that research, may inspire other researchers 

to include outreach in their ŵ ork when possible.
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A ppendix A

Full derivation of the Foam  

Drainage Equation

The Foam Drainage Equation describes the drainage of hquid through an isotropic 

network of Plateau borders in 3D (shown in schematic form in Figure 2.1). It is 

a non-hnear partial differential ecjuation for the foam density as a function of 

time and vertical position. It was originally presented in this form by Verbist 

and Weaire [101]. While analytical solutions have been found for specific sets of 

boundary conditions (as discussed in Chapter 2), in the general case it nmst be 

solved numerically.

To start the derivation, consider a single vertical Plateau border (PB) with 

cross-section A{x,  t), where x  is the vertical (downwards) coordinate and t is time.
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The radius of curvature of the  PB sides depends on the pressure difference between 

the lifjuid and gas phases, as given by the  Laplace-Young law

where 7  is the  surface tension and R  is the  radius of curvature.

Assuming th a t all bubbles are at equal pressure (taken as the average over 

all bubbles in the  system  if the bubbles are not exactly equal), then  the  PB is 

sym m etrical and we can relate its cross-sectional area to  the radius of curvature:

The cross-section of a PB (including the  radius of curvature) can be seen in 

Figure A .I.

We next consider the  volume element of the PB A { x j )  dx.  The forces 

acting on a volume element are (per unit volume):

•  gravity: pg

•  dissipation: —i f  , where //* =  ////

•  capillarity: { d / dx )Ap ,  where A p  =  7 //? ,

where r f  is given by the  bulk liquid viscosity rii nm ltiplied by a geometric factor /  

arising from the shai>e of the  channel. For a simple cylinder, this factor is 8 t t  ~  25, 

while, for a PB, it needs to  be found im m erically and is approxim ately 50. Inertial 

effects are neglected and Poiseuille d issipation is assimied (i.e., lam inar viscous 

flow', incom pressible licjuid), and we disregard additional dissipation w ithin the

(A .l)

(A.2)



Figure A .l: A Plateau border in schematic form (reproduced here for clarity), showing 
the cross-sectional shape of the border. The curved shape of the Plateau 
border results from the Young-Laplace equation.

junctions (i.e.. this is channel-dominated drainage). The dissipation is proportional 

to the mean liquid velocity u(x, t) and inversely proportional to the cross-sectional 

area A.

Taking the force balance for these quantities gives

(A.3)

We can now introduce the ecpation of continuity;

dA d(Au)
^  — -  =  0dt dx

(A.4)
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Substitu ting  the expression obtained  from considering the force balance for u, 

we arrive at the  foam drainage equation:

d A  \ d  (  ,0  C"> r-: ‘d A \
dt  77* d x

From th is s tarting  point, it is straightforw ard to  generalise this ecjuation to  a 

fully isomorphic 3D foam by approxim ating the foam by a network of random ly- 

oriented PBs. We allow each PB  to  be some angle 9 to  the  vertical. To facilitate 

this, w'e replace the vertical coordinate x  w ith  the coordinate in the direction of 

the  PB xq =  and replace gravity g w ith ge = gcosO.  This leads to  a variation 

of the  previously derived dim ensional form:

d A  cos^ 9 O f  ,n C 7  ^ 5 . 4  \
df  I]* dx  

We nm st next take the netwoi'k average of cos^

( A J )

{cos 0) =  =  - .  (A .7)
 ̂ ' £  sin 9d9 3  ̂ ^

T his result means th a t the non-dim ensional FD E for an isomorphic 3D network 

takes an  identical form to th a t for a  single vertical PB, w ith only a single change. 

We simi)ly have to  replace r f  = 50?]/ w ith ?/* =  3 x 50r/, =  150///, where r]i is the 

bulk liquid viscosity.

This network averaging also accounts for the  junctions where the  PBs meet, 

provided w'e make some approxim ations. We do not take any dissipation w ithin 

the junctions into account (i.e., we assum e perfectly channel-dom inated drainage). 

Next, we approxim ate the  junction  as consisting of straight PBs which m eet in a
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sym m etric te trahed ron  (this is vahd for foams w ith  low' hquid fractions). As cos0 

sum s to  zero over the  four PBs th a t make up the  junction  (a simple geometric 

consideration), the  conservation rule for the  jim ction is obeyed.

O ur next stej) is to  rew rite the  FD E in term s of liquid fraction (j) ra th e r th an  

cross-sectional area A.  To do this, we express 4> in term s of A:

where ly  is the  to ta l length of P la teau  borders per unit volume of foam, W —

5.35 arises from geom etric consideration of a Kelvin foam (see Figvu'e 1.11). Similar

fractions (w ith differences of up to  2% from different structures, and no more than  

10% from variations in liquid fraction). This volume can be estim ated from the

cells), as a Kelvin cell w ith edge length L  has volume V(, =  8y/nL^.

This leads us to  the  full form of the  FD E, expressed in term s of licjuid fraction:

As this equation is quite unwieldy, we will gather the assorted constants into 

two constants, Ci and C2 , leading to  a final FDE:

=  l v A { x , t ) , (A.8)

—  25.35V"  ̂ \  Here, is the  average vohmie of a bubble in the foam, and the constant

values are found for a large variety of different V)ubble types [7] and varying liquid

average P lateaii l)order length (again trea ting  the  bubbles in the foam as Kelvin

(A.9)

d(p d f   ̂ 1 d(j)\
( A. l O)
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where Ci and C2 are given by

Cl has dimensions of velocity and C2 /C1 dimensions of length.

The effect of variable bubble volum e

In the preceeding derivation of the FDE it was assumed that the bubble volume 

and, hence, ly was constant. In those foam systems where this is not a valid 

assumption, ly will be time- and space-dependent and l v{x, t )  ~  5.35Vt,(x, 

nmst he explicitly included in the continuity ecjuation.

E(iuation A.4 therefore becomes

(A.13)
ot ox

or

^  +  ^  =  0  ̂ (A.14)
dt dx ^

The rest of the derivation proceeds as before and we arrive at a variant of the 

FDE which includes the variation of lv{x, t ) ,



149

In the experimental systems we work with in this Thesis, bubble volume can 

be treated as constant (as described in the relevant experimental sections), and as 

such we may work wath the simpler form of the FDE.
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A ppendix B

A nalytic solutions for U -tube  

w ith infinite leg lengths

We may derive analytic solutions to the integrals that define the liciuid fraction 

profiles for the left and right legs of the U-tube model used in Chapter 3 (as given 

in Section 3.2.2). The form of these integrals depends on whether the roots of 

the quadratic equations Equation 3.9 (for the left leg) and Equation 3.10 (for 

the right) — are real or complex. W'e show here only solutions for the real roots; 

solutions for the complex case do exist (although they are very cumbersome) and 

may be found, for example, in the tables of Petit-Bois [102].

For the left-hand leg, we nnist consider two cases depending on whether the 

roots of Equation 3.9 0i and 02 — are distinct or coincident. For the case 

where 0i and 02 are real and distinct, we integrate Equation 3.12 to obtain

3" = //(0;) - //(0c), (B.l)
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where fi{4>) is given by

/;(0 ) =  -
(01 — 4>2) V \ / 0  + \ / 0 1

\ / 0  -
\/0  + \/02

for 01 7̂  02 - 

(B.2)

In the case th a t 0 i and 02 are real and coincident, we instead consider E qua­

tion 3.13:

//(0 ) =  C2/C1
V^0

( 0 — 0l) 2v/0i x /0 + \ /0 1
;b .3)

In the hm it x —> 00, we obtain  0; —)■ 0i.

For the righ t-hand leg, we m ust only in tegrate E quation 3.11 (for real roots of 

Equation 3.10), arriving at

:b .4)

where /r (0 )  is given by

/r(0) =
-C 2/C1

03 ~  04
a/ 0 3  In

\ / 0 -  V^3

\/0  +  \/03
+  2 \ / —04 ^  arc tan (B.5)

In the limit x —>• 00, we ob tain  0^ —)• 03.

Exam ple solution profiles of E quation  B.2 and B.5 are shown in Figure B .l.
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F ig u re  B .l :  Examples of solutions of Equation B.2 (left) and Equation B.5 (right) for 
real roots (values for the roots are shown). Note that the right leg tends 
to a constant value ((̂ 3 ) nuich more rapidly than the left leg (which tends 
to 4>i).
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Appendix C

Finite size effects in the U -tube  

model

C .l  The effect of finite b en d  radius

The presented analytical theory for fractionation in a U-tube proceeded from as- 

smning that the bend is short compared w ith the straight legs of the U-tube. The 

liquid fraction at the top of the tw'o tubes was then ecjuated and we showed that, 

in the hniit of infinite leg length L, this value is 0s =  V'.

We now consider the effect of finite bend radius r  in the same limit and obtain 

the derivative d(f)i/dx for the left leg:

= ____ 1 - ^ .  (C.l)
dx  4 C2
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For the right leg, we obtain:

^  =  0. (C.2)
ox

Here, c\ and C2 are as defined in Section 2.2, and c i  =  .

The change in liquid fraction across a finite bend of length irr may thus be 

estim ated as

1/ 3/2

0 r  0 /  ~  3 /2  ’ ( ^ ‘^)
4 C2 C/

which can be compared with the value 0/ =   ̂ i>redict

the error in the liquid profile due to finite bend length:

4>i{r =  0) <̂ 2

C.2 T he effect o f finite leg length

We start from an integral for L/, following from Equation 3.4:

L, = - - l  ,  , 1 7,7 , ' . ( & 5)
Cl  J4>, W l  -  ( P l M l  -  (P2)  

where cpt and <pb are the top and bottom  values for liquid fraction, respectively.

r-0t \/Wid4>
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W'e will evaluate this integral by making a drastic approximation, and then 

correcting it: we set the lower boundary value for 0; to infinity and the upper 

bound to zero.

Substituting Equation 3.33 into Equation C.6 gives

0i,2 =  7 ^ ± - ^ i .  (C.7)
2ci ^Jc\

Expressing these complex values of 0 iising Euler’s notation gives

) i , 2  —  , (C.8)

where a is the magnitude of the complex number and h is the argunumt (or 

phase). These quantities are given by

/  4 Ci C^  / / - I

and

6 =  arctan . (C.IO)

Substituting Equation C.8 into Equation C.5 results (after some straightfor­

ward manipulation) in
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This integral may be evaluated using M athematica, or it may be evaluated by 

contour integration. Integration using M athematica yields

Alternatively, we may evaluate the integral (juite neatly by contour integration 

(the method of residues), using the contour illustrated in Figure C .l. The cut 

along the real axes is such that has a positive real root on the upper side, and 

a negative real root on the lower side. The denominator of the integrand has two 

complex roots at

01.2 =  <A>3c ± ( C . 1 3 )

The residues associated with each (taking into account the nature of square 

roots in a complex plane) are

2

(C.12)

(C.15)

(C.14)

Our contour integral (from Cauchy’s Residue Theorem, with the above caveats 

taken into account) is therefore (noting that such a contour results in twice the 

correct integral)
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lm(z)

Re(z)

F ig u r e  C . l :  h itegration  o f E quation C . l l  involves the contour indicated , w ith  z =  d>i.

It includes a (zero) contribution  from infinity and tw o equal contributions  
from above and below  a cut on the real axis at 4>\ and cj)2  (Ecjuation C .7).

Evaluating this expression leads to precisely the same result found by Mathe- 

matica (shown in Equation C.12). Gathering all the constants into a single we 

obtain

L, = (C.17)

Note that, for some given V,  the limit of infinite L; corresponds to e =  0, 

in accord with the previous theory. We can now proceed to examine the lead-
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ing approximation for the two end corrections that are recjuired when the proper 

boundary conditions are reintroduced.

W'e correct Eciuation C.5 to take into account the bottom boundary condition 

— 0l(O) = 0c — by adding

J 4 , ,  C x [ ( p i  -  ( j ) o o Y  +

to the integral of Eciuation C.5.

Neglecting terms of order and assuming that <j)̂  <C 1 and 0 / > we may 

approximate the correction as

J<t>, 

Cl

r  (C.19)
» /  ( h f

= (C.20)

Finally, we add a further correction for the top boundary condition - 0/ =  03 

as follows (again neglecting terms of order e^):

r ^ (C.21)
J o  0 o o )

In this case, 0; > in the range of integration, and hence
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/*03^^(top) ^  — 2 r

Ci0^ Jo
2 ^ ^
3 Cl

2 ^  /  ^
CiV2 ^ ■

Summarily, we have arrived at

where

/'I

‘̂2

and //3

7T C2

V ^ C ' i

 ^ £ 2
\ / ^  Cl 
2^2

2 -  1
3/2 f’2

Cl 1/ 2 '

(C.22)

(C.23)

(C.24)

(C.25)

This is a good ai)X)roximation for the left-leg length, provided that the right-leg 

length Lr ^  — where Lj is given by Equation 3.31 (see Section 3.3.1) and,

hence, that the boinidary condition used for the top correction is valid.
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C .3 G enerality  o f th e lim iting  case

It is w orth noting th a t the initial approxim ation (integrating from 0 to  oo) for L/ 

in th e  previous section results in an upper bound for L/, given by L =

As the corrections for the top  and bo ttom  bounds of integration given by /̂ i2 and 1̂ 13 

are negative, Li < L. Therefore, if L; 00, L —>• 00, irrespective of any boundary  

conditions chosen.

This implies th a t, for a wide range of bom idary  conditions, the steady s ta te  

solution nuist have J  = Jq in the lim it L/ —>• oc. Indeed, num erical sim ulations 

for th(> skim m er boundary  conditions bear th is out, recovering this relationship  for 

sufhci(>ntly long cohunns. This lim iting result w'as presented and derived for the 

specific boundary  conditions of the U -tube, bu t appears to  be far more general. 

O utside of the  lim iting case of infinite leg lengths, the  bom idary conditions are not 

equivalent and greater care m ust be taken. Nm nerical sim ulations have shown th a t 

the  lim iting case is approached relatively quickly (see, for exam ple. Figure 3.2).

Top boundary correction  for skim m er

In th e  case of a skinnner, th e  top  boundary  condition changes from 0/(L) =  03 to  

0 / ( L )  =  0 ^ :

w here ~  As 0/ <  (p̂ o hi th e  range of integration, we may calculate this 

correction;

(C.26)
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C2
C\4>1

r4>i

00 •Jo

3/2

3 /2

3 ^ y 2

- 1/2

(C.27)

(C.28)

(C.29)

(C.30)

(C.31)
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A ppendix D

Overview of software used

D .l  T he Surface Evolver

The Surface Evolver [103] is a program which, given a structure (defined by ver- 

t('xes. edges, faces and V)odies), will attem pt to determine the mininnmi surface 

energy configuration. It is widely used in foam structure research [3, 104, 105].

Surface Evolver sinnilations consist of tessellations of the surfaces that make 

up the foam (as shown in Figure D .l). While tessellations of this type are almost 

always an approximation of the true surface (especially in foams), increasing the 

refinement of such tessellations (e.g., using more triangles to represent the surface) 

often improves the acciu’acy of the sinuilation.

The Surface Evolver uses gradient descent [51] to minimise the energy of the 

ini)ut structures. This technique moves points on the surface mesh in the direction 

negative to the gradient of the energy vector, i.e., in the direction of steepest 

descent. However, gradient descent is a first-order method and successive steps

1G5
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Figure D .l :  Simulations of foams are usually carried out with K. Brakke’s Svuface 
Evolver [103]. This software approximates surfaces with a triangulated 
mesh or tessellation. This mesh can be rehned (i.e.. the number of triangles 
used can be increased) to improve the accmacy of the approximation, (a) 
to (c) show the same foam surfaces as the refinement of the tessellation is 
increased. Note how the curvatm e of the surfaces becomes smoother (and 
more representative of a real foam).

can be inefficient, as the solver ‘zigzags’ tow’ards a (local) energy mininnnn. The 

Surface Evolver provides a higher-order (and nmch more efficient) m ethod called 

conjugate gradient descent [51]. This m ethod combines information from previous 

steps to find a more direct route to the energy minimum.

A robust minimisation technique therefore involves applying conjugate gradient 

descent to successive mesh refinements until the surface is deemed sufficiently close 

to equilibrium. At this point, the Hessian minimisation [106] may be used. The 

Hessian m atrix is the scjuare m atrix of the second-order partial derivatives of the 

surface energy function, i.e., it describes the local curvature of surface energy. If 

the Hessian is positive-definite at some point x, then x is a local minimum of the 

function. The Surface Evolver’s h e s s ia n  command solves the Hessian m atrix to 

jum p directly to an energy minimum. Where the Hessian command can not be 

used successfully, extensive conjugate gradient minimisation must be carried out.
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The internal representation of foams used by the Surface Evolver uses units 

of dimensionless area. Calculating surface energy requires scaling this area by 

some surface tension. We may simply choose this value such that surface energy 

is numerically equivalent to surface area.

D.2 M odelling wet foams using the Surface 

Evolver

In this section we will outline the techniques used to model wet foams using the 

Evolver. Starting from simulations of dry foams, Plateau borders were ‘wrapped 

around’ each edge and joined at vertices. This converted the idealised (perfectly 

dry) simulations into more realistic foams with a finite liciuid fraction. We were 

able to generate foams with a desired liquid fraction by changing the size of these 

added borders.

Starting from such a wet foam, we increased the tessellation and minimised the 

foam as accm-ately as i)ossible (within the limits of available computer resources). 

Provided the sinuilation remained internally consistent (i.e., the Evolver surfaces 

rei)resenting the foam are physically j)ossible and do not contain singularities), we 

then recorded the surface energy of the foam.

Previous w'ork on foam structure has often focused on confined ordered foams [3, 

104, 107]. For such systems, the transition between different observed structures 

was approximated by the ])oint at which the number of faces of the bubbles in the 

foam changed, most commonly by the area of a face going to zero. This process is 

shown graphically in Figure D.2.
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(a)

n n n
(C) (d)

F ig u re  D .2: Looking directly into the unit cell of the Weaire-Phelan foam as liquid 
fraction is increased (from 0% in (a) to 2.5% in (d)). it becomes apparent 
where bubbles will lose contact. Extrapolating the areas of the shrinking 
faces (one such face is marked in red) to zero gives us this limit.
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While at first glance a similar approach may seem worthwhile, tracking face 

area has several disadvantages in our structures. It requires careful observation 

of the entire foam structure, including internal bubbles, to determine the face or 

faces th a t will reach zero area first. It may also be the case th a t several faces have 

to disappear before mechanical stability is lost — as discussed in Section 1.3.2, we 

need an average number of contacts per bubble of n = 6 for 3D foams to remain 

mechanically stable. As the area of faces tends towards zero, the Evolver surface 

is not guaranteed to remain in a physically correct configuration, reducing the 

accuracy of simulations. This means tha t, in many cases, we nuist extrai)olate 

area measurements to zero, adding a further source of potential error.

For these reasons, we turn  instead to the total surface energy of the foam as a 

function of liquid fraction. This method has the advantage of being independent 

of the local foam structure, instead taking the complete foam into account. By 

looking at the entire foam (or average energy per bubble in the foam), we do not 

u('ed to carry out the i)ainstaking examinations of every face in the structure, nor 

take into account different bubble types (e.g., in the W eaire-Phelan foam). \We 

also remove the need for extrapolation or fitting of data, placing our results on 

nuicli sounder ground.

By calculating the average energy of the bubbles in the foam E, we may define 

a stability threshold as

S-
Below this threshold, increasing liquid fraction reduces the average energy of 

the bubbles in the foam, as reported by the Surface Evolver. Increasing cp past
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this point increases the surface energy of the simulated foam. The real foam would 

resist such energy increases and would change structvne (e.g., by losing contacts 

or by rearranging bubbles) to reduce energy again.

D.3 The MIGRAD minimiser

Throughout this work w'e have presented numerical solutions to various foam 

drainage models. Where fitting w'as required, we used the MIGRAD minimiser, 

part of the MINUIT program developed by F. James and M. Roos [50]. MINUIT 

is available as part of CERN’s ROOT library^

MIGRAD uses the method of steepest descent to find minima. The gradient is 

evaluated by measuring function partial derivatives with respect to each i)aranieter 

of the minimisation (the derivatives may be provided, or calculated munerically by 

the software). After the necessary gradients are calculated, the curvature at the 

working point can be used to estimate distance to the minimum. The step taken 

towards the minimum is set via inexact line search.

In standard Newton’s method minimisation, computing this curvature requires 

inverting the Hessian matrix of second derivatives. MIGRAD uses variable metric 

methods in which the Hessian and its inverse may be estimated directly by analysis 

of gradient vectors. This can greatly reduce the computational cost of the min­

imisation. MIGRAD also includes checks for positive definiteness of the Hessian 

matrices. If the matrix is positive-definite at some point x, then that point is a

local minimum of the function.

‘See h ttp ://roo t.cern .ch / for more information, inchiding downloads.
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The software is com putationahy efficient, allowing many fits to be carried out 

on standard, desktop-level computing resources.
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Appendix E

Statistical analysis of lifetime data

Our analysis of statistical data was inspired by methods i)ut forward by Clauset 

et al. [81]. Wliile tha t work focused on correctly identifying power laws in experi­

mental data, their methods are general in their approach and statistically rigorous.

•  We estim ated the param eters of our contender probability distributions using 

niaxiniuni likelihood estimation (described in Api)endix E .l), based on best 

fits to the data.

•  We then determined how likely it was that om' data could have come from 

that best-fit distribution using the Kolmogorov-Sniirnov (KS) test (described 

in greater detail in Appendix E.2).

•  In the case that multiple candidate distributions passed the KS test, further 

statistical methods could be employed to i>ick the best model.

We applied this approach to lifetime data for soap films generated as part of a 

public exhibition, and determined that that data  was best described by the W'eibull
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distribution (see Appendix E.3). This experiment, and the results, are presented 

in Chapter 5.

E .l  M axim um  likelihood estim ation

M axiunnn likelihood estimation is a m ethod of estimating the param eters of a 

statistical model. Given some set of d a ta  and a statistical model, the m ethod 

of maxinnnn likelihood estimation (MLE) selects tha t set of values for the model 

paranreters th a t  maximises the likelihood function and, hence, the ‘agreem ent’ 

between the model and the data.

Consider a data  set with ten  points - Xj, X2 , .. .X io  - and two candidate 

probability distributions p{x)  and q[x)  for how the data  set was generated (where 

all d istributions are normalised to one).

The question is then: if the  true distribution was p(x). what would be the 

])robability of obtaining these ten  j)oints? This probability is simply

and  is called the likelihood Cp of those ten points given the model distribution 

p{x).  Next, we compare this result with th a t  from another model distribution

q{xY

Cp = p (x i)  X p{ x 2 ) X . . .  X p ( x i o ) (E .l)

Cq =  q{xi )  X q{x2)  X . . .  X q{xio)- (E.2)
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If it tu rn s out th a t Cq < Cp, we can then  say th a t p{x)  is the ‘m ore hkely’ 

d istribution . A fter all cand idate  d istribu tions are checked, we simply choose the 

one th a t has the  m axim um  likelihood.

In m any cases, we will not have a discrete set of candidate model d istributions, 

bu t ra th e r a  continuous range of d istribu tions p (x |a i , 0 2 , . . . ,  a ^ )  which are gener­

ated  by varying th e  param eters Oi, 0 2 , . . . ,  a^ .  The process rem ains th e  same and 

we simply vary the  param eters until we have m axim ised the  likelihood.

Because log{x) > log{y) implies th a t x  >  y, the d istribu tion  which maximises 

the likelihood C is the  same as th a t which maximises the  logarithm  of the  likelihood 

log{C).  G enerally one considers the  logarithm  of the  likehhood instead, as this 

tu rn s w hat would have been an extrem ely large (or small) p roduct into a sm aller 

sum which is easier to  handle analytically (since l og{ABC)  = log[A)  +  log(B)  +  

log{C) «  A B C ) .

In some cases, a closed-form solution for the param eters which m axim ise the 

log-likelihood may be found. This can be done, for exam ple, by tak ing  th e  deriva­

tive of log(C)  w ith  respect to  the  ])aram eter(s) and equating to  zero.

It nnist be noted th a t the  m ethod of MLE cannot determ ine w hether any 

particu lar m odel is correct, providing only the  best fit of th a t model to  the  data . 

To solve this issue, o ther s ta tis tica l tools — such as the Kolmogorov-Smirnov test 

nuist be employed.

E.2 Two-sam ple Kolm ogorov-Sm irnov test

In our work, w'e use the  two-sam ple Kolmogorov-Smirnov (KS) test. T his is a non- 

param etric hypothesis test th a t evaluates the  differences between th e  cunnilative
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distribution functions (CDFs) of two sample da ta  sets, with a null hypothesis that 

the t''vo data sets have the same underlying distribution [95].

^^e choose to use the two-sample test rather than comparing one data set 

to a statistical model directly, as the MATLAB mnnerical libraries used do not 

inchule every model of interest. We instead draw a large secondary da ta  set from 

a distribution based on IMLE best fits (as described in Appendix E .l).

Tae two-sample KS test cannot identify the underlying distribution of the 

samples but, as we generate one sample by drawing from a known distribution, 

this issue is not api)licable.

The two-sample KS statistic is simply the maxinnnn distance between the two 

CDFs,

D =  max |.4(x) — i?(x)l, (E.3)
X

where A  and D represent the CDFs of the experimental observations and the 

data drawn from the statistical model under consideration (with param eters set 

via MLE).

Tf) ensure a proj^er test of the null hypothesis, we carried out the two-sample 

KS t(!st with data sets containing 10® elements. As we had fewer experimental 

measurements than this, the data were bootstrapped by random sampling [51]. 

This process was repeated to rule out chance acceptance of some bootstrapped
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E.3 T he W eibull d istribution

The WeibuU distribution is commonly used to describe processes where the failure 

rate changes over time [108]. It originated in extreme value statistics where it is 

referred to as the type III extreme value distribution or th ird  asymptotic distribu­

tion [109], and is named after Waloddi Weibull [110]. It is used to analyse systems 

that age, e.g., light bulbs breaking and engine component failures [94, 111]. The 

Weibull i)robability distribution function is given by

where k > 0 is a dimensionless number known as the sha])e param eter and 

A > 0 is the scale param eter of the distribution, x  here is a ‘time to faihu’e’, or

the failure rate decreases with time; if k =  1. the failure rate is constant (and 

the Weibull reduces to an exponential distribution); and if A- > 1, the failure rate 

increases with time.

(E.4)
0 (x < 0)

with the cunnilative distribution function

F(x;A,A') =  1 - (E.5)

lifetime. The value of k tells us the type of process we are dealing with: if A: < 1,
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