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Summary

While the static nature of foams has been well studied, the dynamic nature of a
foam — how it evolves and responds to external forces and changing environments

is less well understood. We will present results from the analysis of two such
aspects of foam physics: the drainage of liquid through the foam, and the stability
of foam.

Drainage, or the flow of the liquid phase through the network of channels and
films that constitutes the foam, is usually one of the most influential processes
affecting a foam. Foam drainage can be modelled using the Foam Drainage Equa-
tion (FDE), which describes the variation of the liquid content of the foam as a
function of space and time.

We will present a complete treatment — analytical, numerical, and experimen-
tal — of the process of foam fractionation, which uses a flowing foam to separate
solutions based on surface activities. It has widespread use in industries such as
mining and biochemistry (for examples, recovering more material from tailings
and extracting proteins, respectively). Our analysis was carried out on a model
system — an inverted U-tube — and is based on modifications to the elementary
FDE. We successfully predicted the flow behaviour of our model fractionation set-

up, and showed that our model can be generalised to other fractionation set-ups.

Vil
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We will also present analysis of the efficiency of such set-ups, based on the nec-
essarily finite size of column components in experimental and industrial settings.
The model represents both a useful tool for analysing and studying the physics of
fractionation, and a platform to build more extensive analyses upon.

We also carried out the first in-situ analysis of the chemical and physical pa-
rameters of liquid metal foams, again using a modified form of the FDE. While
previous methods required the solidification and destruction of the molten foam
samples, our method used X-ray radioscopy (to measure the time- and space-
dependent liquid content of the foam), coupled with fits of numerical solutions of
the FDE. We will present, for the first time, direct measurements of the surface
tension and viscosity of the liquid metal in these advanced foams. We will also
comment on the effects of particle additions in these foams, and how the viscosity
may be dramatically influenced by their presence.

The stability of foams is also of great interest in many processes, whether one
wishes to maintain foams or destroy them. We carried out the first large-scale
study of the stability and lifetime of individual soap films, finding the lifetimes
well described by the Weibull distribution. Environmental exposure was found to
be of large importance to the longevity of the soap films, with drastic reductions
in lifespan found in a secondary laboratory experiment. This result has contact

with research on environmental effects in fractionation experiments.
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Chapter 1

Introduction to foams

1.1 What is a foam?

From getting in the shower first thing in the morning to drinking a cold beer at the
end of a long working day, foams are commonplace in almost every aspect of our
lives. And yet we hardly ever give them any serious thought, overlooking a rich
and deep research area which links many fields, from pure mathematics and crys-
tal formation through chemical engineering and materials engineering (touching
almost everything in between). Foams can be used as a model for other complex
systems [1], and have even been proposed as a model for the fundamental structure
of spacetime [2].

Foams have therefore found many important uses in industry and materials
research. As the scope of foam applications grows, the need to create strong inter-
disciplinary links between novel research and the existing body of foams research

becomes ever greater. In this work, we will present results from research under-



2 Chapter 1. Introduction to foams

taken to forge such links between theoretical models of draining foams and real-
world uses of foams — an industrial process of foam fractionation and experiments
alming to create foams from liquid metal.

So, then, what is a foam? Foams are dynamic collections of bubbles, arranged in
fascinating structures that change and evolve steadily in time. The most commonly
encountered foams are disordered, as bubbles of many sizes (polydisperse) are
mixed together. However, through careful preparation, they can be made to form
into complex and elegant ordered structures [3]. They are multi-phase systems,
with a gaseous phase dispersed through a liquid phase. The most commonly
encountered foams have air as the gaseous phase, with the liquid phase consisting
of water mixed with a surfactant such as soap (think of washing the dishes).

While, at first glance, foams often appear quite static, there is a constant and
complex dance of several interacting and competing processes. We will examine
our foams in terms of this dynamic nature, specifically focusing on the movement
of liquid through the foam. We shall do this by building on foam drainage theory,
linking it intimately with experimental observations and computer modelling. We
will also briefly look at the stability and lifetimes of bubbles, as the deterioration

of foams has significant effects in many industrial and experimental systems.

1.2 Processes that shape foams

As we have mentioned, foams are complicated and dynamic systems shaped by
various processes. Each could be the subject of a lifetime’s work and, thus, it
becomes important to understand where and when we may focus our attention on

a single process.
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(b)

Figure 1.1: Foams take diverse forms. and can be found in both day-to-day and more
advanced contexts. (a) The foamy head of a beer is one of the most familiar
(and welcome) foams. (b) A tomographic reconstruction of an AlMgCu
metal foam. based on X-ray radioscopy (courtesy of Manas Mukherjee,
Helmholtz-Zentrum Berlin).

There are several major processes which affect the evolution of a foam over

time.

1. Drainage. The liquid in the channels — and, to a lesser extent, the films —
that make up the foam flows under the influence of an external force. This
force is most often gravity, although centrifuges have been used to increase
drainage. Due to the ubiquitous presence of gravity on Earth, removing
or reducing drainage requires special measures, including parabolic flights,
sounding rockets and space flight. Drainage will be discussed in greater detail

in Part 1.

2. Rupture. As foams age, the films that make up the bubbles age and thin.

As the film thickness progresses to a critical value, bubbles may rupture,
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causing rearrangements and redistribution of liquid throughout the foam.
The ageing of films and bubbles, and the associated rupturing, may have a
strong influence on industrial scale processes such as fractionation. As such,

we will discuss it in Part 11

3. Coarsening. As the pressure of the gas in a bubble is dependent on size
(with smaller bubbles having a higher internal pressure than larger ones),
in a polydisperse foam there will necessarily be pressure differences between
bubbles of different sizes. This leads to a phenomenon analogous to Ost-
wald ripening, with larger bubbles getting larger and smaller bubbles getting
smaller. We will comment on coarsening where relevant, although it plays a
very limited role in the experimental systems we will consider in this work

(see, for example, Section 4.2).

4. Rheology. When a foam is subjected to an applied shear, it may flow.
Foam flow is a rich topic for research, but as rheology plays a minor role in

our research we will not take it into account.

In this thesis, we will consider drainage in detail. The theory behind drainage
— as well as the drainage process itself — will also be considered through the triple-
pronged (or ‘Trinity’) method: mathematical analysis, numerical simulations and
modelling, and experimental verification. The effect of varying liquid fraction on
the stability of individual bubbles and ensemble foams will also be examined. As
all the results presented in the current work hinge on the variation of the liquid

content of foams, we shall now explain foams through the lens of ‘liquid fraction’.
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1.3 Classitying foams by liquid fraction: wet to
dry

One of the most direct ways of classifying a foam is by its liquid content. The liquid
content is usually represented by the liquid fraction ¢, where a liquid fraction of
¢ = 0.1 means that 10% of the volume that the foam occupies consists of liquid.
The gas fraction — which is simply 1 — ¢ — is sometimes used. Liquid fraction is
generally not uniform, varying under the influence of processes such as drainage.
As such, it is more accurately considered as a function of position x and time ¢,
¢(x,t). In Chapter 2, we will introduce mathematical models which describe this
variation.

The values of ¢ range from less than one percent for a ‘dry’ foam to over twenty
percent for a ‘wet’ foam. At each of these extremes — the wet and dry limits —
foams take on the form of different interesting (and important) structures. In the
dry limit, foams approximate the division of space into cells. while. in the wet limit,
they approach the close-packing of spheres. This variation is shown in Figure 1.2.

An important factor in determining whether a foam in equilibrium under grav-
ity will be wet or dry is the average size of its constituent bubbles. If a bubble is
within the capillary length [y from the liquid surface, it will be wet (i.e., have a
liquid fraction larger than about 20%). [y is defined as

i
— ) 1
lo Apg (1.1

where v is the surface tension of the liquid, ¢ is acceleration due to gravity

and Ap is the density difference of the gas and liquid. [y is the length over which
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Figure 1.2: The differences between wet and dry foams are readily apparent. Typi-
cally, 3D foams are polydisperse, consisting of bubbles of many different
sizes. Dry foams are shown on top and wet foams on bottom. (a) and
(c) are obtained from experiments, while (b) and (d) are from computer
simulations. (a) courtesy of M. Boran. (c) courtesy of A. Meagher. (b)
and (d) are taken from simulations carried out by Kraynik et al. [4].
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Figure 1.3: Some example polyhedral cells (with 12, 13, and 16 faces from left to right).
as found by Matzke [6] in a painstaking experimental study of disordered
foam. This study was recently revisited computationally by Kraynik et al.
[7]. who found all 36 polyhedra identified by Matzke in simulations. Image
courtesy of R. Gabbrielli.

capillary forces balance drainage over gravity. The capillary length is therefore

of great importance when designing experiments that require a wet foam. If the

bubble diameter is d, then we can determine the number of layers of bubbles that
will be wet y/d (the so-called Princen number [5]). Larger bubbles in equilibrium

under gravity form a dry foam (although those parts of the foam within {; of the

liquid surface may still be wetted by capillary action).

1.3.1 The dry limit

In the dry limit, commonly taken to be ¢ < 0.01 [5], the individual soap films may
be thought of as infinitesimally thin, curved surfaces. These surfaces constitute
the faces of polyhedral cells. Many different polyhedral cells have been observed
experimentally (a thorough list was compiled by Matzke [6]) and in simulations of

random foams [7]. Some examples of Matzke’s polyhedra can be seen in Figure 1.3.
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The shape of these polyhedral cells of dry foams is governed by geometrical and
topological restrictions, first stated by Plateau [8] in the 19" century’. Plateau’s

rules are as follows (a graphical explanation can be seen in Figure 1.4):

e Faces (films) must meet three at a time. Three cells meet symmetrically
at every edge (more precisely, three films, each shared between two of the
three cells). The angles at which the films meet must, therefore, be 120

degrees everywhere.

e Edges must meet four at a time. Six cells meet symmetrically at every
corner (four edges meet, each shared by three cells as described in the first
rule). The angle between edges is, therefore, arccos(—1/3) =~ 109.43

degrees.

Despite the seemingly intuitive nature of the rules (arising from local surface
tension equilibrium at the points in question), it was not until 1976 that Taylor [10]
proved rigorously that they held for minimal surfaces (i.e., surfaces that minimise
their area), of which foams are an example.

Finally, the Young-Laplace equation must be taken into account when con-
sidering the surfaces that constitute the cell faces. This equation describes the
capillary pressure (or pressure difference) across the interface between two fluids
(water and air in an aqueous foam, for example). It expresses the balance of forces

on some small element of the film in terms of the pressure difference Ap, where

1 1
DAp=9 =—+—]. 152
p /<R1+R2> (1.2)

'Both the original text and an English translation of the work may be found at
http://www.susqu.edu/brakke/PlateauBook /PlateauBook.html
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)« «
Plateau Dry Foam
horder “

ion Wet Foam

Figure 1.4: Plateau’s rules of equilibrium require three films to meet to make an edge.,
and four edges to meet in a tetrahedral junction. The rules hold for dry
foams and for foams with small values of liquid fraction, but foams con-
taining large amounts of liquid (‘wet’ foams) can contain junctions of more
than four edges (or six cells) [9].

Figure 1.5: A Plateau border in schematic form. showing the cross-sectional shape
of the border. The curved shape of the Plateau border results from the
Young-Laplace equation.
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Figure 1.6: A photograph of the surface of a foam. The curvatures of the films are
made visible by the reflections of light on the surface. Note the complex
nature of the surfaces. Accurately describing foams often requires the use
of computer modelling due to this complexity. As a result. full numerical
descriptions of foams have only been possible in recent years as computing
power has increased.

Here, 7 is surface tension and R; and R, are the two principal radii of curvature.
) 1 2

In the general case, R; differs from R;,. For the case of a sphere or spherical surface,

Rl = Rz.

The surface may therefore have a complicated form which can be difficult to
describe mathematically, depending on local topology and forces. (An example
can be seen in Figure 1.6.) Therefore, it is necessary to use numerical simulations

for almost all detailed analysis and study of foam structures. A more in-depth

look at software used in these simulations may be found in Section D.1.
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1.3.2 The wet limit

In the wet limit, the bubbles become spherical (see Figures 1.2c and 1.2d). As
such, the foam begins to share features with sphere packings [11]. Note that the
actual sphericity of the bubbles will depend on their size (as larger bubbles are
‘softer’, or more compressible). It is important to note that a distinction exists
between a foam in the wet limit and a ‘bubbly liquid’. Increasing the liquid fraction
past the wet limit leads to loss of contact between neighbouring bubbles, and the
resulting system (while still of scientific interest) is no longer considered a foam.
As such, we will not elaborate on it further. The wet limit defines a maximum
liquid fraction — ¢, = 0.36 [5] — which corresponds to a random close packing of
spheres [11].

As observed with dry foams, there are some restrictions on the possible struc-
tures that such ‘sphere packings’ may take (restrictions that also arise in the
idealised models used in granular media research [1]). Firstly, each sphere must
be in contact with at least three of its neighbours. Spheres that do not meet this
criterion are termed ‘rattlers’, as they can ‘rattle around’ in cages made of other
spheres. Secondly, despite the minimum contact number being three, the average
number of sphere contacts in a disordered packing should be at least six for a me-
chanically stable packing [11]. This arises from simple consideration of degrees of
freedom, with two confining forces needed for each of the three x,y, z spatial axes.
(This is not an exact result, nor mathematically proven, but is approximately valid
in practice and widely used in sphere packing research. It is, however, possible to

design stable, ordered structures with fewer contacts.)
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Figure 1.7: A tomographic reconstruction of a 3D monodisperse foam (courtesy of
A. Meagher). Tomography of this type allows the internal structure of
foams to be examined and visualised. Previous techniques involved visually
identifying crystal structures by refraction in the surface layers. limiting
examination of the internal sections of foams.

Bragg and Nye [12] were the first to observe that wet foams consisting of small
bubbles readily form crystalline structures, driven solely by surface tension. Recent
experiments [13] suggest that the face-centred cubic (fcc) structure predominates.
Ongoing experiments by Meagher et al. [14] using X-ray tomography to explore the
internal structure of monodisperse foams (i.e., all bubbles have equal volume) may

shed some light on this phenomenon. An example of a tomographic reconstruction

of a 3D foam can be seen in Figure 1.7.
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1.3.3 Between the two limits

Neither the dry nor the wet limit fully describes a real foam, with experimental
and real-world foams tending to fall somewhere between the two. It is therefore
necessary to consider liquid fractions in the intermediate regime.

As we start to add liquid (in infinitesimal amounts) to a foam in the dry
limit, the first changes occur in the edges where the films meet. These cell edges
swell to form the so-called Plateau Borders (see Figure 1.4 and Figure 1.5 for an
illustration of what these borders look like). Initially, we may still treat the films as
infinitesimally thick (i.e., we may neglect the liquid content of the films), provided
we are close to the dry limit.

For small enough liquid fractions, Plateau’s rules are still approximately cor-
rect. Further liquid fraction increases lead to violations of the rules, and our
ability to mathematically describe the foam surface precisely becomes more and
more limited.

As we continue towards the wet limit, the cells of the foam become deformed
spheres, with the nature of the deformation dependent on how the foam is confined.
Foams in this regime are not easy to describe and, outside of the wet and dry
limits, we must rely on numerical simulations to describe and analyse foams. Some
idealised models may also be employed, such as the representation of bubbles by
overlapping spheres [15].

The region of intermediate liquid fraction also contains a lot of the interesting
physics of foam drainage. Liquid fraction in this range is too large to be ignored,
and yet still small enough to be handled by analytical drainage models. The

approach taken in our theoretical analysis (as outlined in Chapter 2 and discussed
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in detail in Appendix 2.2) involves treating the foam as a continuous medium (i.e.,
a macroscopic model of drainage), building upwards from the drainage through a
single Plateau border. The model is simple enough to be explorable numerically in
reasonable amounts of computing time, while still retaining enough of the inherent
physics to make meaningful comparisons with experiments and real-world systems

of interest.

1.4 Foam structure for finite values of liquid
fraction

The variation of liquid fraction has a significant effect on many different foam
characteristics. In later chapters, we will examine drainage — how liquid fraction
changes in space and time under gravity, outlined in Part [ — and the lifetime of
ageing foams (Part II).

We will outline here a simple example of the effects changing liquid fractions can
have on a foam: the problem of identifying minimum-energy structures. Although
the most commonly encountered foams are disordered, one can generate ordered
foams using monodisperse bubbles. Such ordered foams are often used in research
on minimal-energy surfaces [3].

The problem of how best to partition space is a long-standing one. While often
considered a purely mathematical concern, there are several real-world applications
of solutions to this problem, such as in the design of buildings and applications

where packing efficiency is at a premium.
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Figure 1.8: The Water Cube, built for the Beijing Olympics. The design of this
building is based around the Weaire-Phelan foam structure, the current
best space-partitioning foam structure. Image courtesy of Chris Suderman
(Creative Commons).

The variation of liquid fraction between the wet and dry limits also has a
significant effect on the structures of lowest energy and on the mechanical stability
of these structures.

The humble honeybee long ago solved the problem of partitioning 2D space into
equal-area cells while minimising the amount of material used to build the walls
(or surface length). Hexagonal honeycomb structures have been mathematically
proven to be the most efficient structure for 2D. But what is the counterpart in
3D? How can we partition space into cells of equal volume while minimising surface
area?

Various foams have been put forward as the structure of lowest energy. Lord
Kelvin proposed the first such solution in 1887 [16]. The Kelvin structure consists

of a body-centred cubic (bcc) space-filling arrangement of truncated octahedrons
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(a 14-sided polyhedron with six square faces and eight hexagonal faces). This
structure was long thought to be the most efficient 3D structure. However, more
than a century later, Weaire and Phelan computed a structure with a lower surface
area [16, 17], beating Kelvin’s structure by 0.3% (a substantial reduction in this
context). The Weaire-Phelan structure is shown in Figure 1.9, alongside the Kelvin
structure.

The Weaire-Phelan structure differs from the Kelvin structure in that it con-
sists of two different cells (an irregular dodecahedron with pentagonal faces and a
tetrakaidecahedron with two hexagonal and twelve pentagonal faces), albeit with
the same volume. As of publication of this work, it is still the most efficient struc-
ture known for the partition of 3D space. It has, however, not been mathematically
proven to be optimal. Recent experimental work has lead to the first laboratory
realisation of a Weaire-Phelan foam [18].

Previous simulations of minimal energy surfaces have used dry foams (zero
liquid fraction simulations) [3, 7]. However, foams in experiments always have a
finite liquid fraction ¢ and, as such, we need to include this in our simulations. This
liquid fraction can have significant effects on the stability of foam structures, with
certain structures only experimentally accessible below specific threshold values of
¢. While dry foams have been extensively studied, wet foams have not, largely
due to the large increase in computer power required to accurately model the
Plateau border network. Examples of dry (i.e., starting simulation) and wet foam
simulations can be seen in Figure 1.10. It is apparent by visual inspection that the
wet foam is more representative of a real Weaire-Phelan foam than the starting

simulation.
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Figure 1.9: The top row ((a) and (b)) shows the Kelvin foam, while the bottom ((c¢)

and (d)) shows a Weaire-Phelan foam. In both cases, the left image is
experimental. while the right is from simulation. It is readily apparent
that the Weaire-Phelan is a more complex structure, consisting of two
different (but equal-volume) bubble types.

We conducted Surface Evolver simulations to find the limits of stability of the
Kelvin and Weaire-Phelan foam structures as liquid fraction is increased. (A de-
tailed introduction to the Surface Evolver software may be found in Appendix D.1.)
We tracked the surface energy per bubble E as ¢ is varied, which points to insta-

bilities in the foam structure. The per-bubble energy is most useful for comparing

different ordered structures, as it is independent of foam structure (e.g., the num-
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Figure 1.10: The difference in the structure of a foam with increasing liquid fraction
is shown here. (a) shows a dry foam with zero liquid fraction, (b) shows
a foam with a liquid fraction of 1%. Note the curved faces in the foam
(most apparent in (b), which show how real foams differ from simple
Voronoi tessellations of space [15]). The structures were calculated using
the Surface Evolver.

ber of bubbles in a unit cell). A plot of energy per bubble is shown in Figure 1.11.

Note that the value of the surface energy per bubble (equivalent to the surface area

in these simulations) for a Kelvin foam in the dry limit -— F ~ 5.35 — plays a role

in the derivation of models of foam drainage, which will be outlined in Chapter 2.

Taking the derivative of this curve, we may define a stability threshold as

i—i =1 (1.3)

Below this threshold, increasing liquid fraction reduces the average energy of
the bubbles in the foam, as reported by the Surface Evolver. Increasing ¢ past
this point increases the surface energy of the simulated foam. The real foam would

resist such energy increases and would change structure (e.g., by losing contacts

or by rearranging bubbles) to reduce energy again.
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Figure 1.11: As liquid fraction is increased. the surface energy per bubble initially
increases. However, after a certain point (dependent on the foam struc-
ture), further increases in liquid fraction lead to increased energy. The
inset shows that, while the Weaire-Phelan is the lowest-energy dry foam.
by ¢ = 0.01 the Kelvin foam is clearly the structure of lowest energy.

A plot of OE/d¢ for both Kelvin and Weaire-Phelan foams is shown in Fig-
ure 1.12. The Kelvin foam crosses the threshold at ¢ = 0.11 £+ 0.01, while the
Weaire-Phelan crosses at ¢ = 0.14 + 0.01. These values agree well with published
results for the stability of these structures by Phelan et al. [19]

We may also predict which structure is preferred for a specific liquid fraction
from our energy calculations. While the Weaire-Phelan foam is the lowest energy
structure for perfectly dry foams, this is not the case as liquid fraction changes.

We find that by ¢ = 0.01 the Kelvin foam has become the structure of lowest

energy.
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Figure 1.12: As liquid fraction is increased, the surface energy per bubble initially
decreases. However, at some point, further increases in ¢ increase the
energy per bubble. For the Kelvin foam. this transition occurs at ¢ =
0.11 +£ 0.01. and. for Weaire-Phelan. it occurs at ¢ = 0.14 4+ 0.01.

1.5 Summary

Despite their familiar nature and deceptively simple appearance, foams are integral
to many industries and avenues of research. In this work, we will necessarily neglect
some of this ubiquity and instead focus on a handful of examples which cover a
range of the applications of foams — from modelling industrial processes. through
advanced materials research, and on to use as a tool in teaching statistics.

Our work focused on the flow of liquid through the channels that make up
foams, and how that drainage affects the physics and overarching behaviour of the

systems we study. We will show how such mathematical analysis can be explored
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by numerical simulation and probed via experiment, and will provide thorough
analyses of the steps required to move from these foundations to full models of
real systems of interest.

We will introduce elementary foam drainage theory, and show how it can be
used for modelling and analysis of experimental and industrial set-ups used in the
industrial process of fractionation. Our analysis will then be extended to provide
guidelines for the design and operation of industrial fractionation processes. We
will also compare drainage theory to experimental data, and use such comparisons
to show how important foam characteristics can be determined in a novel way.
In a world where the finite nature of our resources is becoming painfully obvious
to all, this “Trinity’ approach has the potential to provide real improvements to
processes of enormous importance.

The liquid fraction of a foam has significant effects on the lifetime and stability
of foams. We shall present experiments and statistical analysis of the lifetimes of
ageing soap films. This stability has important implications for the design and

operation of experiments in which the deterioration of foam plays a role.

A note on style

One of the first choices one must make when preparing a document like this is the
writing style. I find the personal or active voice — using ‘I" and ‘we’ — both more
pleasant to read and easier to follow (from a narrative standpoint).

Even though I have been the primary driver of the research contained within
this Thesis, I would be doing a great disservice to many people — my supervisor,

co-workers, colleagues and even friends — if I did not acknowledge their interac-
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tions, inputs and assistance. Research is seldom a purely individual effort. For
those reasons, and for clarity of language, I will therefore use ‘we’ throughout this

Thesis.



Part 1

Foam Drainage
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Chapter 2

Introduction to foam drainage

theory

The mathematical modelling of foam drainage (including the case of fractionation,
which will be discussed in a later section) goes back to the 1960s'. Leonard
and Lemlich [21] had all the elements of the model that prevails today, but did
not conduct the mathematical analyses that would have exposed its rich variety
of non-uniform and time-dependent solutions. Only uniform profiles of steady
drainage were considered. The later contributions of Gol'dfarb et al. [22], Verbist
et al. [23], Koehler and Hilgenfeldt [24], Cox et al. [25], and Saint-Jalmes and
Langevin [26] developed the field in its full generality. Models of foam drainage
have previously been applied with qualitative and semi-quantitative success to a

range of experiments including “free drainage”and “forced drainage” [27, 28]

!Although brief theoretical discussions of the process of drainage had been presented by
Bikerman [20] in 1953, no serious modelling was attempted.
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and foamability tests [29] in a single column. (For a more thorough summary of
early foam drainage theory, see the work of Weaire et al. [28].)

In this Chapter, we will introduce the basic ideas behind foam drainage theory
and present a theoretical model for the drainage process. We will also discuss some
mathematical solutions of the resulting foam drainage equation and show (using
a simple example) how drainage theory may be used to understand experimental

results.

2.1 Modelling foam drainage

Under the action of gravity, liquid will low through a foam — specifically through
a network of Plateau borders (PBs) — as sketched in Figure 2.1. The viscosity,
surface tension and pressure differences within the foam will affect the flow.

While liquid flowing through a pipe cannot affect the geometry of the pipe,
the PB network will change and swell to accommodate additional liquid and, thus,
change the value of the local liquid fraction in time and space ¢(z,t). We therefore
need a model that can describe the liquid fraction of the foam — the amount of
the foam volume consisting of liquid — as a function of both time and position.

As the liquid drains through the foam under the influence of gravity, it is
countered by viscous drag forces. Dissipation occurs in both the PBs and the
nodes (or junctions) where the PBs meet. Different flow characteristics will be
observed depending on the nature of the dissipation, which, in turn, depends on
the surface characteristics of the foam.

Which dissipative model is more applicable to a given foam is largely depen-

dent on the surfactant type used. In the case of a foam stabilised by a surfactant
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Liquid flow

Gravity

Figure 2.1: When a foam is subject to an external force, such as gravity. the liquid in
that foam flows through the network of channels and nodes (the Plateau
border network). The figure shows this process in a wet Kelvin foam. with
the red arrows indicating the flow of liquid.

with mobile interfaces, liquid draining through the PBs will undergo plug flow.

The main source of dissipation will thus be in the nodes [24], where the liquid

is redistributed — node-dominated drainage. Conversely, a foam with immo-

bile interfaces (such as those discussed in Section 2.4) will experience Poiseuille-
type flow in the PBs, leading to dissipation forces mainly in the channels [23] —
channel-dominated drainage.

This difference may be understood intuitively by considering the liquid flow as

laminar. If the interfaces are immobile or rigid, there will be no flow on the walls
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and a maximum flow in the centre of the PB (Poiseuille flow), resulting in a large
velocity gradient that, in turn, leads to dissipative shear forces acting against the
flow. As the PBs contain more wall area than the nodes, the large majority of this
type of dissipation will occur in the PBs, and the contribution of the nodes may be
neglected. This is channel-dominated drainage. Conversely, if the interfaces are
mobile, then we can expect plug flow in the PBs and the majority of the dissipative
forces will be due to shear in the nodes (as the liquid flows out into multiple PBs,
as shown in Figure 2.1). We may, therefore, neglect the contribution of the PBs,
resulting in node-dominated drainage.

Recently, work has been undertaken to explore the regions between these two
extremes [30] to derive models that can include contributions from both dissipation
mechanisms (applicable to surfactant mixtures in real foams, for example). In this
work, we will present theoretical models based on channel-dominated drainage
theories, as outlined in Section 2.2. Channel-dominated drainage has the great

benefit of being easily explored analytically.

2.2 The Foam Drainage Equation

The channel-dominated Foam Drainage Equation (FDE), first presented by Verbist
et al. [23], describes how the liquid fraction ¢(z,t) changes as a function of position

2 and time ¢. The full form of the FDE is given by

‘9¢+_1_‘9_<&¢2 i /—d‘p) 0, (2.1)

ot n*ox \ly l‘ ox

where
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e 7 is the surface tension, p is the density of the liquid phase, and g is accel-

eration due to gravity,

e 1 =3 x 50 x n, where 3 is a geometric factor arising from averaging over
the PB network, 50 is a ‘drag coefficient’ valid for Poiseuille-type flow in a

PB, and 7 is the bulk liquid viscosity,

e (U is a geometrical constant relating to the cross-sectional shape of the PBs,

and is given by C' = /v/3 — o

e and [y ~ 5.35\/;)_2/3 is the total length of PBs per unit volume of foam. Here,
V} is the average volume of a bubble in the foam and the constant 5.35 arises
from geometric consideration of a Kelvin foam. Similar values are found for

a large variety of different foam structures (to within 2%) [7].

We may estimate the bubble volume V, from measured PB lengths by again
approximating the bubbles in the foam as Kelvin cells. A Kelvin cell with edge
length L has volume Vj, = 8/m L3.

A full derivation of the FDE may be found in Appendix A. As the full equation
is quite unwieldy, we will gather the assorted constants into two constants — ¢;

and ¢y — leading to a final FDE:

dp 0 . 100
— + — | 1¢° — — ] =0, 2
ot N Ox ((‘1(1) 62¢28:E> 0 )
where ¢; and ¢y are given by
) = e (2.3)
lyn*
1 C
o i (2.4)

2 l:,/Qn*
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¢1 has dimensions of velocity and ¢y /c; dimensions of length. ¢5 /¢ is (to within
a constant of order unity) equal to the Princen or capillary length, i.e., the height
of that section of wet foam that exists due to capillarity when a foam is in contact
with underlying liquid [5] under acceleration due to gravity. ¢; is (again, to within
a constant of order unity) equal to an important constant in elementary drainage
theory [5]: in steady uniform drainage, the liquid fraction is proportional to the
flow velocity with the constant of proportionality given by 1/¢; (as can be seen in
Equation 2.3.2).

Numerically solving the FDE results in a description of how the liquid frac-
tion ¢(x,t) evolves over time from some given starting conditions (liquid fraction
profiles). An example of such a solution for the case of an aqueous foam with
a standard surfactant (sodium dodecyl sulfate, or SDS) in contact with a liquid

reservoir is shown in Figure 2.2.

2.3 Example solutions of the FDE

Here we will present some solutions of the FDE and use one to conduct a sim-
ple analysis of real-world experimental data (shown in Section 2.4). While many
boundary conditions for the FDE require numerical integration or other approxi-
mations to be made, in several cases analytic solutions exist. Note that all of the
examples given here are derived from the channel-dominated FDE described in

the previous Section.
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Figure 2.2: Numerically integrating the full FDE allows us to visualise and explore
foam systems which have no analytical solution available. The figure shows
an example numerical solution for a freely draining aqueous foam stabilised
with a standard surfactant (sodium dodecyl sulfate. or SDS). The foam is
in contact with a liquid and starts from an initially uniform liquid fraction
profile (except where in contact with the pool). The axes are scaled in
terms of our parameters ¢; and cs.

2.3.1 A foam in equilibrium

When the foam is in equilibrium (i.e., when d¢/0t = 0), a liquid fraction profile

can be analytically found. Looking at Equation 2.2, we note that the term inside
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the parentheses is simply a flow rate. If the foam is in equilibrium, then we can

set this flow to zero, such that

0% _

01¢® — cp9'? p

0 (2.5)

throughout the entire foam. This gives the following solution for the liquid

fraction profile:

4 le C%
(224 c1 V1 (x + 21))?

il e (2.6)

where ¢ = ¢(x) is the value of liquid fraction at some position in the foam.
If the foam is floating on liquid, we can set ¢(z; = 0) = ¢. = 0.36, as discussed in
Section 1.3.2. In Chapter 3, we will look at draining foams where the local flow

rate has a finite value.

2.3.2 Forced drainage — solitary wave solution

A common process in experiment and industry is forced drainage, where liquid is
added to a foam and propagates through the PB network, wetting the foam in the
process. We will comment on this process in an industrial context when discussing
foam fractionation in Chapter 3, specifically in Section 3.4.2.

Verbist et al. [23] suggested solutions of the FDE for the case of forced drainage
on a dry foam, where the propagating wetting front is a solitary wave moving with

some constant velocity v. The solution is (in our notation):

2 tanh? ( L (C—l(a? - vt))) x < vt
C1 (o § c2

0 1l ]

¢(x,t) =
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Figure 2.3: Analytical solutions of the FDE (Equation 2.3.2) for a dry foam undergoing
forced drainage show the shape of the solitary wave moving through the
foam. Note the propagation of the wave front from left to right (i.e.. from
the top of the foam downwards) with increasing time, and the constant
wave shape.

Figure 2.3 shows numerical solutions of the FDE for a dry foam undergoing
forced drainage. The wave front propagates from from left to right (i.e., from the
top of the foam downwards) as time progresses, with a constant velocity.

In the case where the liquid is added to an already wet foam, the analytic

solution becomes implicit (see [23]). However, numerical solutions may still be

calculated as before, which will be discussed in Section 3.4.2.
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2.3.3 Linear approximation to the FDE

It is possible to reduce the FDE to a first-order equation in x by neglecting any
contribution from surface tension (which causes pressure variations in the foam).
This approximation is more valid in the dryer regions of the foam (farther above
the liquid surface than the capillary length given by Equation 1.1), as can be seen
in Figure 2.4.

Starting from Equation 2.2, and setting surface tension v to zero (which sets
¢9 to zero), we have

I 00*

Kraynik [31] presented a solution for the linear approximation of the FDE,

reproduced here in our notation:

Bz, t) = ———2, (2.8)

where z, is an offset in space (the point where all linear profiles converge) and
tq. is an offset in time. In the next Section, we will use Equation 2.8 to show how

foam drainage theory may be used to analyse free drainage experiments.

2.4 Example of analysis using the FDE — a
linear case

(We would like to thank C. Stubenrauch for kindly providing the experimental

data we use throughout this section.)
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Figure 2.4: Plotting numerical solutions of the full foam drainage equation (i.e., liquid
fraction as a function of position and time, with the base of the foam on the
right) clearly shows that the dryer top parts of the foam are reasonably
linear at all times. Here, the first-order approximation of the FDE is
sufficient.

We will now look at how one can apply a linear approximation of the FDE to
experimental data and extract useful information about the foam (a dry run, so
to speak, for the analysis of drainage experiments presented in Chapter 4).

Carey and Stubenrauch [32] recently presented work analysing free drainage of
aqueous foams using mixtures of various surfactants (one non-ionic, C;3,DMPO,
and one ionic, C;;TAB). They found that all surfactant mixtures tested showed
Poiseuille-type flow and, as such, we would expect solid agreement between their
experimental data and solutions of the channel-dominated FDE.

The experimental data consists of measurements of liquid fraction (at different

heights throughout the foam sample) taken at regular time intervals using a mea-
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surement technique based on electrical conductivity. As such, we have a full set of
liquid fraction profiles ¢(z,t) for multiple foams, each with a different surfactant
mix. We will present results based on one such set of profiles — a foam generated
with 1:1 mix of C;,DMPO and C;,TAB surfactants.

We start our analysis by noting that the data appears to be linear (as shown in
Figure 2.5) and that the linear approximation to the FDE discussed in Section 2.3.3
should be valid. The linear FDE has a known analytical solution [31], presented
in Equation 2.8.

This equation allows us to quickly compute a full liquid fraction profile, pro-
vided we know ¢, z, and t,. Recall that ¢; = 1—‘3% = m For the ex-
perimental data under examination here, the density and viscosity of the solution
will be effectively equivalent to that of pure water at the surfactant concentrations
used (twice the critical micelle concentration). Therefore, the only unknown value
in ¢, is the bubble volume Vj,.

We now set out to determine these values from the experimental data. First,
we differentiate Equation 2.8 with respect to z:

Op(z,t) 1 1

—_ = . 2.9
ox 2c1t — 1, (23]

Note that the spatial offset x, is no longer present. Equation 2.9 allows us to
calculate the slope of the linear profile at some time ¢, provided we know ¢, and
the bubble volume V;. We can also calculate the slopes directly from the data and
fit Equation 2.9 to those slopes, treating t, and V} as fitting parameters. This is

shown in Figure 2.6.



2.4. Example of analysis using the FDE — a linear case 5 g

0.16 T T T T = T
Experimental data ------

0.14 - -
Experimental data ---x---

0.1 _,_/—/’"—‘—x’/

0.08

Liquid fraction

0.06 g

004t P

Figure 2.5: Liquid fraction profiles showing the evolution of ¢(xz, t) for a foam stabilised
using a 1:1 mix of C;3,DMPO and C,,TAB surfactants. Note the linear
nature of the profiles.

With best-fit values for ¢, and V}, known, we can return to Equation 2.8 to work
out x,. We fit this equation to the experimental data for every available time t,
which provides a series of estimates of z,. These can be averaged to arrive at a
final value.

With z,, t,, and V, now known (taking values r, = —0.12 £ 0.0l cm, t, =
—20 + 2s, and V, = 8.4 + 0.7mm~? for this experimental data), we can use
Equation 2.8 to directly calculate liquid fraction profiles for our foam (as there are
no free parameters). Figure 2.7 shows such a recreation plotted together with the
original data, with excellent agreement observed. Figure 2.8 shows the same data,

but zoomed out slightly to show z, (the convergence point or spatial offset).
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Figure 2.6: For every measurement time ¢ in our experimental data. we can numerically
compute a linear slope of the liquid fraction. We then fit Equation 2.9 to
these numerical slopes. allowing us to determine t, and — via ¢; — Vj,.

From visual inspection of Figures 2.7 and 2.8, we can see that our recreated
curves match the experimental data very closely. We also have a second measure
of the goodness of our recreation available — the bubble volume Vj,.

From our fits of Equation 2.9, we find the value V;, = 8.4 + 0.7mm 3. We were
also provided with measurements of the average lengths of the Plateau borders on
the walls of the tube containing the foam Lpgy . After rescaling these measure-
ments for edge effects [33], we arrive at a value for the length of a Plateau border

inside the bulk foam:

Lppw
Lpp = : 2.10
PB 19 ( )



2.4. Example of analysis using the FDE — a linear case 39

Theoretical solution i ; '
0.14 - Experimental data - o
0.12
0.1
.
S
g 008
3 =
g o006
004 F
0.02 =
0 1 = 1 1 1 1
10 15 20 25 30 35 40 45

Position (vertical from top, cm)

Figure 2.7: For much of the running time of the experiment. our recreation agrees very
closely with experimental data. The theoretical curves are calculated from

Equation 2.8, with parameters extracted from fits as discussed.
We must next relate Lpp to bubble volume V,. We do this by approximating

the sample foam with a Kelvin foam. The volume of a bubble in a Kelvin foam

(by geometric considerations) is given by

Vi(Lpg) = 84/ L% 5. (2.11)

For the measurements of Lpg provided with the experimental data, this leads
to a value of V, = 8.2 £ 0.8mm™?, in agreement with the value found from our
fits. This agreement between our linear FDE and experimental data confirms the

findings of Carey and Stubenrauch [32] — that the foams used in their experiments
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Figure 2.8: After calculating the various fit parameters, we are able to recreate the
original experimental data from Equation 2.8. as it now has no free pa-
rameters for ¢(x,t). The figure shows the full solution. including the finite
offset r, = —0.12 + 0.01 em. Good agreement is seen between the original
experimental data (dashed lines) and the recreated solution (solid lines).

are well-described using channel-dominated drainage theory, exhibiting Poiseuille-
like flow.

It is hopefully clear from this Section that, even with a simplified drainage
model, we can still arrive at useful and valid comparisons to experiment. This is a
recurring theme when working with drainage theory, and will be seen again in our

work on foam fractionation (Chapter 3) and analysis of metal foams (Chapter 4).



Chapter 3

Foam Fractionation

3.1 Introduction to foam fractionation

Foam fractionation is the process in which a foam rises in a column and overflows
at the top. The liquid collected from the overflowing foam. when it is collapsed,
is relatively richer in the surface-active components of the liquid that was used to
generate the foam. This process is of widespread practical importance in chemical
engineering and biotechnology [34].

A resurgent mining industry, coupled with novel applications to the study of
biological systems [35-37] (such as protein-stabilised foams), has lead to a greater
need for a solid theoretical understanding of the underlying physics and chemistry
of fractionation. While the theory behind the process has been studied in the
literature since at least the 1960s (the work of Lemlich [38], for example, contains
fairly complete descriptions of the various industrial processes and makes steps

towards mathematical modelling), it has enjoyed something of a renaissance in

41
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recent years. Major contributions with applications to the present work have come
from Jameson (and collaborators) [39] and Stevenson (and collaborators) [40-43],
both from within the fields of chemical and process engineering.

Also relevant to the present work, an avenue of research based on foam drainage
theory and the FDE has been undertaken by Neethling et al. [44]. They presented
results for a single fractionation column with overflow — building up a model from
the channel-dominated FDE — and presented numerical and experimental results
which confirmed the key points of their analysis. This approach has significant
merit, as there is a large body of research on foam drainage which may be appli-
cable to fractionation. In this way, we can see a potential opportunity to bridge
disparate research efforts by physicists and engineers, and move the understanding
of fractionation forward.

Attempts to derive a firm analytical model for fractionation processes have
often been hampered by difficulties in describing the theoretical foam overflow
reliably. Capturing the overflow requires consideration of column geometry, foam
drainage and coarsening, rupture of bubbles, and the rheology of the overflowing
foam itself. Reducing such complex behaviour to more mathematically-tractable
boundary conditions is one of the main results of this chapter. It is therefore
desirable to explore a model system which is representative of the fractionation
process, and which involves boundary conditions that are realistic while being less
challenging to theory than the more typical overflow from an open column.

Once we have such a model in place, we can move on to understanding frac-
tionation in greater detail, which will aid the process of maximising the efficiency
of industrial designs. As the process is used on the industrial scale, reducing

inefficiency at the design stage and during operation may allow significant im-
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provements to output and may reduce waste of materials and energy (a pressing

concern in modern times).

3.2 A model system for foam fractionation

The model we chose for study is an inverted U-tube system, shown in schematic
form in Figure 3.1. An inverted U-shaped tube connects two liquid reservoirs.
Foam is generated by a gas sparger in the left-hand reservoir, rises through the
left-hand (inflow) leg and through the U-bend, and flows downwards in the right-
hand leg into the right-hand collection reservoir!. As the foam is in contact with a
liquid surface at both ends of the tube, we have well-defined boundary conditions.
This allows us to sidestep the challenge of mathematically describing an overflowing
foam, and opens the problem of continuous foam fractionation to mathematical
examination. U-tube systems are also amenable for experimental work (used, for
example, by Martin et al. [45]). The U-tube makes it easier to collect outflowing
foam and make accurate measurements of the foam. This will be further detailed
in Section 3.2.5, which describes our experiments on a real U-tube.

We assume that there is a steady flow of both gas and liquid from left to right,
and that the gas flow rate is constant. The key question, therefore, is: what is the
liquid flow rate that is delivered? This must vary with the gas flow rate and other
physical and chemical parameters of the foam, such as bubble size, surface tension

and viscosity.

'Tn a real fractionation column of this type, the left reservoir would hold the solution contain-
ing surface-active molecules and the right reservoir would contain a more concentrated solution
(the concentration difference would depend on the column set-up). As will be explained, our
model does not consider this concentration directly.
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Figure 3.1: Schematic illustration of the inverted U-tube set-up for the study of foam
fractionation. Gas is sparged into a surfactant solution reservoir at a con-
stant rate, generating foam which flows through the tube. The foam prefer-
entially carries the surface-active components of the solution. leading to an
increase in concentration in the outflow reservoir. This mode of operation
is termed “simple mode” [46] as there is no independent liquid feed.
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A proportion of the surface-active molecules in the inflow reservoir become
trapped at the film surfaces as the foam is generated. These molecules are carried
through the tube with the moving foam and, hence, are delivered at a rate deter-
mined by the gas flow. However, the interstitial dilute liquid does not flow through
the tube at the same rate (due to drainage through the foam). When considering
the efficiency of a column, we may seek to ensure as many of the surface-active
components are carried with the foam as possible, while minimising the delivery
of the dilute solution. This will be discussed in greater detail in Section 3.3

We shall examine the behaviour of the U-tube using the steady-state version of
the FDE introduced in Chapter 2.2. (A derivation of the full time-dependent FDE
can be found in Appendix A.) A great advantage of the elementary FDE is that,
with it, many problems may be treated analytically in a relatively straight-forward
fashion. With a full analytical theory in place, we can begin to understand the
process of fractionation in greater detail. Much of the analysis can also be extended
to the more general case and, eventually, to other fractionation columns.

We will present numerical solutions which corroborate the findings of the an-
alytic theory, and preliminary experiments to test it. We will also analyse the
dependence of the results on the length of the two legs. We will derive a metric of
performance for fractionation columns, and show how it may be used to maximise
the efficiency of U-tube set-ups. Finally, we will outline how to extend these results

to other types of fractionation column, with examples.
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3.2.1 Basis of the theory

The steady-state form of the FDE relates local values of liquid flux J (volume
flow rate per unit cross-sectional area) to liquid fraction ¢, and is given by simply
setting the time derivative of Equation 2.2 to zero, resulting in

0

g (01(152 — 29

22| =—=—(J)=0. 3.1
ox ox (/) S

1 0 0
-~ Ox

where the quantity inside the parentheses is a local flow rate J and (as before)

c1 and ¢y are given by

P9

¢ = ) (3.2)
lyn*
1 Cv
Cg = ————. (3.3)
) 25

In our model fractionation set-up we have a driving gas velocity V', which must
be taken into account when considering the total flow rate. There is an additional
flux term resulting from the transport of liquid through the U-tube simply due to
the motion of the foam. This is given by the gas velocity multiplied by the local
liquid fraction V' x ¢.

The gas velocity V is, more precisely, the result obtained by dividing the con-
stant gas flux by the gas fraction 1 — ¢ and, hence, is a function of position in
the column. However, as the FDE is formulated for foams with a relatively low
liquid fraction (¢ < 1), we may treat this velocity as constant and neglect the

small variation arising due to changing liquid fraction. As we will see, this is a
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fair approximation, as the variation of liquid fraction in the legs of the U-tube is
limited.

The flow of gas and liquid will be treated as one-dimensional, i.e., we do not
allow for any variation across the finite cross-section of the tube. Such variations
are certainly detectable in experimental systems, but will be neglected here to
allow the derivation of analytical results (and the numerical verification of those
results).

In the following, = denotes the upward vertical coordinate for both the left
(upward flow) and right (downward flow) legs, with = 0 at the liquid surfaces
and r = L at the top (i.e., = refers to a height above the surface of the liquid
reservoirs). We take both legs to be of equal length for simplicity of notation,
however this is not required by the analysis. We will also denote the liquid fraction
in each leg separately, by ¢; and ¢, respectively.

In the left-hand tube, both liquid and gas flow in the direction of increasing x.

Our modified FDE thus takes the form

od
T =4V ~ 1) — a2 (3.4a)
b - —c;l(p,‘”? (crf — AV + J)., (3.4b)

dx
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while, for the right-hand side — where both liquid flux and gas velocity now

flow in the direction of decreasing r — we have

T = 4V~ ea6) — eatl S (3.52)
(fi; = —c;' o7 (192 + 0,V = J). (3.5b)

When describing foam fractionation, we will present results scaled by the con-
stants ¢; and ¢y (introduced in Section 2.2). This allows meaningful comparison
between foams that may have largely different physical and chemical characteris-
tics, simply by calculating these constants and scaling appropriately. The reader
may also apply our results to a system of interest in a similar manner. In this
Chapter, we use the following (fairly typical) values for the parameters that make
up c; and co: 7 = 0.001Pas, vy =0.05Nm, p=1000kg m~3, and V; = 4 x 1079 m?,

giving ¢; =~ 3.2x102ms™! and ¢; &~ 4.7 x 10~°m? s~

. This gives a value for
ca/cy =~ 1.47 x 1073 m.

While our numerical results are presented in terms of these units, it can be
helpful to have a feel for the sizes of the fractionation columns involved. Unless
otherwise noted, the simulated columns have leg lengths between 10cm and 1m,
and are driven with gas velocities between approximately 1 mm s~ ! and 25mm s~ !.
Experimental apparatus will be described in the appropriate sections.

When deriving an analytic theory, we neglect the effect of a finite bend, instead

assuming that liquid fraction may be equated at the top of the two columns. This

approximation will be examined by simulation in an appropriate regime of flow
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parameters (see Section 3.2.4) by numerically integrating over the entire column,
including the bend. A brief analysis of the expected error from this assumption
can be found in Section C.1.

Keeping these approximations in mind, the boundary conditions for the U-tube

model are therefore taken to be

¢u(L) = ¢r(L) (3.6)

and

$1(0) = ¢,(0) = ¢, = 0.36, (3.7)

where ¢. is, as before, the critical liquid fraction commonly taken for the liquid
fraction at the liquid interface [5]. The key results are insensitive to this precise

value.

3.2.2 Analysis of the limiting case: [ — o

We begin our analysis of the problem posed in the previous section by considering
the limiting case of infinitely long legs, i.e., where L — oo. Working in such a limit
will allow some simplifications to be made, allowing important limiting results to
be derived.

We take the gas velocity V' to be fixed, and take the liquid flux J to be variable.
Determining the relationship between V' and J — i.e., J(V) — will be one of our
first objectives. It is intuitively obvious that the flux J will be dependent on the

leg length L, although we will first consider only the limiting infinite leg case.
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We shall show that, in this limit, and with the above boundary conditions,

V‘Z
7l

which is the value for which the expression in parentheses in Equation 3.4b has
two coincident roots for ¢;.

The roots in question for Equation 3.4b are

VvV2—4eJ

g = . 3.9
b - (39)
while the corresponding roots for Equation 3.5b are
-V +vV2+4cJ .
P34 = =, (3.10)

2(’1

All of these roots, when real. are significant for being constant-profile solutions.
Since these do not fit the boundary conditions, such solutions are not used directly
here. On the right-hand side, only ¢3 is positive and, therefore, ¢, is largely
irrelevant (as negative liquid fraction is not physically meaningful).

We integrate Equation 3.5b to obtain

C2 &l \/qb_rdd)r
AT .
C1 J¢,(0) (d)r - d)B)(d)r - ¢4)

(3.11)

The integral in Equation 3.11 must diverge as L — oo, and this requires
¢r(L) — ¢3. This further implies (from Equation 3.6) that ¢;(L) — ¢3. In this
way, the right leg sets an approximate boundary condition for consideration of the

left-hand leg.
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Again, we will have use for the integrated form (of Equation 3.4b),

o _C_2 ¢i(L) \/add)l

e o) (00— ¢1)(d1 — b2)

(3.12)

Consider the case J < Jy, for which the roots ¢, and ¢, are real. By the same
argument as given above, we require ¢;(L) — ¢;. But there is no finite value of
J in this range for which ¢; = ¢3, as required by Equation 3.6, hence no such
solution is possible.

We now turn to the case J > Jy, for which ¢; and ¢, are complex. For any
given J in this range, the denominator in Equation 3.12 has a minimum (finite)
value and, hence, the integral in Equation 3.12 cannot diverge.

The remaining possibility is that J — Jy as L — oo. The integral

_C 2/ dide

= : 5
¢ Jg. (o1 — 1)

(3.13)

is indeed divergent, as required. Thus, Equation 3.8 must hold in the limiting
case.

All of this may be seen more clearly by examining the numerical solutions
(see Section 3.2.4), but a formal derivation such as the above is desirable. That
derivation becomes apparent when the nature of the approach to the limit of
infinite L is analysed, finding the appropriate asymptotic form for J(L) using the
above integrals.

(Alternatively, there exist analytic solutions of Equation 3.12 and Equation 3.11.

The full derivations are protracted and can be found in Appendix B.)
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We now note a subtle feature of these solutions which may cause concern. For
J = Jo, ¢y = ¢1(= ¢2) as  — 0o. How can this be compatible with the boundary
condition (Equation 3.6), since ¢ # ¢37

We may resolve this apparent paradox by noting that, for any finite large L,

the liquid flux may be expressed by

J=Jo+¢é, (3.14)

where € is small and results from the effects of finite leg lengths.

There is only an apparent asymptote at ¢1(Jp), eventually crossed by the solu-
tion, which then decreases to the required value, close to ¢3. Figure 3.2 illustrates
this behaviour clearly using numerical solutions for the liquid fraction profile of
the left leg. For J < J; this inflection does not exist, confirming that no solution
can exist. The existence of the inflection was also discussed by Neethling et al.
[44]. The basic J = Jy condition has been identified in various forms by other
recent authors (and there is also at least one much older statement — by Desai
and Kumar [47])— on this same subject, but the effect of the finite leg sizes (con-
tained in €) has not yet been analysed. We will examine this leg dependence in
Section 3.3.2.

For large L, ¢ is close to ¢3 in most of the right-hand tube and we may define

the corresponding liquid velocity there as

v=J/gs. (3.15)



3.2. A model system for foam fractionation 53

0.35 - [L]J=Jg+ S? .................. il
2
03 + [L]J =dg +e5 -=nev A
[LJ=Jg+e5 =

= 0.25 —\ [N Pp—
c
2 i \ R]J=Jdg -
§ 0.2 \\ Left Leg (R 0 1
i \ N,
g 015¢F L ]
Lol N
- ""->,>\\

0.1 F e 1

0.05 + Right Leg .

0 1 | : 1 H
1 10 100 1000 10000

Height above base (units c,/cy)

Figure 3.2: As ¢ — 0. the length of the left leg L; — oo. The graphed solutions
are for the left leg, except where indicated otherwise. The predicted ap-
parent asymptotic behaviour is clear. especially in the smallest e value
solution. The curves here are solutions of Equation 3.4b for the left leg
and Equation 3.5b for the right. Length is presented in units of ¢3/c;.
The liquid fluxes are provided in terms of ¢; and are Jy ~ 8.4¢; x 1073,
€1~ 1.7c; x 1072, eg & 1.7c; x 1073, and €3 ~ 1.7¢; x 1074,

This enables us to arrive at the simple result
=
= (2(\/5 - 1)) V o~ 1207V, (3.16)

relating gas and liquid velocities in the right-hand leg.
This is a somewhat surprising result, in that the two velocities are related by a

numerical constant. It is not inevitable on purely dimensional grounds, since the
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theory contains a parameter (¢;) which has the dimension of a velocity. A similar
argument holds for the left leg, where J = v/¢,. This leads to a liquid velocity
of v = V/2. A similar result was presented by Neethling et al. [44] who derived
it for an overflowing single leg column, taking the limit where the height of the
overflowing foam section (i.e., how far the overflowing foam extends past the exit

of the tube) tends to zero.

3.2.3 Generalisation of the infinite leg power law

We will take a step towards practical reality by generalising the power-law (which
has often been empirically adjusted to describe particular surfactant systems [48])
at the heart of the equation.

We first modify Equation 3.4a by replacing the explicitly quadratic term with
an exponent n (and changing the other terms as needed). The value of the ex-
ponent n is related to the prevailing dissipation mechanism for the flow of liquid
through the foam. as discussed in Chapter 2. Our drainage model is based on
channel-dominated drainage theory, leading to n = 2 [23]. The alternative dissi-
pation mechanism of purely node-dominated drainage results in n = 3/2 [24]. In
practice, n is often found from experiments and depends on the surfactant used.
n has been found to take values varying from 1.92 to 2.29 for surfactants giv-
ing rise to more-or-less rigid interfaces (channel-dominated drainage) [48, 49], and
1.56 to 1.64 for surfactants with more-or-less mobile interfaces (node-dominated

drainage) [24, 49].
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The modified form of Equation 3.4a is

n—S/Q%

J=¢V —bi¢] — bagp, E (3.17)

where b; and by are constants (equal to ¢; and ¢y respectively for n = 2). A
similar modification may be made to the equations for the right leg. We begin by
identifying constant profile solutions of the equation for the left-hand column, i.e.,

solutions for d¢/dx = 0, which have the form

J =iV — big?, (3.18)

where b; is a constant containing physical parameters and n > 1 (note that
by = ¢; if n = 2, as it is in our model).

As before, we require coincident roots of this equation (for ¢;) as a condition
for a matched solution in the limit L — oo. A full analytical formulation for
the solution itself is not available in the general case, but is unnecessary in what
follows.

The generalised results for J and v obtained from this condition are

1

J=b(n-1) (%) o (3.19)

1n

and

v =k(n)V, (3.20)

where, again, k£ is a numerical constant dependent on the value of n.
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Figure 3.3: The dependence of liquid velocity v is proportional to the gas velocity V
as v = k(n)V. where n is the exponent chosen for the power law at the
heart of the drainage equation. The constant of proportionality k(n) is
a dimensionless number given by Equation 3.21. For the node-dominated
drainage model (fully mobile interfaces) n = 3/2 [24]. For the channel-

dominated drainage model (rigid interfaces). as used in the main body of
this article, n = 2.

Thus, in the general case, the quadratic form for J(V') is lost but v remains

proportional to V. The constant of proportionality k(n) is given by

d(ln) (n—1) (%) = (3.21)
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where the constant d(n) is the real positive root of

&

& +d—(n—1) (l) k) (3.22)

n

The form of k(n) can be seen in Figure 3.3.

3.2.4 Numerical illustration

In order to validate and illustrate the analytical results discussed above, we will
compare them with numerical simulations.

The Foam Drainage Equation (FDE) in its appropriate form is now solved for
the entire U-tube, including a finite semicircular bend (a case for which there is
no analytical equivalent).

The U-tube can then be thought of as a one-dimensional system, with the
relevant component of gravity acting downwards in the left (input) leg of length
L, upwards in the right leg (also of length L) and varying in the bend of length
B. We thus write the (stationary) drainage equation for liquid fraction ¢ as a

function of the new position variable z:

do

J =V —c19(2)0) — C2¢1/QE:~ (3.23)

The function g(z) represents the variation of gravity and is defined piecewise

as

+1 if0<z< L
9(z) = —Sin(ﬂ%) ifL<z< L+ B

=1 if L+ B<z<2L+ B.
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In more physical terms this one-dimensional model implies that the liquid frac-
tion across a cross-section of the tube will be homogenous. However, in a real
foam inhomogeneities will arise in the bend as gravity no longer acts parallel to
the flow direction (indeed, at the top of the bend gravity will be perpendicular to
the flow). This can lead to the formation of a liquid boundary layer at the bot-
tom of the bend walls, and this “hold-up” of liquid will cause a reduction in the
liquid fraction in the right /outflow leg when compared to theoretical predictions,
with the size of the discrepancy dependent primarily on the geometry of the bend
section (i.e., how much liquid can pool on the bend surface). Modeling the effects
of this non-uniformity will not be undertaken in this work.

The boundary conditions are set as before — i.e., both ends of the tube are in
contact with a liquid reservoir — ¢(z = 0) = ¢(z = 2L + B) = ¢p = 0.36.

We require pairs of (V. J) that lead to a liquid profile consistent with these
boundary conditions. Fixing V' and integrating from left to right, starting from
0o = 0.36, we use standard fitting techniques to determine the value of J for which
the right-hand boundary condition is satisfied as well. This fitting of J is carried
out using the MIGRAD minimiser from CERN’s MINUIT software [50]. For more
information on this software, see Appendix D.3. The integration is performed using
Heun’s method (explicit improved Euler method) [51]. This method is simple to
implement and allowed rapid iteration on the numerical models which allowed
more complete exploration of the problem space. Results from these integrations
were tested against solutions calculated using Mathematica to ensure their validity.

In this way, we find the valid pairs of (V. J) for a given U-tube setup (e.g., leg
length, bend radius, physical parameters of the surfactant solution). Results from

these simulations are presented in Figures 3.4, 3.5 and 3.6.
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Figure 3.4 shows a numerical computation of a full liquid profile for a U-tube
system with a ratio of bend to leg length of 5/8, i.e., very similar to that used in
some of our experiments (see Section 3.2.5). Note that the profile includes a full
treatment of the bend, and that the bend and both legs have finite length. The
analytic constant profile solutions for the left and right legs (Equations B.3 and
B.5 respectively) are also plotted, highlighting the key difference in the left leg —
the presence of an inflection point.

Figures 3.5 and 3.6 show, respectively, the variation of the liquid flux J with
the gas velocity V' and the variation of the liquid velocity v with the gas velocity
V', for a U-tube system with ratio of bend length to leg length of 1/4. Despite
the finite system dimensions in the simulations, the analytical predictions made
by Equations 3.8 and 3.16 for the limit of infinite legs and zero bend radius are
found to be in excellent agreement. Section C.1 gives a quantitative estimate of

the effect of finite bend radius.



60 Chapter 3. Foam Fractionation

L B=nR R
035 + ' s Simulatéd liquid profile !
| Analytic solution -
Analytic solution
03t : 1
& 025¢} |
= i ;
S i E
g 0.2 g ; E 2
g 015 1 | |
2 : .
_J ]
0.1 Point of inflection |
005 + i
0 L 1 i 1 L N

0 200 400 600 800 1000 1200
Position (units c,/c)

Figure 3.4: A numerical computation of a liquid profile for a U-tube system with bend
to leg length ratio (5/8) very similar to that used in our experiments (see
Section 3.2.5). Note that the profile includes a full treatment of the bend.
and that the bend and both legs have finite length. The analytic constant-
profile solutions for the left and right legs (Equations B.2 and B.5, respec-
tively) are also plotted. highlighting the key difference in the left leg due
to finite leg length — the presence of an inflection point.
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Figure 3.5: The analytic prediction given in Equation 3.8 for the relationship between
liquid flux and gas velocity — J = V?/4¢; (solid line) — shows excellent
agreement with values calculated from numerical solutions of Equations 3.4
and 3.5 (points). The method used to calculate these values is described
in Section 3.2.4. Note that the analytical prediction is made for the limit
of infinite leg length and zero bend length, while the simulations carried
out used a tube with ratio of bend length to leg length of 1/4 (with leg
length L ~ 14%2).
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Figure 3.6: Equation 3.16 predicts a linear dependence of liquid velocity v on gas veloc-
ity V. Asin Figure 3.5, simulation results (points) and analytic predictions
(solid line) match extremely well. Note that the analytical prediction is
made for the limit of infinite leg length and zero bend length, while the
simulations carried out used a tube with ratio of bend length to leg length
of 1/4 (with leg length L ~ 1422).



3.2. A model system for foam fractionation 63

3.2.5 Experiments

(The author would like to thank Arthur Marguerite and Aaron Meagher for ex-
perimental support for this section).
Experiments were undertaken to test some of the key predictions made by the

theory described above, which can be summarised as follows:

1. The ratio of the liquid fractions in the legs (measured sufficiently far from the
liquid reservoirs) is approximately constant, and given by ¢;/¢3 = 1/ (4/2—
1) =~ 2.4142 for rigid interfaces (by substituting Equation 3.8 into Equa-

tions 3.9 and 3.10) and by a different constant in other cases.

2. Equation 3.19 predicts that the dependence of liquid flux J on gas velocity
V' is a power law. Again the power law exponent n is dependent on the

surfactant used (i.e., if the foam has mobile or rigid interfaces).

3. The dependence of the liquid velocity v on the gas velocity V is predicted

by Equation 3.20 to be linear, with slope dependent on n.

The design of the experiments allowed us to check all three predictions. U-
tube setups of the type shown in Figure 3.1 were assembled, with internal tube
diameters of 5.8 mm and 15.7mm. The lengths of the tube legs used were between
0.4m and 0.64m (for a total system length of 1.0m to 1.7m).

Foams were produced from aqueous solutions of sodium dodecyl sulfate (SDS)
and Fairy Liquid (a commercial detergent), with concentrations above the crit-
ical micelle concentration (CMC). As SDS solutions are often unstable in light

(releasing dodecanol into solution, which in turn leads to changes in the surface
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mobility), fresh batches of the surfactant were produced regularly to minimise this
effect. For the SDS experiments presented here, the solution was freshly prepared
every other day and the experiments were carried out as close to the preparation
time as possible to ensure consistency between runs.

Gas was blown through a ceramic filter, resulting in a polydisperse foam flow-
ing through the tube (average bubble diameter approximately 1.0 mm). Once the
foam had filled the entire tube, and the gas velocity had reached a steady state,
experimental measurements were taken. For the surfactant mix used in our ex-
periments, the foam parameters were as follows: 7 = 0.001 Pas, v = 0.032Nm, p =

1000 kg m™3, and Vj, 5.4 x 1071 m?. For these values, we get ¢; ~8 x 107*m s~!

and ca ~ 1.5 x 107°m? s~ 1.

Our analytical model of fractionation does not consider the effect of variations
in bubble volume in space or time. In real-world foams, bubble volumes will
change due to coarsening and coalescence (although the effect of coarsening can
be slowed using non-diffusing gases such as perfluorohexane [14]), and this variation
may account for at least some of the discrepancies observed between preliminary
experiments and our model. Measurements taken during our experiments suggest
a variation in bubble size of up to 1.2V, in the worst case (i.e., the lowest gas
velocity and hence the highest residence time spent by bubbles in the U-tube).
Higher gas velocities reduce this time, and therefore lessen the effect of coarsening.
No ruptures were observed throughout the experiments.

Gas velocity was measured by visually tracking individual bubbles in the foam.
Liquid velocity was measured by adding fluorescein (a fluorescent dye) to the

surfactant solution in the left reservoir (see Figure 3.1) and tracking the moving

front using UV lighting. Liquid flux was measured by collecting the outflowing
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foam in a beaker and measuring the mass of liquid collected over time to infer a
liquid volume flow rate ). The liquid flux is then simply J = /A where A is
the cross-sectional area of the tube. Liquid fraction was estimated (to within a
constant) from the thickness dpp of a Plateau border at the tube surface. Liquid
fraction should be proportional to the square of this quantity, at least in the dry
limit. We simply measured dpp in both legs, and took the squared ratio of these
values as an approximate measure of the ratio of the corresponding liquid fractions.

Results from our experimental measurements can be seen in Figures 3.7 and 3.8.
Figure 3.7 shows the relationship between the gas velocity V' and the liquid flux
J. The data is very well described by a power-law fit to Equation 3.19, with
exponent 5 = 2.3 4 0.2. This corresponds to a value of n = 1.80 = 0.15. Fairy
Liquid has been associated with fairly rigid interfaces (i.e., n ~ 2) in previous
foam drainage experiments [25, 28], so the theoretical expectation is approximately
realised. It would be interesting to repeat these experiments in combination with
other drainage experiments that more directly determine n.

Figure 3.8 shows the dependence of the liquid velocity v on the gas velocity V.
Again, the general theoretical prediction (v = k(n)V') is verified, with a linear fit
describing the data well. The fitted slope is k& = 1.23 4+ 0.07. From Figure 3.3 we
can see that this slope corresponds to a value of n = 2.0 £+ 0.4, consistent with the
value from the J(V) relation.

Measurements for the Plateau border thickness were taken approximately halfway
up each tube leg (see Figure 3.4 for a numerical calculation of a full liquid fraction
profile, noting the non-constant ¢ in the left leg) for an SDS foam. Multiple mea-
surements were taken and averaged, giving ¢;/¢3 = 2.5 +0.5. The relatively large

error in this measurement is larger than the variation in the left-leg liquid fraction
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Figure 3.7: Experimentally determined variation of liquid flux .J (in a U-tube with in-
ternal diameter 15.7 mm and leg length 0.64 m) as a function of gas velocity
V. The foam was produced from an aqueous solution of the commercial de-
tergent ‘Fairy Liquid’. The solid line shows a fitted power law (as predicted

by Equation 3.19) with exponent -5 = 2.3 +0.2.

n

(Figure 3.4), thus the precise point at which the measurements were taken is of
limited influence. The theoretical prediction for this value is 1/(v/2 — 1) ~ 2.4142
as outlined above, assuming n = 2.

In summary, we find general agreement between theory and experiment on
points 1-3 above. However, the value of the power-law index n that was inferred
was not in accord with expectations for the surfactant used (i.e., SDS-stabilised
foams have been observed to have high surface mobility [52], and as such would

tend to be better described by node-dominated drainage).
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Figure 3.8: Experimentally determined variation of liquid velocity v (in a U-tube with
internal diameter 15.7 mm and leg length 0.64 m) as a function of gas veloc-
ity V. The foam was produced from an aqueous solution of the commercial
detergent ‘Fairy Liquid’. The solid line shows a linear fit (as predicted by
Equation 3.20). with slope 1.23 + 0.07. This slope corresponds to a power-
law exponent of n = 2.0 + 0.4 (see Figure 3.3).

3.3 Performance metrics for the U-tube
fractionation column

Performance in a fractionation column can be considered in terms of enrichment
(the ratio of concentration between the solution at the end of the column and the
feed at the start) or recovery (the fraction of the desired product that is recovered

from the outflowing foam).
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As an illustrative example of how the analytic models outlined in previous sec-
tions may be applied to column performance, we will look at the recovery perfor-
mance of the U-tube, which may be considered to be the increase in concentration
between the input reservoir and the collected outflowing foam. As our model does
not include chemical concentrations, we will use an approximation for the recovery.

Let us aim to increase the concentration of the surface-active components in
the outflow. The amount of surface-active molecules that are carried through the
column will be related to the available area of film surfaces and, therefore, to the
gas velocity V' (as increasing the gas velocity will cause more bubbles to move
through the column and, hence, more surface-attached molecules). However, the
foam has a finite liquid fraction and, thus, liquid that does not contain much of the
components to be concentrated will also be carried through the column, reducing
the outflow concentration. We can therefore construct a simple proxy for the
recovery performance of the column the ratio of V' (representing the amount
of surface-active components carried through the column) to J (representing the

other components carried through):

Vv v
J(L) ~ Jo+ (L)

(3.24)

Our use of V to represent the proportion of surface active components car-
ried through the foam hinges on two assumptions (both of note in experimental
systems). The bubbles must spend enough time in the liquid reservoir to reach
equilibrium with the surfactant solution (i.e., adsorption processes reach an equi-
librium). This will depend on the specific chemical make-up of the foam system

under consideration and, due to the time-dependent nature of the process, cannot
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easily be quantified in our existing model. We also assume that the surfactant con-
centration in the solution is not majorly impacted by the gas flow rate V' (i.e., the
depletion effect can be ignored). Again, this will depend on the precise chemistry
of the solutions being used. If these assumptions are not true then the amount
of surfactant per surface area will decrease as the gas velocity increases, leading
to a more complicated relationship between V' and the amount of surface-active
components carried through the column (as the total amount will still increase,
but at a lower rate as V' increases).

In order to compute this metric. we will need to derive the dependence of
flux on finite inflow leg length, €(L). In our analytic model of fractionation. the
behaviour of the inflow leg is defined in part by a top boundary condition, set in
the finite case by the outflow (right) leg. Therefore. we first turn our attention to

finite size effects in the right leg.

3.3.1 Limiting behaviour of liquid fraction in the right leg

In order to fix an upper boundary condition for the top of the left leg, we first
consider the right leg. The equation for the variation of liquid fraction is
do, 1

Az~ cygl (J+ =V —1er)). (3.25)

Writing J = Jy + €2 (with Jy = V?/4c,), we obtain

d@r - _('I(Cfbr' - ¢3)(¢r - 954) 4 62

dx ot/

(3.26)



70 Chapter 3. Foam Fractionation

Here, ¢3 and ¢, represent the roots of the expression in parentheses in Equa-

tion 3.25, and are:

ds. = “1+v2, (3.27)
2(31

by = ﬂv (3.28)
2(‘1

In the limit of infinite leg lengths, ¢, — ¢3 as ©+ — oo. For large enough leg
length L,, we may assume A¢ = (¢, — ¢3) is small, as ¢, asymptotes to this value,

and we can therefore approximate Equation 3.26 by

dAg ('_1(03 — ¢4)

= — Ao, 3.29
e Co 60‘1;/2 ) ( )
neglecting terms of order ¢?. Then
dA & /e
= . O (2-ﬂ 142 v1/2> Ag. (3.30)
T Co

Accordingly, A¢ decreases exponentially with height  and we can write a

decay length as

o (3.31)

Ca
2 a1+ V2 Viz
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Therefore, by increasing leg length from Ly to 2L, the liquid fraction is de-
creased by a factor 1/e. The error in this length is of order 2. For L, > L, this

implies that, at the top of the leg,

(L) — g3 o exp (——T) (3.32)

and that, for such a case, it would be a good approximation to take ¢, = @3,
therefore fixing the boundary condition for the top of the left leg at the same
value that was found for the limit of infinite legs. A comparison of a full numerical
solution and the simple exponential may be seen in Figure 3.9.

With an approach to defining upper boundary conditions for the finite-leg U-

tube, we can turn our attention back to the left leg.

3.3.2 Finite size effects of the left leg

Our next step in calculating the performance metric is to determine €(L;), 1.e.,
to quantify the effect of finite length for the left leg of the inverted U-tube. As
discussed in Section 3.3.1, the length of the right-hand (output) tube L, has a
relatively small effect on the boundary conditions of the U-tube above a certain
threshold length, given by Equation 3.31. As such. provided L, is set to a suf-
ficiently large value, L; dictates the nature of €. The effect of finite length is to

increase J from the minimum value Jy, as shown in Equation 3.33.

J(Ll) = J0+E(L1)2. (333)
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Figure 3.9: A numerical solution for the liquid profile in the right leg (solid line) is
compared to the exponential model given in Equation 3.32 (dashed line).
The exponentially decaying curve tracks the numerical solution well, and
both curves tend to ¢3. as expected. over approximately the same distance.

This increase in J leads to a decrease in efficiency as more dilute solution is
carried through the U-tube.
We can define an integral for the leg length based on Equation 3.4 (using the

liquid flux given in Equation 3.33):

L = _C_ﬁ/¢' Vo do (3.34)

€1 J g, (¢1_ Q_‘C/I)Q-I"T
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After setting the bounds of integration to appropriate values and solving (with

some assumptions, discussed in Appendix C.2), we arrive at an asymptotic expres-

sion for L;:
Iy = ulVl/Qeﬂl + po + u3V_1/2, (3.35)
where
- m Co
1 \/§C1.‘
2 Co

Mo = = el

’ Voe 1

2./2 3/2 ¢
and uz = -— V2 (\/5— 1) . -1

- 1/2°
3 &y

A complete derivation of this result may be found in Appendix C.2. Rearrang-
ing the relation in terms of €(L;), we arrive at an equation describing the effect of

left leg length on liquid flux:

/lel/2 Mo | K3+, 1/2
L) = 14—V : 3.36
(L) = 2 e (3.36)

From these equations, we can see that €(L;) o< 1/L; (to first order) — increasing
L; will decrease €(L;), with €(L;) — 0 as L; — oo. Equation 3.33 may be compared

to numerical solutions. This is shown in Figure 3.10, with good agreement over a

wide range of L;.
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Figure 3.10: Liquid flux J increases as the left leg length L, is decreased (as predicted
by theory). thus decreasing the efficiency of the fractionation process.
The analytic results for J(L;). given by Equation 3.33 (with €(L;). set by
Equation 3.36). show good agreement for a wide range of L;. with devia-
tions from the numerical results only becoming significant for legs shorter
than approximately 100cy/c;. The inset shows the relative difference (in
percentage) between numerical results and the theoretical prediction.

We may also explore the behaviour of €¢(L;) numerically. Fixing the gas velocity
V., we set J = Jy+ ¢ for some ¢; and integrate the flux equation (Equation 3.4).
We then take the point at which the liquid fraction ¢ = ¢3 to be the leg length

Li(€;), as this is the value of the liquid fraction at the top of the right leg (see

Section 3.3.1 for the origin of ¢3 in this context).
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Figure 3.11: Ase — 0. the length of the left leg L; — oo (taking the length of the leg to
be the height where ¢ = ¢3). The figure shows numerical results for E{e)
on a log-log plot. The slope of —-;— corresponds to L x €', as predicted
by Equation 3.35 for finite values of V' (in this case, V' = 0.12¢;).

We can use this method to see how L;(¢;) — oo as ¢ — 0, shown in Fig-
ure 3.11. The figure shows (on a log-log plot) the shape of L(€?). As predicted by
Equation 3.35, we observe a slope of —%. corresponding to L o< e !,

Figure 3.2 shows the variation of the left leg liquid fraction profiles with e,
and that decreasing € brings the finite leg solution closer to the infinite leg result,

J(L) = Jy (as predicted).
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Figure 3.12: Our metric of efficiency as given by Equation 3.24 — V//J — is inversely
proportional to gas velocity V' (as J & V?) and proportional to leg length
L;. Plotting with a logarithmic z-axis shows how efficiency can be dra-
matically increased by decreasing V.

3.3.3 Results for performance metrics

As discussed above, the performance of the U-tube fractionation column will de-
pend on both the gas velocity and the length of the inflow leg ;. Plotting Equa-
tion 3.24 (substituting Equations 3.33 and 3.36), and using the same physical
parameters previously discussed, gives us Figure 3.12.

Figure 3.12 contains a lot of useful information about our metric of efficiency.
Firstly, reducing gas velocity V' increases efficiency. Secondly, for any given V.
reducing L; can lead to large performance drops. This can be seen more clearly in
Figure 3.13.

These figures allow us to make the following recommendations for fractionation
column operation: firstly, the gas velocity V' should be reduced as much as possible

(taking into account desired output rates and physical limitations of the foam);
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Figure 3.13: Fixing V lets us see the dramatic effect varying L; can have on per-
formance. The maximum performance occurs in the infinite leg limit
(where J = Jp), shown along with a line indicating 90% of theoretical
maximum performance. Reducing the leg length below approximately
100c¢2 /¢ leads to a drastic drop in performance from the theoretical max-
imum.

and, secondly, the length of the inflow leg L; should be chosen carefully to ensure
that operation is (for example) in the 95% regime or better. There may of course

exist physical limitations on gas velocity and column size in real fractionation

columns.
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3.4 Alternate fractionation columns

3.4.1 Fractionation column components — the skimmer

While we have had success in our analysis of the U-tube, we have not yet gener-
alised our approach to other types of fractionation columns. Any real industrial
process will likely diverge from our idealised model and, as such, it is worthwhile
to attempt to analyse a very different column in the same manner.

In certain fractionation applications, a further goal is to remove the surface-
active components of the liquid phase as quickly as possible (for example, removing
excess proteins from aquaria). In those cases, “skimmers” are often employed.
These devices collapse and remove foam from the top of a straight column and, with
the foam, liquid which is rich in surface-active molecules. A schematic showing a
column with a skimmer can be seen in Figure 3.14.

We will now consider the case in which a skimmer provides the boundary
condition at the top of a single vertical column. The skimmer removes foam, and
with it liquid, at some rate J; = ¢V, where V is gas velocity and ¢, is the liquid

fraction at the top of the column. Conservation of mass then gives

Js = ¢V = ¢y, (3.37)

where J; is the flux resulting from the action of the skimmer and v; is the liquid

velocity at the top of the column. v; = V at the top.
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Figure 3.14: The skimmer removes liquid from the top of the column at a constant
rate (by collapsing the foam). There is therefore a finite liquid flux Js.
which must equal J(V) at the skimmer. This allows us to define a top
boundary condition for the skimmer-variant column.

The appropriate boundary condition is therefore

@y = (3.38)

<&

We will proceed to calculate J; in the same manner as before. We first de-
termine the infinite leg solution, then add corrections for the effect of finite leg
length.

In the infinite leg limit, J; = Jy (see Appendix C.3). The arguments for J = Jy
in the left leg of the full U-tube model hold again here. Then, considering a finite
leg length L, we will have a liquid flux of the form J,(L) = Jy + €,(L)?* as before

(the form of €,(L) is different from the U-tube case, and will be outlined below).
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¢; can, therefore, be written as

Oy (3.39)

_hteld) V. (1 L 62<_L)) |
1% 4c4 Jo

In the limit of infinite leg length, the left leg of the U-tube and the skimmer

column share the same solution (as we neglect the upper boundary conditions set

by the bend and skimmer respectively). The asymptotic value for liquid fraction

is therefore ¢ = V/2¢; (as J = Jy in the infinite limit). This implies that the

liquid fraction at the skimmer ¢, is half the asymptotic value, as

V ol
_ B 40
o o = 2 (3.40)

This agrees with previous work by Neethling et al. [44], who noted this relation
for overflowing single columns. Figure 3.15 shows a numerically solved liquid
fraction profile for a single column with skimmer in which ¢; = ¢1/2 may be seen.

We can derive a formula for L;(V'), following the same procedure outlined in
Section 3.3.2 and Appendix C.2. We arrive at an expression with a similar form

to that in Equation 3.35, as follows:

Ly = mVY2e + g + paV=12, (3.41)

where p; and ps are the same as in the U-tube, as only the top boundary

condition has changed. The last term (p3 in the U-tube) does depend on the
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Figure 3.15: A numerical solution for a fractionation column including a skimmer
(solid line). The boundary condition at the top of the column (i.e.. the
left-most side) where the foam contacts the skimmer is given by Equa-
tion 3.38. The bottom boundary condition requires the liquid fraction
to go to ¢, = 0.36 where the foam contacts the liquid reservoir. The
relation ¢; = ¢1/2 can clearly be seen here (dashed lines). For the values
of ¢; and ¢y used in our simulations (see Section 3.2.1). the length of the
skimmer column is found to be 30 cm.

top boundary condition, which changes from ¢;(L) = ¢3 (for the full U-tube) to

Oi(L) = ¢;. It thus changes to g4, given by:

g = e PN, (3.42)
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A full derivation may be found in Appendix C.3. From here, we follow the
same procedure as used for the U-tube — solving Equation 3.41 for ¢, — leading
to Equation 3.43 as follows:

B val/2

Mo | Hay, 12
AL = I4= 4+ L2W . 3.43
es(Li) I ( +L L ) (3.43)

We can then calculate a similar metric of efficiency for the skimmer, in this case
V/Js. Figure 3.16 shows numerical solutions for the skimmer column, along with
theoretical predictions for Ji(L) (following from Equation 3.41, as in the U-tube

set-up). Good agreement can be seen over a wide range of leg lengths L.
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Figure 3.16: Analytic and numerical results for the skimmer system show good agree-
ment over a wide range of leg lengths. Deviations from the numerical
results become more significant as the legs become shorter (i.e.. as the
assumptions made in the derivation of the theory exert a larger influence;
see Appendix C.2). The inset shows the relative difference (in percentage)
between numerical results and the theoretical prediction.

3.4.2 Analysing fractionation modes using forced
drainage

Throughout this work we have looked only at the so-called ‘simple’ mode of frac-
tionation [38], with no liquid feed independent of the main solution reservoir.
However, some fractionation columns incorporate a solution feed into the column
(analogous to forced drainage experiments). Such designs aim to ensure that all

the surface-active components fully adsorb on to the bubble surfaces, increasing
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Figure 3.17: Modelling stripping and enriching mode requires the consideration of ex-
tra flux terms to represent liquid added through the elevated feed. Note
that for large enough J;,,. J' is negative. In real fractionation columns.
there may be one or more such feeds and. in some cases. the output of
the column is added back (in what is termed ‘reflux’). Such modifications
aim to improve the performance of the fractionation process.

the enrichment performance of the column. An example is shown in schematic
form in Figure 3.17.

This may be analysed in a straightforward manner, building off the preceding
results for the simple U-tube which apply above the point at which the additional

liquid is introduced. We assume L, (the length of the leg segment above the liquid

addition) is large enough to take J = Jj, as discussed in Section 3.3.2.
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We may model the left (inflow) leg of such a column using numerical solutions
based on Equation 3.4, with J replaced by J(z):
doy 1
= e (oi(V —adi) — J(2)), (3.44)

dr ¢, :

where

J — Jin lf0<ZSL1
S =
o leZL]

This differential equation can be solved numerically, resulting in liquid fraction
profiles for the left leg. The right (outflow) leg solution remains identical to that
of the simple U-tube. An example numerical solution is shown in Figure 3.18, with
a solution for the same column leg without forced drainage for comparison.

The additional flux J;,, can be chosen to increase the liquid fraction in the lower
part of the leg (within limits of stability). Controlling the liquid fraction in this
manner may allow the column adsorption efficiency to be improved. In order to
gain the most from the additional liquid flow. the length L; must be sufficiently
long to ensure complete adsorption. Large increases in enrichment are possible

using forced drainage as reported by Martin et al. [45].
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Figure 3.18: Numerical solutions for the left (inflow) leg clearly show the effect of
forced drainage. with a dramatic increase in liquid fraction around the
point where additional flow is added (in this case. z ~ 140ca/c;). Two
regimes are clearly visible, demarcated by the change in J(z). In both
curves, the base liquid flux is Jy — the limiting value for the case of
infinitely long legs.

3.5 Conclusions and Outlook

Despite widespread use of foam fractionation in several industrial and commercial
applications [34], only limited attempts have been made to create complete analytic
models of the process.

We have presented a complete model system for fractionation — that of an
inverted U-tube. This model has proven itself to be a rich source of analytical

results, both in limiting and finite cases. The limiting case of infinite leg lengths
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provides a useful starting point for a thorough analysis, leading to several key

results:

e the limiting value of the liquid flux J as L — oo is quadratic in the gas flow

velocity V (Jo = V?/(4c1));
e the ratio of liquid velocity v to gas velocity V' is linear; and

e such results may be generalized to other forms of the foam drainage equation,

giving other power laws for J (for example).

In all cases, numerical simulations were carried out and agreed closely with
analytic predictions. Preliminary experimental tests were also conducted and pre-
dicted behaviours were observed (namely quadratic J(V') and linear v(V')).

We also provided an alternate boundary condition in the form of the single
column with skimmer. The analytic approach used to examine the U-tube is
shown to be valid in the skimmer set-up, and numerical results again agree closely
with predictions.

When building a model for processes like fractionation — as used in industry
and chemical engineering — it is important to consider real-world uses. We have
therefore attempted to keep the model and analysis as widely applicable as possible
and to in mind the constraints that exist in industry. With that in mind, we
analysed the effects of varying leg length on the operational efficiency of foam
fractionation. Our results predict how the ¢ term in the liquid flux equation
J = Jy + € varies with left leg length. As before, numerical simulations were
carried out and agree closely with our analytical results. Real-world columns

often include multiple liquid inflows to improve efficiency and performance [45],
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and we have carried out preliminary work on integrating multiple flows into our
model.

Our model may therefore allow the operators of such columns in both experi-
mental and industrial contexts to make design and operation decisions to improve
the efficiency of their set-ups, and provides an alternative theoretical foundation
from which to analyse fractionation. It has the added benefit of being based on
elementary drainage theory (the Foam Drainage Equation), which renders a large
body of existing research available to researchers of fractionation.

Future work on our model should largely focus on increasing its applicability to
real-world columns. Including chemical effects such as adsorption time may allow
simple limits to be placed on column size (a length below which the efficiency
of the column is reduced, as not all surface active molecules are carried through
the foam but, instead, drain out of the foam). We also note that the current
analysis and numerical simulations were carried out using a steady-state form of
the FDE. Re-introducing time-dependent changes in the liquid fraction could allow
us to examine the approach to the steady-state and any other time-dependent

phenomena in the fractionation process.



Chapter 4

Drainage of liquid metal foams

4.1 Introduction to metal foams

In recent years, metal foams have become a subject of great interest in materials
engineering [53], with promising applications arising in many areas, including ve-
hicle design and advanced prosthetics. Large-scale production has, however, been
hindered by an incomplete understanding of the processes by which metal foams
stabilise and solidify, and how these processes influence the final structure of the
foam. This is still a major challenge, as examining the molten system in-situ and
verifying proposed mechanisms requires sophisticated experimental set-ups.

Two main mechanisms of film and foam stability have been proposed for metal
foams. Some authors postulate that high bulk viscosity is essential [54], while
others consider the influence of solid particles to be responsible [55-58]. These
particles are theorised to partially wet the liquid surface and therefore accumulate

on surfaces, building a kind of ‘network’ of interconnected particles, stabilising

89
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the system. Unfortunately, these possible mechanisms are difficult to isolate from
each other, as the presence of solid particles in the melt induces a higher viscosity.
Detailed analyses of metal foams in the liquid (molten) state have yet to be carried
out. The existing results are based on microstructure analysis of solidified samples,
models, or simulations.

For such simulations and modelling, knowledge of melt parameters such as the
liquid viscosity and surface tension is required. The standard approach has been to
assume that the parameters taken from the bulk liquid matrix material are valid for
the metal foam. However, the contribution of the foam structure itself must also
be considered. Standard measurement techniques for viscosity and surface tension
require the destruction of the sample structure and are therefore not generally
useful. Compounding our difficulties, the values of surface tension and viscosity of
metallic melts (e.g., aluminium) available in the literature are usually for very pure
metallic melts, while the molten metal used in foaming experiments will contain
impurities such as oxides.

Here, we outline a method that allows us to extract values for surface tension
and viscosity from experimental data by iteratively solving the Foam Drainage
Equation (which describes the flow of liquid in a foam), as presented in Chapter 2.
Parabolic flights offer the unique possibility of performing experiments in varying
gravity conditions, allowing the creation of a foam with a homogeneous liquid
fraction (density profile) under microgravity, which is a well-defined initial state for
our simulations. Brunke and Odenbach [59] made early steps towards considering
liquid metal foams, showing qualitatively that numerical solutions of drainage

theories captured the essence of an evolving metal foam.
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4.2 Experiments on metal foams

The author would like to thank Francisco Garcia-Moreno and the rest of the group
at the Institute of Applied Materials, Helmholtz Zentrum Berlin, for providing the
experimental data used for this analysis as described below, and for many fruitful
conversations about the experiments and data analysis techniques required.

As liquid metal foams are a challenging material to work with, we will first
outline the apparatus and techniques used to contain and measure the evolving
foam. The standard notation used to describe metal alloys is based on the compo-
sition of that alloy. For example, the alloy AlSi6Cu4 is composed of 6% Silicon, 4%
Copper and, therefore, 90% Aluminium. The presence of any additives, such as
stabilising particles or blowing agents, will be noted where applicable (e.g., AlSi9
+ 0.6 wt.% TiH, is an alloy consisting of 91% Aluminium and 9% Silicon, with

0.6 % by weight of TiHy blowing agent).

4.2.1 Experimental apparatus and procedures

The X-ray transparent furnace used in microgravity experiments is shown in Fig-
ure 4.1. Developed and manufactured in cooperation with the Swedish Space Cor-
poration [60], it can reach temperatures of up to 700 °C with high temperature
homogeneity (+1 K). It allows precursor samples to be foamed to a maximum size
of 20 x 10 x 20 mm?, expanding by a factor of 5 for a relative density (equivalent
to liquid fraction) of 0.2.

Several different foamable precursor materials were used, falling into two cat-

egories defined by alloy and preparation method:
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e AlISi6Cu4 + 0.6 wt.% of TiH,, prepared by mixing the elemental powders
with the blowing agent TiH,, compacting the mix using cold isostatic com-

pression and finally casting using the thixocasting method [61].

e AlSi9 + 0.6 wt.% of TiH, with 5. 10 and 20 vol.% SiC particles were prepared

using the so-called FORMGRIP method [62].

The samples prepared were approximately 20 x 10 x 4 mm? in size to fit into
the foaming crucible. The AlSi6Cu4 samples were foamed at 650 °C and AlSi9
samples containing SiC particles at 700 °C.

The furnace was coupled with a micro-focus X-ray source and a flat panel
detector, both provided by Hamamatsu Japan. The X-ray source has a 5pm
diameter spot, allowing relatively high resolution imaging. The flat-panel detector
consisted of a 2240 x 2368 pixel array, with 50 pm pixel size. It could be operated
at a maximum capture rate of 8 frames per second by sacrificing overall resolution
(using 4x4 binning or squares of 16 pixels as pseudo-pixels, the effective sensitivity
of the detector could be increased to allow higher frame rates). Each detector
pixel contained image information from a sample area of 12.5 x 12.5 um? for all
the experiments (taking into account the 4-fold magnification).

This set-up allowed X-ray radioscopy of the foaming process in-situ [63], and

is shown in schematic form in Figure 4.1.

4.2.2 Liquid fraction analysis

X-ray radioscopic imagery was captured throughout the flights, and images were
analysed to obtain the variation of liquid fraction in the samples. Assuming that

the density of a solid foam corresponds to the liquid fraction of the liquid foam,
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X-ray source furnace detector

Figure 4.1: The X-ray radioscopy set-up used during the parabolic flights. On the
left. a CAD schematic shows the micro-focus X-ray source, the foaming
furnace and the detector. On the right, a photograph shows a foam sample
inside the furnace. Images courtesy of Francisco Garcia-Moreno, Helmholtz
Zentrum Berlin.

the analysis provides 2D liquid fraction distributions of the evolving foam (¢(x, 2))
by applying Beer-Lambert’s attenuation law to the intensity I(z, z) obtained from

the X-ray images:

I(z,z) = lyexp (—up(z, 2)), (4.1)

where g is the mass-specific absorption coefficient of the base alloy and Iy the
initial beam intensity. Strictly speaking, this law is in general only applicable for
monochromatic X-rays due to the wavelength-dependent absorption coefficients of
different materials. But it is applicable for polychromatic X-rays and one single
material, as is the case here. For a constant foam depth d in beam direction, the

time dependent liquid fraction of the foam can be calculated by

In(I(z,z,t)/1p)

¢z, z,t =
1n([liquid/]())
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where Jj;4uiq 1s the transmitted intensity after attenuation of beam by liquid
metal of thickness d (i.e., the melt before it has foamed, at 100% liquid fraction).
The key external factor affecting drainage is gravity, which acts in the (vertical)
z-direction only. We can therefore average all pixel values in the horizontal x-
direction to arrive at an integrated liquid fraction profile which is a function of
position z and time ¢t only (the density values in the y-direction are already aver-
aged by the beam traversing the sample). This averaging process gives smoother,

more representative profiles and can be calculated with:

o o Al (2> 0o I(zi, 2,t)/1o)
) = e Tl T0)

(4.3)

A series of radioscopic images — with the corresponding gravity levels — were
recorded, allowing qualitative observation of the foaming process (see Figure 4.2).
These images cover the changes in the foam structure during one parabola, i.e.,
1g—518g50g9g—18g—1yg.

Pronounced gravity-induced drainage was observed near the completion of the
foam expansion of an AlSi6Cu4 foam at 650 °C during the first 1.8 g phase. Tran-
sition to microgravity induced a homogeneous liquid fraction distribution all over
the foam in a few seconds. followed by a strong drainage to the bottom of the
foam at the transition from 0 — 1.8 ¢g. The radioscopic images of this transi-
tion were used as input for the quantitative analysis presented in Section 4.2.2.
Figure 4.3 shows two X-ray images extracted from a radioscopy series of the ex-
panded AlSi6Cu4 foam obtained in-situ during the transition from 0 — 1.8 g.
Large changes in the foam are apparent even though the images are separated by

Just one second, emphasising the rapidity of the liquid flow due to drainage. As
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Figure 4.2: An outline of a parabolic flight. The temperature 7'(t) of the melt dur-
ing the parabola is shown by the dashed line, with the gravity ¢(t) in
blue (bottom). The radioscopic images on top show the evolution of an
AlMg6Cu4 foam sample. Note that the gravity profile g(t) is inverted.
with microgravity at the top and hypergravity at the bottom. It should
also be noted that there is not a smooth variation of gravity, with some
‘jitter” observed throughout. In some cases. this may lead to negative val-
ues of gravity during microgravity stages of the flight. Images courtesy of
Francisco Garcia-Moreno, Helmholtz Zentrum Berlin.
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Figure 4.3: X-ray radioscopic images of an AlSi6Cu4 liquid metal foam (with 0.6 wt.%
TiHs blowing agent). during the transition from 0 g (left) to 1.8 ¢ (right).
The time between images is one second. The arrow indicates a ruptured
bubble. Note the swift increase in pooled liquid metal collecting at the bot-
tom of the foam. Images courtesy of Francisco Garcia-Moreno, Helmholtz
Zentrum Berlin.

the upper part of the foam dries out, melt is collected at the bottom, leading to a
vertical liquid fraction gradient. Despite the large liquid rearrangement, most of
the bubbles can still be identified. Coalescence of bubbles was limited in this time
period, with just a few events observed (one example is indicated by an arrow).
In Figure 4.4, the variation of drainage in AlSi9 foams with concentration of
SiC particles is shown (from left to right, 5, 10 and 20 vol.% of SiC particles,
respectively, at 700 °C, after the 0 — 1.8 g transition). The liquid flow is visibly
reduced as more particles are added. This can be clearly seen in the greatly reduced
amount of melt collected at the bottom of the 20% SiC sample as compared to the

5% SiC sample.
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+5% SiC +10% SiC +20% SiC

Figure 4.4: Drainage in AlSi9 foams varies dramatically with concentration of SiC par-
ticles (from left to right, 5, 10 and 20 vol.% of SiC particles, respectively) at
700 °C. after the 0 — 1.8 g transition. The liquid flow is visibly reduced as
more particles are added (most obviously in the amount of melt collecting
at the bottom of the foam). Images courtesy of Francisco Garcia-Moreno.
Helmholtz Zentrum Berlin.

4.3 Determining melt parameters from

numerical solutions

4.3.1 Numerical analysis of radioscopic images

The experimental data (after processing using the algorithm outlined in Sec-
tion 4.2.2) consists of a series of liquid density profiles for each experiment, i.e.,
for each value of the SiC concentration studied. An example of the liquid fraction
profiles studied may be seen in Figure 4.5.

The data consists of approximately 25 seconds of usable profiles, captured at
a rate of 48 per second (depending on the experimental configuration used). As

the frame-rate is relatively low, there can be large variations between profiles. Due



98 Chapter 4. Drainage of liquid metal foams

0 Height (mm)

1100
80
60
Relative Density

40

20

6 Time (s)

Figure 4.5: Experimentally obtained liquid fraction profiles of an AlSi6Cu4 foam
recorded over a parabolic flight. The profiles start in microgravity (with
time increasing from right to left), after the precursor had fully melted and
expanded to fill the foaming crucible. The density of the foam is relatively
homogeneous and remains so until approximately t = 2 seconds, when we
enter a hypergravity phase of the parabolic flight. The onset of drainage
is readily apparent from the images, and the foam tends quickly towards
a final drainage profile at t = 8 seconds.



4.3. Determining melt parameters from numerical solutions 99

to the limited number of bubbles making up the foam melt, any bubble rupture
can have a large effect on the liquid profiles due to the ensuing rearrangements.
Previous research by Garcia-Moreno et al. [64] suggests a rate of 2.5-5 bubble
ruptures per second for the sample sizes used in these experiments.

Rather than using all of this data to determine a single set of values for the
parameters of the system, we split the data into multiple subsets. Each of these
subsets is defined by the start time and duration, with subsets allowed to overlap
(i.e., one subset may start at t = 0 and run for 5 seconds, while another starts at
t = 2). This decision was taken to mitigate the effect of noise in the experimen-
tal profiles — even if one subset contains spurious data due to (for example) a
large bursting bubble, we can still determine useful values for surface tension and
viscosity from other subsets. This process is graphically explained in Figure 4.6.
The shorter lengths of each subset also minimises any effect of coarsening on the
sample. As we do not have 3D information on the melts available (instead work-
ing from 2D projections), we cannot directly measure the bubble volume from
the experimental data. We instead calculated an average bubble volume from the
radioscopic images using the Kelvin foam approximation discussed in Section 2.2
(i.e., noting that a Kelvin cell with edge length L has volume 8,/7L?, and approx-
imating our foam as a collection of Kelvin cells). We took multiple measurements
of edge lengths from each image and analysed images from different times during
the experiment. This was done to minimise the effect of changing bubble volume
on our numerical solutions, and to reduce the error of coarsening on the bubbles
that made up the liquid metal foams. Over the time-scales of our image sequence
subsets, coarsening appeared to have a quite limited effect, with average bubble

size increasing only by a factor of 1.05 — 1.1.
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Figure 4.6: Conducting multiple fits over different subsets of the same drainage profiles
allows us to minimise the effect of noise or bursting bubbles on the final
results. In the figure. we see three fit sections. The blue sections are ‘good’.
and should be well fitted. However. the red section is ‘bad’, with spikes in
the profile which may throw off the fits. By calculating all three fits we can
still extract some useful results. In the real fits. these sections are allowed
to overlap and the process is repeated for sections of different length.

The starting profile from each subset was set as the ‘seed’ profile for our sim-
ulations, and we chose starting values for the surface tension and viscosity. From
these starting conditions, we could numerically integrate the Foam Drainage Equa-
tion (Equation 2.1) to generate a prediction of how that foam would evolve!. We
used the experimentally measured gravity values to take into account the varia-

tion of gravity during the experiment. The value g(t) was set at every time-step

'This may be considered a more complex variant of the process outlined in Section 2.4, as we
are working with the full FDE rather than a linear approximation.
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during the evaluation, using a precise measurement, if available, and interpolating
otherwise.

We then fitted the integrated numerical solution to experimental data starting
from the same ‘seed’ profile. This fit was used to update our initial guesses for
the surface tension and viscosity. The process was repeated until we were satis-
fied that a best-fit had been achieved. Note that this approach required many
such numerical solutions, as each fitting iteration changed the initial conditions of
the integration. An example of a final fit is shown in Figure 4.7, with the differ-
ences between the experimental data and simulations plotted in residual form in
Figure 4.8.

Numerical integration was carried out using an explicit finite difference method
with forward differences. This approach is computationally efficient to solve, which
is important as our algorithm requires many complete solutions to power the fitting
process. While implicit integration methods are usually preferred due to improved
stability, previous work found that explicit methods are sufficiently stable for our
use [65]. Space- and time-steps were chosen to balance speed with numerical
accuracy.

We compared the simulation to experiments on a grid defined by At (the inter-
val at which experimental profiles were captured) and Az (the vertical resolution
of the detector). This comparison (over multiple experimental profiles, depending
on the duration of the simulated evolution) provided the basis for using a fitting
algorithm to choose the best pair of 7,7 values for the experimental system. We
conducted the fits using the MIGRAD minimiser from CERN’s MINUIT soft-
ware [50]. By conducting multiple fits, each with a different starting point and

evolution length, we were able to arrive at a more representative value for each



102 Chapter 4. Drainage of liquid metal foams

Time (s)
142
\ 144
P N

N

)
|
|
lo.2s

Relative Liquid
Fraction

[ e - 6
P = A "
Lll )
0 Position (mm)

An example of a final fit for an AISi9 + 5 vol.% SiC liquid metal foam,
with experimental data shown in green and the numerical solution shown
in red. Both liquid fraction curves start from the same base liquid fraction

profile (starting at 141s)

Figure 4.7:

parameter and provide some measure of the error using the standard deviations.

For more information on this software, see Appendix D.3.
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Figure 4.8: By plotting the residuals between the experimental data and fitted simu-
lations for an AlISi9 + 5 vol.% SiC liquid metal foam (i.e.. the data shown
in Figure 4.7) we can see how the fits under- and over-estimate the liquid
fraction profile. In this figure the magnitude of the residual is given by the
size of the circle, with positive residuals in red and negative in blue. We
can see, therefore, that in this case the fit tends to over-estimate the liquid
fraction closer to the bottom of the foam. and that the residuals become
larger as time progresses.

4.3.2 Results from numerical solutions

We calculated surface tension and viscosity by treating them as fit parameters
in a fit between numerical calculations and experimental data. By averaging the
results over many fitting runs, we extracted values for experimental systems with
varying amounts of SiC. The obtained results for foams of AlSi6Cu4, AlSill and
AlSi9 + 5, 10 and 20 vol.% SiC are presented in Table 4.1, together with bulk

values for comparison extracted from the literature. Note that the errors of the
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analysed foam properties shown are the standard deviations of the results taken
over many fitting runs.

The viscosity of the AlSi6Cu4 foam was found to be 25 and 30 times higher
than that of bulk cast Al and AlSi7, respectively. For the AlSill foam, viscosity
was found to increase by more than 35 times (in comparison to the corresponding
bulk alloy). An even higher viscosity increase was measured for AlSi9 + SiC foams,
with values 65 to 120 times higher than pure Al, and 75 to 140 times higher than
bulk AlISi9 alloy, depending on the particle content. There is also a trend of
increasing viscosity corresponding to increasing SiC concentration, with viscosity
almost doubling as particle content is increased from 5 to 20 vol.%.

The surface tensions of the AlSi6Cu4 and AlSill foams at 650 °C are up to
25 % lower than the literature values for bulk Al, AlSi7 and AlSi9 at 700 °C [67].
The surface tensions of foams of the alloy AlSi9 + SiC at 700 °C are up to 38 %
lower than the corresponding bulk values without particles [67]. There is also a
small trend of increasing surface tension with increasing SiC concentration, but
the trend is comparable to the standard deviations.

The errors presented for our fitted values are calculated by taking the standard
deviations of all the fitting run results. However, there may be other errors arising
from uncertainty in other parameters in the FDE. Most importantly, we assume a
constant average bubble volume over the fitting duration of each subset. If there
was in fact some small variation in this volume it would affect the fitted values. To
quantify any potential error arising from this effect we ran fits to the same subsets
of data, varying deliberately the bubble volume each time (0.9V}, 1.0V;, 1.1V}). We
found that a 10% change in bubble volume led to approximately 2-3% changes

in surface tension and viscosity. This error could not account for the very large



Alloy Formation path  Temperature Surface Tension Viscosity
(°C) (N/m) (mPa s)
AlSi6Cud (+0.5 wt.% oxides) PM, thixocast, foam 650 0.78 £ 0.02 31+4
AlSill (+0.5 wt.% oxides) PM, foam 650 0.65 £ 0.02 a3
AlSi9 +5 vol.% SiC bulk, foam 700 0.53 £ 0.05 80 £+ 10
AlSi9 +10 vol.% SiC bulk, foam 700 0.57 £0.04 120 £ 10
AlSi9 +20 vol.% SiC bulk, foam 700 0.61 £0.04 150 £ 20
Al bulk, cast 660 - 1.38 [66]
Al bulk, cast 700 0.869 [67] 1.23 [68]
AlSi7 bulk, cast 700 0.857 [67] 1.08 [69]
AlSi7 (4+0.5 wt.% oxides) PM precursor 700 - 1.7 [70]
AlSi9 bulk, cast 700 0.854 [67] 1.08 [69]
AlSill bulk, cast 650 - 1.16 [71]
AlSil1 bulk, cast 700 0.849 [67] 1.06 [69]

Table 4.1: Results for surface tension and viscosity for AlSi6Cud, AlSill, and AlSi9 + 5, 10 and 20 vol.% SiC foams
obtained from fitting numerical solutions of the foam drainage equation to experimental liquid density profiles.
Bulk values for aluminium and aluminium alloys from literature are listed for comparison. PM indicates an

alloy formed using the ‘powder-melt’ technique.
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values of viscosity measured, suggesting that these results are quite insensitive to

limited bubble volume variation.

4.3.3 Discussion of numerical results
Viscosity

While operational temperature [71, 72] and alloy composition [69] have been ex-
perimentally shown to have slight effects on the viscosity of molten metals, they
cannot account for the large, order-of-magnitude increases in viscosity found in
the microgravity experiments on foams.

We turn, therefore, to the particle content of the melt (either in the form of
added particles or oxides) and to structure of the foam itself, consisting of thin
films and Plateau borders.

Reproducing Equation 2.1 here for clarity, we propose additional terms for the
effective viscosity contained in the Foam Drainage Equation
Cy [V 8¢

2 o, — - _ —
¢ 2 5.35¢8z - S

dap 19 VP

o " res \P535

The effective viscosity 7* = 3 x 50 x n;,, where 1, is the bulk melt viscosity.
The factor 3 in n* arises from the 3D nature of the Plateau border network and 50
from the channel geometry. The addition of stabilising particles (or the presence of
oxides) will further augment the effective viscosity, leading to an effective viscosity

for the liquid metal in the foam with the form

n*=3x50 xS x P X ny. (4.5)



4.3. Determining melt parameters from numerical solutions 107

Alloy Temperature e S

AlSill 4+0.5 wt.% oxides 650 °C' 1.6 [70] 25
AlSi9 +10 vol.% SiC 700 °C 2.0 [73] 55
AlSi9 +20 vol.% SiC 700 °C 3.2 [73] 42

Table 4.2: Experimentally determined values for the particle factor P (the increase in
viscosity of bulk alloy by the addition of particles) allow us to calculate
S (the contribution of the altered foam structure) from our numerically-
calculated values generated from the fits to experimental data.

Here, P is a factor related to the presence of solid particles in the melt (as
the bulk viscosity will be changed from that of a pure metal by the addition of
particles) and S is a structural component related to changes to the foam structure
due to the presence of particles.

P has been determined experimentally for several of the foams under consid-
eration in this work, allowing us to calculate the contribution of S as well. The
parameters determined in this manner are summarised in Table 4.2.

We find S > 1 for all foamed structures. This structural effect is likely made up
of several contributing processes, outlined in Figure 4.9. The presence of particles
in the liquid flowing through the borders will be limited by the reduced area of
the borders (from particles adsorbing onto the walls) and from particle-particle
interactions (jamming of freely-flowing particles with fixed particles) [56].

Particles slow down drainage due to the increased viscosity of the associated
melts, but explaining foam stability solely by this increased viscosity is too sim-
plistic. Particles also adhere to gas/metal interfaces and prevent rupture of such
films. In this way — rather than just slowing down the decay — the lifetime of
foams can be increased massively. Therefore, particles have a dual function: they

first stabilise thin metal films in which the melt, then lead to the high effective
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Figure 4.9: The structural effects leading to the factor S increase the effective melt
viscosity in multiple ways. from hindering flow (e.g.. jamming between
mobile particles and fixed particles) to reducing the effective area of the
Plateau borders.

viscosity quantified in the present work. We will look more closely at an analogous

form of film stability in aqueous foams in Chapter 5.

Surface Tension

Like viscosity, the surface tension of aluminium is weakly affected by an addition of
silicon [67]. The present measurements show that further alloying and/or addition
of particles reduces surface tension. Surface tensions of liquid AlSill, AlSi6Cu4
and, especially, AlSi9 + SiC foams are lower than the values of the corresponding
bulk alloy found in the literature. The presence of partially wetting solid particles

in the melt surfaces can indeed modify the values of surface tension [56, 64]. A
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lower surface tension would enhance foam stability as the total interfacial energy
is decreased. However, since the measured effect is rather small compared to
the increase of viscosity, surface tension is unlikely to play a dominant role in
foam stabilisation (although it will contribute to the enhanced stability of the
foam). Finally, variations of the concentration of surface adsorbed particles over
the surfaces will lead to surface tension gradients, creating stabilising and restoring
forces in a manner analogous to the Marangoni effect (see Chapter II for more

details).

4.4 Conclusions and Outlook

Metal foams are promising advanced materials, with potential applications in areas
as varied as prosthetics and vehicle design [74]. However, analysing such foams
in their molten state has proven difficult due to the hostile environment of liquid
metal. Current methods rely on destructive ez-situ tests, which make reasoning
about the processes that affect formation more difficult, hindering the development
of these materials.

We present here the first analysis of metal foam viscosity and surface tension
based entirely on in-situ. non-destructive measurements and novel applications of
numerical simulations. Our approach has the potential to allow more detailed
measurement of key properties of metal foams, providing valuable direction for
experimentalists and engineers. X-ray radioscopic data for metal foams undergoing
free drainage during parabolic flights was collected and processed. We iteratively
fit numerical solutions of the Foam Drainage Equation to subsets of these data.

allowing melt viscosity and surface tension to vary as free parameters of the fit.
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By averaging multiple fits, we determined values for these key parameters without
destroying the foam or otherwise interfering with it in the liquid state.

From these results, several points become immediately obvious. We observed
increased viscosity of all examined alloys when comparing foams to bulk molten
metal. This is likely due to the changes in foam structure arising from the presence
of oxide layers or SiC particles. Addition of particles has been seen to increase
viscosity in bulk molten metal but, even factoring this into account, we still ob-
serve viscosity increases of over an order of magnitude. Previous work has also
qualitatively observed dramatic increases in viscosity in this manner [70]. The
presence of oxides and SiC particles appears to reduce surface tension, but this
effect is much smaller than that observed for viscosity.

Going forward, we note that while our method is used here to analyse metal
foams, it is completely general in its approach. It requires only time-dependent
liquid fraction profiles and could be applied to other systems of interest, such as
polymeric foams [75. 76]. We note again the non-invasive nature of this approach,
which does not require direct contact measurements from the foam (which could
damage or destroy the samples). By using a more sensitive (and faster) X-ray flat
panel detector, time resolution could be further improved, allowing for improve-

ments in the determination of the viscosity and surface tension.
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Chapter 5

Statistical analysis of soap film

lifetimes

5.1 Introduction to foam stability

While most familiar bubbles and foams tend to be ephemeral in nature — bursting
and collapsing as we watch — given the right conditions, foams may be remarkably
stable, lasting for periods of months [77]. There are several ways to increase the
stability and longevity of foams, usually involving the removal of one or more of
the causes of foam decay!. Firstly, the environment the foam is contained in has
a significant effect. Humidity and temperature may increase evaporation of liquid
from the foam, while particles in the atmosphere (such as dust) can easily trigger

the rupture of a soap film. The process of foam drainage decreases the liquid

YOf course, the converse is also true, and foam decay may usually be hastened by the inverse
processes.
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content of the foam, weakening it and amplifying the effects of other destabiliz-
ing mechanisms. The chemical composition of the foam (e.g., the concentration
of surfactants) also has a significant effect. The main stabilizing mechanism of
surfactant-based foams is the Marangoni effect [5], which redistributes surfactant
molecules over the entire soap film in response to surface tension gradients, coun-
teracting thinning of the films and resisting film rupture. In this Chapter, we will
consider the stability of the individual components of a foam — the thin films that
make up the interfaces between bubbles — and how they age and weaken.

To consider the stability of a foam — an issue of great practical importance
in industrial applications (where it may be desirable to increase foam stability
or decrease it) we must first understand the stability of the individual films
that make up a foam. Much of the previous work on soap film stability and
lifetimes has dealt with micro-scale films, or single films [78]. In many real-world
foams, the constituent films tend to be larger, and it is not clear whether or not
previous results can be extrapolated to larger scales. Here, we will present an
experiment which took a statistical approach to determining soap film lifetimes.
The experiment was designed to remove as much outside influence on the films as
possible, focusing in on the ageing of static films.

During 2009, we carried out an experiment on soap film lifetimes as part of a
public exhibition on foams?. This experiment was designed to take advantage of
the projected large attendance in order to generate large data sets which would
lend themselves well to rigorous statistical analysis of many individual soap films,

and will be described in detail in Section 5.2

“The exhibition was hosted in the Science Gallery, Dublin, and was titled ‘BUBBLE’. More
information about the gallery may be found at www.sciencegallery.com.
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We had a secondary aim (inspired, in part, by the public nature of the experi-
ment) of presenting a pedagogically useful example of unpredictability. There has
been mounting concern that physicists are not taught statistics and probability
well [79-81]. This issue has been noted in other fields as well — the discovery of
widespread errors due to the incorrect application of certain statistical methods in
medical research [82] is a prime example. As research generates ever-increasing vol-
umes of data [83], a good understanding of statistics and probability will become
even more important. This experiment provided an ideal platform for observation
and further statistical analysis. It also made contact with the general theory of
failure (such as electrical breakdown or fracture under stress [84]) in materials.

Previous experiments on the lifetimes of soap films were on a much reduced
scale. Rdmme [85] presented a study of 42 bubbles which were exposed to the
atmosphere during experimentation. We studied a far greater number of bubbles
which were protected from environmental influences throughout. More impor-
tantly, we collected sufficient data to determine a lifetime distribution. We were
able to determine the probability distributions that govern such film lifetimes,
which may allow predictions to be made about the more general cases. We will

also comment on possible mechanisms of rupture.

5.2 Experimental set-up

(The author would like to thank Brendan Bulfin for assistance in running the
experiment, and Aaron Meagher for design of the apparatus).
Due to the public nature of the exhibition, the experiment was designed to be

engaging and to allow visitors to take part. Visitors were given the task of filling a
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perspex tube with equally-spaced parallel soap films, or a “bamboo” foam [3, 5, 86,
87]. Design decisions were made to increase repeatability and reproducibility as
much as possible given the public setting of the experiment (including supervision
by an assistant, and the use of a guide to ensure correct tube position and angle).
When the perspex tube was correctly positioned, air was bubbled into the tube
at a constant gas flow to create a foam (containing approximately 10-20 films).
The position of the tube was chosen to ensure that the foams created by different
visitors were as similar as possible. The tube was then corked (with stoppers
wetted from the same soap solution) to isolate it from the environment. The
number of circular films remaining in each tube was recorded every day. Over
the course of the exhibition, 150 samples were created in this manner for a total
soap-film count of 2,586. This data provided the foundation on which statistical
analysis could be based.

The apparatus used is shown in schematic form in Figure 5.1. Air flow was
provided using a consumer aquarium pump (and rubber tubing) which injected air
into a solution of approximately 3 parts in 11 commercial dish-washing detergent
(Fairy Liquid). A constant gas pressure lead to the formation of approximately
equal-volume gas bubbles. The rising bubbles were then collected in a perspex
tube with an internal diameter of 16 mm. If the ratio of tube diameter to bub-
ble diameter (referred to as A in the literature) is in the range 0.44-1.25, the
bubbles self-order into a regular bamboo-like structure [3, 88-90] consisting of
equidistantly-spaced parallel soap films.

For the set-up used in the exhibition, we found it useful to place the tube at an
angle as shown in Figure 5.1. We required monodisperse bubbles with a volume

sufficient to ensure adequate spacing between films (1 to 2 cm). Increasing the gas
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Sample Tube

Guide (on retort stand) /

Flow control Soap solution /
Pump \ \

S

Rubber tubing

Figure 5.1: A schematic representation of the creation of parallel and equally-spaced
soap films in a tube. The bubble volume is controlled by the tilt angle
of the tube (approximately 35 degrees. as measured on the guide) and by
constant gas flow from a consumer aquarium pump. For the former control
mechanism to be effective, the bubbles need to be in contact with the tube
wall as they emerge from the rubber tubing.

flow rate to achieve this spacing can lead to turbulence [91], which would prevent
formation of the required ordered structures. By using a low gas flow rate and
holding the tube at a fixed angle (approximately 35°) with the aid of a guide, we
were able to create foams of the required quality [92]. At this angle, the bubbles
are ‘pinned’ to the sloped wall as they are generated, allowing them to grow larger
than would be possible with purely vertical tubes. Consumer aquarium pumps
proved sufficient for this purpose.

The tube was then labelled with the name of the participant and the date the
sample was created, and displayed vertically on a wall in the Gallery (see Figure 5.2
and 5.3). The tubes were mounted vertically, as orienting the tubes horizontally

(and hence vertically orienting the films) would result in films of non-uniform
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Figure 5.2: A close-up of a single sample created by a member of the public. The
parallel soap films that define a bamboo foam are clearly visible. The
corks used to seal the tube were wetted in the same solution that was used
to create the foam. The identifying label can be seen to the right of the
image.

thickness due to the drainage of liquid from the films under gravity. Furthermore,
liquid would gather in the meniscus at the lower part of the film and, without the
guarantee of an accurate horizontal tube display, liquid could drain from the films
and gather at one end of the tube.

Foam samples were created mainly over the first month of the exhibition, with
new samples added when all films in an existing sample burst (thus maintaining
a full rack of tubes). The day-to-day environment of the Gallery was outside
our control (for example, temperature and humidity levels could vary daily) and,
due to the duration of the experiment, these effects may have been exacerbated
by changing weather (going from Summer to Autumn). Another issue involved

physical interference with experimental samples by members of the public (for
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Figure 5.3: A snapshot of the public display of tubes containing soap films in the
Science Gallery. The gaps show where samples were removed after all films
had burst in the corresponding tubes. The tubes were aligned vertically
to ensure the liquid content of the horizontal films remained constant and
to minimise drainage of liquid from the films.

example, children playing with the samples). Where possible, steps were taken to
mitigate such effects through the use of barriers and notices, but quantifying the
effect is likely impossible.

Every day, the total number of films contained in every tube was manually
counted. Because the soap films became very thin as the experiment progressed,
every tube had to be carefully examined (complicating visual measurements, a
burst film may leave a soap ring behind where it contacted the tube). To avoid

miscounts, films were recorded only if they were seen to produce a reflection.
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When making comparisons between results from bamboo foams and more
commonly-encountered foams an important caveat must be kept in mind. In most
foams, the large majority of films are connected with a network of liquid chan-
nels which allow the redistribution and drainage of liquid through the foam. This
movement of liquid can counter the effects of films drying out and thinning (driven
by variations in the capillary pressure). However in a bamboo foam the horizontal
films are effectively independent from each other (aside from very limited drainage

through the films on the surface of the tubes [86, 93]).

5.3 Data analysis and results

In order to analyse the aggregate lifetime data, we must first determine which
distribution function best describes it. The distributions most widely applied to
lifetime data are the Weibull distribution, the Gamma distribution and the log-
normal distribution [94]. Our data forms a strongly asymmetric distribution, ruling
out any symmetric distribution function (including Gaussian distributions). To
determine which distribution best describes our data, we applied the two-sample
Kolmogorov-Smirnov test [95].

This non-parametric test determines if two samples are drawn from the same
distribution. We used the Kolmogorov-Smirnov test to compare the empirical
distribution to the best fit of each candidate distribution, with the null hypothesis
that the data tested are from the same continuous probability distribution. The
Weibull distribution was the only candidate to pass the Kolmogorov-Smirnov test.
More information on the Kolmogorov-Smirnov test and the Weibull distribution

can be found in Appendices E.2 and E.3 respectively.
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Figure 5.4: The distribution of initial film counts with a fitted normal distribution.
The data is well described by the distribution. with the majority of samples
starting out with between 11 and 23 films. The noise is likely due to the
large number of participants in the experiment.

None of the distributions perfectly describe the initial stages of the decay,
underestimating the number of failures in the first few days. This is likely due to
the experimental conditions, as incorrectly-corked samples may deteriorate more
rapidly. The effects of atmospheric exposure were quantified using a small control
group, and will be discussed in Section 5.4.

Figure 5.4 shows the distribution of the initial number of films in the tubes.
The solid line is a fit to a normal distribution. This fit, and other fits in this Chap-
ter, were carried out using maximum likelihood estimation. For a more detailed
overview of this technique, see Appendix E.1. From Figure 5.4 we can see that the
majority of samples started with an initial number of films between 11 and 23.

We first consider the distribution of the bursting of films. We calculated the
day-to-day differences in the film counts for every sample. This difference tells us

how many films burst each day in each sample. Figure 5.5 shows a histogram of
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Figure 5.5: Looking at each individual tube rather than the entire experiment. we
can calculate a distribution of the number of films that burst in a 24-
hour period. Summing these daily distributions gives us the aggregate
distribution for the entire exhibition run. The x-axis corresponds to the
number of films that burst in a sample over the course of a single day. The
y-axis shows the number of times this happened throughout the entire
experiment. We can see that large bursting events were rare (for example,
although we observed single films bursting approximately 1000 times, only
two observations of 11 films bursting were made).

the number of occurrences of the different counts of film bursts, i.e., how many
times n films burst in a sample in one day. By plotting on a log-linear scale, we
see that approximately 90% of events involve only one or two bursts, with some
large events as outliers.

From our daily records of the number of films in every tube, and our knowledge

of the ages of the films, we were able to compute a lifetime distribution for the
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Figure 5.6: Distribution of lifetimes of individual films given by a fitted Weibull prob-
ability distribution (given by Equation E.4). with k& = 1.55 = 0.05 and
A = 19.2 + 0.5. Despite some noise in the lifetime data, it is well-fitted
by this distribution. The failure to capture the first days is likely due to
improper initial tube sealing. leading to quicker film deaths.

films, which is shown in Figure 5.6. Note that although the number of films in

every sample was recorded every day, it was not feasible to track individual films

over their lifetimes. The data was fitted to a Weibull distribution using maximum

likelihood estimation in Matlab (see Appendix E.1 for more details) and is shown

as a solid line in Figure 5.6.

The differences between the fit and the data were found to follow a normal
distribution, suggesting that the differences can be attributed to random factors
such as the experimental environment.

Integrating the data results in a far smoother cumulative probability distribu-
tion, shown in Figure 5.7 (which also shows a fit to Equation E.5). The fits in

Figures 5.6 and 5.7 result in a value for the shape parameter of £ = 1.55 £ 0.05.

This value for k (i.e.. k > 1) corresponds to a failure rate (the frequency with
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Figure 5.7: Integration of the data from Figure 5.6 results in a smoothing of the data.
The red line shows a fit to the cumulative Weibull distribution (Equa-
tion E.5). with the same Weibull parameters as in Figure 5.6. A fit of the
log-normal distribution is also plotted (blue line). and it is readily apparent
that the Weibull distribution describes the data much better.

which some component of a system fails) that increases with time. In our case,

it represents the frequency of films bursting. Experimental observations of the

ageing films showed that they became thinner and. hence, more delicate over the
course of the experiment.

There are several possible explanations for this ageing, including evaporation
and drainage of liquid from the films. Evaporation is influenced by the quality of
the seal on the sample tubes, and by the ambient temperature and humidity. Due
to the nature of the experiment, these variables were outside our control. Because

drainage in bamboo foams occurs only in the thin wetting films along the tube

walls [86], it is very limited. Visual observations showed that most films became
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black films (i.e., the film thickness decreases to approximately 20 nm or less) after
2-3 weeks, suggesting that most of the liquid has drained or evaporated by then.

To determine the possible influence of interactions between films — such as
avalanches (where a film bursting triggers its neighbouring films to burst) and
stabilization mechanisms — the average lifetime as a function of the initial number
of films in the sample tube (local average) was plotted together with the average
of all film lifetimes (global average). If interactions have a large influence on the
lifetime of films, we expect the average lifetime to change with the number of films
in the sample. For example, we might expect more avalanches when films are closer
together. Figure 5.8 plots the comparison between the global average and local
average for tubes with initial film counts in the range 11-23. Tubes with other
initial film counts were excluded from the comparison due to limited statistics
outside this range (see Figure 5.4). There is good agreement between the local
and global averages over all initial film counts, and the average lifetime appears
constant with respect to the initial film count, pointing to a limited effect from
avalanches, intra-film stabilization mechanisms and other film-film interactions.
We may also probe the potential effects of such mechanisms by looking for history-
dependence in our samples. In other words, does the number of films that have
already burst in a sample affect the expected lifetime of the remaining films? If we
consider all samples that had N films at some time t, we can see whether there is
any correlation between the starting film counts for those samples and their final
ages. We did not find any significant dependency of this type in our data — if
a sample is 10 days old and contains 10 films it is likely to survive for the same

amount of time going forward whether it started with 11 films or 20 films.
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Figure 5.8: The effects of interactions between films was investigated by calculating
the average film lifetime as a function of starting population. The average
film lifetime appears to be independent of the initial number of films in the
sample, as can be seen by comparison to the global average (solid line).

5.4 [Effects of exposure to atmosphere

To examine the effects of exposure to the environment on the lifetimes of the
films, we carried out a smaller-scale laboratory experiment consisting of a total of
70 films spread over 5 tubes. The samples were prepared using the same apparatus
as in the main experiment, but with the sample tubes left uncorked at one end.
This exposed the films to several disruptive forces, including (but not limited to)
increased evaporation, airborne contaminants and air flow. Figure 5.9 shows the

large difference uncorking the tubes made on the lifetimes of the films. All films
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in the uncorked tubes burst within two days, while the average film lifetime in a
corked tube was over 16 days, with some films lasting 60 days. This rapid film
death may explain the discrepancy between the fitted Weibull distribution and the
first few days of experimental data. Improperly sealed tubes would experience a
greater exposure to the environment, leading to much shorter film lifetimes than
would otherwise be expected.

Similar variations in lifetimes were achieved in a small-scale study of bubble
lifetimes undertaken by Ramme [85] by increasing the viscosity of the surfactant
solution used in his experiment. While our experiment did not vary the chemical
composition of the foam, increasing viscosity would hinder the drainage of liquid
from the films (as commented on in Part I), suggesting that loss of liquid is a
primary cause of film instability, present in our control in increased evaporation

losses.
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Figure 5.9: By plotting the percentage of surviving films as a function of time for

both the corked tubes from the main Science Gallery experiment and the
uncorked tubes from our additional experiments. we can see the dramatic

decrease in lifetime arising from exposure to the atmosphere. All other

aspects of the experiment were kept the same, with the uncorked tubes
filled with identical solution and using the same apparatus.

5.5 Possible mechanisms of rupture

A film thins through drainage and evaporation [78] until it reaches a minimum

thickness. The dependence of potential energy on film thickness may contain two

minima, corresponding to the common black film and Newton black film (with film

thickness ~ 20 nm or ~ 5 nm, respectively). A thin film in such a state is stabilised

by the balance between the van der Waals attraction and various repulsive forces

(for example electrostatic interactions [96]). Furthermore, the film is stabilised
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against external perturbations by the Marangoni effect (a local increase in film
area leads to a temporary increase in surface tension, which, in turn, creates a
restoring force which brings the film back to equilibrium). Black films are fragile
and easily rupture due to environmental effects such as airborne contaminants
and air flow. In our experiment, these effects were reduced by sealing the films
in sample tubes. However, even in these protected conditions, the film lifetime is
finite. What causes the films to rupture?
An often-invoked model is rupture induced by thermally excited capillary waves [78,

97] on both surfaces of the film. These waves can move the interfaces temporarily
closer together, and the increased van der Waals attraction then leads to rupture
(overcoming the repulsive forces). This mechanism is illustrated in Figure 5.10.
Recent work on the related area of bubble coalescence points to the importance
of hydrodynamic interactions [98]. It is not clear how the models for film rup-
ture can give rise to the Weibull distribution, which we found to have a width of

approximately 20 days compared to a mean film lifetime of over 16 days.
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Figure 5.10: While no theories of film ageing. film instability. or film death are univer-
sally accepted. several models exist in the literature [78]. The primary
mode of film rupture is believed to be the growth of surface waves (also
known as capillary waves or corrugations). As the film thins, destabiliz-
ing forces overcome stabilizing forces and surface waves begin to grow.
The fastest growing wave will burst the film at the thinnest point (as the
films are not homogeneous).

9.6 Conclusions and outlook

While soap film stability has been measured in the past (for example, by Ramme
[85]), previous studies used small sample sizes with a limited number of films. Our
experiment collected data for over 2,500 films, allowing for the first time thorough
statistical analysis of film lifetimes.

We were able to identify the most likely candidate probability distribution for
soap film lifetimes, with statistical analysis showing that the data is well described
by the Weibull distribution. The final fits of the Weibull distribution to our data
give a shape parameter & > 1, indicating that there is a process by which the
films age and become more likely to burst as time goes on (and that the expected

failure rate will increase over time). This is consistent with experimental observa-
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tions of the soap films and is likely due to some combination of evaporation and
drainage of liquid out of the films. Our results also show that soap films can be
surprisingly stable given the correct circumstances, with a 16-day average lifetime
and with some films surviving for nearly two months. We also note that our shape
parameter k is approximately 3/2, hinting to a square-root dependence on time
for the film bursting process (or more precisely, a square-root dependence damped
by a decaying exponential function). Keeping in mind the caveat noted previously
(arising from the difference in structure between our samples and more complex
foams) this dependency could be the basis for a model of the ageing and death of
foams.

We also carried out a second experiment, in which films were exposed to the
environment. We cannot overstate the effect of such atmospheric exposure, with
every film in the second group destroyed within two days (an approximately 30-fold
reduction in lifetimes). This may suggest that in (for example) industrial processes
such as foam fractionation, foam coarsening and rupture effects may vary widely
between surface bubbles and those inside the foam (with the outer layer effectively
shielding those inside). Li et al. [99] (see also [100]) have presented research on the
effects of humidity on the process of foam fractionation (see Chapter 3.1), noting
that the stability of foams in fractionation columns shows a strong dependence on
exposure to the environment and the resulting evaporation. Researchers in these
fields may be able to use our experimental approach to quantify the difference
between exposed and protected parts of their foams.

Repeating this experiment in more rigorous conditions, and with more infor-
mation about individual films — such as individual film lifetimes and positions

relative to the exterior of the bamboo foam — may allow for a more detailed anal-
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ysis, to include potential effects of avalanches (i.e., where a film bursting triggers
the bursting of neighbouring films) and leakage of samples (where those films clos-
est to corks would likely burst preferentially). Using this experimental approach
with more complex foams could allow further insight into any possible theoretical
models for film decay and bursting. Finally, and on a personal note, the public
nature of the exhibition was rewarding for the author and for members of the pub-
lic. Much academic research exists in a rarefied world, removed completely from
the general public. In this work, we were able to engage with visitors who had
little to no experience with the scientific method and let them feel part of a real
research effort. Even though the samples were created by members of the public,
and kept in the non-ideal circumstances of a public exhibition, we were able to
extract useful results due to the large amount of data collected, showing that this
public-experiment approach still has scientific merit. Outside of the direct aims of
the experiment, the research on film stability presented here has some important
points of contact with other work presented in this thesis and with the general

issue of foam deterioration and decay.
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Coda

In this Thesis, we have explored important subsets of the wide field of foams — the
drainage of liquid through the complex network of Plateau borders integral to all
foams. and the effects that the changes in liquid have on the longevity and stability

of foams. These processes are of great practical importance in many areas.

Drainage

We have created a thorough analytical model for the industrial process of foam
fractionation. Starting from a simple geometry (the inverted U-tube), we created
a model based on elementary foam drainage theory (using a modified version of
the Foam Drainage Equation).

Throughout our analysis, we aimed to keep the model as widely applicable as
possible and to keep in mind industrial constraints. To this end, we analysed the

effects of varying leg length on the operational efficiency of foam fractionation.
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Comparisons to numerical simulations and experiments confirmed the validity of
our fractionation model. Real-world columns often include multiple liquid inflows
to improve efficiency and performance [45], and we have carried out preliminary
work on integrating multiple flows into our model.

Our model may therefore have application in the design and operational effi-
ciencies of both experimental and industrial uses of fractionation. As it is based
on elementary drainage theory — the Foam Drainage Equation — it provides a
solid foundation from which to extend theory, and makes a large body of existing
drainage research available to the fractionation field.

Future work on our model should largely focus on increasing this applicability
to real-world columns. Including chemical effects such as adsorption time may
allow simple limits to be placed on column size (a length below which the efficiency
of the column is reduced, as not all surface active molecules are carried through
the foam, but instead drain out of the foam). Applying the full, time-dependent
form of the FDE could allow us to study how the fractionation column approaches
the steady-state, and predict how the efficiency of the column is affected by such
behaviour. Other aspects of fractionation — such as solution concentration — also
have a time-dependent aspect, which could be better understood by application of
the full FDE.

We also presented analysis of drainage in metal foams — promising advanced
materials with strong potential in areas such as prosthetics and vehicle design [74].
While current methods for analysing such foams rely on destructive ez-situ tests
(which make it difficult to understand the dynamic nature of these systems), we
have developed a method which allows analysis of draining metal foams in the

liquid state. By fitting numerical solutions of the full FDE to liquid fraction
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profiles calculated from X-ray radioscopy, we were able to extract values for the
surface tension and viscosity of the molten foam in-situ, without destroying or
otherwise interfering with the foam.

We applied our method to drainage profiles for freely-draining foams generated
from several different metal alloys (the profiles were captured on parabolic flights).
We observed dramatic increases in viscosity for all examined alloys when comparing
foams to bulk molten metal, likely due to changes in the foam structure due to
the presence of oxide layers or stabilising particles on the surfaces.

Going forward, there are several potential directions in which to take our
research, and some enhancements to the method could be made. Our analysis
method is completely general in its approach (requiring only time-dependent lig-
uid fraction profiles), and could, therefore, be applied to other systems of interest
such as polymeric foams [75, 76]. Improvements to the X-ray detectors used could
allow better time and space resolution, leading to more data available for our fitting
routines (and, hence, more accurate values for the viscosity and surface tension).
While we have used the FDE in an elementary form, modifications to the basic
equation have been proposed which take into account more changes to the foam
(such as a changing number of bubbles). Including such modifications may allow
corrections to the data, again improving the fit quality. Finally, and perhaps most
challenging, 3D tomographic scans of a draining foam could greatly enhance our
knowledge of the foam structure, including direct measurement of bubble volumes

over time.
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Stability

The deterioration of foams over time (or, indeed, the lack of deterioration) is a
major concern in many industrial processes utilising foams. However, this is a
complicated phenomenon, depending on both the make-up of the foam and its
surroundings — including atmospheric effects such as humidity, temperature and
airborne particles.

We conducted a public experiment on soap film lifetimes, consisting of over
2,500 films which were sealed in tubes to minimise atmospheric effects. This large
sample size allowed for the first thorough statistical analysis of the ageing and
lifetimes of films (previous work used much smaller sample sizes). Our analysis
showed that the data is well described by the Weibull distribution, and that soap
films can be surprisingly stable given the correct circumstances (a 16-day average
lifetime with some films surviving for nearly two months).

A second laboratory experiment explored the effect of atmospheric exposure
by creating identical samples but not sealing them. This lead to the bursting
of every film within two days — an approximately 30-fold reduction in lifetimes.
This suggests that, in processes such as foam fractionation, foam coarsening and
rupture effects may vary widely between surface bubbles and those inside the
foam. The dependence on exposure to the environment of the stability of foams
in fractionation columns has been noted [99].

Repeating this experiment in more rigorous conditions, and with more infor-
mation about individual films — such as individual film lifetimes and positions
relative to the exterior of the bamboo foam — may allow for a more detailed

analysis of these effects.
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The Stability of a Draining Foam

In the introduction to this Thesis we commented on the complex interplay of forces
that drive the evolution of a foam. We have discussed two of these forces — the
drainage of liquid through the Plateau border network, and the ageing and rupture
of the films that make up the foam. In many real-world foams these two forces
feed into each other, with drainage changing the local liquid content of the foam
(and, hence, changing the likelihood of film rupture), and with film and bubble
ruptures changing the structure of the draining foam.

The stability of foams is of paramount importance in many applications. Hut-
zler et al. [29] have further noted the importance of modeling foam and film stabil-
ity when attempting to analytically describe the Bikerman foam test '. The work
of Li and Stevenson [99] has pointed to a strong effect of humidity on the overall
performance of fractionation columns — casting into doubt, perhaps, comparisons
between experiments conducted in laboratories with large humidity differences.

Our current drainage theories do not take into account the stability and rup-
ture of bubbles in the foam. This can easily lead to unphysical results, such as a
foam with liquid fractions far below what could realistically be sustained in ex-
perimental systems. Approximations can be made in numerical simulations (by
simply removing those parts of the foam that fall below threshold liquid fractions),
but incorporating film stability into analytical models of drainage would be a great

improvement.

IThis test uses a similar set-up to our fractionation models, in which a gas is sparged into
a tube at some gas velocity V. Rather than overflowing however, the foam decays in the tube,
reaching a metastable state (in which the rate of foam bursting is balanced by foam creation) at
some height. This height will be different for different foams and, as such, allows comparisons
to be made between them.
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Our experiments on film stability (while quite simple in design) have two ma-
jor contributions to this problem. Firstly, while the experiments presented in this
Thesis only examined the simplest case — a binary choice between a completely
sealed foam and a completely exposed foam — it is immediately apparent how ma-
jor an effect atmospheric exposure has on film lifetimes (see Figure 5.9). Further
experiments could be designed to probe the intermediate regions, with a focus on
humidity control most immediately applicable to current research efforts in frac-
tionation. Our experimental set-up allows for easy control of other processes that
may affect stability, such as initial liquid fraction and polydispersity. Secondly, and
from a more theoretical perspective, the Weibull distribution found for the ageing
and death of our soap films could be of use in extending drainage theory. We may
be able to add a term to the average bubble volume Vj(z.t) to take into account
the changing number of bubbles over time based on this distribution. Employing a
more probabilistic approach to film death would seem to be an improvement over
simple threshold values. However, as noted in Section 5.2, there are key differ-
ences between the structure of our experimental bamboo foams and more common
foams. Further experiments will be necessary to determine if and how this lifetime

distribution varies with the underlying foam structure.

Closing Remarks

Throughout this thesis we have attempted to ground our models and theories with
comparisons and applications to real-world systems.
Keeping experimental and industrial applications in mind focused and directed

our research on fractionation, helping to guide theoretical work towards a general
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model of the process, including considerations of efficiency and operational con-
straints. And, despite the humble beginnings of our research into film lifetimes,
we found common ground with fractionation researchers, who are working on the
demanding issues of environmental influences on industrial-scale processes.

Our research on the properties of metal foams closely linked elementary drainage
theory to cutting-edge experimental techniques, and allowed, for the first time, di-
rect analysis of the liquid melt properties in-situ. Again, the use of the well-tested
foam drainage theoretical model allowed us to understand more fully the stabilising
processes in experimental foams.

The results we have presented show the significant utility of drainage theory for
examining experimental systems and the potential it has for modelling real-world
processes. This approach is integral to the Trinity method — linking analytical,
numerical and experimental results — and provides a solid foundation to build
future work on. We hope. as well, that the public nature of the experiments pre-
sented in Chapter 5, and the success of that research, may inspire other researchers

to include outreach in their work when possible.
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Appendix A

Full derivation of the Foam

Drainage Equation

The Foam Drainage Equation describes the drainage of liquid through an isotropic
network of Plateau borders in 3D (shown in schematic form in Figure 2.1). It is
a non-linear partial differential equation for the foam density as a function of
time and vertical position. It was originally presented in this form by Verbist
and Weaire [101]. While analytical solutions have been found for specific sets of
boundary conditions (as discussed in Chapter 2), in the general case it must be
solved numerically.

To start the derivation, consider a single vertical Plateau border (PB) with

cross-section A(x,t), where x is the vertical (downwards) coordinate and ¢ is time.
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The radius of curvature of the PB sides depends on the pressure difference between

the liquid and gas phases, as given by the Laplace-Young law

Ap = —, (A.1)

where 7 is the surface tension and R is the radius of curvature.
Assuming that all bubbles are at equal pressure (taken as the average over
all bubbles in the system if the bubbles are not exactly equal), then the PB is

symmetrical and we can relate its cross-sectional area to the radius of curvature:

A= (\/3 - g-) R? = C°R®. (A.2)

The cross-section of a PB (including the radius of curvature) can be seen in
Figure A.1.
We next consider the volume element of the PB A(x,t) dr. The forces

acting on a volume element are (per unit volume):
e gravity: pg

e dissipation: —7)*%. where n* = fn,

e capillarity: (9/0x)Ap, where Ap = v/R,

where 7* is given by the bulk liquid viscosity n; multiplied by a geometric factor f
arising from the shape of the channel. For a simple cylinder, this factor is 87 ~ 25,
while, for a PB, it needs to be found numerically and is approximately 50. Inertial
effects are neglected and Poiseuille dissipation is assumed (i.e., laminar viscous

flow, incompressible liquid), and we disregard additional dissipation within the
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Figure A.1: A Plateau border in schematic form (reproduced here for clarity). showing
the cross-sectional shape of the border. The curved shape of the Plateau
border results from the Young-Laplace equation.

junctions (i.e., this is channel-dominated drainage). The dissipation is proportional

to the mean liquid velocity u(z, t) and inversely proportional to the cross-sectional

area A.

Taking the force balance for these quantities gives

1 C 0A

u=—|pgA — il Vil (A.3)
T 2 or

We can now introduce the equation of continuity:

Qé N 0(Au)
ot ox

= 0. (A.4)
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Substituting the expression obtained from considering the force balance for u,

we arrive at the foam drainage equation:

¢ + L] (pgA2 — ﬁﬂ%> =l (A.5)
o dn 2 Jx

From this starting point, it is straightforward to generalise this equation to a
fully isomorphic 3D foam by approximating the foam by a network of randomly-
oriented PBs. We allow each PB to be some angle 6 to the vertical. To facilitate

this, we replace the vertical coordinate z with the coordinate in the direction of

the PB 7y = =, and replace gravity g with gy = gcosf. This leads to a variation

of the previously derived dimensional form:

0A  cos?6 O : Ch 0A
- — [ pad? = —LyJ A" =0 A6
ot i n* Ox <pg 2 f(‘).r) . Sl

We must next take the network average of cos®#:
™ L .
cos?fsinfdf 1

i) = o =_. A7
os”6) = T ingas 3 (A7)

This result means that the non-dimensional FDE for an isomorphic 3D network
takes an identical form to that for a single vertical PB, with only a single change.
We simply have to replace n* = 507, with n* = 3 x 50n; = 1507;, where 7 is the
bulk liquid viscosity.

This network averaging also accounts for the junctions where the PBs meet,
provided we make some approximations. We do not take any dissipation within
the junctions into account (i.e., we assume perfectly channel-dominated drainage).

Next, we approximate the junction as consisting of straight PBs which meet in a
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symmetric tetrahedron (this is valid for foams with low liquid fractions). As cosf
sums to zero over the four PBs that make up the junction (a simple geometric
consideration), the conservation rule for the junction is obeyed.

Our next step is to rewrite the FDE in terms of liquid fraction ¢ rather than

cross-sectional area A. To do this, we express ¢ in terms of A:

qb[(l,t) = lvA(.’E,t), (AS)

where [y, is the total length of Plateau borders per unit volume of foam, ly =~
5.35V, % Here, V}, is the average volume of a bubble in the foam, and the constant
5.35 arises from geometric consideration of a Kelvin foam (see Figure 1.11). Similar
values are found for a large variety of different bubble types [7] and varying liquid
fractions (with differences of up to 2% from different structures, and no more than
10% from variations in liquid fraction). This volume can be estimated from the
average Plateau border length (again treating the bubbles in the foam as Kelvin
cells), as a Kelvin cell with edge length L has volume V;, = 8y/7L3.

This leads us to the full form of the FDE, expressed in terms of liquid fraction:

dp 1 0 [pg C’v | ¢ 09
———— | == . A9
61 * 77* 0% (lv ¢ lv (91 =T ( )

As this equation is quite unwieldy, we will gather the assorted constants into

two constants, ¢; and ¢y, leading to a final FDE:

0 1 0
a—f t 5. ( 19 — ca02 ¢) 0, (A.10)
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where ¢; and ¢, are given by

fy = S (A.11)
by
1 Cvy

e Sl (A.12)
211,,/2,,)*

1 has dimensions of velocity and ¢y/c; dimensions of length.

The effect of variable bubble volume

In the preceeding derivation of the FDE it was assumed that the bubble volume
and, hence, [y, was constant. In those foam systems where this is not a valid
assumption, [y will be time- and space-dependent and Iy (z,t) ~ 5.35V;(z, )~ %3
must be explicitly included in the continuity equation.

Equation A.4 therefore becomes

O(Aly) | d(Alyu)

— A.13
ot or 2 ( )
or
dp  J(ou)
b = 0. A.14
ot i ox : ( )

The rest of the derivation proceeds as before and we arrive at a variant of the

FDE which includes the variation of Iy (x,1).

06 10 (pg , C“x\/?acb Gaf o By |
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In the experimental systems we work with in this Thesis, bubble volume can
be treated as constant (as described in the relevant experimental sections), and as

such we may work with the simpler form of the FDE.
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Appendix B

Analytic solutions for U-tube

with infinite leg lengths

We may derive analytic solutions to the integrals that define the liquid fraction
profiles for the left and right legs of the U-tube model used in Chapter 3 (as given
in Section 3.2.2). The form of these integrals depends on whether the roots of
the quadratic equations — Equation 3.9 (for the left leg) and Equation 3.10 (for
the right) are real or complex. We show here only solutions for the real roots;
solutions for the complex case do exist (although they are very cumbersome) and
may be found, for example, in the tables of Petit-Bois [102].

For the left-hand leg, we must consider two cases depending on whether the
roots of Equation 3.9 — ¢; and ¢, are distinct or coincident. For the case

where ¢, and ¢, are real and distinct, we integrate Equation 3.12 to obtain

r = fil¢r) — filoe), (B.1)
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where f;(¢) is given by

filg) = e (\/51 | Y=V _

VB V3,
@ — ) vorev R

Vo + V5,

) . for ¢1 # 0.
(B.2)
In the case that ¢, and ¢, are real and coincident, we instead consider Equa-

tion 3.13:

Vo 1 | Vo-Vh
(0—01) 2V, Vo+ Vo,

@) = eafe ( ) o (B3)

In the limit * — oo, we obtain ¢; — ¢;.
For the right-hand leg, we must only integrate Equation 3.11 (for real roots of

Equation 3.10), arriving at

= jr((bv) VE fr(@r) (84)

) TN <ar(ran ﬁ)} . (B.5)

In the limit x — oo, we obtain ¢, — ¢3.

where f,.(¢) is given by

—ca/c \/_ \/—3
el = ¢3 — {fg (\/_ Vo3

Example solution profiles of Equation B.2 and B.5 are shown in Figure B.1.
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Figure B.1: Examples of solutions of Equation B.2 (left) and Equation B.5 (right) for
real roots (values for the roots are shown). Note that the right leg tends
to a constant value (¢3) much more rapidly than the left leg (which tends

to ¢1)
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Appendix C

Finite size effects in the U-tube

model

C.1 The effect of finite bend radius

The presented analytical theory for fractionation in a U-tube proceeded from as-
suming that the bend is short compared with the straight legs of the U-tube. The
liquid fraction at the top of the two tubes was then equated and we showed that,

(V2-1)y,
2c V.

in the limit of infinite leg length L. this value is ¢3 =
We now consider the effect of finite bend radius 7 in the same limit and obtain

the derivative d¢;/0x for the left leg:

d@[ ‘/3/2

= (C.1)
Ox 4.1 ¢y &
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For the right leg, we obtain:

96,
ox

i} (C.2)

(V2+1)

Here, ¢, and c, are as defined in Section 2.2, and ¢y, = ==

The change in liquid fraction across a finite bend of length 77 may thus be
estimated as
V3/2
¢r — o1 = Agp = ——— 3™ (C.3)
4 \/c1 3 cf

which can be compared with the value ¢; = ¢, = (‘/3(71> V for r = 0 to predict

the error in the liquid profile due to finite bend length:

Adg  _ T Vs, (C.4)
(9,(7‘20) \/G C2

C.2 The effect of finite leg length

We start from an integral for L;. following from Equation 3.4:

_a [*_ Vadé
e Jg, (01— 01)(d0— 2)’

Ly = (C.5)
where ¢, and ¢, are the top and bottom values for liquid fraction, respectively,
and
V+ vV V2 = 4C1 J

P12 = 5o, : (C.6)
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We will evaluate this integral by making a drastic approximation, and then
correcting it: we set the lower boundary value for ¢; to infinity and the upper
bound to zero.

Substituting Equation 3.33 into Equation C.6 gives

br12 = Ha o, (C.7)

2¢ \/ﬁ

Expressing these complex values of ¢ using Euler’s notation gives

b1 = ae*™, (C.8)

where a is the magnitude of the complex number and b is the argument (or

phase). These quantities are given by

1% 4c;€?
1

_ (
g = 5 - 0z (C.9)
and
2cl/?
b = arctan < C{, f) , (C.10)
74

Substituting Equation C.8 into Equation C.5 results (after some straightfor-

ward manipulation) in

Lzz—ﬂ/m Véi dg (C.11)
1 Jo (@1_¢m)2+;

where ¢o, = e
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This integral may be evaluated using Mathematica, or it may be evaluated by

contour integration. Integration using Mathematica yields

/ £ : - m C2\/_

Alternatively, we may evaluate the integral quite neatly by contour integration

N=

(the method of residues), using the contour illustrated in Figure C.1. The cut
along the real axes is such that y/¢; has a positive real root on the upper side, and
a negative real root on the lower side. The denominator of the integrand has two

complex roots at

P12 = Poo £ —. (C.13)

The residues associated with each (taking into account the nature of square

roots in a complex plane) are

iCQ

t’
R - C.14
v 612\/§E ¢ \/<“1 ( )
By = —2 - of, (C.15)

C12\/§€ b Vel

Our contour integral (from Cauchy’s Residue Theorem, with the above caveats
taken into account) is therefore (noting that such a contour results in twice the

correct integral)

(o]
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Figure C.1: Integration of Equation C.11 involves the contour indicated. with z = ¢.
It includes a (zero) contribution from infinity and two equal contributions
from above and below a cut on the real axis at ¢; and ¢ (Equation C.7).

Evaluating this expression leads to precisely the same result found by Mathe-
matica (shown in Equation C.12). Gathering all the constants into a single p;, we

obtain

L= V2%, (C.17)

Note that, for some given V', the limit of infinite L; corresponds to ¢ = 0,

in accord with the previous theory. We can now proceed to examine the lead-
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ing approximation for the two end corrections that are required when the proper
boundary conditions are reintroduced.

We correct Equation C.5 to take into account the bottom boundary condition

— ¢1(0) = ¢. — by adding

ALl(bottom) _ /oo (72\/Ed¢1 (018)
)

. Cilih — Ge)® + €
to the integral of Equation C.5.
Neglecting terms of order €2, and assuming that ¢, < 1 and ¢; > ¢, We may

approximate the correction as

AL[(bottom) - 2 0;3/2d¢1 (C.lg)

C1 J g,

= = Egrll (C.20)
1

Finally, we add a further correction for the top boundary condition O = O3

— as follows (again neglecting terms of order €?):

¢3
Afpen o 2 Vo _d. (C.21)

C1 Jo (C/)I - (bx)

In this case, ¢; > ¢ in the range of integration, and hence
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(top) _
AL = Cl¢2 / Voudo (C.22)
3/2
L (C.23)
3 <Z52

2\/§ 3/2 Co 1
S N - 194
: (\/5 1) T (C.24)

Summarily, we have arrived at

By = py VM2 4 iy gV 1%, (C.25)

where

T Co

T e

2(’2

Vo
2v/2 3/2 ¢
and pz3 = —T\/_ (\/5—1) =

/2

po =

This is a good approximation for the left-leg length, provided that the right-leg

length L, > L; — where L, is given by Equation 3.31 (see Section 3.3.1) — and,

hence, that the boundary condition used for the top correction is valid.
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C.3 Generality of the limiting case

It is worth noting that the initial approximation (integrating from 0 to oo) for L,
in the previous section results in an upper bound for L;, given by L = p, V421,
As the corrections for the top and bottom bounds of integration given by jus and 3
are negative, L, < L. Therefore, if L 300, L — 05, irrespective of any boundary
conditions chosen.

This implies that, for a wide range of boundary conditions, the steady state
solution must have J = J; in the limit L; — oo. Indeed, numerical simulations
for the skimmer boundary conditions bear this out, recovering this relationship for
sufficiently long columns. This limiting result was presented and derived for the
specific boundary conditions of the U-tube, but appears to be far more general.
Outside of the limiting case of infinite leg lengths. the boundary conditions are not
equivalent and greater care must be taken. Numerical simulations have shown that

the limiting case is approached relatively quickly (see, for example, Figure 3.2).

Top boundary correction for skimmer

In the case of a skimmer, the top boundary condition changes from ¢;(L) = ¢3 to

Cbl(L) = ¢y:

2 [*_ V&
AL“"D):Q/ e C.26
l ol e e (C.26)

where ¢, = % As ¢; < ¢ in the range of integration, we may calculate this

correction:
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Gor) _ _ 2 [* .27
¢ Cboo 0
9 ¢o 32
= —50—2‘1;1—2 (C.28)
1 Yoo
8 VQ 3/2
= —501C2 (4—01> (C29)
1l Co 3
=}/ (C.30)
37
= —p V12 (C.31)
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Appendix D

Overview of software used

D.1 The Surface Evolver

The Surface Evolver [103] is a program which, given a structure (defined by ver-
texes, edges, faces and bodies), will attempt to determine the minimum surface
energy configuration. It is widely used in foam structure research [3, 104, 105].

Surface Evolver simulations consist of tessellations of the surfaces that make
up the foam (as shown in Figure D.1). While tessellations of this type are almost
always an approximation of the true surface (especially in foams), increasing the
refinement of such tessellations (e.g., using more triangles to represent the surface)
often improves the accuracy of the simulation.

The Surface Evolver uses gradient descent [51] to minimise the energy of the
input structures. This technique moves points on the surface mesh in the direction
negative to the gradient of the energy vector, i.e., in the direction of steepest

descent. However, gradient descent is a first-order method and successive steps
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Figure D.1: Simulations of foams are usually carried out with K. Brakke’s Surface
Evolver [103]. This software approximates surfaces with a triangulated
mesh or tessellation. This mesh can be refined (i.e., the number of triangles
used can be increased) to improve the accuracy of the approximation. (a)
to (¢) show the same foam surfaces as the refinement of the tessellation is
increased. Note how the curvature of the surfaces becomes smoother (and
more representative of a real foam).

can be inefficient, as the solver ‘zigzags’ towards a (local) energy minimum. The

Surface Evolver provides a higher-order (and much more efficient) method called

conjugate gradient descent [51]. This method combines information from previous

steps to find a more direct route to the energy minimum.

A robust minimisation technique therefore involves applying conjugate gradient
descent to successive mesh refinements until the surface is deemed sufficiently close
to equilibrium. At this point, the Hessian minimisation [106] may be used. The
Hessian matrix is the square matrix of the second-order partial derivatives of the
surface energy function, i.e., it describes the local curvature of surface energy. If
the Hessian is positive-definite at some point z, then z is a local minimum of the
function. The Surface Evolver’s hessian command solves the Hessian matrix to

jump directly to an energy minimum. Where the Hessian command can not be

used successfully, extensive conjugate gradient minimisation must be carried out.
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The internal representation of foams used by the Surface Evolver uses units
of dimensionless area. Calculating surface energy requires scaling this area by
some surface tension. We may simply choose this value such that surface energy

is numerically equivalent to surface area.

D.2 Modelling wet foams using the Surface
Evolver

In this section we will outline the techniques used to model wet foams using the
Evolver. Starting from simulations of dry foams, Plateau borders were ‘wrapped
around’ each edge and joined at vertices. This converted the idealised (perfectly
dry) simulations into more realistic foams with a finite liquid fraction. We were
able to generate foams with a desired liquid fraction by changing the size of these
added borders.

Starting from such a wet foam, we increased the tessellation and minimised the
foam as accurately as possible (within the limits of available computer resources).
Provided the simulation remained internally consistent (i.e., the Evolver surfaces
representing the foam are physically possible and do not contain singularities), we
then recorded the surface energy of the foam.

Previous work on foam structure has often focused on confined ordered foams 3,
104, 107]. For such systems, the transition between different observed structures
was approximated by the point at which the number of faces of the bubbles in the
foam changed, most commonly by the area of a face going to zero. This process is

shown graphically in Figure D.2.
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(b)

Figure D.2: Looking directly into the unit cell of the Weaire-Phelan foam as liquid
fraction is increased (from 0% in (a) to 2.5% in (d)), it becomes apparent
where bubbles will lose contact. Extrapolating the areas of the shrinking
faces (one such face is marked in red) to zero gives us this limit.
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While at first glance a similar approach may seem worthwhile, tracking face
area has several disadvantages in our structures. It requires careful observation
of the entire foam structure, including internal bubbles, to determine the face or
faces that will reach zero area first. It may also be the case that several faces have
to disappear before mechanical stability is lost — as discussed in Section 1.3.2, we
need an average number of contacts per bubble of n = 6 for 3D foams to remain
mechanically stable. As the area of faces tends towards zero, the Evolver surface
is not guaranteed to remain in a physically correct configuration, reducing the
accuracy of simulations. This means that, in many cases, we must extrapolate
area measurements to zero, adding a further source of potential error.

For these reasons, we turn instead to the total surface energy of the foam as a
function of liquid fraction. This method has the advantage of being independent
of the local foam structure, instead taking the complete foam into account. By
looking at the entire foam (or average energy per bubble in the foam), we do not
need to carry out the painstaking examinations of every face in the structure, nor
take into account different bubble types (e.g., in the Weaire-Phelan foam). We
also remove the need for extrapolation or fitting of data, placing our results on
much sounder ground.

By calculating the average energy of the bubbles in the foam E, we may define

a stability threshold as

OE

55 =" (D.1)

Below this threshold, increasing liquid fraction reduces the average energy of

the bubbles in the foam, as reported by the Surface Evolver. Increasing ¢ past
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this point increases the surface energy of the simulated foam. The real foam would
resist such energy increases and would change structure (e.g., by losing contacts

or by rearranging bubbles) to reduce energy again.

D.3 The MIGRAD minimiser

Throughout this work we have presented numerical solutions to various foam
drainage models. Where fitting was required, we used the MIGRAD minimiser,
part of the MINUIT program developed by F. James and M. Roos [50]. MINUIT
is available as part of CERN’s ROOT library!.

MIGRAD uses the method of steepest descent to find minima. The gradient is
evaluated by measuring function partial derivatives with respect to each parameter
of the minimisation (the derivatives may be provided, or calculated numerically by
the software). After the necessary gradients are calculated, the curvature at the
working point can be used to estimate distance to the minimum. The step taken
towards the minimum is set via inexact line search.

In standard Newton’s method minimisation, computing this curvature requires
inverting the Hessian matrix of second derivatives. MIGRAD uses variable metric
methods in which the Hessian and its inverse may be estimated directly by analysis
of gradient vectors. This can greatly reduce the computational cost of the min-
imisation. MIGRAD also includes checks for positive definiteness of the Hessian
matrices. If the matrix is positive-definite at some point z, then that point is a

local minimum of the function.

!See http://root.cern.ch/ for more information, including downloads.
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The software is computationally efficient, allowing many fits to be carried out

on standard, desktop-level computing resources.
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Appendix E

Statistical analysis of lifetime data

Our analysis of statistical data was inspired by methods put forward by Clauset
et al. [81]. While that work focused on correctly identifying power laws in experi-

mental data, their methods are general in their approach and statistically rigorous.

e We estimated the parameters of our contender probability distributions using
maximum likelihood estimation (described in Appendix E.1), based on best

fits to the data.

e We then determined how likely it was that our data could have come from
that best-fit distribution using the Kolmogorov-Smirnov (KS) test (described

in greater detail in Appendix E.2).

e In the case that multiple candidate distributions passed the KS test, further

statistical methods could be employed to pick the best model.

We applied this approach to lifetime data for soap films generated as part of a

public exhibition, and determined that that data was best described by the Weibull
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distribution (see Appendix E.3). This experiment, and the results, are presented

in Chapter 5.

E.1 Maximum likelihood estimation

Maximum likelihood estimation is a method of estimating the parameters of a
statistical model. Given some set of data and a statistical model, the method
of maximum likelihood estimation (MLE) selects that set of values for the model
parameters that maximises the likelihood function and, hence, the ‘agreement’
between the model and the data.

Consider a data set with ten points — xy, xs....7;9 — and two candidate
probability distributions p(z) and ¢(z) for how the data set was generated (where
all distributions are normalised to one).

The question is then: if the true distribution was p(z), what would be the

probability of obtaining these ten points? This probability is simply

£, = plar) x p(aa) x ... x plaro). (E1)

and is called the likelihood £, of those ten points given the model distribution

p(z). Next, we compare this result with that from another model distribution

q(z):

Lqe=ql®) x q(®s) % . .. X q(Z10)- (E.2)
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If it turns out that £, < L,, we can then say that p(z) is the ‘more likely’
distribution. After all candidate distributions are checked, we simply choose the
one that has the maximum likelihood.

In many cases, we will not have a discrete set of candidate model distributions,
but rather a continuous range of distributions p(x|ai, as, . ..,ay) which are gener-
ated by varying the parameters a;, as,...,ay. The process remains the same and
we simply vary the parameters until we have maximised the likelihood.

Because log(x) > log(y) implies that = > y, the distribution which maximises
the likelihood L is the same as that which maximises the logarithm of the likelihood
log(L). Generally one considers the logarithm of the likelihood instead, as this
turns what would have been an extremely large (or small) product into a smaller
sum which is easier to handle analytically (since log(ABC') = log(A) + log(B) +
log(C') << ABC).

In some cases, a closed-form solution for the parameters which maximise the
log-likelihood may be found. This can be done, for example, by taking the deriva-
tive of log(L) with respect to the parameter(s) and equating to zero.

It must be noted that the method of MLE cannot determine whether any
particular model is correct, providing only the best fit of that model to the data.
To solve this issue, other statistical tools — such as the Kolmogorov-Smirnov test

must be employed.

E.2 Two-sample Kolmogorov-Smirnov test

In our work, we use the two-sample Kolmogorov-Smirnov (KS) test. This is a non-

parametric hypothesis test that evaluates the differences between the cumulative
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distribution functions (CDFs) of two sample data sets, with a null hypothesis that
the two data sets have the same underlying distribution [95].

We choose to use the two-sample test rather than comparing one data set
to a statistical model directly, as the MATLAB numerical libraries used do not
include every model of interest. We instead draw a large secondary data set from
a distribution based on MLE best fits (as described in Appendix E.1).

The two-sample KS test cannot identify the underlying distribution of the
samples but, as we generate one sample by drawing from a known distribution,
this issue is not applicable.

The two-sample KS statistic is simply the maximum distance between the two

CDFs,

D = max |A(z) — B(z)|, (E.3)

T

where A and B represent the CDFs of the experimental observations and the
data drawn from the statistical model under consideration (with parameters set
via MLE).

To ensure a proper test of the null hypothesis, we carried out the two-sample
KS test with data sets containing 10° elements. As we had fewer experimental
measurements than this, the data were bootstrapped by random sampling [51].
This process was repeated to rule out chance acceptance of some bootstrapped

data.
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E.3 The Weibull distribution

The Weibull distribution is commonly used to describe processes where the failure
rate changes over time [108]. It originated in extreme value statistics where it is
referred to as the type III extreme value distribution or third asymptotic distribu-
tion [109], and is named after Waloddi Weibull [110]. It is used to analyse systems
that age, e.g., light bulbs breaking and engine component failures [94, 111]. The

Weibull probability distribution function is given by

k rz\k-1 R
—(—) e~ &N (3 > 0)
s a k) = ANA (E.4)
0 ( < 0)
with the cumulative distribution function
F(z;\k)=1- e=(@/N*, (E.5)

where & > 0 is a dimensionless number known as the shape parameter and
A > 0 is the scale parameter of the distribution. z here is a ‘time to failure’, or
lifetime. The value of £ tells us the type of process we are dealing with: if £ < 1,
the failure rate decreases with time; if & = 1. the failure rate is constant (and
the Weibull reduces to an exponential distribution); and if & > 1, the failure rate

increases with time.
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