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A bstract

The authentication of food samples pose a particular problem for regulators. The 

routine testing of premium food products, most likely to be subject to manipulation 

for commercial gain, is only feasible if the testing method does not damage the 

product. Near Infrared (NIR) spectroscopy is one such m ethod th a t is both fast and 

non-invasive. However, unlike other spectroscopic methods, peaks in the resulting 

NIR curves are a t imprecise locations, requiring further statistical analysis if it is to 

be used for the classification of samples.

Three NIR datasets are examined in this thesis two are related to the identi­

fication of adulterated  samples, the third is a study on the identification of types 

of meats. O ther conunonly available, non-NIR, datasets are used for illustrative 

purposes.

The models developed in this thesis must be suitable for use by chemists with 

access only to  personal computers and have reasonable com putational time if they 

are to be adopted into practice. Some of the methods developed are refinements 

to existing m ethods such as the development of the use of information criteria for 

the selection of the number of param eters to use with Partial Least Squares Re­

gression and the incorporation of a semi-supervised framework with Fisher’s Linear 

Discriminant Analysis. A variety of dimension reduction approaches are used with 

model-based discrim inant analysis and with classification based on a homogeneous 

group versus a  heterogeneous group.

T hroughout this thesis model assessment is on the basis of test set performance, 

using 50%, 25% and 10% of the observations in the datasets for training the models 

and 50%, 75% and 90% of the observations to test on in order to assess the robustness 

of the various modelling approaches to sample size.
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Chapter 1

Introduction

1.1 M otivation

The main purpose of this thesis is to provide statistical methods for use by food 

scientists in the process of food authentication. A variety of different methods of 

analysing the food samples are considered, with most emphasis being placed on 

providing statistical techniques for Near Infrared (NIR) data.

The methods developed throughout this thesis, while targeted towards NIR data, 

are also designed to be suitable to more general applications: especially situations 

where there is high dimensional, highly correlated data.

The statistical techniques developed should remove the subjectivity from the 

classification process when using NIR data. Introducing a probabilistic framework 

for the classification process enables consistent measures of uncertainty about the 

individual classification decisions to be made.

Using R for all com putations throughout this thesis enables the methods to be 

easily reproduced for a variety of com putation platforms.

In order for such methods to be adopted by the chemists who use NIR, methods 

should be as simple as possible, with the underlying reasoning behind the modelling 

strategy easily comprehensible.
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1.2 Food A u th en tic ity  Studies

The m ain aim of food au then tic ity  studies is to  detect when foods are not w hat they 

claim to be and thereby  prevent economic fraud or possible dam age to  health . Foods 

th a t are susceptible to  such fraud are those which are expensive and  sub jec t to  the  

vagaries of w eather during  grow th or harvesting e.g. coffee, various fru its, herbs and 

spices. Food fraud can generate significant am ounts of m oney {e.g. several million 

US dollars) for unscrupulous trad ers  so the  risk of adu lte ra tion  is real.

This type of fraud no t only applies to  the  consum er m arket (generally th rough  

inaccurate labelling), b u t also to  the  industria l ingredients m arket, where food trace- 

ability and quality  control are of increasing im portance. A nalytical techniques th a t 

are available to  industry  include “wet chem istry” techniques -  invasive and de­

structive, b u t easy to  in te rp re t and o ther non-invasive techniques th a t  require more 

in terp reta tion  of the  results such as Near Infrared (NIR) spectroscopy.

Ingredient fraud can ex tend  beyond the  typical hum an food chain. O n the  

M arch 2006, the Food and D rug A dm inistration  (FDA) in th e  U nited  S ta tes an­

nounced th a t  it had discovered th a t  some pet foods were killing cats and dogs. On 

further investigation, th e  source of contam ination was found in vegetable proteins 

im ported from C hina and used not only in pet food, b u t also in farm  anim al and 

fish feed. A lthough risk to  people from eating the  resultcint foods was low, it high­

lighted the  need for adequate  controls a t all points th a t  have the  po ten tia l to  enter 

the hum an food chain.

An even m ore serious problem  has emerged recently w ith th e  increased prevalence 

of contam inated or counterfeited  drugs, resulting in ineffective, dangerous p roducts 

being released onto the  m arket. This is not a new problem  th e  W orld H ealth  

O rganisation noted in a  1999 report th a t  the problem  is referred to  in w ritings 

dating  back to  the  fourth  ccntury  BC; Dioscoridcs in the  first cen tu ry  AD in Greece 

identified adu lte ra ted  drugs and advised others on their detection. N ew ton et al. 

(2006) outline the scale of the  problem  and some of th e  cu rren t detection  m ethods 

used in counterfeit drug  detection.

The m ost recent m ajor food scare emerged in C hina when it was repo rted  on the  

13̂ '*̂  Septem ber by .1. M cD onald th a t  a national investigation into the  contam ination  

of baby milk form ula w ith  rnelam ine was being undertaken . T he scale of the  con-
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tamination problem became evident in the later report by S. McDonald which noted 

that about 53,000 children had been sickened by the contaminated milk products.

1.3 O verview  o f C hapters

A brief outline of the research completed follows:

Chapter 2: Food A uthenticity  D ata

Models developed throughout this thesis are applied to food authenticity problems. 

Examples of how such problems arise in practical terms are given and the motivation 

behind the solution of these problems are addressed. The specific data on which the 

methods are applied are introduced in this chapter.

Chapter 3: S tatistical M ethodology

Existing statistical methods are introduced, especially those that have been devel­

oped within the chemometric literature to analyse near infrared spectroscopic data. 

Details of the implementation of Partial Least Squares Regression, Soft Independent 

Modelling of Class Analogies and Model-based discriminant analysis (with and with­

out updating procedures) are given and the issues of model selection and evaluation 

are addressed.

Chapter 4: Group of Interest Based Classification

In food authentication applications there is often an imbalance in the information 

available about samples. Comprehensive profiling of the authentic products can be 

undertaken. However, to accomplish the same for the unauthentic products would 

be almost impossible. This chapter illustrates a method whereby the authentic 

observations can be treated as a single, homogeneous group, while the other obser­

vations are modelled using a more flexible framework than tha t used in traditional 

discriminant problems.
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Chapter 5: U pdating F isher’s Linear Discrim inant Analysis

Finding a projection of the data that maximises the separability of groups enables 

the elimination of the need for separate dimension reduction. Fisher’s Linear Dis­

criminant Analysis is generalised to incorporate a semi supervised perspective.

Chapter 6: G eneralising F isher’s Linear D iscrim inant Analysis

Fisher’s Linear Discriminant Analysis assumes that the covariance matrices are the 

same across groups. This is generalised using the likelihood ratio so that the restric­

tion that all the covariance matrices are the same can be relaxed.

Chapter 7: Conclusions and Further Work

This chapter summarises the findings of the different approaches towards dimension 

reduction. It also compares the relative appropriateness of the different discrimi­

nation approaches for both two group and multiple group classification problems. 

Areas of future research leading from the work undertaken towards this thesis are 

also examined in this chapter.

1.4 R esearch C ontributions

The following are the main contributions made by the research contained in this 

thesis:

1. The development of the use of information criteria for the automatic selec­

tion of the number of parameters to use for Partial Least Squares Regression 

(PLSR), enabling PLSR to be used in small sample situations where cross 

validation is infeasible.

2. The effectiveness of alternative dimension reduction methods to be used in 

association with model-based discriminant analysis have been studied.

3. Demonstrating that semi-supervised methods are highly dependent on initial 

model assumptions, hence are not always beneficial in classification problems.

4



4. Strategies for classifying observations in the presence of a single homogeneous 

group and a unknown number of other groups, trea ted  as a single heteroge­

neous group, have been examined, incorporating variable selection techniques 

into the classification process.

5. Development and implementation of a semi-supervised framework for Linear 

Discriminant Analysis (LDA) and the generalisation of LDA in order to re­

lax the assumption of equal covariances across groups in the semi-supervised 

framework.
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Chapter 2

Food A uthenticity D ata

2.1 N ear Infrared Spectroscopy

The NIR part of the electromagnetic spectrum  ranges from about 700 nm to 2500 nni, 

lying between the visible and the infrared part of the electromagnetic spectrum as 

illustrated in Figure 2.1. The visible part of the spectrum  is illustrated in Figure 

2 .2 .

NIR spectroscopy is a fast, non-invasive m ethod of examining substances. As 

samples do not require advance preparation, it has the potential to be used as part 

of an on-line quality control system. However, unlike other forms of spectroscopy, 

the peaks of the spectra are not well defined as this part of the spectrum  is based 

on molecular overtones and vibrations. Thus a compound cannot be identified by 

locating a single narrow peak on the spectrum, rather it requires analysis of the 

entire range. Figure 2.3(b) illustrates the overlapping structure within ju st one part 

(2000 2498 nm) of the NIR region.

The NIR data  examined in this thesis are taken at intervals of 2 nrn using an 

NIRSystems 6500 instrum ent which can scan over the visible and near infrared 

regions, where one sensor scans from 700 to 1100 run and another scans from 1100 

to 2498 nm.

Bonds in molecules are produced by an atom sharing and /o r giving electrons to 

another atom. Such bonds act similar to anharnionic springs, where the frequency

7



is the num ber of tim es the  a tom  vibrates in a second. Using the  equation

where h is Planlc’s constan t, k  is the  force, // the  reduced m ass, is th e  vibrational 

energy for n  =  ( 0 , 1 , 2 , . . . )  the  energy levels can be determ ined, n  =  1 represents 

the fundam ental frequency of the  molecule, n  =  2 , . . .  represent the  overtone regions 

where ii =  m  is associated w ith  the  (m — 1)*̂ .̂ overtone region.

This spring-like behaviour is w hat gives rise to  the fundam ental frequencies (at 

lower frequencies /  h igher wavelengths) and to  the  overtones. M ultiple overtones ex­

ist for different com pounds, fu rther hindering the  direct identification of substances 

w ithin the NIR, region, which is m ostly comprised of com binations and  overtones 

ra ther th an  fundam ental frequencies. The spring does not ju s t oscillate in a  plane, 

it also twists. This m akes peaks harder to  identify, particu larly  for com pounds w ith 

more than  one bond active in the  NIR region.

W ith the exception of a few electronic transitions alm ost all of the  overtones 

or com binations observed in the  N IR  region involve hydrogen. T h is is because 

hydrogen has a  small m ass and thus can travel further, leading to  a m ore pronounced 

anharrnonicity which in tu rn  leads to  greater in tensity  in the  overtone bands. M ost 

of the vibrations of th e  non-hydrogen based com pounds are a t lower frequencies so 

th a t only the second and higher overtones and m ultiple com binations fall in the  NIR 

region. These are m uch weaker th an  the  first harm onics as the  in tensity  decreases 

by a factor of approxim ately  ten  as one moves up each harm onic level (or from one 

overtone region to  th e  next).

Visible Spectrum

The visible p a rt of th e  spectrum  can be broken into the  trad itio n al colours of the 

rainbow: red, orange, yellow, green, blue, indigo and violet as illu stra ted  in Figure 

2.2. Thus the Near Infrared p a rt of the  spectrum  is closest to  the  colour red on the  

visible spectrum .



ELECTROMAGNETIC SPECTRUM 
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Fig. 2.1: Electromagnetic Spectrum

Visible Spectrum

Blue

Violet Red

Indigo Green Orange

400 500 600 700

Wavelength (nm)

Fig. 2.2: Visible Spectrmn
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2.1.1 Structure o f N IR  spectrum

There are 4 main regions within the NIR part of the spectrum, three of w^hich are 

w'hat is known as overtone regions, while the final region is a combination region. 

The 3 overtone regions within the NIR spectrum exist at approximately 700-1150 nm 

(3rd overtone region), 1050-1650 nm (2nd overtone region) and 1470-2050 rnn (1st 

overtone region). The combinations region (at approximately 2000-2500 nm) is 

illustrated in Figure 2.3(b). The theoretical peak positions illustrated by the blue 

bars in Figure 2.3(b) show the extent of the overlap of the different bond types in 

just one part of the spectrum. The overlapping of the wavelengths corresponding to 

different bonds is repeated in the overtone regions.

To illustrate how the same bond features in different regions of the NIR spectrum, 

Figures 2.4(a) and 2.4(b) illustrate the different parts of the spectrum attributed to 

the H2O (water) bond.

C om bination  B ands R egion

RO H

■ lH B C O N H ; ,( R )

h h c o h

H M H C C

2100 2200 2300 2400 2500
W aveleng th  (nm)

( b )

Fig. 2.3: Regions of the NIR spectrum: Figure 2.3(a) illustrates the different regions 

of the NIR spectrum while Figure 2.3(b) illustrates the different areas of interest 

w'ithin the Combination Bands Region

Figure 2.4(a) shows a sample spectra comprising almost totally of water. Super­

imposing the theoretical positions of the water peaks in Figure 2.4(b) illustrates 

the difficulty in identifying substances that comprise of more than one compound. 

However, this difficulty in identifying substances is somewhat counteracted by the

(C6

U)6 2nd Overtone 
Region

d i St Overtone 
! Region |

o

1000 1500 2000 2500500

w/avelength (nm)

(a)
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ability of NIR to penetrate further into a sample than other methods. It can also 

even measure through glass or certain types of packaging making the potential for 

use on industrial scale quality control evident, as products can be tested without 

causing damage to either the product or its packaging.

o

—, oo ¥ d

<
b

CM6

25001000 1500 2000

o

O)
o
0)

o
CO

<
o

eg
d

1500 2000 25001000

w avelength (nm) wavelength (nm)

(a) (b)

Fig. 2.4; Samj)le spectra of unmodified bacteria in maxinmm recovery diluent 

(MRD -  mainly distilled water). Figure 2.4(a) is the spectra from 700-2498 nm; 

Figure 2.4(b) illustrates the theoretical locations of water peaks in the same region.

2.2 NIR Data 

2.2.1 H oney Sam ples

Honey is defined by the EU Commission (2002) as “the natural, sweet product 

produced by Apis mellifera bees from the nectar of plants or from secretions of 

living plants, which bees collect, transform by combining with specific substances of 

their own, deposit, dehydrate, store and leave in honeycombs to ripen and mature” . 

As it is a relatively expensive product to produce and extremely variable in nature, 

honey is prone to adulteration for economic gain. Instances of honey adulteration 

have been recorded since Roman times when concentrated grape juice was sometimes 

added, although nowadays industrial syrups are more likely to be used as honey 

extenders.
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Honey samples (157 samples) were obtained directly from bee-keepers through­

out the island of Ireland. Samples were from the years 2000 and 2001; they were 

stored unrefrigerated from time of production and were not filtered after receipt 

in the laboratory. Honeys were then incubated at 40° C overnight to dissolve any 

crystalline material, manually stirred to ensure homogeneity and adjusted to a stan­

dard solids content (70° Brix) before spectral collection. This should help to avoid 

spectral complications from naturally-occurring variations in sugar concentration.

Collecting and extending the honey and recording the spectra was done a t time 

points several months apart; the first study involved extending some of the authentic 

samples of honey with fructose:glucose mixtures, the second study involved extend­

ing some of the remaining authentic samples with fully-inverted beet syrup and 

high fructose corn syrup. All adulterant solutions were also produced at 70° Brix. 

Brix standardisation of honeys and adulterant solutions meant th a t any adulteration 

detected would not be simply on the basis of gross added solids.

The two studies were combined for analysis in order to reflect a more accurate 

picture of reality. In an ongoing practical food testing scenario, it is unlikely tha t all 

samples would be taken and processed within a very short period of time -  samples 

would arrive for testing interm ittently over an extended time period.

The fructoserglucose mixtures were produced by dissolving fructose and glucose 

(Analar grade; Merck) in distilled water in the following ratios:- 0.7:1, 1.2:1 and 

2.3:1 w/w. Tw'enty-five of the pure honeys were subsampled and then adulterated 

w'ith each of the three fructose:glucose adulterant solutions at three levels i.e. 7, 14 

and 21% w/w thus producing 225 adulterated honeys.

The other adulterant solutions were generated by diluting commercially-sourced 

fully-inverted beet syrup (50:50 fructose:glucose; Irish Sugar, Carlow, Ireland) and 

high fructose corn syrup (45% fructose and 55% glucose) with distilled water. Eight 

authentic honeys were chosen a t random to be subsampled, then were adulterated 

with beet invert syrup at levels of 7, 10, 14, 21, 30, 50 and 70% w/w; high fruc­

tose corn syrup was added to ten different, randomly-selected honeys (again sub­

sampled) at 10, 30, 50 and 70% w/w'. This produced 56 Bl-adulterated and 40 

H FCS-adulterated samples.

This adulteration scheme, as shown in Figure 2.5 was used as it represents the
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most difficult classification scenario; where the aim is to differentiate between sam­

ples before and after adulteration with adulterants that have been formulated to 

replicate the natural composition of honey.

Both the pure and adulterated samples come from the same original source, as 

such there is a degree of dependence between the samples which, when considering 

the extent of the natural variability of honey, adds to the difficulty in differentiating 

between the groups. As the honey can be extremely variable, the difference intro­

duced by the adulteration scheme may in fact be less than the natural variability 

within the original samples. The resultant spectra (from 1100-2498 nm) are shown 

in Figure 2.6.

2.2.2 M eat Samples

The spectra from a total of 231 homogenised meat samples were measured from 

400-2498 mil at intervals of 2 nm. These spectra encompass both the visible and 

near infrared part of the electromagnetic spectrum. The samples were of raw, ho­

mogenised (minced) meat, with a total of 32 beef, 55 chicken, 34 lamb, 55 pork and 

55 turkey samples. The resultant spectra are illustrated in Figure 2.7, with beef 

samples in black, chicken in red, lamb in green, pork in blue and turkey as the cyan 

coloured lines.

The meats were purchased over a period of 10-12 weeks in the form of breast 

meat (chicken and turkey), pork loin chops, round steak (beef) and lamb side loin 

chops. The samples were refrigerated overnight then prepared in order to produce 

the greatest quantity of lean meat in each sample by removing skin, bone, fatty 

and connective tissue. Excess surface moisture w'as removed by patting the meat 

samples dry before the samples were individually minced. The samples were then 

refrigerated again before being scanned later on the same day. The full preparation 

process is explained more fully by McElhinney et al. (1999).

Cross contamination or misrepresentation, intentional or otherwise, of meat 

products is of interest to the consumer for both religious and safety reasons. For in­

dustrial settings, the correct identification of meat products is important, especially 

during food scares.

The spread of the sample spectra in the 400-780 nm range in Figure 2.7 represents
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157 Honey samples collected in Ireland

Study 1: 75 samples 
25 chosen to be subsampled and adulterated

Study 2: 82 samples 
18 chosen to be subsampled and adulterated

10 adulterated with 
high fructose corn 
syrup at 10, 30, 50 

and 70% w/w 
(40 adulterated 

samples)

8 adulterated with 
beet inverts sugar 

at 7. 14. 21, 50 
and 70% w/w 

(56 adulterated 
samples)

157 pure Irish honey samples 
225 adulterated with frutose:glucose solutions 

56 adulterated with beet inverts sugar 
40 adulterated with high fructose corn syrup

25 adulterated 
with fructose: 

glucose solution 
(0.7:1) at 7, 14 

and 21% w/w (75 
adulterated samples)

25 adulterated 
with fructose: 

glucose solution 
(1.2:1) at 7. 14 

and 21% w/w (75 
adulterated samples)

25 adulterated 
with fructose; 

glucose solution 
(2.3:1) at 7. 14 

and 21% w/w (75 
adulterated samples)

Fig. 2.5 : Flow diagram of Adulteration Process

Pure
Adulterated

o
d

1100 1300 1500 1700 1900 2100 2300  2500

Wavelength (nm)

Fig. 2.6: NIR spectra of pure and adulterated honey samples
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Fig. 2.7: NIR spectra of raw, homogenised meat samples

the difference in the colour of the samples, while further along the spectrum the 

difference originates from the different chemical composition of the types of meats. 

It is notable that in these samples the white and red meats are clearly separable and 

that the main difference in the chicken and turkey samples comes from the higher 

water concentrations of the chicken samples. As with most applications of NIR 

technology to food samples, the natural variability of the food samples is apparent 

in the resulting spectra.

2.2.3 A dulterated  Olive Oils

This data set comprise of 46 pure extra virgin olive oil samples each of which has been 

subsampled into 3 samples within a laboratory setting as described by Downey et al. 

(2002). One subsample is left as is, another is adulterated with 1% (w/w) sunflower 

oil and the final subsample is adulterated with 5% (w'/w) sunflower oil. Thus there 

are 138 spectroscopic scans in this study. The black lines (obscured) in Figure 2.8 

are pure olive oil samples while the red lines are the olive oil samples that have been 

extended with sunflower oil.

Again, both the pure and adulterated samples come from the same original 

source, as such there is a degree of dependence between the samples which, when 

considering the extent of the natural variability of olive oils, adds to the difhculty 

in differentiating between the groups.
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Fig . 2.8: NIR spectra of pure and adulterated olive oils

E xtra virgin olive oil is a premium product, priced accordingly. If manufacturers 

are able to obscure the adulteration of the olive oils with much cheaper sunflower 

oils, the market could be compromised with a lower quality product. This, in turn, 

would damage not only the reputation of the company involved in the fraud, but 

also of the entire extra virgin branding of olive oils.

2.3 O ther Food A uthentic ity  D ata

2.3.1 Geographic Origin o f Olive Oil Sam ples

Forina and Tiscornia (1982) aimed to classify a to tal of 572 olive oil samples accord­

ing to geographic origin from various regions in Italy. Also included in this paper 

were a smaller number of samples from Portugal, Israel, Lebanon, Crete and Syria; 

however, discriminating between the regions of Italy is of interest here, so only the 

Italian olive oil samples are studied. This is mainly because the Portuguese samples 

omit one of the variables (eicosenoic acid percentage) and were taken over different 

years while the other countries each had very few samples. For each of the Italian 

samples the percentages of eight different fatty acids were measured. These acids 

were palmitic, palmitoleic, stearic, oleic, linoleic, linolenic, arachidic and eicosenoic 

acids.
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Sicily
Sardinia
Umbria
Apulia
Liguria
Calabria

Fig. 2.9: Map of Italy with the regions of interest highlighted

The regional breakdown of the data  is as follows: North Apulia (25 samples), 

Calabria (56 samples), South Apulia (206 samples), Sicily (36 samples). Inland 

Sardinia (65 samples). Coastal Sardinia (33 samples). East Liguria (50 samples). 

West Liguria (51 samples) and 51 samples from Umbria.

Geographic origin is another factor tha t increases the value of olive oil. This 

extends further than just on a country level some regions within Italy produce 

olive oil th a t can be sold at a greater price than others. Misrepresenting the region 

of origin is thus not really a health and safety issue, rather a regulatory issue in 

order to ])revent fraud and maintain the premium value of particular regions.

2.3.2 W ine

Forina et al. (1986) collected and analysed wine samples from the Piedmont region 

of Italy, which is to the north of Liguria in Figure 2.9. The common, incomplete 

data  set using only the information about alcohol, malic acid, ash content, alcalin- 

ity, magnesium content, total phenols, flavanoids, nonflavanoid phenols, proantho- 

cyanins, intensity, hue, OD280/OD315 o f phenols and proline is available in the 

gclus (Hurley, 2004) package of R (R Development Core Team, 2007).

For the purposes of identifying wines solely into Barolo, Grignolino and Barbera 

the study was not well designed - the 59 Barolo w'ine samples come from the years
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1971, 1973-4; the 71 Grignoliiio wines are from the years 1970-6 while the 48 Barbera 

wines come from the years 1974, 1976, 1978-9. Thus one cannot be certain tha t 

discrimination has not been made on the basis of year of production rather than 

solely by type, as intended. However, there is a significant difference in the price of 

these wine varieties, hence the motivation for the incorrect labelling.

W ith accurate information on one variable unobtainable, the rest of the vari­

ables associated with this wine da ta  are: sugar-free extract, fixed acidity, tartaric 

acid, uronic acids, pH, potassium, calcium, phosphate, chloride, OD280/OD315 of 

flavanoidfi, (jlycerol, 2-3-lmtancdiol, total nitrocjcn and m,ethanol. Analysis is under­

taken on both the “full” and “incomplete” wine datasets.
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Chapter 3 

Statistical M ethodology

3.1 Partia l least squares regression

Partial least squares discriminant analysis is commonly used in food authentication 

studies based on spectroscopic data. This m ethod uses partial least squares regres­

sion with a binary outcome variable for two-group classification problems and seeks 

to optimise both the variance explained and correlation with the response variable 

(Ilastie et al., 2001, p66-p68). Downey et al. (2003) found it to outperform other 

chemometric methods commonly used in the study of near infrared transfiectance 

spectra such as Soft Independent Modelling of Class Analogies (SIMCA), which is 

described in Section 3.2. It has the advantage in th a t it can utilise highly-correlated 

variables for classification purposes.

Partial least squares regression (PLSR) was developed by Wold (1966a,6) and 

is based on the assumption of a linear relationship between the observed variables 

(e.g. the spectroscopy measurements) and the outcome variable {e.g. pure or adul­

terated). It is similar to principal components regression (PCR). Stone and Brooks 

(1990) formally explain the connection between PLSR and PCR.

3.1.1 A lgorithm  for PLSR

As outlined by (Hastie et al., 2001, p66-p68) each variable Xj is standardized to 

have 0 mean and variance of 1. The response variable is y  and p  is the number of 

variables.

The original formulation of the PLS algorithm was restated in vector notation
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by Frank and Friedman (1993). However an easier to follow version of the algorithm 

was presented by Helland (1990) as follows:

1. Define starting values for the x  residuals, e„,., and the y  residuals, f„i'-

(a) 6o X  fix

(b) f o  =  y -  l-t-y

For 7)1 =  1 , 2, . . .

2. The scores t are linear combinations of the x  residuals from the last step 

weighted by the covariances with y residuals to make the scores more closely 

related to y:

(a) =  C o v (e„_ i, fm- i )  W j, Wa, . . .  are orthogonal

( h )  tm =

3. L^etermine the x  loadings, 1^, and y  loading, <7,„, using least squares;

(a) I„j Cov(g^,_j , i^)/V ar(/n()

4. Find the new residuals

(a) Gtti

(b) f m  f m  — 1 Qm — l i m —1

It is further noted th a t the sequence of PLS coefficients for r/i =  1, . . .  , p represent 

the conjugate gradient sequence for computing least squares solutions.

3.1.2 N um ber of Param eters

PLSR uses m  relevant loadings/com ponents in the model. However, deciding on m 

is not trivial as discussed by Helland (2001). Even when rn is known, the number 

of param eters in the model is open for debate. Van Der Voet (1999) illustrated the 

problem in calculating the degrees of freedom of a model using PLSR. Calculating 

the number of param eters in a model is especially relevant when using a complexity
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penalty as part of the model selection criterion. For the purposes of this thesis, the 

number of param eters in the population model was assumed to be

So th a t if m =  0 no correlation between X  and y  exists and m  =  p is the full least 

squares model; this agrees with Helland (2001).

3.2 Soft Independent M odelling of Class Analo­

gies

Soft Independent Modelling of Class Analogies (SIMCA) was developed by Wold 

(1976). The underlying concept is to model each class separately using Principal 

Components (PCs). A different number of components may be selected for each 

class. In order to classify a new observation one of two approaches is then taken:

1. Find the M ahalanobis distance of the new observation to each of the existing 

classes and place the observation into the “closest” class. Using this method, 

the probabilities of an observation belonging to each of the groups can be 

easily calculated.

2. Create a set around each class developed in the training set. If the new ob­

servation falls within these sets, it is then classified as belonging to this class. 

This m ethod can result in observations being classified into multiple classes, 

a single class or no classes a t all and is quite a common approach used in the 

chemometrics literature.

More specifically: considering discriminant analysis to use the function

dg>(x) =  mm [{x -  Xg)'T,~'^{x -  Xg) +  log |Sg| -  2 log tt^]

where Xg is the mean (vector) of the variables associated with group g, Eg is the 

covariance m atrix corresponding to group g and is the (prior) probability of an 

observation belonging to group g. As Eg is a positive semi definite matrix, it has 

the spectral decomposition:
V

j = i
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where \ jg is the oigenvahie (in descending order) of Eg and ejg is the corre­

sponding eigenvector.

If Sp is positive definite all of the A’s will be greater than  0 thus can be 

written as

j=i

SIMCA instead uses

dg.{x) =  rnm [(.x -  Xg)'E;^(Cg)(x -  Xg)]

where
E P f

  +  l 39

Z ^ j= C g  + l '^39

For g =  1 , . . . ,  G the number of principal components, Cg, is estim ated using F  

fold cross validation as outlined by (Wold, 1976,Section 2.2.1) The cross validation 

algorithm to implement this minimization procedure is:

• For each group g — 1 , . . . ,  G:

• S te p  1: Create the relevant subm atrix Xg  containing observations in the 

training data th a t belong to group g.

•  S te p  2: Cross validation (within each group g)\ For /  =  1 , . . .  F

• S tep  3: W ithhold observations in group g th a t belong to fold /  to create X ~ , 

a m atrix with p  variables and n “ observations. The withheld observations 

are denoted as

• S te p  4: Find the variable means of X~ :  X ~ .

• S tep  5: Find the singular value decomposition 

where a =  n “ — 1 if n “ <  p or a =  p if n~ > p.

• S te p  6; (Jg is the normalised score matrix, Vg the loading m atrix and is 

a diagonal m atrix containing the singular values ordered so th a t Aig > \ 2g >

■ ■ ■ >  ^a g-

x„
n„ xa
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• S te p  7: For r  =  1 , . . . ,  a find Tg = — X ^ )  Vg (using the first r cohunns

• S te p  8 : For each r  find the sum of squares of the residuals contained in each 

of the matrices Eg's,

• S te p  9: If /  <  F , let /  =  /  +  1 and return to step 3.

number of components to include for group g, call this Cg.

• S te p  11: If (/ < G, let g = g + 1 and return to step 2.

• S te p  12: Now, for each group g the number of components Cg to include in 

the model had been decided.

In methods where cross validation is designed to maximise classification perfor­

mance it has a tcndcncy to over-estimate out of sample classification performance. 

The selection criterion for the number of principal components to use for each group 

does not lend itself easily to use with Information C riteria (such as BIC). Thus mod­

els developed using the SIMCA method are not easily compared to other commonly 

used methods for near infrared spectroscopic data.

SIMCA effectively partitions the subspace. In the i)rimary sul)spac(; (first Cg 

eigenvalues and eigenvectors) it assumes tha t the eigenvalues of each group are 

infinitely large so th a t l / \ j g  = 0. In the complement of this space (of dimension 

p — Cg), the eigenvalues are estim ated by:

Although designed for large p small n problems one of the disadvantages of the 

SIMCA method is th a t it requires enough observations belonging to every group to 

be included in the training data  in order to use cross validation to select the number 

of principal components for each group. Therefore it is not suitable as a method 

where there are a large number of groups relative to the number of observations in 

the training data.

p x r

of Vg) and hence find the value predicted object X g ^  = X ^  + Tg . Find

n j  x r  r x p

the associated residuals Eg = X^ — X g ^ .

• S te p  10: Choose the r th a t minimises Dr = determine the

p
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When using a set to determine group membership rather than  the relative prob­

abilities of belonging to each group, many observations may not be classified at all. 

While placing an observation into multiple classes indicates uncertainty, but still 

partially informs on the decision process, failing to place an observation into any 

group does not advance the knowledge about the sample. Assigning group mem­

bership based on relative probabilities avoids this problem, but this also looses the 

uniqueness of SIMCA as a method. The tendency of SIMCA to classify observa­

tions as outliers, thus not belonging to any group is examined for NIR spectra by 

De Maesschalck et al. (1999).

Frank and Fiiedrnan (1989) proposes an amendment to this scheme Discrim­

inant Analysis with Shrunken COvariances (DASCO), however this is not widely 

used in the chemometrics literature, thus not used as one of the reference methods 

within this thesis.

3.3 Likelihood B ased Statistica l Inference

Likelihood based statistical inference is based on the premise th a t everything tha t 

can be learned about the param eters from the data  is contained in the likelihood 

function.

Suppose there is a sample X i , X 2 , .  ■ ■, Xn where each observation is independently 

generated from a distribution. The density of the observation can be written 

as J { x j \ 0 ) .

The (joint) density of the whole sample is;

n

./(XnK̂ ) = . f { Xi , X2 - , . . . , Xn \ 0 )  =  J|/(.Tj|6')
j=l

The joint density is called the likelihood function. The joint density of the data, 

without the condition of independence is a likelihood function, w ritten as:

L(0|x„) =  /(x„|6>)

with unknown param eters 0.  f  is a function describing the generating process of 

the data, with param eters 9.

24



M axim um  Likelihood Estim ate (MLE)

Let L(0|x„) be the likeUhood function (defined for 9 € 0 ). A maximum hkehhood 

estimate is any vahie ^ € 0  for which L(^|x„) < L(^|x„) for all 9 E 0 .

However, it is often easier to maximise the log-likelihood function /(6^1x„) : = 

logL(0|x„). As log is an increasing function so x > y logx > logy for x,y > 0. 

Thus an alternative expression for the MLE is Z(0|x„) > /(0|x„) V 9 G 0 . Suppose 

that the log-likelihood function /(0|x„) is a smooth function of 9. To maximise the 

likelihood, differentiate the log-likelihood and solve for 9.

EM A lgorithm

The Expectation Maximization (EM) algorithm (Dempster et al., 1977) was devel­

oped as an iterative approach of calculating maximum likelihood estimates when 

the observed data could be considered to be incomplete. This incompleteness can 

be introduced in order to simplify other calculations, or the unknown labels in a 

clfissification problem can be considered as the missing data.

Given a joint distribution f {x ,  z\9) where x  are observed variables, ^ are unob­

served variables and 9 are parameters. The goal of the EM algorithm is to maximise 

the likelihood function f{x\9)  with respect to 9.

Let i =  0. Select a starting value for 9, 9^^\

Repeat

1. Estep: Evaluate f{z\x,9^*'^).

2. M step: Find =  max  ̂Q(^|0W),

where Q{9\9^^^) =  f {z \x ,  9̂ *' )̂ log f { x ,  z\9^ '̂>)dz.

3. t =  i 1.

Until convergence.

The EM algorithm is relatively stable and simple to use as the Q function is

typically much simpler to maximise than f{x\6).  However, it is not guaranteed to

reach a global maximum and is only linearly convergent.
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3.4 M odel-based D iscrim inant A nalysis

Model-based discriminant analysis enables a better understanding of the generating 

proccss that discriminates between the different groups. It focuses on parameter 

estimation, finding a set of parameters that describe the source(s) of separation 

between groups.

In model-based discriminant analysis (also known as eigenvalue discriminant 

analysis) (Bensmail and Celeux, 1996), the model is fitted to data w„ where n =  

1 , 2 , . . . ,  and labels 1„ where Ing =  1 if observation n belongs to group g and 0 

otherwise.

The resulting likelihood function is

N  G

>Cdi„c(Pl, P2, • • • , PG; 6'l, ^2, • • • , ^g|w , 1) =  ] ^  [Pgfi^n\ftg)]‘"̂  ■ (3.1)
n=lg=l

The log of the likelihood function (3.1) is maximized yielding parameter estimates 

Pi) P2 i ■ ■ ■ i Pg and 0iJ)2, . . . ,  Oq . For stabihty, equal probabilities, f>\ =  ■■■= Pa =  

1/G , are sometimes assumed.

The posterior probability of group membership for an observation y  whose label 

is unknown can be estim ated as

P a f { y \ ^ 9 i 

EJLi P<?/(y|^g)
P(Group g\y)  «  . (3.2)

Assuming the density /  to be a multivariate Gaussian density, (f), with mean fj.g 

and covariance matrix Eg

, , I ^   ̂ e x p { - |(w „ . -  /ig )^ E ;n w „  -  fig)}

=  Tsmr) ■

The multivariate Gaussian densities imply that the groups are centred at the means 

fig with shape, orientation and volume of the scatter of observations within the 

group depending on the covariance matrices Eg.

The parameters p  and fi can then be estimated by:

I

p { M )  ^  '"g if estimated

V -viV  1 

- (fc+1) , 2 ^ n = l  ^ n g ' ^ n

T  Ing
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The Eg can be decomposed using an eigen decomposition into form,

= (3.3)

where Xg is a constant of proportionahty, Dg an orthogonal matrix of eigenvectors 

and Ag is a diagonal matrix where the elements are proportional to the eigenvalues 

as described by Fraley and Raftery (2002).

The estimates of Eg depend on the constraints placed on the eigenvalue decom­

position; details of the calculations are given by Bensmail and Celeux (1996) and 

Celeux and Govaert (1995).

The parameters Xg, Ag  and Dg have interpretations in terms of volume, shape 

and orientation of the scatter of the component. The parameter Xg controls the 

volume while the matrices Ag and Dg control the shape of the scatter and the 

orientation respectively. Constraining the parameters to be equal across groups 

gives great modelling flexibility. Some of the options for constraining the covariance 

parameters are given in Table 3.1 and are illustrated for the three group case by 

Figure 3.1.

T ab le  3.1: Parametrizations of the covariance matrix Eg

M odel ID D ecom position V olum e S hape O rien ta tio n

Eli Eg =  A / Equal Identity Identity

Vll M II Variable Identity Identity

EEI Eg =  A.4 Equal Equal Identity

VEI Eg =  Ag.4 Variable Equal Identity

EVI Eg =  A^lg Equal Variable Identity

VVI Variable Variable Identity

EEE Eg =  XDAD~^ Equal Equal Equal

EEV Eg = X D g A D ^ Equal Equal Variable

VEV Variable Equal Variable

VVV ^9 ~  ^ g^ g^ g^ J Variable Variable Variable

The letters in Model ID denote the volume, shape and orientation respectively. 

For example, EEV represents equal vohune and shape with variable orientation. Eli 

and VII represent spherically shaped groups.
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Fig. 3.1 : Possible combinations of volume, shape and orientation for 3 covariance 

matrices

Model-bcised discriminant analysis is fitted to observations Wi, W2 , . . . ,  Wtv by 

maximizing the likehhood (3.1) using the EM algorithm (Dempster et al., 1977). 

The resulting output from the EM algorithm includes estimates of the probability of 

group membership for each observation; these can be used to cluster the observations 

into their most probable groups.

The m clust (Fraley and Raftery, 2007, 2002, 1999, 1998; Banfield and Raftery, 

1993) package for R (R Development Core Team, 2007) can be used to perform 

the model-based discriminant analysis. This allows for the possibility of the models 

mentioned in Table 3.1. It is worth noting that Linear Discriminant Analysis (LDA) 

and Quadratic Discriminant Analysis (QDA) are special cases of model-based dis­

criminant analysis and they correspond to the EEE and VVV models respectively.

3.4.1 Updating

Model-based discriminant analysis as developed in Bensmail and Celeux (1996) only 

uses the observations with known group membership in the model fitting procedure. 

Once the model is fitted, the observations with unknown group labels can be clas­

sified into their most probable groups.

An alternative approach is to model both the labelled data (w,l) and the unla­

belled data y and to maximize the resulting log-likelihood for the combined model. 

The mixture model assumes that observations come from one of G groups, that
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observations w ithin each group g  are modelled by a  density  f { - \ 9g )  where 9g are 

unknow n param eters and th a t  th e  probability  of com ing from group g  is pg.

Given unlabelled d a ta  y  w ith independent observations y i , . . .  , Y m , a  m ixture 

m odel w ith  C  groups has a  likelihood function

M G

H Y . ^ 3 f i y m \ 0 g ) -  (3.4)
m = l  g= l

M axim ising equation (3.4) using the  EM algorithm  (D em pster et al., 1977) is the 

basis of m odel-based clustering (Fraley and Raftery, 2002) and is easily im plem ented 

in th e  m c lu s t  library  (Fraley and R aftery, 2007).

T he likelihood function for the  combined d a ta  is a  p roduct of the  likelihood func­

tions given in equations (3.1) and (3.4). This classification approach was developed 

in D ean et al. (2006) and was dem onstrated  to  give improved classification perfor­

m ance over the classical m odel-based discrim inant analysis in some food au then tic ity  

applications, using the  NIR m eats data .

W ith  th is m odelling approach the likelihood function is of the  form

^ u p d a t e  ( ?^ ) 6 '|w ,l,y )  =  £rti,,(/j,6i|w ,l)£.„i,(p,(9|y)
N  G

nri[?'s./'(w„i6'p)]'"«
n = \g = l

M Gn ̂ P 9 . f g i y m \ 9 g
_m=\ g= \

. (3.5)

The log of the  likelihood (3.5) is m aximized using the  EM algorithm  to  find esti­

m ates for p  (if estim ated) and 6. O u tp u t from the  EM algorithm  includes estim ates 

of the  probability  of group m em bership for the  unlabelled observations y , as given 

in equation (3.2). In a practical setting , tes t set d a ta  are the  unlabelled observations 

while tra in ing  d a ta  are labelled observations.

T he EM  algorithm  for m axim izing the  log of the  likelihood (3.5) proceeds ite r­

atively su b stitu tin g  the  unknow n labels w ith their estim ated  expected values. At 

each ite ration  the  estim ated  labels are updated  and new param eter estim ates are 

produced. By passing the  estim ated  values of the  unknow n labels into the  EM algo­

rithm  it is possible to  “u p d a te” the  classification results w ith some of the  knowledge 

gained from  fitting  the  model to  all of the  data . W ith  small tra in ing  sets updating  

has been shown to be beneficial in o ther studies D ean et al. (2006), thus the per­

form ance of updating  techniques were also included for evaluation over o ther NIR 

datasets.
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Updating techniques are especially useful when unlabelled observations can pro­

vide useful information about separation betw'een groups. Figure 3.2 illustrates how 

the am ount of information from an unlabelled observation can vary depending on 

the separation between the group means. The information provided by unlabelled 

observations decreases as the group means move closer together. Thus in Figure 3.2 

points X, y and z are in the same positions, but the am ount of information they 

provide about the groups varies according to  the separation between groups.
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Fig. 3.2 : Means Separated by: 4 Standard Deviations 3.2(a), 2 Standard Deviations 

3.2(b) and 1 Standard Deviation 3.2(c)

3.4.2 Im plem enting the EM A lgorithm

The EM algorithm (Dempster et al., 1977) is ideally suited to the problem of maxi­

mizing the log-likelihood function w'hen some of the da ta  have unknowui group labels; 

this arises in the model-based clustering likelihood (3.4) and the model-based dis­

crim inant analysis with updating likelihood (3.5). In this section, the steps involved 

in the EM algorithm for model-based discriminant analysis with updating are illus­

trated; the model-based clustering steps are shown in Fraley and Raftery (2002).

Considering data  to be classified as consisting of M  m ultivariate observations 

consisting of two parts: known, and unknown z^- In this context the spectro­

scopic data, which are observed and thus known, are treated  as the y^- The labels 

(pure or adulterated) are unknown and thus are treated as the Zm- Additionally, 

N  labelled observations are available, which consist of two parts: known and 

known labels 1„.
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The unobserved portion of the data, is a m atrix of indicator functions, so that

Z m  =  ( Z m i , - - - ,  Z m c ) ,  wherc Zmg  =  1 if y™ is from group g and -mg 0 otherwise.

Then the observed data  hkehhood can be w ritten in the form

In , yA/) — YlYliPgfî nlOg)]̂ "̂
n = l g = l

' M Gn ' ^V9f 9 i yrn \ 0g)
, m = l  g = \

and the complete da ta  likelihood is

N G

(p> ^ I , Ijv, Vm  , z a/ ) = YlYl[Pgfî n\dg)f̂ ^
_n = l  p = l

M  G 

_ m = l  g ~ l

Zmg

(3.6)

Initial estim ates of p  (if estimated) and 9 =  {fi, E) are taken from classical model- 

based discriminant analysis, by maximizing (3.1).

The expected value of the unknown labels are calculated so tha t

Pi^^f{ym\dg''^)?(fe+l)^mg (3.7)

for =  1 , . . . ,  G and m =  1 , . . . ,  M  and the param eters p and 0 =  (//,, S) can then 

be estim ated by:

Z ^ n = l  ^ n g - r  Z ^ m z = l  ^ r t i g

N + M

2 ^ n = l  y m

if estim ated

M .(k+1)

The estim ates of again depend on the constraints placed on the eigenvalue de­

composition, details of the calculations are given in Bensmail and Celeux (1996); 

Celeux and Govaert (1995).

The iterative process continues until convergence is achieved. The use of an 

Aitken acceleration-based convergence criterion is discussed in Dean et al. (2006).

U pdating can take two forms -  soft and hard updating. In the case of soft 

updating (EM), updates of the missing labels are made using equation (3.7), so the 

unknown labels are replaced by probabilities rather than  by 0 or 1 values. Whereas, 

hard updating (GEM) replaces the probabilities given in equation (3.7) with an 

indicator vector of the most probable group. The hard classification algorithm does 

not maximize equation (3.5) but actually tries to maximize equation (3.6) (although 

local maxima are a possibility). Local maxima are possible with both hard and soft 

updating, but more likely with hard updating. Using multiple random restarts of 

the algorithm is a common approach to compensate for this.
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3.5 D im ension  R eduction  Techniques

Each NIR spectra examined contains at least 700 wavelengths with adjacent absorp­

tion values being highly correlated. Therefore before using model-based classification 

methods, a dimension reduction step is required this avoids singular covariance 

matrices, improves com putational efficiency and increases statistical modelling pos­

sibilities.

There are two main approaches to dimension reduction for NIR, da ta  aim to 

approximate the entire spectrum  using fewer variables, accomplished using wavelet 

analysis, or to select suitable wavelengths, either before using the model-based clas­

sification methods or as part of the classification process.

3.5.1 W avelet A nalysis

Wavelet analysis is a technique cormnonly used in image and signal processing in 

order to compress data. Here, it is used to decompose each NIR spectrum  into a 

serins of wavelet coeflicieiits. W ithout any thresholding of these coefficients, the 

original spectra can be exactly reconstructed from the coefficients. However, many 

of the coefficients in the wavelet analysis are zero or close to zero. By thresholding 

the coefficients tha t are zero or close to zero, it is possible to  dram atically reduce 

the dimensionality of the dataset. The resulting recomposed spectra are then ap­

proximations of each of the individual spectra. Ogden (1997) gives a good practical 

introduction to wavelet analysis.

Haar (1910) (a translation of which can be found in Heil and Walrmt (2006)) 

wavelets (Figure 3.3(a)) were considered, mainly because of their simplicity of form 

but as Daubechies (1988) wavelet (Figure 3.3(b)) was used very effectively as a di­

mension reduction tool before Model Based Discriminant Analysis with applications 

to NIR data  by Dean et al. (2006), it was natural to use it again in order to assess 

the relative robustness of the technicjue to different datasets.

Daubechies’ wavelet is a consistently reliable type to use and is the default within 

w avethresh (Nason et al., 2006). Figure 3.4 illustrates how Daubechies’ wavelet cap­

tures more of the structure of the NIR spectra than the Haar wavelet. To efficiently 

carry out wavelet analysis, the da ta  dimension should be of the order 2*'', where
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F ig . 3.3; Wavelet functions. Figure 3.3(a) is the Haar wavelet ; Figure 3.3(b) is the 

Daubechies’ wavelet.

k is an integer. Unfortunately, this can result in quite a lot of information being 

set aside. Techniques of extending the data  to bring them  up to the nearest 2*̂ 

are available, but in this case these methods result in problems when carrying out 

the model-based discriminant analysis -  the associated variance structures are often 

singular.

Over the range 400 nm -  2498 nm, this means th a t just 1050 — 2̂ '* =  26 wave­

lengths are dropped, which considering tha t spectral noise levels recorded by the 

scanning monochromator are seen to increase at extremes of the wavelength range 

studied is not an issue to be overly concerned about. However w'hen only the range 

1100 nm -  2498 nm is available, then only the central 2® =  512 wavelengths are 

chosen -  the range 1290 nm -  2312 nm.

While the goal is to reduce the dimensionality of the data, it is desirable tha t 

this reduction be achieved in a structured way, rather than  by using an ad-hoc rule 

of the central 2^ points. Trying to determine the optim al window of the da ta  to use 

would prove too com putationally expensive and would require com putation for each 

dataset.

As a default procedure, universal hard thresholding is used. When using univer­

sal thresholding, the threshold A =  a y/'Ilog  2*̂ , where rr is a robust estim ate of the 

standard  deviation of the coefficients and there are 2^ coefficients. O ther thresh-
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Haar wavelet Daubechies’ wavelet N=2, extremal phase family
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olding techniques may sometimes provide better approximations of the spectra but 

their use adds another decision into the process that may lead to over fitting rather 

than a general procedure.

Figure 3.4(a) illustrates the difference between the original NIR spectra of a pure 

honey sample alongside that of the reconstructed, post universal hard thresholding 

spectra, which is represented by 14 non-zero coefficients for Daubechies’ wavelets and 

12 non-zero coefficients for Haar wavelets. Figure 3.4(b) illustrates the difference 

between the original NIR spectra of a pure olive oil sample alongside that of the 

reconstructed, post universal hard thresholding spectra, which is represented by 17 

non-zero coefficients for Daubechies' wavelets and 14 non-zero coefficients for Haar 

wavelets.
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Fig. 3.4: Comparison of actual and reconstructed, universal hard thresholded honey 

spectra (Figure 3.4(a)) and olive oils spectra (Figure 3.4(b)) using both Daubechies’ 

and Haar wavelets.

3.5.2 W avelength Selection  M ethods

Wavelet thresholding is a dimension reduction technique that can summarise the 

entire spectra, or at least a significant proportion of it. An alternative approach 

is to use methods of selecting suitable individual wavelengths before undertaking 

model-based classification techniques. Prior to using such classification techniques.
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3 types of wavelength selection were examined, as suggested by Indahl et al. (1999). 

Assuming

variable for group membership for observation i belonging to group g and Xj is the 

observation of X.  Then the between groups covariance matrix B is

G

9 = 1

and the within groups covariance matrix W  is

G N

9 = 1  j  =  i

Strategy 1: Betw een to  W ithin Group Variances

Examine the univariate ratios of B to IV" to obtain what is called the scatter curve 

by Indahl et al. (1999). If B and II' have been calculated as p x p matrices, then 

the diagonals of these matrices correspond to the imivariate values. Find the local 

maxima of this curve and use these wavelengths in the further calculations.

Strategy 2: Betw een and W ithin Group Variances

Estimate the variance curve by taking the diagonal of the matrix {B + \ V ) / N . Again 

find the local maxima of the resultant curve and use those wavelengths in the further 

calculations.

Strategy 3: Com bining Strategies 1 and 2

Combine the wavelengths selected by strategies 1 and 2 in order to gain a more 

balanced representation of how the spectra vary -  both in total and between groups.

Using local maxima in the curves is suitable when adjacent variables are highly 

correlated as is the case with NIR spectra. Figure 3.5 illustrates the wavelengths 

selected by these methods for the honey data. Strategy 1 selects 1102, 1216, 1702, 

1792, 1922, 2454 and 2498 nm more than 75% of the time, while the second strategy 

selects 1100, 1104, 1580, 1666, 1834, 2170 and 2498 nm more than 75% of the time.

;V

where Ug is the number of observations in group g (X ]^i -gj) Zgj is an indicator
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Using these strategies as a dimension reduction technique is most effective with 2 

group type problems (i.e pure versus adulterated).
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Fig. 3.5; Proportions of times wavelengths are selected using betw'een and within 

group variances on honey spectra. The total height represents the proportion of 

times a wavelength was selected using strategy 3, the black represents wavelengths 

selected by strategy 1 and red represents those selected by strategy 2.

3.6 M odel Selection  Techniques

Cross validation and the Bayesian Information Criterion (BIC) were both used as 

model selection criteria.

The BIC penalizes models based on their complexity. Thus models that are 

considered to be too complex are rejected. Such a criterion is required to ensure 

that the same decision process is used for both models for each simulation, rather 

than a decision based on the subjective judgement of an analyst, in order to make 

a simulation study feasible.

5-fold cross validation was chosen as the cross validation selection method, with 

the cross vahdation being performed on the training data and then performance 

evaluated on the test data. It is also possible to choose models based on leave-one- 

out cross validation, but this is computationally expensive.

The ccrtainty of the classification decisions arc measured using Brier’s score 

(1950).
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Brier’s score and the percentage error measure largely the same thing with the 

percentage error equal to the Brier’s score if all the probabilities are turned into 

hard classifications. Therefore the difference between the two is a measure of the 

uncertainty associated with each prediction. If the Brier’s score is larger than the 

percentage error, this indicates that the errors made were associated with relatively 

certain probabilities or that most of the observations that were correctly classified 

had a relatively low probability of belonging to that group. On the other hand, if 

the Brier’s score is smaller than the percentage error, this indicates that the errors 

made were associated with the relatively uncertain probabilities. Therefore, having 

a Brier’s score smaller than the percentage error is a positive situation.

3.6.1 Bayesian Inform ation C riterion (BIC )

The results given are models selected using the Bayesian Information Criterion 

(BIC), where the BIC of a function is

BIC =  21oglikelihood -  dlog{N*),

given that d is the number of parameters and N* is the total number of observations 

used in fitting the model. Thus for discriminant analysis (without updating) and 

partial least squares regression (PLSR) N* = N  and for updating discriminant 

analysis methods (EM and CEM) N* = N  + M .

3.6.2 F fold cross validation

The number of folds, F,  is decided upon. Deciding on the number of folds is a bias 

variance trade off, as described by Hastie et al. (2001, p214-p217), but it can also 

be dependent on the size of the dataset and the relative sizes of each group within 

the dataset. After the data has been divided into training and test sets the training 

set is then randomly split into F  subsets where the number of observations in each 

subset is not fixed. Each of these subsets is then treated in turn as a test set 

withheld from calculations so that an estimate of out-of-sample performance can be 

obtained. The average performance across the subsets is then used to select which 

of the models under examination should be used on the test set data.
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3.6.3 B rier’s Score

Brier (1950) developed a m ethod of producing a continuous performance measure 

where perfect prediction gives a Brier’s score of zero. Given G  groups and N  samples 

and forecasted probabilities , . . . ,  5„g for sample n  of belonging to group 1 , . . . ,  G 

respectively then the B rier’s score, B, is

where Ztmcgn indicator variable for the actual group membership. It is especially 

useful for determining the certainty of predictions. Some observations may be just 

barely put into the correct group, or indeed just miss out on correct classification. 

Observations th a t are barely classified correctly will add more to the Brier’s score 

than those where a more certain classification is made.

A trait of PLSR is th a t some regression outputs may in fact be beyond the zero- 

one scale. For the purposes of calculating a pseudo-Brier score, such results were 

set to be equal to either zero or one so th a t these certain classifications do not add 

to the total.

3.7 Perform ance C om parison

In order to compare the performance of PLSR with and w ithout a Savitzky-Golay 

filter (Savitzky and Golay, 1964) using both BIG and 5 fold cross validation, and 

model-based discriminant analysis, using the wavelength selection m ethods described 

in Section 3.5.2, 100 splits of the both the honey NIR data  and the olive oil NIR 

data  into training and test data  was performed, so th a t the training to test ratios 

were: 50%:50%, 25%:75%, 10%:90%.

Savitzky-Golay filter

The Savitzky-Golay filter is a polynomial smoother th a t can also be used to  differ­

entiate curves. It was designed with the aim of reducing the signal-to-noise ratio 

of a spectrum. It assumes tha t curves formed by graphing the points are essen­

tially smooth. While a moving average process only considers points “previous” on 

the measurement process, the Savitzky-Golay filter uses points on both sides of the

s=i n=l
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point under consideration, weighting these points in a symmetric fashion. The orig­

inal paper (Savitzky and Golay, 1964) calculated the weightings for neighbouring 

points, bu t contained numerical errors, most of which were corrected by Steinier 

et al. (1972). M adden (1978) outlines how such numerical errors may be detected 

and provides a correction to one of the values given by Steinier et al. (1972). The 

Savitzky-Golay filter is commonly used in the spectroscopy field and was included 

for completeness.

3.7.1 PL SR

Using the Bayesian Information Criterion, up to a maximum of 40 components were 

considered for the model, when using 5 fold cross validation, up to a maximum of 

20 components were considered.

As partial least squares regression was designed to be used with cross validation, 

it is unsurprising th a t the 5 fold cross validation is more effective when there are 

many observations in the training data  (>  100 so th a t the expected number of obser­

vations in a fold is a t least 20). However, once the number of observations available 

for inclusion in the training set is reduced, the advantages of using BIG as a model 

selection method, both in terms of its stability and its classification performance are 

evident in Tables 3.2 and 3.7. Due to the smaller number of observations in the olive 

oil dataset, the effectiveness of using BIG as a complexity criterion to determine the 

number of components rather than using cross validation is evident even at the 50% 

training and 50% test splits.

In Table 3.7 the extra robustness of using a m ethod where all the training data 

are examined a t once is evident when the training da ta  sample size is small (10% in 

the training da ta  set). 5 fold cross validation is unfeasible when there are a total of 

only 14 samples in the training data.

3.7.2 M odel Based M ethods

Gomparing the model based classification techniques using the four different meth­

ods of dimension reduction discussed in Section 3.5. Tables 3.3, 3.4, 3.5 and 3.6 

show the classification performance in term s of percentage error and Brier’s scores, 

using both  the BIG and five fold cross validation as model selection methods for the
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honey data (Section 2.2.1) and the ohve oil data  (Section 2.2.3).

These illustrate th a t updating techniques can improve classification performance, 

especially when the sample size in the training set is small, if the original model 

assumptions are correct. However, if these assumptions are incorrect, updating ex­

acerbates any problems, even causing a substantial disimprovement in classification 

performance as is evident in the 10%/90% split of the honey d a ta  in Table 3.3.

The effectiveness of the various dimension reduction techniques depend largely 

on the nature of the data. To carry out wavelet thresholding on the honey data, 

a large number of wavelengths had to be dropped. However, there are sufficiently 

many observations in each group so tha t, even when only 10% of the da ta  was 

included in the training set, the sets were large enough to accurately determine 

appropriate wavelengths. For the olive oil data, the opposite was true only a 

few wavelengths had to  be dropped in advance of wavelet thresholding, bu t the 

smaller number of observations had an impact on the effectiveness of the methods 

of w'avelength selection.

Cross validation using wavelet thresholding is effective on the olive oil data, 

even at the 10% training data  level. However, the dimension reduction techniques 

tha t require information about the labels are more unstable -  the potential for a 

very unrepresentative sample is much higher and the folds do not contain enough 

information to be useful.

Another issue arises in the implementation of cross validation with the wave­

length selection methods. Each fold selects a different set of wavelengths, thus 

selecting the “best” model in term s of the covariance structure is unstable.
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Table 3.2: Comparing the classification performance of PLSR with and without 

Savitzky Golay filter, using both BIG and cross validation at various training/test 

splits of the NIR honey data, using both the error rate and the Brier’s score

Honey BIG 5 fold GV

% Error Brier % Error Brier

50%/ SG 13.490 (2.119) 10.279 (1.419) 4.092 (1.310) 3.938 (0.489)

50% None 10.540 (1.806) 8.167 (1.077) 4.690 (1.421) 4.450 (0.769)

25%/ SG 9.916 (2.058) 7.995 (1.180) 5.120 (1.603) 4.830 (0.943)

75% None 9.212 (1.872) 7.366 (1.154) 6.593 (1.642) 6.034 (1.105)

10%/ SG 8.640 (2.379) 7.360 (1.724) 9.738 (4.697) 8.382 (3.078)

90% None 11.110 (3.066) 9.081 (2.175) 11.980 (4.069) 10.011 (2.773)
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Table 3.3: Comparing the classiiicatiou performance of model-based discriminant analysis using the 3 strategies of wavelength selection 

given in Section 3.5.2 and Wavelet Thresholding on the NIR honey data, using both the error rate and the Brier's score and using BIC 

as the model selection method.

BIC Honey No Updating EM CEM

% Error Bi ier % Error Brier % Error Brier

Wavelets 6.218 (1.340) 5.110 (1.104) 6.732 (1.629) 5.822 (1.502) 6.238 (1.159) 5.356 (1.024)

50%/ B j W 7.063 (1.889) 5.474 (1.317) 8.749 (4.066) 7.181 (3.217) 7.059 (1.841) 6.070 (1.606)

50% B + W 6.531 (1.469) 5.206 (1.216) 7.439 (3.261) 6.471 (2.905) 6.335 (1.894) 5.644 (1.807)

B / W , B  + VI/ 5.184 (1.254) 4.342 (1.175) 5.828 (1.389) 5.517 (1.352) 5.552 (1.379) 5.268 (1.339)

Wavelets 7.513 (1.476) 6.257 (1.320) 11.487 (8.601) 10.353 (8.022) 7.543 (1.890) 6.798 (1.876)

25%/ B / W 7.830 (1.957) 6.214 (1.588) 20.660 (14.968) 18.891 (14.799) 9.919 (7.690) 8.962 (7.625)

75% B + W 7.535 (1.501) 6.243 (1.323) 21.075 (14.199) 20.248 (14.175) 9.662 (5.828) 9.153 (5.776)

B / W , B  + VK 6.189 (1.460) 5.461 (1.422) 8.955 (8.520) 8.845 (8.514) 6.504 (1.071) 6.331 (1.070)

Wavelets 10.972 (4.348) 9.793 (4.544) 33.824 (20.853) 32.970 (20.925) 17.413 (17.397) 16.848 (17.322)

10%/ B / W 10.993 (4.104) 9.745 (4.194) 31.587 (19.413) 30.771 (19.483) 15.246 (13.289) 14.506 (13.416)

90% B + W 13.107 (4.705) 12.162 (4.728) 17.366 (12.634) 16.762 (12.512) 10.135 (4.261) 9.623 (4.094)

B / W , B + W 17.545 (6.716) 16.846 (6.588) 7.835 (2.826) 7.755 (2.709) 8.812 (4.294) 8.491 (3.908)



Table 3.4: Comparing the classification performance of model-based discriminant analysis using the 3 strategies of wavelength selection 

given in Section 3.5.2 and Wavelet Thresholding on the NIR honey data, using both the error rate and the Brier’s score and using 5 fold 

cross validation as the model selection method.

CV Honey No Updating 

% Error Brier

EM

% Error Brier

CEM

% Error Brier

Wavelets 6.444 (1.396) 5.298 (1.010) 6.870 1.429) 5.933 (1.278) 6.695 (1.355) 5.838 (1.276)

50%/ B / W 8.577 (1.892) 6.448 (1.017) 10.268 1.900) 7.694 (1.216) 9.870 (2.102) 7.644 (1.469)

50% B + W 8.088 (1.918) 6.195 (1.407) 9.372 2.136) 7.406 (1.722) 9.054 (2.228) 7.362 (1.769)

B/IV,B + ly 6.741 (1.547) 5.444 (1.166) 7.732 1.593) 6.654 (1.430) 7.381 (1.710) 6.460 (1.513)

Wavelets 7.595 (1.357) 6.331 (1.238) 7.785 1.250) 6.997 (1.191) 7.626 (1.175) 6.843 (1.157)

25%/ B / W 9.846 (1.819) 7.568 (1.447) 12.179 1.951) 9.544 (1.656) 11.749 (1.870) 9.607 (1.678)

75% B + W 9.489 (2.358) 7.393 (1.725) 11.162 4.620) 9.461 (4.740) 10.196 (2.079) 8.783 (1.751)

B / W , B  + 7.944 (1.601) 6.643 (1.276) 8.310 1.768) 7.547 (1.526) 8.271 (1.237) 7.497 (1.085)

Wavelets 11.249 (4.093) 9.931 (3.767) 9.109 2.749) 8.517 (2.520) 8.691 (2.131) 8.049 (2.014)

10%/ B / W 12.693 (2.862) 10.367 (2.392) 14.688 5.633) 12.645 (6.118) 13.457 (2.938) 11.714 (2,615)

90% B + W 12.900 (3.187) 10.486 (2.318) 13.807 5.785) 12.282 (5.907) 12.326 (4.004) 11.047 (3.698)

B / W , B  + ly 11.928 (3.601) 10.429 (3.119) 9.316 3.782) 8.645 (3.629) 9,426 (3.763) 8.724 (3.600)



Table 3.5; Comparing the classification performance of model-based discriminant analysis using the 3 strategies of wavelength selection 

given in Section 3.5.2 and Wavelet Thresholding on the NIR olive oil data, using both the error rate and the Brier’s score.

BIG Ohve No Updating EM CEM

Oils % Error Brier % Error Bi ier % Error Brier

Wavelets 0 (0) 0.003 (0.026) 0 (0) 0 (0) 0 (0) 0 (0 )

50%/ B / W 0.551 (0.869) 0.497 (0.770) 0.464 (0.744) 0.448 (0.688) 0.478 (0.744) 0.444 (0.688)

50% B  +  14/- 0 (0) 2.2 X 10-9 (2.2 X 10-®) 0 (0) 0 (0 ) 0 (0 ) 0 (0 )

BjW^B  +  U" 0.145 (0.437) 0.149 (0.437) 0.145 (0.437) 0.145 (0.437) 0.145 (0.437) 0.145 (0.437)

Wavelets 20.433 (12.151) 20.400 (12.182) 3.962 (11.479) 3.913 (11.337) 1.692 (7.770) 1.694 (7.772)

25%/ B / W 4.490 (6.842) 4.327 (6.845) 0.5 (0.859) 0.496 (0.851) 0.875 (1.504) 0.749 (1.236)

75% B + W 1.125 (2.633) 1.118 (2.630) 0.106 (0 .625 ) 0.106 (0 .624 ) 0.375 (1.533) 0.333 (1.379)

B/VV,B + i r 18.375 (2.090) 17.876 (2.167) 5.971 (5.052) 5.937 (5.018) 12.952 (4.115) 11.779 (3.748)

Wavelets 27.440 (6.876) 25.929 (7.055) 5.064 (11.213) 4.903 (10.899) 17.632 (12.171) 15.766 (11.347)

10%/ B / W 21.376 (5.015) 20.108 (5.056) 4.296 (8 .765) 4.228 (8 .655 ) 10.160 (9.859) 9.085 (9.355)

90% B  + 14/' 19.720 (4.545) 19.118 (4.669) 5.416 (9.306) 5.364 (9.233) 11.616 (8.797) 10.604 (8.575)

B / W . B  + W 20.216 (4.638) 19.794 (4.652) 14.768 (7.662) 14.714 (7.651) 17.808 (5.941) 17.009 (5.973)



Table 3.6: Comparing the classification performance of model-based discriminant analysis using the 3 strategies of wavelength selection 

given in Section 3.5.2 and Wavelet Thresholding on the NIR olive oil data, using both the error rate and the Brier’s score.

CV Olive 

Oils

No Updating 

% Error Brier

EM

% Error Brier

CEM

% Error Brier

Wavelets 0.043 (0.248) 0.044 (0.240) 0.014 (0.145) 0.014 (0.145) 0.116 (0.395) 0.115 (0.390)

50%/ B / W 0.725 (1.278) 0.672 (1.185) 0.522 (0.811) 0.506 (0.793) 0.580 (0.988) 0.529 (0.860)

50% B + W 0 (0) 2.2 X 10“® (2.2 X 10-8) 0 (0) 0 (0) 0 (0) 0 (0)
B / W , B  + H/ 0.667 (3.086) 0.638 (2.924) 6.507 (11.071) 6.507 (11.071) 6.884 (11.751) 6.884 (11.751)

Wavelets 0.625 (2.580) 0.533 (2.086) 0 (0) 0 (0) 0 (0) 0 (0)
25%/ B / W 4.414 (6.725) 4.042 (6.154) 1.683 (4.566) 1.658 (4.495) 2.183 (4.901) 2.012 (4.749)

75% B + W 16.5 (5.636) 15.443 (5.348) 0.817 (4.117) 0.779 (3.901) 1.058 (4.144) 0.990 (3.960)

B / W , B  + W 19.183 (2.848) 18.364 (18.364) 7.087 (7.266) 7.055 (7.226) 13.990 (5.794) 12.884 (5.582)

Wavelets 0.226 (2.258) 0.209 (2.095) 0 (0) 0 (0) 0.121 (1.210) 0.103 (1.035)

10%/ B / W - - - - - - - - - - - -

90% B + W - - - - - - - - - - - -

B / W , B  + H/' - - - - - - - - - - - -



Table 3.7: Comparing the classification performance of PLSR with and without 

Savitzky Golay filter, using both BIG and cross validation at various training/test 

splits of the NIR olive oil data, using both the error rate and the Brier’s score

Olive

Oils

BIG

% Error Brier

5 fold GV 

% Error Brier

50%/ SG 0 (0 ) 0.517 (0 .168) 1.652 (1.397) 3.671 (1.219)

50% None 0.449 (0.674) 0.582 (0.432) 0.188 (0.815) 0.769 (0.899)

25%/ SG 0.010 (0 .096 ) 0.949 (0 .331 ) 1.990 (2.047) 4.009 (1.682)

75% None 0.231 (0.413) 0.695 (0.256) 16.596 (3.358) 11.442 (1.604)

10%/ SG 0.792 (1.258) 1.858 (0.820) - - - -

90% None 0.704 ( 1.257 ) 1.898 (1 .106) - - - -

3.8 C onclusions

When there are sufficient data available, using cross validation is a highly effective 

model selection technique. However, it relies on each of the folds in the training 

data being largely representative of the rest of the data. As the total number of 

samples available for the training data is decreased, the size of each of the folds 

also decreases, making it more likely that at least one group will not be represented 

in a given fold. As such, calculations become unstable and the process becomes 

infeasible.

To counteract this instability, the development and implementation of an alter­

native automatic model selection process for PLSR was required. Determining the 

effective number of parameters enabled BIG to be used as a method of selecting the 

number of components to include. BIG tended to select more components than cross 

validation without substantially effecting classification performance, indicating that 

the practice of selecting a low number of components to prevent over-fitting of the 

data may be too conservative.

The strength of using complexity criteria as a basis for model selection over cross 

validation becomes especially evident when using the olive oil data with 10% in the 

training set (14 samples). Most of the cross vahdation based methods completely
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fail at this point. While this is an extreme scenario, it is worth noting that using 

BIC with PLSR remains effective.

Using wavelet thresholding as a dimension reduction technique for the spectra 

requires no information about the labelling, thus is more robust than the methods 

tha t require labelling information. The extra stability of the dimension reduction 

process requiring no labelling information is apparent in Table 3.4, where the wavelet 

thresholding method of dimension reduction provides consistently better classifica­

tion results than methods requiring labelling information in order to select wave­

lengths and in Table 3.6 where the other methods are too unstable to provide results 

when the training data set is reduced to 10% of the overall data. If wavelet thresh­

olding is to become a conmion analysis technique the range of variables scanned 

v/ould have to increase from 1100 2498 nm to also include the colour spectrum

(400 2498 nm) so that less information would need to be discarded. If the number

of wavelengths available was routinely 1050, dropping the first and last 13 wave­

lengths removes a little of the border effect without loosing too much information. 

Continuing using wavelet thresholding with only the region 1100 2498 nm poten­

tially results in a loss of discriminatory regions of the spectrum in order to reduce 

the number of variables to 512 (2®).

Dean et al. (2006) showed updating methods to be highly effective using the 

NIR meats data. However, using updating methods with model based classification 

methods rely on the initial model assumptions to be correct. If such conditions are 

not completely satisfied, any problems in the modelling process are exacerbated by 

incorporating the extra available unlabelled observations. The model assumptions 

are sufficiently satisfied by the olive oil data -  where the updating methods (EM and 

CEM) consistently outperform the traditional methods. The support for updating 

on the honey data is not so clear as the updating methods only improve the classifi­

cation performance at the 10%/90% split using the combination of B/W, B + W for 

dimension reduction, but substantially disimprove classification performance with 

the other dimension reduction methods.

Using a hard classification rule at each iteration of the EM algorithm, as is the 

case with CEM, often results in faster convergence. Neither method consistently 

outperforms the other as shown by Tables (3.3, 3.4, 3.5 and 3.6). The hard updating
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approach of CEM tends to converge to a solution faster, but the soft updating 

approach is more consistent when using the Brier’s score as a performance metric 

in that it retains probabiUties throughout. Using soft updating (EM) uncertain 

classification decisions can be deferred until the algorithiu has converged to a solution 

rather than making the classification decision at an earlier point. This also can avoid 

the problem of an observation getting “stuck” in the wrong category at an early point 

of the algorithm.

Often the more important decision is whether to use any updating techniqiie 

rather than which updating approach to use.

Toher et al. (2007) use the honey data to compare the performance of the model- 

based methods, using wavelet thresholding as dimension reduction technique, to 

that of PLSR, on a series of more extreme scenarios. The random splits of the 

data are constrained to have the same number of pure and adulterated samples in 

training set of each random split, with the proportion of pure to adulterated samples 

varied so that the training sets are extremely unrepresentative of the entire data. It 

demonstrates that in such extreme situations, the updating models that rely more 

heavily on the model assumptions are more likely to fail, with the soft updating 

(EM) version of updating more problematic that the hard updating (CEM). Using 

BIC as a model selection technique for PLSR proves to be extremely consistent in 

its performance under the extreme situations for the honey data studied in Toher 

et al. (2007).
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Chapter 4

Group of Interest based  

Classification

4.1 G eneral C oncept

Group of Interest based classification is a variation of the general discriminant anal­

ysis techniques introduced in Chapter 3. It is m otivated by food authenticity ap­

plications, where the information available about groups is unbalanced. Trying to 

verify tha t a product is what it claims to be on the label means tha t it can be com­

pared to reference material matching the product claims, but what if the product is 

not what it is labelled to be? Rather than trying to identify exactly what a sample 

is, group of interest based classification focuses on the problem: is it what it claims 

to be or not? In such a situation the information available is unbalanced because 

while it is possible to obtain and examine fully samples th a t are what they claim to 

be, trying to account for all possible erroneous samples to the point a t which they 

could all be correctly classified would be impractical.

Treating different groups in an asynnnetric m anner is examined in the context 

of finding suitable projections of very high dimensional datasets for visualisation 

purposes by Hennig (2004).

Here the group of interest itself (what the product claims to be) is treated as a 

homogeneous group and is modelled as a Gaussian distribution. O ther observations 

are treated  in a different fashion. Considering the other observations to follow the
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distribution f o { x )

■̂ (x - +  P o f ^  (4.1)

other
group of interest

Dean and Raftery (2005) consider using a normal-uniform mixture model to 

represent differentially expressed and non-differentially expressed genes. Each gene 

is treated univariately, with no consideration given to the correlation between genes.

If the group of interest observations are distributed according to  f g { x )  and the 

other observations follow a f o { x )  distribution then an observation x  is classified as 

belonging to the group of interest if

/,(,) > (4.2)
Pg

and the expected values of the labels are

, -  IM  (4 3)
This then leads immediately to the concept of thresholding. Setting the threshold, 

t ( x )  to be an observation will be classified as belonging to  the group of

interest if f g ( x )  exceeds this threshold otherwise it will be classed as not belonging 

to the group of interest.

Two distribution types are considered to model the “other” observations: Poisson 

and a mixture of Gaussian distributions.

Considering the “other” observations as being Poisson noise is analogous to trea t­

ing them as being randomly distributed over a defined subspace -  “other” observa­

tions can in fact lie in the same part of the subspace as those belonging to the group 

of interest, or they can be dispersed over a defined potential space. This echoes the 

belief tha t those trying to commit commercial fraud would a ttem p t to reproduce 

an approximate facsimile of the claimed product, thus any observation belonging to 

the “other” group should be relatively close to the original, with some deviation as 

a result of the product not being what it is claimed to be.

A mixture of Gaussian distributions is a very powerful modelling tool, especially 

when the number of Gaussian distributions is unconstrained. As many other distri­

butions can be approxim ated using a Gaussian mixture, the Gaussian m ixture ap­

proach provides a uniquely flexible framework to consider the “other” observations.
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It also has a natural interpretation for chemists in th a t each of the components of 

the m ixture could represent a different type of adulterant when trying to detect mul­

tiple adulterated samples when there are an unknown number of potential sources 

of adulteration.

fo{x) is P o isson  noise

If fo{x)  is Poisson noise on a set of volume V , then

J{x)  =  PgJg{x\lJ.g,Y.g) + P o J { x \ V )

=  Vgfai.Al>-g^ ^ 9 ) +  (1 “

Thus observations are classified as belonging to the group of interest if

( l - P g ) U x i V )
fg(x\fJ,g, Ylg) >

>

Pg
I - P g

The volume V  is calculated on the entire dataset irrespective of the group mem­

bership of individual observations. If x  is univariate, then V — n m x x  — min.i;. If 

X is m ultivariate then the volume is estim ated as the minimum of the volume of 

the ellipsoid hull spanning the data  and the hypervolume of the data. As it does 

not depend on group membership, updating does not effect the value of V. How­

ever, the estim ated values of Pg, fig and Eg can be influenced by updating methods. 

Considering th a t if

E N
7=1  ^ j g  ^ 2̂ i = i  ^ 3 9 ' ^ j

Pg =  MN  ’ V "  2 -Z^ji=i ‘̂39 

Xy7=i ^ j g i ^ j  ~  l'‘g){^j  ~  f^g)
^n =

Z^j=i ' ĵg

and using Zjg as an indicator variable for the training data, following (4.3) the 

estim ated probability of Xj belonging to the group of interest is:

^ ^  f{Xj\fl.g,tg)
f ( X j \ f t g , t g )  +  ^
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which can then  be used as weights in the  calculation of /j,g, Eg, pg which in tu rn  

are included in th e  calculation of the  Zj g ' s  until th e  u p da ting  process reaches its 

stopping point.

However, using u p da ting  is found in Tables 4.1 and 4.3 to  be ineffective when 

using f„{x) =  I j V  as th e  threshold  is raised too  high and m ost observations are 

placed into the other  group.

/o(.7') is a m ixture o f G aussian distributions

If f„{x)  is a m ix ture of K  G aussian d istribu tions then

K

f { ^ ' )  =  Pgfa i^l l ' -g^ ^ g )  +  Po ^ k )
k=l

K

=  Sg) +  (1 -  Pg) qkf{x\^k, '^k)
k=l

and observations are classified as belonging to  the  group of in terest if

K

>  ( 1 -Pf l )
fc=l

>   — Y  ̂ k̂ {Â k̂̂  Sfc)-

The num ber of com ponents, K ,  is determ ined using the  BIC. This m ethod  is com­

putationally  very expensive, thus not practical for use w ith  the  variable selection 

procedure described in Section 4.2 on the  entire  N IR  spectra. Therefore m ethods 

of dimension reduction described in C hap ter 3 are used before variable selection is 

implemented.

No updating  m ethods were exam ined for th is m ethod  due m ainly to  th e  already 

high com putational burden  of using f o { x )  =  Y2k=i^kf{x\ lJ.k,^k),  b u t also because 

of the ex tra  com plexity caused by u p da ting  increasing or decreasing K  in each 

iteration.

As discussed in C hap ter 3, due to  the  highly collinear n a tu re  of near infrared 

spectroscopic data , there  is a  need for some form of dim ension reduction  in order to 

have the invertible covariance m atrices th a t are required for the  calcu lation  of f g { x )  

and, when /o(-x) =  also for calculating the  E ^ ^ ’s. T he  dim en­

sion reduction techniques in troduced  in C hap ter 3 give one approach to  dim ension

P g J g i A f ^ h '

f g [ x \ ^ g ,  Eg)
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reduction where the dimension reduction procedure is completed before the model 

is fitted to the data. Another approach is to consider the selection of individual 

wavelengths tha t optimise classification in a stepwise manner.

4.2 Variable Selection and D im ension  R eduction

The dimension reduction techniques considered in Chapter 3 were considered as a 

method of reducing the computational burden for the NIR data sets. Also consid­

ered, where feasible, was using a method of variable selection described below.

The number of folds, F  is set. The training set is then split into F  separate 

folds. The Brier’s score is calculated across each fold within the training set only 

so that variable selection is performed using only the training set data, but with 

consideration given to out of sample classification performance.

4.2.1 V ariable Selection Procedure

Algorithm for variable selection:

Algorithm  w^hen f o { x )  =  \ j V

• Step 1 Each variable is proposed

/ ( i “ ) =  /4"’. S f )  +  ^ 7^  univariately.

where =  max(a;(P^) — min(a:^ '̂)).

The Brier’s score is then calculated across all of the cross validation folds for 

each variable.

• Step 2 The variable /  wavelength that minimises the Brier’s score across these 

folds is then selected. This forms the initial set, c, of selected variables.

• Step 3 All remaining variables outside the set of currently selected are then 

proposed in turn:

/(X<=), xl-’) =  p,/,(xl'>, xl»)|, El''”') +

53



univariately in the additional variable.

where V =  in in( volume of the ellipsoidhull of {x^‘̂ \x^^'^), hypervol­

ume of the rectangle spanning of ) .

The Brier’s score is then calculated across all of the cross validation folds for 

each variable.

• S te p  4 The variable th a t minimises the Brier’s score across the cross validation 

folds is added to c.

• S te p  5 The remaining variables are then returned to step 3, until the maxi­

mum allowable variables have been added to the model.

A lg o rith m  w h en  f„{x)  =  q k f { x \ n k , ' ^ k )

•  S te p  1 Each variable is proposed

K

f{x^p)) =  +  (1 -  P g )  univariately.
k=l

The number of components in the m ixture describing the “other” group, A', 

is selected using the BIC.

The Brier’s score is then calculated across all of the cross validation folds for 

each variable.

• S te p  2 The variable /  wavelength th a t minimises the Brier’s score across these 

folds is then selected. This forms the initial set, c, of selected variables.

•  S tep  3 All remaining variables outside the set of currently selected are then 

proposed in turn:

A : = l

univariately in the additional variable.
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A', the number of components in the mixture, 

is selected using the BIC.

The Brier’s score is then calculated across all of the cross validation folds for 

each variable.

•  S te p  4 The variable th a t minimises the Brier’s score across the cross validation 

folds is added to c.

•  S te p  5 The remaining variables are then returned to step 3, until the maxi- 

mimi allowable variables have been added to  the model.

The number of variables tha t minimises the B rier’s score then determines the 

number of variables and hence which variables should be included in the final model.

T he param eters for this model are then calculated across the entire training data  

and then applied to the test set data  so th a t performance can be evaluated.

I l lu s t r a t io n  o f V a riab le  S e lec tio n  P ro c e s s

To illustrate the variable selection process in practice, the following example uses 

the w'ine da ta  and considers the Barolo wines to be the group of interest. Splitting 

the d a ta  so tha t 50% of the data  is in the training set with the remainder in the test 

set, 5 fold cross vaUdation is used to determine the Brier’s score within the training 

set. The model under consideration is

/(-C) =  Pgf{x\Hg,  Eg) +  (1 -  P g ) ^

The mean of the Brier’s score across the 5 cross validation folds are plotted for 

each variable. In this case the variable with index 2 in Figure 4.1 -  Malic acid, has 

the lowest average Brier’s score and thus is the first to be added to the model. If 

this score remains unbeaten, i.e. is the lowest overall, then only one variable will be 

included in the model.

Plotting the difference in the Brier’s scores for the remaining variables combined 

with the variable already selected (Malic Acid) and the Brier’s score achieved in the 

single dimension case. In order to improve the model, the difference in the Brier’s 

score w'ould have to be less than 0, or below the green horizontal line in Figure
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4.2(a). The second variable to be added to the model is that with index 11, which 

is Hue. It is visible in Figure 4.2(b) that this does not improve on the Brier’s score 

previously achieved. This variable is temporarily included in the model, so that if a 

lower Brier’s score can be achieved by adding further variables, it will be included 

in the final model; otherwise the final model will only have one variable.

Continuing on to consider adding a third and fourth variable. Adding a third

V anable  Index

(a)

o  A verage CV B riers Sco re  
o  B est variable 

—  No im provem ent

“ T “

10

“ 1“

12

(b)

F ig . 4.3: Selecting the third variable

variable to the model reduces the Brier’s score. The lowest Brier’s score is achieved 

by adding the variable with index 7 in Figure 4.3, w'hich are the flavenoids. Adding 

a fourth variable also reduces the Brier’s score. Adding the nonflavanoid phenols 

(index 8 in Figure 4.4 reduces the Brier’s score the most. This process is continued 

for the remaining variables. In this case, no further reduction in the Brier’s score 

is achieved, so that the final model consists of Malic acid, Hue, Flavenoids and 

Nonflavanoid Phenols.

Once all of the variables for inclusion in the model have been selected, the entire 

training set is then used to calculate the values / / , g  and S g ,  V  is calculated using all 

of the data, as it does not require group information.
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Fig . 4.4: Selecting the fourth variable

4.3 Varying th e Threshold

Recall equation (4.2) the threshold t (.;;) is:

t { x )  =  - — — f o { x )

and the decision becomes

/ g ( x | / 7 , g , E g )

If fo{x)  =  l / V ,  then

<  t { x )  

>

Pg

classify as “other” 

classify as group of interest

t { x ) =  t  = Pg

PgV

Figure 4.5 illustrates the effect of changing pg and of changing the volume V  on the 

value of this classification threshold. Observations in Figure 4.5 th a t fall below the 

horizontal lines would be classified as not belonging to the group of interest. Figure 

4.5(a) fixes the volume to be K =  10 when Pg =  0.9, r  =  0.01 (the red line) whereas 

when Pg =  0.3, r  =  0.23 (the green line). This illustrates the dependence on the 

estim ated proportions in each group. Figure 4.5(b) fixes the pg =  0.2 and looks at 

how volume and the threshold, r  are related.

Continuing to assume tha t /g(x„|0g) ~  N{iig,T,g),  it is apparent th a t the mini­

mum possible value of r(x )  is 0 while the maximum possible value is a t fg{pg\p,g, Eg).
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Fig. 4.5 ; One dimensional example of the behaviour of the threshold. Figure 4.5(a) 

varies Pg varies and Figure 4.5(b) varies the volume.

4.3.1 Evaluating the Threshold D irectly

The threshold, t { x )  that determines if an observation is classified as belonging to 

the group of interest or not, is the primary mechanism for deciding on group mem­

bership. Determining an optimal value of r  that not dependent on the value of x, 

for classification purposes is of interest. Using a grid search with an initial range 

of r  from 0 to fg{i-ig, Sg), the grid is made finer and finer until an optimal value of 

the threshold t { x )  for classification is foimd. Finding the optimal value of r  in this 

manner is computationally too expensive for practical ongoing use, especially as the 

number of variables in the model grow, therefore finding the relationship between 

T and other, more accessible parameters is also of interest. As the volume V  of the 

data is relatively simple to calculate and would correspond to f o { x )  being Poisson 

noise, the volume of the data was considered as an estimator of r(x). To do this, the 

relationship between the optimal r(x)  and V  was calculated across several datasets, 

in order to determine if this relationship could be considered relatively independent 

of the actual data.
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4.3.2 Behaviour of the Threshold

As the number of variables increases, the volume of the data  becomes the dominant 

part of equation (4.2). As the predicted proportions remain relatively constant so 

does Therefore f o { x )  becomes the dominant part of the threshold calculation. 

When f o { x )  =  1/V", the volume of the data decreases as the number of variables 

included in the model increases. This is illustrated using the NIR olive oil sample 

in Figure 4.6, using the first twenty random 50%/50% splits of the data.

o
(O

o

o
CO

o

o

2 64 8 10

N um ber of Variables

(a)

o

o

o
(O

o
<0

2 4 6 8 10

N um ber of Variables

(b)

Fig. 4.6: Behaviour of log(r) and log (volume) as the number of variables in the 

model increases.

4.4 Results 

4.4.1 N IR  datasets

In order to improve robustness, in this Chapter 3-fold cross validation rather than 

5-fold cross validation is used for model selection purposes.

For the large NIR datasets, having a single fixed threshold for all observations, 

even when the optimal value for tha t threshold has been calculated, is poor as 

not enough flexibility exists in such models. To capture the variability within the 

observations not Ijclonging to the group of interest, a more effective approach is to 

use /o(x) =  Qkfk{x\ ^i k,  Sfc)j where the number of components and the structure
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of the  covariance matrices as outlined in Table 3.1 are decided using BIC. However,

due to  the ex tra param eters to  be estim ate when using f o { x )  =

performance suffers as the rmniber of observations in the training set is reduced.

T he meats NIR data  do not present an obviously one-sided problem, whereas 

both  the  olive oil and the honey NIR datasets do. Therefore, the results presented 

in th is section are for the honey and olive oil datasets only.

W avelets

No variable selection is used with the wavelets after hard thresholding has been used. 

This is because all remaining coefficients are required to summarise the spectral data.

N IR  H oney D ata

Using the NIR honey data. Table 4.1 illustrates the performance of using

as the classification criterion while Table 4.2 illustrates the performance of using

Pg

as the classification criterion. In Table 4.2 there are two parts. In the first part, once 

the initial dimension reduction technique is implemented, no further variable selec­

tion is used. This is then compared to using the same techniques to reduce the num­

ber of variables to be searched over using the variable selection technique described in 

Section 4.2. As using f o { ^ )  — l / V  is much faster than  f o { x )  =  ^fc)i

it is feasible to  search over the entire spectrum  when f o { x )  =  1 / V .  It is worth 

noting th a t using the crude technique of selecting every 10^^ nrn (equivalently every 

5*̂  ̂ wavelength) achieves similar classification results, bu t significantly reduces the 

com putational time.

Figures 4.7, 4.8 and 4.9 examine the variables selected by the initial dimension 

reduction techniques referred to in Section 3.5.2 and how, when using these as an 

initial dimension reduction procedure, /„(x) — chooses more

variables than  f o { x )  =  \ j V  across 100 random splits of the da ta  into training and 

test sets. Both methods of describing /„ choose variables from similar parts of the
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spectrum, indicating th a t using f o { x )  =  1 / V  as an initial dimension reduction tool, 

not necessarily discarding the variables tha t are mcluded after the optim um  number 

of variables for f o { x )  — 1/V , may dramatically improve on the com putational cost 

of performing f „ { x )  =  Sfc).

N IR  O live O il D a ta

The same analysis is undertaken on the NIR olive oil da ta  -  the dimension reduction 

techniques described in C hapter 3 both as isolated methods and as methods of 

reducing the space over which the variable selection technique m ust search.

r  d ire c tly  calculated[

Using every 10*  ̂ nm for both the NIR honey and the NIR olive oil datasets, r  was 

calculated directly. In Table 4.5 the performance of using this m ethod is compared 

with (hat using f n { x )  =  \ / V  using the variables selected by calculating r  directly 

and using the variables selected by f o { x )  =  l / V .

With the exception of the 50%/50% split of the olive oil, using f o { x )  =  l / V  to 

select which variables to include, then calculating r  directly using these variables 

gives an improvement in classification performance. In Table 4.5, the number of 

variables to include in the model, out of those selected is determ ined by the same 

method as was used to select the variables. Table 4.6 compares the error rates when 

the number of variables to include in the model is chosen using the training data 

when r  is calculated directly against those when the f o { x )  =  l / V  determines the 

number of variables to  include. In both cases, the set of variables to include (and 

the order in which to include them) were selected by , f o{ x )  =  l/V".

The classification performance achieved by both methods of determ ining the 

number of variables to  include in the model for the honey da ta  is very similar. 

However, using the combination o f / o ( .x )  =  X / V  to determine which ordered subset of 

variables should be considered, then using the training set classification performance 

to determine the number of variables to include achieves a marked improvement in 

classification performance for the olive oil data.

Figure 4.12 gives an example of the strong linear relationship of lo g r  to log l / V .
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T ab le  4.1; Classification Performance of Group of Interest Based Methods on 

Honey Data: /o(.'c) =  l / V ■ The performance of the various methods of reduc­

ing the search space are compared, as is the performance of using updating methods 

against not using updating methods.

Dimension f o { x ) _ 1 
V

Reduction No Updating Updating

Split Method % Error Brier %  Error Brier

50%/ None 20.343 (4.881) 14.577 (2.932) 22.301 (3.886) 16.816 (2.682)

50% 10*^ nm 21.305 (5.608) 15.233 (3.424) 22.004 (4.779) 16.383 (2.967)

B /W 24.640 (4.629) 17.363 (2.909) 28.088 (3.914) 20.573 (2.587)

B +W 23.410 (4.717) 16.653 (3.018) 26.259 (3.938) 19.454 (2.657)

B /W ,B + W 22.661 (4.562) 16.045 (3.002) 24.778 (4.135) 18.451 (2.798)

25%/ None 22.316 (6.470) 16.063 (4.214) 30.070 (6.443) 22.564 (2.955)

75% lO*'̂  nm 26.120 (6.235) 18.579 (4.052) 29.908 (6.042) 22.816 (2.969)

B /W 30.961 (6.210) 21.073 (3.787) 31.975 (4.038) 24.989 (2.050)

B +W 27.419 (6.263) 19.739 (4.086) 30.637 (3.534) 24.140 (2.592)

B /W ,B + W 26.715 (6.210) 18.958 (3.082) 31.045 (4.493) 24.265 (3.048)

10%/ None 27.816 (8.836) 20.003 (5.855) 35.695 (8.676) 28.656 (5.016)

90% 10^^ nm 28.907 (8.540) 20.538 (5.797) 35.047 (8.134) 28.126 (4.411)

B /W 33.700 (8.183) 23.142 (5.425) 39.433 (9.963) 30.758 (4.883)

B +W 31.898 (8.269) 22.415 (5.452) 38.163 (9.393) 30.886 (5.160)

B /W ,B + W 30.058 (8.142) 21.112 (5.247) 38.144 (9.837) 30.255 (5.022)

63



Table 4.2: Classification Performance of Group of Interest Based M ethods on 

Honey Data: fo{x) = Ylk=i Qkf{x\lik, ^k)

fo{x) = Ef=l qkf(x\^ik,'^k)

Split M ethod % Error Brier

50%/50% Wavelets 7.824 (2.202) 6.851 (1.996)

B /W 7.025 (2.032) 5.924 (1.850)

B +W 5.460 (1.783) 4.826 (1.625)

l / V 6.531 (1.622) 5.176 (1.333)

25%/75% Wavelets 9.578 (8.663) 8.567 (8.100)

B /W 10.237 (12.017) 9.331 (12.175)

B +W 9.528 (8.854) 8.751 (8.260)

l / V 7.511 (2.066) 6.205 (1.698)

10%/90% Wavelets 31.840 (20.144) 26.539 (16.877)

B /W 37.742 (21.608) 33.034 (20.275)

B +W 45.765 (19.925) 43.244 (20.165)

l / V 34.498 (22.748) 31.001 (21.065)

Including Additional Variable Selection

50%/50% B /W 7.816 (1.964) 6.195 (1.423)

B +W 6.423 (1.913) 5.067 (1.440)

l / V 6.577 (1.604) 5.168 (1.296)

25%/75% B /W 8.453 (2.305) 6.738 (1.860)

B +W 7.503 (1.962) 6.015 (1.645)

l / V 7.626 (2.412) 6.309 (1.972)

10%/90% B /W 19.749 (15.794) 17.344 (15.812)

B +W 19.216 (24.844) 16.830 (14.942)

l / V 33.237 (22.195) 30.257 (21.030)
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Fig. 4.7: Using a 50%/50% training test data split of the NIR honey data. Vari­

ables selected using R / W  (Figure 4.7(a)) and B + W  (Figure 4.7(b)) as the prior 

dimension technique. The height of the red lines indicate the frequency that each of 

the wavelengths were selected using the initial dimension reduction technique. Then, 

using /o(.'c) =  Ylk=\ Qkf{Â k̂̂  Sfc) the height of the black lines in Figure 4.7(c) and 

in Figure 4.7(d) demonstrate the frequency that each wavelength is selected when 

R / W  and R + H’ respectively were used as a prior dimension reduction technique 

while the blue hnes in Figures 4.7(e) and 4.7(f) do the same when using fo{x) =  \j'V 

(using B j W  and B + W  respectively).
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Fig. 4.8: Using a 25%/75% training test data split of the NIR honey data. Vari­

ables selected using B / W  (Figure 4.8(a)) and R + W  (Figure 4.8(b)) as the prior 

dimension technique. The height of the red lines indicate the frequency that each of 

the wavelengths were selected using the initial dimension reduction technique. Then, 

using fo{x) =  Yl!k=\ Sfc) the height of the black lines in Figure 4.8(c) and

in Figure 4.8(d) demonstrate the frequency that each wavelength is selected when 

R /W  and R + W  respectively were used as a prior dimension reduction technique 

while the blue lines in Figures 4.8(e) and 4.8(f) do the same when using f o { x )  = IjV  

(using B /W  and B + W  respectively).
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Fig. 4.9: Using a 10%/90% training test da ta  split of the NIR honey data. Vari­

ables selected using B / W  (Figure 4.9(a)) and R +  W  (Figure 4.9(b)) as the prior 

dimension technique. The height of the red lines indicate the frequency th a t each of 

the wavelengths were selected using the initial dimension reduction technique. Then, 

using fo{x) =  Qkf {'■»:]fJ-k, Sfc) the height of the black hnes in Figure 4.9(c) and 

in Figure 4.9(d) dem onstrate the frequency tha t each wavelength is selected when 

B / W  and B +  H ' respectively were used as a prior dimension reduction technique 

w'hile the blue lines in Figures 4.8(e) and 4.8(f) do the same when using fo{x) =  1 /V  

(using B / W  and B +  W  respectively).
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Table 4.3: Classification Performance of Group of Interest Based Methods on NIR 

Olive Oil Data: f o { x )  =  1/V". The performance of the various methods of reducing 

the search space are compared, as is the performance of using updating methods 

against not using updating methods.

Dimension f o { ^

Reduction No Updating Updating

Split Method % Error Brier % Error Brier

50%/ None 11.609 (3.779) 8.742 (2.538) 15.696 (5.378) 12.308 (3.601)

50% 10̂ '̂ mn 12.551 (4.121) 9.675 (2.835) 16.957 (5.413) 12.874 (3.434)

B/W 16.696 (4.029) 12.442 (2.948) 19.449 (5.220) 13.881 (3.374)

B+W 13.536 (4.248) 10.335 (2.669) 16.420 (12.292) 12.292 (3.268)

B/W ,B+W 12.986 (4.311) 9.990 (2.837) 16.406 (5.339) 12.305 (3.609)

25%/ None 14.231 (5.201) 10.647 (3.446) 21.827 (5.908) 17.479 (5.308)

75% 10*'*̂  ̂ nm 15.913 (5.181) 11.663 (3.349) 21.327 (5.926) 16.929 (4.962)

B/W 20.260 (5.467) 14.589 (3.374) 24.327 (8.352) 18.508 (6.646)

B+W 15.413 (4.985) 11..500 (3.253) 21.760 (6.541) 16.590 (4.697)

B/W ,B+W 14.808 (4.732) 11.026 (3.270) 22.212 (5.510) 17.132 (4.407)
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T able  4.4: Classification Performance of Group of Interest Based Methods on NIR 

Olive Oil Data: fo{x) = qkf{x\nk,'^k)

> II M Â:)

Split Method % Error Brier

50%/50% Wavelets 20.029 (12.056) 19.614 (12.151)

B/W 20 (7.555) 19.623 (7.539)

B+W 18.246 (4.084) 17.998 (3.976)

l / V 3.391 (12.690) 3.361 (12.673)

25%/75% Wavelets 64.173 (8.684) 63.659 (9.212)

B/W 23.067 (6.485) 22.752 (6.492)

B+W 21.962 (7.458) 21.466 (6.859)

l / V 24.019 (23.627) 16.797 (15.901)

Including Additional Variable Selection

50%/50% B/W 4.536 (7.712) 3.740 (7.431)

B+W 2.333 (7.159) 2.009 (6.994)

l / V 1.884 (4.695) 1.632 (4.505)

25%/75% B/W 23.567 (17.576) 22.239 (17.834)

B+W 18.260 (20.432) 17.476 (20.550)

l / V 15.212 (17.313) 12.952 (15.228)

Table 4.5: Comparison of Error Rates for using a direct calculation of a threshold, 

r, versus using r  =  (1 — pg)/pgV, both when selecting which variables to include 

and as a method of calculating the threshold.

Data Spht

Variables 

r  direct

Selected by r  

^ =  (1

Variables Seled 

r  direct

ted by (1 - pg) /pgV  

T = (1
Honey 50%/50% 

25%/75% 

10%/90%

16.854 (3.485) 

18.039 (3.809) 

20.826 (6.588)

27.690 (9.039) 

34.282 (10.151) 

38.209 (10.241)

14.803 (3.474) 

15.598 (3.382) 

17.981 (4.852)

21.305 (5.608) 

26.120 (6.235) 

28.907 (8.540)

Olive 50%/50% 

Oils 25%/75%

5.507 (5.779) 

13.202 (7.567)

24.435 (7.849) 

24.846 (7.651)

9.058 (6.133) 

12.183 (5.989)

12.551 (4.121) 

15.913 (5.181)
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Fig. 4.10: Using a 50%/50% training test data split of the NIR ohve oil data. Vari­

ables selected using B / W  (Figure 4.10(a)) and B +  W  (Figure 4.10(b)) as the prior 

dimension technicjue. The height of the red lines indicate the freciuency that each 

of the wavelengths were selected using the initial dimension reduction technique. 

Then, using fo{x)  =  the height of the black lines in Figure

4.10(c) and in Figure 4.10(d) demonstrate the frequency that each wavelength is se­

lected when B / W  and B +  W  respectively were used as a prior dimension reduction 

technique while the blue lines in Figures 4.10(e) and 4.10(f) do the same when using 

fo{x) =  1 / V  (using B / W  and B +  W  respectively).
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Fig. 4.11: Using a 25%/75% training test data split of the NIR oUve oil data. Vari­

ables selected using B / W  (Figure 4.11(a)) and B + W  (Figure 4.11(b)) as the prior 

dimension technique. The height of the red Unes indicate the frequency that each 

of the wavelengths were selected using the initial dimension reduction technique. 

Then, using f o { x )  = the height of the black lines in Figure

4.11(c) and in Figure 4.11(d) demonstrate the frequency that each wavelength is se­

lected when B/\]'  and B + W  respectively were used as a prior dimension reduction 

technique while the blue lines in Figures 4.11(e) and 4.11(f) do the same when using 

f o { x )  = I j V  (using B / W  and B + W  respectively).
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Table 4.6: Comparison of Error Rates for r  calculated directly, when the variables 

are selected by (1 — Pg)/pgV, but the number of variables to include is determined 

by the training set performance of when calculating r  directly versus selected by 

(1 - P s ) / P 9 ^

Number of Variables To Include Selected by

Data Split r  directly calculated (1

Honey 50%/50% 14.573 (3.290) 14.803 (3.474)

2b%llb% 15.723 (3.154) 15.598 (3.382)

10%/90% 18.133 (4.945) 17.981 (4.852)

Olive 50%/50% 3.449 (2.830) 9.058 (6.133)

Oils 25%/75% 9.125 (5.710) 12.183 (5.989)

By implementing a linear regression with an intercept at 0 and a slope b then:

logr =  /;log =  log

and therefore
1

In practical terms this means that once an approximate value of b is determined 

using the first few dimensions, the grid search method of calculating r  directly can 

be more targeted. As the number of variables included grows, r  gets very large 

as is evident in Figure 4.6(a). Even by being able to estimate r  to an order of 

magnitude using a function of the volume before using the grid search technique 

would dramatically reduce the size of search space.

Modelling the alternative distribution f o { x )  as Poisson noise is an imperfect 

solution, but one that has nice interpretation, b (as it is less than 1), represents 

an inflation factor -  using the entire data (labelled and unlabelled) to calculate the 

volume V results in value for V that is too large, which in turn results in a value of 

i  =  fo{x) that is too small, especially as the number of additional variables included 

in the model is increased.

As the relationship is so strong, it makes sense to only calculate the “optimal 

r ” for the first few dimensions, then use the relationship between that and y  to
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T able 4.7: Analysis of the hnear relationship of a directly calculated log(r) to 

lo g (l/F ) when (1 —P g ) / P g V  is used for variable selection and r  is directly calculated 

on these variables . This considers log(r) =  61og(l/y) +  e where e ~  iV(0,c7^) and 

gives values for b and the corresponding values for the and adjusted R^.  The 

results for the 25%/75% split of the olive oil data are heavily affc(t,('d by on(' value 

of the directly calculated r  for one random split of the data. Omitting this random 

split of the data leads to the results in the row marked with the *.
Data Split b /?2 Adjusted

Honey 50%/50%

25%/75%

10%/90%

0.969 (0.008) 

0.969 (0.010) 

0.960 (0.029)

0.999 (0) 

0.999 (0) 

0.999 (0.001)

0.999 (0) 

0.999 (0) 

0.999 (0)

Olive

Oil

50%/50%

25%/75%

25%/75%*

0.886 (0.019) 

0.900 (0.103) 

0.910 (0.023)

0.999 (0.001) 

0.990 (0.095) 

0.999 (0.001)

0.999 (0.001) 

0.988 (0.106) 

0.999 (0.001)

reduce the search space dramatically. This provides scope for dramatic reduction in 

computation time.

To quantify the relationship between log(l/V ) and log(r) linear regression (forc­

ing the intercept to be 0) was performed both when (1 -  P g ) / p g V  (Table 4.7) and a 

directly calculated r  (Table 4.8) were used as the variable selection criterion.

U sing \ / V  as a  d im ension  red u c tio n  tech n iq u e  for M odel-based  D iscrim ­

in an t A nalysis

Using Jo{x) =  \ I V  as a preliminary method of reducing the dimensionality of the 

problem so that the dimension reduction techniques used for the model-based meth­

ods of Chapter 3 can be compared to using / o (.t ) =  I / V  with variable selection. 

Table 4.9 gives the classification results based on the 1®*' 10 variables selected by 

fo{x)  =  l / V , irrespective of whether or not they were all to be included in the end 

model and also of only those variables included in the final model when Jo{x) =  1 / V . 

Classification performance is similar (5 fold cross validation is used in Chapter 3 

whereas 3 fold cross validation is used here), but the interpretation of the wave­

lengths selected is easier, as in general, fewer wavelengths are selected.
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Table 4.8: Analysis of the linear relationship of a directly calculated log(r) to 

log(l/V") when a directly calculated r  is used for variable selection. This considers 

log(r) =  felog(l/y ) +  e where e ~  N { 0 , a ' ^ )  and gives values for b and the corre­

sponding values for the and adjusted R^.

D ata Split

Honey 50%/50% 

25%/75% 

10%/90%

Olive 50%/50% 

Oil 25%/75%

0.877 (0.119) 

0.816 (0.136) 

0.786 (0.140)

0.861 (0.026) 

0.856 (0.063)

R^

0.991 (0.014) 

0.990 (0.010) 

0.988 (0.014)

0.999 (0.001) 

0.996 (0.009)

Adjusted R^

0.990 (0.015) 

0.989 (0.011) 

0.986 (0.015)

0.999 (0.001) 

0.995 (0.010)

os.

o
(D

Otn

o

o
CO

o
CM

O

8020 40 60

log(1/V)

Fig. 4.12: The linear relationship between lo g (r) and log (-^) is illustrated using 

the results of the first twenty random splits of the NIR olive oil da ta  at 50%/50%.
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Table 4.9: Comparing the classification performance of model-based discriminant analysis using the fo{x) =  1/V as the wavelength 

selection method on the NIR honey data, and the using both the error rate and the Brier’s score, using 3-fold cross validation to determine 

the covariance structures.

No. of Variables No Updating EM GEM

Selected by % Error Brier % Error Brier % Error Brier

Honey

50%/50% 10 of l / V 7.448 (1.486) 5.677 (1.075) 7.912 (1.319) 6.260 (1.164) 7.921 (1.383) 6.439 (1.209)

l / V 9.305 (1.775) 7.046 (1.316) 9.812 (1.852) 7.629 (1.558) 9.653 (1.845) 7.756 (1.561)

25%/75% 10 of l / V 8.101 (1.882) 6.421 (1.558) 8.816 (1.632) 7.585 (1.471) 8.879 (1.654) 7.642 (1.503)

l / V 9.816 (1.621) 7.745 (1.512) 10.196 (1.831) 8.681 (1.662) 10.232 (1.897) 8.891 (1.697)

10%/90% V* 10 of l / V 10.895 (3.035) 9.293 (2.822) 10.037 (2.471) 9.090 (2.266) 9.923 (2.396) 9.088 (2.223)

l / V 11.498 (2.901) 9.382 (2.168) 11.840 (2.670) 10.233 (2.134) 11.774 (2.802) 10.406 (2.280)

Olive Oil

50%/50% 1*‘ 10 of l / V 0.058 (0.352) 0.051 (0.272) 0.043 (0.248) 0.028 (0.175) 0.029 (0.204) 0.029 (0.184)

l / V 3.971 (3.971) 2.908 (2.957) 4.362 (4.496) 3.396 (3.462) 4.214 (4.418) 3.377 (3.565)

25%/75% 10 of l / V 0.606 (1.780) 0.550 (1.620) 0.317 (1.238) 0.280 (1.609) 0.317 (1.282) 0.276 (1.114)

l / V 6.625 (5.186) 5.283 (4..307) 7.577 (6.510) 6.174 (5.550) 7.462 (6.494) 6.225 (5.583)



4.5 C onclusions

Modelling a particular group using a single Gaussian distribution treats it as a homo­

geneous group. This follows the process of considering pure samples as being from 

some homogeneous population, whereas adulterated samples lie on the boundary of 

the pure population. This simplified viewpoint is complicated when adulteration 

occurs because of a concerted effort to perpetrate commercial fraud as would be 

the situation in the honey adulteration scheme, especially with the adulteration by 

the fructose:glucose solutions that are developed to resemble constituent parts of a 

highly variable natural substance.

A single value for the threshold, while easy to interpret, does not provide good 

classification results. However, using fo{x)  =  1 / V  as a method of searching through 

a high dimension space to find variables where the density of observations in the 

group of interest is more compact relative to other observations is useful. Trying 

to find an optimal value for this threshold dramatically improves classification per­

formance as illustrated by Tables 4.5 and 4.6. It is interesting to note that using 

fo{x) =  1 / V  to first select the variables and then finding the optimal value for the 

threshold on these variables leads to better classification results than trying to find 

the set of variables using the optimal r  approach.

This is most likely due to increased influence of the cross validation process when 

finding the optimal r  over that when using /o(.'c) =  1/V- The search strategy to 

find r  is interested in maximising classification performance on the cross validation 

sets, but the cross validation is also used at each stage to decide which variable to 

include in the model. As there is a strong relationship between this optimal value 

of the threshold and the volume of the data, the size of the search space in higher 

dimensions can be dramatically reduced by using the extra information obtained 

through this relationship. An alternative would be to use this relationship between 

the volume and the optimal r  to reduce the cross validation process to the selection 

of variables rather than the determination of the value of r.

Modelling the adulterated olive oil samples with a mixture of Gaussian distribu­

tions without additional variable selection is shown by Table 4.4 to be inappropri­

ate. This is due to the number of variables included by the initial variable selection 

techniques the curves produced by B / W  {scatter curves) and B + W  {variance
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curves) are far quite jagged for the ohve oil data, leading to more peaks that are 

then included as variables in the reduced set of variables. The effect of the addi­

tional variable selection on the honey data  is not as obvious until the training data 

is reduced to 10% of the total data, as both the scatter curves and the variance 

curves are much smoother, leading to  fewer local maxima and hence fewer variables 

included in the set from which the additional variable selection occurs.

The stepwise variable selection process used in this C hapter is by no means either 

the most efficient m ethod or the method th a t produces the optimal set of variables 

for classification purposes. However, it is a compromise between efficiency and clar­

ity those using the m ethod should be able to understand the logical process behind 

it. Any form of an all subsets approach is com putationally infeasible, even when 

the rmniber of variables are first reduced by alternative strategy. Raftery and Dean 

(2006) examine having inclusion and removal steps in a variable selection procedure 

in a clustering context, which has been extended by Murphy et al. (2008) to incorpo­

rate variable selection using a headlong search strategy for classification problems. 

While Tables 4.1 and 4.3 show tha t the dimension reduction techniques employed in 

this C hapter do not improve classification performance, they do dramatically reduce 

com putation time.
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Chapter 5 

U pdating Fisher’s Linear 

Discrim inant Analysis

5.1 Fisher’s LDA

Fisher (1936) m otivated his linear discriminant analysis technique using the iris 

dataset with the question: “What linear funcMon of the four measurements X  =  

\ \X i  -f A2 .T2  +  X'iX'i +  A4 X4 will maximise the difference in the ratio of the difference 

between the specific means to the standard deviations within species?”

To find the discriminant function between setosa and versicolor irises, Fisher first 

calculated a 4 x 4 matrix where the i‘  ̂ entry is:

Sij  ^  ^ (3^1 / ^ s j )  “t” ^   ̂ (2^1

seiosas versicolors

where is the mean of the i*̂  variable for setosas and similarly is the mean 

of the i‘  ̂ variable for versicolors.

The inverse of this matrix, when multiplied by the differences in the mean values 

for each species gives A. These A’s were then adjusted by Fisher so that Ai =  1.

In order to generalise this procedure to more than two groups Fisher’s linear 

discriminant analysis assumes a common covariance matrix for all groups and then 

m aximises the ratio of the variability between the groups relative to the common 

covariance within each group. If B  measures the between group variance and W  

measures the within group variance, then Fisher’s LDA finds the projection I that 

maximises the ratio in (5.1), subject to the constraint that I'SpJ =  1, where Spd =
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\V/{N — G) is the pooled covariance matrix.

I'Bl
F m

5.1.1 T heory

(5.1)

Assuming tha t there are da ta  X  (dimension N  x p) with G  groups and group labels 

z then;

l̂ lg = —  ^gjXj (5-2)

where Ug is the rmmber of observations in group g (13j=i ^gj) ^gj indicator 

variable for group membership for observation i belonging to group g and xj  is the 

f  observation of X .

Y.U
Considering a linear combination Y  =  I'X,  so tha t

figy =  E[y] =  E[l'X\iyg] = l'E[X\ug] = for group g

the transformed overall mean is then /^y =  I'n and

Yar[Y] = Yar[l 'X] = l 'CoV[X]l  =  I ' U

which is common for all groups, as each group is assumed to have an equal covariance 

matrix.

Thus

Distance to overall mean of Y  ~
Variance of Y  Va7’[V"]

■'g

I 'U

I' if̂g - m) (/̂ 9 -  /^)') ^
I'U

Now let

and

G

B  = J^(M s -  -  y)'
3=1

G N

W  =  ^   ̂^   ̂^gji^gj ~  ^^g){^gj ~  Ms) (5-3)
s=l j=l

Then to find the I’s th a t maximise (5.1):
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• Find the eigenvectors e oi W  There will be s — min(G — l . p )  nonzero 

eigenvalues.

• Scale the ,s non-zero eigenvectors so th a t e'Spde = 1 where Sp^ is the pooled 

covariance m atrix

• These scaled eigenvectors are the linear discriminant functions

This algorithm assumes th a t the m atrix W  is invertible, which is often not the case, 

especially when p is large. The solution is to ro tate W  so th a t it takes the form of 

an identity m atrix and then to use the same rotation on B.  Details of how to find 

this rotation are given in Appendix A .I. Practically one uses the Singular Value 

Decomposition rather than finding the eigenvectors directly. Section 5.1.4 outlines 

how LDA is implemented in practice and then further develops the algorithm to 

outline how updating is incorporated into the algorithm.

5.1.2 Prediction

Given LDA coefficients and Xnew is new data, then: For every group g € G, let the 

Mahalanobis distance from X a  to the ro tated  group means Uga using the rotated 

within groups covariance m atrix a'T,^a, be called M.

Then in order to convert this into probabilities, assuming th a t is a vector of 

the probabilities associated with each group find

Then normalise the values in (5.4) so th a t for each observation they sum to 1 

turning them into probabilities of belonging to each group.

The idea of updating or semi-supervised methods is to use all of the data  avail­

able in order to carry out classification. Therefore where complete information is 

available (including the labels) these are used, but those observations where the 

label is unobserved are also used. These extra observations are given partial group

Sp, = W / { N  -  G)

(5.4)

5.1.3 U pdating
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membership in accordance with the probabihties of that observation belonging to 

each group. O ’Neill (1978) examined using unclassified observations in estimating 

Fisher’s Linear Discriminant Function in a two group problem (using the iris data 

as an example to discriminate between versicolor and setosa flowers).

There are several options of how to get the initial probabilities for the observa­

tions with unknown labels, including;

• Randomly assign into groups

•  Use V the total group probabilities

• First calculate the probabilities without the “extra” observations, then use 

these probabilities for initialising the updating procedure

The most consistent of the methods for the data sets examined in this thesis was 

using Fisher’s LDA without the extra observations to assign initial probabilities and 

thus results given are for this method of initialization.

In order to combine Fisher’s linear discriminant analysis with updating, simply 

change the 2 jg’s of equations (5.2) and (5.3) so that for the extra observations where 

the labels are unknown, the Zig% are no longer indicator variables but rather are the 

probabilities of observation i belonging to group g.

5,1.4 Im plem entation  o f Sem i-supervised F isher’s Linear D is­

crim inant A nalysis

LDA is implemented as follows;

Considering training data X  {N\  x p), with G  groups and group membership 

indicator variables Zig. To find the rotation of the data:

•  S tep  1 Find the group probabilities;

u =  ug) where Ug =  g  — .
Z ^ g = l  1^1=1 ^ig

• S tep  2 Find the group means; /Xg

/ . ,  =  ( a x i „ . . . , / U  =  ^5^ .
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•  S te p  3 Find the overall variable means: x =  ( x i , . . .  ,Xp)

•  S te p  4 Find the between groups variance:

G

Yjh =  ^   ̂^gil^g ~~ ^)(/^s “  ’̂)
3= 1

•  S te p  5 Find the within groups variance:

•  S te p  6 Find the singular value decomposition of S ;̂ =  U D V  where U and V 

are orthogonal and D  is s, diagonal matrix with the singular values (c/n, c/22> ■ • ■) 

on the diagonal.

•  S te p  9 Denote Vr  the first r columns of V.

•  S te p  10 The rotation a is then a =  {Dr^^^){V,rY-

•  S te p  11 Find oEhc' =

•  S te p  12 Find the first min(p, G — 1) eigenvectors of aE^a', denote these as e

Now include the new data (previously withheld as test data) to have a dataset 

Y  of dimension { N  x p). The next 3 steps involve rotating the data, group means 

and the within group variance matrix so that they are in the new rotated space, in 

which the Mahalanobis distance will be calculated:

• S te p  14 Rotate the data by A: Y A  =  { Y) A

•  S te p  15 Rotate the group means by A\ jigA

S te p  7 Let r =  min(X;^^i E ,

S te p  8 Denote D, as the r X r diagonal matrix with entries for

?; =

•  S te p  13 Rotate these eigenvectors again by a =  (Dr to get the

required rotation of the data:
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• S tep  16 Rotate by A: A'Ti^,A

• S tep  17 Find the Mahalanobis distance, A/, on the rotated space (points Y A , 

new means figA, new variance A'T..^A)

• S tep  18 Find exp {—\ M  +  log(r/)) and normahse to find the probabihties of 

group membership for each observation yi.

Steps 1-13 indicate the procedure required to find the rotation of the data. Steps

14-18 the mechanism for finding tfie probabihties of group membership. Typical

Fisher’s Linear Discriminant Analysis stops at this point. However, in order to 

continue in the serni-supervised framework, revise the so that for the training 

data they remain indicator variables, but for the test data they are the predicted 

probabihties of observation i belonging to group g in Step 18 above. Now, including 

the new data (previously withheld as test data) to have a dataset Y  of dimension 

{N  X p) :

• S tep  0 j  =  0

• S tep  1 Find the group probabilities:

*y

u = 2̂ g) where Ug = ^ ■

• S tep  2 Find the group means fig

• S tep  3 Find the overall variable means; y = (yi , . . . ,  y,,)

• S tep  4 Find the between groups variance:

G

-  y)(/̂ s -  y)'
!7 = 1

• S tep  5 Find the within groups variance:



S te p  6 Find the singular value decomposition of Hy, = U D V  where U and V 

are orthogonal and D is a diagonal m atrix with the singular values {d n ,d 2 2 , ■ ■ •) 

on the diagonal.

S te p  7 Let r  =  Zig -  G, p)

S te p  8 Denote as the r  x r  diagonal m atrix with entries ( —4 =  ) forV (^

•  S te p  9 Denote as the first r  columns of V .

• S te p  10 The rotation a is then a =  {Dr^^‘̂){V^r)' ■

• S te p  11 Find aSfca' =

• S te p  12 Find the first nnn(p, (7 — 1) eigenvectors of aS(,a', denote these as e

•  S te p  13 R otate these eigenvectors again by a =  {D7^^'^)[V^r)' to get the 

required rotation of the data:

A =  (Vr)(D-^/^)e

• S te p  14 Rotate the data  by A: V A  — {Y)A

• S te p  15 R otate the group means by A: /.igA

• S te p  16 R otate using by A: A'Yj.wA

• S te p  17 Find the Mahalanobis distance, A/, on the rotated  space (points Y A ,  

new means ^igA, new variance A'llynA)

•  S te p  18 Find exp ( — +  log(j^)) and normalise to find the probabilities of 

group membership for each observation y,.

• S te p  19 j  = j  + I

•  S te p  20 Return to Step 1 until either there is no change in the values of 

Zig’’s, the change in the values of Zig’s is sufficiently small (sufficiently small 

determined in advance) or until j  equals some predeterm ined number.
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5.2 D ata

To illustrate why this updating is useful, the performance using 50% known (la­

belled) 50% unknown (unlabelled) splits, 25% known 75% unknown splits and 10% 

known 90% unknown splits will be shown on a number of d a ta  sets. For the example 

projections shown, circles are the training data  (known labels), other symbols are 

the test data  (unknown labels) and represent the group into which the observation 

was classified. The size of the symbols reflects the uncertainty of the prediction 

the bigger the symbol in the figure, the greater the uncertainty th a t was associated 

with tha t prediction. Observations are coloured by actual group membership.

5.2.1 F isher’s Iris D ata

This data set comprises of 150 iris flowers with measurements of sepal length, sepal 

width, petal length and petal w idth, 50 from each of the following species: setosa, 

versicolor, and virgmica. The goal is to be able to classify species using the sepal 

and petal measurements. In this d a ta  set, p =  4 and G  =  3, so the number of 

discriminants is 2. This was the original data  set used by Fisher in 1936 when he 

introduced his linear discriminant analysis technique.

Using an example 50% training 50% test random split of the data. Figures 5.1(a) 

and 5.1(b) illustrate the difference updating makes to the resultant projection of the 

data  making the projections more compact on the 2”'̂  discriminant projection. 

Setosa are in black, versicolor are in red and virginica are in green.

As is evident in Table 5.1, using updating, even when 50% of the da ta  is in­

cluded in the training set, improves classification performance. As the percentage 

of observations included in the training set is decreased, the improvement becomes 

more pronounced.

Figure 5.2 illustrates how the differences in the projections created by LDA and 

updating come about. Sepal Length (Variable index 2) is largely unaffected by 

updating. For the other variables, the m ajor source of difference is th a t updating 

balances the weighting more evenly between the variables. This effect is most evident 

when the original small training sample was not representative of the proportion of 

observations in each group.
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Fig. 5.1 : Linear discriminant analysis projections of the famous iris dataset. Figure 

5.1(a) is the projection for Fisher’s Unear discriminant analysis; Figure 5.1(b) is the 

projection for the updating version, using a 50% training 50% test split of the data.
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Fig. 5.2 : The rooffirients of the linear discriminant functions of the iris dataset. 

Figure 5.2(a) is the 1®*' discriminant function; Figure 5.2(b) is the 2*̂ ^̂  discriminant 

function, using a 10% training 90% test split of the data.
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T ab le  5.1: Comparing the classification performance of LDA and U pdating at 

various train ing /test splits of the iris data.

Iris D ata LDA Update

50%/50% % Error 2.333 (1.345) 2.133 (1.285)

Brier 1.249 (0.610) 1.174 (0.576)

25%/75% % Error 3.283 (1.670) 2.150 (0.952)

Brier 1.691 (0.787) 1.145 (0.409)

10%/90% % Error 5.681 (4.095) 2.681 (3.226)

Brier 3.315 (2.620) 1.467 (2.039)

When a very small sample size is used by LDA the result can be a relatively poor 

estimation of the within group variation. As a result of the improved estimations of 

the group means and variances achieved by updating the new projections improve 

classification performance as shown in Table 5.1.

5.2.2 W ine D ata

This dataset comprises of 13 variables and 178 observations. The variables are 

Alcohol, Malic Acid, Ash, Alcalinity o f Ash, Magnesium, Total Phenols, Flavanoids, 

Nonflavanoid phenols, Proanthocyanins, Colour Intensity, Hue, OD280/OD315 of 

diluted wines, and Proline. The aim is to classify the wines to their variety (59 

Barolo, 71 Grignolino and 48 Barbera). This is complicated by the problem tha t 

these wines did not all come from the same harvest (in fact the Barolo wines were 

from 1971-1974, the Grignolino wines were from 1970-1976 and the Barbera wines 

were from 1974-1979).

The extra information available in the variables sugar-free extract, fixed acidity, 

tartaric acid, uronic acids, pH, potassium, calcium, phosphate, chloride, OD280/OD315 

of flavanoids, glycerol, 2-3-butanediol, total nitrogen, methanol do not add to the 

mean classification performance. However, the worst case performance in the 10%/90% 

split is significantly improved for the traditional LDA.

Again, using the updating technique improves classification performance for both 

the incomplete and full wine da ta  sets. However, by including the extra variables.



T able 5.2: Comparing the classification performance of LDA and Updating at 

various training/test splits of the wine data.

Wine Data LDA LIpdate

50%/50% % Error 2.112 (1.475) 1.191 (1.020)

Brier 1.135 (0.722) 0.795 (0.652)

25%/75% % Error 4.433 (2.242) 1.940 (1.387)

Brier 2.650 (1.366) 1.273 (0.907)

10%/90% % Error 24.710 (11.169) 3.354 (5.166)

Brier 16.332 (7.471) 2.129 (3.162)

Table 5.3: Comparing the classification performance of LDA and Updating at 

various training/test splits of the full wine data.

Full W îne Data LDA Update

50%/50% % Error 

Brier

2.562

1.409

(1.750)

(1.040)

1.157

0.761

(0.977)

(0.642)

25%/75% % Error 

Brier

9.239

5.878

(3.957)

(2.591)

2.537

1.672

(2.210)

(1.452)

10%/90% % Error 

Brier

14.880

9.044

(5.853)

(3.711)

4.565

2.993

(4.170)

(2.685)
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the improvement achieved by using updating over LDA is reduced. It is interesting 

to note that the reduced dataset actuaUy provides better classification performance 

as the number of observations in the training set is reduced. This is mainly due 

to the reduction in the ability to accurately model the between and within group 

covariance matrices when the number of variables in the model is increased.

For both the wine datasets, the Brier’s scores are much lower than the percent­

age error. This indicates that correct classifications are based on observations that 

have high probabilities associated with the correct group, whereas incorrect classi­

fications are mainly due to observations that, while placed in the incorrect group, 

had relatively high probabilities of belonging to the correct group.

In projections for the incomplete wine dataset shown in Figure 5.3, where Barolo 

wines are in black, Grignolino are in red and Barbera are in green, again demonstrate 

w'hile updating has little influence on the I®*" discriminant projection, it causes the 

groups to be more compact in 2"*̂  discriminant projection. Figure 5.4(b) confirms 

this -  the values with updating for of each of the coefficients for the 2“'* discriminant 

functions are closer to zero than the values of the coefficients without updating.
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Fig. 5.3 : Linear discriminant analysis projections of the wine dataset. Figure 

5.3(a) is the projection for Fisher’s linear discriminant analysis; Figure 5.3(b) is the 

projection for the updating version, using a 50% training 50% test split of the data.
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Fig. 5.4 : The coefficients of the hnear discriminant functions of the wine dataset. 

Figure 5.4(a) is the discriminant fiuiction; Figure 5.4(b) is the discriminant 

fimction, using a 10% training 90% test split of the data.

5.2.3 M eats D ata

This dataset, containing 231 minced meat samples, was observed from 400-2498 nm 

(resulting in 1050 highly correlated variables). There were 32 Beef (Black), 55 

Chicken (Red), 34 Lamb (Green), 55 Pork (Blue) and 55 Turkey (Cyan) samples, 

the spectra of which are illustrated in Figure 2.7.

The performance of LDA with and without updating declines quite dramatically 

when the proportion of observations included in the training set is reduced to 10%. 

This 10% corresponds to a total of only 23 observations on which to build the original 

model. When this is split over the 5 groups, it is immediately apparent that, even 

when the training set is forced to contain at least one observation from each group, 

it is easily possible that the proportions of each meat type contained in the training 

set is unrepresentative of the entire data.

When comparing the projections in Figure 5.5 it is obvious that the main problem 

is distinguishing between Chicken (red) and Turkey (cyan) samples.

Examining the coefficients of the linear discriminant functions in Figure 5.6 it 

is apparent that while LDA focuses most of the weight on the visible part of the 

spectrum only, that updating places weight more equally between the visible part of
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F ig . 5 .5  ; Linear discriminant analysis projections of the NIR meat dataset. Figure 

5.5(a) is the projection for Fisher’s linear discriminant analysis; Figure 5.5(b) is the 

projection for the updating version, using a 50% training 50% test split of the data.
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Table 5.4: Comparing the classification performance of LDA and Updating at 

various training/test splits of the meats data.

Meats Data LDA Update

50%/50% % Error 4.638 (2.005) 4.586 (1.956)

Brier 1.758 (0.746) 1.834 (0.782)

25%/75% % Error 7.609 (2.429) 7.506 (2.472)

Brier 2.931 (0.951) 3.002 (0.989)

10%/90% % Error 18.270 (6.016) 18.040 (6.061)

Brier 7.028 (2.393) 7.216 (2.424)

the spectrum and on the combinations region. For all four discriminant functions, 

the coefficients of updating indicate that much more of the spectrum is used for 

clcussification pmposcs.

5.2.4 H oney D ata

478 honey samples (157 pure, 321 adulterated) were measured over the NIR region 

1100 2498 rmi with the goal of separating pure from adulterated samples, with the 

type of adulteration not of interest. This is an example of a dataset that updating 

is not boncfirial to classification performance.

Table 5.5: Comparing the classification performance of LDA and Updating at 

various training/test splits of the honey data.

Honey Data LDA Update

50%/50% % Error 8.134 (1.568) 8.276 (1.571)

Brier 7.756 (1.508) 8.276 (1.571)

25%/75% % Error 6.089 (1.288) 6.251 (1.258)

Brier 5.714 (1.272) 6.251 (1.258)

10%/90% % Error 10.350 (2.801) 10.420 (2.774)

Brier 9.781 (2.689) 10.420 (2.774)
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Fig. 5.6; The coefficients of the hiuiar (hseriiiiiiiaiit functions of the meats dataset. 

Figure 5.6(a) is the 1®̂ discriminant function; Figure 5.6(b) is the 2*̂  ̂ discriminant 

function, Figure 5.6(c) is the discriminant function and Figure 5.6(d) is the 4*"̂  ̂

discriminant function using a 50% training 50% test split of the data.
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Fig. 5. 7: Linear discriminant analysis projections of the NIR honey dataset. Figure 

5.7(a) is the projection for Fisher’s linear discriminant analysis; Figure 5.7(b) is the 

projection for the updating version, using a 50% training 50% test split of the data. 

Observations have been placed in (the same) random order so that the spread of 

points can be more ea.sily visualised.
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Fig. 5.8 : Linear discriminant analysis projections of the NIR honey dataset. Figure 

5.8(a) is the projection for Fisher’s linear discriminant analysis; Figure 5.8(b) is the 

projection for the updating version, using a 25% training 75% test split of the data. 

Again observations have been placed in (the same) random order so that the spread 

of points can be more easily visualised.
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In this situation the type of adulterant are used for colours -  blue is for beet 

invert syrups, red is for high fructose corn syrups, green is for fructose:glucose and 

black is for pure samples -  but not for classification purposes. Again, the tightening 

effect of updating is noticeable in Figure 5.7, but in this case, the tightening is not 

beneficial for classification purposes -  with some of the pure samples being much 

further away from most of the other pure samples than when LDA is applied without 

updating, leading to the big relative increase in the Brier’s score of incorrectly 

classified observations.

While not improving classification performance, comparing updating in Figure 

5.8(b) with ordinary LDA in Figure 5.8(a) does provide insight into how the adul­

terated samples are broken into two rather than three distinct groups -  with the 

samples adulterated with beet invert syrups separated from those adulterated by 

corn syrups and fructose:glucose solutions. This is of particular interest because 

the beet invert syrups and corn syrups w'ere used in a different original study to 

the fructose:glucose solutions -  so that these are not being grouped on the basis of 

the original pre-adulteration honey samples. This distinction is not evident in the 

50%/50% split of the data shown in Figure 5.7, but becomes evident as the relative 

influence of updating increases. That samples adulterated with beet invert syrups 

are separated from those adulterated by corn syrups and fructose:glucose solutions 

rather than those adulterated with fructose:glucose solutions being separated from 

those adulterated by corn syrups and beet invert syrups is particularly surprising as 

the pure samples can be easily separated according to the original study in Figure 

5.8(b).

The noticeable tightening of each of the groups in the projections illustrated by 

Figures 5.8(a) and 5.8(b) is also interesting as it demonstrates the main feature of 

using updating -  each of the groups contract towards their respective means. Due 

to the scale of the separation between the groups in Figure 5.8(b) it appears that 

the projected data have identical values; the values are indeed extremely similar, 

but not identical. The effect is magnified when there is a two group classification 

problem as the projection is onto a single dimension.
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Fig. 5.9: The coefficients of tlie hnear discriminant function of the honey dataset 

using a 50% training 50% test spht of the data.

5.2.5 Olive Oil D ata

Described in Section 2.2.3, this dataset comprises of a total of 138 observations -  46 

pure olive oil and the remainder adulterated at either 1% or 5%) with sunflowe'r oil.

Classifying the NIR olive oil data into pure and adulterated samples in Table 5.6 

provide interesting results. For the 50% and 25% training sets, updating does not 

alter the group probabilities -  the Brier’s score and percentage error are identical 

with and without updating. There is enough evidence available when 25% of the 

data (34 observations) are included in the training set, however, when this is reduced 

to 10% of the data (14 observations), the classification performance dramatically 

declines.

In Figure 5.11 black circles are pure samples and red are adulterated samples. 

Circles are observations that were in the training data, triangles represent test set 

observations classified as pure, whereas crosses represent observations classified as 

adulterated. Only one observation is misclassified -  put into the pure group, when 

it actually belongs in the adulterated group. While misclassified by both methods, 

as updating increases the separation between the groups, and reduces the separation 

within each group, the contribution to the Brier’s score for updating is greater.
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Table 5.6: Comparing the classification performance of LDA and Updating at 

various training/test splits of the olive oil data.

Olive Oil Data LDA Update

50%/50% % Error 0.188 (0.490) 0.188 (0.490)

Brier 0.188 (0.488) 0.188 (0.490)

25%/75% % Error 0.019 (0.135) 0.019 (0.135)

Brier 0.019 (0.135) 0.019 (0.135)

10%/90% % Error 9.392 (6.139) 9.232 (5.960)

Brier 8.849 (5.892) 9.231 (5.959)

Updating

500 1000 1500 2000

w aveleng th  (nm)

2500

Fig. 5.10; The coefficients of the linear discriminant function of the olive oil dataset 

using a 50% training 50% test split of the data.
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The ohve oils were extended using 1% and 5% of sunflower oil. In Table 5.7 

observations are classifed according to the level of adulteration i.e. 0%, 1% and 5% 

sunflower oil in the olive oil.

Table 5.7: Comparing the classification performance of LDA and Updating at 

various training/test splits of the olive oil data, using the levels of adulteration.

Olive Oil Data LDA Update

50%/50% % Error 2.696 (2.039) 2.681 (2.043)

Brier 1.704 (1.288) 1.787 (1.362)

25%/75% % Error 5.000 (2.479) 4.913 (2.463)

Brier 3.093 (1.568) 3.275 (1.642)

10%/90% % Error 27.360 (7.455) 26.97 (7.430)

Brier 17.052 (4.933) 17.973 (4.951)

5.3 C onclusions

Updating is a conceptually simple addition to Fisher’s linear discriminant analysis. 

It can significantly improve classification performance, especially when the training 

set is small relative to the total data. It is especially usefid in situations with 

nmltiple groups, where no single group can ])o identified as of particular importance 

relative to other groups.

However, updating methods should not be used blindly. When the assumptions 

of equal covariance matrices across groups fails and/or there is poor separation be­

tween groups (honey example), updating methods can hinder classification, even 

when the training set is small. For the examples in this Chapter the least extreme 

of the two discriminant functions provides the more reliable classifying tool when 

measured in terms of the Brier’s score. Table 5.1 for the iris data and Tables 5.2 

and 5.3 for the wine data are situations where the methods achieving the lowest 

percentage error also achieves the lowest Brier’s score in all cases. In such situations 

the shrinking of the group boundaries do not result in many changes in classifica­

tion and most observations are consistently pulled towards the correct group in the
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updating process. Figure 5.2 illustrates how the updating version yields discrimi­

nant functions less extreme than  traditional LDA for the iris da ta  while Figure 5.4 

dem onstrates the same for the wine data.

The improvement in classification performance achieved by using updating with 

a dataset as widely used and understood as the Iris da ta  indicates tha t using semi­

supervised linear discriminant analysis is a promising technique with possibilities 

for use in general applications.

The decision on whether or not to use a semi-supervised approach depends largely 

on the motivation behind the analysis. If the purpose of the analysis is for visual­

isation, then using updating is of more benefit - as the separation l^etween groups 

is more evident and easier to  visualise. This “tightening” of the groups increases 

the Brier's score for any observation incorrectly classified. If uncertain about the 

model assumptions, plotting the projections resulting from LDA and comparing the 

relative size of each group can give a good indication about the appropriateness of 

using updating if the groups in the resulting projected space arc very different in 

size, then using updating is unlikely to improve classification performance.

For the NIR datasets, as the number of variables is much greater, the effect 

of each individual variable on the overall discriminant score is reduced. The four 

discriminant functions illustrated in Figure 5.6 associated with updating for the 

meats da ta  are more extreme in the NIR part of the spectrum , but both methods 

place most of the weighting on wavelengths contained in the visible part of the 

spectrum. Performance-wise, it is extremely difficult to  distinguish the two methods, 

Table 5.4 shows how updating reduces the percentage error, but traditional LDA 

has a lower Brier’s score. This is due to updating shrinking the size of each group, 

increasing the distances between the centre of each group. As the group boundaries 

become more clearly defined, any incorrectly classified observations are further away 

from their true group than  before the updating process occurs.

The single discriminant function for the NIR honey data, both LDA and updating 

in Figure 5.9 show a very definite pattern. Both dem onstrate th a t most of the 

available wavelengths are equally im portant, but the difference in the scale of the 

weighting assigned to each wavelength is noticeable, with updating being far more 

extreme throughout the NIR spectrum. Despite the scale of the difference in the two
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discriminant fimction, the results shown in Table 5.5 show very similar classification 

performance, where LDA marginally outperforms updating. Even here, the updating 

process is not w ithout its benefits as it provides much clearer group boundaries.

The refining cffect of updating on the group boundaries is especially evident 

with the NIR datasets. Figure 5.5 illustrates some of the problems th a t may be 

associated with this refinement, namely th a t groups with ill-defined separation may 

be dragged closer together on some, if not all, of the projections, which may make 

visualisation of the separation difficult with many groups (and hence many discrim­

inant projections). The two group problems posed by the NIR honey and olive oil 

datasets (pure versus adulterated) pose different visualisation problems the single 

discriminant projection (Figures 5.7 and 5.11) can result in all the projected data  

points overlapping, making finding incorrectly classified observations more difficult 

to identify visually.
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Chapter 6 

Generalising Fisher’s Linear 

Discrim inant Analysis

6.1 Further G eneralisation

Section 5.1 makes an important assumption by assuming that all the groups have 

the same (.'ovariance matrices. As noted by Zhu (2003) finding the /’s that maximise 

equation (5.1) is equivalent to maximising the likelihood ratio:

arg max L/?(q;) =  argmaxlog
at,
UL

arg max
'  G N

EE
. 9=1 j = l

'39

V'27ra'S„a * \  2 a 'S „ Q  J

1 a ’ ( x j  -  H g ) { x j  -  t i . g ) ' n
-logQ 'E ga 2

a'Eg a

1 , 1 . 1 . 1 rv'(.T,- — u)(xi — ii)'n
— -  log 27t +  -  log 27t +  -  log a  EqO; +  -  •—

2

{ G N  

9 = 1  j = l

- - log o ;% a  -  -

a'Eoa

1 a ’{Xj -  /ip)(.Tj -  fi^Ya
a'Tiga

+  1 log
2  Z OLl^oOt

(6 . 1 )

Considering the eigen decomposition of the covariance matrix (3.3), Zhu (2006) 

extends LDA beyond Eg =  E =  X D A D '  to the common principal components 

model Eg =  Xg D A g D ' ,  of which Eg =  X g D A D '  is special case.
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6.1.1 Eg =  E =  XDAD' V g

When the shape of the overall covariance m atrix is unrestricted

^  (•'̂ J -  Zjg{Xj -  n) {xj -  fi)
N  ~  N

so that
1 o'{xj  — fi){xj — fi.ya N  a'EoO; NG N

a'EoOt 2 a ' t o a  2g = l  j  =  l  «

This is not dependent on a,  therefore can be ignored in the maximisation problem. 

The maximisation problem can thus be reduced to:

^ ^  '' ' a 'S o a \  a ' { x j  -  f i g ) { x j  -  H g ) ' a
argm ax LR{a) = arg max |  ^  ^  ^  log ("

a a  ̂ 2 \a ' i u g a lI 9=1 j = \  L \  a / a'SgOf

(6 .2 )

For the case of LDA, when =  S V g, which is equivalent to Eg =  XDAD',  

(6.2) can be further reduced using the identity:

G N

g = i  j = i

so that:
^  ^  Zjg a'{xj — /.ig){xj — iigYa N  a'Tiga NEE ?, . , 2 a 'E ,a  2 q 'E . o 23=1 J = 1 “ 9

Therefore, when Eg =  E V (/ (6.2) becomes:

f ^  z-
argrnax L/?(cv) =  a r g m a x < y ^ y ^

r\ r\ 1 ^ ^  /23=1 j=l
log ( 2 5 ^

I a 'E rt

/V , /  a 'E „ a
=  arg max — log — —̂  

" 2  a 'S a  ^

ft'EoQ' \
=  arg max log

arg max

 ̂ a 'E a  

a'SoQ :\
 ̂ a 'E a  j

which is equivalent to the maximisation problem posed in (5.1).

6.1.2 Ey =  A/

Assuming E^ to be a constant times the identity m atrix for all groups means th a t 

the likehhood ratio of (6.1) is comparing N{fig,Xl)  to N{ii ,'yl).  If E„ =  7^, then
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a'EoCk =  a'^yla — 'yla 'a  ~  7 . Similarly, as Eg =  XI, then a 'E ^ a  =  A. Thus the 

log term  in (6.1) is not dependent on a. The maximisation problem posed by (C.l)

then becomes:
G N

arg max
s = i  i = i

a ' { x j  —  i - i ) { x j  —  f iYa cx'{xj —  H g ) { x j  —  H g ) ' a

7 A
(6.3)

If VK =  Y.j=i Zjgixj -  Hg)(xj -  f^gY and T  =  E f= i ~  -  /O',

then (6.3) becomes:
a 'T a  a 'W

^  j  ■

Including the restraint th a t a 'a  =  1, to find a:

arg max

d
da

a 'T  a  a ' W a
2 7 2A

T

+  (/)(1 — a'  a)  

W

=  0

a  — —a — 2(f>a =  0

Since A =  (Bensniail and Celeux, 1996) and 7  =N p

T  _  W
7  A

-2(1)1 ] a  = { N p
T W

trace(T) trace(iy ) 
T  ly

trace(T) trace(iy )

2 ( / ) / 1  a  

-  2i)l  \  a  (6.4)

where xp =  4>/Np. Since a  ^  0, this becomes | T ____________w
trace(T) trace(w)

Find the eigenvectors of 

in order to find the a ’s.

w
trace(T) trace{w)

2^ 1} 0 .

, scale the eigenvalues appropriately

6 . 1.3 E g  =  \ g l

Assuming Eg to  be a (different) constant times the identity m atrix for each of the 

groups means th a t the likelihood ratio of (6.1) is comparing N{iJ,g, Xgl) to 

If Eo =  7-^1 then a'SoO =  a '7 / a  =  ^ l a ' a  — 7 . Similarly, as Eg =  Xgl,  then 

a'llga  =  Xg. Thus the log term  in (6.1) is not dependent on a  as it becomes

y  logcv 'a  +  y  lo g 7  -  X ]  ^  lo g a 'a  -  y  log Ag
9 = 1  9 = 1

which is equivalent to

y l o g 7 - J ] ]  y l o g A g .
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The maximisation problem posed by (6.1) then becomes:

G N

a r g m a x J ^ J ^ I ^
3 = 1  j  =  l

n'(xj -  -  nYa a'(xj -  fig){xj -  H g ) ' cY

7 A„
(6.5)

If W'ff = E l l  -  fhY  and T  = E l i  ~ “  /^)', then
N

(6.5) becomes:
(V T a  ^  Gt'WaO

- Largmax< —
" I 27 ^  2Â

Including the restraint that a'a =  1, to find a:

da
O/T. O '  V  ^  O t 'W n d  ,  ,

-  2^ - 7̂  + 4 > { l - o c a )
27 ^  2A,3=1

=  0

T  ^  \v
—a — ~ 2</>a = 0
^  3 = 1

20/  a  =  0

Since a  ^  0, and 7 =  similarly to (6.4) this becomes a matter

of finding the eigenvectors of -  E^=i trac^H-g) scaling appropriately

in order to find the a ’s

6.1.4 Tig — X g D g A g D g

If Eg is unconstrained across all groups, then:

Eg'=i E j= i ~ ~ 1̂ ) — T  and Ej/=i ~~ f^g)i^j ~  M3)
this case S„ = ^  and Eg = ^  then (6 .1) becomes:

f ^ n•Argmax LR{a) =  argmax< > [log(a'Soa) — log(a'SgO;)
rv rv  I * ^  /

ly,. In

.3=1
TV a'Ta E rig a'WgU
2 n 'Ta ^  2 a W . a  

3 = 1

=  arg max |  X J  ^  [log(a'E„a) -  log(o;'Ega)] |

=  arg max |  y  log(a'Sott) ~ S  ^  |

I iV  T  ^ n g
arg max — log(a — a) -  2 ^  y  

I  3 = 1

log(a —-a)Tin
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=  a rg m ax < — loefa'To;') logA'^arg max

G G

-  51 y  \ O g { a ‘ W g Q )  + ^  ^  log Ug

arg max

arg max (6 .6 )

Maximising (6.6) subject to a'a  =  1 (or (j){l — a'a) =  0) gives:

Ta

Solving for a is problematic, so using numerical methods, such as Newton Raphson 

algorithm, provide a more feasible approach. Section 6.1.5 outlines how the Newton 

Raphson algorithm would be applied when no information about the structure of 

the data is used.

6 .1 .5  N u m erica l A p p roxim ation s

Complications arise when it is not possible to eliminate the denominators involving 

both a  and covariance matrices from the maximisation problem posed by (6.1). This 

is more evident when one attempts to maximise (6.1) under general conditions.

1 a ' { x j  -  H g ) { x j  -  H g ) ' a

a'Jlga

S o f t  [{a 'T .oa)T a  -  {a 'T a)Y ,oa]

a'SoO: {a'T^oOiY

_  V  / r )  +  [ ( a ^ S g « ) H / g g  -  { a 'W g a ) T .g a ]
[a'^LgaY

Including the constraint that a'a. =  1 so that ^<^(1 — a'a) — —2(pa:

(7VS„ +  T )a  (a T « )E „ a
cv'Eoa (a 'S ,tt)2

(6.7)

107



Full details of these calculations are contained in Appendix However, as (6.7)

gives an expression for the gradient for a, finding an expression for the Hessian will 

facilitate the use of Newton Raphson to find a solution for a.

 ̂ (iVS„ + T) 2(NEo + T)aa'E^
,  lA{[a) =  - 2 0  +  
aaatr

{{a 'T a)T ,o  +  2HoOia.'T) ^  i{a'Ta)lloCca'T .o
{ a 'l lo o c f

+ E
3=1

G

9=1

2 { n g ' E g  +  W g ) a a ' E g  [ U g l l g  + W g )

{a'Egay
9 ‘- ‘9 

a'EpO

{ { a 'W g a ) 'E g  +  2 E g a a ' W g )  ^  A { a ' W g a ) E g a a ' ' E g

(a'E,a)=

(6.8)

Fvu'ther details of this calculation are in Appendix B.1.2. (6.7) and (6.8) are then 

used in the algorithm:

While |.9(a ')| > e where g{a) is the gradient of a, e is a predetermined tolerance 

value and I I (a) is the Hessian at a:

1. a* =  — [ / / ( a '“^)]~\^(Q;*“ *)

2. i = i -j- 1

Then return a '

6.2 C onclusions

Linear discriminant analysis constrains the covariance matrices to be equal across 

groups, with no further constraints imposed on the structure of the covariance matri­

ces. By considering it in a likelihood ratio context further possibilities for imposing 

structures on the covariance matrices are explored. Most of such structures can 

not be easily solved analytically, but a framework for a numerical approach is ex­

plored. As the equations in Section 6.1 all use Zjg as an indicator variable for group 

membership, using the same approach as Section 5.1.3 of replacing these indicator 

variables with zjg becoming the probability of observation j  belonging to group (/; 

the mathematics of Section 6.1 can also be extended to include a semi-supervised 

framework.
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LDA has shown itself to  be remarkably flexible, depending only mildly on the 

underlying model assumptions. As the extra com putational burden involved in 

finding approxim ate solutions to  the maximisation for the covariance structures 

examined by Ccleux and Govaert (1995) is significant, using this generalisation is 

only appropriate when the assumptions of LDA fail dramatically.

As currently implemented, the extensions of LDA in this chapter are not suited 

to NIR d a ta  - the dimensionality of the problem is ju st too high, the m atrix inver­

sions required are too unstable for ongoing practical use. Future work will include 

the optim isation of code to enable the more general covariance structures to be 

considered for higher dimensional data.
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Chapter 7

Conclusions and Further Work

7.1 C onclusions

The main emphasis of the work undertaken towards this thesis was the development 

of statistical techniques for Near Infrared data, with particular focus towards food 

authentication applications with some smaller dataisets were used for illustration 

purposes. As the goal was to develop methods for “real-life” datasets, no results for 

simulated datasets were presented in this thesis. However, simulated da ta  was used 

in the development of the methods when trying to understand the complexities of 

when the various methods studied worked and what was the main reason for when 

they failed.

Various approaches for the utilisation of the discrim inatory information con­

tained in NIR spectra have been examined in this thesis. Given the large number 

of variables in such datasets, even if it is not required for a given classification tech­

niques, dimension reduction aids in the visualisation of the groups and hence the 

identification of unusual observations.

7.1.1 D im ension  R eduction  Techniques

Dimension reduction in some form, be it as part of the  classification process as with 

the projection methods in Chapter 5 or with variable selection as in Chapter 4 or 

before the classification process begins in earnest as in the model-based methods of 

C hapter 3, is required before the highly collinear variables produced through NIR 

spectroscopy can be utilised in a model-based classification framework.
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Each of these dimension reduction approaches is found to have advantages and 

disadvantages in this thesis.

W avelet Thresholding:

To avoid discarding much of the spectra, the visible spectrum must be combined 

with the NIR spectrum, so that there are close to, but slightly in excess of, 2" 

wavelengths. Classification using wavelet thresholding as a dimension reduction 

tool does not enable the identification of which particular wavelengths provide the 

discriminating information. However, wavelet thresholding is suitable for situations 

with more than two groups and does not require labelling information, so that it 

can be applied to all data before the classification process commences.

Variable Selection prior to  classification:

In Chapter 3 using B/ W,  B  +  W  and {B/W,  B  +  W)  to select variables before the 

classification process was found to be particularly effective when used in association 

with BIC as a model selection tool. However, determining what is to be considered 

a local rnaxinmm is open to some interpretation if the local region is too small and 

the curves are jagged, this can lead to poor dimension reduction, as in the olive oil 

example of Chapter 4 where the local region was the same number of wavelengths 

as with the honey data, but as the curves were far more jagged, more wavelengths 

were selected than would typically be desired.

Searching the Space:

The process of searching the entire spectra illustrated in Chapter 4 is not practi­

cal when applied to most classification techniques with large numbers of variables. 

However, it provides a valuable insight into which wavelengths can be used to dis­

tinguish groups additional information that chemists can use to cross-check the 

classification method.

Projection onto a Lower Dim ensional Space;

PLS and LDA (with and without updating) both use a form of projection so that the 

entire spectra is projected onto a lower dimensional space as part of the classification
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procedure. Both have the advantage over wavelet thresholding in th a t they can use 

all available wavelengths and dimension reduction occurs alongside classification, 

both  suffer from the same problem as wavelet thresholding by not providing easily 

identifiable individual wavelengths where discrimination occurs.

7.1.2 Identification  of A dulterated  Sam ples

Both the NIR honey and olive oil datasets require the separation of pure and adul­

tera ted  samples. W hen the training set was sufficiently large (25% of the data or 

35 samples) there was enough evidence available to reliably detect the adulteration 

of olive oil with sunflower oil. In such cases the m ethod of dimension reduction 

m attered little. The honey data  proved more problematic although more obser­

vations were available on which to build the models, the adulteration mechanism 

used m eant th a t composition of honey samples, already extremely variable in na­

ture, were echoed by the adulterants used. Partial Least Squares Regression proved 

to bo the most consistont classification tool for the honey data, closely followed by 

using the combination of [B/W^ B  + W)  for dimension reduction with model-based 

discrim inant analysis techniques.

The projections provided by Semi-Supervised Linear Discriminant Analysis give 

further insight into the behaviour of the honey samples, with the beet invert syrups 

separated from the other types of adulterants, despite the labelling of pure or adulter­

ated being used for classification purposes. This indicates th a t the semi-supervised 

LDA is able to detect underlying groups without the additional labelling informa­

tion being provided. This difference between the types of adulterated samples is not 

apparent when using traditional LDA.

7.1.3 C lassification for M ultip le G roups

Applying the semi-supervised framework to the all of the examples with multiple 

groups (iris, wine and NIR meats datasets) improves classification results, even 

when, as discussed in Section 5.3, the Brier’s score is increased. The NIR meats 

dataset is a  good example of a multiple group problem, where no single group can 

be identified as being more im portant than others. The projections of LDA (with and 

w ithout updating) allow for the easy visualisation of the various groups. Although
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updating only marginally improves classification performance, the group boundaries 

are more clearly defined and hence more easily identifiable.

7.2 Further W ork

7.2.1 R package

As R is freely available and non-platform dependent, it is the ideal candidate to 

use as a base package reach beyond those with current access to chemometric soft­

ware. Creating an R package to implement the semi-supervised methods developed 

throughout this thesis will thus enable the methods to be used by a broader audience. 

The development of such an R package will require the thorough documentation of 

the associated functions.

7.2.2 Im plem entation  o f generalised F isher’s LDA

The generalisation of Fisher’s LDA to relax the assumption of equal covariance 

matrices across groups is a computationally difficult process, which may not be 

rewarded by a corresponding improvement in classification performance. Incorpo­

rating a semi-supervised framework into this generalisation process adds to the com­

putational cost, requiring additional emphasis to be placed on improving computa­

tional efficiency for a practical implementation of the method. This improvement in 

computational efhcicucy is most likely to be obtained by implementing some of the 

more computationally burdensome part of the algorithms in a compiled language 

such as C.

7.2.3 Variable Selection

A further exploration of the use of the relationship between \ / V  and optimal r  

to select wavelengths on the basis of /„ =  1/V^ when one group is of particular 

interest is needed. The dependency of the variables selected on the variable selection 

technique used is also of further interest. Including variable selection into the model- 

based discriminant analysis methods of Chapter 3, especially using the subset of 

variables chosen using /o =  1/V" for two group classification problems would enable
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further insight to be gained as to what chemical bonds enable discrimination between 

groups.

7.3 Final C om m ents

The goal of the work undertaken in this thesis was to develop statistical methods 

for XIR datasets that could be efficiently undertaken without specialist computing 

facilities. Not only have such methods to be computationally efficient, but also must 

be easily understood by chemists if they are to be adopted over existing methods. 

Thus methods developed in this thesis were designed to be as simple to explain to 

chemists as possible.

Chemists are ciu’rently content to use methods such as PLSR where they have 

little understanding of the underlying algorithm. The algorithms used in the meth­

ods introduced in this thesis are more generally more transparent than those in 

current use, with the possible exception of using wavelet thresholding to reduce the 

dimensionality of the space rather than using a variable selection approach.

The improvement in computation time achieved by using a complexity criterion 

rather than using cross validation for selecting the number of components to use with 

PLSR is significant. W ith the possibility of improving both speed and accuracy 

of prediction using a familiar technique, this combination offers the most likely 

candidate for early and widespread adoption within the spectroscopy community of 

the methods developed in this thesis.

Using a constant threshold, as investigated in Chapter 4, rather than a threshold 

that is a function of the data offered an especially simple concept that appealed to 

chemists, but did not provide a robust classifier for the discrimination problems 

investigated in this thesis.

Semi-supervised linear discriminant analysis is the most promising of the new 

techniques in that it combines a simple concept with a useful contribution towards 

improved classification and /  or visualisation of groups.

In order for alternative methods to be adopted by the chemists who use NIR, they 

should also present some obvious benefit over currently used methods - measuring 

the uncertainty of individual classifications and improving on computation time

115



being areas th a t are of particular relevance.

As all of the methods developed were implemented in R, the techniques can be 

freely used on a variety of different com putational platforms, and offer a significant 

cost saving over existing procedures, while allowing extra modelling flexibility to be 

incorporated by the user if desired. There is a learning curve involved with using R for 

chemists, however, as many are using MATLAB and similar command line programs, 

the additional flexibility should com pensate for the effort involved. As part of a 

fully documented R package, the im plem entation of the methods introduced in this 

thesis provide a faster, more flexiljle and less expc^nsive option than the methods 

currently used by chemists to analyse NIR data.

The methods developed in this thesis are designed to be used by chemists. There­

fore, extensions of existing methods were the main focus of the thesis -  the familiarity 

of the methods on which they are based serves to encourage the early adoption of 

the newer methods.
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A ppendix A

D etails of Calculations

A .l  R otation

In order to find a suitable rotation of W  so th a t it takes the form of an identity 

m atrix  recall that;

If y4 is a A: X /c positive definite m atrix with the spectral decomposition:

k
4 - 5 ^  Ae^e' =  PA P '

1 = 1

where the normalised eigenvectors are the columns of m atrix P  and where A is a 

diagonal m atrix, with the eigenvalues A as the diagonal entries then

k

A-  ̂= PA-^P' = J 2 y ^ i  (A.l)
i=l '

Now similarly if A^/^ is the diagonal m atrix with \/Xl as i t ’s ith  diagonal element;

k
/ l i / 2  =  ^  =  P A i / 2 p /

i=l

and where A has as i t’s ith  diagonal entry

k ^
^-1/2 ^  - = e ie [  = PA-^/'^P' (A.2)

,=i

Now for a covariance m atrix E, using the transform ation a =  and recalling 

th a t since E is symmetric, so is E^/^, as is Thus

= rE^/^E-^/^BE-^/^E'/^/ = I'Bl
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and the maximisation problem then becomes

I'Bl
max =  m ax--------------------- .

/'E/ a'a

This is maximised when the ratio is Ai, which occurs when a — e^. Thus ci =  

a =  so l\ =  Similarly for the remaining eigenvectors

Considering Cj and Aj as an eigenvector and eigenvalue pair of then

Then multiplying (A.3) by and using the results of (A.l) and (A.2)

v - i / 2 2 - i / 2 ^ 2 - i / 2 g ,  ^  A i E - i / 2 g ,

So that the inverse of the covariance matrix W  does not need to be found directly.

I'V̂ can be written in the form W  =  A'A, where A has dimension N  x p. Finding 

the singular value decomposition of A is more efficient than finding that of W  if 

N  x G  < p

The rotation required is then ABA'  and recalling that s =  min(G — l,p ) so that 

Cl . a r e  the largest s eigenvectors of ABA',  then the coefficients for Fisher’s Linear 

Discriminant Analysis are

a  =  A 'e \,, ,s
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A ppendix B 

D etails of Num erical 

Approxim ations

B .l  N um erical A pproxim ation o f a. 

B . l . l  Gradient for a

da

'  G N

EE
, g = l  j = l

a'llgO

2 2 o'EoO

• s=i

a

ng , 1 a 'Ta  n ,  , 1 a'l'VgO;

-
3 = 1  

G (

= E

rig , 1 a T a  Ug l a ' W g a
y  ‘°S“ + 2 ^  -  Y  loga E.a -  - -2 tt'SgO:

9=1
A
5a

da
n
f  log a'SgCv

A
9a 

d
da

1 a'Ta
2 a'Soa

1 a'Wga
2 a'SgO

E l /irt d  r . , 1 d
T a ; [‘“8 “ ^"“ 1 + 9 a ;

3 = 1

a'Ta
a'Tina

^  ri /v' 1 a'WgO
a'Tjga (B.l)
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Considering each of the components of (B.l):

[log a'T̂ oOi] =
da

^  [loga'S^a]

2S(,a
q'S qO:

2E^a
a'EgO;

da
a'Ta
a'EoCe

{a 'T .oa)^{a 'Ta) -  {a 'Ta)^{a 'T .„a)
{a'T^ooY 
[2(a'Soa)Ta — 2{a'Ta)T,oQ 

{a 'K a y

A
da

a'Wga
a'SpQ (a'E,a)2 {a % a )-^ {a 'W ,a )  -  {a 'W ,a )-^ (a % a )

[2{a'i:ga)Wga -  2(a'VKgO)Sgtt]

So that (B.l) becomes:

~ L R { a )  = t I - -da [ 2 a0=1

.a

= E
<?=i

{CE,ay-

Ug 2Eoa 1 [2(a'E„o:)Ta — 2{a'Ta)T,o
^  ^  2 (a'So»)2

n<, 2 E ( ,a  1 [2 (n ''E gO ;)W ga — 2 { a ' W g a ) ' E g

2 a'T,ga 2 {a'Tigo)'^

_ SqQ;  ̂ [(a'Soa)T'Q; — (Q'Ta)EoQ:]
n “1“

a

'’s „,/a'EoCV

-n
 ̂a'Tjga

(a'E„a)2

[(«'Eg«)VK,a -  (a'M^^ajEga] 
(a'E,a)2

E ( , a  [ ( o ; ' E o a ) T a f  — ( q : ' T q : ) E o Q: 

a 'E „a  ^  
a

- Y . < n ,
3= 1

(a'E„a)2

E^a ^ [ { a ' T , g a ) W g a  — { a ' W g a ) Y j g a ]

a'Y,ga (a'Ega)^

Including the constraint that a'a  =  1 so that ^</>(l — O-'a) =  —20a:

^ i  i  [(a'Eoa)Ta -  (aTa)Eoa]—  L/?(a) =  -2</.a +  A T - ^  +

-2(/)a + 

G

- E
fl=i

a'Eoa ' (a'Eoa)^
(A^Eo +  T )a  (a 'T a)E „a

a'EnO (a'Soa)^

(n^Eg + Wg)a (a'M'ga)Ega
a'Tiga (a 'S .a)

(B.2)

Solving for a  here is non-trivial. However, (B.2) is the gradient for a. Calculating 

the Hessian will facilitate the use of Newton Raphson to find the solution for a.
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B.1.2 Hessian for a

9" , B f(JVE. +  r ) a  (a'Ta)E„a^ L R ( a )  = -20+  — --------------------

E
<7 = 1

ya (a'E„a)2
( n - g E g  +  W g ) a  { a ' W g a ) ' L g O

a'T,ga (B.3)

Examining each of the sections of (B.3):

t  ]  =  w h f

a  /  (n ,S , + W,)a  I  ^  |(„ 'E ,a )(« ,E , +  W,) -  2(„ ,E , +  W,)ac,'E,]

d
da' a'TigO.

da' [(a'T’o;)Soa] = {a'Ta)'Eo + 2T,gaa'T
d

da

a
da'

{a'Ta)Tioa
(a'S„a)2

(a'Wga)Ega

 ̂-  [(a'S„a)2] = 4(a'Eoa)a'E„

ja'^oay [{a'Ta)'!uo +  2Eoaa'T] -  4{a'Ta){a'Eoa)E„aa'Eo
(a'Eoa)*

{ a ' E g a f  [ { a ' W g n ) E g  +  2 E g a c y 'W g ]  -  A { n ' W g n ) { n ' E g n ) E g a o ' i : g

{a'Egaf 
leads to the Hessian being:

(a'E.a)^

5 2  (7VE„ +  T) 2(yVE„ +  T)aa'E„—  L/̂ (a) = -20 +
a'E„cv (a'S„a)2

((a 'T a)So  +  2E„aa'T) ^  4(a'Ta)E„ao:'Eo
(a'E„a)̂ (a'E„a)3

+ E
5 = 1

G

s=i

2(n.gEg + l4/g)ao; Eg {I'^ĝ g +  ^<7)
(a'Ega) a'Ega

{{a'Wga)Eg + 2Egaanyg) ^ 4(aWga)EgCia'Eg
(a'EgO')2 (a'Sga)̂
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