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Sum m ary

Inverse regression is a tool to predict an unknown explanatory variable for given 

observations of a response variable in a regression problem. The prediction problem 

is usually carried out in two stages: firstly, to fit the model relationship between 

the variables, and secondly, to predict the unknown explanatory variable. Both 

the problems, model fitting and prediction involve considerable computational bur­

den. Previous work on the Bayesian approach to the problem have used MCMC, 

INLA and other numerical methods. This thesis aims to present an alternative 

fast variational Bayes (VB) approximation to Bayesian inference for inverse regres­

sion problems which claims to avoid the limitations of previous work. The VB 

method assumes independence between the parameters in the posterior distribution, 

thus provides fast approximations to Bayesian estimation problems. In contrast to 

INLA, it can be applied to models with many unknown parameters. In the thesis, 

the VB method is applied to a wider class of inverse regression problems classified 

into two classes: inverse latent regression and inverse non-latent regression which 

present challenges for the method’s accuracy and tractability. The VB method it­

self is not without limitations. Quick VB solutions are obtained at the cost of some 

loss of accuracy. Also, tractable appHcation of the method is limited to conjugate- 

exponential (CE) models. It is attempted to increase the accuracy and tractability 

of the method outside CE models with the use of further approximations, such as a 

Gaussian approximation.
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Chapter 1

Introduction

Inverse regression forms a class of statistical calibration problems that has impor­

tant application in the fields of geology, biomedicine, archeology, palaeoclimatology, 

econometrics, astronomy etc. Interest lies in predicting the explanatory variable 

for a new observation(s) of the response variable. For example, consider a classical 

example of calibration for a dose of vitamins and weight gain of a chicken. It might 

be of great importance to infer the unknown amount of vitamins responsible for a 

desired weight gain. Another example of an inverse regression problem may be to 

estimate the unknown age of a specimen (in archeology), or to predict past cHmate 

in palaeoclimatology. Cahbration problems can be very time consuming, expensive 

or very difficult to implement. Inverse regression performs the calibration in two 

stages. The first stage fits the model relationship between the variables, and the 

second stage uses the model fitting to predict the unknown explanatory variable for 

new values of the response variable. Both the stages of inference involve consider­

able computational burden. In this thesis the inference problem is performed in the 

Bayesian framework which is often analytically intractable or computationally ex­

pensive. The aim of the thesis to present fast approximations to Bayesian inference 

for multi-dimensional and complex inverse regression problems.

Hoadley (1970) proposed a Bayesian solution to an inverse linear regression prob­

lem, emphasizing the importance of a proper choice of the prior distribution in case 

of few data. The author did not follow the usual Bayesian approach for parameter 

estimation (model fitting) but stuck to least square estimates of the regression pa-
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rameters to avoid the difficult Bayesian computation. Hunter & Lamboy (1981) also 

added their contribution to the Bayesian study of inverse linear regression problems. 

They used Bayes theorem and derived a joint posterior density of the regression pa­

rameters and the explanatory variable. The author had to depend on a Gaussian 

approximation to compare the result with previous Bayesian solutions to the in­

verse problem. The methods by Hoadley (1970) and Hunter & Lamboy (1981) 

are restricted to only simple lower-dimensional inverse linear regression problems. 

Racine-Poon (1988) discussed a Bayesian solution to a multi-dimensional inverse 

non-linear regression (non-linear calibration) problem that used a Gaussian approx­

imation for the model fitting. This was based on the Gauss-quadrature approach and 

Laplace approximation to evaluate an integral w'hich may not be appropriate if the 

parameters departs from Gaussianity. Also, it is suitable for only low-dimensional 

inverse regression problems as it depends on a numerical integration method to 

predict the explanatory variables.

The prediction problem of Haslett et al. (2006) can be termed as inverse latent 

regression. It used the inverse regression to predict past cUmate of a (palaeoclimate) 

latent model. Haslett et al. (2006) used Markov chain Monte Carlo (MCMC) but 

it did suffer from slow convergence. Salter-Townshend (2009) applied integrated 

nested Laplace approximation (INLA) of Rue. et al. (2009) for the palaeoclimate 

reconstruction problem of Haslett et al. (2006). The INLA method provides quite 

accurate results but is limited to Gaussian latent models with a few number of 

parameters. Vatsa &: Wilson (2010) presented a variational Bayes approximation 

for the palaeochmate reconstruction problem of Haslett et al. (2006). The method 

of Vatsa & Wilson (2010) can be applied to the models with several parameters but 

it may be slower if there are many predictions to be studied independently at a time.

This thesis aims to provide an alternative fast Bayesian approximation to a wider 

class of inverse regression problems (inverse latent and non-latent regression) using 

the variational Bayes (VB) method. Contrary to the method of Vatsa & Wilson 

(2010), the work in the thesis uses the concept of two stages of inference and presents 

the VB approximations for the parameter estimation and for the prediction problem 

separately. It is believed that the method avoids the limitations of previous work
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in the field of inverse regression problems, though the method itself is not free from 

some drawbacks. The thesis explores the accuracy and the tractability of the method 

and attempts to make it amenable to complex models with a little compromise in 

the computational speed.

1.1 Overview of the chapters

A brief outhne of the research presented by chapters in this thesis follows.

Chapter 2: Statistical M ethodology

The inference work of the thesis is carried out in the Bayesian framework hence a 

brief introduction to the Bayesian statistics is given in the chapter. Some popular 

methods of Bayesian computation classified into two categories: simulation based 

method e.g. Monte Carlo methods, and functional approximation methods such as 

INLA, Laplace approximation and Gaussian approximation, are discussed, which 

provides a base to the comparative study of the variational Bayes method used in 

the thesis for Bayesian inference in the inverse regression problems .

Chapter 3: The variational Bayes Approxim ation

The variational Bayes (VB) method used throughout the thesis, is described in the 

chapter. The background and the past study of the method is briefly discussed. A 

comparative study of two approaches of the method by Beal (2003) and Smidl & 

Quinn (2006) respectively is presented. Two other variational methods, Gaussian 

variational approach and variational tangent approach, are also discussed briefly 

which are used in the thesis to compare the results by the VB method. It is be­

lieved that the method provides fast approximations to Bayesian inference problems. 

Therefore, the VB method is compared with other Bayesian computation methods 

e.g. Laplace approximation, INLA, MCMC method, for its accuracy, speed and 

tractability.
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Chapter 4: V B  approxim ation for Inverse Non-latent Linear Regression

The aim of the chapter is to provide the VB approximations for non-latent regres­

sion problems. The inverse non-latent regression is introduced through two type 

of regression models: conjugate-exponential non-latent models and non-conjugate- 

exponential non-latent models. The conjugate-exponential non-latent models are ex­

plained via two regression models, simple linear and quadratic regression. The non­

conjugate-exponential non-latent models are described through Poisson regression, 

mixture of Poisson regression and zero-inflated Poisson regression models. Bayesian 

analysis of inverse regression is described. The VB approximation to reduce the 

complexity of the Bayesian computational problems in inverse non-latent regression 

problem, is presented for inverse simple, quadratic, Poisson, mixture of Poisson and 

zero-inflated Poisson regression problems. The intractability issue of the VB method 

is explored for non-conjugate-exponential models. The VB approximations for the 

inverse non-latent regression problems are performed using simulated data. The VB 

result is further compared with the results from other methods, e.g. MCMC, vari­

ational tangent approach, Gaussian variational tangent approach and that of the 

previous work in the field of inverse linear regression problems.

Chapter 5: V B approxim ation for Inverse Latent Regression

Chapter 5 describes the VB approximation inverse latent regression models. Two 

types of latent regression models are considered: latent non-random effects models 

and latent random effect models. The Poisson latent regression model is considered 

to explain the latent non-random effects models. The latent random effects models 

are explained by two models: Poisson latent random effect model and zero-inflated 

Poisson random effect models. The same intractability issue of the VB method for 

non-conjugate-exponential model is further explored via these three complex mod­

els. An algorithm based on a Gaussian approximation of Rue & Held (2005) and the 

VB method is developed to deal with the intractability problem. The VB approxi-
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mations for these inverse latent regression problems are performed using simulated 

data. The VB results are compared with the results by INLA for the accuracy and 

the computational time of the VB method.

Chapter 6: V B  approxim ation for Palaeoclim ate R econstruction problem

The VB approximation for a complicated inverse latent regression is described via 

the palaeoclimate reconstruction problem of Haslett et al. (2006). The palaeoclimate 

reconstruction is an example of a complex latent regression problem that challenges 

the tractability and accuracy of the VB approximation. The VB solution for the 

inverse latent regression problem with the palaeoclimate data provides some insight­

ful study of the limitations of the approximation which leaves some room for future 

work in this field.

1.2 Research Contributions

The research contributions of this thesis are listed as follows;

1. Inverse regression problems are explored and studied via two categories of 

models: latent models and non-latent models. In past literature, the inverse 

method is applied mostly in linear regression problems. The thesis extends 

the class of inverse regression problems to latent and non-linear models and 

presents a Bayesian solution.

2. The variational Bayes approximation is presented for the Bayesian inference 

in a wider class of the inverse regression problems. In Chapter 4, the VB 

approximations for inverse (non-latent) linear, quadratic and Poisson, mixture 

of Poisson, zero-inflated Poisson regression models are presented. In Chapter 

5, The VB approximation for inverse latent regression problem is presented for 

three models: Poisson latent model, Poisson latent random effect model and 

zero-inflated Poisson latent random effect model. The VB approximation for 

a very complex multi-dimensional palaeoclimate reconstruction problem (an 

example of inverse latent regression models) is presented in Chapter 6.
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3. The inverse non-latent (Poisson, mixture of Poisson and zero-inflated Poisson) 

and inverse latent regression models allow us to explore the tractability of 

the VB method for non-conjugate-exponential models. An attem pt to reduce 

the intractability of the method for such complex models is made through 

further approximations such as a Gaussian approximation. The accuracy of 

this approximation is explored.



Chapter 2 

Statistical M ethodology

In this chapter, to have a better understanding of the inference procedures used 

throughout the thesis, relevant statistical methods are introduced briefly. In Sec­

tion 2.1, the Bayesian statistical methodology is described, which is the inference 

approach of the thesis. Section 2.2 discusses Gaussian Markov random fields in­

cluding the Markov property to help explaining the approximations to statistical 

inference methods described in the next sections. In Section 2.3, a directed acyclic 

graph is defined for a simple understanding of a complex model. Methods to ap­

proximate statistical inference are classified into two categories: simulation based 

and functional approximations, defined in Sections 2.4 and 2.5 respectively. Some 

other statistical tools are explained in Section 2.6.

2.1 Bayesian Inference

In Bayesian inference, probability quantifies uncertainty and is interpreted to be 

subjective. Therefore state of knowledge about any unknown is given by a prob­

ability distribution that is one’s degree of belief. Bayesian inference is a way to 

modify one’s belief in light of observed data by using Bayes’ theorem. A modified 

belief is then called posterior belief and provides the probabilistic inference about 

an unknown parameter in light of data. Prior and posterior belief are quantified as 

prior and posterior distribution. A detailed introduction on Bayesian inference can 

be found in Lee (2004), Bernardo & Smith (1994), Box & Tiao (1992).

7
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2.1.1 Prior D istribution

As mentioned above, the prior distribution is one’s belief based on prior assumptions 

(or knowledge) about a param eter. Suppose interest lies in making inference on a 

set of unknown param eters denoted hy 0 = {Oi,02,. . .  ,0p}. If prior knowledge about 

the param eter 9 from past study or expert’s opinion is considered prior to  observing 

data, it provides a probabilistic statem ent about 9 and is denoted as P{9).

As prior belief is subjective, it is an im portant question how to choose a prior 

density P{9)  in order to  make an inference about 9. If the size of data  is small, 

the nature of inference is much influenced by the choice of prior. On the other 

hand, the prior distribution has little impact on inference if the data  size is large. 

Different choices of priors, term ed as prior elicitation, are discussed in detail later 

in the chapter.

2.1.2 Likelihood

A model defining a relationship between a param eter 9 and a set of observed data 

denoted as y  =  {Yu y2 i • • • ? Ynl be expressed via a conditional probabilistic 

statem ent or a probability density function (p.d.f) denoted as P{y\9).  The term  

P{y\9)  is a function of data  y given a fixed (unknown) value of 9. Likelihood is a 

function of 9 given da ta  y, denoted by L(9\y),  to draw' inference about 9 such th a t 

it should extract all the possible information provided by data. It can be expressed 

as:

L{9\y) = P{y\9),  (2.1)

for i.i.d y  =  { y i,y 2 , • ■ ■,y„},

n

(2-2)
j = i

The likelihood L{9\y)  is not a probabilistic statem ent over 9 given y. Unlike P (y |0 ), 

it is not a p.d.f of 9. It should not be expected to  integrate to one.
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2.1.3 Posterior D istribution

A posterior distribution can be interpreted as belief or knowledge about an unknown 

param eter in light of observed data. It is a probability density function of an un­

known param eter 6  given data y, denoted by P { 6 \y).  Given the likelihood L{9\y)  

and a prior distribution P{0),  the posterior distribution P{9\y)  can be com puted by 

Bayes’ law as:

The term  P{y)  is called the marginal likelihood of d a ta  and is expressed as:

The marginal likelihood is often used in model checking, e.g. Bayes’ factor.

The posterior distribution P{9\y)  can be expressed as proportional to the product 

of P{ 6 ) and P (y |0 ). One should normalize P{0\y)  to  express it as a p.d.f.

In most statistical problems, the param eter 6  is multidimensional; d =  { 6 1 , 6 2 , dp 

Bayesian inference on the components of 6  can be studied through their marginal 

posterior distributions. To compute the marginal distributions, integrals over the 

dimension of 6  are required:

where =  { 6 1 , 6 2 , ■■■, ^ i-i, ^i+i , . . . ,  6 p}. Given the d a ta  and the prior belief, a 

summary of the knowledge about a param eter can be given by a point (posterior) 

estimate and an interval estimate. These estim ates are some function of poste­

rior distributions which again requires the com putation of some multi-dimensional 

integrals. The expectation of a function of 6 , denoted as h{ 6 ) can be defined as:

P{6)P{y\0)
(2.3)

(2.4)a  P { 6 ) P{ y \ 6 ).

P{y)  =  [  P { 6 ) P{ y \ 6 )d6 . 
Je

(2.5)

P i W  =  [ P{6\y)d9.
J 0 - i

(2 .6 )

M^)P(0|y)d0 (2.7)
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Solving integrals is therefore a necessary task in Bayesian computation. More often, 

the multi-dimensional integrals are either computationally intensive or intractable. 

In such cases, we rely on distributional or simulation type approximations discussed 

later in the chapter.

2.1.4 Prior E licitation

Prior elicitation is a process of choosing a prior distribution that represents one’s 

belief about an unknown. To make inference on an unknown, one’s belief should be 

extracted and incorporated into a probabilistic statement. Selection of priors is an 

important question as it may have an impact on inference result. There are some 

important classes describing different properties of priors:

1. For computational ease, priors are often chosen such that the prior and the 

posterior belong to the same class of distributions. Such priors are called 

con ju g ate  for the likelihood. Conjugate priors may not represent one’s belief 

accurately, but are chosen for the tractability of the corresponding posterior 

distribution (Lee, 2004). Given a standard form of distributions a conjugate 

prior is proper, though, it may belong to a non-informative class of priors 

(see below) depending on the values of its hyper-parameters. The choice of 

hyper-parameters play a strong role in defining a prior. If substantial prior 

knowledge about an unknown is available, the choice of prior should reflect 

ones’s prior belief. In case of ‘no or little knowledge’ about an unknown, the 

hyper-parameters should be defined so as to present a non-informative prior. 

For example, with a large variance, a normal or a Gaussian prior is proper but 

reflects little knowledge about an unknown parameter.

2. A proper prior with a strong prior belief about an unknown, not necessarily 

be conjugate, can be termed as an in fo rm ative  prior. It should match to 

one’s belief, as with insufficient data a wrong selection of prior may lead to an 

inappropriate posterior distribution.

3. In the case of a little prior knowledge, a prior should be designed to express 

the ignorance about an unknown. Reference priors, locally uniform priors and
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Jeffery’s prior are some examples of n o n -in fo rm a tiv e  priors. These priors 

do not belong to the family of standard distributions. They are im p ro p e r  

densities, i.e. they do not sum or integrate to  one. An example of such priors 

could be a uniform density over an infinite range, reflecting no specific prior 

knowledge about the param eter. Improper priors may yield proper posterior 

distributions with a sufficiently informative da ta  likelihood. A detailed dis­

cussion on such non-informative and improper priors can be found in Box & 

Tiao (1992).

Different classes of priors are discussed in Lee (2004) in detail.

2.1.5 Predictive Posterior D istribution

In some cases, the interest also lies in making prediction on future observations. A 

predictive posterior distribution is a distribution of future observation given current 

data. The prior distribution of a future observation is the same as the p.d.f of 

current data. If y =  {yi, y2 , ■ • ■, yn} are current d a ta  and 9 is the model param eter, 

the predictive posterior distribution of future observation y„+i is:

The posterior distribution of 9 given current data  should be known in advance 

in order to compute the predictive posterior distribution.

2.1.6 M axim um  a Posteriori estim ate

The maximum a posteriori (MAP) estimate is the global mode of a posterior distri­

bution of 9. It is defined as:

^(y«+i yi ,  y2, • • ■ ,  yn)^( |̂yi, y2, • ■ • ,  y n ) d i 9 ,^(yn+i|yi,y2,
Je

[  P(y„+#)P(0|y: 
Je

(2 .8 )

under the assumption tha t the observations are independent conditional on 9.

6  M A P  =  argmaxP(6»)P(y|6'). 
6

(2.9)
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A MAP estim ate plays an im portant role in Bayesian analysis. Even if the pos­

terior distribution is not in closed form a MAP estimate can be found by some 

optimization methods, e.g, Newton’s optimization method. If the prior distribution 

is non-informative the MAP reduces to the ML estimation of the param eter. A 

MAP estim ate may be used to approximate the intractable posterior distribution, 

such as a Laplace approximation or a Gaussian approximation.

2.1.7 H ighest Posterior density region

The posterior knowledge of a param eter contained in its posterior distribution can 

be summarized through point and interval estimates. An interval estimate provides 

a summary of posterior uncertainty of the parameter. The interest may lie in spec­

ifying an interval which includes most of the posterior density. Such an interval 

should also be as short as possible. It should be defined in such a way th a t the 

density a t any point inside the interval is greater than the density at any point out­

side it. A highest posterior density (HPD) region is an interval tha t is the shortest 

interval th a t contains a given probability mass.

2.2 Gaussian Markov Random Fields

Often in spatial statistics, a vector of latent variables is modelled as a multivariate 

Gaussian field. A latent field following a multivariate Gaussian distribution with 

a Markov property is termed as Gaussian Markov Random Field (GMRF) (Rue & 

Held, 2005).

More precisely, a latent field Z =  (Zi, Z2 , . . . ,  Zyv)^ is called a GMRF with respect 

to a labeled graph Q  =  (V, w )  with mean j i  and precision Q > 0 if!' its density form 

is as follows:

P (Z ) =  (27t) 2 (detQ )^ exp [(Z -  ^)'^Q(Z - / / ) ]  , (2.10)
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where Q is the sparse precision matrix such that

Qij ^  { i , j }  'ii ^  j. (2.11)

A labeled graph Q = {V, u;} defines the Markov structure of Z in a discrete location 

space, where V indexes the locations and w is the set of edges reflecting dependency 

connection from one node to another in If all the nodes are connected to each

other, it makes the graph fully connected. If a r]{i) define a set of neighbours of

the node i, a node j  outside 7]{i) is conditionally independent assuming a Markov 

property, i.e.

i]{i) =  neighbours of i, (2.12)

for all j  ^  r]{i) Zj±Zj | Z^(j). (2.13)

This conditional independence makes the precision matrix sparse that eases the 

complexity associated with the matrix computations. In Bayesian computation, 

GMRFs are very useful. If a prior is a GMRF, the posterior is also a GMRF 

if the likelihood is Gaussian. The Markov property, that leads to sparseness in 

the precision matrix, greatly reduces the computational complexity in Bayesian 

estimation problems.

2.3 D irected  A cyclic Graph

In multivariate statistics, a complex model often requires a lot of attention to un­

derstand its structure algebraically. It is also not always easy to grasp how the 

model factorizes over its variables. Graphical representation techniques are often 

used for the simple understanding of the multivariate models. A directed acyclic 

graph (DAG) is one of the graphical representations of the probabilistic models that 

visuaUzes the structure of the model and gives the useful insights into the properties 

of the model such as conditional independence. A DAG is shown by nodes and 

arrows (in a particular direction) which represent the random variables of the model 

and their causal relationships.
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Consider a dense model with a set of random variables X  =  { X i,X 2 , . . .  ,Xp}. 

The joint distribution of the variables is defined as:

P (X ) =  P (X p |X p _ i,. . . ,  X 2 , X i)P (X 2 |X i)P (X i) . (2.14)

A graphical representation of the model presents a better understanding of the 

causal relationship between the random variables. W ith the help of a graphical 

representation it becomes easier to visualize the joint distribution decomposed into 

the conditional distributions. The joint distribution given in Eq. 2.14 can also be 

explained with a help of a DAG. Fig. 2.1 shows a DAG which represents the way the 

random variables are connected in the joint distribution. The variables in the DAG 

are fully connected since there is no link missing between the variables in acyclic 

order.

Consider a factored model as given below:

/ ' ( X ,0 )  =  f [ l P ( X . | f l ) ] / ’ (()) (2.15)
i=l

Given 6, X 's  are independent of each other. The graphs shown in Fig. 2.1 is 

fully connected and Fig. 2.2 represents a factored model under the conditional 

independence property. The conditional property of a loosely (not fully) connected 

model will be described in the next section.

2.3.1 C onditional Independence

Consider a simple factored model (represented by the DAG shown in Figure 2.3) 

with variables a, b, c, d and e and missing links between some of the variables to 

explain the conditional property of the model. The joint distribution of the factored 

model can be expressed as:

P{a, b, c, d, e) =  P{e\d, c, a)P{d\c, a)P{c\a)P{b\a)P{a)  (2-16)

The same model is represented by a DAG in Fig. 2.3. In the DAG, there is a 

missing link between the nodes b and c. They are connected only through the node
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a. Observing a nodes b and c are conditionally independent which is also reflected 

in the algebraic expression of the joint distribution in Eq. 2.16.

For complex models (or models with several variables), there should be a defined 

rule (or a set of rules) according to which the conditional independence property 

of the graph could be explained. In the next section, the d-separation property 

of DAGs is explained in detail that describes the rules to explain the conditional 

property of the factored graphs as a result of missing links between variables and 

their observing status.

d-separation

The general framework to explain the conditional property of the multivariate mod­

els is called d-separation (direct separation). To understand the concept of d- 

separation, consider three types of graphs represented in Fig. 2.4, 2.5 and 2.6.

Example 1

The joint distribution corresponding to the graph in Fig. 2.4 can be defined as:

The joint distribution of a and b is obtained by marginalizing P{a, b, c) over c.

The joint distribution P(a, b) does not factorize into marginal distributions P{a) 

and P{b). The variables a and b are independent only if the variable c is observed. 

Thus, the joint distribution of a and b given c can be explained via the product of 

the marginal distributions of a and b given c respectively.

P{a,b,c) =  P{a\c)P{b\c)P{c). (2.17)

(2.18)
C

(2.19)

(2 .20)=  P{a\c)P{b\c).

Hence, the conditional property is achieved as aJ-b \ c.
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 — * •  •  •  •  —

Fig. 2.1: A directed acyclic graph representing a fully connected model with variables 
X  =  { X i , X 2 , . . . , X j .

Fig. 2.2: A DAG representing a factorized i>late model given in Eq. 2.15.

o
Fig. 2.3: A DAG representing a factored model defined in Eq. 2.16

Fig. 2.4: Tail-to-tail DAG with variables a, b and c.
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Fig. 2.5; Head-to-tail DAG with variables a, b and c.

In the graphical representation given in Fig. 2.4 the path from a to 6 is con­

sidered via c. The node c is said to be tail-to-tail with respect to the path from a 

to b as the nodes are connected to c through the tail of the two arrows. If c is not 

observed the path from a to 6 makes them dependent. However, if c is observed the 

path (conditioned on c) is blocked and it causes a and b independent.

Exam ple 2

In Fig. 2.5, the nodes a and b are connected via c through the arrows from a to 

c and c to 6 respectively. The joint distribution of the variables in this graph is 

defined as:

P(a, b, c) =  Pia)P{c\a)P{b\c). (2.21)

Marginalizing over c, the joint distribution of a and b is given as:

P{a,b) = P{a)J2P{c\a)P{b\c),  (2.22)
C

= P{a)P{b\a). (2.23)

Therefore if c is unobserved, the variables a and b are dependent. Now let c is 

observed. The joint distribution of a and b given c is as follows:

P{a)P{c\a)P{b\c)
P[a,b\c) = -------- -------------- , (2.24)

=  P{a\c)P{b\c). (2.25)

Thus, we again obtain a and b independent given c with respect to the graph in Fig. 

2.5.

The node c in the graph is called head-to-tail with respect to the path from a

to b making them dependent. If c is observed, the path gets blocked and a and b
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Fig. 2.6; Head-to-head DAG with variables a, b and c.

become independent of each other, i.e. a±b \ c. Thus, this head-to-tail relationship 

defines the conditional property of the model.

Exam ple 3

Now, consider the graph in Fig. 2.6 that shows that the nodes a and b are connected 

via c through the heads of the arrows from a to c and from b to c respectively. The 

joint distribution corresponding to this graph can be expressed as:

P[a,h,c) = P{a)P{h)P{c\a,b). (2.26)

The joint distribution of a and b after marginalizing over c is given as:

P{a,b) = P{a)P{b)Y ,Pic \a ,b),  (2.27)
C

= P{a)P{b). (2.28)

This shows tha t if c is unobserved, a and b are independent in their joint distribution.

Now suppose c is observed. Consider the joint distribution of a and b given c as:

P{a,b\c) = P{a)P{b)P{c\a,b). (2.29)

Thus the joint distribution of a and b given c does not decomposed into the 

marginal distributions of a and b. Observing c unblocks the path from a to 6 making 

the variables dependent. The node c is said to be head-to-head with respect to the 

path from a to 6 via itself if the nodes are connected to c through the heads of the 

two arrows.
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These three examples states the key concept of the d-separation for the directed 

acyclic graphs. Consider a DAG with non-intersecting sets of nodes A, B  and C to 

define the d-separation property. To obtain the conditional independence between 

A and B  given C, i.e. AJ^B \ C, all the paths from A to B  should be blocked. A 

path is blocked if it includes a node (or nodes) satisfying either of the following two 

conditions:

1 . if the node is in C and the path via the node is defined through tail-to-tail or 

head-to-tail property,

2 . if the node and its decedent nodes are not in C and the path via the node is 

defined through head-to-head property.

Thus A is said to be d-separated from i? by C if all the paths are blocked which 

follows to the independence property between A and B  given C, A ± B  \ C.

Conditional independence and Markov property

The conditional independence property of a DAG can also be understood via the 

Markov property. Consider a model with a set of random variables X =  {Xi, X 2 , . . . ,  Xp 

The joint distribution of X is given as:

P(X) = P (X i,X 2 , . . . ,Xp),  (2.30)
P

= l [ P { X , \ p a , ) .  (2.31)
i=l

The term pai in the conditional distribution P(X.i\pai) includes the parents, the 

children and the co-parent nodes of X,. In other words, given pai Xj is independent 

of other nodes which are not included in pa,. This simpUfies the complex structure 

of a conditional distribution can be simplified. The set of nodes in pa*, including 

parent, children and co-parent, are called Markov blanket of node X,. For example, 

in Fig. 2.7 the set of parent nodes of X 3  is pai =  {Xi, X 2 , X 4 , X 5 }.

Thus the concept of the Markov blanket stating the conditional independence

property of a DAG makes it very useful for the methods/models based on the Markov

property such as the MCMC method (described in the next section).
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Fig. 2.7: A DAG showing conditional independence by the Markov property for a 
multivariate model. The DAG represents a Markov blanket around the node X 3  with 
the shaded nodes as its parents, children and co-parents. Node X 4  is a child, nodes 
Xi and X2 are parents and X5 is the co-parent. X3 is conditionally independent of 
nodes Xe and X7 given its parents.
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2.4 M onte Carlo m ethods

Monte Carlo methods are numerical methods to simulate random realizations from 

distributions. These simulations are further used in the evaluation of integrals that 

are the cause of intractability of Bayesian inference problems, e.g. in the computa­

tion of the normalizing constant in the Bayes’ law, posterior expectations, marginal 

posterior distributions etc. There are two commonly used classes of Monte Carlo 

methods: direct Monte Carlo and Markov chain Monte Carlo (MCMC) methods, 

depending on the nature of the posterior distribution to simulate from. The MCMC 

method can be described by the algorithm Metropolis Hastings and its special case, 

Gibbs sampler, discussed in detail later in this section.

The accuracy of the Monte Carlo approximations is based on the property of the 

strong law of large numbers (SLLN).

Strong Lavi  ̂ of Large Numbers: If X i,X 2 ,.. .  is an infinite sequence of i.i.d 

random variables with finite expected value, i.e. E(X i) =  E(X2) =  . . .  =  E(X) < 

oo. Then
Xi +  X2 +  .. . +  X„ ur/YN , /'n-------------------------- E(X) as n —>• 00. (2.32)

This means that the Monte Carlo methods converge almost surely for a large number 

of simulations by the strong law of large numbers (SLLN).

The rate of convergence of the Monte Carlo methods can be defined through the 

central limit theorem (CLT).

Central Limit Theorem  (CLT): If X i , X 2 , . . . , X „  is a sequence of i.i.d finite 

random variables with finite mean and variance, i.e. E(Xi)  =  E(X2) =  . . .  =  

E(X„) =  /̂  < 00 and V( Xi )  = V(X2) = . . . =  E(X„) =  < 00, then

^ (2 .33)

This follows that the average of the sequence of i.i.d random variables X j, X2, . . . ,  X„ 

asymptotically follows a Normal distribution with some finite mean yu and variance
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2
as n tends to infinity.

The condition of the identical distribution can be relaxed under Lindeberg’s 

condition (Billingsley, 1986) which is a sufficient condition for CLT to hold for the 

sequence of the (finite) independent random variables.

Lindeberg’s condition: If X i , X 2 , . . .  ,X„ is a sequence of finite independent 

variables with finite mean E(Xa^) =  Hk and variance V{'Kk) =  cr̂ , suppose =  

E L i then
l ^ ( X f c - / i , ) 2 ^ i V ( 0 , l ) .  (2.34)

f c = i

/ V  \

That is, the random variable " =  Z„ (say) converges in distribution to a

standard normal distribution as n tends to infinity.

By CLT, the rate of the convergence of the Monte Carlo methods is of order n~^ 

and the error of the approximation can be given by (or more generally). This 

means that the error in the approximation approaches to a small value with a large 

number of simulations.

There are other simulation based methods such as importance sampling, rejection 

method, inverse transformation methods that simulate directly from the posterior 

distribution. These may only work for low-dimensional problems but are used within 

MCMC algorithms.

2.4.1 M onte Carlo Integration

Monte Carlo integration approximates integrals by sample averages. The accuracy 

of the Monte Carlo approximation depends on the number of independent samples 

used (Robert & Casella, 1999). For example, the integrals in Eq. 2.7 for the posterior 

expectation can be approximated as:

M

(2.35)
m = l

where 6 = (0™; m  = I : M)  are independent samples from the standard posterior 

distribution of 6.

The marginal posterior distributions can also be approximated in the same way.
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miy)«^Emri,y)- (2.36)
m = l

The term 0™ in the above equation, represents independent samples from the 

joint posterior distribution ?:(■) of 0_,.

By the strong law of large numbers, the accuracy can be increased by making 

M  very large. The Monte Carlo integration will work even if the samples are not 

independent, as in the case with MCMC methods (Gilks et al., 1996). Monte Carlo 

integration is widely used in Bayesian inference since many integrals of interest can 

be approximated by expectations e.g. in evaluating a predictive posterior distri­

bution for a new observation, calculating posterior moments, computing marginal 

posterior distributions.

2.4.2 Markov chain M onte Carlo m ethods

It may be difficult to efficiently draw independent samples from a distribution 7t ( - ) .  

However, the samples need not necessarily be independent under the ergodic theorem 

defined later in the section . In such cases, Markov chain Monte Carlo methods 

(MCMC) can be used to draw dependent samples from an approximation of 7t ( - ) .

MCMC uses the concept of the Markov property to generate from intractable 

or non-standard distributions. The samples of 6 are drawn sequentially from a 

conditional distribution, P(-|-)) such that given current sample 0*, the conditional 

distribution of future sample 0*+̂  is independent of all past samples. Assuming 

0 a discrete variable (belonging to a discrete state space), the Markov property is 

defined as:

P(0*+1 =  i \e \  9^ ~ \ .  . . , 6^) =  P (0 '+ 1  =  i\d^).

Such a sequence of samples is called a Markov chain and P{-\-) with the Markov 

property is called a transition distribution. The property can be similarly defined 

for a continuous state space.

It is assumed that the chain is time-homogeneous, i.e. P(-|-) is independent of t. 

As t grows, after a period of transitions often called the burn-in period, the Markov 

chain of dependent samples forgets its initial state and converges asymptotically to a
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unique stationary distribution which is the target distribution 7t(-). To converge to a 

unique stationary distribution the chain needs to satisfy three important properties: 

irreducibihty, aperiodicity and positive recurrence. The definition of these properties 

are given below:

1. Positive recurrence: A state i (of a Markov chain) is called positive re­

current state if the Markov chain starting in state i will return back to z in a 

finite time with probability one. If all the states of a Markov chain are positive 

recurrent, it is called positive recurrent.

2. Irreducibility: A Markov chain is irreducible if for any starting state z of a 

state space S, there exits a t such that =  P{6* =  =  i) > 0 V j  G 5.

That is, from any starting point the irreducible Markov chain is eventually 

able to reach to any region of the state space with a positive probability.

3. Aperiodicity: A period d, of a state z is a greatest common divisor of the set

^  0}* Hence it is only possible to return to the state i in a d-i multiple 

number of steps. If d, =  1 Vz E S, the Markov chain is called aperiodic. That 

is, all the states of the chain return to themselves only at irregular intervals. 

The property of aperiodicity ensures that the chain does not oscillate between 

disjoint subsets of the state space in a periodic (regular) manner.

A Markov chain is said to be ergodic if it is irreducible, positive recurrent and ape­

riodic.

Definition: A stationary distribution 7t (- )  of a positive recurrent and ape­

riodic Markov chain defined by a time-homogeneous transition probability matrix 

P{-\-) has the following property:

and t > 0. (2.37)
i

where =  P{Ot =  =  i)- Then the Markov chain with a unique stationary

distribution 7t ( - )  is said to  be ergodic and following results hold:
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1. P-- n{j) as t —>■ oo for all i , j .  This means an ergodic Markov chain 

asymptotically converge to a unique stationary distribution irrespective to the 

initial state.

2. If E^(/i(0)) < oo, then

P{Sn ^  E,(M^))) = 1,

where E„{h{6)) — h(0)7r(0)d0 and is the average of n sample of an ergodic

Markov chain satisfying above properties. This is also called the ergodic 

theorem  which defines the strong law of large number for an ergodic Markov 

chain.

These two above properties of an ergodic Markov chain are the key concepts of the 

convergence of the MCMC method. The rate of convergence of the MCMC sample 

can be given by the CLT theorem (defined before) with the Lindeberg’s condition 

for non-identical random variables. More details can be found in Gilks et al. (1996).

The dependent MCMC samples after a burn-in period, drawn from the support of 

the target distribution may then be used in Monte Carlo integration to approximate 

intractable posterior expectations, such as:

1 ^
h{9^), (2.38)

where the burn-in period is before time R.

There are two main algorithms of the MCMC method to simulate Markov chains 

from multi-dimensional, intractable posterior distributions: the Metropolis-Hastings 

algorithm and the Gibbs sampler.

2.4.3 M etropolis-H astings algorithm

The Metropolis-Hastings algorithm developed by Hastings (1970), is a generalization 

of the Markov chain method first proposed by Metropolis et al. (1953). Given a state 

6̂  of a Markov chain, the next state 0*+̂  is chosen by first sampling a proposal 6
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from a proposal density q{-\9*). This is accepted with a probability

=  (2 3̂9)

The term  a(-,-) in Eq. 2.39 is called the acceptance probability. If the proposal 

is accepted, the next sta te  equals the proposal 0 else the chain remains at the 

current sta te  =  0*.

In term s of using this method for Bayesian inference, the im portant property of 

Eq. 2.39 is th a t if 'k{6) is a posterior distribution then, because it only appears as a 

ratio, the normalizing constant cancels out and the ratio is simply the ratio of 

prior X likelihood. This is key to sampling from posterior distributions.

W ith any form of q{-\9*), the stationary distribution will be 7r(-). This can be 

proved with the concept of detailed balance (Tierney, 1994). The transition density 

for the algorithm is

=  q{e^+^\d^)a{d\e*+^) +  1(9*+  ̂ = 0‘) -  J  q{9\9^)a{9\9)d9 , (2.40)

where /(•) is the indicator function. The first term  in the above equation is for the 

acceptance of 9, whereas the second term  comes from the rejection. From Eq. 2.39:

n{9^)q{e^+^\e^)a{9\9^+^) =  TT{9^+^)q{0^\9^+^)a{9*+\9^) (2.41)

which gives the detailed balance equation;

Tr{e^)P{9^+^\9^) = Tr[9*+^)P{9^\9^+^). (2.42)

Integrating both  the sides of the equation with respect to 9*:

J  7r{9^)P{9^+^\9^)de^ = tt{9^+^). (2.43)

Under the assumption th a t 0* is from 7r(-), the marginal posterior of 0*+ ,̂ is

equal to 7r(-). T hat is, once the stationarity is obtained at a state, all the samples at 

future states will also come from the same stationary distribution. The stationary
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distribution is then equal to the target distribution (Gilks et al., 1996).

A good proposal distribution has the following properties:

1. It should be easy to sample from.

2. It is easy to compute the probability of acceptance.

3. Each move of the Markov chain should be a t a reasonable distance in the sup­

port of the distribution, otherwise, the chain will move very slowly. Suppose 

the proposal distribution g(X i|X (_i) =  g (X t — X^_i) then,

The absolute value of t should not be very small resulting in slow convergence.

4. The proposals should not be rejected too frequently. For example, if t  is very 

far from X t_i, it might reject the proposal leading to slow mixing.

If the proposal distribution is symmetric, e.g. a m ultivariate normal distribution or 

a random walk, the algorithm reduces to the Metropolis algorithm, a special case 

with the acceptance probability as:

For more details on the forms of the proposal density, see Chib & Greenberg 

(1995), Gilks et al. (1996) and Lee (2004). Chib &: Greenberg (1995) describes 

the Metropolis-Hastings algorithm in detail.

2.4.4 Gibbs sampling

Gibbs sampling is a widely used MCMC technique in Bayesian statistics to draw 

samples from posterior distributions. It was first developed for use in Bayesian 

inference by Geman &; Geman (1984) to analyze Gibbs distributions on lattices. 

However, it was a well known method in statistical physics with the name heat bath 

algorithm. The method was introduced to mainstream statistics by Gelfand & Smith 

(1990) and Gelfand et al. (1990).

Xj — X t_ i  -h e; e ~

a{9*, 9) — min [ 1, (2.44)



2.4. M on te C arlo m eth od s 28

The method is a special case of Metropolis-Hastings algorithm with the proposal 

distribution equal to the product of all the full conditional posterior distributions. 

In the algorithm, the proposal distribution for updating the component of 9,

=  P { d , \ d . „ y ) ,  (2 .45 )

which means th a t the Gibbs sampling proposals are always accepted.

The steps of the Gibbs sampling are given as follows:

1 . Choose arbitrary  initial values 6 .̂

2. F o r t= l :T ,

(a) generate 6\ from P{9\\9^Si , y ) ,

(b) generate 6>‘ from P { 9 i \ 6 \ , . . . ,  9j_^,9l~l . . . ,  y); i =  2 ; P .

The number of iteration T  should be set to  a value to reach to the convergence. 

G ibbs sam pler and th e  M arkov property:

It is worth mentioning the Markov property (conditional independence) for the Gibbs 

sampler algorithm under which the conditional distribution P{9i \9 \ , . . . ,  9\_i,  9\'^\ . . . ,  

is simplified and it makes it easier to draw samples from it. As described in the pre­

vious section, let us consider a Markov blanket to  describe the Markov property of a 

factored model through a DAG represented in Figure 2.8. Suppose a t any iteration 

of Gibbs sample algorithm, we are interested in generating samples of ^ 3  from its 

conditional distribution P{9y\9i,9-i,  6*4 , 9^, 9 e , y ) .  By the conditional property shown 

via the Markov blanket,

^2) 4̂! 6̂) y )  =  P{93\9l,92,94,y).

T hat is, we do not require the samples of 9^ and 9q to generate 9s from its conditional 

distribution, as ^ 3  is independent of 9^ and 9q given the parents 9 i , 9 2 , 9 4 , y ,  .

Thus in general by the Markov property, any 9̂  is independent of all those 9j j  ^  i
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Observations j=l,...,n

Fig. 2 .8 : A DAG showing conditional independence by the Markov property for a 
m ultivariate model. The DAG represents a Markov blanket around the node 63 with 
the shaded nodes as its parents, children and co-parents. Node Y j’s are children, 
nodes 61 and 62 are parents and 6^ is the co-parent. ^3 is conditionally independent 
of nodes 65 and Oq given its parents.
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which are not its parents. Or,

pa0̂ = parents of (2-46)

9i ±  6j \ pae^y j  i and dj pae,. (2.47)

Thus, the Markov property simphfies the structure of the conditional distributions 

to simulate samples from the conditional distribution for a Gibbs sampler algorithm.

A detailed approached to the Gibbs sampler can be found in Casella & George

(1992).

2.5 M ethods of Functional approximations

Functional approximation attempts to find a tractable function of 6 that approx­

imates the intractable post('rior distribution. Some popular methods of such type 

are discussed below.

2.5.1 G aussian approxim ation

The concept of the Gaussian approximation has been widely used for distributions 

that are uni-modal and roughly sj'mmetric. A Gaussian approximation of a log- 

posterior density, logP(0|y), is a quadratic function that is usually centered at its 

mode, 6. A quadratic function of log P{6\y) can be found by its second order Taylor’s 

expansion:

logP(6i|y) logP{e\y)+{9-9) ^ lo g P (0 |y ) + l ( e - e f
9= 0  ^

2
^ lo g P ( 6 ' |y ) {9-

e=e
(2.48)

where the first derivative term in the R.H.S of the expression should be zero since 

the log-posterior density has zero first derivative at its mode. The first term in the 

expansion is constant and the term related to the second derivative of logP(0 |y) is 

proportion to a log-normal density, providing a normal approximation to P{9\y) with
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mean equal to 9 and variance as a function of the second derivative of logP{6\y).

logP(0|y) - ^ l o g P ( 0 |y )  {0 -  B),
L J 0= 0

P{9\y) = logN{B,V{9\y)),

(2.49)

(2.50)

^  j 2where, the variance of the approximation V{9\y) =  — ^  logP(0|y)
J 0 = 0

The Gaussian approximation can be very useful in Bayesian computation pro­

vided the second derivative of the density is defined. There are disadvantages to 

Gaussian approximation. According to Gelman et al. (2003), a Gaussian approx­

imation to the marginal or conditional distribution of a variable is more accurate 

than that of the joint distribution as some variables might deviate from Gaussianity 

than others. Whereas, Murphy et al. (1999) argue that the Gaussian approximation 

of the joint posteriors can sometimes be well defined even if some of its conditional 

distributions are very far from the symmetry.

2.5.2 Laplace A pproxim ation

The Laplace approximation, based on the Gaussian approximation, is a method 

of approximating integrals (Tierney &; Kadane, 1986). It evaluates the posterior 

distribution P{9\y) by approximating its normalizing constant. Suppose,

To approximate the normalizing constant P(y), a second-order Taylor’s expansion 

of log P{9, y) around its mode 9 is considered:

(2.51)

logP((9,y)

my)

\ogP{9,y) + ^ { 9 - B f  ~ \ o g P { e , y )  {B -  9), (2.52)
L J 0= 0

P (0 ,y)exp  - ^ { 9  -  9 f  A{9 -  9) , (2.53)

where A logP(0,y) (2.54)
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Thus, P{9, y) is approximated with a normal density whose normalizing constant 

is:

P (y) =  I  P{d,y)dd,  (2.55)

P(6>,y) /  exp d0, (2.56)

=  P(0,y)(det/l)-5(27r)2. (2.57)

Then, the Laplace approximation to P{9\y) is given as:

P(s,y)
The Laplace approximation of P(0|y) can be compared with its Gaussian approxi­

mation. If the normal approximation of P{0, y) is also considered in the numerator 

of Eq. 2.58, the Laplace api)roximation of P{6\y) becomes a Gaussian approxima­

tion to the distribution.

The Laplace approximation to the marginal posterior distribution P{6i\y) re­

quires Gaussian approximations for terms in both the numerator and the denomi­

nator of the R.H.S of the expression given below:

^  fe .P{di ,9-i ,y)dd-i

The term in the denominator of the R.H.S. of the expression in Eq. 2.59 is the 

normalizing constant of P{6\y), which can be approximated as described before. To 

approximate the integral in the numerator, find a second-order Taylor’s expansion 

of P{9i ,6-i ,y)  as a function of 6-i around its mode 6-i. The marginal posterior 

P{9i\y) is then approximated as:

P^y)  « P(0, y)(det A) 2(27t)2

= (2,61)
P{9, y)(det A')i
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where A  = For more details on approximating marginal
e=e

posterior distribution see Tierney & Kadane (1986).

Rue. et al. (2009) presents the Laplace approximation of marginal posterior 

distributions in a different way. The marginal posterior distribution can be defined 

in terms of joint and conditional posterior distribution as:

■ SfeS'
It should be noted that in above equation P(0_j|0j,y) depends on 6i as well. There­

fore this definition of the Laplace approximation is defined for given values of 0*, i.e 

for discrete di (or defined over grid values).

To present the R.H.S of the above equation as a function of Oi only, consider 

a Gaussian approximation of P(0_j|0,,y) and plug-in its posterior mode in the 

expression. Then, the Laplace approximation of P{Oi\y) can be defined as:

miy)« PG(0 î\9i,y) (2.64)

where P G{9- i \6 i , y)  is the Gaussian approximation of P { 9 - i \ 6 i , y ) .  This approach 

of the Laplace approximation by Rue. et al. (2009) approximates P(6',|y) only up 

to a proportionality constant. If 9i is a low-dimensional parameter, the normalizing 

constant of the approximation can be found by numerical integration.

The Laplace approximation can be quite accurate if the integrand is uni-modal 

or at least dominated by a single mode and the sample size is large.

2.5.3 Integrated N ested  Laplace M ethod

The Integrated Nested Laplace approximation(INLA) developed by Rue. et al. 

(2009) is a method of distributional approximation that yields quick and very accu­

rate Bayesian approximations for latent Gaussian models. To describe the structure 

of the method, consider a latent model with latent variables Z =  (Zi, Z2 , . . .  ,2,n Y
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as:

N

P{y\Z,9) = YlP{y, \Z, ,e) ,  (2.65)
i

F(Z|0) =  GMRF{d),  (2.66)

e ~  P{6). (2.67)

The latent field Z follows a GMRF (defined in Section 2.2) parameterized by 6. The 

likelihood of data y  is assumed to be an i.i.d non-Gaussian distribution given 9. The 

unknown 0 is a set of unknown model parameters and hyper-parameters of Z. The

aim is to compute the marginal posterior distributions of Zj; z =  1 : and 6:

P(Z,9\y)  a  P{e)P{Z\9) l lP{y, \Z, ,9) ,  (2.68)
i

P(Z |y) = I  P(Z,9\y)d9,  (2.69)
Je

P{9\y) = ^ P (Z ,0 |y )d Z . (2.70)

The posterior marginals are often not available in closed form due to the non- 

Gaussian likehhood. The INLA method, developed as an alternative to the MCMC

method, provides a quick and tractable solution for such models by assuming two

basic properties. Firstly, the latent field Z is assumed to be a GMRF. Secondly, the 

number of unknown parameters should be very small. The computational steps of 

the method are described as follows:

1. To approximate the marginal posterior distribution of 9, the method uses the 

Laplace approximation as:

P{9\y)cx
P G { Z \ 9 , y )

(2.71)
z=z*(e)

where Pa{Z\d,y)  is a Gaussian approximation of the conditional distribution 

P{Z\9,y)  and Z*{9) is the mode of the distribution.

If 0 is a low-dimensional parameter, the proportionality constant of P(0|y) 

can be computed numerically.
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2. The Gaussian approximation to P { Z \ 9 , y )  found by an algorithm  developed 

for latent fields by Rue & Held (2005).

P (Z |0 ,y )« 7 V (Z ; mW ,S (0 )) . (2.72)

Then, the conditional marginal P(Zj|0, y) will be a univariate Gaussian dis­

tribution;

P (Z ,10 ,y)« iV (Z ,; (2.73)

3. The marginal posterior distribution of Z, can be computed numerically with 

respect to 9 as:

P (Z ,|y ) ^  5 ] P ( Z ,i0 ^ y ) P ( 0 '' |y ) ^ ^  (2.74)
k

where P { Z i \ 9 ^ , y )  is approximated a t the previous step. The term  9 ^  denotes 

a discrete point in the space of 9 and <5*̂ is the area weight.

The posterior marginal of ; J =  1 : p. can also be computed numerically.

(2-75)
k

Eq. 2.75 is evaluated on a discrete grid tha t should cover the support of 9. 

For this reason the dimension of 9 cannot be large.

4. The conditional marginal posterior distribution of Zj, P (Z j|0 ,y ) can also be 

approximated by the Laplace approximation, as:

P (7  \n \ -P(Z,0,y)P { Z i \ 9 , y )  DC
PG G (Z-i|Z j,  9, y)

(2.76)
Z-i=Zl;(0,Zi)

where PGG(Z_i|Zj, 0, y) is a Gaussian approximation to P(Z_j|Z j, 6*, y) (and is 

different from the conditional density corresponding to  P G { Z \ 9 , y ) )  and needs 

to be computed for each Z,. This may increase the com putational burden, 

though it produces more accurate result than a Gaussian approximation in 

the case of departure from Gaussianity.
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The assumption of conditional independence through the Gaussian Markov random 

field makes INLA very quick for highly dimensional latent models. Based on the 

Laplace approximation, INLA provides very accurate solutions. The error associated 

with the Gaussian approximation of the conditional distribution is corrected by 

replacing it by Laplace approximation. Rue. et al. (2009) have shown that the 

method outperforms MCMC in term of accuracy and computational time.

The main disadvantage of the method is its non-applicability to models with large 

number of parameters (>  6). The method uses numerical integration to approximate 

the marginal posterior distribution of the parameters which limits the use of the 

method to latent models with only few parameters.

2.6 Other M ethods

In this section, some techniques or terms used later in the thesis are described very 

briefly.

2.6.1 Cross-Validation for m odel checking

Cross-vaUdation is a technique to assess how accurately a model assumption fits a 

data set. For this purpose, it partitions the data set into two samples, a training 

data set to fit the model and a test data set to check the accuracy of the model fit. 

The accuracy of the model fitting is generally performed using a predictive posterior 

distribution. If the predictive probability of test data sets is very small, the model 

does not fit the data accurately. This accuracy measure can be defined in a variety 

of ways. One example is the highest (predictive) posterior density (HPD) region. 

The percentage of samples falls inside the HPD region decides the accuracy of the 

model fitting.

There are mainly two :ypes of cross-validation techniques used in statistical 

analysis: the A'-fold cross validation and the leave-one-out cross validation. The K -  

fold cross-validation divides the data set into K  non-overlapping samples of which 

{K — I) are used as training data set and the remaining sample is used as the 

test data set to perform tht; accuracy check. This is repeated for every sample



2.6. Other M ethods 37

such that each of the K  samples is used once as the test data set. Then, the total 

K  results of the accuracy check from K  different test data set are averaged to give 

a single estimate.

The Leave-one-out cross-validation technique uses all but one datum for the 

training purpose so that each sample point can be used exactly once for the valida­

tion. This is actually a special case of K-fold cross-validation with K  equal to the 

total number of sample points in the data. With this technique of cross-validation, 

repeating the accuracy check for each and every sample points can be quite expensive 

in the case of large sample sizes.

Cross-vahdation can present inaccurate results if the test and training data do 

not belong to same population or if the size of the test data set is very small.

2.6.2 C onjugate-exponential (CE) m odels

A Bayesian parametric model is called conjugate-exponential if it satisfies two con­

ditions;

1. The Ukelihood of the i.i.d data y =  {yi,Y2 ) ■ • • iYn} given the unknown pa­

rameters 6  =  { 6 1 , 6 2 , ,  dp}  should be in the exponential family:

N

j =l

j = i  i = i

where t(y ) =  '^iYj)) (say) is a vector of sufficient statistics of 6 and the

terms /(•), g{-), (/){■) and u(-) are known functions. The term </>(0) is a vector 

of the natural parameters that linearly relates to t(y).

2. The prior distribution of 6 should be conjugate to the data-likelihood:

P( 6 \ r j ,  ly) =  h{rj, i y ) g { 6 y  exp(^(6')^i/), (2.78)

where rj and v are hyper-parameters of 9. The prior is conjugate to the likeli-
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hood if the posterior has the same form as the prior:

^(^|y) =  exp(</.(0)^(z. +  t(y))). (2.79)

CE models play an important role in Bayesian statistics. For most of the models, 

the analytical solutions to Bayesian computation are not available. The problem of 

Bayesian computation can be avoided for the CE models with the known standard 

forms of the posterior distributions. Most of the distributions of the exponential 

family, for example Normal, Bernoulli, Gamma, exponential, Poisson, belong to the 

CE models. Whereas, the logistic distribution (in the exponential family) do not 

have natural conjugate priors.

The CE models have important significance for the VB method as the models 

provide natural factorized form for the method to provide tractable solutions (see 

Beal (2003)). The tractability issue of the VB method due to the CE models will 

be discussed in the next chapter.



Chapter 3 

The Variational Bayes 

Approxim ation

In the previous chapter, some of the Bayesian computational methods have been 

discussed briefly. This chapter describes variational Bayes (VB), a functional ap­

proximation method, in detail. The VB method is used throughout the thesis as a 

tool for finding approximations to (Bayesian) inverse regression problems. Section

3.1 discusses the background and is a literature review of the method. In Section 

3.2.1, a detailed introduction to the method is presented. Two possible approaches 

to the method, named as the classical approach and the Smfdl and Quinn approach 

(explained in the same section), describe the procedures to find VB approximations 

to Bayesian inference problems. The Gaussian variational approach and the varia­

tional tangent approach are discussed briefly in Sections 3.2.2 and 3.2.3 respectively 

which are later used in the thesis to compare the VB results. Further in the chapter, 

the VB method is compared with other methods e.g. the Laplace approximation, 

INLA, MCMC.

3.1 Background and Literature R eview

The VB method has been widely used in machine learning, neural networks, artifi­

cial intelligence, signal processing, Bayesian statistics etc. for the past two decades. 

The method was first proposed by Hinton & van Camp (1993) in neural networks.

39
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The authors approximated the posterior distribution with a multivariate Gaussian 

distribution, assuming a diagonal covariance matrix. They showed that the approxi­

mation can be made more accurate by minimizing a measure of discrepancy betw^een 

the true and the approximation iteratively. The method was applied to latent models 

by Waterhouse & Robinson (1996), MacKay (1998) under the name ensemble learn­

ing  ̂ optimizing variational free energy with no restriction on the distributional form 

of the approximation. Attias (1999) presented a variational Bayesian framework for 

graphical models. The author showed that the VB method could be interpreted as a 

generalization of the famous EM  algorithm. Beal (2003) explored the algorithm by 

Attias (1999) and presented a general framework for variational Bayes learning for 

latent models. He developed a variational Bayes EM  algorithm which combines the 

concept of the EM  algorithm and the mean field approximation (Saul et al., 1996; 

Jaakkola, 2000). At the E-step of the algorithm, it apjiroximates the posterior of 

the latent variables given the VB posterior-estimates of other unknown parameters 

and the M-step finds a variational approximation for the posterior distribution of 

the parameters by optimizing a lower bound on the marginal likelihood. Smi'dl & 

Quinn (2006) presented a different pers])ective of th(' method in signal processing. 

Assuming both the parameters and latent variables as unknowns in the Bayesian 

framework, the authors developed a variational iterative algorithm which is also 

apphcable to non-latent models. The VB algorithm by Sinfdl & Quinn (2006) uses 

the concept of minimizing a discrepancy between the approximation and the true 

posterior distribution.

The key assumption of the method is similar to the mean field approximation 

(Saul et al., 1996; Jaakkola, 2000). It also ignores the dependence between the com­

ponents of unknowns in the posterior distribution. The mean field approximation 

assumes complete independence between the unknown parameters. Whereas, the in­

dependence assumption of Smfdl &: Quinn (2006) may still assume some dependence 

between the parameters, for example if the dependence between some of the param­

eters does not lead to intractability in the approximation or if the independence 

between them leads to a very poor approximation.
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3.2 Introduction

In Bayesian inference, the evaluation of a multivariate posterior distribution is often 

intractable. Variational approximation is a functional approximation method that 

tries to minimize a distance measure between two functions, true and approxima­

tion. Based on the assumptions that helps finding a tractable approximation, the 

variational approximations can be described by many different variational meth­

ods, for example, the Gaussian variational approach, the variational tangent 

approach or the variational Bayes approach. The variational Bayes (VB) is 

considered to be the main tool for providing tractable solutions to inverse estima­

tion throughout the thesis. The other two variational methods are used for the 

comparison of the VB results for inverse estimations problems considered in the 

thesis.

In the next section, we discuss the VB method in detail. After that the other vari­

ational methods, Gaussian variational approach and tangent variational approach, 

arc described briefly.

3.2.1 V B  m eth od

The VB method is a popular method of variational approximation in which an in­

tractable posterior distribution is approximated by a factored distribution assuming 

the mean field approximation (Saul et al., 1996; Jaakkola, 2000). The key assump­

tion of the method is to ignore the posterior dependencies between the components. 

It facilitates the method to provide a tractable and quick solution.

We present two approaches of the VB method based on the definition and the 

assumption of the method by Beal (2003) and Smidl k, Quinn (2006) respectively. 

These two different approaches of the method provide the same VB result.

Classical approach:

Beal (2003) describes what we call the classical approach to the VB method as a 

generalization of the EM  algorithm. To derive this approach, we consider a latent 

model with an i.i.d data set, y =  {Yi, Y2 i • • • > Yn}) ^ vector of latent variables.



3 .2 . I n tr o d u c tio n 42

Z =  {Z i, Z2 , . . . ,  Zjv} and a set of model parameters and hyper-parameters, 0 =  

{01,02, • • • The joint posterior distribution of Z and 0 given data y  can be

defined by Bayes’ law as;

In the above equation, P (y |Z ,0 )  represents the Ukelihood of 0 and Z and P (Z ,0 )  

stands for their joint prior distribution. If Z and 6 are a priori independent, the joint 

prior can be expressed as the product of marginal priors: P (Z , d) =  P (Z )P (0 ). The 

term P (y )  denotes the marginal hkelihood of y  which is the normalizing constant

To avoid the computational burden, Beal (2003) finds a lower bound on log P (y )  

using Jensen’s inequality. For any density function of Z and 6 given y , q{Z, 6\ y) ,  

we have:

Maximizing the lower bound with respect to g (Z ,0 |y ) gives q{Z, 6\ y)  =  P (Z ,0 [y )  

which does not solve our problem, as P (Z , 0 |y) is known only up to a proportionality 

constant. Instead, a factorized approximation g(Z, 0 |y) =  <3'(Z|y)g(0|y) is considered 

that ignores the dependence between Z and 6, which may provide a tractable lower 

bound on lo g P (y ):

where P (y ) P (y |Z ,0 )P (Z ,0 )d Z d 0

(3.1)

(3.2)

of the posterior distribution. It is often computationally intractable to evaluate.

logP (y) >  y 9 ( Z |y ) , ( 9 |y ) lo g ^ ^ ^ ^ |^ d Z d « ,  (3,7)

=  ^ (9 (Z |y ),g (0 |y )), (3.8)



3.2. In troduction 43

where F  is a lower bound on log -P(y) depending on the factored approxim ations 

q{Z\y) and q{9\y). Beal (2003) developed an algorithm, variational Bayes EM,  which 

iteratively maximizes F w ith  respect to ?(Z |y) and g(^|y) respectively. As in the E M  

algorithm, there are two steps of the iterative variational Bayesian E M  algorithm: 

VBE-step and VBM-step. At the VBE-step, maximizing F{q(Z\y), q(6\y)) w.r.t 

g(Z|y) gives the expression for q{Z\y).  At the VBM-step, it maximizes F{q{Z\y) , q(6\y)) 

w.r.t q{0\y) and gives a solution for q{d\y). At any VB-iteration t, the two steps of 

the algorithm are given as follows:

V B E -step  : g‘(Z j|y) a  ^  g*“ ^(6>|y) logP (y i, Z*, 6>) Vz, (3.9)

where g '(Z |y ) =  g‘(Zj!y), and (3.10)
i

V B M -step  : g*(6>|y) a  j  q \ Z \ y ) l o g P { Z , 9 , y ) d Z .  (3.11)

These two steps of com putation are equivalent to finding a possibly tight lower bound 

on the marginal likelihood. At each iteration, the lower bound on the marginal 

likelihood gets increased or remains unchanged with the update in the VB approx­

imations. A tight bound is obtained when the approxim ation is very close to the 

true posterior distribution. Thus, the posterior distribution can be approxim ated 

by the VB method as:

P{Z, e \ y )  «  q{Z,d\y),

Q{o\y).

(3.12)

(3.13)

The lower bound F  can also be expressed in the term s of a Kullback-Leibler 

divergence:

F(q{Z\y),q{e\y))  =  |  ,(Z |y )? (« |y ) log (3^14)

= /g(Z|y)g(%)tog^^y5j^dZd6 + togP(y),

=  -KL{q{Z\y)q{B\y)  || P (Z , 0 |y)) -h log P (y ),

^ lo g P ( y ) - F ( g ( Z |y ) ,g ( 0 |y ) )  =  KL{q{Z\y)q{e\y)  \\ P{Z,9\y) ) . (3.15)
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It follows that maximizing F  with respect to g(Z|y)g(0|y) is equivalent to minimizing 

the Kullback-Leibler (KL) divergence K L{ q ( 7 j \ y ) q { 9 \ y ) \ \ P { 0 , X \ y ) ) .  KL divergence 

is a measure of discrepancy from one distribution to another. It is always a non­

negative quantity. Smidl & Quinn (2006) have discussed the KL divergence and 

its properties. Detailed discussion on KL divergence can be found in Kullback &: 

Leibler (1951) and Kullback (1997).

Smi'dl and Quinn approach:

Smi'dl & Quinn (2006) develop an iterative-VB algorithm which is applicable to 

both latent and non-latent models. Consider an unknown ip representing the latent 

variables Z and parameters 9: ip =  {Z, 6}.  In the Smidl and Quinn approach, the VB 

method attem pts to find a distribution q{ij^\y) as an approximation to the intractable 

posterior distribution P{ ip\ y)  by minimizing a KL-divergence KL{ q{ i p \ y )  || P{ip\y)) :

KL{ q { i p \ y )  || P{ip\y) )  =  j  q { i p \ y ) l o g ~ ^ d i p ,  (3.16)

In practice, it is not possible to find a minimum of KL{ q{ i p \ y )  || P{ ip\ y) )  with 

respect to q{ip\y),  i.e.

q{ip\y) =  arg min KL{ q{ i p \ y )  || P{ip\ y) ) ,  (3.17)
<iWy)

as the posterior distribution P{ip\y)  is known only up to a proportionality constant. 

So, exactly as in the classical approach by Beal (2003) it assumes the posterior 

independence between the components of the unknowns:

d

=  Y l q { i ' i \ y ) ,  (3.18)
i=l

which reduces the minimization of KL{ q{ i p \ y )  || P{ ip\ y) )  with respect to q{ip\y)  to

the minimization of KL{ q { i p \ y )  || P( ip\ y) )  with respect to q{ipi);i  =  If
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g(V'-i|y) =  r ij= i 9 (^ j|y ) is fixed, q{i>i\y) can be found to be: 
i¥=i

q { A \ y )  ot exp

(see Theorem 3.3.1 of Smidl Sz Quinn (2006)). The term  q{ipi\y) is called the VB- 

marginal of ipi.

The expression for q{'ipi\y) involves a (d — 1) dimensional integral. This integral may 

not be computable. However, since it is assumed th a t q{'ip^i\y) =  H i= i 9('0j|y)! this
j^ i

integral becomes a tractable product of (d—1) 1-dimensional integrals if the log-joint 

density log P{ip, y) factorizes over the components of -tp. For example, it is common 

to have factorized log-joint density over the components of the param eter for the 

conjugate-exponential family of distributions. If the likelihood in the components of 

the param eter belongs to the exponential family, we may have the log-joint density 

factorized over the components of the parameter. There are some examples where 

this factorization does not occur, such as logistic or Poisson regression models with 

non-conjugate priors.

It can be seen from Eq. 3.19 th a t the solution for the VB-marginal (j('0j|y); Vz 

is available given other VB-marginals q(i>j\y)', j  ^  i- Smfdl Quinn (2006) give a 

way to avoid the requirement of the prior knowledge of the VB-marginals and the 

com putation of integrals involved in their definition. Eq. 3.19 can be w ritten as:

g(^i|y ) oc exp[Eg(^_,|y)[logP(y,'0)]], i =  l , . . . , d ,  (3.20)

and so, we see tha t q{'tpi\y) is a function of the moments of -ipj, j  ^  i, w ith respect to 

q{ip-i\y).  It can be understood from Eq. 3.20 th a t the VB-marginals interact with 

each other via their moments, or in other words, the moments of one VB-marginal 

are some function of the moments of other VB-marginals.

There are two ways in which the iterative algorithm can be implemented:

1. Smi'dl a n d  Q u in n  I te r a t iv e  V B  a lg o rith m : The first way is to follow 

the VB-iterative algorithm given by Smfdl & Quinn (2006). This requires the
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recognition of the VB-marginals as standard distributions. If this is the case 

then, from Eq. 3.20, the param eters of each VB-marginal will be the func­

tions of the moments of other VB-marginals. Critically, this means th a t all 

we need to compute and store at each VB-iteration are the param eters and /o r 

the moments of the VB-marginals. The iterative VB algorithm is reduced to 

iteratively updating the parameters of each VB-marginal which are a function 

of the moments of other marginals, until these values converge.

At any VB-iteration t, let and MK'ipi) represent the param eters and

the moments of q\tpi\y)  ( eg. E(-^j), E{ipf), E(log'0j) etc.) required for the 

evaluation of q\ipj\y)', j  ^  i respectively, / i ( - ) ’s are the functions through 

which the param eters of one VB-marginal depend on the moments of other 

VB-marginals and 5i(-)’s are the functions defining the relation between the 

moments and the param eters of the VB-marginals. The form of the function 

/j( - ) ’s and gi{-ys can only be known if the VB-marginals can be recognized as 

standard distributions. Thus, /j(-) will be a function of all current values of 

the moments of q{'ipj\y), j  i and gi{-) will be a function of the moments of

of com putation of its normalizing constant (as VB-marginals are defined up 

to proportionality, see Eq. 3.20).

2. Iterative V B  algorithm  using numerical integration: R ather than  iden­

tifying the VB-marginals as standard distributions, the second way uses a 

numerical approxim ation to compute the normalizing constants of the VB-

qiHy)-
For i = 1 , . . .  ,d, we can write.

(3.21)

(3.22)

Recognition of the standard form of the VB-marginal also solves the problem
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marginals defined in Eq. 3.20. The required moments are also computed 

numerically. In other words, in this implementation, the  basic iterative VB 

algorithm is used and where any integration is needed, it is done by numeri­

cal approximation. We use a finite sum (Riemann) approxim ation on a finite 

support tha t is E(t/)j) ±  4 sd('0i) with respect to the previous VB-marginal 

At each iteration, the VB-marginals are modified and then their 

moments and the support (the range of the unknowns) are also updated ac­

cordingly.

Suppose a t any VB-iteration t, is the un-normalized VB-marginal ob­

tained, Z l  is the normalizing constant for the VB-marginal q'*('0,|y), mKtpi)  

stands for the moments of g*(^i|y), is some function of t/’i required

to evaluate its moments, is the VB-mean and Varqt{'ipi) is the VB-

variance obtained from the definition of the moments, shows the ap­

proximated range of tpi  and 5^{ ip i )  is the step-size of the regular grid on (■!/>,). 

Then, for i =  1 , . . . ,  d,

=  e x p [ E q ( , - i ) ( ^ _ . |y ) [ lo g P ( y , t / ; ) ] ] , (3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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and for j  ^  i ,

exp[E,(.-i)(^_._,|y)_gt(^.|y)[logP(y,?/^)]], (3.28)

(3-29)

(3.30) 

(3-31)

Egt{'iJjj) ±  A ^ ^ V a r q t { ' 4 ) j ) .  (3.32)

This way of carrying out the VB-iteration is useful for the cases where the 

standard form of the VB-marginals cannot be identified.

Smidl & Quinn (2006) presented a general approach to the VB method which can be 

applied to non-latent models. The VB algorithm by Beal (2003) is suitable for latent 

models only. For non-latent models, the algorithm can still be used by considering 

only the VBM-step for approximating the posterior distribution of the unknown 

param eters of the model. Both Beal (2003) and Smi'dl & Quinn (2006) commented 

on the intractability issue of the VB method for complex models. Beal (2003) showed 

th a t the conjugate-exponential (CE) models result in tractable VB approximation 

but the non-CE models may not be amenable to the method. Smidl k ,  Quinn (2006) 

mention th a t the VB approximation is tractable only if the log-joint likelihood can be 

factorized over the unknowns. For example, the log-joint likelihood for CE-models 

may be separable over the components of the unknowns. The approach of the 

method by Smidl & Quinn (2006) presented the VB marginals interacting with each 

other via their moments. Beal (2003) showed tha t the VB approximation for CE 

models are some function of the variational posterior expectations or VB-moments 

and sufficient statistics.

The approach by Beal (2003) finds the VB approximation by maximizing a lower 

bound on the marginal likelihood. The lower bound on the marginal likelihood as 

a function of VB approximation which may be used for model selection or check 

the accuracy of the approximation. The Smidl and Quinn approach of the method

(f (V'j) =

9‘(^j|y) =



3.2. Introduction 49

laclcs such a measure of accuracy of the approximation. Smfdl & Quinn (2006)

commented on the under-estimation of the variance of VB approximations (Wang 

k  Titterington, 2005), but Beal (2003) overlooked it.

3.2.2 The restricted V B  m ethod

The VB method may be time consuming or intractable in some cases, e.g., the it­

erative VB algorithm may take longer to converge for complex models or highly 

multidimensional problems. The VB marginal may result in an intractable distribu­

tion or a non-standard distribution with complicated moments for non-CE models. 

To tackle such situations, Smfdl &; Quinn (2006) proposed the restricted VB method.

Let the posterior distribution of unknowns xp =  {'0j, ip’}  approxim ated with the 

VB approximation;

Suppose, the VB marginal g(^/'i|y) is either intractable or leads to  a time consuming 

iterative VB algorithm. If g('i/'i|y) is restricted or kept fixed to  a known standard 

distribution, we need to  compute only q{il>'\y)- This greatly reduces the com puta­

tional burden of VB approximation as we no longer need the iterative VB algorithm 

for a converged VB approximation as a minimum of a KL divergence. It also does 

not require to compute complicated VB marginals needed to compute other VB 

marginals.

The accuracy of the restricted VB approximation depends on the choice of the 

distribution for the intractable VB marginal. The accuracy of the VB approxi­

mation may reduce if the restricted VB-marginal increases the divergence between 

the approximation and the true posterior distribution. However, it may be use­

ful in such cases, where com putational difficulty mean th a t further compromise on 

approximation accuracy is needed.

P{'>PufP'\y) ~  9(V’i>'|y)>

= qW’i|y)q(V-’'ly),
where g(^/)i|y) oc exp [E,(^/|y) logP (V 'i,'0 ',y )] and 

q{^'\y)  oc exp [E ,(^i|y)logP(-0i,i/;',y)] .

(3.33)

(3.34)

(3.35)

(3.36)
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It is an im portant question tha t how the error in the VB-approximation can be 

monitored during the VB-runs. As the method is based on the KL divergence which 

can provide an accuracy measure of the approximation. Since the true  posterior 

distribution is known up to a proportionally constant so is this measure of divergence. 

It is mentioned before tha t minimizing a KL divergence is equivalent to maximizing 

a lower bound on the log-likelihood which can be computed easily as a function of 

the variational Bayes approximation and the complete log-likelihood. As the lower 

bound improves after every VB-iteration, the difference of the lower bounds a t two 

successive VB-iterations can also provide a measure of error in approximation during 

the VB runs.

3.2.3 G aussian variational approach

The Gaussian variational approach is a special type of density transform approach 

(Ormerod & Wand, 2010) to variational approximations in which a posterior density 

is approximated by a Gaussian density tha t minimizes a KL-divergence between the 

densities.

Consider the problem of determining the marginal distribution P{ y )  (as given 

in Eq. 3.2) which is a key factor in the computation of the posterior distribution

P (^ |y ) :

(3.37)

(3.38)

A lower bound on log P{y)  which is often intractable as below:

lo g P (y ) =  logP (y ) I  q{'ip\y)d'ip,

f  q{i’\y) iogP(y)d^,
J -tfj

f  Ml,
(̂̂ ly)g(V'ly)
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where the second term in the R.H.S of above expression is a KL-divergence between 

the true posterior distribution P{'ip\y) and its variational approxim ation q{ip\y). 

Since it is always a non-negative quantity, we get a lower bound on lo g P (y ) as;

logP (y ) >  log P (y ;g ),

P{y;q)  =  exp

(3.40)

(3.41)

If q{tp\y) =  P('ip\y), the lower bound P{y ,q)  becomes exactly equal to P (y ). 

The Gaussian variational approach restricts q{ip\y) to  a Gaussian density as:

q{ijj\y) = N{ip] E^),  (3.42)

where and are the variational param eters to found such tha t the lower bound 

P (y ;g ) is maximized to get a tight bound on P (y ):

= a rg m ax lo g P (y ;q ), (3.43)

=  a rg m ax lo g P (y ;g ). (3.44)

The Gaussian variational approximation may not be tractable if the above two 

expressions do not provide tractable solutions to and S^.

The main advantage of the Gaussian variational approach over other variational

methods is th a t it provides a standard (Gaussian) density approximation to an

intractable distribution. It can further be helpful computing other posterior esti­

mates, point or interval estimates. Unlike a simple Gaussian approximation, it is 

not based on a  posterior mode which often requires a (computationally expensive) 

mode-finding iterative algorithm.

A mean field approximation (or the assumption of independence between the 

unknown components of •0) may make the Gaussian approxim ation more tractable. 

More details on the approach can be found in Ormerod h  Wand (2010) and Hall 

et al. (2011).
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3.2.4 Variational tangent approach

As mentioned before, the VB method might fail to provide a tractable solution out­

side the conjugate-exponential family of models. In such a situation, the variational 

tangent approach may be employed in which the non-conjugate-exponential model 

is transformed into a conjugate-exponential form.

Suppose the complete-likelihood P(y, p̂) has a complex form such that a tractable 

variational approximation may not be obtained even when a suitable or preferred 

prior distribution is assumed (if the prior distribution is complex, it may be changed 

to a simple form). The variational tangent approach considers a tangent to the 

complex complete log-likeliliood function log P (y , i>) and transforms it into a sim­

ple quadratic or linear form which facilitates the variational method for a tractable 

approximation.

The key to the tangent approach is to find a tangent to obtain a lower or upper 

bound of the function. There can be many ways to do this, e.g. convex duality, 

Taylor’s expansion. We will discuss only the Taylor’s expansion for the variational 

tangent approach. For details on convex duality see Jordan (1999) and Ormerod k. 

Wand (2010).

Let us denote logP(y,-0) by as a function of -ip given y. To obtain a

tangent (say of (a quadratic function in -0), consider a Taylor’s

expansion of l { i p , y )  around ' ip = -ipq:

l { ' t p , y )  >  l { ' i p , y ; i p g ) ,
d

K ,̂y,'ipq) = (̂ q̂,y) + (V'-

+  0.5{ ' lp  -  1 p q f ^ l { l p , y ) \ r P = ^ , { ' l p  -  (3.45)

This bound (tangent) may now be used instead of log P(y, 'ip) for a tractable varia-
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tional approximation:

(3.46)

Often is quadratic which makes the variational tangent approximation

g(^ |y ) as a Gaussian density with a conjugate prior P{'ip). The posterior param eters 

of this approximation are some functions of an unknown variational param eter 

to be found. To obtain -ipq Jaakkola & Jordon (1999) derived an iterative algorithm 

based on the EM  algorithm includes the E-step and M-step as described below:

1. E>-step: at this step the expectation over is considered with respect

to g(V'|y):

Q{'4’q ] y ) ^  [  q{'tp\y)l{^p,y\1pq)di), (3.47)
J xp

2. M-step: this step computes tpg by maximizing Q(^/>g;y) with respect to ipg-.

ipq =  argm ax(3('0g;y). (3.48)
Ipq

The function Q{'(pq',y) depends on the posterior-parameters of g(’0 |y )  and they are 

some function of ipq which requires to  compute the functions iterative^.

This is the classical approach of variational tangent approxim ation which avoids 

KL divergence. Jaakkola & Jordon (1999) have described the variational tangent 

approach (with convex duality) for a Bayesian logistic regression model.

For multivariate 'ip, the approximation of P{ip\y)  might be com putationally in­

tensive or intractable even with this approach of variational tangent method.

3.3 V B approxim ation for CE m odels

Earlier in the chapter, it is mentioned many times th a t the VB method provides

tractable solutions for the CE models and the models for which the log- joint like-

P{ip\y) = P{y\i )̂PW
/v,'P(ylV')̂ (̂ )dV'’

exp{/(V^,y;V>g)}
J^exp{l{ip ,y ,7pg)}d^j j '

qi'iply)-
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lihood can be factorized over the components of the unknown param eters. The 

natural form of the CE models let the log-joint likehhood explained in a factorized 

form. We proceed with the Smi'dl and Quinn approach and derive a standard form 

of VB approxim ations for CE models. See Beal (2003) for the standard form of the 

approximation for latent CE models.

The standard forms of the likelihood P (y  |'0) and the prior distribution P{ij\r), u) 

of the CE models, as defined already in Chapter 2, are given below:

N

P { y \ ^ )  =  n  [ ^ ( V ' i , ' 0 ' ) e x p  {d){Tpu'ip'fu{yi)) fiYi)]  ,
i=l

/ N  \  N

= exp I (pi-ipuipY u{y,) J [ / ( y j ] , (3.49)
V  i = i  /  i = i

= h{r],u)g{jpi,'4iy'exp {(f){rpu'tjj')' î') , (3.50)

where = t(y) (say) is the sufficient statistics of

is the natural param eter tha t linearly relates to  t(y), is the normahzing

constant and 77 and v  are the hyper-parameters of ip.

Consider the VB marginals of V'l and ip' as given in Eq. 3.35 and 3.36:

g(^i|y) oc exp

qi-ip'ly) oc exp

( 7 7  -h iV)E,(^/|y) \ogg{ipi,ip') +  (t(y) -h u)

, (3.51)

(?] +  iV)Eq(^ijy) logg{7pi,'tp') + (t(y) -f zy)

■ (3-52)

The standard form (or the tractability) of the VB marginals q{i>i\y) and qi'ip'ly) 

depends on the form of the functions log51(^ 1 ,-0') and 0(V^i,V''). If both functions 

factorized over ipi and 'ip' in such a way th a t could define the VB expectations (given 

in the above two equations) and which is possible for the CE models.

To dem onstrate the standard form of the VB marginals for CE models, consider 

an example of an i.i.d univariate Gaussian model with the mean /i and the variance
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cr^. Suppose ipi =  fj, and -ip' =  cr̂ . The likelihood of the  model is defined as:

i=l ^

Comparing the standard form of the exponential models (likelihood),

=  exp -  ^log(27rcT2)|

2

Defined below is the conjugate joint prior over ^  and

P(ti,a^)  =  Pi^\a^)P{a^),

P(At|a^) =  N { m j n , a ' ) ,
1 mil m? ,

P{^=) =  L

Comparing the standard form of the conjugate prior,

f ^ ’
=  1,

Hv,

(3 .53)

(3.54)

(3.55)

(3.56)

(3 .57)

(3 .58)

(3 .59)

(3 .60)

(3 .61)

The functions log g(//, a^) and log 0(/i, a^)  are factorized over fx and such tha t 

the required VB expectations can be defined. The VB marginals over fi  and are
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obtained as:

m

I E . | iÂ  +  1 

E i = i  Yi + rn

- 1

iV + 1 ’

9(^^|y) == Inverse Gamma{a^] a*, b*), 
N  + S

a =

b* =

2 ’ 

N  + 1  ̂ -  Egifi) y ,  + m

(3.62)

(3.63)

(3.64)

(3.65)

(3.66)

(3.67)

3.4 V B  approxim ation and th e  M arkov Property

The Markov property, along with the independence assumption and the factorized 

form of the log-joint likelihood, is an important factor to present the VB marginals 

in simple and tractable forniH. Defined earlier in Chapter 2, the Markov property ex­

plains the conditional independence between the unknowns of a multivariate model. 

A VB marginal of an unknown, say ipi, depends on the VB moments of those other 

unknowns among (all other unknowns but ipi) which directly influence 'ipi under 

the conditional independence property.

Consider the DAG presented in Figure 3.1. Suppose we are interested in the 

computation of the VB marginal qi4>i\y).

9(V'i|y) = g( î|y, -̂i), (3.68)

(3.69)

The VB marginal q{'ipi\y) depends on the VB-moments of ■0', a , /3 denoted by 'ip', a  

and and the data y  under the Markov property which says that an unknown •0i is 

conditionally independent of all other unknowns that are not its parents. That is,

9(-0i|y) =  (3.70)
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Observations i=l,...,N

Fig. 3.1: A DAG showing conditional independence by the Markov property for a 
multivariate model. The DAG represents a Markov blanket around the node f/'i with 
the shaded nodes as its parents, children and co-parents. Nodes y^’s are children, a  
and (5 are parents and \]j' is the co-parent. ■01 is conditionally independent of nodes 
a  and h given its parents.
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where = {ip', a, P} denotes the set of VB moments of the parents of 'ip\.

Thus without writing down the VB equations, due to the Markov property we 

are still able to find the unknowns which interact with a particular unknown in 

its VB marginal via their VB moments. The VB moments have important role 

in the definition of the VB marginals as they carry important information about 

a particular parameters contained with its parents. This property of information 

passing through VB moments is called variational message passing which describes 

the simple forms of the VB approximations for latent models through the Markov 

property, for details see Winn k, Bishop (2005).

3.5 T he V B  m ethod vs other m ethods of approx­

im ation o f  Bayesian com putation

The VB method is a quick and straightforward method to apply. In this section, 

a comparison between the VB method and the other popular methods of approxi­

mation of Bayesian computation is presented for its accuracy, convergence and the 

computational time.

E M  algorithm: The EM algorithm is an optimization method which provides a 

maximum a posteriori (MAP) estimate (a modal value of a posterior density) of 

parameters for latent models. The algorithm converges to a local maximum of the 

posterior only. It may converge slowly for multi-modal and highly multi-dimensional 

models. Just like the EM  algorithm, the VB method is also more effective for expo­

nential models. The \^B method approximates the uncertainty of the parameters, 

whereas the EM  algorithm provides only a point estimate. Likewise the EM algo­

rithm, the method reacches a local minimum of a KL divergence.

Laplace approximation: The Laplace approximation uses a quadratic approxi­

mation around the posterior mode of the unknowns. Hence, it may be inappropriate 

for multi-modal and nion-symmetric posterior distributions. It needs mode-finding 

or optimization algorit.hnis to find a posterior mode, e.g. Newton’s method (Nocedal
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& Wright, 2006). It requires to compute the Hessian matrix needed for finding the 

posterior mode (usually found with the Newton’s method) which may be very dif­

ficult in large dimensions. Unlike the Laplace approximation, the VB method may 

provide non-Gaussian approximations to the posterior distributions. It also does 

not require to compute the Hessian matrix.

In teg ra ted  N ested  Laplace A ppro x im atio n  (IN L A ): The INLA method is 

applicable for latent Gaussian models with only a few parameters. It uses a nu­

merical integration to approximate the posterior marginals of parameters, which 

requires a limited number of unknown parameters in the model. As it is based on 

the Laplace approximation, it requires to compute the Hessian matrix of the poste­

rior distribution. Unlike the INLA, the VB method with the assumption of posterior 

independence can be appHed to a model with several parameters. Rue. et al. (2009) 

comments that the VB method may under-estimate the posterior variance, which 

makes it less accurate than the INLA method for models with a few parameters. 

Both the methods provide quick solutions to Bayesian computational problems.

M C M C  m ethod : MCMC is a simulation based method that can yield very accu­

rate results in the long run. For multi-modal and multi-dimensional distributions, 

it suffers from slow convergence. The label switr.hing problem for mixture models is 

a major drawback of the method. The VB method, in contrast, converges fast even 

for multi-dimensional models, but it lack some accuracy in the approximation due 

to posterior independence assumption. It may provide uni-modal approximations 

to multi-modal posterior distributions (for mixture models), therefore, it does not 

suff'er from the label switching or symmetry problem, see the variational mean field 

approximation by Jaakkola (2000).

A pictorial representation of the comparison of the VB method with INLA and 

MCMC is given in Fig. 3.2. In the figure, VB, INLA and MCMC are qualitatively 

compared for their computational speed, accuracy and applicability to different va­

riety of models. The MCMC method can be appHed to a large variety of models 

generating very accurate results, but is very slow. INLA is fast and very accurate.
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But, it is applicable to only a restricted class of models (latent Gaussian models 

with few parameters). The VB method is also very fast and can be applied to a 

wider class of models as compared to INLA, though it is less accurate. The next 

two chapters attem pt to increase the accuracy and applicability (tractability) of the 

VB method for complex models while maintaining the computational speed.

3.6 D iscussion

In short, the key idea of the VB method is to approximate the posterior density in 

terms of approximate marginals. The VB method enforces posterior independence 

between the subsets of the components of the imknown parameters. The method 

does not reach to a unique solution, however it can provide a local minimum of a 

KL-divergence. Approximate marginal posteriors of subsets of parameters, called 

VB-marginals, interact with each other via their moments. The assumption of pos­

terior independence is necessary for the method to be computationally tractable, 

though it may lead to the under-estimation of the posterior variance. However, the 

independence assumption is not solely responsible for this under-estimation problem. 

A KL-divergence (used in the definition of the VB approximation) requires the cov­

erage of the VB approximation smaller than that of the true posterior distribution 

to maintain its property of non-negativity. Thus, the definition of the VB approx­

imation without the independence assumption itself leads to a smaller posterior 

variance. To solve this problem one could think of using the alternative definition of 

KL-divergence but that will result in the VB marginals equal to the true (unknown) 

marginal posterior distributions (Smfdl & Quinn, 2006). Some other methods that 

avoid this problem are, for example, the expectation propagation (Minka, 2001) or 

use of Fisher’s information matrices (Wang & Titterington, 2005). Other alternative 

approaches of the VB method to tackle this problem need to be explored.
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A large class of models

INLA

Restricted 
class of models

A wider class of 
models

Speed/tractability

Fig. 3.2: A comparison between VB, INLA and MCMC for their accuracy, compu­
tational speed and applicability to models is shown. The area of circles represents 
the variety of models.



Chapter 4

V B approximation for Inverse 

N on-latent Regression

This chapter presents the VB approximations for inverse non-latent regression prob­

lems. Two types of non-latent regression problems are considered; conjugate- 

exponential regression model and non-conjugate-exponential model. To describe 

conjugate-exponential models, two regression models are considered: simple lin­

ear regression and quadratic regression. Non-conjugate-exponential models are ex­

plained by Poisson (log-linear) regression, mixture of Poisson and zero-inflated Pois- 

son regression model. Inverse regression is described using Bayesian approach of in­

ference. The aim of the chapter is to explain the VB approximation for the Bayesian 

inference in inverse non-latent regression problems. The chapter also builds up a 

simple understanding of the application of the VB method to a more complex inverse 

latent regression problem described in the next chapter.

4.1 Introduction

Inverse non-latent regression can be described as a method of finding predictions 

of an explanatory variable given observations on a response variable of a regression 

model. A regression model reflecting a relationship between a response variable (say

62
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Y) and an explanatory variable (say X) can be defined as follows:

Y =  y(X;0) (4.1)

In the above equation, /  is a parametric model that defines a relationship between a 

response variable, Y and an explanatory variable, X. The term 9 represents unknown 

parameters in the model. To predict X for a given value(s) of Y, the model /  should 

be learnt beforehand. In a statistical parametric model, model (/) learning relates 

to fitting a parametric model to data by estimating the model parameters (9).  The

model fitting can further be used to predict X. It is often of interest to predict

the explanatory variable(s) used to derive observations on a response variable. For 

example, consider a classical example of regression for dose of vitamins and weight 

gain. It might be of great importance to infer the amount of vitamins responsible 

for a desired weight gain.

Consider a Bayesian analysis of the inverse non-latent regression problem. Sup­

pose, u i.i.d observations y =  (yj; z =  1 : n} of Y corresponding to n values of X, 

X =  {xi; z =  1 : n}, are obtained from a distribution of Y given X and 9:

y ~  ^(ylxi^*),
n

i=l

where 9 is unknown. The inverse regression of an unknown X, denoted as X„ew, for 

a new value of Y, y„ew) can be found through its posterior distribution as given all 

the observations on X and Y;

-P(Xnew|ynew>y.x) =  J  P{X^ev , , 9 \ y ^ ^ ^ , y , X . ) d 9 , (4.3)

«  J  P{yneJ^nev!,d)P{Xne^\9)P{9\y,x)d9, (4.4)

where P(Xnewl^) is the prior distribution of X„ew and P(y„g.^̂ ,|Xnew, )̂ is the likehhood 

of Xnew given 9 and ynew- The term P (0 |y , x) is the posterior distribution of 9 given 

(y, x) which should be computed in advance, since it does not depend on ynew-
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Thus, the inverse regression of Xnew can be carried out in two stages:

1. Forw^ard stage: At this stage, the aim is to compute the posterior distribution 

of the unknown parameters 6 of the regression model given data set (x, y) by 

Bayes’ law as:

' ' /,P (y|x,»)P(«)d(9' '

In the R.H.S of the above equation, P (y |x , 0) stands for the likelihood of 6 

given data on x and y and P{6)  denotes a prior distribution of 6.

2. Inverse stage: At the inverse stage, the posterior distribution of X „ e w  given 

the data (yng^,y,x), F(Xnew|ynew> y> x), is obtained by integrating out d from 

the joint posterior distribution of X„ew and 6, P(Xncw|ynew! expressed 

in Eq. 4.3-4.4.

To compute the posterior distribution PfX^ewlynewi Yi the R.H.S of Eq. 4.4 should 

be normalized and this requires the evaluation of an integral over the dimension 

of the parameters, which often remains intractable. However, if the integrands 

(posterior distribution of 6, prior distribution of X„ew and its likelihood) belong to 

conjugate family of distributions, the posterior distribution P(Xnew|ynewi Yi ™ay 

be obtained as a standard distribution and hence the computation of the normalizing 

constant can be avoided.

It is not always necessary to describe Bayesian inference on the inverse regression 

in two stages. The previous work in the field of Bayesian inverse regression (Hunter 

&: Lamboy, 1981; Racine-Poon, 1988) study 6 and X„ew jointly through their pos­

terior distribution. The joint posterior distribution combines both the stages. As 

defined in Eq. 4.4, the marginal posterior distribution 0, P(6*|y,x), does not depend 

on ynewi hence can be computed in advance. The VB marginal of 6 may depend 

on y„g^ and the VB moments of Xncw The combined VB approximation of 6 and 

y„g^ is explained in Vatsa & Wilson (2010). The method may be straightforward as 

it avoids splitting the inference problem, though can be time consuming in case of 

several predictions to be studied independently. The inference method of this thesis 

is compared with that of Vatsa & Wilson (2010) in detail in Chapter 6.
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Inverse probability  andi inverse regression:

The Bayesian inverse regression can be compared with the concept of ‘inverse prob­

ability’ (Isserlis, 1936; Stigler, 1986; Zabell, 1989; Dale, 1999) as both describe the 

inverse inference on an unknown. The inverse probability is a method of inverse 

inference that uses Bayes’ theorem to find posterior distribution of an unobserved 

quantity given data. The use of inverse probability in inverse problems can be found 

in Dale (1999). Whereas, (Bayesian) inverse regression refers to learning only an 

unknown explanatory variable for a given observed value(s) of a response variable.

4.1.1 M odels to  explain the Inverse N on-L atent regression  

problem

Five non-latent regression models categorized in two classes of models;

• conjugate-exponential and

• non-conjugate-exponential (non-latent) models,

are described below to illustrate how the VB method performs for the inverse esti­

mation for these sets of models.

Under the conjugate-exponential non-latent models, tvv̂ o regression models are 

considered:

1. Simple linear regression problem:

Simple linear regression defines a linear relationship between an explanatory

variable X and a response variable Y. A simple linear relation between X and

Y can be defined as:

E(Y|X = x) =  0̂ +  A x (4.6)

Eq. 4.6 can be rephrased as

Yi =  ;5o + Ax, +  e,; i =  1 ; n. (4.7)

In the above equation, the terms /?o and are regression parameters. Corre-
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spending to given a value of X, x,, Y, is observed with some discrepancy. The 

e’ s are assumed to be independently and identically normally distributed:

~  A^(0,cr^); z =  1 : n, (4-8)

The aim of the simple linear regression analysis is to estim ate the unknown 

param eters /?i and to fit a linear relationship between explanatory and 

response variables. The estimation of unknown /3q, and of simple linear 

regression is then used for inverse prediction of the explanatory variable.

2. Quadratic regression problem:

A quadratic regression models a quadratic relationship between a response 

variable, Y, and an explanatory variable X:

E(Y|X =  x) =  /3o +  A x  +  /3ox^ (4.9)

Given a sample of data  points on Y and X, Eq. 4.9 can be represented as

Yj =  /3o +  /3iXi +  /3qx  ̂ +  ei] i =  l  : n. (4.10)

The term  c’s in Eq. 4.10 are identically and independently normally distributed

error term s with mean zero and variance ( same as defined in Eq. 4.8).

At the forward stage of the inverse inference, the unknown param eters l3o, Pi,  

132 and cr̂  are estim ated and then used to predict X for a new observation of 

Y a t the inverse stage.

The inverse estimation by the VB method is discussed for non-conjugate- 

exponential models via the following models:

3. Poisson Regression problem

Inverse Poisson regression can be described as a method of inverse regression 

to study an explanatory variable X for given observations (counts) on response
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variable Y of a Poisson regression model. A Poisson regression fits a Poisson 

model to a set of count data on Y given data on X of the model. The log mean 

of Y is linearly related to X:

log(E(YiX =  x))=/3o +  ^ix. (4.11)

In the above equation, /3q and are the unknown regression parameters. The 

regression parameters /3q and /?i are estimated at the forward stage given data 

on Y and X. The knowledge of (3q and f5\ is then used for the inverse prediction 

of X for new counts Y.

4. M ixture of Poisson Regression problem

In a mixture of Poisson regression problem the response variable are assumed 

be following a mixture of Poisson distributions. In this model, the counts are 

a mixture of regression component and a component that is independent of 

the explanatory variable. The mean of the mixture Poisson model is given as 

follows:

E(Y|X =  x) =  7rexp(/3o + ,0ix) + (1 -  tt)//. (4-12)

In the above equation, and /3i are the unknown regression parameters and 

^  is the rate parameter of the second distribution of the mixture model. The 

term tt is the probability that an observation of Y is obtained from the Poisson 

distribution with the rate parameter as a function of regression parameters. 

Therefore, there are four parameters to estimated at the forward stage of the 

problem given data on Y and X. Then the inverse prediction of X for new 

counts Y can be studied using the knowledge of these parameters already 

obtained at the forward stage.

5. Zero-Inflated (ZI) Poisson Regression problem

Some real life count data with mixed behaviour are zero excessive. Such type 

of data can be well modeled with the Zl-Poisson distribution. In the Zl-Poisson 

model is a mixture of two generative process, one fits the excess of zero counts 

and another models the non-zero counts. The Zl-Poisson regression model is
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defined as below:

N

P{Y\x,f3oJu7T) = l l Z I P { Y , -  Xi,7T,), (4.13)
n = l

ZIP(Y,; K,TTi)  =
(1 -  TTi) +  TTiC if Yj =  0;

TTiPoiss{YAj), if Yj > 0 
where the term Z I P  stands for the Zl-Poisson distribution, A is the rate

parameter of the Poisson density in the Zl-Poisson model which relates the

response variable Y  to the explanatory variable X and (1 —tt) is the probability

of observing essential zero counts.

\ i  =  exp(/3o + /3iXi) Vz, (4.14)

(4^15)

The inverse Zl-Poisson regression problem studies the inverse estimation of 

the explanatory variable X„cw given a new count yy on the response variable 

of a Zl-Poisson regression model.

The Poisson regression problem describes the non-conjugate and exponential family 

of models whereas the mixture of Poisson and the zero-inflated Poisson regression 

problems are the examples of the non-conjugate and non-exponential family.

In the next section, the VB approximation to the Bayesian inference for the inverse 

non-latent regression problems is discussed. It should be noted that the analytical 

solutions to the Bayesian inverse problem can also be found for low dimensional 

problems numerically, that allows us to evaluate the performance of the VB approx­

imation.



4.2. VB approxim ation to Inverse non-latent R egression Problem 69

4.2 VB approximation to Inverse non-latent Re­

gression Problem

The VB approximation for the inverse regression is described separately for the two 

stages;

VB approxim ation at the forward stage:

The aim of the forward stage is to compute the posterior distribution of 9 given data. 

The unknown parameter 9 of the non-latent regression models (discussed before) 

is multivariate, 9 = {^i, ^2 ? • • •, A VB approximation to the joint posterior 

distribution of 9 is given as:

P (^ i,^ 2 , • • • ,^p|x,y) g0 (^i,^ 2 , • • •, ^p|x,y), (4.16)
p

q e { 9 i , 92 , . . . , 9p \ x , y )  =
i = l

q 0 ^ W ^ , y )  ^  exp j^Eg,_.(0 _^|x,y)[log(P(y|x,0 )P ( 0 ))]j , (4.18)
p

where 9 0 _^(^_i|x,y) =  H

The functional form of the VB approximation for the different models are described 

in the section for VB solution.

VB approxim ation at the inverse stage:

At the inverse stage, the aim is to compute the marginal posterior distribution 

(̂XnewlYnew  ̂Y? x) by integrating out 9 from the joint posterior distribution P(Xnew, ^|y, 

The regular VB method to approximate P(Xnew|ynew5 Y? x) suggests to find an ap­

proximation to P(Xnew, l̂Ynew^y  ̂x) and present it as a product of approximations 

to the marginals:

, y ,x) .

P(Xnew,6>|yne^,y,x) g(X„ew, ^ l̂y^ew, Y, x ) , (4.20)

■̂ (̂ new |ynew5 y 5 x) ~  9Xnew (^new |ynew’Y5 X ). (4.21)

g(Xnew? e\ynew 1 y 5 x) — ^X„ew (X new |y new 5 y 1 x)g0 (^|ynew)y.x). (4.22)
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An iterative VB method makes the problem of parameter estimation com putation­

ally expensive. It requires an approximation of P(Xnew, l̂Ynew; y> jointly every 

time a prediction of Xnew to be studied. Also, it does not fulfill the definition of 

inverse regression method to estimate 0 first then invert the model to predict Xnew 

The restricted VB method can be used to approximate the marginal posterior 

distribution of Xnew The idea of the restricted VB method is to compute a non­

iterative VB approximation of P(0|yne^, y, x). By the definition of the method, 

•P(Xnewlynew) y> ^an be approximated as:

^(Xnew|y„ew>y>x) «  9X„ew(Xncw|yncw> y> x), (4.23)

9 X „ e w ( X n e w | y n e w , y > x )  OC C X p  [ E p ( 0 | y ^ ^ ^ . y , x )  log P ( 0 ,  X n e w ,  Y n e w | y , x ) ]  , (4.24)

=  ex p [E p(e |y„ ,,„ ,y ,x ) lo g ( P ( y „ e ^ l ^ ,  X „ew )

x F ( X n e w ) P ( 0 | x , y ) ) ] ,  (4.25)

(X exp l o g [ P ( V n e w l ^ -  X n e w ) P ( X n e w ) ] ]  (4.26)

9Xnow (^new|ynew5 y> x) ~  6Xp y log[P(yjjp^|l5, Xnew)-P(^new)] (•4-27)

A possible choice for P(0|y„g^,y,x) is

^(^lYnew, y> x) =  qe{0\y,  x). (4.28)

The approxim ation qe{6\y,  x) is found at the forward stage. It should be noted tha t 

it is not conditioned on the new observation y^g^. If y is a large set of observations 

compared to  ynew, 9e(^|ynew. y> x) is very close to ge(0|y,x).

4.2.1 Com parison of the V B approximation for X„ew w ith  

th e results from other m ethods.

For the comparison of the restricted VB approximation, the marginal posterior dis­

tribution of Xnew can be computed in following ways:

1. Compute the true posterior distributions with a numerical integration method 

a t both  the stages.
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2. Approximate the joint posterior distribution of parameters with the VB method 

at the forward stage and then compute the true marginal posterior distribution 

of Xnew by a numerical integration method at the inverse stage.

3. Use the VB method at both the stages (restricted VB at the inverse stage) to 

approximate the posterior distributions.

4. Compute the true posterior distribution of the unknown parameters by the 

MCMC method at the forward stage. At the inverse stage, use the MCMC 

samples of the parameters to compute the posterior distribution of Xnew by 

the Monte Carlo integration.

5. Use other variational methods, such as the variational tangent approach and 

Gaussian variational approach to compare with the VB approximations in case 

of the non-conjugate-exponential models.

The posterior distribution of Xnew by the M onte Carlo m ethods:

As described in Chapter 2, the Monte Carlo methods may provide true results in 

the long run. To obtain the true posterior distribution of Xnew the Monte Carlo 

integration may be considered which uses the MCMC posterior samples of the pa­

rameter 6. The posterior distribution of X„ew by the Monte Carlo method is given 

as follows:

M S

PMc(Xnewlynew>X,y) CX ^
m = l

^ ( Y n e w l X n ^ ) P ( X n e w ) (4.29)

where is the MCMC posterior samples of 6. The term M S  denotes the number 

of the MCMC samples. If M S  is large enough, the posterior distribution of Xnew, 

-P/wc(Xnew|ynewi X) y)i is by the Central Limit theorem close to the true posterior 

distribution of Xnew- It should be noted that the Monte Carlo methods may provide 

very accurate result but they are very time consuming.

The approximation by other variational methods for non-conjugate-exponential 

models are discussed later in the chapter.
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4.2.2 Evaluation of V B approxim ation

A leave-one-out cross validation technique is used to test the accuracy of the VB 

approximation. A data set on Y and X generated from the true distribution is 

partitioned into two sets: training and test data set. The training data set consists 

all but one data point. The left out data point is considered for the validation of 

the approximation at the inverse stage. The training data set is used to estimate 

the regression parameters. Then, each of the data of Y is used once independently 

to predict the corresponding values of X. A measure of accuracy is described in 

terms of percentage of (all leave-one-out) test data of X lie inside its 95% Highest 

Posterior Density (HPD) region.

4.2.3 V B  solution to  Inverse Sim ple Linear Regression

In a simple linear regression model, the parameter 9 is a set of unknown regression 

parameters /3q and /3i and a variance parameter

As the underlying model is linear with normally distributed error terms, the likeli­

hood of the parameters is Gaussian:

n

^(y|x,/3o, =  ]][ Af(yi;/iy,,a^), (4.30)
t = i

where//y. =  /3o-l-/3ix,. (4.31)

The prior distributions on /3q and /?i are assumed to be Gaussian with zero means 

and variances large enough to show ignorance about the parameters. The variance

parameter cr̂  is assumed to have an non-informative inverse Gamma prior.

P(/J„) = /V(0,s|„),
p(A) = Mo.sl.),
P(cT )̂ =  Inverse Gamma{a,b).

(4.32)

(4.33)

(4.34)
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In the regression models of this chapter, the explanatory variables are assumed to 

be controlled and so possess no random behavior. W ith the Bayesian analysis, any 

unknown is assumed to be random. To show lack of prior knowledge on randomness 

in Xnew) an improper prior on X„ew is assumed:

P (X „ e w )  OC 1. (4.35)

V B solution at Forward stage:

A VB approximation to the joint posterior distribution P(/!^0 ) A ) x) is presented 

as follows:

P(;0o,/3i,crV>x) ^  q{Bo,di,a‘̂ \y,yi), (4.36)

where g'(/?o, A , o-^|y,x) is found by the VB method as:

g(/3o,/3i,o-% ,x) =  g^o(/9o|y,x)g^j(^i|y,x)g^2(aV >x), (4.37)

where, g^o(/3oly,x) =  N{n*g^,Sj*), (4.38)

g^,(/?i|y ,x) =  yV(MA,5|;), (4.39)

9 cr2 (cr^|y,x) =  Inverse Gamma{a*,b*). (4.40)

The VB-parameters (defining the VB marginals) are presented below:
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^  I I  IV I t

''* = *+ 2 > E  -  2e,(a ) E  y.
i = l  i = l  i = l

n  n

-  2E,(A ) +  2E,(^o)E ,(A )
i = l  z = l

VB marginals on the regression parameters /3q and Pi are recognized as Gaussian 

densities and VB marginal of is an inverse Gamma density. The (posterior) pa­

rameters of the VB marginals are presented as functions of moments (expectation 

of particular functions) of other unknown parameters.

V B  approxim ation at the inverse stage:

The posterior distribution of X „ e w  given data {y, x, is computed as

■f*(Xnew |y ) X, y„g^) CX J  P{y ncw\̂ >̂ cvi ■, Pot Pi t )-^(Xnew)

xP{fto, A , r rV , x)d/^odAda^(4.42)

^  | p ( y „ e w i X  new 1 /^O1 ' a^)P{X
new )

xqiPo, x)d^od;5idcr^ (4.43)

Using q{(3o,Pi,a‘̂ \y,yi) =  g^o(/3o|y,x)g^i(/3i|y,x)g„2(crV>x) in the above integral:

■^(Xnew|y 1 X, yjjg^) ~  ^  P(y^g |̂Xnew)/^O?/5l) f7'‘ )/^(X new )9/3o (/5o|y,x)

X gA(A|y,x)g^2(crV.x)d^od/5id(T^ (4.44)

The integral in Eq. 4.44 is not in a closed form. As it is a low dimensional integration 

problem, an analytical solution can be found by a numerical integration. For a 

quick and tractable VB approximation, the restricted VB method is applied to
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approximate P(Xnew|y,x,y„ew):

f ’( X n e w | y , X , y „ ^ „ )  9 ( X n e w | y , X , y „ e ^ ) ,  (4.45)

g ( X n e w l y ,  X ,  y „ e ^ )  OC e x p [ E q ( ^ o , ^ j , ^ 2 |y ,^) l o g [ P ( y „ 3 ^ | / 3 o ,  A ,  C^^ X n e w )

x P ( X „ e w ) ] ] ,  (4.46)

|?(Xnew|y,x,y„e^) =  N{^x*,Sx*), (4.47)

5-2 E,(/5?)E,
l ^ n - 1

(4.48)

The restricted VB approximation to P(Xnew|y> x, y„g^) obtained is a Gaussian den­

sity with a Gaussian likelihood and an improper prior.

Evaluation o f V B approximation:

For the accuracy check of the VB approximation, the 95% HPD region of X„ew is 

obtained as /xx‘ i

Result:

A sample of fifty equally-spaced values of an explanatory variable X is assumed, 

fifty corresponding values on a response variable Y are generated from a Gaussian 

distribution with mean /3q +  /?iX and variance cr̂ . The data are simulated with 

parameters /5q =  0.1, /?i =  0.9 and =  0.02. The VB method is applied to carry 

out inverse regression analysis of X for a new value of Y.

At the forward stage, the VB method is used to approximate the joint pos­

terior distribution of the regression and variance parameters. The true posterior 

distribution by the MCMC and a numerical integration method is computed for 

the comparison of the VB results. The comparison between the true and the VB 

marginals are shown in Fig. 4.1. It is clear that the VB-variance of P q and /?i are 

underestimated. This under-estimation of posterior variance may be a result of the 

independence assumption of the method. By this assumption, the method assumes
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Fig. 4.1: T he com parison of true posterior distribution of the regression param eters Pq 
(top), /3i (middle) and variance cr̂  (bottom ) of a simple linear regression problem  by a 
num erical integration (black) and by the MCMC (green) and VB approxim ation (blue) is 
shown. The VB m arginal of /3q and /?i show under-estim ated posterior variance, whereas 
the VB m arginal of is quite close to its true m arginal posterior distribution.
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the posterior covariance between the parameters zero which might make the poste­

rior variances small if the parameters are not independent. The VB marginal over 

cr̂  matches with the true result. It shows that cr̂  is less correlated with and 

/3i given sufficient data on X and Y and so is less effected with the independence 

assumption of the VB method. The approximation at the forward stage can be 

improved by allowing dependence between /3q, /?i .

The true marginal posterior distribution of X b>- the Monte Carlo integration 

and by a numerical integration and its VB approximation by the restricted VB ap­

proximation are shown in Fig. 4.2. The underestimation of posterior (VB) variance 

of the regression parameters is clearly reflected in the inverse estimation. As shown 

in Fig. 4.3, the true posterior distribution of X„ew has a very large variance. But 

the posterior variance of Xncw by the VB method is under-estimated. However, the 

under-estimation of the posterior variance is unavoidable with the VB method even 

if the independence assumption is ignored.

A validity check on the inverse regression is performed with a leave-one-out- 

cross validation technique (as explained in Section 4.2.2). There are no data points 

of Xnew outside their 95% HPD region, i.e. a 100% coverage is achieved for the 

true posterior distribution and the VB approximation. It is an indication of large 

posterior variance of Xnew Fig. 4.3 also suggests th a t the 95% HPD of Xnew (given 

a new data point, y„ew) too wide.

If estimated by classical approach of inference (least square method) as shown in 

Eq. 4.50-4.51, the variance of Xnew is a function of and /?i. As /3i tends to zero 

^(Xnew) approaches to oo. A detailed description on the larger posterior variance 

can be found on (Hoadley, 1970; Hunter & Lamboy, 1981).

 ̂ = i  - 1’
2

K(X) =  (4.51)
P i

An improper prior on Xnew is assumed in the Bayesian prediction. Therefore, all 

the posterior information on Xnew comes from its likelihood given data. Other 

parameters have been integrated out. Hence, its posterior variance is a function of
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Fig. 4.2: The comparison of the true posterior distributions of an explanatory variable 
Xnew (given Ynew =  0.93) of a simple linear regression problem (with an improper prior) 
by a numerical integration (black) at both the stages of inference, by the MCMC at 
the forward and the Monte Carlo integration (green) at the inverse stage of inference, the 
approximations by the VB method at the forward stage and a numerical integration (Red) 
and by the restricted VB method (Blue) at the inverse stage is shown. The true posterior 
uncertainty is large, whereas the VB variance is under-estimating the true variance.
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Fig. 4.3: Posterior estimates of an explanatory variable Xnew of a simple linear regression 
problem with an improper prior by numerical integration (NI) (the top left ), by the 
VB method and NI at forward and inverse stage respectively (the top right), by the VB 
method and RVB at the forward and inverse stage respectively (the bottom  left) and by 
the MCMC and the Monte Carlo integration at forward and inverse stage respectively (the 
bottom right). The comparison of the true values (blue) and the estimation (green) of 
Xnew, with the lower and upper bounds (in red) of 95% HPD region, is shown. The black 
asterisks are training data and the blue is for a new data Ynew The 95% HPD region are 
very wide due to the large posterior variance which shows a 100% coverage.
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A  (true) E ,(A ) y(X n e.) (VB +  NI) y(X„ew) (VB +  RVB)
0.5 0.5478 0.3321 8.4096 1.846
0.9 0.8887 0.8213 1.0686 0.7339
1.5 1.2659 1.6343 0.4559 0.3730
2.5 2.161 4.7024 0.1476 0.1327

Table 4.1: For different values of the regression parameter j3 \ of a simple linear regression 
problem, different results by the VB method and numerical integration and by the regular 
and restricted VB method are presented. It shows that a change in the value of /3i inversely 
affects the posterior variance of an explanatory Xnew ■ As the value of increases, the 
difference between the posterior variance by the two methods decreases. However, the 
values of VB variance by the restricted VB method is moderately small for large or small 
values of j 3 \ .

posterior mean of and cr̂ . As E(/3i) 0 , V(Xnew) ^  oo, reflected Fig. 4.3

and Table 4.1. From Table 4.1, it can be also concluded tha t for small values of 

/?i the posterior variances of Xnewi ^(Xnew), by the VB method and a numerical 

integration m ethod differ a lot. As 8 \  increases, the difference between the values 

of the posterior variances decreases. Clearly, if ,5i =  0, data  on Y„ew provides no 

information about Xnew and it makes the likelihood flat. If the prior is also non- 

informative or improper, the posterior distribution is also flat with heavy tails as is 

experienced in the result. A strong prior over Xnew is needed in order to  obtain a 

well-defined posterior.

It is experienced from running many such VB-experiments th a t a big discrep­

ancy in Ynew (departure from the mean value) may increase the bias in the inverse 

estim ation if the da ta  size is not big.

Both the problems, the bigger variance and an increase in bias can be solved 

(to some extent) with the assumption of a suitable and informative prior on Xnew 

(Hoadley, 1970). It may be suggested to use more than one new d a ta  point to 

predict Xnew accurately.

Fig 4.4 and 4.5 shows the VB approximation and its comparison with the results 

by other m ethods for the same regression model with a proper prior over Xnew- It 

can understood from the figure tha t the assumption of a proper prior can solve 

the problem of large posterior variance in case of the non-informative data. Even 

with a proper prior and a smaller posterior variance, the coverage under the 95%
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HPD region of X„ew is still 100% for the true posterior distribution and for the 

VB approximation (checked by the leave-one-out cross-validation technique) which 

shows that there is no error in the inverse estimation of the explanatory variable for 

given observations on the response variable of this particular problem.

Hence, it can be suggested that the under-estimation of the variance by the VB 

method (in the case of the assumption of an improper prior) for the inverse simple 

linear regression problem is a blessing not a curse.

4.2.4 V B solution to  Inverse Q uadratic R egression

In a quadratic regression model, there are four unknown parameters to be estimated: 

regression parameters /3o>/Si and ^2 and a variance parameter cr̂ ;

 ̂= {A, A) 2̂,

The likelihood of the parameters is Gaussian:

n

^(y|x,/3o,/3i,/32,c^^) =  PJiV(yj;/Xy.,c7^), (4.52)
1= 1

where = /3q +  +  /32X̂ . (4.53)

As in the simple linear regression problem, the prior distributions of /3o, /?i and j52 

are assumed to be (non-informative) Gaussian with zero means and large variances. 

A non-informative inverse Gamma prior is assumed over cr̂ :

(4.54)

(4.55)

(4.56)

(4.57)

p{^o)

P(PI) =

pm = m.si),
P{a^) =  Inverse Gamma{a, b)

An improper prior on X„ew is assumed:

P ( X n e w )  OC 1- (4.58)



4.2. V B  approxim ation  to  Inverse non-latent R egression  P rob lem 82

0.45 V B + N I
V B + R V B
M C M C  +  MC In teg ra t io n

0.35

>

I  0.25

H nn

0.15

0.05

X

Fig. 4.4: The comparison of the true posterior distributions of an explanatory variable 
Xnew (given Y„ew =  0.93) of a simple linear regression problem (with a normal prior) 
by a numerical integration (black) at both the stages of inference, by the MCMC at 
the forward and the Monte Carlo integration (green) at the inverse stage of inference, the 
approximations by the VB method at the forward stage and a numerical integration (Red) 
and by the restricted VB method (Blue) at the inverse stage is shown.
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Fig. 4.5; Posterior estimates of an explanatory variable Xnew of a simple linear regression 
problem with a normal prior by numerical integration (NI) (the top left), by the VB 
method and NI at forward and inverse stage respectively (the top right), by the VB 
method and RVB at the forward and inverse stage respectively (the bottom  right) and by 
the MCMC and the Monte Carlo integration at forward and inverse stage respectively (the 
bottom left). The comparison of the true values (blue) and the VB-estimation (green) of 
Xnew ) with the lower and upper bounds (in red) of 95% HPD region, is shown. The black 
asterisks are training data  and the blue is for a new da ta  Ynew
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V B  solution at Forward stage:

The VB m ethod is apphed to find a VB approximation of the joint posterior distri­

bution P(^o,/3i,/? 2 , cr^ly,x) presented as follows:

where g^o(/3o|y,x) 

ĝ i(A|y,x) 
g&(^2|y ,x) 

ĝ 2(a^|y,x)

g(^o,/3i,/?2,o^V>x) (4.59)

QdoiPo\y, x)?^i(/3i |y, x)g^2 (^2 |y, x)g^2 ( c r ^ ,  x),(4.60)

(4.61)

(4.62)

(4.63)

Inverse Gamma{a*,b*). (4.64)

The VB-parameters (defining the VB marginals) are obtained as:

o2 * _--

c2 * 
^01

=

q 2  *  ___

^ 0 2  -

=

a* =  

6*  =

+  nE,

-1

t=i

X ,

i = l

i = l
- 1

t = l

q 2 ■*

i=l i=l
~  ^ q(Po) 9̂ (̂ 2 )

i=l

q 2 *

^01 ’

0̂2

n
a +  - ,

i=l

- 1

X ! Yi^l -  Eg(/3o) ^  x  ̂ -  Eg(/3i) X  xf
i = l i = l i = l

q 2 *

*̂/3i >
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where,

n n n

2 = 1

2 E ,( ,/5 i)  ^ Y i X i  -  E q (/? 2 )x f  -  2 E g { p 2 ) J 2 y i ^ ^ -

i = l

Just hke in the simple linear regression example, the VB marginals of regression 

parameters (of a quadratic regression problem) are Gaussian with the Gaussian like­

lihood and conjugate priors. The VB marginal of is a conjugate inverse Gamma 

density. The functional form of the posterior parameters of the VB marginals are 

also presented in above equations.

VB approxim ation at the inverse stage:

The posterior dislribulioii of Xnew given data y,x,  ŷ ^̂  is

The expression in the R.H.S of Eq. 4.66 is not in a closed form. Therefore, the re­

stricted VB method is applied to approximate the posterior distribution P(Xnew|y, x, y„ew) 

as described in Section 4.2. The (restricted) VB approximation of P(Xnew|yj ^^ Y nc w )  

is given as:

• P ( X n e w | y 5 X ,  y „ g ^ )  OC J "  P{ynevi\^ne-w i Poi P li 02-1 ^  ) - P ( ^ n e w )  

^(YnewIX,•new?

xP(^0, A, /̂ 2̂, cr%, x)d;0odAd/^^2da  ̂

/30,A,/?2,^")P(Xnew)

X9(A, crV ) x)d/3od^d^2dcr^

/ ^ ( X n e w | y , x , y „ ^ ^ )  DC j  P ( y „ g ^ | X „ e w , / ^O ,  A , ^ 2 ,  f ^ ^ ) ^ ( X n e w ) 9 ^ 0 ( A | y ,  x )

X 9^i(/3ily,x)g02(^2ly,x)g<,2(aV,x)d/3odAd/32d(T^ (4.66)

^ ( X n e w |y , x ,y „ e ^ )  Ri ^(Xnew |y, X, y„^^), (4.67)
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l o g q {X new |y > x ,  y„ew) 2Xne« (y,new E,(/3o))+2X^^ (0.5E,(/3f) -

+  E (/?2)E (/3o))

+  2E,(/?i)E,(,/92)XL^ +  E,(/?i)E,(/?2^)X J  E, (1). (4.M)

The VB marginal g(Xnewly)X, yn̂ ^̂ ) is an un-normalized density and cannot be rec­

ognized as a standard distribution. Its normalizing constant of can be computed 

numerically.

Evaluation of V B  approxim ation :

For the accuracy check of the VB approximation at the inverse stage, the 95% HPD 

region of X„ew is approximated as Eg(Xnew) ±2\/l^(Xnew)- The terms Eg(Xnew) and 

V"g(Xnew) are the mean and variance of the VB approximation g(Xnewly, x, y„e^).

A set of fifty equally-spaced \-alues is assumed on X. Corresponding to each value 

of X, a value of Y is generated from a Gaussian density with variance cr̂  = 0.01 

and mean /3q + /3ix - I -  /?2 X̂ . The true values the regression parameters are set as:

In Fig. 4.6, the VB approximations are compared with the true posterior dis­

tributions obtained by a numerical integration and by the MCMC. The posterior 

distribution of X by a numerical integration is defined on a coarse grid. A finer 

grid may result in a numerical approximation closer to the true posterior distri­

bution (it is expensive to use a finer grid with many unknown parameters to be 

estimated). The VB-marginals of /3i and are quite close to the true marginal 

posterior densities, though the posterior VB-variances are under-estimated. The 

posterior distribution of X„ew is a bimodal density as shown in Fig. 4.7. As the 

quadratic regression equation /?2 X̂  - I -  /3iX - I -  /3q — y = 0, X has two roots:

Result:

^0 =  0.1, A  = 0 . 1 ,  ^2 =  1.5.

(4.69)
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Fig. 4.6: The comparison of the true marginal posterior distributions (by a numerical 
integration (black) and by the MCMC (green)) and the VB approximations (blue) of the 
regression parameters /?o (the top left), /3i (the top right), P2 (the bottom left) and variance 
(7̂  (the bottom right) of a quadratic regression problem is shown. The VB marginals of 
01 and are close to the approximation by a numerical integration method. A finer grid 
may lead to a more accurate result by a numerical integration method.
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regression problem with an improper prior over Xnew) by a numerical integration (black) 
and by the MCMC and the Monte Carlo integration (green), the approximations by the 
VB method and a numerical integration (red), the regular and restricted VB method (blue) 
and by the MCMC and the Monte Carlo integration (green), is shown. The VB marginal by 
the restricted VB method is peaked due to the under-estimation of the posterior variance.
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Fig. 4.8: Posterior estimates of X„ew of a quadratic regression problem with an improper 
prior by numerical integration (NI) (the top left), by the VB method and NI at forward 
and inverse stage respectively (the top right), by the VB method and RVB at the forward 
and inverse stage respectively (the bottom left) and by the MCMC and the Monte Carlo 
integration at forward and inverse stage respectively (the bottom right). The comparison 
of the true values (blue) and the estimation (green) of Xnew> with the lower and upper 
bounds (in red) of 95% HPD region, is shown. The black asterisks are training data  and 
the blue is for new data Ynew
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02 (true) E , ( ^ 2 ) y ( X „ e w )  (VB +  Nl) y ( X n e w )  (VB +  RVB)
1.5 0.558 0.6193 2.8491 0.2508
2 1.1166 1.5508 0.9101 0.2048

2.5 1.3451 2.1171 0.5921 0.1853
3.0 1.5034 2.5804 0.4210 0.1540

Table 4.2: Table shows that a change in the value of the regression parameter 2̂ in­
versely affects the posterior variance of an explanatory variable Xnew of a quadratic linear 
regression problem. For different values of 2̂, the VB variance remains very small when 
compared to the posterior variance by a numerical integration method.

the two possible roots of X may give rise to two modes in the posterior.

The nature of Bayesian inverse predictions for the quadratic model is quite similar 

to th a t of the simple regression problem. The effect of the underestimation of the 

variance a t the forward stage is much reflected in the restricted VB approximation 

to the posterior distribution of Xnew The variance of the approximation by the 

restricted VB method is much smaller than the true. Fig. 4.7 and 4.8 show large 

(true) posterior variance of Xnew Though an explicit functional form of the VB- 

variance of X„ew is not known, it can be understood from Table 4.2 th a t the variance 

of Xnew is a decreasing function of VB-estimates of f32-

A leave-one-out cross validation technique described in Section 4.2.2 is used to 

check the accuracy of the approximation at the inverse stage. Similar to the VB 

approxim ation for inverse simple linear problem, 100% coverage is achieved when 

the results are compared with the true (test data) values of Xnew All the test d a ta  of 

Xnew fall inside their 95% HPD regions, shown in Fig. 4.8. T hat is a 100% coverage 

is achieved for the true posterior distribution and the VB approximation. It is a 

result of the large posterior variance of X„ew •

It is of a great interest if the assumption of a proper prior over X„ew reduces 

the effect of the estimate of the regression param eter on the posterior variance 

of Xnew with an improper prior. Fig. 4.9 and 4.10 represent the results of the 

inverse estim ation for the inverse quadratic model with the assumption of a proper 

(normal distribution) prior over Xnew It can be understood from the figures th a t the 

assumption of the proper prior over Xnew improves the true result, as the problem of 

the large variance is solved. The result from the MCMC and from the VB method
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are very close. Hence, it can be concluded that the VB method performs well in the

context of the nature of the posterior variance no matter if the data is informative

or the prior is strong, in case of the weak data.

4.2.5 V B  solution to  Inverse Poisson R egression

In a Poisson regression model, there are only two unknown parameters to estimate; 

/3o and /3i.

 ̂= {/?o,A}.

The likelihood of the parameters is defined as follows;

n

P(y|x,0) =  J]Pozs5on(yi; AyJ, (4.70)
t = i

where log Ay. =  /3o +  /?iXj. (4.71)

The prior distributions on the regression parameters /3q and /?i are assumed to 

be Gaussian as in the simple regression problem.

P(/io) =  N{ 0 , S i ) ,  (4.72)

Pi/3,) =  N{0 , S l ) .  (4.73)

Assuming a proper prior provides a better result in case of a weak data. Therefore 

to avoid such a situation, as experienced in the case of the inverse simple linear and 

the inverse quadratic regression problems, a normal prior on X„ew is assumed as:

P(X „ew ) =  A^(X„ew;M X,5|) . (4.74)
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Fig. 4.9: The comparison of the true posterior distributions of X „ e w  (of a quadratic 
regression problem with a normal prior over Xnew) by a numerical integration (black) 
and by the MCMC and the Monte Carlo integration (green), the VB approximations by 
the VB m ethod and a numerical integration (red), the regular and restricted VB method 
(blue), is shown. The VB marginal by the restricted VB method is peaked due to the 
under-estimation of the posterior variance.
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Fig. 4,10: Posterior estimates of Xnew of a quadratic regression problem with a normal 
prior by numerical integration (NI) (the top left), by the VB method and NI at forward 
and inverse stage respectively (the top right), by the VB method and RVB at the forward 
and inverse stage respectively (the bottom left) and by the MCMC and the Monte Carlo 
integration at forward and inverse stage respectively (the bottom  right). The comparison 
of the true values (blue) and the estimation (green) of Xnew, with the lower and upper 
bounds (in red) of 95% HPD region, is shown. The black asterisks are training data and 
the blue is for new data Ynew •
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V B solution at Forward stage:

A VB approxim ation to the joint posterior distribution P(/?o, is:

^(/3o,A|y,x) r; <?(/3o,/3i|y,x), 

g(/3o,/3i|y,x) =  g^o(^o|y,x)g^j(/3i|y,x),

where log ;̂3o(/3o|y, x) 

logg/9i (/3i|y,x)

PI
25^0

2-S?,

2 =  1 i = l

E, (e^°) J ^ y .x ,

(4.75)

(4.76)

, (4.77)

(4.78)
i = l i=l

The VB marginals g/3j(^i|y , x) and g (̂,(/5o|y, x) are not standard distributions. 

The proportionality constants of the approximations and the required VB-moments 

can be computed numerically.

V B approxim ation at the inverse stage:

The posterior distribution of X„cw is

■ P ( X n e w | y j  X ,  y ^ jg ^ )  OC J "  P  { Y  n c w \ ^ n e v / i  P o i  P i )  P { ^ n c v / )

xP(/?o,A|y,x)d/?od/3i, (4.79)

~  J  -P(ynew|Xnew, A , A)-P(Xnew)

X9(/5o, A ly ,x)d/3od/3i, (4.80)

=  /  P ( y „ | X „ , A . A ) P ( X  new )9^o(A|y,x) 

X9/3i(A|y,x)d/3od/3i. (4.81)

A closed form solution to the integrals is not available. However it is only a 2- 

dimensional integral, therefore, an analytical solution to the posterior distribution 

P ( X n e w | y ,  X , y„g^) can be found by a 2-dimensional numerical integration. The
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restricted VB method is used to find a tractable approxim ation to  P(Xnew|y, x, Ynew)-

■P(Xnew|y) Ynew) ~  ^(^new IYi X, , (4.82)

log q(X new |y ,x , Y new ) ®^g(/3oiy,x)9(/3i|y,x) lo§[-P(y new 1̂ 0,A,Xnew)

xP(X„ew)], (4.83)

logg(Xnew|y,x,y„e^) w [-E5(e^°)Eg(e^i^""'^) +  E,(/3i)y„g^X„ew] • (4.84)

The restricted VB approximation g(Xnewly,x,y^^^^) as expressed in the above 

equation is not tractable because the term  in the  expression for g(Xnew|y> x, yĵ ^̂

cannot be factorized over /5i and X„ew separately. A Gaussian approxim ation is con­

sidered to find a tractable solution to g(Xnew|y, x, y„e^). Considering the Taylor’s 

expansion of g(Xnew|y) x, y^e^^,) as a function of Xnew around its posterior mode (de­

noted as Xq), a Gaussian approximation is found as:

9(X„ew|y,x,y„£,^) =  N{f^*x,Sx*), (4.85)

(4.86)

=  [ E , ( / 3 i ) y „ e w + E , ( e * ) [ X „ E , ( / 3 ? e ^ ^ ^ “ )

-E ,(A e ^ ^ ''“)]]5i* (4.87)

The VB-moments of /5i in Eq. 4.86 and 4.87 can be com puted numerically given 

the posterior mode X^. To compute a Gaussian approxim ation to log g(Xncw|y! x, Ynew) 

the posterior mode X^ should be found by an optimization method. A quick and 

easy way to find a Gaussian approximation with an algorithm  by Rue k, Held (2005). 

The algorithm avoids use of any optimization method to find a posterior mode. It 

uses a simple property of a Gaussian distribution i.e. the mean and the mode of 

the distribution are equal. It assumes an initial value of posterior mode, finds a 

Gaussian approximation around tha t initial value and computes the mean of the 

approximation as given by some expression (e.g. given in Eq. 4.87). It sets the 

mode of the posterior distribution to the mean of the  approxim ation and proceeds 

in the same manner until convergence.
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Comparison o f the V B  approxim ation w ith the result from other m eth­

ods:

The Gaussian approxim ation with the VB method for a non-conjugate family of 

distributions may provide a tractable VB solution. But the quality of the approx­

imation should be examined to see whether it degrades the VB approximation or 

improves it. Two methods are considered to check the accuracy of the VB approxi­

mation: the Monte Carlo method and the variational tangent approach. The Monte 

Carlo approach for the inverse estimation is already discussed in the chapter.

The vEiriational tangent approach to the problem:

For the comparison of the Gaussian approximation with VB method, a variational 

tangent approach may be employed. As defined earlier in C hapter 3, the variational 

tangent approach finds an approximation of a posterior distribution (or just of a 

function) by considering a tangent (a lower boimd) of a non-linear or non-quadratic 

log-likelihood (or joint log-likelihood). The aim of considering a tangent transform a­

tion to the problem is to make the problem conjugate-exponential so th a t a tractable 

variational approxim ation could be found.

The variational tangent approximation of the posterior distribution of Xnew is 

defined as below:

l o g P ( X n e w | y , X , y „ g ^ )  l 0 g P ( X n e w , y n e w | x , y ) ,

E,'9(/5o|y,x)g(/3i|y,x) log /^(Xnew) “1“ -^(ynew l^new5 ^ 0 ? /^l)

+ logg(/3o, A |x ,y )  

log P(Xnew) +  Eg(̂ (,|y_x)g(/3i|y,x) log ■P(ynewlA) X„ew)

( X n e w  -  -  E,(e^°)E,(e^'^-) +E,(/3i)y„,^X„ew

+E,(/3o)y„ew (4.88)

The only term  in the R.H.S of the above expression is not quadratic or

linear in Xnew Therefore, a tangent transform ation of the joint log-likelihood 

log P(Xnew, Ynewl^i y ) equivalent to considering a lower bound (linear or quadratic)
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on

The second order Taylor’s expansion of around /5iXnew = C is considered

to find a quadratic lower bound (tangent) of the function:

1. if /3iXnew > 0 (/3i is the posterior modal value of fix),

gAXnew ^  +  e«(/3iX„ew -  e) +  0.5e^(AX„ew -  O ' (4-89)

2. otherwise, if AXnew < 0,

gAX„ew ^  _  e«(AX„ew -  C) +  0.5e«(AX„ew -  O ' (4-90)

Therefore,

l 0 g P ( X „ e w , y n e w | x , y )  >  l O g  P ( X „ e w ,  Y „ e w  1 ^ ,  Y ,  0 •  ( 4 - 9 1 )

Considering the lower bound in the VB approximation the variational tangent ap­

proximation we get is as follows:

•P(Xnewlynew) ~  9T(XnewlYnew) y ) 1 (4.92)

gr(Xnew|y„ew,x,y) = (4-93)

where ^ (̂Xnewlyncw) y) the variational tangent approximation to the posterior 

distribution of Xnew

The mean and the variance Ŝ * parameter of the approximation is given as 

follows:

1. if /?iXnew > 0 then,

c 2 *  _
■^x — E,(e«“)E,(/3f)e< + ‘

E,(e'*”) (eH( -  1)E ,(A )) +  y „ „ E ,{A ) +  g

(4.94)

5 |* . (4.95)



4.2. V B  approxim ation to  Inverse non-latent Regression Problem 98

2. if /?iXnew < 0 then

E,(e^o)E,(A^)e« +  ^  , (4.96)

E,(e»>) (e«K + l)E,(/3,)) + y„.E ,(A ) + g  S l ‘ . (4.97)

The variable ^ is still to be determined. Consider the expectation of the lower bound 

log P(Xnew) Ynewl )̂ C) with respect to Xncw and maximize with respect to

2 .  otherwise, if / 5 i X n e w  < 0, .̂  =  E ^ ( / 3 i ) X n c w - 2 .

As the hyper-parameters of the variational tangent approach the

variational parameter ^ are mutually dependent, they can be computed iteratively.

Evaluation of V B  approximation:

Another accuracy check of the VB approximation is found in terms of its 95% HPD 

region. The 95% HPD region of X„ew is obtained as ^

Corresponding to fifty equally spaced values of X, fifty observations on Y are 

generated from a Poisson density given true values of regression parameters as /5q =  

0.15 and Pi =  1.5. Results from the VB approximation for an inverse Poisson 

regression problem are shown in Fig. 4.11, 4.12, 4.13. The VB approximation at the 

forward stage of the problem is compared with the (true) results from the MCMC 

method and a numerical integration method in Fig. 4.11. It can be understood 

from the figure that the VB-variance of the regression parameters and /?i are 

underestimated. The parameters j3o and /3i are strongly correlated in the Poisson

Q (0  Eq(Xncwly„ewi’‘>y)['̂ (^new) Ynewl̂ ) Yi ‘C)])

^ =  argmaxQ(0-

new (4.98)

(4.99)

The value of ^ as a maximum of Q{^) is obtained as follows:

1. if A X n e w  > 0, ^ =  Eg(/3i)X,

Result:
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Fig. 4.11: The comparison of the true posterior distribution of the regression parameters 
/?o (top), /?i (bottom) of a Poisson regression problem by a numerical integration (black) 
and MCMC (green), and their VB approximation (blue) of the marginal posterior distri­
butions, is shown. The VB marginal of /3q and /3i are peaked. The regression parameters 
/?o, Pi are too correlated to allow for the posterior independence.
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Fig. 4.12: The comparison of the true posterior distributions of Xnew (with a normal 
prior) of a Poisson regression problem given a big count on Ynew (=28) by a numerical 
integration (black) and by the MCMC method at the forward stage and Monte Carlo 
integration at the inverse stage (green), the VB approximations at the forward stage and 
a numerical integration at the inverse stage (blue), the restricted VB approximation at the 
inverse stage (red), the variational tangent approximation at the inverse stage (yellow) , is 
shown. The VB marginal by the restricted VB method matches the result by a numerical 
integration method.
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Fig. 4.13: Posterior estimates of an explanatory variable Xnew of a Poisson regression 
problem with a normal prior by numerical integration (NI) (the top left), by the VB 
method and NI at forward and inverse stage respectively (the top right), by the VB method 
and RVB at the forward and inverse stage respectively (the middle left), by the MCMC 
and the Monte Carlo integration at forward and inverse stage respectively (the middle 
right) and by the VB and tangent approach at forward and inverse stage respectively (the 
bottom). The comparison of the true value (blue) and the estimates (green) of Xnew, 
with the lower and upper bounds (in red) of 95% HPD region, is shown. The black 
asterisks are training data  and the blue is for a new data on the response variable Y. 
The posterior variance of X„ew are very small when compared to th a t of the simple and 
quadratic regression.
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likelihood and so to assume them independent in the VB approximation leads to 

this under-estimation.

In Fig. 4.12 and 4.13, the VB approximation at the inverse stage is compared 

with the results obtained from the Monte Carlo integration, a numerical integration 

and the variational tangent approach. Assuming the result from the MCMC true, 

the VB methods provides better result than the variational tangent approach as the 

VB approximation is matching the true result quite well . At the inverse stage, the 

effect of the posterior independence assumption of the VB method is not reflected. It 

is experienced with several such experiments with different sample sizes that the VB 

approximation of Xnew is close to its true posterior distribution for sufficiently large 

(training) data used at the forward stage to estimate the regression parameters. In 

Fig. 4.12, the posterior distribution of Xnew is conditioned on a fairly big count on 

Ynew (=28). Fig. 4.13 displays the 95% HPD regions of Xnew Clearly, the problem of 

infinite variance is not noticed in the case of the inverse Poisson regression problem.

As a result of accuracy check via leave-one-out cross validation technique, 94% 

counts are inside their 95% HPD regions for VB and restricted VB (RVB) approxi­

mation. Whereas, the accuracy is 96% for both the true predictions (by a numerical 

integration) and the approximated (by VB at the forward and a numerical integra­

tion at the inverse stage).

Fig. 4.14 and 4.15 represent the posterior distribution of X„ew given a small 

count on Ynew (=1) with a normal prior and an improper prior assumed over X„ew 

respectively. It can be concluded that a small number of training data set leads to a 

less accurate VB approximation of Xnew, but it provides a better VB approximation 

than the variational Tangent approximation for a small count.

Comparing the Fig 4.14 and 4.15, it can be concluded that the assumption of a 

proper prior distribution over X„ew for the weak (response) data leads to the small 

posterior variance hence improves the accuracy of the result. This means, even if 

some accuracy is lost in VB approximation (in terms of the variance) at the forward 

stage, an accurate approximation of inverse estimation can be found for a sufficiently 

large training data set or for weak data with an informative prior distribution.

It should be noted that the considered Poisson regression problem is only a two
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Fig. 4.14: The comparison of the true posterior distributions of Xnew (with a normal 
prior) of a Poisson regression problem given a small count on Ynew( =1) by a numerical 
integration (black) and by the MCMC method at the forward stage and Monte Carlo 
integration at the inverse stage (green), the VB approximations at the forward stage and 
a numerical integration at the inverse stage (blue), the restricted VB approximation at the 
inverse stage (red), the variational tangent approximation at the inverse stage (yellow) , is 
shown. The VB marginal by the restricted VB method matches the result by a numerical 
integration method.
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Fig. 4.15: The comparison of the true posterior distributions of X„ew (with an improper 
prior) of a Poisson regression problem given a small count on y„ew( =1) by a numerical 
integration (black) and by the MCMC method at the forward stage and Monte Carlo 
integration at the inverse stage (green), the VB approximations at the forward stage and 
a numerical integration at the inverse stage (blue), the restricted VB approximation at the 
inverse stage (red), the variational tangent approximation at the inverse stage (yellow) , is 
shown. The VB marginal by the restricted VB method matches the result by a numerical 
integration method.
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dimensional problem. Hence, the independence assumption of the VB method (used 

at the forward stage) does not affect the inverse inference poorly. It is also an inter­

esting fact that for a big value of new (test) data Y„ew the posterior distribution of 

Xnew is nearly symmetric. Therefore, a Gaussian approximation of the VB approxi­

mation of Xnew is close to the true posterior distribution for large values of the test 

data. Thus a Gaussian approximation to the restrictive VB approximation helps to 

improve the accuracy of the approximation.

It is noticed that for a zero count on Ynew, the Bayesian prediction of X„ew by 

the restricted VB method suggests a very small negative estimate of Xnew with a 

very large variance for the Poisson with an improper prior. If compared with the 

result from the classical method of inference, a very small negative value of Xnew 

should give rise to a zero count of Ynew •

An iterative optimization method is applied to compute a Gaussian approxima­

tion (Rue & Held, 2005) of the intractable restricted VB approximation around the 

posterior mode of Xnew- The iterative algorithm does not converge to a unique result 

for zero count on Y„cw and gives rise to many very small negative posterior estimates 

(mean) of Xnew with a very large posterior variances. To avoid this situation, it can 

be suggested to use multiple counts on Y to predict a single X.

4.2.6 Inverse M ixture o f Poisson regression problem

The mixture of Poisson model considered in the chapter is of the following form;

n

P (Y |/?o ,A ,^ ,,Z ,x ) =  H
i= l

z. (i-z.)
(4.100)

[  Y , !  J L Y , !  j

Xi  =  exp(/?o -t- /3ix0 , (4.101)
N

P (Z ) =  (4.102)

where the terms /?o and /5i are the unknown regression parameters, jj, is the un- 

know'n rate parameter of the one of the Poisson distribution of the mixture, t t  is the 

unknown parameter that denotes the probability that a count on Y  follows the Pois­

son distribution with the rate parameter A. The parameter A relates the response
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variable Y  to the independent variable X. The term Z is the set of the unknown 

indicator variables Z-s which take the value 1 if Yj is regressed on X* or value 0 if 

it follows the distribution with the rate parameter which is independent of the 

explanatory variable X,.

At the forward stage of the inference, the mixture of the Poisson model has four 

parameters Po,/3i,n and tt, and a set of auxiliary variables Z to be estimated.

The prior distributions over the regression parameters /3q and assumed as in 

the case of the inverse Poisson regression:

P(/3o) =  N { 0 , S l l  (4.103)

P(A ) =  N { 0 , S l ) .  (4.104)

The Prior distribution over the parameters and t t  are

P(/i) =  log Normal{m,S^);  /i > 0, (4.105)

P{tt) =  Beta{a, b). (4.106)

The Prior distribution over X„ew corresponding to a new count on Ynew is as­

sumed to be a normal prior as given below;

P(Xnew) =  iV(Xnew; MX,5|). (4.107)

It is shown for the inverse simple, quadratic and Poisson regression modes that 

a proper prior may lead to a better result for inverse prediction if the data is weak.

Therefore, the inverse inference over X„ew will be shown using only a proper prior.

V B  solution at Forward stage:

A VB approximation to the joint posterior distribution P{Pq, /3i, n , n ,Z \ y  ,x.) is as
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follows:

P(/5o, A,M,7r,Z|y,x) =  g(/?o, /i, tt, Z|y, x), (4.108)

g(/3o, A,M,7T,Z|y,x) =  g(/3oly,x)g(A|y,x)g(//|y,x)g(7rly,x)

ng(Zi|y,x)
,1 = 1

(4.109)

Suppose iV̂ o, and are the normalizing constants of the VB marginals 

g(/3o|y,x), g(/3i|y,x) and g(/i|y,x) respectively, then

log9(/^o|y,x) log(^^o) +

/3ô

logg(/?i|y,x) =  -log(A^^J +
t=l

1 " 
logg(/x|y,x) =  -log(iV^) - — ( l o g / i - m ) ^ - l o g / x - ^ J ^ ( l - E q ( Z , ) )

i=l

+  l o g / x ^ y i ( l  -E ,(Z j) ) ,
i=l

g(7r|y,x) =

a = a

Beta{a' ,  b'),
n

^ y~^Eg(Z;),
i=l

5' =

(4.110)

(4.111)

(4.112)

(4.113)

(4.114)

(4.115)6 +  n -  ^ E q ( Z i ) ,
i=l

logq(Zj|y,x) =  -logA^Zi +  Z* [E,(log7r) -  Eg(e^°)Eq(e^'’‘') +  yj(E,(/3o) +  E,(^i)xi)]

+(1 -  Zi) [Eq(log(l -  q)) -  Eq(e^) +  YiEgifi)]. (4.116)

The VB marginal g(7r|y, x) is a standard Beta distribution, hence requires no further 

approximation. The VB marginals g(/3o|y,x), g(/?i|y,x), g(//|y,x) and g’(Zj|y,x) 

do not belong to the standard family of the distributions but can be computed 

numerically. The VB expectation of tt that appears in the VB marginal g(Zj|y,x)
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can be obtained as:

Eg (log 7t) =  ip{a') -  ip{a' +  6'),

(4.117)

E g(l-logT r) =  ' ip {b ' ) - ' i p ia '+  b'),

-log 7(6') (4.118)

VB solution at the Inverse stage:

The posterior distribution of X„ew is

• f * ( X n e w | y ) X ,  y „ g ^ )  OC J  [ Xj ie - jv , / 3o) / ?1) 7T, Z ) / ^ ( X [ i e w )

xP{Po,/3i,fi,TT, Z|y,x)d/3od^id//d7rdZ, (4.119)

~  I  P{y new |x new)
/?0 , / 3l , / i , 7T, Z )P(X new)

xq{Bo, /?], /i, 7T, Z |y , x)d/3od/3id//d7rdZ.(4.120)

new

The integral in the R.H.S of the expression is not available in closed form. For 

a tractable VB approximation of P(Xnew|y, x, y^p^) the restricted VB method is 

applied:

The term in the R.H.S of the expression for the the restricted VB approx­

imation g(Xnew|yi x,y„g^) is not factorized over /3i and Xnew, therefore the VB- 

expectation of the term is not defined in a closed form which makes g(Xnew|y) x, ŷ ew) 

intractable.

As for the inverse Poisson regression, a Gaussian approximation may be appUed 

to find a tractable solution to q(Xnew|y, x, y^^^). To compute a Gaussian approx-

P { ^ n c w  IY) X ,  Y n e w )

log q{X new IYi Ynew)

g(Xnewly,X,y„<3^), (4.

Eq(/3o,/3i,^,7r,Z|y,x) lo§[-P(ynew|/^0) Pli  Z , Xnew)

XP(Xnew)], (4.

E g(Z n ew ) [-E ,(e^“)E ,(e^ '^-*) +  Eq(/3i)y„,^X„ew]logg(Xnew|y,X,y„ew)

-flogP(Xnew)- (4.123)
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imation consider the Taylor’s expansion of g(Xnew|y, x, Ynew) S' function of Xnew 

around its posterior mode (denoted as Xq). The Gaussian approximation to the 

restricted VB approximation of X„ew is given as:

g(Xnew|y,X,ynew) =  5 / ) ,
- 1

(4.124)

(4.125)

/̂ x^  +E,(Z„ew)(-E,(e^°)E,(/3ie^^''“)

+ynew®^9(A)) (4.126)

The VB-expectations with respect to j5\ and /3q are not explicitly but can be com­

puted numerically. The posterior mode X<j may be found by an optimization method. 

But as mentioned in the previous section for the inverse Poisson regression problem, 

an algorithm by Rue k. Held (2005) provides a quick and easy Gaussian approxi­

mation without using any other optimization technique to find the posterior mode. 

The same algorithm can also be applied to compute a Gaussian approximation to 

the intractable restricted VB approximation over Xnew of the mixture of Poisson 

regression problem.

Comparison o f the VB approxim ation w ith the result from other m eth­

ods:

Two types of methods are considered to check the accuracy of the VB approxi­

mation for the mixture of Poisson regression problem. First method is simulation 

based, the Monte Carlo method, and the second method is the Gaussian variational 

approximation.

The mixture of Poisson regression model is an example of a complex model for 

which the true result is feasible to find. A numerical integration method is even very 

expensive for the model with many parameters to be estimated. Though the Monte 

Carlo integration may take a long time to provide an accurate result, it is tempting 

to compare results with the VB approximation for this non-conjugate-exponential 

model to see if the VB method provides a good trade off between the accuracy and
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the time consumption.

Gaussian variational approximation to  the inverse problem:

The Gaussian variational approach for the non-conjugate-exponential models is to

Gaussian approximation (described in the chapter) provides a Gaussian approxima­

tion of the intractable variational approximation which uses the Taylor’s expansion 

of the non-linear or non-quadratic function around the posterior mode of the vari­

able. Whereas with the Gaussian variational method, one has to compute the mean 

and the variance parameters of the Gaussian variational approximation (also called 

the variational parameters) by optimizing the lower bound (as a function of the 

variational parameters) on the log-marginal likelihood.

The Gaussian variational approximation of the posterior distribution of Xnew is 

described by considering a lower bound on the log-marginal likelihood:

The terms y, x and yĵ ^̂  has been dropped from q{-) for the simplicity of the notation. 

If the variational marginal g(Xnew) is restricted to a Gaussian distribution with the

restrict the approximation to a Gaussian density. The variational method with a

l o g ^ ( y n e w ) >  J  '? ( /3o )g (A )g(y^ )g(7r)g (Z n ew )g(X n ew )

1 ■P(ynew> X n e w )  Z n e w i  d/3od;5id//d7r. (4.127)
g(/So)g(/?l)g(/^)g(7r)g(Znew)g(Xnew)

unknown mean and the variance S^*- Then the lower bound is a function of the 

these unknown parameters, also called as the variational parameters:

) =  I g(/3o)g(A)g(/U)g(7r)g(Znew)g(Xnew)

^  ^ \ j  n ew 5 •■newi ‘-n ew ? i '• j

[g(^o)g(/3i)g(Ai)g(7r)g(Znew)g(X„ew)
xd/3od/5id/id7T,

■ ^ (ynew ) X n e w i A  i A )  ^ )

lo g P ( y _ )  >

g(Xnew) =  yV(X„ew;Mx,‘5 | * )

(4.128)

(4.129)

(4.130)

It should be noted that the auxiliary variable Zne  ̂is related to the new count y„g^
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and so the VB marginal ^(Znew) is not found at the forward stage of the inference 

problem. The VB marginal can be computed at the inverse stage by the restricted 

VB method:

n e w ) new f |x new 5 /3i,,5o,/i)P(Znew 1 ^ ) (4.131)

where the VB marginal g(Xnew) as to  be found by the Gaussian variational approach.

The variational param eters found by maximizing the lower

bound so th a t it reaches to  the true value of the log-marginal likelihood.

'S'x* =  argm axF(/Xx, 5 |* ) ,  (4.132)

=  argm axF(/Xx, 5*1*). (4.133)

The Gaussian variational approxim ation for the inverse estimation problem for

the m ixture of the Poisson model is given as follows:

9Gv(Xnew|ynew5 y) ~  -^(Xnew!/^X’ “̂X )) (4.134)

Where jjL^ and S'x* can be found from the expressions below

c2 * 
*̂ X E q ( Z n e w ) E q ( e ^ ° ) / 3 i % x p ( / 3 i / x ^  +  O . S f t ^ S ' l * )  +

■^XJ

Âx

= 1, (4.135)

/^x +  i ( ; ^ - l )  -y„ew E,(/3i)52 =  0, (4.136)

where is the posterior mode of used to avoid its complicated VB-expectations. 

Evaluation of V B approximation;

Another accuracy check of the VB approxim ation is found in term s of its 95% HPD 

region. The 95% HPD region of X„ew is obtained as jjL*x i

Result

Fifty observations of Y are generated from a m ixture of Poisson distribution 

given the true values of the regression param eters as =  0.1 and P i =  1.5 and
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Fig. 4.16: The comparison of the true by the MCMC (green) and the VB approximations 
(blue) of the marginal posterior distributions of the parameters /?o (the top left), /3i (the 
top right), n (the bottom left) and tt (the bottom right) of a mixture of Poisson regression 
problem, is shown. The VB marginal of /3q and j5\ are peaked. The regression parameters 
/?0 , /3i are too correlated to allow for the posterior independence.
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Fig. 4.17: The comparison of the true posterior distributions of an explanatory variable 
Xnew of a mixture of Poisson regression problem given a small count on Ynew( =1) by 
the MCMC method at the forward stage and Monte Carlo integration at the inverse stage 
(green), the VB approximations at the forward stage and the restricted VB approximation 
at the inverse stage (blue), the Gaussian variational approximation at the inverse stage 
(red), is shown. The VB marginal by the restricted VB method matches with the Gaussian 
variational approximation.
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Fig. 4.18: Posterior estimates of an explanatory variable X^ew of a mixture of Poisson 
regression problem with a normal prior by by the VB method and RVB at forward and 
inverse stage respectively (the uppermost), by the MCMC and the Monte Carlo integration 
at forward and inverse stage respectively (the middle) and by the VB and the Gaussian 
variational approximation at the forward and inverse stage respectively (the last). The 
comparison of the true value (blue) and the estimates (green) of Xnew> with the lower and 
upper bounds (in red) of 95% HPD region, is shown. The black asterisks are training data  
and the blue is for a new data  on the response variable Y.
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the fifty equi-spaced values of X. Results from the VB approximation for an inverse 

mixture of Poisson regression problem are shown in Fig. 4.16, 4.17 and 4.18. Fig. 

4.16 shows the VB approximation at the forward stage of the problem and the (true) 

results from the MCMC. Just like in the Poisson regression problem, the VB method 

under-estimates the true posterior variance of the regression parameters and 

The independence assumption of the VB method might be a reason to this under­

estimation of the posterior variance of the regression parameters which are strongly 

correlated in the model. The VB marginals of the parameters /x and tt do not show 

the under-estimation of the variance, though they do not coincide with the result 

from the MCMC.

Fig. 4.17 and 4.18 represent the VB approximation of Xnew given a small count 

(Ynew =  1) at the inverse stage. In Fig 4.17, the VB marginal of X„ew is compared 

with the results from the Monte Carlo integration and the Gaussian variational 

approach. Fig. 4.18 shows the VB approximation and the true result (by Monte 

Carlo integration) for a small count on Xnew Comparing with the results (true) from 

the Monte Carlo integration, the VB method provides a better approximation to the 

posterior distribution than the Gaussian variational approximation. At the inverse 

stage, the effect of the posterior independence assumption of the VB method is not 

very much reflected in the result. As a result of accuracy check via leave-one-out 

cross validation technique, 98% counts are inside their 95% HPD regions for VB and 

restricted VB (RVB) approximation.

Hence, the VB method provides a good approximation to inverse prediction for 

the mixture of Poisson regression model.

4.2.7 V B  solution to  Inverse Zero-Inflated Poisson regres­

sion

In the zero-inflated Poisson regression model (defined earlier in the chapter), there 

are only two parameters to be estimated:
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The prior distributions over /3q and assumed to be a Gaussian as follows:

P(/?o) =  N{0 , S l ) ,  (4.137)

P(A) =  N{0, S l ) .  (4.138)

The prior distribution over the explanatory variable Xnew given a new count on

Y n ew  is given as:

F(X„ew) =  iV(Mx,5|). (4.139)

V B  solution at Forward stage;

A VB g(^o|yiX) approximation to the joint posterior distribution P(/?o,/3i|y,x) is 

explained as follows:

^(/5o,A|y,x) = g(/9o, A ly .x) , (4.140)

g(/3o,A|y,x) = (?(/3o|y,x)g(/3i|y,x), (4.141)

logq(^oly,x) ^  logP(,(^o)+ Eg(3i|y,x)[logF(y|x,/3o,5i)], (4.142)

logg(A |y,x) logP(,/?i)+Eg(^o|y,x)[logP(y|x,/3o,/3i)], (4.143)

where

logP(y|x,/5o,/?i) = J ]z ilo g (l-T T j + TTie-ex p (^ 0 + /3 ix i )>
*-‘ 1  ' * 2  I

1 =  1

+  (1 -  Zj log TTi -  e x p ( /3 o  +  A x j )

+yi(/^o + /':̂ iXi) -  log7(l + y j (4.144)

where Zj’s are an indicator function such that Zj = 1; if = 0, otherwise, z* = 

0; if y, > 0 The expectations of the log-likelihood logP(y|x, ^o, A) with respect 

to g ( A | y , x )  and g ( / 3 o |y ,  x) respectively, are not available in closed form as the log- 

likelihood is not factorized over /3q and /?i. For a tractable VB approximation, the 

algorithm for a Gaussian approximation by Rue h  Held (2005) can be applied in 

the same way as discussed for the Poisson and the mixture of Poisson regression 

problems.
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For a Gaussian approximation, consider a Taylor’s expansion of the (full) log- 

likelihood as a function of the regression parameter (for which the VB marginal is 

to be computed) around its posterior mode. The Gaussian approximation to the 

VB marginals of ,q{/3o\y,x) is obtained as:

gff(^o|y,x)

q2 * 
0̂0

fl

f2

logP(y|x,^o,/3i)
d

Wo 
cP

^ l o g P ( y j x , /3 o , /3 i )

o m  a n  
^ 0  ’^ 1

(4.145)

(4.146)

(4.147)

(4.148)

(4.149)

where the term gp(/£/o|y,x) denotes the Gaussian approximation, and S ‘1* are 

the mean and variance of the approximation respectively, f \  and /2  are the first and 

second derivative of the log-likelihood with respect to /3q around its posterior mode

Similarly, the Gaussian approximation to g(/?i|y,x) is found as:

gs(Aly.x) =
q2 ★

/̂3i

9i

1
92

T^logP(y|x,^o,^i)d(3i

92  = logP(y|x, A,/3i)

(4.150)

(4.151)

(4.152)

(4.153)

(4.154)

where the term gg(/3i|y,x) denotes the Gaussian approximation, and Sg* are 

the mean and variance of the approximation respectively, gi and 52 are the first and 

second derivative of the log-likelihood with respect to fto around its posterior mode
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/?r.
The functions / i ,  / 2 , gi and g2 are defined in Appendix.

It should be noted th a t even after considering the Taylor’s expansion of the log- 

likelihood, it still does not factorize over the parameters. To simplify this problem, 

the posterior mode of the parameters are plugged-in wherever the VB-expectation 

is needed. Considering a Gaussian approximation may not simplify the VB expecta­

tions, however it provides the VB approximation in a standard form of distribution.

V B solution at the Inverse stage:

The posterior distribution of X„ew is

( X - n e w  |y ) X, y„g^) CX ^ |Xnow)/5q,/5l ) f * ( X j j e w )

x P (^ 0 , A |y ,x )d^ odA , (4.155)

~  j  ̂ ( Y n e w I X  newi ,^05 /3i)P(X
new )

xq{0Q, 6-[\y,x.)dl3od0i. (4.156)

The posterior distribution is not available in closed form. The restricted VB method 

is applied to find a tractable VB approximation of P{Xncv/\y,^,ynev/)'

f ’(Xnew|y,x,ynew) ~  g(X„ew |y , X, y„<, )̂, (4.157)

^(Xnewlyj X, ynew) =  ®^9(/3o>A|y,x) ^®§[-^(yncwl-^Oi/^1) X êw)

xP(X„ew)]. (4.158)

As discussed a t the forward stage of the inference th a t the log P ( y „ g ^ | /5 o ,Xnew) 

is not factorized over (3a and ^ i, the posterior modes of and /3i are plugged-in 

to avoid the intractable VB-expectations. Even after this the VB approxim ation 

of Xnew remains intractable. To solve the issue of the intractability, the Gaussian 

approximation approach as discussed at the forward stage is applied. The Gaussian 

approximation to the intractable VB approximation of X„ew by following the  same



4.2. V B approxim ation to  Inverse non-latent Regression Problem  119

algorithm by Rue &: Held (2005) is found as:

Qg (X n e w  | Y  >

■new

log P (y new |x new 7 /3q7 A)
•new

•new»^0

(4.159)

(4.160)

(4.161)

(4.162)

h2 =  log P (y new |x new 7 P o ,  P i ) (4.163)

where the term  qg{y^nev,\y, ^ )  denotes the Gaussian approximation, 5^* are

the mean and variance of the approximation respectively, hi and are the first and 

second derivative of log P(yne^|Xnew,/?o, A ) with respect to Xnew around its poste­

rior mode

Comparison of the V B  approxim ation with other methods:

The Gaussian variational approximation to the inference problem for the Zl-Poisson 

model is not tractable. Therefore, the VB results for the Zl-Poisson regression model 

are compared only with the results from MCMC and from a numerical integration 

method.

Evaluation of V B approximation:

Another accuracy check of the VB approximation is found in terms of its 95% HPD 

region. The 95% HPD region of Xnew is obtained as ±

Two hundred observations of Y are generated from a Zl-Poisson distribution 

corresponding to two hundred values of X with the true values of the regression 

param eters as /3q =  0.5 and /3i =  1.5. A comparison of the VB approximations of 

Po and /?! with their true posterior distributions by a numerical integration and the 

approximation by the MCMC for an inverse Zl-Poisson regression problem is shown

Result
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Fig. 4.19; T he com parison of the true by the MCMC (green) and the VB approxim ations 
(blue) of the marginal posterior d istributions of the param eters /So (top) and j3\ (bottom ) of 
a Zl-Poisson regression problem, is shown. T he VB marginal of /3q and /?i are peaked. The 
regression param eters Pq, are too correlated to allow for the posterior independence.
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Fig. 4.20: The comparison of the true posterior distributions of an explanatory variable 
^new of a Zl-Poisson regression problem by the MCMC method at the forward stage and 
Monte Carlo integration at the inverse stage (green), and by a numerical integration (black) 
and the VB approximations at the forward stage and the restricted VB approximation at 
the inverse stage (blue), is shown.
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Fig. 4.21: Posterior estimates of an explanatory variable X„ew (given Ynew =  3) of a ZI- 
Poisson regression problem with a normal prior by by the VB method and NI at forward 
and inverse stage respectively (the uppermost), by the VB and the RVB at the forward 
and inverse stage respectively (the middle) and by the MCMC and the Monte Carlo 
integration at forward and inverse stage respectively (the last). The comparison of the 
true value (blue) and the estimates (green) of Xnew of a Zl-Poisson regression problem, 
with the lower and upper bounds (in red) of 95% HPD region, is shown. The black 
asterisks are training data  and the blue is for a new data on the response variable Y.
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in Fig. 4.19. It is clear from the figure that the posterior variance is under-estimated 

by the VB method.

In Fig. 4.20 and 4.21, the comparison of the VB approximation of X„ew with the 

results from the MCMC and a numerical integration, is shown. In Fig 4.20, the VB 

marginal of X„ew is compared with the results from the Monte Carlo integration and 

a numerical integration. Since, a Gaussian approximation of the VB approximation 

is considered, the VB marginal is symmetric. It is very close to the results from the 

MCMC and from a numerical integration. Therefore, the VB method provides a 

good approximation to the true posterior distribution for this particular Zl-Poisson 

model. The Fig. 4.21 shows the comparison of the true value and the estimates of 

Xnew and its 95% HPD region. The estimates by the MCMC and by a numerical 

integration lie within the 95% HPD region whereas the VB-estimate appears outside 

the region. This requires to perform a leave-one-out cross validation, to check the 

accuracy of the result through the percentage of the points lie inside the 95% HPD 

region. There are only 5% of points outside the 95% HPD (VB) region of Xnew that 

favours the VB method with a Gaussian approximation (explained in the chapter) 

for the inverse inference for the Zl-Poisson model.

4.3 Discussion

The VB method for inverse prediction performs well when compared to the results 

on prediction from an accurate numerical integration method and from other meth­

ods such as MCMC, Gaussian variational approximation and variational tangent 

approach. VB approximations for the quadratic and simple hnear regression prob­

lem show that the method is straightforward to apply and provides a quick and 

tractable solution to exponential family and conjugate prior distributions. Smidl 

& Quinn (2006) comment on the limitation of the VB method for non-CE (non 

conjugate-exponential) models. VB approximations for non-CE models might not 

be tractable due to an un-factorized log-joint likelihood over the unknowns for the 

model. It may require further other approximations to intractable VB approxima­

tions. This is experienced in the approximation for the inverse Poisson regression
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model, mixture of Poisson regression model and Zl-Poisson regression model. In 

this case, it is shown that a further Gaussian approximation with the VB method 

improves the approximation.

For inverse quadratic and simple linear regression problems, it is found that the 

VB method under-estimates the posterior variance of the regression parameters due 

to the posterior independence assumption (Smfdl & Quinn, 2006). However, the 

under-estimation of the VB variance is unavoidable with the VB method even if the 

independence assumption is not considered (it is already discussed in chapter 3). As 

a result of under-estimation of the variance of the parameters, the variance (VB) of 

the inverse prediction is also under-estimated. It is observed that for small values of 

the slope parameter, the variance of the true prediction is large if an improper prior 

is assumed. Krutchkoff (1967) and Hoadley (1970) discussed the issue of infinite 

variance of prediction as a decreasing function of the slope parameter. The VB- 

variance of prediction of X is an inverse function of Eg(/3^) and Eg ( ^ ) .

Posterior variance of prediction with non-informative prior can be represented by 

variance from the classical approach of inference.

non-latent regression problems, cr̂  is kept small to discuss the role of only /3, the 

slope parameter in the uncertainty of estimation. It should be noted that a small 

Eg ( ^ )  (a VB estimate of ^ )  can also make the variance of prediction very large. 

The problem of large variance with an improper prior is not very well studied for 

inverse quadratic regression models. However, it is further seen that an assumption 

of a proper prior may solve the issue of the large variance of inverse inference for 

simple linear and quadratic regression problems.

It is shown that the VB approximation for prediction of X of the quadratic

V(X) =  
/̂ T '*

Comparing VB with the classical result; Eg(/3 )̂ > /3̂ , even if the VB-variance of

^ is underestimated, also, cr̂  > Thus, V(X) > Vq(X). In the examples of
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regression problem is bimodal. It does not lack any modes of the true posterior 

distribution. It should be noted that the bi-modality behaviour of the posterior 

distribution of X is due to quadratic nature of the model and not from the iden- 

tifiability or label switching problem as described in Jaakkola (2000) and Smidl & 

Quinn (2006).

For the inverse Poisson regression model, it is observed that the VB solution 

(with Gaussian approximation) is very accurate for large (training) data. Thus for 

inverse Poisson regression, an accurate VB approximation of inverse estimation can 

be achieved if large data is used for the estimation of the regression parameters. Also, 

a Gaussian approximation for a large new data of the response variable Y improves 

the accuracy of the VB approximation. For small or weak data, an assumption of 

a proper prior avoids the problem of large (true) variance. It is shown that the 

Gaussian approximation of the VB approximation also improves the accuracy even 

if an informative prior is not available. Though, it was also experienced that the 

inverse estimation is not unique or finite for zero counts of a Y with an improper 

prior. In case of zero counts, the approximation tries to find a very small value of 

X responsible for the zero counts and there is no unique and finite solution. In such 

a situation, an assumption of a proper informative prior with finite variance over X 

should be a reasonable solution. However in general, to avoid such situations, it can 

also be suggested to use more than one data point to predict X. It also results in a 

reduction in bias of the prediction.

It is experienced that the Gaussian approximation of the VB approximations 

also works very well as compared to the result from the MCMC for the mixture of 

Poisson regression problem and for the Zl-Poisson regression problem. The method 

outperforms the variational Tangent approach for the mixture of Poisson regression 

problem. Therefore, it can be concluded that the method, the Gaussian approxima­

tion with the VB method discussed in the chapter provides a good approximation 

for the low-dimensional inference problem for which the direct VB approximation 

is not tractable. This encourages us to use the method for high dimensional and 

complex problems for its accuracy and tractability.

Hoadley (1970) derived the marginal posterior distribution of X of a simple linear
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regression model, assuming a t-distribution, a proper prior on X and a Jeffrey’s prior 

on regression param eters /?i, P2 and variance param eter He avoided the complex 

analytical Bayesian solution and used the posterior estimates of the param eters to 

compute the marginal posterior distribution of X. To discuss the issue of infinite 

variance of X, he suggested a test statistic F  as an inverse function of data. F  

is also an increasing function of mean estimate of (̂ 2 - He showed th a t the bias in 

the estim ation of X is a decreasing function of F. Thus, for greater accuracy of 

estim ation the d a ta  should be very informative. He strongly suggested to use a 

proper-informative prior in case of weak data. Hunter & Lamboy (1981) came up 

with a complicated function form for the posterior distribution for the mean of X 

of simple hnear regression model, X =  <̂ +  (), with 8 a small error, assuming 

a bivariate normal prior on fii and ^ 2 - They advocated tha t with the Bayesian 

approach of inference, one should not worry much about infinite variance. Infinite 

variance is irrelevant for an appropriate model if all the information about the 

unknown is inherent in the posterior. But it is also true th a t infinite variance 

increases uncertainty in the estimation to infinity. They further commented th a t the 

variance of X will become large with over-dispersion in a' .̂ They did not comment 

on the role of (3 estim ate in infinite variance of X. Besides these works, in best 

of my knowledge there is no previous work on inverse regression in the field of 

non-conjugate-exponential models to compare with the VB results on the inverse 

inference found in the chapter.

C ontrary to these previous attem pts mentioned, the VB method provides tractable 

approximations to  intractable and computationally intensive posterior distributions 

of the unknowns. It presents a simple understanding of Bayesian inference for both, 

inverse non-latent conjugate-exponential and non-latent non-conjugate-exponential 

regression models.



Chapter 5

VB approximation for Inverse 

Latent Regression

This chapter describes the VB approximations for inverse latent regression problems. 

In the previous chapter, the intractability issue of the method is discussed for non­

conjugate-exponential inverse non-latent regression models. This chapter proceeds 

with the same intractability issue of the method and describes how to deal with the 

problem for a successful VB approximation to multi-dimensional, complex inverse 

latent regression problems. Three models are considered to explain the problem: 

Poisson latent regression, Poisson latent regression with random effects, zero-inflated 

Poisson regression with random effects regression.

5.1 Introduction

In the previous chapter, non-latent regression models are discussed briefly and in­

verse prediction on unknown non-latent explanatory variables is explained. In most 

of the real life examples, the interest lies in some unobservable objects or latent vari­

ables for which we have indirect observations. A latent regression model describes a 

functional relationship between non-latent variable(s) and its indirect output vari- 

able(s) through a set of latent variables;

Y = /(Z(X);0). 

127

(5 .1)
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Eq. 5.1 is similar to Eq. 4.1. The only difference is that the model deals with latent 

variables denoted by Z. The model /  defines a statistical relation between Y  and X  

through Z:

Y ~ P ( Y | Z ( X ) , 0 )  (5.2)

If y  =  { y i ) y 2 ) • • • ) yw} are N  i.i.d observations of Y  corresponding to N  values 

{ x i , X 2 , . . . , x t v }  of X:

N

P ( Y |Z ( X ) ,  0) =  I I  P (y ,|Z (x ,) , 9) (5.3)
i = l

Inverse latent regression can be described as a method of prediction of an unknown 

explanatory variable X„ew for some new observations of Y , ynew, through the knowl­

edge of the latent variables Z (and the parameters 6). A Bayesian analysis therefore 

computes:

P(Xne-wlyneuji y ) x) ^  ^ ( X n e w i  Z, 0|ynewi yi ^)dZd0, (5-4)

OC J  P ( y  new i X f i e w ) Z , 0 ) P ( X n e w | Z , 0 )

x P ( Z ,0 |y ,x ) d Z d 0 .  (5.5)

Assuming that X„eu, is independent of Z a priori, this becomes:

^(Xnew|ynew,y,x) (X J  P(yncw|Xnew, Z, 6I)P(Z, 0|y, x)P(X„ew|6')dZd0. (5.6)

We emphasize that the explanatory variable x  indexes the latent variable Z. We 

consider Z defined on a discrete grid, hence x  is also discrete. One might consider 

a continuous version Z(x) with a real valued x  but that is not pursued here.

There seems to be no literature on the use of the VB method for inverse latent 

regression problems. Salter-Townshend (2009) has used INLA for the inverse esti­

mation for Poisson latent and zero-inflated Poisson latent model. The author has 

shown that a good approximation from INLA depends on the structure of the model 

and the availability of data. In the next section, we explore the VB approximation 

for inverse latent regression and compared te result from INLA.
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5.1.1 M odels to  explain th e Inverse Latent regression prob­

lem

Three models categorized in two classes: latent non-random effect m odels and 

latent random effect models. A latent random effect model represents the com­

plex latent models for which the VB approximation to the inverse estimation problem 

could be challenged. The idea of considering the random effect model is to explain 

the complex model in a simpler form with random effects capturing extra variation 

or over dispersion in the data. A latent non-random effect model is considered to 

build up simple understanding of the VB approximation.

Inverse Poisson latent regression model:

A one dimensional Poisson latent regression problem is considered. To explain 

the intractability issue of VB approximation for inverse estimation for the latent 

non-conjugate exponential regression models, the Poisson latent regression model 

presents the simplest example to start witli. The Poisson latent model (likelihood) 

is defined as below:

where {y ;̂ j  =  1 : n} are n observations on the one-dimensional response variable 

Y, /?o and /3i are the regression parameters.

The latent variable Z is the one-dimensional latent variable defined on a grid 

of size p, Xj] j  = I : n are n (discrete) values on the explanatory variable X  

representing the grid locations of the latent variable Z. Therefore,

P(y|x,Z,/3o,A) =  n - (5.7)

(5.8)

The model is shown in Fig. 5.1 via a DAG. In the DAG, shown are the following 

variables:
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Locations i= l,...,p

j new

j new

Test data Training data n

Fig. 5.1: The Poisson latent regression model represented as a DAG.
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p  : size of the discrete grid,

Zj : latent variable at grid location i =  1 , . . .  ,p,

K hyper-parameter in the prior over Z,

Xj : observation/training data point on the explanatory variable X Vj =  1 : n,

Yj  : observation/training data  point on the response variable Y Vj =  1 : n,

Yj n e w  ; observation/test data  point on the response variable Y Vj =  1 : r i n e w ,

Xj new : Unknown explanatory variable corresponding to the new observation Yj new-

It is assumed th a t given Z(xj), the observations y^’s are independent of each other. 

This assumption enables us to estimate Z at the forward stage considering training 

data Y j’s only and then infer Xj new’s at the inverse stage given the test da ta  Yj new-

The regression param eters are assumed to be known (/?o =  0, /9i =  1 ) to show 

the effect of the latent variable only on the inverse estim ation of Xnew- For the next 

two models described below, the regression param eters will be assumed to knowm 

as given before.

The latent random effect model is described through two models: Poisson latent 

random effects model and zero-inflated random effects model. Given random effects, 

the model factorizes over multi-dimensional response variable and hence the model 

can be described in a simple form which also makes the problem feasible for a 

tractable VB approximation.

1. In v e rse  P o isso n  la te n t  ra n d o m  effect re g re ss io n  m odel:

A Poisson latent random effect model provides a simple understanding of more 

complex latent models such as a zero-inflated Poisson latent random effect 

model. A three dimensional Poisson latent random effect model is considered. 

The likehhood of the model is given below:

(5.9)

^kj “1“ Ufcj] (5.10)

where K  is the dimension of the response variable Y , ŷ .j is the observation
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on the response variable Y^, Uj =  [Ufej; =  1 : K Y  is the K-dimensional 

random effect corresponding to the observation on the response variable 

Y j  for all j  =  1 : n. The term is the latent variable corresponding to the

k*^ response variable Y k  for all A: =  1 : The latent variables Z^; k = I : K

are defined on a grid of size p represented by the discrete one dimensional 

explanatory variable X.

The model is explained through a DAG in Fig. 5.2. The variables shown in 

the DAG are defined as below:

p : size of the discrete grid,

Xj : observation/training data on the explanatory variable X Vj =  1 :

Zjfc : latent variable corresponding to k^^ response variable Yfc

at grid location i = 1 : p,

Kk ■ hyper-parameter in the prior over Z^,

Q u : precision parameter in the prior over U j Vj =  1 : n

and Uj new Vj 1 . n-new 5 

Yfej new : observation/test data on the response variable Yfc Vj =  1, . . . ,  rine

Xj new : Unknown explanatory variable corresponding to the new observation

dimensional response variable, Yjnew-

It is assumed that given Z and U, response variables Y  are independent of 

each other (within dimension and across locations). Hence, we can consider 

test data and training data set separately to estimate Z and U  at the forward 

stage and then infer Xnew at the inverse stage.

2. Inverse zero-inflated Poisson latent w ith random effects model:

A zero-inflated Poisson latent random effect model represent the complex la­

tent models to explain the challenges of the VB method for the inverse esti­

mation for the complex latent models. A zero-inflated Poisson models count 

data with excess of zeros (Ridout et al., 1998). The likelihood of the model is
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Dimension k=l,...,K

kj newj new

kj new

Training data j=l,..., n

Fig. 5.2: The Poisson latent random regression model represented as a DAG.
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given below:

K  n

P ( y | Z , U , x , a )  =  nn ^ j k , Q k j ) i  (5.11)
fc=l j=l

2IP(yfcj) ^j k- i Qkj )  \
gfcjPoiss(yfc .̂; A^ )̂, if > 0

The term (1 — g^j) is the probability of observing essential zero counts. Salter- 

Townshend (2009) used a power law functional relationship to define the prob­

ability qkj as in terms of \jk'-

where A ĵ is mean of the Poisson term in the likelihood. The term Zfc(xj)

explanatory variable x .̂ The term Ukj is the random effect corresponding 

to the observation on the response variable ŷ ĵ that induces depen­

dence between the multi-dimensional response variable and captures the extra 

variation in the data.

The power index VA: in the Zl-Poisson hkelihood takes values from 0 to oo 

such that a big value should induce many zero counts. It should be noted that 

both the essential zero probability and Poisson mean are defined in terms of 

Afcj rather than separately. This allows Salter-Townshend (2009) to use INLA 

to implement Bayesian inference for a similar model.

The pictorial representation of the model is given through a DAG in Fig. 5.3. 

The variables shown in the DAG (shown in Fig. 5.3) have similar interpretation 

as given for the Poisson latent random effect model. In the Zl-Poisson latent 

random effect model, at  is the extra parameter.

VB approximation for the inverse estimation for the these models are discussed in

(5.12)

(5.13)\kj =  exp(Zfc(xj)-h Ufcj), V/c, j

represents the latent variable of indexed by the discrete value of the
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Dimension k=l,...,K

Locations 1=1,...,p

kj new) new

kj new

Training data nTest data

Fig. 5.3: The Poisson latent random regression model represented as a DAG.
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the next sections.

5.2 Inference procedure for the Inverse Latent 

Regression Problem  (Poisson Latent regres­

sion model)

The prior distribution on Z is assumed to be a GMRF with mean vector zero and 

precision Q^'.

P{Z) = GMRFp{Z-0, Qi ^) ,  (5.14)

( d . I o )

The term k is an unknown smoothing parameter in the precision and the matrix R  

s defined as
/ 2 - 1  ^

- 1  2 - 1  

- 1  2 - 1

R =

- 1  2 - 1  

- 1  2 - 1

V
The precision Qz  is structured such that the GMRF density of Z is proper.

The prior distribution over k is assumed as a Gamma distribution:

P{k) = Gamma{n; a, b). (5.16)

The hyper-parameters a and b are assumed to be known.
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5.2.1 Bayesian A nalysis of th e inverse latent regression prob­

lem

The Bayesian analysis of the estimation problem at the two stages of the inference, 

the forward stage and the inverse stage, is given below:

Forward stage:

At the forw'ard stage of inference the latent variable Z and the unknown parameter 

6 = K is inferred through their posterior distribution given the data (y ,x). The

joint posterior distribution of Z and 6 = k given (y, x) is defined by Bayes’ law as:

P(Z fliv xt =  P (y |x .Z .0)P (Z ,0)
/2 ,P (y |x ,Z ,« )F (Z .« )d Z d 9 ’ *  ̂ *

where P(y |x, Z, 0) is the hkehhood of Z and 9 given y and x. The term P(Z, 0) =  

P{Z\9)P{6)  is the prior distribution assumed over Z and 6.

Inverse stage: At the inverse stage of inference the knowledge of Z and 9 from 

the forward stage is used to predict the unknown explanatory variable X„ew of a 

latent regression given data (yjjg^,y, x). The posterior distribution of X„ew given 

(ynewiYjX) is given in Eq. 5.6. The prior distribution assumed over Xnew is an 

improper prior:

F(Xnew) OC l;Xnew e  { l , . . . , p} .  (5.18)

5.2.2 V B  approxim ation to  the inference problem

The VB approximation to the inference problem is described at the two stages sep­

arately:

V B approxim ation at the forward stage

P(Z,6>|y,x) ss g(Z,/9|y,x), (5.19)

g(Z ,0 |y ,x) =  gz(Z|y,x)qe(0|y,x), (5.20)
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The VB marginal is obtained as;

g«(K|y,x) oc exp [E,2 (z)logP (y , Z , k |x )] , (5.21)

oc exp [log P{ k) + E ,,(z )lo g P (Z |K )], (5.22)

=  Gamma{a*, b*), (5.23)

a* =  a + 0.5p, (5.24)

b* =  6 +  0.5 2 ^ E , ( Z 2 ) - E , ( Z 2 ) - 2  5^ E ,(Z ,Z ,
i=l i^m

(5.25)

The VB marginal q z ( Z | y , x )  is given as follows:

9 z ( Z | y , x )  oc exp [Eq^(«) logP(y,Z,  k |x ) ]  , (5.26)

cx exp [Eq^(«)log(P(y|Z ,x)P(Z |K ))] , (5.27)

oc exp [ lo g P (y lZ ,x )+  E,^(«)logP(ZlK)] . (5.28)

The VB marginal g z ( Z l y , x )  is not a standard distribution. As Z is a high dimen­

sional vector, the com putation of the VB marginal by a numerical integration would 

be not be possible. It is needed as a known standard distribution at the inverse stage 

of inference for a tractab le inverse prediction of the explanatory variables Xnew given 

a set of new counts ynew A Gaussian approximation (as considered to approximate 

intractable VB marginals in the previous chapter for the non-conjugate-exponential 

non-latent problem) could be appUed here to approximate g z ( Z | y , x )  into a stan­

dard normal distribution.

Gaussian approxim ation of g z ( Z | y , x ) :

The likelihood P (y |Z ,x )  is an exponential function of Z but its prior distribution 

P (Z |k ) is not conjugate to the likelihood. Therefore for a standard approxim ation 

of g z(Z |y ,x ), a possible suggestion is to approximate lo g P (y |Z ,x )  as a quadratic 

function of Z th a t also makes the P{Z\ k) conjugate to  the P (y |Z ,x ) , hence giving 

a tractable VB approximation.

Only the term  exp(Z(xj)); Vj in the log-likehhood lo g P (y |Z ,x )  is not quadratic 

(or linear) in Z. A second order Taylor’s expansion of exp(Z(xj)); Vj is considered
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around Z(xj) =  Z’̂ (xj), where Z”*(xj) is the posterior mode of Z. A Gaussian 

approximation is;

9z (Z |y ,x )  g |(Z |y ,x ) , (5.29)

g |(Z |y ,x )  =  (5.30)

where,

Qz =  Eq{K.)R + diag{Vz), (5.31)

Mz =  B ^ Q r \  (5.32)

B z  = [Az,-, t = l : p]  + Z ^V z ,  (5.33)

Vz =  diag[Vzi i = 1 : p], (5.34)

dZ ẑ j = l  
X j = i

Zi=zr
n

=  E e x p (Z ” (x,)), (5^35)
j=l
X j = i

j=i
x - i = i

zi=zr

=  (5.36)
j=l

X , = 2

where Z™ =  z =  1 : is the posterior mode of Z to be found. Gradient

descent methods for finding mode are usually time-consuming but Rue & Held (2005) 

give an iterative algorithm:

1. set the initial value of the mode Z"*,

2. find the values of and Vz depending on Z"*,

3. compute and /Xg ^  defined in the Eq. 5.31 and 5.32 respectively,

4. since, the mode of a Gaussian distribution is equal to  its mean, find a new
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value of the mode Z™ as:

5. repeat the step 2 to 4 until the convergence.

To save computational time, the modes of the Gaussian approximations are com­

puted only once at each VB iteration.

If the posterior distribution of Z is multi-modal, the global mode of the pos­

terior distribution should be considered for a Gaussian approximation. However, 

the latent models we have considered in the chapter lead to a uni-modal posterior 

distribution of Z. Therefore, the multi-modality situation can be avoided.

V B  approxim ation at the inverse stage:

The VB approximation of the posterior distribution of X„ew at the inverse stage is 

given as:

The VB marginal of Xnew fenewlXncwlynewi^iy) is restricted VB approximation as 

the VB marginals gz(Z|ynew> y) 9e(0|ynew) y) ^re restricted to a known 

distribution. The restricted VB marginal 9Xncw(Xnew|ynewi y) given as:

P ( X n e w ,Z ,6 » |y „ ^ ^ ,x ,y )  g(Xnew, Z, 6»|y„„^, x ,  y ) ,  

9 (X n e w ,Z ,6 / |y „ ^ ^ ,X ,y )  =  gx„ew(Xnew|ynew^ X, y)gz(Z|y„ew> X, y)

X?0(^|yncw>X,y),

(5.37)

(5.38)

9 X n e w ( X newlynew) X, y)qz{Z\x,y)qo{B\x,y).  (5.39)n e w ’

^ O g 9X n .w (X n ew |y n ew ,X ,y )  ~  E q 2 (Z |x ,y )g e ( f l |x ,y )  \ P{y new |Z(Xn ew )  )

xP(Z|Xnew,x,y)P(X„ew) j  , (5.40)

Eg [exp(Z(Xnew))] +ynewE9(Z(Xnew)) “  log(ynewO 

—0.5 diag [Varz]^ diag [Q̂ ]

+ "^Varz { i , j )Qz{ i , j ) -  (5.41)

log g ( X n e w  =  z | y n e w , X , y )
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where Var ^  is the posterior variance of Z. The terms V a r z { i , j )  and Q z ( i , j )  are 

the entries of the posterior variance and posterior precision of Z respectively.

5.2.3 Comparison of the V B  approxim ation w ith  approxi­

m ation by INLA

The VB results must be compared with the results from other methods for its 

accuracy. The Poisson latent model is high-dimensional in the latent variable Z. 

Therefore, a numerical integration method for the true result would be very expen­

sive. The MCMC method for the estimation problem for the model will be slow and 

have issues with convergence and mixing. INLA is an alternative approach that has 

growing popularity for latent models for its accuracy and quickness. The VB method 

is simple to apply and a quick method. Therefore, the VB approximations for the 

Poisson latent model are compared with the approximation by INLA. The direct 

VB approximation is compared with the results from INLA at the forward stage 

of inference. Whereas at the inverse stage of inverse, compared are the restricted 

VB result and the results from the Laplace approximation, which uses results from 

INLA, obtained at the forward stage are used.

Another accuracy check for inverse estim ation To check the accuracy of the 

approximation at the inverse stage, a 95% HPD region is computed. The percentage 

of true values of new explanatory variable that lie within the 95% HPD region gives 

an accuracy measure of the approximation to inverse inference. Salter-Townshend 

(2009) described a method to compute HPD bounds for discrete distributions that 

we use here.

5.2.4 Result

An example with simulated data from the Poisson latent model is used. A set of 

one hundred values, from one to fifty, on the explanatory variable are drawn from a 

discrete uniform distribution. Fifty values of the latent variable (given over a grid 

defined by the explanatory variable) are generated from a GMRF distribution with a
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Gamma variate precision parameter. Corresponding to the true values of the latent 

variable and the data on the explanatory variable, a set of one hundred counts on 

the response variable are generated from a Poisson latent model. The data on the 

response variable and the explanatory variable are used for the estimation of the 

latent variable at the forward stage.

A set of one hundred values on the explanatory variable and the response vari­

ables are generated (as mentioned above) for the inverse estimation of the unknown 

explanatory variable. The true values of explanatory variable are used to check 

the accuracy of the approximation of the inverse estimation via a cross validation 

technique described with a 95% HPD region.

Results of the VB approximation and its comparison with the results from INLA 

for the Poisson latent model, are shown in Fig. 5.4, 5.5 and 5.6. The R-INLA 

package is used to implement INLA for the model. In Fig. 5.4, The VB means 

of the latent variable Z (defined over a grid) are compared with the mean of the 

approximation by INLA. The figure shows that the VB approximation and the 

approximation by INLA. They are well fitting the true value as they stay close to 

the true values of the latent variable at the grid locations. The 95% HPD regions 

from both approximations (VB and INLA) is narrow at the locations where the 

data are available in abundance, whereas for less informative or less amount of data 

the region is large. The approximations are not very smooth as they are expected. 

The reason behind the non-smoothness of the approximation may be the insufficient 

data at some of the grid locations.

Fig. 5.5 and 5.6 present the multi-modal density of a new unknown explanatory 

variable X „ e w  given data on the response variable Y n c w  =  1  to show insufficient data 

and Ynew =  124 to show strong information in data respectively. It can be seen from 

the figures tha t the VB approximation of the inverse estimation matches with the 

result by INLA. Given non-informative data Y„ew =  1, the approximations (by VB 

and INLA) is multi-modal and the coverage of the approximation is large. Whereas, 

given strong information Ynew =  124 the VB approximation and the approximation 

by INLA overlap and they estimate the true value quite accurately. The accuracy 

of the approximation by INLA v/ith 95% HPD region is only 88% and that of by
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Fig. 5.4: The comparison of true value (black), VB-mean(blue), mean (estimated by 
INLA) (magenta) of the latent variables Z corresponding to the response variable 
Y  for a Poisson latent model.
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Fig. 5.5: The comparison of the approximation by the VB method and by the INLA 
of true posterior distribution of X„cw given Y„ew = 1 for a Poisson latent model.
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Forward stage Inverse stage
VB 0.143 sec 0.053 sec

INLA 2.05 sec 0.107 sec

Table 5.1: The comparison of the com putational time of VB method and INLA at 
both stages for Poisson latent model. At the inverse stage the com putation time 
shows the time taken by the method for the inverse estimation for all test data.

the VB method is only 84%. Hence it can be concluded th a t the methods require 

informative data  for a good approximation as the prior distribution assumed over 

Xnew is not proper.

C om putational time:

The com putational time is noted to check if the VB method provides a better trade 

off between accuracy and com putation than INLA. The comparison of the compu­

tation time of both methods at both stages are displayed in Table 5.1. It can be 

concluded tha t the VB method takes less time in comparison to INLA and provides 

similar results.

5.3 V B  approxim ation for the inverse latent ran­

dom  effects regression m odels

The prior distributions over the unknowns of the inverse latent with random effects 

regression problem are assumed as follows:

1. The prior distribution over the latent variable Z is assumed to be a GMRF as 

given below;

K

P{Z)  = l \ G M R F , { Z k ; 0 , Q ^ ^ ) (5.42)

(5.43)

where Z is K  dimensional latent variable. The independent GMRF is assumed 

over each Z*.; \/k wit mean vector zero and precision Qz^- The term  k = 

{ttk^k =  1 : /C} is a set of unknown smoothing param eters in the precision
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Fig. 5.6: The comparison of the approximation by the VB method and by the INLA 
of true posterior distribution of Xnew given Ynew =  124 for a Poisson latent model.
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parameter and the matrix R  is same as defined for the Poisson latent regression 

problem.

2. The prior distribution considered on U is a multivariate Gaussian given as 

follows:
n

P(U ) =  n  Qu O, (5.44)
j = i

where 0 is a zero vector mean and Qu  is unknown precision common to every 

Uji j  = l : n .

3. The prior distribution over is assumed as a Gamma distribution:

P{Kk) =  Gamma{Kk\ flfc, hk)\ VA:. (5.45)

4. The prior distribution assumed over Qu is given as:

P { Q \ j ) -  WishaTtK{Qvs]SS,df)] (5.46)

where df  is the degree of freedom in the distribution and S S  is a K  x K  

positive-definite matrix.

5. The prior distribution over the unknown new explanatory variable Xnew is 

assumed as an improper prior:

P ( ^ n e w )  0^  f j ^ n e w e p}. (5.47)

The hyper-parameters Cfc, bk, df  and S S  are assumed to be known.

5.3.1 Bayesian analysis of the inference problem

Bayesian estimation of the latent variable, random effects and hyper-parameters and 

the Bayesian inverse prediction of unknown explanatory variable are discussed at 

the two stages separately.
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Forward stage:

At the forward stage, the posterior distributions of Z, U  and other param eters 

6 =  {k, are to be inferred given the data-set y ,x . The joint distribution of Z, 

U  and 9 given the training data  set (y ,x ), can be defined by Bayes’ law as:

P fZ  TJ 0lv =  P (Z ,U ,^ |y ,x )P (Z |x ,g )P (U |^ )P (^ )
 ̂  ̂ ,4u,,i^(Z,U,0|y,x)P(Z|x,0)P(U|0)P(e)dZdUd0'  ̂ ■ ’

In the above expression for the joint posterior distribution, the term P (Z , U , 6|y, x)

is the hkehhood of unknowns given data:

K  n

P(Z,U,0|y,x) = nn ̂ (yfcj|Z/c(xj),Ufcj,0). (5.49)
fc=ij = i

For the prediction of X„ew at the inverse stage, the interest lies in the com putation 

of the marginal posterior distribution over the unknowns tha t can be computed as:

P (Z |y ,x )  =  [  P (Z ,U ,t^ ly ,x )dU d0 , (5.50)
Ju.e

P (0 |y ,x )  =  /  P (Z ,U ,^ |y ,x )d U d Z . (5.51)
Ju ,z

The marginal posterior distribution over the components of 6 can further be com­

puted by integrating out other unknowns from the joint posterior distribution.

Inverse stage:

The aim of the inverse stage is to infer X„ew corresponding to the new observation on 

the response variable ynew) having learnt about the model at the forward stage. The 

posterior distribution of X„ew can be obtained by integrating all the other unknowns
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from the joint posterior distribution given the data:

-P ( X - n e w |y ) Ynewi x )  ^  P ( X n e w )  Z ,  U ^ e w )  ^ lY new j Y ,  x ) d Z  d U n e w

-P (X n ew )  Z ,  Unew5 Y n e w |y 5 x )
 dZ dUnew dt ,̂/ ^(ynew |y,x)

OC P ( X n e w ,  Z, X J n e w i  y n e w  | y j  x)dZ  d U n e w  ,

= J  P(ynew|Xnew,Z,Unew,l9)P(Unew| )̂P(Z,6'|Xnew,y,x)

xP(Xnew|y,x)dZ dUnew d0,

~  I P(ynew|Xnew,Z,Unew,^)-P(Unew|6')P(Z,6'|Xnew,y,x) 

xP(Xnew)dZ dUnew d0,

— -P(ynew|Xnew? Z, Unewj 0)P(U„ew|^)P(Z|X„ew,y,X,0) 

xP(l9|Xnew,y,x)P(Xnew)dZ dUnew d6>, 

j  - f *  ( y n e w  I  X n e w  1 Z ,  U n e w j  0 ) P ( U „ e w | 0 ) P ( Z | X „ e w ,  y ,  X ,  9)P{d\y,  X )  

xP (X new )dZ dUnew d0,

~  y  P(ynew|Xnew,Z,Uncw, 0 )P (U new \e)P{z\xnew 1 y  ?0 )P (0 |y ,x ) 

xP(Xnew)dZ dUnew d0. (5.52)

The approximations used in com putation of P(Xnew|yncw, y , x) are described as fol­

lows:

• As given in above the expression P ( y n e w | ^ ,  Z, U n e w ,  y ,  x) =  P ( y n e w | < 9 ,  Z, U n e w ) ,  
the new observation y„ew is independent of the data  (y, x) used at the forward 

stage given (9, Z, Xnew and U„ew, i-e

y n e w ± { y ,x } |{ 0 ,Z ,X new, Unew}•

It is also evident from the DAGs shown in Fig 5.2 and 5.3 tha t ynew is indepen­

dent of (y ,x ) given Z, 9  and U„ew by the property of d-separation (discussed 

in Chapter 2).

• The term Unew denotes the random effects corresponding to ynew, is indepen-



5.3. V B approxim ation for the inverse latent random effects regression 
m odels 150

dent of y .x  and Z as given in the expression P(Unew | ^ 5  y, x, Z) =  P(Unew|^)- 

This can also be experienced via the DAGs shown in Fig 5.2 and 5.3 which is 

a result of the d-separation property. T hat is

Unew-L{Z,y,x}|6'.

•  The prior distribution of X„ew5 -P(Xnew|y) x), if not experienced from past 

study or past data, may simply be approximated to an unconditional prior 

•P(Xnew) given in the expression as P(Xnew|y,x) w P(X„ew)- T hat is

X n e w -L { y , x } .

•  The param eters 0 are non-spatial hence, they are independent of Xnew as used 

in the above expression: P ( O j X n e w , y , ^ )  — -P(^|y)X). T hat is

^ - L X n ,e w | {y 1 x}.

•  It is mentioned previously tha t the explanatory variable is taken on a finite grid 

and so, X„ew and x  belong to the same set of discrete grid values. Therefore, 

x  is ignored from the posterior distribution of Z, P(Z|Xnew, x, y , 0), to make 

the com putational problem simpler or low-dimensional.

P(Z|Xnew,y,X,6>) RS P(Z|Xnew,y,6')-

After this approximation, P(Z|Xnewi x, y , 0) becomes a function of Xnê ĵ  only.

The posterior distribution is high dimensional and its closed form solution is not 

available. A Variational Bayes approximation to the Bayesian analysis of the inverse 

inference problem for the latent random effect model is presented in the next section.
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5.3.2 V B  approxim ation to the Bayesian analysis of the  

problem

The aim of this section is to provide a VB approximation to the inference problems 

at both the stages separately. The complexity of the approxim ation and its tractable 

solution are discussed in detail.

V B approxim ation at the forward stage:

The VB method is applied to  approximate the intractable joint posterior distribution 

over Z, U  and 6 =  { k , Q u }  of Eq. 5.48, given the data  set (y ,x ) presented as:

P(Z,K ,U, (5u|y,x) g(Z,K,U, Q^j|y,x),
K

YlQz,{'^k)qnd'^k)
_k=l

(5.53) 

qQuiQu)- (5.54)

The terms y ,x  in the VB marginals q{-), have been dropped for the simplicity of 

the notation.

VB marginal over k and Q^:

The hyper-param eters k  and are independent of data  in their VB approximations 

given Z and U  respectively. Their tractable VB marginals are given as follows:

q^^{Kk) =  Gamma{Kk-, a l ,b l) ,  Vfc, (5.55)

QQuiQu) =  Wishart/c(5S'*,c?/*). (5.56)

The form of the VB-parameters a^, bl, SS*  and df* are defined for the Poisson 

latent random effect and Zl-Poisson latent random effect models in the next section. 

The VB marginals of Z^ and U j are not of any standard form and are difficult
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to  compute:

loggZfc(Zfc) ^  [Eq^j^,){logP(Z*|Kfc)}+ E , y ( u )  {logP(yfc|Zfc,Ufc)}] ,

l oggu .(U j)

1
Z^Eg{Kk)RZk +  Eqy(u) {logP(yfc|Zfc, Ufe)} (5.57)

E 9QjQu){logP(Uj|Qu)} + E q 2 (z) { logP(y j|Z (x j),U j,6 ;)}_  , 
1 

~2
;U jE ,(Q ,)U , +  E ,,(z) { lo g P (y ,|Z (x ,), U ,)} (5.58)

In the R.H.S of the expressions of VB marginals, the likelihood term  (the second 

term  in the expression) is a non-Gaussian function. The expectations of the likeli­

hood with respect to VB marginals of Z and U, are not in a form for a standard 

VB approximation. A simplification would be to substitute the VB-mode of Z and 

U  in both  Equations 5.57 and 5.58, but even this is not enough to produce a com­

putationally tractable expression for both VB marginals.

A m ethod of Gaussian approximation (Rue & Held, 2005) for these intractable 

VB marginals, is explained below.

G aussian approximation:

A Gaussian approximation to the VB marginal of Z^ may be obtained by a quadratic 

approxim ation to the log-density around its mode. An optimization method of 

finding mode may be quite slow and may add to the com putational time. Rue & 

Held (2005) describes a quick way to find a Gaussian distribution with a Gaussian 

prior.

For example, in Eq. 5.57 and 5.58, the posterior qz^{'Lk) and 9 U j(U j) are the 

intractable VB marginals. In both equations, there are two terms. F irst is the log of 

the Gaussian priors, quadratic in unknowns (Z^ and U j respectively). Second is the 

non-Gaussian log-likelihood. Therefore, a quadratic approxim ation is only needed 

for the second term.

For example, consider a second-order Taylor expansion of the log-likelihood 

E<jjj(u) {log P(yfe|Zfc, Ufc)} around the posterior (VB) mode Z ^  of Z^ as:

^<?u(u) {log P(yfe|Zfc, Ufc)} + PzfcZfc — 0.5Z^Vzi,Zfc, (5.59)
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where is the collection of the constant terms (independent of Z) in the approx­

imation, i?Zfc and are some functions of the first and second derivatives of the 

log-likelihood Egu(u) {logP(y[|ZA-, Ufc)} around Z^:

—  \ ZfcVzfc + {log-P(yfc|Zfc,Ufc)} (5.60)
z,= z-

{logP(yfe|Zfc,Ufc)} (5.61)
Zfc=Z]J*

In Eq. 5.60 and 5.61, we require the expectation of Zl-Poisson hkelihood with re­

spect to the VB marginal of U, but this is unfortunately not available in a closed 

form. For a Gaussian approximation, a VB-mode of U  is plugged-in in the Ukelihood 

instead.

A Gaussian approximation of q'(Z|y) is obtained as

log^^(Z,ly) ^  + (5.62)

=  E,(K,fc)i? +  V̂ z„ (5.63)

where the posterior (VB) precision Qz^ is a function of prior precision Eg(«;)/? and 

the precision obtained from the likelihood term.

The mean of the approximation can be obtained as a function of the posterior 

precision Qz and the vector Bz^'-

= (5.64)

Being a function of Bz^. and Vz^, the mean //z^ and the precision also depend

on Z™. The approximation remains intractable unless the value of Z ^ is found. A

quick way to find a mode is described already in the previous section for the inverse 

latent non random model and may here also be apphed. A Gaussian approximation 

of the VB marginal of U can be found in the same manner.

It might be the case that the posterior distributions are multi-modal. Then 

it would be difficult to choose a single mode for a Gaussian approximation. The
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latent random effect models used in the chapter do not lead to multi-modal posterior 

distribution of and Uj. Hence the problem of multi-modality can be avoided.

Since the Gaussian approximations of the VB marginals of Uj and Ẑ . interact 

through their posterior modes, ignorance of any of the modes (of Uj and Z^) may 

leave the approximation intractable. Hence it requires an algorithm to find these 

Gaussian approximations. To save computational time, the modes of the Gaussian 

approximations are computed only once at each VB iteration. The VB approxima­

tion proceeds as follows:

Specify initial parameters (or moments) and modes of the VB marginals,

At each VB-iteration m = 1 : M,

1. find the mode of the Gaussian approximation {Zk) of the intractable gz*, Ĉ k) 
given the posterior modes of U  and Z evaluated at previous VB-iteration.

2. compute the mean and variance of q̂ {̂Xk).

3. find the mode of the Gaussian approximation 9u^(Uj) of 9Uj(Uj) given the

posterior mode of Z evaluated at the previous step and that of U j found at

the previous VB-iteration.

4. compute the mean and variance of

5. compute the VB marginals of other unknowns.

Set the number of the VB-iterations M to a sufficiently large value so that all the 

VB-parameters converge.

V B  approxim ation at the inverse stage

The VB approximation of the posterior distribution of X„ew is given as follows: 

-P(^new) Unew) Zjynewi Yj x) ~  ^(Xncwj Unewj Z|yne-yv, y, x), (5.65)

=  9X„ew ( X  new I y new? y  i x ) 9 U „ e w ( U  new I  y new i y  '>

XQz(Z|ynew,y,x) (5.66)
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Since the VB marginal gz(Z|ynew, y, x) is not available, it is fixed to the VB marginal 

obtained at the forward stage:

^(^new) Unew, Z|ynewi y ) x) ~  QXncw( n̂ew|ynewj yi ^)9Unew(^new|ynewi y ) ^ )9z(Z |y , x).

(5.67)

The restricted VB marginal of Xnew can be computed as given below:

log^x new (X new  ly newi^iy) ~  ® 'q z (Z |x ,y )i3 U n e w (U n e w |y n e w ,x ,y )

x P ( Z | X n e w , X y ) P ( X n e w )

log \ P(y„ew|Z(Xnew), Unew)

(5.68)

where Unew is random effect corresponding to the new ynew The VB marginal of 

Unew given data ynewiYiX is not found at the forward stage. Therefore, it needs to 

be computed at the inverse stage with the VB marginal of Xnew-

log qv new (U n e w  I Y n e w  1 ^ 5  y  )  ^  ® ^ 9 z ( Z | x , y ) g X n e w ( ^ J ^ e w i y n e w t X , y ) g ^ ( 0 | x , y ) log P(Unewl^)

^  P{yncw  I Z ( X n e w ) i  U n e w ) (5.69)

Just Uke at the forward stage, the VB marginal 9Unew(Unew|ynew> x, y) is not a 

tractable distribution due to the non-conjugacy of prior to likelihood or the com­

plex form of the likelihood. The Gaussian approximation (as described earlier in 

the section) of 9u„ew(Unew|ynew, y, x) is given as:

9Unew(Unew|ynew) y> x) ~  (UnewlYnew> y > x), (5.70)

y) x) =  -̂ p(/̂ Unew’ ^Unew)’ ( •̂' 1̂)

where the term 9unew(^"ewlynew, y> x) is the Gaussian with mean and precision
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^Unew follows;

E q ( Q u )  + diag{V\j^^ )̂new

n ewnew new

new  k  ’new

n ew  knew

Vu :) l 0 g ^ ( y n e w | Z f c  ( ^ n e w ) ?  U n e w  k}'9 z ( Z ) q x  new ( X  new  I y  newnew k
new k new  k n ew  k

A '9 z ( Z ) l ? X n e w  ( X n e w | y n e w , y , x )new  k
O  U  new k

E i q z ( Z ) l 7 x „ e w ( X n e w |y n e w , y ,x )  l ^ g  P ( Y j ^ g ^  [ Zfc ( X n e w ) 5 U n e w  fc)
T T  . — T T » ^

The form of the parameters of the posterior distributions described above are 

explained for the Poisson and Zl-Poisson latent random effect models in next section.

5.3.3 Com parison of the VB approximation w ith  approxi­

m ation by INLA

INLA will be used to compare the accuracy and the computation time of the VB 

method for inverse estimation for the latent random effect models discussed in the 

next sections. At the forward stage the VB approximation is compared with the 

results from INLA. INLA might be inappropriate for the inverse estimation, hence 

the results from the VB method are compared with the results from the Laplace 

approximation which uses results from INLA obtained at the forward stage.

Another accuracy check for inverse estim ation

To check the accuracy of the approximation at the inverse stage, a 95% HPD region 

is computed. The percentage of true values of the new explanatory variables that 

lie within the 95% HPD region gives an accuracy measure of the inverse inference.

The general framework for the VB approximation for the inverse latent random 

effect problem has been presented in this section. In the next section, the VB 

approximations for the inverse Poisson latent random effect and the zero-inflated 

Poisson latent random effect problem are described based on the approximations 

explained in this section.
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5.3.4 V B  approxim ation for the inverse Poisson latent ran­

dom  effect regression m odel

VB approximations at the forward stage and the inverse stage for the inverse Pois­

son latent with random effects regression model are presented below:

VB solution at Forward stage:

1. The VB marginal QK^(K|y,x); Vfc is obtained as:

g«fc(«fc|y,x) =  Gamma{Kk\al,hl), (5.78)

(5.79)a*k =  flfc + 0.5p,
p

K = 6t + 0.5 2^E,(Z=,)-E,(zy
P

(5.80)

2. The VB marginal gQu(Qu|y)X) is given as:

9Qu(Qu|y,x) =  Wishart{Qv',SS*,df*), (5.81)

(5.82)d p  =  d/ + 0.5iV,
N  K

(5.83)
j = i  k , i = i

3. The VB marginal gz(Z|y,x) is given as follows:

gz,(Zfc) gzfc(Zfc),

Qzk

(5.84)

(5.85)

where the term q̂ îTik) denotes the Gaussian approximation of qz îTik) with
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mean and precision Qz. given as follows:

B z ,

Vz.,

=  Eq{Kk)R +  d i a g { V z J ,  

=  ^

=  z =  1 : p F  +

=  diag[Vz^. i =  l : p f ,

' d l l i  ^
Equ(u) log F(yfcj|Zfc(xj), Ufcj)

Zfci—ZJ

j=i
Xi=i

d
=  ^ ^ E q „ ( u ) l o g P ( y f c j | Z f c ( x j ) , U kjj

j=l
x ,= i

Zfci —ZjJ

=  iexp(Z^(xj))Eg(exp(Ufcj)) -  ,

j=i
X - , = t

where Z™ =  [Z^; i = 1 \ p Y  is the posterior mode of Z^.

4. The VB marginal gU j(U j|y ,x) is given as follows:

9u,(U,) « gCi,(U,),
Qhj

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

(5.91)

(5.92)

(5.93)

(5.94)

(5.95)

where the term  ^ u /U j)  denotes the Gaussian approximation of gUj (U j) with
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mean and precision Qu given as follows:

Qxjj —

Bu, =

Vu

V i

J

Ufc,-

Eq((5u) +  diag{Vxj^), 

diag[Vij,^ k = l :  K]^,

E,z(z) log P(yfcj|Z;t(xj), Ufcj)
,=1

exp(U^)Eg(exp(Zfc(xj))),

d
-■j j=i

Eg^(z) log PiYkj I Zfc (Xj), Ufcj)

=  e x p ( U ^ . ) E 5 ( e x p ( Z ; t ( x j ) ) )  -  y ^ j ,

(5.96)

(5.97)

(5.98)

(5.99)

(5.100)

(5.101)

(5.102)

(5.103)

where U™ = [U^; z =  1 : p] is the posterior mode of Uj.

VB approxim ation at the inverse stage:

The restricted VB marginal of X„ew is obtained as;

K

l0gg(X new  =  * |y n e w .X ,y )  ^  ^
fc=l

-  E , (exp ( Zfc (z)) )E q  (exp (U n ew  fc) )  +  Ynew *: (Eg (Z (X„ew))

+Eq(Unew k))
K

fc=l
r P

-0.5

+diag[Varz;,f diag[Q*2j + (5.104)

where Varz^ is the VB-variance of Z^. The term Varz^{i , j )  and Qzk{i, j)  are {i , jy^  

entry for i, j  =  1 : p of the VB variance and VB-precision of Z^.

The Gaussian approximation of (the intractable) VB marginal gUnew(Unew|ynew, y, x)
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IS given as:

9 U n e w ( U n e w | y n e w , y , x )  ( U „ e w  I X n e w , Y , x ) , (5.105)

«?U_(U new|ynew ,y,x) =  ( /^ U _ , <5u“ 1), (5.106)

where the term gu„ew(^newlynew) Yi x) is the Gaussian approximation with mean 

^Unew precision given as follows:

=  E ,(Q u ) +  d ^ a5(K u _), (5.107)

/̂ Unew =  '^Unew^Unel’ (5.108)

5 u n e w  =  [ ^ u „ e w . ;  k =  1 : X f  + UZ.Vxj...,  (5-109)

^Unew =  diag[Vu^^^, k =  l :  K f ,  (5.110)

^ n e w f c  ~  ® " g z ( Z ) < ? X n e w ( ^ n f w | y n e w , y , x )  l o g  P ( y j j e w l Z / c ( X n e w ) ;  U n e w  A : )

V

=  exp(U” w;t)5Z'^'?(®^P(2't(Xnew)))9(X„ew =  *|Ynew>X,y), (5.112)
i = l

(5.111)
TT , _ T j m  
' - ^now k - ' - ^ n e w  k

^ U n e w f c  ~  ' O T T  ^ 9 7  ( Z ) g X n e w  ( ^ n e w  | y n e w , y  , x )  l O g  ( Y n C W  I  ( ^ n C W  )  >  U „ e w  A :  )
^  ̂  new k

(5 .U3)
TT __
^ n e w  fc— ' ^ n e w  k

=  exp(U;;̂ ^  ̂J^Eg(exp(Zfc(Xnew)))gX„e„(Xnew =  *|ynow, Y, x) -  y„ew (5-114)
i = l

R esu lt

To show the VB approximation for the Poisson latent random effect regression model 

an example of simulated data is considered. A set of one hundred discrete values, 

from one to twenty five, on explanatory variable x are drawn from a discrete uni­

form distribution. Defined over twenty five equi-distant discrete locations, latent 

variables Z are generated from independent GMRF distributions with Gamma vari- 

ate precision parameters, one hundred values of tri-variate random effects U  are 

generated from independent multivariate normal distributions with zero means and 

a common precision following a Wishart distribution. Corresponding to these val­

ues, a set of hundred values on response variable y are simulated from a Poisson 

latent random effect model. These data on x and y are used at forward stage to
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approximate unknown (assumed) Z and U.

A set of fifty new observations on y„ew and X„ew following the same mechanism. 

The true values of explanatory variable X„ew are used for the accuracy of the approx­

imation of inverse estimation of X„ew via cross validation technique with 95% HPD 

region. Fig. 5.7 and 5.8 represent the VB results for the Poisson latent random 

effect model. Fig. 5.7 shows the comparison between the mean of approximations of 

the true posterior mean of the latent variables Z by the VB method and by INLA. 

The VB method and INLA provides quite similar approximations to the true values 

of Z. None of them approximate Z very accurately. At some grid locations, the 

true values of Z lie outside the 95% HPD region. It should be noted that the data 

provided at the forw'ard stage is not very informative and includes many zeros which 

results in bad approximation by both methods.

In Fig. 5.8 approximations (by VB and INLA) of posterior distribution of a new 

unknow'n explanatory variable X„ew given data on the response variable Y„ew are 

shown. The VB approximation is close to the approximation by INLA. The approx­

imations are non-smooth multi-modal densities as a result of the bad approximation 

by both methods at the forward stage. The accuracy of the approximation by INLA 

with 95% HPD region is only 78% and that of the VB approximation with 95% 

HPD region is only 74%.

The count data, to show the VB results for inverse estimation for Poisson latent 

random effect model, are zero abundant. The Poisson model might be inappropriate 

for modeling count data with excess of zeros. In the next section, a zero-inflated 

Poisson model is discussed which is expected to model excess of zeros accurately.

Com putational time:

The computational time taken by the VB method and INLA are compared and 

displayed in Table 5.2. It clear from the table that the VB method provides similar 

results in very less time as compared to INLA.
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Fig. 5.7: The comparison of true value (black), VB-mean (blue), mean (estimated 
by INLA) (magenta) of the latent variables Zi, Z 2  and Z 3  corresponding to the 
response variable Y i (the upper one), Y 2  (the middle one) and Y 3  (the bottom  
one) respectively of a Poisson latent random effect model.

Forward stage Inverse stage
VB 0.74 sec 4.4 sec

INLA 9.27 sec 10.25 sec

Table 5.2: The comparison of the com putational time of VB method and INLA 
at both stages for Poisson latent random effect model. At the inverse stage the 
com putation time shows the time taken by the method for the inverse estimation 
for all test data.
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Fig. 5.8: The comparison of the approximation by the VB method (blue) and by 
the INLA (cyan) of true posterior distribution of Xnew for a Poisson latent random 
effect model.
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5.3.5 V B  approxim ation for the inverse zero-inflated Pois- 

son latent w ith random effects regression m odel

The VB method is applied to approximate the intractable joint posterior distribution 

over Z, U and 9 — {k, Qu}> given the training data set (y, x). A VB approximation 

of the posterior distribution of power index (zero-inflated) parameter n  is not carried 

out because assuming a  to be unknown presents difficulties for VB since the log- 

joint likelihood can no longer be factorized in a way that facilitates VB. Here, a  

is estimated by numerical optimization of lo g P (a |y ,x , Z,U), and inference then is 

conducted on its modal value d, where Z and U are the posterior (VB) modes of Z 

and U respectively

A conjugate prior distribution is assumed over a

K

P {a) =  n  log Normal{ak\ otk € (0,cx3). (5.115)
/c= l

The hyper-parameters in the above prior dislribulious are ai;suuied to be known. 

V B  approxim ation at the forward stage:

The VB marginals obtained at the forward stage are described below:

1. The VB marginal q^ (̂K:|y, x, a); V/c is obtained as:

qn,{Kk\y,x,a) =  Gamma{Kk,al ,bl), (5.116)

(5.117)al =  a*: -I- 0.5p,
p

bl = 5 ,+  0.5
^  2 = 1

P

- 2  ̂  ̂  Eg{ZkiZkrn) (5.118)
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2. The VB marginal gQu(Quly, x, a) is given as:

<?Qu(<5u|y,x,n;) =  Wishart{Qu]SS'*,df*),  

df* =  df +  0.5N,

SS* =

(5.119)

(5.120)

(5.121)

3. The VB marginal gz(Z|y, x, a )  is given as follows:

9z*,(Zfc|y,x,a) ^  g|^(Zfc|y,x,a),

9zJZfc|y,x,a) = iVp(/^̂ ,̂ Q*-^),

(5.122)

(5.123)

where the term q ^ ^ {7 ik \y ^  x, d) denotes the Gaussian approximation of q z ^ { ' ^ k \ y , x, d) 

with mean /xj precision given as follows:

=  E q { K k ) R  +  d i a g { V z ^ ) ,'Zk

Mz,. = 

B z ,  =  

=  

=  

=

tdT  —1 
'DZfcVZfc >

* =  l : p r  +  Z ^l/z„

d ia g [V z^ ^  z =  1 : p]^,
q 2 n

Equ (U) log PiYkj I Zfc (Xj), Uk j )
Tifci — Zu

d

X j = l

n

d z ki
Eg^j(u) log P(yfcj|Zfc(xj), U k j )

j = l
X i = t

(5.124)

(5.125)

(5.126)

(5.127)

(5.128)

(5.129)
ry  r r m

where Z™ =  [Z^; z =  1 : p Y  is the posterior mode of Z^. The terms Vz^.^ and 

are given in the Appendix.

4. The VB marginal gUj(Uj|y,x) is given as follows:

9u ,(U j|y ,x , a 9 u ,(U j|y ,x ,d ) ,

9u, (Uj |y, X, d) =  A^p(/iu, > Q v ,  0 .

(5.130)

(5.131)
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where the term  denotes the Gaussian approximation of gUj(Uj) with

mean and precision Q\j^ given as follows:

where =  [U^; i = 1 : p]'  ̂ is the posterior mode of U j. Due to the 

complexity of the functions and to be explained in the chapter, they 

are described in the appendix chapter.

V B  ap proxim ation  at th e  inverse stage:

As explained in the previous chapter, the restrictive VB approximation to P(Xnew|ynew, 

might not be tractable with a non-exponential likelihood. It might require other 

approximations, e.g. a Gaussian approximation. It should be noted th a t the ex­

planatory variable is assumed to be a discrete variable and is the index of the latent 

field Z. A Gaussian approximation to a discrete distribution of an index type vari­

able may be inappropriate. Also, the VB marginals depend on the VB-moments 

but moments of indexes may not exists. Keeping all this in mind, the VB method 

is avoided to approxim ate the posterior distribution of chmate.

A Laplace type approximation, as suggested by Rue. et al. (2009), is appUed. 

The marginal posterior distribution P(Xnew|ynew, y, x) can be redefined as follows:

Eq(Qu) +  diag{Vij.),

fc=l: i^]^ + U71/u,, 

diag[Vu^^ k = 1 : K]'^,

(5.132)

(5.133)

(5.134)

(5.135)

k j  j = l

(5.136)

E,^(z) log P(yfcj |Zfc(xj), Ufcj) (5.137)

-^ (^n ew  |ynew5 Y ; ^  
■P(Xnew? Z, U;new new )

U n e w | y n e w i  y >  ^ n e w )  ^  Z(Xncw)
U new — U new (X new )

- P ( ^ n e w ?  Z, U n e w )  Y new  |y i
P; ? ( Z ,  U n e w l y n e w i  y ? Z —Z(Xnew)

U new—Unew (X new )

(5.138)
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where Pg (Z, UnewlYnew, y, x, Xnew) IS a Gaussian approxim ation to  be defined later 

and the terms Z(Xnew) and Unew(Xnew) are the posterior modes of the Gaussian 

approximation.

N um erator o f  th e  approxim ation:

The num erator of the R.H.S of Eq. 5.138, can be further decomposed as:

■P(^new; Z, Unew) y n e w |y ,x )  =  P ( y  new j^new) 21, y , U new 5 ^new  |y  j •>

— -f (̂ynew|Xnew) Z, Û ew? y  1 x)-^(^|y 1 n̂ew? Unew)

^ -^(Unew l^new) y  5 ^)-P(Xnew |y ? ^) 5 

^  •f^(ynew l^newi Z , Unewi y  i x ) - ^ ( Z |y  5 ^new)

xP(Unew |y,x)P(Cnew),

-  P(Z|y,Xnew)P(Xnew)

x P ( a |y ,x ) d a

I  -f^(ynew|Xnewj Z ,  UnewT ^ )
J  a

f  P(UnewlQu)P(<3u|y,x)d(5u
' Q\i

| y ? ^ n c w ) P ( X n e w ) - ^ ( y n e w l ^ n e w ?  Z ,  U n e ^ ^ , ^ )

X I P(Unew |Q u)P(Q u|y,x)dQu 
U Q n

(5.139)

The marginal posterior distribution of a ,  F ( a |y ,x ) ,  is not computed explicitly. Its 

posterior mode is plugged-in the likelihood, as in Eq. 5.62. The conditional posterior 

distribution of Z is independent of Unew at the forward stage. Given Xnewi the pos­

terior distribution is independent of x, hence P(Z |y,x,X new , Unew) ~  P(Z|y,Xnew)- 

VB approximations of marginal posteriors P(Z|y,Xnew) and P (Q u |y ,x )  are found 

at the forward stage and can be used straight into the com putation. The integration 

with respect to Qu is tractable.

P(^new) Z, Unew! ynew|yi x) ~  (Z |y , Xnew)P(^new)P(ynewl^new? Z, Unew;

I  P(Unew|Qu)QQu(Qu|yi x)dQu
-•^Qu

(5.140)

D enom inator o f th e  approxim ation:

The denom inator of the R.H.S of Eq. 5.138 is a Gaussian approximation to  the joint
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posterior distribution of Z and Unew given Xnew

Ujiew|ynew7 X? Xnew) ~  GaUSSitin apprOX. [/^(Z, Uuew|ynew? Y) ^ 5  ^aew)] 5 

a n d  / ^ ( Z ,  U n e w |y n e w 5 y^ ^5 ^ n e w ) ^  - ^ ( y  new I ^  ? U jiew  ? ^new )-^(Z|y , X, Xnew) (UnewIy 5

Given Xnew, X can be dropped:

i^(Z, U new  Iy n ew 7 y  5 ^ 5  X new) ^  -^ (ynew  | Z, Unew? X n e w )-^ (Z  | y , X new) (U new  ly  ? ^) ?

(5.141)

where the marginal posterior distribution P(Unew|y, x) =  ^(UnewlQu)<3Qu(Quly, x)d' 

is a complicated function of Unew- To reduce the functional complexity, the VB 

method is applied to approximate the posterior distribution of Z, Unew and Qu'.

( Z , U n e w ) Q u  1 y n e w  ? y  ? X n e w  ) ~  9  ( ^  5 U n e w ) Q u  | y n e w  j y  5 X n e w  ) ?

9Qu( Q u lynewi y 5 Xnew)

Unew Iynew7 Y 5 Xnew)- (5.142)

The joint VB marginal of Z and Unew: ^(Z, Unewlynew,y, Xnew), is not in a closed 

form. A Gaussian approximation is computed (as described in Section 5.3.2), de­

noted as g'^(Z, Unew|ynew, y, Xnew) that can be further used as an approximation to 

Pg(Z ,U new I y new t Y ? Xnew ) •

Laplace approxim ation of the posterior distribution of Xneŵ

Combining all the approximations from Eq. 5.140 and 5.142, the marginal posterior 

distribution P(Xnew|ynew,y,x) at a given value Xnew =  h is defined as:

P ( Y  -  -I  ̂ new IZ , U„ew,i)9i(Z|y, i )P(U„ew|y.x)
V-̂ new ^iynew?yj ^

^ ^ (Z , Unewjynew? y? Xnew — ^)
; « =

Z = Z*(X„ew)
Unew—Unew*(^new)

(5.143)

In the numerator of the above expression, the VB marginal g|(Z |y, i) is found at the 

forward stage of the inference problem. The joint VB marginal, g^(Z, Unew|ynew, y, X„ 

z), is a low dimensional distribution, and therefore, can be computed very quickly
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for each value i of Xnew- 

Result

The results of the VB approximation are shown with a set of simulated data from 

a zero-inflated Poisson latent random effect model. To simulate values on the tri- 

variate response variable of the model, a set of five hundred values of the (uni-variate) 

explanatory variable, from one to fifty, are drawn from a discrete uniform distribu­

tion. The true value of the latent variables (corresponding to the tri-variate response 

variable) are generated from independent GMRF distributions with Gamma variate 

precision parameters. Five hundred values of tri-variate random effects are gen­

erated from independent multivariate normal distributions with zero means and a 

common precision following a Wishart distribution. A set of five hundred counts 

on tri-variate response variable are generated from the independent Zl-Poisson la­

tent random effect model (described in the chapter) with mean parameters as an 

exponential function of random effects and latent variables. This simulated set of 

data contribute to the estimation of latent variables and the random effects at the 

forward stage of the inference.

For the inverse estimation of the unknown explanatory variable corresponding 

to the new values on the response variable, a set of one hundred values on the 

explanatory variable and the same number of counts on the response variables are 

generated from the models described above. The true values of explanatory variable 

are used for the accuracy of the approximation via cross validation technique with 

95% HPD region of the unknown explanatory variable.

Results for the zero-inflated Poisson latent random effect model, are shown in 

Fig. 5.9, 5.10 and 5.11. In Fig. 5.9, the mean of approximations of the true 

posterior mean of the latent variables Z by the VB method is compared with the 

approximation by INLA. It can be seen the figure that INLA smoothes the mean 

values of the latent variable and the mean values and the 95% HPD region of the 

approximation are continuous over the grid values defined by the discrete values on 

the explanatory variable x. But comparatively, the VB-means of latent variables Z 

stay close to their true values. The 95% VB HPD region is tight at the locations
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by INLA) (magenta) of the latent variables Zi, Z 2  and Z 3  (defined over the discrete 
values of the explanatory variable x) corresponding to the response variable Y i 
(the upper one), Y 2 (the middle one) and Y 3 (the bottom one) respectively for a 
zero-inflated Poisson latent random effect model.
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Fig. 5.10: The comparison of the approximation by the VB method and by the 
INLA of true posterior distribution of Xnew given Y„ew =  (0, 6,0) of a zero-inflated 
Poisson latent random effect model.
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Fig. 5.11; The comparison of the approximation by the VB method and by the 
INLA of true posterior distribution of X„ew given Y„ew =  (116, 2,0) of a zero-inflated 
Poisson latent random effect model.
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where the data are available in abundance, whereas for less informative or less 

amount of data the region is large. The variance of the VB approximation is small 

compared to the variance of the approximation by INLA. The under-estimation of 

the VB-variance and the non-smooth behaviour of the VB mean are due to the 

independence assumption of the VB method. If data is less informative, a VB 

approximation may depend on the choice of prior distribution. Since the data drawn 

from the zero-inflated Poisson latent random effect model is less informative (with 

excess of zero counts), the VB approximation of the mean of the latent variables are 

close to the prior mean, As the prior assumptions are similar to the true model, the 

VB means of responses are close to their true values, as evident from Fig. 5.9.

Fig. 5.10 and 5.11 presents the multi-modal density of a new unknown explana­

tory variable X„ew given a test data (0,6,0) and (116,2,0) of the response variable 

Ynew respectively. The first set of test data on Y„ew represent the lack of infor­

mation in data. The VB posterior distribution of X„ew is rather irregular because 

of the lack of smoothness in the VB marginal-means of the latent variable Z. A 

loss of accuracy is due to independence assumption of the VB method and other 

approximations applied in the process of reconstruction. The posterior distribution 

given less informative data (in shown Fig. 5.10) is flat compared to that given some 

informative data (shown in Fig. 5.11). The approximations of the posterior distri­

bution by INLA (given the two sets of data) are very flat. Also, the accuracy of 

the approximation by INLA with 95% HPD region is 100% which indicates that the 

method needs more information through data. Whereas, the accuracy of the VB 

approximation by a cross-validation technique with 95% HPD region is only 96%. 

Hence it can be said that for this zero-inflated Poisson latent random effect model, 

the VB method outperforms INLA in the inverse estimation.

As there are many approximations used at both stages of inference, it is an im­

portant question that which approximation among others is the most responsible 

for non-smooth approximation (inverse estimation). The standard result of the VB 

approximation is that it under-estimates the variance, hence the VB approximations 

of the latent variables are not smooth. The VB approximation of the inverse esti­

mation uses a Gaussian approximation and the MAP estimates of power index of
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Forward stage Inverse stage
VB 27.748 sec 4.6 sec

INLA 231.015 sec 3.339 sec

Table 5.3: The comparison of the computational time of VB method and INLA at 
both stages for zero-inflated Poisson latent random effect model. At the inverse 
stage the computation time shows the time taken by the method for the inverse 
estimation for all test data.

Zl-Poisson likelihood which results in over-fitting of the model. The approximation 

is bad specially for zero counts since a Gaussian approximation given ’no or httle 

information’ (zero counts) may be inaccurate. This requires to replace the Gaussian 

approximation with a suitable approximation for near-zero counts and to approxi­

mate the power index parameter for a better approximation for inverse estimation.

C om p u tation a l tim e:

Table 5.3 shows the computational time taken by INLA and the VB method at both 

stages. Just as for other two models, the VB method provides good results in very 

less time as compared to INLA.

5.4 D iscussion

The chapter has shown that the VB method is useful for fast implementation of 

Bayesian inference for multidimensional inverse latent regression problems. The ac­

curacy and the tractability of VB approximations depend on the model assumptions 

and the nature of data available for the study. VB approximations can depend on 

prior assumptions for models with noisy and less informative data. It might be 

intractable for non-conjugate and non-exponential distributions. The intractabil­

ity issue of the method for complex models can be solved with the use of further 

approximations such as Gaussian.

The VB method uses the posterior independence assumption and provides quick 

solutions to estimation problems. The simplicity and low computational cost of 

the method makes it desirable to use for multi-dimensional inverse latent regression 

problems. Three different types of model have been used with increasing complex-
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ity for a successful application of the VB method: Poisson latent regression model, 

Poisson latent random effect regression model and zero-inflated Poisson latent ran­

dom effect model. The assumption of random effects in the models makes them 

less complex though it increases the dimension of the problem. Therefore, all three 

models are good examples of complex non-conjugate exponential or non-conjugate 

non-exponential latent models which present difficulty against the VB method for 

tractable VB approximations.

To solve the intractability issue of the VB method, further approximations e.g. 

a Gaussian approximation or plugging-in of posterior modes, are applied. These ap­

proximations seem to work well for non-zero counts. But, they perform poorly for 

zero or close-to-zero counts. It is showm that the method provides good approxima­

tion if the data is very informative. For less informative data, as the approximation 

may depart from Gaussianity, the approximation is bad. The bad approximation 

may also be a result of the complex structure of the model or the independence 

assumption of the method to model such complexity or choice of prior for less in­

formative data. It is shown that the performance of the VB method in terms of 

accuracy and computation time is good in comparison to INLA for the complex 

models used in the chapter. It is worth checking if choice of prior has an important 

effect on the VB approximation.

Due to the unsuitability of the VB method for index type variables, the Laplace 

approximation is used for the inverse estimation for the zero-inflated Poisson latent 

random effect model. For prediction of the non-index type of unknowns, it may be 

suggested to use the VB method for quick solutions.

It is shown that the VB approximation and results from INLA depend on the 

structure of model and availability of data which is also experienced by Salter- 

Townshend (2009) for the use of INLA for inverse estimation for latent regression 

models discussed in the chapter.



Chapter 6 

VB approximation for 

Palaeoclim ate Reconstruction  

problem

The chapter describes a VR aiiproximation for inverse latent regression through 

the palaeoclimate reconstruction problem. The reconstruction problem provides a 

motivating example of a complex inverse latent regression problems to check the 

usefulness and accuracy of the VB method. In the previous chapter, the intractabil­

ity issue of the method was discussed for non-conjugate inverse latent regression 

models. This chapter proceeds with the same intractability issue of the method 

and describes how to deal with the problem for a successful VB approximation to 

multi-dimensional, complex inverse latent regression models.

6.1 Introduction

The palaeocHmate reconstruction problem (Haslett et al., 2006) is the motivating 

example of an inverse latent regression problem for this thesis. In the reconstruction 

problem, past climate is inferred from a proxy, such as data on relative abundances 

of different types of fossil pollen th a t are believed to respond differently to  climate. 

The pollen respond smoothly to climate, hence it is a useful proxy for climate. A 

convenient model for pollen data as a function of climate makes use of a smooth

176
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response surface. Responses of the pollen to climate are latent in nature. Therefore, 

in order to infer past climate, they should be modeled through pollen d a ta  as a 

smooth curve of climate. Each taxon has its own response surface to be modeled 

at all the locations in the climate space. Then the combined information on the 

response surfaces (of all pollen) is used to estimate past climate and the uncertainty 

in the estimate.

The palaeoclimate reconstruction problem can be modeled through inverse la­

tent regression. If y  represents a set of modern da ta  of pollen abundance, Z the 

corresponding latent responses and c is a set of known values of climate, the model 

can be defined mathematically as;

y  =  /(Z (c);0). (6.1)

The aim of the reconstruction is to predict past (or future) climate, denoted as C “, 

given past and current data (y“, y , c) through the knowledge of Z and 6 .

A VB approximation of the reconstruction problem is discussed in Section 6.2. 

Vatsa & Wilson (2010) has made an attem pt in this. The authors explained the 

apphcation of the VB method for the palaeoclimate reconstruction in a similar way 

tha t we described later in the chapter. They carry out a simpler VB approximation 

to the reconstruction of climate and to the model fitting in only one stage. However, 

their method may make the reconstruction process very slow since it may require 

to carry out the whole process of reconstruction every time a prediction is needed. 

Whereas, the method of splitting the prediction problem in two stages can be very 

useful. Once a forward model is studied, it can be saved and may be used further 

for many future predictions. The authors also suggested to use a more informative 

data  to  increase the accuracy of the VB approximation.

A part from this paper, no other literature is found for the apphcation of the 

VB method for palaeoclimate reconstruction problems. Haslett et al. (2006) and 

Salter-Townshend (2009) used inverse problems as a method of reconstruction of 

climate. Haslett et al. (2006) commented on the application of the MCMC method 

in the climate reconstruction th a t it suffers from mixing and convergence. Salter-
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Townshend (2009) applied the Integrated Nested Laplace approximation (INLA) for 

the reconstruct of climate.

6.1.1 D escription o f Palaeoclim ate M odel

The RSIO data set is taken from Allen et al. (2000) which describes the nature of 

the palaeoclimate data on pollen and climate. The data  set consists of two types of 

data: modern and fossil or ancient. The modern data  set provides data on current 

chmate at 7742 locations around the world, as well as observations of pollen counts 

of different taxa at those locations. This allows us to fit forward inference and 

infer the relationship between pollen and climate. The ancient data has only count 

data on the fossil pollen (extracted from lake sediment cores) and the corresponding 

ancient climate is missing. It is natural to build a regression model for the response 

of pollen to climate, and use this by inverse regression to infer ancient climate from 

pollen. Thus, it is an interesting problem to describe through an inverse regression.

The aim of the chapter is to explain the VB approximation for inverse latent 

regression with the help of the palaeoclimate problem. It does not attem pt to 

provide real reconstruction of ancient climate, hence it neglects the fossil data from 

the study. For the study of VB approximation to the problem, the modern data 

is divided in two parts, training data and test data. The training data set is used 

to learn the palaeoclimate model and test data  on pollen are used reconstruct the 

corresponding climate. The performance of the reconstruction of climate is checked 

using test data  on climate.

D escription  o f palaeoclim ate data

There may be several possible climate variables to study climate behaviour. Haslett 

et al. (2006) considered mainly two climate variables: MTCO (Mean temperature of 

coldest month) and GDD5 (Growing degree days above 5°C). There are 28 pollen 

types considered in palaeoclimatology. The data on the different taxa at the various 

locations in the climate space, are typically in counts. Due to  huge variation m 

the tolerance limit of the taxa to different climate at different locations, the count 

data on taxa are highly over-dispersed with an abundance of zero counts. The zero-
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inflated behaviour of the count data can be understood with diagrams shown in Fig.

6.1. The diagram represents the histograms of the count data on the taxa, Abies 

and Carnipus, that shows that the most of the data points are zero (about 66% for 

Abies and 91% for Carnipus).

Count data for AtMes Count data for Carnnus

Fig. 6.1: Histogram of the count data for (left) Abies and (right) Carnipus.

Generally, counts are modelled with a Poisson distribution. If zero-inflated data 

are modelled with a Poisson distribution, then the mean of the distribution will be 

underestimated and so the variance. Salter-Townshend (2009) suggested to use a 

zero-inflated Poisson distribution (Ridout et al., 1998) to model the data with excess 

of zeros.

Representation of the m odel via a DAG

The climate model considered in Haslett et al. (2006) is presented via a DAG in Fig.

6.2. The variables used in the DAG to represent the palaeoclimate model stand for
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D im ension k=l,...,K

Locations i= l,...,p

Training d a ta  n*

Fig. 6.2: A DAG representing the palaeoclimate model of Haslett et al. (2006).
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following:

p : Number of discretized climate locations in the study,

K  : Number of pollen taxa considered in the study,

n* : Number of sample points in training data,

n“ : Number of sample points in test data,

training count data on taxa for which the climate is known,

Yfcj : test count data on taxa for which the climate is to be reconstructed,

c* : data on climate corresponding to training data Y ‘,

Cj : unknown climate corresponding to test data Y “,

Zik : latent response of taxa climate with discrete value equal to z =  1, . . .  ,p  ,

Ufcj : Random effects (to simplify the model) corresponding to

training data on k^^ taxa,

U^j : Random effects (to simplify the model) corresponding to test data on taxa,

Kfc : smoothing parameter in the GMRF prior over corresponding to k*  ̂ taxa,

Qfc : Power law index in the zero-inflated Poisson likelihood of data on taxa,

Qu : precision parameter in the prior over Uj Vj.

The superscripts t and a stand for training and test respectively. Notations without 

any superscript stand for both the types of data, training and test.

Reconstruction of climate is highly dimensional and a complex latent regression 

problem. To simplify the problem there are some adjustment done in the original 

climate model;

• To control the size of the reconstruction problem, climate locations are dis­

cretized and limited to the size of p. Hence, the problem is now defined with 

multi-observations at one climate location instead of one observation per cli­

mate location.

• Data on climate are discretized and assumed to be on a regular grid of size p.

• Latent responses Z are assumed to be defined on the grid, hence they are
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indexed by discretized climate, th a t is the response of the taxon in the

observation is Z c ^ k  e.g. climate location is c j .

The term  Z c ^ k  models the response of observation of taxon to the 

climate C  under independence, while \ J j k ,  the random effect corresponding to 

observation of k * ^  taxon, induces dependence between taxa.

The aim of the reconstruction problem is to infer unknown climate C“ (discretized) 

for each test da ta  Y “ at inverse stage borrowing the knowledge of unknown variables 

inferred a t forward stage of inference.

Again, we note th a t the inverse regression is inferring the index C“ of the latent 

process as in Chapter 5.

Likelihood

One climate variable model is assumed. An initial model assumes the counts are 

independent given a latent response, and tha t the latent variables are indexed by 

climate and are also independent. Dependence between counts for different taxa  is 

introduced by adding a random efl'ect into the model. Random effects also capture 

over-dispersion in the count data. A zero-inflated Poisson distribution to model 

count d a ta  is defined as:

serving essential zero counts. Salter-Townshend (2009) used a power law functional 

relationship to define the probability q k j  as in terms of X k j :

where X k j  =  e x p { Z c ^ k  +  Ufcj) is mean of the Poisson term in the likelihood. The

K  n

P (y |Z ,U ,C )  =  nn ziP{ykj', (6 .2)
*:=! j=l

where is the count for k^^ taxon. The term (1 — q ^ j )  is the probability of ob-

ZIP(yfcj;
ify;^ .̂ =  0;

(6.3)
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term  a  in the Zl-Poisson likehhood is called the power law index. The properties

of a  is already defined in Chapter 5 in Section 5.1 in the definition of zero-inflated

latent random effect model.

Prior distribution

There are three set of unknowns to be inferred in the forward problem: responses Z, 

random effects U  corresponding to the training da ta  set and unknown param eters 

0. The prior distribution assumed over unknowns are as follows:

•  Latent responses Z are assumed over a regular grid. Hence, an independent

GMRF prior by Rue & Held (2005), can be a suitable prior distribution of Z:

K

F (Z |« ) =  []P(Zfc|«fe), (6.4)
fc=i

K

= l l G M R F ( Z k - 0 , Q 2 - . ) ,  (6.5)
* = i

where the latent response variable, Z^; k = 1 : K ,  (indexed by 1-dimensional

climate variable) is a GMRF with mean vector zero and precision Qz^  ; k =

I : K.  The precision Qz^ is defined as:

Qzk = KkR \ k = 1 : K,  (6.6)

-1  \
2 -1  

- 1  2 - 1

- 1  2 - 1  

- 1  2 - 1  

-1 w
where Kk is an unknown precision parameter. Precision (defined for one 

dimensional climate) is structured such tha t the GMRF density of Z^ is proper. 

Salter-Townshend (2009) assumes an intrinsic GMRF (improper) prior for re-

R  =

2

-1
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sponses. But, it is safer to assume a proper prior distribution to avoid any 

chance of an improper VB approximation of posterior distribution, if given 

data is less informative. The sparse behavior of Qz^ is assumed for ease of 

computation.

• The prior distribution over U  is assumed to be independent multivariate Gaus- 

sians:
n

^(U*|Qu) =  n  MVN;, (U,; 0, Q u') • (6.7)
j = i

The term Qu is the unknown precision in the prior.

• The parameter 6̂ is a set of unknown: zero-inflated (power index) parameters 

ak, k = 1 ■. K ,  hyper-parameters Kk] k = 1 ■. K  and precision Q\j. For ease of 

computation, conjugate prior distributions are assumed over components of 6:

K

P{oi) =  'WLog-Normal[ak] (6-8)
fc=i
K

P M  = n  Gamma{Kk', ak,bk), (6.9)
fc=i

P(Qu) =  Wishart (d/, F ) . (6.10)

The hyper-parameters in the above prior distributions are assumed to be 

known.

• At the inverse stage, climate C “ is to be predicted for a new (test) pollen data 

y “. To account for a lack of information about climate behaviour, a uniform 

prior is assumed for C “:

p ( q )  DC 1 vj. (6.11)
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6.2 V B approxim ation to  the palaeoclim ate re­

construction problem

The palaeoclimate model is a real example of a zero-inflated Poisson latent random 

effect model which has already been studied for inverse estimation of unknown ex­

planatory variable in Chapter 5. The climate variable of the palaeoclimate model is 

same as the explanatory variable of the zero-inflated Poisson latent random effect 

model of Chapter 5. VB approximation to inverse estimation problem for the model 

is already discussed in the chapter. In this chapter the result of the reconstruction 

problem with real and simulated will directly be presented following the discussion 

of Bayesian analysis of the problem presented already in Chapter 5.

6.2.1 Evaluation of the VB approximation

The approximations applied with the VB method for a tractable VB approximation 

(discussed in Chapter 5), may affect the accuracy of the result. An accuracy check 

should be performed at both stages of inference.

Evaluation o f th e approxim ation at th e forward stage:

Usually, the predictive distribution is used to check accuracy of the model fitting. 

The accuracy check can be performed with a 95% predictive interval (PI) in terms 

of coverage in a cross validation experiment. The predictive distribution may of­

ten be computationally intensive or intractable. Also, the predictive interval of 

multidimensional predictive distribution may be very complicated. To avoid such
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com putational complexities, z-scores of each pollen count is computed:

Observed — Predicted
(112)z-score

Standard deviation of Predicted ’

(̂ (y)
iV(0,1) asymptotically,

where E{ y )  ~  qX,

a(y) r; \/gA (l +  (1 -  q)X),

(3.13)

(3.14)

(6.15)

A ~  exp(Z +  U). (6.16)

Though the behaviour of z-scores might not be standard-norm al (symmetric) for 

small counts, it is assumed that the scores are asymptotically normal. This makes 

the problem of finding 95% HPD interval, as for a standard-Gaussian variable the 

interval is defined between —2 to +2. A mea.sure of the accuracy of the model fitting 

is presented via the percentage of the z-scores (standardized counts), lie within 95% 

acceptance region or between —2 to +2.

Evaluation of the approxim ation at the inverse stage:

To check the accuracy of the approximation at the inverse stage, 95% HPD region 

is computed as discueed in Chapter 5.

6.2.2 Results with simulated examples

The aim of considering simulated data to show the results for VB approximation 

to reconstruction problem is to check whether the approximation is affected by 

the choice of prior and the model assumption. To show the effect of the model 

assumption on the approximation, two models with one climate variable and three 

taxa are considered with following type of latent responses:

•  one with linear responses and,

•  another with irregular responses.
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Fig. 6.3: Histogram of simulated training data on pollen generated from a Zl-Poisson 
model with linear responses.

A set of five hundred values of climate, from one to fifty, are drawn from a discrete 

uniform distribution. For the model with linear responses, fifty regular spaced values 

are assumed on responses of three taxa. The same number of values of (irregular) 

responses of the taxa are generated from independent GMRF distributions with 

Gamma variate precision parameters. Five hundred values of tri-variate random 

effects are generated from independent multivariate normal distributions with zero 

mean vectors and a common precision following a Wishart distribution. Two sets 

of five hundred counts on three taxa (corresponding to the two models) are gener­

ated from three independent Zl-Poisson distributions with mean parameters as an 

exponential function of random effects and response surfaces (linear and irregular 

respectively). These data on climate and pollen are presented as training data.

For a test data set, one hundred values on climate and the same number of pollen 

counts are generated from the models described above.
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Fig. 6.4: The true (black) and the VB-mean (blue) of the responses for the model 
with linear responses, are compared. The uncertainty of the fitting of the responses 
are shown with 95% HPD region ( red).
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Fig. 6.5; Reconstruction a t the inverse stage: Inverse prediction (reconstruction) 
of climate given a test da ta  on three pollen (0, 65, 6) for the model with linear 
responses, is shown by means of the VB marginal of climate. The true value of 
climate, { * ) ,  is displayed to compare with the posterior mode of the climate.
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Fig. 6.6: Accuracy at the forward stage: The z-score of pollen data (*, standard 
error on y-axis) for the model with linear responses, are displayed against counts on 
taxa, with their true mean values, zero (black), and the true 95% confidence interval 
(red). Since the responses are over-estimated in Fig. 5.4, the z-scores are positive 
for most of the count data. The large variance of count data is due to fact that the 
variance of Zl-Poisson is greater than its mean.
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Prior dist. of k VB-mean of K of responses Coverage at Forward stage Coverage

Scale Shape y d Qnd 3rd
Inverse stage

10 0.8 15.0411 22.1683 16.7692 99.8 100 100 92
8 0.5 18.8396 22.6923 20.7391 99.8 98 100 92
4 0.9 8.6007 14.3982 10.7124 99.8 100 100 91

1.5 1 6.1402 11.1061 8.3466 99.8 100 100 91

Table 6.1: The VB-mean of precision parameters of responses, k, and the accuracy 
of the approximation at the forward stage and the inverse stage are displayed for 
the model with linear responses with different of values hyper-parameters of the 
precision parameters .

Count data on pollen

Fig. 6.7: Histogram of simulated training data on pollen generated from a Zl-Poisson 
model with irregular responses.
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Fig. 6.8: The true (black) and the VB-mean (blue) of the responses for the model 
with irregular responses, are compared. The uncertainty of the fitting of the re­
sponses are shown with 95% HPD region ( red).
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Fig. 6.9: Reconstruction a t the inverse stage: Inverse prediction (reconstruction) 
of climate given a test data  on three pollen (21,0,0) for the model with irregular 
responses, is shown by means of the VB marginal of climate. The true value of 
climate, (*), is displayed to compare with the posterior mode of the cUmate. Since 
the responses are over-estimated in Fig. 5.8, the z-scores are positive for most of 
the count data. Also,the variance of Zl-Poisson is greater than  its mean, therefore 
95% HPD regon is very large.
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Fig. 6.10: Accuracy at the forward stage: The z-score of pollen data { * ,  standard 
error on y-axis) for the model with irregular responses, are displayed against counts 
on taxa, with their true mean values, zero (black), and the true 95% confidence 
interval (red).
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Prior dist. of k VB-mean of K of responses Coverage a t Forward stage Coverage

Scale Shape 2nd 3 rd 2 n d 3 rd
Inverse stage

1 0 0 . 8 21.8645 15.8151 17.8225 1 0 0 1 0 0 1 0 0 89
8 0.5 28.648 21.1749 23.5094 1 0 0 99.2 1 0 0 90
4 0.9 14.3571 8.7509 1 0 . 6 8 8 1 0 0 99.4 1 0 0 90

1.5 1 11.3319 6.1162 7.8736 1 0 0 99.4 1 0 0 90

Table 6.2: The VB-mean of the precision parameters of the responses, k , and the ac­
curacy of the approximation at the forward stage and the inverse stage are displayed 
for the model with irregular responses with different of values hyper-param eters of 
the precision parameters.

Results for the model with linear response surfaces, are show'n in Fig. 6 .3-6 . 6  

and Table 6.1. Figures 6.7-6.10 and Table 6.2 present the results for the model 

with irregular response surfaces. Fig. 6.3 and 6.7 show th a t the data  on pollen are 

zero-inflated and highly over-dispersed. Effect of choice of prior is shown in Table 

6 . 1  and 6 . 2

The VB approximation of the marginal posterior distributions of responses, as 

discussed at the forward stage, are shown in Fig. 6.4 and 6 . 8  for the two types 

the simulated data respectively. It can be seen th a t the VB-means of response 

surfaces are not as smooth as expected and the VB-variances are under-estimated. 

This might be due to the independence assumption of the VB method. Next, since 

zero-inflated data  are less informative, the VB marginals of unknowns may largely 

depend on the choice of the prior distribution. For the model with irregular response 

surface, the prior assumptions are similar to the true response model. Hence, the VB 

means of responses are close to their true values, as evident from Fig. 6 .8 . Whereas 

the true and the prior model of linear response surfaces differ, hence, the responses 

are not well fitted.

The accuracy of the approximation at the forward stage is shown in Fig. 6 . 6  

and 6 . 1 0  by means of z-scores of the pollen data for the models with linear and 

irregular responses respectively. The results shown in the flgures indicates a 100% 

coverage of the model fltting. Since there are many approximations used in the 

model fltting, there should be some loss of accuracy in the model fltting. The z-
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scores of pollen data are approximated by plugging-in the posterior modes of the 

unknowns (including the power index a of Zl-Poisson likelihood), and so are over­

estimated which may lead to an accuracy of approximation showing over-fitting of 

the model for non-zero counts.

There is clearly an un-modelled trend in the z-scores which is due to over-fitting 

of the model, plugging-in the modes of the power index (zero-inflation) parameter 

of the Zl-Poisson likelihood and not modelling the zero counts well enough with a 

Gaussian approximation . The predicted value of a count for a Zl-Poisson model is 

approximated by:

E(y) «  gA,

A = exp(Z-t-U).

For an accurate prediction of a zero count, the posterior mode of the random ef­

fects U should be a very small negative value (if Z is comparatively large). The 

VB approximation of the random effects are c;arried out for each data point on 

taxa independently using a Gaussian approximation. The Gaussian approximation 

approximation given non-informative (zero counts) data may not be very accurate 

leading to a bad approximation of random effects for counts near zero.

A Gaussian approximation for large counts should lead to a very accurate approx­

imation of the responses and the random effects which should result in an accurate 

approximation of the z-score for large counts. The z-score for non-zero counts (Fig. 

6.6 and 6.10) show a positive bias which is a result of plugging-in the modes (or 

mean a Gaussian density) of the responses and the random effects in the definition 

(see Eq. 6.13-6.16). Since by Jensen’s inequality,

ME(y)) < E (% )), (6.17)

where /i is a convex function, resulting A and q under-estimated (given in Eq. 6.15 

and 6.16), hence over-estimating the z-scores.

Fig. 6.5 and 6.9 present the multi-modal climate density for a test data of three 

pollen (0,65,6) and (21,0,0) for both the models respectively. These test counts show
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that some pollen are intolerant to extreme climate, while some could exist even in 

adverse climatic situation. A multi-modal climate distribution is desirable due to 

the multi-response behaviour of taxa. The posterior distribution of climate is rather 

irregular because of the lack of smoothness in the VB marginal means of the response 

surfaces. The accuracy of the reconstruction by a cross-validation technique with 

95% HPD region is only 90%. The accuracy of reconstruction of cHmate is shown 

with 95% HPD region. A loss of accuracy is due to independence assumption of the 

VB method and other approximations applied in the process of reconstruction.

Table 6.1 and 6.2 show the effect of the prior on the accuracy of the VB-solution. 

Different experiments with the different values of hyper-parameters of the precision 

parameters of responses, show different results. When compared for the two models, 

the reconstruction of climate is more accurate for the linear response surfaces. Data 

on pollen for the linear response surfaces are less noisy, hence they are considered 

an easier case to reconstruct climate.

As there are many approximations used at both stages of inference, it is an im­

portant question that which approximation among others is the most responsible 

for the bad approximation. The standard result of the VB approximation is that it 

under-estimates the variance, hence the VB approximation of the responses are not 

smooth (see Wang k. Titterington (2005)). The VB approximation of the reconstruc­

tion problem uses a Gaussian approximation and the MAP estimates of power index 

of Zl-Poisson likelihood which results in over-fitting of the model. The approxima­

tion is particularly inaccurate for zero counts since a Gaussian approximation given 

ho or little information’ (zero counts) may be inaccurate. This requires to replace the 

Gaussian approximation with a suitable approximation for near-zero counts, and to 

approximate the power index parameter, if inference for the reconstruction problem 

is improved. This could be found by running the same VB-experiment many times 

with different values of the power-law index and picking the most suitable value 

for the zero-inflated data. A good replacement for the Gaussian approximation for 

zero-counts needs to be investigated.
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Prior dist. of n VB-mean of K. of responses Accuracy at Forward stage Accuracy

Scale Shape Qnd 2Td ^nd ^rd
Inverse s t ^

10 0.5 12.5981 16.3055 7.7826 98.0857 96.0571 95.0429 83.5 ^
10 2 7.1385 7.8698 4.9609 98.0857 95.9429 95.0714 85 ■
4 0.5 9.4738 11.943 5.5091 98.0857 95.9571 95.0429 83.5 ■
4 2 6.4153 5.9478 3.7664 99.3571 95.8 95.0571 89 ^

Table 6.3: VB-mean of smoothing parameters of responses of the (true) palaeocli­
mate model, K, and accuracy of approximation at forward stage and inverse stage 
are displayed for the model (with random true responses) with different of values 
hyper-parameters of the smoothing parameters.

6.2.3 V B solution with real palaeoclim ate data

To demonstrate the VB approximation to the palaeoclimate reconstruction problem, 

three taxa among twenty eight, Alnus, Abies and Corylus, and a climate variable, 

GDD5 of the palaeoclimate model, are considered. Among 7742 modern data on 

taxa, 7000 are randomly chosen as a training data set and 200 random points from 

the rest are taken for the illustration of approximation to inverse estimation. The 

data on the climate variable, GDD5, are discretized and considered on a regular grid 

of size 50.

In Fig. 6.11-6.13, the zero-inflated behaviour of the data are shown by their 

histograms and scatter plots. The results with the real data set are shown in Fig. 

6.14-6.16 and in Table 6.3. The fitting of the responses of the taxa by the VB 

method is shown in Fig. 6.12. The mean response surfaces are not very smooth, as 

reflected from the figure. Also, the HPD bounds of the response surfaces are very 

tight. There are two obvious reasons behind the under-estimation of the variance: 

the posterior independence assumption of the VB method and the number of data 

available on each grid point on the climate variable. The VB-variances of responses 

are big for large values of climate. It is clear from the scatter plots in Fig. 6.11 that 

there are fewer data for big values of climate. If the grid size is small, then there 

are many non-zero data points related to each of the grid points which make the 

inference very certain. Therefore, the variance of the responses at climate values 

with less informative data are larger than those with more informative data. The

i
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Fig. 6.11: Histogram of Alnus (left) and scatter plot of GDD5 and Alnus (right)
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Fig. 6.12: Histogram of Abies (left) and scatter plot of GDD5 and Abies (right)
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Fig. 6.13: Histogram of Corylus and scatter plot of GDD5 and Corylus
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Fig. 6.14: Responses of Alnus (upper most), Abies (middle) and Corylus (lowest 
one) are shown against climate locations. The VB-mean (blue) of responses of the 
taxa are presented. Uncertainty of fitting of the responses are shown with 95% HPD 
region ( red ).
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Fig. 6.15: Inverse prediction (reconstruction) of climate given a test data-set on 
three pollen (77, 0, 48) for the model with real data on pollen, is shown by means of 
its posterior density of climate. True value of climate, (*), is displayed to compare 
with the posterior mode of the climate.
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Fig. 6.16: z-scores of real count data on pollen (on y-axiz), (*), of the palaeoclimate 
model, are displayed against real counts on Alnus (upper most), on Abies (middle) 
and on Corylus (lowest) on x-axis with their true mean, zero (black), and true 95% 
confidence interval (red).
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uncertainty in the inference can be increased by taking a large grid size though 

it may lead to a computational burden. A larger grid size may also increase non­

smoothness in the fitting of the responses (a coarser grid tend to have fewer non-zero 

counts at each grid point of climate may lead to non-smoothness of the responses).

It is noted that very similar results are obtained from other runs of the inference 

with different samples of data from the same model and different setting for the 

various numerical approximation, e.g. starting values for optimization. So there is 

some empirical evidence that the results in this chapter are representative.

The accuracy of the approximation at the forward stage is displayed in Fig. 6.14 

by means of the z-scores of pollen data. It is clear from the figure that the z-scores for 

zero counts are not fitted well by the method. Also, the z-score are over-estimated 

for large non-zero counts. These results are similar to those for simulated data. The 

only difference is that the accuracy of the model fitting is now reduced to about 

95%. This may be due to the independent model assumed for the pollen data, the 

independent assumption of the VB method and the bad Gaussian approximation 

for zero counts.

The VB approximation of climate reconstruction by means of the posterior dis­

tribution of chmate for a test data on pollen (77,0,48), is shown in Fig. 6.13. The 

climate density is multi-modal. As described earlier for simulated data, the multi­

modal behaviour of the density is due to the non-smoothness of the mean response 

surfaces. The multi-modal behaviour of climate is also experienced in previous re­

constructions e.g. in Haslett et al. (2006). The accuracy of the reconstruction of 

climate by a cross validation technique is about 85%. The loss of accuracy is because 

of independence assumption of the VB method (used at for ward and inverse stages) 

and not using all the palaeoclimate data which provide important information about 

climate.

Table 6.3 shows that the choice of values of hyper-parameters affects the VB 

solution. Hence, the accuracy of the reconstruction may be improved with more 

informative prior.

Com putational time: The results of the VB approximation of the reconstruction
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problem are carried out with MATLAB 6.1. The VB approximation for simu.ated 

data of the palaeoclimate reconstruction problem takes only few minutes to converge 

(locally). A Gaussian approximation of random effects for each data count leais to 

a slow approximation. The real data is large and contains several zero-counts, hence 

the VB approximation takes about an hour or more to converge to a local result. 

The computation time of the approximation of the reconstruction problem az the 

forward is order 0{Kr'^p + K^n),  where K  is the number of taxa, p the number 

of grid points, r is the bandwidth of the sparse precision of latent responses and 

n is the sample size. The first term in O(-) comes from the matrix computation 

for K  responses. Since the precision of responses are sparse, it takes only r^p flops 

for the matrix computation (inverse operation to compute posterior variance). The 

second term in the function is due to the matrix operation for n random effects. 

The inverse stage uses a Gaussian approximation which requires [2K)^ flops for the 

matrix operation for each test data. Hence the computation time at the inverse 

stage is of order O(K^).

6.2.4 D iscussion

The palaeochmate reconstruction provides a motivating example of a multi-dimensional 

complex inverse latent regression problem to explore the usefulness and the limi­

tations of the VB method. With the assumption of posterior independence, the 

method is capable of handling the multi-dimensional reconstruction problem though 

at a cost of some accuracy loss in the inverse estimation of climate.

It is shown in the results that the performance of VB approximation in palaeo­

climate reconstruction depends on the choice of prior. It suggests that the method 

may not work very well with noisy or less informative data. The VB approximation 

for zero counts of real data are not accurate. Since the approximation also depends 

on the model assumption, the VB method performs very poorly for zero counts mod­

elled with Zl-Poisson model. It might be tempting to consider other models e.g. a 

negative Binomial distribution to fit zero counts. But, this distribution may present 

a more challenging model for VB for its tractable solution and might demand many 

approximations in the estimation process.
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The approximation to the model-fitting and the reconstruction of climate with 

real data not only depends on the VB approximation and other approximations used 

in the inference process, but it is also conditioned on the model assumption and the 

amount of information used. The full data structure (28 taxa and 7742 counts per 

taxon) is correlated and provides important information about climate. There are 

only 3 taxa used among 28, also an independent Zl-Poisson model is assumed for 

a successful VB approximation. Haslett et al. (2006) have modelled the correlation 

structure of data by a compound multinomial likelihood. Salter-Townshend (2009) 

suggests to use a nesting structure model to account for the correlation in data.

It is experienced that the VB method can also be slow, if prior assumptions 

are not appropriate in the case of less informative data. VB approximation for the 

inverse latent regression using palaeoclimate model can be compared with the results 

of Salter-Townshend (2009). The author used similar (Zl-Poisson) palaeoclimate 

model. The VB method used with many other approximations and the posterior 

independence assumption, predicts a climate variable with 85% of accuracy which is 

less than the result by INLA (for two climate variable) of Salter-Townshend (2009).

The accuracy of VB approximation for inverse latent regression problems with 

the palaeoclimate model, can be increased to some extent with more informative 

data. Allowing the dependence between responses and random effects in the joint 

posterior may boost in the accuracy of the approximation (responses and random 

effects are highly correlated in the palaeoclimate model). However for more than 

three taxa, it may lead to an impractical computational burden.



Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this thesis, the VB approximation to Bayesian estimation of inverse regression 

problems has been classified into two categories: inverse latent regression and in­

verse non-latent regression. The VB method is very useful for fast approximations 

for multi-dimensional inverse regression problems. It provides simple and quick 

approximations at some cost of accuracy loss in the approximation due to the con­

ditional independence assumption. In Chapter 4, the inverse non-latent regression 

has been described through the simple linear regression, quadratic regression and 

Poisson regression mixture of Poisson regression and zero-inflated Poisson regression 

problems. The inverse simple linear regression and the inverse quadratic regression 

problems present a good example of conjugate-exponential (CE) models, for which 

the VB method provides tractable approximations (Beal, 2003; Smidl & Quinn, 

2006). It was observed for inverse quadratic regression problems tha t the method is 

capable of providing a multi-modal approximation to a multi-modal posterior dis­

tribution if the multi-modality is not induced due to some latent variables. The 

accuracy and the tractability of the method was explored for non-CE regression 

models through the inverse Poisson regression, mixture of Poisson regression and 

zero-inflated Poisson regression problems. It was attempted to make the method 

amenable to non-CE regression models by applying it with further approximations, 

such as a Gaussian approximation. In Chapter 5, the VB approximation for latent

206
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regression problems has been described with the help of three models: Poisson la­

tent model, Poisson latent random effect model and zero-inflated Poisson random 

efî ect model. The intractability issue of the method was further explored for latent 

regression models. It was shown that a Gaussian approximation (to solve the in­

tractability of the method) might lead to inaccurate VB solutions where the result 

is sensitive to model assumption and nature of data under study. The use of a Gaus­

sian approximation to approximate the intractable VB approximation of the new 

explanatory variable (of index type) of the zero-inflated Poisson model was avoided, 

since the moments of an index-type variable, though might exit, do not make sense. 

Moreover as the VB approximations relate to the VB-moments, the VB method 

is limited to the models for which the moments can be defined. However, Vatsa 

& Wilson (2010) have presented a VB approximation for the climate (index type) 

variable of the palaeoclimate model which depends on VB-expectations of the la­

tent response surface with respect to the VB approximations of climate, but does 

not require the VB-moments of unknown climate in the algorithm. In Chapter 6, 

the VB approximation for inverse latent regression models has been studied via the 

palaeoclimate reconstruction problem. It was suggested to use a more informative 

prior when the data are noisy and less informative, since the VB solution might de­

pend on the choice of prior and the initial settings of the VB-parameters. However 

with sufficient data, the method provides accurate estim*ation.

In short, the VB method can be very useful for fast approximations to Bayesian 

inference in inverse regression problems. As far as the intractability issue of the 

method is concerned, it can be solved by applying it with further approximations. 

Extra care should be taken in the prior elicitation, as the VB approximation may 

hugely depend on prior specification in case of insufficient data.

7.2 Future Work

The work on the VB method for inverse regression problems has given rise to many 

questions for further study:

1. To carry out tractable VB approximation for inverse non-CE regression mod-
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els, a Gaussian approximation is applied with the VB method. The VB method 

needs to be explored further for its intractability for the models where a Gaus­

sian approximation may be inappropriate. Other variational methods e.g. 

variational tangent approach may be applied in this case but it also has lim­

ited applicability.

2. In the latent random effect regression model of Chapter 5, the index type 

behaviour of explanatory variable restricts the application of the VB method 

to the inverse stage of inference. It needs to explore more latent models vhere 

the VB method can be successfully applied for inverse estimation of non-index 

type variables.

3. The uncertainty of the power index of the Zl-Poisson latent random effect 

model of Chapter 5, could not be studied due to the intractabihty issue cf the 

VB method. Further approximation is needed to carry out a VB approdma- 

tion for the model with the VB-estimation of the power-law index parameter. 

Other models e.g mixture of Poisson model may be considered which avoids 

power-law index parameter, but it may not fit the zero-inflated data very well 

degrading the accuracy of the approximation.

4. The assumption of conditional independence may lead to a bad approxima­

tion for multi-dimensional models where the components of parameters are 

highly correlated and the data counts are also correlated. A structured ^'B 

approximation for a nested palaeoclimate model of Salter-Townshend (2009) 

may increase the accuracy by allowing dependency between the responses and 

the random effects of the model such that it should not lead to a huge conn- 

putational burden on the VB-estimation. It may also solve the problem of 

the selection of the priors (to some extent), as for a nested model it will no 

longer need to approximate the random effects for each count data (including 

zero counts) independently. However, due to the basic definition of the VB 

method, with KL-divergence a non-negative quantity which requires the stp- 

port the VB approximation smaller than the true posterior distribution, the 

under-estimation of posterior variance by VB method cannot be avoided even
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with a fully structured VB approximation.

5. It would be of a great interest to find a measure of under-estimation of VB- 

variance which may lead us to increase the accuracy of the VB-approximation. 

Wang & Titterington (2005) suggested to use the inverse of the Fisher’s in­

formation for the VB-variance to increase the accuracy of the VB-interval 

estimates. This idea of replacing the VB-variance is based on the asymptotic 

normality of the VB approximation (Wang & Titterington, 2004). It may 

be useful to explore the idea of Wang & Titterington (2005) to increase the 

accuracy of the VB interval-estimates for models with a large data set.

6. A method to monitor which of the approximations applied in the process on 

inverse estimation for Zl-Poisson latent random effect model are the most 

responsible for a bad approximation, should also be found in order to improve 

the VB approximation for the model.



Chapter 8 

A ppendix

8.1 V B  approxim ations for zero-inflated-Poisson  

non-latent m odel of Chapter 4

This section defines the VB marginals for the Zl-Poisson non-latent model of Chap­

ter 4.

1. The Gaussian approximation to the VB marginals of /3q ,q{f3o\y, x) is obtained

as:

qg{Po\y, )̂ =

s i' = ,

(8.1)

(8 .2 )

logP(y|x,/3o, A)

(8.3)

(8.4)

q 2

/2 = ^log^(y|x,^o,/3i)
O P o  orn

(8.5)
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where the functions f \  and /2 are defined as:

/ i

/2

i=l
( l - z , ) ( l - P o S J - 5 o ” + y i ) - z ^ P o ™ , (8 .6 )

= -E
2 =  1

(1 -  z . ) (B S  +  P o X ) E
1 = 1

(1 -

(1 -  _

where,

E
i=l

7 (Pog^FpT +  Pog^(l +  1 / B ^ )  -  
(1 -  PoSJDo™)

, (8.7)

rim
-°0j
/^m _
'̂ Oi
/ j" _
ZT'm _

—

exp{P^ +  p^Xi ) ,

(1 -  Q ) ,

(i + 5o7)-\
D m  rtTn

(8.8)

(8.9)

(8 .10)

(8 .11)

(8.12)

2. The Gaussian approximation to the VB marginals of , q{Pi \y,  x) is obtained 

as:

gs(/3i |y,x) =

q2 ★ 
^01

=

91 =

92 =

1
- 9 2

S I
+  9 \ ~  9 2 ]  1

.^logP(y|x,/3o, A)
opi

^logP(ylx,/3o, A)

-3̂ /3r

/3o”“,<9r

8.13)

8.14)

8.15)

8.16) 

8.17)
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where g \  and Q2 are defined as:

9 i = E
i = l

n

-E
i = l

X i L i T
(1 -

(8.18)

92 =  -E
2 = 1

x^{l~z,){BT,+PoT,FS) -E
2 =  1

x^z,Po-

E
2 = 1

(1 -  Po™D
, (8.19)

where,

51" =  exp(/?5"+ ^J"xi), (8.20)

/^m
'-'12 =  exp(-B™ ), (8.21)

=  ( 1 - C^ h ), (8.22)

n (8.23)

P o Z (8.24)

3. The Gaussian approximation to the intractable VB approximation of X„ew is 

found as:

<79(Xnew|y,x) =

c2  ★
O x —

1

Mx =
( /^xUr

=
9

5Xnew

/i2

logP(y„ew|Xnew,/5o,,/3l) 

log P (y new |X new? Po,  P i )

x;Tew,̂ ?̂ ./3r

1
vm am  om  
■^new’^^0 ’^1

(8.25)

(8.26)

(8.27)

(8.28) 

(8.29)
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where hi and h2 are defined as: 

hi

h2

where,

= exp(̂ o™+/3rx:Tew), (8.32)

= exp(-B™), (8.33)

D7 = ( 1 - C - ) , (8.34)

= (l + x̂” ) - \ (8.35)

Po^ =  b7 f:̂ . (8.36)

8.2 V B  approxim ations for Z l-P oisson  latent ran­

dom  effect m odel o f C hapter 5

This section presents the hyper-parameters of the VB marginals of unknowns at the 

forward stage of inference for Zl-Poisson model.

8.2.1 Gaussian approxim ation of th e V B  m arginal of Zk

The VB marginal gz(Z|y,x, a) is given as follows:

For all A; = 1 : A',

=
'Tn 2

Qrn p  nvPl (1 -  Po^D^
m  2 .Po

(8.30)

-/5rm 2 r y m ^ r
\j - D

(1 -  P o ^ D ^ f  
{Po^F^ + P o - ( l  +  1 / B - )  -  B - )

(8.31)

9Zfc(Z;t|y,x,a) «  g|^(Zfc|y,x,a), (8.37)

(8.38)
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where the term g|^(Zfc|y, x, d) denotes the Gaussian approximation of gZfe(ZA:|y,x, a )  

with mean and precision Q2 *. given as follows:

=

B z ,

V z ,

¥ . q { K k ) R ^  diag{Vz )̂, 

diag[Vz^^ i = I : p f ,

 y r  ®̂9u(u) logP(y;tj|Zfc(xj), Ufcj)dz ki j = i
■3X T — i

Zfci—Z]!

d

W ki
E,u(u) log P(yfej|Zfc(xj), \Jkj)

j=i
X , = Z

(8.39)

(8.40)

(8.41)

(8.42)

(8.43)

(8.44)

where Z™ =  [Z^; i  =  1 : p ]^  is the posterior mode of Z ^ . It is already mentioned 

that the expectation of the likelihood w.r.t gu(U) is not in tractable, therefore the 

modes of gu(U) plugged-in the likelihood instead.)

For all z =  1 : p, define

F u  =  exp
j=i

/
F2^

F^^

F a

e x p ( -F i i ) ,

F u

{ F 3 ^ ^ .

(8.45)

(8.46)

(8.47)

(8.48)
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(where and are the posterior modes of Ujk and Z î respectively) then

h2i (yfc,U^,Z^,afc)

hu (yfc, U ^ , Z^, &k) +  h2̂  (yfc, W ,  Z - , A ,), (8.49)

(8.50)^{Vkj 7̂  0)
j = l

X j = i

n

= 0)
j=i

X i = i

— Fik + Yf.j +  a/t (1 — F^k)

—  F 2 i F i i F i i  —  F n { \  —  F 2 i ) { — F s i  +  l ) a k

x [ l - F 4 i { l - F 2 i ) ] ~ \  (8.51)

and

= m u  {Yk, U ^, Z^, ak) +  m2, (y^, U^, Z^, a^)

+m3^{yk,U l \Z’|^,ak), (8.52)

m H (y .,U ^ o ,Z r ,a .)  =  5 ] /(y fc ,? ^ 0 )
j=i
X j = X

n

m 2 ,(y , ,U ^ ,Z ^ ,a ,)  =  -  /(y,^-=  0)

■f'l* +  ^kiF^i — l)F^i (8.53)

j=i
X i = i

F2iFiiFii — F4i(l — F2i){—F‘ii + l)afc

m3,(yfc,Ur,Z^,Q,) =
j=i
X i = i

x [ 1 - F 4 , ( 1 - F 2 , ) ]  ,

F 2r F , i { F , i f  -  F , , { \  -  F 2i ) ( 2 { F , , y

(8.54)

—SF̂ i +  l)o;fc — F4i(l — F2i){—F̂ i +  1)^(—1 + 6ck)6tk

-2F2iFii{—F̂ i +  l)Fija*. 1 — ^4t(l — -̂ 21) .(8.55)

8.2.2 Gaussian approxim ation of th e V B  m arginal of Uj

For all j  =  1 : n, the VB marginal gUj(U j|y,x) is given as follows:

«?u,(Uj|y,x,a) «  ql j ^{Uj \y ,x ,a) ,  

9 u , ( U j | y , x , a )  =  N p i f i l j

(8.56)

(8.57)
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where the term  denotes the Gaussian approximation of 9Uj (U j) with mean

and precision Qlj_ given as follows:

Qu, = ^ g iQ v )  + diag{Vu^), (8.58)

Mu, =  (8.59)

5 u , =  k = l - . K f  + V u .U f, (8.60)

Vu, =  diag[Vu,^k = l - . K f ,  (8.61)
q2 ^

=  -^^5I®^'?z(z)logP(yfcj|Zfc(xj),Ufcj)
9 %  , = 1

d
Tl

u ,,= u -

J3®^9z(z) logP( yfc j |Zf c(x j ) ,Ufc j )
j=i

(8.62)

(8.63)
Ufc,=u;5.

where U™ =  [U^; i = 1 : is the posterior mode of U j.. (Since Uj^ appear inde­

pendently in the Zl-Poisson likelihood, there is no covariance term  in V u ., the second 

derivative of the likelihood w .r.t U j. The expectation of the likelihood w .r.t gz(Z) is 

not in tractable, therefore the modes of g |(Z ) are plugged-in the likelihood instead.)

For all k = 1 : K ,  define

E , ,  = exp(U ^. +  Z ^ (x ,)) , (8.64)

E2k =  e x p (-E u ), (8.65)

(8 .66)
t +  E l k

EAk =  (^3^)“''. (8.67)
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then

=  (8 .68)

/ u ( y y ,U 5 .Z ; ’,<St) = /(yS/0)  

= -f(yt. = o)

+  yTj +  (1 ~ 3k) (8.69)

E2kEAkE\k — £'4fc(l ~  E2k)

5ifc(yfc ,,U ^,Z ^,d ,) 

92k (y/fcj) U^-, z™, dfc)

><(~-£'3fc + l)®fc  ̂ [l “ ■E'4fc(l ~ '£'2fc)] , (8.70)

K j,, =  g i k { y k j , V k p ^ T , ^ k ) + g 2 k { y k j , K j , ^ T , ^ k )

+53fc(yfc,,U™,Z-,a,), (8.71)

— HYkj 7̂  0) ~  Elk +  k̂iEsk ~ 1)-E';3k (8.72)

=  -HYk]  = 0) E2kEikE\k — Eik{^ — E2k)

X {~Ezk  +  l)o;fc

X [ l  — £^4fc(l — £ ’2fc)] , (8.73)

53fc(yfcj,Û -,Ẑ ,afc) = /(yfej = 0) E2kEik{Eik)‘̂ — Eiki} — £'2fc)(2(i?3*;)^ 

—^E^k + l)afc — £ ’4fc(l — E2k){—Ezk +  1)^ 

x ( —1 +  dck)dck — 2E2kE4k{—Esk + 1)

xEikOck 1 — -£'4fc(l — E'_2k)

- 1

(8.74)

8.2.3 Posterior distribution of a

The posterior distribution of is defined as;

P (a |y ,x )  =  J  P (a ,Z ,U ,Q u ,« |y ,x )d Z d U d (5 i :d«, (8.75)

which is not in a closed form. To avoid complexity of Bayesian com putation, the 

posterior mode of a  is used in the VB approximation of other unknowns. To find 

the mode of a , it requires to define the first and second derivatives of its posterior 

distribution log-likelihood w .r.t to  a. Since an independent log-normal prior distri­

bution is assumed and ak VA; appear independently in the Zl-Poisson likelihood, the
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modes of a k  V/c are found independently from its conditional posterior distribution 

P(afc|y, X, Z™, U^). The first and the second derivatives of log P(o'fe|y, x, Z™, U™) 

are described as:

{logP(Qfcly,x,  Z ^ , U ^ ) }  =  rifc +  r2fc +  rsfc,
d  

d a k

^  {logP(afc|y,x,Z^,U^)} =  Su +  S2fc +  S3*:,

r i k

S l k

S2k

^3k

H \ j k

^ 2 j k

H z j k

H ^ j k

1
Oik

log a k

Oik(^,Olk

(8 .76)

(8 .77)

(8 .78)

r2k = Y .  ^  =  0 )
j=l

r s k  = L  ^  0)
j=i

H 4 j k ( l  — H 2j k )  log H ' i j k  

1 — ■f^4j/c(l — H ^ j k )

z r (x ,)  +  u^.

(8 .79)

- E ^ ( y ‘j = o)
j=l

(8 .80 )

(8 .81 ) 
2

3jA:

1 —  Hijk{  ̂— H2jk)
- 2

= exp(Z (̂x,) + ur,),

=  exp(-Hijk),
  ^ I j  k

=  ( H , j k r .

(8 .82)

(8 .83)

(8 .84)

(8 .85)

(8 .86) 

(8 .87)

8.2.4 V B  approxim ation to the posterior d istribution  of Xnew

In this section, the Laplace approximation of the posterior distribution of X„ew (of 

Zl-Poisson model) is defined as:
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l o g f  (Xnew — ^lynewjY) log P (y new 1Z , U  new ? ^) +  l o g g | ( Z | y , z )  +  l o g P ( U n e w |y , x )

log9^Z ,U new I y  new ? y  5 0
Z = Z * ( X „ e w )

U  n e w  — U  n e w  (  ̂ n e w  )

(8.88)

K

log P (y newlZ,UnewiO — E  -̂ (ynew k 7^0)
k=l

+ -̂ (ynew fc — 0)

log D l -  AI  + fc log A l  +  log(y„ew fcO

(8.89)

K

log g |(Z |y ,z ) 

lo g P (U |y ,x )

-0 .5  y ]
fc=i

log Vk i,i +

log(l -  D “(l -  BkT) 

1
Vki Zfc(Xnew — f k̂

0.5 log det ( S 5 * - '  +  U^,^U„ew
-In

+0.5 {dp + I ) - d p  \ogdet  5S*

Al  = exp Zfc +  U' new k

Dt

exp(-A ^) Vfc,
Aa

Vfc,
l + A l

(8.90)

(8.91)

(8.92)

(8.93)

(8.94)

where Vk = jik = are the VB-variance and the VB-mean of g|^(Zfc),

SS*  and df* are the hyper-param eters in the VB marginal of qq^iQu) , Z*(Xncw) and 

U*g^(Xnew) are VB-modes of the VB marginal ?®(Z, UnewlYnew, y, 0  (defined in a 

same way as q^{Zk\y,x.) and g®(Uj|y,x)) corresponding to Unew and Z respectively.
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(8.95)

D« E , [ Q D  ,
f)a f)a \lk=l:K 2k=V.K ^
Dtk=l:K ^4fc=l:K /2i^x2/^

/̂ *new =  Qlcl'B*Z, (8.98)

B:L = [Btk=V.KB^k=l:Kf, (8.99)

where the term is s. K  x K  zero matrix, is the precision parameter of

( Z ,  U n e w  | y n e w 5  Y ? ^ ) •

UQD = /Qu^iQu(QHyuow,y,x)dQ^,, (8.100)

=  Cew55„*,^, (8.101)

9 Q u ( Q u | y . , e w , y , x )  =  Wishart K{SS*^^,df*^J, (8.102)

where =  df* + 1, (8.103)
Tine

=  (^55*-i + ^E ,(U new U ^ew )j • (8.104)
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For k =  1 \ K  define,

D V

Bxk

k

T j a

^ 2  k

11“• ^ 3  k

D“ ^ 4  k

d

{log P{ynev/ fc|Zfc(Xnew ) 1 U  new k ? ^k)}
Z =  Z*(X new )

U n e w = U 5 e „ (X  new)

(8.105)

9Z,(X„ew)
{ l o g  - P ( y n e w  k  \ Z f c ( X n e w ) ) U ^ e w  fcj ^ k ^  }

Z —Z* (Xnew) 
U n e w — U j j g ^ ( X n e w )

Zfe i , i
I CL .

k

n “■̂ 1 fc) 

''̂ 1 fc’
F ) a

t|&iiP6)

(8.107)

(8.108)

(8.109)

(8 .110) 

(8 .111) 

(8 .1 1 2 )

For all k =  1 \ K , define

F°-^ik

E2k

Ê sk

— exp fc(Xn

=  exp(-^°fc),

Etk

z;(x„ew )) ,

Etk =  (Ê k)

(8.113)

(8.114)

(8.115)

(8.116)
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then if

/ l f c ( y n e w  k i  ^ .(X n e w )j Z j^ .(X new )i — -^(Ynew A: y new k ^ I k

HVnewk ^  0)

Afc (ynew fc, j .̂(Xncw)) Z^(Xnew), Qffc) — /(y ^  — 0) £ â i^a rpa j^a  /-i 17a \
'2k^4k-^lk '^4fcU “  ^2k)

[1 -  £ i ( l  -  £ i ) ] r )?418

5 l A ; ( y n e w  fc) U j j g ^  ^ ( X n e w ) )  Z ^ . ( X n e w ) )  Afc) — l i j r i e v j k ^ ^ )

(ynew fc) ĵ .(Xnew)i Z .̂(Xnew)) Q:fc) =  ~- (̂ynew fc ~

^Ik  +  ^k{E^k 1)-^^ \19

E a T?a Tpa ipa /'i T?a \ ik^ ik^ik  — “  •̂ 2fci

[1 -  i i ( i  -  r n p t i -

ffSfc (ynew fc) Ujjg^ ^(Xnew)i Zj ,̂(Xfiew), (ifc) — -̂ (Ynew fc ““ 0 )
-1

E^2kEluiEtk? -  E l,{ l  -  

-m i, +  l)dfe -  El,{\  -  E^,,){-Et,  +  1)2 

x ( - l  + dik)dik -  2E2kEh {̂—Ê ĵ  +  1)

xE-^^ak (8.121

D t ^  =  / i “, ( y n e w f c , U : g ^ , ( X „ e ^ ) , Z ^ ( X „ e ^ ) , a f c )  + / “, ( y f c , U ^ , Z - , a , ) ( 8 . 1 2 2 )

E^k  5lfc (y n e w  fcj ;j.(X new )i Z ^ (X n e w ))  &fc)

+ 9 2 k { y  new k 1 n e w )? ^ k ^

'^?3fc(ynew fc, Ujjg^ ^(Xjigw), Z;j,(Xng^), ak) (8.123)
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then

r)a na
^Zk=l:K /  2KX2X

- v a l  \  I ^ l k = l : K  ^ 2  k = l : K
-  Z * ( X „ e w )  ( 8 . 1 2 5 )

p a  j~)a
3 k = l : K  i k = l : K  ,  2 K x 2 K

Thus

logg«(Z,Unew  I y  new j Y  5 ^; Z . Z - ( X . „ )  = ^ > “ g  ( 8 - 1 2 6 )
U „ e w = U J ,„ (X  new)
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