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Abstract

Promoting smarter driving may be a useful initiative to reduce the negative environmental
impacts of travel in the present car dominated era. Smarter driving may include efficient
driving and route choice which reduces fuel consumption, CO, emissions (Eco-Routing) as well
as personal exposure to harmful pollutants. However, efficient driving and Eco-Route choice
techniques possess some practical as well as technological limitations, primarily because of
the real-time nature of their application. Efficient driving that refers to controlling/limiting
acceleration and speed of vehicles may have a network wide impact of increased overall
network travel time. Although, many investigations of such Eco-Driving have reported
potential reductions in fuel consumption and CO, emissions ranging from 5% to 40% across
various jurisdictions and initiatives, a review of the literature revealed contradictory impacts

of Eco-Driving that required further investigated.

In congested city centre traffic, many conflicting views exist in the literature, resulting in some
doubt over the effectiveness of the policy in such circumstances. Micro-simulation of the
environmental and traffic performance of Eco-Driving has been conducted for the Dublin city
road network, to assess its network level impacts. The results of this investigation showed that
increasing levels of Eco-Driving in a road network resulted in significant environmental and
traffic congestion detriments at the road network level in the presence of heavy traffic. In
addition, the impacts of the intersections replacement by roundabouts were also evaluated.
Negligible transport impacts were found from Eco-Driving in the presence of low traffic
congestion for all scenarios. But, large negative impacts were observed for high traffic volume
scenarios with the increase level of Eco-car penetration. Increases in CO, emissions of up to
18% were found from these studies. However, with the addition of vehicle to vehicle or vehicle
to infrastructure communication technology, which facilitates dynamic driving control on
speed and acceleration/deceleration in vehicles, improvements in CO, emissions and traffic

congestion could be possible using Eco-Driving.

On the other hand, the literature review also revealed that the actual range of saving from
Eco-Routing was 0.35 —42% fuel and the extent of the variation depended heavily of the level
of congestion present. However, no serious issues were identified for Eco-Routing impact.
Nonetheless, technological advancement of real time information system was not found to be

connected with emission based Eco-Routing systems in practical use, and this may become a
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serious flaw of this strategy if the practice becomes widespread. A solution for this has been
outlined from an extensive literature review, and a model was developed that is sensitive to
vehicle characteristics such as speed, temperature and occupancy. The model is suitable for
deployment in any city and effectiveness was evaluated after a field trial in Dublin and Vienna.
Several lessons were learned from the developed model, including the importance of real-time

data integration, vehicle registration data integration and further modification of the model.

Analogous information that can be useful for the drivers for route choice is exposure
information. Such information was required to investigate a comparison to the conventional
route choice cost factors before deployment. Thus, the level of exposure to a particular
pollutant, or dose of pollutant that a person inhales during travel were compared against
choice factors such as: time, distance, generalised cost, CO,, value of time, and running cost.
At first the particular challenge was to estimate the exposure concentration of a pollutant
along each road in a network. A possible low cost, yet effective approach to estimation of
average daily exposure concentration at city scale is the Land Use Regression (LUR) method.
Some methodological modifications have been conducted within the LUR framework and the
daily level of air pollution concentration has been estimated in the presence of limited
available input data. Concentrations estimated from the model were transferred to the road
network level to estimate the exposure concentration along the roads. Hourly fluctuations of

NO, concentrations were applied further for the hourly prediction of the concentrations.

A series of 16 models were developed for PMy air quality in Dublin, which included models for
validation of the modified LUR methodology developed in this study. It was found that using a
non-parametric regression model could out-perform linear regression based models, however
to a lesser extent than that of Artificial Neural Networks. Some dynamic predictors such as a
predictor representing trans-boundary air pollution, and vehicle count from loop detectors
were assessed which open scope for future research. The final route level analysis revealed
that a reduction of dose caused a small increase in travel time and large increase in distance.
For different origin and destination pairs the magnitude might be changed drastically, but the
pattern will be similar. The local setting was the primary reason for variation in the lowest
dose based routes compared to the conventional cost factors of route choice. Such findings
may pose a limit of the widespread use of routing based on exposure. However, dose could

still be placed as an option in route choice modules for people with priority health issues.
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Glossary of terms

AADT:
Air Pollutant:

Air quality:
Ambient Air:

Atmosphere:
Artificial Neural networks/ANN:

Carbon footprint:
Carbon tax:

Catalytic converter:

Cold start emission:

Dose:

DTM:

Eco-Driving:

Eco-Routing:

Emissions:

Euro emission standard category:

Exposure:

FSM:

FCD:

GC:

Annual average daily traffic.

Anything emitted to the air which could have a detrimental effect on
human health or the environment.

A measure of the level of pollution in the air.

The air located outside of buildings/ Outdoor air.

The mass of air surrounding the Earth.

It is often called as statistical black box; is composed of
interconnecting artificial neurons that build mathematical models
mimicking the properties of biological neurons.

Carbon footprint is a measure of the impact of fossil energy use.

A tax on fuels according to their carbon content.

A vehicle emissions control device that converts toxic by-products of
combustion in the exhaust of an internal-combustion engine to
fewer toxic substances by way of catalysed chemical reactions.
Higher emission rates occurs often for a few minutes while starting a
vehicle engine after a long time. This happens during the time
difference between cooling state and lighting up the catalyst
convertor (until the temperature reaches 300-350°C).

Dose is the amount of pollutant that someone inhaled. Dose is the
function of travel time, pollutant concentration and breathing rate.
Digital Terrain Model.

A smart and safe way of driving, in terms of avoidance of sudden
acceleration and breaking, and choosing of an eco-friendly route
that offers low emission compared to other best possible routes
(e.g. time priority route, shortest distance route) for that origin-
destination pair.

Choosing a route that offers low emission compared to other best
possible options like time priority route, shortest distance route.
Gases or particles released into the air that may have harmful effect
on global warming or air quality.

European emission standards define the acceptable limits for
exhaust emissions of the vehicles sold in the EU member states.

The amount of contact that a person has with the pollutant.

Fixed site monitor, a collection of air monitoring equipment spread
across an area whose readings are used to understand the Air
Quality in that area.

Floating car data, normally obtained through Global Positioning
System Device in relation to satellite.

Generalised cost (GC) is the sum of monetary and non-monetary

cost of a journey.

Xi



GIS:
GPS device:

Greenhouse gases:

Headway:

Intelligent Transport System (ITS):

Land use:

LUR:
Mode:
MLR:

NPR:
Occupancy:

Parking time:

Particulate Matter;;/PM;,:

Peak and off peak hour:

Personal Exposure:
RC:

Regression:

Real-Time Traffic:

Road grades:

Saturation flow rate:

SCATS:

SCOOT:

Solar radiation:
UTOPIA:

VKT:

VOT:

Geographic Information System.

The Global Positioning System (GPS) device is a space-based satellite
navigation system that provides location and time information.
Gases that trap heat radiating from the Earth’s surface, such as:
carbon dioxide (CO,), methane (CH,) and nitrous oxide (NO,).
Headway is a measurement of elapsed time or distance between
every two consecutive vehicles.

Here, it refers to traffic signalling systems: SCOOT, SCATES or
UTOPIA (see below).

The total of arrangements, activities and inputs undertaken in a
certain land cover type.

Land use regression.

Method of travel.

Multiple linear regression.

Non parametric regression.

Number of occupants using a vehicle/transport.

The idle time of a vehicle which represents the degree of a catalytic
convertor’s coolness/temperature.

Particulate matter is made up of many different compounds that has
an aerodynamic diameter of 10um or less.

Usually in peak hours the transport demand is high and streets
become congested whereas the opposite happens during an off-
peak hour.

The amount of pollutant inhaled by a commuter during a trip.
Running cost.

In statistics, regression analysis is a technique for estimating the
relationships among response and explanatory variables.

Real-time traffic means the actual condition of the traffic in a
particular network in the real time sense. This traffic information can
be obtained from GPS device, mobile devices, satellite images or
analysing data from ITS infrastructure.

The grade/slope of a road refers to the amount of inclination of that
road to the horizontal.

The saturation flow rate crossing a signalized stop line is defined as
the number of vehicles per hour that could cross the line if the signal
remained green all of the time.

Sydney Coordinated Adaptive Traffic System; Intelligent
Transportation infrastructures that obtain traffic volume/occupancy
information from the road.

Split, Cycle, Offset Optimisation Technique.

Radiation emitted by the Sun.

Urban Traffic OPtimisation by Integrated Automation.

Vehicle kilometre travelled.

Value of time.
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Introduction

Chapter 1






1.1 Background

Air pollutants include gaseous substances, liquid droplets or solid particles released
into the atmosphere that have an adverse effect on human health (Ye et al., 1999),
climate change and/or the environment (Strawa et al., 2010; Uherek et al., 2010).
Greenhouse gases (GHG) such as carbon dioxide (CO,), methane (CH4;) and nitrous
oxide (N,0) are naturally present in the atmosphere as part of the Earth's carbon and
nitrogen cycles. These gases build the atmosphere around the earth that traps heat
inside. CO, is the primary GHG as the amounts of CH; and N,0O released by
anthropogenic activities are not as high (US EPA, 2014). The IPCC (2014) reported that
CO, contributed at least 78% of the total greenhouse gas emissions from 1970 to
2010. Aside from the GHGs, some of the most common air pollutant from a human
health perspective include: sulphur oxides (SO,), particulate matter (PM,), nitrogen
oxides (NO,), carbon monoxide (CO) and volatile organic compounds (VOCs). These
pollutants are also present in the atmosphere in trace amounts, but may cause
negative impacts on the human health and eco-systems when exceeding certain

concentration levels in a specific timeframe.

The IPCC (2014) reported that the GHG level is at its highest now in the last 800,000
years and its gradual increase in the last 30-years (1983 to 2012) separate this period
is probably the warmest of the last 1400 years. A global warming of 0.65 te 1.06°C for
land and ocean surface temperature together increased over the period of 1880 to
2012 and caused a loss of arctic sea-ice from 3.5 to 4.1% per decade (IPCC 2014). With
the increase in population, economic and human activities in the 21*" century, GHG
emissions are rising and Stocker et al. (2013) projected that the global surface
temperature is likely to rise as a result. These predictions include a further 0.3 to 1.7°C
for their lowest emissions scenario using stringent mitigation and 2.6 to 4.8°C for their

worst case emissions scenario.



Air Pollution is ranked as the 8" most important risk factor in premature death
worldwide (WHO 2005a). In the European Union, air pollution has been shown to be
responsible for 500,000 premature deaths per annum (EuroActiv, 2013). The WHO
(2014) estimated that some 80% of air pollution related premature deaths were due to
ischaemic heart disease and strokes, while 14% of deaths were due to chronic
obstructive pulmonary disease or acute lower respiratory infections; and 6% of deaths
were due to lung cancer. Lim et al. (2012) reported outdoor PM;, was the gth highest
global risk factor for health loss. According to the exposure risk of citizens, PM, has
been identified as one of the most important pollutants in the European Union (EEA,
2013a). PM, are the particles having a diameter of x (Commonly assessed range for x
are 1 micron or less, 2.5 microns or less and 10 microns or less), and usually are a
complex mixture of organic and inorganic substances such as ammonia, black carbon,
mineral dust, nitrates, sodium chloride, sulphate, and water either in a liquid or in a
solid form. it has been reported that approximately 90% of the European urban
population are exposed to levels above the World Health Organization (WHO)
guidelines for PMyq (Schneider et al., 2014). In Dublin Ireland, almost all the fixed site
monitoring stations (FSMs) had daily mean values > 50 ug/m’ on several days during

2013 (see Table 1.1).

Table 1.1: Summary statistics for daily PMio concentrations in Dublin Area in 2013
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ug/m
Annual mean 14 17 14 20 17 12 25 13 15 19 17
Median 12 14 il 17 14 10 21 11 13 18 13
% data capture 93 99 94 100 84 93 93 94 92 99 100
Values >50* 3 8 3 11 5 2 15 1 3 0 5
Daily Max 60 76 72 89 82 62 100 59 64 50 17

*PMyg daily limit for the protection of human health: No more than 35 days in a year

can be >50 pg/m? for an area from 2005. Source: O’'Dwyer (2013)




In addition, annual PM values are also close to the WHO 20 pg/m’ limit value.
Exposure to PM can cause damage to the central nervous system, cardiovascular
disease, irritation to eye, ear, nose, and throat, difficulty in breathing, respiratory
irritation, inflammation, infections, asthma, influenza, reduced lung function, low birth
weight, premature birth, impaired lung development, possible birth defects, and
possibly autism (Katsouyanni et al., 2010; US EPA, 2012; Dabney, 2013). Katsouyanni
et al. (2010) predicted a decrease of 15 premature deaths per 100 000 inhabitants if

PM concentrations were reduced to 20 ug/m? on all days in Europe.

Anthropogenic activities are the primary sources of these pollutants. The United
Nations Environment Programme - UNEP, (2012) noted that the energy sector (35%),
industry sector (18%), and transport sector (13%) were the top three sources of GHGs
in 2010 (see Figure 1.1). In the EU, CO, emissions from transport increased by 25% in
2007 compared to 1990 and had a share of 23.1% of the EU27 CO, emissions (EC,
2010). More than 71% of these emissions in 2007 originated from road transport (EU,
2012). In other words, road transport is responsible for approximately one-fifth of the
EU’s total CO, emissions (Hill et al., 2012). Passenger cars alone are responsible for
about 12% of EU CO, emissions. This is a cause for concern due to the present and
predicted passenger transport growth rate, which was estimated to increase by 35%
between 2000 and 2020 (DGET, 2006). In addition, important precursor compounds to
tropospheric ozone {O3) and secondary organic aerosol formation, such as VOCs, CO
and NO, are predominantly emitted from such transport vehicles (Bradley et al., 1999;
Warneke et al., 2007; Baker et al., 2008; Parrish et al. 2009; Schneidemesser et al.,
2010).

Similar to CO,, the release proportions of air pollutants that cause adverse impact on
human health vary across different sectors. For instance, commercial, institutional,
and household emissions were the highest contributory source of PM;q in the EU,

followed by the industrial and road transport sectors in second and third position



respectively. The first position remained unchanged for PM,s, however second and

third positions were reversed (EEA- European Environmental Agency, 2014).

Forestry: CO, from
drained peat decay = Waste
Forestry: CO; and and peat fires 4%
3%

Mo f'°m5‘;':°d s Energy sector:

production and

conversions
Forestry: fires poy

3%

Agriculture
11%

Building sector
8%
Energy sector: fuel
flaring CO, and
fugitive CH,
6%

13%

18%

Source: UNEP (2012)
Figure 1.1: Global GHGs emissions in 2010

Transport sector is one of the top three polluting sources from both climate change
and human health impact perspectives in the EU. The Transportation Research Board-
TRB, (2002) also noted that vehicle emissions have become the dominant source of air
pollutants, including CO, and PM in many areas. These pollutants are a result of the
burning of fossil fuel inside internal combustion engines, however these can also be
emitted as a non-exhaust pollutant, e.g. PM from brake and tyre wear during vehicle
movement (Grigoratos and Martini, 2014). Zhang and Batterman (2013) noted that
traffic congestion increased vehicle emissions and degraded ambient air quality, and
caused excess morbidity and mortality for drivers, commuters and individuals living

near major roadways. As daily human activity patterns are highly related to the



transport sector, it is necessary to reduce population exposure to PMjy while in
contact with traffic along with reducing the contribution of the transport sector to

climate change through its CO, emissions.

1.2 Combating the release of air pollution emissions

The national, regional or international governments are setting policies and initiatives
to combat climate change and improve air quality following framework conventions,

guidelines and commitments.

As a result of the environmental impacts of air pollution emissions, global leaders at
the 15" United Nations Framework Convention on Climate Change (UNFCCC)
Conference of the Parties, held in 2009 at Copenhagen, aimed to limit the future
increase in global mean temperature to below 2°C (UNFCCC, 2010). For the road
transport sector this means the average vehicle fleet emissions rate to be achieved by
all new cars is 130 g/km CO; by 2015 and 95 g/km CO, by 2021. These targets
represent reductions of 18% and 40% respectively compared with the 2007 average
fleet emission rate of 158.7 g/km CO; (EU, 2014a). In order to achieve these, policies
target many initiatives and technologies are being introduced in the transport sector.
These cover a wide range of areas in road transport such as direct interventions on
vehicle movement, e.g. fuel tax (Sterner, 2007), congestion pricing (De Palma and
Lindsey, 2011), parking pricing policies (Jansson, 2010), overall system management
(Michaelis and Davidson, 1996); shifting to cleaner modes of power generation and
low-emissions vehicles (Oltra and Jean, 2009; Thiel et al., 2010; Ogden and Anderson,
2011); shifting to alternative fuels (EC,2007) and fuels with reduced sulphur content
(Minjares et al.,2013); improvements in public and sustainable transport (Lautso, et
al., 2004); carbon tax systems (Giblin and McNabola, 2009; Hennessy and Toi, 2011)

and soft policies to raise public awareness of carbon footprints and to encourage the



sustainable movement of people e.g. car sharing, information and education, research

and development (Santos et al., 2010) and Eco-Driving (Santos et al., 2010; IEA, 2012).

The WHO updated its guidelines on thresholds and limits for air pollutants in 2005.
These air quality guidelines were the most important scientific reference point for EU
guidelines (Oberthir and Gehring, 2006). The European Commission’s Air Quality
Framework Directive of 1996 was superceded by the Ambient Air Quality and Cleaner
Air for Europe (CAFE) Directive (2008/50/EC) in May 2008. The CAFE Directive was
transposed into Irish legislation by the Air Quality Standards Regulations 2011:S.1. No.
180 of 2011 (EPA, 2014a). In order to reduce PM exposure, the WHO (2013) concluded
that policy makers should consider regulatory measures (e.g. limits for emissions from
various sources), structural changes (such as changing modes of transport) as well as
encouraging behavioural changes by individuals (e.g. using cleaner modes of transport,

driving more efficiently).

From the wide range of policies and interventions which have been proposed or
enacted, it can be seen that individuals may play a role in order to reduce CO, as well

as reducing their personal exposure to air pollution in transport.

1.3 Smarter-driving: a car user’s strategy?

A strategy which utilises the role of individuals and encourages the reduction of
vehicle emissions intensity at end user level is Eco-Driving, a driver behaviour based
method which has begun to receive more focused attention in literature (Beusen et
al., 2009; Barkenbus, 2010; Sivak & Schoettle 2012, Alam & McNabola, 201343, b). Eco-
Driving has been defined as a decision making process which influences the fuel
economy and emissions intensity of a vehicle to reduce its environmental impact
(Sivak and Schoettle, 2012). These decisions include: vehicle maintenance, route
selection (Eco-Routing), vehicle loading and on-road driving control. However, only

dynamic aspects of this definition (i.e. route selection, and on-road drive) have been

8



considered as a part of smarter driving in this thesis. Route selection in the Eco-Driving
concept refers to driving on a route that offers lowest fuel consumption and CO,
emission. As a part of a smarter driving routing decision, the route with the lowest
exposure may also be considered. Research has indicated that traffic and congestion
drive poor air quality and contribute to increased risks of morbidity and mortality for
commuters and individuals living near roadways (WHO, 2005a; HEI, 2010; Zhang and
Batterman 2013). Zhang and Batterman (2013) further noted that exposure risk
associated with congestion must consider travel time, the duration of rush-hour, and
congestion-specific emission estimates. Tasi et al. (2008) reported lower travel time
causes lower exposure to PM in comparison to bus and MRT. Karanasioua et al. (2014)
reported from a European study that personal exposure to PM;o during car commuting
is highly dependent on traffic intensity, speed and the type of ventilation inside the
car. Zhang and Batterman, (2009) reported that a 30 min/day travel delay accounted
for 14 +8% of PM,s for a typical working adult on weekdays. In short, congestion
lowers the average speed, which increases travel time and exposure on a per vehicle
basis (Zhang and Batterman, 2013). In addition, significant spatial variation in PMjq
concentrations in cities was also reported in many studies (Eeftens et al., 2011; Chen
et al., 2010a, Dons et al., 2013a). Thus, avoiding high traffic intensity areas, congestion

and highly polluted areas may offer a smarter routing solution.

Several recent research projects e.g. Eco-Drive (ecoDriver factsheet, 2012) and
PEACOX (EU, 2014b) under the Framework Programme 7 of European Union may
provide a useful indication of the importance given to Eco-Driving and Eco-Routing as
potential policy options for lowering emissions and exposure. A number of Eco-Driving
field trials outlined significant benefits from Eco-Driving (Boriboonsomsin et al., 2010;
Stromberg and Karlsson, 2013; Wang et al., 2011; Ho et al., 2015). However, many
scientific experiments have provided conflicting views on the emission reduction,
network performance as well as the accident potential of Eco-Driving, where negative
impacts have been reported in several cases (Ando and Nishihori, 2011; Qian and

Chung, 2011).



Luo et al. (2013) reported a significant amount of reduction of population exposure to
air pollution that could be achieved with the implementation of intelligent routing
aigorithms which result in an increase of about 10% in travel time. However, the
impact is unknown If routing is based on minimising personal exposure of the driver.
Personal exposure of driver/commuter can be defined as the amount of particular
pollutant inhaled during a travel; thus, personal exposure is a function of air pollution
concentrations in the roadway, the contact time with the pollutant during travel/travel
time and breathing rate of the driver/commuter. If routing is based on lowest CO,, or
fuel consumption, which is highly related to vehicle speed (and thus travel time) it is
predicted that this may also lower personal exposure. Similarly, Eco-Routing, or choice
of a route that causes lower emissions among a set of alternatives has also been
reported for its potential to reduce emission in many experiments (Ericsson et al.,
2006; Ahn and Rakha, 2008), but may have some logical drawbacks of shifting
congestion elsewhere, increasing travel distance and time (Stren, et al., 1996; Boyle
and Mannering, 2004). In addition, the emission factors that are applied at present for

Eco-Routing may not be adequate for vehicle routing information (Kang, et al., 2011).

Given the many conflicting views and limitations which are present in literature a need
exists to examine in detail the environmental impacts of Eco-Driving and vehicle
routing. This proposed research for submission for Ph.D investigates these conflicting

aspects of this smarter driving policy and technology.

1.4 Objectives of PhD research

The overall research question to be addressed in this thesis is: Can smarter driving,
using Eco-Driving and/or Eco-Routing, reduce personal exposure to air pollution and
reduce the climate change impacts of car travel? In order to investigate this question
the following objectives will be addressed in this thesis. In addition, several sub-
questions will also be developed and answered in the coming chapters of this thesis in

order to address the overarching question:
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e A review of the literature on the environmental and human health impacts of
Eco-Driving and Eco-Routing policy and technology.

e An investigation of the impacts of Eco-Driving on CO, emissions, fuel
consumption and traffic congestion at fleet level and in -congested urban road
networks.

e Anassessment of the impact of Eco-Routing on CO, emissions.

e Anassessment of the impact of Eco-Routing on personal exposure.

Several aspects of smarter driving policy have been shown to be questionable, or to
have scope for improvement in the literature. Thus, those issues associated with
smarter driving have been assessed under this research in relation to their impact on
the environment and human health. The results of this research will refine the idea of
smarter driving for commuters into a more effective policy. For this, usage of modern
research technigues, modelling and simulation of the environment, and real world
field trials have been deployed. This research investigation deals within the domain of

environmental engineering and intelligent transport systems engineering.

Contributions to both concepts for policy formulation and model development have
been considered as the novel aspects of this Ph.D research. The following publications

were aimed to achieve this.

e ALAM, M.S., & MCNABOLA, A. (2014). A Critical Review and Assessment of Eco-
Driving policy & Technology: Benefits & Limitations, Transport policy, 2014, vol.
35, issue C, pp 42-49.

e ALAM, M.S., & MCNABOLA, A. (2015). Exploring the modelling of Spatio-
temporal variations in air pollution within the land use regression framework:
Estimation of PM1, concentrations on a daily basis, Journal of the Air & Waste

Management Association, Published in January, 2015.

11



e ALAM, M.S., & MCNABOLA, A. (2014). Network wide Impact of acceleration
and deceleration operation of the Eco-Vehicles in different network

configurations.. (Under Preparation).

1.5 Context of this research

This research was carried out as part of the Persuasive Advisor for CO,-reducing cross-
modal Trip Planning (PEACOX) project (2011-10-01 to 2014-09-30) funded by the
European Union Framework 7 programme (EU, 2014b). The PEACOX project was
designed to develop a persuasive multi-modal mobile trip planner for reducing the CO,
consumption of travel in Dublin and Vienna. As a part of the project, emission and
exposure models were developed and applied to both cities. The project was also

restricted to the available data in both cities in certain aspects of this research.
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2.1 Introduction

Eco-Driving as a part of the smarter driving was reviewed critically. All the aspects of
the Eco-Driving, starting from the concept were discussed in this chapter. Policy, field
trials, and micro-simulation results regarding Eco-Driving were analysed. Eco-Routing
was also discussed from the perspective of economic, transport and environmental
impact. The latter impact of Eco-Driving is the main focus of this research, and thus the
literature review focuses on the environmental impacts. Micro simulation of Eco-
Driving and modelling of emissions were thus also required as part of the review. To
understand the modelling exercise and carry out the research ahead, modelling

platforms that were applied in previous research were also reviewed.

The Eco-Routing concept involves the selection of a route from a set of alternatives
that offers either lowest CO, or fuel consumption. Similar to this, healthy routing may
involve lowest exposure to pollutants while driving. Unlike fuel consumption or
emissions level from vehicles which remains within a certain range, pollutant
concentration in a roadway is unpredictable. Thus, an air quality model may be
required to carry out the healthy routing exercise. The final part of the literature
review on routing based on minimum exposure, includes a review of air quality

models.

2.2 Eco-Driving: a critical review of the concept

Eco-Driving is a fuel efficient way of driving and, according to Sivak and Schoettle,
(2012) Eco-Driving may be classified as: strategic decisions (vehicle selection and
maintenance), tactical decisions (route selection and vehicle load), and operational
decisions (driver behaviour). Several different strategies have been developed to date
to promote Eco-Driving, including training courses, driving contests, and driving
assistance tools (e.g. displays communicating suggestions (Kim and Kim, 2012) on

vehicle speed or route choice).
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2.2.1 Strategic decisions

Strategic decisions may aid in the reduction of the environmental impact of travel.
Eco-Driving in this context includes the regular maintenance of vehicles (Sivak and
Schoettle, 2012). Vehicle maintenance keeps vehicles emitting within their desired
limits. Optimal tyre pressure and regular maintenance of the engine and emission
control system are the two additional key strategic decisions. Tyres with increased
rolling resistance can cause a significant drop in fuel economy (Sivak and Schoettle,
2012), while it has been reported that up to 40-50% of excess total emissions can be
attributed to the deterioration of vehicle emission control systems over time (An and
Ross, 1996). Borken-Kleefeld & Chen (2015) reported that CO, NOy and Hydro-carbon
(HC) emissions increases as a factor of 1.15 to 2.25, 1.2 to 3.4, and 0.1-9.6 respectively
deepening on the vehicle size, emissions band and mileage of the vehicle use. Recent
studies showed that fixing a faulty oxygen sensor can provide lower emissions by
providing a better fuel economy, for instance accurate signals of air fuel ratio to the

engine can provide up to 40% extra mileage (EPA, 2011).

2.2.2 Tactical decisions

Tactical decisions can also be made to limit the negative environmental impact of
travel as part of Eco-Driving. These could include issues such as the optimum choice of
route to limit CO, emissions or choices on vehicle loading to reduce fuel consumption
and CO; emissions. It has been noted that an extra 45 kg of load in a vehicle was found
to cause a 2% increase in fuel consumption (EPA, 2011). This increase in fuel
consumption is also clearly dependent on the size of the vehicle, the length/time of

travel, and the driving style of the driver.
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Smaller engine vehicles would result in a higher increase in fuel consumption for the
same increase in vehicle load, compared to vehicles with larger engines (EPA, 2011).
However, the load factor is sometimes misleading, for instance, carrying an extra 45kg
reduces fuel economy by <=2%, but an increase in load factor (e.g. for a 45kg
additional passenger) reduces the per capita CO, consumption (Walsh et al., 2008).
This point also highlights the importance of how the environmental impact of Eco-
Driving is quantified i.e. per person or per vehicle in this case. As will be seen later in
this section, similar problems are highlighted by this research when considering the

per vehicle impact of Eco-Driving versus the road network level impacts.

Numerous investigations have reported that a 15— 40% increase in fuel economy can
be achieved (subject to road grade and congestion) through the selection of Eco-
Routes, i.e. the optimum route choice limiting CO, emissions and fuel consumption
(Sivak and Schoettle, 2012). It has been estimated that the choice of route using a fuel
consumption and emission model can result in energy savings of up to 23% if motorists
choose lower emissions routes (Ahn and Rakha, 2008). An investigation was conducted
in Sweden to analyse fuel consumption and CO, emission using a navigation system
where the optimisation of route choice was based on the lowest total fuel
consumption. It was found that 46% of trips, which were the result of drivers'
spontaneous choice of route, were not the most fuel-efficient. These trips could save,
on average, 8.2% of fuel by using a fuel-optimized navigation system. This
corresponded to a 4% fuel reduction in fuel consumption for all journeys (Ericsson et
al., 2006). While such positive results are encouraging, as discussed further in Section

2.5, there is a notably wide range in the claimed benefits of Eco-Routing.

In order to facilitate the Eco-Routing decision making process, driver assistance tools
are required, such as on-board or online Eco-Routing navigation systems,
disseminating the optimum route choice to drivers. However, existing driver assistance

devices for Eco-Routing commonly use road-link based information to suggest eco-
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friendly routes (Barth et al., 2007a). Some of the models determine the total emissions
from a certain route based on either historical traffic data or fleet-wide average
emission factors. Such modeis faii to take account of real world driving conditions, for
example, if all drivers were to use such technology in a particular area and take the
suggested Eco-Route, then this route would very quickly become congested, resulting
in increased emissions. At present such an eventuality is not a problem as the
penetration of Eco-Routing navigation systems among the population of drivers in
most countries is low. If, however, Eco-Routing was to become widespread, current
driver assistance technology would not operate satisfactorily in congested traffic
networks. To avoid this limitation, it is necessary to connect such models with real

time traffic information sources.

2.2.3 Operational decisions

Any vehicle is capable of producing much more emissions in real on-road driving
conditions than its respective emission standard due to inefficient driving styles, traffic
congestion, road grade, heavy winds, etc. Changes in driving style can be incorporated
into an individual's operational decisions as part of Eco-Driving, reducing the emissions
from a trip. This operational decision can either be developed by practice, or can be
aided by tools enabling acceleration control e.g. an active acceleration pedal
(Vlassenroot et al., 2007), Intelligent Speed Adaptation (Vlassenroot et al., 2011) and
optimal gear change (Beckx et al., 2007). Aggressive driving behaviour such as hard
acceleration and braking, excessive speed, open windows, etc. results in higher
emissions rates from a vehicle compared with a more gradual, smooth driving style.
OECD/IEA, 2005 noted an increase of 25-48% fuel consumption due to aggressive
driving. De Vlieger (1997) reported aggressive driving caused up to four times higher
emissions than that of from normal driving. Such changes in driving behaviour have
been shown to result in significantly higher reductions in emissions and energy
consumption compared to other Eco-Driving decisions such as better maintenance
practices (Shaheen et al., 2011). Numerous investigations have reported that

maintaining an Eco-Driving style can reduce fuel consumption by 5-30% (OECD/IEA,
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2005; Zarkadoula et al., 2007; Barkenbus, 2010; Boriboonsomsin et al., 2010; Sivak and
Schoettle, 2012). Such savings in fuel have subsequently resulted in monetary savings,
for example, an estimation of 10.2% in fuel saving during an Eco-Driving training
session of bus drivers in Athens subsequently estimated savings of over €6million per
annum (Boriboonsomsin et al., 2010). OECD/IEA, 2005 reported a 3.5% saving of fuel
in Europe from national total by Eco-Driving. Again, as discussed further in Section 2.5,

a notably wide range of potential savings has been reported in the literature.

Investigations have suggested that Eco-Driving with the aid of driver assistance devices
can play a significant role in reducing emission and fuel consumption (Yang et al.,
2012). Eco-Driving indicative devices are designed to provide instantaneous fuel rate
and CO, emissions information, also advising on acceleration/braking rates (Beusen et
al., 2009; Ando et al., 2010). In these devices, engine data in real time and/or GPS data
are used for emissions calculations. However the models working behind these
existing devices are also subject to limitations from an emission modelling perspective
and have scope for improvement. Similar to existing Eco-Routing models, many of the
available Eco-Driving models are limited by their use of average emission factors to
predict CO, emissions over a specific travel distance. Such models fail to take account
of the smooth or aggressive driving style of a driver and therefore do not give an
accurate representation of the environmental impact of operational Eco-Driving
decisions. Future deveiopments in modeis of this nature should account for detailed
vehicle trajectories (e.g. Beckx et al., 2010) in real time in order to capture periods of

hard acceleration and increases in engine load.

Eco-Driving models with similar limitations have also been developed based on the
average emission for a particular road link (e.g. link average speed or average emission
factor) or based on normal driving cycles (Manzoni et al., 2011; Kang et al., 2011;
CarbonDiem, 2012) Static Eco-Driving cycle (Mensing, et al., 2014) has the same

limitation of normal driving cycle of averaging of emissions during estimation. Other
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important methodological limitations of existing Eco-Driving models in practice are the
omission of road grade information, wind impact, and hot/cold emission factors.
Future research should aiso focus on the development of Eco-Driving models which
includes the aforementioned factors to provide a more reliable estimate of its impact

to users.

2.3 Eco-Driving policy

Based to a certain extent on the positive scientific evidence outlined in the previous
section many national governments have adopted Eco-Driving policies as a means of
reducing energy consumption and CO, emissions in the transport sector. Historical
evidence for Eco-Driving was first found from an audience training background study
by Department of Energy (DoE) in US in 1976. Other landmark training examples in this
field included an effort by Wisconsin Clean Cities (US), a non-profit environmental
group in 1994 and Eco-Driving training by the Swedish National Association of Driving
Schools in 1998 (Quille et al., 2012).

In 2001, the European Climate Change Programme (ECCP) estimated the potential for
a significant reduction of CO, from the implementation of Eco-Driving training and
education (SenterNovem, 2005). Also in 2001, ‘Eco-Driving Europe’ began to
accelerate the establishment of Eco-Driving by providing guidance to the drivers (Eco-
Driving Europe, 2004). Several European countries such as Finland, the Netherlands,
Spain, Ireland and Germany have incorporated Eco-Driving policy within their national
CO, reduction or climate change strategies (Hoed et al., 2006, IEA, 2008 and Miller et
al.,, 2011). National policy in Ireland, for example, has been developed which
recognises that driving style can significantly affect the amount of energy and
emissions from a single vehicle (DTTS, 2009). In the Netherlands an Eco-Driving
government programme forms part of national policy documents targeting CO,
emission reductions from transport. In 2006, a CO, emission reduction of 0.3 Mega ton

(Mton) and 0.6 Mton were found to be directly and indirectly related to these Eco-
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Driving activities (Berg, 2007). A subsidy for the promotion of Eco-Driving has been
provided since 2007 as part of the Swiss Energy Action Plan in order to promote fuel
savings of between 10% and 15%, as well as fewer accidents, less wear and tear of
vehicles, and greater protection of the environment (IEA, 2012). The European Union
has also mandated the fitting of Gear Shift Indicators (GSlI), which display shifting up or
down signs on the instrument panel of all new cars from 2012, to ensure optimal gear

changing and thereby improved fuel efficiency (Kojima and Ryan, 2010).

Eco-Driving is also a subject of transport policy interest in many Asian countries like
China (Cheng et al., 2012), Japan (IEA, 2008), and Korea (Kojima and Ryan, 2010). Eco-
Driving as a government policy has also been in place in Japan since 2003 and
government grants are available to subsidise Eco-Driving Management Systems.
Recently, Korea, New Zealand and Australia have also commenced Eco-Driving policies
(Symmons et al., 2009; Kojima and Ryan, 2010) and the initiative has also been

reported in North America (Shaheen et al., 2011).

It is therefore clear that Eco-Driving is an initiative which has seen widespread
adoption over the past decade. However, as discussed in the following sections, some
limitations may exist for the claimed benefits arising from previous Eco-Driving
investigations. In addition, research also exists which highlights the possible negative
impacts of Eco-Driving on the environment. These negative impacts may have been

overlooked by policy makers in many countries.

2.4 Network level impact
2.4.1 Eco-Driving style

Individual driver benefits from fuel savings through Eco-Driving have been reported in
many studies (Sivak and Schoettle, 2012). In addition, Eco-Driving has been considered

as a low-cost policy option that aids in achieving Kyoto and other climate change
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targets and improvements in air quality (OECD/IEA, 2005; SenterNovem, 2005).
However, some research investigations have recently reported potentially negative

issues that lower the credibility of the Eco-Driving initiatives.

An investigation was conducted at a signalised road junction where vehicles were
equipped with dynamic Eco-Driving technology. It was found that there were indirect
network-wide energy and emissions benefits to overall traffic, even at low Eco-Driving
penetration rates (5-20%) among drivers if Eco-Driving was co-ordinated with traffic
signals (Xia et al., 2011). However, this investigation was based on car following theory
with no turning movements incorporated in the network, which may not accurately
represent real world practice. In contrast, another group of researchers used micro-
simulation at intersections, and found that Eco-Driving based on moderate and
smooth acceleration can cause negative environmental impacts with higher total

emissions (Qian & Chung, 2011).

The relationship between vehicle speed, flow and traffic density is complex. Reducing
the speed and acceleration of an individual driver may cause that individual's carbon
footprint to reduce; however, overall CO, emission of vehicles on a section of roadway
may increase at the traffic network level, as vehicles spend more time on a particular
road. In congested traffic situations such low speed may cause a higher total link CO,

due to higher numbers of traffic staying on a particular link for a longer time.

Wang et al. (2012) reported from simulation results that higher levels of CO, are
emitted considering the entire network, as a result of Eco-Driving during moderate
congestion. In addition, the introduction of speed/acceleration based Eco-Driving
behaviour may reduce the signalised intersection capacity by allowing fewer numbers
of vehicles to pass at an intersection for a given period of time. An investigation using

micro-simulation on a ring road found that travel time was higher with a decrease in
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the level of service when Eco-Driving was incorporated in the model a free-flow

condition (Wang et al., 2012).

Kobayashi et al. (2007) reported that intersection travel time increases as a result of
increased Eco-Driving vehicles in low and congested flow conditions. Such an increase
in travel time on a road may cause a general limitation in the Eco-Driving concept for
congested urban driving conditions. However, Eco-Driving on longer distance journeys
(i.e. rural or highway) in the absence of a number of intersections and heavy traffic
congestion may still achieve the claimed benefits of previous vehicle-based
investigations. Furthermore, Eco-Driving in congested traffic for some public transport
systems, such as buses with bus-only ianes may also not suffer from this potential

limitation.

2.4.2 Eco-Routing

Eco-Routing strategy may also cause significant negative impacts at the network level,
if fully implemented. A micro-simulation showed that increasing information (while an
individual is at home before taking a trip) reduces total network trip duration (Stern et
al., 1996). However, research findings have also been reported which highlight that
Eco-Routing does not necessarily reduce travel time (Ahn et al., 2012). In such cases,
drivers may offset the benefit of a less congested route by travelling at a higher speed.
It has also been revealed that if drivers receive information on route changes to avoid
adverse traffic conditions, they tried to minimise their travel time further by increasing
speeds down-stream of congestion (Boyle and Mannering, 2004). An investigation of
two large traffic networks confirmed that the Eco-Routed vehicles do not always save
fuel compared to the standard user, and the fuel saving from Eco-Routing is sensitive
to the network configuration, congestion levels, and the penetration of Eco-Routing

vehicles (Ahn et al., 2012).
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2.5 Cross-comparison of research findings

As noted above, the reported benefits of Eco-Driving in the literature varies from 5 —
30%, which has made it an attractive option for policy makers to address national and
international climate change mitigation targets. Table 2.1 and 2.2 presents a summary
of a number of investigations examining the impacts of Eco-Driving on fuel and CO,
emission. These investigations have been grouped into field trial investigations,

reviews / reports, and modelling investigations.

It can be noted that the results of Eco-Driving investigations based on actual field trial
data in real world driving conditions are typically at the lower end of the scale of
claimed benefits, ranging from 4.8% to 6.8%. An exception to this is can be seen in
Qian et al. (2013), where a range of savings from 2.9 to 18.7% were reported. This
study was conducted at a 1 km straight racetrack with 3 temporary traffic signals
installed. The variation in savings in this study was reported to be associated with the
variation in the behaviour of individual drivers. In addition, Barth and Boriboonsomsin
(2009a) also reported a savings of 13% based on a limited field trial experiment. This
study compared several runs of an Eco-Driving vehicle with a non-Eco-Driving vehicle
in freeway conditions which were unaffected by traffic intersections. Monetary savings
and CO, emissions reductions based on these measured fuel savings are also reported
in @ number of studies. No study reported a negative impact from Eco-Driving based
on field investigations. However, this is due to the fact that field trial investigations
have focused exclusively on measuring the impact of Eco-Driving on individual
vehicles, neglecting the impact on the entire fleet or network. Such an investigation
would be more difficult to carry out in practice, and therefore this objective has only

been addressed by modelling investigations to date.
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Table 2.1: Summary of Eco-Driving Research Findings®

Authors

Type of Study/Objective

Methodology

Fuel Savings

CO, Emissions Saving

Rolim et al., 2014

Field Trial; Eco-Driving training
with feedback and no feedback

20 Drivers (11 were in control
Group); 1364 days; 8137 trips

EDT: 4.8% fuel saving

6.56 g/km

Boriboonsomin et
al., 2010

Field Trial; instant feedback EDA
device; tests without Eco-Driving
training + Questionnaire

20 Drivers; 2 Weeks

EDA: City street 6%;
Highways 1%.

Zarkadoula et al.,
2007

Field Trial; Training on a route,
followed by real world driving.

3 drivers; Training on a 15 km
route

EDT: 10.2%
ED: 4.35% at actual traffic.

Qian etal., 2013

Field Trial; Various positions of
two Eco-Drivers on the platoon of
15 cars.

15 drivers; 1km straight road with
three intersections.

ED:2.9t0 18.7%

Beusen et al., 2009
& Beusen &
Degraeuwe 2013

Field Trial; Before and after
training analysis.

10 drivers; 10 months

EDA: 6.7% overall; (20% of
drivers achieved no fuel
saving)

Ando et al., 2011

Field Trial; A group of test runs in
normal traffic condition.

15 vehicles run in sequence for
16 round trips on a 6.4km route

Improvement of 0.9km/I

over 2 days.
Stromberg & Field Trial: Group 1: EDA, Group 2: | 54 Drivers; 16 km route, 6 week 6.8%; No difference ---
Karlsson 2013 EDA+EDT, Group 3: Control. period between group 1 & 2.

Rutty et al., 2013

Field Trial: 3 phase study; ED
course; monitoring and feedback;
training.

Concluded result from final
phase. one month for each phase

1.7 kg per vehicle per
day

Barth &
Boriboonsomsin,
‘09a

Simulation”” and a limited field
trial with EDA.

Freeway, Typical passenger
vehicles

Simulation: 37%
Experiment:13%

Simulation: 35%
Experiment: 12%

Barkenbus, 2010

Review

Concluded from various
researches.

ED: 10%; 42.8 billion litres
at national level*

Optimal: 100 &
Conservative scenario:
33 million metric tones

*Note: estimations were based on year *2005; ED= Eco-Driving in general; EDT= Eco-Driving training/coaching; EDA= Eco-Driving assistance device; A" 20% penetration of Eco-Driving

car.
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Table 2.2: Summary of Eco-Driving Research Findings (Continued)®

Authors

Type of Study/Objective

Methodology

Fuel Savings

CO, Emissions Saving

Sivak &
Schoettle, 2012

Review

Analysing data from different
sources.

ED: Speed control-7-30%;
ED: Aggressive driving: 20-
30%.

Berg, 2007 Policy Research Concluded from programme | --- ED”: 0.3 Mtons directly
data”. ED”: 0.6 Mtons indirectly

Wilbers & Report Concluded from various ED”: 10% saving ---

Wardenaar, researches.

2007

Mensing et al.,
2011

Model developed for potential fuel
gain.

Algorithm tested for free-
flow urban setting

34% maximum saving,

Kobayashi, et

Model comparison between no, all

1 km straight road with two

Increase total CO, in near

al., 2007 and 50% eco driving. traffic signals capacity condition.
Saboohi & Algorithm development using micro- | Tested for five scenarios 1.5l/ 100km -
Farzaneh 2009 economic theory. considering the traffic level

and accidents.

Qian & Chung,
2011

Model; Moderate/smooth
acceleration (at different Eco-Driving
penetration rates).

One multi-lane intersection

-Reduce individual CO,
-Increase intersection level
CO,

Miller at al., Report Concluded from various EDA/ Moderate ED: 15% -
2011 researches. savings.

Klunder et al., Report Concluded from various EDT-5-15%; -
2009 researches. EDA-10%

*Note: estimations were based on year #2006; ED= Eco-Driving in general; EDT= Eco-Driving training/coaching; EDA= Eco-Driving assistance device; “ED includes Driving school

curriculums; Re-educating licensed drivers; Fuel saving in-car devices, Tyre pressures and Purchasing behaviour.




The claimed benefits of Eco-Driving investigations based on reviews and reports can be
seen to be typically higher than the reported benefits claimed during field trials.
Figures are reported typically in the range of 10 — 15% fuel savings, with some
investigators claiming benefits of up to 30%. While in certain instances Eco-Driving has
been shown to result in fuel savings of this level the majority of the evidence would
suggest that on balance across the spectrum of drivers, vehicle types and traffic
conditions, the individual benefits of Eco-Driving have been found to be closer to a
value of 5%. In addition, it was also reported that this effect of Eco-Driving is gradually
lost (e.g. +0.21%/week) in the months after the course (Beusen & Degraeuwe, 2013).
As such, these review and reports, some of which have been compiled to make
recommendations to the EU and various other governments appear to give an inflated
impression of the benefits of Eco-Driving ccmpared to the majority of reported field
studies. In addition, as no field study has attempted to quantify the network level
impact of Eco-Driving during urban congestion, recommendations on the

implementation of the concept as a policy are not based on a complete picture.

Table 2.3 presents a cross comparison of published literature on the benefits of Eco-
Routing on CO, emissions and fuel consumption. Again, these are grouped according
to the type of investigations carried out; modelling and reviews. While a number of
the modelling investigations did use measured traffic data to make predictions on Eco-
Routing no investigation could be described as purely a field trial. As such
investigations have yet to measure in real world driving conditions, the effects of Eco-
Routing on fuel consumption or emissions. Modelling investigations which used
measured traffic data did so as a comparison of predicted fuel consumption and/or
CO, emission from alternative ‘Eco-Routes ’. In addition to the use of measured traffic

data, the modelling investigations used
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Table 2.3: Summary of Eco-Routing Research Findings

Authors

Type of study, Objective

Methodology

Fuel Savings

CO, Emissions Saving

Ericsson et al.,

Model: real world data and model

Most fuel economic routes were

8.2% for 109 journeys > 5 min

2006 application. compared against original route 4% prediction for all routes
Ahn & Rakha, Model: real world data and model Route choice (Arterial Vs. Highways) 18-23% (Peak hour comparison) 20%(Peak hour comparison)
2008 application. behaviour was investigated using GPS 19% (identical travel time) 18% (Identical travel time)

data.

Scora et al., 2013

Model: Eco-Routing algorithm using
meso-scale data

Road grade and vehicle weight have
been considered for the shortest
route.

12.7% reduction of fuel consumption,
considering the road grade between
empty and loaded vehicle.

Ahn & Rakha,
2013

Model: city wide micro simulation &
single sample case study

Tested with different Eco-Driver
penetration rates and network
configuration

3.3% - 9.3% in comparison to travel
time minimising algorithm.

(Reduce travel distance, but not
necessarily travel time, depends on
network configuration).

Kang et al.,2011

Model: Development of a link based
driving pattern classifier for Eco-
Routing & single sample for illustration

Tested Eco-Routing against time
priority and shortest path routes for
one trip

Eco route vs. Time priority: 23%*
Eco route Vs. Distance priority: 1%*

Andersen et al.,
2013

Model: Development of Eco-rating
system & single example for illustration

Calculate eco-weight for links in a
network based on GPS and fuel
consumption data during morning
peak.

Eco route Vs. Time priority: 28%*

Eco route Vs. Distance priority: 1.7%
*

Boriboonsomin et
al., 2010

Model: Eco-Routing navigation system
vs. shortest time and path routes; One
example for illustration.

Random origin- destination; Airport to
Los Angles city centre during evening
peak hour.

Eco route Vs. Time priority: 32%*
Eco route Vs. Distance priority:
1.4%*.

Eco route Vs. Time priority: 33%*
Eco route Vs. Distance priority*:
1.8%.

Barth et al., 2007

Model: Eco-navigation
technique and 4 case studies

Two freeway routes having
approximate 44 kilometres considered
different congestion scenario

0.35-42% saving depending on
congestion level*.

0.60-42% saving depending on
congestion level*.

Sivak & Schoettle, | Review Analysed data from different sources. 15-40% considering congestion and
2012 road grade.
Klunder et al., Report Analysed from past research data. - 2.1% considering route choice and

2009

congestion avoidance.

* time and distance may vary while considering fuel saving between an Origin-Destination pairs




methodologies such as micro-simulation and routing algorithms to estimate the
impact of Eco-Routing on fuel consumption and CO, emissions. The reported fuel
savings arising from Eco-Routing for these investigations shows a considerable range
from as low as 0.35% up to 42%. Savings achieved from the choice of route can be
seen to be heavily affected by the level of congestion and by road grade across the
reported investigations. In the case of Scora et al. (2013) account was taken of road
gradient and vehicle weight and the 12.7% reduction in fuel consumption reported is a

comparison of a hilly versus flat route with reduced vehicle load.

Results from many of the studies presented were obtained comparing route choices
with one origin and one destination (Barth et al., 2007; Ahn and Rakha, 2008;
Boriboonsomsin in et al., 2010; Kang et al., 2011; Andersen et al., 2013).The higher
potential for fuel consumption and CO, savings reported in these studies was strongly
related to the level of traffic congestion present. Where non-peak hour traffic and/or
low traffic intensity roads were concerned, fuel savings potential were of the order of
less than 10% (Ericsson et al., 2006; Ahn and Rakha, 2013). It should also be noted that
Eco-Routes were not typically found to be the shortest distance route or the shortest

time route (Ahn and Rakha, 2008; Boriboonsomsin et al., 2010).

The two reviews/reports which dealt with Eco-Routing found during this study gave
entirely conflicting summaries of its potential. 15 —40% and 2.1% are reported as the
potential fuel and CO, emissions savings by Sivak and Schoettle (2012) and Klunder et
al. (2009), respectively. As can be seen from Table 2.3, the reported literature would
suggest that the actual range is 0.35 —42% and the extent of the variation depends
heavily of the level of congestion present, with low congested levels limiting the

impact of Eco-Routing.
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In summary, the benefits of the various Eco-Driving initiatives described thus far for

individual vehicles and at road network level are presented in Table 2.4, based on the

evidence provided in the literature. It is clear that CO, emission and fuel consumption

savings can be made by more efficient driving styles, route choice and other

environmentally friendly decisions. However, conflicting views on the traffic network

level impact of a number of Eco-Driving techniques in congested urban traffic

conditions have also been highlighted, where the weight of evidence would suggest a

negative impact.

Table 2.4: Eco Driving Initiative, system effects vs. individual impacts.

Eco Driving Reported Individual Impacts Reported System Effects
Initiative
Eco-Routing e Reduced travel time Speeding downstream of

Reduced fuel consumption
Reduced CO, emissions
Longer trip in comparison to

shortest path.

congestion

Based on network
configuration, reduction of
vehicle travelled distance, but

not necessarily travel time.

Tyre Pressure/

Vehicle Load

Reduced fuel consumption.

Reduced CO, emissions.

No Impact.

Eco-Driving
Training/Assistance

Devices

Reduced fuel consumption.
Reduced CO, emissions.
Improved driver behaviour
Not always reduce travel

time.

Effect on vehicle headway
thus, reduced intersection
capacity.

Increased congestion, fuel
consumption and CO,
emission at road network

level.

The available evidence also suggests that fuel and CO, emissions savings could be

achieved through the adoption of Eco-Routing behaviours and technologies in single

trips in both congested and non-congested traffic situations.
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2.6 Application of micro-simulation software for Eco-Driving

impact assessment

As highlighted above conflicting views are in evidence across the literature on the road
network level impacts of Eco-Driving and much of this work has been carried out using
micro-simulation as the measurement of this impact in the field would be difficult to
execute. Thus micro-simulation and its application to Eco-Driving assessment warrant

further investigation.

Micro-simulation for the purpose of assessment of Eco-Driving has only been applied
in a few studies as mentioned in section 2.5. These studies were either designed to
assess the impact of changes in general driving behaviour, or assessment of new
technology that places a limit on driver behaviour (conforming to Eco-Driving). Qian
and Chung (2011) applied the microscopic traffic simulator AIMSUN and assessed how
the variation of acceleration rate adopted by drivers directly affects traffic
performance. Eco-Driving in this study was defined as vehicles having acceleration
profiles with a 10% and 20% reduction in maximum acceleration rate. However, the
simulated network in this study consisted of a single through lane and a signalised
intersection where traffic volumes were 300 veh/h, 600 veh/h and 1000 veh/h for
different scenarios. The later traffic volume was slightly over the capacity regarding
signal timings. The traffic signal design included a 30 second green light followed by a
20 second red light. Results were taken from five random simulations for each
scenario for one hour, and results from before-and-after comparisons indicated
potentially negative impacts when using Eco-Driving. However the road network in this
study was very simplistic and the results could not necessarily be applied to a large

network of significantly different intersections.

Kobayashi et al. (2007) trained 28 drivers with Eco-Driving education (i.e. No

unnecessary idling, avoiding sudden, sharp acceleration, and the use engine brakes
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efficiently) and subsequently obtained acceleration, deceleration curves from field
measurements. These curves from the field data were used for an Eco-Driving
evaluation using VISSIM. Ten simulations were conducted (one hour for each scenario)
using different random-number seeds in a 1000m straight two-lane road where two
traffic signals were kept at 300m and 600m apart. These signals consisted of 30-
second green followed by 3-second yellow and 27-second red light. The offset of
consecutive signals was not considered for simplicity. The simulations were executed
for different traffic volumes from 100 veh/h to 1800 veh/h. Results showed that the
emissions from of Eco-Driving showed improvement in comparison to normal driving
until the traffic volume reached 1700 veh/h where a negative impact from Eco-Driving
was observed for emissions. In addition, in-order to avoid such a negative impact, this
investigation assessed the effect of switching traffic flow from Eco-Driving to normal
driving at this critical point. In reality this was assumed to simulate the use of a

variable-message board in traffic.

Xia et al. (2011) defined Eco-Driving as adjustment of driving trajectory in relation to
traffic signals and carried out a micro-simulation investigation to assess the impact of
this definition of Eco-Driving on network level CO, emission. PARAMICS was used to
simulate a two-way single lane arterial road with 11-signalized intersections which
were 500m to 650m apart. However, no turning movements were designed or tested.
Once a technology-equipped vehicle came within 300 m of a traffic signal, the model
replaced its default velocity profile with one based on a dynamic Eco-Driving
algorithm. Each intersection was equipped with a fixed-time traffic light with three
signal phases. The speed limit was set to 40 mph for the entire corridor. In the
experiment, the maximum fuel saving and emission reduction were found during
medium congestion (corresponding to traffic volume of 300 veh/lane/h) and with low

penetration rates of Eco-Driving cars (5%, 10% and 20%).
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Wang et al. (2012) studied the impact of two algorithms of adapted cruise control (i.e.
efficient driving considering with and without minimising CO, emissions) that leads to
improvement in traffic flow by restricting deviations from the desired speed profile
and/or the desired distance to a proceeding vehicle. These algorithms were simulated
to represent the use of Vehicle-to-Vehicle (V2V) and Vehicle-to Infrastructure (V2I)
communications technology, whereby the movement of vehicles may be controlled to
improve the efficiency of driving in relation to the road network and in relation to
other vehicles. This simulation was on a 1 km single lane ring road and the result from
5 minutes runs concluded that the CO, emissions rate per vehicle at free flow
conditions were lower (5.2g/km/veh) when using algorithms considering the
minimisation of CO, emissions than that of algorithms without a CO, consideration. In
addition, the traffic flow (veh/h) was also found to be lower for the algorithm with CO,
consideration, and difference in total CO, was 26.7% due to the lower flow. However,
under congested conditions, the CO, emissions rate was 10.5 g/km/veh for the
algorithm with CO, consideration and the traffic flow is also 25% higher than that of
the algorithm without CO; consideration. Under congested conditions higher traffic
flow caused more CO, emissions which were a contradiction with the common
expectation that more CO, may result from congestion induced by slow driving. This
exception to the more common finding has been occurred in this study due to the
improvement of traffic speed in the network as a result of the simulation of V2V
communication among vehicles. In addition, it is also noted that increase in average
density (veh/km) increases vehicle flow (veh/h) for eco-algorithm which eventually

increases CO, emissions rate (0.75%).

In short, it has been noted that a number of research investigations were conducted
for Eco-Driving which is mostly focused on field trial using individual or a small number
of vehicles, probably due to resource limitations. For the fleet level such analysis is
only feasible by simulation or modelling and the weight of evidence would suggest a
potential negative environmental impact with increasing numbers of Eco-Driving

vehicles under heavy traffic. However conflicting views were present and these often
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had a number of methodological limitations such as the use of very small road
networks with one intersection or a small number of intersections and with many
restrictions on vehicle movement. Some studies showed the potential to overcome
these negative impacts with the use of V2V or V2| technology Thus, actual Eco-Driving
that comprises gentle acceleration and deceleration by Eco-Drivers on a large network
for different car penetration rates in a different congestion levels requires further
research. In addition, it is also unknown how supporting technology equipped vehicles

in large networks may contribute to environmental impact.

2.7 Emissions modelling at different scales of application

Emission modelling may be carried out at different scales ranging from the level of
individual trips to road links to city-wide road networks and national ievel modeis
(Smit et al., 2008a). These models also require different amounts and resolution of
data e.g. average vs. instantaneous speed, road categories, road grade, etc. Strum et
al. (1996) classified models with basic data requirements for different scale of models

as shown in Table 2.5.

Models acting at different levels generally show similar trend, or result. However,
sometimes trip level models are more accurate, and may show different trends than
that of meso level models. Int Panis et al. (2011) estimated the relative change in
emissions for 5 pollutants for a reduction of speed limit from 50 to 30 km/h in urban
traffic, and found that trip level models showed a decrease for PM while the

macroscopic approach predicted an increase.
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Table 2.5: Emissions model at different scales.

Driving behaviour Emission Factors Source

Significant for each road* To be defined for each | Emission maps

driving pattern

Emission calculation based on actual driving behaviour

To be grouped into the streets | Predefined function for | Emission functions

with  the same driving | different street categories

E 4
characteristics (fine
classification)** \~_ o — /Vm
Emission calculation based on specific road categories >
To be grouped in some main | Predefined factors for | Emission factors
street classes (coarse | different street categories
classification)*** E
urbanrura] highway
Emission calculation based on vehicle kilometres travelled o oy
. m
[ ‘
Note:* Related to trip level emissions modelling;**city or regional level; *** meso
scale; Source: modified after Strum et al. (1996).

However, the general trend for CO, and three other pollutants were similar between
the two models. Uncertainty associated with CO,, and CO estimation is lower and
generally follows a U shaped curve for steady driving condition for all the vehicles
(Figure 2.1). Barth and Boriboonsomsin, (2009b) developed the following CO,
emissions curve using CO; emissions from average speed in trip segments representing
speeds in different category of roads (e.g. Freeways). OECD, (2006) noted that, in
steady driving conditions, CO and CO, emissions, in terms of g/km travelled, are

highest at very low travel speed (15 km/h or, 9.3mph or less).
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Figure 2.1: Emission-speed plot of individual trips or segment of trips.

Emission models based on average vehicle speeds (second and third row of Table 2.5
or Figure 2.1) do not explicitly account for congestion since they do not incorporate
input parameters that describe the presence or nature of congestion (Smit et al.,
2008a). Models based on average speed counts associated with specific traffic
conditions are derived by accounting for differences between a desired average traffic
speed and other environmental parameters, and those associated with the
standardised driving cycle. Since emission rates are based on an average speed in fixed
driving cycles, there is only a limited ability to consider alternate driving patterns, such
as Eco-Driving. While different driving cycles can produce identical average speeds,
emissions depend strongly on the specific acceleration and deceleration patterns of
the vehicle fleet. Thus, actual emissions can be significantly underestimated by such
models since acceleration, deceleration and aggressive driving patterns are not fully

represented (Joumard et al., 2000).

Manzie et al. (2007) demonstrated that mitigating stop-and-go motions by anticipating
downstream traffic conditions could generate a fuel saving of up to 33% for vehicles

equipped with intelligent drivetrains. Stop-and-go behaviour in congestion may
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provide a different driving profile with the same average speed (e.g. two routes might
provide same average speed of 30km/h, but one might have congestion in several links
and higher speed limit in others whereas, the other route might provide constant
30km/h speed in all the links). In addition, hard acceleration may also change the fuel
burning pattern such as inducing fuel rich conditions which may increase HC and CO
emissions even with the presence of a catalytic converter. On the other hand, excess
NO, emissions can occur in lean fuel mode coupled with high temperature (Zhang et
al., 2011), and the presence of unburned fuel may increase PM and HC emissions

(Cappiello, 2002).

Information on second by second vehicle trajectories is important for modelling
vehicle emissions in detail because during a hard acceleration period the engine load
increases significantly. Investigations have indicated that during periods of high engine
loading CO is the main output as fuel to air ratio is not sufficient to produce CO,

(Marsden et al., 2001).

Other important methodological limitation of existing real-time emissions modelling
applications are the omission of road gradient and hot and cold emission factors. A
number of studies reported that the CO emission rate increases as road grade
increases for light-duty gasoline vehicles (Kelly and Groblicki, 1993; Kean et al., 2003;
Zhang and Frey, 2006). Therefore emission factors vary for CO and CO; significantly in
these cases. In addition, wind speed may also be a significant factor which affects the

aerodynamic drag on a car, increasing or decreasing emissions.

In short, average speed based models inaccurately estimate emissions for specific road
segments and traffic conditions (Smit et al., 2008b). Joumard et al. (1995) presented a
model to calculate emissions as a function of the vehicle type and its instantaneous

speed and acceleration in the form of a two-dimensional function for all vehicle types.
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Many improvements have been developed to date with this and similar concepts,
including application of a multi-dimensional engine map, or models based on actual
driving patterns, using instantaneous speed and acceleration/deceleration profiles as

inputs. These models are often labelled as instantaneous or modal models.

2.7.1 Emissions modelling at the meso-scale

Emissions models that were developed at the meso-scale are often used in the
preparation of an emission inventory for GHG emissions compliance at national level.
As this research is more focused on the prediction of emissions at the trip level only a

short overview of existing meso-scale models are discussed here.

The MOBILE model was developed by the US Environmental Protection Agency to
estimate the emission rates from on-road motor vehicles at national level. However,
this model is now almost replaced by the MOtor Vehicle Emissions Simulator (MOVES).
The MOVES model takes into consideration recent advances in on-road measurement
technology as opposed to solely using dynamometer data along with some other
improvements. The California EMission FACtor (EMFAC) Model performs a similar
function as the MOBILE model, but predicts emissions from on-road vehicles operating

specifically in California (EPA, 2003, 2009).

Another model, the COmputer Programme to calculate Emissions from Road Transport
(COPERT) was financed by the European Environment Agency (EEA) (Ntziachristos &
Samaras , 2000) in order to a calculate air pollutant emissions from road transport. In
EU area, another methodology, the Handbook of Emission Factors for Road Transport
(HBEFA) was developed in 1995 on behalf of the Environmental Protection Agencies of

Germany, Switzerland and Austria. HBEFA provides emission factors, i.e. the specific
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emissions in g/km for various vehicle categories at different level of disaggregation

and traffic situations.

2.7.2 Link based emissions modelling and Eco-Routing: method and

practices

Unlike speed, acceleration is not well correlated with road properties and traffic
conditions (Nie and Li, 2013). So, link based emission estimations require different
sophisticated approaches. The simplistic form of emissions estimation from a link for
an individual vehicle is to multiply an emission factor either by distance travelled or by
travel time. To calculate the aggregated level of emissions for a certain time at this link
requires further multiplication of that product with the link traffic volume. However, if
emissions factors are generated from a trip based method (i.e. using average emission
factors over an entire trip) and compared with link level estimation, there will be a
mismatch and the link-based method will provide a higher emissions estimate than the
trip based method. This is because the link-based approach is likely to be more
sensitive in measuring emissions effects due to specific changes in traffic conditions,
particularly those conditions with low speeds (Bai et al., 2007). Link based emissions
models were developed to assess the impact of changes in signal timing, or
infrastructure on CO, emission in a network. These methods can also be used to assess
new modelling methodologies (e.g. the inclusion of road gradient in models), or

modelling of vehicle routing options such as lowest CO;, emissions.

For Eco-Routing, emissions models are typically used to predict the emission
associated with different routes and an optimal route is then selected. Alternatively,
emissions can be considered as a cost component of route choice to find the optimal
one as carried out by Kang et al. (2011). For the prediction of emission, the main factor
affecting the accuracy of the prediction is the resolution and temporal characteristics

of inputs such as speed. Maden et al. (2010) modelled emissions as a function of link
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speed in a vehicle routing assessment which included variations in traffic according to
the time of day. Heuristic algorithms where used to predict the optimum route taking
into account link speed variations and the resuits showed a 7% emission reduction

could be saved from a trip.

Kang et al. (2011) outlined the development of a model that characterized six primary
driving patterns for links which were subsequently applied to estimate the fuel
consumption and emissions for theses links. Boriboonsomsin and Barth (2009)
evaluated an advanced navigation system capable of evaluating the effect of road
grade on vehicle fuel consumption and carbon dioxide. Real world experimental
results showed that road grade had significant effects on the fuel economy for light-
duty vehicles both at the roadway link level and at the route level. Mensing et al.
(2011) developed an eco-friendly route model using Eco-Driving cycles through the use
of the dynamic programming optimization method for a vehicle in an off-line
simulation, which was not suitable for real time driver assistance due to the high

computational cost and the use of driving cycles.

Ryu et al. (2013) utilized real-time traffic data and developed a methodology for
estimating CO, emissions per link unit. Because of recent developments in V2I
communication technology, and in real time data from probe vehicles (PVs), real-time
speed per link unit can be calculated. Nie and Li (2013) developed an Eco-Routing
model where many of the criticism of driving cycles have been accounted for. The
model, however, assumes values for gear ratio and acceleration behaviour, and no
stop-go behaviour and also considers a probabilistic distribution to describe the
waiting time associated with each turning movement in the intersection. Andersen et
al. (2013) developed an Eco-Routing model (the EcoTour System) that assigns eco-
weights to a road in network to assign eco-friendliness based on GPS and fuel
consumption data collected from vehicles. In this method, vehicle engine and GPS

based data collection from the network is necessary, and segments missing with such
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data were handled by statistical modelling. Bandeira et al. (2013) developed emissions
factors for Eco-Routing. For this, GPS second-by-second trajectory data, travel
distance, cost, travel time, infrastructure quality, occurrence of incidents, and road
grade were analysed. Boriboonsomsin et al. (2010, 2012) and Scora et al. (2013)
focused on vehicle mass and road grade for Eco-Routing. Scora et al. (2013) developed
a model (Eq. 2.1) for Heavy-Duty trucks that provided a more accurate projection of
energy use than the standard average speed based estimation by accounting for two
important parameters that affect power: vehicle mass and road grade.
Boriboonsomsin et al. (2010, 2012) developed a method to estimate link-based
energy/emission factors (g/mile) for Eco-Routing (Eq. 2.2 & Eq. 2.3). Except this
following study, detailed vehicle characteristics were not focused on in many Eco-

Routing studies.

Fuel = Intercept + aym + a,g + asgm + a,g’m + asv + agv?  Eq.(2.1)

Where, m = vehicle mass; g = road grade; v = vehicle velocity; a;, ..., ag = modelling

coefficients

EOPSx f(V, R, T, O) Eq. (2.2)

Where, EOPS = fuel consumption (in grams per mile) for link; V = vector of vehicle
characteristics, e.g., vehicle type, model year, and loaded weight; R = vector of
roadway characteristics, e.g., roadway type, vertical grade, and type of intersection at
link ends (stop-sign, signalized, or none); T = vector of traffic characteristics, e.g.,
speed, density, or congestion level; O = vector of other explanatory variables, e.g.,

driver characteristics and the environment.

In(fi) = Bo+ vk + Bovi® + Bavi® + Bavi* + Bsgk Eq. (2.3)

Where, fi = Log transformed fuel consumption (in grams per mile) for link ‘k’; o=

modelling coefficient; v = Speed; g = Road grade.
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Bandeira et al. (2013) analysed real world vehicle trajectory data from two different
vehicles and drivers traversed several urban and intercity routes, and found that an
average slope of 3% may increase CO, and fuel use by about 30%. Thus, the
importance of inclusion of road grade is understandable. However, the above models
(Boriboonsomsin et al., 2010, 2012; Scora et al., 2013) applied a Dynamic Roadway
Network (DynaNet), which has grade data on links from 25 feet to 1.2 miles in length.
This grade data was approximated from GPS data for every second (Scora et al., 2013).
The road grade for all the links in a city or large area is usually not available (Barth et
al., 2007) and such GPS trajectory based method for grade definition is costly. In
addition, Zhang and Fery (2006) noted that multiple runs on the same roadway may be
required to obtain a stable estimate of road grade at specific locations; data
correlation, and receivers with sufficient accuracy and precision are required. Other
methods such as aggregating design drawing data, obtaining direct on-road
measurements, and LIDAR (surveying from aircraft) may not be feasible because of
cost effectiveness for a large area, or citywide scale. Similarly, Bandeira et al. (2014)
suggested innovative approaches integrating link-based functional relationships
between historical speed micro scale patterns data of individual vehicles and real time
macro scale traffic measurements into eco routing algorithms which is data

demanding and may not be feasible for a citywide scale.

Ahn and Rakha (2008) investigated the impacts of route choice decisions on vehicle
energy consumption and emission rates using microscopic and macroscopic emission
estimation tools and concluded that ignoring acceleration impact on fuel consumption
and emissions estimation would reverse the rank of two alternative routes (a highway
and an arterial). Nie and Li (2013) and Bandeira et al. (2014) noted the importance of
vehicle characteristics in Eco-Routing. Nie and Li, (2013) included many microscopic
characteristics, e.g. acceleration events associated with link changes and intersection
idling, in vehicle routing decision by using assumptions and statistical distribution. To

obtain values for these events from statistical distribution may not be feasible for a
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city-wide scale model. However, such efforts are also in vain if models are not

connected with real time data sources.

It could be also argued that if Eco-Routing information was disseminated widely to
road users, where it is based on historical or link average data; this may make the
suggested route no longer the eco-friendly choice if all drivers choose that route. Thus
for Eco-Routing to work effectively in widespread practice then it is crucial that Eco-
Routing models incorporate real time traffic speed data in their prediction of

emissions and subsequent route choice suggestions.

Many previous investigations have developed Eco-Routing models based on historic
data/route suggestion based on past data and it is clear from the literature that Eco-
Routing based on real time traffic data is not well established (Manzoni et al., 2011). It
must also be recognised that the widespread adoption of Eco-Routing would ideally
result in an equilibrium state in terms of CO, emissions between available route
choices. Therefore, the fuel and emissions savings found in previous investigations
(see section 2.5), which were based on controlled experiments may overestimate the
ultimate savings achievable using this technique i.e. the impacts of Eco-Routing on fuel
consumption of individual vehicles were Eco-Routing is not widespread in the network
may be significantly different to the impact of Eco-Routing on fuel consumption at

road network level were most vehicles in the network using Eco-Routing technology.

In addition to the limitations of existing Eco-Routing emissions models based on
historical data or average speeds, other simplifications of the modelling process are
also regularly present in previous investigations which further reduces the accuracy of
CO, emission predictions and thus the proposed route choice. For example, cold start
emissions elevate the emission for a trip as the catalyst requires some time after a

vehicle is started to reach its optimum temperature. Incorporation of factors which
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account for cold start emissions is important especially for short trips, where the
component of emissions associated with cold start may outweigh the emission from
the remaining portion of a journey.. in addition, wind impact on modal emission
estimation, or routing has not yet been evaluated. Wind can play a vital role on routing

in open space up vs. city areas.

In summary, existing models of CO, emission for Eco-Routing often do not include real
time traffic parameters, road grade information, detailed vehicle characteristics or
cold emission factors, and underestimate emissions rates as a result. It was discussed
that incorporation of road grade for a model suitable for any city or area may not be
feasible according to the current state of resources, however, the rest of the

parameters could be included in any model for an Eco-Routing application in any city.

2.7.3 Micro-level emissions modelling: Instantaneous or Modal

emission models

Velocity-acceleration matrices derived from driving cycles and short driving cycles, and
emissions engine maps (e.g. engine power-speed-emission relationship) can be
applied for emissions estimation at the most disaggregated (trip) level (Barth et al.,
1996). At this disaggregated level, models can be ‘instantaneous’ e.g. emissions rate is
predicted at the second by second level, or ‘modal’ in the sense that the model
estimates emissions for different smaller segments of a trip, e.g. idling, acceleration,
deceleration, cruising, fuel enrichment, lean and stochastic mode. Hallmark and
Guensler (1999) also mentioned that to implement instantaneous models, statistical
distributions of vehicle activity corresponding to the amount of the time vehicles
spend at different speeds, and corresponding acceleration is necessary. The primary
parameters are speed and acceleration and lately grade and air-conditioning operation
can also be included. In order to work with the ‘modal’ concept a few parameters are

necessary to model as well, such as the combined efficiency of the transmission as a
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function of engine speed and tractive power demand, gear ratio using any simple
statistical specification of shift scheduling, engine speed, and the equivalence ratio
according to driving characteristics. Based on the characteristics of the methodology

models under these categories could be grouped as:

e Power based Models (Modelling methodology uses engine power based
parameters)
e Velocity-acceleration based models (Modelling methodology uses vehicle

trajectory based parameters)

2.8 Integration of traffic simulation/GPS data and modal/

instantaneous emissions models

Conducting Eco-Driving experiments either in the field or by micro-simulation requires
integration of output data to a fuel consumption model and/or emissions model, and
thus a review regarding previous studies were included here. Zhang et al. (2011)
obtained real world second-by-second vehicle speed and acceleration data and used
this in Comprehensive Modal Emission Model (CMEM) to produce emissions
estimations. Micro simulation software is also capable of predicting such speed and
acceleration data for numerous scenarios. Thus, the characteristics of the simulated
vehicle trajectories should be similar to input of the instantaneous/modal emissions
model in order tc get emissions for a micro simulated scenario. Temporal and
vehicular aggregations are necessary (Scora and Barth, 2006), and such integration can
be applied to both conventicnal and greenhouse pollutants, and have been used to

model the impacts of traffic congestion (Barth and Boriboonsomsin, 2008).

The simulation model usually assesses future scenarios such as the impact policy

change on air quality, environmental impact of new vehicle technology, estimate of
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emissions from past congested conditions (Cappiello, 2002; Int Panis et al., 2006; Lee
et al., 2009; Hao et al., 2010), etc. Micro simulation and emissions models are
integrated using an add-on interface, third party software, or manually formatting one
output to feed inputs for other models (Abou-Senna and Radwan, 2013; Kun and Lei,
2007). On the downside, microscopic models tend to be data and computationally
intensive when modelling large areas with complex road networks (Zhang et al., 2011),
and such integration of large amounts of data may create further complexity in the
emission modelling step. Different micro-simulation and modal/instantaneous model
pairs have been integrated in different previous studies. These included micro
simulation software VISSIM, PARAMICS and AISUM, pair with emissions modelling
software MODEM, PHEM, CMEM, and VERSIT (Boulter and McCrae, 2007; Kun and Lei,
2007; Chamberlin et al., 2011). These model pairs, application in previous research
and their selection for use in the current research project are further discussed in

Chapter 3 and also in Appendix A. Few of these pairs have been mentioned below:

e VISSIM - MODEM, e PARAMICS-MODEM
e VISSIM-PHEM, e AISUM-VERSIT™®,
e VISSIM-CMEM, e VISSIM-VERSIT,

e PARAMICS-CMEM, e VISSIM-PHEM

46



2.9 Air quality modelling and personal exposure

Typically, exposure models rely upon ambient air concentration inputs from a sparse
network of monitoring stations (Isakov et al.,, 2009). Air quality models are first
developed and usually connect to population or personal exposure assessment (Isakov
et al., 2009; Dons et al., 2011a,b; Pilla 2012; Dons et al., 2013a; Luo et al., 2013; Su et
al., 2015). Developing an air quality model requires resources and efforts as the
transport and transformation of air pollution in the atmosphere is complex, involving
many chemical and physical processes. As a result difficulties often arise in the
development of deterministic models that can accurately predict air pollution
concentrations which include both temporal and spatial variations over large areas.
However, many statistical models have been successfully developed to predict air
pollution over large areas, including temporal and spatial variation. Such statistical
modelling techniques have included approaches such as: multiple linear regression
(MLR), land use regression (LUR), principal component analysis, non-parametric
regression (NPR), artificial neural networks (ANN), time series analysis, etc. in various
studies (Comrie, 1997; Abdul-Wahab et al., 2005; Arian et al., 2007; McNabola et al.,
2009; Chen et al., 20104, b; Donnelly et al., 2011a; Dons et al., 2013b).

There are many air quality modelling concepts developed to date around the world.
Based on these concepts many software packages, e.g. AERSCREEN, CALPUFF, ADMS-
SCREEN, AERMOD, ADMS 4, CALQ3HCR, BLP, OCD, OSPM, EPA-CMBv8.2 were
developed (US EPA, 2010; Pilla, 2012; BC, 2014). These air quality models use
mathematical and numerical techniques to simulate the physical and chemical
processes that affect air pollutants as they disperse and react in the atmosphere.
Based on inputs of meteorological data and source information like emission rates and
stack height, these models are designed to characterize primary pollutants that are
emitted directly into the atmosphere and, in some cases, secondary pollutants that are
formed as a result of complex chemical reactions within the atmosphere (US EPA,
2010). Modelling concepts that are commonly applied (US EPA, 2010; BC, 2014; Briggs,

1997) have been mentioned below:
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Dispersion Modelling- These models use equations to represent the physical
dispersion of air pollutants travelling in the atmosphere, and to estimate the
concentration of poliutants at specified ground-ievel receptors surrounding an
emissions source.

Photochemical Modelling- These models are applied to simulate the impacts of
pollution from all sources by estimating pollutant concentrations and
deposition of both inactive and photo-chemically reactive pollutants over large
spatial scales.

Statistical models-These models are developed based on observed data from
fixed site monitors (FSMs), or other monitors and define historical trends over
time, or correlate pollutant concentrations with the receptors, receptor
characteristics, or other properties around the receptor e.g. time series
analysis, Kalman filters (Milionis and Devis, 1994a,b; Finzi and Nunnari, 2005).
Other statistical modeiling techniques inciude approaches such as: MLR,
principal component analysis, NPR, time series analysis, etc. in various studies
(Comrie, 1997; Abdul-Wahab et al., 2005; Arian et al., 2007; Chen et al., 20103,
b; Dons et al., 2013b).

Geographical information systems (GIS) based Models -These models usually
apply different statistical concepts in relation to spatial location. These models
are usually capable of mapping the concentration of air pollutants over the
area.

Receptor Modelling—based on the chemical and physical characteristics of
gases and particles measured at the source and receptor, receptor models
estimate the contribution of the sources to the receptors using mathematical
or statistical procedures.

Meteorological models- these models do not directly estimate air pollution,
however, can assist forecasting air quality by predicting the location and
concentrations of pollutants that result from emission sources. Usually, the

output from these models can be a critical input into dispersion models.

48



In this research, however, only air quality models that can be applied for routing

algorithms and city-wide prediction of air quality have been discussed.

2.10 Personal exposure and route choice modelling

The impact of transport related air pollution on health has been noted in chapter 1.
These negative impacts are related to various factors in the transport sector. Dons et
al. (2013a) highlighted that traffic intensity is a major explanatory variable for in-
vehicle black carbon exposure, together with the timing of the trip and the degree of
urbanization. Karanasiou et al. (2014) noted that levels of PM and black carbon to
which bus passengers are exposed very much depended cn the selected route, as
highly busy streets contained higher ambient levels of exhaust emissions from
neighbouring vehicles. Intermodal differences in exposure concentrations have also
been widely reported (McNabola et al., 2008; Int Panis et al., 2010). Dekoninck et al.
(2014) noted that personal exposure can be sensitive to modal choice or larger scale
evaluations on OD matrices and/or modified traffic networks. Dons et al. (2012)
emphasised that exposure in transport is not straightforward to relate a simple metric
such as travel time to integrated personal exposure or inhaled dose, rather it is
dependent on multiple factors such as transport modes used, the timing of trips (time-
of-day, day of the week), and possibly the geographical location of the trip where
further research was highlighted as required. Jarjour et al. (2013) reported that fine
and ultra-fine PM, CO, and black carbon were all elevated on a high-traffic route
compared to the low-traffic route. Dons et al. (2013a) reported that average Black
Carbon concentrations on highways (10.7 ug/m?) are comparable to concentrations on
urban roads (9.6 ug/m3), but levels are significantly higher than concentrations on
rural roads (6.1 ug/m3). Route level studies of personal exposure showed that
different routes offered different levels of PM concentration in the cities (McNabola et
al., 2008; Adams et al., 2001). Thus, it could be noted that personal exposure in traffic
situations is sensitive to trip time, mode choice, route choice, and origin and

destination of the trips.
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Regression based models were the most common form of personal exposure
modelling. Dons et al. (2013a) noted that people tend to move from one place to
another during the day, their exposure to air poilution will be determined by the
concentration at each location combined with the exposure encountered in transport.
For black carbon exposure assessment, Dons et al. (2013a) developed a land use
regression model, combined with a fixed indoor/outdoor factor for exposure in indoor
environments/micro-environments and a separate regression model taking into
account transport mode, timing of the trip and degree of urbanization. This regression
model for communities is capable of estimating exposure in different transport modes
using information on timing of the trips (peak, off-peak and weekend), degree of
urbanization (highway, urban, suburban and rural), and instantaneous traffic intensity
(veh/h). Timing of trips and urbanization were significant predictors for active modes

in the model.

However, the development of these models requires a significant amount of
monitoring data which is a limitation in the development of a city-wide model. For
instance, McCreddin et al. (2014) applied 255 samples of 24-h personal exposure in
real time over a 28 month period for model development. Dons et al. (2013a)
developed a model based on data from 62 individuals who simultaneously measured
pollutant concentrations, GPS positions, and transport mode in an electronic diary.
Such data is not readily available in many cases and thus the development of air
guality models based on readily available data would be of benefit to the use of Eco-

Routing for lowest exposure.

Pilla (2012) and Pilla & Broderick (2015) developed a personal exposure model for
commuter route choice in Dublin based on point, line and area source modelling. Luo
et al. (2013) developed a Vehicle Navigator to minimize pollutant exposure and found
that exposure to PM among 5-14 year-old school children could be reduced

significantly higher margin on a typical school day with the implementation of
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intelligent routing algorithms with a cost of less than 10% increase in travel time. Luo
et al. (2013) applied a Gaussian dispersion model and applied many modelled traffic
measurements data, such as traffic speed, traffic flow, fleet composition, emission
rate, or an emission inventory for a specific vehicle activity for estimation of pollutant

concentrations.

Based on a number of assumptions and using the pollutant concentrations, the

exposure intake fraction was included in this model, as shown in Eq.2.4:

ppl«BR*C
Q

iF = Eqg. (2.4)
Where, ppl is the population, and t is the exposure duration; BR is the breathing rate
for the target population (m>/h/capita); C is the concentration over the population

(g/m®); Qis the emissions (g/h).

The final routing was implemented using ArcMap, in which the underlying least-cost
algorithm is Dijkstra’s algorithm (ESRI, 2013). The cost function for routing is shown in

Eq. 2.5:

Cost; = w * [Fi+ (1-w)*t; Eqg. (2.5)

Where, w = weight factor that determines the trade-off between time‘t’ and intake
fraction ‘iF “in a route ‘i’. In some studies Intake (/) or dose as shown in Eq.2.6 has
been estimated in place of intake fraction for assessing the level of exposure. Dose is

the amount of pollutant absorbed or deposited in the body in a certain period of time.
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= ffTle Qs (a(t))Camp (X, ¥, )V dt Eq.(2.6)

Where, I is the mass of pollutant inhaled {mg) by an individua! integrated over time t
from T; to T, (h); Qge(a(t)) is the individual’s volumetric breathing rate (m>/h), which
depends on that person’s time varying activity level, a(t); Coms(X,y,t) is the ambient
pollutant concentration (mg/m?) near the individual, which is a function of location (x,
y) and time; and y,«) is a dimensionless factor for each microenvironment, that
accounts for differences between the ambient concentration and the exposure

concentration (attributable to ambient sources) in that microenvironment.

The study by Luo et al. (2013) was the only research found in the literature to date
which has dealt with routing based on minimum exposure. However, the aim of that
research was to minimise exposure among population groups external to the vehicle.
On the other hand, route choice based on minimum exposure of the driver has not
been evaluated to date in detail. In short, it could be noted that a model could be
developed using any of the concepts above to develop healthier routing choices for
travellers. Dispersion (Marshall et al., 2006) or GIS based regression models (Mdlter et
al., 2012) were previously used to estimate exposure while traveling. However,
minimising route choice criteria in relation to other route choice criteria have yet came

under scrutiny.

Usually, the primary target for route choice of the travellers is to minimise travel time,
or travel cost. Route choice for the travellers may also be governed by many criteria,
such as reliability, avoiding congestion, maximizing comfort, and optimizing fastest
routes (Golledge, and Garling, 2002; Tilahun and Levinson, 2010; Bandeira et al.,
2013). Since the last decade, CO, emission from vehicles has also been studied as a
determinant for choice of routes. Integration of CO, at traffic assignment stage in
transport models (Sugawara and Niemeier, 2002; Ahn and Rakha 2008); CO, as a
component of the generalized travel cost factor (Yu-qin, et al., 2013), field trial and

experiments using navigation systems (Ericsson, et al., 2006, Kang, et al., 2011), etc.
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provided evidence that individuals may reduce their carbon footprint choosing Eco-
Routes. Recently, intelligent transportation systems (ITS) based methods and devices
for Eco-Routing were discussed in many studies to facilitate the drivers’ route choice
decision-making process (Alam and McNabola, 2013a, b; Yao and Song, 2013).
Healthier routes based on the lowest exposure to pollutant concentration can also be
presented to travellers through these ITS facilities, however the impact of that is
required to be evaluated. Ahn et al. (2012) showed that Eco-Routing based on CO, did
not necessarily reduce vehicle travel distance or travel time; thus, there may be similar

effects if PM;, concentration was chosen as a route choice cost factor.

2.11 Summary

Following this review of literature the following observations could be used to

summarise the main findings:

e Fco-Driving Network Impacts

Eco-Driving Policy has the potential to reduce CO, emission and fuel consumption
in certain circumstances, but in congested city centre traffic many conflicting views
exist in the literature, resulting in some doubt over the effectiveness of the policy

in such circumstances.

e Eco- Routing

Existing models of CO, emission for Eco-Routing that has been placed for public
uses often do not in include real time traffic parameters, detailed vehicle
characteristics, cold start emission factors, road grade and underestimate
emissions rates as a result. Existing advanced models did include some of these

parameters, however these required advanced database systems. Due to recent
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development of ITS, some real-time parameters are now available for big cities and

thus, a model can be develop that can be applied to these cities.

e Healthier Routing

Previous investigation reported that different routes in the cities offer different
level of pollutant concentration. Thus, healthier routing might minimise the
exposure among drivers. However, the impact of such routing on other route

choice criteria is as yet unknown.
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Methodology of the Research

Chapter 3
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3.1 Introduction

This chapter of the thesis provides an outline of the reasoning behind the
development of this research programme by highlighting findings from the literature
and connecting these with the gaps in knowledge, available tools, and strategies for

carrying out the research.

3.2 Definition of the research boundary

This research is focused purely on the transport and environmental impact aspects of
the Eco-Driving. Int Panis et al. (2006) suggested that the analysis of the environmental
impacts of any traffic management and control policies is a complex issue and requires
detailed analysis of not only their impact on average speeds but also on other aspects
of vehicle operation such as acceleration and deceleration. The conflicting views on
these transport and environmental impacts that exist in the literature can be further
investigated using either field trials or micro-simulation. Due to the resource
limitations, micro-simulation has been identified as an appropriate tool for this

investigation.

Micro-simulation has been deployed for scenario based analysis. This study was
designed to explain the impact of Eco-Driving on a congested large urban network and
in realistic settings which has not been carried out by previous investigations. The
investigation incorporated a congested network in terms of traffic signal that restricts
drivers to operate suggested Eco-driving operations e.g. limited scope for maintaining
cruse speed. This investigation has also focused on the use of different strategies of
Eco-Driving, the level of Eco-Driving penetration, the influence of road geometry, and
the influence of different levels of traffic volume. Acceleration/deceleration aspects
and speed improvement as a result of ITS based communicative strategies only
considered for Eco-Driving definition in Micro-simulation. Acceleration/deceleration is

the major aspect of fuel saving and one the major aspects of Eco-driving (Sivak and

57



Schoettle, 2012). Deceleration which indicates well anticipation of the traffic situation
as avoidance of sharp deceleration reduces unnecessary fuel burn. On the other hand,
Ericsson (2001) identified 9 major factors of driving pattern, out of 62 that has effect
on instantaneous emissions four of which are related to power demand and
acceleration. For CO, emissions acceleration with strong power demand was identified
as the most important factor. Thus, acceleration pattern was considered major focus

of the micro-simulation study.

As part of the literature review, Eco-Routing based on lowest personal exposure was
also highlighted as an area of smarter driving requiring further research. Assessment
of vehicle routing based on lowest exposure requires micro-environment based air
guality modelling (Wu et al., 2005; Zhao et al., 2007; Burke et al., 2001; Kousa et al.,
2002; Jensen, 2006). In other approaches, an air quality model was required to be
developed first followed by route level analysis as a second step (Luo et al., 2013). In
the current research, the Dublin and Vienna city areas have been considered as part of
this study owing to the needs of the PEACOX project which funded this research and
the availability of data for both. As such an Eco-Routing model based on lowest
exposure was developed for Dublin and Vienna using the aforementioned two-step

process.

For Eco-Routing based on lowest emissions, two models were also developed; a
simplified model representing the most common models available in practice, and
another as an advanced model that considered the disaggregated level of vehicle class,
fuel technology, dynamic emissions factors, cold start emission factors, and peak/off-
peak emission factors. The results of these models were compared against each other
by evaluating field trial data available in Dublin as part of the PEACOX project. The
models were designed to function in an online system using real time data. However,
road grade factor has not been inciuded in the modelling approaches due to limited

information of actual road slope data for an entire city.
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3.3 Research framework

The research framework in Figure 3.1 presents the different steps and inter-
connectivity of the various element of this research project. Information regarding
data sources and software applied in this research have been incorporated in this
Chapter. However, more detailed information about the methods, modelling

strategies, and data management are also discussed in the relevant chapters.

3.3.1 Data collection

For the study of Eco-Driving impacts at road network level using micro-simulation,
annual average daily traffic (AADT) data were obtained from the Traffic Noise & Air
Quality Unit of Dubiin City Council (DCC) in GIS format. In addition, existing knowledge
of the Eco-Driving empirical evidence has been taken into consideration from journal
articles (Kobayashi et al., 2007, Ando & Nishihori, 2011; Qian & Chung, 2011; Xia, et
al., 2011) and general practices (Ecowill:ecodrive.org, n'd; Emission Zero, 2009;). The
traffic simulation environment was developed based on the Dublin city road network,
which was digitized from Google map images. In addition, traffic signal and traffic
turning movement data were obtained from field observations. The rationale behind

the study area and boundary conditions are described in the micro-simulation chapter.

For the modelling of vehicle routing based on lowest exposure, an air quality model
was first required to be developed for Dublin and Vienna. PM;, and other pollutant
concentrations data from fixed site monitors (FSMs) were collected from the
Environmental Protection Agency, Ireland and Municipal Government of Vienna,
Austria. PM;o data were collected using a gravimetric instrument, or analysed
gravimetrically from sampled volumes of air in the Dublin area, whereas fine dust
samplers were applied in Vienna (Vienna City Administration 2006; Irish EPA 2014). In
addition, daily traffic count at the nearest junction to the FSMs was obtained from
real-time loop detectors (SCATS) in Dublin from Intelligent Transport Systems Ireland,
Dublin City Council (DCC). Road length data for Dublin were also obtained from DCC,

whereas the Open Street Map dataset was applied for Vienna (OSM, 2013).
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Land use GIS datasets were obtained from the European central database system (EEA,
2013b) and Open Street Map (OSM, 2013). Population densities for Dublin were
collected from the Central Statistics Office (CSO, 2013) and from the European central
database system for Vienna (EEA, 2013c). The average population density in Europe

was collected from CIESIN (2013).

Dublin meteorological data were combined from both Phoenix Park and Airport
stations operated by Met Eireann for modelling purposes. Vienna data were obtained
from the Schwechat-Flughafen station and were validated against the 2012 dataset of
Hohe Warte station (ZAMG, 2013). The air history was determined using the Hybrid-
Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (ARL, 2013). For the
lowest exposure routing analysis, the road network was updated with the Speed Limit
By Laws, 2011 of DCC (DCC, 2013). Speed variation according to the road type was also
collected (RSA, 2012). Additional data for routing analysis, such as vehicle occupancy
data, and value of travel time (VOT) have been collected from the NRA (2011, 2012),
actual travel time in Dublin was collected from ITS (2010) and vehicle running costs

were collected from AA (2012).

Vehicle occupancy data from above sources has also been included in the Eco-Routing
model development for lowest CO, emissions. Hot CO, emission factor equations were
collected from Boulter et al. (2009). To account for the ‘excess cold start emission per
start’ equations developed by the ARTEMIS Project have been included in the model
from Boulter and Lathlam (2009).
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3.3.2 Review and selection of modelling concepts and platform

3.3.2.1 Selection of micro-simulation software

In order to understand the micro-simulation studies as mentioned in section 2.5,
Chapter 2, software platforms applied in those studies were reviewed. In addition, this
review would provide an understanding of the modelling concepts that work behind

the software platforms, and their usefulness for the planned experiments.

Micro-simulation models can be classified according to traffic conditions such as
urban, motorway, combined, or others (e.g. roundabout). VISSIM has been chosen for
the micro-simulation study after reviewing the common software packages available
including: PTV VISSIM, PARAMICS, S-PARAMICS & Q-PARAMICS and AIMSUN. It is
noted that each of the software packages followed some built-in principle, and no
obvious benefit was noted in one over the others. Thus, among these candidate
simulation platforms, VISSIM software has been chosen for modelling. Details of this

review are contained in Section A1, Appendix A.

e VISSIM:

VISSIM ("Verkehr In Stadten - SIMulationsmodell”; German for "Traffic in cities -
simulation model) was first developed in 1992 by PTV (Planung Transport Verkehr AG)
in Karlsruhe, Germany. VISSIM is a micro-simulation software suite developed for
modelling urban and motorway traffic operations. A very high level of detail in
simulation can be achieved in VISSIM for road geometry and positioning of road
infrastructure, e.g. signal controllers. Traffic demand, route choice, traffic flow and
emissions models are integrated in this software package. This model is based on a
number of theories including psycho-physical car following theory, a rule-based lateral
movement algorithm for lane selection, lane change and lateral movement, tactical
driving behaviour/anticipated driving at conflict areas, cooperative merging, etc. The

traffic demand models follow a behaviour-oriented, disaggregated approach, and the
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model computes the set of trip chains performed during one day in the analysis area

(Boulter and McCrae, 2007).

The Wiedemann (1974) approach is followed for psycho-physical car following theory
in VISSIM. Wiedemann (1974) defines the driver perception thresholds and the
regimes formed by these thresholds. There is another car-following model called
Wiedemann 99 car-following theory in VISSIM, which is in many ways similar to
Wiedemann 74, except that some of the thresholds in the 99 model are defined

differently and sometimes simpler ways to model freeway traffic (Gao, 2008).

In the lane-changing model in VISSIM by Sparmann (1978) vehicles move judging the
guestions: Whether there is a desire to change lane, whether the present driving
situation in the neighbouring lane is favourable, and whether the movement to a
neighbouring lane is possible (Kan and Bhan, 2007). Vehicles are allowed to conduct
two kinds of lane changes in VISSIM: Necessary lane change and free lane change. The
necessary lane change is applied when the vehicle needs to reach the connector of the
next routine. The free lane change happens when the vehicle is seeking more space or

higher speed (Gao, 2008).

The route choice of vehicles in VISSIM can either be static or dynamic. Traffic flow for
static route choice is usually defined by the users whereas dynamic route choice is
estimated by iteration. The traffic flow model in VISSIM is discrete and stochastic in
the sense that the values of the parameter selection that governs the outcome are
unpredictable, however these also follow a given distribution. These values are
obtained from user defined desired speed distribution, desired and maximum
acceleration and deceleration distribution, traffic volume and composition. Using
these parameter values, the position of each vehicle is recalculated every 0.1-1

seconds in the network using above mentioned car following theory and lateral
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movement algorithm. Selection of these parameter values is connected with the
random seed. Using a different random seed includes a stochastic variation of input
fiow arrival times. Simulation runs with identical input files and random seeds
generate identical results. For meaningful results it is recommended to determine the
arithmetic mean based on the results of multiple simulation runs with different

random seed settings (PTV, 2013).

For emission estimation in VISSIM, additional information such as model, year and
mileage distributions are required as well as temperature of the coolant and catalysts.
However the files for engine profile and emission factors are no longer functional, and
thus the emission module of VISSIM is difficult to deploy. This module is now replaced
by a standalone module EnViVer (Environmental VISSIM VERSIT® simulations)

software.

3.3.2.2 Selection of Modal/ Instantaneous model

In order to estimate CO, emissions from the output of VISSIM, an

instantaneous/modal model is required. The candidate models are below:

e Power based Models
o Generic/Physical Model
o PHEM
o Vehicle Specific Power(VSP) based model
o Comprehensive Modal Emission Model (CMEM)

e Velocity-acceleration based models
o MODEM
o Nonlinear Regression
o VT-Micro
o VERSIT™®
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A general outline of the above models has been included in Section A2, Appendix A.
CMEM has been chosen for the emissions modelling platform because of its
availability during the project and lower complexity of integration with VISSIM output

data compared to other models.

e Comprehensive Modal Emission Model (CMEM):

CMEM was first developed in the late 1990's with sponsorship from the National
Cooperative Highway Research Program (NCHRP) and the U.S. Environmental
Protection Agency (EPA). This model can be used at a micro-scale and macro-scale
level, meaning that emissions can be modelled from a specific vehicle to aggregated
vehicle fleets from various categories. The specific feature of the model is that the
model does not predict emissions for specific makes and models of vehicles, but rather
estimates emissions for vehicle categories. This model follows a physical/power-
demand modelling approach (Figure 3.2). The physical operating conditions in the
model are: a) variable soak time start/cold start; b) stoichiometric operation; c)
enrichment (High Fuel); and d) enleanment (High oxygen). As this model is sensitive to
power demand, such as enrichment, that may be caused by hard acceleration, the
estimation of the emissions using CMEM would be of benefit for the investigation of

Eco-Driving.

Commanded enrichment occurs during a number of circumstances, especially
acceleration from idle, which is particularly important in urban driving (Kelly and
Groblicki, 1993; De Vlieger 1997; Barth et al., 1996). The model is capable of such
shifts from operating conditions while power demand changes, for instance the
operating condition is switched from stoichiometric to enrichment when the vehicle
power demand exceeds a power enrichment threshold. The power demand is
determined based on specific vehicle parameters. The model was established as a

physical power demand model and then must be combined with vehicle operating
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parameters that are characteristic of real-world driving, and these combination yield

high resolution emission rates for different engine conditions.
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Figure 3.2: CMEM modeliing process

Parameters that can be specified for model operation are different vehicle categories
and specifications according to vehicle type, condition and accessories (e.g. vehicle
mass, number of gears, number of cylinders, etc.). Impact of road grade factors can
also be included. Finally, vehicle tailpipe emissions, quantified on a second-by-second
basis, are derived as the product of fuel rates (FR), engine-out emission indices
(Gemission/Gfuer), and a time-dependent catalyst pass fraction (CPF). The formula is (Eg.
3.):

Tail pipe emissions = FR * ge—g"”ﬁ'i * CPF Eqg. (3.1)
fuel

The latest version 3.01e Beta of CMEM provides Java Graphical User Interface (GUI)
runs both the light duty vehicle and heavy duty vehicle portions of the CMEM model.
This provides flexibility to obtain emission data for single or multiple vehicles from a

similar or various categories with different trajectories specified in the vehicle activity
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file. It should be noted that the CMEM model was developed for both passenger cars
and small trucks under Light Duty Vehicles (LDV) category, and model parameters are
needed to be calibarated in order to estimate emissions for any specific vehicle

category (e.g. petrol powered passenger car).

3.3.2.3 Selection of air quality model

For modelling of vehicle routing based on lowest exposure, an air quality model was
first required to be developed. All the candidate models were reviewed in section A3,
Appendix A. Gulliver et al. (2011a) compared the performance of four modelling
approaches: based on the nearest monitoring site, Kriging, dispersion madelling and
LUR, and concluded that only LUR reached acceptable levels of performance for the
city area. De Hoogh et al. (2014) applied LUR and dispersion models and concluded
that both methods may be useful for epidemiological studies of small scale variations
of outdoor combustion-related air pollution, typically from road traffic. Besides,
referencing may published papers Dons et al. (2013b) noted that account of exposure
at various location using atmospheric dispersion model calls for large cost due to data
collection, model setup and computational time. In addition, dispersion models are
better when only a specific source related concentrations are driven. IEHIAS (2013)
recommended that both LUR and Kriging can be applied to extrapolate city-wide
pollution maps in order to reduce computational time. In short, the predictive
performance of the LUR model is no less than that of alternatives such as dispersion
modeiling and this model can be applied in conjunction with the Kriging method to
produce city-wide maps of air quality. Such maps would facilitate an Eco-Routing

assessment based on lowest exposure.

e Land use regression

Land use regression (LUR) utilises monitored levels of the pollutant of interest as the

dependent variable, and variables such as traffic, topography, and other geographic
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variables are considered as independent variables in a multivariate linear regression
model (Gilliland et al., 2005; Ryan and LeMasters, 2008). The LUR model is suitable for
this research for following reasons: 1) The incorporation of site-specific variables into
this method detects small area variations more effectively than other methods of
interpolation (Briggs et al., 1997; Gilliland et al., 2005); and 2) the levels of pollution
may then be predicted for any location using a regression model (Ryan and LeMasters,

2008). The landuse regression will be in the form of Eq. (3.2).
E = CO = A1X1 + A2X2 + A2X3 + € Eq. (32)

Where, E = Exposure Concentration; X; = Traffic data; X, = Land use data; X; =

Weather data; € = Error; A, = regression coefficient where n=1,2, 3....n.

LUR based models have been developed relating a variety of factors to air pollution
concentration. The methodology combines air pollution monitoring data at a number
of locations with the development of statistical models using predictor variables
usually obtained through geographic information systems (Hoek et al., 2008). Such
predictor variables have included representations of demographics and land use.
Predictor variables have also included meteorological conditions such as wind speed,
wind direction and temperature (Arian et al., 2007; Chen et al., 2010a; Sahsuvaroglu et

al., 2012).

Different forms of variables, as well as modelling approaches have been evaluated to
improve the performance of this technique, and the stability of the model predictions
year on year. In many studies, temporal stability of the spatial contrast of the landuse
regression was found (Chen et al., 2010b; Eeftens et al., 2011; Madsen et al., 2011,
Gonzales et al., 2012; Gulliver et al., 2011b,2013). The modelling development process
has also been facilitated through testing conceptual and methodological changes in
LUR. This testing involved the development of models for different pollutants and for
differing cities. This testing also provides scope to develop air quality models that are
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required for practitioners and policy makers which can make reliable predictions

without the need for significant amounts of additional monitoring data.

Measurement of air quality is a resource intensive process, thus this attempt as part of
this research might be beneficial. Typically only limited networks of monitoring
stations are available in cities due to resource limitations. At the end of model
development, Kriging has been deployed to develop citywide PMjy concentration

maps in Dublin and Vienna.

e Kriging

Kriging or Gaussian process regression is a method of interpolation. The Kriging
technique interpolates the value of a random field at an unobserved location from
observations of its value at nearby locations. In this method a Gaussian process is
employed that is governed by prior covariances. Under suitable assumptions on the

priors, Kriging gives the best linear unbiased prediction of the intermediate values.

3.3.3 Software packages for data management, analysis and modelling

VISSIM (PTV Vissim 6) and CMEM (CMEM, version 3.01e Beta) modelling platforms
have been chosen for the micro-simulation study. The development of the standard
LUR models was performed using R — statistical software. Data for model development
were also processed using the Statistical Package for the Social Sciences (SPSS 17) in
some cases. Alternative LUR modelling techniques were developed using XLSTAT 2013
for Non-parametric Regression and MATLAB (R2009b) for Neural Networks. For
citywide PM;g concentrations, ordinary Kriging was carried out using ArcMap 10.1
software. The final Eco-Routing model for lowest exposure has also been assessed

using ArcMap 10.1 software.
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Eco-Routing model based on CO, has been developed initially in MATLAB and then
transformed into a Java platform for server uploads. This Java version has been
integrated with other muiti-modal emission models for the PEACOX project and used
in field trials in Dublin and Vienna. Field trial comprised the deployment of the
emissions model on a smartphone application for a number of users in each case. The
route results were presented to android smartphone users, and final field trial results

were extracted from server using pgadmin3-1.20.0-beta2 software.
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Eco-Driving Micro-simulation

Chapter

This chapter is under preparation for publication as: ALAM M.S. & MCNABOL A.
Network wide Impact of acceleration and deceleration operation of the Eco-Vehicles in
different network configurations.
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4.1 Introduction

The objective of this chapter is to evaluate the impact of Eco-Driving on CO, emissions
and congestion at the level of a road network, and for different traffic scenarios using

a micro-simulation traffic model.

As outlined in Section 2 numerous investigations have estimated that reductions in
CO, emissions and fuel consumption of the order of 10% are achievable for individual
vehicles through Eco-Driving. However, investigations have also suggested that at the
level of an intersection or road network, Eco-Driving vehicles may cause a delay in the
progression of general traffic, increasing congestion and fleet-wide CO, emissicns as a
result. Therefore, a need exists to examine the impact of Eco-Driving in a congested
urban traffic network, on the CO, emissions and levels of congestion present in the

fleet or network.

Traffic simulation is a tool for the evaluation of concepts or scenarios, where
considerable doubts are present in future outcomes due to changes in policy or the
behaviour of certain components in the traffic system. In traffic engineering, traffic
simulation is used as a tool for road design, safety analysis, and for prediction of the
behaviour of the flow of vehicles. Therefore, Micro-simulation is a useful tool to
enable the prediction of the impacts of increasing numbers of Eco-Driving vehicles in a
road network. A complex portion of the Dublin road network with many traffic signals
was selected on purpose for Micro-simulation in order assess the impact of Eco-
driving. The complex setting of the roads and traffic signals along with higher traffic
volume was expected to develop a required (as per objective) congested traffic

situation.
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In Micro-simulation studies usually different alternative scenarios are developed
where traffic flows are created allowing merging and diverging activities in complex
geometric road conditions to assess the impact of scenario changes. As noted in the
Section A1, Appendix A, different micro-simulation software require different forms of
data sets. Here, based on the conditions specified by the simulation software, Eco-
Driving was evaluated using a realistic road network in a speed restricted urban
centre, together with a number of differing traffic input scenarios. Following the
summary of the sections 2.4 & 2.5, the research questions that are being addressed

here include:

e How do different Eco-Driving car penetration rates in the different traffic flows
affect the environmental and traffic performance of a large urban road network?

e How does the network configuration affect the Eco-Driving scenarios with the
increasing numbers of Eco-Drivers under different volumes of traffic?

e What is the impact of different Eco-Driving strategies/technology (e.g. V2V
communication) on the environmental and traffic performance of an urban road

network?

4.2 Methodology

To address the aforementioned research questions, four experiments were conducted
which differed according to either road network configuration, traffic composition, or

both:

i) Experiment 1: A small road network containing four intersections (3 major, 1
minor).

ii) Experiment 2: A small road network containing 3 major roundabouts and 1 minor
intersection.

iii) Experiment 3: A large, real-world, urban road network based on the 30 km/h
speed zone of central Dublin, Ireland. (containing cars only).

iv) Experiment 4: A large, real-world, urban road network based on the 30 km/h

speed zone of central Dublin, Ireland. (containing multimodal transport).
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For the purpose of experiments, eco-cars have been defined as vehicles having
relatively low average acceleration and deceleration profiles as well as having a lower
standard deviation about these average values, in comparison to non Eco-Driving
vehicles. Along with these characteristics, Eco-cars were also defined as being without
(ECO-I: Acceleration and Deceleration) or with an overall improved speed of the
vehicle fleet (ECO-Il: Acceleration, Deceleration and Speed Improvement) in-

comparison to the non-Eco driving vehicles.

During experiments 1 and 2 Eco-Driving vehicles in these networks were defined
according to the ECO-I criteria. In an attempt to improve the environmental and traffic
impacts of Eco-Driving at road network level, ECO-Il cars were subsequently
introduced into experiments 3 and 4. The rationale behind ECO-Il is that vehicle-to-
vehicle (V2V), or vehicle to infrastructure (V21) communication technology capable of
facilitating smart or intelligent Eco-Driving may introduce a better flow of traffic with
an optimal speed for the road network as happened with Eco-Driving in higher traffic
volume (Wang et al.,, 2012). This was carried out in VISSIM by applying improved
vehicle speed profiles to the network simulating a better flow of traffic and higher
overall average speed (i.e. lower congestion levels). As highlighted in section 2.6,
Chapter 2 previous investigations have demonstrated a possible improvement of
environmental and traffic performance where algorithms and vehicle technology are
used to introduce dynamic driving involving communication between vehicles and
between vehicles and traffic signals (Wang et al., 2012; Xie et al., 2011). In experiment
3 the impacts of ECO-1 and ECO-Il vehicles were compared to estimate the impacts of
including such intelligent transport infrastructure in vehicles and road infrastructure.
Similarly, in experiment 4 only ECO-I and ECO-Il vehicles were included in the
assessment in the presence of a multi-modal fleet, whereas previous scenarios

included only private cars.
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4.2.1 Design of simulation experiments

All the scenarios under the 4 different experiments were simulated for one hour and
the results were obtained from an average of ten simulations during this period. In
Experiment 1 (Figure 4.1) a small network with a small number of intersections was
selected. The environmental and traffic impacts of cars with three different speed
profiles were simulated for low and comparatively high traffic volumes. In order to
ensure more realistic driving conditions and that more groups of vehicles were created
by traffic signals (i.e. more platoons), three different speed profiles were introduced
for normal vehicles (PTV, 2011). These vehicles were then replaced with ECO-I vehicles

at 3 different penetration rates 20%, 50% and 100%.

Low Volume (Three speed profiles)

100% Eco-car penetration

50% Eco-car penetration

f
|

t

I | l 20% Eco-car penetration I
\ A / '

Base Case

Only Car

0% Eco-car penetration

High Volume (Three speed profiles)

100% Eco-car penetration

| L 50% Eco-car penetration —I

I ' L 20% Eco-car penetration |
vy v [)

Base Case

Only Car

0% Eco-car penetration

Figure 4.1: Experiment 1 in a Small Network with intersection

Using the same level of traffic volumes, Experiment 2 (Figure 4.2) was conducted on
the same small road network where the major intersections were replaced with
roundabouts in order to investigate the impact of road configuration on Eco-Driving
environmental and traffic performance. Experiment 2 was conducted with just one

speed profile following the experience from Experiment 1.
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Figure 4.2: Experiment 2 in a Small Network with Roundabout

In Experiment 3 (Figure 4.3), the performance of ECO-I vehicles were compared
against the same proportion of ECO-Il vehicles, and the car was only the vehicle
category allowed in the network. A large road network was extracted from a city road

network with many intersections.

High Volume

100% Eco-car penetration

1 | 50% Eco-car penetration J le——| Selected Speed Profile
|
I l 20% Eco-car penetration J
< | Improved Eco-Speed Profile
Base Case
Only Car

0% Eco-car penetration

Figure 4.3: Experiment 3 in a Large Network with two definitions of Eco-Driving

For experiment 4, different levels of penetration of Eco-Il vehicles have been
compared using a real world traffic network and mixed traffic composition (Figure 4.4).

The volume of this traffic was altered at different levels in the same large network that
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was applied in Experiment 3. For this experiment, peak hour traffic volume and 20%

more and 20% less traffic volume were chosen.
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¢ +e000 ] Several speed profiles for cars
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Figure 4.4: Experiment 4 in a Large Network with variation of traffic

The results of each experiment were interpreted by comparing performance criteria of

alternative scenarios against that of a base scenario (Figure 4.5). Except for the base

case scenario, Eco-Driven vehicles were penetrated in different proportions of the

inputted total vehicles (i.e. 20%, 50% and 100% Eco-Driving vehicles).

Base Case

(No Eco-Driving Vehicles Present)

Alternative scenarios
(Eco Driving Vehicles present at different
penetration rates and traffic congestion levels)

N
Evaluation criteria
Environmental Impact and
X Network Performance
>

Figure 4.5: Flowchart of the Simulation plan

Each of the scenarios was also developed with variations in traffic volume in

conjunction with eco-car penetration rate in order to assess their impact on the

environment and the road network. The focus of this research was on the relative

change of environmental and traffic performance between scenarios and the base

case; not on the absolute change in any existing network. Thus arbitrary traffic input
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figures were used in the various scenarios. However, verification of all base scenarios

was conducted in order to ensure smooth traffic flow in the complex traffic conditions.

Previous studies on impact analysis of Eco-Driving were conducted using micro-
simulation for either a single or a limited number of intersections with restricted
movements of traffic (See Section 2.6). In the current investigation the number of
intersections was significantly greater and traffic movements were not restricted (this

was applied to previous studies for simplicity).

The following criteria for environmental and traffic performance were selected to
evaluate the degree of change in alternative Eco-Driving scenarios in comparison to a

base scenario (no Eco-Driving vehicles present).

e Total stopped delay time (Hour)

e Travel time per vehicle-km (Minutes)

e Trip time per vehicle per km in the network (Minutes)

e Latent demand of the vehicle (Number of vehicles)

e Total CO, emission at the network level (Kg), or average emissions per distance
(g/km)

e Total fuel consumption, CO, NO, and HC. or average emissions per distance

(g8/km).

Total stopped delay is the amount of delay of all of the vehicles in the network while
stopped at the intersection. Travel time is the running time of the vehicles, whereas
trip time is the sum of running time and delay. These two criteria were standardised
by the total number of vehicles (that were on the network, and had left the network
during the simulation period), and by the corresponding total mileage travelled by all
of the vehicles. The number of vehicles in the network and total mileage travelled
varied between scenarios where some experiments examined the impact of Eco-

Driving in low versus high levels of congestion. Sometimes simulation software does

79



not allow mathematically calculated vehicles to enter into the modelled scenarios if

the network is above capacity. These vehicles are known as latent demand.

For further analysis of the changes in impact, emissions were calculated for important
segments of the simulation time. Total simulation time was not considered due to the
limited computational capacity of the software/processor. In the absence of the
emissions figures in some experiments, the changes in environmental impact in
different scenarios were compared using network performance criteria as these
parameters were directly proportional to environmental performance at network level

(i.e. increased trip time clearly results in increased emissions and fuel consumption).

4.2.2 Experimental tool

e "Verkehr In Stadten — SIMulationsmodell (VISSIM):

VISSIM was selected for micro-simulation modelling due to its availability during this
research. In comparison to other modelling software some of the features of VISSIM
were supportive for the selection of this software in the research, such as a very high
level of detail in simulation could be achieved for road geometry and position of road
infrastructure, presence of a simplified network coding system- not having node-link
coding system, facility for multi-modal scenarios, and psycho-physical car modelling

theory model developed by Wiedemann (1974).

At the operational level in VISSIM, each individual vehicle follows a flow model while
traversing the road network. The traffic flow model of VISSIM is discrete and
stochastic. It is stochastic in the sense that the values of the parameter selection that
governs the outcome are unpredictable; however, these are derived from a given
distribution input by as user-defined parameters. These values are obtained from user
defined desired speed distribution, desired and maximum acceleration and

deceleration distribution, traffic volume and composition. Using these parameter
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values, the position of each vehicle is recalculated every 0.1-1 seconds in the network
using car following theory and a lateral movement algorithm discussed in section
3.3.2.1, Chapter 3. As outlined earlier, using these inputs it was also possible to define
vehicles with significantly different speed, acceleration and deceleration profiles than

the norm i.e. Eco-Driving vehicles.

e Comprehensive Modal Emission Model (CMEM):

A modal model CMEM was applied for the emissions calculation from VISSIM outputs.
As CMEM is sensitive to power demand, such as enrichment, that may be caused by
hard acceleration, the estimation of the emissions from CMEM was very useful. During
enrichment, the model shifts from one operating condition while power demand
changes, for instance the operating condition is switched from stoichiometric to
enrichment when the vehicle power demand exceeds a power enrichment threshold.
The power demand is determined based on specific vehicle parameters and vehicle
operating variables (obtained from VISSIM). The latest version 3.01e Beta of CMEM

provided a Java Graphical User Interface that was applied to obtain data from VISSIM.
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4.3 Experimental set-up

4.3.1 The road networks

There were two kinds of data required for establishing a VISSIM network: (1) static
data representing the roadway infrastructure, which included links with start and end
points, link length, width, grade, lane number, and location of stop lines; (2) dynamic
data required for traffic simulation applications, which included: (a) traffic volumes for
all links entering the network, and traffic volume entering and for different turn
directions at each intersection; (b) public transport routing, departure times and dwell
times; and (c) priority rules and signal timing plans at the intersections (Kun & Lei,
2007). A large amount of time was required to code the VISSIM input data, particularly
for Experiment 4 using a large urban network (Boulter & McCrae, 2007). Other inputs
included traffic composition, routing decisions, vehicle movement parameter

specification, e.g. speed, acceleration, vehicle weight distribution, etc.

For Experiments 3 and 4, a network for simulation was chosen from the Dublin city
centre 30 km/h speed zone where a number of signalised intersections affect the flow
of traffic. Ten traffic signals were situated in this 0.30 km” area. The latitude and
longitude of that area are between (53.343963, -6.271484) and (53.342253, -
6.266296). The total road length was approximately 7.26 kilometres. The networks
were coded using a VISSIM graphical user interface following Figure 4.6a as well as
field observations. Field observations were necessary to place the signal head and for
placing the link connector according to the correct turning movements. Figure 4.6b
shows signal heads as red marks, there were also conflict areas visible as yellow, other
network coding requirements such as priority rules, and traffic volume input markers.
A partial network was used in Experiment 1 as shown in figure 4.6¢c. The network
shown in Figure 4.6d was applied for Experiment 2, while the network shown in the

Figure 4.6b was applied in Experiment 3 and 4.
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Figure 4.6: (a) network coding in the original scale in VISSIM; (b) network for experiment 3 & 4; (c) network for experiment 1; (d)
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For signalised intersections, fixed time signal plans (see Figure 4.7) with a cycle length
of 90 or 120 seconds with no offset were chosen. Times for green, amber, and red
varied for different signal groups. The road grade was set to be zero for all links in the

network.

Intergreens: | None v] Cycle time: 90 = Offset: 0

Signal Signal
No arnun seauence [0 10 20 30 40 50

> Signal gr...

Signal gr...

w

signal gr... | I B

4 Signal gr... |l - % lc287

Figure 4.7: A fixed time signal plan applied in the network.

4.3.2 Traffic volume, traffic composition and routing decisions

The traffic demand data applied in Experiment 1 and 2 were the same, and traffic
entered into the network from all five-entry links. The volume for low traffic scenarios
were 350-600 veh/hour, whereas traffic volume was 600-950 veh/hour in the high
volume scenarios. Traffic volume in the case of Experiment 3 and 4 for the links were
obtained from a GIS dataset, sourced from Dublin City Council (Figure 4.8). The turning
movements of the vehicles were manually calculated based on the turn allowed in the
original networks, and Origin-Destinations (OD) were estimated and static routes were

created.
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The routing was not the same for Experiment 1 and 2; however, both of these were
simple and similar for all the scenarios under the same experiment, whereas, the
routing decisions for Experiment 3 and 4 were complex and required significant effort
to carry out. The manual process of balancing the OD matrix was often long and
tedious. VISSIM allows both static and dynamic routing, however, static routing was
chosen here. Static routing is sufficient for the evaluation of comparative scenarios
where there was no change in volume input. Thus, this routing decision was preferred
over the more complex dynamic routing assignment. Some assumptions were
considered while developing the routing decisions, such as: no vehicle stopped inside
the network, the relative distribution of traffic should be the same as that given in the
GIS data sets and traffic accessibility followed original site restrictions (e.g. Bus lane,

Bus restricted roads, etc.).
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Figure 4.8: Peak hour (8-9am) traffic volume in the selected traffic links

Other traffic flow data inputted included traffic composition, and travel time. Travel
time was automatically counted by VISSIM based on the speed and acceleration
profiled specified in the model, other parameters for car following and lateral
movement used default values, and were kept constant for all the scenarios. Traffic

composition did not vary according to the category except for Experiment 4. In
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Experiment 4, vehicle composition varied in both speed and category. Cars in
Experiment 4 were simulated with three different speed profiles. 90% of the vehicles
in this experiment were cars and the rest of the vehicle included 2% buses and 8%

taxis, reflecting typical data in Dublin city centre (NRA, 2012).

4.3.3 Parameters for simulation in VISSIM

Speed, acceleration and deceleration curves were the other important parameters for

examining the impact of Eco-Driving on the network.

e Speed profiles

For any vehicle type, the desired speed distribution was an important parameter that
had a significant influence on road capacity and travel speeds. The desired speed in
VISSIM is defined as a distribution (or, speed profile) rather than any fixed value. The
first speed profile (‘a’ in Figure 4.9) shows a uniform desired speed distribution
between a minimum and maximum allowable speed, and this was applied as a general
speed profile in Experiment 1, however, it was also considered for Eco-driving vehicles
(ECO-Il) later in Experiment 3 and 4. This speed profile was designed to provide overall
higher speed for the entire traffic flow in comparison to the other speed profiles
considered in this study. As this network was obtained from a 30km/h speed zone in
Dublin, the maximum allowable speed value was chosen as 30km/h (20.5mph) for this
first speed profile. In addition, a 10% variation for in speed limit is recommend by
VISSIM and thus the maximum speed limit was chosen as 33km/h for the next two
speed profiles (‘b’ anf ‘¢’ in Figure 4.9). However, minimum speed was chosen as
15km/h for all profiles as it is assumed that people will not drive below half of the

speed limit in a free road under any circumstance.
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The difference between the last profiles (b) and (c) lies in the difference in the
percentage of the vehicles that follow the speed distribution. For speed profile (b) ,
the cut points were 15-20 km/h (15% percentile), 30 km/h (90% percentile) and 33
km/h (100% percentile). This means that 15% of the vehicles in the network will have a
desired speed of between 15-20km/h, whereas 75% of vehicles will have a desired
speed of 20-30km/h and the remaining 10% will travel at 30-33km/h. For speed profile
(c), the speed cut points were: 15-20km/h (40%), 30km/h (90%), and 33 km/h (100%).
Speed profile (c) tended to produce overall lower speed in the network as 40%

vehicles were within 15-20 km/h.

As outlined earlier the purpose of having 3 speed profiles in the experiments was to
improve the representativeness of the scenarios being modelled such that different
proportions of vehicles followed differing desired speed profiles. Thus there was a
variation in speed for each individual vehicle following a particular desired speed
profile and also additional variation in speed as vehicles were assigned to different
profiles. In Experiment 1 the impacts of Eco-Driving was assessed using all 3 speed
profiles, while in Experiments 2 and 3 only the best performing speed profile was
selected from Experiment 1. In Experiment 3 and Experiment 4, all 3 speed profiles
were again examined to investigate their impacts on ECO-Il type Eco-Driving vehicles

and multi-modal traffic composition.

While travelling through a network in VISSIM, a vehicle moves at its desired speed
with a small stochastic variation, or oscillation based on the driving behaviour model.
VISSIM’s psycho-physical driver behaviour model implies that a driver of a faster
moving vehicle starts to decelerate as he reaches his individual perception threshold
to a slower moving vehicle. On multi-lane links, vehicles check whether they can
increase their speed by changing lanes. In a single lane, since they cannot exactly

determine the speed of that vehicle, speed will fall below that vehicle’s desired speed
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until he starts to slightly accelerate again after reaching another perception threshold

(PTV, 2011).
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Figure 4.9: Three desired speed profiles: (a), (b) and (c).

e Acceleration and deceleration

The stochastic property of traffic flow due to variations in driver behaviour is mainly
represented by acceleration and deceleration functions in VISSIM. These functions
depend on the speed of the vehicles. The model assumes that drivers have
preferences for different accelerations and decelerations at different speeds. For a
vehicle category, a set of three acceleration and a set of three deceleration functions
can be defined. In each set maximum, mean and minimum acceleration/deceleration
curves are the source of variation. The software selects a value for a vehicle between
the minimum and maximum acceleration/deceleration curves, assuming that the
mean curve is equivalent to the mean value of a normal distribution having a value of
0.5 with standard deviation 0.15 but limited to [0.0,0.1], and that the min/max curve is
3.333 times the standard deviation (SD). These criteria ensure about 70% of vehicles is
assigned with acceleration/deceleration in the inner third (+1 SD) of these random
values, and 95% are inside two standard deviations. Thus by limiting the spread
between the minimum and maximum curves, a lower standard deviation of

acceleration and deceleration for Eco-Driving vehicles was ensured. Ando and
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Nishihori, (2011) stressed that stable speed and with lower acceleration and

decelerations constituted Eco-Driving behaviour for vehicles.

Usually, combustion engines reach their maximum acceleration at low speeds.
Another characteristic of Eco-Driving was ensured by following lower maximum
acceleration/  deceleration at low  speed in comparison to the
acceleration/deceleration curves of normal cars. In this study, values were adopted for
normal cars (6.7 m/s®) and Eco-Driven cars (4.9 m/s?) from another real world
experiment where entire speed acceleration profile was obtained from field
experiments. Acceleration and deceleration profiles were adopted from Kobayashi et
al. (2007) where eighteen drivers were tested who drove a Volkswagen Golf Touran
GLI and Mazda Eunos 800. Significant differences in acceleration and deceleration
profiles between normal and Eco-Driven cars make it an appropriate choice for this

study.

The curves shown in Figure 4.10 were used which featured some changes in the
spread for Eco-Driving impact analysis. Maximum acceleration curves (a) & (b) were
also adopted for desired acceleration curves, and a default curve in VISSIM has been
taken for the maximum deceleration curve. However, the desired deceleration curves
were as shown in Figure 4.10 as (c) and (d). Buses and taxis in Experiment 4 also
followed Eco-Driving acceleration/ deceleration profiles for simplicity. As these

vehicles were only included to test the sensitiveness of Eco-Driving cars.
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e Other parameters of VISSIM

In VISSIM, parameters for calibration, specific vehicle parameters, e.g. vehicle mass,
generic vehicle parameters, e.g. gear ratio and operating variables can be adjusted
following the requirement of the model and situation. Except for operating variables,
all default values were accepted and were kept constant throughout different the
VISSIM scenario comparisons. In order to produce identical scenarios, random seed (as
discussed in section 3.3.2.1, Chapter 3) 1-10 were applied. For averaging result
comparison, 1-10 random seeds were used. However, for detailed acceleration and
deceleration result comparison, a seed value of 9 has been chosen randomly in

Experiment 1 & 2.

4.3.4 Parameters for CMEM

Like VISSIM, most of the default parameter values were applied in CMEM for
emissions calculations. In CMEM, vehicle categories were derived based on groupings
of vehicles with similar operating and technology characteristics. For representing all
the vehicles, only one diesel vehicle category having characteristics of a three way
catalyst, mileage below <50K mile, and a high power/weight ratio were chosen for
emissions estimation (Figure 4.11). There was no distinguish between passenger car or
small truck was made and default value of the module for the selected parameter for a
diesel vehicle category was accepted for analysis. The second input that was inserted
in CMEM was vehicle activity files. The data from VISSIM, such as time (in seconds),
speed (mph), and acceleration (mph/s) were imported as activity files after necessary
sorting and adjustment in Excel software. The estimation of emissions from the whole
fleet has been carried out considering an assumption that the activity data were
generated from one vehicle profile. In order to do this, each vehicle profile was added
after one another for the whole fleet. There were negligible jumps in speed and
acceleration between different vehicle profiles while adding speed was around

10km/h for the network. These negligible jumps were also averaged out as results
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were interpreted by making comparisons where the trends of changes were more

important than absolute values.

|42 CME Model 3.01e Beta

N

Figure 4.11: CMEM GUI shows estimated emissions

4.4 Verification

Although none of the simulations were carried out for a specific real world scenario, a
verification of the model was necessary in order to produce realistic results.
Verification was conducted to ensure that the computer representation implemented
reflected actual driving conditions. To avoid unexpected events, such as crashing
vehicles at intersections, or in roundabouts, the network was also designed with a
priority rule with adjusted values (i.e. headway distance and gap time determined
whether right turning vehicles could cross a stop line). Conflict areas were also
included in the model (i.e. enforcing yield logic, if another vehicle moves earlier from
any other direction). The signal timing was also adjusted among intersections, in order

to avoid unnecessary congestion, or to ensure the smooth flow of traffic.
During simulation three types of errors may occur:

e Vehicles may be deleted from the network if a correct route is not found at the

end of a link.
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e Vehicles may be deleted from the network if they cannot change lane due to a
rush on the desired lane.
e Vehicle input did not generate enough vehicles because the discharge rate was

smaller than the input flow (Miller, 2009).

During simulation, error files were checked with discussion of Beutin (2014), and no
alarming issues were observed. All of the experiments were checked in order to

ensure that models produced valid and comparable results.

Miller (2009) noted that the third error category might occur while the model network
(or at least the entry point in question) has a lower capacity than the actual network.
This may occur while all of the traffic inputs are increased uniformly, or as an input
error, or the model may be unable to process all of the vehicles set to enter the
network due to the current signal timings or other circumstances that accurately
reflect real world conditions. This type of error occurred only in alternative scenarios

in all of the experiments. This is discussed later under latent demand criteria.

4.5 Simulation results

This section analyses the simulation results from different scenarios. Further details of

the results are given in Appendix B.

4.5.1 Experiment 1: small four intersection network

Results from Experiment 1 showed the effects of differing Eco-Driving penetration
rates on network level congestion and environmental impacts. Figure 4.12 shows the
results of the simulations for low and high traffic volumes and for various measures of

traffic congestion. At low traffic volumes, total stopped delay gradually increases with
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the increase of Eco-Driving car penetration rate up to 50% for all of the speed profiles
examined. At 100% penetration, there is a drop in total delay, and this was most
noticeable for speed profile (c). This was because 40% of the vehicles were restricted
to drive less than 20km/hour and because there was less variation in the speed of the
fleet, there were fewer numbers of platoons created (PTV, 2006) and smoother overall
flow reduced stopped delay. The stopped delay curve for speed profile (c) was higher
than that of other two. This was also because of the higher penetration of slow moving
vehicles (20km/hour). However, the changes in stopped delay did not reduce the trip
time (running time, and stopped delay) of the vehicles, as the increase in travel time is

much higher comparison to the decrease of stopped delay.

There was no latent demand present for the low traffic volume scenarios; however,
there were latent demands of vehicles in high traffic volume. Moreover, with the
increase in slow moving traffic caused by increased Eco-Driving vehicles the latent
demand increases as expected in the last figure of the right column in Figure 4.12. In
high traffic conditions, the trip time, travel time and stopped delay increased gradually
with increasing Eco-Driving vehicles. Although all the speed profiles showed a similar
trend in the figures in the right hand column in Figure 4.12 in high traffic volume, the
values were not same for left and right figures. At high traffic volume, travel time, trip
time and stopped delay were higher in high traffic volume than that of corresponding

figures in low traffic volume.

Eco-Driving vehicles were found to increase the trip time per vehicle in the network
from 10.34 minutes in the base case to 11.55 minutes for 100% penetration at high
traffic volume using speed profile (c). This 11.7% increase in trip time was a similar
finding to that using speed profiles (a) or (b). This percentage increase in trip time was
approximately linear with a 6.3% increase found at 50% penetration using speed
profile (c). In the presence of low levels of traffic congestion only negligible increases

in trip time per vehicle, were found (0.5-1%).
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Therefore, it is clear from the analysis of this small network that Eco-Driving during
heavy congestion results in an environmental detriment at fleet level and increased

traffic congestion. While in the absence of traffic congestion, Eco-Driving produces no
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Figure 4.12: (a) shows simulation result in low traffic volume; (b) shows similar result for
high traffic volume

95



significant impacts on fleet level travel time or congestion. Therefore, in the absence
of congestion the claimed environmental benefits of Eco-Driving for individual vehicles

would have a positive impact at fleet level.

Due to limitations in computational capacity available during this project, emissions
data from the VISSIM outputs have been divided into four 15 minutes time segments,
and only first and last two boundary segments were compared as these two segments
provided better results of changes in traffic. The emissions from all the vehicles having
speed profile ‘b’ (as an arbitrary choice as the result were similar for all profiles) that
run in the network were estimated using CMEM (Table 4.1 and 4.2). The results are
needed to be interpreted carefully as the CMEM model is not calibrated for any
specific vehicle (Section 3.3.2.1 and 4.3.4). The unit emission values (g/km) was likely
to be higher than that of the passenger car and will be close to LDV, however the

result was sufficient to assess the relative change among different scenarios.

As can be seen in Tables 4.1 and 4.2 similar trends were found for emissions and fuel
consumption estimations. Fuel consumption at network level increased with
increasing Eco-Driving penetration rate for high traffic volumes by up to 18%. It was
evident that the level of congestion increased in the network for high traffic volumes
and increased Eco-Driving comparing the first and last 15 minutes of the 1-hour
simulation. In the case of the low traffic volume scenarios there was little or no
negative impact from Eco-Driving on fuel consumption and little or no difference
between the first and last 15 minutes. Some small improvements in fuel consumption
were in fact found for this scenario. CO; emissions in low traffic in both time segments
for 100% penetration was similar to 50% penetration rate or lower and showed

conformity to the reduction in stopped delay in the corresponding Figure 4.12.
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Although there was no change in NO, and HC figures, CO decreased and increased
gradually in low and high traffic volumes with the increase of Eco-Driving penetration.
On the other hand, the CO, emissions increased with the eco-car penetration rate
during high traffic volume in both first and last segments (Figure 4.13), however, this
trend was absent in the low traffic volume segments. Increases in CO, emissions for
the high traffic scenarios amounted to a gradual increase of up to 18.2% at 100%

penetration.

Intersection-Low Volume
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Figure 4.13: Total CO2 emissions from vehicle in the first and last 15 minutes in high and
low traffic volume

Although, the standard deviation of absolute acceleration (m/s?) in the last 15 minutes
for both high and low (Figure 4.14a) shows similarity to the SD of the first 15 minutes
of absolute acceleration (m/s’), the mean absolute acceleration (excluding zero
values) was higher in the high traffic volume (Figure 4.14b) and that caused higher
CO.. In table 1, CO, emissions figures almost doubled in magnitude for last 15 minutes

segment in comparison to the first 15 minutes segment at high traffic volume.
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Table 4.1: Emissions estimation from CMEM at high traffic volume: Experiment 1,run 9

First 15 minutes Last 15 minutes
(Average from all vehicles) (Average from all vehicles)

Unit | Pollutants [ No Eco | 20% 50% 100% | No Eco 20% 50% 100%
g/km Co, 685.1 695 | 699.3 713 1239.8 1269 1350.8 1466.4
g/km co 119 113 10.8 10.9 17.9 17.6 18.3 18.8
g/km HC 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.2
g/km NO, 0.2 0.2 0.2 0.2 03 0.3 03 0.3

kg Fuel 222 224.8 | 2259 | 230.3 | 399.9 408.9 435.1 471.8

Table 4.2: Emissions estimation from CMEM at low traffic volume: Experiment 1, run 9

First 15 minutes Last 15 minutes
(Average from all vehicles) (Average From all vehicles)

Unit | Pollutants | No Eco 20% 50% | 100% | No Eco 20% 50% 100%
g/km CO, 574.8 574.8 | 574.8 | 570.8 577.9 5793 578.7 578.8
g/km Co 9.2 9 8.7 8 9.4 9.2 89 83
g/km HC 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
g/km NO, 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

kg Fuel 185.9 185.8 | 185.6 | 184 187 187.3 187 186.7

The mean of absolute acceleration/deceleration in first and last 15 minutes at low
traffic volume (Figure 4.15) shows a similar trend. The changes of absolute
acceleration 0.02 m/s” (Figure 4.14) from no-Eco to 100% eco-car penetration mean
only 4 g/km CO, improvement (Table 4.1) in first 15 minutes. However, this benefit
were overrun in last 15 by the congestion that might be triggered by lowering 0.01 of

acceleration from 0.74 to 0.73 m/s” (right part of the Figure 4.15).
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Figure 4.14: SD of absolute acceleration from vehicle in the first and last 15 minutes
in high and low traffic volume
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Figure 4.15: Mean absolute acceleration from vehicle in the first and last 15 minutes
in high and low traffic volume.

4.5.2 Experiment 2: small network with 3 roundabouts and 1

intersection

The impact of the different Eco-Driving penetration rates on environmental and traffic
performance was also assessed with three levels of input traffic flow where
roundabouts replaced 3 of the 4 intersections in the road network of Experiment 1.
This showed the impacts of Eco-Driving on the network performance under differing

road geometry (see Figure 4.16). Again, the stopped delay, travel time and trip time all

were increased with the increase of Eco-Driving vehicles. At low traffic condition, none
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of these values changed noticeably for increasing numbers of Eco-Driving cars. As
there was no major intersection delay, the vehicles freely moved on the network and
no latent demand occurred in either of the scenarios. In this case, the increase in trip
time per vehicle from the base case to 100% Eco-Driving cars in high traffic volumes

was 11.4%, which was very similar to the percentage increase in Experiment 1.

a.Total stopped delay === High Traffic Volume
8 == Low Traffic Volume
b. Travel time per vehicle-km
6
o g 3.0
5 =
34 £ 28
T s
2.6
2 —a F——
2.4
¢ . | 2.2
No Eco  20% 50% 90% No Eco 20% 50% 90%
c. Trip time per vehicle d. Latent demand
4.00 1.0
3.50 .—__+____‘/0
3.00 o 25
§ o) e - £ 06
3 2.00 3
2 1.50 ° 0.4
(=]
2
= 0.2
0.50
0.00 0.0 [ i i ]
No Eco 20% 50% 90% No Eco 20% 50% 90%

Figure 4.16: Graphical representation of simulation results from Experiment 2

As the last 15-minute segment was the most notable result in the Experiment 1, only
last 15-minute segment is reported for Experiment 2. The mean and SD of the absolute
acceleration/deceleration in Figure 4.17 confirmed that the driving behaviour of the
fleet moves towards more an Eco-Driving nature as the level of Eco-Driving car
penetration increased. As opposite to the last 15 minutes of figure 4.13, the CO,

emissions actually reduced slightly as the Eco-Driving penetration occurred at low
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traffic condition (Figure 4.18). However, Eco-Driving again caused negative impacts on

both traffic and environmental performance at high traffic volume.
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Figure 4.17: Mean and standard deviation (SD) of absolute acceleration from vehicle in
the first and last 15 minutes in high and low traffic volume
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Figure 4.18: Total CO2 emissions from vehicle in the last 15 minutes in high and low
traffic volume

4.5.3 Experiment 3: large, real world, urban network including 2

approximations of Eco-Driving behaviour (cars only)

Following Experiment 1 and Experiment 2 it was clear that increases in the amount of

Eco-Driving cars resulted in environmental and traffic detriments at road network
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level. Thus in moving the analysis forward to a larger real-world urban network, it was
decided to introduce the concept of ECO-Il type Eco-Driving vehicles, to assess the
possibility of improving the negative impacts of Eco-Driving vehicles in future. This
would be facilitated by V2V and V2I communication moderating vehicle speed and

improving overall traffic flow.

In Experiment 3 (see Figure 4.19), two definitions of Eco-Driving (ECO-I: Acceleration &
deceleration & ECO-II: Speed, acceleration and deceleration) were tested under high
traffic volumes. As the impact of Eco-Driving at low traffic volumes was clear from the
previous scenarios this was discounted here. Figure 4.20 shows that the delay, travel,
trip and latent demand reduced with the increase of ECO-Il Eco-Driving car
penetration, and this was primarily because of improvements in the overall speed of
the network (Figure 4.21), which in turn improved the capacity of the network. Thus,
the flow improved (as number of vehicle completing routing/leaving network during
fixed simulation duration was increased) as well as the vehicle km travelled (Figure
4.22). As emission is a function of speed, with such improvement in speed, the CO,
emissions rate would be reduced with the increased of penetration of ECO-Il type Eco-
Driving.

Eile Edit View G Tt SignalControl  Evauation Simulation  Bresentation Scripts Help

‘RS

&
™

)

=] - *3%

‘"REPGHBA R=@LIPO TN

31601108 4669 106 51840 27 (1375)  Simulation run 10 (10)

Figure 4.19: Simulated traffic in Experiment 3
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Figure 4.20: Graphical representation of simulation results from experiment 3
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Figure 4.21: Network speed for various scenarios for two types of Eco-Driving vehicles
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However as can also be seen from Figure 4.21 and 4.22, in the absence of technology
facilitating ECO-Il type driving behaviour, Eco-Driving (ECO-l) resulted in similar
negative environmentai and traffic impacts with increasing penetration rate as those

found in Experiment 1 and 2.

In Experiment 3, increasing the amount of ECO-I type Eco-Driving vehicles resulted in
an increase in trip time per vehicle of 0.8 minutes, or 4.4% at 100% penetration.
Conversely increasing the amount of ECO-Il type Eco-Driving vehicles resulted in a
decrease in vehicle trip time per vehicle at 2.2 minutes or, 11.5%. Therefore it is clear
that Eco-Driving has a negative impact on traffic congestion and CO, emissions at road
network level, considering a large urban network, but that with the introduction of
additional intelligent transport technology in vehicles and transport infrastructure,

that a positive impact is possible.

However, in the present day where many European countries have incorporated Eco-
Driving into national policy without the presence of V2V or V2| communications in
most cities, the impact of large increases in Eco-Driving vehicles in cities today would

be negative.

4.5.4 Experiment 4: large real world urban network including multi-

modal traffic compositions and ECO-II driving vehicles

In Experiment 4, ECO-II vehicles were allowed to penetrate the road network under
near real traffic composition conditions. As positive impacts have been observed from
ECO-II vehicles, the study further investigated this impact in a multimodal scenario.
The impact of fleet speed variation was tested along with the other evaluations
conducted in the previous experiments: less speed variation (first column in Figure

4.23) or more speed variation among non-Eco-Driving cars (second column in Figure
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4.23). In the lower speed variation scenario, only speed profile 1 was considered and
cars were replaced by different proportions of ECO-II vehicles for different scenarios.
In the more speed variation scenarios, the total fleet was divided equally across all
three-speed profiles, and ECO-II cars replaced cars equally from all three categories
while different proportions of Eco-Driving cars entered into the network. A snapshot

of the simulation representing multimodal scenario is presented in Figure 4.24.
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Figure 4.23: Left side figures marked by (a) shows simulation results for a single speed
profile; (b) shows similar results for several speed profiles
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Delay time, travel, and trip time for all three traffic scenarios provided similar results
that may be compatible with the results from Experiment 3. At low traffic, stopped
deiay, travei time and trip time were lower than that of the other two scenarics for all
levels of Eco-Driving car penetration. However, the reduction of stopping delay, travel,

and trip time were not as prominent as was observed in Experiment 3.
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Figure 4.24: VISSIM GUI shows multi-modal traffic movement in the experiment 4

Although, a total of 10% taxis and buses travelled with the ECO-II cars, the numbers of
vehicles released in these scenarios were lower than that of Experiment 3. This can be
observed from the latent demand in Figure 4.20 and Figure 4.23. Even in this
comparatively lower traffic volume, delay and travel time reduction in Experiment 4
was not as prominent as before. For instance, a decrease in vehicle trip time per
vehicle under low traffic scenario was only between 0.57-2.71% for a single speed
profile, or 10.36-16.28% for several car speed profiles), and this may be because of the

multi-modal traffic composition.

For the single and several speed profiles at the high traffic volume, a 4.2%, and 13.3%
benefit in travel time per vehicle kilometre was observed at the 90% ECO-II

penetration rate in comparison to 0% ECO-II car penetration and this was similar to the
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findings of Experiment 3. Because of the traffic composition definition applied in
simulations with “several speed profiles” delay and travel time is higher than that of
“single speed profile”. In addition, because of the same reason, saving time in delay
and travel in 90% penetration rate is comparatively higher in “several speed profiles”
scenarios. In addition, such savings are lower in comparisons to low traffic volume
scenarios (5.1% for the single car profile, and 18.5% in the several speed profiles)

which are the result of lower level of traffic volume.

4.6 Conclusion

Eco-Driving car penetration has effects on the environmental and network
performance of a road network as it results in added delays at intersection level. This
effect is mostly visible during high traffic volumes. At low traffic flow, the negative
impact is also visible; however, the impact primarily depends on the road network
configuration. However, Eco-Driving can provide benefits if it can trigger both
improvements in acceleration/deceleration and speed profile of the flow. It is highly
unlikely that a driver can be a master of gentle acceleration/deceleration and cause an
improvement of traffic speed, unless V2V or V2| communication technologies become
widespread. Technical discussions about vehicle movements in the network in relation

to the previous studies have been included in section 7.1, chapter 7.

In short, from the result of the above, it can be easily observed that the Eco-Driving
policy has the worst performance in high traffic volume while there are a number of
intersections present. On the other hand, it can be shown that if there is a smooth
flow of traffic and an improvement of the overall speed profile of the flow due to Eco-
Driving, there is a chance of improving both the traffic performance with
environmental impact. Further investigation is necessary to accurately determine the

effect.
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Air Quality Model and Healthy Routing

Chapter

This chapter has been partially published as: ALAM M. S. & MCNABOLA A. Exploring

the modelling of Spatio-temporal variations in ambient air pollution within the land use
regression framework: Estimation of PM;, concentrations on a daily basis. Journal of the Air
and Waste Management Association, January, 2015.
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5.1 Introduction

The principle behind a route selection from a given set of the alternatives is to select a
route that offers least cost. Along with many traditional cost factors of route choice
(e.g. travel time, fuel cost, distance, and transfers), different cost factors, like emission
for identifying energy efficiency, or the environmentally friendly nature of a route was
applied in many recent studies (see Chapter 2). A similar attempt was conducted in
this chapter with the aim of identifying healthier routes for smarter travel. From a
health perspective, therefore it is necessary to select and estimate a new cost factor
that is representative of the air quality of the routes. Dose of PMj, was selected as a
generic indicator for the quality of the routes. However, a particular challenge was to
estimate the air pollutant concentrations along each road in a network, and thus, the

estimation of PMj concentration forms a large part of the focus of this chapter.

As outlined in chapter 3, a PMyg air quality model was required to be developed in the
first step of this analysis, followed by a comparative routing analysis, these two steps

were followed in this Chapter.

The LUR modelling framework was adopted in this study due to its ability to predict
the spatial and temporal variations of air quality based on readily available data in
cities. As will be seen in this chapter, it can be shown that models of ambient air
quality can be developed using adaptions of the original LUR concept, which produce
reasonably accurate predictions based on the limited input data typically available in
European cities (i.e. without the addition of costly measurement data in addition to

that routinely recorded in the Fixed Site Monitor (FSM) network of a city).
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The objective of the first step of this investigation was therefore to develop a model of
ambient air quality capable of predicting daily variation and spatial variation in cities
using readily available data, and later analysis of route choice based on PMyg
concentration in relation to other route choice criteria. Dons et al. (2013b) developed
hourly LUR models and concluded that such models are not more data-demanding
than annual LUR models, however in the present study hourly PM;o data were not
captured in the FSM air quality monitors in Dublin. Thus, temporal adjustment of
modelled daily PMj, data was conducted using hourly NO, data. Nethery et al. (2008)
derived a monthly trend from six years of ambient monitoring network
measurements, and applied this to land-use regression modelled annual values by
either raising or lowering those values. Similar temporal adjustment was conducted by
Gan et al. (2011) and Dons et al. (2013b). Dons et al. (2013b) noted that hourly LUR
models are useful in determining long or medium term personal exposure to air
pollution more accurately when combined with GPS data to estimate personal
exposure. In order to achieve the overall aim of the chapter, the research questions

that are being addressed here include:

e How can we develop a reliable PMy, air quality model for Dublin bases on
limited amounts of readily available input data?

e After applying the Dublin model for PMy, concentrations at route level, does
lowest travel time lead to the lowest exposure to PMyy concentration or dose
for commuting?

e What conclusion can be drawn for healthy routing in comparison to the other

traditional travel cost factors?

5.2 Exposure modelling: air quality model

5.2.1 Experiment design

In the first step of the LUR model development predictors were required to asses

against pollutant concentration data in order to determine the empirical relationship
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between them. After selecting candidate variables, a PM;y model for Dublin was
developed initially for 2009, followed by models for other pollutants in the same year.

Later, PM;o models were developed for a larger time frame from 2007-2009 in Dublin.

In many studies, the temporal stability of landuse regression was report to be good
both forward and backward in time (Chen et al., 2010b; Gonzales et al., 2012; Gulliver
et al.,, 2011b,2013). Chen et al. (2010b) and Gulliver et al. (2013) studied back
extrapolation of LUR models, whereas Eeftens et al. (2011) and Madsen et al. (2011)
proved insights of the stability of spatial contrast of LUR over the years. Gonzales et al.
(2012) showed that the nature of the most influential predictive variables remained
the same and that LUR models developed from previous years may be appiicable to
assess exposure conditions in subsequent years. In order to assess the transferability
of the methodology between cities, the modelling steps in Dublin was also followed
for data from Vienna. A PM;; model was first developed for Vienna in 2011, and later
for the 2011-2012 time frame. The following research questions were developed to

carry out the PM1p; modelling exercise for Dublin.

e What are the predictor variables from land use, meteorological, topography
and transportation sectors surrounding the FSMs that have a strong
relationship with the recorded PMj, concentrations, and can be taken into
account for LUR model development for a particular time frame?

e Are these predictors consistent for other pollutants, e.g. NO, NO,, NO, and SO,
for that time frame?

e |s there any improvement of the models if PM;y data were integrated together
from several consecutive years?

e |ssuch a model development procedure applicable to another city?

e Does the introduction of the advanced or non-linear statistical techniques for

model developments lead to an improvement of model fitting?
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In order to assess the above research questions, a series of 16 models (Table 5.1) were
developed using a number of variations in the modelling concept for both of Vienna
and Dublin. These models related the daily average pollutant concentration across
Dublin or Vienna to a number of predictor variables, listed in Tables 5.2 and 5.3.
Models varied in the range of predictor variables included in each; in the range of
available historical input data; in the number of FSMs available; and in the statistical
technique applied to relate predictor variables to PM;y; and other pollutants
concentrations. Models were first developed and refined for Dublin; the same
methodology was subsequently applied to Vienna. The number of predictor variables
was also limited to be no greater than the number of available FSMs to avoid over-

specification of variables (Freund et al., 2006).

The first model (Dublin 1) comprised the development of a standard LUR model for
Dublin, using MLR statistical analysis technique, with the objective of establishing a
baseline against which further improvements could be compared. Dublin 1 was
applied to the most recently available and reasonably complete PM;q dataset from the
available FSM network in Dublin city during the study. Dublin 1.1-1.4 were developed
with the same dataset but for different pollutants for the year 2009. The objectives of
Dublin 1.1-1.4 were to assess the ability of the methodology to predict the

concentration of other pollutant types.

In regression modelling, it is possible to choose many good models (in other words,
there is no single definitive “best model”) from a set of data that generally yield similar
overall interpretations and predictions (Pardoe, 2012). These models only differ
slightly with respect to how many and which variables were included. Here Dublin 2 is
one of these models. Thus the objective of Dublin 2 was to assess the predictive
performance of this technique using a slightly different set of predictor variables (see

Table 5.3).
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Dublin 3 was developed using an identical approach to Dublin 2, using a longer period
of historical input data (2007-2009). The objective of Dublin 3 was therefore to assess
any changes in the models predictive performance over a longer period of historical

input data. As discussed earlier the LUR models were previously shown to be stable

over time.
Table 5.1: List of the 16 models developed.
Model Number
Pollutants Description Input Data
Name of FSMs

Dublin 1 PMy, Standard MLR approach 5 2009
Dublin 1.1 NO Standard MLR approach for Dublin 5 2009
Dublin 1.2 NO, Standard MLR approach for Dublin 5 2009
Dublin 1.3 S0O2 Standard MLR approach for Dublin 5 2009
Dublin 1.4 NO, Standard MLR approach for Dublin 5 2009
Dublin 2 PMy, Alternative standard MLR approach for Dublin 5 2009

Standard MLR approach using a longer period of 5 2007-2009
Dublin 3 PMlO

input data, but limited FSMs
Dublin 4 PMy, Standard MLR a longer period of input data 7 2007-2009

Addition of seasonal and weekly variation 7 2007-2009
Dublin 5 PM,

Dublin1

Alternative statistical technique (NPR) using 7 2007-2009
Dublin 6 PMy,

Dublin 2 input data

Alternative statistical technique (ANN) using 7 2007-200°
Dublin 7 PMyq

Dublin 3 input data
Vienna 1 PMjq Standard MLR approach for Vienna 13 2012

Standard MLR approach using a longer period of 13 2011-2012
Vienna 2 PMy,

input data
Vienna 3 PMyq Addition of seasonal and weekly variation 13 2011-2012

Alternative statistical technique (NPR) using 13 2011-2012
Vienna 4 PMyq

Vienna 3 input data

Alternative statistical technique (ANN) using 13 2011-2012
Vienna 5 PMIO

Vienna 3 input data
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Dublin 4 was developed using the same timeframe as Dublin 3, however this model
included 2 more FSMs. A total of 7 FSMs were available in Dublin and provided data up
to as recently as 2010 during this study however due to the amounts of missing data
the most recent and reasonably complete dataset that could be used was 2007-2009.
Also in 2009 2 of the 7 FSMs were not in operation. Therefore the objective of Dublin 3
was to demonstrate the impact of increasing the amount of spatial coverage provided

by the FSM network on model predictions (i.e. increasing from 5 to 7 monitors here).

Table 5.2: List of the predictor variables applied to each model developed.

. Dublin Vienna
Variable Name Vaiiisle 1.1-
Code 1 1:45 23 |4 | 57|12 3-5

Air Mass History Rating D, \ \
Vehicle km travelled* (200m) D, v
Vehicle km travelled* (300m) D; \ v \
Peak Trafﬂc count at nearest D, v v
intersection™
Major Road” (350m) Vv, v v
Open Space area (1000m) Ds v, v v v v ' v
Population Density” (500m buffer) V; v v
Temperature* (C) De V, v \ \
Rainfall/ Precipitation** (mm) D, Vs v \ v Y
Wind speed*” (m/s) Dg v v v v \
Maximum sustained wind speed” (km/h) Ve \ v
Dew Point* (C) Dy - v v v v
Stability Class Dyp v \ \
Major Road” (750m) D;; \
Altitude (m) D;, Y
Wind Index D3 \
Traffic volume in major road within 100m D v
buffer ('000) 5
Major road (100m) Dis \
Season D¢ v, v )
Day of Week D;; Vg v Y

Note: D; represents independent variables utilised for Dublin and V,; represents the equivalent for
Vienna; Numerical values in brackets indicate the corresponding buffer size; all length/distance is in km
and an area is in km’ unit; * not all the tick marked predictors were included in all the models ;*

indicates daily average, or average;” indicates natural log transformed variables **indicates daily total,”

indicates length, and A persons/kmz.

116




Dublin 5 was subsequently developed using the input data from Dublin 4 with the
addition of dummy variables representing seasonal and weekly variation. Thus, Dublin
5 allowed the prediction of average daily PM;y concentration in Dublin City across the
seasons and days of the week. The objective of Dublin 5 was therefore to add
temporal variations to the models prediction. Figure 5.1 represents variation of traffic
in Dublin as a variation of anthropological activities that may affect the PMjg

concentrations.
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Figure 5.1: Traffic Volume at the intersections nearest to the FSMs

The models Dublin 6 and Dublin 7 were developed to demonstrate the effect on
predictive performance of the use of alternative statistical modelling techniques to
multiple linear regression within the land use framework. Both models used the
predictor variables and input data applied to Dublin 5, where Dublin 6 used NPR to
relate average daily PMyg concentrations to the predictor variables, and Dublin 7 used

ANNs. These models also required a good number of observations, and thus data from
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consecutive years have been included in the model as the linear regression models

reported stability of the model over the years.

Following the completion of the modelling exercise in Dublin a similar approach was
taken in Vienna. The purpose of the repetition of this exercise in a differing European
city was to examine the transferability of the methodology between locations. Dublin
and Vienna presented differing types of city: Dublin was considerably smaller and
located on a coastline in Western Europe; Vienna is a large inland city in Central

Europe.

Vienna 1 was applied to the most recently available PMy, dataset from the FSMs
network in Vienna city during the study. PMy, data from FSMs were available from
2011- 2012, and with an aim to capture the most recent data without missing
temporal coverage, data from 2011-2012 were selected. Thus Vienna 1 comprised 1
years input data from 13 FSMs and predicted the average daily PM;y concentration
within Vienna City. The Vienna 2 model was developed following the methodology of
the Dublin 4 model. Thus the objective of Vienna 2 was similarly to assess the impacts

of a longer period of historical input data on model performance (1 vs. 2 years).

Vienna 3 was developed using the input data for Vienna 2 with the addition of dummy
variables representing seasonal and weekly variation, again to add temporal variation
to the model predictions. Finally, Vienna 4 used NPR to relate average daily PMjg
concentrations to the predictor variables, while Vienna 5 used ANNs. Again the
objective of these to final models was to assess the impacts of using a non-linear
statistical technique within the land use modelling framework, to relate the

dependent and predictor variables.
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5.2.2 Data collection and processing: PM1o and other pollutants

PMio pollutant concentration data were collected from local government FSMs as
shown in Figure 5.2 (a) & 5.2 (b). The 7 FSMs in Dublin (EPA, 2013a) were diverse in
nature; 3 of which were located in high density areas of the city centre, 1 in an open
park and 2 near to the coast. One of the coastal sites was characterised by docking
activity and low population density. Of the 13 FSMs in Vienna, 5 were located in the
high density central area, 2 were in medium density areas, 3 were in mixed use areas,
1 in a forest area and 2 on the south border of the city. These monitors provided a

wide coverage of the central area, outside core area and green areas for both cities.

PMyo data were collected using a gravimetric instrument, or analysed gravimetrically
from sampled volumes of air in the Dublin area, whereas fine dust samplers were
applied in Vienna (Vienna City Administration 2006; Irish EPA 2014). The average daily
PMo concentrations across the Vienna FSMs were 29.8 pg/m® and 24.7 pg/m? for the
years 2011 and 2012 respectively, whereas the average daily PM1, concentrations for
Dublin were 15.6 pg/m°®, 14.7 ug/m> and 13.8 pg/m’ for the years 2007, 2008 and
20009.

For the other pollutants in Dublin, the number of available sites was five for year 2009,
leaving out Marino and Phoenix Park (due to missing data). Hourly observations from
the available stations were converted to daily totals. Oxides of Nitrogen in Dublin were
measured using an APl M200 NO, analyser, later separated by the chemiluminescence
method, whereas SO, was measured using an APl M100 Sulphur Dioxide analyser by
U.V. Fluorescence (Irish EPA, 2014). The average concentration of pollutants across all
the monitoring stations were 3.08 pg/m?, 46.36 pg/m?>, 17.75 pg/m® and 29.54 ug/m’
for SO,, NO,, NO,, and NO respectively. Average pollutant concentrations for all the

pollutants across the monitoring stations can be found in the Tables C1-3, Appendix C.
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Figure 5.2(a): FSMs in Vienna
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Figure 5.2(b): FSMs in Dublin.



Both the Municipal Government of Vienna and Irish EPA follow internal QA/QC
procedures in order to maintain the highest quality of data and to meet EU standards.
In addition to assure quality of the data, a further quality control has been maintained
in this study. Figure 5.3 presents time series of the data applied for model
development in both of the cities after removal of unnecessary and missing data. In
Vienna, 1% of FSM data for PM;o were missing for 2012 and 2% data were missing for
the 2011-2012 period, whereas 6% PM,y data were missing from the 7 FSMs, and 2%
of the PM;o data were missing from 5 FSMs in the period of 2007-2009 in Dublin. For
2009, missing data was less than 1% for all the pollutants, including PMj,. In addition,
some further data was excluded where data on associated independent variables (e.g.
weather) were also missing, or contained unexpected values. For Dublin 1, an
additional 3.5% of data were missing, due to missing daily peak hour traffic data. Due
to missing data among predictor variables in the Vienna datasets, the 2012 and 2011-
2012 periods were reduced by 1% and 2%. Less than 0.05% of data were removed due

to unexpected values.
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Figure 5.3: (a-c) PM1o concentrations in FSMs at Dublin; (d-e) PM1o concentrations in FSMs at Vienna



5.2.3 Data collection and processing: predictor variables

PM and weather data have been sorted in Excel software, whereas spatial data has
been extracted in a GIS environment. Different overlay data management tools and
spatial analysis tools have been deployed to obtain this data. To get information
around the FSMs, buffer operations were applied in a GIS environment. A buffer in GIS
is a zone around a point measured in units of distance (Figure 5.4). The distance of the
buffers for each attribute (e.g. population, road length) was determined based on
relevant literature review and site characteristics. The concept captures the physical
properties of the areas that might have an influence on the PMy, and other pollutant

concentrations in the FSMs.

Predictor variables included primary variables (e.g. population density), simply derived
variables (e.g. vehicle kilometre travelled), and more complex derived variables (e.g.
air mass history). In order to estimate vehicle kilometres travelled (VKT), annual
average daily traffic (AADT) volume was multiplied by the length of road. Roads that
were above the tertiary category were classified as major roads. VKT surrounding each

of the FSMs was determined for different sizes of buffer (100m — 350m radius).

In addition, daily traffic count at the nearest junction to the FSMs was also obtained
from real-time loop detectors (SCATS) in Dublin. While VKT in a buffer provided an
indication of the spatial variation of the average traffic, SCATS data may provide
additional information about temporal variation at the sites. Daily peak traffic for each
intersection was estimated as an average count during morning peak (7-9am) and

evening peak (4-6pm).

Land use GIS datasets were obtained from the European central database system (EEA,

2013b) and open street Map (OSM, 2013). Some land use layers of the GIS land use
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datasets for Dublin and Vienna were combined and re-classified based on their general
spatial relationships with air pollution. These were: a) pollutant producing land use:
Industrial and commercial land use (Dublin), and b) non-contributing land use: Open

space (and similar use) in Vienna and Dublin.
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Figure 5.4: Different buffer sizes around the Air Quality monitors in Dublin

Population densities for Dublin were collected from the Central Statistics Office (CSO,
2013) and from the European central database system for Vienna (EEA, 2013c). Dublin
meteorological data were combined from both Phoenix Park and Airport staticns
operated by Met Eireann. Vienna data were obtained from the Schwechat-Flughafen
station and were validated against the 2012 dataset of Hohe Warte station (ZAMG,
2013). Natural log transformed wind variables were applied in all of the relevant
models as their distribution was positively skewed, and the Anderson-Darling test

confirmed that this data did not have a normal distribution.
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5.2.4 Air mass history

In an attempt to improve model accuracy a means of describing the origins of the air
mass was included in a PM;g model in Dublin (Dublin 1). Previous investigations
applied wind back trajectory analysis in identifying the sources of pollutants (Lee et al.,
2013). To extend this concept to the current LUR based modelling framework
representing a known source of PMjg, the air mass history was determined using the
Hybrid-Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model (ARL, 2013).
The air mass history of 365 days in Dublin in 2009 were determined at a fixed hour of
the day (12 pm). Each individual air mass history produced by the HYSPLIT model in
the form of a trajectory was then overlaid onto a grid developed to produce a rating
score indicating the likely degree of pollutant sources it encountered in the previous
48-hours. (e.g. Atlantic Ocean vs. UK or Northern Europe). Each trajectory was
estimated for 48-hours backward in time as PM;, has been reported to survive for
approximately two days in the atmosphere (WHO, 2006a). The receptor height was
chosen as 500m, representative of the typical mixing height in Ireland and above
ground level to avoid topographic friction (Donnelly, 2011a). The resulting air mass
history ratings were subsequently included in the regression for Dublin 1 using the

2009 dataset.

Figure 5.5 illustrates the grid developed to carry out the rating of air mass history in
the North Western Europe region. The grid resolution was approximately 54 km?, and
due to the computational resources available this was the lowest grid size that could
be accommodated during this study. Each grid cell was rated based on the average
population density range using Europe wide population density data (CIESIN, 2013).
The rating represented the level of urbanisation in respect to a lower threshold of
urbanisation, as areas with population densities higher than 150 persons/km’ are
classified as urban (OECD, 1994). For population densities below 150 grid cells have
been divided into five groups having a rating of 1 to 5. Grid cells with population
densities greater than 150 persons/km’® were equally sized and an increase in the

rating of 1 corresponded to an increase of mean population density of 375
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persons/km?. Grids predominately occupied by water bodies, or the ocean were rated

as zero.

The values of each cell that an individual trajectory passed through were summed to
give an accumulative score to each trajectory. Relative to one another these scores
gave an indication of the extent of trans-boundary air pollution in Dublin for each day

in 2009.
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Figure 5.5: Air mass history rating grid based on population density and urbanisation

5.2.5 Wind index

Wind index for each monitoring station for daily wind direction in relation to the
nearest major road were derived. FSMs directly upwind of the nearest major road, had
a wind index were equal to zero, and FSMs directly downwind of the nearest major

road had a wind index equal to one. This technique analysis the proximity impact of
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source on pollutant concentrations, however, has limitation about the volumetric
impact from the source. The wind index has been calculated (Chen et al., 2010a)

based on Eq. (5.1):

0= .1.152(@___9_) Eq.(5.1)
Where, Wind Index=¢; @ = Euclidian direction from the nearest major road to

monitoring site; 6 = Wind direction in respect of true north.

5.2.6 Stability class

Stability class refers to the state of the atmosphere that is resisting or enhancing
vertical motion. Different stability states can be categorised based on wind speed and
solar radiation. Stability class for Dublin was adopted here as an additional explanatory

variable (Pilla, 2012).

5.2.7 Assessment of variables for model

The relationship between predictors and pollutant concentrations were revealed in
the process of developing LUR models. This provided a screen test for the predictors
relationship with pollutant concentrations, such as traffic should be an anthropological
source of PMyj if chosen. Secondly, such a list would be helpful for model selection as
many variables were removed from the final models due to multicollinearity and
singularities i.e. an extreme form of multicollinearity/perfect linear relationship
existed between the variables. Selected predictor variables included available data on
land use, traffic and meteorology in Dublin and Vienna. The selected independent
variables and the selected predictors for the 16 different models are presented in

Table 5.3, whereas excluded variables are presented in the Table C4, Appendix C.
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Table 5.3: Information about selected variables for different model development

Dublin PM,, models/ 2007 2009datasets

Variables for Dublin PM,, models r2009 Max,g0s- Minp09- I'2007-2009 MaXx,007-2009- Min007-2009-
Dew point* (C) -0.33 16.44 -4.42 -0.31 16.44 -4.42
Wind speed” (m/s) -0.33 2.64 0.2 -0.37 2.66 0.2
Open space area (1000m) -0.3 2.4 0.05 -0.28 2.4 0.05
Rainfall** (mm) -0.12 38.8 0 -0.2 58.7 0
Stability Class" 0.23 5 3 0.23 5 4
Air Mass History Rating 0.26 1904 63 -- -- --
VKT (300m) 0.34 75998 848 0.31 75998 848
VKT (200m) 0.35 37150 353 0.3 37150 353
Peak Traffic count at nearest intersection ('000 for values) 0.36 8.690 1.85 -- -- -
Dublin models for PM;, and other pollutants: 2009 dataset
2009
Variables for PM,, and other models SO, NO, NO, NO Min Max
Temperature* (C) 0.03 -0.36 -0.37 -0.30 -0.90 18.29
Wind speed” (m/s) -0.15 -0.39 -0.38 -0.39 1.22 14.04
Altitude (m) -0.04 -0.44 -0.39 -0.30 4.53 41.85
Open space area (1000m) -0.61 - -- -- 0.00 0.29
Major road (750m) 0.43 0.47 0.49 0.34 4.36 14.70
Traffic volume within 100m buffer ('000) 0.35 0.20 0.16 0.06 1.95 270.45
Air Mass History Rating ('000 for values) 0.03 0:11 0.15 0.05 0.06 1.90
Peak Traffic count at nearest intersection ('000 for values) 0.28 0.09 0.12 0.24 1.85 8.69
Major road (100m) 0.15 0.41 0.41 0.29 0.00 0.44
Wind Index 0.13 0.07 0.02 0.04 0.00 1.00
Vienna PM,, models:2011,and 2011-2012 datasets
Variables for Vienna PM,, models r2012 Max,01,- Min,gs,. 011-12- Max,011.12- Minyoi1.12-
Max. sustained wind speed” (km/h) -0.41 3.4 1.79 -0.42 3.4 Al
Precipitation** (mm) -0.22 38 -8 -0.25 87 0
Open space area (1000m) -0.1 1.47 0 -0.1 1.47 0
Population Density (500m) 0.06 1221.5 0.21 0.05 12215 0.21
Temperature* (C) -0.27 25 -14 -0.32 31 -11
Major road (0-350m) 0.08 13.1 3.6 0.08 4.46 0

Note: r= Pearson correlation coefficient with Ln(PMyo); numbers in subscript with the r, Min and Max shows the dataset years; * indicates daily average, or average; Numerical values in brackets indicate the
corresponding buffer size; height in m, all length/distance is in km and an area is in km? unit;* Stability Class A to E represent the degree of stability (unstable to stable), were converted to number from 1 to 5

for regression; A indicates natural log transformed variables; **indicates daily total; road represents length; VKT= Vehicle km travelled; Coordinate in decimal degree, and density (person/km?).



5.2.8 Adoptions of the LUR framework

Aside from static land use parameters for the development of LUR models, previous
investigations have also included predictor variables on temporal factors to account
for annual, seasonal, monthly, daily and hourly variations (Chen et al., 2010a; Mdélter
et al., 2010; MaclIntyre et al., 2011; Smith et al., 2011; Dons et al., 2013, 2014). Models
have been developed which are capable of predicting pollutant concentrations in both
annual and shorter time frames (e.g. hourly). Data on specific known sources of air
pollution emissions, in addition to general land use factors, have also been included in
various published LUR models. Examples of such sources include traffic and industrial
point source data (Chen et al., 2012a; Dons et al., 2013, 2014). As such, in the current
study additional new predictors, derived from complex process were assessed, such as

air mass history rating.

The objective of many recent investigations utilising the LUR methodology has been to
build on its ability to produce spatially and temporally accurate predictions of air
pollution. These efforts, as outlined above, have included the addition of new
variables and data types. While modelling of spatial variation in concentrations is the
focus of most investigations, short term temporal variation is averaged out in most
studies. In order to deal with daily temporal variation Chen et al. (2012b) applied a
two-step modelling approach using data from 18 monitoring stations for a 2325 km?
area in Taipei metropolitan area, Taiwan. Data were initially modelled with
meteorological variables and temporal trends removed, while residuals were modelled
with land use variables. On the other hand, models developed in one step with
meteorological and land use variables together, can provide a complementary

approach in the refinement of the statistical models used to relate predictor variables

to air pollution data using non-linear approaches such as NPR and ANNs.

Air pollution data and some predictor variables are often not normally distributed and

thus may not be suitable for use in MLR based techniques where a normal distribution
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is assumed (Donnelly et al., 2011b). Donnelly et al. (2011b) used the NPR approach to
predict the concentration of NO, at background monitoring stations where the
amount of monitoring data was limited (due to gaps in datasets, etc.). The resulting
models enabled the realistic prediction of long term concentration variations with

wind speed and direction.

In addition, ANNs have also been used to predict air pollution concentrations based on
the analysis of historic data records (Cobourn et al., 2000; Chaloulakou et al., 2003).
Ibarra-Berastegi et al. (2008) applied ANNs to predict hourly concentrations of five
urban pollutants in Bilbao up to 8 hours ahead of background measurements. The
performance of these models varied depending on poliutant type and the background
monitor in question (R’= 0.15 to 0.88). While not strictly a form of regression, such
statistical technigues may enable further improvement of models based on the land

use conceptual framework.

Thus in the current study for air quality modelling, the temporal and spatial variation
in PM;o concentration has been carried using a MLR methodology within the land use
conceptual framework. The investigation included the development of a standard MLR
based model for Dublin city, the predictive performance of which was subsequently
refined using larger amounts of data and alternative statistical approaches. The
alternative statistical approaches to MLR in land use regression included NPR and
ANNs. The methodology was subsequently applied in Vienna city to examine its

transferability between locations.

Molter et al. (2010) discussed three approaches to modelling temporal aspects in LUR,
namely: use of temporal trend derived from local background monitor, use of
temporal variation of the predictors, and recalibration of the developed models in

backward or forward in time. Here in this study, temporal variation of the predictors
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were applied along with available PM;q data from the FSMs to develop initial models,

which were subsequently improved by the alternative statistical approaches.

5.2.8.1 Multiple linear regression

The models developed using the MLR statistical technique were of the form shown in

Eq. (5.2).

E=C,+AX,+ A X, +4,X,..+ A X +€ Eq.

(5.2)

Where, E = Average Daily PM;y Concentration; X= predictor variable i; € = Error; A=

regression coefficient for predictor variable i.

As MLR assumes that the input data are normally distributed, natural logarithm
transformation of PMyp and other pollutant data was carried out in all models. Both
the Kolmogorov-Smirnov and Shapiro-Wilk tests for normality in the data confirmed
the need for this transformation. To develop the MLR models (Dublin 1-5, Vienna 1-3)
the forward selection procedure was applied where predictor variables with the
highest simple correlation with the dependent variable were included step by step
(Pardoe, 2012). At the end of each step the Variable Influential Factor (VIF) was
checked to ensure no multicollinearity existed, and only statistically significant
variables were retained in the models. The VIF was below 2 for the models which
indicated no significant multicollinearity. Normality tests for all the models were
conducted that confirmed an unbiased and homoscedastic relationship between
residual and fitted values. Figure 5.6 (a) shows an unbiased and homoscedastic
relationship between residual and fitted values, while Figure 5.6 (b) shows the

residuals were normally distributed and scattered around the line. In addition, Cook’s
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distance was checked for outliers and influential variables. The data were checked
before model development using scatter plots to ensure that there were no missing
values or unexpected values in the analysis. Selected variables (V) in the final models

were presented in Table 5.3.
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Figure 5.6: Normality Test (a). Residual vs. fitted value; (b). Normal Q-Q plot

The higher values in Figure 5.7 are logical values which are either caused by
comparatively low/high values of PMj, without much change in independent
variables; or high values in independent variables corresponding to moderate values in
PM1o. But, all these values are within the acceptable range of each independent and
dependent variables. Dons et al. (2013b) encountered high Cook’s D values in some of
their models, pointing to influential observations, and thus the values were kept as
those turned out to be explainable. This may indicate that a similar situation may
often be noticeable when high resolution datasets are in use for similar modelling

strategies. Cook’s distance was also tested for the Vienna model.
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Figure 5.7: Cook’s distance for Dublin Model

5.2.8.2 Non-parametric regression

NPR in the form of locally weighted scatter plot smoothing (LOWESS) was also
conducted in this study. LOWESS operates by fitting simple models to localised subsets
of the data to develop a function that describes the determining part of the variation
in the data, point by point. A smooth curve through a set of data points is obtained
where each smoothed value is given by a weighted least squares regression. At each
point in the data set a low-degree polynomial is fitted to a subset of the data, with
explanatory variable values near the point whose response is being estimated. The
polynomial is fitted using weighted least squares, giving more weight to points near
the point whose response is being estimated (i.e. neighbouring points) and less weight
to points further away. The value of the regression function for the point is then
obtained by evaluating the local polynomial using the explanatory variable values for

that data point (Pitard et al., 2004).

The size of the localised subsets or bandwidth was carried out in LOWESS using the K-
nearest neighbour approach and this was optimised during model development by
trial and error. The k-nearest neighbourhood size for Dublin and Vienna in the final

models produced were 35% and 50% respectively.
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Predictor variables for each neighbouring point were given a weight through the tri-
cube weighting function. A weighted least-square model was also developed for each
point, using only the nearest neighbour observations to minimise the weighted
residual sum of the squares. The procedure was carried out for each point and finally
the fitted values were connected to produce the LOWESS curve. A smoothing factor
was also required in order to make a balance between bias and prediction noise.

Cross-validation was applied to select smoothing factors for each model.

This LOWESS modelling technique of NPR was deployed for Dublin 6 and Vienna 4. A
higher smoothing factor was used for Dublin (0.6) compared to Vienna (0.3) which was
derived by cross-validation in order to produce better prediction for the Phoenix Park
observations. The Phoenix Park is the largest green space in a major city in Europe
where the average pollutant concentration during this study was notably lower (11.01

ug/m?) over the three years than the rest of the FSMs in Dublin (15.60 pg/m?).

5.2.8.3 Artificial neural networks

ANN models (Figure 5.8) were also developed for Dublin 7 and Vienna 5. ANN
modelling is an information processing paradigm that is based on the way in which
biological nervous systems, such as the brain, process information. In their general
form, ANNs refer to parallel model architecture capable of performing numerical
calculations based on distributed processing. A feed forward neural network
(Levenberg-Marquardt backpropagation technique) was used in this study which
comprises an input layer, a hidden layer, and an output layer. This ANN operates
through each layer receiving a weighted input from a preceding layer and then
transmitting its outputs to neurons in the next layer. The summation of weighted input

signals is calculated, and this summation is then transferred by a nonlinear activation
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function. In this optimisation, the Levenberg-Marquardt backpropagation technique

was applied which is widely used for non-linear least square regressions.

After several iterations with different numbers of hidden neurons (10, 15, 20, 25, 30,
and 35), a best performing network architecture for each city was selected. The
combination of “input-hidden layers - output” for Dublin (15-20-1-1) and (15-15-1-1)
for Vienna yielded consistent satisfactory results (i.e. similar training and validation

performance) for several iterations.

Mathematically, the neuron j can be described as 4 Furcton iting Nl Networ e =S
follows (Haykin, 1994)
n=m

ug = _ Wpa-Xpi 3q = @(ug +bg)

<

Where x;.X.... ... X, are the input signals. w,, is the
connection weight from p in layer | to neuron q in
- - layer I+1. ug is the linear combiner output due to the

input signals, by 1s the bias, g (....) 1s the
activation faction and a, is the output signal of the
neuron

Figure 5.8: (a) Neural network basic structure; (b) MATLAB network outlook

5.2.9 Validation and result of Landuse Regression model

Model validation was carried out using the ‘leave-one-out-cross validation” (LOOCV)
technique, whereby one FSM was left out of model development and the model
developed was then used to predict the average daily PMjy concentration at the
remaining FSM (Wang et al., 2012). For n FSMs, this process was repeated n times
such that each FSMs was excluded in turn from model development and was

subsequently used to compare model predictions with measured values.

The comparison of model predictions and measured values was carried out using
model performance statistics such as the coefficient of determination (R?) and the root

mean square error (RMSE). Comparison of model predictions and measured values
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was also carried out in 2 phases, first comparing the model predictions of the
measured values included in model development with the same measured values, and
second comparing model predictions with measured values excluded from model
development using the LOOCV technique. In the case of ANNs, models were
developed using 70% of the available input data, while 15% was used for validation

and 15% was used for testing.

The development of the standard LUR models was performed using R — statistical
software. Alternative modelling techniques were developed using XLSTAT 2013 for

Non-parametric Regression, and MATLAB for Neural Networks.

5.2.10 Results
5.2.10.1 MLR based models

The models produced using the MLR statistical technique are shown in Table 5.4 and
Table 5.5. A few of the models for Dublin were developed using only one year's data
and included 5 FSMs, as listed in Table 5.1. Dublin 1 produced an R? of 43% predicting
PM1o concentrations from 5 FSMs in 2009. The model predicting alternative pollutant
types in this group performed better than Dublin 1. Dublin 1.3 and Dublin 1.4 yielded
the highest R? values at among these models, both at 62%. Dublin 1.2 for SO,
performed the lowest with an R’ of 42%. In Dublin 2 using the same 5 FSMs and
excluding a representation of air mass history and peak traffic count lowered model
performance compared to Dublin 1 with an R of 38%. Individually, air mass history
was found to explain 6.5% of the variation in PM,, while peak traffic count accounted

for 12.7%.

137



Table 5.4: LUR Models for air pollutants in Dublin

Equation  (having variables Max.
Model Pollutant | <=.001 Significance) R? P SE N VIF

Ln(PM)=  3.071+4.936x10"'D,
Dublin | PMy, +7.297x10%°D, +4.904x10%°D, - | 0.43 | <2.2¢e™ | 041 | 1272 |1.61
1 4.554x10°'D; -4.288x10°°D,

Ln(NO)= 3.37-9.46 x10°°D; -2.
Dublin | NO x10°'D+5.57  x10%D,;-1.63 | 053 |[<2.2¢™ | 070 | 1143 | 1.37
1.1 x10%°D,,+1.47 x10%D,

Ln(SO,)=1.28+4.77 x10%° (D,,
Dublin | SO, *D;s)-7.38 x10%°D5-6.11Ds+1.61 | 0.42 | <2.2e™ [0.83 | 1427 | 1.49
1.2 x107D,;

Ln(NO,)= 4.25-6.16 x10°D,-
Dublin | NO, 1.31 x10°" Dg+4.68 x10% D,;- | 062 | <22 | 043 | 1745 | 1.22
13 1.29 x10** D,,+3.08 x10* D,

Ln(NO)= 5.04-7.73 x10’De-
Dublin | NO, 1.71x10°" Dg+5.36 x10°°Dy;,- | 0.62 | <2.2e™ | 055 | 1745 | 1.67
1.4 2.08 x10°°D,,+2.15 x10* D,
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Table 5.5: MLR PM1o models for Dublin and Vienna

Variables have less than or equal to 0.001 | Adjusted Max

Model Significance pF P SE N VIF
Ln(PM)= 3.071+4.936x10°°D, +7.297x10

Dublin | *°D,+4.904x10°D, -4.554x10°' D, -

1 4.288x10%°D, 0.43 <«2.2e' |043 1273 | 1.61
Ln(PM)=2.968+4.042x10 °°D;-3.212x10°

Dublin | *'Ds-4.243x10™" D4-4.549x10

2 %Dg+1.207x10°' Dy 0.38 <22¢e' |040 1624 | 1.75
Ln(PM)=2.736+4.090x10 °°D;-8.648x10°

Dublin | *’Ds-4.964x10™" D;-4.433x10

3 Dg+2.108x10°' Dy, 0.39 <22e' | 041 4116 | 1.93
Ln(PM)=2.630+4.107x10 *°D;-1.002x10°

Dublin | **Ds-5.688x10°D,-4.763x10 ' Dy-

4 4.169x10%* Dg+2.363x10' D, 0.39 <22e™ [041 5503 | 1.78
Ln(PM)= 2.485+4.016x10°°D;-1.032x10
°'D,-8.901x10 *°D,4.953x10 %' D;-
3.002x10%°Dy+2.118x10 ' D;,+1.915x10°
**Winter+8.677x10°°* Tuesday+9.783x10°
°2Wednesday+1.310x10’

Dublin | **Thursday+1.115x10° Friday+4.332x10

5 %2 saturday-8.700x10 **Sunday 0.42 <2.2¢' |042 5503 | 1.33
Ln(PM)= 5.041+2.543x10"°V/;-8.970x10

Vienna | “V,+8.233x10%° V;-1.935x10 V-

1 3.475x10V:-6.869x10" V, 0.35 <2.2¢* | 047 4624 | 1.08
Ln(PM)=
4.906+3.242x10 **V;-9.933x10

Vienna | “V,+6.304x10° V;-2.098x10 V-

2 3.925x10%°V5-5.936x10"V; 0.37 <<2.2¢® | 0.47 9264 | 1.10
Ln(PM)= 4.707 +3.242x10°V/;-9.934x10
%V/,+6.321x10 %°V;-1.599x10 V-
3.667x10°*V,-6.061x10°' V,+1.682x10
*'Winter+7.794x10 **Tuesday +1.275x10
°' Wednesday+1.569x10

Vienna | ®*Thursday+3.743x10 **Friday-3.339x10°

3 *2Saturday-9.908x10 **Sunday 0.39 <2.2¢™ | 046 9264 | 1.28
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For Dublin 3 the increase in the length of the historical input data recorded marginally
increased the R® result to 39% (up from 38% in Dublin 2). This demonstrated the
stabiiity of the model predictions across differing time periods. The subsequent
increase in the number of FSMs available from 5 to 7 during this three year period in
Dublin 4 produced an R’ of 39%. Finally the addition of seasonal and weekly variation

using dummy variables for Dublin resulted in an improvement in R? to 42% (Dublin 5).

Considering Vienna, a similar performance to Dublin for Vienna 1 was found with R =
35%, and increasing the length of the historical input data in Vienna 2 was found to
produce an R?=37%. Applying the seasonal and daily variation increased the R’
marginally to 39%. Models stability over time could also be noticed when a
comparison was made between Vienna 1 and Vienna 2. Vienna 3 with the addition of
temporal variations showed an increase of model performance similar in magnitude to

the increase for Dublin, 4% in both cases.
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5.2.10.2 NPR & ANN models

The results of the land use models developed using the proposed alternative statistical
modelling techniques are shown in Table 5.6. The NPR approach in Dublin 6 provided a
small improvement of 3% over Dublin 4, however a significant improvement of 12%
was found for Vienna. Models using the ANN approach in Dublin and Vienna produced
the highest performance statistics of all models examined at 51% and 66%
respectively. A graphical representation of the results has also been included in Figure
5.9, showing the predictability of the different modelling techniques. In the Figure 5.9
log-transformed PM o predicted data were plotted against observed data for a single
predictor in the MLR, NPR & ANN models for Vienna and Dublin respectively. Figure

5.9 shows that ANN has predicted data coverage better than that of the other two for

both Vienna and Dublin.

Table 5.6: Non-parametric and Neural Network models for Dublin and Vienna

No of Data
Model Model Structure R’ | points
LOWESS Method, Polynomial degree: 1; k nearest
neighbours: % = 50; Kernel: Tricube; Bandwidth:
Vienna 4 | Standard deviation; smoothing factor 0.1 0.51 | 9264
7875
Two layer Levenberg-Marquardt backpropagation (85%* of
Vienna5 | (Network structure 15-15-1-1) 0.66 | 9264)
LOWESS Method, Polynomial degree: 1; k nearest
neighbours: % = 35; Kernel: Tricube; Bandwidth:
Dublin 6 | Standard deviation; smoothing factor 0.6 0.45 | 5503
4678
Two layer Levenberg-Marquardt backpropagation (85%* of
Dublin 7 | (Network structure 15-20-1-1) 0.51 | 5503)

*70% for model training and 15% data of model generalisation which also ensure stop

training before over fitting.
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5.2.10.3 Model validation results

The results of model cross validation using the LOOCV technique are shown together
with the performance of the models in predicting the measured data involved in their
original development in Table 5.7. As could be expected the models ability to predict
the measured data using the LOOCV technique is less than that were predictions are
made on the data used for model development. However, in most cases this reduction
in performance is marginal with the exception of Dublin 4 and Dublin 5. Both of these
models produced poor predictions for the Phoenix Park FSM, which as noted earlier,
was significantly different in nature to the other 6 FSMs in the study. Diem and Comrie
(2002) noted that while FSMs are located in unique positions LOOCV may provide
unreliable predictions at most of the monitors as each monitor may have critically
important values for many of the independent variables. Again model predictions
using the NPR and ANN techniques produced the best model performance statistics,

where Vienna 5 produced the most reliable PM 4 predictions.

Table 5.7: Results from model validation

No. of St. Dev. Model Validation RMSE PMyq
Models Sites PMlo(pg/ma) R’ R’ (ug/ms)
Dublin 1 5 7.52 0.43 0.34 6.28
Dublin 2 5 7.80 0.38 0.37 6.28
Dublin 3 5 8.92 0.39 0.35 7:32
Dublin 4 7 9.18 0.39 0.28 8.17
Dublin 5 7 9.18 0.42 0.30 8.07
Dublin 6 7 9.18 0.45 0.39 7.33
Dublin 7 7 9.18 0.51 0.54 6.27
Vienna 1 13 15.77 0.35 0.36 12.96
Vienna 2 13 17.83 0.37 0.38 14.46
Vienna 3 13 17.83 0.39 0.39 14.36
Vienna 4 13 17.83 0.51 0.48 13.05
Vienna 5 13 17.83 0.66 0.65 10.69
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As noted earlier the average daily PM;o concentrations in Vienna across the two year
period in question was 27.3 ug/ma. In relation to the RMSE error produced by the best
performing model for Vienna 10.69 pg/m?>, this places the predictive performance of
Vienna 5 into the context of typical concentrations encountered there. Similarly in
Dublin the mean concentration across the 3 years in question was 14.7 ug/m?® while
the RMSE of Dublin 7 was 6.27 ug/m>. Thus the RMSE was 39% and 42% of the mean

value in Vienna and Dublin respectively.

5.2.11 Stability and sensitivity analysis of the models

To check the stability of the coefficients of the final MLR models before applying NPR
and ANNs, the stability and sensitivity of the models were assessed. Both of the
databases were segregated into five random subsets with different sample sizes. In the
Figure 5.10 the regression coefficients for both models for different numbers of
samples were plotted. The regression coefficients were found to be stable across a

number of different data sub-sets.
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Figure 5.10: Sensitivity analysis for (a). Dublin model; (b). Vienna model

In order to assess the sensitivity of the parameters, a sensitivity index was derived. A
sensitivity index is the ratio of the change in output to the change in input when
varying one input parameter from its minimum to its maximum value, while all other
parameters remain constant (Hoffmand and Gardner, 1993; Hamby, 1994). The

equation for sensitivity Index is below Eq. (5.3):
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Dpmax—Dmi
Sl — ax Min
DMmax

Eq. (5.3)

Here, S/= Sensitivity index; Dyg,x= Maximum output; Dyi,= Minimum output from the

model.

The results of sensitivity analysis were given in the Table 5.8. The dummy variables for

the models were set for winter Monday, and other parameters were set for their

average values.

Table 5.8: Sensitivity analysis on the Dublin 5, and Vienna 3 models

Vienna
Indicator/Variable Coefficient Data Ln(PMy,) Sensit
ivity
Index
Intercept 4.71 Min Max Avg Avg. | Min Max * Rank
Rainfall/ Precipitation -
(mm) -0.04 0.00 87.00 43.50 1.79 | 3.39 0.20 16.04 ik
Maximum sustained wind
speed km/h -0.61 1.10 3.40 2.25 1.79 |-2.49 1.10 -1.27 2
Temperature (C) -0.02 -11.00 31.00 10.00 1.79 | 213 1.46 -0.46 3
Open Space area sq. km-
1000m -0.10 0.00 1.47 0.74 179 | 1.87 1.72 -0.09 4
Major Road in m-350m 0.03 0.00 4.46 2.23 .79 | 1.72 1.87 0.08 5
Population Density
(persons/sq. km) -500m | 6.32e” 213 | 12215 | 610856 | 179 | 1.76 | 183 | 004 | &
Dublin
Indicator/Variable Coefficient Data Ln(PMy,) Sensit
ivity
Index
Intercept 2.49 Min Max Avg. Avg. | Min Max i Rank
Wind speed (m/s) -0.50 0.20 2.66 0.79 2.54 | 2.83 1.61 -0.76 i
Dew Point (C) -0.03 -4.42 16.44 4.00 2.54 | 2.79 2107 -0.29 2
Rainfall/ Precipitation**
(mm) -0.01 0.00 58.70 19.56 2,54 | 2.72 219 -0.24 3
Stability Class 0.21 3.00 5.00 2.74 2.54 | 2.60 3.02 0.14 4
Vehicle km travelled
(300m) 4016e* | 848.00 | 75998 | 256153 | 2.54 | 244 | 274 | 011 | 5
Open Space area in sq.
km(1000m) -0.10 0.05 2.40 0.78 2.54 | 2.62 2.37 -0.10 6
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5.2.12 Discussion

5.2.12.1 MLR based models

With the limited number of FSMs available in Dublin and Vienna using the MLR
approach predictive performance was typically in the range of R’ = 28 to 43%. Such a
performance can be considered low and perhaps highlights the limitation of this
approach with limited input data. However, it should be noted that in practice FSM
data are limited in number as local government authorities have limited resources
with which to measure urban air quality. Thus statistical air pollution models must be
developed to make reliable predictions on air quality using the amount of readily
available data, if these models are to be of practical use to practitioners and policy

makers in this field.

Using the MLR statistical approach and predictor variables of Dublin 1 produced the R’
=43% and these can be attributed to the addition of 2 new variables representing air
mass history and peak traffic count. The result yields by the model for other models
(Dublin 1.1-1.4) provided confidence in the reliability of the process and datasets to
proceed for further development of the PM,;q; models. The models for oxides of
nitrogen (Model 1.1, 1.2 and 1.4) are better fitted than that of SO, and PM, because
the major source of NO, is road transport (EPA, 2010). Although, the fitting and the
performance for Dublin 2 is lower in comparison to Dublin 1, the process initiated by

Dublin 2 lead to the development of the best performing model in Dublin 7.

It can also be noted that the performance of the models across two distinctly different
European cities is quite consistent. Omitting Dublin 1 from the result (as this was the
only model to include air mass history) of MLR models gives a range of performance
statistics of R? = 30 to 38%. Furthermore the stability of prediction from these models
over time has been shown to be consistent in both Dublin and Vienna i.e. little change
in performance statistics were noted when the amount of historical input data was

increased by 1 to 2 years.
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The inclusion of 2 additional FSMs in Dublin 4 produced a decrease in performance (R?
=0.28 against R = 0.35 in Dublin 3) which was due to the ability of models developed
excluding the Phoenix Park FSM to subsequently make predictions of concentrations
at this station. As noted earlier, the Phoenix Park FSM was significantly different in
nature to the other 6 and the models developed produced very poor predictions of

concentration at this location during validation.

In addition, increasing the length of historic input data in the Vienna 2 model, showed
the stability of the modelling techniques that has been found by previous investigators
(Gulliver et al., 2011b, 2013; Gonzales et al., 2012). However, the increasing variation
(i.e. higher standard deviation) of the data yields a higher RMSE in Table 5 in
comparison to the Vienna 1. Previous models were developed based on one year’s
data and were applied to consecutive years, however, models under this study were
developed with two or three years of data together, which lead to a larger RMSE. This

limitation of RMSE was subsequently tackled by using NPR and ANNs methods.

The Dublin 5 model was developed following the Dublin 2 model methodology which
showed improvement in both model performance and RMSE, however, data variability
in the Dublin 5 model was lower than that of Dublin 2 model both in the spatial and

temporal sense.

5.2.12.2 NPR & ANNs

Using the alternative statistical modelling approaches to relate PM;, concentration to
the predictor variables produced more favourable results. Using the NPR approach in
both Dublin and Vienna, the validation coefficient of determination was at or close to
50%. Using ANNs produced the best predictive performance statistics with R? of 65%
for Vienna and close to 50% for Dublin, and the lowest RMSE for both cities. This

highlights the impact of the non-linear nature of the relationships between many of
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the variables and PM;y and the assumption of normality in the data using the MLR

approach.

Previous investigations using advanced statistical models have also found that these
have out-performed linear regression based techniques (Chaloulakou et al., 2003).
Here the improvements found were greater for Vienna than for Dublin. For example a
12% improvement was found using the NPR technique for Vienna while only 3%
improvement was found for Dublin. Similarly a 27% improved was found for Vienna
using the ANN technique while this was only 9% for Dublin. This may be explained by
the differing characteristics of the two cities and the impact of the respective predictor
variables. The sensitivity index for each variable in each city is shown in Table 5.8, and
shows that the most important variable in Vienna was precipitation followed by max
sustained wind speed. In Dublin it can be seen that the sensitivity index was more
evenly distributed across the predictor variables. Comrie (1997) noted that the
relationships between air pollution and weather are typically complex and non-linear.
Therefore as weather variables were of more importance in Vienna than in Dublin the
addition of non-linear statistical techniques in Vienna has achieved a greater level of

improvement than those in Dublin.

5.2.12.3 Air mass history

The representation of air mass history as variable D; (in Dublin 1) demonstrated an
increase in model performance over the Dublin 2 from 38% to 43%. This finding
highlights that LUR based model predictive performance may be increased significantly
with the inclusion of a variable representing the contribution of trans-boundary air

pollution.

This variable D; also produced a logical result for SO,. In cross-national econometric
studies, urbanisation and average household size are not found to be significant

determinants of sulphur dioxide emissions (Cole & Neumayer, 2004).
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The methodology applied here to the derivation of D; is a first attempt at the inclusion
of such a variable and offers considerable scope for refinement and possible
improvement in its explanatory power. Alternative rating systems, including negative
scores for water bodies or green areas, could be investigated. Similarly, the density of
the grid applied to the derivation may also offer scope for improvement. Other factors
which may alter the eventual score attained by a trajectory include the selected height

and hour of the day, etc.

Future research is required to examine the optimum approach to the derivation of D;
and the extent to which improvements in its explanatory power are possible. Inclusion
of different rating scores for areas with the large combustion plants and sources of
natural dust e.g. ploughing, grazing activities could be incorporated within the grid for
improvement of the model. Such improvements may provide an interesting
comparison while applied in inland cities, where the urban background PMjg
concentration is influenced by long range transport or secondary aerosols (Lenschow

etal., 2001).

It should also be noted that the production of 365 air mass histories for 2009 and the
subsequent production of a rating score for each one was a labour intensive process in
the current study. Future work may also be required to address the automation of this

process for wider use in air pollution modelling.

5.2.12.4 Hourly traffic count

Different forms of traffic volume/intensity data have been used in many previous
investigations of the LUR modelling technique. These included annual average daily
traffic count (Briggs et al., 2000; Molter et al., 2010) and simulated traffic data (Jason
et al., 2008; Smith et al., 2011; Dons et al., 2013b). In the present study, annual

average daily traffic data have also been used to derive the VKT variable for models
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Dublin 2-7. While data representing annual average daily traffic, or derived variables
such as VKT count often becomes a useful parameter for incorporating spatial
variability in models, hourly traffic count, such as applied in Dublin 1, obtained from
the intelligent traffic management systems, i.e. loop detectors may provide additional
temporal information for high resolution LUR based models. Such inclusion may be
required for modelling of air quality variation in the shorter term for road users.
Annual average traffic count may not always be useful for this purpose, because traffic
variability is unpredictable, and traffic causing higher emissions often originates from

outside the study area, or the city (Sider et al., 2013).

5.3 Mapping of air quality

The final models produced for both cities can be applied at any location for the
prediction of PM;y concentration, and this was applied here on a moderate size grid
for discussion. Maps of Dublin and Vienna both were divided into a 400x400m grid and
PMio concentrations were predicted using the final models developed at the centroid
of the each grid cell for a typical day in the winter. Ordinary kriging was subsequently
applied to these data to interpolate between data points and produce maps of PMq

concentrations for both cities. This was carried out using ArcMap 10.1 software.

Figure 5.11 shows the results of this process as a typical graphical output for the best
performing models in the study Vienna 5, and Dublin 7 for a typical winter day. Figure
5.11(c) shows similarity in graphical output of the model developed in a recent study
by Kurz et al. (2014). Kurz et al. (2014) applied a combined emission—dispersion model
system to project PM;, concentrations in Vienna between 2005 and 2020, and a
graphical representation of the model in 2010 showed that higher PM 1, concentration
areas were also modelled as high PMj, concentration areas under this study in a

typical winter day.
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Figure 5.11: Graphical output of average daily PM1o concentration from (a) Dublin 6;
(b) Vienna 5 for Winter Mondays; (c) Simulated exceedances of the daily mean
value for PM1o for 2010 (Kurz et al., 2014).
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5.4 Personal exposure model/route level estimation

Using the ANN models followed by Krigging, the PM;o maps for Dublin city have been
developed for seven weekdays across two seasons (winter and summer). Average
values of the predictors for summer and winter days were applied for PMyg
concentrations. These 14 maps were then overlaid with the road network using

ArcMap (Figure 5.12).
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Figure 5.12: Exposure map with road network (line)

The development of these maps facilitated a comparison of route choice prioritisation.
Here a comparison was initially made for two routes (using real-time data) with the
same origin and destination in Dublin where we consider one of the following as our

priority in route choice:

i) the lowest running cost route

ii) the shortest distance route

iii) the shortest time route

iv) the lowest generalised cost route
V) the lowest air pollution dose route
vi) the lowest CO, emissions route
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Subsequent to this further analysis was carried out using modelled data for 2 different
origin destination pairs each producing multiple routes for each of the route choice
priorities chosen. The lowest/shortest path for the above criteria was implemented
using the Network Analyst toolkit in ArcMap, in which Dijkstra’s algorithm was applied
for the least cost route finding algorithm (ESRI, 2013). Dijkstra's algorithm solves any
network having a single-source shortest path problem and non-negative edge path

costs by producing a shortest path tree.

5.4.1 Determination of route choice factors

The commonly applied cost components for route choice, such as generalised cost,
travel time, distance, and CO, emission were estimated based on the information
given in Table 5.9. Initially, the speed limits for each road links in the ArcGIS road map
was updated using the Speed Limit By Laws, 2011 of DCC (DCC, 2013), and a realistic
speed for Dublin has been considered (Table 5.9). For CO, emission and other network
attributes, a Euro lll emission standard petrol powered vehicle (Y) has been chosen.
This choice of a single vehicle was carried out for simplicity to facilitate the
comparisons. Future work could include the assessment of route choice options for

differing vehicle types which may have varying cost and emissions factors.

For value of time (VOT) estimation, an assumption of work trips with a vehicle
occupancy of 1.31 was included. The required cost attributes were determined using
the following equations (Eq. 5.4 to 5.7). As no comparison was made against public
transport or considering parking fare policy, the generalised travel cost (GC;) was
estimated considering only in-vehicle time and vehicle running cost. The route choice
cost factors were calculated using following equations, and unit cost factors were
obtained from Table 5.9. The distance was calculated from GIS dataset. Running cost

emissions for each route choice were calculated according to Eq. 5.4:
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RC; = RCP,; % L; Eq. (5.4)
Where, RC; = average running cost; RCP,= average running cost per km; L= length of

the link i.

Generalised travel costs (GC;) for each route choice were calculated according to Eq.

5.5:

Where, GC; = generalised travel cost on the link i; VOT = Value of time of the travellers;
TT=travel time on the link i; C= running cost of a vehicle on the link i, and L= length of

the link i.

CO, emissions for each route choice were calculated according to Eq. 5.6:

Ei = EFl * Li EQ(SG)
Where, E; = average CO, emission on the link i; EF;= vehicle emission factor on the link

i using the emission factor equation in Table 5.9 for free flow speed; L, = length of the

link i.

Air pollution dose was determined for each route according to Eq. 5.7:

D = [} C(t).IR(t,m).dt Eq.(5.7)
Here, D=dose (pg); IR(t,m) = Inhalation rate (m®/h) based on mode; time in hour; and
C(t) = Hourly concentration ug/m® ; the concentration in section 5.3 provided daily
average concentrations over the area. Thus the resolution was further higher by
multiplying the values by a global temporal adjustment (the morning peak hour factor
generated by for NO, from all FSMs in Figure C1; Table C5, Appendix C, Alam et al.,
2013c¢).
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Table 5.9. Network setup for routing assessment

Attribute Details Value Source
City centre inside canal 10.2km/h (RSA,
. . . 2012)
Outside Canal residential 17.9km/h
Link Speed at 8.00-9.00
S Urban arterial outside canal 39.1km/h
Vehicle model, Y Euro Ill; Petrol Engine (1400-2000cc); <2.5 GVW* -- --
Boulter et
Emission factor for Y (2532.4+118.34x-0.43167x2+0.0066776x3)/x ** g/km al., (2009)
CO, band for Y Average emission 179g/km E -
Running cost, RC for Y Petrol, Oil, Tyres, Servicing, Repairs & Replacement 0.30 €/km*** | AA(2012)
Trip type Work trip - --
Average occupancy 1.31 NRA,
Value of time, VOT 0.46 €/Min” (2011)
US EPA
Inhalation factor” Car driver & passenger 0:57 ma/h (2009).

*Gross Vehicle Weight; **x= speed (range:5-140km/h); *** Cost per Km was based on 16,000VKT;"=
per person; “Inhalation factor is sensitive to person’s metabolism, breathing amount and physical
activity; car travellers/drivers have minimum physical activity while driving.

From the above conventional cost factors can be grouped into time based cost factors
such as: VOT and TT, whereas distance is predominating for running cost, and distance
based routing. GC is equally dominated by TT and distance. CO; is also a function of
both as emissions factor equation considered speed as a predictor which is a function

of TT.

5.4.2 An assessment with SCATS travel time data

ITS (2010) provided real-time traffic data for several routes in Dublin. Two parallel
routes (Figure 5.13) were selected and corresponding datasets were integrated in GIS
format. The distance for route A was 9.6 km and corresponding travel time was 2.5
hour. The travel time and distance for route B were 47% and 56% lower in comparison
to route A. The results were presented in Figure 5.14. Detail of the result has also been

presented in Table C6, Appendix C.
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Figure 5.14: Dose of PM1o (per km vs. total) for two alternative routes in morning peak
hour in Dublin.

The total dose for route A was higher than that of route B throughout the seasons.
Although route A had higher travel time and distance, per kilometre dose was lower
than that of Route B (by 9.5 to 18.3% in summer and 4.1 to 8.9% in winter). Thus, the
healthy route choice is clearly route B here. This makes a significant difference against
the traditional cost factors such as RC, VOT or GC which are mostly calculated on a per
kilometre basis. On the other hand, the result of this comparison leads to the general

assumption that lowest travel time might reduce the exposure to PMj,. However,
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these two paths were not least cost paths and thus, a further analysis has been

conducted in section 5.2.3 below.

5.4.3 Vehicle routing assessment

The basic assumptions for the traffic assignment stage of transport modelling are that
the individual will have complete information about the route and cost factors, and all
travellers have identical perceptions of cost as well as the same route choice criteria,
and will try to minimize costs. Thus, the driver of the work trip in the current test cases
was considered to minimize either the travel cost, distance, travel time, CO,, or PMyg
dose. Two Origin-destination (OD) pairs have been considered and routes in terms of
least PM;o dose and other attributes have been presented in Figure 5.15. Each origin
and destination points were displayed as O; & D;. The shortest path tool of ArcGIS

network analyst has been deployed for this analysis.

In addition, the actual dose while travelling may differ from the calculated average
dose. The dose may increase as a result of travelling while pollution level is higher, or
an increase in travel time due to congestion. This latter case is also true for an increase
of CO,, and cost. Thus, the following discussion has been drawn from average attribute
values in a given traffic situation, however the findings should stand for all traffic

conditions.

Figure 5.15 shows that the least PMyy dose routes are different from all other routes.
However, as all the routes based on the least value of the conventional attributes
overlapped with each other, Tables 5.10-5.13 may provide a clear picture. Details of

the results are also available in Table C7 and Table C8 in Appendix C.
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Figure 5.15: Vehicle routing assessment for two origin-destination pair

While taking lowest dose values for route 1 in Table 5.10, the conventional cost factors
do not show much variation in summer. Lowest dose is found on Sunday; however, it
is one of the lengthiest routes. In winter, the average dose is higher and showed lower
standard deviation than that of summer. Average distance, and standard deviation of
it are higher and these lead to similar statistics for VOT, RC and GC in comparison to
summer values. However, TT is almost similar to the summer average values. In Table
5.11 average of the lowest dose values over the summer and winter in Table 5.10 were

compared against the values yield by the shortest routes for conventional cost factors.
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Table 5.10: Route 1 Lowest dose for different days of the seasons

Trip information
Runnin
Distanc Travel g Generalis
Dose e VOT Time costs CO, ed costs
Route 1 (ue) (km) (€) (Hour) (€) () (€)
Lowest Dose in Monday 3.65 15.34 13.94. 0.50 4.60 2994.0 18.51
Lowest Dose in Tuesday 3.54 15.57 13.71 0.50 4.67 3001.0 18.37
Lowest Dose in Wednesday 3.46 15.24 13.72 0.50 4.57 2964.0 18.29
_ Lowest Dose in Thursday 3.38 15.24 13.72 0.50 4.57 2964.0 18.29
qé Lowest Dose in Friday 3.11 15.21 13.70 0.50 4.56 2959.0 18.26
A Lowest Dose in Saturday 2.66 15.26 13.76 0.49 4.57 2970.0 18.33
Lowest Dose in Sunday 2.42 15.54 13.64 0.49 4.66 2991.0 18.31
Average 3.17 15.34 13.74 0.50 4.60 2977.6 18.34
Standard Deviation 0.47 0.15 0.08 0.01 0.05 17.17 0.08
Lowest Dose in Monday 4.37 15.22 13.72 0.50 4.56 2962.0 18.29
Lowest Dose in Tuesday 5.02 15.26 13.75 0.50 4.58 2970.0 18.34
Lowest Dose in Wednesday 5.31 16.23 15.67 0.47 4.87 3256.0 20.54
Lowest Dose in Thursday 4.64 15.24 13.74 0.50 4.57 2967.0 18.31
fg Lowest Dose in Friday 5.36 15.26 13.76 0.50 4.57 2970.0 18.34
s Lowest Dose in Saturday 4.52 15.22 13.73 0.50 4.57 2962.0 18.29
Lowest Dose in Sunday 513 15.54 13.64 0.49 4.66 2990.0 18.30
Average 4.91 15.42 14.00 0.49 4.63 3011.0 18.63
Standard Deviation 0.39 0.37 0.74 0.01 0.11 108.45 0.84

Table 5.11 showed that while taking the lowest distance route, the travel distance was
reduced by 8.4% on an average in comparison to the lowest dose, however, dose is
increased by 15.5%. As the distance was reduced by 8.4%, the RC and CO, went down

a little too. In addition, GC and VOT went up due to increase in TT.

While the lowest dose route was compared against shortest routes based on GC, VOT,
and TT, lowest dose route only caused a small increase (<2%) in these values costing a
small saving from dose (<3.8%). However, while route based on lowest CO, was
considered, the small decrease in CO; values led to a large increase in dose (12.8%). If

routing is based on lowest running cost, the dose may be as much as 16.8% higher in
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comparison to the lowest dose route. Although the lowest running cost route might
save 8.5% running cost, minimised 7.8% in distance and 0.8% CO,, overall TT and VOT
were increased. In short, routes with lowest distance can heavily increase exposure to

PMy, if employed in route 1.

Table 5.11: Route 1 routing assessment

In comparison to average lowest dose
Route 1 VOT ‘;r-avel Running | Generalised | Distance | CO, Dose
ime
(%) o) | ot (%) cost (%) (%) (%) (%)
2.2 1
Lowest VOT (%) -1.9 0.9 2.3 0 3.2
i ! -0.4
Lowest Travel Time 0.7 09 0.8 01 0.8 0 08
(%)
i -7.8 -0.8
, LeweskRanning ga | 112 -85 43 16.8
Trip cost (%)
information i 0.1 0
i Lowest Generalised 0.2 11 02 12 38
cost (%)
-8.4 -1.6
Lowest Distance (%) 7.4 9 -7.9 3.4 15.5
-6.9 -1.7
Lowest CO, (%) 5.2 7.2 37 2.2 12.8

For Route 2, similar to route 1, dose values were higher in winter in comparison to
summer (Table 5.12). In addition, values for conventional cost factors are also higher
in winter than that of summer. However, unlike route 1, the variations in values for
conventional cost factors are similar in summer and winter. Table 5.13 showed that
while taking the lowest distance route, the travel distance and running cost was
reduced by 17.2%, and 17.5% on an average in comparison to the lowest dose route,
however, dose value was increased by 22%. Decrease in values of cost factors for the
lowest routes based on VOT, TT, GC and CO, were observed below 9.8% with a small
increase of dose (<6.4%). In short, routes with lowest distance can heavily increase
exposure to PMyq if employed in route 2. In addition, lowest TT in route 1 and route 2
offered excess 0.8% and 4.4% excess PM;q dose although dose is a function of travel
time. In addition, lowest travel time increase distance of 0.1% over lowest distance in
route 1 which is 14.6% for route 2 (Table C7-8, Appendix C). From table 5.12-5.13,

lowest TT was found to increase distance by 0.8% for route 1 and decrease 1.8% for
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route 2 in comparison to the lowest dose route. Although, dose in a function of TT, the
characteristics is not similar to TT, or any other similar cost factors derived from TT. It

is also notable that saving CO, causes increase in dose, but in a different magnitude.

Table 5.12: Route 2 Lowest dose for different days of the seasons

Trip information
Travel Runnin Generalis
Dose Distance Time g ed
Route 2 (ug) (km) VOT (€) (Hour) cost (€) | CO:(g) cost (€)
Lowest Dose in Monday 3:33 14.16 11.60 0.42 4.25 2649.0 15.85
Lowest Dose in Tuesday 3.23 14.15 11.59 0.42 4.24 2646.0 15.84
Lowest Dose in Wednesday 3.17 15.79 13:53 0.49 4.73 3008.0 18.27
Lowest Dose in Thursday 3.01 14.01 11.50 0.42 4.20 2621.0 15.70

v

E Lowest Dose in Friday 2.67 14.62 11.93 0.43 4.39 2730.0 16.32

=]

A Lowest Dose in Saturday 2.20 15.78 13.52 0.49 4.73 3006.0 18.26
Lowest Dose in Sunday 2.03 14.20 11.63 0.42 4.26 2654.0 15.89
Average 2.81 14.67 12.19 0.44 4.40 2759.2 16.59
Standard Deviation 0.52 0.78 0.92 0.03 0.23 172.62 1.16
Lowest Dose in Monday 4.58 15.64 13.43 0.49 4.69 2982.0 18.12
Lowest Dose in Tuesday 3.33 1579 13.53 0.49 4.74 3008.0 18.27
Lowest Dose in Wednesday 413 15.62 13.41 0.49 4.69 2978.0 18.10
Lowest Dose in Thursday 4.02 14.15 11.60 0.42 4.25 2646.0 15.84

E Lowest Dose in Friday 4.78 15.68 13.45 0.49 4.70 2987.0 18.16

= Lowest Dose in Saturday 3.90 14.27 11.68 0.42 4.28 2667.0 15.96
Lowest Dose in Sunday 4.39 14.23 11.66 0.42 4.67 2661.0 15.93
Average 4.16 15.05 12.68 0.46 457 2847.0 17.20
Standard Deviation 0.48 0.79 0.97 0.04 0.21 177.16 1.21

Table 5.13: Route 2 routing assessment
In comparison to average lowest dose
Route 2 VOT Travel Time Running Generalised Distance CO, Dose
(%) (%) Cost (%) cost (%) (%) (%) (%)
-6.9 -6.3 -5.3 -6.2 -4.7 5.5
Lowest VOT (%) 4.3
Lowest Travel Time -6.8 -7.0 -5.5 -6.2 -4.8 -5.6 A
(%) )
Lowest Running cost 51 5.0 -17.8 -0.7 -17.0 -7.9 18
Trip (%)
information | Lowest Generalised -5.4 -5.5 -13.1 -7.5 125 -9.5 59
cost (%) ’
) 9.7 9.6 -17.5 2.6 -17.2 -6.1
Lowest Distance (%) 22
-5.7 -5.7 -13.5 -7.2 -12.8 -9.8
Lowest CO; (%) 6.4
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5.5 Conclusion

In conclusion, the results of this investigation highlight that it is possible to predict air
pollution concentrations using adaptations of the LUR methodology, to an acceptable
level of accuracy using a limited number of FSMs. It has been shown that this is best
achieved using non-linear statistical modelling techniques such as NPR or ANNs. The
mapping shows that the daily variation of air quality is notably different across the city
for summer and winter days, and thus the routing based on dose value will be

constantly changing.

From these two route analyses, it was found that lowest travel time and distance does
not offer lowest dose, and routing decisions based on time and distances and related
parameters are most contradictory with the dose based routing exercise. The analysis
introduces a citywide modelling exercise for routing analysis based on lowest
exposure, and shows a smaller increase of dose with a small increase in travel time
and large increase in dose for shorter distance. For different origin and destination
pair the magnitude of the velues might be changed. However, the research questions
regarding air quality mapping, routing exercise methodology development and
comparative analysis with traditional cost factors were attained. Although only two
routes from many thousands of possible OD pairs were analysed, the result provides a

generic indication of the characteristics of air pollution dose as a route cost factor.
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Eco-Routing

Chapter 6
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6.1 Introduction

Chapter 2 sets out the need for developing an Eco-Routing model (based on lowest
CO, emissions) that will overcome the limitation of existing static models, and work
with minimum inputs so that it may be suitable for use in any standard mobile device,
e.g. smartphones which is popular in modern days. In addition, the simplicity in the
methodology and minimum complexity were other criteria considered for model
development and were important for rapid information processing and lower
calculation time.. Overly complex emissions models may present a barrier to their
implementation in mobile devices at present due to the length of computation time
involved. The estimations from the process is a key input for personalized
recommendation for the improvement of user travel behaviour and achieving overall

aim of Eco-routing.

The PEACOX project provides an excellent platform to incorporate an Eco-Routing
model for passenger car with the other emissions modules of rest the road-based and
rail based modes (Figure 6.1). A dynamic Eco-Routing model for passenger car will
serve the requirement for the PEACOX project in addition of acquiring a position for
research according to Chapter 2. The model architecture shown in Figure 6.1 does not
include the entirety of the Eco-Routing model as emissions estimation for other modes
or multimodal trips were also included. As the focus of this thesis lies with smarter

driving, these elements of the model have not been reported here.
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Figure 6.1: PEACOX Project overview (PEACOX, 2014)

Note: An overview of the different components of the PEACOX project can be found in Box-1, Appendix
D

This chapter presents the development of the dynamic Eco-Routing model for
passenger car which predicts the carbon footprint of an individual trip. This chapter
also varies with the other two modeling exercises in Chapter 4 and 5, as the developed
model for CO, Eco-Routing is a system design, and presents its functionality in
comparison with a simplified model that is static in nature, whereas other models in
the previous chapters presented various scenarios. For the purpose of the model

development, the objectives are mentioned below:

e Objective 1: Ascertain applicability of emissions factors that assist in the
development of an efficient, accurate and effective method of estimating CO,
emissions.

e Objective 2: Develop and verify a dynamic an emissions model that will predict

CO, emissions from transport before a trip is undertaken.
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e Objective 3: Develop a simplified model and compare the result of two models
using real world field trial data.
e Objective 4: Evaluate performance of the dynamic model for real time

application.

The applicability of the emissions estimations that can be representative of congestion
primarily depends on the selection of appropriate unit emission factors. Thus, the
sensitivity of the emission factor generations in relation to congestion was analyzed to
carry out the modelling task. After achieving a satisfactory result, a dynamic model
was then developed. In addition, a static model (a simplified version) was also
developed to make a comparison of the performance of the original model to existing
approaches. After development of the original (dynamic) and static models, a
verification of the functions of the models for Eco-Routing was analyzed to ensure that
the models were connected well in a desired platform. Finally, data were obtained

from the real-world experiments in order to analyse the performance of the models.

6.2 Modelling methodology

To calculate and predict emission as accurately as possible with existing knowledge on
emission factors, the following general methodology (Figure 6.2) has been developed.
The primary consideration was the input resolution of the model, especially, the
vehicle trajectory of the model. Real time speed (from predictions based on real-time
traffic information) of the vehicles may be a surrogate indicator for congestion, to

some extent using the same logic argued by Smit et al. (2008a) for modal models (i.e.
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considering instantaneous second by second vehicle trajectories speed and
acceleration) which are capable of taking congestion into account. The modal model
explicitly considers congestion, and this has been noted in chapter 2. Considering this,
an emissions modeling methodology has been developed following a strategy where
emission factors will be changed according to the real time speed of the vehicles. Thus,
the model would consider congestion in a route with lower speed, in comparison to
the other routes. In addition, some routes in reality may be comprised of roads with
lower speed limits for safety reasons; the attractiveness of such a route in terms of

emissions would also be covered by the same methodology.
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Figure 6.2: Basic emission modelling methodology

The model counts occupancy data according to peak and off peak hours, real-time
speed, and both hot and cold start emissions. The model operates according to Eg.

(6.1):

168



E= (B +E)/0; Eq. (6.1)
Where,

E; = Yr-1 EFH(S) * L;; or hot emissions from all the links in the route

E, = EFC,(TT,L,, Temp, P); Cold emissions from the route;

0f= Occupancy Factor; L = length, EFH) = Hot emissions factor which is
function of S = Speed in link ‘k’; EFC,, = Cold emissions factor for all links ‘which
is function of TT= Travel time, Parking time (P) & Temperature (7), etc.; and

number of links, k=1, 2, 3 ....... , N

Thus, to get the best result, it was necessary to connect the input source with real
time speed information systems like the Intelligent Transport System Infrastructure. It
has been assumed that the real time link speed will be representative of the vehicle
speed. Boriboonsomsin et al. (2012) noted that if the traffic speed is misrepresented in
their developed Eco-Routing model, the fuel consumption and emissions estimates will
not be accurate. Thus, with the appropriate input from any specific city, the model
could be applied to any city for Eco-Routing. There are possible approaches that can
be discussed for the use of speed input for predicting emissions, either by: i) obtain
floating car speed data as input; ii) to connect the model with real time intelligent
traffic management systems (SCOOT, SCATS or UTOPIA), or to any real time
information source; iii) by adopting V2V or V2I technologies; and iv) building a driving
cycle generation tool capable of working online based on real time variables (Brady,

2012).

Briante et al. (2014) noted various technologies to obtain Floating Car Data (FCD) such
as GPS-based, phone-based passive cellular measurements, participatory (cellular only,
hybrid cellular, off-loading-smartcar). Beckx et al. (2010) described a GPS based

enhanced data collection tool for the assessment of vehicle exhaust emissions by
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converting the second-by-second global positioning system based travel data into
emissions for individual vehicle trips. Herrera et al. (2010) noted that data from 2-3%

of cell phone penetration in a traffic flow is equivaient to the traffic flow velocity.

6.2.1 Hot emission factors

A study by Boulter et al. (2009) under TRL was carried out reviewing emission factors
for hot exhaust emission from the vehicles. The CO, emissions factor equations were
developed following ‘real-world’ driving conditions under that study. These emission
factor equations were adapted in this Eco-Routing model. These emissions factors are
slightly higher than that of conventional emissions factors, and are called ‘ultimate’
CO; (Figure D1, Appendix D). These ultimate emissions are the tail-pipe CO, emissions
plus the other pollutants from the exhaust that eventually oxidise to CO, in the
atmosphere. The emissions equations are valid for 5-140 km/h, however, it is expected
that link speed would be closer to the minimum 5km/h. Speeds lower than 5km/h
have been considered as 5km/h in the current study. The emission factors were

estimated in the following form, Eq. (6.2):

Y = (a+bx+cx?+dx3+ex* + fx° + gx®)/x Eq. (6.2)

Where, Y= Emission factor in g/km; x= Speed in km/h; Coefficients = a, b, ¢, d, e, f and

g

The model was designed to capture real-time speed from routes. As real time speed
varies according to the level of traffic, the model explicitly considers congestion
impact. Figures 6.3 and 6.4 present the impact of speed change on unit emission
factor. It is noticeable that CO, emission rate is higher for lower speed, such as 10km/h
than the other two speed categories. This is also consistent with the conventional

emissions speed relationship depicted in Figure 2.1, Chapter 2.
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Figure 6.3: COz emission factors (g/km) for cars (a) Petrol; (b) Diesel: <2.5 tonnes
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Figure 6.4: CO2 emission factors (g/km) for cars (a) Petrol; (b) Diesel: 2.5-3.5 tonnes

6.2.2 Sensitivity of the hot emissions factors to speed change

The primary aim of this analysis was to detect whether the car emission factors (hot)
used in the model was sensitive to congestion, and whether speeds close to zero can
make any significant impact on emissions estimation for Eco-Routing. Thus, micro-
simulation has been applied to private car trips. CO, information from car trips was
generated from the VISSIM environment, and corresponding road speed and travel
time data have been modelled and recorded for several routes during peak hours. The
road speed and travel time data was then input to the developed Eco-Routing model

(MATLAB), and the CMEM model for comparison purposes.
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6.2.2.1  VISSIM environment setup and data modelling

A portion of the Dublin city centre road network near Trinity College (Figure 6.5) has
been selected to be the test network. The same sources of data as that used in
Chapter 4 were applied here: speed limit of the roads, turn movements for each
junction and traffic flow direction, average evening peak hour traffic in 2011 (Figure
D6, Appendix D), traffic composition- 3% bus and 97% car traffic in peak hour, have

been applied to this simulation.

0'connnell

Figure 6.5: Selected network and digitized roads (in green) for simulation

The simulation time has been chosen as 500 seconds based on the purpose of the
simulation. The target of the simulation was to analyse the impact of various levels of
traffic on CO, emission factors of an individual vehicle, where the calibration and
validation of the network is redundant. For verification, the network was designed
with priority rules and conflict areas, instead of with traffic signals. The network was

simulated (Figure 6.6) using the static routing function of the traffic counts.
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Figure 6.6: (a) Simulated traffic in the network; (b) Simulated traffic at O’Connell bridge

The embedded emission factors within VISSIM were based on Volkswagen emission
data, which was not available to the current study (See Section 3.3.2.1, chapter 3).
Thus, following the concept of emission factors relationship in vehicle trajectory and
the VISSIM user manual, engine map data were derived using real world driving data in
Dublin, and CO, emissions equations from a vehicle. The CO, emissions factors have
been derived in a desired format from a real world driving profile data (captured using
Garmin GPS for validation purposes on an 11.3 km route over 56 minutes in
December, 2012) and the emissions factors equation of a petrol powered Euro I
emission class vehicle (Gross Vehicle Weight <2.5 tonnes Engine size: 2000cc) that has
been adopted in this study. In the trajectory data all speed lower than Skm/h has been
considered as 5km/h speed. The desired format of the CO, emission factor was a 3D
matrix of speed (km/h), acceleration*speed (m?/s®) and emission factors (mg/s) which
has been derived for the emission module of VISSIM (Figure 6.7). On the other hand,

the detailed vehicle trajectory data has also been inputted into CMEM.
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Figure 6.7: Emission factor matrix of CO2 for VISSIM

6.2.2.2  CO, estimations from the trips in VISSIM

The simulation has been carried out for peak hour traffic, and thus, a direct
comparison was possible of VISSIM CO, emission output with the results of Eco-
Routing emission model (because the occupancy factor used in the emission model is 1
in peak hour). However, VISSIM is not designed for trip by trip emission estimation
(rather it produces link or fleet based emissions estimations). Thus, the following
procedure has been applied for CO, emission estimation from a vehicle and data

modeling.

The car fleet for the simulation has been restricted to one category of vehicle. During
each simulation, a unique number of vehicles have been specified for recording of the
vehicle trajectory and corresponding CO, emission figures, road number and
corresponding time as well as travel distance on each road. There was no control over
the trip origin and destination point for any specific vehicle using this approach.
However, that did not have any impact on the objective of this section of the chapter.
During simulation runs, four vehicles: number - 30 (started at 3 second), 50(started at

6 seconds), 200 (started at 27 seconds) and 450 (started at 58 seconds) have been
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specified randomly and the route and trajectory of these vehicles has been presented

in Figure 6.8.

Figure 6.9 shows the CO, emission profile in deci-seconds for vehicle number 30. Table
D1, Appendix D presents the database format of each vehicle. CO, emission has been
summarized from this database. A similar database has been stored for each link of
the network during the simulation that contained a time stamp, volume, density and
link speed. From the time stamp and link number, link speed has been identified
where selected vehicles (e.g. 30) traversed in the network. This selected information
has been fed into the Eco-Routing model and CMEM model for comparison and CO,
information has been calculated. Estimation has been presented for vehicle 30 in the
Table D2, Appendix D. The traffic volume on the link, density, etc. has also been

observed from Table D3, Appendix D.
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Figure 6.8: Vehicle moverhent paths and trajectory in VISSIM
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The CO, estimations of the VISSIM and Eco-Routing models were surprisingly close in
Table 6.1 below, although the methodology of emission estimation is different. VISSIM
applies the methodology of a power based emissions model whereas; the Eco-Routing
model developed here follows speed based logic. However, similar results occurred
because the emission factors used for VISSIM were originally generated from the same
source as those used in Eco-Routing. The results were not exact because VISSIM
estimations were based on a second by second analysis whereas the PEACOX Eco-

Routing estimations were based on link speed.

On the other hand, the CMEM model was developed for Light Duty Vehicles (LDV) and
not for any specific vehicle (unlike Eco-Routing), and thus, model results cannot be
entirely matched. However, the sensitivity of the models to speed change, showed

similarity.

The important feature of the analysis is that vehicles faced different levels of traffic
volume and congestion while traversing the network. The simulated network has been
taken from a 30km/h zone and the speed limit on the roads was designated as

30km/h. However, the table confirmed that the vehicle was forced to follow different
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speeds due to different levels of traffic congestion, and produced emissions according
to that speed. The average link speed was as low as 13 km/h for vehicle no. 450. When
this link information was included in the Eco-Routing model, the generated emission
was found to be similar to the estimations of the CMEM and VISSIM modules in the

Table 6.1.

The cold start emission factor that has been used in Eco-Routing was not included in
this analysis. However, cold start emission factors were previously validated by the
ARTEMIS project, and inclusion of this will enrich the emissions outcome of the Eco-

Routing model.

Table 6.1: Estimated emission from VISSIM software and Eco-Routing model

COy(g)
VISSIM :
VISSIM :
Vehicle Distance Link
Vehicle T |
N, 15 TR e VISSIM Eco-Routing |  CMEM
Ti
(km/h) EE) Estimated Estimated Estimated
30 494.08 28.95 64.8 141.1 139.1 120.8
50 242.47 26.02 .34 242.5 2549 194.0
200 192.77 27.52 52.7 53.02 55.6 38.6
450 935.88 13.25 369.1 474.6 465.1 363.8
0.9989 --
Pearson correlation coefficient, r
-- 0.9982
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6.2.3 Cold emissions factors and cold distance

To ensure accuracy, the model will take account of the effect of cold start emissions
which is dependent upon ambient temperature. Cold Start Emissions are the excess
emissions when the emissions-control equipment has not yet reached its optimal
operating temperature. As cold start emissions are highest when engine is started,
gradually decrease as the operating temperature approaches, cold start is associated
with time, or travel distance in running condition (Colls & Tiwary, 2010) which is often
called ‘cold distance’. To account for the “Excess cold start emission per start”
equations developed by the ARTEMIS Project have been included in the model
(Boulter and Lathlam, 2009). The general cold start equation is Eq. (6.3):

as

EE(T,V,6,t) = w* [(T,V)."=.g(t) Eq. (6.3)

Where, EE = excess emission for a trip in g; V = Mean Speed in km/h during cold
period; T = ambient temperature in °C; t = Parking time in hours; 6 = d/dc (T, V),
dimensionless travelled distance = travelled distance, w = reference excess emission at

20°C and 20km/h.

6.2.4 Occupancy factors

Occupancy of the vehicles has been considered to estimate individual carbon footprint
CO; in kg/person-km (Figure D2, Appendix D). 95% of cars were found to have single
occupancy during peak hour in Dublin (NRA, 2004). In off-peak periods these emissions
were further divided by an average occupancy factor of 1.4 persons. However, access
to occupancy data for each mode is not convenient in real time applications and thus
the models consider low resolution occupancy factors according to weekdays and

weekends in the form of peak and off-peak periods (Figure 6.10).
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Figure 6.10: Occupancy factor for peak and off peak periods.

Taking Dublin as a case study, it has been found from NRA (2004, 2009) that the peak
period in weekdays remains stable, at 7am-9am for morning peak and 4pm-6pm for
evening peak (as evidenced from the years 2003 and 2008, Figures D3 and D4 in
appendix D). As, there is no distinct peak in weekends (Figure D5 in Appendix D), the
whole day has been considered an off-peak period. It has been assumed in the models
that minimum occupancy occurs for peak periods and normal occupancy in an off-peak

period and this will be stable throughout the day.

6.3 Dynamic Eco-routing model

The dynamic Eco-routing model developed here will give a prediction of CO;, on the
emission for the routes on a trip and per person basis (i.e. the carbon footprint of
individual travel). Emissions can be predicted for different routes, and an optimal
route can be selected based on the least emissions route. The emissions will be based
on the specific car that user owns, or in other words the model is sensitive to the
vehicle mass, engine size, catalyst converter and emission standard of the vehicle. In
addition to that model is also sensitive to peak and off-peak conditions, city

temperature, and speed variation.
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6.3.1 Assumptions of the model

As the modeling methodology involves the selection of different factors from
literature, a few assumptions were required for achieving the overall aim of the

model. Accepted assumptions were included below:

Weekends will be considered off peak throughout the day.

Morning Peak Period: 7-9 am and Evening Peak Period: 4-7 pm for the week

days.

Peak and off peak hour emission factor or occupancy are assumed to be constant

for the peak and off-peak period respectively.

- Peak and off-peak road situations are assumed to be constant throughout the

day and will be applicable for overall transportation network.

- ARTEMIS Cold Start Euro 4 emission equations for petrol have been taken for
Euro 5 and 6. Similarly, Euro 3 cold start emission equation has been taken for

Euro 4, 5 and 6 vehicles.

- Cold Start emission equations are not subject to engine capacity. Where such
equations are not available, equations for vehicles with similar characteristics

have been taken into account.

- Parking time is calculated from the last time the engine was started.

6.3.2 Inputrequirement

The prediction model will take input for requested route IDs, length and use those
data against emission factors/equations and other variables in the model for

predicting emission. The emissions prediction model requires the following data input:
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e Modes and segment length according to route segment IDs for an entire trip.

e Real time speed (based on real time traffic) according to route segment IDs.

e Vehicle profile information (Private vehicle type-Euro category, vehicle weight

and engine size, fuel technology and catalyst converter, etc.).

Real time ambient temperature.

Private vehicle occupancy.

Database of Emission Equations for private cars.

Time and Date.

6.3.3 Medel architecture

The architecture of the Eco-Routing emission model has been included in Figure 6.11.
The model was designed to work with route recommendation engines (as part of the
PEACOX project a route recommendation engine was developed by other partners,
and was available for use here). Alternative routes were identified and inputted into
the emissions model and these could be obtained from any recommendation engine.
The model takes link information on the routes, such as link ID, and link distance for all
the routes. Link ID finds its match with the links ID from the real-time data provided
and captures real-time speed information. If the link ID system is different, link can be
matched based on geo-points (e.g. latitude and longitude). From the Eco-Routing
model user profile, the vehicle characteristics are called at the same time when the
emission model is called for estimation. The vehicle characteristic information
obtained generates appropriate codes for hot emissions and cold equations for a
vehicle class that the user owns. In the first step, the real time information enters into
the emissions equation to generate link by link CO, emissions factors which were later
multiplied by the distances of the corresponding links. The values for different links

were stored in a database according to the differing route options.
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Figure 6.11: Eco-routing model architecture

While these calculations are performed, another part of the model calculates cold
start emissions. To calculate cold start, the model requires the total distance for the
route, time since the car was parked (parking time), ambient temperature and travel
time information. The model can be connected with a static database for average
ambient temperature for a city, or obtain real-time city temperature from online

sources. The later was designed for the current dynamic model.

The model generates cold start emissions per start according to the vehicle speed and
the aforementioned information. These emissions were then added with the hot

emissions figure.
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At the time emission model is enacted to carry out a calculation, a search function
awakens to find out the difference between last trip time and current trip time (as part
as a smartphone application of this model). If the difference is more than 12 hours, the
model assumes that the catalyst is completely cool. This search function also finds out
the day of the week and time of the day to identify whether the trip is being
conducted at peak or off-peak hour. In a database inside the model, information
regarding city specific peak and off-peak occupancy information were stored which
can be updated according any city, or can be connected to ITS infrastructure (in the
current project this was carried out for Dublin and Vienna). The final emissions figures
were then modified according to the occupancy before presenting this information to

the users of a smartphone.

6.4 Simplified model

A simplified model representing the conventional Eco-Routing approach was also
developed (Figure 6.12). This model is a static distance based model which was applied
as a platform to compare the performance of the original (dynamic) model described

in section 6.4.

There were 96 equations in the original model (section 6.4) for petroi and diesel
vehicles that differed according to engine size, euro emission standard, etc. However,
only static emissions factors for one specification (e.g. Euro-6 for four engine sizes) for
all petrol and diesel has been applied in the simplified model. This simplification, as
mentioned earlier was conducted in part to increase the running speed of the
application as well as for comparison purposes. Cold-emissions factors were not
included as a part in the simplified model, because it included many complex
equations, and required additional inputs (e.g. real time city temperature, catalyst
converter and last trip information). The differences in design in the simplified model

in comparison to the original model are summarised below:
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e No temporal variation in congestion (Peak/off-peak).
e Number of car category’s reduced to 8.
e No coid start emissions inciuded.

e (Car emissions are no longer sensitive to speed changes.
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Figure 6.12: Simplified emission modelling methodology

In the simplified model, total emissions are the product of static emissions factors in
relation to the distance, and broad category of the vehicle the user owns. In
comparison to the original model, the simplified model does not have any emissions
equation; rather the model has static emission factors for a limited vehicle technology
in terms of engine size, and fuel type. The model (Eq. 6.4) is given below and is typical

of the approach of many static Eco-Routing models highlighted in Chapter 2:

e TR sl Eq. (6.4)

Where, T = Total emissions from the link; EF = Emissions factors according to the

vehicle m; L = Link length; and n = number of links.
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6.5 Model algorithm

To calculate the vehicle emission according to the given input for each model, vehicle
characteristics have been coded in the Tables D4-D10 in appendix D for the original
model and D11, Appendix D for simplified model. Cold start emission equations and
associated values, as well as hot emission coefficients were also included in the Tables
D5-8 in the appendix. These factors and equations have been used to develop the
models. Initially, the original model was developed in MATLAB (Box D2, Appendix D),
and later model was recoded in Java as a module in the PEACOX Project mobile app
(Figure 6.13). Appropriate vehicle characteristics input for the above category was

designed in the user profile of the app for the emission module.

The app is available online at:

https://play.google.com/store/apps/details?id=com.fluidtime.android.peacox (Last

accessed on 17.12.2014).

ret Dubien, Co Ontdn, wiand
=]

Figure 6.13: Different interfaces of the PEACOX App: (a) Mode selection priority;
(b) Vehicle technology selection interface; (c) result from emissions modelling
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The users of this app have options to choose their priority over different travel modes
(Figure 6.12a), and also are able to choose the vehicle technology they are going to
use (Figure 6.12bj. The user can find the alternative routes for passenger car if car

options are selected in the preferred mode option.

6.6 Model verification

To ensure the functionality of the model in the mobile platform a few samples were
taken from field trial data and analyzed. These samples have been collected from the
Eco-Routing emission model recorded online from user activities, and the assessment
of these provided an indication of the functionality of the model during a field trial
which took place in summer 2013 in Vienna. This analysis also confirmed that the
model was correctly implemented on the mobile devices with respect to the
conceptual model that was described in section 6.4. This analysis was also required as
the model has been transferred to Java format from its original MATLAB code and the
various input sources were segregated amongst various other PEACOX project
components. Five sample requests were made during the second week of September

2013 (Table 6.2). The result was satisfactory.

There was a cold start emission component along with the displayed CO, figure. For
this reason, unit emission from the car trip has been estimated for the trip length and
compared with the unit emission factor in Table 6.2. The unit CO, factors (g/km) were
within acceptable limits. Besides, the small car produced lower CO, emission (request
1 vs. request 2) and diesel vehicle (request 3) produced higher emission in comparison

to a similar petrol-powered counterpart (request 4).
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Table 6.2: Requested routes and corresponding CO:2 values
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6.7 Model evaluation

The performance of the model was evaluated using field trial data. In order to assess
the applicability of the dynamic model in real time application both improved
performance of the dynamic model in relation to simplified model and time

performance were considered.
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6.7.1 Model comparison: Dynamic vs. Static

In August 2014 the PEACOX mobile app was tested by field trials from 25 users of the
app in Vienna and 25 users in Dublin were selected after analyzing a screening
questionnaire that were forwarded to them. Users used a route planner developed by
the PEACOX project for eight weeks where both the original and simplified Eco-
Routing models were included as a part of a multi-modal Eco-Routing navigation tool.
Both of the input and output of the models were stored in an online server. Stored

data were obtained through pgAdminlll open source software (Figure 6.14).
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Figure 6.14: Car emissions factors generated by models

6.7.1.1 Estimated emissions during field trial

The results that were presented in the PEACOX application in the field trial were
stored in the server according to road segments/links. Figure 6.15 shows the
estimation of CO, figures for passenger cars during the field trial. The analysis was

conducted on the results that were based on routing options provided by the
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recommendation algorithm. The users had options to guide the recommendation
engine to develop recommendations of Eco-Routes for car only or for routes using
different modes (Figure 6.12a). However, the users mostly used the default options of
multi-modal routes, and thus, a comparative analysis of two alternative routes for

cars-only could not be performed using the data obtained.
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Figure 6.15: Car emissions factors generated by models

It can be noted in the Figure 6.15 that the estimations are similar between the original
and simplified models. The models CO, estimations (g) were averaged over the trips
estimated by the models and results were presented in the Table 6.3. For a fair
comparison between the original and simplified models, the cold start emissions were

not included in this analysis.

Table 6.3: Model generated unit CO2 emissions

Standard deviation for unit
Average CO, (g) from all the trips emissions g/km
Pearson Original
Mode r Simplified Model Model | Simplified Model | Original Model
Car 0.975 2204.759 2080.959 0.000 67.848
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Although, it can be noted that the Pearson r for the original and simplified models is
acceptable, the average values and standard deviation shows a significant variation in
the initial model whereas no deviations were present in the simplified model. This
indicates that simplified model underestimates or over estimates the emissions
figures. From the emissions and speed relationship in Chapter 2, it is understandable
that in lower speed and higher speed, the simplified model underestimates the
emissions and speed in between overestimates the emissions. Figure 6.16 presented

the variation of unit factors for CO, emissions.
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Figure 6.16: Box plot of the emissions factors generated by the original model

The spacings between the different parts of the red box in the Figure 6.16 indicate the
degree of dispersion of the data. The top and bottom lines of the box show the 75th
and 25h percentile of the data. Thus, half of the data are within 180-230 g/km range
are found. The horizontal line in the middle of the box shows the median value and
thus it can be understood that the distribution of the data is skewed towards the

higher values. This skewness is also observed from the black dotted points or outliers.
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However, there are not any unexpected values in the figure. Higher emissions factors
in the outliers can generate as a result of a higher weight/engine of a passenger car in

lower speed route in the presence of low catalyst temperature.

6.7.1.2  Causes of variation in emissions estimations in Eco-Routing

The generated results of the original emissions model in the PEACOX app that was
presented to the users during field trial were modelled again in order to identify that
the factors that might affect emissions variation. Table 6.4 shows that the variation
due to peak and off-peak factors, and other factors that were considered in the model.
Table 6.5 and Figure 6.17 show the Analysis of Variance (ANOVA) table and diagnosis
plot respectively of the developed model in Table 6.4. The results were mostly well
explained by the regression model (R’=96%) in Table 6.4, however, a few systematic
deviations may be observed in the residual plots. This shows the quadratic nature of

the equations applied in the Eco-Routing model.

Table 6.4: Model generated unit CO2 emissions

Regression model based on the emissions factor generated by the Eco-Routing model

CO,; (g)=122.019+Peak*30.664+Duration*1295.797+Length*134.282

Max VIF= 2.89; R°=0.96

Table 6.5: Analysis of CO:z estimation of the modelled data

ANOVATable Df Sum Sq Mean Sq F value Pr(>F)

Peak 1 2.760e+06 2.760e+06 12.36 0.000448 ***
Duration 1 8.351e+09 8.351e+09 37382.04 < 2e-16 ***
Length ] 3.070e+09 3.070e+09 13741.46 < 2e-16 ***
Residuals 2249 5.024e+08 2.234e+05

Level of Significance: 0 “*** 0.001 **' 0.01 “** 0.05°"0.1""1

191




10000
5

N )
| O o 8
= e 8
] o ] o
= S = -
o 8 o
s ° P E o
| o xr 3 |
== £ D ‘
s © -7 G
= =
g 2
=
E 2 |8 8 £ :
=) 8_ o
©C o © © ‘
! I I I I I }
00 02 04 06 08 10
1
Peak e |
Normal Q-Q Plot
| " i
T g .
) °
wO i
S o
= S . 8l
=1 | S [
\'o o -
| @ ™ g =
g
1& 3
- 2
‘+ 3 /7.‘
| € & ° ]
s 8 f
= S
g S
£ £ g | =
S o - I

=T = T T T
T T I T I T I 3 2 1 0 1 2 3

0 50 150 250 Thearetcal Quanties

Length

Figure 6.17 : Analysis of CO2 estimation of the modelled data

6.7.1.3 Cold start emissions and cold distance

The additional emissions that were estimated in the dynamic emissions model were
cold start emissions which were in the range of 189-350 g/start, and were added with

the hot emissions for each alternative trip.

Figure 6.18 presents cold start distance for different trips requested by the users in
the field trials. As cold emissions distance is a function of travel time, distance, parking
time and ambient temperature, the variation of travel time and distance offered by
differing alternative routes will provide more precise CO, information of the routes

and thus a different attractiveness of the routes.
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Figure 6.18: Car emissions factors generated by models

6.7.2 Model performance against actual GPS tracks

The actual representativeness of the model has been assessed using GPS track data
from the field trial users. Table 6.6 shows a sample of user IDs which participated in

the field trial. This time CMEM was used to compare emissions estimates.

In order to carry out this analysis, the car trips that were selected by the users were
separated from a large dataset. One part of the PEACOX mobile app provided
automatic mode identification using accelerometer data. Thus, in order to be certain
that recommended car trips was actually performed by the users, accelerometer
readings were matched against the Eco-Routing IDs, and GPS tracks were identified for
the trips. The tracks were later inputted into the CMEM with actual on-site speed and
secondly, with the speed that was inputted into the PEACOX emissions model (link-

based average speeds).
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Table 6.6: Model generated unit CO2 emissions

Mode detection module CMEM CO; g/km
Emissions output Given P Q
models Actual with speed
called at | Trip Begin | Trip End | Speed actual to the
(DD:MM: (DD/MM/ (DD/MM/YY | (km/h) speed model Original Simplified
YYYY; YYYY; YY; (CO, (CO, E (dynamic) (static)
User | HH:MM:SS) | HH:MM:SS) | HH:MM:SS) g/km) | g/km) 2 | Model Model
13/08/201 | 13/08/201
13.08.201;4 | 4, 4,
403 | 18:03:19 18:12:20 18:28:38 13.80 369.00 | 29.97 118 129 198
25/08/201 | 25/08/201
25.08.2014; | 4, 4;
403 | 12:38:25 12:40:43 12:51:58 35.20 225.00 11.69 259 147 198

23/08/201 | 23/08/201
23.08.2014; | 4, 4,
417 | 17:43:44 18:39:48 19:16:35 21.51 249.00 11.50 263 180 198

18/08/201 | 18/08/201
18.08.2014; | 4; 4;
433 | 12:40:39 13:16:46 13:25:10 13.99 379.00 | 16.14 258 | 170 198

08/09/201 | 08/09/201
28.08.2014; | 4, 4;
437 | 20:42:35 20:42:59 20:57:38 42.27 189.00 14.44 261 172 198

The result shows a Pearson r of 0.82 between CO, estimations while comparison was
made with similar input for Eco-Routing and CMEM (Column P and Q). However, while
actual speed is used the results were not similar, as the actual speed and inputted
speed has a co-relation of -0.55. This shows the importance of real-time speed

requirements for Eco-Routing models.

As highlighted above, the simplified static model did not include real time speed
information for comparison with existing approaches and to enable the PEACOX app to
run faster. The limitations of the existing approach to Eco-Routing and the limitation of
simplifying the dynamic model are clear here. Where the primary target of the
PEACOX project was encouraging people to make environmentally friendly passenger

car routing decisions, models based on static emissions factors were not useful. Thus,
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the simplified model representative of conventional routing approaches is not useful.
In the original dynamic model, two important factors have always been preserved for
Eco-Routing. That is: the estimated emission always maintains the order of magnitude
of the CO, from different routes, and secondly, for car trips, the emission must be
congestion sensitive for cars. This is important as a shortest path may not be eco-
friendly because of congestion. Validation from VISSIM confirmed this capability in the
model. In addition, online and offline validation of samples confirmed realistic
estimation of CO, for Eco-Routing. However, the result also implies that the model
input is crucial for any success of such modeling approach or, overall successfulness of

the Eco-Routing strategy.

6.7.3 Time performance

The simplified model produces results for alternative routes in less than 1 second
using the PEACOX App. However, the original model required comparatively higher
processing time. The time performance check showed that the MATLAB model is
capable of yielding results within seven seconds if there are 140 links (Figure 6.19).
Minimum time for running this model is 2 seconds. However, the Java version of the
model shows a different scenario (Figure 6.20). In the first trial, the result appeared
overly time consuming with around 5-40 seconds depending on the request. The
differences in these comparisons arise due to differences in the MATLAB and Java
versions involving different structures and codes. One works online with complexity of
calling servers, getting data from various sources and storing values, while the other

(MATLAB) works with data contained all within the developed programme.
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Figure 6.i§: Timerperformance analysis of emiséions model in MATLAB

This raises two issues, one related to the technological advancement and optimization
of Eco-Routing models, and secondly the time sensitivity of the users in relation to
making Eco-Routing decisions. Previous investigation of advanced Eco-Routing models
did not highlight any issue regarding any of these points, perhaps, as mentioned in
chapter 2, due to the fact that the majority of Eco-Routing models to date are static in
nature. Therefore this research highlights a need to overcome the computational
requirements of an advanced Eco-Routing model if this is to be widely deployed as a
smart phone application. Many users are unlikely to tolerate a response time of up to

40 seconds for the current version which could discourage the use of the software.

4 Emission Modell (TCD)
Routing Service (ITS.FLU)

Time in second

« Recommender (ICCS)

& Peacox Server (FLU)

Source: Fluidtime(2013)

Figure 6.20: Time performance analysis of four routes different PEACOX app
components.

196



6.8 Conclusion

The Eco-Routing model highlights its limitation while inputs are not representative of
the real world driving situation. It was also observed that original model is
advantageous over static emissions based model, or distance priority based models.
However, this modelling exercise raised an issue about the complexity of the model
which might cause the model to be computationally time consuming. Thus, model
developers should be aware of the time sensitiveness of route choice decision making.
A balance may be required between the complexity of the model developed here and
acceptable computational time for real-time estimation. It was also noted that cold
start emissions might add a significant amount of emission especially when alternative

routes are significantly different in distance, and parking time is higher.
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7.1 Eco-Driving experiments

In experiment 1, speed profiles with lower overall speed showed higher travel time
and it would be understandable that lower overall speed under 30km/h will cause
higher emissions (Figure 2.1, chapter 2). Keeping this in mind, it is also understandable
that in low traffic volume scenarios, emissions will be slightly higher in the cases where
speed is comparatively lower in the links. However, in high traffic volume,
intersections play a vital role to develop congestion while Eco-Driving cars penetrate
the network. Even for general traffic, traffic intersections caused poor urban air to
variations in vehicle speeds as they approach and leave (Pandian et al., 2009). Qian &
Chung (2011) reported that automobiles contribute to excessive fuel consumption and
emissions near traffic intersections. In the micro-simulation in Chapter 4, it was
noticeable that delay has increased as the level of Eco-car penetration increased. In
the network performance, delay is simply the measure of the inconvenience for
drivers caused by traffic signals (Qiao et al., 2002), and measured as a weighted
average of ‘idling’, ‘acceleration” and ‘deceleration” modes at the intersection. Qian et
al. (2013) reported that during the delay the emission rates of vehicles are higher in
comparison to a vehicle in motion and thus, recommended highly to take delay into

consideration while evaluating Eco-Driving strategy.

The impact of the intersections is evident further from the results of Experiment 2
where intersections were replaced by roundabouts. A negligible transport impact was
found during the lowest traffic scenarios. But, large negative impact was observed for
high traffic volume scenarios with the increase level of Eco-car penetration. Previous
investigations found traffic signals at intersections generate more emissions than
roundabouts (Mustafa et al., 1993; Mandavilli et al., 2008) and during heavy traffic,
signals cause larger emissions of HC, almost double of that at roundabouts (Mustafa et
al.,, 1993). Reductions of fuel consumption of 30% and 28% were found at a
roundabout with/without replacing traffic signals by roundabout (Niittymaki and
Hoglund, 1999; Varhelyi, 2002). Mandavilli et al. (2008) found that a modern

roundabout performs better than the existing intersection control with stop signs in
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cutting down vehicular emissions. But, Eco-Driving regardless of intersection, and
roundabout showed poor performance with the increase of Eco-car penetration rate
during a high traffic volume scenario. This is because Eco-Driving deteriorated queue

discharge performance (Qian et al., 2013).

Queue discharge flow rate/ headway has an impact on saturation flow rate, and thus
general models were derived from the earlier one to estimate the other (Akcelik et al.,
1999). The saturation flow rate in VISSIM is sensitive to two parameters preferred time
headway, and maximum deviation of the preferred following distance (PTV, 2011). Li
et al. (2013) also noted a threshold for entering the state ‘following, oscillation
acceleration deceleration” from a standstill also effects the saturation flow rate. Viti et
al. (2008) found that all of these parameters are sensitive to the speed and
acceleration profiles of vehicles in the network. However, the departure headways at
different positions are almost deterministically dependent on each other, although it
may not be the case in reality (Tan et al., 2013), because the first few departure

headways include driver reaction time and vehicle acceleration time.

TRB (2000) reported in Highway Capacity Manual that the saturation departure
headway is assumed to be reached when the fifth vehicle crosses the stop line. But, in
a recent study, Qian et al. (2013) reported that an Eco-Driver regardless of it’s position
in a queue at an intersection affects the progression of 3 to 7 following vehicles. When
a number of Eco-Driver present at a queue, the saturation departure headway would
be different and the discharge of the vehicles in the intersection would be lower. Lam
(1994) previously reported driver behaviour has an impact on the variation of
saturation flow rates at different intersections. The result causes a lengthy queue at an
intersection that leads to an increase in congestion. This will cause poor performance

of the network in terms of traffic impact that has been evident in Experiments 1 to 4.
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When congestion was built up by Eco-Driving cars, the vehicles in the queue at
intersections cause further emissions due to stop and go behaviour. Rouphail et al.
(2001) studied the effects of traffic flow on real-time vehicle emissions, and revealed
that the vehicular emissions were higher when the vehicles transited from idle to
acceleration mode, and the switching from free-flow to congested flow accounts for all
four driving modes leading to higher emissions. It was also reported that the stop-and-
go waves with many accelerating and decelerating behaviours produce substantial fuel

consumption and emissions (Barth and Boriboonsomsin, 2009).

When an overall better speed profile has been applied, Eco-Driving lead to a better
situation than what was evident from Experiment 1 and 2. Eco-Driving with the
modern technology for dynamic speed adjustment has been highlighted in the
literature (Xia et al., 2011; Wang et al., 2012). Wang et al. (2012) applied an EcoACC
system representing V2V or V2| that reduces congestion and increases average fleet
speed even in congested conditions. In experiment 3, it is found that if the fleet speed
variation can be reduced and mean speed can be increased towards the speed limit

using similar a methodology along with Eco-Driving, Eco-Driving could be beneficial.
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7.2 Healthier routing analysis

In order to conduct healthier routing analysis, an air quality model for PM;, was
developed. In this modelling process dynamic predictors along with many static
predictors were analysed. Dons et al. (2013b) found that using dynamic (modelled)
predictors instead of static predictors, i.e. hourly traffic intensities and hourly
population densities, did not significantly improve the models’ performance. In Dublin
1 model while dynamic variables were replaced in the Dublin 2 model with static
variables, the model lost’s some of its explanatory power (by 5%). Individually, the
variables representing trans-boundary air pollution and peak traffic count were found
to account for 6.5% and 12.7% of the variation in average daily PMy concentration.
The variable representing trans-boundary air pollution that was derived from air mass
history (from back trajectory analysis) and population density has demonstrated a
positive impact on model performance. Future research is required to examine the
optimum approach to the derivation of D; and the extent to which improvements in its

explanatory power are possible.

Aggregating more years’ data over one year did not prove to be very useful unless
non-parametric and artificial neural network were deployed. Model fitting and
validation R* both went up and RMSE went down for these models. But, the artificial
neural networks outperformed the non-parametric regression. In addition, the final
models accounted for two more FSMs in the model development in Dublin. In the
overall process, different meteorological variables impacted on the two city models
(i.e. Vienna and Dublin) differently which were found by carrying out model sensitivity

analysis.

The final estimation of daily average exposure to PMy, using the available fixed site
monitoring stations in Dublin has been carried out using artificial neural network

within the land use modelling framework. In the model, open space is a static variable
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where meteorological variables are dynamic. However, the vehicle km travelled may
change, and a drastic change in this will be limited in a well-developed city when no
dramatic change in the land use pattern is certain. The important predictors are
metrological values with land use and traffic variables. In addition to these variables,
dummy variables representing seasons and days of the weeks were included. The
characteristics of the variables included in the model and presence of dummy
variables allowed the prediction of temporal variation within a spatial contrast. The
temporal variability in the monitoring stations (Figure 5.2, Chapter 5 or, Figure C1
appendix C) was consistent which also means that the spatial variability is consistent
as found in previous studies (Wheeler et al., 2008; Crouse et al., 2009). However, this
is in contrast to hourly models developed by Dons et al. (2013b). Thus, the dataset
offers a limitation for hourly temporal variation. The mode! may provide hourly

temporal variation more accurately near to the monitors than further away.

The second limitation leads to the predictability of land use regression modelling for
personal exposure. Montagne et al. (2013) evaluated LUR models, which predict long-
term concentrations, against short-term personal measurements. Predicted NO, LUR
exposures were not found to be associated with personal NO,. This could have been
influenced by temporal differences in the concentrations. Montagne et al. (2014)
recently reported that LUR models developed for a city could not predict measured
variation of elementai composition of PM,s. The study compared annual LUR model
output against personal exposure data converted to annual average concentrations. In
addition, McNabola et al. (2009) reported from a principal component analysis in
Dublin that personal exposure concentrations in motorised forms of transport were
influenced to a higher degree by traffic congestion. Dons et al. (2012) reported in-car
concentrations are higher during peak hours compared to off-peak, and are elevated
on weekdays compared to Saturdays and even more so on Sundays. Dons et al.
(2013a) further reported that driving on roads with low traffic intensities resulted in
lower exposures than driving on roads with higher traffic intensities (from 5.6 pg/m?

for roads with less than 500 veh/h, up to 12 pug/m?for roads with over 2500 veh/h).
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Thus it is noted that the modelled output from the current approach such as applied in
Chapter 5 has limited capability of explaining high resolution variation. Nonetheless,
the spatial variability of the output provides an understanding of healthier routing
choice. From the above discussion it is understandable that model lacks high
resolution temporal variation, however, spatial variation of the pollutant
concentration is well predicted. In this light result could be drawn from average
attribute values in a given traffic situation, however the similar result may be obtained

from any network.

Applying the model developed to route choice analysis, it was found that lowest dose
in the routes analysed was in weekends in summer and winter (except Saturday, which
is slightly higher than Monday). Dons et al. (2011b) showed that exposure is higher in
a weekday in summer (April) than that of weekend. In case of the lowest PM g value in
this study, recommended route choices were found to be significantly different from

the conventional cost factors.

From these two route analyses, it was found that lowest travel time and distance does
not offer lowest dose, and routing decisions based on time and distances and related
parameters are most contradictory with the dose based routing exercise. The analysis
introduces a citywide modelling exercise for routing analysis based on lowest
exposure, and shows a smaller increase of dose with a small increase in travel time
and large increase in dose for shorter distance. For different origin and destination
pairs the magnitude might be changed drastically, but the pattern will be similar. As
dose is a function of travel time and speed, the difference between lowest dose based
route and lowest trave! time (or, similar factors) will be lower in comparison to the
lowest distance based route. Even, CO, saving and PM,y dose based routing were not

found similar to each other. This is because, the exposure factor was heavily
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dependent on local factors such as anthropologic activities and land use patterns
around the road along with the traffic itself. The result provides a generic indication of

the characteristics of air pollution dose as a route cost factor.

7.3 Eco-Routing

When a static emissions factor is used in the model reported in Chapter 6, the model
was either over or under estimating the total emissions for the trips. The original

dynamic model was much more representative than that of simplified model.

If static emissions model were used, the lowest distance routes would be predicted as
most preferable, even though congestion might have an impact on emissions and on
an overall trip on that route in reality. On the other hand, routing based on the lowest
travel time may increase the distance and may increase the fuel consumption and thus
increase emissions. Kang et al. (2011) noted that Eco-Routes provided lower
environmental impacts in terms of lowest emissions and fuel consumptions over
distance priority routes, and time priority routes. As noted in Chapter 2, Eco-Routing
has been reported to save fuel consumption and emissions ranging from 0.35 -42%
and the extent of the variation depends heavily of the level of congestion present,
with low congestion levels limiting the impact of Eco-Routing. In order to capture this

benefit, Eco-Routing models should be dynamic and account real-time data.

In addition, the existing Eco-Routing emissions models that are commercially available
were based on historical data or average speeds, and also have other simplifications of
the modelling process. These limitations reduce the accuracy of CO, emission
predictions. However, these models work very fast due to these simplifications of the
emission estimation procedure. On the other hand, the original model shows a little

delay to processing of the requests. For the advanced model this might be an issue for
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a real-time application. These issues about time performance were not discussed

rigorously in the literature, and may be focused in further research.

Furthermore, the original dynamic model developed in this research is most applicable
to flat landscape where road grade does not significantly affect emissions. Road grade
was not included in the original model due to difficulties in obtaining sufficient input
data. However this addition would have introduced another layer of complexity to the

model further increasing its computational expense.

An actual representativeness of the model in field trial has not been evaluated as no
comparison was made between two different routes. However, models prediction
capability shows that a various range of CO, emissions (g/km) were predicted by the
model because of both variation in the speed, vehicles weight, engine size, catalyst
convertor, and emissions standard. Cold start emissions impact would be very little,
unless the alternative routes have significant difference in distance as a cold emission
per start distance based methodology, has been included. It was observed that trips
during the field trial had considerable cold distances, and accounting for that in the

model is believed to improve the accuracy of the prediction.

With the lack of appropriate dataset for model validation, the actual vehicle
trajectories were inputted in the CMEM model and found that the models prediction is
sensitive to the speed which was previously tested with VISSIM micro-simulation.
Where the primary target of the project was encouraging people to make
environmentally friendly passenger car routing decisions, models based on static
emissions factors were not useful. Thus, the simplified model representing
conventional routing approaches is not useful. In the original model, two important
factors have always been preserved for Eco-Routing. That is: the estimated emission

always maintains the order of magnitude of the CO, from different routes, and
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secondly, for car trips, the emission must be congestion sensitive for cars. In order to
do that the models are required to connect with real-time input sources. Previous
investigations (Boriboonsomsin et al. 2012) as well as the current methodology and

field trial data emphasised on it’s importance.
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8.1 Major findings

A number of findings were revealed from the literature review, micro-simulation and

modelling works regarding the smarter driving.

1. Eco-Driving at high traffic volume in complex urban settings
Impacts of Eco-Driving policy from both individual and network viewpoint were
evaluated, and the evidence of Eco-Driving benefits was identified as sometimes
opposing, or unclear for network level impacts. In addition, Eco-Driving technologies,
their methodologies and limitations were highlighted. Micro-simulation work
concluded that Eco-Driving car penetration has effects on the environmental and
network performance of a road network as it results in added delays at intersection
level. This effect is mostly visible during high traffic volumes. At low traffic flow, the
negative impact is also visible; however, the impact primarily depends on the road
network configuration. However, Eco-Driving can provide benefits if it can trigger both
improvements in acceleration/deceleration and speed profile of the flow. It can be
easily observed that the Eco-Driving policy has the worst performance in high traffic

volume while there are a number of intersections present.

2. Eco-Driving with advanced vehicle control technoiogy
It is highly unlikely that a driver can be a master of gentle acceleration/deceleration
and optimal speed in relation to overall traffic flow, unless V2V or V2l technology
becomes widespread. This benefit however is subject to the variation of the traffic

composition.

3. Eco-Driving and network configuration
The impact of traffic intersections could be seen where signalised intersections were

replaced by roundabouts in the micro-simulation work. Negligible transport impact
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was found during the lowest traffic scenarios. However, large negative impacts were
observed for high traffic volume scenarios with the increase in the level of Eco-car
penetration. Thus, without modern technologies, benefits and limitations of Eco-

Driving are concluded as contextual.

4. Air Quality model in Healthier route analysis:
In healthier routing analysis, PM;o models developed in the first step provided many
interesting findings for modellers and epidemiologists. The three bullet points
highlight the major findings from the air quality model in the Land use regression

framework:

e Use of long range data has been tested for spatial-temporal model
development and found to provide improvements in model perfermance
statistics.

e Alternative statistical models in addition to standard additive regression were
applied and found to improve model performance.

e Using the limited amount of readily available data in a European city it was
possible to develop a reasonably accurate low cost air quality prediction

model, providing spatial and temporal variation on pollutant concentrations.

5. Healthier route in comparison to other routes:
The analysis introduces a city-wide modelling exercise for routing analysis based on
lowest exposure, and shows a smaller increase of dose with a small increase in travel
time and large increase in dose for shorter distance route recommendations. The
result has been concluded from a limited number of sample routes, but the pattern

was detectable.
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6. Eco-Routing:
A model that would be applicable to any city, capable of accounting for congestion
was developed. The modelling exercise verified its functionality and the additional

findings from this exercise have been highlighted below:

e (O, emissions model were proven to be useless for the purpose of Eco-Routing
if they were not connected with real-time data.

e Complexity in the computational process in the original model causes delay
which may discourage usage of the model in mobile phone Eco-Routing

applications.

8.2 Policy Implication

The findings highlighted in section 8.1 have impacts on policy formulation, current

scientific application and further research.

Having more information about Eco-Driving and its network wide impacts, policy
makers could now contribute more on effective policy formulation integrating concept
and technology. In an information and communications technology (ICT) based energy
efficiency solutions review, Klunder et al. (2009) reported that Eco-Driver coaching is
applicable both in free flowing and congested traffic. However, new findings have
highlighted a potential limitation on the effectiveness of the policy in congested urban
traffic situations. As a remedy of such limitation, vehicle equipped with V2V or V2I
could be introduced or at-least introduction of policies related to placement of

cautionary signs of in-effective areas of Eco-driving is required.

The implications of air quality research, on the other hand, would suggest that it is
possible to produce a model of ambient air quality on a city wide scale using the
readily available data in most European cities. This part of the research highlights that
using land use, meteorological and traffic predictor variables in combination with

215



advanced statistical techniques such as NPR or ANNs will produce reasonably accurate
predictions of ambient air quality across a city, including temporal variations.
Therefore this approach reduces the need for additional measurement data to
supplement existing historical records, and enables a lower cost method of air
pollution model development for practitioners and policy makers. Using these
modelling techniques, it would be possible to identify the areas in a city that are not

complying with the daily limits of air pollution concentrations.

On the other hand, as it is was found that the healthier routes offer higher travel time
and distance in comparison to the lowest path routes, general people may not likely to
use such routes. Healthier routing strategy could however be implemented for
particular at-risk age groups, e.g. school children, elderly and commuters with health

issues.

Finally, this research concluded that a benefit from Eco-routing is achievable. The
methodology for generating Eco-Routing information for the commuter is already
established. However, the technologies such as system acquiring and disseminating
real-time information, road grade that will make these methodologies effective are yet
far from being wide spread and easily accessible. A good amount of investment is
necessary to develop such infrastructure to promote Eco-Routing; thus begs a point of

attention of the policy makers.

8.3 Future research

1. Eco-Driving:
From the results of this thesis, it can be easily understand that the Eco-Driving policy
has the worst performance in high traffic volume while there are a number of

intersections present. Further investigation is necessary to accurately determine this
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effect. Accurate headway in relation to size and type of junction could be tested

obtaining real world data, either from survey or from loop detector data.

2. Air quality modelling

e The methodology applied here to the derivation of trans-boundary air pollution is
a first attempt at the inclusion of such a variable and offers considerable scope for
refinement and possible improvement in its explanatory power. Alternative rating
systems, including negative scores for water bodies or green areas, could be
investigated. Similarly, the density of the grid applied to the derivation may also
offer scope for improvement. Other factors which may alter the eventual score
attained by a trajectory include the selected height and hour of the day, etc. The
analysis would be more effective in inland city, such as in Vienna than a coastal

city Dublin.

e An application of daily level PM;o model could be carried out to assess the air
guality impact on the local residents. The final modelling methodology presents a
combination of ANN and Kriging that could be applied for assessing policy
compliance or reduction of health risk of daily PM;, exposure of the citizens using
available monitoring data by the local authorities. WHO (2014) reported a
reduction of PM;, pollution from 70 ug/m* to 20 pg/m?, could reduce air
pollution-related deaths by around 15%. Thus, due to protection of human health,
50 ;,Lg/m3 PMio for a 24 hour time frame has been set that cannot be exceeded
not more than 35 times in a calendar year (WHO, 2006b; EU, 2008). The objective
of the future modelling exercise could focus on estimating PMy, concentration
level at daily level for any area or city-wide scale for pollutant hot spots, health

risk assessment, or policy formulation to protect human health.

3. Models for healthier routing:
A more refined modelling strategy is required for routing analysis as the research

findings outlined here for routing analysis were developed from a top down approach
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which may fail to distinguish high resolution congestion events in the roadway
network. In order to account for such impact, a modelling exercise is required in a

more compiex platform such as integrating a high resolution dataset.

4. Impact of Eco-Routing:
Eco-Routing does not always reduce all emissions from vehicles. Bandeira et al. (2013)
identified a trade-off between reducing CO,/fuel consumption and local pollutants
(e.g. CO, NO, and HC) while faster inter-city routes were chosen. Bandeira et al. (2014)
further applied average speed based model and instantaneous model to a database of
more than 13,330 km of GPS data in six different Origin-Destination (OD) pairs and 9
different routes and noted that estimation of CO, emissions (and fuel consumption)
have shown similar for two models, however, different for local pollutants. Thus, the
impact of Eco-Routing on other pollutants in different types of traffic and roadway
condition may be assessed in the citywide scale using existing knowledge gathered
from this research. One choice of an individual vehicle can be carried out at ArcGIS
network analyst taking the information from a VISSIM simulation run. The shorted
path identified in the network analyst, may be rerun in VISSIM and resultant trajectory
of a selected vehicle on that minimum path can be inputted in CMEM to analyse the

overall impact of route choice on different emissions.

5. Improvement of Eco-Routing:
The developed Eco-Routing model can be improved using a different strategy that will
allow the model to be more applicable in a non-flat terrain. Replacing the road grade
concept, an uphill ratio from a Digital Terrain model, in a smaller grid cell could be
included in the route choice (Corréia et al. 2010). However, this requires further
research about the slope and it’s effect on emissions and fuel consumption of the
vehicle in relation to the vehicle direction, speed and acceleration. This would benefit
this developed model to be useful for non-flat terrain more effectively without the

need of actual road grade.
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Appendix A

A1l: Review of common micro-simulation software

e PARAMICS

PARAMICS (PARAIllel MiCroscopic Simulation) was developed in late 1980s and is
marketed by two companies- Quadstone and SIAS, and thus same product of these
companies are known as Q-PARAMICS and S-PARAMICS. Both of the software were
developed with similar principals. However variations between the two exist with

visualisation and some functionality (Boulter and McCrae, 2007).

PARAMICS was created based on several models. The car following mode! is similar to
Wiedemann’s car-following model, and is also based on a psycho-physical model
developed by Fritzche (1994). In Fritzche (1994) car following theory the main
parameter is the target headway (in seconds) which determines the spacing of the
follower vehicle as a function of its speed. The values of the parameter can be both

global and specific according to the link.

For the lane changing model, two zones are defined in PARAMICS. For the 1st lane
changing zone, the vehicle is at a distance from a junction and the only reason for its
lane changes is to overtake a slower vehicle. For the lane changing zone two, the
vehicle is approaching the junction and it may choose not to overtake anymore. The
lane changes in this zone are only for reaching the appropriate lane to make a turn

(Jiménez et al., 2004).

e S-PARAMICS
S-PARAMICS can be applied for trunk, urban, suburban, inter-urban and rural roads for
a very wide range of situations. S-PARAMICS represents the actions and interactions of
individual vehicles as they travel through a road network. It models the detailed
physical road layout, including features such as bus operations, traffic signal settings,

driver behavioural characteristics and vehicle kinematics. As a consequence, S-



PARAMICS can accurately portray the variable circumstances that lead to congestion in
all types and sizes of road network, and present its output as a real-time visual display

for traffic management and road network design.

S-PARAMICS represents the complex and apparently random nature of traffic flow by
requiring the user to provide limited and simple components in the form of a
description of the road network and the traffic demand. S-PARAMICS uses a
descriptive methodology of controlling driver behaviour rather than one of prescribing

the desired effect which gives the model a more robust predictive ability.

e Q-PARAMICS
Q-PARAMICS can model from as small as a single intersection to a very large network.
Q-PARAMICS uses unit vectors to describe behaviour at junctions. The vector provides
guidance of both future and movement direction from current location. The software

follows a random release of vehicles onto the network.

In Q-PARAMICS, lane changing is defined by many parameters such as aggressiveness,
signposting and sign-range parameters. The aggressiveness parameter affects the gap
acceptance behaviour during lane changing, whereas signposting and sign-range
parameters define the distance range at which drivers become aware of the need that

they have to change lane.

e AIMSUN

AIMSUN (Advanced Interactive Microscopic Simulator for Urban and Non-Urban
Networks) is an integrated transport modelling software, developed and marketed by

Transport Simulation Systems (TSS) based in Barcelona, Spain (Xiao et al., 2005).



The car following model, and the lane-changing model used in AIMSUN is based on the
model developed by Gipps (1981) and Gipps (1986). The lane-changing model
considers the speed of the following vehicle to be either free or constrained by the
leading vehicle. The lane-changing model is also a decision based model which
addresses three questions: The necessity, desirability and feasibility of the lane
change. The gap-acceptance model, on the other hand provides the behaviour of each

single vehicle of the entire simulation period (TSS, 2006).

AIMSUN is capable of producing various real traffic networks and conditions. In
addition, AIMSUN includes the capability of modelling a traffic network in detail and
producing a number of measures of effects. New visualization modes were included in
the latest versions that facilitate select link analysis, generation-attraction plots, and
public transport assignment loads. AIMSUN has also a programming interface, which
enables it to communicate with some user-defined applications, and third party tools,
such as signal optimisation with TRANSYT-AIMSUN or emissions modelling with
VERSIT ™,

It is noted that each of the software packages followed some built-in principle, and no
obvious benefit was noted in one over the others. Thus, among these candidate

simulation platforms, VISSIM software has been chosen for modelling.

A2: Review of Modal/ Instantaneous emissions models

e Power based Models

Generic/Physical Model

A generic power demand model was reported by Barth et al. (1996). An instantaneous
power demand function is the fundamental basis of this physical model. Based on the
power demand the fuel use and tail-pipe emissions are calculated using following

equations (A3.1-A3.5). The figure 3.2 shows the overall concept of the Physical model.
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Figure 3.2: Power-demand emissions modelling methodology (Barth et al., 1996)

Power Demand Function (the total tractive power requirements (in kilowatts) placed

on a vehicle (at the wheels)):

M
1000

«Vr(a+grsing)+Mxg«C+2xV2xAxC)—— Eq(A3.1)

Piractive = 1000

Where, M = vehicle mass (kg); V = vehicle velocity (m/sec); a = vehicle acceleration
(m/s?); g = gravitational constant (9.81 m/s’); 6 = road grade angle; C, = rolling
resistance coefficient; p = mass density of air (1.225 kg/m?>, depending on temperature

and altitude); A = cross-sectional area (m?), and C, = aerodynamic drag coefficient.

P ;
Pengine = _t—rf;:;ﬂ + Paccessories Eq-(A3-2)

Where, nys = combined efficiency of the transmission and final drive; Pyccessories = €ngine
power demand for accessories, e.g. air conditioning Emission Control Strategy and

Equivalence Ratio (4),



_ (A/F)o

= Eqg. (A3.3
am g. (A3.3)

Where, (A/F), = air/fuel ratio at stoichiometry (=14.7), and (A/F) is the commanded

air/fuel ratio.

Fuel Use Model (after An and Ross, 1993, Ross and An 1993):

iy d Pengi
Fuel use rate (in kilowatts): = = A(k * N x D + =222 Eq. (A3.4)
dt Nengine
Where, k = engine friction factor (representing the fuel energy used at zero power
output to overcome engine friction per engine revolution and unit of engine
displacement); N = engine speed; D = engine displacement, and nepgine = Measure of

indicated engine efficiency.

Tailpipe Emission Functions:

dco
EMissions rqiipipe = % * ((g;)) * CPF Eq. (A3.5)

dt

Where, dF/dt = the fuel-use rate in g/s; dCO/dt = the engine-out emissions (for CO) in
grams/s, and CPF = the catalyst pass fraction, a function primarily of temperature and

equivalence ratio.

PHEM

Passenger car and Heavy-duty Emission Model (PHEM) was developed obtaining data
from The ARTEMIS project and the COST Action 346. Initially the model was developed
for Heavy-duty vehicles and was extended later to be applicable for passenger cars

and for light commercial vehicles by obtaining engine maps for steady state engine

tests and transient driving cycles. The model estimates fuel consumption and



emissions based on the instantaneous engine power demand and engine speed during
a driving pattern specified by the user (Rexeis et al., 2005). The main inputs are a user-
defined vehicle speed (driving pattern), road gradient and vehicle characteristics. For
every second of the driving pattern and road gradient, PHEM calculates the actual
engine power demand based upon vehicle driving resistances and transmission losses,
and calculates the actual emission. To take transient influences on the emission levels
into consideration, the results from the emission maps are adjusted by means of
transient correction functions. The model results then are the high resolution courses
of engine power, engine speed, fuel consumption and emissions of CO, CO,, HC, NO,,
NO, PM ,etc. The model also includes a cold start tool which is based on simplified

heat balances and emission maps for cold start extra emissions.

Vehicle Specific Power (VSP) based model

Vehicle Specific Power is the sum of external forces opposing vehicle motion
multiplied by vehicle speed and divided by vehicle mass. Values for different VSP are
created and emission rates, according to the VSP were modelled as matrix form.
Emissions from the vehicles were usually estimated from that matrix. Jimenez-
Palacios, (1999) showed that CO, VOC, and NO, emissions were better correlated with
Specific Power than with other common single parameters such as speed,

acceleration, or power.

Few emission models have been based on VSP. Successful applications of VSP have
been conducted for prediction of emission using simplified equations (Zhang and Frey,
2006; Boriboonsomsin et al., 2010; Wang and Fu, 2010) while avoiding the
consideration of wind effects. The original research based of the VSP (Jimenez-
Palacios, 1999) provides an equation (Eq. A3.6) which takes account of wind impact.
However, it only accounts for the effect of the headwind (windward) into the vehicle

(m/s).

Vi
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VSP(kW /MetricTon) = v.(1.1.a + 9.8. grade(%) + .132) + > » %

Here, m= vehicle mass; v= vehicle speed (m/s); a = vehicle acceleration(m/s’); &i =
"Mass factor", which is the equivalent translational mass of the rotating components
(wheels, gears, shafts, etc.) of the power train. The suffix i indicates that E; is gear-
dependent(Typical values of & for a manual transmission are 0.25 in 1st gear, 0.15 in
2nd gear, 0.10 in 3rd gear, 0.075 in 4th gear; h=altitude of the vehicle; grade= vertical
rise/slope length; g= acceleration of gravity (9.8 m/s2);Cr= coefficient of rolling
resistance (dimensionless; this value depends on the road surface and tire type and
pressure, with a small dependence on vehicle speed. Typical values range from 0.0085
to 0.016. A value of 0.0135 has been used here for all vehicles); Cp= drag coefficient
(dimensionless); A= frontal area of the vehicle; p= ambient air density (1.207 kg/m3 at

20°C = 68 °F); V,, = headwind into the vehicle (m/s).

e Velocity-acceleration based models

In the simplest type of instantaneous emission model, emissions and fuel consumption
rates are defined for different combinations of instantaneous speed and acceleration
(Pischinger and Hagliofer, 1984; Joumard et al., 1995). Joumard (1995) presented a
model to calculate emissions as a function of the vehicle type and its instantaneous
speed and acceleration in the form of a two-dimensional matrix for all vehicle types.

However, this two dimensional relationship does not always fully represent road

vii



gradient, engine speed or engine load factors. In addition, several forms of regression

models were also developed to calculate instantaneous emissions.

MODEM

MODEM was originally produced during the European Commission's DRIVE program,
and modifications were conducted to improve its accuracy in the latest version.
MODEM was based on the principle that the engine power determines the rate of
emission, and the power required depends upon the speed and the rate of
acceleration (Joumard et al., 1995). The emission rates for a particular vehicle category
and pollutant were therefore defined in the form a two-dimensional matrix. The
column of the matrix represented speed intervals (km/h), and the rows represented
the multiplication product of the speed and acceleration intervals (m? s®). Each cell
defined by row and column contained the emission factors. The accuracy of the model
was defined by the resolution of the matrix, such as the finer the resolution of the
emission factor matrix, the higher the model accuracy. However, improving resolution

also increased the complexity of the calculations.

Nonlinear regression

Int Panis et al. (2006) developed a model for evaluating emissions for each vehicle by
deriving instantaneous speed and acceleration as parameters using non-linear multiple

regression (Eq. A3.7) techniques.

Ey(t) = max[Eofy + foun(8) + f3vn(0)® + faan(t) + fsan()?+fevn(Dan(D)];  Eq. (A3.7)

Where, V, (t) and a, (t) are the instantaneous speed and acceleration of vehicle ‘n’ at
time ‘t’. Eq is a lower limit of vehicle and pollutant specific emission (g/s) and f; to fs
are emission constants specific for each vehicle and pollutant type determined by the

regression analysis.
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VT-Micro

Virginia Tech Microscopic energy and emissions model (VT-Micro) is a regression
based model that was developed using instantaneous speed and acceleration levels as
independent variables. Numerous polynomial combinations of speed and acceleration
such as Linear, quadratic, cubic, and quartic terms of speed and acceleration were
tested and selected using chassis dynamometer data collected at the Oak Ridge

National Laboratory (ORNL).

The first regression model produced reasonable fits to the original data except when
negative dependent values were produced (Eg. A3.8). To solve this problem, a new
log-transformed model was introduced in Eq. A3.9. Consequently, separate regression

models were developed for positive and negative accelerations (Eq. A3.10).

3 . .
MOE, =33, ) (Keulal) £q. (A3.8)
j=0
3 3 o
z . Eputal)
MOE, = eé—i=0—/7° Eq. (A3.9)

3
i e Laad
" Zj:O(Li'ju (1] );
ezl=o ifor a=0

MOE, = Eq. (A3.10)

a8
23 (Keulal)
_ =0 Y .
eé—i=o ifor a<?0

Where, MOE, is the instantaneous fuel consumption(l/s) or emission rate (mg/s), Kf,jis
the regression model coefficient at speed power “i” and acceleration power “/”, u is
the instantaneous vehicle speed (km/h), and a is the instantaneous vehicle

acceleration (km/h/s).



VERSIT"™"

VERSIT'™"° was developed after modification original VERSIT" in order to link to traffic
micro simulation programmes by reducing the number of category and splitting the
category for to run for the urban and rural/highway environment. The VERSIT model
was developed by TNO, Netherlands (Smit et al., 2005; 2007) to simulate the traffic
emissions of CO,, NO, and PM;, . The VERSIT'™“° model produces instantaneous
vehicle emissions in g/s, on the basis of instantaneous speed ‘v’ and acceleration ‘a@’.
The model is capable of modelling the effects of congestion on emission as it is based

+micro

on driving pattern data. VERSIT can easily be combined with GIS tools to visualize
emission hotspots; the interface with the microscopic traffic simulation program
VISSIM is commercially available with the product name EnViver and is marketed by

Vialis.

In order to work with VERSIT'™“® a dynamic variable ‘w, values in the Eq. A3.11 is

needed to be defined (Ligterink and DelLange, 2009):

W=a+.014*v Eq. (A3.11)

For constant w, emissions were found to vary only slowly with speed, and the speed v
was further modified according to urban, rural and freeway driving, and dynamic
domains (stationary, dynamic and aggressive). Finally, the emission ‘e’ in g/s is given

by the following set of piecewise linear equations-Eq. A3.12 (Ligterink and De Lange,

2009):
Ho ; (v<5,a<.5)
t + polwl + pglw — 1], (v <50) Eq. (A3.12)
f(xX) =19 uy + pslw| + pglw — 1, ; (50 < v < 80)
1 3
m+ﬁﬂsw——|+udw——h; (v > 80)
21, 2



Where, the function |x|, yields O for x <0, and x otherwise. The first line in Eq. (3.12)
models the air pollutant emissions during idling. The 10 coefficients u; in each of the
regions of the speed-acceleration space were, for each air pollutant type, determined

through a maximum likelihood method (Coensel et al., 2012).

A3: Air quality models

e Dispersion modelling

Box Model:

The box model is the simplest of the model types which assumes a given volume of
atmospheric air in a geographical region is in the shape of a box. It also assumes that
the air pollutants inside the box are homogeneously distributed and uses that
assumption to estimate the average pollutant concentrations anywhere within the
volume of atmospheric air. The flow of air is assumed to be in from one end and out to
the other. The sources within the box are modelled as a completely mixed and

dispersed area source (Allen et al., 1975). The equation (Eq. A3.13) for this model is:

———tf Eq. (A3.13)

Where, C= concentration anywhere in the box; g,=Background pollution; Q=Source

strength within the box; D=width of the area; H= mixing Height; U=Wind speed.

Lyons et al. (2003) applied a box model to assess direct air pollution benefits from
minimising the outward growth of cities. The model may useful for policy analysis, or

impact assessment, however, the accuracy of the prediction of dispersion of air
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pollutants is limited as because the assumption of homogeneous pollutant distribution
is much too simple. Besides, urban emissions from point and line sources do not get
uniformly back-mixed within a clearly defined rectangular volume. At certain places
within the box, the pollution level would be much higher or much lower than that

calculated (Allen et al., 1975).

Gaussian plume models

Plume model treat sources individually rather than combining them as in the box
model while a plume moves downwind it spreads vertically and horizontally, which
makes the model more acceptabie (Allen et al., 1975). This concept developed in
1930s or earlier and most popular form of the equation is (Beychok, 2005) noted by
(Pilla, 2012) and given in Eq. A3.14:

. exp[-y? 20y%] .9
oy 21 oz2m’

C(x,y,2) = % Eq. (A3.14)
Where, C(x,y,z) = Concentration of emissions, in g/m? (at any receptor located x
meters downwind from the emission source point, y meters crosswind from the
emission plume centre line, z meters above ground level); Q = source pollutant
emission rate, in g/s; u = horizontal wind velocity along the plume centre line,
m/s; a,=vertical standard deviation of the emission distribution, in meter; ay =
horizontal standard deviation of the emission distribution, in meter; vertical dispersion
parameter, g = g,+8,+g3 ,and for each of the g,_; ; ¢ 3 in the equation has separate
sub equations and those are highly related with pollutant plume’s centre line height

above ground level (H.), and height from ground level to bottom of the inversion aloft

(L).

There has been uncertainty about the pollutant plume’s centreline height above

ground level (He), which can be solved by Briggs fume rise equation. Briggs first
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published his plume rise observations and comparisons in 1965 (Briggs, 1965) and final
modification was carried out by him in 1972 (Briggs, 1972). In his equation, four
general categories characterising the environmental condition are separated where
the fume will rise differently, and for using the value in the original equation (Eq.
A3.14), the plume's height can be calculated with a combination of a logic diagram

(Beychok, 2005).

A general form of Gaussian Model (Eq. A3.15) applied in estimating concentration of
pollutants from road traffic (Karim, 1999) has been included below for understanding
the breakdown of calculation applied by Luo et al., (2013) in section 2.10, Chapter 2.
For a ground level relays (usually for vehicle emission), release height is, H= 0, the
concentration of pollutants at a point (x, y, z) generated by a continuous line source

can be estimated using the expression as:

8(x. v.2) = < exp[— (y—2 + i)] : Eq. (A3.15)

Moyoz | 20y 20,

Where, 0, is the vertical dispersion length (m), o, the horizontal dispersion length (m),
u the wind speed (m/s), z the height of the receptor above ground (m), and Q is the

rate of emission in g/s in Eq. (A3.16).
Q = Xm=12.777 * 1077 % Gy * T, ; Eq. (A3.16)

Where g= traffic flow in Vehicle/h; n,,,= is the emission rate calculated from Eq. (3.17).

= Yh=0an V"; Eq. (A3.17)
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Where m (vehicle type=1; 2; ...; n=0; 1; 2; . . . ; N is the degree of polynomial, r the
rate of emission in g/km/veh, ‘@’ is the constant (coefficient of polynomial), V is the

vehicle speed in km/h.

However, there are circumstances where Gaussian plume models have limitations.
This model assumes that the concentration within the plume is proportional to the
emission rate and inversely proportional to the wind speed at the point of release.
Therefore, at wind speed close to zero, the predicted concentration approaches
infinity and the Gaussian representation of the plume is no longer valid (Pilla, 2012). In
non-uniform meteorological conditions that may also be affected by topography, the
model is not valid and Dispersion over large distances the steady-state assumption is

unlikely to be consistent with reality (Marnane et al., 2010).

Lagrangian models

Pull models are one of the complex models (Allen et al., 1975), however, at meso-scale
applications; the Lagrangian PUFF model has a higher computational efficiency
(Egmond and Kesseboom 1983). Pollution plume parcels/particles in Lagrangian model
are considered moving following a random walk process in the atmosphere. As
particles moving from one position to another, the model calculates their dispersion
by computing the statistics of the trajectories in relation to their position, orientation
and time. The total concentration at the receptor is then calculated based on the
contribution of all nearby puffs. Puff models lie between Gaussian and Lagrangian
dispersion models. Pollutant the concentration in Puff model can be well described
with a Gaussian distribution; however, the centre line of a fume follows Lagrangian
trajectory rather than that of not being straight downwind direction. Thus, puff
models still estimate a Gaussian dispersion, but are able to take into account temporal
and spatial wind changes, in other words, Puff models may also use the Gaussian
distribution to describe the dispersion of pollutants within each puff. Lagrangian

models are exceptionally efficient close to the source. Popular models based on these
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concepts are: A Lagrangian Trajectory Volcanic Ash Tracking Model (Searcy, 2001),
HYSPLIT - Hybrid Single Particle Lagrangian Integrated Trajectory Model (ARL, 2013).

e Geographical information systems (GIS) based Models

Extrapolation based on nearest monitoring site

Gulliver et al. (2011a) applied this method in order to compare this extrapolation
method with other models for prediction concentration of pollutants. In this most
simple kind of a model, pollutant concentration was extrapolated from the nearest
monitoring site. The underlying model is thus that air pollution surfaces are flat around
each monitoring site and represent a series of ‘plates’ (smaller area) focused on each

monitoring site.
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Results of micro-
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Experiment 1 (Table B1-Table B24)

e Speed profilel in high traffic volume (Table B1- Table B4)

Appendix-B

Table B1: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1988.6 1963.3 1975.8 1978.0 1973.9 1958.9 1970.7 1982.4 1973.8 1983.6
Total Stopped Delay, h 90.1 92.3 99.0 87.1 89.5 94.5 92.8 93.0 97.1 104.1
Average delay per vehicle, s 136.9 140.4 A5157 130.6 137.0 143.9 140.2 139.6 146.1 157.5
Vehicle in the network 308.0 339.0 331.0 325.0 331.0 374.0 332.0 308.0 331.0 328.0
Vehicle left 3042.0 3011.0 3019.0 3025.0 3019.0 2976.0 3018.0 3042.0 3019.0 3022.0
Total Travel time, h 260.3 262.1 273.0 253.6 259.0 264.8 262.2 262.6 268.0 278.8
Total vehicle Km travelled 3200.3 3159.6 3179.7 3183.2 3176.6 3152.6 3171.5 3190.4 3176.6 3192.4
Total vehicle in the network 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 4.9 5.0 5.2 4.8 4.9 5.0 5.0 49 5.1 5.2
Average delay per vehicle, min 2.3 23 2.5 2.2 2.3 2.4 2.3 2.3 2.4 2.6
Table B2: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1981.1 1952.7 1956.5 1967.5 1967.6 1963.6 1965.7 1977.5 1963.7 1977.8
Total Stopped Delay, h 96.4 97.1 104.7 96.1 91.2 93.3 94.7 99.4 102.5 108.2
Average delay per vehicle, s 146.3 148.9 162.9 146.5 138.3 142.1 142.7 149.4 156.1 163.4
Vehicle in the network 316.0 351.0 359.0 342.0 341.0 366.0 336.0 318.0 349.0 340.0
Vehicle left 3034.0 2996.0 2991.0 3008.0 3009.0 2984.0 3014.0 3032.0 3001.0 3010.0
Total Travel time, h 268.5 269.1 282.1 267.6 259.8 2635 264.2 271.4 276.6 283.9
Total vehicle Km travelled 3188.3 31425 3148.6 3166.4 3166.5 3160.1 3163.5 3182.5 3160.3 3182.9
Total vehicle in the network 3350.0 3347.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 5.1 5.1 5.4 5.1 4.9 5.0 5.0 5.1 53 5.4
Average delay per vehicle, min 2.4 2.5 207 2.4 2.3 2.4 2.4 2.5 2.6 2.7




Table B3: 50% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1972.9 1950.9 1957.7 1959.4 1959.9 1952.1 1958.9 1976.5 1959.0 1963.8
Total Stopped Delay, h 103.4 102.1 104.5 101.8 96.2 100.5 100.6 105.0 108.7 117.7
Average delay per vehicle, s 157.0 156.8 162.1 153.7 146.1 151.8 152.0 156.0 164.2 1793
Vehicle in the network 330.0 350.0 365.0 358.0 357.0 393.0 349.0 324.0 354.0 365.0
Vehicle left 3020.0 2995.0 2985.0 2992.0 2993.0 2957.0 3001.0 3026.0 2996.0 2985.0
Total Travel time, h 277.9 276.2 281.4 273.8 266.5 2717 272.4 277.4 283.9 297.7
Total vehicle Km travelled 3175.1 3139.7 3150.7 3153.3 3154.2 3141.7 3152.5 3180.9 3152.7 3160.4
Total vehicle in the network 3350.0 3345.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 5.3 53 5.4 5.2 5.1 5.2 5.2 5.2 5.4 5.7
Average delay per vehicle, min 2.6 2.6 2.7 2.6 2.4 25 2.5 2.6 2.7 3.0
Table B4: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1956.7 1950.9 1946.0 1966.3 1954.9 1944.8 1968.7 1971.7 1956.1 1965.2
Total Stopped Delay, h 1135 101.3 111.9 102.8 104.1 105.2 100.9 110.3 115.6 118.9
Average delay per vehicle, s 169.0 156.2 173.9 154.4 156.8 159.6 150.0 162.0 1737 180.2
Vehicle in the network 365.0 367.0 378.0 354.0 376.0 405.0 333.0 342.0 365.0 376.0
Vehicle left 2985.0 2983.0 2968.0 2996.0 2974.0 2944.0 3017.0 3008.0 2985.0 2974.0
Total Travel time, h 287.9 275.8 291.4 274.9 276.2 278.4 2714 282.8 292.5 298.6
Total vehicle Km travelled 3149.0 3139.7 31319 3164.4 3146.1 3129.8 3168.4 3173.1 3148.1 3162.7
Total vehicle in the network 3350.0 3350.0 3346.0 3350.0 3350.0 3349.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 55 53 5.6 52 5.3 53 5.1 53 5.6 5.7
Average delay per vehicle, min 2.8 2.6 2.9 2.6 2.6 2.7 2.5 2.7 29 3.0




e Speed profile 1 in low traffic volume (Table B5- Table B8)

Table B5: 0% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1023.0 1025.3 1029.1 1024.8 1030.4 1023.6 1025.9 1030.2 1026.2 1032.9
Total Stopped Delay, h 20.8 20.5 2172 20.8 20.6 20.9 20.9 20.8 20.5 21.6
Average delay per vehicle, s 54.9 54.0 55.9 54.9 54.4 553 54.8 54.8 54.4 574
Vehicle in the network 100.0 77.0 89.0 88.0 91.0 105.0 92.0 85.0 90.0 96.0
Vehicle left 1575.0 1598.0 1586.0 1587.0 1584.0 1570.0 1583.0 1590.0 1585.0 1579.0
Total Travel time, h 93.5 93.2 94.1 93.6 93.4 93.7 93.5 94.1 935 95.0
Total vehicle Km travelled 1646.4 1650.1 1656.2 1649.2 1658.2 1647.3 1651.0 1658.0 1651.6 1662.3
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 34 34 34 34 34 3.4 34 3.4 3.4 3.4
Average delay per vehicle, min 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0
Table B6: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1023.0 1025.2 1028.8 1024.8 1030.2 1023.3 1026.3 1030.1 1025.7 1032.5
Total Stopped Delay, h 20.8 20.6 21.4 20.8 20.7 20.9 20.8 20.9 20.6 21.6
Average delay per vehicle, s 55:2 54.6 56.6 551 54.9 55.5 54.8 553 54.9 573
Vehicle in the network 100.0 78.0 88.0 88.0 92.0 106.0 93.0 86.0 90.0 95.0
Vehicle left 1575.0 1597.0 1587.0 1587.0 1583.0 1569.0 1582.0 1589.0 1585.0 1580.0
Total Travel time, h 93.6 93.5 94.4 93.7 93.6 93.7 93.5 94.4 93.7 95.0
Total vehicle Km travelled 1646.4 1650.0 1655.7 1649.2 1657.9 1646.8 1651.7 1657.8 1650.8 1661.6
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.4 34 34 34 34 3.4 34 3.4 3.4 3.4
Average delay per vehicle, min 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0




Table B7: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1022.7 1025.2 1029.0 1025.1 1030.5 1022.7 1025.9 1029.6 1025.8 1032.9
Total Stopped Delay, h 20.9 20.7 21.5 20.9 20.6 211 20.8 20.9 20.5 21.6
Average delay per vehicle, s 55.9 55.0 57.2 55,7 551 56.5 55:3 555 554 57.6
Vehicle in the network 100.0 77.0 88.0 88.0 91.0 103.0 91.0 86.0 91.0 96.0
Vehicle left 1575.0 1598.0 1587.0 1587.0 1584.0 1572.0 1584.0 1589.0 1584.0 1579.0
Total Travel time, h 93.9 93.7 94.7 94.0 93.7 94.2 93.7 94.4 93.8 95.2
Total vehicle Km travelled 1645.8 1650.0 1656.0 1649.7 1658.4 1645.9 1651.0 1657.0 1650.8 1662.2
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 34 34 3.4 3.4 3.4 34 3.4 3.4 3.4 3.4
Average delay per vehicle, min 0.9 0.9 1.0 0.9 0.9 0.9 0.9 0.9 0.9 1.0
Table B8: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1022.8 1025.0 1028.9 1025.2 1030.3 1022.6 1025.6 1029.4 1026.4 1032.1
Total Stopped Delay, h 20.8 20.6 21.3 20.8 20.6 21.2 20.8 20.8 20.7 21.8
Average delay per vehicle, s 56.0 55.4 572 56.0 55.5 57.0 555 56.0 56.2 58.5
Vehicle in the network 101.0 78.0 89.0 88.0 92.0 104.0 93.0 84.0 91.0 96.0
Vehicle left 1574.0 1597.0 1586.0 1587.0 1583.0 1571.0 1582.0 1591.0 1584.0 1579.0
Total Travel time, h 93.9 93.9 94.7 94.2 93.9 94.4 93.8 94.6 94.3 95.6
Total vehicle Km travelled 1646.0 1649.7 1655.9 1649.9 1658.1 1645.8 1650.6 1656.7 1651.8 1661.1
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.4 3.4 34 3.4 3.4 3.4 3.4 3.4 3.4 3.5
Average delay per vehicle, min 0.9 0.9 1.0 0.9 0.9 1.0 0.9 0.9 0.9 1.0




e Speed profile 2 in high traffic volume (Table B9- Table B12)

Table B9: 0% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 9.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0
Total vehicle mile travelled 1957.9 1940.8 1943.0 1958.6 1956.7 1943.5 1949.4 1951.8 1939.2 1951.6
Total Stopped Delay, h 105.6 110.1 1219 100.7 108.8 107.1 1112 123.6 124.6 1230
Average delay per vehicle, s 164.1 1731 19155 158.2 166.2 167.6 172:% 190.6 192.7 1913
Vehicle in the network 371.0 392.0 389.0 368.0 388.0 404.0 380.0 392.0 406.0 405.0
Vehicle left 2979.0 2950.0 2959.0 2982.0 2962.0 2944.0 2970.0 2958.0 2941.0 2945.0
Total Travel time, h 288.2 295.5 312.2 282.5 289.3 290.5 295.0 312.8 313.7 312.4
Total vehicle Km travelled 3150.9 31234 3127.0 3152.0 3149.0 3127.8 3137.2 3141.1 3120.8 3140.8
Total vehicle in the network 3350.0 3342.0 3348.0 3350.0 3350.0 3348.0 3350.0 3350.0 3347.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 5.5 5.7 6.0 5.4 5.5 5.6 5.6 6.0 6.0 6.0
Average delay per vehicle, min 2.7 2.9 3.2 2.6 2.8 2.8 2.9 3.2 3:2 3.2
Table B10: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 3.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0
Total vehicle mile travelled 1960.8 1933.3 1950.2 1953.7 1935.9 1931.7 1939.1 1947.8 1930.8 1950.9
Total Stopped Delay, h 109.1 111.8 115.8 106.8 124.4 112.5 118.3 1234 1332 124.4
Average delay per vehicle, s 169.9 175.0 182.0 165.2 188.8 174.8 182.7 190.1 205.4 194.8
Vehicle in the network 375.0 408.0 380.0 376.0 431.0 439.0 399.0 393.0 422.0 408.0
Vehicle left 2975.0 2939.0 2970.0 2974.0 2919.0 2909.0 2951.0 2957.0 2925.0 2942.0
Total Travel time, h 293.6 296.9 303.9 288.7 308.9 296.3 304.1 312.2 324.8 3155
Total vehicle Km travelled 3155.6 31114 3138.6 3144.2 3115.5 3108.8 3120.7 3134.7 3107.3 3139.6
Total vehicle in the network 3350.0 3347.0 3350.0 3350.0 3350.0 3348.0 3350.0 3350.0 3347.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 5.6 5.7 5.8 5.5 5.9 5.7 5.8 6.0 6.3 6.0
Average delay per vehicle, min 2.8 2.9 3.0 2.8 3.1 2.9 3.0 3.2 3.4 3.2




Table B11: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 15.0 17.0 0.0 0.0 4.0 0.0 0.0 0.0 2.0
Total vehicle mile travelled 1948.3 1926.0 1924.8 1938.6 1933.3 1933.1 1931.8 1945.8 1930.0 1942.5
Total Stopped Delay, h 119.3 116.7 130.3 118.7 124.0 112.1 128.2 126.9 138.6 128.1
Average delay per vehicle, s 183.0 182.9 203.8 179.5 189.2 17r7 196.1 193.5 2127 199.3
Vehicle in the network 402.0 416.0 416.0 418.0 438.0 434.0 429.0 402.0 443.0 426.0
Vehicle left 2948.0 2920.0 2917.0 2932.0 2912.0 2912.0 2921.0 2948.0 2907.0 2922.0
Total Travel time, h 305.0 303.3 3215 301.0 309.0 293.4 316.0 3153 337 319.0
Total vehicle Km travelled 31355 3099.6 3097.7 3119.8 3111.3 3111.1 3109.0 31314 3106.0 3126.1
Total vehicle in the network 3350.0 3336.0 3333.0 3350.0 3350.0 3346.0 3350.0 3350.0 3350.0 3348.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 5.8 5.9 6.2 5.8 6.0 5.7 6.1 6.0 6.4 6.1
Average delay per vehicle, min el 3.0 3.4 3.0 3.2 2.9 3.3 3.2 3.5 3.3
Table B12: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 7.0 0.0 0.0 0.0 0.0 4.0 0.0 7.0 1.0
Total vehicle mile travelled 1939.5 1922.1 1927.2 1934.3 1921.4 1933.7 1920.1 1934.7 1914.6 1931.7
Total Stopped Delay, h 133.0 1271 130.4 128.2 134.6 114.0 133.5 134.5 142.3 139.2
Average delay per vehicle, s 2029 197.9 205.6 196.8 207.6 174.6 208.2 205.7 220.9 215.6
Vehicle in the network 423.0 436.0 439.0 436.0 458.0 445.0 439.0 435.0 456.0 452.0
Vehicle left 2927.0 2907.0 2909.0 2914.0 2892.0 2905.0 2903.0 2915.0 2885.0 2897.0
Total Travel time, h 3229 3171 324.1 316.7 325.4 296.4 326.0 325.8 337.7 3337
Total vehicle Km travelled 3121.3 3093.3 3101.6 3112.9 3092.3 3112.0 3090.1 3113.6 3081.2 3108.8
Total vehicle in the network 3350.0 3343.0 3348.0 3350.0 3350.0 3350.0 3342.0 3350.0 3341.0 3349.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 6.2 6.2 6.3 6.1 6.3 5.7 6.3 6.3 6.6 6.4
Average delay per vehicle, min 3.4 3.3 3.4 33 3.5 2.9 35 3.4 3.7 3.6
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e Speed profile 2 in low traffic volume (Table B13- Table B16)

Table B13: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1022.0 1023.0 1028.5 1023.3 1026.6 1021.4 1025.6 1029.6 1024.4 1031.9
Total Stopped Delay, h 20.9 20.1 213 212 212 21.5 20.8 213 211 22.0
Average delay per vehicle, s 58.0 56.3 58.7 59.0 58.5 59.6 573 58.7 58.7 61.0
Vehicle in the network 105.0 94.0 90.0 99.0 94.0 1150 87.0 90.0 89.0 93.0
Vehicle left 1570.0 1581.0 1585.0 1576.0 1581.0 1560.0 1588.0 1585.0 1586.0 1582.0
Total Travel time, h 97.4 97.0 97.9 98.1 97.4 98.2 97.2 98.6 98.1 99.1
Total vehicle Km travelled 1644.8 1646.4 1655.2 1646.8 1652.2 1643.7 1650.6 1657.1 1648.6 1660.6
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.6 3.5 3.6 3.6 3.5 3.6 3.5 3.6 3.6 3.6
Average delay per vehicle, min 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Table B14: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1022.8 1023.7 1028.3 1022.6 1027.2 1020.9 1025.7 1029.2 1024.4 1032.0
Total Stopped Delay, h 21.0 20.0 215 212 21 21.5 20.8 21.6 211 21.8
Average delay per vehicle, s 58.4 56.2 59.0 59.2 58.7 60.0 57.8 59.7 58.9 60.7
Vehicle in the network 105.0 94.0 90.0 102.0 95.0 116.0 86.0 89.0 89.0 94.0
Vehicle left 1570.0 1581.0 1585.0 1573.0 1580.0 1559.0 1589.0 1586.0 1586.0 1581.0
Total Travel time, h 97.7 97.0 98.1 98.2 97.6 98.3 97.4 99.0 98.3 99.0
Total vehicle Km travelled 1646.1 1647.5 1654.8 1645.7 1653.2 1642.9 1650.8 1656.3 1648.6 1660.9
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.6 3.5 3.6 3.6 3.5 3.6 3.5 3.6 3.6 3.6
Average delay per vehicle, min 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
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Table B15: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1022.8 1023.3 1028.1 1022.8 1026.9 1021.7 1025.3 1029.4 1024.9 1031.8
Total Stopped Delay, h 21.2 20.2 21.4 21.4 212 21.6 20.7 215 214 223
Average delay per vehicle, s 59.1 56.9 59.5 60.0 59.0 60.7 57.7 59.8 59.2 62.1
Vehicle in the network 105.0 94.0 91.0 98.0 96.0 115.0 86.0 89.0 89.0 95.0
Vehicle left 1570.0 1581.0 1584.0 1577.0 1579.0 1560.0 1589.0 1586.0 1586.0 1580.0
Total Travel time, h 98.0 97.3 98.3 98.5 97.7 98.7 97.4 99.1 98.4 99.6
Total vehicle Km travelled 1646.0 1646.9 1654.6 1646.1 1652.7 1644.3 1650.0 1656.6 1649.3 1660.5
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.6 3.5 3.6 3.6 3.5 3.6 3.5 3.6 3.6 3.6
Average delay per vehicle, min 1.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Table B16: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1022.0 1022.9 1028.1 1023.1 1026.5 1021.9 1025.2 1029.2 1024.2 1031.8
Total Stopped Delay, h 21.0 20.2 213 213 21:3 21.6 20.8 21.4 211 223
Average delay per vehicle, s 59.2 57.6 59.8 60.3 59.8 61.2 58.5 59.9 60.1 62.8
Vehicle in the network 105.0 93.0 92.0 101.0 96.0 113.0 87.0 91.0 90.0 94.0
Vehicle left 1570.0 1582.0 1583.0 1574.0 1579.0 1562.0 1588.0 1584.0 1585.0 1581.0
Total Travel time, h 97.9 97.6 98.5 98.7 98.0 98.9 97.7 99.1 98.8 99.9
Total vehicle Km travelled 1644.7 1646.3 1654.6 1646.4 1651.9 1644.6 1649.8 1656.4 1648.2 1660.5
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6
Average delay per vehicle, min 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

viii




e Speed profile 3 in high traffic volume (Table B17- Table B20)

Table B17: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 3.0 26.0 3.0 0.0 12.0 15.0 30.0 12.0 0.0 0.0
Total vehicle mile travelled 1909.5 1897.9 1916.8 1907.1 1891.1 1891.7 1889.7 1891.9 1907.9 1914.4
Total Stopped Delay, h 151.9 137.8 144.1 141.6 152.2 142.4 1519 159.7 142.5 160.7
Average delay per vehicle, s 235.8 216.9 223.8 218.9 238.2 220.0 238.0 247.1 218.6 246.7
Vehicle in the network 491.0 479.0 468.0 496.0 527.0 526.0 479.0 512.0 496.0 502.0
Vehicle left 2854.0 2850.0 2876.0 2854.0 2811.0 2812.0 2843.0 2822.0 2854.0 2848.0
Total Travel time, h 367.9 348.6 356.8 352.0 367.2 3513 366.8 377.0 3527 377.9
Total vehicle Km travelled 3073.1 3054.3 3084.8 3069.2 3043.4 3044.4 3041.3 3044.7 3070.5 3080.9
Total vehicle in the network 3345.0 3329.0 3344.0 3350.0 3338.0 3338.0 3322.0 3334.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 7.2 6.8 6.9 6.9 1.2 6.9 7.2 7.4 6.9 7.4
Average delay per vehicle, min 3.9 3.6 c 3.6 4.0 3.7 4.0 4.1 3.6 4.1
Table B18: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 40.0 8.0 4.0 8.0 29.0 17.0 8.0 19.0 2.0
Total vehicle mile travelled 1911.0 1880.9 1900.9 1887.5 1893.3 1875.2 1899.6 1882.0 1889.6 1905.8
Total Stopped Delay, h 148.1 144.0 156.1 1531 150.0 144.4 147.7 166.8 149.1 166.5
Average delay per vehicle, s 228.9 228.0 243.9 241.1 235.8 226.3 231.5 259.0 232.6 257.4
Vehicle in the network 492.0 495.0 488.0 531.0 523.0 534.0 474.0 546.0 494.0 51510
Vehicle left 2858.0 2820.0 2852.0 2813.0 2820.0 2780.0 2857.0 2791.0 2832.0 2833.0
Total Travel time, h 361.9 356.8 374.0 370.7 365.5 354.2 362.3 387.4 362.4 387.2
Total vehicle Km travelled 3075:5 3027.0 3059.2 3037.6 3047.0 3017.8 3057.1 3028.8 3041.0 3067.1
Total vehicle in the network 3350.0 3315.0 3340.0 3344.0 3343.0 3314.0 3331.0 3337.0 3326.0 3348.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 7 7.1 7:3 7.3 7.2 7.0 71 Al 7.2 7.6
Average delay per vehicle, min 3.8 3.8 4.1 4.0 3.9 3.8 3.9 4.3 3.9 4.3




Table B19: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 30.0 35.0 26.0 8.0 16.0 26.0 5.0 8.0 13.0 0.0
Total vehicle mile travelled 1871.1 1879.1 1882.6 1883.2 1882.3 1865.0 1901.4 1879.7 1881.9 1901.1
Total Stopped Delay, h 167.4 147.0 161.8 157.0 156.6 153:3 155.5 171.6 160.4 168.1
Average delay per vehicle, s 261.7 2323 256.3 245.9 246.3 241.2 241.3 267.6 251.8 260.3
Vehicle in the network 530.0 515.0 510.0 532.0 535.0 556.0 493.0 551.0 520.0 529.0
Vehicle left 2789.0 2808.0 2814.0 2806.0 2800.0 2765.0 2847.0 2794.0 2814.0 2821.0
Total Travel time, h 387.0 361.2 383.0 374.5 373.8 367.8 372.0 395.8 380.2 389.6
Total vehicle Km travelled 3011.2 3024.2 3029.7 3030.8 3029.2 3001.4 3060.0 3025.1 3028.6 3059.6
Total vehicle in the network 3319.0 3323.0 3324.0 3338.0 3335.0 3321.0 3340.0 3345.0 3334.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 74 7.2 7.6 7.4 7.4 7.4 7.3 7.9 7.5 7.6
Average delay per vehicle, min 4.4 3.9 4.3 4.1 4.1 4.0 4.0 4.5 4.2 4.3
Table B20: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 3.0 45.0 21.0 15.0 17.0 28.0 10.0 21.0 31.0 36.0
Total vehicle mile travelled 1873.3 1855.6 1877.1 1868.1 1855.5 1855.9 1879.0 1863.4 1852.8 1869.8
Total Stopped Delay, h 1717 161.0 1712 163.2 169.1 160.7 168.5 182.9 171.4 183.8
Average delay per vehicle, s 2707 253.8 268.9 256.7 269.8 253.0 261.9 286.9 271.9 285.6
Vehicle in the network 570.0 548.0 532.0 554.0 583.0 571.0 544.0 566.0 561.0 554.0
Vehicle left 2775.0 2764.0 2798.0 2778.0 2749.0 2747.0 2793.0 2760.0 2753.0 2764.0
Total Travel time, h 397.5 378.4 394.6 382.9 393.2 377.7 389.3 410.9 395.2 408.2
Total vehicle Km travelled 3014.8 2986.2 3020.9 3006.4 2986.1 2986.8 3024.0 2998.8 2981.7 3009.1
Total vehicle in the network 3345.0 3312.0 3330.0 3332.0 3332.0 3318.0 3337.0 3326.0 3314.0 3318.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 7.9 7.6 7.8 7.6 7.9 7.6 7.7 8.2 8.0 8.1
Average delay per vehicle, min 4.5 4.2 4.5 4.3 4.5 4.2 4.4 4.8 4.5 4.8




e Speed profile 3 in low traffic volume (Table B21- Table B24)

Table B21: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1019.7 1019.2 1024.2 1020.1 1025.9 1017.8 1021.6 1025.4 1021.0 1029.0
Total Stopped Delay, h 20.9 20.9 221 20.8 217 21.2 20.7 215 21.0 221
Average delay per vehicle, s 60.9 60.6 63.5 60.9 62.6 62.7 59.8 62.0 61.0 64.4
Vehicle in the network 115.0 100.0 105.0 101.0 108.0 124.0 103.0 96.0 106.0 100.0
Vehicle left 1560.0 1575.0 1570.0 1574.0 1567.0 1551.0 1572.0 1579.0 1569.0 1575.0
Total Travel time, h 107.3 107.2 108.5 107.4 107.8 108.0 106.9 108.8 107.8 109.3
Total vehicle Km travelled 1641.1 1640.2 1648.3 1641.7 1651.1 1638.0 1644.1 1650.3 1643.1 1656.0
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.9 39 4.0 3.9 3.9 4.0 3.9 4.0 3.9 4.0
Average delay per vehicle, min 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1
Table B22: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1020.1 1019.0 1024.5 1019.7 1026.0 1017.4 1021.9 1025.6 1020.5 1028.8
Total Stopped Delay, h 20.9 20.9 22.0 21 2171 21.2 20.6 21.6 210 22.2
Average delay per vehicle, s 60.8 61.0 63.7 61.7 62.6 62.7 59.9 62.6 61.2 64.7
Vehicle in the network 115.0 102.0 103.0 102.0 107.0 123.0 102.0 96.0 105.0 103.0
Vehicle left 1560.0 1573.0 1572.0 1573.0 1568.0 1552.0 1573.0 1579.0 1570.0 1572.0
Total Travel time, h 107.3 107.4 108.6 107.8 107.8 108.0 106.9 109.1 107.9 109.5
Total vehicle Km travelled 1641.7 1640.0 1648.7 1641.0 1651.2 1637.4 1644.5 1650.5 1642.4 1655.8
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.9 39 4.0 39 3.9 4.0 3.9 4.0 3.9 4.0
Average delay per vehicle, min 1.0 1.0 1.1 1.0 1.0 1.0 1.0 1.0 1.0 1.1
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Table B23: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1019.9 1018.9 1024.3 1019.7 1025.5 1018.1 1021.2 1026.1 1020.6 1029.4
Total Stopped Delay, h 2 21.1 223 212 21.8 213 20.8 215 211 225
Average delay per vehicle, s 61.3 61.7 64.5 62.3 63.4 63.3 60.6 62.5 61.6 65.3
Vehicle in the network 114.0 101.0 105.0 102.0 108.0 125.0 103.0 96.0 106.0 102.0
Vehicle left 1561.0 1574.0 1570.0 1573.0 1567.0 1550.0 1572.0 1579.0 1569.0 15730
Total Travel time, h 107.5 107.7 109.0 108.0 108.1 108.3 107.2 109.1 108.1 109.8
Total vehicle Km travelled 1641.4 1639.8 1648.5 1641.1 1650.4 1638.4 1643.4 1651.3 1642.6 1656.7
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.9 3.9 4.0 3.9 3.9 4.0 3.9 4.0 3.9 4.0
Average delay per vehicle, min 1.0 1.0 1:1 1.0 171 11 1.0 1.0 1.0 B
Table B24: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1019.9 1019.1 1024.6 1019.9 1025.3 1018.3 1020.6 1025.4 1021.0 1028.7
Total Stopped Delay, h 2132 20.9 21.8 21.2 21.7 21,5 20.7 21.3 20.8 22.5
Average delay per vehicle, s 62.1 61.7 63.6 62.6 63.4 64.1 60.9 62.3 61.2 65.7
Vehicle in the network 114.0 104.0 94.0 101.0 108.0 124.0 102.0 96.0 105.0 103.0
Vehicle left 1561.0 1571.0 1581.0 1574.0 1567.0 1551:0 1573.0 1579.0 1570.0 1572.0
Total Travel time, h 107.8 107.8 108.6 108.2 108.1 108.6 107.3 109.0 107.9 109.9
Total vehicle Km travelled 1641.3 1640.1 1648.9 1641.4 1650.1 1638.8 1642.5 1650.2 1643.2 1655.5
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.9 3.9 4.0 4.0 3.9 4.0 3.9 4.0 3.9 4.0
Average delay per vehicle, min 1.0 1.0 1.1 1.0 1.1 1.1 1.0 1.0 1.0 1.1

Xii




Experiment 2 (Table B29- Table B32)

e Roundabout High traffic volume (Table B25- Table B28)

Table B25: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 2089.0 2085.2 2083.8 2080.2 2081.1 2084.3 2077.0 2085.6 2086.7 2097.0
Total Stopped Delay, h 4.2 3.6 32 33 2.8 3.8 3.2 35 3.2 4.2
Average delay per vehicle, s 19.4 18.0 16.7 16.8 1592 18.1 16.4 17.8 16.9 19.2
Vehicle in the network 151.0 146.0 134.0 159.0 150.0 171.0 156.0 140.0 166.0 140.0
Vehicle left 3199.0 3204.0 3216.0 3191.0 3200.0 3179.0 3194.0 3210.0 3184.0 3210.0
Total Travel time, h 157/ 156.4 154.6 154.5 152.7 156.2 154.1 156.3 155.3 1577
Total vehicle Km travelled 3361.9 3355.8 3353.6 3347.8 3349.3 3354.3 3342.6 3356.5 3358.2 3374.7
Total vehicle in the network 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 2.8 2.8 2.8 2.8 2.7 2.8 2.8 2.8 2.8 2.8
Average delay per vehicle, min 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
Table B26: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 2088.3 2084.4 2083.7 2080.1 2080.7 2084.3 2076.9 2085.3 2086.5 2095.8
Total Stopped Delay, h 5.6 4.0 3.9 3.9 3.6 4.6 33 3.9 4.4 4.0
Average delay per vehicle, s 22.7 18.9 18.6 18.8 17.0 20.1 16.7 19.3 20.4 18.9
Vehicle in the network 159.0 152.0 138.0 160.0 153.0 170.0 157.0 141.0 166.0 141.0
Vehicle left 3191.0 3198.0 3212.0 3190.0 3197.0 3180.0 3193.0 3209.0 3184.0 3209.0
Total Travel time, h 160.7 157.2 156.4 156.3 154.5 158.1 154.5 157.6 158.6 157.3
Total vehicle Km travelled 3360.8 3354.5 33534 3347.7 3348.5 3354.3 3342.4 3355.9 3357.9 3372.8
Total vehicle in the network 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 2.9 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Average delay per vehicle, min 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
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Table B27: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 2084.1 2083.8 2083.8 2079.9 2080.2 2083.9 2076.7 2085.1 2086.8 2096.8
Total Stopped Delay, h 57 4.6 5.6 4.2 3.8 5.4 4.4 4.9 5.5 4.8
Average delay per vehicle, s 23.8 29:1 22.8 19.2 18.4 23.5 20.0 22.1 235 2157
Vehicle in the network 1750 150.0 137.0 161.0 158.0 1720 155.0 143.0 166.0 139.0
Vehicle left 3175.0 3200.0 3213.0 3189.0 3192.0 3178.0 3195.0 3207.0 3184.0 3211.0
Total Travel time, h 161.4 159.2 160.2 156.7 155.7 161.2 1575 160.2 161.4 160.0
Total vehicle Km travelled 3354.1 3353.6 3353.5 3347.3 3347.7 3353.7 3342.2 3355.7 3358.4 3374.5
Total vehicle in the network 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 2.9 2.8 2.9 2.8 2.8 2.9 2.8 2.9 2.9 2.8
Average delay per vehicle, min 0.4 0.4 0.4 0.3 0.3 0.4 0.3 0.4 0.4 0.4
Table B28: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 2083.7 2084.1 2083.7 2079.0 2079.5 2083.1 2076.0 2084.7 2086.1 2095.4
Total Stopped Delay, h 7.0 6.5 8.7 932 4.4 8.3 7.8 6.0 7.0 95
Average delay per vehicle, s 29.0 25.8 32.9 22.5 20.5 30.8 29.2 252 28.4 36.4
Vehicle in the network 170.0 152.0 1350 165.0 158.0 175.0 160.0 144.0 169.0 146.0
Vehicle left 3180.0 3198.0 3215.0 3185.0 3192.0 3175.0 3190.0 3206.0 3181.0 3204.0
Total Travel time, h 166.3 163.5 169.6 159.6 1575 167.9 165.9 163.1 165.9 173.5
Total vehicle Km travelled 3353.3 3354.0 3353.3 3345.8 3346.6 3352.5 3341.0 3354.9 3357.2 3372.2
Total vehicle in the network 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0 3350.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 3.0 2.9 3.0 2.9 2.8 3.0 3.0 2.9 3.0 3.1
Average delay per vehicle, min 0.5 0.4 0.5 0.4 0.3 0.5 0.5 0.4 0.5 0.6
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e Roundabout Low traffic volume (Table B29- Table B32)

Table B29: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1043.6 1044.7 1043.6 1046.3 1045.0 1046.3 1045.1 1049.3 1051.7 1047.6
Total Stopped Delay, h 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 02 0.2
Average delay per vehicle, s 4.0 3.8 3.8 4.3 4.2 4.4 3.9 4.3 4.5 4.2
Vehicle in the network 77.0 67.0 62.0 72.0 65.0 81.0 73.0 66.0 75.0 67.0
Vehicle left 1598.0 1608.0 1613.0 1603.0 1610.0 1594.0 1602.0 1609.0 1600.0 1608.0
Total Travel time, h 711 711 70.8 71.3 70.8 7155 70.9 71.8 71.9 712
Total vehicle Km travelled 1679.4 1681.3 1679.5 1683.8 1681.8 1683.9 1681.9 1688.6 1692.6 1685.9
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 25 2’5 2.5 2.5 2.5 2:5 2.5 2.6 2.5 2.5
Average delay per vehicle, min 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Table B30: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1043.4 1044.6 1043.6 1046.2 1045.0 1046.3 1045.1 1049.3 1051.8 1047.5
Total Stopped Delay, h 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
Average delay per vehicle, s 4.0 4.0 4.0 4.3 4.4 4.4 3.9 4.5 4.5 4.5
Vehicle in the network 78.0 67.0 62.0 72.0 67.0 81.0 73.0 66.0 75.0 65.0
Vehicle left 1597.0 1608.0 1613.0 1603.0 1608.0 1594.0 1602.0 1609.0 1600.0 1610.0
Total Travel time, h 710 71.2 70.8 713 70.9 71.3 70.9 71.8 719 7133
Total vehicle Km travelled 1679.1 1681.1 1679.5 1683.8 1681.7 1683.8 1681.8 1688.6 1692.7 1685.7
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 2.5 25 2.5 2.5 2.5 25 25 2.6 2.5 2.5
Average delay per vehicle, min 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Table B31: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1043.3 1044.7 1043.6 1046.3 1045.0 1046.5 1045.1 1049.0 1051.8 1047.5
Total Stopped Delay, h 0.2 0.2 0.2 0.2 0.2 0.2 02 0.2 0.2 02
Average delay per vehicle, s 4.1 4.1 4.1 4.4 4.4 4.4 4.0 4.4 4.6 4.4
Vehicle in the network 77.0 66.0 62.0 72.0 65.0 78.0 73.0 69.0 75.0 65.0
Vehicle left 1598.0 1609.0 1613.0 1603.0 1610.0 1597.0 1602.0 1606.0 1600.0 1610.0
Total Travel time, h 7111 712 70.9 713 70.9 713 71.0 71.8 72.0 713
Total vehicle Km travelled 1679.1 1681.3 1679.5 1683.8 1681.8 1684.1 1681.9 1688.2 1692.7 1685.7
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 2.5 2.5 2.5 2.5 2,5 2.5 2.5 2.6 2.6 2.5
Average delay per vehicle, min 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Table B32: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total vehicle mile travelled 1043.3 1044.8 1043.6 1046.3 1045.0 1046.1 1045.1 1048.9 1051.8 1047.5
Total Stopped Delay, h 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2 0.2
Average delay per vehicle, s 4.2 4.3 4.4 4.6 4.6 4.7 4.1 4.7 4.7 4.7
Vehicle in the network 78.0 67.0 62.0 7.2:0 65.0 80.0 73.0 66.0 75.0 65.0
Vehicle left 1597.0 1608.0 1613.0 1603.0 1610.0 1595.0 1602.0 1609.0 1600.0 1610.0
Total Travel time, h 711 71.4 71.0 71.4 71.0 71.4 71.0 71.9 72.0 71.4
Total vehicle Km travelled 1679.1 1681.5 1679.5 1683.8 1681.8 1683.5 1681.8 1688.0 1692.7 1685.7
Total vehicle in the network 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0 1675.0
Latent to total vehicle ratio 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Travel time (Min)per vehicle km 25 2.5 2.5 25 2.5 2.5 2.5 2.6 2.6 2.5
Average delay per vehicle, min 0.1 0.1 01 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Experiment 3 (Table B33- Table B40)

e ECO-I (Table B33- Table B36)

Table B33: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 907 1201 849 1259 1533 1072 1103 1134 1248 1161
Total vehicle mile travelled 2590 2453 2675 2389 2184 2451 2443 2436 2400 2401
Total Stopped Delay, h 507 605 528 606 667 585 571 557 635 608
Average delay per vehicle, s 431 510 442 517 577, 498 486 474 543 528
Vehicle in the network 1265 1340 1338 1356 1305 1351 1312 1273 1352 1361
Vehicle left 3865 3636 3966 3528 3325 3652 3662 3672 3574 3533
Total Travel time, h 788 869 832 863 889 857 836 816 904 879
Total vehicle Km travelled 4168 3948 4305 3845 3515 3944 3932 3920 3863 3863
Total vehicle in the network 5130 4976 5304 4884 4630 5003 4974 4945 4926 4894
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 11 13 12 13 15 13 13 12 14 14
Average delay per vehicle, min 7 8 7 9 10 8 8 8 9 9
Table B34: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 809 985 813 1101 1453 1198 1069 940 1303 1509
Total vehicle mile travelled 2621 2626 2669 2464 2251 2366 2461 2555 2360 2161
Total Stopped Delay, h 497 558 520 598 643 594 565 536 640 680
Average delay per vehicle, s 418 471 432 504 558 516 481 445 546 604
Vehicle in the network 1307 1326 1326 1359 1263 1339 1334 1329 1323 1326
Vehicle left 3915 3877 4008 3655 3445 3535 3672 3809 3525 3212
Total Travel time, h 782 857 819 868 881 858 833 808 893 906
Total vehicle Km travelled 4219 4226 4295 3966 3622 3808 3960 4112 3798 3479
Total vehicle in the network 5222 5203 5334 5014 4708 4874 5006 5138 4848 4538
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 14 12 11 13 15 14 13 12 14 16
Average delay per vehicle, min 7 8 7 8 9 9 8 7 9 10
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Table B35: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 926 1254 813 952 1291 1012 954 895 1190 1297
Total vehicle mile travelled 2509 2418 2686 2560 2328 2494 2536 2577 2432 2319
Total Stopped Delay, h 537 612 541 570 657 588 558 527 643 649
Average delay per vehicle, s 455 525 452 482 563 497 469 440 547 574
Vehicle in the network 1345 1355 1375 1373 1368 1368 1356 1344 1357 1373
Vehicle left 3740 3567 3957 3795 3489 3706 3774 3841 3612 3389
Total Travel time, h 811 880 850 865 916 869 838 807 918 915
Total vehicle Km travelled 4037 3892 4323 4119 3747 4014 4081 4147 3913 3732
Total vehicle in the network 5085 4922 5332 5168 4857 5074 5130 5185 4969 4762
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 12 14 12 13 15 13 12 12 14 15
Average delay per vehicle, min 8 9 8 8 9 8 8 7 9 10
Table B36: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 841 1459 1418 1012 1404 1148 1012 876 1369 1312
Total vehicle mile travelled 2581 2274 2273 2507 2253 2439 2539 2640 2331 2301
Total Stopped Delay, h 556 650 632 609 675 603 567 532 628 633
Average delay per vehicle, s 463 565 541 510 596 530 489 447 554 564
Vehicle in the network 1398 1350 1311 1424 1385 1362 1342 1322 1329 1392
Vehicle left 3789 3362 3425 3683 3353 3578 3726 3873 3467 3355
Total Travel time, h 841 893 864 893 936 891 858 824 894 898
Total vehicle Km travelled 4154 3660 3658 4035 3627 3925 4087 4249 3752 3703
Total vehicle in the network 5187 4712 4736 5107 4738 4940 5068 5195 4796 4747
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 12 15 14 13 15 14 13 12 14 15
Average delay per vehicle, min 8 9 9 9 10 9 8 7 9 9
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e ECO-Il (Table B37- Table B40)

Table B37: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 907 1201 849 1259 1533 1490 1447 1134 1248 1161
Total vehicle mile travelled 2590 2453 2675 2389 2184 2210 2236 2436 2400 2401
Total Stopped Delay, h 507 605 528 606 667 669 671 557 635 608
Average delay per vehicle, s 431 510 442 517 577, 582 587 474 543 528
Vehicle in the network 1265 1340 1338 1356 1305 1342 1378 1273 1352 1361
Vehicle left 3865 3636 3966 3528 3325 3326 3327 3672 3574 3533
Total Travel time, h 788 869 832 863 889 903 917 816 904 879
Total vehicle Km travelled 4168 3948 4305 3845 3515 3557 3598 3920 3863 3863
Total vehicle in the network 5130 4976 5304 4884 4630 4668 4705 4945 4926 4894
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 14 13 12 13 15 15 15 12 14 14
Average delay per vehicle, min 7 8 7 9 10 10 10 8 9 9

Table B38: 20% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 886 980 1073 1166 1365 1440 1515 911 1273 1351
Total vehicle mile travelled 2573 2622 2536 2434 2291 2247 2204 2610 2395 2295
Total Stopped Delay, h 501 556 574 584 682 684 686 501 641 653
Average delay per vehicle, s 422 470 491 496 583 594 604 415 541 580
Vehicle in the network 1263 1327 1296 1327 1380 1373 1366 1292 1330 1359
Vehicle left 3862 3870 3779 3624 3422 3348 3274 3899 3555 3350
Total Travel time, h 771 851 860 843 928 926 924 772 892 909
Total vehicle Km travelled 4141 4219 4081 3918 3687 3617 3546 4201 3854 3694
Total vehicle in the network 5125 5197 5075 4951 4802 4721 4640 5191 4885 4709
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 11 12 13 13 15 15 16 11 14 15
Average delay per vehicle, min 7 8 8 8 10 10 10 7 9 10
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Table B39: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 702 1200 689 1314 1426 1421 1415 755 1177 1366
Total vehicle mile travelled 2720 2414 2784 2319 2255 2263 2270 2713 2487 2245
Total Stopped Delay, h 482 610 496 620 650 669 689 467 603 650
Average delay per vehicle, s 400 514 402 529 556 583 610 386 515 574
Vehicle in the network 1338 1372 1321 1322 1310 1367 1423 1329 1330 1378
Vehicle left 4009 3590 4142 3487 3435 3374 3307 4020 3660 3311
Total Travel time, h 767 862 788 855 877 912 946 748 872 891
Total vehicle Km travelled 4377 3885 4481 3732 3629 3641 3654 4366 4003 3613
Total vehicle in the network 5347 4962 5463 4809 4745 4738 4730 5349 4990 4689
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 11 13 11 14 14 15 16 10 13 15
Average delay per vehicle, min 7 9 7 9 9 10 10 6 9 10
Table B40: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 631 770 872 903 1151 1106 1061 704 1283 1153
Total vehicle mile travelled 2747 2740 2629 2678 2481 2501 2521 2729 2385 2399
Total Stopped Delay, h 455 487 534 53 ), 621 606 591 472 618 603
Average delay per vehicle, s 371 393 431 445 505 503 500 387 524 521
Vehicle in the network 1293 1338 1335 1320 1371 1354 1336 1334 1302 1345
Vehicle left 4128 4088 3946 3908 3668 3717 3765 4036 3566 3534
Total Travel time, h 724 757 791 807 857 859 860 742 852 850
Total vehicle Km travelled 4420 4410 4230 4310 3993 4025 4058 4392 3839 3861
Total vehicle in the network 5421 5426 5281 5228 5039 5070 5101 5370 4868 4879
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 10 10 11 11 13 13 13 10 12 13
Average delay per vehicle, min 6 7 7 7 8 8 8 6 9 9
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Experiment 4 (Table B41- Table B64)

¢ Single profile — Average peak traffic (Table B41- Table B44)

Table B41: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 59 163 68 162 127 157 294 45 85 133
Total vehicle mile travelled 2753 2690 2772 2721 2670 2649 2630 2817 2750 2680
Total Stopped Delay, h 140 200 167 201 208 216 234 132 185 193
Average delay per vehicle, s 164 215 190 218 225 231 243 156 206 216
Vehicle in the network 604 739 628 731 700 718 713 588 665 679
Vehicle left 4213 4090 4262 4080 4094 4026 3965 4250 4191 4104
Total Travel time, h 416 480 456 487 489 495 504 413 475 479
Total vehicle Km travelled 4431 4328 4460 4379 4297 4263 4233 4533 4426 4313
Total vehicle in the network 4817 4829 4890 4811 4794 4744 4678 4838 4856 4783
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 6 7 6 7 7 i 7 5 6 7
Average delay per vehicle, min 3 4 3 4 4 4 4 3 3 4
Table B42: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 61 81 111 81 121 330 161 50 85 155
Total vehicle mile travelled 2796 2762 2739 2749 2647 2560 2694 2814 2788 2676
Total Stopped Delay, h 134 174 167 179 214 240 227 134 168 198
Average delay per vehicle, s 161 189 191 196 234 255 241 160 189 224
Vehicle in the network 548 700 608 721 725 700 685 555 610 688
Vehicle left 4268 4226 4237 4166 4075 3884 4139 4277 4249 4079
Total Travel time, h 410 450 447 457 494 502 509 412 448 482
Total vehicle Km travelled 4499 4445 4408 4424 4260 4120 4336 4528 4487 4306
Total vehicle in the network 4816 4926 4845 4887 4800 4584 4824 4832 4859 4767
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 6 6 6 7 7 7 5 6 7
Average delay per vehicle, min 3 3 3 3 4 4 4 3 3 4
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Table B43: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 45 114 90 60 112 201 138 51 69 119
Total vehicle mile travelled 2812 2750 2752 2771 2724 2607 2666 2799 2800 2702
Total Stopped Delay, h 129 176 170 166 188 221 210 139 166 175
Average delay per vehicle, s 153 189 195 185 210 233 219 165 188 198
Vehicle in the network 521 662 594 665 663 715 667 554 614 649
Vehicle left 4311 4228 4280 4238 4155 3993 4170 4279 4259 4159
Total Travel time, h 390 437 444 434 459 476 469 405 437 440
Total vehicle Km travelled 4526 4425 4429 4460 4384 4196 4291 4504 4506 4348
Total vehicle in the network 4832 4890 4874 4903 4818 4708 4837 4833 4873 4808
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 6 6 6 6 7 7 5 6 6
Average delay per vehicle, min 3 3 3 3 3 4 4 3 3 3
Table B44: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 21 31 14 41 41 152 126 22 20 65
Total vehicle mile travelled 2860 2897 2898 2884 2859 2712 2797 2912 2920 2817
Total Stopped Delay, h 118 146 141 162 168 200 195 121 138 157
Average delay per vehicle, s 138 155 163 175 188 208 206 139 154 178
Vehicle in the network 480 610 544 628 590 672 621 482 504 585
Vehicle left 4375 4363 4400 4297 4295 4079 4233 4384 4417 4272
Total Travel time, h 358 389 399 413 427 438 446 363 386 409
Total vehicle Km travelled 4602 4663 4663 4641 4601 4365 4501 4686 4699 4534
Total vehicle in the network 4855 4973 4944 4925 4885 4751 4854 4866 4921 4857
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 5 5 5 6 6 6 5 5 5
Average delay per vehicle, min 2 3 3 3 3 3 3 2 3 3
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e Single profile — 20% less of average peak traffic (Table B45- Table B48)

Table B45: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0 0 0 0 0 0 0 0 0 2
Total vehicle mile travelled 2312 2405 2427 2366 2371 2359 2435 2379 2420 2375
Total Stopped Delay, h 73 68 63 80 80 75 77 63 74 76
Average delay per vehicle, s 106 99 92 915 117 109 110 92 108 110
Vehicle in the network 349 343 306 343 323 361 339 333 312 335
Vehicle left 3523 3591 3655 3585 3594 3550 3638 3557 3611 3558
Total Travel time, h 280 282 276 296 296 288 296 269 291 289
Total vehicle Km travelled 3720 3870 3906 3808 3816 3796 3919 3828 3895 3823
Total vehicle in the network 3872 3934 3961 3928 3917 3911 3977 3890 3923 3893
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 4 4 5 5 5 5 4 4 5
Average delay per vehicle, min 2 2 2 2 2 2 2 2 2 2
Table B46: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Latent demand 23 4

Total vehicle mile travelled 2406 2429 2456 2463 2412 2431 2462 2425 2472 2415
Total Stopped Delay, h 75 76 78 80 86 81 97 78 86 82
Average delay per vehicle, s 105 105 108 110 121 114 130 111 119 118
Vehicle in the network 354 340 343 353 303 37l 381 362 295 342
Vehicle left 3647 3724 3736 3718 3732 3674 3734 3669 3758 3689
Total Travel time, h 284 287 294 297 302 297 319 292 305 299
Total vehicle Km travelled 3872 3908 3952 3963 3881 3913 3962 3903 3979 3886
Total vehicle in the network 4001 4064 4079 4071 4035 4051 4115 4031 4053 4031
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 4 4 5 5 5 4 5 5
Average delay per vehicle, min 2 2 2 2 2 2 2 2 2 2
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Table B47: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Latent demand

Total vehicle mile travelled 2340 2396 2422 2377 2398 2384 2440 2339 2396 2370
Total Stopped Delay, h 67 64 66 73 72 73 75 65 69 73
Average delay per vehicle, s 98 92 95 104 105 105 105 95 98 107
Vehicle in the network 324 301 296 310 287 326 305 307 268 308
Vehicle left 3548 3633 3665 3618 3630 3585 3672 3583 3655 3591
Total Travel time, h 259 258 264 270 272 271 275 256 264 270
Total vehicle Km travelled 3767 3856 3898 3825 3859 3837 3927 3764 3856 3814
Total vehicle in the network 3872 3934 3961 3928 3917 3911 3977 3890 3923 3899
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 4 4 4 4 4 4 4 4
Average delay per vehicle, min 2 2 2 2 2 2 2 2 2 2

Table B48: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Latent demand 0 0 0 0 0 0 0 0 0 0
Total vehicle mile travelled 2441 2525 2495 2515 2504 2529 2526 2466 2515 2483
Total Stopped Delay, h 70 63 70 65 73 74 78 66 70 73
Average delay per vehicle, s 97 86 95 89 100 102 106 91 95 101
Vehicle in the network 304 284 286 269 274 307 309 307 247 273
Vehicle left 3568 3650 3675 3659 3643 3604 3668 3583 3676 3626
Total Travel time, h 251 246 255 249 259 263 269 247 255 259
Total vehicle Km travelled 3928 4063 4015 4048 4030 4070 4065 3969 4048 3995
Total vehicle in the network 3872 3934 3961 3928 3917 3911 3977 3890 3923 3899
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 4 4 4 4 4 4 4 4
Average delay per vehicle, min 2 1 2 1 2 2 2 2 2 2
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e Single profile — 20% more of average peak traffic (Table B49- Table B52)

Table B49: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 459 618 652 717 719 796 755 591 630 891
Total vehicle mile travelled 2988 2971 2896 2909 2829 2830 2839 2909 2928 2754
Total Stopped Delay, h 244 292 290 296 329 321 325 268 298 320
Average delay per vehicle, s 249 288 301 297 325 318 327 270 300 318
Vehicle in the network 815 804 811 809 869 807 794 814 813 798
Vehicle left 4569 4562 4462 4476 4346 4364 4407 4481 4485 4250
Total Travel time, h 586 642 647 644 673 660 674 606 650 642
Total vehicle Km travelled 4809 4782 4661 4682 4552 4554 4569 4682 4712 4432
Total vehicle in the network 5384 5366 5273 5285 5215 5171 5201 5295 5298 5048
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 8 8 8 9 9 9 8 8 9
Average delay per vehicle, min 4 5 5 5 5 5 5 5 5 5
Table B50: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 655 629 672 663 854 955 803 555 699 893
Total vehicle mile travelled 2841 2960 2881 2931 2742 2665 2816 2942 2893 2761
Total Stopped Delay, h 262 292 294 289 340 358 335 267 301 314
Average delay per vehicle, s 271 288 305 286 338 352 337 272 301 318
Vehicle in the network 774 805 793 806 842 896 793 815 803 77,
Vehicle left 4409 4551 4464 4537 4238 4109 4357 4517 4440 4266
Total Travel time, h 587 633 644 628 666 673 675 606 638 636
Total vehicle Km travelled 4572 4763 4637 4718 4412 4289 4532 4734 4655 4444
Total vehicle in the network 5183 5356 5257 5343 5080 5005 5150 5332 5243 5043
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 8 8 8 8 9 9 9 8 8 9
Average delay per vehicle, min 5 5 5 5 6 6 6 5 5 5
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Table B51: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 572 601 706 848 718 892 672 548 633 840
Total vehicle mile travelled 2899 2960 2849 2827 2835 2775 2917 2948 2962 2769
Total Stopped Delay, h 257, 282 285 307 314 327 306 253 289 Shbil
Average delay per vehicle, s 263 279 297 303 316 318 308 260 295 311
Vehicle in the network 805 798 783 806 822 787 803 777 801 T4
Vehicle left 4469 4594 4441 4343 4392 4279 4487 4564 4493 4325
Total Travel time, h 575 611 618 618 644 630 642 580 628 623
Total vehicle Km travelled 4666 4763 4585 4549 4563 4466 4694 4745 4767 4456
Total vehicle in the network 5274 5392 5224 5149 5214 5066 5290 5341 5294 5102
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 8 8 8 8 8 8 7 8 8
Average delay per vehicle, min 4 5 5 5 5 5 5 4 5 5
Table B52: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 449 529 541 580 594 630 684 415 573 813
Total vehicle mile travelled 3069 3074 3048 3063 2972 2947 2954 3101 3020 2830
Total Stopped Delay, h 230 257 261 264 283 283 303 231 272 302
Average delay per vehicle, s 236 250 275 262 284 278 299 233 274 297
Vehicle in the network 736 745 736 753 741 751 746 721 747 746
Vehicle left 4671 4711 4643 4666 4577 4566 4541 4751 4610 4374
Total Travel time, h 539 564 594 578 601 587 617 541 589 592
Total vehicle Km travelled 4938 4948 4905 4929 4782 4743 4755 4990 4861 4554
Total vehicle in the network 5407 5456 5379 5419 5348 5317 5287 5472 5357 5120
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 7 7/ 7 8 7 8 7 7 8
Average delay per vehicle, min 4 4 5 4 5 5 5 4 5 5

XXVi




e Three speed profile — Average peak traffic (Table B53- Table B56)

Table B53: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 41 74 71 57 60 162 101 14 42 63
Total vehicle mile travelled 2848 2823 2815 2820 2800 2730 2763 2904 2839 2822
Total Stopped Delay, h 127 163 159 164 171 184 194 118 157 149
Average delay per vehicle, s 144 170 173 175 182 192 200 136 166 167
Vehicle in the network 542 635 574 635 619 607 634 516 598 589
Vehicle left 4295 4300 4312 4272 4243 4138 4242 4358 4288 4276
Total Travel time, h 384 422 423 427 433 435 455 379 415 414
Total vehicle Km travelled 4583 4544 4530 4539 4506 4393 4447 4674 4569 4542
Total vehicle in the network 4837 4935 4886 4907 4862 4745 4876 4874 4886 4865
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 6 6 6 6 6 6 5 5 5
Average delay per vehicle, min 2 3 3 3 3 3 3 2 3 3
Table B54: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 38 51 49 65 83 93 117 20 48 71
Total vehicle mile travelled 2820 2870 2839 2843 2805 2777 2792 2907 2844 2764
Total Stopped Delay, h 128 150 151 164 171 184 201 115 152 169
Average delay per vehicle, s 144 158 165 175 187 196 211 136 165 186
Vehicle in the network 549 622 600 613 602 638 641 488 567 654
Vehicle left 4287 4329 4310 4286 4243 4174 4220 4380 4319 4198
Total Travel time, h 378 404 411 425 435 444 468 374 410 431
Total vehicle Km travelled 4538 4619 4569 4575 4514 4469 4494 4679 4577 4448
Total vehicle in the network 4836 4951 4910 4899 4845 4812 4861 4868 4886 4852
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 5 5 6 6 6 6 5 5 6
Average delay per vehicle, min 2 3 3 3 3 3 4 2 3 3
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Table B55: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 19 56 113 64 54 122 149 35 50 83
Total vehicle mile travelled 2858 2820 2763 2815 2822 2725 2769 2879 2842 2786
Total Stopped Delay, h 121 162 168 166 160 190 202 125 158 161
Average delay per vehicle, s 140 174 180 180 174 201 211 143 174 181
Vehicle in the network 510 651 589 645 578 640 626 531 563 594
Vehicle left 4349 4295 4247 4256 4293 4139 4208 4320 4320 4246
Total Travel time, h 370 417 417 423 414 440 458 376 416 419
Total vehicle Km travelled 4600 4538 4447 4530 4542 4385 4456 4633 4573 4483
Total vehicle in the network 4859 4946 4836 4901 4871 4779 4834 4851 4883 4840
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 6 6 6 5 6 6 5 5 6
Average delay per vehicle, min 2 3 3 3 3 3 4 2 3 3
Table B56: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 21 31 14 41 41 152 126 22 20 65
Total vehicle mile travelled 2860 2897 2898 2884 2859 2712 2797 2912 2920 2817
Total Stopped Delay, h 118 146 141 162 168 200 195 121 138 157
Average delay per vehicle, s 138 155 163 175 188 208 206 139 154 178
Vehicle in the network 480 610 544 628 590 672 621 482 504 585
Vehicle left 4375 4363 4400 4297 4295 4079 4233 4384 4417 4272
Total Travel time, h 358 389 399 413 427 438 446 363 386 409
Total vehicle Km travelled 4602 4663 4663 4641 4601 4365 4501 4686 4699 4534
Total vehicle in the network 4855 4973 4944 4925 4885 4751 4854 4866 4921 4857
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 5 5 5 5 6 6 6 5 5 5
Average delay per vehicle, min 2 3 3 3 3 3 3 2 3 3
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e Three speed profile — 20% less of average peak traffic (Table B57- Table B60)

Table B57: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0 0 0 0 0 0 0 0 0 0
Total vehicle mile travelled 2372 2470 2450 2466 2420 2438 2466 2430 2469 2429
Total Stopped Delay, h 62 65 69 67 66 66 72 61 67 69
Average delay per vehicle, s 86 88 94 91 92 92 98 84 92 95
Vehicle in the network 315 291 294 291 263 310 822 311 263 309
Vehicle left 3557 3643 3667 3637 3654 3601 3655 3579 3660 3590
Total Travel time, h 251 261 267 265 261 263 273 254 265 265
Total vehicle Km travelled 3818 3975 3943 3969 3895 3924 3969 3910 3973 3909
Total vehicle in the network 3872 3934 3961 3928 3917 3911 3977 3890 3923 3899
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 4 4 4 4 4 4 4 4
Average delay per vehicle, min 1 1 2 2 2 2 2 1 2 2
Table B58: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10

Latent demand 0 il 0

Total vehicle mile travelled 2479 2530 2527 2541 2514, 2542 2562 2482 2549 2490
Total Stopped Delay, h 72 72 74 74 76 75 78 70 80 80
Average delay per vehicle, s 96 94 98 98 103 102 102 94 106 108
Vehicle in the network 332 841 314 315 298 323 332 328 283 333
Vehicle left 3669 3756 3765 3759 3737 3728 3783 3703 3770 3698
Total Travel time, h 270 273 2717 278 280 281 284 268 286 284
Total vehicle Km travelled 3989 4071 4068 4090 4041 4092 4124 3994 4102 4007
Total vehicle in the network 4001 4087 4079 4074 4035 4051 4115 4031 4053 4031
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 B 4 4 4 4 4 4 4
Average delay per vehicle, min 2 2 2 2 2 2 2 2 2 2
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Table B59: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0 0 0 0 0 0 0 0 0 0
Total vehicle mile travelled 2381 2470 2427 2487 2466 2442 2466 2450 2466 2425
Total Stopped Delay, h 64 64 7o 65 79 72 75 64 72 69
Average delay per vehicle, s 90 87 102 90 109 100 102 90 99 97
Vehicle in the network 309 281 312 297 284 330 301 300 261 300
Vehicle left 3563 3653 3648 3631 3633 3581 3676 3590 3662 3599
Total Travel time, h 247 251 266 256 275 264 269 253 264 258
Total vehicle Km travelled 3831 3975 3907 4003 3968 3930 3969 3943 3968 3902
Total vehicle in the network 3872 3934 3960 3928 3917 3911 3977 3890 3923 3899
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 4 4 4 4 4 4 4 4
Average delay per vehicle, min 1 1 2 i 2 2 2 il 2 2
Table B60: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 0 0 0 0 0 0 0 0 0 0
Total vehicle mile travelled 2441 2525 2495 2515 2504 2529 2526 2466 2515 2483
Total Stopped Delay, h 70 63 70 65 73 74 78 66 70 73
Average delay per vehicle, s 97 86 95 89 100 102 106 91 95 101
Vehicle in the network 304 284 286 269 274 307 309 307 247 273
Vehicle left 3568 3650 3675 3659 3643 3604 3668 3583 3676 3626
Total Travel time, h 251 246 255 249 259 263 269 247 255 259
Total vehicle Km travelled 3928 4063 4015 4048 4030 4070 4065 3969 4048 3995
Total vehicle in the network 3872 3934 3961 3928 3917 3911 3977 3890 3923 3899
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 4 4 4 4 4 4 4 4 4 4
Average delay per vehicle, min 2 1 2 1 2 2 2 2 2 2
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¢ Three speed profile — 20% more of average peak traffic (Table B61- Table B64)

Table B61: 0% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 458 424 487 621 550 523 603 516 501 658
Total vehicle mile travelled 3018 3126 3015 3026 2973 3017 2991 3013 3018 2929
Total Stopped Delay, h 248 269 284 286 297 299 315 254 285 291
Average delay per vehicle, s 240 253 283 272 286 281 296 242 275 278
Vehicle in the network 781 777 802 810 812 823 789 781 778 763
Vehicle left 4616 4787 4615 4587 4578 4602 4577 4600 4651 4512
Total Travel time, h 561 600 627 609 627 625 641 564 615 603
Total vehicle Km travelled 4858 5030 4852 4869 4785 4855 4814 4849 4857 4714
Total vehicle in the network 5397 5564 5417 5397 5390 5425 5366 5381 5429 5275
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 7 8 8 8 8 8 7 8 8
Average delay per vehicle, min 4 4 5 5 5 5 5 4 5 5
Table B62: 20% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 395 518 682 785 514 791 573 506 541 556
Total vehicle mile travelled 3049 3082 2879 2901 2976 2857 2985 3035 3020 2975
Total Stopped Delay, h 239 275 306 303 287 321 302 248 281 284
Average delay per vehicle, s 239 261 295 285 279 299 298 239 274 279
Vehicle in the network 767 792 793 789 802 783 784 768 761 779
Vehicle left 4684 4686 4414 4439 4622 4379 4602 4624 4634 4589
Total Travel time, h 561 598 614 604 614 616 640 556 607 610
Total vehicle Km travelled 4906 4960 4634 4668 4790 4598 4803 4884 4860 4788
Total vehicle in the network 5451 5478 5207 5228 5424 5162 5386 5392 5395 5368
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 7 8 8 8 8 8 7 7 8
Average delay per vehicle, min 4 4 5 5 5 5 5 4 5 5
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Table B63: 50% Eco-Driving

Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 499 486 535 726 595 782 644 583 599 849
Total vehicle mile travelled 3009 3076 2996 2929 2959 2836 2939 2990 2971 2782
Total Stopped Delay, h 241 271 278 292 294 311 308 263 286 316
Average delay per vehicle, s 246 261 284 281 291 295 304 252 281 310
Vehicle in the network 772 786 761 1S 794 IS 787 783 779 763
Vehicle left 4579 4717 4611 4499 4550 4393 4522 4530 4564 4325
Total Travel time, h 556 594 613 598 620 604 634 561 605 614
Total vehicle Km travelled 4843 4950 4822 4714 4762 4565 4730 4813 4782 4477
Total vehicle in the network 5351 5503 5372 5274 5344 5170 5309 5313 5343 5088
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 7 8 8 8 8 8 7 8 8
Average delay per vehicle, min 4 4 5 5 5 5 5 4 5 5
Table B64: 100% Eco-Driving
Performance Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10
Latent demand 449 529 541 580 594 630 684 415 573 813
Total vehicle mile travelled 3069 3074 3048 3063 2972 2947 2954 3101 3020 2830
Total Stopped Delay, h 230 257 261 264 283 283 303 231 272 302
Average delay per vehicle, s 236 250 275 262 284 278 299 233 274 297
Vehicle in the network 736 745 736 753 771 751 746 721 747 746
Vehicle left 4671 4711 4643 4666 4577 4566 4541 4751 4610 4374
Total Travel time, h 539 564 594 578 601 587 617 541 589 592
Total vehicle Km travelled 4938 4948 4905 4929 4782 4743 4755 4990 4861 4554
Total vehicle in the network 5407 5456 5379 5419 5348 5317 5287 5472 5357 5120
Latent to total vehicle ratio 0 0 0 0 0 0 0 0 0 0
Travel time (Min)per vehicle km 7 7 7 7 8 7 8 7 7 8
Average delay per vehicle, min 4 4 5 4 5 5 5 4 5 5
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Data and analysis for
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Table C1: PMy, in different monitoring stations (2007-2009)

Appendix C

2007 2008 2009
Station Min Max Avg Min Max Avg Minimum | Maximum Avg
pe/m’ | pe/m® | pg/m’ | pg/m’ | pe/m’ | pg/m’ | pg/m’ | ug/m’ | wg/m’
Ballyfermott | 2.64 78.47 14.82 2.50 43.19 11.64 1:53 46.10 12.44
Coleraine 431 75.28 18.43 4.58 93.47 18.54 - = =
Rathmines 1.20 87.92 16.69 1.00 101.30 16.91 2.36 59.58 14.74
Marino 1:67 74.31 13.41 2.50 75.00 12.62 - =
PhoenixPark | 1.53 66.19 11.72 1.39 59.44 10.74 2.08 38.89 10.19
Ringsend - 5.20 36.52 14.40
Winetavern 3.19 93.47 18.30 1.69 82.36 17.49 1.39 55.83 17.29

Table C2: Average Daily concentration of SO,, NO,, NO,, and NO in different monitoring sites

Average Daily concentration ug/m3

Station SO, NO, NO, NO

Ballyfermott 3.15 35.83 24.61 14.04
Coleraine 0.84 76.24 40.84 23.63
Rathmines 2.98 28.72 22.15 8.33
Ringsend 6.07 46.35 27.55 19.32

T — 2.4 TL1A 44.39 27.23

Table C3: PMy, in different monitoring stations (2011-2012) in Vienna
2011 2012
Min Max Average Min Max Average
Station pg/m’ pg/m’ pg/m’ pg/m’ pg/m’ ug/m3
A23/RinnbockstraRe 7.0 148.1 34.44 5.7 98.9 25.98
AKH, Stdringweg 4.2 123.7 26.72 4.0 89.6 23.16
Belgradplatz 4.2 145.2 33.87 4.7 99.9 27.33
Floridsdorf

Gerichtsgasse 7.9 135:4 31.25 8.0 154.5 27.45
Gaudenzdorf 7531 136.2 30.51 6.3 106.7 25.57
Kaiser Ebersdorf 3.6 131.1 29.36 3.3 96.3 22.66
KendlerstraRe 6.7 128.3 30.35 4.6 115.4 26.47
Laaerberg 5.9 130.6 27.99 4.2 95.4 23.66
Liesing 4.7 131.7 31.62 4.3 112.1 27.30
Lobau 5.3 125.0 25.99 5.3 87.6 20.28
Schafbergbad 5.2 106.0 24.54 5.7 147.6 21.34
Stadlau 4.2 122.9 28.28 5.0 132.7 24.88
TaborstraBe 51 126.4 29.35 5.0 90.9 24.20




Table C4: Variables assessed (Non-selected) for different model development

Dublin PM;, models

MaX,g07. Min,ao7.
Variables for Dublin datasets T2009 MaXx;009 Min,g09 12007-2009

2009. 2009.
Altitude (500m) -0.33 53 5 -0.29 53 5
Open space area (500m) -0.3 24 0.05 -0.28 24 0.05
Coast distance -0.27 9.5 0.2 -0.22 9.5 0.2
Radiation (W/m2) -0.21 123.41 1.09 -0.02 158.61 1.09
Industrial+ commercial area(1000m) 0.23 0.64 0 0.14 0.64 0
VKT (0-100m) 0.26 12510 139 0.25 12510 139
VKT (200-300m) 0.31 38848 495 0.3 38848 495
VKT (0-150m) 0.32 18571 250 0.27 18571 250
VKT (100-300m) 0:33 69397 709 0.3 69397 709
VKT (100-200m) 0.33 30549 214 0.29 30549 214
Temperature (C) -0.33 18.29 -0.9 -0.28 18.29 -0.9

Dublin models for PM,, and other pollutants: Year 2009
SO, | NO, ] NO, l NO
Variables for Dublin datasets 2009 Min Max
Humidity (C) 0.02 0.24 0.20 0.28 62.96 99.29
Dew point (C) 0.03 -0.31 -0.34 -0.24 -4.42 16.44
Radiation* (W/m2) 0.10 -0.27 -0.27 -0.24 1.09 123.41
Rainfall (mm) 0.03 -0.07 -0.06 -0.05 0.00 38.80
Stability Class 0.03 0.24 0.19 0.24 3.00 5.00
Coast Distance (km) -0.11 -0.37 -0.33 -0.20 0.20 9.50
Vienna PM;, models

Variables for Vienna datasets 012 Max;012 Minyo12 2011-12. Max’11-12 Min’11-12
Min. Temperature (C) -0.28 32 0 -0.35 25 -14
Nearest major road distance -0.09 2.89 0.01 -0.07 2.89 0.01
Co-ordinate (X+Y) -0.06 64.69 64.43 -0.04 64.69 64.43
Minor Road (0-350m) 0.05 127 291 0.04 12,7 2.91
Building centroid 0.06 2313 6 0.04 2313 6
Minor Road (0-750m) 0.07 4.46 0 0.06 51.05 13.15
Total road (0-350m) 0.08 9.66 0 0.07 13:1 3.6
Minor Road (350-750m) 0.08 14.11 0 0.07 43.13 9.55
Major road (350-750m) 0.08 51.05 13:15 0.07 9.66 0
Total road (350-750m) 0.08 43.13 9.55 0.08 47.83 9.55
Major road (0-750m) 0.09 47.83 9.55 0.08 14.11 0
Total road (0-750m) 0.09 56.86 13:15 0.08 56.86 13.15
Max. Temperature* (C) -0.25 31 -11 -0.28 38 -8
Altitude (500m) -0.02 297.75 152.43 -0.03 297.75 152.43

Note: r=parsons correlation coefficient
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Figure C1: Average NO, concentration in the monitoring stations (2007-2009)

Table C5: List of Time Factors

Serial No. Factor Name Time Period Time Factor
1 Early morning factor 5am -6.59am 0.74
2 Morning Peak Factor 7am-10.59am 1.35
3 Settling Factor: Noon 11am-13.59pm 0.96
4 Average Traffic Factor 14pm-15.59pm 0.96
5 Evening Peak 16pm-18.59pm 1.16
6 Settling Factor: Night 19pm-21.59pm 0.95
7 Night factor 22pm-4.59am 0.66

Note: Time segregation (e.g. Peak and off-peak hour) have been conducted based on the
traffic situation in Dublin (NRA, 2004, 2009).




Table C6: Exposure to PM,, for two alternative routes in morning peak hour in Dublin

Route A Route B Route A Route B
Route
Total Total Average | Average Saving from in Route
. A
Travel Time 25 17| - N
et (Hour)
Trip info
Distance (km) 9.56 6.13 Value %
Mon 19.58 14.85 2:.05 2.42 0.37 18.31
SUMIER |0 20.79 14.99 2.17 2.44 0.27 12.41
(Dose)
Wed 19.44 14.72 2.03 2.40 0.37 18.05
Thurs 19.58 14.18 2.05 231 0.26 12.93
Fri 16.88 12.42 1.77 2.03 0.26 14.78
Sat 15.39 10.80 1.61 1.76 0.15 9.44
Sun 13.37 9.59 1.40 1.56 0.17 11.85
Mon 26.87 18.77 2.81 3.06 0.25 8.93
VIREEE [ ne 28.89 20.12 3.02 3.28 0.26 8.59
(Dose)
Wed 34.43 23.90 3.60 3.90 0.30 8.25
Thurs 26.06 17.69 2.73 2.88 0.16 5.86
Fri 32.13 21.47 3.36 3.50 0.14 4.19
Sat 26.19 17.96 2.74 2.93 0.19 6.92
Sun 27.95 18.77 2.92 3.06 0.14 4.72




Table C7: Routing assessment for route 1

Trip information Summer Winter

,_ 5 -1 - 5 gl = | = < € _[< < =5 = £ 5 E_JE = = =

o > = 8 o _| = © © v P » n oo n » © v o 0 o «n o «
Route 1 > 3lrs |reg 3| © |87|82|82|83|8>|83|8z|sR|8c|82|8=2|8>|s8|8%
2o | |E¥gee] €8 O cg|og|oag|oF|oZ|cE|Soc|oB|oRg|ee|aF|eg|eBloxz
Sl8eleceegas| & |se|es|Es|E2|8c 85|88 B2 |¢E=|¢E5]¢Ea
) ] - S v [ V)

3 2EFS gl =% 2|z -3l Bt B a6 z0 | 2 2 sEl=z3| 2] 2 zv | 2

-~ 8 & O a ) ) o o ) o o o 5] o o o 5] o o

- o | — —J - - < —d < o ] ad od — s | —
Distance (km) 157 | 1s5| 142 | 154 | 141 | 13| 153 | 156 | 152 | 152 | 1s2| 153 | 155 | 152 | 153 | 162 | 152 | 153 | 152 | 155
VOT (€) 136 | 138 150 138| 149 | 146 | 139 | 137| 137 | 137 | 137 138| 136 | 137 | 138 | 157 | 137)| 138| 137| 136
) Rl Thine 0.5 0.5 0.6 05 0.5 0.5 05 05 0.5 0.5 0.5 0.5 0.5 05 05 0.5 0.5 05 0.5 0.5

Trip (Hour)
information | g./nning cost (€) a7 4.7 4.2 4.6 43 43 4.6 4.7 4.6 4.6 4.6 4.6 4.7 4.6 4.6 4.9 4.6 4.6 4.6 4.7
cozg) 3023. | 2983. | 2969. | 2994. | 2947. | 2944. | 2994. | 3001. | 2964. | 2964. | 2959. | 2970. | 2991. | 2962. | 2970. | 3256. | 2967. | 2970. | 2962. | 2990.
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
fé"e'a"sed cost 185 | 185 | 193 | 183| 191 | 189 | 185| 184 | 183 | 183| 183 | 183 | 183 | 183 | 183 | 205| 183 | 183 | 183 | 183
Monday 3.7 3.7 a1 37 a1 4.0 37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Summer Tuesday 3.6 3.5 4.1 3.6 4.1 3.9 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(Dose)
Wednesday 3.5 3.5 4.0 35 4.0 3.9 0.0 0.0 35 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Thursday 3.4 3.4 3.9 34 3.9 3.9 0.0 0.0 0.0 3.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Friday 3.2 3.1 3.4 3.2 3.4 3.7 0.0 0.0 0.0 0.0 3.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Saturday 2.7 2.7 31 27 3.0 2.9 0.0 0.0 0.0 0.0 0.0 2.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sunday 25 2.4 2.7 25 2.7 26 0.0 0.0 0.0 0.0 0.0 0.0 2.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Monday 5.1 44 5.7 5.0 5.7 5.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 44 0.0 0.0 0.0 0.0 0.0 0.0
Winter Tuesday 5.1 5.1 5.8 5.1 5.8 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 0.0 0.0
(Dose)

Wednesday 5.4 5.3 6.4 53 6.4 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 53 0.0 0.0 0.0 0.0
Thursday 4.8 4.7 53 a7 5.2 5.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6 0.0 0.0 0.0
Friday 5.5 5.5 6.5 55 6.4 6.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 0.0 0.0
Saturday 4.6 4.6 5.1 53 5.1 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 45 0.0
Sunday 5.2 5.2 5.8 5.2 5.7 5.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.1




Table C8: Routing assessment for route 2

Trip information Summer Winter
= o ’g o o~ & 3 > S > |3 2 s 4] & - 4] & 0 > 3 > 4 S > |3
= £ S 2 5 S 8% |88 3| 83|8,.|88|8%|85[88B 2|83 | 8|88 |83
Route 2 a = te | ] ‘;:‘g % 3 S [ wf|nB[e5| 22 % S 2k I O I T
£ ERIE |8 1wl 182|238 ] Bl z2E |z lz8| 2o lz2|eR2f Blze| 2k (2% |22
SU ||tz |[2€ |68 |62 |8®|8c|8c |2 | 8=|(8ec|8=|8c|8c|8SspPes=2|8c|8c=|8¢c|8¢
Trip Distance (km) 14.1 14.1 12.3 13.0 12.3 12.9 14.1 14.1 15.7 14.01 14.6 15.7 14.19 15.6 15.7 15.62 14.1 15.67 14.2 14.2
information VOT (€) 115 11.5 13.0 11.7 13.6 11.7 11.6 11.5 13.5 11.5 11.9 13.5 11.63 13.4 13.5 13.41 11.6 13.45 11.6 11.6
Travel Time (Hour) 0.42 0.41 0.47 0.42 0.49 0.42 0.42 0.42 0.49 0.416 0.43 0.49 0.421 0.49 0.49 0.486 0.42 0.487 0.42 0.42
Running cost (€) 4.25 4.24 3.69 3.9 3.7 3.88 4.25 4.24 4.73 4.2 4.39 4.73 4.26 4.69 4.74 4.69 4.25 4.7 4.28 4.67
CO2 (g) 2648 2646 2583 2536 2632 2527 2649 2646 3008 2621 2730 3006 2654 2982 3008 2978 2646 2987 2667 2661
Generalised cost (€) 15.8 15.8 16.7 15.6 17.3 15.6 15.8 15.8 18.2 15.69 16.3 18.2 15.89 18.1 18.2 18.10 15.8 18.16 15.9 15.9
3.36 3.36 3.75 3.38 3.85 3.42 333 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Monday
3.24 3.24 3.70 3.28 3.83 3.29 0.00 3.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Tuesday
3.20 3.20 3.59 3.23 3.66 3.25 0.00 0.00 3.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Wednesday
3.04 3.04 3.39 3.06 3.47 3.06 0.00 0.00 0.00 3.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Summer Thursday
(Dose) 2.69 2.69 3.04 2.71 3.13 2.73 0.00 | 0.00 | 0.00 0.00 2.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Friday
2.21 221 2.50 2.24 2.59 2.25 0.00 0.00 0.00 0.00 0.00 2.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Saturday
2.05 2.05 2.36 2.08 2.48 2.08 0.00 0.00 0.00 0.00 0.00 0.00 2.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Sunday
4.62 4.62 5.08 4.71 5.17 4.73 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.58 0.00 0.00 0.00 0.00 0.00 0.00
Monday
4.59 4.63 5.09 4.70 5.22 474 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.33 0.00 0.00 0.00 0.00 0.00
Tuesday
4.46 4.46 5.12 4.48 5.39 4.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.13 0.00 0.00 0.00 0.00
Winter Wednesday
(Dose) 4.02 4.02 4.55 4.10 471 4.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.02 0.00 0.00 0.00
Thursday
5.08 5.08 5.76 5.20 5.90 5.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.78 0.00 0.00
Friday
3.93 3.93 4.55 4.00 4.74 4.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.90 0.00
Saturday
4.41 4.40 5.10 4.48 5.37 4.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4.39
Sunday

vi
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Appendix D
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Figure D1: Tailpipe and ultimate CO, emissions for a Euro 1, <1400cc petrol car, Source
(Boulter et al., 2009)
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Figure D2: Effect of occupancy on overall transport emission, Source (Walsh et al., 2008)
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Figure D3: Dublin inbound traffic (left) and outbound for weekdays (Source: NRA 2004)
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Figure D4: Dublin Traffic inbound and outbound (left), and city bound traffic flow for weekdays-

2008 (Sources: NRA 2009)
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Figure D5: Traffic goes down in the weekends —left figure and there is no distinct peak usually
as confirmed by the literature (source: NRA, 2004,2009)



Figure D6: Average Peak Traffic Volume (5.00-6.00PM), 2011

Source: Traffic Noise & Air Quality Unit, Dublin City Council

Table D1: VISSIM -Vehicle record database- sample vehicle no. 30

0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1

tnk | km/hr | cum Distance | m [coamg/s] mg [ stim [Tottime| cumTime | Time
7 29.15 0.808658267 0.808658267 2239 2239 34 0 34
7 30.53 14.06997559 0.846808019 2239 223.9 34 0 5
7 30.61 14.91918036 0.849204777 2239 223.9 34 0 53
7 30.70 15.7707819 0.851601535 2239 2239 34 0 5.2
7 30.79 16.62478019 0.853998293 2239 2239 34 0 53
7 30.87 17.48117524 0.856395052 2239 2239 34 0 5.4
7 30.96 18.33996705 0.85879181 2239 223.9 34 0 5
7 30.97 19.20015562 0.860188568 2207 220.7 34 0 5.6
7 30.92 20.05974095 0.859585326 2271 227.1 34 0 &7
7 30.83 20.91732627 0.857585326 2271 227.1 34 0 5.8
7 30.74 21.77251484 0.855188568 2271 227.1 34 0 3.9
Z 30.66 22.62530665 0.85279181 2271 227.1 34 0 6
7 27.90 48.64915624 0.776095548 271 227.1 34 0 9.2
7 27.81 49.42285503 0.77369879 2271 227.1 34 0 93
7 27.72 50.19415707 0.771302032 2271 227.1 34 0 9.4
7 27.64 50.96306234 0.768905273 2271 227.1 34 0 9.5
7 27.55 51.72957085 0.766508515 2271 227.1 34 0 9.6
% 27.46 52.49368261 0.764111757 2022 202.2 34 0 97
7 27.38 53.25539761 0.761714999 2022 202.2 34 0 9.8
7 27.29 54.01471585 0.759318241 2022 202.2 34 0 99
7 27.21 54.77163733 0.756921482 2022 202.2 34 0 10
7 27.19 55.52716206 0.755524724 2111 211.1 3.4 0 10.1
74 27.25 56.28329002 0.756127966 2111 211.1 34 0 10.2
7 27.34 57.04141799 0.758127966 2143 214.3 34 0 10.3

0.1




Table D2: VISSIM data applied as Eco-Routing model- vehicle 30

Time on the Distance Distance Link Eco-Routing CO2

Link link (m) (km) Speed (g/km) CO2 (g)
0.14784696 41.2546

7 3.4sec-20sec 147.8 5 29.42 279.0361403 5

1000 0.04853029 13.4070

74 48.5 4 30.04 276.2606548 1
0.25448595 72.1162

8 254.5 8 28.5 283.380006 3

1000 0.01573674 4.47493

8 15.7 6 28.3 284.3620106 3
0.02747974

56 27.5 3 28.5 283.380006 7.78721

Total 135.04
Table D3: VISSIM- Sorted Link Data- vehicle 30

Link Time Interval Volume Link Speed Density (vehicle/km)

i 10 197 29.42 6.7

7 20 409 30.04 13.6

10007 30 362 29.6 12.221

8 40 1521 28.63 53.116

8 50 1361 29.39 46.3

10008 60 118 23.55 5.022

56 70 578 28.54 25.023




Table D4: Code for vehicle category, catalyst convertor, fuel type and emission standard

Vehicle Emission Standard

Class Code
Pre-Euro 100
Euro | 1
Euro Il 2
Euro lll 3
Euro IV 4
Euro VI 5
Euro VI 6
Fuel Technology

Type Code
Petrol 11
Diesel 12
Vehicle weight and Engine Size

Class Code
<2500 (1400cc) 21
<2500 (1400-2000cc) 22
<2500 (>2000cc) 23
2500-3500 (any) 240
Catalyst Converter

Class Code
Yes 31
No 32




Table D5: Defining vehicle category in a numeric value according to engine, fuel type and

emission standard

Primary | Vehicle characteristics (engine size <2.5 tonnes) Primary | Vehicle characteristics(engine size >2.5 tonnes)
Code Fuel Vehicle weight Vehicle Code Fuel Vehicle weight Vehicle
Technology and Engine Size | Emission Technology and Engine Size Emission
Standard Standard
1100 Petrol <2.5 tonnes Pre-Euro 1200 Diesel <2.5 tonnes Pre-Euro
(1400cc) (1400cc)
il Petrol <2.5 tonnes Euro | 12 Diesel <2.5 tonnes Euro|
(1400cc) (1400cc)
22 Petrol <2.5 tonnes Euro Il 24 Diesel <2.5 tonnes Euro
(1400cc) (1400cc)
33 Petrol <2.5 tonnes Euro I 36 Diesel <2.5 tonnes Euro Il
(1400cc) (1400cc)
44 Petrol <2.5 tonnes Euro IV 48 Diesel <2.5 tonnes Euro IV
(1400cc) (1400cc)
55 Petrol <2.5 tonnes Euro VI 60 Diesel <2.5 tonnes Euro VI
(1400cc) (1400cc)
66 Petrol <2.5 tonnes Euro VI 72 Diesel <2.5 tonnes Euro VI
(1400cc) (1400cc)
24200 Petrol <2.5 tonnes Pre-Euro 26400 Diesel <2.5 tonnes Pre-Euro
(1400-2000cc) (1400-2000cc)
242 Petrol <2.5 tonnes Euro | 264 Diesel <2.5 tonnes Euro |
(1400-2000cc) (1400-2000cc)
484 Petrol <2.5 tonnes Euro Il 528 Diesel <2.5 tonnes Euro |l
(1400-2000cc) (1400-2000cc)
726 Petrol <2.5 tonnes Euro Il 792 Diesel <2.5 tonnes Euro Il
(1400-2000cc) (1400-2000cc)
968 Petrol <2.5 tonnes Euro IV 1056 Diesel <2.5 tonnes Euro IV
(1400-2000cc) (1400-2000cc)
1210 Petrol <2.5 tonnes Euro VI 1320 Diesel <2.5 tonnes Euro VI
(1400-2000cc) (1400-2000cc)
1452 Petrol <2.5 tonnes Euro VI 1584 Diesel <2.5 tonnes Euro VI
(1400-2000cc) (1400-2000cc)
25300 Petrol <2.5 tonnes Pre-Euro 27600 Diesel <2.5 tonnes Pre-Euro
(>2000cc) (>2000cc)
253 Petrol <2.5 tonnes Euro| 276 Diesel <2.5 tonnes Eurol
(>2000cc) (>2000cc)
506 Petrol <2.5 tonnes Euro Il 552 Diesel <2.5 tonnes Euro |l
(>2000cc) (>2000cc)
759 Petrol <2.5 tonnes Euro Il 828 Diesel <2.5 tonnes Euro lll
(>2000cc) (>2000cc)
1012 Petrol <2.5 tonnes Euro IV 1104 Diesel <2.5 tonnes Euro IV
(>2000cc) (>2000cc)
1265 Petrol <2.5 tonnes Euro VI 1380 Diesel <2.5 tonnes Euro VI
(>2000cc) (>2000cc)
1518 Petrol <2.5 tonnes Euro VI 1656 Diesel <2.5 tonnes Euro VI
(>2000cc) (>2000cc)

Vi




Table D6: Defining vehicle category in a numeric value according to catalyst convertor, fuel

type and emission standard (engine size >2.5 tonnes)

Primary Code Fuel Technology Catalyst Converter Vehicle Emission
Standard
35200 Petrol N Pre-Euro
352 Petrol N Euro |
704 Petrol N Euro Il
1056 Petrol N Euro 1l
1408 Petrol N Euro IV
1760 Petrol N Euro VI
2112 Petrol N Euro VI
34100 Petrol Y Pre-Euro
341 Petrol Y Euro |
682 Petrol Y Euro Il
1023 Petrol Y Euro llI
1364 Petrol Y Euro IV
1705 Petrol Y Euro VI
2046 Petrol Y Euro VI
38400 Diesel N Pre-Euro
384 Diesel N Euro |
768 Diesel N Euro Il
1152 Diesel N Euro Il
1536 Diesel N Euro IV
1920 Diesel N Euro VI
2304 Diesel N Euro VI
37200 Diesel Y, Pre-Euro
372 Diesel Y Euro |
744 Diesel Y Euro Il
1116 Diesel Y Euro Ill
1488 Diesel Y Euro IV
1860 Diesel Y Euro VI
2232 Diesel Y Euro VI

Vi




Table D7: Empirical Equations for cold start emission

New Primary Excess Emission Correction CO- Cold Distance Value
Code | Code efficient, f dc(T,V) a
Al 38400 854.4-17.56*V 1.698-.035*V -2.27+40.0321*V -3.432
A2 35200,352, 214.922- 2.602-.079*TT- 2.807- -2.33
704,1056, 6.528*TT-.088*V | .01*V .024*TT+.141*V
1408,1760,2
112
A3 37200,34100 | 133.024-.306*V 1.048-.002*V 2.172+.126*V -2.68
A4 372,384 374.171- 2.43-.055*TT- 3.474+.163*V -4.078
8.405*TT-2.606*V | .017*V
A5 341 162.937- 2.654- 3.838+.081*V -2.714
5.435*TT+.358*V | .089*TT+.006*V
A6 744,768 362.34- 2.567-.077*TT- 4.31- -3.767
10.921*TT-.14*V .001*V .04*TT+.125*V
A7 682 194.662- 1.454- 4.048- -2.563
3.546*TT+.504*V | .026*TT+.004*V 124*TT+.145*V
A8 1116,1152,1 | 171.52-..381*V 1.047-.002*V 9.093-.064*V -3.389
488,
1536,1860,
192,2232,23
04
A9 1023,2046,1 | 186.055- 1.496- 2.461- -3.662
705 5.365*TT+2.283* .043*TT+.018*V .057*TT+.173*V
\Y)
A10 1364 168.005-5.165*TT | 2.597-.08*TT 5.398-.142*TT -2.686

viii




Table D8: Coefficient for emission equations, petrol powered vehicle and <2.5 tonnes

Primary | a b (o d f g
Code
1100 2.2606*1073 | 1.0314*1070 | 2.9263*107- | 3.0199*10/- 0 0
1 3
11 2.2606*1073 | 8.7563*1071 | 2.9263*10~- | 3.0199*107- 0 0
1 3
22 2.2606*1073 | 8.0148*1071 | 2.9263*107- | 3.0199*10"- 0 0
1 3
33 2.2606*1073 | 7.0183*1071 | 2.9263*10~- | 3.0199*10/- 0 0
1 3
44 2.2606*1073 | 5.9444*1071 | 2.9263*107- | 3.0199*107- 0 0
it 3
55 2.2606*1073 | 4.4379*1071 | 2.9263*107- | 3.0199*10"- 0 0
al 3
66 2.2606*1073 | 3.1583*10/1 | 2.9263*10~- | 3.0199*10/- 0 0
1 3
24200 2.5324*1073 | 1.532*1072 -0.43167 6.6776*10A- 0 0
3
242 2.5324*1073 | 1.3779*1072 | -0.43167 6.6776*10A- 0 0
3
484 2.5324*1073 | 1.2988*1072 | -0.43167 6.6776*10A- 0 0
3
726 2.5324*1073 | 1.1834*10"2 | -0.43167 6.6776*10"- 0 0
3
968 2.5324*103 | 1.034*10/2 -0.43167 6.6776*10A- 0 0
3
1210 2.5324*1073 | 8.4965*1071 | -0.43167 6.6776*10A- 0 0
3
1452 2.5324*1073 | 6.8842*10”1 | -0.43167 6.6776*10A- 0 0
3
25300 3.7473*1073 | 2.0881*1072 | -0.8527 1.0318*10"- 0 0
2
253 3.7473*1073 | 1.9576*1072 | -0.8527 1.0318*10"- 0 0
2
506 3.7473*1073 | 1.8600*1072 | -0.8527 1.0318*10"- 0 0
2
759 3.7473*1073 | 1.6774*1072 | -0.8527 1.0318*10"- 0 0
2
1012 3.7473*1073 | 1.5599*%1072 | -0.8527 1.0318*10~- 0 0
2
1265 3.7473*1073 | 1.2877*10”2 | -0.8527 1.0318*10"- 0 0
2
1518 3.7473*1073 | 1.0571*1072 | -0.8527 1.0318*10A- 0 0

2




Table D9: Coefficient for emission equations, diesel powered vehicle and <2.5 tonnes

Primary a b c d

Code

1200 1.2988*1073 | 1.4063*1072 -1.5597 1.2264*107-2
12 1.2988*1073 | 1.3636*1072 -1.5597 1.2264*107-3
24 1.2988*1073 | 1.2848*1072 -1.5597 1.2264*107-4
36 1.2988*1073 | 1.770*1012 -1.5597 1.2264*107-5
48 1.2988*1073 | 1.1846*1072 -1.5597 1.2264*107-6
60 1.2988*1073 | 1.0596*1072 -1.5597 1.2264*107-7
72 1.2988*1073 | 9.94974*1071 | -1.5597 1.2264*107-8
26400 1.2988*1073 | 1.809*1072 -1.5597 1.2264*107-9
264 1.2988*1073 | 1.7576*10"2 <1.5597 1.2264*107-10
528 1.2988*1073 | 1.6567*102 =1.5597 1.2264*107-11
792 1.2988*1073 | 1.5249*1072 -1.5597 1.2264*107-12
1056 1.2988*1073 | 1.4665*1072 =1,5597 1.2264*107-13
1320 1.2988*10”3 | 1.3055*1072 -1.5597 1.2264*107-14
1584 1.2988*1073 | 1.1701*1072 -1.5597 1.2264*107-15
27600 1.2988*1073 | 2.5320*1072 -1.5597 1.2264*107-16
276 1.2988*1073 | 2.4671*102 =1.5597 1.2264*107-17
552 1.2988*1073 | 2.3270*1072 -1.5597 1.2264*107-18
828 1.2988*1073 | 2.1490*1072 -1.5597 1.2264*107-19
1104 1.2988*1073 | 2.0203*1072 -1.5597 1.2264*107-20
1380 1.2988*1073 | 1.8015*10/2 -1.5597 1.2264*107-21
1656 1.2988*1073 | 1.6147*1072 -1.5597 1.2264*107-22




Table D10: Coefficient for emission equations, diesel powered vehicle and >2.5 tonnes

Primar | a b c d e f
y Code
4400 5.8599*1073 | 1.3439*%10~ | 2.0179*10” | 2.1654*10” | O 0
1 -1 -2
44 5.8599*1074 | 2.0636*10A- | 2.0179*10” | 2.1654*10” | O 0
1 -2 -3
88 4.8313*1073 | 9.3414*10~ | 9.524*107- | 8.4173*10" | 4.5393*107- | O
1 1 -5 S
132 4.8313*1073 | 9.3414*10" | 9.524*10~- | 8.4173*10~ | 4.5393*107- | O
1 1 -5 5
176 4.8313*1073 | 9.3414*10~ | 9.524*107- | 8.4173*10~ | 4.5393*10~- | O
1 1 -5 5
220 4.8313*1073 | 2.3414*10" | 9.524*10/~- | 8.4173*10” | 4.5393*10~- | O
3 1 -5 5
264 4.8313*1073 | 9.3414*10” | 9.524*10~- | 8.4173*10” | 4.5393*107- | O
1 1 -5 5
4800 4.8313*1073 | 8.8452*10” | 6.3429*1~- | 1.3351*10~7 | - 6.6419*
1 1 -2 0.00005509 | 10A7-7
4
48 4.8313*1073 | 8.8452*10” | 6.3429*1A- | 1.3351*10~" | - 6.6419*
i 1 -3 0.00005509 | 10A7-7
4
96 5.4190*1070 | 9.2699*107 | 6.3429*1A- | 9.7033*10~7 | - 3.4575*
3 1 1 -3 0.00003061 | 107~-07
3
144 5.4190*1070 | 9.2348*10" | 6.3429*17- | 9.7033*10" | - 3.4575*
3 1 1 -3 0.00003C61 | 107-08
3)
192 5.4190*1070 | 9.2208*10” | 6.3429*17- | 9.7033*10" | - 3.4575*
3 1 if -3 0.00003061 | 107-09
3
240 5.4190*1070 | 9.1992*10M | 6.3429*1A- | 9.7033*10~ | - 3.4575*
3 il 1 -3 0.00003061 | 107-10
3
288 5.4190*1070 | 9.1992*107 | 6.3429*1~- | 9.7033*10” | - 3.4575%*
3 2 1 -3 0.00003061 | 107-11

3

xi




Table D11: Car Emissions factors

Fuel Technology, Emission Standard at

Vehicle weight and Engine Size g/km 60km/h

<2.5 tonnes (1400cc) 98

<2.5 tonnes (1400-2000cc) 109

<2.5 tonnes (>2000cc) 154

2.5 - 3.5 tonnes (any) 241 Petrol, Euro VI
<2.5 tonnes (1400cc) 72

<2.5 tonnes (1400-2000cc) 89

<2.5 tonnes (>2000cc) 134

2.5 - 3.5 tonnes (any) 253 Diesel, Euro VI

xii




Box D1: Overview of the PEACOX (Persuasive Advisor for CO,-reducing cross-modal trip

planning) Project

The PEACOX project has set grounds for encouraging eco-friendly trips. The project

website (PEACOX 2014) provides an overview of the app that includes:

e PEACOX integrates automated travel mode detection based on real-time GPS data
into the trip planning thereby minimizing the need for explicit user input.

e PEACOX has the capability to automatically detect users’ trip purpose through the
analysis of behavioural patterns allowing tailoring trip suggestions to these
purposes.

e PEACOX builds dynamic user models allowing personalizing recommendations
based on prior trip choices and individual preferences.

e PEACOX develops advanced door-to-door emissions models that provide accurate
feedback on the ecological/carbon footprint and exposure levels in planning as well
as during travelling and car driving activities.

e PEACOX develops and utilizes persuasive interface strategies to give feedback
about the ecological impact of individuals’ behaviour as well as make the ecological

friendliest behavioural pattern visible and attractive.

The information regarding app use can be found in the project report (System Design
and Interface Definition by Fluidtime) at: http://www.project-
PEACOX.eu/project_results/public_deliverables/, last accessed on 17.12.2014
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Box D2: Matlab code of the Eco-routing model

Eie
[Head Car]=textread('Recommender Service.txt', ...
'%$.158 %.15s %.158 %.15s8 %.158 %.15s5 ")

C=str2num(cell2mat (Car(3))); %%Car Distance.
% Cr=str2num(cell2mat (Car(2))) $%String value denoting
Car Travel Route.

p=fix (clock);

if (strcmp(datestr(now, 'ddd'),'Sat') || strcmp(datestr (now,
Yddd ') ; *Sun®) ) % Matlab builtin values for days in week
1-7
Co=1.4;
elseif 9>=p(4)>=7 || 18>=p(4)>=16
Co=1;
else
CO=1.4;
end
$TT55T53329535259%%55%%38%%%3%%%Stage 29599388525 59%58928888%%%%%%

[Link Speed Length]=textread('Speed.txt','$.15s %.15s %.15s'); %
Real time speed information

lkl=str2num(cell2mat (Length(2:length (Length),1))) % Matrix
Linkwise Distance

lks=str2num(cell2mat (Speed (2:1length (Speed),1))); $Matrix
Linkwise Speed

Lcount=length (Link)-1; % Number of links
Sumspeed=sum(1lks) ; %lks=Speed

V=Sumspeed/Lcount; %V = Average Speed

T=C/V; % T=average Travel Time

%$2.2Parking Time Calculation

%(a file containing '0O' value named 'Last Trip Time' in the specified
format
%is given for the first time application)

%2.2.1 Open Last trip information

% fileID = fopen('Last Trip Time.txt','r'):;

[LTP Serial]=textread('Last Trip Time.txt',6 '$.15f %.15f'); % Last Trip
information

Az = [LTP; Seriall;

fileI = fopen('Park Time.txt',6 'wt');

fprintf (fileTI, '%6.2f %$6.2f',Rz);

% fprintf(filel,'%6.2f %6.2f %$6.2f %6.2f %6.2f %$6.2f %$6.2f %6.2f %6.2f
%$6.2f %6.2f %6.2f',Az);

fclose(fileI);
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Box D2: Continued

%2.2.2 Parking Time

if LTP(2)==p(2)&& LTP(3)==p(3)
$K=LTP(3:5)'; % Last Day Hour Minutes
K=LTP (4) *60+LTP (3) *1+LTP (5) /60;
$Now=p (3:5) ; % reference 1.3.2
Now=p (4) *60+p (3) *1+p (5) /60;
Pkt= Now-K;

elseif LTP(2)==p(2)&& LTP(3)==p(3)-1

Pkt=(24- (LTP(4))-(LTP(5)/60)+p(4)+p(5)/60) *60; %Pkt= Parking time
in Minutes

else
Pkt=722;
end

%$2.2.3 Update Last Travel Information

nn=p; % Reference :1.3.2

yy=[1 2 3 4 5 6]; %yy 1is used for just rating the time

% values for yy represent Year Month Date Time minute Second
A = [nn; yyl;

fileID = fopen('Last Trip Time.txt',6 'wt');

fprintf (£ileID, Y%$6.2f %6.2E\n",B) ;

fclose(fileID);

s2.3 Obtain Temperature information

[City Temp]=textread('Location and Temperature.txt',6 '%$.15s %.15s');
TT=str2num(cell2mat (Temp (2)))

%%%%%%%%%%%Stage 3: Car Emission Calculation$%$%
%%%%%%%%%%%Sub-stage: 3.1 Cold Start Emission %%%%%%%%5%%%%%%%%%%%%%%%%

%3.1.1 Obtain vehicle information
[Fuel Emi EW Cat]=textread('User Information.txt',
'%.158 %.15s %.15s %.15s8");
Fuel=str2num(cell2mat (Fuel (2)));
Emi=str2num(cell2mat (Emi(2)));
EW=str2num(cell2mat (EW(2)));
Cat=str2num(cell2mat (Cat(2)));
% 3.1.2 parking time equation selection
syms z
J=Fuel*Cat; % J= parking equation selection code
if (J==341)
pktQ=[ .1349*z-2.915*%10%-4%*z, .136+.0012*z, 1]; %value for z is
given in the end of the section
elseif (J==352)
PKEO=[5.287*10~-9*zZ+8. 864*1.07—6*Z222+5.035%5104=3%Zz, 1];
elseif (J==372 || J==384)
pktO=[ 4.339%10"=3%z-4; 747810 =6%z*2, 978+3:077*%10°=5%z, 1]% end
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Box D2: Continued

% 3.1.2 parking time factor calculation
z=Pkt;
if (J==341 && Pkt<=20) % Pkt reference 2.2.2
PF=subs (pktQ(1l),2z); % PF= Value of Parking factor

will be obtain by this variable

elseif (J==341 && 21>Pkt<=720)
PF=subs (pktQ(2),2z);

elseif (J==341 && Pkt>720)
PF=subs (pktQ (3) ,z) ;

elseif (J==352 && Pkt<720)
PF=subs (pktQ (1), z);

elseif (J==352 && Pkt>720)
PF=subs (pktQ (2) ,z) ;

elseif ((J==372 || J==384) && Pkt<=460)
PF=subs (pktQ (1) ,2z);

elseif ((J==372 || J==384) && 461>Pkt<=715)
PF=subs (pktQ (2),2z);

elseif ((J==372 || J==384) && Pkt>715)
PF=subs (pktQ(3),2) ;

end

% 3.1.3 Selection of excess emission, correction co-efficient, cold
distance
%equations

EFC=Fuel*Emi*Cat; % Emission Factor code EFC

%3.1.3.1 Equations Declaration

oe

Equations are in amatrix form below as a sequence of excess
; emission, correction co-efficient, cold distance and fixed value 'a'

oe

%value for V reference:2.1
%$value for TT reference:2.3

Al=[854.4-17.56%V, 1.688=.035*V, =2 . 27+0, 03215, =3.432];
A2=[214.922-6.528*TT-.088*V, 2.602-.079%2D2- . 01*V, 2.807=

« 024X TT+. 1 A1 XV, =233 %

A3=[133.024-.306*V, 1.048-.002*V, 2. 172+, 126%V, =2.68);
A4=[374.171-8.405*TT-2.606*V, 2.43-.055*2T- . 01 7T*V, 3.474+.163*V,
-4.078];

AS=[162.937-5.435*TT+.358*V, 2.654-.089*TD+.006*V, 3.'838+.081*V,
=2.7141];

A6=[362.34~10.921*TT-.14*V, 2.567-.077*TT-.001*V, 4.31~
.04*TT+.125*V, —3.767];

A7=[194.662-3.546*TT+.504*V, 1.454—.026>*TT+.004*V, 4.048-
« 124 XTT+:1 455V, —2+5568] 7

AB=[171.52~.381*V 1,047 =.002*¥, 9. 093-:064*V, =3:389] ;
A9=[186.055-5.365*TT+2.283*V, 1.496-.043*TT+.018*V, 2.461-
« OST FPTH.. 17 3%V, =3:0662] 7

Al0=[168.005~5.165*TT, 2.597-.08*TT, 5.398~.142*%TT, =2.686];

$3.1.3.2 Equations Selection

switch EFC
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Box D2: Continued
case {38400}

r=Al;
case 35200
r=A2;
case 352
r=A2;
case 704
r=A2;
case 1056
r=A2;
case 1408
r=A2;
case 1760
r=A2;
case 2112
r=A2;
case 37200
r=A3 ;
case 34100
r=A3 ;
case 372
r=A4;
case {341}
r=A5
case 744
r=A6;
case 768
r=A6;
case{682}
r=A7;
case 1116
r=A8;
case 1152
r=A8;
case 1488
r=A8;
case 1536
r=A8;
case 1860
r=A8;
case 1920
r=A8;
case 2232
r=A8;
case 2304
r=A8;
case 1023
r=A9 ;
case 2046
r=A9;
case 1705
r=A9;
case{1364}
r=A10 ;
otherwise
r = 0;
end

$3.1.3.1 value for

each individual components

%Cold Distance Impact Calculation
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Box D2: Continued

Delta=C/r(1,3);

DelFac=

%r(l,1l)=excess emission
%r(l,2)=correction co-efficient

o\

Ecol= DelFac*r(l,1)*r(1,2)*PF;

(l-exp(r(l,4)*Delta))/(l-exp(r(1,4)));

3.1.4 Ecold=cold start emission per start

Eco=Ecol/r (1, 3);

%$PF reference:

%$Cold Distance factor

3.

1.2

if ¢>=r (1, 3)
Ecold=Ecol;
else
Ecold=C*Eco;
end

oe

Sub-stage 3.2: Hot Emission Calculation
3.2.1 Reference number declaration for the cross ponding Coefficient

o

spd=Fuel*Emi*EW; % Code for Speed Equation Selection (spd)

% Eqc refers to the number co-efficient equation in the model

spd_list= [23100 231 462 693 924 1155 1386 24200 242
484. ...

726 968 1210 1452 25300 258 506 759 1012, ..

1265 1518 25200 252 504 756 1008 1260....

1:51.2 26400 264 528 792 1056 1320 LS8 o <

27600 276 552 828 1104 1380 1656 26400....

264 528 792 1056 1320 1584 28800 288 576....

864 1152 1440 17281
% 3.2.2 Co-efficient value decleration
% Baisc Equation y={ (at+bx+cx”2+dx"3+ex"4+£fx"5+gx"6)/x}, $ y= g Co2
Emission/km
syms Xx;

egn=[1 x x"2 x"3 x*4 x"5 X"6]/x;

Coff=[2.2606*10"3
.2606*10"3
.5324+10*3
- 1473%10~3
J1AT3*1L023
.2988%10~3
-2988%10°3
. 2988*1023
.2988%1023
. 8313%1073
. 831.3*1043
.4190*%10°03
.0314*10"0
<4379*%10~1
.1834%10°2
957641072
: 0571 %1072

2

RF R RSP RFRRFERFPWWN

2

(& I N R R Sl ¥

= = W o

.2606*10°3
.9324*10°3
- 74T 351023
. 2988* 1023
.2988*1073
:2988*10°3
22988* 1023
-2988*10~3
. 8313*1043
.4190*10703

5.4190*1

. 1563*10~1
.1583*1.0°1
. 034*1022
.8600*10"2
.4063*10"2

2 .:5324*%1.023
2.5324%10~3
3% 14713%10°3
1.2988%10%3
1...2988%10%3
1.2988%1043
1.:2988%10%3
5..8599%1023
4.8313%10°3

5.4190*10~03

0203
8.0148*10"1
1.532*%10°2
8.4965%10~1
1:6774%10°2
1.8636*1.0%2

2 +53824*1023
2.5324%10°3
3.7473%10~3
1.2988%10~3
1.2988*10°3
1.2988%1073
1..2986%10%3
5.8599%11024
4831351073

7:0183%1071
1.3779%10*2
6.8842*10"1
1559951072
1.2848%10~2

2

N S e %

=N RO,

2.2606*103 2.2606*10°3 2.2606*1.0°3 2.2606*10°3
5824*10%3
- 4 13%10°3
«1473%10°3
«2988*1073
«2988%10°3
«2988%10°3
+2988%1023
L8813%1 043
+6313%10~3
5.4190%102403

.9444*10"1
-2988%1042
.10881*1042
281121052
« F 10*10%2
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Box D2: Continued

1.1846*%10~2 1.0596*10%2 9.94974*%10~1 1.809*%10°2 ‘1.7576*10%2
1:6567%102 1.5249%1072 1:4665%10°2 1.3055%10~2 1.1701%10~2
2.5320%1072 2.4671%102 2.3270*107%2 2.1490%10%2 2.0208%10°2
1.8015%102 1.6147*1052 1.3439*1041 2.0636%10°—1 9.3414*10"1
9.3414*1071 9:3414*1071 9.3414*10~1

9.3414%10~1 8.8452*10~1 8.8452*1071 9.2699*1071 9,.,2348*10"1
9:.2208%1071 9.1992%10~1 9,1992%10%2

2.,9263*%107 -1 2.9263*%10°-1 2 49263%10°=1 2 9263%100-1
2.9263%10"~-1 2 .9263%10° =1 2:9263%2107°=1 -0.43167 -0.43167
-0.43167 -0.43167 -0.43167 -0.43167 -0.43167 =0:8527 =
0.8527 -0.8527 -0.8527 -0.8527 -0.8527 -0.8527 -1.5597 -1.5597 -1.5597
=1.5597 =1.5597 —1.5597 =1.58597 -1.5597 =1.559% =1.5597 =1.5597 =
1.5597 =1.559% ~1.5597 =1.5597 <1.5597 =1.5597 =1.5697 =1,5597 =1.5597

-1 .5597 2.0179*%10%=1 2.0179*10°-2 9.524%107-1 9.524*10>=1

9
°

3.2.2 Hot Emission factor calculation for eack link

9.524*10~-1 9.524*10~-1 9.524*107-1 6.3429*1"-1 6.3429*1*-1 6.3429*1"-
1l 6.3429*17-1 6.3429*1~-1 6.3429*1*-1 6.3429*1~-1

3.0199%105=3 3.,01:99%105-3 3.0199%1 04=3 3.01.99%102-3
3.0199*10~-3 3.0199*10~-3 3.0 199%10°—3 6.6776%10~-3
6.6776*%10°=3 6.6776*107-3 6.6776%10%=3 6.6776*%107~-3
6.6776%107-3 6.6776%10"-3 1 ..0818%104—2 1.0318*102—2
1...0318%10°=2 1.0318*%10°~2 1.0318*10%=2 1.0318*107-2
1.0318*%10~-2 1.2264*102~-2 1.2264*%102-2 1.,2264%10%=2
1.2264%10%-2 1.2264*1.02-2 1.2264*102>-2 1.2264*%107-2
1.2264*107-2 1.2264*%107~-2 1.,2264*%10°%=2 1.2264%1.0°=2
1.2264*10°=2 1.2264%]05=2 1.2264*%10"-2 1.2264*10°=2
1.2264*100-2 1.2264%102-2 1.2264*%107~-2 1.2264*10"~-2
1.2264*10~=-2 1.2264*%104=2 2.1654*1.07=2 201654 %110%=3

8.4 T3* 10 =5 8.4173*107=5 8.4173*10%-5 8.4173*1024=5
8:4173%210%=5 13351 %104=2 1. 383510 £ 104=3 9.7033*10°=3

9. 7033*¥10%=3 9. 7033%¥10°-3 9.7033*10~—3 9.7033*10~=3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 4,.58393*102<=5 4.5393* 1L 0*»=H
4.5393*10°-5 4,:5393*%10°=5 4.5393*10~-5 -0.000055094 =
0.000055094 -0.000030613 0.000030613 -0.000030613 =
0.000030613 -0.000030613

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 6.6419*%10~-7
6.6419%10%=7 3.4575*107=017 3.4575*10~-08 3.4575*107=09
3.4575*%102=10 3.4575*10%=11

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 01y

multiplication=eqn*Coff(:,find(spd list==spd));
Megn= subs (multiplication,lks):; $Megn is the main equation for
speed analysis

Q

% Make a loop for each elemant of lks

x=1lks; % lns Reference 2.1
H=Meqgn % H will be the matrix containing emission factors for
all links
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Box D2: Continued

3.2.3 Link wise hot Emission calculation in matrix form

% Multiply each element of U with the elemsnts of lnk matrix (length
for each speed)

oe

U=1kl.*H ; % 1kl Reference 2.1

% 3.2.4 Total Hot Emission from Car

En=sum(U) ; % Total hot emission for the car route=En
$%%%%%Stage 4: Emission Calculation for entire Trip and print out

% 4.1 ToTal Car Emission (TE) for hot and cold

TE=Ecold+En; % ToTal Car Emission TE (Reference: 3.1.4 and
3.2.4 )
TCEP=TE/CO; % Total Car emission per person TEP (CO

reference:1.3.2)

% 4.2 Emission Reporting

Final =[TCEP]; % Emission Report a sequence of Bus Dart Luas Car Total

4.3 Emission Printing (Write in a text file)

Q

% values for yy represent Year Month Date Time minute Second

fID = fopen('Predicted Emission Report.txt',6 'wt');
fprintf (fID, '%6.80s \n', '"Car Total (kg CO2 Emission/person/trip)'):;
fprintf (fID, '%6.4f %6.4f %6.4f %6.4f %6.4f \n'; Einal);
fclose(filelD);

toc
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Abstract

Promoting smarter driving may be a useful initiative to reduce the negative environmental
impacts of travel in the present car dominated era. Smarter driving may include efficient
driving and route choice which reduces fuel consumption, CO, emissions (Eco-Routing) as well
as personal exposure to harmful pollutants. However, efficient driving and Eco-Route choice
techniques possess some practical as well as technological limitations, primarily because of
the real-time nature of their application. Efficient driving that refers to controlling/limiting
acceleration and speed of vehicles may have a network wide impact of increased overall
network travel time. Although, many investigations of such Eco-Driving have reported
potential reductions in fuel consumption and CO, emissions ranging from 5% to 40% across
various jurisdictions and initiatives, a review of the literature revealed contradictory impacts

of Eco-Driving that required further investigated.

In congested city centre traffic, many conflicting views exist in the literature, resulting in some
doubt over the effectiveness of the policy in such circumstances. Micro-simulation of the
environmental and traffic performance of Eco-Driving has been conducted for the Dublin city
road network, to assess its network level impacts. The results of this investigation showed that
increasing levels of Eco-Driving in a road network resulted in significant environmental and
traffic congestion detriments at the road network level in the presence of heavy traffic. In
addition, the impacts of the intersections replacement by roundabouts were also evaluated.
Negligible transport impacts were found from Eco-Driving in the presence of low traffic
congestion for all scenarios. But, large negative impacts were observed for high traffic volume
scenarios with the increase level of Eco-car penetration. Increases in CO, emissions of up to
18% were found from these studies. However, with the addition of vehicle to vehicle or vehicle
to infrastructure communication technology, which facilitates dynamic driving control on
speed and acceleration/deceleration in vehicles, improvements in CO, emissions and traffic

congestion could be possible using Eco-Driving.

On the other hand, the literature review also revealed that the actual range of saving from
Eco-Routing was 0.35 —-42% fuel and the extent of the variation depended heavily of the level
of congestion present. However, no serious issues were identified for Eco-Routing impact.
Nonetheless, technological advancement of real time information system was not found to be

connected with emission based Eco-Routing systems in practical use, and this may become a
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serious flaw of this strategy if the practice becomes widespread. A solution for this has been
outlined from an extensive literature review, and a model was developed that is sensitive to
vehicle characteristics such as speed, temperature and occupancy. The model is suitable for
deployment in any city and effectiveness was evaluated after a field trial in Dublin and Vienna.
Several lessons were learned from the developed model, including the importance of real-time

data integration, vehicle registration data integration and further modification of the model.

Analogous information that can be useful for the drivers for route choice is exposure
information. Such information was required to investigate a comparison to the conventional
route choice cost factors before deployment. Thus, the level of exposure to a particular
pollutant, or dose of pollutant that a person inhales during travel were compared against
choice factors such as: time, distance, generalised cost, CO,, value of time, and running cost.
At first the particular challenge was to estimate the exposure concentration of a pollutant
along each road in a network. A possible low cost, yet effective approach to estimation of
average daily exposure concentration at city scale is the Land Use Regression (LUR) method.
Some methodological modifications have been conducted within the LUR framework and the
daily level of air pollution concentration has been estimated in the presence of limited
available input data. Concentrations estimated from the model were transferred to the road
network level to estimate the exposure concentration along the roads. Hourly fluctuations of

NO, concentrations were applied further for the hourly prediction of the concentrations.

A series of 16 models were developed for PM,q air quality in Dublin, which included models for
validation of the modified LUR methodology developed in this study. It was found that using a
non-parametric regression model could out-perform linear regression based models, however
to a lesser extent than that of Artificial Neural Networks. Some dynamic predictors such as a
predictor representing trans-boundary air pollution, and vehicle count from loop detectors
were assessed which open scope for future research. The final route level analysis revealed
that a reduction of dose caused a small increase in travel time and large increase in distance.
For different origin and destination pairs the magnitude might be changed drastically, but the
pattern will be similar. The local setting was the primary reason for variation in the lowest
dose based routes compared to the conventional cost factors of route choice. Such findings
may pose a limit of the widespread use of routing based on exposure. However, dose could

still be placed as an option in route choice modules for people with priority health issues.
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