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“Like faint glimmers of light in the dark, we have emerged for a moment
from the nothingness of dark unconsciousness of material existence. We must
make good the demands of reason and create a life worthy of ourselves and

of the goals we only dimly perceive.”

-Andrei Sakharov



Abstract

Topological insulators are a fascinating new class of materials, which have
signalled a revival in exploration of topological aspects of condensed matter
physics. Like usual insulators they have an energy gap separating valence
and conduction bands, however, their surfaces host metallic states which can-
not be gapped out unless one breaks the symmetry protecting such surface
states. Crucially, a number of materials have been identified as time reversal
symetric topological insulators and their surface state signature has been
verified by means of a number of experimental techniques. In this thesis we
study different aspects of topological states in two and three dimensions, em-
ploving both model Hamiltonians as well as material specific first-principles

density functional theory calculations.

Firstly, we present our investigation of Andreev reflection in topological
insulator-superconductor junctions, finding perfect Andreev reflection, which
is robust to disorder. We compare and contrast our results for Z, and Chern
insulators, and propose a transport experiment to distinguish between the
two kinds of insulators. Next. we study spin-flip inelastic electron tunneling
spectroscopy for magnetic adatoms deposited at the edge of two-dimensional
topological insulator, and find that the impurity spin can be manipulated
by passing current through the helical edge states. We also propose a four

terminal device which is designed to manipulate the spin of the adatom by

111



all electrical means.

Then, we present ab initio transport studies of scattering of topological
states. We investigate electron transmission across surface steps on Sb(111),
where we find a good agreement with scanning tunneling microscopy exper-
iments, in particular concerning lifetime of quantum well states and allowed
scattering wave vectors. We also study effect of barriers on BiySes(111) sur-
face and compare our first-principles results with the often used Dirac-type
low-energy model. Then, we report our finding of a single atom anisotropic
magentoresistance on topological insulator surface. which stems from an in-
terplay between the helical surface states and spin anisotropy of the magnetic
adatom. Our ab initio calculations for Mn adatom on BiySe; elucidate the
underlying mechanism and also reveal the real space spin texture around the
magnetic impurity.

Finally we report our investigations of two- and three-dimensional Dirac
semimetals. We present our proposal to engineer a backscattering-free hy-
brid state in graphene by proximity with a three-dimensional topological
insulator. Using transport calculations, we further confirm the robustness
of this proximity induced state to disorder. Then we study the interplay
of bulk and surface Dirac fermions in prototypical three-dimensional Dirac

semimetals and reveal a topological phase transition in NagBi;_,.Sb, alloy.
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List of Figures
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1.9

2.1

(a) Schematic band diagram for HgTe and CdTe near the I' point show-
ing the inverted band structure for HgTe. (b) Quantized edge state con-
ductance exhibited by CdTe/HgTe/CdTe heterostructure in the inverted
regime (curves III and IV). Figure adapted from Refs. [7, 8].

(a) Surface band structure for BisSes (111) from ARPES showing a single
Dirac cone. (b) The fermi surface reveals the spin polarization of the
bands (c¢) The band structure obtained from ab-initio calculations where
the red dots indicate the surface states. (d) Schematic picture of the
single spin-momentum locked Dirac cone on BisSej surface. The arrows
indicate the direction of electron spin. Figure from Ref. [3]. .

(a) Topographic image of a one bilayer terrace on Sh(111) surface. (b)
Spatially resolved dI/dV plots in the terrace and adjacent flat region as a
function of energy. (¢) Fourier transform of the oscillations showing two
prominent scattering vectors. (d) A schematic of the contour of surface
states at Fermi energy with the arrows denoting the spin of the state. The
allowed scattering wave vectors g4 and ¢p are marked. Figure adapted

from Ref. [17].

The contour in d space (d. = 0) for the two cases (a) when it does not
enclose the monopole at origin (6 > 0) and (b) when the monopole is

within the contour (6t < 0). .
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2.2

2.3

24

2.5

28

7.

A schematic of generic band structure for a one-dimensional system with

only time reversal symmetry.

The bulk band structure of the Kane-Mele model for different values of
Aso and A, showing different phases (a) pristine graphene, (b) topo-
logical insulator with inversion symmetry, (¢) topological insulator with
broken inversion symmetry, and (d) trivial insulator with broken inver-

sion symmetry. .

The band structure of the Kane-Mele model for 42 sites wide ribbon
geometry for different values of Ago and A, illustrating (a) pristine
graphene, (b) topological insulator with inversion symmetry, (c¢) topolog-
ical insulator with broken inversion symmetry, and (d) trivial insulator

with broken inversion symmetry.

The bulk Brillouin zone for a two-dimensional system. The time reversal
invariant momenta are marked. The right panel shows the projection to

the edge Brillouin zone.

Schematic edge band structure for a two-dimensional (a) trivial and
(b) topological insulator. The shaded regions represent the bulk bands.
There exist an even number of edge bands crossing the Fermi level for the
trivial case, while for a topological insulator an odd number of symmetry

protected edge bands connect the bulk valence and conduction bands.

23

29

30

33

The bands are necessarily degenerate at TRIM owing to Kramers theorem. 34

The bulk Brillouin zone for a three-dimensional cubic system. The eight
time reversal invariant momenta are marked. The right panel shows the

projection to one of the surface Brillouin zones.

34



2.8

3.1

4.1

4.2

4.3

A comparison between (a) trivial insulator, (b) strong topological insu-
lator, and (c¢) weak topological insulator. The panels below show the
projection onto a two-dimensional surface Brillouin zone where the filled

circles indicate a surface state that crosses the Fermi energy.

Schematic of the two-terminal transport setup with the scattering region

and the left and the right leads. .

Setup for calculating the two-terminal transmission. Region SC is prox-
imity coupled to a superconducting electrode while region TI is the topo-
logical insulator described by the two chosen single-particle models. The
rectangle marks the region at the TI/SC interface where disorder is in-

troduced.

Andreev reflection coefficient for (a) Z, and (b) Chern insulators showing
perfect Andreev reflection for electron energies smaller than the super-
conducting gap. The insets show the band structure for the two models
solved in a ribbon geometry. Here we choose to = 0.33, \/ty = 2.0,

v =0.20, 3 = —0.11 and A = 0.50. The Fermi level Ef is set at zero.

Effect of onsite disorder on the Andreev reflection coefficient for (a) Zo
and (b) Chern insulators. The Andreev process is highly robust against
onsite disorder and the crossover to diffusive transport occurs for W ~
3.0t for the Z, insulator and W = 2.0t for the Chern insulator. Here
again we set to = 0.33, A\/to = 2.0, v = 0.20, B = —0.11 and A = 0.50,
and the Fermi level Ey is taken at zero. The curves are averaged over

960 random configurations.
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2

Andreev reflection coeflicient in presence of magnetic impurities located
at the edge of a TI ribbon: (a) Z, insulator (b) Chern insulator. The
suppression of one of the edge channels in the time-reversal symmetric
case R produces a drop in R* from 2 to 1. Magnetic impurities have
no effect on the Andreev reflection for a time-reversal symmetry broken
insulator. Here we have chosen J. = .J; = 0.50 and |S| = 2. The other

parameters are the same as before.

Andreev reflection coefficient in the presence of magnetic impurities for
the Z, insulator as a function of the spin inclination angle 6 for various
values of the exchange coupling. The relaxation of the spins leads to R*

reverting back towards unity.

Schematic representation of the device considered comprising a TT with
honeycomb lattice structure and a magnetic impurity adsorbed at one
of the two edges. The shaded area corresponds to the interface region

where a gate voltage is introduced.

Spin-polarized IETS conductance spectrum for a TT (11, 6) ribbon with
a S = 1 magnetic impurity attached at the upper edge. Note that the
conductance step at the voltage characteristic of the inelastic excitation
gets suppressed as the to parameter is increased, i.e., as the ribbon is

brought well inside the topological region of the phase diagram. .

(a) Non-equilibrium population as a function of bias of the S = 1 impurity
spin states for a (7, 4) (dashed lines) and a (11, 6) ribbon (solid lines).
In panel (b) we show the average magnetization of the impurity for the

same ribbons.
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Spin-polarized IETS conductance spectrum for a TI (11, 6) ribbon with
a S = 1 magnetic impurity attached at the upper edge. In this case the
current is intense and drives the impurity spin away from the uniaxial
anisotropy axis. Notably now there is a step in the differential conduc-
tance at the voltage corresponding to the inelastic transition |£1) — |0).
The magnitude and sign of such step depends on the bias polarity. In

the inset the inelastic contribution to the conductance.

Spin-polarized IETS conductance spectrum for a T1 (11, 6) ribbon incor-
porating a magnetic impurity with various spin (S = 1,3/2. 2, 3) attached
at the upper edge, in the intense current regime. The step in the differ-
ential conductance increases in magnitude with increasing the spin value
of the adatom. Note that the spectra have been aligned vertically for
clarity in comparison. The inset shows the average magnetization of the
impurity for different values of S. Note that spin pumping persists for

the larger values of the impurity spin.

Normalized conductance trace as a function of the source/drain voltage
at different values of the applied gate voltage for a S = 1 impurity spin.
Note that increasing the gate voltage beyond V, = 0.6t; allows us to
crossover to a regime where the current is reduced to a point at which
the conductance steps are suppressed. The curves have been aligned

vertically for ease of comparison.

Average magnetization, along the direction perpendicular to the ribbon
plane, as a function of bias voltage. Curves at different voltages are
plotted showing gate control over the magnetization of the impurity spin.
In the inset we report the magnetization as a function of gate voltage for

a source/drain voltage of V- = 1.5 |D|/e. .
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6.l

0.2

6.3

(a) Structure of antimony in the hexagonal setting. The atoms form a
bilayer structure with the intralayer distance as 1.51 A and the interlayer
distance as 2.25 A. Band structure for (b) six bilayers and (c¢) twelve
bilayers thick slabs along K — I' — M directions. (d) Simulated ARPES
from a semi-infinite slab. Here and henceforth warmer colors represent
higher PDOS (red represents largest values. blue lowest ones, with the
color scale in between being linear). Spin-resolved ARPES along (e)
[ — M and (f) ' = K directions showing the opposite spins of the two
surface bands along the directions indicated by arrows in the inset of the
figures. In this case, red and blue colors indicate up and down spins,

respectively.

(a) PDOS for surface atoms with a single step adjacent to a flat region
for the first setup at k; = 0. (b) Transmission at k; = 0 with and
without the step indicating finite scattering due to the step. Average
of transmission over all k| -points is also shown. (c¢) PDOS for surface
atoms averaged over all k. (d) Fourier transform of PDOS data in (c)
over the flat region reveals the different allowed scattering wave vectors.
The most prominent features, g4 and ¢p, are nearly linear with slopes

equal to 1.1 eVA.

The allowed scattering wave-vectors obtained from the Fourier transform
of PDOS data at (a) k1 b= 0, (b) k1 b=0.167 and (c) k1 b = 0.507. The
panels on the right show the corresponding band structures at the same

k for the 12 bilayer slab electrodes.
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6.4

6.6

6.7

(a) PDOS at k; = 0 for surface atoms with a single step adjacent to a
flat region. with the step extending along the I' — K direction. There
is an energy region from -60 to 20 meV with no scattering and hence
no standing wave states. (b) Transmission at k&, = 0, indicating the
perfect transmission around Ep even in presence of a surface barrier.

Total transmission also shows minimal scattering in that energy range.

(a) Unit cell of the 3-QL slab leads used in the transport calculations.
The yellow and purple spheres represent selenium and bismuth atoms,
respectively. (b) The band structure along direction of transport (z) is
shown at &, = 0. The surface bands in the energy window of -0.05 to

0.30 eV have a helical spin texture.

Transport setup for the scattering problem is shown for (a) single barrier
and (b) double barrier. In both cases we add an extra single quintuple
layer high barrier on the 3-QL thick slab. Note that same self-energies
for semi-infinite 3-QL leads are attached on the left and right sides of
the scattering region in (b), while different left and right electrodes cor-

responding to 4-QL and 3-QL slabs are needed in (b).

(a) Transmission across the surface barrier as a function of energy at
different values of the x component of the wave-vector, orthogonal to the
transport direction. Different curves correspond to different k,. Note
the perfect transmission at k, = 0. At other incidence angles T is re-
duced. (b) The total transmission integrated over k, in the presence
(black curve) and absence (red curve) of the barrier. (¢) The transmis-
sion as a function of k.. at different constant energy cuts in the energy
region of the surface states. Non-zero reflection at the barrier can be

explained using the schematic diagram shown in (d).
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6.8

6.9

6.10

The DOS projected on the surface atoms along the scattering region at
(a) ky = 0. (b) k, = 0.032 A~! and (c) integrated over all k,. At k, =0
there are no oscillations. These start to emerge at k, = 0.032 A~! but
are not visible in the average. The second column of panels show the
Fourier transform of the projected DOS in the flat region adjacent to
the barrier, at the corresponding k,. The scattering vector resulting
from backscattering at non-normal incidence is clearly seen in (b). The
average, however, reveals no scattering. The third column shows the
transmission as a function of energy for the three cases. For k, = 0 and
k. = 0.032 A~!, we also plot the band structure along transport direction

for comparison.

The energy dispersion along k, (perpendicular to the transport direc-
tion) for (a) perfect periodic system comprising of 4-QL slab. (b) energy
dispersion at the single barrier, and (¢) 50 A away from the single bar-
rier. In (b), (¢) and (d) color plots show the projected density of states
on the atom present at the barrier, an atom 50 A away from the barrier
and the PDOS on the atom at the double barrier. In (b) and (d) note
the additional pair of interface states outside the Dirac cone which merge

with it around 0.2 eV.

The DOS projected on the bottom surface atoms along the scattering
region at (a) normal incidence k, = 0, and (b) an oblique incidence k, =
0.032 A=!. Note the absence of density oscillations in the bulk energy
gap window, even at non-normal incidence. Panels on the right show the
Fourier transform of the projected DOS in the flat region adjacent to the
barrier. A comparison with Fig. 6.8 shows absence of both bound states
as well as signature of dominant scattering vectors in the aforementioned

energy range.
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6.11

6.12

6.13

6.14

The spin-resolved local density of states incoming from the left lead at
0.175 eV with the spin projection along (a) x, (b) y and (c¢) z directions
at k. = 0. On the right hand side (d), (e) and (f) are corresponding plots
for k, = 0.032 A=!'. Here red represents positive values while blue stands
for negative values. Scattering at the step edge even at k, = 0 allows the
spin to rotate out of the plane of the slab resulting in a finite y and z
components, in contrast to the unperturbed bottom surface where these
are negligible. At non-normal incidence (k, = 0.032 A=) z component
of spin-resolved LDOS becomes finite while the step edge introduces a

non-zero y component. The insets are zooms around the step edge.

(a) Potential profile for the Dirac model. Weuse V), =V, =0, Vo = —1.17
eV.d =20 A and L =60 A. The transmission as a function of energy is
shown choosing (b) V3 = —0.02 eV and (c¢) V3 = 0.0 eV. Different curves

correspond to the same k, points as Fig. 6.7(a).

(a) Transmission across the double barrier on the surface at different
k,. Note the Fabry-Perot type oscillations in transmission in contrast
to Fig. 6.7(a). Different curves correspond to the same k, points as
Fig. 6.7(a). Integrated transmission with (black curve) and without (red
curve) the barriers is plotted in the inset. Transmission as a function of

k. at different constant energy cuts is shown in (b).

PDOS on surface atoms along the double barrier scattering region at
(a) k, = 0, (b) k, = 0.032 A=! and (c) integrated over all k,. Note
the absence of density oscillations for k., = 0 and integrated figures.
Incidence at finite &k, leads to density oscillations clearly seen in the long
flat region adjacent to the barrier as shown in (b). The panels on the

right are the corresponding Fourier transforms.
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6.15 PDOS on the surface atoms for a double barrier of length 149.16 A at

T:1

7.2

1.3

(a) k., = 0 and (b) k, = 0.032 A~!. Note the absence of quantum well
states in (a). In (b) quantum well states interact with the bound state

at the two barriers leading to energy splitting of the bound state. .

Transport setup with Mn atom adsorbed on 3 quintuple layer BisSes
slab, (a) viewed in the plane perpendicular to and (b) along the trans-
port direction (z). The scattering region supercell consists of 8 primitive
unit cells of Bi,Sesz in the xy plane and 16 unit cells along z, giving a
concentration of 1 Mn atom in 1920 bismuth selenide atoms (=~ 0.05%)

allowing us to reach dilute concentrations comparable to experiments. .

Transmission and projected density of states on Mn for different Mn
spin directions (a) and (b) at k., = 0, and (c¢) and (d) averaged over
all incidence angles. For Mn spin along x, transmission is unperturbed,
while reduced transmission occurs for other directions, resulting in a

single atom anisotropic magnetoresistance.

Scattering vectors (g) as a function of the incident wave vector (k,) for
Mn spin along (a) z, (b) y, and (c¢) z directions. The size of circles
is proportional to the reflection amplitude. The curves are plotted at
energies corresponding to peaks in Mn density of states, £ — Ep= 0.08,

0.10 and 0.08 eV, for Mn spin along x, y and z, respectively. Here a,

and a. are lengths of electrode unit cell along « and z directions. . . . .
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8.1

(a) Transmission and (b) adatom projected density of states for the two-
dimensional model, with adatom spin pointing parallel and perpendicular
to electron spin. (c¢) Transmission and (d) average projected density of
states for magnetic cluster in the two spin configurations. The insets
are schematic of the two setups and dashed lines indicate transmission
of one from the unperturbed edge. Here we set adatom onsite energy to
0.1, hopping elements to ribbon as 0.3, hopping between magnetic atoms
to 0.5 (in units of the nearest neighbor hopping) and other parameters
are same as chosen in Ref. [72]. (e) Schematic of four-probe geometry to

measure the anisotropic magnetoresistance.

A combination of projected and local density of states showing real space
spin texture around the magnetic adatom with its spin pointing along
(a) x, (b) y. and (c) z directions, at the energy of peak in Mn density of
states. The arrows denote the in-plane spin components obtained from
atom-projected density of states. The isosurfaces correspond to the local
density of states projected along the direction normal to the plane, with
red denoting positive values and blue representing negative values. The
effect of adatom spin in not limited to the top surface Se atoms, but is

distributed over the first quintuple layer.

Side (a) and top view (b) of the graphene/BisSes interface. The graphene-
BisSey separation is d. In panel (¢) we report the graphene electronic

band gap as a function of d.
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8.2

8.3

8.4

8.6

Evolution of band structure of the graphene/Bi;Ses composite as a func-
tion of the separation d between the two constituents. In panels (a), (b).
(¢) and (d) we present the band structure for d = 3.0 A, 2.6 A, 2.3 A and
2.2 A respectively. Black and green bands are bulk and surface states
of BisSes, blue bands are graphene bands, while the red ones represent
hybrid states. The inset in the panel (d) illustrates the spin-texture of
the mixed state at 0.05 eV above Er. Note the different k-point sampling

ford =3.0 A.

. 142

Charge density associated to the BisSes surface opposite to the graphene /BisSe;

interface (a) and the mixed interface state (b) obtained for d = 2.2 A at
I'. Panel (c¢) shows the sum of the two charge densities averaged over a

plane parallel to the interface.

(a) Conductance of a BisSes-contacted graphene sheet when either 17%
or 33% C vacancies are introduced in graphene as compared to the con-
ductance of a defect-free layer. (b) Schematic overview of a proposed
experimental setup, which may prove the transfer of a topologically pro-

tected state from BisSes to graphene.

(a) Hexagonal unit cell for A3B compounds, with A=Na, K, Rb and
B=B4i, Sb. (b) Bulk and surface projected Brillouin zone for the structure
with the high symmetry points marked. The three-dimensional Dirac

crossing occurs along the I' — A direction.

Bulk band structures including spin-orbit interaction for (a) NagSbh, (b)

NasBi, (¢) K3Bi and (d) RbsBi. Note the Dirac crossing in (b)-(d). The

. 144
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. 149

insets in (¢) and (d) show a zoom around I' with the crossing along I' — A.150



8.7

8.8

Band structures for NagBi thin films of thickness (a) 2-4 layers, (b) 5
layers, (¢) 20 layers and (d) 100 layers. Inset in (a)-(b) shows the energy
gap at the center of the Brillouin zone for slabs of thickness 1 to 5 layers.
In (b)-(d) Dirac crossings are highlighted in red.

Spectral functions for pristine (a) NagBi and (b) NasSb. (c¢) Spectral
functions for the alloy NasBi;_,Sb, with increasing Sb concentration
(r = 0.25,0.50.0.75 from top to bottom). The color scale shows the

orbital contribution, with red (positive values) denoting Bi/Sb p orbitals

and blue (negative values) representing Na s orbital (in units of states/eV)
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To my parents.



Chapter 1

General Introduction

One of the primary goals of condensed matter physics is to discover and clas-
sifv different phases of matter. The fundamental building blocks of matter
can come together to form a myriad of different states. ranging from crys-
talline solids to magnets and superconductors. All these can be classified on
the basis of Landau’s principle of spontaneous symmetry breaking [1]. Crys-
talline solids break translational symmetry, while a magnet breaks rotational
symmetry. A superconductor breaks the more mysterious gauge symmetry.
The first state of matter which did not fit into this paradigm was the in-
teger quantum Hall phase discovered in 1980 [2]. Von Klitzing et al. took
a two-dimensional electron gas sample and passed a current across one of
the directions, while they applied a perpendicular magnetic field. In the
transverse direction a voltage was generated, a consequence of the usual Hall
effect. But at sufficiently low temperatures and sufficiently high magnetic
fields, they saw plateaus in the transverse conductivity. In this state. the
bulk of a two-dimensional sample is an insulator, while a dissipationless cur-
rent flows only at the edges of the sample. Even more surprising was the fact
that the quantization of conductivity was extremely precise, of the order of

one part in a billion. Furthermore it was independent of the sample material,
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Figure 1.1: (a) Schematic band diagram for HgTe and CdTe near the I' point showing
the inverted band structure for HgTe. (b) Quantized edge state conductance exhibited
by CdTe/HgTe/CdTe heterostructure in the inverted regime (curves III and 1V). Figure
adapted from Refs. [7, §].

its size and disorder. It was realized that this was a consequence of topology.

The last decade has seen the growth of a new field in condensed matter
physics, based on the realization that such topological phases can be ob-
tained without the application of an external magnetic field [3, 4. 5]. In
these so-called topological insulators, the role of magnetic field is taken by
the spin-orbit interaction. Like ordinary insulators, the topological insulators
have a bulk energy gap separating the highest occupied energy band (valence
band) and the lowest empty band (conduction band). But unlike ordinary
insulators, the surface or edge of these materials have gapless metallic states,
which are symmetry protected. In this sense, they are intimately related to
the quantum Hall state. The class of topological insulators, which preserve
time reversal symmetry have a Z, classification. In particular, it is this class,
which has caused a large excitement in the past few years, primarily be-
cause more than half a dozen materials have been experimentally confirmed
to exhibit such a phase. Very recently, time reversal symmetry broken topo-
logical insulators (also termed Chern insulators since they have an integer
classification based on the Chern number) have been experimentally realized,

although at the extremely low temperatures of a few milliKelvin [6].
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A time reversal invariant topological insulating phase was predicted theo-
retically by Bernevig, Hughes and Zhang (BHZ) in CdTe/HgTe/CdTe quan-
tum wells [7]. Both CdTe and HgTe exist in zincblende-type lattice structure
and for both the materials the relevant bands near Fermi level are at the I’
point in the Brillouin zone, as shown in Fig. 1.1(a). They are an s-type
band (T's), and a p-type band split by spin-orbit coupling into a J = 3/2
band (I's) and a J = 1/2 band (I';). CdTe has an ordering of bands similar
to conventional semiconductors, for instance GaAs, where the s-type con-
duction band (I'g) is well separated from the p-type valence bands (I's,T'7)
by a large energy gap, of the order of 1 eV. However, in HgTe, the usual
band order is reversed. because of the large spin-orbit coupling carried by
the heavy element mercury. In this case. the I's band. which usually forms
the valence band, is now higher in energy than the I'y band. The light hole
I's band forms the conduction band, while the heavy hole I's band forms the
first valence band. The s-type band (I's) is pushed down in energy and forms
the second valence band. The degeneracy at the I' point between the heavy

and the light-hole bands makes HgTe a zero-gap semiconductor.

BHZ proposed that by growing CdTe/HgTe/CdTe heterostuctures it is
possible to tune the above mentioned electronic structure and that there is a
quantum phase transition as a function of the thickness dgw of the quantum
well.  The heterostructure is a conventional insulator for dow < d. and a
time reversal symmetric topological or quantum spin Hall (QSH) insulator
for dow > d.. where d. is a critical thickness. This QSH insulator state. has
a charge excitation bulk gap., but has topologically protected gapless helical
edge states, that lie in the bulk gap. The term helicity refers to the perfect
correlation between the spin and momentum of these edge states. Soon after

the theoretical proposal. devices were fabricated and transport measurements
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were performed, showing the first signature of the QSH insulator [8]. In these
experiments the electrical conductance due to the edge states was measured.
An analysis using the Landauer-Biittiker scheme, yields a quantized conduc-
tance of €?/h for each pair of edge states. Fig. 1.1(b) shows the resistance
measurements for a number of samples as a function of gate voltage which
allows the Fermi energy to be traversed across the bulk gap. Sample I has
a narrow width and a large resistance in the gap. Samples III and IV, on
the other hand are quantum wells having thickness greater than the critical
thickness, d.. These show a quantized conductance of 2¢%/h associated with
the two edge states. Samples I1I and IV have the same length and different
widths, while both show the same conductance, indicating that the transport

is at the edge.

Apart from quantum well heterostructures, there have also been recent
proposals for silicene and its germanium analog to host a quantum spin Hall
phase, with spin-orbit-driven bandgaps of 2.9 meV and 23.9 meV, respec-
tively [9]. Two-dimensional Sn films have also been predicted to have a spin-
orbit gap of 300 meV, which is comparable to that of the three-dimensional
topological insulators currently known [10]. These materials exhibit a low
energy physics, which is well described by the Kane-Mele model, which will
be discussed in detail in Chapter 2. In light of these promising developments,
we will present our study of Andreev reflection in two-dimensional topolog-
ical insulator-superconductor junctions in Chapter 4. In Chapter 5, we will
also examine the possibility to manipulate impurity spins using the quantum

spin Hall current.

Angle resolved photoemission spectroscopy (ARPES) has played an im-
portant role in the quest for finding new topological insulator materials. By

illuminating a material with photons and measuring the energy-momentum
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Figure 1.2: (a) Surface band structure for BisSes (111) from ARPES showing a single
Dirac cone. (b) The fermi surface reveals the spin polarization of the bands (¢) The band
structure obtained from ab-initio calculations where the red dots indicate the surface
states. (d) Schematic picture of the single spin-momentum locked Dirac cone on BisSes
surface. The arrows indicate the direction of electron spin. Figure from Ref. [3].
distribution of the photoemitted electrons, one is able to extract the band
structure of the material. Since this is a surface sensitive technique, it is par-
ticularly suited to study of protected states on surface of three-dimensional
topological insulators. Furthermore. spin resolved ARPES makes it possible
to determine the spin polarization of these states and measure their spin
texture in the momentum space. In fact, Bi-Sb alloy was the first three-
dimensional topological insulator to be discovered experimentally [11], by
employing ARPES experiments, after an earlier theoretical prediction by Fu

3|
|
|-

and Kane [12]. However, the alloy has a complicated band structure having

five surface bands. with a tiny bulk band gap and since the material is not
stoichiometric, it makes preparation of pure samples more difficult.

In 2009, concurrent theoretical [14] and experimental [15] works revealed

a new material exhibiting non-trivial topological insulator phase, namely
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Figure 1.3: (a) Topographic image of a one bilayer terrace on Sh(111) surface. (b)
Spatially resolved dI/dV plots in the terrace and adjacent flat region as a function of
energy. (c) Fourier transform of the oscillations showing two prominent scattering vectors.
(d) A schematic of the contour of surface states at Fermi energy with the arrows denoting
the spin of the state. The allowed scattering wave vectors ¢4 and ¢p are marked. Figure
adapted from Ref. [17].

BisSes. Ab initio calculations also predicted a similar phase in Bi,Tes and
ShyTes. The surface state of BisSe; measured by ARPES and predicted by
first-principles theoretical calculations is shown in Fig. 1.2. It has an ideal
single Dirac cone and a relatively larger band gap of ~ 0.3 eV, making Bi,Ses
a prototypical topological insulator. The helical nature of surface states,
which is an essential feature of topological insulators, has been shown using
spin resolved ARPES. along with a Berry phase of 7 as one goes around the
Dirac node. In Chapter 6, using this canonical topological insulator we will
study the effect of barriers on the scattering properties of surface states. We
will also demonstrate a single atom anisotropic magnetoresistance effect on
the surface of BiySe; (Chapter 7).

Scanning tunneling microscopy (STM) is another key experimental tech-
nique, which has enhanced the understanding of topological surface states
and has also provided a direct visualization of signatures of these states
when they interact with impurities and defects on the surface of the material.
In STM measurements a sharp tip is positioned within quantum tunneling

distance from a surface. The tunneling conductance (dI/dV') is directly pro-
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portional to the density of states (DOS) of the sample, which allows probing
the energy distribution of these states with a high resolution over large spa-
tial regions. Furthermore, Fourier transform of the DOS allows extracting
information about the scattering processes. The helical nature of topological
states, with opposite spin electrons moving in opposite directions, forbids
exact backscattering as long as time reversal symmetry is preserved. This
crucial property has been demonstrated for Bi-Sb alloy with a random dis-
tribution of defects by analyzing quasiparticle interference patterns imaged
using the STM [16]. Another important property of symmetry-protected sur-
face states is an enhanced transmission across strong surface disorder. This
has also been shown in a topological semimetal Sb by using STM data to
map onto a potential barrier model [17]. Transmission across a barrier, in
the form of surface steps on the Sb(111) surface, was inferred by analysing
the interference pattern of the surface states (Fig. 1.3). It was found that
the surface states are likely to be transmitted even in the presence of strong
surface disorder. Fourier transform of the DOS gave the allowed scatter-
ing vectors, which were consistent with prohibited spin-flip backscattering.
In Chapter 6 we will study this system and its scattering properties using
first-principles transport calculations and will compare our findings with the

experiments reported in Reference [17].

1.1 Dissertation layout

Apart from the work presented in this thesis, other stand-alone investiga-
tions were also undertaken during the period of these studies. These include a
theoretical anlaysis of multiple-probe quantum spin Hall bars, the implemen-
tation of phenomenology of Andreev reflection in a first-principles transport

code, and a study of giant magnetoresistance in spin-valves with prototypical
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two-dimensional layered material MoS, as a spacer. In an ongoing study. in
collaboration with experimentalists, we are investigating the effect of organic
molecular layers on topological surface states. The references to these works

is provided in the list of publications in Appendix F.

Following a general introduction in this chapter, the layout for the rest of
the thesis is as follows.

In Chapter 2 we discuss the basic notions of topology within the paradigm
of band theory. A brief introduction to Berry phase, electric and time reversal
polarization is provided. This sets the stage to define a Z, invariant for
time reversal symmetric topological insulators. We also introduce the Kane-
Mele model. which is the prototypical model for two-dimensional topological
insulators. Finally we discuss the extension to three dimensions.

In Chapter 3 we outline the two main methods used in this thesis: den-
sity functional theory, which provides a solution to the electronic structure
many-body problem. and the Green’s function method, which allows tack-
ling quantum transport problems. A discussion of relativistic effects in solids.
which are essential to correctly describe the electronic states in topological
insulators, is provided.

Chapter 4 presents our results for Andreev reflection in two-dimensional
topological insulators (with either conserved or broken time reversal symme-
try) when they form an interface with a superconductor. We find a perfect
Andreev reflection for both the cases, which is robust to disorder. For the
time reversal symmetric case we show that implanting one of the edges with
magnetic impurities suppresses one of the channels for Andreev reflection,
while no such suppression is seen for symmetry broken situation.

In Chapter 5 we investigate spin-flip inelastic electron tunneling spec-

troscopy for magnetic adatoms deposited at the edge of two-dimensional
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topological insulators. We demonstrate that the magnetic impurity can be
manipulated using the helical edge states. We also propose a four termi-
nal device, which is designed to manipulate the spin of the adatom by all

electrical means.

From model Hamiltonian investigations, we move on to material spe-
cific density functional theory based studies. Chapter 6 presents our first-
principles transport calculations for scattering of topological surface states.
Motivated by the experimental study of Ref. [17], we consider transmission
across surface steps on Sh(111). We find a good agreement with scanning
tunneling microscopy experiment, in particular for lifetimes of quantum well
states and allowed scattering wave vectors. Large scale ab initio calculations
on analogous steps on BiySes(111) surface reveal that backscattering is com-
pletely suppressed for normal incidence, while backscattering is allowed at all
other incidence angles. We also construct a potential barrier model based on
the often used Dirac Hamiltonian. A comparison with first-principles results

reveals the shortcomings of such a model.

In Chapter 7 we demonstrate a single magnetic atom anisotropic mag-
netoresistance on topological insulator surfaces, arising from the interplay
between helical spin-momentum-locked surface electronic structure and the
hybridization of the magnetic adatom states. Our ab initio calculations for
Mn adatom on BiySes elucidate the underlying mechanism and also reveal
the real space spin texture around the magnetic impurity. We complement
our findings with a two-dimensional model valid for both single adatoms and
magnetic clusters, which leads to a proposed device setup for experimental

realization.

Next, we turn our attention to Dirac semimetal systems in two as well as

three-dimensional systems. In Chapter 8 we present our proposal to engineer
7 O
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a backscattering-free hybrid state in graphene by proximity with a three-
dimensional topological insulator. This hybrid state at the interface has
a Dirac-cone-like dispersion and a well-defined helical spin texture. Using
transport calculations, we further confirm the robustness of this state to
disorder. We investigate the interplay of bulk and surface Dirac states in the
three-dimensional Dirac semimetal NazBi. By employing density functional
theory in conjunction with coherent potential approximation, we also reveal
a topological phase transition in alloy NasBi,_,Sb,.

Finally, in Chapter 9 we provide a summary of the work presented in this
thesis, and we highlight some possible directions, which can be addressed in

future investigations.



Chapter 2

Basic notions of topology in

band theory

In this chapter we summarize the basic concepts of topology in the band
theoretical picture. We begin with an introduction to band theory and the
concept of Berry phase, potential and curvature. We then discuss the conduc-
tivity of an insulator using the Kubo formula and relate it to the Chern num-
ber and the quantized Hall response. The Su-Schrieffer-Heeger model, which
provides an illustrative example of topological effects in a one-dimensional
solid, is subsequently introduced. We then formulate the concept of electric
polarization as a Berry phase and introduce the notion of a time reversal
polarization. This is used to define a Z, invariant for time reversal symmet-
ric topological insulators. We then discuss the Kane-Mele model, which is
a prototypical model for Z, topological insulators in two dimensions and is
one of the models used in this work. Finally we end with a generalization to
three-dimensional topological insulators. This brief overview is based on the
review by Hasan and Kane [3] and the books by Bernevig and Hughes [18]

and by Shen [19].

11
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2.1 Band theory

Consider a system of non-interacting electrons moving in the periodic poten-
tial produced by ions in a crystal. The Hamiltonian reads

H=—+V(r), (2.1)
where V(r + R) = V(r) and R is a Bravais lattice vector. From Bloch’s

theorem it follows that the solution of the problem is given by

HiL‘H(r'k)) == E,,(k)|L',,(I‘.k)>. (22)

[Yn(r,K)) = ™7 |un(r, k)), (2.3)

where |u, (r,k)) is the Bloch state and k is the crystal momentum restricted
to the first Brillouin zone (BZ). The subscript n denotes the band index.

Translational symmetry yields

|tn(r,K)) = |un(r + R K)), En(k) = E.(k + G). (2.4)

Here G is the set of reciprocal lattice vectors such that G-R = 2mz (m € Z).
Since k and k + G are equivalent, the space of crystal momentum is a d-

dimensional torus in a crystal extending in d spatial dimensions.
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2.2 Berry phase, potential and curvature

Let us consider a system with a Hamiltonian which depends on a parameter
R(t), which is a function of time. In the adiabatic approximation, where
R(t) varies slowly in time compared to the smallest energy scale of the sys-
tem, the instantaneous eigenvalues and eigenfunctions satisfy the Schrodinger

equation

H(R(t)) = [n(R(t))) = E.(R(t))[n(R(1))). (2.5)

From adiabaticity we have that the eigenstate

n(R(0))) remains the instan-
taneous eigenstate of H(R(#)) up to a phase . as R(t) is varied along some

path C.
[¥(0)) = [n(R(0))), [|(t)) = e’VIn(R(2))). (2.6)

HR() (1) = ihr (1) @.7)

Using the above two equations and the state normalization ((n(R(t))[n(R(t)))

1), we obtain

d 10
E,(R(1)) — ih(n(R(0)) | In(R(1))) = h—. (28)
which yields
Pt = l/ E,(R(t))dt' — i/ (n(R(z"))|(—1|11(R(2"))>(H'. (2.9)
hJ, 0 dt’

Here the first term is the usual dynamical phase arising from the Hamiltonian
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evolution, while the second term is called Berry phase [20],

;N 1'/(n(R(f’))|((—1|1)(R(1"))>(h"
0

= i%((n(R)\%\n(R)MR. (2.10)

One can then define a vector potential or Berry connection as

1
A.(R) = i(n(R)| == In(R)). (2.11)

such that

G /An(R) -dR. (2012
JC
Under a gauge transformation
: ox(R
In(R)) = eX®|p(R)), A,(R)— A,(R) — z)(R ) (2.13)
while the Berry phase transforms as
Ix(R
o=~ [ 2R R =y 4 X(RO) - XRET),  (214)
G

where 7" is the time taken to traverse C. Prior to Berry’s work it was believed
that with a suitable gauge choice the phase v, can be cancelled so that to be
physically irrelevant. We consider closed paths C, such that R(7) = R(0).

From the single-valuedness of the wavefunction

[n(R(T))) = [n(R =0)). (2.15)

Any gauge transformation should preserve this single-valuedness
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i

XRO|(R(T))) = ARO(R = 0). (2.16)

The above two conditions imply that

x(R(T)) — x(R(0)) =2mn, m€Z. (2.17)

The simple analysis above shows that for a closed path the Berry phase
cannot be cancelled in general, unless it is a multiple of 27. Furthermore,

when C is a closed path the Berry phase is gauge-invariant, namely

- %A,,(R)-(IR: /(VR x A,(R))-ds = /}'(R)-ds. (2.18)

J5

where F(R) = Vg x A, (R) is the Berry curvature.

An alternative expression for the Berry phase, which is more convenient for

numerical computation reads [18]

. Z/ <H(R |,n R)) x <171(R)|%[”(R)> .
/” m#n (EIN(R') - E”(R))2
The Chern number is defined as
T Jclosed

This is always an integer for a closed surface, i.e. a surface that has no
boundaries, for example the surface of a sphere or of a torus. A proof is
provided in Appendix A. Note that the crucial point here is that the surface

is closed. i.e. it has no boundaries.
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The above concepts can be transferred to an electron in a crystal by
identifying the crystal momentum k as the parameter R. Analogously, it is

possible to define a vector potential

: d ,
A, (k)= 1<u,,k|0—k|u”k>. {221
which is the Berry connection in a periodic solid and the Berry curvature
and phase read
Fulk) = Vie x Au(k), 7n = / Fo(k) - dk. (2.22)
BZ

in a crystal.

2.2.1 Conductivity of an insulator

The Kubo formula for the linear response electrical conductivity of a two-

dimensional sample reads

1(’ (nk 1(, mk) (mk|vz|nk .
Oap = Z Z | l k >_< E lzjl > nk fmk) (223)

nm.n#m

where A is the area of the sample, v, is the velocity operator along direction

a, fax = (‘Enk_E:‘)/“BT+ is the Fermi-Dirac function and a.3 € x,y. The

1

current density flowing in linear response to an electric field, Ej3, is then

expressed as

=Y _0agEp. (2.24)
3
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If the energy gap of the insulating sample is much larger than the temperature

scale, then the Kubo formula can be further simplified to yield

Im((nk|v,|mk)(mk|vs|nk))
Enk = Ek)

OaB =

(2.25)

neoce n#m

where the second summation is now over only the occupied bands. From
the above expression it is clear that the longitudinal conductivity o,, = 0,
since the quantity (nk|v,|mk)(mk|v,|nk) = |(nk|v,|mk)|? is real. Now the

velocity operator is defined as

1OH

= — 2.26
h ok (2.26)

The Hall conductivity a,, is

“k|()H \I”k> <Illk|d“ |”k>
- _ 2.27
Tay = 4}) Z Z Z (Enk - E”Ik) ( ‘)

neoce n#m

By identifying the quantity in the parentheses as the Berry curvature and by

dk, dk,
(27m)2

replacing the summation over k points with an integral >, — A [,

we obtain

('2 j
Dy = " ()'r /BZ Fy o ) . (2.28)

neocc
where the quantity in the parentheses is the Chern number and is guaran-
teed to be an integer for a closed surface, which in this particular case is the
Brillouin zone. Thus, the Hall conductivity of an insulator is quantized to be
an integer multiple of quantum of conductance <. This integer is the sum of

the Chern numbers of all the occupied bands. For a quantum Hall insulator
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this corresponds to the number of filled Landau levels.

2.3 Topology in one-dimensional solid: Su-

Schrieffer-Heeger model

Consider a one-dimensional chain of dimerized atoms described by the Hamil-

tonian [21]

H =Y (t+0t)c cpi+ Y (t—dt)cly, e+ hec. (2.29)

Here (':_1(('.4.1) creates (destroys) an electron at the site A of the i-th unit
cell. The underlying physical reason for this dimerization (Peierls distor-
tion) is a lowering of the electron kinetic energy at half-filling. The above
Hamiltonian was proposed as a model for polyacetylene, and in general is ap-
plied, with modifications due to the details of the band filling, to augmented
one-dimensional systems. Fourier transformation to the momentum space

yields

H=Y">" cachas(k)cst, (2.30)
k

af3

where h(k) = d(k) - & with

d.(k) = (t+0t)+(t—dt) coska, dy(k) = (t—0t)sinka, d.(k)=0, (2.31)

and o = {0,,0,,0.} is the triad of Pauli matrices. The eigenvalues are then
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Ei(k) = £|d| = £/2(t2 + (0t)2) + 2(t2 — (61)2) cos ka, (2.32)

where a is the lattice constant. The spectrum at half-filling is that of an
insulator at finite o¢, while for 0t = 0 the system is a semi-metal. At the

edge of the BZ, the low energy excitations are Dirac fermions and not usual

Schrodinger fermions. By expanding around the edge of BZ. k = £ — ¢
(ga < 1)
Es (A- . q) ~ +2,/(tqa)? + (01)2. (2.33)
a

This is a linear dispersion of a Dirac fermion with velocity ta and mass dt.
For ot = 0 we recover a massless Dirac fermion with linear gapless bands.

The eigenstates of the full Hamiltonian are given by

cos /2 —sinf/2
k+y=| , k=)=1] . (2.34)
e'?sin6/2 e** cos0/2
where 6 = cos™! % and ¢ = tan™! ;I,—i’ The Berry phase of the occupied band
is [18, 19]
m/e 0 1d 1
vy = k—|=|k=)dk = [ ds- == = =Q, 2.35
! /_ﬂ-/"< |0]\'| >( /H(S 2(1(‘ 9 ( ))

where S is the surface enclosed by the path C covered by vector d(k) as k
goes from —% to Z. C is a closed loop since d(k = —7/a) = d(k = 7/a). Q
is the solid angle that the path C subtends at the origin d = 0. Since d. = 0.
we only need to consider contours in the d, — d, plane. as shown in Fig. 2.1.

This gives us
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Figure 2.1: The contour in d space (d. = 0) for the two cases (a) when it does not
enclose the monopole at origin (6t > 0) and (b) when the monopole is within the contour

(ot < 0).

¥ = 0, 6t >0
T T 1] (2.36)

At ot = 0 the system is gapless and serves as the point of a topological phase
transition. The topological distinction between 6t < 0 and 6t > 0 is crucially

hinged on d. = 0. Consider

{h(k),0%} =d,{0",0°} +dy{0¥,0°} +d.{o%,0°} = 2d, = 0. (2.37)
In the above expression we have used {0, 6°} = 2§°°. The condition {h(k),o*} =
0, implies an associated symmetry called the Chiral symmetry. This is a re-
curring feature in topological band theory, where the existence of a symmetry

leads to a classification based on a topological quantity.

From the low energy expansion around k = Z it follows that

d. = 20t =m, d,=~atq=1q. (2.38)
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The low energy Hamiltonian then reads

hess(q) = mo® + vqo?. (2.39)

Now consider a domain wall between regions of 4t > 0 and 4t < 0. i.e..
(e}

between regions of opposite Dirac mass m. Since, we lose translational sym-

metry we make the replacement ¢ — —i-%. The zero energy solution satisfies
I 1 ox g
0 m — 1% (185}
: =33 (2.40)
m + 1% 0 (18D
which yields
0 1 pZ 0 ; i)
(m — I.T)L,z = (. Wy ~ ev Jo m(z")da . (241)
ox
0 1 T ol 7
(”1 + I'U—)Lvl = (). U ~e v Jo m(2’)da . (242)
&

For m{(r — —oc) > 0 and m(x — oo) < 0 the physical (non-diverging)

solution is

e} = e o Jo e e (2.43)

This localized zero-energy state at the domain wall is the Jackiw-Rebbi zero
mode [22]. Tt is protected by chiral symmetry and is robust against de-
formations of the Hamiltonian. This is the zero-dimensional analog to the
one-dimensional edge states and the two-dimensional surface states in topo-

logical insulators.
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2.4 Electric and time reversal polarization

The electric polarization P is defined as the electric dipole moment per unit

volume

1
P = le:p,. (2.44)

where the sum is carried out over all dipole moments p; and V' is the volume
of the material. Note that P is an ambiguously defined quantity depending
on the choice of unit cell (individual dipole). In the pioneering work by
Vanderbilt and Resta it was shown that the electric polarization is related

to the Berry phase [23, 24]

[N}
o=
n

e
P=_—Y A, (k) - dk. {
27’ BZ

neoce *
The ambiguity of P carries over in this formulation since the Berry phase is

also defined only modulo 27.

2.4.1 Time reversal symmetry and Z, invariant

For a periodic system with time reversal symmetry (TRS)

H(-k) =06H k)0, (2.46)

where ©® = i0,K is the time reversal operator and K performs complex

conjugation. The points, I';, in the Brillouin zone which satisfy

—r,' = F,~ + II;G. n;, € Z, (247)

are called the time reversal invariant momenta (TRIM). At these points the
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Figure 2.2: A schematic of generic band structure for a one-dimensional system with
only time reversal symmetry.

Y

>

Hamiltonian is always doubly degenerate due to Kramers’ theorem.,

H(T;) = OH(T,)0. (2.48)

For a one-dimensional system with TRS and no other symmetry (and hence
no other degeneracy) the band structure is shown schematically in Fig. 2.2.
Notice that all bands are non-degenerate except at the TRIM & = 0,G/2.

It is possible to identify each of the Kramers pairs by labels T and II. These
are degenerate at the TRIM (k = 0,7). Away from these TRIM we have
E,1(k) = E,n(=k), but not necessarily E, (k) = E,11(k). The Kramers

pair eigenstates satisfy

|uy, (—k)) = =™ Olu,, (k)), n=1,2,..,N. )

Here ., is the U(1) gauge freedom of the eigenstate.

Blul(=k)) = —BeX=0|ul(k)) = e~k |ub (k)), (2.50)

n

which gives
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[up (=k)) = -2 Olu, (k). (2:51)

Now we define a partial polarization following the Berry phase expression for

the polarization [25]

i

, 0
S — AS i 445“ =1 S(k — S(k 5 S = I II -ZF'Q
Pr=gn | Ak 4 IZ@”(A)yOkm“(A)) s (2.52)

neocc

Here A; =i >, . (us (k)4 |us (k). Using the anti-unitarity of © and the

normalization of |ull) it can be shown that [25]

Al = Al (}2 . (2.53)

neocc

This yields for the partial polarization

1 d‘(kn
p! 1 411 / E: /
2r (/ (4 i 0 )

ne€occ

1 i T
- Z </0 Al\'dk I Z (XTrn - X()n)) . (204)

neocc

Define a U(2N) matrix at each k
u’ln”(]\) <um )|O|u'll( > (2'55)

This matrix is block-diagonal such that

0 — piXka

w(k) = diag(w; (k), wa(k), ..., wn(k)), 1w,

=
o
—~
>
N

. (2.56)

eiX~ka 0
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The time reversal operator © connects only the Kramers partners and does
not mix the labels 1. ..., N. Now, at the TRIM w is an anti-symmetric matrix,
i.e. wl = —w. We use the Pfaffian of w (a discussion on Pfaffians and their

properties follows in Appendix B)

Pflw(0)] = (=1)Ne ' XnXon  Pf[w(r)] = (—1)Ne 1 LnXm, (2.57)

This gives

B . Pflw(7)]
1D Xmn—Xom . = L NT ] 2.58
‘ Pf[w(0)] 2:6E)
_ Pfw(7)]
o — =iln|{ ——=1. 2.59
gm, Xon) = iln (Pf[“‘(o)] (2.59)
The above equations along with the expression for P! yields
1 " , Pf[w(m)]
Pl=— Apdk +iln [ =—= | |. 2.60
27 {/0 W < (Pf[lz'(())] (2.60)
and analogously
I Pf[w(r)]
P =— Apdk —iln (| =—=—= ]| . 2.61
o u AT U P[w(0)] 6l

Next we define a time reversal polarization P,

P{) _ PI - PII
1 " v Pflw(m)]
= — Apdk — Apdk In | ——=
5 {A Adh /_7,- rdk + 2i1In (Pf[u'(())] )}

_ A T Pflw(m)] -
- R[A Tr[w'Vw] — 21n <—Pf[u'(())]>] (2.62)
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In the last step above we have used the off-diagonal structure of w

0 e 0 —ewn |
Tl‘{ll'TVA.u'] =Tr vk = '](VA-Y—AW_VA'\'A'H)'

_(»i\ku O ()i\—k'ln ()
(2.63)
Using the identity Tr[ln w] = In[det(w)] the time reversal polarization can be

rewritten as

ot A det{w(n)] ., Pflw(n)]
i %(hl detjw(0)] _ 2™ Pf[w(())])

ST (Mdot [w(m)] Pflw(0)] ) (2.64)
i

Pf[w(7)] det[w(0)]

Since w is a unitary matrix (wfw = 1), Pf(w) and det(w) are unitary complex

numbers

det(w) = €, Pf(w) = e'/2e™™™, n e Z. (2.65)

Using the above expressions

: ) .
Py=— e =m —n. (2.66)
Iy

Hence Py is an integer. Moreover since the logarithm is defined only modulo
2mi, the time reversal polarization is defined only modulo 2. This reveals Py

to be a Z, index. The above expression may be rewritten as

y  Vdet[w(0)] y/det[w(m)]
Slde Pflw(0)]  Pflw(n)] i

det[w(0)] e !fdet[u'(n)] -

Each of the factors in the above expression PO = P (]



Chapter 2 27

\ fdet [w]

+1. So. Py = 1 if the term PI]

changes sign between k = 0 and k = 7.
This indicates a topological phase, while Py, = 0 corresponds to a topologi-

cally trivial phase. In two dimensions we have

o TR & det[w(T;)]

where I'; represent the four TRIM {(0,0), (0,7 /a),(7/a,0),(r/a,7/a)} in

two dimensions.

To summarize, the Z, invariant v for two-dimensional TRS obeying insulators

is given by

(—=1) = H 0;, 0; = M Wimn = (U—km|O|tsn)- (2.69)
i€TRIM Pf[w(T))

Here w is a 2N x 2N unitary matrix and 2N is the number of occupied
bulk bands. It appears as if the invariant depends only on the Bloch eigen-
states at the TRIM, while in the derivation one needs to integrate over all
momenta. However, to calculate the square root consistently one needs to
choose a smooth gauge for |uy,) over the entire BZ and hence the apparent
simplification is lost in general. In the special case of insulators, which obey
inversion symmetry, a simplified invariant can be constructed. Consider an

inversion symmetric system with the Bloch Hamiltonian satisfying

h(k) = TTh(—k)TT~", (2.70)

where II is the inversion operator. which is unitary (ITIIIT = 1). Since a

crystal comes back to itself on inverting twice we also have IT? = 1 and the
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eigenvalues of IT are 1. At a TRIM h(k) = h(—k) so [h(k).II] = 0 and as

a consequence h(I';) and I can be diagonalized simultaneously

Mjuy (T) = &a(Ti)|un(ls)), & = £1. (2.71)

Fu and Kane have shown that for insulators with both time reversal and
inversion symietries the topological invariant is given by [26]

N

-1)"= [ & &=]] &) (2.72)

1€ TRIM m=1
were &, (') is the parity eigenvalue of the 2m-th occupied band at the
TRIM T';. So in presence of inversion symmetry the topological invariant
can be determined by evaluating the parity eigenvalues at the TRIM for the
occupied bulk bands. This is a great simplification and specially useful for
first-principles approaches where the parity of the eigenvalues is easily acces-

sible.

2.5 Kane-Mele model

A model for a two-dimensional time reversal invariant topological insulator
was introduced by Kane and Mele [27. 28]. The Hamiltonian defined on a

honeycomb lattice reads

Hxn = fz clej + A Z &icle; +idso Z vijcls*e;. (2.73)
(i) 2 ((i3))

Here the operator (IT (c;) creates (destroys) an electron at site i. The first
term is a nearest neighbour hopping with strength ¢, the second term is a

staggered sublattice potential such that £ = +1 for A type sublattice and
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Figure 2.3: The bulk band structure of the Kane-Mele model for different values of
Aso and A, showing different phases (a) pristine graphene, (b) topological insulator with
inversion symmetry, (c¢) topological insulator with broken inversion symmetry, and (d)
trivial insulator with broken inversion symmetry.

& = —1 for B sublattice, while the last term is a complex next-nearest
neighbour hopping with strength Aso. The factor v;; is +1 if the hopping is
counterclockwise, while it is —1 for clockwise hopping. Here s = £1 cor-
responds to the electron spin. The third term in the Hamiltonian couples
the spin and orbital motion of the electron. thereby mimicking a spin-orbit
coupling. This Hamiltonian is gapped for non-zero A, and Ago. It repre-
sents a two-dimensional topological insulator (or quantum spin Hall state)
for values of A\, < 3v3\so. Furthermore it can be shown that the state is
preserved even in presence of terms in the Hamiltonian, which do not con-
serve the z component of the electron spin. The model has a non-trivial Z,
invariant, as a consequence of which its interface with an insulator of distinct
topology should host topological states. We show the former by calculating
the topological invariant directly, while the latter is shown by numerically
diagonalizing the Hamiltonian in a ribbon geometry, i.e an interface with

topologically trivial vacuum.

Now we turn to calculation of the Z, invariant and for simplicity we
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7og,=0.05, 7. =0.0
XA/ ]

Figure 2.4: The band structure of the Kane-Mele model for 42 sites wide ribbon geom-
etry for different values of Agp and A, illustrating (a) pristine graphene, (b) topological
insulator with inversion symmetry, (¢) topological insulator with broken inversion symme-
try. and (d) trivial insulator with broken inversion symmetry.

consider a case, which does not break inversion symmetry so that one can
use the parity criterion instead of the full Pfaffian construction. Consider a
general unit cell with four degrees of freedom: two for sublattice (denoted by

0?) and two for spin (denoted by s* ). The parity operator is given by

I=0"®1, (2.74)

where [ is the identity matrix for the spin indices since they do not change

under inversion. The time reversal operator reads

O =il ® sk, (2.75)

where K is the complex conjugation operator and this time the identity
matrix acts on the sublattice index. Any 4 x 4 matrix can be represented
by using the identity /. five Dirac matrices I'* and their ten commutators
[ = [['*,T"]/2i. One choice for the Dirac matrices (for them to be even

under 110) is
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y

[(123458) — (5* @ I,6Y R 1,0° ® s*,0° ® §

L0 & 5°), (2.76)

Notice that T'' = II. This choice gives

er*e~! =Mrefn—! = +I%, a=1

— -I% g#l (2.77)

In contrast the ten commutators are odd under combined time reversal and
parity (IT©)I*(I10)~! = —I'. From time reversal and inversion symmetries

(H(k).II®] = 0, and the most general Hamiltonian can be written as

H(k) = do(k)I + Z do (k)T (2.78)

a=1

The energy eigenvalues are then

E(k) =do(k) £ [ da(k)> (2.79)

At the TRIM only I'! is even under time reversal and parity and hence the
other terms drop out and the parity eigenvalues for the states at the TRIM

are eigenvalues of II,

6; = —sign [dy(k =T)]. (2.80)

For the Kane-Nele model we have
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dy = t(1+ cosxy + cosas),
dy = t(sinx; + sinxy),
d; = 2\so[sinax; — sinxy — sin(ry — xq)], (2.81)

while all the other d’s are zero and r; = k- a;. The TRIM occur at x; =

k -a; = n;m with n; =0,1. This gives us

di=(00) = 0i=(10) = di=(o1) = —1,  di=(00) = +1. (2.82)
Using the above equation we obtain v = 1 and the fact that the model de-
scribes a quantum spin Hall insulator as long as the bulk energy gap remains
finite. The role of the Ago term is to keep the energy gap finite over the

entire BZ.

The bulk band structure for the Kane-Mele model is shown in Fig. 2.3.
For Aso = A, = 0 (graphene), the system is a zero-gap semiconductor.
Finite Ao, with vanishing A\, opens an energy gap in the spectrum, with the
bands being doubly degenerate owing to inversion symmetry. Introducing a
finite A, breaks this degeneracy. We have diagonalized the Hamiltonian in a
ribbon geometry with zigzag edges and the resulting eigenvalues are shown
in Fig. 2.4. The two pair of edge states (one pair for each edge) now span
the bulk band gap in Fig. 2.4(b) and (c¢). These metallic states are also spin
polarized with opposite spins counter-propagating at a given edge. These
are the so-called helical edge states. When A, > 3v3As0. the edge states

disappear and system reverts back to a trivial insulator phase [Fig. 2.4(d)].
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Figure 2.5: The bulk Brillouin zone for a two-dimensional system. The time reversal
invariant momenta are marked. The right panel shows the projection to the edge Brillouin
zone.

2.6 Generalization to three dimensions

Consider the projection of the bulk BZ of a two-dimensional topological

insulator to its edge BZ. For the bulk we have

1

(—1) = H(S,. (2.83)

i=1
The edge is along the y direction as shown in Fig. 2.5. If the product 4,0,
and 030, have the same sign then the insulator is trivial and will have zero
(or an even number) of edge states crossing the Fermi level. On the other
hand. if 4,0, and 0305 have opposite signs. then there would exist at least
one (or in general an odd number) surface state crossing the Fermi energy. as
long as it is in the bulk gap. The two situations are sketched schematically
in Fig. 2.6.

Now one can generalize the same to a three-dimensional system. In this case
there exist eight TRIM as shown in Fig. 2.7 for a BZ with cubic symmetry.

Generically these can be represented by

| —

[ = =(n1b; + nabs + n3bs). ny.ne.n3 € Z. (2.84)

N

Analogously to the two-dimensional situation, projections can be performed
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Figlll‘(‘ 2.6: Schematic edge band structure for a two-dimensional (a) trivial and (b)
topological insulator. The shaded regions represent the bulk bands. There exist an even
number of edge bands crossing the Fermi level for the trivial case, while for a topological
insulator an odd number of symmetry protected edge bands connect the bulk valence
and conduction bands. The bands are necessarily degenerate at TRIM owing to Kramers
theorem.
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Figure 2.7: The bulk Brillouin zone for a three-dimensional cubic system. The eight
time reversal invariant momenta are marked. The right panel shows the projection to one
of the surface Brillouin zones.

onto different surfaces, which now contain four TRIM. One can then define

four Z, invariants as [29]

ni,n2,n3=0.1

(_1)’/1 = H (5”2"3‘

no,n3=0,1

(—1)U2 = H (5711113-
ny ,n3=0,1

SR | [ S (2.85)
ny,n2=0,1

The first invariant v is the strong topological invariant, while the other three

are invariants corresponding to a particular two-dimensional plane and are
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Figure 2.8: A comparison between (a) trivial insulator, (b) strong topological insulator,
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and (¢) weak topological insulator. The panels below show the projection onto a two-
dimensional surface Brillouin zone where the filled circles indicate a surface state that
crosses the Fermi energy.

not true three-dimensional invariants. The quadruplet of (vy: v11515) com-
pletely describes the topological classification of a three-dimensional topo-
logical insulator. In contrast to the two-dimensional system, where there

O .

are only two classes of insulators. there exists a richer classification in three
dimensions. Some examples are shown in Fig. 2.8. When 1, = 1, the system
is said to be a strong topological insulator. A slab made of such an insulator
will host an odd number of metallic surface states. It is possible to have
two of 9;’s to be —1, which renders the principal topological invariant 14
to be zero. However, such a system would display an even number of sur-
face states only along certain planes and not along others as exemplified in
Fig. 2.8(c¢). These are called weak topological insulators. The conventional

(trivial) insulators have 1, = 0 and the ¢;’s at all TRIM have the same sign.
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Chapter 3

Density functional theory and

Green’s functions for transport

In this chapter we briefly outline the two main methods used in this the-
sis, density functional theory for electronic structure and Green's functions
method for quantum transport. In the section on density functional theory
we begin by introducing the many body problem for a set of interacting elec-
trons and ions, then we move on to the theorems of Hohenberg and Kohn.
Next we discuss the Kohn-Sham formulation and different approximations
to the exchange-correlation functional. The idea of pseudopotentials is then
introduced and we discuss the Trullier-Martins norm-conserving scheme. Fi-
nally we end the section with a discussion of relativistic effects in solids and

summarize the implementation of spin-orbit interaction in the SIESTA code.

In the section on Green's functions, we introduce definitions for the
Green’s functions and self-energies. We then summarize the expressions
for current and transmission in the particular case of a two-terminal setup.
The section on density functional theory is based on References [30. 31. 32].

The subsequent section on Green’s function methods is based on Refer-

37
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ences (34, 35].

3.1 Density functional theory

The Hamiltonian for a set of interacting electrons and ions is given by

He 5 e e S
 2m, Vi 2\[ |r v, — R,] IR, —
(3.1)
where m, is the electron mass. M; is mass of the I-th ion. Z; is the charge of
the I-th ion, e is the electron charge and i = h/27 is the reduced Planck’s
constant. Here r; and R; denote the position of i-th electron and .J-th ion.
respectively. Since. M; > m, one may treat the ions as static and drop out

the ionic kinetic energy. The Hamiltonian can be rewritten as

o= 2111f Z V s Z Vet (1:) Z |I', % r]| + Fioins (3.2)

7]
where V, = — —11‘— is the external potential energy due to the ions
(\l i, |r;—

and Ej,, = 5 Z,# !é ZP“ p is the potential energy due to the ion-ion inter-
action. The above Hamiltonian is still not solvable directly and one needs to
resort to approximations. Density functional theory, in principle exact, pro-

vides the route to one such approximation to solve the many-body problem.

It is based on the Hohenberg-Kohn theorems:

Theorem 1: The external potential V. (r) is a unique functional of the

ground state electron density n(r).

Proof: Consider two potentials \m (r) and L\t (r). which differ by more than
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a constant and give the same ground state density n(r). Since they belong
to distinct Hamiltonians H(Eit) and H((fl they vield different ground state
wavefunctions ¢V and ¢'®)| respectively. From the variational principle we
have

ED = (pW|HQ W) < (P Heal®). (3.3)

ext

We have assumed that there is no ground state degeneracy, which means that

the inequality strictly holds.

WO HRQ[WP) = @P|HZ WD) + @V — Vol |p®), (3.4)

ext ext

which gives.

EM < E@ 4 (v _ v 2@, (3.5)

ext ext

Since the ground state densities for the two potentials are the same. the
above can be rewritten as

“ext ext

EM <« E@ 4 /[v‘”(r) — V.3 (r)]n(r)dr. (3.6)
If we had started with the variational principle for ¢»*) instead of ¢V, we
would have obtained

"ext "ext

E® < EW 4 /[\"(2)(1') — v (x)n(r)dr. (3.7)

From the two inequalities we arrive at a contradiction, BV + E®?) < F() 4
E™ . Thus. our assumption that two external potentials can give the same
1 1 fod

ground state density was wrong.
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Theorem 2: A universal energy functional of the electron density. E[n(r)].
exists. The density that minimizes this functional is the exact ground state

density.

Proof: Define a functional F[n(r)] as the expectation value of the kinetic

energy and electron-electron interaction energy for a wavefunction [n]

Flin) = — o S @l V) + & S @lnll——fvla).  (38)

2m, < 2 wry ri — rj
The ground state energy is
E[n] = Fln] + / Vet (0)(x)dr + Eion. (3.9)

This functional is minimized by the exact ground state density, as can be

seen from the variational principle.

Since such a universal functional, F'[n], is unknown Kohn and Sham refor-
mulated the variational problem in a form suitable to construct approxima-

tions. Consider an auxilliary non-interacting system with the Hamiltonian

2

Haux - VQ =17 VKS(r)- (310)

2m,

The single-particle solutions of the Hamiltonian satisfy a Schrodinger-like

equation

h2

——V? 4 Vis(r) | 0i(r) = €:04(r), (3.11)
2m.
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where ¢;(r) are the single-particle eigenstates. Then the ground state electron

density is given by

n(r) = Z |6i(r)]2. (3.12)

The exact ground state density can be expressed in terms of the solutions of
an auxilliary non-interacting problem. This is the crucial idea of the Kohn-
Sham formulation. This reformulation allows constructing approximations to
the universal functional F[n]. One can then minimize the energy functional

in terms of ¢;’s.

For the auxilliary system, define

h? " e? [ n(r)n(r’)
]‘ - Q = —— D “1lO; < y _ — —_——— ,_
ks[n] o Ej (9i[n])| V| @in]). Eun] 5 / r— drdr

(3.13)
where Ty s and Ey are the kinetic and Hartree energies of the Kohn-Sham
auxilliary system, respectively. Now the universal energy functional may be

rewritten as

Eln] = (Tks[n] — Tks[n] + Euln] — En(n]) + Fln] + / Vext(r)n(r)dr + Eion

= Tks[n]+ Eyn] + /\«";xt(r)n(r)dr + Eion + Erc[n], (3.14)

where E,.[n] is the exchange-correlation functional. It is defined as the dif-
ference between the sum of expectation values of the kinetic and Hartree
energies of the actual interacting system and the auxilliary non-interacting

systenn,
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E.c[n] = F[n] — Tks[n]| — Euln]. (3.15)

Approximate expressions for the functional E,.[n] are easier to find as com-
pared to approximate forms for F[n]. The density may be expressed in terms
of the orbitals and the minimization may be performed over them, by im-

posing

= (, (3.16)

along with the constraint (¢;|¢;) = d,;. This vields the expression for the

Kohn-Sham potential,

Vis(r) = Vexe(r) + Vi (r) + Vie(r), (3.17)
where
6E1‘C
Vo)== . 3.18
/ Ir — r/| () on(r) ( )

Thus, in the Kohn-Sham reformulation one needs to find the N lowest energy

solutions of the Kohn-Sham equation.

h2
2m,

Hygspi(r) = | — V2 + Vext ( /|r—r'|d + Vae(r) | 0i(r) = €:i(1).

(3.19)

The corresponding density is the exact ground state density of the original
many-body problem and E[n] is its exact ground state energy.

The caveat of DFT is that the exchange-correlation functional is un-

known. So. in practice, one needs to make approximations to V,.. Also, one

needs to be careful as the Kohn-Sham eigenvalues and eigenvectors are not
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the real energy and wavefunctions of the physical system. In practice, how-
ever, they are routinely interpreted as a first approximation to the energy
and eigenstates of the system. In this work we take this “liberal” point of
view.

The earliest and still one of the most widely used approximation to the
exchange correlation functional is the so-called local density approximation

(LDA). One assumes that.

Eolnt] = / n(r)e2o™ n(r))dr, (3.20)

where €19 is the exchange-correlation energy density of homogeneous elec-
tron gas. The expression for exchange energy for the homogeneous electron
gas is known analytically, while various parameterizations for the correlation

term have been tabulated based on accurate Monte-Carlo computations 33|

The Kohn-Sham reformulation can also be performed in terms of densities
of up and down spin electrons, n+(r) and n (r). The Kohn-Sham equation

can then be written down for both spins

f‘_) ‘ . /
= I—V2+K,xt(r) +«2/Mdr'+ V2(r)| dis(r) = €i0io(r), (3.21)

2m, r —r/|

where 0 = (1,]) is the spin index and the exchange-correlation potential,

Velr] = &ffgr). becomes spin dependent. Similar to the LDA one can make
a local spin density approximation (LSDA) to the exchange-correlation func-

tional

Pt B 0y | == /n(r)s(’,‘.‘,f“'{nﬂr)ru(r)}(lr. (3.22)
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where €™ [n4(r),n (r)] is the energy density of the uniform electron gas
with constant spin up and down densities. Instead of ny and nj, one may
also formulate the Kohn-Sham equations in terms of electron density, n(r) =
n+(r)+ny(r). and spin magnetization, m(r) = p.[n+(r)—n,(r)]. Here y. is the
magnetic moment of electron (Bohr magneton). One can define an average

exchange-correlation potential V,.(r) = 2£x= and a local effective magnetic

on(r)
field B,.(r) = —O"Ifm The Kohn-Sham equations can then be rewritten as
2
|:— ﬁvz + L“ / ’1‘ ([I' s ‘ ( ) == /ltBJ.(V(I'):| Om(r) = ijc‘),T(r).

|:— 2?’: ) N ‘;\t(r) i (‘2/ ( ) 1 + "”( ) + /1f~B.1'('(r):l C)il(r) = fiiOli(I(B.Qg)

It is also possible to generalize the Kohn-Sham formulation to the case of
non-collinear spins. One then works with the full spin density matrix, n,q/(r)

and the Kohn-Sham equation reads

- h_sz v 2 n(r') . roo! _ Y

[{ 5. + Ve (r) + € —|r - r’|dr }()m,/ + V. (r)} Gig' (T) = €ig0is(T).
(3.24)

In the above equation, the exchange-correlation functional, V2% (r) = %b;;m

in general has non-zero off-diagonal terms. This is usually obtained by di-

agonalizing the spin density matrix at each point r and then one uses the

ehomn, (r), n,(r)] energy density as in the collinear case. As for the collinear

problem, the non-collinear case can be reformulated in terms of

n(r) = Tr[n? (r)], m(r) = g, Z i (3.25)

0102

where o = (0,,0,,0.) is the triad of Pauli matrices. The Kohn-Sham equa-
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tion now takes the form

e . ; ¢ o !
{7Vl [ 4 0,0) P Bac(6) | 010) = i 0),

2m,
(3.26)
where V,.(r) = %(ﬁ and B,.(x) = _;_rﬁ(;;h)

Another frequently used approximation to the exchange-correlation en-
ergy is the generalized gradient approximation (GGA), in which. as the name
suggests, the exchange-correlation energy depends on the gradient of the

hom
xe

density €22 [n(r), Vn(r)]. In most of the problems studied in this work, we

employ either the LDA or the GGA for the exchange-correlation energy.

3.1.1 Pseudopotentials

The electronic states of an atom can be divided into core and valence states.
The core states refer to the fully occupied inner shells. The valence states
are the outer shells, which take part in the chemical bonding. Since the
properties of the core states are not affected much by the chemical environ-
ment, it is possible to consider only the valence electrons in the calculation.
Core states and the nucleus are replaced by a pseudopotential, V¥, which
avoids the singularity at the nucleus but reproduces the real potential at
sufficiently far distances. This greatly reduces the computational cost of a
typical calculation.

Consider an isolated atom with spherical symmetry. The radial part
of the Schrodinger equation for a spherically symmetric potential V(r). in

atomic units (me = e = h = 4mweg = 1), reads
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1 d®> I(l+1)
——— 4+ ———= 4+ V(r)|ou(r) = em(r), s 4

S+ e+ V() ) = eai(r) (327)
where ¢;(r) is the radial part of the full wavefunction ¢)(r) = (1/r)di(r)Yim (6, ¢)
and Y}, are the spherical harmonics. One of the possible pseudopotentials
choice is given by the Trullier-Martins norm-conserving scheme. In this

scheme the pseudopotentials are chosen to satisfy the following conditions:

1. For a given atomic configuration the valence eigenvalues of the real (all-
electron) potential and pseudopotential are the same.

2. Beyond a core radius, r., the valence eigenstates of the real potential and
pseudopotential are equal.

3. Inside the core radius, the total charges of both the all-electron and pseu-
dopotential eigenstates are equal.

4. The logarithmic derivative and the energy derivative of the logarithmic

derivative of the real and pseudopotential eigenstates are same for r > r..

The first condition ensures that the real potential and the pseudopotential
give the same eigenenergies, for a given atomic configuration. The second
condition ensures that the all-electron and pseudopotential eigenfunctions
match beyond the core region. The third condition ensures that the electro-
static potential of the real and pseudo wavefunction are identical. The fourth
condition ensures that the scattering from the real potential and pseudopo-
tential matches not only at the eigenenergies, but also at energies nearby
the eigenvalues. The procedure to construct the pseudopotential is as fol-
lows. One solves the Kohn-Sham equation for the potential of one ion. The

Kohn-equation for each [-component ¢;(r) reads
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1d  l(l+1 Ze
= —; : u = + Vi (r) + Vie(r) |oi(r) = eon(r). (3.28)
2a7° 217 r

One then divides the set ¢, into core and valence wavefunctions. The next

Y Ps

step 1s to construct an operator . such that the pseudo wavefunctions

oq . . . . .
of9, apart from satisfying the above criteria. also satisfy

1d W+  ..ps . -.p¢ : ‘
— =+ ——+ VT V@) + VIS () |0 (r) = @l (r). (3.29)
2dr ar
where VF¥ and VI are usual Hartree and exchange-correlation potentials,
but evaluated at the pseudo wavefunction density. The form of the pseu-

dopotential operator reads

V?PS = "'i()('al(”) s Z B/l\lm><le‘- (330)

lm
One of the ways to choose coefficients B; and states y;,, is to construct
the solutions olps(r‘) and Vigea(r), which satisfy the above mentioned four

properties. Then, one can obtain y;, from

1_. . . .
Xim(r) = [e, - { = SV Vioeat(r) + V() + v;’i”(r)}] UES(r), (3.31)
and

1

B=—
<\([171‘L‘[}:,?>

(3.32)



48 Density functional theory and Green'’s functions for transport

3.1.2 Relativistic effects in solids

Spin-orbit interaction is a relativistic effect, which becomes particularly im-
portant for elements with a large atomic number. In particular, it is essential
to include spin-orbit effects to correctly describe electronic states in topolog-
ical insulators, which are the focus of this thesis. In this subsection, we begin
with a derivation of the Pauli equation from the Dirac equation. All-electron
Dirac or Pauli equation for a single atom serves as the starting point for rel-
ativistic pseudopotential generation. Using this we derive the expression for
the corrections to the Schrodinger equation, which make various relativistic
contributions transparent. Finally we outline the scheme used in the SIESTA

code for including spin-orbit terms.

Dirac to Pauli equation
We begin with the Dirac equation in the presence of an external electromag-

netic field [36],

) .
ihE\I’ = [ca- (p+ €A) + Bmc® — e®] V. (8:38)

Here A and @ are the vector and scalar potentials, respectively, while a and

3 are 4 x 4 matrices, which satisfy the following commutation relations,

eFey; ol ;0 = QCSZ'J'. (334)

a;fB + Ba; = 0. (3.35)

Furthermore, a? = 3% = I,«4. Next, we can write the wavefunction as
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V= . (3.36)

where ¢ and y are two-component spinors. The Dirac equation can then be

rewritten as a set of two equations,

0
(ihé; + ('<I)> ¢ =co-(p+eA)y, (3:37)
" 9 -
zha +ed+2mc” | x =co - (p+eA)o. (3.38)
0 o IQXQ 0
Here we have used the representation, o = and 3 =
o 0 0 _[2)(2

In the non-relativistic limit the term 2mc? is much larger than the other two

terms. If we retain only such a term then we obtain,

X & o-(p+eA)o. (3.39)
2mce

Substituting this back into the other equation yields,

o) 1 ‘
ih—+e¥ )| ¢ = —Jo - (p+eA))%o. (3.40)
ot 2m

Now. if we use the identity,
(c-a)(c-b)=a-b+io-(axb), (3.41)

and the definition of magnetic field B = V x A. the equation reduces to,

0 i} ; eh
h—¢ = |— AV — 2B —a-B| . 3.42
] I(')z‘o 2m (i By s Qma ® ( )

This is the Pauli equation.
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Spin-orbit interaction in a spherically symmetric potential

In order to derive the spin-orbit energy in a radial potential we follow Schiff
(36]. Consider A(r,t) = 0 and ®(r.t) = ®(r). then the Dirac equation can

be written as

J : )
ihe ¥ = [ca-p + pmc® + V], (3.43)
(
where we define V' = —e®. The orbital angular momentum L = r x p is not

a constant of motion. since it does not commute with the Hamiltonian and

its time rate of change is given by

1
ZH%L_,. = [L,, H] = —ihc(a.py, — ayp.). (3.44)
(

Here we have used the fact that L commutes with any spherically symmetric

0
function. Consider another operator 3 = . Its time rate of change
0 o
is obtained as,
Ld 5. :
IHEZJ. = [B,, H] = Ye(a.p, — ayp.)- (3.45)
(
From the above two results it is clear that the operator J = L + %ﬁE

commutes with the Hamiltonian and it is a constant of motion. Further-
more, S = %ﬁE is the spin angular momentum of the electron. The time-

independent version of the Dirac equation written in terms of two component

spinors W = | | for a spherically symmetric potential is,

(e —V)o =co-pyx, (3.46)

(e — V +2mc?)x = co - po. (3.47)
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By using the derivation in going from the Dirac to the Pauli equation shown

in the previous subsection, we derive an equation for ¢ alone

1 —v\™
€p=—0o-p|l+ ‘ - o -po+Vo. (3.48)
2m 2mc?

. N . . o I J ) . L i =N N
If we retain only the lowest order terms in (e — V') /2mc?, then (1 + 5 ) :

Q

1 — &% . Furthermore, we have pV = Vp — ihVV and (o - VV)(o - p) =

2mc?

(VV)-p+io-((VV)xp). Using these properties the above equation becomes,

T, 2 2 2
ro:{(l—f ‘,)p—+\']o— i ~(VV)-(Vo)+ L o-[(VV)xplo.

4m?2c? 4m2c?
(3.49)

In addition, for spherically symmetric V', we have the relations (VV) -V =

%% and VV = ]l%r We can then write,
2 1 2 - ,
he dV o 1 1dV
0= |5 ! Oy = 2 L.sle. (3.50)

2m  8m3c? d4m2c2 dr Or  2m2c2r dr

The first and third term on the right hand side yield the Schrodinger equation.
The second term is a relativistic mass correction which can be obtained by
a second order expansion of the square root in (p?c? + m?c*)V/? — mc? =~
g,—l — %j% The fourth term is the relativistic correction to the potential
energy, the so-called scalar relativistic term. The last term proportional to

L-S couples the spin and orbital degrees of the electron and is the spin-orbit

energy.
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Spin-orbit coupling in the SIESTA code

Here we summarize the basic scheme of how spin-orbit coupling terms are
calculated in the linear combination of atomic orbitals based SIESTA and
SMEAGOL codes. We follow Ref. [38]. The prescription for including the
relativistic effects in the pseudopotential generation was given by Kleinman
(39]. One begins by solving self-consistently either the all-electron Dirac
equation or its approximation, the Pauli equation, for a single atom and

extracts the pseudopotential V.

. where j = [ £ 1/2 is now the total angular

momentum. This can be rewritten in terms of projectors as.

C= 3 lim) Vs Gomyl. (8.51)

Jamy
Furthermore, this can be recast in a non-relativistic form by expressing |j, m;)
as a tensor product between the angular momentum states |l,m) and the

eigenstates of the = component of the Pauli matrix [40],

I+
;;—'J’rl- ll.m; — 3)

1
li=l+=m;) =
3 2 : I-m;+1
o s m,+§>

l—m, + 1
1 ( l,m; — :
j=1-5.m) = o bmi = g) ; (3.52)

I+mj+_, 1
—4/ T—H‘ “ IIIJ' + E)

Then equation 3.51 can be rewritten as

;e VS(.—FVSO:

= > Vil + V%L - 8] |l m)(l.m], (3.53)

lm
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where bold letters indicate 2 x 2 matrices and I, is the identity matrix in

spin space,

1 L; il
L-S= -2— A N (3.54)

L+ _LZ

and,
¥ 1 -
2

T R | e 3.99
Vi = 2]+1[‘1+2 ‘1—._,} (3.59)

Now. the V59 part of the pseudopotential also includes the scalar relativistic
term discussed in the previous section. Using the above, the Kohn-Sham

Hamiltonian now reads.

H="T4+ V=V LYyH LYoo, (3.56)

where T is the kinetic energy, V¢ is the scalar relativistic term and V5¢ is the
spin-orbit potential. VH and V¢ are the Hartree and exchange-correlation
potentials, respectively. This Hamiltonian is a 2 x 2 matrix,
. [:]TT ]:[N
H={ 1, (3.57)
HYT gW
where the off-diagonal spin mixing blocks may arise from the exchange and
correlation potentials if the system is spin non-collinear and also from the
spin-orbit potential.
In linear combination of atomic orbital methods the Kohn-Sham Hamil-

tonian eigenstates [¢r,) are expanded over a set of localized basis orbitals
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Cni
COED D B (3.58)

i C

n.,

The Kohn-Sham equation is then projected onto the basis as,

T N J
Hij —F,,S,‘j H'vj (H.J & o
=0, (3.59)
1 H Y 4
HI] H’l — f,,s,"] ( n.j

where H7” = (6;|H?? |¢;) and S;; = (¢:|9;) are Hamiltonian and overlap

matrix elements, respectively. Finally, the spin-orbit term is evaluated as

V2 = (6:Ves) =

= Y (4ilViEOL - S |, My) (I, Mil65), (3.60)

koL, My,

where £ is the atom on which the potential is centered. Also, \7’,‘:0 ==
V%(r — di) and |lg, M,) is the spherical harmonic centered at the same
atomic position di. Evaluating the spin-orbit energy from the above equa-
tion involves calculation of a significant number of three-centre integrals,
which makes it computationally expensive. However, since the radial part
of the spin-orbit potential is short-ranged, considering only the matrix ele-
ments where both orbitals and the pseudopotential are on the same atom is a
good approximation. This reduces the computational effort since we need to
compute only one-center integrals. The approximate matrix elements then

reduce to,



o
n
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; 1 — P
v = - Z (R 1,|Vi2C | R,y 1) iy M| 2 |les Mic) (lie, M|l M)
kL. >0, My, b=k,
1 e A: [ = T
= E <Rn,.l,|‘yl?o|R”;.1,> <]I"\[I| l[;-j\[j>()],.lj' (3()1)

The above expression is then used to calculate the spin-orbit energies in the

SIESTA and SMEAGOL codes.

3.2 Green’s functions for transport

We begin by a reformulation of the electronic structure problem in terms
of Green's functions. Consider a system described by the single-particle

Hamiltonian H. such that

Hy,, = €, 50, (3.62)

where ¢, are the single-particle eigenstates with eigenvalues ¢, and S is the

f SL"n = Omn

overlap matrix. The wavefunctions are normalized such that ¢,

and the completeness relation now reads: ¢, 0} S = Iy. The retarded Green’s

function for the system at energy E' is defined to be

G(E) = [(E +i6)S — H]™*, (3.63)

where 0 — 07 is a positive infinitesimal quantity. The advanced Green's
function is then obtained as G*(E) = G'(E) = [(E — i0)S — H]™'. The

Hamiltonian can also be written in the spectral representation
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N
=% eS0uils. (3.64)

=1

The retarded Green’s function can then be rewritten as

N
1

T E = ey 'T_ 36F’

G(E) Z(E+io)—e,,‘ G (3.65)

n=1

The spectral function is defined as

A(E) = i[G(E) — G'(E)], (3.66)

and it can be related to the density of states as

i
‘ 1
/‘1 E\ = ] —Yn 'vT_ S —— - .l".f
(£) 'Z: (B1t)—tn "™ (B @) —eg """

=1

2

— 20 Dt (3.67)
- I(E_e,,)‘2+(52“l‘" Sy

n

I

In the limit 6 — 0™,

A‘\v
A(E) =21 ) " 6(E — en)ynt). (3.68)
n=I1

Using the definition of density of states (DOS) N = Z,?:l 0(F — €,), and
normalization of v,,,
1

N(E) = = TH{(A(E)S) (3.69)

The total DOS can be split up into the contributions originating from differ-

ent orbitals as the projected density of states (PDOS).
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N(E) =)  Nu(E), (3.70)

Nu(E) ==Y " Au(E)S,. (3.71)
The density matrix, which is defined as,

N

b= Zn,,c'"ul. (3.72)

n=1

can also be expressed in terms of the spectral function (here n,, is the occu-
pation of the n-th eigenstate). If we assume that the fermionic system is in
a thermal equilibrium with the environment, then n,, = f(€,). where f(e,) is
the Fermi-Dirac distribution evaluated at energy ¢, and the density matrix

1s then

o= [ dEF(E)AE), (3.73)

27,
where the integral runs over the real energy axis from —oo to oo.

Until now we have merely reformulated the electronic problem in the
language of Green’s functions. Now consider the system shown in Fig. 3.1.
This is a typical transport setup, where the system to be studied can be
divided into a scattering region and a left-hand side and a right-hand side
lead. The scattering region is the central part of the setup which interacts

with the two leads. while the leads themselves do not interact directly.

The Hamiltonian for this two-terminal device can be expressed in the form



58 Density functional theory and Green'’s functions for transport

(S

HL HS HR

Figure 3.1: Schematic of the two-terminal transport setup with the scattering region
and the left and the right leads.

H, Hips 0
H=|Hs; Hs Hggl|, (3.74)
0  Hgps Hg

where H; and Hp are the left and right lead Hamiltonians and Hg is the
Hamiltonian for the isolated scattering region. The terms H;s and Hgp
represent the hopping from the left lead to the scattering region and right
lead to the scattering region, respectively. Here we have assumed that the
scattering region is large enough such that there are no direct hopping el-
ements between the left and the right lead. Define a matrix K such that

K = H — (E +i6)S. In matrix notation

A’L ]‘yLS 0
K=|Kg Ks Kgpl- (3.75)

0 K RS K R

The retarded Green’s function for the system, G = [(E+i0)S—H] ' = —K!

is then obtained as
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GL+TLsGsTsy TpsGs T1.sGsTsr
G = GsTst, Gs GsTsr ; (3.76)
TrsGsTsy, TrsGs Ggr+ TrsGsTsy

where G|, = —1\'[] and Gg = —1\',}1 are the Green's functions for the isolated

left and right leads, respectively. The transfer matrices are

Trs = GLKis,
Tsr. = KsiGr,
Trs = GRrKRs,

Tsp = KsrGp. (3.77)

The Green’s function of the scattering region is given by

GH = (—]\'5 - Z[‘ = ZR)A]. (378)

where the left and right self-energies are defined as

ZL = [\—SL(;L[\—LS. ZR = [\’SHGH]\'HH- (379)

The quantities ps and Hg are calculated self-consistently for the given self-
energies. In a nutshell, the Green’s function scheme allows calculating prop-
erties of a system with the boundary conditions set by the self-energies. We

then introduce the spectral function for the scattering region

As =i(Gs — GL). (3.80)

The left and right broadening matrices are defined as



60 Density functional theory and Green’s functions for transport

I,=i(Z,—3%), Tr=i(Tr-3Zh). (3.81)

We assume that the leads are semi-infinite. This implies that the Fermi
energy is set by the leads. This is in contrast to a usual density functional
theory calculation, where the number of electrons in the system is fixed. and
this determines the Fermi energy. In this case, the Fermi energy in the leads
sets the number of electrons in the scattering region. The spectral function

for the scattering region can be written as

Ag = Agp + Agng, (382)

where Ag; = GsI' Gl and Agg = G'SFRGL are the parts of spectral function
generated from the left and right lead, respectively. Analogously to the
spectral function, the density matrix of the scattering region can be broken

up into the contributions from the left and the right lead. ps = psi + psr.

Here.
N
pPSL = /dEZ])L.n(E)NL.n(E)L"'Z.nL'z.Tn" (383)
n=il
.’VR
PSR = / dE Z[)R.N(E)NR.H(E LR (3.84)
n=—1

where ¥} /rn 18 the wavefunction extending over the scattering region and
pr/ra(E) is the occupation of the n-th state. Assuming a thermal equilibrium
of the leads, pr/rn = fr/r(E). where fi,r(FE) is the Fermi-Dirac distribution
with each lead having a Fermi energy Ep;,r. This allows introducing a bias
voltage, Vj,. between the two leads as €V}, = Er; — Er . One possible choice

is to use the Fermi level of the system at equilibrium, Ep, as the reference
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and set Erp = Er +€V,/2 and Epgp = Er — €V}, /2. It is then possible to

write

1 1
PSE = —/(]EfL(E)ASL. PSR — — /dEfR(E)ASR (385)
2 2m

Omne can then define the lesser Green'’s function of the scattering region

s = 1Gs(fL(E) 'L + fr(E FR)( (3.86)

Using above machinery, we obtain the canonical equation of non-equilibrium

Green'’s function formalism

fg = = /(IEGE(E). (3.87)
27 :

It is possible to decompose the lesser Green’s function into an equilibrium

and a non-equilibrium part, G5 = G5, + G5 ., where
Y 1
GS.('q = _E[fll(E)+ff?(E)] (GS— 7%) (388)
. ;
Sneq = 5 [fL(E) — fr(E)] Gs(I'L — T'r)Gs. (3.89)

This decomposition allows us to write an analytic continuation of G§

S.eq to

complex energies, E. It does not have poles for Im(£) > 0. Thus. one can
replace the integral over the real energy axis, to obtain p, by one over the

positive half of the complex plane. Here G35

Seq 18 smoother requiring less

energy points for integration. The non-equilibrium part, G'g still needs

S.neq*
to be integrated over the real energy axis. However, it is non-zero only in

the bias window where f; (E) # fr(E) and of course does not contribute in
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the special case of zero bias calculations.

The electronic charge in the scattering region is

s = P*'Sgy®. (3.90)

By assuming that the states, ¢°. satisfy a Schrodinger-like time-dependent

equation Hi» = ihS5-, the time dependent wavefunction can be written as

(t) = e"*FM). In this case

Jqs O(L,"SVT(I‘)SSL'S(I‘)) ’
~ 1) 3.91
e = 0 (3.91)

This is a form of the continuity equation and can be made plausible by noting
that the charge inflow from left lead balances the charge outflow from the
right lead. The individual contributions to the current can be obtained as

follows

dqs (V1 (t)Ss(t))
ot ot
_ W) s St oY (t)
= =855 (1) + v () Ss—

= %(L'LT]\'LSU'S — ST Kgrph) + é(uRT]\'RSL*'S — VST KspyB.92)

From the above, current corresponding to each lead can be identified,

I, = g(‘l;’/’LU\Ls S — U.’STI\SLU’L)- Ip = ﬁ(U'RT[\RsL’«’S = L"le\SR'L‘?’R)-
(3.93)

Notice that I; + I = 0. The total current from the left lead is the sum over

all states
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IL_/(IEZjL YN )ILLA,I+/(1EZfR Wia(E)L., (3.94)

n=1 n=l1
where
L _ Yt g S St - L e
]LJI s E(L L.n K LSVpn — Y L.HI\SLL‘ L.n) (39J)
is the current due to the n-th state ¢y, originating in the left lead and
L l 'LT - 1S IS > T .
[R.n _ E(C R.n]\LSL Rn — () R.n]\h‘l«l’ R.n)‘ (3()())

is the current due to the n-th state 15, originating in the right lead. Using
these expressions the total current from the left lead, carried by the states
originating in the left lead (/1) and carried by the states originating in the

right lead ([,’;,) can be written as

1 1
i = B /(IE;‘,( ) Te(T,GLTrGs), Ik = —]—/(IEfR(E)Tr(I“LGLFRGS).
! 1
(3.97)
The transmission function from the left to right lead at energy E' is obtained
as

T(E) = Tr(T GLTRGy). (3.98)

The probability current is then given by

= / dET(E)(fu(E) — fr(E)). (3.99)
] .

and the resulting charge current is then obtained by multiplying by electron
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charge ¢,

r=2 / dET(E)(fu(E) - fa(E)). (3.100)
/)

This is the well-known Landauer-Biittiker formula. The Green’s function
formalism allows us to write a rigorous description of coherent electronic
transport and is used to tackle most of the transport problems studied in
this thesis. However. it does not include inelastic effects which can be incor-
porated by means of additional self-energies. Furthermore. while using this
formalism in conjunction with density functional theory, one must exercise

caution since there is no variational principle out of equilibrium.
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Andreev reflection in two
dimensional topological

insulators

A metal/superconductor interface may reflect an incident electron from the
metal as a positively charged hole with opposite spin., while a Cooper pair is
formed in the superconductor. This electron-hole conversion is known as An-
dreev reflection [41] and has long served as a useful probe for spin-polarized
currents [42]. Given the spin polarized nature of its edge states, Andreev
reflection technique appears to be particularly suited to study edge state
scattering in topological insulators and its heterostructures [43. 44, 45]. Also
intriguing is the possibility of interfacing Z, insulators with superconductors
(SCs). This interface has been predicted to host Majorana fermions. with

possible applications in topological quantum computing [46].

In this chapter we study Andreev reflection processes in two-dimensional

topological insulators, with either conserved or broken time reversal symme-
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try, forming an interface with a superconductor with uniform s-wave pair-
ing. Both classes of topological insulators exhibit perfect Andreev reflection.
which is robust against disorder. This is assigned to topologically protected
edge states. In the time-reversal symmetric case we show that doping one of
the ribbon edges with magnetic impurities suppresses one Andreev channel,
while no such suppression is seen in the broken symmetry situation. Based
on this observation we suggest a tabletop transport experiment able to distin-
guish between the two types of topological insulators, which does not involve

the direct measurement of the material band structure.

4.1 Andreev reflection at topological insula-

tor superconductor junction

We consider a two-dimensional topological insulator ribbon realized on a
honeycomb lattice with zig-zag edge geometry, as shown in Fig. 4.1. The
region to the right (SC region) is proximity coupled to a superconducting
electrode, while the region on the left (T1I region) is the topological insulator.
The electron and hole spectra are described at the mean-field level by the

Bogoliubov-de Gennes equation [48]

H - Er A u u
=€ . (4.1)
A* Er — THF v v

where u and v are the wave functions for electrons and holes, respectively.
H is the single-particle Hamiltonian for the topological insulators, 7 is the
time-reversal operator, A is the pairing potential and Ey is the Fermi level.
In the left region (TI) the pairing potential is set to zero, i.e., there is no

superconductivity. In the right region (SC) a finite constant pairing potential
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exists due to the proximity with a superconducting electrode.

4.1.1 Models and Computational Details

We use the Kane-Mele model [27] as single-particle Hamiltonian for the time-

reversal symmetric (Z,) topological insulator. This reads

HM[—I‘Z((,+)\Zf,((,+n‘vzy,,(o(,. (4.2)

((i5))

Here the first term is just the nearest-neighbour hopping with strength t.
where the spin indices of the creation, (':r. and annihilation, ¢;, operators have
been omitted. The second term represents a staggered sub-lattice potential,
i.e.. the A tvpe sub-lattice has an on-site energy A (£ = +1), while the B sub-
lattice has on-site energy —A (£ = —1). The last term describes the second
nearest-neighbour hopping with strength #, and it is purely imaginary (t,
is real and i = v/—1). Furthermore, v;; 1s equal to +1 for anti-clockwise
hopping and to —1 for clockwise. Here ¢ is the z-component Pauli matrix
describing the electron’s spin. The last term can be thought as a mirror-
symmetric spin-orbit interaction, since it couples the orbital motion of the
electrons to their spins.

For the time-reversal symmetry broken case we use a spinful version of
the Haldane model [49]. proposed by Chen et al. [50] (from now on the spin-

Haldane model, SH). The single-particle Hamiltonian reads

Hs” fZ(( + 9 Z(TO'( +15 ZI/U( iCi s (43)

/1_]

where the second term is the exchange field with strength v . i.e.. it represents
Zeeman coupling. In addition to spin., the orbital angular momentum of

the electron. v;;, is also coupled to the exchange field. Following Chen et
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X
Figure 4.1: Setup for calculating the two-terminal transmission. Region SC is prox-
imity coupled to a superconducting electrode while region T1 is the topological insulator
described by the two chosen single-particle models. The rectangle marks the region at the
TI/SC interface where disorder is introduced.

al. [50] we approximate 3(7) &~ fFsgn(7), and choose 3 to be negative. This
parameter set describes a diamagnetic response to the magnetic field 4. Note
that in this case the second nearest-neighbour hopping term has the same
sign for both the spins, as opposed to that in Hy.

We then use the ballistic Landauer-Biittiker scheme [51] for calculating
the transmission across the system as presented in Chapter 3. The self-energy
matrix ¥ (Xg) for the left-hand side (right-hand side) contact is obtained
by using the electrodes’ surface Green’s function, g,. This is calculated iter-

atively from the following equation [52]
gs = [(E 4 0™ — Hy — Hyg HI?, (4.4)

where Hj is the Hamiltonian describing the electrode unit cell and H; is the
coupling matrix between cells (note that in our tight-binding formulation
the Hamiltonian of the ribbon has a tri-diagonal form). The self-energy
matrices are given by ¥y g = HL_RgSHE.H. where Hy, (Hg) is the coupling
matrix between the scattering region and the left-hand side (right-hand side)
contact. Then, the retarded Green’s function, G", for the scattering region

of Hamiltonian Hgsc is obtained as G™ = [(E + i07)] — Hsc — XL — Zg] L
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The scattering region comprises the SC/TI interface and a portion of the
electrodes. Finally the total transmission is simply T(E) = Tr(PLG"TrG").
where I'; g are the broadening matrices I'y g = i[Xp g — E{R] Furthermore.
the normal transmission coefficient from the n-th terminal to the m-th one
is obtained as T},,.0(F) = Tr(F,mGg(,F,,mG;L). while the Andreev reflection
coefficient is calculated as

R;\ (E) - ’Fl‘(rnrrG;aFmﬁG;rL)- (-15)

no,mao

A

no.ma de-

where ¢ = (1.]) and 6 = ({,1) are the spin indices. Thus, R
scribes an incident electron from terminal n being reflected as an opposite
spin hole into terminal m. An expanded discussion of Blonder-Tinkham-

Klapwijk model for a normal metal-superconductor junction and its applica-

tion to Andreev reflection is presented in Appendix C.

4.1.2 Results

We begin our analysis by calculating R* as a function of energy. which is
shown in Figs. 4.2(a) and 4.2(b), respectively, for the Kane-Mele and spin-
Haldane model. Henceforth, we set the nearest neighbor hopping ¢t = 1 and
measure all the energies in units of t. Furthermore, we fix the number of sites
along the ribbon width to be n, = 18. The insets of Fig. 4.2 show the band
structure for the two models calculated in this strip geometry. In the bulk
gap there exist gapless edge modes, a single pair on each edge. For the Hyyy
Hamiltonian. these are opposite spin Kramers' pairs, while for Hgy. there
are two left movers (one for each spin) at one edge and two right movers
at the other, exactly as the integer quantum Hall states. We find that for
both these cases, the edge modes lead to a perfect Andreev reflection for

electrons with energy smaller than the superconducting gap. In fact, in both
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Figure 4.2: Andreev reflection coefficient for (a) Zo and (b) Chern insulators showing
perfect Andreev reflection for electron energies smaller than the superconducting gap. The
insets show the band structure for the two models solved in a ribbon geometry. Here we
choose to = 0.33, A/to = 2.0, v = 0.20, 3 = —0.11 and A = 0.50. The Fermi level Ep is
set at zero.
cases the edge modes are perfectly Andreev reflected. Normal reflection,
where an incident particle is reflected back without being converted into
its antiparticle, is completely suppressed for the edge states as long as the
Fermi energy lies in the bulk gap, as we have verified numerically. These
findings are consistent with recent theoretical and experimental studies for
time-reversal symmetric topological insulators [53, 54]. Note that by using a
low-energy effective model for the edge states of a time-reversal symmetric
TI. Adroguer et al. [43] suggested Andreev reflection as a probe for helical
edge states. Here we predict perfect Andreev reflection also for the time-
reversal symmetry broken case.

Next, we study whether such perfect Andreev reflection is robust to per-
turbations of the electronic structure at the SC/TI interface. To this goal
we consider the effect of onsite disorder. which is introduced by adding a

term of the form Hgisorder = D _, u',('j(,', to both Hiy and Hsy. Hence dis-
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order enters in an exact and rather natural way in our numerical approach,
at variance to low-energy edge models, where either a field theory construc-
tion or a perturbative treatment needs to be adopted. In particular, here we
choose the onsite energy, w;, to be randomly distributed within the interval
(—W/2,W/2]. Such disorder is introduced in a n, = 15 site-long region near
the SC/TT interface. From Fig. 4.3 it can be clearly seen that the Andreev
reflection process is very robust against disorder. Even for moderately large
disorder (W =~ 2.0t). R® remains perfectly quantized. This is attributed
to the presence of the topologically protected edge states, which are highly
immune to impurities and disorder, and the situation is identical for both
classes of topological insulators. For W > 2.0t fluctuations in R* begin to
develop in the energy range where only edge states exist. As a result the
Fano factor becomes non-zero. This signals a transition from ballistic to
diffusive transport where backscattering is allowed and the edge states are
no longer topologically protected [55]. Note that the actual value of the
disorder strength critical for the destruction of the edge states depends on
the robustness of the topological phase itself, i.e., on the model parameters
used. However, as we will argue in what follows, the introduction of mag-
netic impurities break the topological protection of Z, insulators, even at
weak disorder strengths, i.e., it is a general feature, which depends little on

the model parameters.

This is demonstrated by introducing magnetic impurities at one of the
TT ribbon edges. The exchange coupling between the electron spin and the
impurities is incorporated into the model as [56]

B = Z cly [J.02°SL + Jy(02?SL + 05°8})] cis (4.6)

e

i,a,3
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Figure 4.3: Effect of onsite disorder on the Andreev reflection coefficient for (a) Z, and
(b) Chern insulators. The Andreev process is highly robust against onsite disorder and
the crossover to diffusive transport occurs for W = 3.0¢ for the Zs insulator and W = 2.0t
for the Chern insulator. Here again we set to = 0.33, A/to = 2.0. v = 0.20, 5 = —0.11

and A = 0.50, and the Fermi level Eg is taken at zero. The curves are averaged over 960
random configurations.

where S! is n-th spin component of the magnetic impurity located at the
edge site 7, and J. and J are, respectively, the longitudinal and transverse
exchange coupling. In the notation we have now explicitly re-introduced
the spin index so that ('fo (Cia) is the creation (annihilation) operator for an
electron at site ¢ with spin a. For simplicity here we have implicitly assumed
that the magnetic impurities are not Kondo active. Their electronic structure
is then treated at a simple classical level, i.e.. they enter the model as classical
spins. When one includes only the z component of the exchange coupling in
the Kane-Mele model, there is a shift of the up and down spin edge bands,
by an amount proportional to the coupling J. but no band gap opens in the
edge state spectrum. For small values of .J., before the bulk band gap closes,
the system is in the time-reversal symmetry broken quantum spin Hall phase
predicted by Yang et al. [57]. As a consequence, although we have locally

broken time-reversal symmetry, perfectly quantized Andreev reflection still
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occurs.  This is because in the energy range within the superconducting
gap there is only the counter-propagating opposite spin channel available to
normal reflection. In contrast, if we also include the transverse component
of the exchange. i.e., we take J; # 0. then a gap is opened at the edge where
the magnetic impurities have been located. The destruction of the helical
edge states at one of the two edges leads to a suppression of this channel,
which results in the Andreev reflection coefficient dropping from two to one,
as shown in Fig. 4.4(a). Such a reduction of R* from 2 to 1 is almost perfect
except for some bulk contributions at energies approximately equal to the
superconducting gap. The situation for the spin-Haldane model is different
and the magnetic impurities produce no effect, regardless of the magnitude
of J. and J. This is expected, since the topological protection of the edge
states for a Chern insulator continues to hold even in the absence of time-
reversal symmetry. Consequently. no such suppression is observed and the
Andreev reflection coefficient remains perfectly quantized to a value of two,

as illustrated in Fig. 4.4(b).

Thus, we have shown that Andreev reflection measurements can charac-
terize a topological insulator and distinguish it from a topologically trivial
material. Perfect Andreev reflection provides a signature for the existence of
topological edge states, although it is not unique to them. One can in fact
envisage other systems, which display a similar perfect electron-hole conver-
sion, for instance a pair of ballistic nanowires. What is unique, though, is the
tremendous immunity to disorder, which both types of topological insulators
display. Furthermore, we also showed that the Z, and Chern insulators re-

spond differently to the presence of magnetic impurities.

Based on the above observation we propose a transport experiment to
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Figure 4.4: Andreev reflection coefficient in presence of magnetic impurities located at
the edge of a TI ribbon: (a) Zs insulator (b) Chern insulator. The suppression of one of
the edge channels in the time-reversal symmetric case R* produces a drop in R from
2 to 1. Magnetic impurities have no effect on the Andreev reflection for a time-reversal
symmetry broken insulator. Here we have chosen J. = .J; = 0.50 and [S| = 2. The other
parameters are the same as before.

distinguish between the two types of topological insulators. The experi-
ment involves placing magnetic impurities along one of the edges of the two-
dimensional sample, for instance, by using the tip of a scanning tunneling
microscope. The impurities’ spin will, in general, be aligned in arbitrary
directions. The illumination with low-frequency polarized infrared light can
however induce their alignment. This has been demonstrated, for instance,
for Mn impurities in CdTe [58]. The infrared pulse imparts a momentum
to align the impurity spins, which subsequently relax back to their random
orientations. The Andreev reflection coefficient R* can then be measured
as a function of time, and this can be related to the inclination angle ¢ of
the impurity spin S. The dependence of R* on 6 is shown in Fig. 4.5. As
the spin rotates towards the z direction, B* returns back to the perfectly
quantized value of two, the same as that in the absence of impurities. For

the Chern insulator the Andreev reflection process is unaffected by magnetic
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Figure 4.5: Andreev reflection coefficient in the presence of magnetic impurities for the
Z» insulator as a function of the spin inclination angle 6 for various values of the exchange
coupling. The relaxation of the spins leads to R reverting back towards unity.

impurities and thus to the exposure with polarized light.

A second possible route to spin polarize the impurities consists in applying
an intense static magnetic field B perpendicular to the plane of the sample.
and then to switch it off over a short time scale tg. The impurity spins will
then relax back to their random configuration with a typical spin-relaxation
time tg. During the time window comprised between tp and tg, measure-
ments of R should vield a behavior similar to that shown in Fig. 4.5. Note
that these possible approaches were already outlined in Ref. [59] relative to
the observation of the Chern insulating phase in Mn doped HgTe quantum
wells. The same here are broadened in scope and now become a tool for
assigning a given material to one of the two classes of Tls. Such a strategy
mitigates the need to perform a direct band-structure measurement, such
as spin and angle resolved photoemission spectroscopy, and therefore repre-
sents a powerful tabletop characterization method of the topological state of

a material.
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4.1.3 Summary and Conclusions

In conclusion, we have investigated SC/TI heterojunctions and shown that
they display perfect Andreev reflection. The robustness of the topologically
protected edge states lends this effect a large immunity against disorder. We
have then looked at the effect of magnetic impurities and shown that in the
case of transverse exchange coupling the Andreev reflection coefficient of Z,
topological insulators drops from two to one. This observation allowed us to
propose a transport experiment that is able to distinguish between the two
types of topological insulators. This consists in following the time evolution of
the Andreev reflection coefficient of a device dusted with magnetic impurities,

which have been previously polarized.
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Spin-pumping at a quantum

spin Hall edge

Given the peculiar spin structure of the quantum spin Hall (QSH) edge states
it becomes natural to ask ourselves whether this can be used to manipulate
magnetic objects [60]. In particular the question we address in this chapter
is whether spin-pumping at the single spin level can be achieved without us-
ing spin-polarized electrodes or an external magnetic field. In a nutshell we
wish to propose an analog to the numerous recent investigations concerning
spin-flip inelastic electron tunneling spectroscopy (SF-IETS) for magnetic
adatoms on insulating surfaces [61], either in equilibrium or in spin-pumping

conditions [62].

In this chapter we demonstrate that a magnetic impurity deposited at the
edge of a Z, topological insulator (TI) and presenting a uniaxial magnetic
anisotropy, which makes it non-Kondo-active [63], can be manipulated by the
QSH current. Furthermore we show that the topological nature of the QSH

state has profound consequences on the SF-IETS conductance spectrum. At



78 Spin-pumping at a quantum spin Hall edge

low current intensity there is a complete suppression of the conductance steps
appearing at the critical biases characteristic of the activation of an inelastic
spin-scattering channel [61]. In contrast, for currents large enough to pro-
duce spin-pumping the spin of the magnetic impurity is driven away from the
anisotropy axis. This breaks the topological protection of the helical edge
states and the conductance steps reappear. Intriguingly, in this situation
there is a strong dependence of the SF-IETS conductance spectrum on the
bias polarity. In the final section of this chapter we extend our investigation
to propose a four-terminal device designed to manipulate by all electrical
means the spin of a magnetic adatom positioned at the edge of a QSH insu-
lator. We show that an electrical gate, able to tune the interface resistance
between the QSH insulator and the source and drain electrodes, can switch
the device between two regimes: one where the system exhibits spin pumping
and the other where the adatom remains in its ground state. Our calcula-
tions are conducted by using the non-equilibrium Green’s function method
for transport, in a tight-binding scheme, combined with a perturbative ap-

proach to spin-scattering from magnetic impurities [64, 65, 66].

5.1 Spin-pumping and inelastic electron tun-

neling spectroscopy

The device that we have in mind is schematically presented in Fig. 5.1 and
consists of two semi-infinite current/voltage electrodes sandwiching a Z, T1
ribbon in which a magnetic impurity is absorbed at one of the two edges.
Our working hypothesis is that one can construct such a device with either a
strong or a weak electronic coupling between the electrodes and the ribbon,

i.e., the interface resistance can be engineered. In the next section we show
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Figure 5.1: Schematic representation of the device considered comprising a TI with
honeycomb lattice structure and a magnetic impurity adsorbed at one of the two edges.
The shaded area corresponds to the interface region where a gate voltage is introduced.

how this can be achieved in practice by means of a gate voltage. The entire
system is described at the tight binding level and for the electrodes we use a

simple square lattice with hopping parameter. ¢t,. (n = L. R).

5.1.1 Model and Computational Details

The TT ribbon has a honeycomb lattice structure with zig-zag edge geometry
and it is described by the two-dimensional Kane-Mele (KM) Hamiltonian,

Hicn. which reads

e T I ; T 2 . |~
Hgm = €9 _5_ EiC: . e T 1 E CiCia + o E Vij(,'(.[(f ]().3(J(l . (5.1)
116"

(i), ((i5)). aB

We remind here that the first term describes a staggered sublattice potential
with on-site energy ¢y and & being & = +1 for the A sublattice and & = —1
for the B one. Here ¢!, () creates (annihilates) an electron at site i with
spin a. The second term is the nearest neighbour hopping with strength ¢,
(t; sets the energy scale of the problem). Finally the third term. which drives
the topological phase. is a second nearest neighbour hopping with strength
to (i = v/—1). This describes the coupling of the electrons orbital motion to

their spins via the z-component of the Pauli matrices (7). The parameter
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v;; is +1 for counter-clockwise hopping and —1 for clockwise.
If we now attach an impurity at site I, the total electronic Hamiltonian will

become

He = Hgm + €1 Z(J;”('/u + 1 Z CriCio 5 (5.2)
a (1),

where in addition to Hgky one has the on-site potential of the impurity,
27, and the hopping between the impurity site I and its neighbor 7 on the
honeycomb lattice (with strength #;). Finally there are two other terms

related to the magnetic impurity spin, S

Hﬁ[) - DS_:Z ; H&*l—sp = Jud Z (';(,{0’}(”‘('1‘1 -S. (33)

aB
The first, Hyp, describes the uniaxial anisotropy (along z. which is perpendic-
ular to the plane of the ribbon) with D being the zero-field splitting param-
eter. The second, H._gp, couples the current-carrying electrons to the local
impurity spin with interaction strength J4 (o is a vector of Pauli matrices).
This is usually known as the s-d model for magnetism [68].
Electron transport is investigated within the Landauer-Biuttiker approach
[69] implemented by the non-equilibrium Green’s function (NEGF) method.
The central quantity to evaluate is the retarded electronic Green'’s function
for the scattering region (the TI ribbon) in presence of the electrodes, G" =
(E+i0")] — Hy — X, — Zg) 7!, where ¥, (n = L, R) are the electrodes self-
energy, which can be computed with standard techniques. These depend on
the hopping parameter between the ribbon and the electrodes, t,5c. whose
magnitude sets the intensity of the current.
When the conducting electrons couple to the impurity spin (Jyyq # 0).

the problem becomes intrinsically many-body in nature. This is made treat-



Chapter 5 81

able by constructing a perturbation theory in the electron-spin Hamiltonian,
which allows us to incorporate the effect of the electron-spin interaction in
an additional self-energy, ;. A derivation of this self-energy is provided in
Appendix D. In this work we truncate the perturbation expansion to the sec-
ond order [64, 66] in both the electron and the impurity spin propagator. The
latter contains information about the state of the magnetic impurity spins,
through the population. P, of the eigenvectors of the spin-Hamiltonian, Hy,.
In particular it is possible to show that the P,’s satisfy a master-equation of

the form

dP,

T: g |:Pn(l_]jl)uvlu_[)/(l'})n)”vn[ +(]D,(1)_R1)/‘j)‘ (5“1)
(
l

where the detailed expression for the transition rates. 11,,. can be found in
Appendix D, and 3 = kgT" with kg being the Boltzmann constant and 7" the
temperature. In Eq. [5.4] the populations P! are those of the ground state.
With this at hand we can compute the current. I, and hence by numerical

derivative the conductance, G = d/ /dV.

5.1.2 Results

We start our discussion by first looking at the transport properties of the
ribbon in absence of the magnetic impurity. The relevant quantity here is
the spin-resolved total transmission coefficient along a particular edge [70],
which is given by

TS fep)=Te, [T ToE L, (5.

aa’ aa’

ot
|
~—

where a is the spin index (a =71.]), s labels the edges (s = top, bottom) and
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G" is the advanced Green'’s function. The trace is over the number of atoms,
n,, along the given edge and the transmission coefficient is evaluated at the
Fermi energy, . As a matter of notation a (n,. n,) ribbon contains n, atoms
in the direction of transport and n, along the transverse one. When the Fermi
level is fixed at the half-filling point the ribbon is insulating in the bulk, but
presents edge topological protected states (here t, = ¢, = 1, and t, = t,/3,
which ensures that the KM Hamiltonian describes a QSH state). In this
situation we find for a (11, 6) ribbon, T%’p = {9, Tif" i TT"T"“‘”“ = {11
and Tl’j’"““' = 0.9. Such values demonstrate that the current along the QSH
edges is spin-polarized, although not completely because of the finite size of
top

the ribbon. Calculations for a (7, 4) ribbon give us T, = 0.85, Tll"’ =) 15,

Pot e T

We now switch on the magnetic interaction between a S = 1 local spin
and a (11, 6) ribbon. In general we place the impurity at the centre of
the edge and choose a coupling parameter, t;, and an onsite energy, ;. to
ensure that the density of states localized at the impurity site, p;(FE), is
approximately constant for energies, E, around the Fermi level (this ensures
the convergence of the perturbation scheme [64]). The exchange coupling.
Jsd. 1s chosen so that the perturbation parameter, p;.Jyq, is approximately 0.1.

These conditions are satisfied for: ¢; = Jq = t;/2 and t; = t,/4. The spin

degeneracy is lifted by an axial anisotropy D = —107% ¢, which corresponds
to D = —2.0 meV, if the nearest neighbour hopping in the ribbon is fixed at a

reasonable value of t; =2 eV (kgT = 0.05). The uniaxial anisotropy gives us

a degenerate ground state with the two spin states | — 1) and |+ 1) separated

from the first excited state |0) by |D|. As a result we do not expect a Kondo-
like behaviour since no allowed transition between the degenerate ground

state may occur (allowed transitions occur for Am = £1). The second order
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perturbation expansion is then well justified. The values t, = 4t,sc = t
ensure that the spin system remains in equilibrium, i.e., in its ground state,

throughout the spin-scattering process.

Figure 5.2 shows the calculated conductance spectra, G(V'), normalised
to the V' = 0 conductance, G. for three values of the parameter governing
the QSH state. t,. For t, = 0 there are no topologically protected edges
and we observe the characteristic inelastic conductance step at a voltage
V' = D/e. when the transition from the ground state to |0) becomes possible
(e is the electron charge). However. as t, is increased and we enter into the
topological phase, we reveal a suppression of the inelastic contribution to
the conductance, with an almost full suppression at the maximum value of
to = t1/3. This can be understood as follows: at a positive bias, the right-

going current is up spin-polarized. This means that the

—1) — |0) transition
scatters out spin-down electrons. These cannot propagate towards the right
electrode since there is no right-moving spin-down state in the upper edge
and, as a consequence, they are completely reflected. Hence, as spin-flip
events can only lead to backscattered electrons, the inelastic channel does
not contribute to the current. Note that the residual conductance increase

in Fig. 5.2 for t, = t;/3 is simply due to the finite size of the ribbon.

We now investigate the possibility of manipulating the impurity spin di-
rection using the QSH current. This is achieved by increasing the overall
conductance, i.e., by increasing the average current density. When one works
with a scanning tunneling microscopy setup bringing the tip closer to the im-
purity [62] does the job. while here our control parameter is the electronic
coupling between the leads and the ribbon, t,5¢. As such all the calculations

that follow have been performed with ¢,5¢ = t.

The calculated populations of the various spin states are plotted as a
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Figure 5.2: Spin-polarized IETS conductance spectrum for a TI (11, 6) ribbon with a
S = 1 magnetic impurity attached at the upper edge. Note that the conductance step at
the voltage characteristic of the inelastic excitation gets suppressed as the fo parameter
is increased, i.e., as the ribbon is brought well inside the topological region of the phase
diagram.

function of bias in Fig. 5.3(a) for both a (11, 6) and a (7, 4) ribbon. A

S = 1 spin in a uniaxial anisotropy field and in thermal equilibrium with

an electron bath presents an equal probability to occupy the | + 1) and the
| — 1) states, i.e., for V =0 one has P,y = P_; = 1/2. As soon as the bias

is increased at and above |D|/e, excitations to the |0) state become possible

due to spin-flip back-scattering. In this case however the current is intense,
so that in between two scattering events the impurity spin does not have
the time to relax back to the degenerate ground state. This means that
now a spin-up electron (the majority specie in the upper edge right-going
channel) can also induce the transition [0) — |+ 1). The consequence is
that the electronic current flowing at the upper edge, in virtue of its spin
polarization and its intensity, produces a net flow of population between the

two degenerate ground state, i.e., for V. > +|D|/e one has Py, > P_;. In
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Figure 5.3: (a) Non-equilibrium population as a function of bias of the S = 1 impurity
spin states for a (7. 4) (dashed lines) and a (11, 6) ribbon (solid lines). In panel (b) we
show the average magnetization of the impurity for the same ribbons.

other words the impurity spin is driven by the current away from its uniaxial
anisotropy axis. This can be fully appreciated by looking at Fig 5.3(b), where
we show the average magnetization (S*) = > P, S: as a function of bias.
Such spin-pumping is essentially identical to what happens for spin-polarized
tips [71] except that now one does not need either a magnetic electrode or an
external magnetic field. Note that at a negative bias the effect is reversed,
i.e., for V< —|D|/e one has P_; > P.;, and that placing the impurity on

the lower edge is equivalent to reversing the bias polarity.
The effects of the spin-pumping on the shape of the conductance spectrum
are finally presented in Fig. 5.4. This time the G(V') trace presents a step

at the voltage corresponding to the

+ 1) — |0) transition, i.e., the electron
transport becomes sensitive to spin-flipping events. Such an appearance of
the conductance step signals the suppression of the topological helical states

[

induced by the transverse magnetization of the spin impurity [72]. Intrigu-
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Figure 5.4: Spin-polarized IETS conductance spectrum for a TI (11, 6) ribbon with a
S = 1 magnetic impurity attached at the upper edge. In this case the current is intense and
drives the impurity spin away from the uniaxial anisotropy axis. Notably now there is a
step in the differential conductance at the voltage corresponding to the inelastic transition
| £1) — |0). The magnitude and sign of such step depends on the bias polarity. In the
inset the inelastic contribution to the conductance.

ingly, the magnitude and sign of the conductance step depends on the bias
polarity. In particular we note that there is an inelastic contribution, which
is symmetric with respect to the sign of V', and always contributes to enhance
the conductivity. In contrast the elastic contribution is anti-symmetric with
respect to the bias polarity, i.e., the elastic current increases for V- > |D|/e
and decreases for V' < —|D|/e. Placing the impurity on the opposite edge
yields a mirror symmetric situation. This time the magnetization is driven
toward (S.) = —1 ((S.) = +1) and the conductance decreases (increases) for
a positive (negative) bias voltage. Overall we can summarize our results by

noting that the sign of the change in the conductance trace at the onset volt-

age |V| = |D|/e is proportional to (v x o) - (S), where v is the group velocity
of the edge state. In other words the anti-symmetry of the conductance is

related to the helicity of the edge state, v x o.
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When one looks at the perturbative expansion of the conductance it can
be realized that the term giving rise to the bias asymmetry is the magnetore-
sistive elastic term of the s-d Hamiltonian. Its contribution to the self-energy

reads

[Eflag—<>lm(E)](2) X — :)(1 Z G((T(E = o an )5mn Pn Sr:nn‘ (56)

mn

where G(T is the electronic Green’s function, €2,,, the energy difference
between the two spin states [n) and |m) and S,,,, = (m|S.|n) is the spin
transition matrix element. Since the terms includes 0,,, there is only an
elastic contribution (€2, = 0), which involves no spin-flip events [66]. Such
a term is proportional to S; and thus reverts its sign as the direction of
impurity spin is reversed.

Note that the elastic and inelastic contributions to the conductance are
calculated by partitioning the current into two parts, obtained respectively
from the elastic and inelastic energy-dependent self-energies. These, how-
ever, are evaluated from the same self-consistent electronic Green'’s function,
meaning that the elastic and inelastic contributions are not completely dis-
entangled. As such, it should not be surprising that the on-set of inelastic
scattering is evident also in the elastic contribution to the conductance.

Finally we investigate how the conductance profile changes as we increase
the value of the total spin S of the magnetic impurity. This is done by rescal-
ing the anisotropy parameter D and the electron-spin coupling strength J.q.
respectively, to D/|S| and .J,/|S]. so that the effective interaction strength
and the total spin anisotropy do not change in the comparison. Our results
are plotted in Fig. 5.5. The figure reveals that, as the total spin increases, the
height of the differential conductance steps gets larger. In the figure we also

plot the average magnetization as a function of bias. which indicates that the
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Figure 5.5: Spin-polarized IETS conductance spectrum for a TI (11, 6) ribbon incor-
porating a magnetic impurity with various spin (S = 1,3/2,2,3) attached at the upper
edge, in the intense current regime. The step in the differential conductance increases in
magnitude with increasing the spin value of the adatom. Note that the spectra have been
aligned vertically for clarity in comparison. The inset shows the average magnetization
of the impurity for different values of S. Note that spin pumping persists for the larger
values of the impurity spin.

spin pumping is present for larger values of S and that for voltages exceeding

the energy of the inelastic transition the average value of S, approaches its

maximum value.

5.1.3 Gate controlled spin pumping

In this section we extend the concept discussed previously and propose a
device where the transition between the two regimes is also achieved electri-
cally, by gating the region at the boundary between the QSH insulator and
the source/drain electrodes. As such we will show that the QSH state can
be coupled with SF-IETS to probe and manipulate single magnetic atoms
without the need of a magnetic field or a spin-polarized scanning tunneling
microscope tip.

In the presence of a gate electrode the electronic Hamiltonian takes the
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Figure 5.6: Normalized conductance trace as a function of the source/drain voltage at
different values of the applied gate voltage for a S = 1 impurity spin. Note that increasing
the gate voltage beyond V,, = 0.6f; allows us to crossover to a regime where the current is
reduced to a point at which the conductance steps are suppressed. The curves have been
aligned vertically for ease of comparison.
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where in addition to the Kane-Mele Hamiltonian, Hy,;. we have the gate
potential V. which is included via an additional on-site energy for the atoms
in the gate region at the two ends of the ribbon as shown in Fig. 5.1.

We plot the conductance spectra (normalized to its V' = 0 value. G)
at different values of the gate voltage. Vj. in Fig. 5.6. For the calculations
we set t, = t,sc = t; and t, = 0.1, (¢, is the hopping parameter in the
electrodes and ¢, g¢ is the coupling between the electrodes and the scattering

region). These parameters keep the ribbon in the topological phase and
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Figure 5.7: Average magnetization, along the direction perpendicular to the ribbon

plane, as a function of bias voltage. Curves at different voltages are plotted showing
gate control over the magnetization of the impurity spin. In the inset we report the
magnetization as a function of gate voltage for a source/drain voltage of V' = 1.5 |D|/e.

the coupling between the leads and the scattering region is fixed to a large
value. The choice of parameters, ¢; = Jyq = t,/2 and t; = t;/4, guarantees
that perturbation theory can be used for the spin S = 1, as we discussed in
the previous section. The spin degeneracy is lifted by introducing an axial
anisotropy D = —1073¢,. This is equivalent to a temperature of around 12 K
(assuming a realistic value of £; = 1 eV). In general, devices based on single
atom anisotropies are low temperature devices expected to work around few

tens of kelvin [61. 62].

At V, = 0, i.e., when no gate voltage is applied. there is a conductance
step seen at the energy corresponding to the first spin excitation of the sys-

tem. This is the | + 1) — |0) (| — 1) — |0)) spin transition for positive

(negative) source/drain voltage, where [S.) is the adatom spin’s third com-

ponent, familiar to us from the analysis in the previous section. Such tran-
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sition is detectable because the electrode-ribbon coupling strength is large
and the current is intense. As we increase the gate voltage we observe an
enhancement in the intensity of the conductance step. This continues until
V, reaches a value of 0.6¢,. Beyvond such critical gate voltage there is a drop
in the conductance step at V,, = 0.8¢; and the inelastic conductance becomes

suppressed. This suppression continues for higher values of the gate voltage.

These observations can be readily understood in terms of the changing
interface resistance between the ribbon and the electrodes. At low values of
V,. there is a large current flowing from the leads to the ribbon and thus
interacting with the magnetic adatom. For V' = 0 the spin on the adatom is
in an equal superposition of |+ 1) and | — 1) states. As the bias reaches |D| /¢

the excitation to the

0) state is possible by spin-flip of the incoming electron.
Since the current is large the impurity spin S is not allowed to relax back to
the ground state and thus the incident electrons can also induce transitions
from |0) to |+ 1) and so be transmitted without getting backscattered. In the
case of high interface resistance as engineered by increasing the gate voltage,
there is a strong suppression of the conductance steps. In this scenario since
the current density is small, the impurity spin can relax back to the ground
state after the spin-flip event. This means that the incident right-going elec-
trons, which are up spin polarized at the upper edge, will always encounter

the impurity spin in either the

+1) or the | — 1) state. A spin-flip event will
reverse the electron’s spin and since there are no down spin channels going
right at the upper edge. the electron will be backscattered. Thus, the helicity
of the QSH edge states leads to a suppression of the inelastic conductance

steps at low currents [72].

Finally in Fig. 5.7 we plot the average magnetization of the device at

different gate voltages. If no gate voltage is applied. then a change from
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zero to a finite magnetization occurs at V' = +|D|/e, corresponding to the
allowed spin excitation. Note that the direction of magnetization is opposite
for opposite bias directions. As we now increase the gate voltage, the net
magnetization increases. tending towards unity. This continues until V, =
0.6¢; beyond which it drops rapidly. For higher values of V, the system
remains closer to zero magnetization indicating the absence of spin pumping.
The inset of Fig. 5.7 traces the magnetization at V' = 1.5 |D|/e as a function
of the gate voltage. Note that the magnetization is always less than +1. due

to finite size of the QSH ribbon.

5.1.4 Summary and Conclusions

In conclusion, we have demonstrated that a QSH current flowing at the edge
of a Z, TI can be used to manipulate the spin of a magnetic impurity. This
does not require either an external magnetic field or magnetic electrodes.
i.e., it allows one to implement spintronics without magnetism. Importantly
the fingerprint of the manipulation can be found in the conductance profile
themselves, making SF-IETS a tool for preparing, manipulating and reading
a quantum spin in the solid state. We have also proposed a four-terminal
device, which is designed to manipulate, by all electrical means, the spin of

a magnetic adatom positioned at the quantum spin Hall edge.
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First principles transport study
of topological suface states

scattering

The first three-dimensional topological insulator to be experimentally real-
ized was a Bi-Sb alloy [11], following a theoretical prediction by Fu and
Kane [12]. The topological nature of the alloy is inherited from the par-
ent element antimony, which has a non-trivial principal topological invariant
9. whereas bismuth has a trivial Z, invariant [13]. Although Sb itself is a
semimetal. its (111) surface hosts two spin-polarized bands. which extend
around the Fermi energy. These form a single distorted Dirac cone where the
lower bands are lifted upwards. The first section of this chapter is devoted to
the study of these surface states employing density functional theory based
transport methods. In particular we study the transmission of these states
across surface barriers and compare to recent angle-resolved photoemission
spectroscopy (ARPES) and scanning tunneling microscopy (STM) experi-

ments.

93
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In 2009. concurrent theoretical [14] and experimental [15] works revealed the
topological insulator phase in BisSes. Due to a simple single Dirac cone sur-
face band structure and a relatively large bulk band gap of 0.3 eV, BiySes has
emerged as the prototypical topological insulator material. Since many fun-
damental properties of topological states have been demonstrated in this ma-
terial, it has been called the hydrogen atom of topological insulators [74, 3.
In the second section of this chapter we study the effect of barriers on the
scattering properties of BiSe;(111) surface states by means of large scale ab

initio transport simulations.

6.1 Topological surface states scattering in

Antimony

In a recent experiment, Seo et al. demonstrated that the topological sur-
face states are extraordinarily insensitive to the presence of surface barri-
ers [17]. They probed the extended nature of Sh(111) surface states by using
a scanning tunneling microscope and found that these transmit across sur-
face atomic steps with a high probability. Their analysis of the standing-wave
states on surface terraces revealed the novel chiral spin texture of the two
surface states, consistent with earlier ARPES measurements [75]. In this
section we seek to theoretically recreate the above mentioned experiment by
using ab initio transport theory, and show that we can reproduce the forma-
tion of quantum well states and their life-times, as well as the wave lengths
and phase shifts of the scattering states. Thereby we demonstrate that one
can describe the correct scattering properties of such topologically protected
surface states by first-principles calculations. In addition of comparing our

results favorably to experiments, we predict the scattering properties of these
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states in presence of a surface perturbation along a direction orthogonal to

the one probed experimentally.

6.1.1 Computational Details

Our first-principles electronic structure calculations are performed with den-
sity functional theory (DFT) using the local density approximation (LDA) to
the exchange-correlation functional. We employed the SIESTA package. which
implements a linear combination of atomic orbitals basis set [76]. Spin orbit
interaction, essential to describe the surface states, has been included via the
on-site approximation [38] as discussed in Chapter 3. We include Sb 5s and
5p as the valence electrons. In the slab geometry, there is a 10 A thick vacuum
region in the supercell, to avoid interaction between periodic images. The
transport properties are then calculated by using SMEAGOL, which combines
the non-equilibrium Green’s function (NEGF) method with DFT [77, 78, 79].
In SMEAGOL the scattering region is attached to one or more semi-infinite
electrodes via self-energies. The charge density is calculated by integrating
the non-equilibrium Green’s function. along a contour in the complex energy
plane. For this we use. 16 energy points on the complex semicircle, 16 points
along the line parallel to the real axis and 16 poles. Periodic boundary con-
ditions are employed in the direction orthogonal to the transport direction,
while using open boundary conditions along the transport direction allows
us to simulate single scatterers [80]. We use an equivalent temperature of
300 K for broadening the Fermi distribution. Our order-N implementation
of SMEAGOL allows us to treat large systems [80]. We use a double-¢ polar-
ized (DZP) basis set. with a cutoff energy of 300 Ry for the real space mesh.

We have carefully checked convergence of our results with respect to all the
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parameters used.

Sb crystallizes in a rhombohedral structure with two atoms per unit cell.
An alternate way to represent its structure is in a hexagonal setting with the
unit cell comprising six atoms. This representation is particularly useful to
construct two-dimensional slabs, which are made of Sb bilayers, as shown in
Fig. 6.1(a). The inter-bilayer coupling is weak and it is possible to create
surface steps, which are a single bilayer high [17, 86]. The bulk structure was
relaxed using the Vienna Ab initio Simulation Package (vasp) [81], until the

forces were less than 0.01 eV/A.

6.1.2 Results

We begin by calculating the surface band structure of six and twelve bilayers
thick slabs of Sb [Figs. 6.1(b) and (c¢)], by using a 10 x 10 in-plane A-point
grid. The distorted Dirac cone at I is gapless indicating minimal interaction
between the top and bottom surfaces of the slab. The surface band struc-
ture matches well previous ab initio calculations [82, 83, 84, 85]. We find the
Dirac point at an energy of about 210 meV below Ey for six and twelve bilayer
slabs. In order to simulate the ARPES spectrum of an infinitely thick slab
we perform a SMEAGOL calculation for the 6 bilayer slab, where we attach
semi-infinite Sh electrodes at the bottom layer via self-energies. The ARPES
spectrum is then obtained by calculating the projected density of states on
the surface atoms, and the result is shown in Fig. 6.1(d). The spin-resolved
ARPES [Fig. 6.1(e) and (f)] shows that the two surface bands carry opposite
spin and exhibit the characteristic spin texture associated with topologically

non-trivial materials. Furthermore, it can be seen that the surface states are
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more pronounced close to the I' point. Once the two bands turn downwards
from their maximum point. they are less localized on the surface due to their
hybridization with the bulk bands. This matches with ARPES experiments,
where at M. no surface states are found [75]. Thus, in both scattering and
ARPES experiments. one would expect the dominant contributions to come
from an area around the center of the BZ. with a radius of about one third
of the length of BZ along I' — M direction. We note that the good agree-
ment with the ARPES experiments shows that the LDA exchange-correlation

functional is appropriate for this system.

Figure 6.1: (a) Structure of antimony in the hexagonal setting. The atoms form a
bilayer structure with the intralayer distance as 1.51 A and the interlayer distance as 2.25
A. Band structure for (b) six bilayers and (¢) twelve bilayers thick slabs along K—=T—-M
directions. (d) Simulated ARPES from a semi-infinite slab. Here and henceforth warmer
colors represent higher PDOS (red represents largest values, blue lowest ones, with the
color scale in between being linear). Spin-resolved ARPES along (¢) I' — M and (f)
[ — K directions showing the opposite spins of the two surface bands along the directions
indicated by arrows in the inset of the figures. In this case, red and blue colors indicate
up and down spins. respectively.

Next we simulate a step perturbation on the surface for two different
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directions: In the first case the step runs along the I' — M. which is the same
as in the experiment in Ref. [17]; and as a second orientation we choose the
orthogonal direction (I'— A direction). to evaluate the effect of the orientation
on the scattering. We have relaxed the step geometry for a smaller scattering
region, but the atomic displacements were only minor, and henceforth we use
the unrelaxed step configuration. A single bilayer high step is created over
a length of 120 A. The adjacent flat region extends over 270 A. The setup
consists of a 13 bilayer-thick region with a short 12 bilayer-thick region on the
left and a longer one on the right. We attach semi-infinite leads on left-hand
and right-hand sides of the scattering region, by means of the self-energies
calculated by SMEAGOL. The total projected density of states (PDOS) Niotal
is obtained by integrating over all k| -points perpendicular to the transport

direction

M()tii](E) == ML(E) (”"l' (61)

Jky

Analogously the total transmission is given by

Tioai(E) = /k T, (B)dk,. (6.2)

We note that in the first orientation of the step k, runs along the I' — K
direction and the transport direction is parallel to I' — M in reciprocal space,
whereas in the second orientation A, runs along I' — A/ and the transport
direction is parallel to I'— K. While we find that 3 k,-points are sufficient for
obtaining a converged self-consistent potential, we need many more k| -points
for accurately integrating N, for a given potential. where we therefore use
200 k-points. The N}, of the atoms on the top surface for &, = 0 is shown

in Fig. 6.2(a). The quantum well states formed by quantization of the energy
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levels in the step region are clearly visible. and extend over the energy window
in which the two topological surface bands exist. The PDOS on the adjacent
flat region shows oscillatory behavior typical of one-dimensional scattering
barriers [80], and it has phase shifts at energies corresponding to the allowed
energy states in the step region. At those energies we also find resonant
transmission across quantum well states. visible as peaks in the transmission
curve in Fig 6.2(b). This matches the experimental observation of resonant
tunneling through the surface barrier at those energies. It indicates a remark-
ably long phase coherence length of hundreds of angstroms, which is due to
the extended nature of topological surface states [17]. Further, the change
of phase when the states are reflected from the barrier is nearly zero. Over
the entire energy range there is clearly a rather large amount of scattering
caused by the step and the transmission drops significantly below the value
in absence of step. We have verified that the single bilayer step at the top
surface perturbs the bottom layer minimally and there is only small coupling

between the two surfaces even in the presence of the surface step.

The integrated Niia is shown in Fig. 6.2(c). The main features corre-
sponding to the quantized energv levels can still be identified at almost the
same energies found for &, = 0. but are broadened and less pronounced.
The broadening of energy levels for &, = 0 is 8-12 meV, while for the total
it increases by a factor of about three. In experiment. these were found to
lie between 20-45 meV [17]. Hence, the states lifetimes, which are inversely
proportional to their broadening. agree quantitatively with those found ex-
perimentally. This shows that the scattering properties of the step are well-
reproduced in our calculations. We note that quantitatively the results for a

12 bilayer slab differ somewhat from the ones one would obtain for a semi-
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infinite surface due to the different surface band structures [Fig.6.1(c) vs.
6.1(d)]. Firstly, the linear dispersion region of the surface states around I’
is more extended in energy for the semi-infinite surface, and this results in
quantum well states spacing remaining constant, whereas for the 12 bilayer
slab the spacing reduces with increasing energy. Moreover for 12 bilayers
we find band edges at -185 meV and -108 meV, which are absent in the
semi-infinite system. and which give strong contributions to the 12 bilayer
PDOS. Due to the enhanced PDOS at these band edges the phase shifts
corresponding to resonant tunneling are not as clearly pronounced for NVial
as for &k = 0. Finally, whereas for the semi-infinite slab there are only two
discrete surface bands around Ef. and all the other bands are diffuse. for
the 12 bilayer slab clearly the number of distinct bands is larger, which as
we will show leads to many more features in the scattering. These lead to
discrete short-wavelength scattering processes which would be absent for a

semi-infinite slab.

In order to analyze the scattering mechanism and probe the spin texture of
the surface bands, we evaluate the Fourier transform (FT) of Nia along the
flat region on the right side of the step, and the result is shown in Fig. 6.2(d).
For a given energy and k, (k is conserved during scattering) there are stand-
ing waves with a wave vector ¢ for every pair of scattering states in the Sb
electrodes with opposite group velocities. For each such pair of states with
indices ¢ and j we get the norm of scattering vector ¢;; = |k; — k;|, at which,
therefore, the F'T has enhanced amplitude. In Fig. 6.2(d) we find a rather
large amount of noise at low ¢, partly due to the fact that we integrate ANioal
over a finite number of k| -points. nevertheless we can identify two promi-
nent features that are preserved for increasing q. The first is an enhanced

amplitude starting at about -210 meV and then increasing linearly with ¢
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Figure 6.2: (a) PDOS for surface atoms with a single step adjacent to a flat region for
the first setup at k. = 0. (b) Transmission at k; = 0 with and without the step indicating
finite scattering due to the step. Average of transmission over all k| -points is also shown.
(¢) PDOS for surface atoms averaged over all ;. (d) Fourier transform of PDOS data
in (c¢) over the flat region reveals the different allowed scattering wave vectors. The most
prominent features. ¢4 and ¢p. are nearly linear with slopes equal to 1.1 eVA.

with a slope of 1.1 eVA. and the second is an equivalent enhancement with
the similar slope starting at -110 meV. These two prominent scattering wave-
vectors are also found in the experiments of Seo et al., where they are labeled
qp and g4, respectively. ¢p is attributed to scattering between the surface
states close to I' having the same spin. but opposite momentum direction. In
this case the scattering state momenta are not equal, unlike in conventional
scattering, because of the unique spin texture of the surface states resulting
in an asymmetric band structure for a given spin. The other scattering wave-
vector (q4) is attributed to scattering between neighboring hole pockets away
from I'. The calculated slopes of ¢4 and gg are remarkably close to the value

of 1.2 eVA found experimentally [17]. We note that to explain the origin of
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both ¢4 and ¢, one needs to go beyond the one-dimensional model invoked
by Seo et al. and a full two-dimensional treatment is required.

An STM experiment measures the total scattering in all the reciprocal space
directions. In order to establish which £ -points give rise to the ¢4 and ¢p
features in the average, we decompose the allowed scattering processes along
different £, directions. To illustrate the general scattering mechanism. in
Fig. 6.3(¢) we show the Fourier transform for an arbitrary & -point, and the
bands of the Sb electrodes along the transport direction for the same k. As
an example, we consider the energy at -150 meV, where in the band structure
we find 2 bands crossing for positive £k, at k; and ky. In the Fourier transform
we find 3 scattering vectors: ¢, = ko — k1, g2 = 2k; (obtained by ky scattering
to —ky), and similarly g3 = 2k,. The amplitude is highest towards the band
edge, where the PDOS is maximal. Analyzing the FT for all k -points, we
find that most such features found for a single k| disappear when averaging,
except for ¢4 and gp. This shows that the scattering processes visible in STM
experiments are only a small subset of all processes occuring. Therefore, no
visible scattering from defects in an STM experiment does not imply perfect
transmission, since the absence of standing wave patterns can also be due to
the fact that the features may be broadened upon integration over k. even

for substantial scattering for each single k.

There are two key factors, which decide which ¢ vectors dominate. Firstly.
for a given k, there needs to be a high scattering between the initial (k;) and
final (k;) states. This is the case if the spins in the two states are aligned
and if the surface-PDOS for them is large. This, therefore, excludes bulk
states and states with opposite spins. Secondly, for the features to remain
prominent when integrated over k. it is necessary that there is an extended

region in the BZ where these features are found more or less unchanged. This
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is true when the change of band structure along £, is small, which is the case
close to a maximum or a minimum, i.e. when JFE/0k; = 0, and ideally when
the band curvature is small (9?E/0k% is small). We have verified that the
above two conditions are indeed satisfied for ¢4 and gp. From the 12 layer
slab band structure along I' — K" [Fig. 6.1(c)] we identify two such features:
the first is the minimum at about k&, = I, and the second is the maximum
at k1 b= 0.16m. In Figs. 6.3(a) and (b) we show the scattering wave vectors
for these two k. We clearly identify the features leading to ¢4 and gg. The
remaining features in the FT disappear under averaging, since for these the
aforementioned conditions are not satisfied. We note that a related study
has been recently performed by Takane and Imura by using a low energy
Dirac theory. where they find perfect transmission at all incidence angles for
a hyperbolic step [87]. However, as noted by the authors, their analysis is
valid in the long wave length regime, while we focus on atomic-scale terraces.
Our results clearly demonstrate that there is scattering between states on
the same Dirac cone for k; # 0, which leads to the appearance of the ¢4
scattering vector. The fact that such a scattering vector is found prominently
also in experiments indicates that for non-normal incidence the states are not

perfectly transmitted. in agreement with our findings.

Finally, we create a step on the Sb(111) surface along the z-direction.
In this case the slab consists of six bilayers. since simulating a 12 bilayer
scattering region along this direction is beyond our computational resources.
This direction is promising since there is an energy window [-60 meV to
20 meV in Fig. 6.1(b)] over which only a single spin-polarized surface state
exists for &, = 0 (note that in this case the transport direction is parallel to
the I' — A" line in reciprocal space). which is reminiscent of the prototypical

topological insulator BiySe;. The Ny of the surface atoms for k&, = 0 is
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Figure 6.3: The allowed scattering wave-vectors obtained from the Fourier transform of
PDOS data at (a) k1 b= 0. (b) k1 b= 0.167 and (¢) k1 b = 0.507. The panels on the right
show the corresponding band structures at the same & for the 12 bilayer slab electrodes.

plotted in Fig. 6.4(a). In the energy range of a single spin-polarized state
there is no scattering. which is the hallmark of a topological surface state.
From -170 meV to 70 meV quantum well states are found as a result of
superposition between the two surface bands, with a mechanism analogous
to that in the first step orientation. Fig. 6.4(b) shows the transmission at
k; = 0 with and without the surface step. Remarkably, there is a perfect
transmission in this energy window, despite the presence of the strong surface
perturbation in the form of an extended single bilayer high surface step.
This can be explained by invoking the general principle that disorder which
does not break time reversal symmetry can not localize a single topologically

protected surface state. Away from this energy region, there is substantial
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Figure 6.4: (a) PDOS at k, = 0 for surface atoms with a single step adjacent to a flat

region, with the step extending along the I' — K direction. There is an energy region from
-60 to 20 meV with no scatiering and hence no standing wave states. (b) Transmission
at k|, = 0, indicating the perfect transmission around Ej even in presence of a surface
barrier. Total transmission also shows minimal scattering in that energy range.

scattering caused by the step and the transmission drops down from the
value in its absence. The total transmission averaged over all &k -points is
reduced for all energies. and one can expect that as the amount of disorder
increases. the total transmission will be dominated by small & contributions.
We believe that these findings would provide a strong motivation for study

of Sb surface with steps along I' — K" direction.

6.1.3 Summary and Conclusions

In conclusion, we have performed an ab initio study of the topological sur-
face states on the Sh(111) surface and their response to the presence of
single bilayer high steps. showing excellent agreement with experimental ob-
servations. We have identified the various scattering processes possible and
formulated general conditions that lead to the formation of the dominant
scattering features. This enabled us to confirm the fascinating helical spin
texture of the surface states. Resonant tunneling transmission across surface
barriers. indicative of the extended nature of these states, was found. We

identified phase shifts in the scattered PDOS at quantum well states energies
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and evaluated their life-times. The results demonstrate that it is possible to
fully characterize the scattering properties of the barriers with first-principles
calculations. Finally, we have shown that one can have minimal scattering
along other high-symmetry directions even in presence of strong surface per-
turbations, which provides a unique signature for the topologically protected
nature of these states. We believe that this finding can be readily tested in

future experiments.

6.2 Ab initio transport across Bi,Se; surface

barriers

In recent years. there has been a rapid expansion in the number of STM
experiments on BiySe3(111) and the closely related BioTez(111) surface. Im-
purities on BiySe; have been imaged and scattering mediated by bulk states
has been observed [88. 89, 90, 91]. Furthermore, there have been studies of
dopants on bismuth telluride surface [92, 93]. Interestingly a bound state at
a surface step on BiyTe; has also been found [94]. On the theoretical front.,
there have been efforts to model scattering of these surface states from per-
turbations by employing Dirac-like model Hamiltonians and imposing sym-
metry considerations [95, 96, 97]. Furthermore, a study of the robustness
of the surface states against on-site disorder by employing first-principles
calculations was also reported [98]. In this section, we investigate the ef-
fect of step barriers on the BiysSes(111) surface on the scattering properties
of the topological states by means of ab initio transport calculations. We
find that, due to the spin-polarized helical nature of the surface band, there
is no scattering for normal incidence, since a reflection would entail a 180°

backscattering. However, as one moves to non-normal incidence scattering is
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revealed. This is because the spins of the counter-propagating channels are
no longer anti-parallel. An analysis of the local density of states reveals that
the surface barrier strongly affects the spin of the surface state, in particular
allowing an out of plane spin component. which is negligible in the absence
of the barrier. We construct a potential barrier model for the surface step
and solve it based on a simple Dirac Hamiltonian for the surface states. A
comparison is then made with our first-principles calculations. We note in
passing that, although our ab initio calculations have been performed in par-
ticular for BisSes, we expect that the qualitative features found would also
hold for step edges perpendicular to directions without hexagonal warping

in Bi,Tes; and other related materials like Bi, Te,S and T1BiSe,.

6.2.1 Computational Details

The transport calculations were performed using the SMEAGOL code includ-
ing spin-orbit interaction. as described in Chapter 3. The generalized gra-
dient approximation (GGA) to the exchange-correlation functional was em-
ploved. We have used a double-( polarized basis set and a real space mesh
cutoff of 300 Rydberg. For slab calculations a minimum vacuum region of 25
A has been included to prevent spurious interaction between periodic repli-
cas. We use 3 x 1 x 1 k-point mesh to obtain the self-consistent potential
(here x is the direction perpendicular to the transport direction in the plane
of the slab. y is along the slab height and z is the direction along transport).
For calculating the integrated transmission and density of states we use 101
k-points along the & direction. Periodic boundary conditions have been con-
sidered in directions orthogonal to the transport direction, while using open

boundary conditions along the transport direction allows us to simulate a
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single scatterer. which, in this particular case is a surface step.

6.2.2 Results

The unit cell for the leads used is shown in Fig. 6.5(a). It consists of a 3-QL
thick slab terminated on both sides by Se atoms, as found experimentally.
We use experimental lattice constants. The corresponding band structure
is shown in Fig. 6.5(b). Note that there is band folding as a consequence
of doubling the primitive BisSes unit cell. We find the Dirac cone and the
helical states consistent with earlier studies [14]. It should also be noted that
there is a small but finite gap (of the order of 0.01 eV) at the I' point in the
cone due to an interaction between the two surfaces of the slab. However,
this does not affect our analysis of the topological states at higher energies,

since the tunneling to the bottom surface is negligible.
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Figure 6.5: (a) Unit cell of the 3-QL slab leads used in the transport calculations. The
vellow and purple spheres represent selenium and bismuth atoms, respectively. (b) The
band structure along direction of transport (z) is shown at k, = 0. The surface bands in
the energy window of -0.05 to 0.30 eV have a helical spin texture.

The transport setup for single and double barrier scattering is shown in
Fig. 6.6(a) and (b). We consider a single quintuple (QL) layer high barrier

on a 3-QL thick slab. The step edge is extended along the I' — M direction
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and the transport is along the orthogonal I' — K direction of the primitive
Brillouin zone of Bi,Ses. The scattering region has a length of 198.87 A. For
the single barrier case the 4-QL region extends over about half the length of
the scattering region. For the double barrier setup we investigate two barrier
lengths, where the step extends over a region of 49.72 A in the shorter case
and is 149.16 A for the longer one.
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Figure 6.6: Transport setup for the scattering problem is shown for (a) single barrier and
(b) double barrier. In both cases we add an extra single quintuple layer high barrier on
the 3-QL thick slab. Note that same self-energies for semi-infinite 3-QL leads are attached
on the left and right sides of the scattering region in (b). while different left and right
electrodes corresponding to 4-QL and 3-QL slabs are needed in (b).

Scattering from a single barrier

We begin our analysis by looking at the transport across a single surface
barrier [see Fig. 6.6(a)|. for which the transmission function is shown in
Fig. 6.7(a) as a function of energy and for different values of the x compo-
nent of the wave-vector. At normal incidence (k, = 0). the surface states
are perfectly transmitted. 7" = 2. due to their helicity. As such, our first-
principles calculations confirm Klein tunneling [99]. The transmission of bulk

states. however, is reduced by the presence of the step edge. In contrast, as
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soon as one moves away from normal incidence, the transmission is no longer
integer-valued. In particular it dips below 7" = 2. indicating substantial scat-
tering. Note that the drop in transmission at k, =0 at E— Ep = —0.05eV is
merely due to the small gap in the band structure due to the finite thickness
of the slab. Fig. 6.7(b) shows the total transmission obtained by integrat-
ing T'(E, k,) over all angles of incidence, namely T} = ﬁ fA T(E, ks )dk;,
where (g7 is the length of the Brillouin zone. Notably T{.. retains the char-
acteristic “V-shape™ associated with the linear Dirac cone-like bands, despite
the presence of the barrier. Overall we can conclude that the total transmis-
sion in presence of the barrier is quite close to the one for the unperturbed
slab [compare the red and black curves in Fig. 6.7(¢)]. For comparison, we
have also performed calculations for steps running along the I' — K" direction
(with transport along I' — AM). Since the hexagonal warping effect, particu-
larly at energies close to the Dirac crossing, is quite small in BiySes. we find
results. which are very similar to the ones obtained for steps along the I'— A
direction. Hence, in the rest of this section we focus our attention on the

latter.

At non-normal incidence the spin projections of the surface states counter-
propagating at a given edge are no longer anti-parallel and thus backscat-
tering becomes allowed, even in the absence of a perturbation that breaks
time-reversal symmetry. We note that, although spin-orbit coupling mixes
the spin components, one can still define spin components along different di-
rections by using a projection onto the three Pauli matrices {o,.0,.0.} and
the identity matrix /. The situation is schematically illustrated in Fig. 6.7(d),
and its consequences are demonstrated in Fig. 6.7(c¢), where we plot the trans-
mission across the surface barrier as a function of k, at different energies.

Clearly T'(E. k;) is reduced as k, increases, which is expected from argument



Chapter 6 111

related to the spin projections of the two counter-propagating surface states.
At larger incidence angles the transmission tends towards the residual value
of one, since a perfectly transmitted surface state is present at the opposite
side of the slab (no scattering center is present on the opposite surface). If
one increases k, even further, the band edge for the Dirac cone at both sur-
faces is reached. and the transmission abruptly goes to zero. It can be shown
that the maximum scattering amplitude is proportional to %( 1+cosf), where
f is the angle between the spin directions of the counter-propagating surface
states [100]. Note that at higher energies, the transmission persists at val-
ues around the unperturbed one. T = 2. for larger incidence angles. This is
because as one moves the Fermi level at higher energy, the Fermi circle gets

larger. Consequently, the same &, corresponds to a smaller incidence angle.

In STM experiments, one measures the oscillations in the electron den-
sity in order to study the scattering arising from surface modifications, for
example from surface steps as studied in Ref. [101]. A Fourier transform of
the density vields the characteristic frequencies of its oscillations, i.e, gives
the scattering wavevectors, ¢ = |kine — kref| (Kine and kyef are incident and
reflected wavevectors. respectively). In Fig. 6.8 we plot the density of states
projected (PDOS) onto the surface atoms along the scattering region. At
k. = 0 no oscillations in PDOS are seen after reflection from the step edge.
However, moving away from normal incidence, the above-mentioned oscilla-
tions begin to appear. The scattering vectors can be obtained by performing
a Fourier transform of the DOS along the long flat region adjacent to the
barrier, in a manner analogous to Sh(111) case studied in the previous sec-
tion. At k, = 0. expectedly there are no prominent scattering processes. As
one moves to k, = 0.032 A7, there appears a dominant scattering wave-

vector in the Fourier transform starting at 0.1 eV and extending upwards
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Figure 6.7: (a) Transmission across the surface barrier as a function of energy at differ-
ent values of the » component of the wave-vector, orthogonal to the transport direction.
Different curves correspond to different £,.. Note the perfect transmission at k, = 0. At
other incidence angles T is reduced. (b) The total transmission integrated over k., in the
presence (black curve) and absence (red curve) of the barrier. (¢) The transmission as a
function of k., at different constant energy cuts in the energy region of the surface states.
Non-zero reflection at the barrier can be explained using the schematic diagram shown in

(d).

in energy, as shown in Fig. 6.8(b). This corresponds to backscattering at
a non-normal incidence angle. Furthermore, this can be mapped to band
structure along the transport direction, where a band starting at the same
energy is present. The average over k,, however, reveals no scattering on
this scale, even though there is a clear back scattering at individual k,. In
order to accurately resolve the small density oscillations above the average,
one would need to consider many more k,-points in the calculation. This is
computationally prohibitively expensive for the system sizes considered here.

For all three cases we also plot the transmission as a function of energy, for
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Figure 6.8: The DOS projected on the surface atoms along the scattering region at
(a) ky, = 0. (b) k, = 0.032 A=" and (c¢) integrated over all k.. At k, = 0 there are no
oscillations. These start to emerge at k, = 0.032 A~! but are not visible in the average.
The second column of panels show the Fourier transform of the projected DOS in the flat
region adjacent to the barrier, at the corresponding k.. The scattering vector resulting
from backscattering at non-normal incidence is clearly seen in (b). The average. however,
reveals no scattering. The third column shows the transmission as a function of energy
for the three cases. For k, = 0 and k, = 0.032 A=, we also plot the band structure along
transport direction for comparison.

comparison with the surface PDOS.

Figure 6.8 also makes apparent the band bending (of the order of 0.04 V)
introduced by the step. We will show in the next section that such band bend-
ing close to the step is a crucial ingredient for constructing a scattering model.
Far enough from the step. however. the PDOS reverts to the unperturbed
value within ~40 A, consistent with experimental observation [102].

In contrast to similar steps on the Sh(111) surface [17, 103], in BisSes
we find bound states close to the step edge and penetrating into the barrier

(with an exponentially damped oscillating amplitude). These exist over the

entire energy window in which the surface states are present. Similar features
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Figure 6.9: The energy dispersion along k, (perpendicular to the transport direction)
for (a) perfect periodic system comprising of 4-QL slab, (b) energy dispersion at the single
barrier, and (¢) 50 A away from the single barrier. In (b). (¢) and (d) color plots show
the projected density of states on the atom present at the barrier, an atom 50 A away
from the barrier and the PDOS on the atom at the double barrier. In (b) and (d) note
the additional pair of interface states outside the Dirac cone which merge with it around
0.2 eV.

with enhanced DOS have been measured by Alpichshev et al. [94] around
surface barrier at the Bi, Tes surface. Importantly such a bound state was not
ascribed to the warped band structure of Bi, Tes. Our results point towards a
similar bound state in BisSes as well. In the above mentioned experiment. no
information could be obtained about the DOS on the lower side of the step.
Our calculations in fact reveal that the state exists only on the higher side of
the barrier, and the lower side has no such features. We have also calculated
the energy dispersion of this state along the direction perpendicular to the
transport. We plot the energy and k, dependence of the PDOS on the Se
atom at the barrier [shown in Fig. 6.9(b)] and on a surface atom 50 A away
from the barrier [Fig. 6.9(c¢)], and compare them to the band structure for
the perfect periodic system [Fig. 6.9(a)]. For the atom present at the barrier
we find additional pair of states outside the unperturbed Dirac bands, which
however merge into the Dirac cone at £ — Ep =~ 0.2 ¢V and produce an
enhanced PDOS around that energy. Away from the barrier. however, the
PDOS is very similar to that of the unperturbed system, consistent with the

bound state being present only close to the barrier. We believe that these
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Figure 6.10: The DOS projected on the bottom surface atoms along the scattering
5 pro,

region at (a) normal incidence k., = 0. and (b) an oblique incidence k, = 0.032 A~!. Note
the absence of density oscillations in the bulk energy gap window. even at non-normal
incidence. Panels on the right show the Fourier transform of the projected DOS in the flat
region adjacent to the barrier. A comparison with Fig. 6.8 shows absence of both bound
states as well as signature of dominant scattering vectors in the aforementioned energy
range.

predictions of the bound state in Bi,Sey and its energy dispersion may find
verification in future experiments.

By analyzing the PDOS of the atoms at the bottom surface we have
checked that significant scattering occurs only at the top one, i.e.. it is caused
by the presence of the step edge and not due to the tunneling back to the
bottom surface. In Fig. 6.10 we plot the PDOS on the atoms present at
the bottom surface at normal incidence and at a representative value of
k. = 0.032 A=! for oblique incidence. For both cases we can see absence of
density oscillations in the energy range corresponding to the surface bands.
Notably no signature of the bound state is also observed. Furthermore, we

evaluate the Fourier transform of the PDOS in the flat region next to the step
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and find no features which may be mapped back to the scattering wavevector
¢, in contrast to the case of the top surface.

The local density of states (LDOS) associated to electronic states incom-
ing from the left-hand side lead at 0.175 eV above the Fermi level are shown
in Fig. 6.11 [104]. These clearly illustrate the three-dimensional nature of
the path that electrons must traverse while crossing the barrier. The spin
projections of the LDOS at k, = 0 and k, = 0.032 A~! are shown in the
left and right panels. respectively. In contrast to pristine bismuth selenide
the spins of the helical surface states are no longer confined to the plane of
the slab. In the vicinity of the barrier they rotate out of the plane (the y
component becomes finite). The LDOS at the bottom unperturbed surface
provide a convenient comparison to the pristine surface, albeit with the spin
directions reversed. At k, = 0.032 A~!, the x and 2 components are dom-
inant for the bottom surface, while the step edge introduces a component
along the y direction comparable with the other two, at the top surface. A
zoom close to the step shows a large DOS close to the step edge, which is

due to the bound state.

A low-energy model

In order to compare to our ab initio results we construct a simple potential
barrier model for the scattering problem. The surface states are described

by a Dirac Hamiltonian [14]

V(z) v(k, —ik;)
H = eolloga + 3 (63)
v(k, + k) V(z)
where the potential profile V(z) is shown in Fig. 6.12(a). The values of

o = —0.05 eV and v = 4.58 eVA, are obtained from our first-principles
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Figure 6.11: The spin-resolved local density of states incoming from the left lead at
0.175 eV with the spin projection along (a) x. (b) y and (c¢) z directions at k, = 0. On
the right hand side (d). (e) and (f) are corresponding plots for k, = 0.032 A='. Here
red represents positive values while blue stands for negative values. Scattering at the step
edge even at k, = 0 allows the spin to rotate out of the plane of the slab resulting in
a finite y and z components. in contrast to the unperturbed bottom surface where these
are negligible. At non-normal incidence (k, = 0.032 A=!) z component of spin-resolved
LDOS becomes finite while the step edge introduces a non-zero y component. The insets
are zooms around the step edge.

band structure. Here we consider only the upper part of the cone. i.e.,

E =V(z) + \/k?+ k2. The corresponding eigenstate is given by,

1 A
(kg k) = — g (6.4)
‘ V2 | _katiky
k2+k2

One can then use the wave-function continuity conditions at the potential
steps to solve for the transmission and reflection coefficients in a straightfor-
ward manner. The potentials in the 4-QL and 3-QL leads, respectively V)
and V. are nearly identical and are set to zero. V5 is the potential associated
to the barrier and extends over a length d, while V3 is the band bending,
which is finite over a distance L. The calculated transmission curves are
plotted in Fig. 6.12(b) for V3 = —0.02 eV and in Fig. 6.12(c) for V3 = 0. The

shape of the transmission function is much closer to that obtained from the
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ab initio calculations for finite V3 = —0.02 (this value of V3 is chosen from our
first-principles results). as compared to the situation where V3 = 0. While
this comparison does not provide definite evidence of importance of band
bending. it serves as an illustration that it is one of the factors which need
to be considered while performing a quantitative modeling of step edges on
topological insulator surfaces. Although it appears that this simplified model
can qualitatively reproduce the transmission obtained from first-principles, a
more careful analysis shows that it neglects a number of important aspects of
the scattering problem. It does not take into account the three-dimensional
nature of the barrier, and as a consequence it cannot capture the change
in spin orientation of the surface states near the barrier. Moreover it needs
as an input the values of the scattering potentials, which an atomistic de-
scription is capable of providing, while also capturing the fine details of the
scattering process. We also note that several models have been proposed to
study topological states on a curved surface. These predict no backscattering
at any angle from hyperbolic steps [87]. Unfortunately these models are not

valid for atomic-scale abrupt steps that we have studied in this section.

Scattering from double barriers

We now analyze the scattering properties of double barrier structures con-
structed over the BirSes(111) surface. The scattering region is shown in
Fig. 6.1(d) for the shorter surface barrier. This time the scattering struc-
ture is connected on both sides to two identical semi-infinite leads (3-QL
slabs). As before, we begin by looking at the transmission across the surface
as shown in Fig. 6.13(a). Again counter-propagating spin-momentum-locked
states yield a perfect transmission at normal incidence. As discussed for the

single barrier case. at finite k, the transmission is then reduced. However, in
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Figure 6.12: (a) Potential profile for the Dirac model. We use V; = V; =0, Vo = —1.17
eV.d =20 A and L =60 A. The transmission as a function of energy is shown choosing
(b) V3 = —0.02 eV and (c) V3 = 0.0 eV. Different curves correspond to the same k, points
as Fig. 6.7(a).

contrast to the previous analysis. there are also resonant energies at which
the transmission reaches up the value of two. i.e.. there is no reflection. At
these particular energies the system displays Fabry-Perot resonances. which
are characteristic of one-dimensional scattering from double potential barri-
ers. In Fig. 6.13(b) we plot the transmission as a function of the incident
k, for different energies. Away from the resonances the transmission shows
again a cosine-like behavior with transmission going down to 7" = 1 as the
incidence angle increases (k, gets larger). At even larger A, (not shown) the
transmission drops down to zero when the band edge for the Dirac cone is
reached at the bottom surface. similar to the case of single barrier.

The k,-resolved and total DOS projected on the surface atoms is plotted
in Fig. 6.14. where the bound state can be clearly seen in the 4-QL region
extending from 10 A to 60 A. The DOS associated to such bound state

oscillates and decays towards the center of the quantum well defined by the
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Figlll‘(‘ 6.13: (a) Transmission across the double barrier on the surface at different k..
Note the Fabry-Perot type oscillations in transmission in contrast to Fig. 6.7(a). Different
curves correspond to the same k, points as Fig. 6.7(a). Integrated transmission with
(black curve) and without (red curve) the barriers is plotted in the inset. Transmission as
a function of k, at different constant energy cuts is shown in (b).

two barriers at the step edges. A band bending similar to that observed for
the single barrier is also seen for this particular barrier configuration. The
interaction between the bound states localised at the two barriers splits them
in energy, creating alternating high and low DOS as one moves up along the
energy axis. Another noticeable feature is a state localized in the 4-QL region
at around 0.1 eV [see Fig. 6.14(b)]. This is an additional state in the 4-QL
slab, which is decoupled from the 3-QL leads. The same state is absent in
the case of a single barrier produced by a step edge between a 3-QL and a
4-QL semi-infinite lead. The Fourier transforms of the DOS display similar
features as those shown in Fig. 6.8. However, in the double barrier case the
resolution is improved over that of the single barrier structure since we now
have more atoms along the flat region next to the barrier.

We also study the energy dispersion of the quasi-bound state obtained
at the barrier, by calculating the PDOS on the Se atom at the barrier, as
a function of E — Epr and momentum along the step (k,). This is shown
in Fig. 6.9(d), with a comparison to the band structure of the unperturbed
periodic system. Apart from the Dirac bands, additional states, dispersing

along k, are visible at the interface. These have a dispersion very similar
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to the case of a single barrier [see Fig. 6.9(b)]. However, some additional
features are seen when this pair of states mixes with the Dirac bands, with
an alternating pattern of higher and lower PDOS being visible. This is due
to the interaction between the bound states at the two barrier edges. Away
from the interface the PDOS and the dispersion reverts to that of the pristine

system with only the Dirac bands being present.

80 120 )
Distance (A) q (1/4)

0

Distance (A)

Figure 6.14: PDOS on surface atoms along the double barrier scattering region at (a)
k. =0, (b) k, = 0.032 A~! and (¢) integrated over all k.. Note the absence of density
oscillations for k, = 0 and integrated figures. Incidence at finite k, leads to density
oscillations clearly seen in the long flat region adjacent to the barrier as shown in (b). The
panels on the right are the corresponding Fourier transforms.

Note that for this particular chosen length of the double barrier there are
no quantum well states formed inside the 4-QL region. However, for a longer

barrier the quantum well states appear. as demonstrated by the PDOS on
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Figure 6.15: PDOS on the surface atoms for a double barrier of length 149.16 A at (a)
k, = 0 and (b) k., = 0.032 A~!. Note the absence of quantum well states in (a). In (b)
quantum well states interact with the bound state at the two barriers leading to energy
splitting of the bound state.

the surface atoms at two different k, for a barrier of length 149.16 A (see
Fig. 6.15). At normal incidence no quantum well states can be formed in
the energy window of the surface state. since the two surface states have
opposite spin projections leading to no interference. In contrast, at finite £,
quantum well states appear (e.g. a nodeless state at around 0.13 eV and a
single-node state at around 0.16 eV). However, the behavior of these states
near the edges of the barrier is different from usual because of the presence of
the bound state. In fact, these quantum well states interact with the bound
states at the edges of the barrier resulting in an energy splitting of the bound
state. We observe splitting of the bound states in both the short and the
long double barrier, in the former case due to the interaction between the
bound states located at the two edges of the 4-QL region, while in the latter
due to the bound state interacting with the quantum well state within the

barrier.
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6.2.3 Summary and Conclusions

To conclude, we have used ab initio transport theory to study scattering
of topological surface states on Bi,Se;(111) surface from both single and
double barriers. We have studied the dependence of the transmission on
the angle of incidence and electron energy. At normal incidence our first-
principle calculations have confirmed Klein tunneling. Furthermore, we have
calculated the density of states on the surface atoms and found bound states
occuring only on the higher side of the barrier. Our local density of states
plots have made apparent the three-dimensional nature of the scattering
problem, in which the spins of the surface states are no longer confined
to the plane of the topological insulator slab. We have also constructed a
simplified potential barrier model using linear Dirac bands to compare with
our first-principles calculations. Throughout the study we have placed our

results in the context of recent experimental works.
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Chapter 7

Single atom magnetoresistance

on topological insulator surface

Conventional magnetoresistance (MR) devices utilize two magnetic materi-
als as electrodes, one as polarizer and the other as analyzer, separated by a
spacer. Recently, Burkov and Hawthorn found a new kind of MR on topolog-
ical insulator surface. which requires only one ferromagnetic electrode [105].
A spin-valve on topological insulator surface. which shows an anomalous MR,

has also been studied by model calculations [106].

In this Chapter, based on ab initio electron transport calculations, we
report an anisotropic single atom magnetoresistance on the topological insu-
lator surface, stemming from an interplay between the helical surface states
and the spin anisotropy of the magnetic adatom. This is a novel type of
MR. which does not need any magnetic electrodes, but requires a magnetic
adatom. or more generally adsorbed magnetic clusters or magnetic thin films.
Crucially. our proposal does not relv on opening a band gap in the surface
states, which requires establishing ferromagnetic order on the topological in-

sulator surface. Instead we focus on the magnetic anisotropy of adatoms on
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topological insulator surfaces, which is known to be significant (a few meV)
both from first-principles calculations [107] and magnetic circular dichroism
measurements [108]. Moreover a controllable magnetic doping of BiySey sur-

face state has already been achieved [109].

In the presence of magnetic impurities, the spin of surface electrons may
be flipped and it is expected that scattering should not be forbidden. How-
ever, there are experimental reports, which have found apparently contra-
dicting conclusions and it is not clear whether this scattering is observed or
not [88, 110]. Our results provide a possible explanation to reconcile these
observations. We show that in the presence of magnetic impurities new
backscattering channels are opened. These, however, are found only at those
energies where the impurity presents a large density of states, and hybridizes
with the underlying topological insulator surface states. Away from these
energies the transmission is close to the unperturbed value and no signature
of the magnetic dopant is seen in the transmission. We find that at those
energies the conductance depends strongly on the orientation of the local
moment on the magnetic adatom, which implies a large magnetoresistance.
Our large-scale calculations also allow us to probe the real-space spin tex-
ture around the magnetic adatom. The inclusion of atomistic details, without
any free parameters, reveals significant differences from previous model based

calculations [56, 97].
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7.1 Anisotropic magnetoresistance on topo-

logical insulator surface

7.1.1 Computational Details

First-principles transport calculations were performed employing the SMEAGOL
code, in a manner similar to the work presented in Chapter 6. We use a
double-C polarized basis, with a real space mesh cutoff of 300 Ry. The gener-
alized gradient approximation for the exchange-correlation functional is used.
We treat the Bi 6s and 6p, Se 4s and 4p and Mn 3d and 4s as valence elec-
trons. while norm-conserving Troullier-Martins pseudopotentials are used to
describe the core electrons. The Mn adatom is placed in the on-top Bi geom-
etry, which is the most stable binding site [107]. One may expect changes in
details of scattering by changing the adsorption site, however the basic prin-
ciple of single atom MR is expected to be valid for any adsorption site. For
atomic relaxations, all the atoms in the top quintuple layer (QL) are allowed
to move and the structures are relaxed until the forces are less that 0.001
eV/A. For transport calculations, semi-infinite electrodes comprising of 3 QL
slabs of BisSes are attached to the left and the right of the scattering region
(shown in Fig. 7.1). A minimum vacuum region of 25 A is included along the
slab thickness (y-direction). We use a 3 x 1 x 1 k-point grid for converging the
charge density, while a much denser grid of at least 80 k,-points is employed

to evaluate the transmission. reflection amplitudes and densities of states.

7.1.2 Results

The transmission coefficient for different orientations of the Mn magnetic

moment is shown in Fig. 7.2. For k, = 0 [normal incidence. Fig. 7.2(a)]
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Figure 7.1: Transport setup with Mn atom adsorbed on 3 quintuple layer BiySes slab,
(a) viewed in the plane perpendicular to and (b) along the transport direction (z). The
scattering region supercell consists of 8 primitive unit cells of BisSes in the ry plane and
16 unit cells along z, giving a concentration of 1 Mn atom in 1920 bismuth selenide atoms
(=~ 0.05%) allowing us to reach dilute concentrations comparable to experiments.
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Figure 7.2: Transmission and projected density of states on Mn for different Mn spin
directions (a) and (b) at k, = 0, and (c) and (d) averaged over all incidence angles. For
Mn spin along @, transmission is unperturbed. while reduced transmission occurs for other
directions, resulting in a single atom anisotropic magnetoresistance.

and the Mn spin aligned along the r-axis, which is the spin direction of the
incoming electron’s traveling along the positive z-axis, the transmission is
close to two in the energy window of the topological state (approximately
-0.1 eV to 0.3 eV), i.e., there is a unity contribution from each surface. In
contrast, for the two orthogonal Mn spin directions, a dip in transmission
occurs in the energy range, where a peak in the Mn projected density of
states (PDOS) is found. When the Mn spin is along x, there is no reduction
in transmission, even though there is a peak in Mn PDOS with a height

comparable to the case of the other two directions. In all the three cases

we find the Mn adatom having a moment close to 4.5 ug, in agreement with
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previous reports [107]. Furthermore, we find a substantial in-plane magnetic
anisotropy of 6 meV, a value which we have also verified from plane wave
calculations using VASP code for a smaller 3x 1x3 supercell. After integrating
over the entire Brillouin zone for all k, values a similar picture is obtained
[see Figs. 7.2(c) and 7.2(d)]. Thus. we find that at the energies of the Mn
states there emerges an anisotropic MR, depending upon the spin orientation
of the magnetic adatom. We find a MR, MR = (T, — Tws)/Tu.s. of 670%
(here T, . is the transmission at the top surface with the Mn spin along x
and 7, . is the surface transmission for the other two Mn spin directions

a=y,z).

We emphasize that this mechanism for MR does not involve opening a
band gap in the surface state spectrum. In this particular setup the trans-
port is along the z direction and. for normal incidence, the spin-momentum
relation locks the spin of the surface state along x. If the Mn impurity spin
points along this direction. then electrons suffer minimal scattering and the
resistance is low, while for other Mn spin directions we find a high resistance
state. In contrast, if the electrodes are positioned in the orthogonal config-
uration. such that transport is along r, then the propagating electron spin
will be along z. In this case the low resistance state will be obtained for the
Mn spin parallel to the direction of propagation, 2, while the other two direc-
tions will vield a high resistance state [see Fig. 7.4(e)]. Since the resistance
is given by the orientation of the local magnetic moment with respect to the

transport direction, this MR is also anisotropic.

From the previous results it is not possible to unequivocally distinguish
whether the scattering occurs due to spin-flip between states on one surface or
if the MR is an artifact of inter-surface scattering caused by the finite BiySey

slab thickness. We clarify this issue by calculating the full scattering matrix
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Figure 7.3: Scattering vectors (q) as a function of the incident wave vector (k) for
Mn spin along (a) x. (b) y, and (c¢) z directions. The size of circles is proportional to
the reflection amplitude. The curves are plotted at energies corresponding to peaks in
Mn density of states, £ — Fpr= 0.08, 0.10 and 0.08 eV, for Mn spin along z, y and =z,
respectively. Here a, and a. are lengths of electrode unit cell along x and z directions.

and evaluating the transmission and reflection amplitudes for the individual
scattering states on the top and bottom surfaces [111]. We obtain inter-
surface reflection and transmission amplitudes always smaller than 0.008.
For intra-surface scattering, in contrast, these quantities reach values up to
1, which confirms that the slab is thick enough to prevent significant coupling

between opposite surfaces.

A deeper analysis is provided by studying the scattering wave vectors, q.
and the reflection amplitudes. . on the top surface of the topological insula-
tor slab at the peak energy in Mn PDOS; as a function of the wave vector £,
along the direction perpendicular to transport. Here ¢ = k. o4« — k.jn 1S the
difference between the outgoing, k. .., and incoming, k. ;,, z-components of
the scattering wave vectors. Since in the bulk gap both k.;, and k., for
the topological surface states are functions of k,, we can evaluate ¢ as func-
tion of k.. The result is presented in Fig. 7.3, with the size of the circles
denoting the reflection amplitude r(k, ). Since the constant energy surface in
the energy range of the topological states is approximately circular, we also
find the corresponding ¢-k, plot having a circular shape. For the Mn spin
along r and for small £, the reflection amplitude is vanishingly small, while

it becomes larger when Ak, increases. This is because the overlap between the
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Figure 7.4: (a) Transmission and (b) adatom projected density of states for the two-
dimensional model, with adatom spin pointing parallel and perpendicular to electron spin.
(¢) Transmission and (d) average projected density of states for magnetic cluster in the two
spin configurations. The insets are schematic of the two setups and dashed lines indicate
transmission of one from the unperturbed edge. Here we set adatom onsite energy to 0.1,
hopping elements to ribbon as 0.3. hopping between magnetic atoms to 0.5 (in units of
the nearest neighbor hopping) and other parameters are same as chosen in Ref. [72]. (e)
Schematic of four-probe geometry to measure the anisotropic magnetoresistance.

two counter-propagating surface states get larger when k, increases. Thus,
when the Mn spin is along x the impurity behaves as a non-magnetic scat-
tering center [112]. In contrast, for the other two directions a large reflection
is present even for k, = 0. which persists at larger k,. The total reflection
is obtained by integrating this function over all £, so that the underlying
difference in reflection amplitude for small £, is what yields the anisotropic
MR.

Recent scanning tunneling microscopy studies of magnetic adatoms on
topological insulator surfaces have observed either new scattering channels, to
be ascribed to magnetic scattering [110], or found the scattering independent
of the magnetic nature of the adatom [88]. Our calculations provide a possible
explanation for these conflicting observations. The transmission coefficients
show that a new backscattering channel is created only at the energy of the
adatom PDOS. while at all other energies where the topological state exists,

no fingerprint of the magnetic adatom is visible. Thus, a likely explanation
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Figure 7.5: A combination of projected and local density of states showing real space
spin texture around the magnetic adatom with its spin pointing along (a) x. (b) y. and
(¢) z directions, at the energy of peak in Mn density of states. The arrows denote the
in-plane spin components obtained from atom-projected density of states. The isosurfaces
correspond to the local density of states projected along the direction normal to the plane,
with red denoting positive values and blue representing negative values. The effect of
adatom spin in not limited to the top surface Se atoms, but is distributed over the first
quintuple layer.
to reconcile experiments is that the adatom should not only hybridize with
the topological insulator surface, but also present peaks in density of states
at relevant energies for being detected in the transmission spectra. These
depend on the specific magnetic atom and the adsorption site and therefore
can differ in different experiments.

The anisotropic MR can be understood by considering the impurity as

1 . 2 ! ;

the source of an effective local magnetic field. If the spin of the adatom is
parallel to the spin of the propagating electron such an effective field provides
a collinear scattering potential, thus precluding spin mixing and backscat-
tering. However, if the local spin forms an angle with that of the itinerant
electrons, opposite spin electrons will couple and thus backscattering between
helical states will become possible. A minimal two-dimensional model can
be used to verify the generality of the MR. We use the Kane-Mele model [27]
for a ribbon with a magnetic adatom or a magnetic cluster placed at the rib-
bon edge and an exchange coupling between the electron spin and the impu-
rity [72]. The edge electrons in this model capture the essential physics of the
k, = 0 case of three-dimensional topological insulators, which is responsible

for the anisotropic MR. The results are shown in Fig. 7.4. The transmission
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is high for the adatom spin parallel to the electron spin, while it is low for
other angles. thus the model calculations confirm our first-principles results.
Furthermore, for the magnetic cluster the MR is obtained over an energy
range larger than that of the single adatom. The fact that the anisotropic
MR is independent of the details of adatom means that one can select other
magnetic ions to tailor the anisotropy direction. For instance, Cr and Co on
Bi,Ses exhibit an out-of-plane easy axis, while Mn and Fe present an in-plane

one [107].

In addition to a two-terminal device the anisotropic MR can be measured
in a four-probe setup [Fig. 7.4(e)]. When the impurity spin points in the di-
rection shown (e.g. due to the magnetic shape anisotropy). then a measure-
ment of the resistance between the electrodes 1 and 2 yields a low resistance
state. while high resistance is measured between 3 and 4. If a thin film with
in-plane magnetization is used. then a MR will be obtained depending on
the in-plane orientation of the magnetization. Out-of-plane magnetization,
in contrast, always yields a high resistance state. In general, when the im-
purity spin points parallel to the helical electron spin the resistance is low,
while other angles between the two spins will result in a higher resistance.
A large magnetic anisotropy also implies the likely absence of Kondo-type
features, which occur with degenerate ground states. Furthermore we expect
the spin-flip of the impurity to be negligible as long as the bias is smaller
than the magnetic anisotropy [73]. Going a step further, we have found the
same anisotropic MR for magnetic clusters. in which the aforementioned ef-
fects will be even smaller and the magnetic anisotropy may be engineered to

be large.

Since our ab initio calculations employ extremely large supercells, we

are in the position to probe the real-space spin texture around the isolated
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magnetic impurity. This has been previously studied with Dirac-like effective
Hamiltonians [56. 97], but here the full details of the electronic structure are
included. A combination of atom projected DOS and local DOS is shown
in Fig. 7.5 for the three different orientations of the Mn spin at the energy
corresponding to the peak in Mn PDOS of any given orientation. The induced
spins on the atoms around Mn are predominantly along the direction of the
Mn spin. For Mn spin pointing along y, we find a hedgehog-like in-plane
spin texture, with the spins pointing outwards from the impurity site. This
contrasts continuum models, which vield a vortex-like in-plane structure [56,
97]. The out-of-plane spin points along the positive y direction, in agreement
with the model results. This spin is induced over the first QL. For Mn spin
along y. the spin texture exhibits a three-fold rotational symmetry of the
underlying lattice. which is not captured by the continuum low-energy model.
For the other two directions. this lattice symmetry is broken by the Mn spin
and the neighboring atoms exhibit a spin along the impurity spin direction.
We have also investigated the spin texture at other energies and found similar
directions as those presented in Fig. 7.5, although the magnitude of the
induced spin decreases at energies away from Mn PDOS peak. Our spin
texture predictions naturally call for an experimental corroboration via spin-

polarized scanning tunneling microscopy [113, 62].

7.1.3 Summary and Conclusions

In conclusion, we have discovered single-atom anisotropic magnetoresistance
on topological insulator surfaces decorated with magnetic adatoms. This ef-
fect is a consequence of the spin-momentum locking of topological insulator
surface states interacting with the adatom spin. The MR does not origi-

nate from the opening of a gap in the surface band structure, nor from spin
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injection. Our results provide a possible explanation for the conflicting obser-
vations concerning scattering from magnetic atoms on topological insulator
surfaces. Our order-N code allowed us to study the real space spin texture
around the adatom, which has differences from previous model calculations.
Based on these findings we propose a class of magnetoresistive devices with
potentially large MR, utilizing either single magnetic atoms or thin film nan-
odots incorporated between two non-magnetic electrodes, using an in-plane

rotation of the thin film magnetic moment.
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Chapter 8

Topological tuning of two and
three dimensional Dirac

semimetals

A particularly intriguing prospect is that of using the interaction between
different materials to create hybrid interfaces with topological properties.
For instance depositing normal semiconductors on top of three-dimensional
topological insulators may result in a structure that under certain condi-
tions exhibits topologically protected interface states [114]. An even more
attractive prospect is that of using this protocol for transferring topologically
protected states to graphene. Since graphene-based transistors have been al-
ready demonstrated [115], one could then speculate on having graphene logic
elements connected by topological-graphene interconnects. i.e., on realizing
an all graphene high-performance logic circuitry. A major advantage of such
a strategy is that it is fully compatible with two-dimensional patterning. In
the first section of this chapter we propose and show that a topological phase

can be transferred to graphene by proximity with the three-dimensional topo-

137
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logical insulator BisSes. By using density functional and transport theory
we prove that, at the verge of the chemical bond formation, a hybrid state
forms at the graphene/Bi,Ses; interface. The state has Dirac-cone-like dis-
persion at the I' point and a well-defined helical spin-texture, indicating its

topologically protected nature.

Motivated by the two-dimensional Dirac-like semimetallic state in graphene,
Dirac semimetals in three dimensions were theoretically proposed recently [125].
Using first-principles calculations, Wang and co-workers predicted sodium
bismuthate (Na3Bi) and cadmium arsenide (CdzAss) to be three-dimensional
Dirac semimetals [126, 127]. Their experimental realization was not far be-
hind and the prediction has been verified by means of angle resolved photoe-
mission measurements in a remarkably rapid flurry of activity by a number
of groups [128, 129, 130, 131, 132]. Interestingly, a Dirac semimetal state
was also found in zinc blende compounds [133]. Apart from hosting a bulk
Dirac cone, both Na3sBi and Cdj;Ass also show a band inversion at the center
of the Brillouin zone. This means that they exhibit a surface Dirac spectrum
when confined to a slab geometry, analogous to conventional topological in-
sulators [14]. Given their unique electronic structure they open up an ex-
citing platform to study topological phase transitions, interweaving two and
three-dimensional Dirac states. In the second half of this chapter we study
the interplay of bulk and surface Dirac fermions in three-dimensional Dirac
semimetals using first-principles calculations. By combining density func-
tional theory with the coherent potential approximation we reveal a topolog-
ical phase transition in the alloy NagBi;_,Sb,, where the system goes from
a Dirac semimetal to a trivial insulator upon changing the Sb concentra-
tion. This tuning of composition allows one to engineer the position of the

bulk Dirac points in the reciprocal space. Interestingly, the phase transition
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coincides with a reversal of the band ordering between the conduction and

valence bands.

8.1 Proximity induced topological state in graphene

Several proposals have been already brought forward for making graphene a
topological insulator. Indeed, one of the first topological insulator model was
based on a staggered hexagonal lattice with helicity-dependent complex hop-
ping parameter, simulating spin-orbit interaction, i.e.. the Kane-Mele model,
which we have encountered several times in this thesis [27, 28]. However, since
spin-orbit coupling in graphene is tiny, a topological phase may be induced
only by strongly perturbing the graphene electrostatic potential, for instance
by adsorbing heavy ions on top of the sheet [116]. Importantly. although the-
oretically sound, such proposal requires ultra-accurate fabrication precision
and appears rather challenging in practice. Here we suggest a completely
different approach: we introduce topologically protected states in graphene
by proximity with a lattice-commensurate three-dimensional topological in-
sulator. This happens at the graphene/BiySeys interface, a composite which
was synthesized about two years ago [117, 118, 119], but whose electronic

structure still remains unclear.

8.1.1 Computational Details

(Calculations were performed by density functional theory (DFT) as imple-
mented in the vasp code [81]. We used the Perdew-Burke-Ernzerhof form
of the generalized gradient approximation and the core electrons were de-
scribed by projector-augmented-wave pseudopotentials. The k-space inte-

gration spans a 11 x 11 x 1 NMonkhorst-Pack mesh in the irreducible Brillouin
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Figure 8.1: Side (a) and top view (b) of the graphene/BiySes interface. The graphene-

BisSes separation is d. In panel (¢) we report the graphene electronic band gap as a
function of d.

zone and the plane waves cutoft is 400 eV

The geometry of the structure investigated is shown in Fig. 8.1. We con-
sider a BiySej slab containing three quintuple layers (QLs), for which the ten-
sile stress is minimal among the experimentally investigated Bi,Se;/graphene
composites [117]. The BisSe; unit cell is commensurate with three graphene
unit cells, hence the elementary unit cell of the composite contains an entire
carbon ring. The contacting Se atom is placed at the graphene hollow site (in
the center of the ring). The in-plane lattice parameter is 4.26 A, which is only
2.3% larger than the lattice parameter of bulk BisSes; the one perpendicular
to the interface is instead 40 A (there is a vacuum region of at least 10 A
between cells periodic replica). We have also investigated a second geometry
where the carbon atoms are on top of Se. This configuration, however, is
not energetically favorable and it has not been considered in the rest our
analysis. Interestingly both interface structures present rather similar trends

in the electronic structure properties.
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8.1.2 Results

We begin by investigating the evolution of the graphene band gap with the
graphene/Bi,Ses distance, d. We assign an electronic band to a given mate-
rial by projecting the energy and Ak-dependent wave function onto spherical
harmonics centered around particular atoms. We define the graphene elec-
tronic band gap from those bands located near the charge neutral point of
free-standing graphene and having dominant C character. In Fig. 8.1(¢) one
can identify three different regions. For d > 3 A (region C') graphene has
no band gap. This is expected since for large separations the interaction is
weak and the band structure of the composite is a superposition of those of
the constituents. As such graphene remains a zero-gap semiconductor. Re-
gion B is characterized by the opening of the graphene band gap. The gap
increases monotonically from d = 3 A and it reaches a maximum (0.34 eV)
for d = 2.45 A. A further reduction in d (region A) closes the gap, which
remains closed up to d = 2 A.

Next we analyze in Fig. 8.2 the nature of the graphene bands around
the Fermi level. Er. as a function of d. For d > 3 A [Fig. 8.2(a)] the com-
posite features two superimposed band structures corresponding to those of
graphene and BisSes, respectively. At such large separation there is no wave
function overlap between graphene and BiySes. leaving the two materials
electronically decoupled. Graphene’s linearly dispersive bands (in blue in
Fig. 8.2) at each of the valleys (Dirac K-points) are two-fold spin-degenerate,
with the 7 (E < Er) and 7* (E > Ey) bands just touching each other. The
BiySes surface states (green bands in Fig. 8.2) cross Er at the I' point.

Decreasing d below 3 A causes a band gap opening between the 7 and
7 bands [see Fig. 8.2(b). d = 2.6 A]. Now the graphene valleys are placed

together with the Bi,Sey surface states around the I point due to the bands
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Figure 8.2: Evolution of band structure of the graphene/Bi,Ses composite as a function
of the separation d between the two constituents. In panels (a). (b). (¢) and (d) we present
the band structure for d = 3.0 A, 2.6 A, 2.3 A and 2.2 A respectively. Black and green
bands are bulk and surface states of BisSes. blue bands are graphene bands, while the red
ones represent hybrid states. The inset in the panel (d) illustrates the spin-texture of the
mixed state at 0.05 eV above Ep. Note the different A-point sampling for d = 3.0 A.

folding in the supercell structure. As the graphene electronic gap increases
further upon a reduction of d [see d = 2.4 A, Fig. 8.2(c)], the 7* cone lifts up
in energy but the tip of the 7 one remains pinned at Ex. The topologically
protected surface states of BiySes (one per surface) are positioned in the
vicinity of the tip of the 7 cone. For separations d > 2.6 A these surface
states form a doubly-degenerate state since the two surfaces are equivalent
for the unperturbed topological insulator slab. For distances d < 2.6 A
the symmetry of the topological insulator slab breaks due to the vicinity of
the graphene layer and the degeneracy of the surface states is lifted. The
topological surface state in contact with graphene moves up in energy at I’
by about 0.11 eV for d = 2.3 A. Importantly, the graphene states that are
pinned at Ep start to couple with the surface state and, for d < 2.3 A, the 4-

fold degeneracy of the 7 cone is lifted. Here the pure graphene bands forming

the 7 cone are pushed down in energy and only the mixed graphene/BisSe;
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band [red in Fig. 8.2(d)] and the Bi,Se; surface state at the opposite side of

the interface (placed directly beneath the mixed band at I') cross Ef.

Intriguingly, such newly formed mixed graphene/Bi;Se; band presents
a helical spin-texture, demonstrated in the inset of Fig. 8.2(d). This is a
sufficient condition for disabling back-scattering of charge carriers, and it is
not the case in a pristine graphene sheet. In fact, defects in graphene allow
hopping of charge carriers between two valleys. which causes back-scattering
due to their opposite winding numbers. In contrast. hopping is impossible
in systems with only one valley and a helical spin-texture, which is the case

for graphene/BiySes heterostructure.

The supercell structure causes the folding of the second Brillouin zone
(BZ) of primitive graphene into the first and consequently the migration of
the graphene valleys from K to I'. Thus. two 4-fold degenerate cones touching
at Ep are formed. The bands from the two valleys have opposite topological
charges, which causes their mutual annihilation [120]. This manifests itself
in the opening in graphene of a band gap [see Fig. 8.2(b) and (c¢)]. much

larger than that estimated for thallium adatoms deposition [116].

After having determined the emergence of a mixed graphene/Bi,Ses band.
we now analyze in detail its electronic properties. The electron density inte-
grated over a narrow energy region around Ep and projected over the mixed
state is shown in Fig. 8.3(b). This is clearly localized over graphene and, to
a smaller degree, over the Se atoms in contact to graphene. Since such state
presents a dominating C-p. and Se-p. orbital contribution and it is delocal-
ized in the plane of the interface, it presents 7 conjugation. A more quanti-
tative insight is obtained by plotting the charge density averaged over planes
parallel to the interface [Fig. 8.3(c¢)]. This shows that, while the contribution

to the electron density originating from the bulk is small. a much larger por-
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Figure 8.3: Charge density associated to the BiySes surface opposite to the
graphene/BisSey interface (a) and the mixed interface state (b) obtained for d = 2.2 A at
I'. Panel (¢) shows the sum of the two charge densities averaged over a plane parallel to
the interface.

tion is provided by the two surface states at both sides of the composite. At
the free BisSe; surface the surface state is distributed mainly over the first
four atomic layers [Fig. 8.3(a)]. In contrast, at the graphene/Bi,Ses inter-
face the electron density migrates from the topological insulator to graphene.
Notably this feature resembles closely the one reported for the interface be-
tween the normal metal ShySes and the topological insulator BisSes [121].
This behavior is similar to the topologization of ZnM (M=S. Se. Te) upon
deposition on BiySez [114].

We now spend a few words on the possibility of inducing a topological
state in graphene due to its proximity and bonding to BisSe;. Firstly, we
wish to point out that our results do not indicate that graphene converts into
a two-dimensional topological insulator upon its deposition on BiySes. but
simply that a topologically-protected hybrid state is formed. Here the Fermi
surface of graphene undergoes a transition from a zero-band gap semicon-

ducting phase (region C), prone to gap opening due to defects and impuri-
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ties, to a topologically protected metallic phase (region A) via an insulating
phase (region B). A fundamental property of three-dimensional topological
insulators is the existence of an odd number of surface bands around Ef.
Another property is that the topology of the surface states is such as to con-
nect the bulk valence band to the conduction one due to the parity inversion
originated by the strong spin-orbit coupling. In the graphene/Bi,Ses com-
plex only one conical band is present at the Fermi level. Importantly this
band belongs to the surface state of Bi,Se; with considerable contribution
of graphene around Ep. while the other parts of the state (in particular the
ends that connect to the valance and the conduction bulk topological states)
still fully belong to BiySe;. Thus, the topologically protected surface state
can be understood as a carrier of the induced graphene states, and the intrin-
sic topological protection of this state provides the robustness to graphene
as well. Furthermore, the topologically-protected hybrid state does not sim-
ply correspond to the penetration of the one of the Bi,Se;y edge states into
graphene. In that situation interaction between Bi,Se; and graphene is not
present. In contrast here the interaction is strong and, in fact, as d decreases
first it is responsible for the opening of a band gap in graphene and then
for creating the topologically-protected hybrid state. This behaviour is very
similar to that of the SboSe;/BisSes [121] and the ZnM/BiySes (M=S, Se,
Te) [114] interfaces, in which a topological state is transferred to the normal

material because of proximity.

As a final characterization of the hybrid state we have probed its scat-
tering properties. In particular. we have performed transport calculations,
with the SMEAGOL code [77, 78. 79]. for the composite along the direction

parallel to the graphene sheet. Note that SMEAGOL provides an electronic

structure for the composite essentially identical to that obtained with VASP.
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Figure 8.4: (a) Conductance of a BiySes-contacted graphene sheet when either 17% or
33% C vacancies are introduced in graphene as compared to the conductance of a defect-
free layer. (b) Schematic overview of a proposed experimental setup, which may prove the
transfer of a topologically protected state from BisSes to graphene.
We have then calculated the system conductance for a defect-free system
and for a the case where approximately 17% or 33% vacancies per super-
cell are introduced along the direction perpendicular to the transport [see
Fig. 8.4(a)]. Note that these are extremely large concentrations and here
they serve the purpose to prove the topological protection of the surface
state. From Fig. 8.4(a) one can observe that 17% of vacancies do not affect
the conductance around Efr indicating that the state is indeed strongly pro-
tected against back-scattering. Even for a 33% concentration little reduction
of the conductance is found at around Ep, although the graphene layer is
almost cut in two parts. Note, however, that the inclusion of impurities re-
duces significantly the conductance for energies away from the Fermi level,
i.e., away from the topologically protected part of the graphene spectrum.
This demonstrate that the transport is indeed through graphene and it is
protected against back-scattering at around the Fermi level.

In concluding we would like to propose an experiment, which may prove
the transfer of the topologically protected state to graphene. A schematic
view of the proposed setup is shown in Fig. 8.4(b). in which a graphene sheet

is contacted only in part to BisSes while the rest remains free-standing. De-
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fects are then introduced in graphene only at the contacting region for in-
stance by electrons or ions irradiation [122]. If there exists topological protec-
tion in graphene at the contact region, the electronic transport through such
system will not show a conductance reduction relative to that of the defect-
free case. One may still argue that the transport through the irradiated
region is via the topologically protected surface state of BisSes rather than
through the defective graphene. However, in this case the charge carriers
need to hop between the topological insulator and the contacting graphene
red arrows in Fig. 8.4(b)] in order to continue their flow through the bare
graphene and close the electric circuit. This will degrade the conductance. In
contrast if the transport is carried solely by states of graphene (with defects)

the effects of hopping will be eliminated by the proposed geometry setup.

Throughout this section we have presented results as a function of the
graphene/BisSey distance, therefore we would like to close by briefly dis-
cussing what equilibrium distance one can expect. Unfortunately this turns
out to be a difficult problem. The exact binding distance is determined by
a balance between covalent and van der Waals forces. These latter ones are
not captured by DFT local/semi-local exchange and correlation functionals
and in fact we find that the two materials do not bind when the calculation is
done at the generalized gradient approximation level. This contrasts reality
where graphene/Bi,Sey exists as it has been experimentally fabricated by few
groups [117, 118, 119]. The inclusion of van der Waals forces at the level of
local DFT [123] does not improve the situation, as screening prevents an ac-
curate evaluation of the binding energy in layered compounds [124]. However
we expect the equilibrium graphene/BiySes distance to be close to the sum
of Se and C covalent radii, which amounts to 2 A. This is within region A

[see Fig.8.1(¢)]. i.e.. when the hybrid surface state forms. Moreover external
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pressure may be introduced for tuning the desired separation.

8.1.3 Summary and Conclusions

In conclusion. we have investigated the electronic properties of graphene in
contact with Biy,Se;. Three phases have been identified, depending on the
graphene/BiySes separation. For d > 3.0 A. the electronic structure of the
composite is simply the superposition of those of the constituents. The sec-
ond phase, obtained for 2.4 A g d < 3.0 A, witnesses the opening of a band
gap in graphene. due to the annihilation of graphene states with opposite
winding numbers. The third phase. when graphene and Bi,Se; chemically
bind. is the most interesting. as a topologically protected state with charge
distribution mostly localized on graphene forms. This backscattering-free
state may be utilized in graphene-based devices, for instance as an intercon-
nect. Our results also demonstrate the more general principle of engineering
interfaces between normal and topological materials to obtain desired func-

tionalities.

8.2 Topological phase transition in three di-
mensional Dirac semimetals

In this section we study the interplay of surface and bulk Dirac states us-
ing first-principles density functional theory calculations and ab initio de-
rived tight-binding models. Based on our first-principles calculations, we
predict that the bulk Dirac cone for Na3Bi is formed only for films with
thickness greater than 90 nm, while the surface Dirac state, originating from
a bulk band inversion, becomes gapless for films with a thickness as small

as 4.5 nm. Furthermore, by employing the coherent potential approximation
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Figure 8.5: (a) Hexagonal unit cell for A3B compounds, with A=Na, K, Rb and B=Bi,
5 g I

Sbh. (b) Bulk and surface projected Brillouin zone for the structure with the high symmetry
points marked. The three-dimensional Dirac crossing occurs along the I' — A direction.
in conjunction with DFT we uncover a topological phase transition in the
NazBi;_,Sb, alloy. We propose a method to engineer the k& space position

31 : .

of the bulk Dirac point by changing the Sb concentration. At a critical Sb
concentration of &~ 50%. this crossing reaches the Brillouin zone (BZ) center,
meeting its time-reversed partner. whereupon they annihilate and render the
bulk gapped. This topological phase transition is accompanied by a simulta-
neous loss of the inverted band character. Beyond this Sb concentration the

alloy is adiabatically connected to the topologically trivial NazSh.

8.2.1 Computational Details

We have carried out first-principles calculations using the projector aug-
mented plane wave method as implemented in Vienna Ab initio Simulation
Package (vAasp) [81]. We have used the Perdew-Burke-Ernzerhof parame-
terization of the exchange-correlation functional. Spin-orbit coupling was
included for all computations in the self-consistent calculation. The elec-
tronic structure simulations were performed with a plane wave cutoft of 600
eV on a 8 x 8 x 4 NMonkhorst-Pack A-point mesh. All A3;B compounds (A=Na,

K. Rb. B=Bi. Sb) investigated here crystallize in the hexagonal structure,
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Figlll‘(‘ 8.6: Bulk band structures including spin-orbit interaction for (a) NazSb, (b)
Na3Bi, (¢) K3Bi and (d) RbsBi. Note the Dirac crossing in (b)-(d). The insets in (¢) and
(d) show a zoom around I' with the crossing along I' — A.

as shown in Fig. 8.5. During structural optimization the atomic coordinates
were allowed to relax until total energy differences were less than 1 meV.
From the bulk first-principles results, we projected onto a basis of Na 3s
and Bi 6p (Sb 5p) orbitals by using a maximally localized wannier function
scheme [134]. These tight-binding parameters were then used to study slab
geometries. By combining this scheme with a coherent potential approxima-
tion (CPA) including self-energy corrections for disorder interaction, we have
investigated the Na3zBi;_,Sh, alloy [135]. We note that this methodology has
been recently used to predict the robustness of Dirac fermions in topological
crystalline insulator alloys. as well as in ferroelectric Rashba semiconductor
alloys [136]. In Appendix E of this thesis we provide a discussion of the

Coherent Potential Approximation in the context of a tight-binding model.
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Figure 8.7: Band structures for NasBi thin films of thickness (a) 2-4 lavers. (b) 5 layers,
(¢) 20 layers and (d) 100 layers. Inset in (a)-(b) shows the energy gap at the center of the
Brillouin zone for slabs of thickness 1 to 5 layers. In (b)-(d) Dirac crossings are highlighted
in red.

8.2.2 Results

We begin our analysis by calculating the relativistic bulk band structures
for the four materials NasSh, NasBi. K3Bi and RbsBi. as shown in Fig. 8.6.
For Na3Bi we find the three-dimensional Dirac crossing along the I' — A line,
and a band inversion at the BZ center, which is consistent with the previous
study of Wang et al. [126]. Na;Sh, on the other hand, is a small gap insulator
with a conventional band ordering. Our calculations reveal that on replacing
Na in Na3Bi with heavier atoms. the resulting compounds K3;Bi and Rb3Bi
are metallic with small electron pockets around I'. however the crossing away
from I is still present. The band structures for the two materials are shown
in Fig. 8.6(c¢) and (d). along with a zoom around the BZ center in the insets.

Since NayBi also shows an inverted band character around the Fermi level.

one expects it to form surface states when confined into a two-dimensional
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geometry, similar to topological insulators. Therefore, we study the evolution
of the spectrum of films of Na3Bi oriented along the [010] surface, as a func-
tion of their thickness. For thickness from 1 to 4 layers, the films are gapped
due to an interaction between the two surfaces, as shown in Fig. 8.7(a). This
gap decreases monotonically, with the surface cone at r becoming gapless for
a H-layer-thick film. One can also notice the shoulder along the [ — Z direc-
tion, which rises upwards in energy to form the bulk Dirac crossing for thicker
films. This bulk crossing is fully formed only for film thicknesses larger than
100 layers (&~ 90 nm). Our predictions for the thickness dependence of the
surface and bulk Dirac cones call for verification by angle resolved photoe-
mission experiments. Indeed, such measurements with varying film thickness
have been recently undertaken for topological insulator films [137, 138]. In
the case of NagBi [010] slabs, one should be able to see two gap-closing tran-
sitions at very different film thicknesses: one for the surface cone for a few
layers slab, with the next gap-closing occurring in the bulk for a hundred
layers slab. Very recently thin films of NazBi have been grown by molecular
beam epitaxy [139], a development which provides a clear route to verify our

predictions.

Now we turn our attention to the NagBi;_,Sh, alloy. From the bulk band
structures in Fig. 8.6, we observe that NagSh is topologically trivial, having
neither the bulk Dirac crossing nor a band inversion at the BZ center, as
opposed to NazBi. This opens up the intriguing possibility to obtain a quan-
tum phase transition in Na3Bi;_,Sb, solid solutions. To this end. we have
performed DFT+CPA calculations for the alloy. The spectral functions at
different Sb concentration are shown in Fig. 8.8. With increasing Sb concen-
tration, the bulk Dirac crossing along I' — A moves towards the BZ center.

At around a critical concentration of x. = 0.5 (Na3gBip5Sbg;), this crossing
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Figure 8.8: Spectral functions for pristine (a) NazBi and (b) NasSbh. (c¢) Spectral func-
tions for the alloy Na3Bi; _,.Sb, with increasing Sb concentration (x = 0.25,0.50.0.75 from
top to bottom). The color scale shows the orbital contribution, with red (positive values)
denoting Bi/Sb p orbitals and blue (negative values) representing Na s orbital (in units of
states/eV).

reaches close to I'. Upon subsequent increase in Sb concentration, an energy
gap appears. We note that this is the consequence of the annihilation be-
tween this Dirac cone and its time reversed partner along I' to —A direction.
The Sh concentration therefore represents an efficient tool to manipulate the
position of the bulk Dirac points in k space along the I'— A line. Interestingly.
the disappearance of the bulk cone is accompanied by a loss of the inverted
band character., as can be evidenced from the reversal in orbital character
of the valence and conduction bands, before and after passing through the
critical Sb concentration. From bulk-boundary correspondence, one can then
infer that for slabs made of these alloys there would also be transition in the
surface spectrum: below . the surface would display a Dirac crossing, while
increasing Sh concentration beyond this value would lead to opening of a

trivial gap. Thus. our calculations reveal a topological phase transition in

the prototypical three-dimensional Dirac semimetal. Recently. such tunable
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phase transitions were experimentally reported for topological insulators and
topological crystalline insulators [140, 141, 142, 143]. This makes us confident
that our predictions can be verified in the near future. It is also worthy of
consideration that our DFT4+CPA calculations reveal a protection, against
substitutional disorder. of the spectral features of three-dimensional Dirac
semimetals around the Fermi level. We note. in fact, the absence of broaden-
ing of spectral features around the cone, as compared to other energies. Such
a robustness, similar to what happens for topological crystalline insulators
and Weyl fermion systems, arises from the three-dimensional nature of the
Dirac cone [136], and in turn leads to the concrete possibility of experimental
verification by means of spectroscopic techniques. As shown in Ref. [136].
this is a consequence of a vanishing disorder self-energy around the crossing
point. We also propose that a similar phase transition, and a similar ro-
bustness against disorder, would occur in the Cds(As,_,P,)s alloy. since the
parent compounds Cd3zAs, and Cd;P, are Dirac semimetal and conventional
insulator, respectively, with the former having an inverted band order and

the latter having a normal band sequence.

8.2.3 Summary and Conclusions

In summary, we have studied the interplay of bulk and surface Dirac fermions
in prototypical three-dimensional Dirac semimetals, using first-principles based
tight-binding calculations. Furthermore, by means of density functional the-
ory with coherent potential approximation simulations, we have revealed a
topological phase transition in Na3Bi;_,Sb,. The tuning of Sb the concen-
tration provides an efficient way to engineer the reciprocal space position of
the three-dimensional Dirac cone, with potential implications for technolog-

ical devices benefiting from this additional degree of freedom. Intriguingly,
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the phase transition from a Dirac semimetal to an insulator is accompanied
by a change in the bulk band ordering. This can be related, via the bulk-
boundary correspondence. to a concomitant transition in the surface state
spectrum. Around the Dirac crossing, we found a robustness of the spectral
features against substitutional disorder. This indicates that our predictions

could be readily verified using existing spectroscopic methods.
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Chapter 9

Conclusions and outlook

In this thesis we studied different facets of topological states in two and three
dimensions, employing both model Hamiltonians as well as material specific
first principles calculations. Here we summarize our findings and discuss
possible future directions.

Our discussion began in Chapter 2. where we introduced the basic notions
of topology in the band picture. Here we also discussed the Kane-Mele model,
the prototypical lattice model for Z, topological insulator, which was used
for some subsequent studies in this work. Chapter 3 provided an overview
of the main methods used in this thesis: density functional theory to tackle
the many body problem and the non-equilibrium Green’s function approach
to the quantum transport problem.

In Chapter 4, we presented our results for Andreev reflection at two-
dimensional topological insulator-superconductor junction. We compared
and contrasted our results for Z, and Chern insulators. On the basis of this
analysis. we proposed a tabletop transport experiment to distinguish between
the two kinds of topological insulators.

Given the peculiar spin structure of the quantum spin Hall edge states.

a natural question arises whether it can be used to manipulate magnetic ob-
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jects. In Chapter 5 we answered this question in the affirmative. By using the
non-equilibrium Green’s function method for transport combined with a per-
turbative approach to spin-scattering from magnetic impurities, we showed
that a magnetic impurity deposited at the edge of a Z, topological insulator
and presenting a uniaxial magnetic anisotropy. can be manipulated by the
quantum spin Hall edge current. Furthermore, we showed that the topo-
logical nature of the edge states has profound consequences on the spin flip
inelastic electron tunneling conductance spectrum. At low current intensity
there is a complete suppression of the conductance steps appearing at the
critical biases characteristic of the activation of an inelastic spin-scattering
channel. In contrast, for currents large enough to produce spin pumping the
spin of the magnetic impurity is driven away from the anisotropy axis. This
breaks the topological protection of the helical edge states and the conduc-
tance steps reappear. We also proposed a four-terminal device designed to
manipulate, by all electrical means. the spin of a magnetic adatom positioned

at the edge of a two-dimensional Z, topological insulator.

Next we moved on to ab initio transport investigations of topological ma-
terials. In Chapter 6 we reported our study of surface states on the Sh(111)
surface. We calculated the transport properties across surface barriers and
directly compared to scanning tunneling microscopy experiments. An ex-
cellent agreement was obtained, in particular, for lifetimes of quantum well
states and the allowed scattering processes. We also presented our large
scale ab initio calculations on analogous steps on BisSes(111) surface, which
revealed that backscattering is completely suppressed for normal incidence,
while scattering is allowed at all other incidence angles. We also constructed
a potential barrier model based on the often used Dirac Hamiltonian. A com-

parison with our first principles results revealed the shortcomings of such a
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model.

In Chapter 7 we presented our findings demonstrating a single atom
anisotropic magnetoresistance on topological insulator surface. This stems
from an interplay between the helical surface states and spin anisotropy of
the magnetic adatom. This is a novel type of MR, which does not need
any magnetic electrodes, but requires a magnetic adatom, or more generally
adsorbed magnetic clusters or thin films. Our first principles calculations
revealed the underlying mechanism and we complemented our findings with
a two-dimensional model. This led us to propose a device setup suitable for

experimental realization.

In Chapter 8 we turned our attention to two- and three- dimensional
Dirac semimetals. We showed how the proximity to a topological insulator
leads to a backscattering protected hybrid state in graphene. This state
possesses helical spin momentum locking and a robustness to disorder. which
we investigated by employing transport calculations. We reported our studies
of the interplay between bulk and surface Dirac fermions in prototypical three
dimensional Dirac semimetals. By means of density functional theory with
coherent potential approximation computations, we revealed a topological
phase transition in NasBi,_,Sb, alloy. We showed that changing the Sb
concentration also provides a way to engineer the reciprocal space position
of the three-dimensional Dirac cone. with possibilities for devices benefiting

from this additional degree of freedom.

Finally we wish to mention a few possible directions. which can be in-
vestigated in future. For the Andreev reflection problem, an interesting ex-
tension would be to study it by taking into account the realistic electronic
structure from first-principles. A first step along this direction has already

been taken by implementing the phenomenology of Andreev reflection in
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the density functional theory based transport code SMEAGOL. employing an
extended Blonder-Tinkham-Klapwijk model. This can be used to study An-
dreev reflection in three-dimensional variant of the problem as well. Finally
this approach may also be used to model experimental setups in large spin-
orbit nanowires, where possible signatures of Majorana fermions have been
recently observed. For inelastic electron tunneling spectroscopy, a possible
direction for future investigations would be coupling of more than one spin,
both at the same edge as well as between different edges in narrow-width rib-
bons. Inelastic electron tunneling spectroscopy of three-dimensional topolog-
ical insulators would also be a natural extension of the work presented in this
thesis. Our analysis of unusual magnetoresistance obtained on topological in-
sulator surface also points to interesting possibilities for spin transfer torque
exerted by a topological insulator substrate on a magnetic layer. A large
spin-orbit coupling along with a spin-momentum locking of surface electrons
could possibly lead to interesting effects on the spin transfer torque, which
warrant future studies. In the investigation of graphene/Bi,Se; system, van
der Waals interaction is expected to play a crucial role in determining the
equilibrium geometry. A systematic study of the effect of van der Waals in-
teraction in this system is lacking and merits further attention. The study of
three-dimensional Dirac semimetals is a field that has been growing rapidly.
At the time of the writing of this thesis, only two materials are known to
harbeur this bulk three-dimensional Dirac cone. A thorough search for more

materials in this class would be worth pursuing in the future.



Appendix A

Quantization of the Chern

number

In this Appendix we clarify how the Chern number may be viewed as an ob-
struction to a smooth gauge choice of the Bloch wavefunction in the Brillouin
zone (BZ) and prove its quantization. following Ref. [18]. The Chern number
is an integral of the Berry curvature over the BZ. The Berry curvature itself
can be expressed as the curl of a Berry vector potential, A. The BZ has no
boundaries as it is a torus (a compact manifold). If one now applies Stokes’
theorem, then the Chern number is written as the integral of A(k) over the
boundary of the BZ. Since there is no boundary. it would identically be equal

to zero, unless A (k) has singularities in the BZ.

Consider a U(1) gauge transformation of the wavefunction of the n-th
energy level
In, k) = " ®|n, k), (A1)

where [ is a smooth function defined over the BZ. The transformed vector
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potential reads (A(k) = (¥(k)| V|V (k))):

An(k) = A, (k) + Vf(k). (A.2)

Since the Chern number is directly proportional to the Hall conductance,
which is an observable, it must be gauge invariant. Now, consider a specific
gauge choice where we choose f(k) such that the first component of the
eigenvector |n, k) is real, i.e., we set ¢/*) = ||n, k),|/|n, k). If such a smooth
gauge could always be found then the Chern number would always be zero.
When this first component of the Bloch eigenstate becomes zero, then clearly
such a gauge choice is not possible. Suppose this happens at N points kg, =
ki, ..., kn. Define neighbourhoods RS around these such that |k — k| < e. If
one now picks a different phase convention in these regions: |n, k), is real.

At the boundaries between such regions the wavefunctions are related as

Pa(k) = ('i(!’(k)_f(k))l;‘l(lu') _ ("\(k)t‘l(/\‘). (A.3)

while the vector potentials are related as

As(k) = UaVis = U1 Vit + iVx(k) = Ay (k) + iVx(k). (A.4)

The Hall conductance is then

et 1
UTy_I—IQ_TFi (/;BZ‘R;VXA](A)‘F/R

and by applying Stokes™ theorem we get

V x AQ(A-)) . (A.5)

€
£
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2
Py s (/ dk - A, (k) + / dk - AQ(A-)) . (A.6)
h 2m d(BZ—RY) JO(RY)
Since the torus does not have a boundary d(BZ — RY) = —0(RY) and the

Hall conductance simplifies to

£ 1
Oy = = / dk - (Ay(k) — Ag(k)
: ]l 21 A(RY)
e? 1
e e dk - iVx(k)
/I 277[ /(')(/{:) X
_ 1}7“,,_ (A.7)

1

where n = - ff(.,( gy @k -V x (k). For simplicity. consider the boundary of the

R regions as a circle O(RY) = k, + ec’’ (where 0 € [0,27)), then

1 ’ .
n=— [\(A; +ee?™ ) — x(ks + )| - (A.8)
2m

Here n has to be integer since along a complete path around the circular R

the wavefunction must come back to itself:

Pa(ks +€) = eXEFIy (ks +€)

—  Uo(ks + €' 0)

,\(L.\+(( i(27—07)

= g Jpy (ks + ee™2™07))

2 ]’\(LA‘\A»((Hsz“i])

U (k). (A.9)

which requires that y(k, +ee'@™")) — v (ko + €) = 2mn.
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Appendix B

A brief note on Pfaffians

The determinant of every skew-symmetric matrix can always be written as

the square of a polynomial of the matrix elements.

det(A) = [Pf(A)]*. (B.1)

where Pf(A) denotes the Pfaffian of the matrix A. The sign of the Pfaffian
is ambiguous due to the ambiguity in defining the sign of the square root. It

is non-zero only for even dimensional matrices. For example:

Pf = a. (B.2)

Using this, a recursion relation can be employed to find Pfafhians of any
matrix

2N

Pf(A) = (—1)ai,;Pf(Ay;). (B.3)

i=2
where A;; is the matrix A with first and j-th rows and columns removed.

Some useful Pfathian identities are:
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PflzAz”] = det(x)Pf(A)

PilAT] = [(~1)"Pf(4)

Pf[AA] MVPE(A), (B.4)

where x is any 2N x 2N matrix and A is a scalar. Finally,

0O XN 0O 0O .- 0 0

~X% 0 B @ = @ D
Pf| : ! b o« 8 : =M (B.5)

0 0 0 0 0 0 An

0O 0 0 0 0 —=Ay O
These identities are used while deriving the Z, invariant expression from time

reversal polarization.



Appendix C

Blonder-Tinkham-Klapwijk

model and Andreev reflection

Consider a normal (N) - superconductor (S) junction which is located at

> = 0. Using the Bogoliubov-de Gennes equation

H - FEp A u u
= & . (C.1)
A* Er —THT? v v

where H is the particle Hamiltonian, Ep is the Fermi level, A is the pairing
potential and 7 is the time-reversal operator (for a time-reversal symmetric
system its action is to yield the complex conjugate of the Hamiltonian. i.e.,
THT ' = H*). Here u and v are the particle and hole wavefunctions.
respectively. The junction is modeled using a step function for the order

parameter

Alz) = Blz)Ae™. (C.2)

If we assume that the system is separable along the transport (z) and

perpendicular to the transport direction. then the wavefunction can be fac-
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torized as

Uz, 4. 2) = lz)Plz,0) (C.3)

The transverse modes satisfy

2 932 22
i 2 vy e@y = Edwy). (€4
2m \0x? = Oy?

Along transport direction we are left with a one-dimensional problem. In
order to model the effects of a contact resistance at the interface include a

Ad(z) potential, giving

—%:))_;_Eﬁ‘+‘\6(:) A(z) u(2) e u(z)

A*(z) Y+ Er—AS(2) | \v(2) v(z)

2m 022

This is the Blonder-Tinkham-Klapwijk model [47]. On the normal side the

equation reduces to

h? 92
_—7%—E 0 ll(:) ll(:)
Rt s = 1 (06

2 52
0 #5)—2 + Efp v(2) v(2)

whose solutions are

8 0l .,
LS N e G T e (C.7)

0 1

where k. = kp\/1+ E/Er, ky = kp\/1 — E/Er and kp = ———VZ';,'E‘ On the

superconductor side, we have
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h? 02 L
= = i A u(z) u(z)
2m 022 | o = F . (CS)
Ae—¢ _éhT;;(_;):_:;+EP l'(Z) v(z2)

For propagating waves (E > A) the above yields,

A 1 (-o.\-h"(E/._&)(,io/z —3 (-ush—'(}:/A)(.m/z

e — T (,iiq, z \Ifh _ . f,:tiq,,:_
B3 2F i s g + it =TS . et
e 5 cosh (L/.A)(, ip/2 (,2((»11 (I./A)(, ip/2

(C.9)

where ¢. = kp \/1 + \/(E'-’ — A% /E2 qp = A'I:\/l — \/(E2 — A?)/E% and
l\'],' _ \//Ql”]‘:[,'.

h

In contrast. for evanescent waves we have

A (,,; ('()s‘l([:‘/'A)( id/2 ¢ —_; cos™ ltl-f,/'._\)( id/2
e — . +iqe 2 \I/h o Figpz
+= = o ¢ s = € N
2E (,~é('()571(kE‘/.A)(‘—u,‘)r“_’ (,i,(‘us_l(I;‘/A)(—io/2

(C.10)

where ¢ = A’F\/l +iy/(A2 — E?)/EZ, q = L'F\/l — i/ (A? — E?)/E3.
They have acquired an imaginary part in addition to the real part. The

matching condition at the boundary is obtained by integrating the equation

2 42 7.
—h—w — Eru(z) + A(2)u(z) + A(2)v(z) = Eu(z), (C.11)
2m 022

around z = 0, to vield

2mA

D.u(07) — 0.u(07) = =

w(0), (C.12)
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2mA

22

9,v(0%) — 3,0(07) = 0(0). (C.13)

The analysis of the scattering process proceeds by considering incidence

from the normal side

1 S SR
gl

\Ijill(‘ : = T
(2) V 21 hv, 0

(C.14)

The wave reflected back is a sum of left moving electron and a left moving

hole

Tee 1 —ikez I he 0

vV Qﬁhl‘( 0 VvV 27‘.h1‘h 1

Wpep(z) = gtz (C.15)

The transmitted wave is a right moving electron and a right moving hole

jich)2 id/2
upe'?’ A Vo€
v, (z) = L 9 etidez 4 L o e~ in>
rans\~ = 9
V2mhw, vge—i9/2 V2 hwy, upe /2
(C.16)
A L cosh—1(E// FA s —Top .
where ug = 5%()2 SoehT™ UEIR) = -2-%(‘ gcosh R/ A) for propagating waves

R S A ;
and ug = \/%()2“’* (E/B) 9y = \/%e 305 (E/A) for evanescent waves.

The coefficient r.. denotes reflection from electron to electron. r,. denotes
reflection from electron to hole, t.. denotes transmission from electron to elec-
tron. and fj. denotes transmission from electron to hole. The wavefunctions

are normalized by their group velocities

_1dE hk, LdE  hky,

Vg = ——— = —, Up = ——— =
h dk, m hdky, m

(C.17)
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on the normal side. On the superconductor side we have

LdE  hg, LdE  hg,
= - =— W= =—.
hdg, m " dqy, m

w,

We also have the relations

’ e — (72 12\
We/h = Ue/h = (“() = l())’f/h'
'

Continuity of the wavefunction and its derivative implies

a0 ) =w(0™), »(07)= 2},

and
2mA | 2mA
B.u(0) — B,u(07) = %—u(()). 8.0(07) — &.0(07) = ';)‘ 0(0).
: 2
N(‘XT we assuliie tllﬂt
E,A < Ep,

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)

which is the Andreev approximation. This leads to the following simplifica-

tions

1‘.( /h = e/h =2 'l‘l'

) ~ 1 ) ~ 2 |2 Il
Ve/h = UR, Wen = (ug — v5)VF,

hkp Qs ; :
where vp = =L Simple. but tedious algebra yields

(C.23)
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(Z2 +1Z) (v — ud) .
o s e e O . C.25
' @2+ Z2(3 — 2) {520

Ugto —
The = — — —e %, C.26
o ud+ Z2(ud - v?) ( )

f” s (1 & iZ)“() V u‘(Z) i l‘iz)(,—i(.)/".?. (CQW)

i
2 2 2
uy + Z%(ug — vp)

iZvo\/uy — V5 _ippo \
Ilh(' = = P G : i (( 28)
u2 + Z2(u2 — vd)
0 Lo 0
Here Z = -,% is a dimensionless parameter which measures the interface

transparency. Z < 1 gives a very transparent interface while Z > 1 yields a
low transparency. If we now simplify to the case of perfectly ideal interface.

i.e., Z = 0. In this case

. (‘()f’_io - (,—itﬁ(,—i('()s(E/;l) B e A

_ (,“,'C,(frosh(E/«’—\) E > A. (C29)

So, the probability amplitude |r,.|* = 1 for E < A. This shows that for

an ideal N-S interface, an injected electron is reflected back as a hole with
unit probability. This phenomenon is called Andreev reflection [41, 48]. In
contrast to usual reflection, where momentum is not conserved and charge
is conserved, in Andreev reflection momentum is conserved (at least in the
Andreev approximation), whereas charge is not conserved. For £ > A, the
electron also has finite probability to be transmitted as an electron since

there are states available in the superconductor. above the superconducting

gap.



Appendix D

Perturbation expansion in

electron-spin coupling

In Chapter 5. we discussed the possibility to manipulate the spin of an
adatom at the edge of a two-dimensional topological insulator, based on
a perturbation expansion in the electron-spin coupling. In this appendix
we provide the details of such a perturbation expansion. The electron-spin

Interaction term in the Hamiltonian is

Heoop=Jua D _(chlo]ascs) - S+ €0 Y _ chca. (D.1)

o, B! «
Here the first term is the interaction between the localized spin S and the
conducting electrons, while the second term represents the elastic contribu-
tion to the scattering and is called the magnetoresistive elastic term. This
interacting problem is insoluble directly. However, here we summarize the
perturbation expansion used to tackle it. This was derived in Refs. [64, 66]
following the procedure laid out in Ref. [67]. Considering zero tempera-
ture. the contour ordered spin-dependent single-body Green’s function in

the many-body ground state is defined as.
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G, T/)]MT’ = —i(|Te{co(7) (Ir’ )H) (D.2)

where T¢ is the contour ordering operator and the average is performed over
the interacting ground state, denoted by |). The above expression can be

expanded to n-th order in the interaction Hamiltonian using

[G(T 7_/)] ik ”+l /([T /({T IT( {H —~p Tl) H,_,-I,(T,,)('U(T)(‘L,(TI)}D()
. o7 e = ! (J< S(—o0, X)|>(1 l
(D.3)

where S is the time-evolution operator. Note that the average is now taken
over the non-interacting ground state, |)o. The contour ' goes from —oo to
+00 and then back from +oc to —oo. The first order term is a constant,

while the second-order term reads

[G(r,™)E), = (_21,) Joa z /(17'1 / dry X

s,a.0l0.8.8"°

o{|Te{co ()l (T1)car (1) ch(72)ea (2)el, (7) oo I Te{ S (71) 7 (72) ol |aer [07] 55(D-4)

where the indices 7 and j run over the local spin operators. A contour ordered
expansion is now performed on both the electron and spin brackets. For the

electron part one obtains a total of six terms [64, 66].

Out of these six, two terms are Fock-like diagrams, while two Hartree-like
terms are also obtained. The latter vanish due to spin selection rules. In
addition one obtains two disconnected diagrams, which vanish under the

averaging. The simplified expression then becomes



o{|Tefeq (7 Tl)(u(ﬁ) T(Tz)(i'(TQ }|>o—

2i* 05000305107 [G()(T. T )]n(f [Go(m, T2)]n’n’[G(’(TQ‘ T/)]”'“I

+2i:;60(1(5(\ (r’()i'i’[C(J( )]UU[GU(TI )]o’rf’ [GO(T‘Z- T?)]rid- (D‘r))

To expand the spin bracket consider the spin basis [n), where n = =S, —S +
1.....,5 =1, 5. These are used to rewrite the spin operators as

&r = Z<m|5 In)d! (7)d,(T), (D.6)

mn
where d! (d,) creates (annihilates) a quasi-particle of the spin Hamiltonian.
Considering only a single spin excitation at a time renders the choice of
the quasi-particle statistics irrelevant. For simplicity, these operators are
assumed to obey fermionic commutation relations. Now, the contour ordered

Green’s function for spin is defined to be

[D(7, T)|nm = —i(|Te{dn(T)dE () }]). (D.7)

By inserting the expressions for S* and the spin propagator D(7,7') into the

spin bracket vields

o{|Te{ S (1) S (2)H)o = — D _ (m|S'[n)(n| S [m)[Do(71, 2)lnn[Do(72. 71) .-
(D.8)
where Dy is the unperturbed spin propagator. By using the two contributions

from the electronic and spin brackets and the Dyson’s equation. the second

order contribution to the interacting self-energy can be written as
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[Zine(T1, Tz) Z{ w oI [Ji]mr’[(fj]d.i}

%.7:8

X [Go(71,72)]53 Z<7‘71|Si‘ll><H|S‘jlnl>[DU(T1. 7o) an[ Dol T Tl [D-9)

m.n

From the above expression the real-time quantities can be evaluated by using

Langreth’s rules. The final expressions read

[Sé (E)]() = ]sd [Gﬁ(EiQnm)] +(0 mu\PHb +P"(1 — P, ‘5

mn IIHI|

~J2% ) (G5 (E % Q)11 ) Pa(1 — P)|S;5,(B2.10)

mn

m.mn

[Zz (E)}ii) = ]szd [G((;(E :t gzmn)]ii(—(smn\ljnszm 1% Pn(l = Rn) A

int

I:;III|2)

mmn

] (<)<E:thzn)]TT]P (1 m)| ,,,,,GD 11)

sd

m.n

The unperturbed spin propagators Df (t1,12) have been re-expressed in terms
of the occupations of the spin levels, P, = dl([,,. Here x = €p/Jsq and S* =
S* £ 1SY. The lesser (greater) self-energies describe the process where an
incoming (outgoing) electron excites (relaxes) the spin system by an energy
Q,.» with spin level occupation dependent probabilities. Note the appearance
of spin selection rules due to the factors of S* in the inelastic terms. The
first term in both the expressions is the magnetoresistive elastic term and it
preserves the electron spins during a scattering processes.

In order to calculate the non-equilibrium spin populations, consider first a

non-interacting case when the conducting electrons do not interact with the
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local spins. Assume that the local spins are in equilibrium with a heat bath
at temperature 7', whose only effect is to generate a broadening kg7 to the

spin eigenstates. The non-interacting spin propagator reads

[ E)

= E—e)+ (haT) (D.12)

where [I17]mn = Omn(l — PO)kpT and [II5]nn = dmaPoksT, and where

m m
P is the ground state equilibrium population at zero temperature. Now,
when the interaction is switched on, then from the first and second order
contributions to the spin self-energy and using the equation of motion for

the spin propagator, a master equation for the non-equilibrium populations

can be derived as

dP, 1 o o B}
7 -ﬁ Z / (]E{“_[/ (b)]nm[l)i(b”mn - [H<(E)]IIHI{D()>(E)]HIH}'
1
= £ D [Pl = P)Wiy, = B(1 = B)Wul + (P = P)kpT.  (D.13)
!

l

where the transition rates W, read

> (/)Js¢ )2 2
Way = —4 I“I > ¢l — iy + Qun){XSin([Calir [Tt — [Clua [Crlis)

m’

+| S P (ol Lottt + [Calu T )in) + 1SEP Tl [T It + 1S [Tl [Tl (P.14)

where ((x) = /(1 — e=*/*sT) i, is the chemical potential in lead 1 and T,

is the broadening function of lead 7.
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Appendix E

A brief note on the Coherent

Potential Approximation

The Coherent Potential Approximation (CPA) is widely used to study the
electronic structure of alloys [135]. In this Appendix we outline the basic idea
behind the CPA by using a single orbital tight-binding model for illustration.
We closely follow the exposition by Mookerjee in Ref. [144]. We begin with

a tight-binding Hamiltonian of the form

H =Y eali)(il+ ) tilid(l, (E.1)

with the onsite energy ¢; at site 7 and the hopping elements between sites ¢
and j as t;;. If €; are random, then the simplest approximation is to consider
just the average value of the onsite energy (¢;), and replace it in the aver-
aged Hamiltonian. This is the Virtual Crystal Approximation (VCA). and it
clearly misses out on the random potential luctuations around the average.
One can go a step ahead and consider the Coherent Potential Approxima-
tion (CPA) as done by Soven [135]. The basic idea is to look for an effective

Hamiltonian H" with the same translational symmetries as the underlving
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lattice and whose corresponding Green’s function G(z) = (z — H®)~lis a
good approximation to the average Green’s function of the random Hamilto-
nian. For the above tight-binding model the effective Hamiltonian is of the

form

HF =) Bl + ) tyli) (). (E.2)

From definition of CPA we have

(G(2)) = G*(2), (E.3)

One can write E(z) = (¢) + X(z), and then the self-energy 3(z) is the cor-
rection to the virtual crystal approximation. In order to find E(z). at site
J replace the effective potential by the exact random potential €;,. Then the

Hamiltonian of the system is

HY = HF 4 [¢; — E(2)]1j){j]- (E4)

From the above equation we have

& Ha= i . (E.5)
i 1 - - E()IG

For the CPA one needs to choose E(z) such that it satisfies

(GY(2)) = G(2), (E.6)

which translates to
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In the special case when ¢; has a binary distribution (i.e. for a binary alloy
system) with onsite energies being € 4 or €z with probabilities x and y (r+y =

1), respectively. we have

Z(:) o 'I.,l/((;\ - (fi)2<Gj.j<:)> ) (E8)

1 - [e—Z(2)[{Gy;(2))
where € = ye 4 + wep. This is the self-consistent equation for the CPA self-
energy. which needs to be iterated till self-consistency is reached. In the
preceding discussion we outlined the application of CPA to the case of diago-
nal disorder. In fact CPA has been generalized to treat off-diagonal disorder
in an analogous way [145]. This allows one to replace the hopping matrix by
an effective CPA medium in a manner closely resembling the approach for

the onsite term.
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Publications stemming from

this work

e Awadhesh Narayan and Stefano Sanvito. Andreev reflection in two-dimensional
topological insulators with either conserved or broken time-reversal symme-
try, Phys. Rev. B 86. 041104(R) (2012).

e Awadhesh Narayan, Ivan Rungger. and Stefano Sanvito. Topological sur-
face states scattering in Antimony. Phys. Rev. B 86, 201402(R) (2012).

e Aaron Hurley, Awadhesh Narayan, and Stefano Sanvito, Spin-pumping and
inelastic electron tunneling spectroscopy in topological insulators, Phys. Rev.
B 87, 245410 (2013).

e Awadhesh Narayan. Aaron Hurley. and Stefano Sanvito. Gate controlled
spin pumping at a quantum spin Hall edge. Appl. Phys. Lett. 103, 142407
(2013).

e Awadhesh Naravan and Stefano Sanvito. Multiprobe quantum spin Hall
bars, Eur. Phys. J. B 87: 43 (2014).

e Kapildeb Dolui. Awadhesh Naravan. Ivan Rungger. and Stefano Sanvito,

Efficient spin injection and giant magnetoresistance in Fe/MoS, /Fe junc-
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tions, Phys. Rev. B 90, 041401(R) (2014).

e Igor Popov. Mauro Mantega, Awadhesh Narayan. and Stefano Sanvito.
Prozimity induced topological state in graphene, Phys. Rev. B 90, 035418
(2014).

e Awadhesh Narayan, Ivan Rungger, Andrea Droghetti, and Stefano Sanvito,
Ab-initio transport across bismuth selenide surface barriers, Phys. Rev. B
90, 205431 (2014).

e Awadhesh Narayan, Domenico Di Sante, Silvia Picozzi. and Stefano San-
vito, Topological tuning in three-dimensional Dirac semimetals, Phys. Rev.
Lett. in press, (arXiv:1408.3509).

e Awadhesh Narayan, Ivan Rungger, and Stefano Sanvito, Single atom anisotropic
magnetoresistance on topological insulator surface, submitted to New J. Phys.,
(arXiv:1405.2651).

e Awadhesh Narayan, Ivan Rungger, and Stefano Sanvito, Phenomenology of
Andreev reflection from first-principles transport theory, submitted to Phys.
Rev. B, (arXiv:1410.7178).

e S. Jakobs, A. Narayan, B. Stadtmueller, A. Droghetti, I. Rungger, Y.S. Hor,
S. Klyatskaya, D. Jungkenn, J. Stoeckl, M. Laux, O.L.A. Monti, M. Aeschli-
mann, R.J. Cava, M. Ruben, S. Mathias, S. Sanvito, and M. Cinchetti, Con-
trolling the spin-texture of topological insulators with organic molecules, sub-
mitted to Science.

e Andrea Droghetti, Awadhesh Narayan, Stefano Sanvito, and Ivan Rung-
ger, Correlated zero bias transport in graphene and 2D topological insulators
nanostructures (in preparation).

e [van Rungger, Awadhesh Narayan, Udo Schwingenschloegl. and Stefano
Sanvito, Scattering channel analysis of topological surface states (in prepa-

ration).
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