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"Like fnint glimmers of light in the dark, we have emerged fo r  a m om ent  

from  the nothingness o f  dark unconsciousness of m ateria l existence. We must 

make good the demands of reason and create a life worthy of ourselves and 

of the goals we only dimly perceive. "

-Andrei Sakharov



Abstract

Topological insulators arc a fascinating new class of materials, which have 

signalk'd a revival in exploration of topological a.si)ects of condensecl m atte r  

l)hvsics. Like usual insulators they have an energy gaj) separating valence 

and conduction bands, however, their svufaccs host metallic sta tes  which can­

not be ga])ped out unless one breaks the symmetry protecting such surface 

states. C'rucially. a number of materials have been identified as time reversal 

synunetric topok)gical insulators and their surface sta te  signature has been 

verified by means of a number of experimental techniques. In this thesis we 

study  different aspects of topological sta tes in two and three dimensions, em­

ploying both  model Hamiltonians as well as material specific first-princi])les 

density functional theory calculations.

F'irstly. we j)resent our investigation of Andreev reflection in to])ological 

insulator-superconductor junctions, finding ])erfect Andreev reHectiou. which 

is robust tcj disorder. We comj)are and contrast our results for Z2 and Chern 

insulators, and propose a transport experiment to distinguish between the 

two khids of insulators. Next, we study spin-Hip inelastic electron tunneling 

spectroscopy for magnetic adatom s deposited at the edge of two-dimensional 

topological insulator, and hnd tha t the impurity spin can be manipulated 

by passing currenit through the helical edge states. W’e also ])ro]^ose a four 

terminal device which is designed to nianii)ulate the sj^in of the adatom l)v



all electrical nieans.

T hen, we present ab initio  tran spo rt studies of scattering of to])ological 

s ta tes . We investigate electron transm ission across surface steps on S )) ( l l l ) ,  

w lune we find a good agreem ent w ith  scanning tunneling microscoin' exper­

im ents, in particu la r concerning lifetime of quantum  well sta tes and allowed 

sca tte ring  wave vectors. We also study  effect of barriers on B i2S e3(lll) sur- 

fac(' and  com pare our first-principles results w ith the often used D irac-tyjic 

low-eiiergy model. Then, we report our finding of a single atom  anisotro])ic 

m agentoresistance on topological insulator surface, which stem s from an in- 

ter])lay between the  helical surface s ta tes  and sj^in anisotropy of the m agnetic 

adatoni. O ur ab initio  calculations for Mn adatoni on Bi^Se.-i elucidate the 

underlying m echanism  and also reveal the real space spin tex tm e around the 

m agnetic im purity.

Finally we re])ort our investigations of tw o  and three-dim ensional Dirac 

sem inietals. We present our proposal to  engineer a backscattering-free hy- 

l)rid s ta te  in graphene l)y proxim ity w ith a three-dim ensional topological 

insulator. Using tran sp o rt calculations, we further confirm th e  robustness 

of this proxim ity induced s ta te  to  disorder. Then we study  the interplay 

of bulk and surface Dirac ferniions in j^rototypical three-dim ensional Dirac 

seminietals and reveal a topological phase transition  in NaaBii.^-Sbj. alloy.
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Chapter 1

General Introduction

O ne  of tlie p r im ary  goals of condensed m a t te r  j^hysics is to  discover and  cla.s- 

sify different phases of m a t te r .  T h e  fundam en ta l  build ing  blocks of m a t te r  

can  come toge the r  to  form a m yriad  of different s ta tes ,  rang ing  from crys­

ta lline  solids to  m agne ts  and  sii])erconductors. All these can  be classified on 

th e  basis of L a n d a u 's  principle of spon taneous  sy m m etry  lireaking [f]. C rys­

ta lline  solids l)reak tran s la t iona l  synnnetry , while a m agnet breaks ro ta t iona l  

synnnetry . A su i)e rconductor  breaks the  m ore m ysterious  gauge synnnetry . 

T h e  first s ta te  of m a t te r  which did not fit in to  this pa rad igm  was the  in­

teger ( juan tum  Hall ])hase discovered in 1980 [2]. Von K litz ing ef al. took  

a two-dim ensional e lec tron  gas sami)le and  passed a curren t across one of 

th e  d irections, while th ey  applied  a perjiendicu lar  m agnetic  field, hi the  

transverse  d irection a voltage was genera ted , a conseciueuce of the  usual Hall 

effect. B u t a t  sufficiently low tem p e ra tu re s  and  sufficiently high m agnetic  

fields, they  saw ])lateaus in the  transverse  conductivity . In th is  s ta te ,  the  

bulk of a two-dim ensional sam ple  is an  insu lator, while a d issipationless cu r­

rent Hows only a t  the  edges of the  samj)le. Even m ore surpris ing  was th e  fact 

t h a t  the  ( juantization of conductiv ity  was ex trem ely  j)recise. of the  order of 

one j)art in a billion. F u r th e rm o re  it was indei^endent of the  sam ple m ateria l.
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Figure 1.1: (a) S ch em atic  baud d iagraiii for H gTc and C dT c near th e  F point .sliowing 
th e  inverted  band str>icture for H gTe. (b ) Q uantized  ed ge  s ta te  con d u ctan ce  exh ib ited  
by C d T e /H g T e /C d T e  h eterostru ctu re  in th e  inverted  regim e (curves III and IV) .  F igure  
ad ap ted  from R efs. [7. 8].

its size and disorder. It was realized th a t th is \va.s a consecjuence of topology.

The last decade ha.s seen the grow th of a new field in condensed m a tte r 

physics, based on the  realization th a t such topological phases can he ob­

tained w ithout the application of an external m agnetic held [3, 4. 5]. In 

these so-called topological insulators, the role of m agnetic held is taken by 

the sjiin-orbit interaction. Like ordinary  insulators, the  toi)ological insulators 

have a bulk energy gaj) sejiarating the  highest occupied energy band (valence 

band) and the  lowest em pty l)and (conduction band). But unlike ordinary 

insulators, the surface or edge of these m aterials have gapless m etallic states, 

w’hich are sym m etry protected. In th is sense, they are in tim ately  related to 

the quan tum  Hall sta te . T he class of topological insulators, which preserve 

tim e reversal sym m etry have a Z 2 classihcation. In particu lar, it is this class, 

which has caused a  large excitem ent in the  past few years, prim arily be­

cause more th a n  half a dozen m aterials have been experim entally confirmed 

to  exhibit such a phase. Very recently, tim e reversal synnnetry  broken topo­

logical insulators (also term ed Chern insulators since they have an integer 

classihcation based on the C hern numl)er) have been experim entally realized, 

although at the extrem ely low tem peratu res of a few milliKelvin [6].
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A tim e reversal invariant toj^ological insu la ting  phase  was jiredicted theo ­

retically  by Bernevig, Hughes an d  Zhang (BHZ) in C d T e /H g T e /C d T e  q u a n ­

tu m  wells [7]. B o th  CdTe an d  HgTe exist in z incb lende-type  lat tice  s tru c tu re  

a n d  for l)oth the  m ate ria ls  th e  relevant l^ands near Fermi level a re  a t  the  F 

{Joint in the  Brillouin zone, as shown in Fig. 1.1(a). T hey  are  an s-type 

h a n d  (Ftj), an d  a  p - type  h and  split by spin-orhit coui^ling into a J  — 3 /2  

h a n d  (F^) and  a J  =  1 /2  l)and (F 7 ). CdT e has an ordering  of bands  similar 

to  conventional sem iconductors , for instance  GaAs, w here th e  s-ty])e con­

d uc tion  band  (Fg) is well sei)arated  from th e  p-type  valence l)ands (F ^ .F r)  

l)y a large energy gap. of the  o rder of 1 eV. However, in HgTe, the  usual 

h a n d  order is reversed, l)ecause of the  large spin-orbit couj)ling carried by 

th e  heavy element mercury. In th is  case, the  F« band , which usually forms 

th e  valence band , is now higher in energy th an  the  Ffj l)and. T he  light hole 

Fj< band  forms the  conduction  baud , while the  heavy hole Fj< h and  forms the  

first valence band. T h e  s -type  band  (F^) is i)ushed down in energy and  forms 

th e  second valence band . T he  degeneracy  at th e  F point betw een the  heavy 

an d  the  light-hole ban d s  makes HgTe a zero-gai) sem iconductor.

BHZ proposed  th a t  by growing C d T e /H g T e /C d T e  he te ro s tuc tu re s  it is 

[)ossible to  tu n e  the  above m entioned  electronic s t ru c tu re  and  th a t  there  is a 

( luan tum  phase  t ran s it io n  as a function of the  th ickness r/gu- of the  q u a n tu m  

well. T he  h e te ro s trn c tu re  is a conventional insulat(jr for dqw < dc and  a 

t im e  reversal synnue tr ic  topological or ( juantum  spin Hall (QSH) insu la to r  

for <Iq \\ > dc- w here dc is a critical thickness. T h is  QSH insu la to r  s ta te ,  has 

a charge exc ita t ion  hulk gaj). hu t has topologically j)ro tec ted  gai:)less hel'ical 

edge sta tes, th a t  lie in the  l)ulk gap. T h e  te rm  hehcity  refers to  the  perfect 

correla tion betw een th e  spin and  m o m en tu m  of these edge s ta tes . Soon after  

the  theore tical proposal, devices were fal)ricated and  transi)o rt  m easu rem en ts
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were perform ed, sliowing the  first s igna tu re  of the  QSH insu la to r  [8]. In these 

exj^erinients the  electrical conduc tance  due  to  the  t'dge s ta te s  was m easured. 

An analysis using th e  L andauer-B iit t ike r  scheme, yields a (juautized conduc­

tance  of e^/1)  for each pair  of edge s ta tes . Fig. 1.1(1>) shows the  resistance 

m easu rem en ts  for a num ber  of sam ples a.s a function of ga te  voltage which 

allows th e  Fermi energy to  be traversed  across the  bulk gap. Sanij^le I has 

a narrow  w id th  and  a large res is tance  in th e  gaj). Sam ples III and  IV, ou 

th e  o th e r  h a n d  are  ( juan tum  wells having  thickness g rea te r  th a n  the  critical 

thickness, dc- These  show a cjuantized conduc tance  of j h  associa ted  w ith  

the  two edge s ta tes . Sam ples III an d  IV have the  sam e length  and  different 

w idths, while b o th  show the  sam e  conductance , ind ica ting  th a t  the  t ra n sp o rt  

is a t  the  edge.

Ai)art from (juan tm n  well he terostructiu 'es .  there  have also been recent 

proposals  for silicene and  its g e rm an ium  anak)g to  host a ( juan tum  spin Hall 

phase, w ith  spin-orl)it-driven ban d g ap s  of 2.9 nieV and  23.9 nieV, respec­

tively [9]. Tw o-dim ensional Sn hhns  have also been p red ic ted  to  have a spin- 

orbit  gap  of 300 meV, which is com parab le  to  th a t  of th e  three-d im ensional 

topological insu la tors  cu rren tly  known [10]. These  m ateria ls  exhibit a low- 

energy i^hysics, which is well described  by th e  Kane-M ele model, which will 

be discussed in detail  in C h a p te r  2. In light of these  p rom ising  developm ents, 

we will p resent our s tu d y  of A ndreev  reflection in tw o-dim ensional topolog­

ical in su la to r-superconduc to r  ju n c t io n s  in C h a p te r  4. In C hajjte r  5, w'e will 

also exam ine  th e  possibility  to  m an ijju la te  im purity  spins using th e  ciuantum 

spin Hall curren t.

Angle resolved pho toem ission  spectroscopy (A R P E S )  has p layed an im ­

p o r ta n t  role in the  quest for finding new' topological in su la to r  m ateria ls . By 

il lum ina ting  a m ateria l  w ith  pho tons  and  mea.suring th e  energy-m onien tum
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Figure 1.2: (a) Surface band stru ctu re  for B i2 Se;j (111) from  A R P E S  show ing a single  
D irac con e. (1)) T h e  fernii surface reveals th e  sp in  polarization  o f th e  hands (c) T h e band  
stru ctu re  ob ta in ed  from  ah - in i t io  ca lcu la tion s w here th e  rc'd d o ts  in d ica te  th e  surface  
sta tes , (d) .Schem atic picttu'c o f th e  sing le  sp in -n ion ien t(u n  lockc'd D irac con e  on BioSe;} 
surface. T h e  arrow s in d ica te  th e  d irection  o f  e lectron  sp in . F igu re from Ref. [3].

distribution of the photoeniittod electrons, one is able to extract the l)and 

structure  of the material. Since this is a surface sensitive techni(iue. it is i)ar- 

ticularly suited to study of j^rotected states on stuface of three-dimensional 

topological insulators. Furthermore, spin resolved A RPES makes it possible 

to determine the  sj)in polarization of these s tates and measure their si)in 

tex tm e  in the mom entum space. In fact. Bi-Sb alloy was the first three- 

dimensional to])ological insulator to be discovered ex])erimentally [11], by 

employing A RPES experiments, after an earlier theoretical prediction by Fti 

and Kane [12], However, the alloy has a complicated band structiu'e having 

five surface bands, with a tiny l)ulk band gap and since the material is not 

stoichiometric, it makes preparation of j)me samples more difficult.

In 2009, concturent theoretical [14] and exi)erimental [15] works revealed 

a new material exhibiting non-trivial topological insulator j)liase, namely
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F igure  1.3: (a) T opograph ic  im ago of a one h ilaycr te rrace  on S b ( l l l )  surface, (h) 
S patia lly  resolved d l / d V  p lo ts  in th e  te rrac e  and  ad jacen t flat region as a ftn iction of 
energy, (c) F ourier tran sfo rm  of th e  osc illa tions show ing two p rom inen t sc a tte r in g  vectors, 
(d) A sclien iatic  of th e  co n to u r o f su rface  s ta te s  at Ferm i energy w ith  th e  arrow s deno ting  
th e  s])in o f th e  s ta te . T h e  allowed sc a tte r in g  wave vectors q_\ an d  q s  ^ire m arked . F igure 
adai^ted from  Ref. [17].

Bi^Se.j. Ab initio  ca lcu la tions also p red ic ted  a siin ilar jihase in Bi2 Te;j and  

Sl)2 Te;j. T he  siu face  s ta te  of B i2 Sc3  m easured  by A R P E S  and  p red ic ted  by 

tirs t-p rinc ip les theo re tica l ca lcu la tions  is show n in P'ig. 1.2. It has an  ideal 

single D irac cone and  a re la tive ly  larger ban d  gap  of ~  0.3 eV. m aking  B i2 Se,s 

a jn o to ty p ic a l topological in su la to r. T he  helical na ttu 'e  of siu’face s ta te s , 

w hich is an  essentia l fea tu re  of topological in su la to rs , has been show n using 

si)in resolved A R P E S , along w ith  a B erry  phase  of tt a« one goes a round  th e  

D irac node. In C h a p te r  6, using  th is  canonical to])ological in su la to r we will 

s tu d y  th e  effect of barriers  on th e  sc a tte r in g  p ropertie s  of surface s ta te s . We 

will also d e m o n s tra te  a  single a to m  aniso tro j)ic  m agne to resis tance  effect on 

th e  surface of B i2 Se3  (C h a p te r  7).

S cann ing  tm m eling  m icroscopy (ST M ) is a n o th e r  key ex perim en ta l tech- 

niciue, which has enhanced  th e  u n d e rs ta n d in g  of toj)oIogical siu face  s ta te s  

and  hais also p rov ided  a  d irec t v isua liza tion  of s ig n a tu re s  of these  s ta te s  

w hen th ey  in te rac t w ith  im purities  an d  defects on th e  surface of th e  m ateria l. 

In STM  m easu rem en ts a sh a rp  tip  is positioned  w ith in  (}uantum  tu n n elin g  

d is tan ce  from  a siu'face. T h e  tu n n e lin g  conduc tance  { d l / d V )  is d irec tly  pro-
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portional to tlie density of states (DOS) of the sample, which allows prol)ing 

the energy distribution of these sta tes  with a high resolution over large spa­

tial regions. Furthermore, Fourier transform of the DOS allows extracting 

information about the scattering processes. The helical na tu re  of topological 

states, with opposite spin electrons moving in opposite directions, forlnds 

('xact backscattering a.s long a.s time reversal synnnetry is preserved. This 

crucial proj^erty has been dem onstrated  for Bi-Sb alloy with a random dis­

tribution of defects l)v analyzing (iua.siparticle interference pa tte rns  imaged 

using the STM [IG]. A nother im portant i)ro])erty of synmietrv-i)rotected sur­

face s tates is an enhanced transmission across strong surface disorder. This 

has also l>een shown in a toi)ological seniinietal Sb by using STM da ta  to 

niaj) onto a potential barrier model [17]. Transmission acro.ss a liarrier. in 

the form of surface steps on the S l ) ( l l l )  surface, was inferred l)v analysing 

the interference pa tte rn  of the surface states (Fig. 1.3). It was found tha t 

the surface s tates  are likely to  l>e transm itted  even in the presence of strong 

surface disorder. Fourier transform of the DOS gave the allowed scatt(>r- 

ing vectors, which were consistent with prohibited .s])in-Hij) backscattering. 

In Chai)ter 6 we will s tudy this system and its scattering ])roperties using 

first-principles transport calculations and will coni])are our findings with the 

experiments reported in Reference [17],

1.1 D issertation layout

Apart from the work presented in this thesis, other stand-alone investiga­

tions were also undertaken dm ing  the periofl of these studies. These include a 

theoretical anlaysis of multipk'-prol)e quan tum  spin Hall l)ars. the ini])lemen- 

tation of i)henonienology of Andreev reflection in a first-principles transport 

code, and a study of giant magnetoresistance in s])in-valves with pnjtotypical
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two-dinieuKional layered m ateria l  M 0 S 2  a.s a spacer. In an  ongoing study, in 

co llabora tion  w ith  ex])erinientalists. we are investigating the  effect of organic 

m olecular layers on tojwlogical surface s ta tes . T he  references to  these works 

is provided in th e  list of jm blica tions  in A ppend ix  F.

Following a general in troduc tion  in th is  chai)ter, th e  layout for the  rest of 

th e  thesis is as follows.

In C h a p te r  2 we discuss th e  basic notions of topology w ith in  the  parad igm  

of l)and theory. A l)rief in troduc tion  to  B erry  phase, electric and  tim e reversal 

po lar iza tion  is provided. T h is  se ts  th e  s tage  to  define a Z 2 invariant for 

t im e  reversal synnne tr ic  topological insulators. We also in troduce  the  Kane- 

Mele model, which is th e  i)rototy])ical m odel for tw o-dim ensional toj)ological 

insulators. F inally  we discuss the  ex tension  to  th ree  dimensions.

In Cha])ter  3 we outline  the  two m ain  n ie thods  used in th is  thesis; den ­

sity  fimctional theory, which provides a solution to  th e  electronic s tru c tu re  

m any -body  problem , and  th e  G reen 's  function m ethod , which allows tack ­

ling ( juantum  transj)ort  jn’oblems. A discussion of rela tiv istic  effects in solids, 

which are essential to  correctly  describe  th e  electronic s ta te s  in tojiological 

insulators , is i)rovided.

C h a p te r  4 presents  our  resu lts  for A ndreev  reflection in two-dim ensional 

topological insu la tors  (w ith  e ither  conserved or broken t im e  reversal sym m e­

try )  w hen they  form an  interface w ith  a superconduc to r .  We And a perfect 

Andreev  reflection for b o th  th e  cases, which is robust  to  disorder. For the  

t im e  reversal synnne tr ic  case we show th a t  ini])lanting one of the  edges w ith  

m agnetic  im purities  suppresses one of the  channels for A ndreev  reflection, 

while no such suppression  is seen for sym m etry  broken  s itua tion .

In C h a p te r  5 we investigate  spin-flip inelastic e lectron tunneling  spec­

troscopy for m agnetic  ad a to m s  dejjosited  a t th e  edge of two-dim ensional
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topcjlogical insulators. We d e m o n s tra te  th a t  th e  m agnetic  imi)uritv can  be 

m an ip u la te d  using th e  helical edge s ta tes . W’e also i)ropose a  four te rm i­

nal device, which is designed to  m an ip u la te  the  spin of th e  a d a to m  by all 

e lectrical means.

From m odel H am ilton ian  investigations, we move on to  m ateria l  spe ­

cific density  functional th eo ry  l)aseci studies. Cliajoter G presen ts  our hrst-  

principles t ra n sp o r t  calcu la tions for .scattering of topological surface sta tes. 

M otiva ted  by the  experim enta l  s tu d y  of Ref. [17], we consider transm ission  

across surface stei)s on S l ) ( l l l ) .  We hnd  a good agreem ent w ith  scanning  

tunne ling  m icroscopy ex])eriment. in p a rt icu la r  for lifetimes of q u a n tu m  well 

s ta te s  and  allowed sca t te r ing  wave vectors. Large scale ah initio  calculations 

on analogous s teps  on Bi 2 Se3 ( l l l )  surface reveal th a t  backsca tte r ing  is com ­

pletely sup])re.ssed for norm al incidence, while backsca tte r ing  is allowed at all 

o th e r  incidence angles. We also construc t  a po ten tia l  barr ier  model l)ased on 

the  often used Dirac H am ilton ian . A com parison  w ith  first-principles resu lts  

reveals th e  shortcom ings of such a model.

In Chai)ter  7 we d e m o n s tra te  a single m agnetic  a to m  anisotro])ic mag- 

ne to res is tance  on topological in su la to r  surfaces, aris ing from th e  in terplay  

betw een helical sp in-n iom entum -locked  surface electronic s t ru c tu re  an d  the  

hybrid iza tion  of th e  m agnetic  a d a to m  sta tes. O ur  ah initio  calcu la tions for 

M n a d a to m  on Bi 2 Sea e luc idate  th e  underly ing  m echanism  and  also reveal 

the  real space s]:iin t e x tu re  a ro u n d  th e  m agnetic  im inuity . We com plem ent 

our findings w ith  a two-dim ensional model valid for bo th  single a d a to m s  and  

m agnetic  clusters, which leads to  a i)ro]KJsed device se tup  for exi)erimental 

realization.

Next, we tu rn  our a t te n t io n  to  Dirac seniinietal system s in two as well as 

th ree-dim ensional system s. In C h a p te r  8 we jiresent our  proj)osal to  cnigineer
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a backscattering-free hybrid s ta te  in graphene by proxim ity w ith a three- 

dim ensional topological insulator. This hybrid s ta te  a t the interface has 

a Dirac-cone-like dis])ersion and  a well-defined helical spin tex ture. Using 

transpo rt calculations, we further confirm the  robustness of th is s ta te  to 

disorder. We investigate the  inter])lay of bulk and surface D irac s ta tes  in the 

three-dim ensional Dirac sem inietal NasBi. By employing density functional 

theory  in conjunction w ith coherent potential approxim ation, we also reveal 

a to])ological ])hase transition  in alloy Na3Bii_3.Sbj..

Finally, in Cha])ter 9 we })rovide a sununary of the work presented in this 

thesis, and we highlight some possil)le directions, which can be addressed in 

fu ture investigations.



Chapter 2

Basic notions of topology in 

band theory

111 this chai)ter we suniniarize the l)asic concepts of topology in the l)aii(l 

theoretical jMcture. W'e begin with an introduction to  band theory and the 

concept of Berry i)ha.se. potential and curvature. W’e then  discuss the conduc­

tivity of an insulator using the Kul)o formula and relate it to  the Chern num ­

ber and the quantized Hall response. The Su-Schrieffer-Heeger model, which 

provides an illustrative example of topological effects in a one-dimensional 

solid, is subsequently introduced. We then  formulate the concejit of electric 

polarization as a Berry i:>hase and introduce the notion of a time reversal 

polarization. This is used to define a Z 2 invariant for time reversal sym m et­

ric topological insulators. We then discuss the Kane-Mele model, which is 

a prototypical model for Z 2 tojxjlogical insulators in two dimensions and is 

one of the models u.sed in this work. Finally we end with a generalization to 

three-dimensional topological insulators. This brief overview is based on the 

review by Hasan and Kane [3] and the books by Bernevig and Hughes [18] 

and by Sheii [19].

1 1
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2.1 B and theory

Consider a system of non-interaeting electrons moving in the periodic poten­

tial produced l)v ions in a crystal. The Hamiltonian reads

H = ^  + V{r).  ( 2 . 1)
Ziu

where \ ' (r  +  R) =  V'(r) and R  is a Bravais lattice vector. From Bloch's 

theorem it follows that the solution of the jjrohlem is given l)v

H\4!„{r.k))  =  kj). (2.2)

|(/;„(r,k)) =  e*'" ''|u„(r, k)), (2.3)

where |u„(r,k)) is the Bloch s ta te  and k is the crystal mom entum restricted

to  the first Brillouin zone (BZ). T he  subscript i) denotes the band index. 

Translational synnnetry yields

|a„(r, k)) =  |» , (r  +  R. k)).  £ ’„(k) =  £'„(k +  G).  (2.4)

Here G is the set of reciprocal lattice vectors such tha t G - R  =  2 w n  {rn G Z).

Since k and k +  G are equivalent, the space of crystal m om entum  is a d- 

dimensional torus in a crystal extending in d  spatial dimensions.
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2.2 Berry phase, potential and curvature

L('t us consider a system with a Hamihonian which depends on a parameter 

R(f), which is a function of time. In the adiabatic ai)i)roximation, where 

R(f) varies slowly in time comparerl to the smallest energy scale of the sys­

tem, the instantaneous eigenvalues and eigenfunctions satisfy the Schrodinger 

ecjuation

H( R{f ) )  = |/;(R(f))) =  E„(R{t)}\n{R(t ))) .  (2.5)

From adial)aticity we have that the eigenstate |n(R(0))) remains the instan­

taneous eigenstate of H{Ti(t))  up to a phase 6. as R(f) is varied along some 

path C.

K’(0)) =  |»(R(0))), \ m )  = e‘̂ ^<^\u(R(t))). (2.6)

H ( R ( t ) ) \ m )  = (2.7)

Using the al)ove two ecjuations and the state normalization {{n{R{f))\ i i{R(t)))  

1). we obtain

E„{R(t))  -  i h { n { R m j ^ \ n ( R { t ) ) )  = (2.8)

which yields

f (̂f) =  ^ j | ^ ' £ ’„ (R (f ') ) f / f j^ V '(R (^ ') ) | ;^ l» (R .(^ ') )> ^ /^ '-  (2.9)

Here the first term is the usual dynamical phase arising from the Hamiltonian
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evohition. while the second term is called Berry phase [20],

I n

=  ' f  (2-lU)Jo

One can then dehne a vector j)otential or Berry connection as

A „(R ) =  / ( / ? (R ) |- ^ |» (R ) ) .  (2.11)
f /K ,

such that

y ^ A „ ( R ) - r / R ,  (2.12)

Under a gauge transformation

|»(R)) ^  e'^"^>|/^(R)), A ,(R )  ^  A „(R ) -  (2.13)

while the Berry phase transforms as

%  ^  -  I  -  V{R(7^))- (2.14)

where T  is the time taken to traverse C. Prior to Berry’s work it wa« believed 

that with a suitable gauge choice the phase 7 ,, can b(> cancelled so that to be 

physically irrelevant. We consider closed paths C, such that R (T) =  R(0). 

From the single-valuedness of the waveftmction

\n{R{T)))  =  |/7(R  =  ())). (2.15)

Any gauge transformation should preserve this single-valut'dness
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^u(R(r))|,^^(R(j.))) ^  _  Q^y (2.1G)

The aV)Ove two coiuhtioiis imply that

\ ( R ( 7 ’)) — \ (R (0 ) )  =  2/»7t, m E Z. (2-17)

The sini])le analysis above shows th a t  for a closed path  the Berry phase 

cannot he cancelled in general, unless it is a multiple of 27t. Furthermore, 

when C is a closed pa th  the Berry phase is gauge-in\'ariant, namely

^  A „(R )  • ( /R ^  ^  A „ (R ))  ■ds = j  /■(R) • (Is. (2.18)

where J^(R) =  V r  x A „ (R )  is the Berry cm vatm e.

An alternative exjjression for the Berry ])hase, which is more convenient for 

numerical com putation reads [18]

/■ ( , M R ) | ^ | m ( R ) )  X ( m ( R ) | 2 ^ | » ( R ) >  

■  ■ '  i s  (£„,(R)-£„(R))^ ■

The Chern nunil)er is defined as

C = —  T „ ( R ) - d s .  (2.20)
7(.lo.so(i

This is always an integer for a closed sm'face. i.e. a surface tha t has no 

boundaries, for example the surface of a sj^here or of a torus. A j)roof is 

provided in Appendix A. Note tha t the crucial ]X)int here is th a t  the surface 

is closed, i.e. it has no })oundaries.
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The above concepts can he transferred to an electron in a crystal by

identifying the crystal nionientuni k as the jiaranieter R . Analogously, it is

possible to dehue a vector |)otential

 ̂ ( ^ ^ n k  17 ^  h ^ r i k )  5 ( 2 - 2 1 )ok

which is the Berry connection in a periodic solid and the Berry curvature 

and phase read

7-„(k) =  Vk X A „(k), 7„ =  [  J-„(k) ■ d k ,  (2.22)
J  B Z

in a crystal.

2.2.1 C o n d u ctiv ity  o f  an insulator

The Kubo formula for the linear response electrical conductivity of a two- 

dimensional .sample reads

le^h ^  ^  ( n k | t ’̂ |? ? 7 k )(? 7 ik |( ;^ | / ;k )

— 2. Z. -------------------------------(«3)
n m . n ^ r n  k

where A  is the area of the sample, Va  is the velocity operator along direction 

a. /„k =  Ferrni-Dirac function and a ./ i  G The

current density flowing in linear response to an electric held, E p ,  is then

exjiressed as

(2.24)
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If the energy gap of the insulating sample is much larger than the teuiperature 

scale, then the Kubo fornmla can be further simplified to yield

2ê r?. ^  ^  Ini((?;k|ra|r/;k)(mk|( ’̂ |r)k))
=  2 . 2 . ^  _  £ , ) 2  ■

k neoccn^m ^

wliere the second suunnation is now over only the occu])ied bands. From 

the above expression it is clear that the longitudinal conductivity a^x  =  0. 

since the quantity (/)k|(’j.|/?;k)(n?k|jij.|Hk) =  |(?ik|(;j.|?/(k)|'^ is real. Now the 

velocity operator is defined a.s

1 O H
'' = 7,Ik-

The Hall conductivity cfj-y is

k neocc  \  , , / n ,  )

By identifying the (juantity in the parentheses a.s the Berry curvature and by 

rej^lacing the suunnation over k points with an integral —> A

J ^ n - d s ) .  (2.28)

we obtain

=2

h ^ —'  V 2yT J  o y
tl£occ '

where the quantity in the parentheses is the Choru number and is guaran­

teed to be an integer for a closed surface, which in this particular ca.se is the 

Brillouin zone. Thus, the Hall conductivity of an insulator is (quantized to be 

an integer multiple of quantum of conductance y .  This integer is the sum of 

the Chern numl)ers of all the occui)ied bands. For a quantum Hall insulator
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this coiiesponds to the number of tilled Landau levels.

2.3 T opology in one-d im ensional solid: Su- 

SchriefFer-Heeger m odel

C'onsider a one-dimensional chain of dimerized atoms described by the Hamil­

tonian [21]

H  = ' ^ { t  + + h e. (2.29)
i i

Here creates (destroys) an  electron at the site .4 of the /-th unit

cell. The underlying j)hysical reason for this dimerization (Peierls distor­

tion) is a lowering of the electron kinetic energy at half-filling. The above 

Hamiltonian was pro])osed a.s a model for polyacetylene, and in general is ap­

plied. with modihcatious due to the details of the l)and hlling, to augmented 

one-dimensional systems. Fourier transformation to the  mom entum s]:>ace 

yields

. (2.30)
k n d

where h{k) — d{k)  a with

dj.{k) = {f + St) + {t — St ) coska .  dy{k) — { t — St) nin ka,  dz{k) = 0. (2.31) 

and cr =  {(Tj.. ay. (t^} is the tr iad  of Pauli matrices. The eigenvahies are then
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E ± { k )  =  ± |d |  =  ± / 2 ( f 2  +  (Sty^) +  2(f2 -  (()7)2) cos ka, (2.32)

where a is the la ttice  constant. The spectrum  at h a lf- fillin g  is th a t o f an 

insu la to r a t f in ite  St. w hile  for St =  0 the system is a sem i-m etal. A t the 

edge o f the BZ, t lu ' low energy excita tions are D irac ferniions and not usual 

Schrodinger ferniions. By expanding around the edge o f BZ. k =  ^  — q

{qo <  1)

E± ( j'' =  ~  ~  ^/) ~  ±2v^(ff/r/)2 -h (St)'^. (2.33)

T h is  is a linear dispersion o f a D irac fe rn iion  w ith  ve loc ity  tn and mass St. 

For St =  I) we recover a massless D irac fen iiion  w ith  linear gapless bands. 

The ('igenstates o f the fu ll H am ilton ian  are given by

l ’̂+) —

^  cos 0/2  ^

sin 0/ 2 j
|A-)

^ — sin 6^/2 ^

e''* cos
(2.34)

where 0 — cos  ̂ and 6 =  tan  ' T lie  Berry

0/2J

o f the occupied band

IS [18. 19]

I - (2.35)

where S  is the surface enclosed by the path  C covered l)y vector c i(k ) as k 

goes from  —^ to  C is a closed loop since d(A' — —tt/ o) =  d ( k  =  n /a ) .  

is the solid angle tha t the  ])a tli C sul)tends at the o rig in  d  =  0. Since =  0. 

we on ly  need to  consider contours in the — dy plane, as shown in Fig. 2.1. 

Th is  gives us
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Figure 2 .1 :  The contour in d si)ac'o {d̂  = 0) for the two ease's (a) \vh('u it (io('s not 
enclose the nionopole at origin (St >  0) and (b) when the nionopole is within the contoin’
(Sf <  0).

7_ =  0. St > 0

=  7T, 6f < 0. (2.3G)

At St — 0 the  system  is gaj)less and serves a.s th e  point of a topological phase 

transition. T he topological d istinction  between dt < 0 and 3t > 0 is crucially 

hinged on (U = 0. Consider

{ h { k ) . a ' }  =  dj.{a^. a ' }  +  dy{a^.  <r~} +  = 2d^ =  0. (2.37)

In the al)ove expression we have used = 26°^. T he condition {/;(^’)- —

0, implies an associated sym m etry  called the  Chiral synnnetry. This is a re-

cm ring feature in topological band theory, where the  existence of a synnnetry

leads to  a classification ba-sed on a topological quantity.

From the  low energy exj)ansion around A' =  ^ it follows th a t

dj. ^  2St = in. dfj ^  atq = vq. (2.38)
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T h e  low energy H aniil ton ian  then  reads

+ vqa .̂ (2.39)

Now consider a dom ain  wall betw een regions of 8t > 0 and  St < 0, i.e., 

be tw een  regions of o])posite Dirac m ass rn. Since, we lose tran s la t iona l  syni-

For in{.r —>• —oc) >  0 and  n i (x  —>• oc) <  0 the  i)hysical (non-diverging) 

solu tion  is

T h is  localized zero-energy s ta te  at the  dom ain  wall is th e  Jackiw -Rebbi zero 

m ode [22]. It is p ro tec ted  by chiral syn u n e try  an d  is robust against de­

fo rm ations of the  H am ilton ian . Th is  is th e  zero-dim ensional analog to  the  

one-dim ensional edge s ta te s  and  th e  tw o-dim ensional surface s ta te s  in to p o ­

logical insulators.

n ie trv  we m ake  th e  replacem ent q —>• T he  zero energy solution satisfies

0. (2.40)

which yields

{ni -  r — ) i ' 2 = 0. 
Ox

(2.41)

Ox
(2.42)

V 7
(2.43)
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2.4 E lectric and tim e reversal polarization

T h e  electric po lariza tion  P  is defined as the  electric dipole m om ent per  un it  

volume

w here th e  sum  is carried  out over all dipole m om ents  p , and  V" is the  volume 

of the  m ateria l. Note th a t  P  is an  am biguously  defined q u a n ti ty  depend ing  

on th e  choice of unit cell ( ind iv idual dipole). In the  pioneering work by 

Vanderl)ilt and  R esta  it was shown th a t  th e  electric po lariza tion  is rela ted  

to  the  Berry  pliast' [23. 24]

T h e  am ljiguity  of P  carries over in th is  form ulation since th e  Berry pliase is 

also defined only m odulo  27t.

2.4.1 T im e reversal sym m etry  and Z2 invariant

For a periodic  system  with t im e  reversal synm ie try  (TRS)

where (-) =  icTylC  is th e  t im e  reversal o p e ra to r  and  1C perform s complex 

conjugation . T he  points . T,, in th e  Brillouin zone which satisfy

(2.44)

(2.45)

H ( - k )  = (2.46)

—r j — T; +  £ Z. (2 .4 1 )

are  called the  tim e  reversal invariant m om en ta  (T R IM ). At these i)oints the
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Figure 2.2: A sch eiiia tic  t)f geiierir band structiiro  for a one-(iiiiK 'iisioiial sy s tem  w ith  
o iilv  tim e n 'versal svm m etrv .

Hamiltonian is always dotibly degenerate due to Kramers' theorem.

H{T,)  =  (2.48)

For a ont'-diniensional system with TRS and no other synnnetry (and hence

no other degeneracy) the  band structure  is shown schematically in Fig. 2.2. 

Notice th a t  all bands are non-degenerate excei)t at the TRIM  k  =  0. C /2 .

It is possible to identify each of the Kraniers pairs by lal)els I and II. These 

are degenerate at the TRIM  (k = 0. tt). Away from these TRIM  we have 

£^n.i(k) — E„[i{—k),  but not necessarily E„j(A') =  E„M{k).  The Kramers 

pair eigenstates satisfy

\ u [ ( - k ) )  = - e ‘^^’‘G\u]l{k))., n =  1 .2 ... .V. (2.49)

Here „ is the f.'(l) gauge freedom of the eigenstate.

(-)|«;,(-A-)) =  -Br'^^"(-)|»|,‘(A')) =  ( - ' ^^ ’‘Wuik)) .  (2.50)

which gives
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\u]]{-k-)) = (2.51)

Now we define a pmf i . al  polarizat iori  following the Berry phase ex])ression for 

the ])olarization [25]

m - .  -<■ =  '  E  < » l i ( » ) I ^ K ( * ) ) .  » =  I. II- (2.52)
n€occ

Here .4̂ , =  i ■ Using the anti-unitarity  of 0  and the 

normalization of it can be shown tha t [25]

n^occ

This yields for the partial i)olarization

■■'U =  +  Y . - J f '
n^occ

\  neocc
2^ , ,   /  \o„) 1 . (2.54)

Define a U{2N)  matrix  at each k

«''m«(/i-) =  (»m(-A')|0|»Ti(A'))- (2.55)

This m atrix  is block-diagonal such th a t

/
u'{k) =  d iag (u 'i(/,•). u' i i k)  u'x{k)) .  a'a(k') =

0 —

0
. (2.5C)
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'I'he time reversal ojierator 0  connects only the Kramers partners and does

not mix the  labels 1 N .  Now. at the TRIM  is an anti-symmetric matrix.

i.e. W’e use the Pfaffian of w (a discussion on Pfaffians and their

])roperties follows in Aj)])endix B)

Pf[w(0)] =  Pf[u'(7r)] =  (2.57)

This gives

X^r,-XOr. ^  ( 2  5 8 )

P f k ( o ) ] -  ' ■ ^

( 2 , 9 ,
Pf[»'(0)]

The above equations along with the expression for P* yields

r  = —
1

2tt

Pf[»’(7r)]
(2.60)

and analogously

P "  =  —  
2tt —  7T P f k ( o ) ]

(2.6i;

Next we define a time reversal polarization Pe

pi _ pU 

1

2tt

1
27T/

r A,(Ik -  [
Jo J

f- / ( )

Ai,(lk +  2i In

Tr Vi.«' -  2 In

/  Pf[»’(7T)]
V Pf [«'('»)]

Pf[»-(7T)] 
Pf[«'(0)]

(2.62)
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In the  last stej) above we have used the  off-diagonal s t ru c tu re  of ir

0 e
V ,

Q _^\Kn

=  > C ^  k - \ - k - n — ' ^ k \ k ; t
—  f ^Xkn QV " w ^ e > \ - k n  0 ^

(2.63)

Using th e  identity  Tr[ln w] =  ln [de t(« ’)] th e  t im e reversal po lar iza tion  can  l>e 

rew ri t ten  as

27t/ \  d e t[u ’(0)] P f[» ’(0)]

= 1 In ( Pf[»'(0)] \
ni  P f [» ’(7r)] y /d e t[» ’(0)] J

Since ir is a un i ta ry  m atr ix  {w^w =  1). Pf((/') and  de t( i / ’) are  u n i ta ry  complex 

num bers

de t(f r)  =  e '" . P f (« 0  =  » e  Z. (2.65)

Using th e  above expressions

=  i -  =  w  -  n. (2.66)
TT?

Hence Pq is an  integer. M oreover since the  logari thm  is defined only moduJo 

27ri, th e  t im e  reversal po lar iza tion  is defined only m odulo  2. Th is  reveals Pg 

to  be a  Z 2 index. T h e  al)ove expression m ay be rew 'ritten as

_  yde t[u -(0 )]  ydet[» '(7r)]

 ̂  ̂ P f[u ’(0)] Pf[(r(7T)] ■  ̂  ̂ ^

Each of the  factors in the  above expression ■■ =  ± 1  and  =
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± 1 . So. =  1 if the term changes .sign between k  =  0 and k  = n.

This in(hcates a toi)ological phase, while P  ̂ =  0 corresponds to a topologi­

cally trivial j^hase. In two dim ensions we have

where F, represent the four TRIM  {(0, 0). (0, tt/ c/), (yr/f/. 0), (yr/a, 7r/a)} in 

two dim ensions.

To siunm arize. the Z 2 invariant ly for two-dim ensional TRS ol)eying insulators 

is given by

:-ir= n  '*'■ '*'= “-»= (2 69)
jSTHI M

Here u' is a 2 N  x 2.Y unitary m atrix and 2A" is the number of occupied  

bulk hands. It api)ears as if the invariant dejjends only on the Bloch eigen­

states at the TRIM , while in the derivation one needs to integrate over all 

m om enta. However, to calculate the .scjuare root consistently one needs to  

choose a sm ooth gauge for \uicn) over the entire BZ and hence the ai)])areut 

sini])lification is lost in general. In the special case of insulators, which obey  

inversion synunetry. a sinijjlified invariant can be constructed. Consider an 

inversion synunetric system  with the Bloch H am iltonian satisfying

/;(k) =  n / ? ( - k ) n - ^  (2.70)

where O is the inversion operator, which is unitary (IlH^ =  1). Since a 

cr>’sta l comes back to itself on in\-ei ting twice we also have =  1 and the
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eigenvalues of FI are  ±1. At a TRIM /)(k) =  /;(—k) so [//(k).n] =  0 a n d  as 

a eonscHiuenee l i {T, )  and  H can  be diagonalized sim ultaneously

n|»„(r,)) = ^„(r,)|»„(r,)). = ± i .  (2.71)

Fu and K ane  have shown th a t  for insu la to rs  w ith  b o th  t im e  reversal and  

inversion synnnetr ies  th e  topological invariant is given by [26]

.V

i S T R I M  m =  l

were is th e  pari ty  eigenvalue of th e  2//;-th occupied band  at the

TRIM F/. So in i)resence of inversion sym m etry  th e  toi)ological invariant 

can be de te rm ined  by eva lua ting  th e  p a r i ty  eigenvalues a t the  T R IM  for the  

occupied bulk bands. T h is  is a great simplification and  si)ecially u.seful for 

first-princii)les api)roaches w here th e  pa ri ty  of the  eigenvalues is easily acces­

sible.

2.5 K ane-M ele m odel

A m odel for a two-dim ensional t im e reversal invariant toj)ological insu la tor  

was in troduced  by K ane and  Mele [27. 28]. T he  H am ilton ian  defined on a 

honeycomi) lat t ice  reads

=  t  ^  X !  (2.73)
( u )  * i i v ) )

Here th e  oj^erator r j  (r,) c rea tes  (destroys) an  e lec tron  at site  i. T h e  first 

te rm  is a nearest ne ighbour hopping  w ith  s tre n g th  f, th e  second te rm  is a 

s taggered  sub la t t ice  j^otential such th a t  =  +1 for .4 ty])e sub la t t ice  and



Chapter 2 2 9
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Figure 2 .3 :  T h e  bulk hand str iictu rc  o f  th e  K aue-M ele u iodel for different vah ies o f 
A.s'o fiiid sh ow in g  different phases (a) p ristine graphene, (h) top o log ica l insulat.or w ith  
inversion syn n n etrv . (c) to])o logical in su la tor  w ith  broken inversion synnnc'try. and (d) 
triv ia l in su la tor  w ith  broken inversion sym m etry .

— 1 for B  sublattice, while the last term is a complex next-nearest 

neighbour hop])ing with strength A^o- The factor is 4-1 if the hoi)ping is 

counterck)ckwise. while it is —1 for clockwise hoi)ping. Here .s" =  ±1 cor- 

res])on(ls to the electron sj)in. The third term in the Hamiltonian cou])les 

the s])in and orbital motion of the electron, thereby mimicking a spin-orbit 

coupling. This Hamiltonian is gapped for non-zero A,, and \so -  It rei)re- 

sents a two-dimensional to])ok)gical insulator (or ciuantmn spin Hall state) 

for values of A[. < Z \/^ \so -  Fmtherniore it can be shown that the state is 

preserved even in ])resence of terms in the Hamiltonian, which dcj not con­

serve the 2  component of the electron sj)in. The model has a non-trivial Z 2 

invariant, as a consequence of which its interface with an insulator of distinct 

topology should host topological states. We show the former l)y calculating 

the topological invariant directly, while the latter is shown by numerically 

diagonalizing the Hamiltonian in a ribbon geometry, i.e an interface with 

topologically trivial vacuum.

Xow we tm-n to calculation of the Z 2 invariant and for sinii)licity we
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Figure 2.4: The haiul structure  of the Kaiie-Mele nuxlel for 42 sites wide ribl)on geom­
etry for (iitt'er('iit values of Xgo and A,, illustrating (a) pristine grai)lieiie. (h) topological 
insulator with inversion synnnetry. (c) topological insulator with hrokc'n invcnsion synnne- 
trv. and (d) trivial insulator with broken inversion syninietrv.

consider a case, which does not break inversion sym m etry so that one can 

use the parity criterion instead of the full Pfaffian construction. Consider a 

general unit cell with four degrees of freedom; two for sublattice (denoted by 

a ' )  and two for sj)in (denoted by ,s' ). The parity (operator is given by

where 1 is the  identity matrix  for the spin indices since they do not change 

under inversion. Tlie time reversal o])erator reads

where K. is the conii:)lex conjugation operator and this time the identity 

m atrix  acts on the sublattice index. Any 4 x 4  m atrix  can be represented 

by using the identity I .  five Dirac matrices P '  and their ten conunutators 

_  [p". r^^]/2/. One choice for the  Dirac matrices (for them to be even 

under OB) is

(2.74)

(2.75)
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r(i.2.:ii.5) ^  (g, J 0  0  .s..". (g, ,s^). (2.76)

Notice tha t =  0 . This choice gives

0 P ( - ) - i  =  nrn-' =  + p .  a = i

=  - r " .  a +  1. (2.77)

111 contrast the ten coniiniitators are odd under conii)ined time reversal and 

parity (r i( - ) ) r" ' ' (n 0 )“ ' =  —r'*''. From time reversal and inversion symmetries 

[ / / (k ).  OB] =  0. and the most general Hamiltonian can be w ritten as

5

H( k )  = do{k)I  + Y . d a ( k ) r .  (2.78)
0  =  1

T he eiK'rgy eigenvalues are  then

^ ( k )  =  r /o(k)  ±

At the TRIM  only F ' is even under time reversal and parity and hence the 

other terms drop out and the parity  eigenvalues for the states at the TRIM  

are eigeiu'alues of FI.

(2.79)

d, =  - s i g n  [f/,(k =  F ,) ] . (2.80)

For th(' Kaiie-Mc'le model \v(> hav('



32 Basic notions of topology in band tlioory

(/1 =   ̂(T +  cos X 1 +  cos X2 ).

(I> — f(sin j'l +  sin.T2 ),

4  =  2Aso[siii.t’i -  sin.r2 -  sin(.ri -  T2 )], (2.81)

while all the other d's are zero and  Xj = k • a,. The TRIM  occur at x, =

k ■ a, =  tijTT with n, =  0.1. This gives us

^i=(m) =  ^i=(io) =  ^̂ 'i=(()i) =  — 1- '̂i=((H)) =  +1- (2.82)

Using the above equation we obta in  z/ =  1 and the fact tha t the model de­

scribes a (luantum spin Hall insulator â s long as the bulk energy gap remains 

finite. The role of the Xso  term is to keej) the energy gap finite over tlie 

entire BZ.

The l)ulk band structure  for the Kane-Mele model is shown in Fig. 2.3. 

For Xso = Xi, — 0 (graphene), the  system is a zero-gap semiconductor. 

F inite Xso,  with vanishing A|. opens an energy gap in the si)ectruni. with the 

bands being doubly degenerate owing to inversion synnuetry. Introducing a 

finite A,, l)reaks this degeneracy. We have diagonalized the Hamiltonian in a 

ril)lx)n geometry with zigzag edges and  the resulting eigenvalues are shown 

in Fig. 2.4. The two pair of edge s ta tes  (one pair for each edge) now span 

the  bulk band gap in Fig. 2.4(b) and (c). These metallic states are also sj)in 

I)olarized with opposite spins comiter-j^ropagating at a given edge. These 

are the so-called helical edge states. W hen Aj, >  3\/3Xso,  the  edge states 

disappear and system reverts back to a trivial insulator pha-se [Fig. 2.4(d)].
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(a) (b) Ky n
3,4

1,2

Figure  2.5: T h e  hulk  Brillotiiu zone for a tw o-diiiu 'iisioiial system . T h e  tim e reversal 
invarian t m om en ta  a re  markc'd. T h e  righ t ])anel shows th e  jiro jeetion  to  th e  c'dge B rillouin 
zon('.

2.6 G eneralization to  three dim ensions

C’ousider the  ])r()jectioii of th e  bu lk  BZ of a two-diiiiensioiial topological 

in su la to r  to  i ts  ('dge BZ. For the  l)ulk we have

1

( - i r  =  (2.83)
1 = 1

T h e  ('dge is along the  ij dirc'ction as shown in Fig. 2.5. If the  i)roduct 

and  d-.iS.i have the  sam e sign then  the  insu la tor  is trivial and  will have zero 

(or an  ('ven num ber)  of edge s ta te s  crossing th e  Fermi level. O n the  o ther  

hand , if <in<l have oi)posite signs, th en  there  would exist a t  least 

one (or in g('iieral an odd  num ber)  surface s ta te  crossing the  Fermi energy, as 

long a.s it is in the  bulk gap. T he  two s i tua tions  are sketched schem atically  

in Fig. 2.G.

\ o \ v  one can generalize th e  sam e  to  a th ree-d im ensional system . In this ca.se 

t h e n '  exist eight T R IM  as shown in Fig. 2.7 for a BZ w ith  cubic symm etry, 

(^ 'iierically  these can be represen ted  by

F, =  ~ ( / / [b i  /?2b2 +  ). I I I . n-2 - ii.i G Z. (2.84)

Analogously to  tlu ' two-dim ensional s itua tion , p ro jec tions  can be ])('rfornied
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(b) A

G /2 G/2

F igure 2.6: Schcn iatic  ('dge hand stnic'turo for a tw o-d iiiiensio iia l (a) triv ia l and (h) 
top o log ica l insu lator. T h e  sh aded  regions reprc'sent th e  hulk hands. T h en - exist an even  
nunil)er o f  ed ge hand s crossing th e  Ferm i level for th e  tr iv ia l case, w h ile  for a to])ol()gical 
in su la tor  an odd  nunihcr o f  syn n n etrv  protected  ('dge han ds connect th e  bulk valence  
and  co n d u ctio n  hands. T h e  han ds are necessarily  d egen erate  at T R IM  ow ing to  Kranu'rs 
theorem .

F igure 2 .7 :  T h e  hulk B rillouin  zone for a th ree-d im en sion a l cub ic sy stem . T h e eight 
tim e re\'(Tsal invariant m om enta  ar(> m arked. T h e  rigiit panel show s th e  projection  to  one  
o f t h(' surface B rillouin  zones.

o n to  (hfferent surfaces, which now conta in  foiu' T R IM . O ne can then  define  

four Z 2 invariants as [29]

( - 1)'"
H2 .0 3 = 0.1

ti] j t 3 = 0 .1

^nin-2'

T h e first invariant is th e  strong top o log ica l invariant, w hile th e other three  

are invariants corresponding to  a particu lar tw o-d im ensional ])lane and are
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i I I k /(„

t> > •

A

I)----------------------- (

F i g u r e  2 .8 :  A coiu])aii.son between (a) tr ivial insulator,  (b) s trong  toi)ological insnlator.  
and  (e) weak topological insulator .  Th(' ])anels b(>low .show the  p ro jec tion  on to  a two- 
d im ensional surface Brillouin zone where the  filled circles indicate a surfac(' stat(> th a t  
crosses tlie Fermi energy.

not t rue  thn 'e-d in iensiona l invariants . T he  quadrup le t  of eoni-

])letely describes th e  topological classitication of a th ree-d im ensional to p o ­

logical insulator. In con tras t  to  th e  tw o-dim ensional system . \vher(‘ there  

are only two clas.ses of insulators, there  exists a richer classification in three  

dimensions. Some exam ples are shown in Fig. 2.8. W h e n  1/^  =  1. the  system  

is said to  be a s trong  topological insu la tor. A slab m ade  of such an instilator 

will host a n  odd  num ber  of m etallic  surface s ta tes . It is possible to  have 

two of rt,'s to  l)e —1. which renders  the  principal topological invariant uq 

to  1)0 zero. However, such a system  would display an even num ber  of su r­

face s ta te s  only along certa in  p lanes and  not along o thers  as exemplified in 

Fig. 2.8(c). These  a re  called weak topological insulators. T h e  conventional 

(trivial) insu la to rs  have — 0 a n d  the  S i ' s  a t  all T R IM  have th e  sam e sign.
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Chapter 3

D ensity functional theory and 

Green’s functions for transport

111 this cha])ter we hrietly outUne the  two main m ethods \ised in this the ­

sis. density functional theory for electronic structure  and Green's fimctions 

method for quantum  transport.  In the section on density functional theory 

w(' begin by introducing the many l)ody problem for a set of interacting elec­

trons and ions, tlu'n we move on to  the theorems of Holienlx'rg and Kohn. 

Next we discuss the Kohn-Sham fornmlation and different a])proximations 

to the exchange-correlation functioual. The idea of pseudopotentials is then 

introduced and we discuss the Trullier-Martins norm-conserving scheme. Fi­

nally we end the section with a discvission of relativistic effects in solids and 

sunnnarize the inij)lementation of spin-orbit interaction in the SIEST.A code.

hi the section on Green's functions, we introduce definitions for the 

Green's functions and self-energies. We then summarize the ex])ressions 

for current and transmission in the  particular ca«e of a two-terminal setup, 

riie .section on density functional theory is ba.sed on References [30. 31. 32]. 

'I'he subseciiu'iit section on Green 's  function methods is based on Refer-

37



38 Density functional theory and Green's functions for trans])ort

ences [34, 35].

3.1 D en sity  functional theory

The H am iltonian for a set of interacting electrons and ions is given by

h i  -  " V  V "  V "  I ^ Z j Z j e ^

2riif ^  ' 2Mi ^  ' 2 ^  |rj — r |̂ ^  |r, -  R / | 2 ^  |R / — R,/|

(3.1)

where nie is the electron mass. M i  is m ass o f the 7-th ion. Z/ is the charge of 

the I- \h  ion. e is the electron charge and h =  h/'In is the reduced Planck's 

constant. Here r, and R,/ denote the position of /-th electron and J -th  ion. 

resi)ectivelv. Since. M j  3> tUp one m ay treat the ions as static and droi) out 

the ionic kinetic energy. The Hamiltonian can be rewritten as

I  I

where Vpxt(r) =  — / tr - r , |  external  potential energy due to the ions

and E\on =  |  Y l i ^ j  \n,^'n ,\  potential energy due to the ion-ion inter­

action. The above Hamiltonian is still not solvable directly and one needs to  

resort to  a[)proximations. Density functional theory, in ])rinciple ('xact, i)rcj- 

vides the route to one such approxim ation to solve the m any-body j)roblem. 

It is ba.sed on the Hohenberg-Kolm theorems:

Theorem  1: Tlie external potential Vext(r) is a unique functional of the 

ground sta te  electron density /;(r).

Proof: Consider two ])Otentials VpxV(r) and lp x /(r ). which differ by more than
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a constant and give the same ground state density n{r).  Since they l)clong 

to (hstinct Hamiltonians h H-I and they yield different ground state

wavefunctions and respectively. From the variational principle we 

have

We have assumed that there is no ground state degeneracy, which means that 

the in.eciuality strictly holds.

which gives.

Ed)  < + (3 5)

Since the ground state densities for the two potentials are the same, the 

above can l)e rewritten as

£^(1) <  £-(2 ) ^  j {3. 6)

If we had started with the variational principle for instead of we 

would have obtained

£■'“' <  E ' " +  / H f . ' ( r )  -  l lV (r ) l i i (r )< /r .  (3.^

From the two inequalities we arrive at a contradiction. < i:*'* +

Thus, our a,ssumi)tion that two external i)otentials can give the same 

ground state density wa.s wrong.
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ll ieo ren i 2: A universal energy functional of the electron density. £ ’[^i(r)]. 

exists. The density that niininiizes this functional is the exact ground state 

density.

Proof: Define a functional F[/;(r)] a.s the expectation value of the kinetic 

('uergy and electron-electron interaction energy for a wavefunction

2m,
(3.8)

The ground sta te  energy is

E[ii] ^  F[/?] +  J  V;xt(r)??(r)r/r  + (3.9)

This functional is minimized l)y the exact ground s ta te  density, as can l)e 

seen from the variational i)rinciple.

Since such a universal functional, F[n], is unknown Kohn and Sham refor­

mulated the variational j^roblem in a form suitable to  construct approxima­

tions. Consider an auxilliary non-interacting system with the Hamiltonian

A '
2m,

/ / a u x  = -:r— V2 + VVs(r). (3.10)

The single-particle solutions of the  Hamiltonian satisfy a Schrodinger-like 

ecjuation

2ni,
-V '  +  V},.,(r) (3.11)
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whore 0,(r) are the single-particle eigenstates. Then the ground state electron 

density is given by

n(r) = Y ^ \ o , { r ) f .  (3.12)
i

The exact ground state density can be expressed in terms of the solutions of 

an auxilliary non-interacting problem. This is the crucial idea of the Kohn- 

Sham fcjrmulation. This reformulation allows constructing approximations to 

the universal functional F[n]. One can then minimize the energy functional 

in terms of 0,'s.

For the auxilliary system, define

T k s [ » ]  =  - : ^ J 2 ^ ( p , [ n ] \ V ~ \ ^ , [ n ] ) -  E n [ n ]  = —̂  j  .
(3.13)

where l \ s  f^nd En  are the kinetic and Hartree energies of the Kohn-Sham 

auxilliary system, respectively. Now the universal energy functional may b(> 

rewritten as

E[n] = { T k s [h] -  7V.s[h] +  En[n] -  £'//[?;]) +  F[n] +  J  \;.xt(r)/?(r)f/r + Ei^n 

=  T,,s[n] + £ ’//[»] -H I  V;xt(r)??(r)f/r -h Ê ^n +  (3.14)

where is the exchange-correlation functional. It is dehned as the dif­

ference between tlu* sum of expectation vahies of the kinetic and Hartree 

energies of the actual interacting system and the auxilliary non-interacting 

.system.
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E j . c [ u ]  =  F[«] -  T K s [ n ]  -  E h [ i i ] .  (3.15)

Approximate expressions for the functional Ej.c[n] are easier to find as com­

pared to approximate forms for F[n]. The density may be expressed in terms 

of the orbitals and the minimization may be performed over them, by im­

posing

=  0. (3.16)S0i(r)

along with the constraint (o,|0;) =  d,j. This yields the expression for the 

Kohn-Sham ])otential.

\ 'Ks(r)  =  Vext(r) +  \'w(r) +  ^rc(r)- (3.17)

where

Vnir)  =  [  r ^ * ' -  V;,(r) =  ^  (3.18)
J  | r  —  r  I d7 i [ r )

Thus, in the Kohn-Sham reformulation one needs to find the N  lowest energy 

solutions of the Kohn-Sham equation.

Hh-s(pi{r) =
2n), • +  Vpxt (r ) +

/? r
r — r'

- d r '  + i;^(r) (;̂ ),(r) = fi0i(r).

(3.19)

The corresponding density is the exact ground state density of the original 

many-body problem and is its exact ground state energy.

The caveat of DFT is tha t the exchange-correlation fimctional is un­

known. So, in jnactice. one needs to make approximations to Vj. .̂ Also, one 

needs to be careful a.s the Kohn-Sham eigenvalues and eigenvectors are not
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the real energy and wavefuuctions of the physical system. In practice, how­

ever. they are routinely interpreted as a first approximation to the energy 

and eigenstates of the system. In this work we take this ‘’hberal" point of 

view.

The earliest and still one of the  most widely used approximation to the 

exchange correlation functional is the  so-called local density approximation 

(LDA). One assumes tha t.

where is the exchange-correlati(jn energy density of homogeneous elec- 

trcjn gas. The expression for exchange energy for the homogeneous electron 

gas is known analytically, while various parameterizations for the correlation 

term have been tabulated  l>ased on accurate Montc'-Carlo com putations [33j.

The Kohn-Sham reformulation can also l)e performed in terms of densities 

of u]) and dcjwn spin electrons. iu{r]  and »4,(r). The Kohn-Sham efjuation 

can then be written down for })oth spins

where a =  ( t , i )  is the spin index and the exchange-correlation potential, 

~  spill dependent. Similar to the LDA one can make

a local spin density approxim ation (LSDA) to the exchange-correlation func­

tional

(3.20)

/ I  —  1

(3.22)
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where ( r ) . / ; ;( r ) ]  is the energy density of the uniform electron gas

with constant spin up and down densities. Instead of and one may 

also formulate the Kohn-Sham equations in terms of electron density. u{r) =  

» l ( r )  +  n |( r ) .  and spin magnetization, ni{r) =  —/i;(r)]. Here j.i,. is the

magnetic moment of electron (Bohr magneton). One can dehue an average 

exchange-correlation ])otential \ j.<(r) =  and a local effective magnetic 

fiekl i5jc(r) =  The Kohn-Sham equations can then be rewritten as

2nie

2nif

V '  +  Uxt(r) + e^ J  +  V^Jr) -  //eB.c(r)

■ +  \  ex t ( r )  +  f  ---------- — d r '  +  \ ^ { v )  +  f i f _ B j r . c ( r )
J r - r

It is also ])ossible to generalize the  Kohn-Sham fornuilation to the case of 

non-collinear spins. One then  works with the full spin density matrix. 

and the Kohn-Sham equation reads

1)2 r
y 2  +  l w ( r )  +  e '

2 m
( 3 .2 4 )

In the  above equation, the exchange-correlation functional, \ {y) =

in general has non-zero off-diagonal terms. This is usually ol)tained l)v di- 

agonalizing tlie spin density m atrix  at each point r  and then one uses the 

f^“"'[?!|(r)./?;(r)] energy density as in the collinear case. As for the collinear 

prol)lem, the non-collinear case can be reformulated in term s of

/)(r) =  Tr[/)'"'"'(r)]. ni(r) =  //e ^  (3.25)
fTifT2

whore cr — (jy. is the tr iad  of PauH matrices. The Kohn-Sham ('qua-
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tioii now takes  th e  form

{' Imp r — r  I J
(3.26)

A no the r  frequently  used aj:)proximation to  the  exchange-eorrela tion en­

ergy is th e  generalized grad ien t ai)])roximation (G G A ), in which, as the  nam e 

suggests, th e  exchange-correla tion  energy dei)ends on the  gradient of the  

density  f j “ ' '[ /i(r) . V //(r)] .  In m ost of the  proljlems s tud ied  in this work, we 

emi)loy e ither  th e  LDA or th e  G G A  for the  exchange-correla tion energy.

3.1.1 P seu d o p o te iit ia ls

T he electronic s ta te s  of an  a to m  can he divided into core and  valence sta tes. 

T he  core s ta te s  refer to  the  fully occupied inner shells. T he  valence s ta te s  

are the  o u te r  shells, which tak e  p a r t  in the  chemical bonding. Since the  

p roperties  of th e  core s ta te s  are  not affected nuich by the  chemical environ­

m ent. it is })ossil)le to  consider only th e  valence electrons in the  calculation. 

C’ore s ta te s  and  tlie nucleus are  replaced hy a pseudopoten tia l.  which

avoids the  s ingularity  a t th e  nucleus l)ut reproduces  the  real ])otential at 

sufficiently far distances. T h is  g rea t ly  reduces the  co m p u ta tio n a l  cost of a 

ty])ical calculation.

Ct)usider an  isolated a to m  w ith  spherical synnnetrv . T h e  radial p a r t  

of the  Schrodinger eejuation for a spherically  synnnetr ic  i)otential V { r ) .  in 

a tom ic un its  {ni(. — e — h =  47Tfo =  !)• reads
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2 *^  + - 175- +  '1 0 (3.27)

where 0 /( r )  is the  radial j)art of the  full wavefunction (/.’(r)  — ( l / r ) 0 / ( r )  ̂  lm{^' 0 ) 

and  }/„, are th e  spherical harm onics. O ne  of th e  i)ossil)le ])seudopotentials 

choice is given by the  T ru ll ie r-M artins  norm -conserv ing  scheme. In this 

schem e the  j iseudopotentia ls  are  chosen to  satisfy th e  following conditions:

1. P'or a given a tom ic  configuration th e  valence eigenvalues of the  real (all­

electron) j)otential and  p seudopo ten t ia l  arc the  same.

2. Beyond a core radius. th e  valence e igensta tes  of the  real j io tential and  

})seu(lopotential are ecjual.

3. Inside th e  core radius, th e  to ta l  charges of b o th  th e  all-electron and  pseu­

dopo ten t ia l  e igenstates  are ecjual.

4. T h e  logarithm ic  derivative and  th e  energy derivative of th e  logarithm ic 

derivative of the  real and  p seudopo ten t ia l  e igensta tes  are  sam e for r  >  rv.

T he  first cond ition  ensures th a t  th e  real po ten t ia l  an d  the  pseudopoten tia l  

give th e  sam e eigenenergies. for a given a tom ic  configuration. T he  second 

cond it ion  ensures  th a t  the  all-electron an d  p seudopo ten t ia l  e igenfunctions 

m a tc h  I)eyond th e  core region. T h e  th ird  condition  ensures th a t  the  e lectro­

s ta t ic  p o ten t ia l  of th e  real and  pseudo wavefunction are  identical. T he  fourth  

cond it ion  ensures th a t  th e  sca t te r in g  from the  real po ten t ia l  and pseudo])o- 

ten t ia l  m atches  not only a t  the  eigenenergies, l)ut also a t energies nearby  

th e  eigenvalues. T h e  p rocedure  to  construc t  the  ]iseudoi)otential is a.s fol­

lows. O ne  solves th e  K ohn-S ham  ecjuation for the  j)otential of one ion. T he  

K o lm -equa tion  for each /-comj^onent 0i{r)  reads
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1 ,r̂  1(1 + 1) ze ,,, , , ;
0 ,(r) =  ei0i{r).  (3.28)

Olio then (Uvides the set 0/ h ito core and valence wavefunctions. The next 

step is to construct an operator such tha t tlie  pseudo wavefunctions

apart from satisfying the above criteria, also satisfy

1 ( h  /(/ +  1) PS \ ' P S (  s I y P S (  \

2 dr^ 2r2 ^   ̂  ̂ ’
PS I

where I and \ are usual Hartree and exchange-correlation potentials, 

but evaluated at the pseudo wavefunction density. The form of the ])seu- 

dopotential operator reads

V — Viooal(r) +  i ? / | \ / m ) ( \ / m l -  (3.30)
Im

One of the ways to choose coefficients Bi  and states \ /, „  is to construct 

the solutions 0 f ^ { r )  and \iocai(^")- which satisfy the above mentioned four 

l)ioi)ertics. Then, one can obtain from

\ h n { r )  = (I (3.31)

and

B i = :,PS\ ' 
hn I

(3.32)
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3.1.2 R elativistic  effects in solids

Spin-orbit in terac tion  is a rela tiv istic  effect, which becomes part icu la rly  im ­

po r ta n t  for elem ents w ith  a large a tom ic  num ber. In i)articular, it is essential 

to  include spin-orbit effects to  correc tly  describe electronic staters in topolog­

ical insulators , which are  the  focus of th is  thesis. In th is  sul)section, we begin 

w ith  a  derivation  of th e  Pauli  equa tion  from the  Dirac equation . All-electron 

Dirac or Pauli ('(jnation for a single atcjm serves as the  s ta r t in g  i)oint for rel­

a tiv is tic  j isendopoten tia l  genera tion . Using th is  we derive the  exj)ression for 

the  corrections to  th e  Schriklinger ecjuation. which m ake various relativistic 

con tr ibu tions  t rans j)a ren t.  F inally  we outlh ie  the  scheme used in the  SIESTA  

code for including si)in-orbit term s.

D irac to  Pauli equation

We begin w ith  the  D irac equa tion  in the  i)resence of an  ex te rnal  e lec trom ag­

netic  field [36],

Here A  an d  $  are  th e  vector an d  scalar po ten tia ls ,  respectively, while a  and 

(5 are 4 x 4  m atrices, which satisf\- th e  following co n n n u ta t io n  relations.

Furthe rm ore ,  a j  =  [3̂  =  / i x 4 - Next, we can w rite  th e  wavefunction as

(3.33)

o ,a  j  +  a  j O i  =  2(5, j, (3.34)

( \ id  -I- 0Oi  =  0 . (3.35)
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VV
(3.36)

where 0  and \  are two-conii^onent sjiinors. The Dirac equation can then l)e 

rewritten as a set of two efiuations,

ih - ^  + e<I> ] (p = c<7 ■ ip  +  eA )v , 
at

+ f <I> +  2mc" ) V =  rcr ■ (p +  eA)(p.
of

Here we have used the rei)resentation. a  =
y a  Oy

and /3
2 x 2

(3.37)

(3.38) 

\
(]

V 0 — h x ' :

\n the non-relativistic limit the term 2wc^  is nnich larger than  the other two 

terms. If we retain onlv such a term then we obtain.

\  -T— fT" ■ (P +  eA)(p.2mc

Substitu ting this hack into the other eciuation yields.

(3.39)

i h ^  +  e ' l ' ] 6  =  -^[<T • (p +  eA)]'^(i.. 
Of /  2in

Now. if we use the  identity,

(3.40)

(<T • a)(cr ■ b) =  a • b +  /cr • (a X b). (3.411

and the definition of magnetic field B  =  V  x A. the equation reduces to,

0
= 2i)}

[p +  f'A)^ -  c4> +  ■ B
2tn

0 . (3.42)

This is the Pauli ecjuation.
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S p in - o r b i t  i n t e r a c t io n  in  a  s p h e r ic a l ly  s y m m e t r i c  p o t e n t i a l

In order to derive the spin-orbit energy in a radial potential we follow Schiff 

[36]. Consider A( r , f )  = 0 and <I>(r.f) =  $ ( r ) ,  then the Dirac ecjuation can 

be written as

= [fa • p + pnic^ + I']'!', (3.43)

where we define I '  =  —e<I>. The orbital angular nionientuni L =  r  x p  is not 

a constant of motion, since it does not connnute with the Hamiltonian and 

its time rate of change is given Iw

=  [L^, H] =  - i h c { a , py  -  Oy/;,). (3.44)

Here we have used the fact tha t L connnutes with anv .spherically svmmetric

function. Consider another operator S  =  

is obtain('d as.

. Its time rate of change

V "

= [E^, H] = 2ic{a.p^  -  a^Pz)-
(It

(3.45)

From the above two results it is clear th a t  the opc'rator J  =  L +  | / ? S  

connnutes with the Hamiltonian and it is a constant of motion. Fm ther- 

more, S =  is the spin angular m om entum  of the  electron. T he time- 

independent version of the Dirac equation wa itten in terms of two component

fA.sj)inors 'P =  for a spherically symmetric j^otential is,

vv
(e -  l ' ) 0  =  c a  • p \ , •3.46)

(f — \ ' -I- 2nic~)\  = (cr ■ p0. (3.47
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By using the derivation in going from the Dirac to the Pauh equation shown 

in tlie previous subsection, we derive an equation for 0  alone

+ (348)

If we retain cjuly the lowest order terms in (e — V ) / 2 mc ‘̂ , then (1 +  ~

1 — Furthermore, we have p \ '  =  \ ' p  — //)VV' and (<r • • P) =

(V I ') -p  +  /<T■ ((W )  x p ) .  Using these j^roperties tlie above equation l)ecomes.

f O
( -  r
2tnc^ )  2ni

+ r
(3.49)

In addition, for spherically synnnetric V. we have the relaticjns ( W ')  • V =

and V r  =  We can then write.
I I r  O r  V d r

f O  = +  r  -
dV d

+
1

dr Or 2iu'^c  ̂ r dr
0. (3.50)

The first and third term on the right hand side yield the Schrodinger equation. 

The second term is a relativistic mass correction which can be obtained bv

a second order expansion of the square root in (p r  +  m e ) m e,2

2m ~  fourtli tcmi is tlic rclativistic correction to the potential

energy, the so-called scalar relativistic term. The la.st term i)roi)ortional to 

L- S cou])les the spin and orbital degrees of the electron aufl is the spin-orl)it 

enc'rgy.
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Spin-orbit coupling in th e  SIESTA code

Here we sunnnarize the l)asic scheme of how s])in-orbit coupling terms are 

calculated in the linear combination of atomic ort)itals l)ased SIESTA and 

SMEACOL codes. We follow Ref. [38]. The ])rescription for including the 

relativistic effects in the pseudoi)otential generation wa.s given by Kleinnian 

[39]. One begins by solving self-consistently either the all-electron Dirac 

ecpiation or its approximation, the Pauli equation, for a single atom and 

extracts the pseudo])otential V}. where j  — I i: 1/2 is now the total angular 

momentum. This can l)e rewritten in terms of projectors a.s.

^  |,y,//(;) Vj (3.51)

Furthermore, this can be recast in a non-relativistic form l>y expressing \j, mj)  

a.s a tensor product between the angular momentum states | / . //;) and the 

eigenstates of the c comjxHient of the Pauli matrix [40],

/

V
/

V

2 / + 1 |/, Wj  +  I)

2/ +  1 2 /
\

(3.52)

Then equation 3.51 can l)e rewritten as

V  =  =

=  + \ l .w){l .w\ .  (3.53)
l . ,n
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where bold letters Indicate 2 x 2  matrices and is the identity matrix in 

s])in space,

/
L S =

L+ —Lz

\

/
(3.54)

and.

\o w . the part of the i)seudopotential also includes the scalar relativistic 

term discussed in the i)revious section. Using the al)Ove, the Kohn-Sliam 

Hamiltonian now reads.

2/ +  1 i - i (3.55)

r H (3.56)

where T is the kinetic energy. is the scalar relativistic t('rm and is the 

s])in-orl)it potential. and are the Hartree and exchange-correlation 

potentials, respectively. This Hamiltonian is a 2 x 2 matrix.

H
fjn fju- 

/ / t t  f j i i
(3.57)

where the off-diagonal spin mixing l)locks may arise from the exchange and 

correlation potentials if the system is spin non-collinear and also from the 

spin-orbit i)oteutial.

In linear combination of atomic orbital methods the Kohn-Sham Hamil­

tonian eigenstates | t ’„) are expandcxl over a set of localized ba.sis orl)itals
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b<)-

(3.58)

Tlie K ohn-Shan i equa tion  is th en  p ro jec ted  onto  the  l)a,sis as,

(3.59)

where Hf"  =  \0j)  an d  5,j =  H am ilton ian  and  overlaj)

m atr ix  elem ents, resjiectively. Finally, the  s])in-orl)it te rm  is evalua ted  a.s

where k is th e  a to m  on which the  po ten t ia l  is centered. Also, =

-̂.s’0 ( r  _  is th e  spherical harm onic  centered  at th e  sam e

atom ic  })osition d^.. E va lua t ing  the  spin-orhit  energy from th e  above ecjua- 

t ion involves ca lcu la tion  of a  significant num ber  of th ree-cen tre  integrals, 

which m akes it co m p u ta tio n a lly  exi)eusive. However, since th e  radial j)art 

of the  sp in-orin t j io ten tial  is short-ranged , considering only th e  m atr ix  ele­

m ents  w here b o th  o rb ita ls  a n d  th e  pseudo])otentia l a re  on the  sam e a to m  is a 

good a{)i)roximation. T h is  reduces th e  coni])u tational effort since we need to  

com pu te  only one-center integrals. T h e  app rox im ate  m a tr ix  e lem ents then  

reduce  to.

=  ■ S  |/ .̂. M , )  {h:  (3.G0)
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L,  L_

\  L. -L,

Lz V
fc.U.yO.Mi,

L+  y
(3.61)

The al)()ve expression is then used to  calculate the s})in-orl)it energies in the 

SIESTA and SM E A G O L  codes.

3.2 G reen’s functions for transport

We begin l)v a refornnilation of the electronic structure  prol)leui in terms 

of (Green's functions. Consider a system described l)v the single-j)article 

Hamiltonian H . such tha t

where ii'„ are the single-particle eigenstates with eigenvalues and S  is the

and the comi)leteness relation u(jw reads: y.’r,ii’l S  = /^■. T he retarded Green's 

function for the system at energy E  is dehued to be

H  k'n (3.G2)

overlap matrix. The wavefunctious are normalized such tha t = ^mn

C{ E)  -  [{E + id)S -  H ] - \ (3.63)

where S —> 0+ is a ])ositive infinitesimal quantity. The advanced Green's 

function is then obtained a.s G"{E)  =  G ^ E )  =  [(iT — i S)S — / / ] “ '. The 

Hamiltonian can also be writt('u in the sj)ectral representation
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N

f! =  l

The retarded G reen’s function can then be rewritten as

1 1 = 1

The si)ectral function is defined as

A{ E)  = i [ G { E ) - G H E ) ] .  (3.66)

and it can be related to the density of sta tes as

1 /-t
;i =  l  

A

jC\ n't ri /  77 ■ c\ y\iy'nd) -  fn ( E -  l d ) - f n

- , f  / Q c -

»i=i '

In the limit S —> 0^

N
A( E)  = 2t, Y ^ 8{E -  ( n ) i h ^ i .  (3.68)

n  =  l

Using the definition of density of states (DOS) M  =  ~

normalization of t/’„,

N { E )  =  ^ T r { A { E ) S )  (3.69)
Z7T

The total DOS can be split up into the  contributions originating from dift'er- 

ent orbitals a.s the projected density of sta tes (PDOS).
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,v(E) = ^yv;,{£), (3.7(1)

where the  PDOS, A/)j, correspoudiug to orl)ital // is

(3,71)

The density matrix, which is defined as.

P = Y1 (3.72)
n =  1

can also b(' exj)ressed in terms of the spectral function (here i),, is the occu­

pation of the »-th  eigenstate). If we a.ssunie th a t  the fermionic system is in 

a therm al eciuilihrium with the environment, then =  / ( f „ ) .  whe^re / ( f „ )  is 

the Fernii-Dirac distribution evaluated at energy e„ and the density m atrix 

is then

wlu're the integral runs over the  real energy axis from —OC' to oc.

Until now we have merely reformulated the electronic problem in the 

language of Green's functions. Now consider the system shown in Fig. 3.1. 

This is a ty])ical transj^ort setup, where the system to be studied can be 

divided into a scattering region and a left-hand side and a right-hand side 

lead. The scattering region is the central part of the setuj) which interacts 

with the two kvids. while the leads themselves do not interact directly.

The Hamiltonian for this two-terminal device can lie exj)ressed in the form

( I Ef { E) A{ E) (3.73)
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|.------- 1 I------------------------

H l  H s

H h

F i g u r e  3.1: Sdiematic of the two-tmniiial traii.sport setup with the scattering region 
and (he left and the right leads.

where ///. and H/-/ are the left and right lead Hamiltonians and H s  is the 

Hamiltonian for the  isolated scattering region. The term s H i s  and H sr 

represent the hoi)ping from the left lead to  the scattering region and right 

lead to the scattering region, respectively. Here we have assumed tha t the 

scattering region is large enough such th a t  there are no direct hop])ing el­

ements between the left and the right lead. Dehne a m atrix  K  such tha t 

K  = H — ( E  + iS)S.  In matrix  notation

^ Hi, H , s  0  ̂

H  =  H s l  H s  H s r (3 .7 4 )

0 H r s  H r  j

(  K l  K l s 0 ^
~  I'^SL I'^SR (3 .75 )

y 0 I \ R S  I \R j

The retarded G reen’s fmiction for the system. G = [{E+iS)S  — H] ' = —K   ̂

is then obtained as
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+ T l s G s T s l  T l s G s  T l s G s T s r  ^

\

G  =  G s T s l  G s  G s Ts r  ■ (3.76)

J"rsGsTsi TffsGs Gr + TfisGsTsi j

wliero G i  =  G r =  — ar e th e  G reen 's  functions for the  isolated

left an d  right leads, res})ectively. T h e  transfer  m atr ices  are

T l s = G iJ \ l s ,

T s l = 1'^s l G l .

T r s = G r 1 \ r s .

T s r = ^'^s r G r . (3.7'

T he  G reen 's  function of the  s ca t te r in g  region is given l>y

C;., =  ( - A - , , - E ^ - E „ ) - \  (3.78)

where the  left and  right self-energies are defined as

'^L = I'^s l G iJ \  Ls- ^ R  = I'^s r G hK Rs- (3.79)

Tlu ' (juantities p s  an d  H s  are ca lcu la ted  self-consistently for the  given self­

energies. In a nutshell, th e  G re e n ’s function  scheme allows ca lcu la ting  p rop ­

erties of a syst(‘m w ith  th e  b o u n d a ry  conditions set i)y the  self-energies. W’e

then  in troduce  the  s])ectral function  for th e  sca t te r ing  region

.4^ =  / (G ^-G ! , ) .

T he left and  right b roaden ing  m atr ices  are  defined a.s

(3.80)
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T/. = -  E [). T;, =  /-(E« -  E{,). (3.81)

W e  assum e th a t  the  leads a re  semi-infinite. Th is  inii)lies th a t  th e  Fermi 

energy is set by the  leads. T h is  is in contra-st to  a usual density  functional 

theory  calculation, w here th e  n u m b er  of e lectrons in the  system  is fixed, and  

th is  de te rm ines  th e  Fermi energy. In th is  case, the  Fermi energy in the  leads 

sets th e  num ber  of e lectrons in th e  sca t te r in g  region. T he  spectra l  function 

for the  sca t te r ing  region can  be  w r i t ten  as

■-̂ s = + Ash- (3.82)

where A s l  =  find A s h  =  G s F hG s  p a r ts  of sj)ectral function

genera ted  from the  left an d  right lead, respectively. Analogously to the  

sjK’ctra l function, th e  density  m atr ix  of th e  sc a t te i in g  region can be broken 

up  in to  the  con tr ibu tions  from the  left and  the  right lead, p s  =  psL  +  !>s r - 

Here.

PSL =  I  (3.83)
n = l  

N  ft

d E Y ^ P H A E W R A E ) i ’L i i l ^  (3-84)
n = l

where is th e  w ayefunction ex tend ing  over the  sca t te r ing  region and

P L / R . n { E)  is the  occupation  of th e  n - th  s ta te .  A ssum ing a  th e rm a l  equilibrium  

of the  leads, Pl / r , „  =  f i / R i E ) ,  w here  f t / R i E )  is th e  Ferm i-D irac (listril)ution 

w ith  each lead hav ing  a Fermi energy E p i / r . This  allows in troduc ing  a bias 

voltage, \ l)etween th e  two leads a.s e\ ' l  =  E y  l  — E p  h- O ne possible choice 

is to  use th e  Fermi level of th e  sys tem  at ecjuilibrium, E p ,  as th e  reference

pS R
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and set E{.\i =  E y  +  eV(,/2 and  =  E'f — e \ l / 2 .  It is then possil)le to 

write

PSL = ̂  / <}Ef i iE)AsL^ P S R  =  ^J dEf H{E)AsH.  (3.85)

One can then  define tlie lesser Green's function of the scattering region

= iG s [ i  L + .f r {E)V r ) G\  (3.86)

Using above machinery, we obtain the canonical eciuation of non-equilibri\nn 

CJreen's function formalism

As- =  ^  / ( 3 . 8 7 )

It is possible to decompose the lesser Green's function into an c(iuilil)rium 

and a non-equilibrium part.  +  ^.vneq-

GS„, =  - i  I f i i E)  + f„{E)]  (G s -  G |,). (3^88)

GS„„, =  I f Li E)  -  /„(£■)] G . , ( r t  -  r „ )G ,, .  (3.89)

This decomposition allows us to write an analytic continuation of to

coni])lex energies. E.  It does not have poles for Im (£ ’) >  0. Thus, one can 

re])lace the integral over the  real energy axis, to obtain p. by one o\’er the 

positive half of the conii)lex plane. Here is smoother reciuiring less

energy points for integration. The non-eciuilibrium part. still needs

to be integrated over the real energy axis. However, it is non-z('ro only in 

the bia.s window where //,(£") ^  f n i E ]  and of cour.se does not contribute in
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the special case of zero bias calculations.

The electronic charge in the scattering region is

qs -  (3.90)

By assuming that the states, 0^ .  satisfy a Schrodinger-like tinie-dejjendent 

eciuation Hip — the t:

hi this case

Oqs 0{ip-‘̂ \t)Ssil^-‘̂ {t))

eciuation Hip — the time dei)endent wavo'function can be written as

Ot Ot
= 0. (3.91;

This is a form of the continuity equation and can be made ])latisible by noting 

tha t the charge inflow from left lead balances the charge outflow from the 

right lead. The individual contributions to the cm rent can be obtained as 

follows

n n

From the above, current corresj^onding to each lead can be identified.

(3.93)

Notice tha t I i  + If{ — 0. The to tal current from the left lead is the sum over 

all states
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n ^ ' l  /.

//. =  J  < I E Y ^ h { E ) A f , , „ { E ) l i „  + I  ( IEY^ f f , {E)Aj 'H. n{E) l k , r  (3-94)
(1 = 1  11=1

where

IL -  (3.95)

is the current (hie to the ti-th s ta te  originating in the left lead and

^R.n — V ■ (3.96)

is the current due to the /)-th s ta te  originating in the right lead. Using 

tlu'se ex])r('ssions the to tal current from the left lead, carried by the states 

originating in the left lead (//;) and carried by the s tates  originating in the 

right lead (//^) can be w ritten  a.s

 ̂y dEf , {E) Tr{r , Gl Yf , Gs) .  iji = - \  j  d E f H i E y W i Y s ) .

(3.97)

The trausniission function from the left to right lead at energy E is obtained 

a,s

T[ E)  = T v { Y , G \ Y n G s ) .  (3.98)

The probability current is then given by

J'- = 1  I  dET{E){f ,XE)  -  fniE)) , (3.99)

and the resulting charg(> current is then obtained by multiplying l)v electron
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charge e,

I  =  j J  c l E T { E ) i f L { E )  -  f , ( E ) ) .  (3.100)

This is the well-known Landauer-Biittiker formula. The G reen’s function 

formalism allows us to write a rigorous description of coherent electronic 

transi)ort and is used to tackle most of the transport problems studied in 

this thesis. However, it does not include inelastic effects whic-h can be incor- 

jiorated by means of additional self-energies. Furthermore, while using this 

formalism in conjtuiction with density functional theory, one must exercise 

caution since there is no variational principle out of equilibrium.



Chapter 4 

Andreev reflection in two 

dim ensional topological 

insulators

A in e ta l /su p e rc o n d u c to r  interfece m ay  reHect a n  incident electron from the  

m eta l  as a j)ositively charged  hole w ith  opposite  sjjin. while a C ooper  pa ir  is 

formed in the  sui)erconductor. T h is  electron-hole convc'rsion is known as A n ­

dreev reflection [41] and  has  long served a.s a useful p robe  for spin-])olarized 

cu rren ts  [42], Given th e  sj)in polarized n a tu re  of its edge s ta tes . Andreev  

reflection teclmiciue ap p ears  to  be j^articularly suited  to  s tu d y  edge s ta te  

sca t te r ing  in topological insu la to rs  an d  its h e te ro s tru c tu res  [43. 44, 45]. Also 

in triguing is the  possibility  of in terfacing Z 2 insulators  w ith  sui^erconductors 

(SCs). Th is  interface has l)een jwedicted to  host M a jo ra n a  fermions. w ith  

possible ap])lications in topological ( luan tum  com pu ting  [4G].

In th is  ch a p te r  we s tu d y  A ndreev  reflection processes in two-dimensi(Mial 

toi)ological insulators, w ith  ( 'ither conserved or broken t im e  reversal synnne-

65
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try. forming an interface with a superconductor with uniform .s-wave pair­

ing. Both classes of topological insulators exhibit perfect Andreev reflection, 

which is robust against disorder. This is assigned to toi)ologically protected 

edge states. In the tinie-r('versal synnnetric ca.sc' w(' show that doping out' of 

the ribl)on edges with magnetic impurities suj)presses one Andreev channel, 

while no such sui)pre.ssion is seen in the broken synnnetry situation. Based 

on this observation we suggest a tabletop transpcjrt exi)eriment able to distin­

guish between the two types of toi)ological insulators, which does not involve 

the direct measurement of the material band structm e.

4.1 A ndreev reflection at topological insula­

tor superconductor junction

W’e consider a two-dimensional toi)ological insulator ribl)on realized on a 

honeycomb lattice with zig-zag edge geometry, as shown in Fig. 4.1. The 

region to the right (SC region) Is proximity coupled to a superconducting 

electrode, w’hile the region on the left (TI region) is the to])ological insulator. 

The electron and hole spectra are described at the mean-held level by the 

Bogoliubov-de Gemics equation [48]

where u and v are the wave functions for electrons and holes, respectively. 

H is the single-particle Hamiltonian for tlie topological insulators. T  is the 

time-reversal operator, A is the pairing potential and E],- is the Fermi level. 

In the left region (TI) the pairing potential is set to zero, i.e.. there is no 

superconductivity. In the right region (SC) a finite constant pairing potential

T H T
(4.1)
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exists  (hie to  the  i)roximity w ith  a supercoiKhieting electrode.

4,1.1 M odels and Com putational Details

W e use th e  Kaiie-Mele model [27] a,s single-i)article H am ilton ian  for the  tim e- 

reversal synnue tr ic  (Z 2 ) topological insulator. T h is  reads

H k m  =  t ^  clcj  +  A ^  +  it-2 ^  . (4.2)
(ij) ‘ i m

Here the  hrst  te rm  is ju s t  the  nea res t-ne ighbour hoijj^ing w ith  s treng th  t. 

where the  s])in indices of the  creation, cj. and  annih ila t ion , c,, opera to rs  have 

been om it ted .  T he  second te rm  represents  a s taggered  sub-la tt ice  poten tia l, 

i.e.. th e  .4 ty p e  sub-la tt ice  has an  on-site energy A (^ =  -1-1). while the  D  stib- 

lat t ice  has on-site  energy —A =  —1). T he  last te rm  dc'scribes the  .second 

nearest-neighl)our hopping  w ith  s tren g th  f -2 an d  it is ))urely im aginary  ( f -2 

is real and  i — \ / —1). F urtherm ore . v,j is e(iual to  -1-1 for anti-clockwise 

hoj)])ing and  to  —1 for clockwise. Here rr' is th e  c-com])onent Pauli m atr ix  

describ ing th e  e lec tron 's  s])in. T he  last te rm  can l)e th o ugh t  as a niirror- 

synnne tr ic  spin-orbit  in terac tion , since it couples the  orb ita l  m otion  of the  

electrcjus to  the ir  spins.

For th e  t im e-reversal syn n n e try  broken case we use a si)inful version of 

the  H aldane  m odel [49]. proposed  by C hen  ef  al. [50] (from now on the  spin- 

H aklane  model. SH). T h e  single-j)article H am ilton ian  reads

=  t
(ij) ‘ {{U)j

where th e  second te rm  is th e  exchange field w ith  s tren g th  7  . i.e.. it represents  

Zeem an coupling. In add it ion  to  spin, the  o rb ita l  angu la r  m om en tum  of 

the  electron. u,j. is also couj)led to  th e  exchange field. Following C hen et
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TI SC

X

F i g u r e  4.1: Setup for calculating the tvvo-termiiial transmission. Region S(^ is prox­
imity coupled to a superconducting electrode while region TI is the to|)ol(;gical insulator 
described by the two chosen single-particle models. The rectangle marks tlu' region at the 
T I /S C  interface where disorder is introduced.

«/. [50] wt' ai)proximate /3(7) ~  i3sgu{^,) .  and choose to he negative. This 

parameter set describes a diamagnetic response to the magnetic Held '). Note 

that in this case the s('cond nearest-neighbour hopi)ing term ha.s the same 

sign for both the spins, as opi^osed to that in / / k m -

We then use the ballistic Landauer-Biittiker scheme [51] for calculating 

the transmission across the system a,s presented in Chapter 3. The self-energy 

matrix E l (E h) for the left-hand side (right-hand side) contact is obtained 

by using the electrodes' stnface Green's function. This is calcnlat('d iter­

atively from the following ecjuation [52]

fU =  [ ( ^  +  / ( ) + ) /  -  Ho -  . (4 .4)

where H q is the Hamiltonian describing the electrode unit cell and H i  is the 

cou])ling matrix between cells (note that in our tight-binding formtilation 

the Hamiltonian of the ribbon has a tri-diagonal form). The self-energy 

matrices are given by E l .r  =  //L.R,ys^L where / / l  ( H n )  is the coupling 

matrix between the scattering region and the left-hand side (right-hand side) 

contact. Then, the retarded Green's fimction. G"', for the scattering region 

of Hamiltonian H s c  i« obtained as C  =  [(/T 1- /()' )/ — //sc- — — E r ]“ *.
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The scattering region comprises the SC/TI interface and a portion of the 

electrodes. Finally the total transmission is simi)ly T( E)  =  Tr(rLG'TKG''^). 

where Tl.h the broadening matrices F l.r  =  r  j,]. Furthermore, 

the normal transmission coefhcient from the /)-th terminal to the in-th one 

is obtained as T„„j„{E) = Tr(F„CTG'^„rm(TG'J l̂r)' while the Andreev reflection 

coefficient is calculated as

= T r ( r „ .G ;^ r „ , ,G l ) .  (4.5)

where a — ( t - i )  and a — ( i-1) l̂>hi indices. Thus. ma

.scribes an incident electron from terminal being reflected as an opposite 

s])in hole into terminal in. An expanded discussion of Blonder-Tinkham- 

Klapwijk model for a normal metal-stiperconductor junction and its applica­

tion t(3 Andreev reflection is presented in Appendix C.

4.1.2 Results

W'e l)egin our analysis l)y calculating a,s a function of energy, which is 

shown in Figs. 4.2(a) and 4.2(b), respectively, for the Kane-Mele and spin- 

Haldarie model. Henceforth, we set the nearest neighbor hopping f =  1 and 

measure all the energies in units of t. Furthermore, we fix the number of sites 

along the ribbon width to be /iy =  18. The insets of Fig. 4.2 show the l>and 

structure for the two models calculated in this strip geometry. In the bulk 

gap there exist gapless edge modes, a single pair on each (>dge. For the //km 

Hamiltonian, these are opposite spin Kramers' pairs, while for Hsu- there 

are two left movers (one for each sj)in) at one edge and two right movers 

at the other, exactly a.s the integer qtiantum Hall states. We hnd that for 

l)oth these cases, the edge modes lead to a perfect Andreev reflection for 

electrons with energy smaller than the sui)erconducting gap. In fact, in both
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Figure 4.2: Andrec'v rc'tle'ction c-cM'ttifient for (a) Z-2 and (h) ('lu'rn insulators showing 
[X'rf'ect Andreov reHoctiun for ek'ctron enf-rgics smaller than tlio supcrconduc-ting gap. The 
insets show the hand stnictiuo for th(' two models solvi'd in a ribbon geometry. Here w(> 
choose t '2 =  0..'53. A/^2 =  -■(•. " =  0.20. 3 = —0.11 and A =  0..'')0. The Fc'rnii level ZTk is 
s('t at z('ro.

cases the  edge m odes are  j)erfectly Andreex’ reflected. Norm al reflection, 

where an  incident i)article is reflected hack w ithou t Ix'ing converted  into 

its an tipart ic le , is comi)letely suppressed  for the  ('dge s ta te s  as long as the  

Fermi energy lies in th e  bulk  gap. as we have verified numerically. These 

flndings a re  consistent w ith  recent theore tica l  and  experim enta l  s tud ies  for 

tim e-reversal synnne tr ic  topological insu la to rs  [53. 54]. Note th a t  by using a 

low-energy effective m odel for th e  edge s ta te s  of a tim e-reversal synnnetr ic  

T I, A droguer et al. [43] suggested  A ndreev  reflection as a p robe  for helical 

edge sta tes. Here we predict perfect Andree\- reflection also for the  time- 

reversal sy n u n e try  broken ca«e.

Next, we s tu d y  w h e th e r  such perfect Andreev  reflection is robust to  per­

tu rb a t io n s  of th e  electronic s tru c tu re  a t th e  S C /T I  interface. To th is  goal 

we consider the  effect of onsite  d isorder, which is in troduced  by add ing  a 

te rm  of th e  form / /d iso rd e r  =  lio th  / / k m  an d  / /sn -  Hence dis-



C’hap to r  4 71

order  en ters  in an  exact and  ra th e r  n a tu ra l  way in onr num erical approach, 

a t  variance to  low-energy edge models, where e ither  a  field theory  construc­

t ion  or a p e r tu rb a t iv e  t re a tm e n t  needs to  be  adop ted . In i)articular, here we 

choose th e  onsite  energy, to  be random ly  distr il)u ted  w ith in  the  interval 

[—ir/2, i r / 2 ] .  Such disorder is introfluced in a —  15 site-long region near 

th e  S C /T I  interface. From Fig. 4.3 it can be clearly seen th a t  the  Andreev 

refiection process is very rolnist against disorder. Even for m odera te ly  large 

d isorder  (IT  2.Of), i?'" rem ains  j)erfectly quantized . Th is  is a t t r ib u te d  

to  th e  presence of th e  topologically p ro tec ted  edge s ta tes , which a re  highly 

innnune  to  im purities  and  disorder, and  the  s itua tion  is identical for l)Oth 

classes of topological insulators. For U ’ >  2.0/ fluctuations in / ? '  begin to  

develo]) in the  energy range w here only edge s ta te s  exist. As a result the  

Fano factor becomes non-zero. T h is  signals a  tran s it ion  from ballistic to  

diffusive t ra n s p o r t  where backsca tte r ing  is allowed and  the  edge s ta te s  are 

no longer topologically p ro tec ted  [55]. Note  th a t  the  ac tua l  value of the  

d isorder s tre n g th  critical for the  des truc tion  of the  edge s ta te s  depends  on 

the  roi)ustness of the  topological phase itself, i.e., on the  model pa ram ete rs  

used. However, as we will a rgue  in w hat follows, the  in troduc tion  of m ag­

netic  im purities  break  th e  toj)ological ])rotection of Z 2 insulators , even at 

weak d isorder s treng ths ,  i.e., it is a general feature, which dej)ends lit tle  on 

the  m odel j)arameters.

T h is  is d em o n s tra ted  by in troduc ing  m agnetic  inii)urities a t  one of the  

TI r ibbon  edges. T h e  exchange coui)ling betw een th e  e lectron spin and the 

imj^nrities is inco rpora ted  into the  m odel as [56]

(4.6)
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Figure 4.3: Efi’i'ct of onsite (iisortk'r tin the Andreev refieotioii coc'fficieiit f(jr (a) Z 9 and 
(b) Chern insulators. The Andreev process is highly robust against onsite disorder and 
the erossov('r to difiiisivc' transport occurs for IT w 3.0/ for the Z2  insulator and U' w 2.0/ 
for the Chern insulator. Here again we set ^ 2  =  0.33. \ / t 2 =  2.0. =  0.20. (i =  —0.11
and A =  0.50. and the Fermi level Ey is taken at zero. The ctu’ves are averag('d over 9(i0 
random conhgurat ions.

w here S]  ̂ is /(-th sp in  coni])onent o f th e m agn etic  im p in ity  located  at the  

ed ge s ite  /. and and Jy are. respectively , th e  long itud ina l and transverse  

exchan ge cou])ling. In th e  n ota tio n  we have now ex p lic itly  re-introduced  

th e sp in  index so that (c,(J is th e  creation  (an n ih ila tion ) o])erator for an  

electron  at site  i w ith  spin a . For sim p lic ity  here w e have im])li(“itly  assum ed  

that th e m agn etic  im ])m ities are not K ondo active . T heir e lectron ic structure  

is then  trea ted  at a sim p le classica l level, i.e .. th ey  enter th e m odel as classical 

sj^ins. W h en  one includes on ly  th e  2  com ponent o f th e exchange cou i)ling in 

th e K ane-M ele m odel, there is a sh ift o f  th e  up and dow n spin o'dge l)ands, 

by an aniom it proportional to  th e  cou p lin g  but no band gap o])ens in the  

edge s ta te  spectrum . For sm all values o f J^. before th e  bulk l)and gap closes, 

th e  sy stem  is in th e  tin ie-reversal syn m ietry  l)roken (luantiun sj)in Hall phase  

])redicted by Y ang ef al. [57]. A s a  coiiseciuence. a lth ough  we have locally  

broken tim e-reversal synnnetry. p erfectly  (juautized A ndreev  reflection  still
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(Kcurs. T h is  is because  in the  energy range w ith in  th e  superconduc ting  

gaj) the re  is only th e  coun te r-p ropaga ting  oj)positc spin channel available to  

norm al reHection. In contra.st. if we also include the  transverse  coniix)nent 

of th e  exchange, i.e.. we take  Jy 7  ̂ 0 , th en  a gap  is opened  a t  th e  edge where 

th e  m agnetic  im purit ies  have l>een located. T h e  des truc tion  of the  helical 

edge s ta te s  at one of th e  two edges leads to  a suppression  of this channel, 

which results  in the  Andreev  reflection coefficient d ropp ing  from two to one. 

as shown in Fig. 4.4(a). Such a reduc tion  of from 2 to  1 is alm ost perfect 

excei>t for some bulk con tr ibu tions  at energies ajij^roxiniately ('(jual to  the  

supe rconduc ting  gaj). T h e  s i tua tion  for the  sp in -H aldane  model is difl'erent 

an d  the  m agnetic  imjjurities p roduce  no eftect. regardless of the  m agn itude  

of J j  and  Jjj. Th is  is ex])ected. since th e  topological p ro tec tion  of the  edge 

s ta te s  for a C hern  instilator eontinuc's to  hold even in th e  ab.sence of tim e- 

reversal synnnetrv . Couseciuently. no such suppressi(jn is observed and  the  

-Andreev reflection coefficient rem ains  perfectly  (juantized to  a value of two. 

a.s i l lu s tra ted  in Fig. 4.4(b).

Thus, we have shown th a t  Andreev reflection m easu rem en ts  can charac­

terize a topological in su la to r  and  d istinguish  it from a toi)ologically trivial 

m ateria l.  Perfect A ndree \’ reflection provides a s igna tu re  for the  existence of 

topological edge s ta tes , a lthough  it is not unique to  them . One can in fact 

envisage o th e r  system s, which display a s im ilar perfect e lectron-hole conver­

sion. for instance  a pair of ballistic nanowires. \M ia t  is unicjue, though , is the  

t rem endous  inunun ity  to  disorder, which b o th  types  of topological insu la tors  

display. Fu r therm ore , we also showed th a t  th e  Z 2 an d  C hern  insu la tors  re­

spond  differently to  the  presence of m agnetic  im purities .

Ba.sed on the  above obs(>rvation we propo.se a trans])ort  exi)erinient to



74 Andreev reflection in two dimensional topological insulators

4

3

0
4

-0.4 0.4
E/t

F ig u r e  4.4: A ndreev  retiection  coetficient in presence (jf m agn etic  im p u rities located  at 
th e  ed ge of a TI ribbon: (a) Z 2 in su lator (b) C liern in su lator. T h e  su ppression  o f  one o f  
th(' ed ge ch an n els in tiie  tinu'-reversal syn n n etr ic  case  /?'' jH oduces a drop in /?'' from  
2 to  1. M agn etic  im ])urities have no effect on th e  A n d reev  retiection  for a tinu'-reversal 
syn u n etrv  broken insu lator. Here we have chas('n ./^ =  J|| =  0..50 and |S’| =  2. T h e  otlu'r  
paranu'ters arc' th e  sam e us before.

distinguish between the two types of topological insulators. The experi­

ment involves placing magnetic impurities along one of the edges of the two- 

dimensional sample, for instance, by using the tip of a scamiing tunneling 

microscope. The im piuities’ spin will, in general, be aligned in arbitrary 

directions. The illumination with low-frequency polarized infrared light can 

however induce their alignment. This has l)een demonstrated, for instance, 

for Mil impurities in CdTe [58]. The infrared pulse im parts a momentum 

to align the impurity s])ins. which subsequently relax back to their random 

orientations. Tlie Andreev reflection coefficient can then be measured 

as a function of time, and this can l)c related to the inclination angle 0 of 

the impurity spin S. The dependence of R-^ on 0 is shown in Fig. 4.5. As 

the si)in rotates towards the 2: direction. R ‘̂  returns back to the perfectly 

(juantized value of two. the same a.s th a t iii the absence of im])urities. For 

the C’hern insulator the Andreev refiection process is unaffected l)y magnetic
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Till71/4

0
Figure  4.5; Aiulrc'cv rctiocticju c'oi’tHcicut in tlu' pn'soiicf' of uiagiK'tic iiii|)uritie.s for the 

insulator as a ftniction of the spin inclination angk' 0 for various vahics of the ('xchangc 
c-ou])ling. The rchLxatiou of the s[)ins leads to /?  ̂ reverting back towards unity.

iiui)tu'ities and  th u s  to  th e  exposure  with polarized light.

A second possible rout(' to  s])in i)olarize the  i inp iu ities  consists  in a])plying 

an intense s ta t ic  m agnetic  field B  i)erpendicular to  the  p lane (jf the  saini)le. 

and  then  to  switch it off over a short t im e  scale t n .  T h e  im p m ity  sj)ins will 

then  relax back to  the ir  random  config ination with a tv]:)ical sp in-relaxation  

t im e t s -  D uring  the  t im e  window coni])rised between i ^  and /.v, m easure­

m ents  of should yield a behavior sim ilar to  th a t  shown in Fig. 4.5. Note  

th a t  these possible ai)proaches wer(> a lready  outlined  in Ref. [59] relative to  

the  ol)servation of the  C hern  insulating j)hase in M n dopc'd HgTe q u a n tu m  

wells. T h e  sam e here ar(' broadenc'd in sco])e and  now beconu ' a tool for 

assigning a given m ateria l  to  one of the  two classes of TIs. Such a s tra tegy  

m itiga tes  the  nec'd to  i)erform a direct b a n d -s tn ic tu re  m easu rem en t, such 

a.s si)iii and  angle resohc'd photoem ission spectroscopy, an d  tlu 'refore rep re­

sents a i)owerftil tabk 'to j)  charact( 'r ization m eth o d  of the  toj)ological s ta te  of 

a matc'rial.
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4.1.3 Sum m ary and C onclusions

In conclusion, we have investigated S C /T I  heterojuuctions and shown tha t 

they display perfect Andree\' reflection. The robustness of the toix)logically 

protected edge states lends this effect a large imnnuiity against disorder. W'e 

have then looked at the effect of magnetic im])urities and shown th a t  in the 

case of transverse exchange couj^ling the Andreev reflection coefhcient of Z>2 

to])ological insulators drops from two to one. This observation allowed us to 

proj)ose a transix)rt experiment that is able to  distinguish between the two 

tv])es of to])ological insulators. This consists in following the time evc^lution of 

the Andreev reflection coefhcient of a device dusted with magnetic impurities, 

which have been previously polarized.



Chapter 5

Spin-pumping at a quantum  

spin Hall edge

G iven th e  pecnliar  spui s ti \u1\u 'e  ol the  (p ian tiun  s])in Hall (QSH) edge s ta te s  

it Ix'conies n a tu ra l  to  ask ourselvc's w hether  th is  can be used to  m an ipu la te  

m agnetic  ob jec ts  [GO]. In i)articular the  (juestion we address  in th is  chap te r  

is w he ther  sp in -pum ping  at the  singk' spin level can be achieved w ithou t us­

ing spin-polarized electrodes or an ex ternal  m agnetic  field. In a nutshell we 

wish to  propose  an  analog to  the  num erous recent investigations concerning 

s])in-Hip inelastic electron tunneling spectroscoj)y (SF-IE T S) for m agnetic  

ad a to m s  on insu la ting  sui'faces [61], eitlu 'r in equilibrium  or in spin-])um])ing 

conditions  [62].

In th is  chajiter  we dem ons tra te  th a t  a m agnetic  im purity  dej)osited at the  

edge of a Z 2 topok)gu‘al insulator (TI) and  p resen ting  a uniaxial m agnetic  

anisotropy, which m akes it non-Kondo-active [63]. can  be m an ip u la te d  by the  

CJSH curren t.  Furthermore' w(- show th a t  the  to])ological n a tu re  of the  QSH 

s ta te  has i)rofoimd conse(|uenc('s on the  S F -IE T S  con d u c tan ce  si)ectrum. At
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low curren t in tensity  the re  is a com plete  suppression  of th e  conduc tance  steps 

appear ing  at the  critical biases charac te r is t ic  of the  ac tivation  of an  inelastic 

sp in -scatter ing  channel [61]. In con tras t,  for cu rren ts  large enough to  pro­

duce  sp in -pum ping  th e  spin of th e  m agnetic  im p u r ity  is driven away from the  

an iso tropy  axis. Th is  breaks th e  toi:)ological ])rotection of th e  helical edge 

s ta te s  and  the  conduc tance  s teps  reappear. Intriguingly, in th is  s itua tion  

there  is a s trong  dependence  of the  S F -IE T S  conduc tance  si)ectruni on the  

bias polarity. In the  final section of th is  cha])ter we ex tend  ou r  investigation 

to  propose a four-term inal device designed to  m an ip u la te  by all electrical 

m eans  the  sjiin of a m agnetic  ada ton i  positioned  at the  edge of a C^SH insu­

lator. We show th a t  an electrical gate, able to  tu n e  th e  interface resistance 

betw een the  QSH insu la tor  and  the  source and  d rain  e lectrodes, can switch 

th e  device betwe^ni two re'gimes: one where the  system  exh ib its  spin pum ping  

an d  the  o ther  where the  a d a to m  rem ains in its g round  s ta te .  O ur  calcula­

tions  are conducted  by using th e  non-equilibrium  G reen 's  function  m ethod  

for transi)ort,  in a t igh t-b ind ing  scheme, com bined w ith  a p e r tu rb a t iv e  a p ­

proach  to  si) in-scattering from m agnetic  imi)urities [64. 65, 66].

5.1 Spin-pum ping and inelastic electron  tu n ­

neling spectroscopy

T h e  device th a t  we have in m ind  is schem atically  p resen ted  in Fig. 5.1 and  

consists of two semi-infinite c u r re n t /v o l ta g e  electrodes sandw iching  a Z 2 TI 

r ibbon  in which a  m agnetic  im purity  is abso rbed  at one of the  two edges. 

O u r  working hypothesis  is th a t  one can co n s tru c t  such a device w ith  e ither  a 

s tro n g  or a weak electronic couj)ling betw een the  e lec trodes and  the  ribbon, 

i.e.. th e  interface resis tance can  be engineered. In the  next section we show
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FigUl'O 5 .1 : Schem atic r('])rc.sc'iitatic)ii of tlic' dcvice cou.sidcrcd com prising a T1 with  
hoiu'vc-omh lattice stn ictun ' and a luagnetic ini])urity ad.sorhed at o im '  of the two <'dge,s. 
T he shaded an-a corresponds to the interface region when' a gate vohage is introduced.

how th is  can Ijo achi(n'('<l in practic(' l)v m oans of a ga te  voltage. T h e  entire  

system  is descrilied at the  tight binding level and  for th e  electrodes we us(> a 

sim ple scjuare lat tice  w ith  ho])ping ])arameter. f,,. (// =  L. R).

5.1.1 M od el and C om putation al D eta ils

T h e  TI r ibbon  ha,s a h()n('ycoml) lattice s tru c tu re  w ith  zig-zag edge geom etry  

and  it is described  i)v tlu ' two-dini('nsional Kane-M ele ( KM)  H am iltonian. 

/ / k m - which reads

f h<\ \  ^  ( i , C j a  +  it-2 ^  • (5-1)

We rem ind  here th a t  the  first te rm  (k'scribes a s taggered  sub la t t ice  poten tia l  

w ith  on-site  energy to and  l)cing =  -f 1 for the  A su b la t t ice  and  =  —1 

for th e  B one. H en ' rj,, (r,,,) creatc's (annihila tes)  an  electron a t  site  i w ith  

spin a .  T he  second tt 'rm  is the  u('arest neighbotu’ hopi)ing w ith  s treng th  

( f \  sets th e  energy scale of the  problem ). Finally  the  th i rd  term , which drives 

th(' t(jpological I'jhasi'. is a second nearc'st neighbotu’ hopp ing  w ith  s tren g th  

f -2 {i =  \ / —1). Th is  describes the  coui)ling of the  e lec trons orb ita l  m otion  to  

their  spins via tlu ' c-conipou('nt of the  Paiili m atr ices  ( a ' ) .  T he  p a ran u 'te r
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Uij is +1 for counter-clockwise hopping and —1 for clockwise.

If we now attach an inipurit.y at site I . the total electronic Hamiltonian will 

become

(> (/!'), a

where in addition to / / km out" on-site ])otential of the imi)urity,

£], and the hoi)])ing l^etween the impurity site /  and its neighbor / on the 

honeycomb lattice (with strength f/). Finally there are two other terms 

related to the magnetic impurity spin, S

//,p =  D S l : //ei-,p =  Jsd 5 ]  c L W U c i s  ■ S . (.5.3)
a/3

The first. //,sp. (lescril)es the uniaxial anisotropy (along c, which is perjjendic- 

ular to the plane of the ribbon) with D being the zero-field s])littiug param­

eter. The second, //ei-st>- cou])les the current-carrying electrons to the local 

imi^urity spin with interaction strength Jsd  (cr is a vector of Pauli matrices). 

This is usually known a« the s-d model for magnetism [G8].

Electron transport is investigated within the Landauer-Biittiker apinoach 

[69] ini])lemented l)y the non-ecjuililjrium Green's function (NEGF) method. 

The central ciuantity to evaluate is the retarded electronic Green's function 

for the scattering region (the TI ribl)on) in j)resence of the electrodes, G' — 

[{E -h iO^)I — //el — E l  — where [i] — L. R) are the electrodes self­

energy, which can be computed with standard technicjues. These depend on 

the hopping parameter between the ribbon and the electrodes, f^sc- whose 

magnitude sets the intensity of the current.

When the conducting electrons couple to the im])urity spin (./sd ^  0). 

the problem becomes intrinsically many-body in nature. This is made treat-
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able by constructing a perturbation theory in the electron-spin Haniiltouian, 

which allows us to incorjMjrate the effect of the electroii-spin interaction in 

an additional self-energy. Ei„f A derivation of this self-energy is provided in 

Appendix D. In this work we truncate  the perturba tion  exjjansion to the sec­

ond order [64, 66] in both  the electron and the impurity spin propagator. The 

la tte r  contains information al)out the s ta te  of the magnetic impurity spins, 

through the population. P„. of the eigenvectors of the spin-Hamiltonian. //sp­

in particular it is j)ossibIe to  show that the P„'s satisfy a master-equation of 

the form

(IP r 1

~df = Yl
I

where tlu' detailed exi)ression for the transition rates. 11';,,, can be found in 

Appendix D. and B =  k'uT with A'b being th(> Boltzmann constant and T  the 

tem perature. In E(j. [5.4] the populations are those of the gromid state. 

W ith  this at hand we can com])Ute tlu' current. I.  and hence by numerical 

derivative the conductanct'. G  =  d / / d \ ’.

5.1.2 Results

W'e s ta rt our discussion by first looking at the transi)ort j)roperties of the 

ribbon in absence of the magnetic ini])urity. The relevant (juantity here is 

the spin-resolved total transmission coefficient along a particiilar edge [70], 

which is giv('n l)y

I Z A ' - v )  = lY , ,^ \T ,C rT ,,G X ,, ,  . (5.5)

where n is the s])in ind('x (n labels the edges (,s =  top. l)ottom) and
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G" is the advanced Green's function. The trace is over the number of atoms, 

/(j,, along the given edge and the transmission coefficient is evaluated at the 

Fermi energy, fi.-. As a m atter  of notation a tiy) ribbon contains atoms 

in the direction of transi)ort and i}y along the transverse one. W hen the Fermi 

level is fixed at the half-filling point the ribbon is insulating in the bulk. l)ut 

presents edge toi)ological i)rotected states (here =  1, and i 2 =  ^i/3.

which ensures tha t the KM Hamiltonian describes a QSH state). In this 

situation we find for a (11. G) ri})bon. = 0.9. =  0.1. =  0.1

and =  0.9. Such values dem onstrate  tha t the current along the QSH

edges is sj)in-polarized, although not completely because of the finite size of 

the ribbon. Calculations for a (7. 4) ribbon give us = 0.85. =  0.15.

Y’W to .n  ^  Q j ’bo tton , ^  (, 3 5

We now switch on the magnetic interaction between a 6' =  1 local si:>in 

and a (11, 6) ribbon. In general we place the imjiurity at the centre of 

the edge and choo.se a coupling param eter, f/. and an onsite energy, £■/, to 

ensure that the density of sta tes localized at the inii)urity site. pi{E) .  is 

approximately constant for energies. E,  around the Fermi level (this ensures 

the convergence of the  pertu rbation  scheme [G4]). The exchange coupling. 

Jsd. is chosen so th a t  the pertu rba tion  param eter, p/Jsd: is api)roximately 0.1. 

These conditions are satisfied for: S /  —  —  i \ / 2  and t /  =  f]/4 . The spin

degeneracy is lifted by an axial anisotropy D — — 10“ '^fi, which corresi)onds 

to D  =  —2.0 meV, if the nearest neighbour hopping in the ribbon is fixed at a 

rea.sonable vahie of t\ — 2 eV [kuT — 0.05). The uniaxial anisotro])y gives us 

a degenerate ground s ta te  with the two spin states | — 1) and | +  1) sei)arated 

from the first excited sta te  |0) by |D |. As a result we do not expect a Kondo- 

like behaviour since no allowed transition between the degenerate ground 

s ta te  may occur (allowed tran.sitions occur for A?/; =  ±1). The second order
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perturbation expansion is then well justified. The values f,j = 4/,,sc =  h  

ensure that the spin system remains in equilibrium, i.e., in its ground state, 

throughout the spin-scattering j)rt)cess.

Figure 5.2 shows the calculated conductance spectra, G(V). normalised 

to the \ ' =  0 conductance, Ĝ .[. for three values of the i)arameter governing 

the QSH state, t-2 - For t '2 = 0 there are no topologically protected edges 

and we observe the characteristic inelastic conductance step at a voltage 

\ '  = D/e .  when the transition from the gromid state to |0) becomes possible 

(c is the electron charge). Howe\ (̂>r. as f-2 increased and we enter into the 

tojiological i)ha.se, we reveal a supi)ressiou of the inehvstic contril)ution to 

the conductance, with an almost full su[)j)ression at the maximum value of 

h  =  ^i/3. This can be understood a.s follows: at a positive bias, the right- 

going current is up spin-polarized. This nit'ans that the | —1) —> |0) transition 

scatters out spin-down electnjus. The.s(' cannot j)ro]>agate towards the right 

electrode since there is no right-moving sjiin-down state in the upper edge 

and. as a conseciuence. they are coin])letely reflected. Hence, as si)in-fhp 

events can only lead to backscattered electrons, the inelastic channel does 

not contribute to the current. Not(> that the residual conductance increase 

in Fig. 5.2 for f -2 =  f i /3 is siiu])ly due to the finite size of the ribbon.

We  now investigate the possibility of manipulating the impurity s])in di­

rection using the QSH current. This is achieved by increasing the overall 

conductancc'. i.e., I)y incrc'asing tlu' a\'eiage current density. When one works 

with a scanning tunneling niicroscoi)y .setup bringing the tij) closer to the im­

purity [G2] does the job. while Ik'H' our control parameter is the electronic 

coupling l>etween the leads and the ribbon, ^;sc’• As such all the calculations 

that follow have* l)een ix'rformed with f,,sc =

The calculated poj)ulations of the various si)in states are plotted as a
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Figure 5 .2 ;  Sp in-iio larizod  lE T S  coiichictaiR'C' si)(>ctruni for a T1 ( 1 1 . 6) r ibbon w ith  a 
S’ =  1 inagiK'tic im purity  attaclu 'd  at th e  upper «lgc'. N o te  that th e  cou d tictan re  ,stc]) at 
th e  vo ltage  cliaraetc'ri.stic o f th e  in elastic  e x c ita tio n  g e ts  sujijjrc'ssed a.s th(' t -2 jiaranieter  
is increased , i.e .. as th e  ribbon is brought w ell inside th e  top o log ica l region o f  th e  pha.se 
diagram .

function of bias in Fig. 5.3(a) for both a (11, 6) and a (7, 4) ribbon. A 

S  =  1 spin in a unitixial anisotropy held and in thermal eciuilibrimn with 

an electron l)atli ])resents an eqtial probability to occupy the | +  1) and the 

I  — 1) states, i.e., for \ '  — 0 one has P+i =  P_i =  1/2. As soon as the bias 

is increased at and above \D\/e,  excitations to the |0) state  become ])ossible 

due to spin-flip back-scattering. In this case however the current is intense, 

so th a t in between two scattering events the impurity spin does not have 

the time to relax back to the degenerate ground state. This means that 

now a spin-up electron (the m ajority specie in the upper edge right-going 

channel) can also induce the transition |0) —>• | +  1). The consecjuence is 

that the electronic current flowing a t the up])er edge, in virtue of its spin 

l^olarization and its intensity, produces a net flow of population between the 

two degenerate ground state, i.e., for > +\D\/e  one has > P-\.  In
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F i g u r e  5.3: (a) Ncju-ecinililuiuiu populatlDii as a fiuictioii o f  bias o f  the  S = 1 iiii |)urity  
,s|)iu state's for a (7. 4) (daslu'd liiK's) and a (11. G) ribbon (solid lin(>s). In ])anel (b) we 
show  the average niagn('tization o f  the ini])urity for th e  sam e  ribbons.

other \v(jrds the impurity sj)iii is (hiv('ii by the current away from its uniaxial 

ani.sotro])y axis. This can h(' hilly ajjpreciated by looking at Fig 5.3(b). where 

we show the average magnf'tization (.S'") =  Yl,n a.s a function of bias.

Such spin-pumping is ess('utially identical to what happens for spin-i)olarized 

ti])s [71] except tha t now ou(' does not need either a magnetic electrode or an 

external magnetic held. Xote that at a negative l)ia,s the effect is reversed, 

i.e.. for V' <  —\D\ /e  one has P_i >  P^\.  and tha t placing the im])urity on 

the lower edge is ecjuivalent to revcnsing the bia-s polarity.

The effects of the spin-piunping on the shape of the conductance spectrum 

are finally presented in Fig. 5.4. riiis time the C7(\ ) trace jHesents a step 

at the voltage corresi)onding to the | ±  1) —>• |0) transition, i.e., the electron 

transport i)econies sensitive* to s])in-fli])])ing events. Such an appearance of 

the condtictance stc]) signals tlu’ stip])ression of the topological helical sta tes 

induced b\' the transverse niagu('tization of the s])in inij)urity [72]. Intrigu-
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F ig u r e  5 .4 : Si)in-p()lai'ized lE T S conductancc s])c‘ctn u ii for a TI (11. 6) ribt)oii with a 
S  =  1 iiiagiiotic iin])urity attadu'cl at tlu' u])per edge. In this ca.se the current is intense and 
drives the ini])urity s])in away from the uniaxial anisotropy axis. Notat)ly now there is a 
step in the ditt'erential conductance at the voltage corres|)onding to the inela.stic transition  
I ±  1) —> 10). The niagnit\ule and sign of such stei) dejiends on the bia.s ))olarity. In the 
ins('t the inelastic contrib\ition to the conductance.

ingiy, the magnitude and sign of the conductance step depends on the bias 

polarity. In particular we note tha t there is an inelastic contril)ution. which 

is syninietric with resi)ect to the sign of V', and always contributes to enhance 

the conductivity. In contrast the clastic contribution is anti-symnietric with 

respect to the bias polarity, i.e.. the elastic current increases for > \D\/e 

and decreases for < —\D\/e.  Placing the inii)urity on the opposite edge 

yields a mirror synmietric sittiation. This time the magnetization is driven 

toward {Sz) = —1 {{Sz) = +1) and the conductance decreases (incrca,ses) for 

a positive (negative) bia« A'oltage. Overall we can summarize om' re^sults l)y 

noting that the sign of the change in the conductance trace at the onset volt­

age | l ’| =  \D\ / t  is proj)ortional to (v x ct) • (S), where v is the grouj) velocity 

of the edge state. In other words the anti-synnnetry of the conductance is 

related to the helicity of the edge state, v  x  a.
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W hen one looks at the perturl)ative expansion of the conehictance it can 

be reahzed th a t  the term giving rise to the bia.s asyinnietry is the magnetore­

sistive elastic te rm  of the s-d  Hamiltonian. Its contribution to the self-energy 

reads

bet\v('en the two spin states \n) and \rii) and =  (/?i|5j|/)) is the sj)in 

transition m atrix  element. Since the terms includes d,„„ there is only an 

ela.stic contribution (Q„n =  (*)■ which involves no si)in-Hip events [66]. Such 

a term  is i)roj)ortioual to S~„ and thus reverts its sign as the direction of 

ini])urity sj)in is reversed.

Note tha t the elastic and in('lastic contributions to the conductance are 

calculated by partitioning tlu' current into two j^arts. obtained res])ectively 

from the elastic and inelastic eiu'rgy-dependent self-energies. These, how- 

('ver. are evaluated from the same s('lf-consistent electronic Green's function, 

meaning tha t the elastic and inelastic contributions are not comi)letely dis­

entangled. As such, it should not be surprising th a t  the on-set of inelastic 

scattering is evident also in the elastic contril)ution to the conductance.

Finally we investigate how the conductance profile changes as we increase 

the value of the total spin S  of the magnetic im])urity. This is done l)y rescal­

ing the anisotropy param eter D and the electron-.sjjin coupling strength 

respectively, to D/ \ S \  and ./sa/|S'|. so tha t the effective interaction strength  

and the  to tal spin anisotroj)y do not change in the comparison. Our results 

are plotted in Fig. ."j.S. The figure reveals tha t,  as the  total si)in increases, the 

height of the differential conductance stej)s gets larger. In the figure we also 

plot th(' average magnetization as a functicjn of bias, which indicates tha t the

where Gq is the electronic Green's function, Q,,,,, the energy difference
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Figure 5.5 : S])in-i)olariz(‘(l lETS coiKluc-taiic-o sp w tn in i for a TI (11. (i) lihhoii incor­
porating a m agnetic im purity with varion.s .sj)in ( S  =  1. 3 / 2 . 2 , 3 ) attached at tli(' upp('r 
edge, in the intense current regime. The step  in the differential conductance increases in 
m agnitude with increa.sing the sjiin \-ahie of the adatoni. N ote that the sp('ctra have been 
aligned vertically for clarity in com])arison. The inset shows the average m agnetization  
of the im purity for ditterent values of S.  N ote that spin jim nping jiersists for the larger 
values of tlu' imi)urity spin.

spin pinni)ing is present for larger values of S  and tha t for voltages exceeding 

the energy of the inelastic transition the average value of Sz a])proaches its 

niaxinnun value.

5.1.3 G ate  controlled  sp in  p um ping

In this section we extend the concei)t discussed previously and proi>ose a 

device where the transition between the two regimes is also achieved electri­

cally, by gating the region at the botuidary between the QSH insulator and 

tlie source/drain electrodes. As such we will show that the QSH state can 

Ije coupled with SF-IETS to probe and manipulate single magnetic atoms 

without the need of a magnetic field or a spin-polarized scanning tmineling 

microscope tip.

In the presence of a gate electrode the electronic Hamiltonian takes the

S= I
S=3/2
S=2
S=3

■2 0 2
F(]Dl/e)
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F ig u r e  5.6: N onnalizod coiKluctance trace a.s a ft in c t io ii o f the  s o u rc c /fira iii voltage at 
(litt'e re iit vahie.s o f the a[)plie(i gate voltage fo r a 5  =  1 i in p t ir i ty  spin. Note tha t iiiereasiug 
the  gate voltage beyond Vg =  ().(i/i allow,s us to  crossover to  a regime where the current is 
reduced to  a po in t at which the couductanci' steps are sup])r('ssed. The curves have been 
a ligu t'd  ve rtica lly  fo r ease o f comparison.

form

■^el — -^K M  +   ̂y ^ 'L cki +  -  / +  ^ /
(6  gate, a a  (/? ).  a

where in a dd ition  to  the Kane-Mele H an iihon ian , / / k m - " ’f' have the gate 

p o ten tia l V^. w liich  is inchided via an adehtional on-site energy for the  atoms 

in  the gate region at the two ends o f the ribbon  as shown in  Fig. 5.1.

We ])lot the eonduetance si)eetra (norniahzed to  its  V  =  0 vahie. Gf i )  

at d iffe rent vahies o f t lie  gate vohage. Vy. in Fig. 5.6. For the ca lculations 

we set =  f,,sc =  ^md t '2  =  0 .1 f| (t,j is the hop i)irig  param eter in the 

electrodes and f,^sc coupling Ix'tween the electrodes and the scatte ring

region). 'rh(\s(> i)aramet('rs ke(']) the ribbon  in  the topo log ica l plia.se and
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F ig u re  5.7: A\erag(' magnetization, along the (iirection i)eipen(lic'ular to the ribbon 
plane, as a function of bias voltage. Curves at different voltages are i)lotted showing 
gate control over the magnetization of the impurity s])in. In the inset we re])ort the 
magnetization as a function of gate voltage for a source/drain voltage t)f V =  1.5 \D\lc.

th e  coupling between the  leads and  th e  sca t te r ing  region is fixed to  a large 

v'alue. T h e  choice of pa ram ete rs ,  Sj  =  J„d =  f i / 2  and  i j  =  f i / 4 .  guaran tees  

t h a t  p e r tu rb a t io n  theo ry  can l)e used for the  spin 5  =  1, a« we discussed in 

th e  previous section. T h e  s])in degeneracy  is lifted by in troduc ing  an axial 

an iso tropy  D  =  —10“ ^fi .  T h is  is equivalent to  a ten i i)e ra tm e  of a round  12 K 

(a.sstnning a  realistic value of =  1 eV). In general, devices ba^sed on single 

a to m  anisotropies are low ten ipe ra t iu 'e  devices expec ted  to  work aro iu id  few 

tens  of kelvin [61. 62].

At Vy =  0, i.e., when no ga te  voltage is applied, th e re  is a  conduc tance  

s te p  seen a t  the  energy corresponding  to  the  first s])in exc ita t ion  of th e  sys­

tem . T h is  is the  | 4- 1) —> |0) (| — 1) —>• |0)) sp in  t ran s it ion  for positive 

(negative) s o m c e /d ra in  voltage, w here IS”,) is th e  a d a to n i  si)in's th ird  com ­

ponen t,  familiar to  us from the  analysis  in the  p rev ious section. Such tran -
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sitioii is detectable because the electrode-ribbon coupling strength is large 

and the current is intense. As we increase the gate voltage we observe an 

enhancement in the intensity of the conductance step. This continues until 

Vg readies a value of 0.6fi. Beyond such critical gate voltage there is a drop 

in the conductance step at \^  =  0.8fi and the inelastic conductance becomes 

sup])ress('d. This supj:»ression continues for higher values of the gate voltage.

These observations can be readily understood in terms of the changing 

interface resistance between the ribbon and the electrodes. At low values of 

\'(j. there is a large current flowing from the let\ds to the ribbon and thus 

interacting with the magnc'tic adatom. For V’ =  0 the spin on the adatom  is 

in an ecjual superposition of | + 1) and | — 1) states. As the bias reaches \D\ /e  

the excitation to the |0) s ta te  is possible' by spin-Hip of the incoming electron. 

Since the cvu'rent is large the iuipiu'ity spin S is not allowed to  relax back to 

the ground s ta te  and thus the incident electrons can also induce transitions 

from |0) to 1 +  1) and so l)e transinitt('d without getting backscatten 'd. In the 

C'a,se of high interface resistance as engineered Ijy increasing the gate voltage, 

there is a s trong sui)pression of the conductance steps, hi this scenario since 

the current density is small, the impurity si)in can relax back to the ground 

s ta te  after the spin-Hip event. Idiis means tha t the incident right-going elec­

trons, wdiicli are uj:) spin jiolarized at the up])cr edge, will always encounter 

the ini])urity spin in either the | +  1) or the | — 1) state. A spin-Hip event will 

reverse the electron's s])in and since there are no down si)in channels going 

right at the upi)er edge, the electron will be backscattered. Thus, the helicity 

of the QSH edge sta tes leads to a suppression of the inelastic conductance 

steps at low currents [72].

Finally in Fig. 5.7 we plot tlu' av(>rage magnetization of the device at 

different gate voltages, if no gate voltage is ai)])lied. then a change from
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zero to a finite magnetization occurs at V" =  ±.\D\/e.  corresi)on(ling to the 

allowed spin excitation. Note tha t the direction of magnetization is opposite 

for oj)posite bias directions. As we now increase the gate voltage, the net 

magnetization increases, tending towards unity. This continues until Vg =

0.Gfi beyond which it dro])s ra]:)idly. For higher values of Vg the system 

remains closer to  zero magnetization indicating the absence of s])in pumping. 

The inset of Fig. 5.7 traces the magnetization at =  1.5 \D\/e  as a function 

of the gate voltage. Note th a t  the magnetization is always less than  ±1 . due 

to finite size of the QSH ribbon.

5.1.4 Sum m ary and C onclusions

In conclusion, we have dem onstrated  tha t a QSH current flowing at the edge 

of a Z '2  TI can l)e used to m anipulate the spin of a magnetic impurity. This 

does not recjuire either an external magnetic field or magnetic electrodes.

1.e., it allows one to imi)lement .sj)intronics without magnetism. Imj)ortantly 

the hngerprint of the manipulation can be found in the conductance profile 

themselves, making SF-IETS a tool for preparing. mani])ulating and reading 

a (juantum spin in the solid state. \\"e have also i)roposed a four-terminal 

device, which is design('d to manipulate, by all electrical means, the  spin of 

a magnetic adatoni positioiu'd at the quantum  spin Hall edge.



Chapter 6

First principles transport study  

of topological suface states  

scattering

T he first tiirce-cU iiieiisional top ologica l insu lator to  be exp erim en ta lly  real­

ized w as a B i-Sb  alloy [11], follow ing a th eoretica l ])rediction by Fu and  

K ane [12], T he top o log ica l nature of th e  alloy is inherit('d from th e  ])ar- 

ent elem ent antim ony, w hich has a non-triv ia l princij)al top olog ica l invariant 

7/(1. w hereas b ism uth  has a triv ial Z 2 invariant [13]. A lth ou gh  Sb its(>lf is a 

sem iu ieta l. its  (111) surface hosts tw o sp in-jxilarized  bands, w hich exten d  

around th e Fermi energy. These' form a single d istorted  D irac cone w here the  

lower bands are lifted  upwards. T he first section  o f th is  chai)ter is d evoted  to  

th e s tu d y  o f th ese surface s ta tes  ('uiploying d en sity  functional th eory  ba.sed 

transport m eth ods. In particular w(' s tu d y  th e  transm ission  o f th ese  sta te s  

across surfac(' barriers and com pare to  recent angle-resolved  p h otoen iission  

sp ectroscop y ( A R P E S )  and scann ing tu n nelin g  m icroscopy (S T M ) exjjeri- 

m ents.

93
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In 2009. concurren t theore tical [14] and  exi^eriniental [15] works revealed the 

topological insu la to r  i)hase in B i 2 Se,3 . Due to  a simple single Dirac cone su r­

face h a n d  s tru c tu re  and  a relatively large bulk  b and  gaj) of 0.3 eV. Bi^Se^ has 

em erged as the  i)rototypical topological in su la to r  m aterial. Since m any  fun­

dam en ta l  pro])erties of topological s ta te s  have been d e m o n s tra ted  in th is  m a­

terial, it ha« been called the  hydrogen a to m  of toj^ological insu la to rs  [74. 3]. 

In the  second section of this chap te r  we s tu d y  the  effect of barr iers  on the  

sca t te r ing  i)roperties of Bi2 Se3 ( l l l )  svu'face s ta te s  by m eans of large scale ah 

in itio  t ra n sp o r t  sinuilations.

6.1 Topological surface sta tes  scattering in 

A ntim ony

In a recent ex])eriment, Seo et al. d e m o n s tra ted  th a t  the  topological su r­

face s ta te s  are ex trao rd ina ri ly  insensitive to  th e  presence of surface barr i­

ers [17]. T hey  p robed  th e  ex tended  n a tu re  of S b ( l l l )  surface s ta te s  ])y using 

a  scanning  tum ieling  microscoj^e and  fomid th a t  these t ra n sm it  across su r­

face a tom ic  stej)s w ith  a high j^robability. T he ir  analysis of th e  s tanding-w ave 

s ta te s  on surface terraces  revealed th e  novel chiral si)in te x tu re  of th e  two 

surface s ta tes ,  consistent w ith  earlier A R P E S  m easurem en ts  [75]. In this 

.section we seek to  theore tically  recrea te  the  above m entioned  experim ent by 

using ab in itio  t ra n s p o r t  theory, and  show th a t  we can  re]:)roduce th e  form a­

tion  of q u a n tu m  well s ta te s  an d  the ir  life-times, as well as th e  wave lengths 

and  phase  shifts of th e  sca t te r ing  s ta tes .  T he reb y  we d e m o n s tra te  th a t  one 

can  describe the  correct sca tte r ing  proj^erties of such tojiologically p ro tec ted  

surface s ta te s  by first-principles calculations. In add it ion  of comi)aring our 

results  favorably to  experim ents , we j^redict the  sca t te r ing  proj^erties of these
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s ta te s  ill presence of a surface perturl)atio ii a long a d irec tion  o r thogonal to  

the  one ])rol)ed exi)erinientally.

6.1.1 Com putational Details

O n r  first-j)rinci])les electronic s tru c tu re  ca lcu la tions  a re  perfornied w ith  den ­

sity functional theory  (D F T )  using the  local density  ai)])ioxiniation (LDA) to  

the  exchange-correla tion functional. We enii)loyed the  SIESTA jjackage. which 

iinp len ien ts  a linear conibination of a tom ic  o rb ita ls  basis set [76]. Spin orbit 

in te rac tion , essential to  describ(' the  surface s ta tes . ha,s been  included via the  

on-site  approx im ation  [38] a.s discussc'd in C h a p te r  3. We include Sb 5.s and  

ij]) as th e  valence electrons. In the  slal) geometry, there  is a 10 A th ick  vacuum  

region in th e  supercell, to  avoid in terac tion  betw een i)eriodic images. T he  

t ra n s p o r t  i)ro])erties are tlu'ii calculated  by using SME.AGOL. which combines 

the  noii-e(iuilil)riuni G reen 's  function (X E G F ) m e th o d  w ith  D F T  [77. 78. 79]. 

In SMEACOL th e  sca tter ing  region is attacho'd to  one or more semi-infinite 

elec trodes via self-energies. The charge dens ity  is ca lcu la ted  by in teg ra ting  

the  non-eciuilibriuii) G reen 's  function, along a con tour  in th e  complex eiuTgy 

plane. For this we use. 16 energy i)oints on the  complex semicircle. 16 points  

along the  line parallel to  the  real axis and  16 poles. Periodic  b o u n d a ry  con­

ditions  are  enii)loved in th(' direction o r thogonal to  th e  t ra n s p o r t  direction, 

while using ojjeii bo u n d a ry  conditions along the  t ra n s p o r t  d irection allows 

us to  s im ulate  single sca ttere rs  [80]. We use an  eciuivalent ten ii)e ra tu re  of 

300 K for broaden ing  the  Fermi d istr ibu tion . O ur  order-A" iini^lementation 

of SMEAGOL allows us tcj t rea t  large system s [80]. use a double-(,' po lar­

ized (D Z P) basis set. w ith  a cutoH energy of 300 R y  for th e  real space mesh. 

We hav(' carefully checked convergence of our  resu lts  w ith  respect to  all the
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j)aranieters used.

Sb crystallizes in a rhouibohedral structure  with two atoms per unit cell. 

An alternate  way to rej^resent its s tructure  is in a liexagoual setting with the 

unit cell comprising six atoms. This rei)resentation is particularly useful to 

construct two-dimensional slabs, which are m ade of Sb l)ilayers. as sliown in 

Fig. G.l(a). The inter-bilayer coui^ling is weak and it is possible to create 

surface steps, which are a single bilayer high [17. 86]. The bulk s tructure was 

relaxed using the Vienna Al) initio Simulation Package (VASP) [81], until the 

forces were less tlian 0.01 eV/A.

6.1.2 Results

We begin by calculating the surface band s tructure  of six and twelve bilayers 

thick slal)s of Sb [Figs. 6.1(b) and (c)], by using a 10 x 10 in-jilane A--j)oint 

grid. The distorted Dirac cone at F is gapless indicating minimal interaction 

l)etween the top and l)ottoni surfaces of the slab. T he surface baud struc­

ture  matches well previous ab initio calculations [82, 83. 84, 85]. We find the 

Dirac j)oint at an energy of about 210 meV below Ef: for six and tweh'e bilayer 

slabs. In order to simulate the A R PES spectrum  of an infinitely thick slab 

we perform a  SMEAGOL calculation for the 6 bilayer slab, where we attach  

semi-infinite Sb electrodes at the bo ttom  layer via self-energies. The A RPES 

spectrum  is then obtained by calculating the  projected density of sta tes on 

the surface atoms, and the result is shown in Fig. 6.1(d). The spin-resolved 

A RPES [Fig. 6.1(e) and (f)] shows th a t  the two surface bands carry opposite 

s])in and exhibit the  characteristic spin tex tm e  associated with to]K)logicallv 

non-trivial materials. Furthermore, it can be seen th a t  the surface states are
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more proiiouiicod close to tlu' f  point. Once the two l)ands tu rn  downwards 

from their niaxinunn point, they are less localized on the surface due to their 

hybridization with the l)ulk bands. This matches with ARPES experiments, 

where at M.  no surface states are found [75]. Thus, in both  scattering and 

A R PES experiments, one would expect the dominant contributions to come 

from an area around the center of the BZ. with a radius of al>out one tliird 

of the length of BZ along f  — M  direction. We note that the good agree­

ment with the A RPES experinu'nts shows tha t the LDA exchange-correlation 

fmictioual is appropriate for this system.

K Mr

I M

F i g u r e  G . l ;  (a) S t r u c t u r e  o f  a n t im o n y  in th e  h e x a g o n a l  s ( ' t t ing .  T h e  a t o m s  form  a 
h i lay e r  s t r u c tu r ( '  w i th  th e  in t r a la y e r  d is ta n e e  as  f..'31 A a n d  th e  in te r la y e r  d i s t a n c e  as  2.25  
A.  B a n d  s t r u c t u n '  for (b) six i) ilayers a n d  (c) t\v('lve h ilay e rs  th ic k  s labs  a lo n g  A’ — F — M  
d i r e c t io n s ,  (d) S im u la te d  A I? P E S  from  a s( 'm i- in fin ite  s lab . H ere  a n d  h en c e fo r th  w a rm e r  
co lo rs  re])res( 'ut h ig h e r  P D O S  (ri 'd re j jr i 'sen ts  la rges t  va lues ,  b lue  lowest ones ,  w i th  t lu '  
co lor  sca le  in Ix-twc'cn Ix 'ing  liu('ar). S])in-r('solvc'(l A R P E S  a lo n g  (e) T — M  a n d  (f) 
r  — A' d ir ( 'c t io u s  sh o w in g  th e  op])osit( '  sp ins  o f  th e  tw o siu 'face b a n d s  a lo n g  th e  d in 'c t io n s  
in d i c a te d  by a r ro w s  in th e  inset o f  t h e  figure's, in  th i s  ca.se. red  a n d  b lu e  colors in d ic a te  
u p  a n d  d o w n  s])ins. r<'s])ectiv('ly.

X('xt we simulate a stej) jx 'rturbation on the surface for two different
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directions: In the first case the stej) runs along the T — M . which is the same 

a,s in the experiment in Ref. [17]; and as a second orientation we choose the 

orthogonal direction ( f  —A' direction), to evaluate the effect of the orientation 

on the scattering. We have relaxed the step geometry for a smaller scattering 

region, but the atomic disj^lacements were only minor, and henceforth we use 

the unrelaxed step configuration. A single bilaver high step is creat('d over 

a length of 120 A. The adjacent flat region extends over 270 A. The setup 

consists of a 13 bilayer-thick region with a short 12 bilayer-thick region on the 

left and a longer one on the right. We attach semi-infinite leads on left-hand 

and right-hand sides of the scattering region, by means of the self-energies 

calculated i)y SMEAGOL. The total projected density of states (PDOS) Motai 

is obtained by integrating over all A'l-points perpendicular to the transport 

direction

W'e note that in the first orientation of the stej) k± runs along the T — K  

direction and the transport direction is parallel to f  — M  in reciprocal space, 

whereas in the second orientation k± runs along f  — j\I and the transport 

direction is parallel to T — K.  While we find th a t 3 A’̂ -points are sufficient for 

obtaining a converged self-consistent potential, we need many more Ax-points 

for accurately integrating A/"totai ft̂ i' ^ given potential, where we therefore use 

200 A'i-i:>oints. The of the atoms on the top surface for A'x =  0 is shcnvn 

in Fig. 6.2(a). The quantum  well states formed by quantization of the energy

( 6 . 1)

Analogously the total transmission is given by

1

( 6 . 2 )
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levels in th e  s tep  region are clearly visil)le. and  e x tend  over th e  energy window 

in which th e  two topological surface i)ands exist. T h e  PD O S on the  ad jacent 

Hat region shows oscillatory l)eha\’ior typ ica l of one-diniensional sca t te r ing  

barr iers  [80]. and  it has pha.se shifts at energies corresponding  to  th e  allowed 

energy s ta te s  in the  s tep  region. At those  energies we also find resonant 

transm ission  across q u a n tu m  well s ta tes, visible a.s peaks in th e  transm ission  

curve in F ig  6.2(b). T h is  m atches  the  exi)eriniental observation of resonant 

tunneling  th rough  the  surface barrier  at those  energies. It ind ica tes  a rem a rk ­

ably  long pluvse coherence length of hundreds  of angstrom s, which is due  to  

the  (‘x tended  n a tu re  of to])ological surface s ta te s  [17]. Fu r the r ,  th e  change 

of ];)ha.se when the  s ta te s  are  reflected from the  ba rr ie r  is nearly  zero. Over 

th(' ( 'ntire energy range there  is clearly a r a th e r  large am oun t  of sca t te r ing  

caused by the  s tep  and  the  transm ission drops significantly below th e  value 

in absence of step. W'e have verified th a t  the  single bilayer stej) at the  toj) 

surface p e r tu rb s  the  b o t to m  lav('r m inim ally and  there  is only small coupling 

betw('en th e  two surfac('s evt'n in the  j)r('sence of th e  surface step.

T he  in teg ra ted  A/u,tai shown in Fig. 0.2(c). T h e  m ain  fea tu res  corre­

sponding  to  the  ( |uantized energy levels can  still l>e identified at almost the  

sam e energies found for ~  0. bu t are b roadened  and  less pronomiced. 

T he  b roaden ing  of energy levels for =  0 is 8-12 m e \ ' ,  while for th e  to ta l  

it increases by a factor of abou t three. In exi)erinient. these  were found to  

lie betw een 20-45 m eV [17]. H('iic('. th e  s ta te s  lifetimes, which are inversely 

pro])ortional to  their  broadc'uing. agree ( juan tita tively  w ith  those  found ex- 

|)erimentally. This  shows th a t  tlu ' sca t te r ing  proj)erties of the  s tep  are  well- 

reproduc('d  in oui' calculations. We note  th a t  ( luan tita t ively  th e  resu lts  for a 

12 bilayer slab difler som ew hat from the  ones one would o b ta in  for a semi-
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infinite surface due to the different surface band structures [Fig.6 .1(c) vs. 

6.1(d)]. Firstly, the linear dispersion region of the surface states around F 

is more extended in energy for the semi-infinite surface, and this results in 

quantum  well sta tes spacing remaining constant, wherea.s for the 12 hilayer 

slah the si)acing reduces with increasing energy. Moreover for 12 bilayers 

we find band edges at -185 me\" and -108 me\". which are absent in the 

senii-inhnite system, and which give strong contributions to the 12 bilayer 

PDOS. Due to the enhanced PDO S at these band edges the i)hase shifts 

corresjjonding to resonant tunneling are not a« clearly pronounced for A/"t„tai 

as for A'i =  0. Finally, whereas for the semi-infinite slab there are only tw'o 

discrete surface l)ands around Ey .  and all the other bands are diffuse, for 

the 12 l)ilayer slab clearly the  number of distinct hands is larger, which as 

we will show leads to many more features in the  scattering. These lead to 

discrete short-wavelength scattering processes which would be al)sent for a 

semi-infinite slab.

In order to analyze the scattering mechanism and prol)C the spin texture of 

the surface hands, we evaluate the  Fourier transform (FT) of A/totai along the 

Hat region on the right side of the step, and the result is shown in Fig. 6.2(d). 

For a given energy and k± {k± is conserved during scattering) there are s tand­

ing w'aves w'ith a wave vector q for every j^air of scattering states in the Sb 

electrodes with oj^posite group velocities. For each such ])air of states with 

indices i and j  we get the norm of scattering vector Qij — |A‘; — kj\,  at which, 

therefore, the F T  has enhanced amplitude. In Fig. 6.2(d) we find a rather 

large amount of noise at low q. partly  due to  the fact th a t  we integrate A/iotai 

over a finite number of A'l-j^oints, nevertheless we can identify’ two promi­

nent features th a t  are ])reserved for increasing q. The first is an enhanced 

amplitude s tarting  at about -210 meV' and tlit'n increasing linearly with r/
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D istance (A)
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Figure' G.2: (a)  P D O S  for su r fac i '  a to m s  w itl i  a sing le  stc 'p a d ja c e n t  to  a flat reg ion  for 
th e  first s( 'tu j) a t  =  0. (h) T ra n sm is s io n  at k ±  =  0 w i th  a n d  w i th o u t  th e  s t e p  in d ic a t in g  
f in ite  s c a t t e r in g  (hie to  th( '  s te p .  Avc'rage of t r a n s m is s io n  ov e r  all / , '^ -po in ts  is a lso  show n, 
(c) P D O S  f(;r su r face  a to m s  a v e ra g e d  over all (d )  F om 'ie r  t r a n s fo r m  of  P D O S  d a t a  
in (c) over  th e  flat reg ion  revea ls  th e  ditt'erent allow('d s c a t t e r in g  w ave vec to rs .  T h e  m os t 
p ro m in e n t  f e a tm e s .  ( / \ a n d  (//;. a r e  ne a r ly  l in ea r  w i th  s lo p e s  eq u a l  to  1.1 eV A .

w ith  a  slope of 1.1 e \ ’A, and  the  second is an equivalent enhancem en t w ith  

the  sim ilar sloi>e s ta r t in g  at -110 m e\ ' .  These  two p rom inen t sca t te r ing  wav(>- 

vectors are  also fomid in the  exi)erinients of Seo e f  a i .  where they  are  labeled 

(]B an d  q.\. resjjc'ctively. qf} is a t t r ib u te d  to  s c a t te r in g  betw een the  surface 

s ta te s  close to  f  having the  sam e spin, bu t opposite  m o m e n tu m  direction. In 

th is  ca,se th e  sca t te r ing  s ta te  m om enta  a re  not ecjual. unlike in conventional 

sca tter ing , because of th e  unicjue sj)in tex tu re  of th e  surface s ta te s  resulting  

in an asynnnetr ic  band  s t ru c tm e  for a given spin. T h e  o ther  sca t te r ing  wave- 

vect(jr (r/ i) is a t t r ib u te d  to  sca tte r ing  betw een neighl)oring hole j^ockets away 

from r .  Tii(' ca lcu la ted  slo])es of q \ and qi^ are reniarkal)ly close to  the  value 

of 1.2 e \ 'A  fomid ex ix 'r im entally  [17]. We note  th a t  to  ex])lain th e  origin of
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b o th  (]A Hud q b , one needs to  go beyond the  one-diniensional m odel invoked 

by Seo ef al. an d  a full two-dim ensional t re a tm e n t  is recjuired.

An S T M  experim ent m easures the  to ta l  sc a t te r in g  in all th e  reciprocal space 

d irections. In order to  es tab lish  which A'l-points give rise to  the  (ja ftud qs  

fea tu res  in the  average, we decom pose  the  allowed sca tter ing  ])rocesses along 

different directions. To i l lu s tra te  the  general sca tter ing  m echanism , in 

Fig. 6.3(c) we show the  Fourier transfo rm  for an  a rb i t ra ry  A i-po in t .  and  the  

l)ands of th e  Sb electrodes a long  the  t ra n sp o r t  d irection for the  sam e k±.  As 

an  exam ple , we consider th e  energy at -150 meV, where in th e  hand  s tru c tu re  

we h n d  2 bands  crossing for positive k\ a t  A'l an d  k'2 - In the  Fourier transfo rm  

we find 3 sca t te r ing  vectors: (ji =  — (j2  =  2A i (ob ta ined  by A’l sca t te r ing

to  — A'l), an d  sim ilarly  =  '2k-2- T he  a m p litu d e  is highest tow ards th e  l)and 

edge, w here the  P D O S  is m axim al. A nalyzing  the  F T  for all A^-points. we 

find th a t  most such features found for a single k'± (hsai)pear when averaging, 

except for an d  qB. Th is  shows th a t  the  sc a t te r in g  processes visiljle in STM  

expe rim en ts  a n '  only a small subset of all i)rocesses occuring. Therefore, no 

visible sc a t te r in g  from defects in an ST M  experim ent does not imj)ly perfect 

transm iss ion , since th e  al)sence of s ta n d in g  wave {patterns can also be due  to  

th e  fact th a t  the  features m ay  be b roadened  upon  in tegra tion  over kj_. even 

for su ljs tan t ia l  s ca t te r in g  for each single k±.

T h e re  are  two key factors, which decide which q vectors dom inate . Firstly, 

for a given k± th e re  needs to  be  a high sc a t te r in g  betw een the  initial {kj) an d  

final ( kj )  s ta tes . T h is  is th e  case if th e  spins in th e  two s ta tes  are aligned 

an d  if th e  s u r f a c o P D O S  for th e m  is large. This, therefore, excludes bulk  

s ta te s  and  s ta te s  w ith  oi)i)osite spins. Secondly, for the  features to  rem ain  

l)roniinent w hen in teg ra ted  over k±.  it is necessary  th a t  there  is an  ex tended  

region in th e  BZ w here these  fea tu res  are  fomid m ore or less unchanged. T h is
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is t ru e  when the  change of hand  s tru c tu re  along k±  is small, which is the  ca.se 

close to  a n iax innnn  or a niininiuni. i.e. when OE/dk_L =  0 . and  ideally when 

the  b a n d  cu rva tu re  is small { d ^ E / d k \  is small). W’e have verified th a t  the  

above two conditions are indeed satisfied for <7-1 an d  q b - From  tlie 12 layer 

slab b a n d  s tru c tu re  along F — K  [Fig. G.l(c)] we identify  two such features: 

the  first is the  m in inuun  at ab o u t  A'x =  F. and  th e  second is th e  m axim um  

at k j )  =  O.IGtt. In Figs. 6.3(a) and  (b) we sliow th e  sc a t te r in g  wave vectors 

for t lu 'se two We clearly identify the  features lead ing  to  q.\ an d  q^.  T he  

rem ain ing  features in the  F T  d isapi)car under averaging, since for tlu^se the  

aforementione{l conditions are not satisfied. We no te  t l ia t  a re la ted  s tudy  

ha.s be('u recently  performc'd ])v Takane and  h n u ra  l)v using a low energy 

Dirac theory, where they  find perfect transm ission  at all incidence angles for 

a hyperbolic  s tep  [87]. However, as not(>d by the  au tho rs ,  the ir  analysis is 

valid in th e  long wave' knigtli regime, while we focus on a tom ic-scale  terraces. 

O ur  results  clearly de m o n s tra te  th a t  th e re  is s ca t te r in g  betw een s ta te s  on 

the  sam e Dirac cone for k± 7  ̂ 0. which leads to  the  apj)earance  of the  r/ 4 

sca t te r ing  vector. T h e  fact th a t  such a sca t te r ing  vector is found p rom inen tly  

also in experim en ts  indicates th a t  for non-norm al incidence th e  s ta te s  are not 

])erfectly trarismitt(xl. in agreem ent w ith  our  findings.

Finally, we c rea te  a s tep  on the  S b ( l l l )  surface along the  .r-direction. 

In th is  case th e  slab consists of six bilayers, since sinn ila t ing  a  1 2  bilayer 

sca t te r ing  region along th is  d irection is beyond our com j^utational resources. 

Th is  direction is ])roniising since there  is an energy  window [-60 m e \ '  to  

20 m eV  in Fig. 6 . 1 (b)] (wer which only a single sp in-polarized  surface s ta te  

exists for /.'i =  0  (no te  th a t  in this case the  trans])()rt d irec tion  is parallel to  

the  r  — I\ line in rt'ciprocal si)ace). which is rem iniscent of the  i)rototyi)ical 

tojiological insu la tor  Bi^Se.j. T he  of the  surface a to m s  for k± =  0 is
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Figure G.3: T h e  allowed sc a t te r in g  wave-vertors o b ta ined  from the  Fourier t ransfo rm  of 
P D O S  d a ta  at (a) k^b =  0. (b) A-j 5̂ =  O.IGtt and  (c) k^b =  O.OOtt. T h e  j)anels on th e  right 
show th e  corres])onding b an d  s tru c tu re s  at th e  sam e kx  for the  12 bilayer slab electrodes.

plo tted  ill Fig. 6.4(a). In the  energy range of a single spin-polarizeci sta te  

there is no scattering , which is the hallm ark of a topological surface state. 

From -170 meV to  70 meV quantum  well s ta tes  are found as a result of 

superposition l)etw'een the  two surface bands, w ith a m echanism  analogous 

to th a t in the first step  orientation. Fig. 6.4(h) shows the  transm ission at 

A’l =  0 w ith and w ithout th e  surface step. Rem arkably, there  is a perfect 

transm ission in th is energy window, despite the  presence of the  strong surface 

pertu rl)ation  in the form of an extended single l)ilayer high surface stej). 

This can be ex])lained by invoking the  general principle th a t disorder which 

does not break tim e reversal sym m etry can not localize a single to]Dologically 

protected  surface s ta te . Away from this energy region, there is substantial
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Figure G.4: (a) PDOS at A-̂  =  0 for surface atoms with a single step adjacent to a Hat 
region, with the step exteiuiuig along the f  — K  direction. There is an energy region from 
-GO to 20 meV with no .seatteiing and hence no standing wave states, (h) Transmission 
at = 0. indicating the |)erfect transuiis.sion around Ey  even in presence of a surface 
harrier. Total transmission also shows minimal scattf'ring in that energy range.

scattering caused l)v th{> step and tlie transmission dro])s down from the 

vahie in its absence. The total transmission averaged over all /.'x-points is 

reduced for all energies, and one can expect that as the amount of disorder 

increases, the total transmission will be dominated by small contri})utious. 

W’e believe that these findings would provide a strong motivation for study 

of Sb surface with stejjs along f  — K  direction.

6 .1 .3  Sum m ary and C onclusions

In conclusion, we have ])erfornie<l an ab initio  study of the to])ological sur­

face states on the S b ( l l l )  surface and their resj)onse to the j)resence of 

single l)ilaver high ste])s. showing excellent agreement with experimental ob­

servations. We have identified the various scattering processes possible and 

fornmlated general conditions that lead to the formation of the dominant 

scattering features. This enabled us to confirm the fascinating helical s])in 

texture of the surface statt's. Rt'sonant tinmeling transmission across smface 

barriers, indicative of the extended nature of these states, wa.s found. We 

identihed i)hase shifts in the scattered PDOS at quantum well states energies
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and eva lua ted  their  life-times. T h e  results  de m o n s tra te  th a t  it is possil)le to  

fully charac te r ize  the  sca t te r ing  p roperties  of th e  barriers  with hrst-j)rinciples 

calculations. Finally, we have shown th a t  one can have m inim al sca t te r ing  

along o ther  h igh -synnne try  d irec tions even in i)resence of s trong  surface j)er- 

tu rba t ions .  which provides a uni(iue s igna tu re  for the  toi)ologically p ro tec ted  

n a tu re  of these  s ta tes . We l)elieve th a t  th is  finding can be readily  te s te d  in 

fu tu re  exi)erinients.

6.2 A b in itio  transport across B i 9 Se 3  surface  

barriers

b i recent years, there  has been a rap id  ex])ansion in th e  num ber  of STM  

experim ents  on Bi2 Se3 ( l l l )  and  th e  closely re la ted  Bi2 T e : j ( l l l )  surface, bn-  

purities  on Bi^Se:^ have been im aged and  sca t te r in g  m ed ia ted  by bulk  s ta te s  

ha.s been ob.served [88. 89, 90. 91]. Fu r the rm ore ,  the re  have been s tud ies  of 

(loi)ants on b ism u th  telluride surface [92, 93]. b ite res ting ly  a b o u n d  s ta t e  at 

a surface stej) on Bi2 Te;j has also been found [94]. On the  theo re tica l  front, 

there  have been efforts to  m odel sca t te r in g  of these surface s ta te s  from per- 

tu rl)a t ions  l)v enii)loving Dirac-like m odel H am ilton ians  and  ini])osing sym ­

m etry  considerations  [95, 96, 97]. Fu r the rm ore ,  a s tu d y  of the  robustness  

of the  surface s ta te s  against on-site  d isorder by employing hrst-i5rinci]:)les 

calculations wa« also rej^orted [98]. In th is  section, we investigate  th e  ef­

fect of s tep  barr iers  on the  Bi2 Se3 ( l l l )  surface on th e  sca t te r ing  p roper ties  

of the  topological s ta te s  by m eans  of ab im t io  t ransi)ort  calculations. We 

find th a t ,  due  to  th e  sp in-polarized  hehcal n a tu re  of th e  surface baud , there  

is no sca t te r ing  for norm al incidence, since a reflection w'ould entail  a 180° 

backscattering . However, as one moves to  non-norm al incidence sca t te r in g  is
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revealed. Th is  is because the  spins of th e  counter-p ro i)aga ting  channels are 

no longer anti-i)arallel. An analysis of th e  local density  of s ta te s  reveals th a t  

th e  surface barr ier  s trong ly  affects th e  spin of th e  surface s ta te ,  in p a rt icu la r  

allowing an out of p lane s])in com ponent, which is negligil)le in the  absence 

of th e  barrier . We construc t  a j)otential l)arrier m odel for the  surface stej) 

an d  solve it based on a simple Dirac H am ilton ian  for the  surface sta tes. A 

coni{)arison is then  m ade  w ith  our first-])rinciples calculations. We note  in 

passing th a t ,  a lthough  our a b  t r i i f u )  ca lcu la tions have been perform ed in p a r ­

t icu la r  for Bi2 Se3 , we expect th a t  the  (jualitative fea tures  found would also 

hold for s tep  edges pe rpend icu la r  to  d irec tions w ithou t hexagonal warp ing  

in Bi^Tc;} and  o ther  re la ted  m ateria ls  like Bi-2 Te 2 S an d  T lB iSe 2 .

6.2.1 C om p u tation a l D eta ils

T he  trans])ort  calculations were ix 'rformed using the  SM E.\C OL code includ­

ing spin-orb it  in teraction . a.s described in C hai)ter  3. T h e  generalized g ra­

dient a jjproxim ation  (G G A ) to  the  exchange-correla tion  functional was em ­

ployed. We have used a double-^ ])olarized l>a.sis set and  a real si)ace m esh 

cutoff  of 300 Rydberg. For slab calculations a m in im um  vacuum  region of 25 

ha,s been included to  prevent s])urious in te rac tion  l)etween periodic repli­

cas. W'e use 3 x 1 x 1  /,-iK>int mesh to  o b ta in  the  self-consistent po ten tia l  

(here . r is the  direction per])endicular to  the  t r a n s p o r t  d irection in the  jjlane 

of th e  slab, ij is along th e  slab height and  c is th e  d irec tion  along trans])ort) . 

For ca lcu la ting  the  in tegra ted  transm ission  an d  density  of s ta te s  we use 101 

/ .-points along th e  direction. P('riodic b o u n d a ry  cond it ions  have been con­

sidered in d irections orthogonal to  the  t ra n sp o r t  d irection, while using oj)en 

b o u n d a ry  conditions along tlu ' transjjo rt  direc‘tion  allows us to  s im ulate  a
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single scatterer. which, in this i)articular case is a surface step.

6.2.2 Results

The unit cell for the leads used is shown in Fig. 6.5(a). It consists of a 3-QL 

thick slab terminated on both sides by Se atoms, a.s found ex])erimentally. 

We use experimental lattice constants. The corresponding band structure 

is shown in Fig. G.5(b). Note that tliere is band folding a.s a consecjuenee 

of doubhng the primitive Bi2Se,} miit cell. We find the Dirac cone and the 

helical states consistent with earlier studies [14]. It should also be noted that 

there is a small but finite gap (of the order of 0.01 e\ ')  at the F ])oint in the 

cone due to an interaction l)etween the two surfaces of the slab. However, 

this does not affect our analysis of the topological state's at higher energies, 

since the tunneling to the bottom surface is uc'gligible.

F ig u r e  C.5: (a) U n it cell o f th e  3-Q L  slab  lead s used  in th e  transport ca lcu la tion s. T h e  
yellow  and purple s])heres rejjn'sent selen iu m  and h isnn ith  a tom s, resjic'ctively. (b) T h e  
b and stru ctu re  a long  d irection  o f  transport (s )  is show n at =  0. T h e  surface b an d s in 
th e  energy- w indow  o f  -0.0-5 to  0 .30  eV  have a helical s])in tex tu re .

Uti
^  ^  ^

k
2

The transport setup for single and double barrier scattering is shown in 

Fig. 6.6(a) and (b). We consider a single quintu])le (QL) layer high barrier 

on a 3-QL thick slab. The stej) edge is extended along the F — direction
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and tlie transport is along the orthogonal F — K  direction of the primitive 

Brillonin zone of Bi^Se;^ The scattering region ha.s a length of 198.87 A. For 

the single barrier case tlu' 4-QL rc'gion extends over about half the length of 

the scattering region. For the double barrier setup we investigate two barrier 

lengths, wliere the step extends o\-er a region of 49.72 A in the shorter case 

and is 149.IG A for the longer one.

(a)

(b)

^  198.87 Ang ^
^  49.72 Ang

Figure G.G: Transport  s('tni) for llu ' scatt( 'r ing  ])rol)k'ni is shown for (a) singk' harric'r and  
(h) <k)nhk‘ harrier. In bo th  ca.scs \vc add  an  ( 'x tra singk' q u in tn p k '  layer high barr ier  on 
th(' 3-CJL thick slat). N ote  tha t  sam e self-c'nergies for st' ini-infinite .3-QL leads are  a t tac h ed  
on the  left and  right sides of the  .scatt( 'ring region in (b). wiiile different left and  right 
ek 'c trodes corres])onding to  4-(JL and  .3-QL slabs arc ncc'ded in (b).

S cattering from a single barrier

We begin our analysis by looking at the transport across a single surface 

barrier [see Fig. G.G(a)]. for which the transmission fimction is shown in 

Fig. 0.7(a) as a function of energy and for different values of the .r com])o- 

nent of the wave-vector. At normal incidence {kj. =  0). the surface states 

are perfectly transm itted . T  =  2. due to their helicity. As such, oiu' hrst- 

principles calculations confirm Klein tunneling [99]. The transmission of bulk 

states. how('V('r. is reduced by the j)resence of the stej) edge. In contrast, as
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soon as one moves away from normal incidence, the transmission is no longer 

integer-valued. In j)articular it dips below T — 2. indicating sul^stantial scat­

tering. Note that the drop in transmission at kj. =  0 at E ~ E p  = —0.05 eV is 

merely due to the small gap in the band structure due to the finite thickness 

of the slab. Fig. 6.7(1)) shows the total transmission obtained by integrat­

ing T[E,  A',r) over all angles of incidence, namely T{E.  kj.)dkj..

where is tliP length of the Brillouin zone. Notal)ly Ttotai retains the char­

acteristic “V-shape" associated with the linear Dirac cone-like bands, despite 

the i)resence of the barrier. Overall we can conclude that the total transmis­

sion in presence of the barrier is (juite close to the one for the unperturbed 

slab [compare tlie red and black curves in Fig. 6.7(c)]. For comi)arison, we 

have also performed calculations for stejjs running along the F — K  direction 

(with trans])ort along F — M).  Since the hexagonal warj)ing effect, particu­

larly at energies close to the Dirac crossing, is (juite small in Bi^Se;;. we find 

results, which are very similar to the ones ol)tained for steps along the F — M  

direction. Hence, in the rest of this section we focus our attention on the 

latter.

At non-normal incidence the spin projections of the surface states counter- 

propagating at a given edge are no longer anti-parallel and thus backscat- 

tering becomes allowed, even in the absence of a pertnrl)ation that breaks 

tinie-reversal synnnetry. We note that, although spin-orl)it cou{)ling mixes 

the spin components, one can still define spin comi)onents along different di­

rections by using a projection onto the three Pauli matrices {(^x- (Jy. a^} and 

the identity matrix I . The situation is schematically illustrated in Fig. 6.7(d), 

and its consequences are demonstrated in Fig. 6.7(c), where we j)lot the trans­

mission across the surface barrier as a function of at different energies. 

Clearly T{E,  A'„) is reduc('d as A',r increases, which is expected from argument
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lo la tod  to  th e  s])iii i^iojectioiis of th e  two couiiter-propagatiiig  surface sta tes. 

At larger incidence angles the  transm ission  tends  tow ards the  residual value 

of one. since a perfectly  t ra n s m i t te d  surface s ta te  is present at th e  oj^posite 

side of th e  slab  (no sca tte r ing  center  is ])resent on the  opposite  surface). If 

one increases Aj. even further, the  ban d  edge for the  Dirac cone at b o th  su r­

faces is reached, an d  the  transm ission  a i)ruptly  goes to  zero. It can l)e shown 

th a t  th e  m ax im um  sca tte r ing  am ])litude is ])roportional to  | ( l+ c o s /!^ ) ,  where 

d is th e  angle betw een the  s])in directions of the  counter-])ropagating  surface 

s ta te s  [lOO]. Note  th a t  at higher energies, the  transm ission  pers is ts  a t  val­

ues a round  tlu ' uni^erturbed one. T  — 2. for larger incidence angles. T h is  is 

because  a.s one moves the' Fermi lev('l at higher energy, th e  Fermi circle gets 

larger. C'onseciuently. th e  sam e A.,. corresi)onds to  a sm aller  incidence angle.

In STM  ('x])erinients. one m easures the  oscillations in th e  e lectron d en ­

sity in o rder  to  s tu d y  the  scatt i 'r ing  arising from surface modifications, for 

exani])le from surface steps  as s tud ied  in R('f. [101]. A Fourier t ransform  of 

the  dc'usity yields th e  charac te r is t ic  fretiuencies of its oscillations, i.e. gives 

tlu ' s ca t te r in g  wavevectors. q =  |A'i,n. — Aveti (hm- '̂ref incident and  

reflected wa^'evectors. respectively). In Fig. 6.8 we j)Iot the  density  of s ta te s  

p ro jec ted  (PD O S) onto  the  surface a to m s  along th e  sca t te r ing  region. At 

A’j  =  (J no oscillations in P D O S  are  seen after  reflection from the  s tep  edge. 

Howe\’er. moving away from norm al incidence, th e  above-m entioned  oscilla­

tions begin  to  apj^ear. T he  scatt( 'r ing  vectors  can be ob ta ined  by perform ing 

a Fourier transfo rm  of the  DOS along the  long flat region ad jacent to  the  

barrie i’. in a m anner  analogous to  S b ( l l l )  case s tud ied  in the  previous sec­

tion. At A',r =  0. exi)octedly there  a re  no prom inen t sca t te r ing  processes. As 

on(> moves to  Aj =  0.032 A “ '. there  a])pears a dom inan t  sca t te r ing  wave- 

vector in the  Fourier t ransform  s ta r t in g  at 0.1 e \ ’ and  ex tend ing  upw ards
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F ig u r e  G.7: (a) Trausiui.ssion acrosfs tlio surfaro hanior as a fniictioii of ('iioroy at (iitFer- 
ont vahu's of th e  .r ('()ini)oiK‘iit of th e  wavo-vf'C'tor. orth ogonal to  th e  transport d irection . 
Different curves corres])on(i to different N ote the perfect transm ission at A'j. =  0 . At 
other incidence angles T  is redncc'd. (b) The total transmission integrati'd over Av in the 
pre,s('iice (black curve) and absence (red curve) of tlie barrier, (c) The transm ission as a 
fimction of A’,r. at different constant energy cuts in the energy region <jf the surface states. 
Non-zero reflection at the barrier can be explained using the schem atic diagram shown in 
(d).

in energy, as shown in Fig. G.8(l)). This corresponds to backscattering at 

a non-normal incidence angle. Furthermore, this can be niapi)ed to band 

structure along the transport direction, where a band starting at the same 

energy is present. The average over Â , however, reveals no scattering on 

this scale, even though there is a clear back scattering at individual In 

order to accurately resolve the small density oscillations above the average, 

one would need to consider many more A’j.-points in the calculation. This is 

coni))utationally ])roliibitively expensive for the system sizes considered here. 

For all three cases we also j:)lot the transmission as a fmiction of energy, for
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Fign i 'O  G.8: T h e  DOS pro jec ted  on the  surface a to m s  along th e  sca t te r ing  region at 
(a) hj- =  0. (h) k,. =  U.U'.V2 A “ ' and U ) in teg ra ted  over all A'j- At =  0 th e re  are no 
oscillations. These s ta r t  to  (nnerge at kj. =  0.032 A“ ' bnt are  not visible in the  average. 
T h e  second colnnni of panels show the  Ponrii'r t ransform  of the  projectc'd D OS in tlu ' flat 
rc'gioii adjacent to  th e  harr ier ,  at the  corr('S])onding kj.. T h e  .scattering vector result ing 
from backsca tte r ing  at non-normal incidence is clearly seen in (h). T h e  average, however. 
rev('als no .scattc'ring. T h e  th ird  coltnnn shows the  tran.smissitni as a function of energy 
for the  three ca.ses. For k,. =  0 and kj. =  0.032 A “ ’ . we also plot the  l)and s t ru c t tn ’e along 
trans])ort direction for comparison.

coniparisoii w ith  th e  surface PDOS.

Figtu’c G.8 also m akes apparen t the  l)aii(l bend ing  (of the  order of 0.04 e\") 

in troduced  by th e  step. We will sliow in the  next sc'ction th a t  such b a n d  b e n d ­

ing close to  the  ste}) is a crucial ingredient for cons truc ting  a sca t te r ing  model. 

Far enough from th e  ste]). lujwever. the  P D O S  reverts to  tlie unperturl)( 'd  

value w ithin ~ 4 0  A. consist('ut with exi^eriniental ol)servatioii [102].

In contras t to  sim ilar stej)s on the  S l ) ( l l l )  surface [17. 103]. in Bi2Se:{ 

we hud bound  s ta te s  close to  the  step  edge an d  ])enetra ting  into the  l>arrier 

(wi th an exi)oneutially dami)ed oscillating aini)litu(le). These  exist over the  

en tire  energy window in which the  stu'face s ta te s  are j^resent. Similar features
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0.4

-0.2
n/a

F igure  6.9: The energy chspersioii along (peri^endicnlar to the transport direction) 
for (a) perfect i)eriodic sy.steni comprising of 4-Q L slab, (b) energy disi)ersion at the single 
barrier, and (c) 50 A away from the single barrier. In (1)). (c) and (d) color plots show
the projected dt'nsity of .states on the atom present at the barrier, an atom 50 A away
from the barrier and the PDO S on the atom at the double l)arrier. In  (b) and (d) note
the additional pair of interface' states outside the Dirac cone whicli merge with it around
0.2 eV.

w ith  enhanced DOS have been nieasured by A lpiehshev et al. [94] arotn id 

Kin face l)a rrie r at the B i2 Te3  surface, h n p o rta u tly  such a l)Ound state wa.s not 

ascribed to  the vvari)ed band s tr t ic t in e  o f Bi^Te^. O ur results po in t towards a 

s im ila r bom id  state in  Bi^Se.j a.s well, h i the above mentioned ex])erim ent. no 

in fo rm a tio n  could be obtainc'd ahout the DOS on the lower side o f the stej). 

O u r ca lcu la tions in fact reveal th a t the state exists on ly on tlie  h igher side o f 

the barrie r, and the lower side ha.s no such featiues. \ \ ’e have also calculated 

the energy disj)ersion o f th is  state along the d irec tion  perpendicu lar to  the 

trans j^ort. We j)lo t the energy and Av dependence o f the PDOS on the Se 

a tom  at the ba rrie r [shown in  Fig. 6.9(b)] and on a smface atom  50 A  away 

from  the ba rrie r [Fig. 6.9(c)], and compare them  to  the liand .structure for 

the perfect ])eriod ic system [Fig. 6.9(a)]. For the atom  ])resent at the barrie r 

we find  add itiona l pa ir o f states outside the im j)e rtu rl)ed  D irac bands, which 

however merge in to  the D irac cone at — Ef.' ^  0.2 eV and produce an 

enhanced PDOS around th a t energy. Aw ay from  the barrie r, however, the 

PDO S is very s im ila r to  th a t o f the unpertu rl)ed  system, consistent w ith  the 

l)o tm d state  l>eing present on ly  close to  the  barrie r. W’e t)elieve tha t these
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P i g u r i '  ( i . lO :  Tlu* D O S  pro jcc tc 'd  o n  th e  b o t t o m  su r fa ce  a to m s  a lo n g  th e  s c a t t e r in g  
reg ion  at (a) n o rm a l  in c id en ce  Av =  0. a n d  (b) a n  oljlicjue inc id en ce  k^■  =  0 .032  .A ^ ' .  X o t( ’ 
th e  ab se n c e  o f  d e n s i ty  o sc i l la t io n s  in the' h u lk  e n e rg y  gaj) w ind ow , even  a t  n o n -n o r m a l  
incid('nc(' . Panc'ls on  th e  r ight show  ( lu' F o u r ie r  t r a n s fo r m  o f  t lu '  i ) ro jec ted  D O S  in th e  flat 
reg ion  a d jac e n t  to  t lu '  b a r r ie r .  A com])aris(.)ii w i th  Fig. (i.8 sh o w s  ab sc n c e  o f  b o th  b o tm d  
s ta t ( ' s  as  w('ll as s ig na tu re '  o f  d o m in a n t  s c a t t e r in g  v ec to r s  in tli(' a fo r e m e n t io n e d  enc'rgy

predictions of tlu' i)oun(l s ta te  in Bi^Se.j and its energy disi)ersion may find 

verification in fnttu'e experiments.

B\- analyzing the PDOS of the atoms at the bo ttom  sinface we have 

checked tha t significant scattering occtu's only at the top  one. i.e.. it is caused 

by the presence of the stej) edge and not due to the tunneling back to the 

bottom  surface. In Fig. G.IO we i)lot the PDOS on the atoms present at 

the bottom surface at normal incidence and at a representative value of 

A'j. == 0.032 -A“ ' for ol)li(iue incidence. For l)oth ca.ses we can see absence of 

density (jscillations in the energy range corresponding to the surface bands. 

Xotably no signattu'e (jf the l)otmd state  is also observed. Fiu'thermore. w(> 

evaluate' the Fourier transform of the PDOS in the flat region next to the step
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and find no features which may be mapped back to the scattering wavevector 

q. in contrast to the case of the top surface.

T he loc‘al density of states (LDOS) associated to electronic states incom­

ing from the left-hand side lead at 0.175 eV above the Fermi level are shown 

in Fig. 6.11 [104]. These clearly illustrate the  three-dimensional natu re  of 

tlie i)ath tha t electrons must traverse while crossing the l)arrier. The s])in 

inojections of the LDOS at Av =  0 and Av =  0.032 are shown in the 

left and right j)anels, respectively. In contrast to j)ristine bisnnith selenide 

the sj)ins of the helical surface s tates  are no longer confined t(; the plane of 

tli(> slal). In the vicinity of the barrier they rotate  out of the ])lane (the y 

coni])onent becomes finite). The LDOS at the bo ttom  unpertu rbed  surface 

provide a convenient comparison to the pristine surface, albeit with the spin 

directions reversed. At Av =  0.032 A “ ',  the ,r and ~ components are dom­

inant for the bottom  surface, while the stej) edge introduces a component 

along the  ij direction conii)arable with the other two, at the toj) surface. A 

zoom close to the step shows a large DOS close to the  stej) edge, which is 

due to the bound state.

A  lo w -e n e rg y  m o d e l

In order to  compare to our ah initio  results w'c construct a simj)le ])otential 

barrier model for the scattering problem. The surface sta tes arc described 

by a Dirac Hamiltonian [14]

where the iwtential profile V’(z) is shown in Fig. 6.12(a). The values of 

f() =  —0.05 eV and v — 4.58 eVA. are obtained from our flrst-i)rinciples

H . —  fol2x2 + (6.3)

V i ’(A’2 +  ikj-) /
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F igure  G.ll:  The Hpin-rcsohx'd local density of states iiicoiiiiug fioiii the left k'ad at
0 .175  eV  w ith  tlie  sp in  p rojection  along  (a) .r. (I)) y  and (c) 2 d irection s at =  0. On  
th e  right hand side (d ). (e) and (f) are {'orresijttuding p lo ts for =  ().032 A “ '. Here 
red represents p ositive  v'alues w liile  b lue sta n d s for n ega tive  values. S catter in g  at th e  stej> 
ed ge  even  at kj- =  0 allow s the sp in  to  ro ta te  out o f  th e  |)lane o f th e  slab  r('sulting in 
a fin ite ij and c eoniponc'uts. in contrast to  th e  un p ertu rb ed  t)otton i surface w here tliese  
are neglig ib le. At n on -n on n a l incidence (Av =  0 .032 A ^ ’ ) 2  com p onent o f s])in-resolved
1,DOS b ecom es fin ite w h ile  the step  ('dge in trod u ces a non-zero ij com p on en t. T h e  in.sets 
are zoom s around th e  stc]i edge.

b a n d  s truc tu re .  Here we consider only tiie u])per ]>art of the  cone, i.e.,

E  = \ ' {z )  + s jk 'l  +  k'l- T he  corresponding  e igens ta te  is given by.

1

7!
. . / k . r (6.4)

One can then  use the  wave'-function con tinu ity  conditions  a t the  po ten tia l  

)s to  solve for th e  transm ission  and  reflection coefficients in a s tra igh tfo r­

w ard m anner. T h e  ])otentials in the  4-QL and  3-QL leads, respectively \ ’i 

and  V']. are  nearly  identical and  are set to  zero. 1 9  is the  po ten t ia l  associated  

to th e  barrier  and  ex tends  over a length  d. while \:j is the  l)and l)ending, 

which is finite over a d istance  L. T h e  calculatt 'd  transm iss ion  curves are

p lo tted  in Fig. 6.12(b) for I'j =  —0.02 e \ ’ and  in Fig. 6.12(c) for \;i =  0. T he  

sha])e of the  transm ission function is m uch clos(>r to  th a t  ob ta ined  from the
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ab initio  calculations for finite \ 3  — —0 . 0 2  ( th is  value of I 3 is chosen from our 

first-principles results), as com pared  to  the  s i tua tion  where V3  =  0 . W'liile 

this com parison  does not provide definite evidence of im por tance  of hand  

bending, it serves as an  il lus tra t ion  th a t  it is one of the  factors which need 

to  be considered while perform ing a q u a n ti ta t iv e  m odeling of stej) edges on 

toi^ological insu la to r  surfaces. A lthough  it a i)pears  th a t  th is  simplified model 

can (luaJitatively reproduce  th e  transm ission  ob ta ined  from first-i)rinciples, a 

m ore careful analysis shows th a t  it neglects a num ber  of im p o r ta n t  a,sj)ects of 

tlie s ca t te r in g  problem . It does not take  in to  account th e  threc'-diniensional 

n a tu re  of the  barrier , and  as a conseciuence it canno t cap tu re  th e  change 

in s{)in o r ien ta tion  of the  surface s ta te s  near th e  l>arrier. Moreover it needs 

as an inpu t tlie values of th e  sca t te r ing  po ten tia ls ,  which an  a tom istic  de- 

scrij)tion is capal^le of providing, while al.so c a p tu r in g  the  fine details  of the  

s ca t te r in g  process. W'e also note  t h a t  several m odels have been ])roi)osed to  

s tu d y  toi)ological s ta te s  on a curved surface. T hese  i)redict no backsca tte ring  

at any angle from hy))erl)olic s teps  [87]. U nfo r tuna te ly  these m odels are not 

valid for atoniic-scale al)ru])t stejjs t h a t  we have s tud ied  in th is  section.

S catterin g  from double barriers

W'e now analyze the  sca t te r in g  ])roperties of doub le  ba rr ie r  s t ru c tu re s  con­

s tru c te d  over th e  Bi2 Se3 ( l l l )  surface. T h e  sca t te r ing  region is shown in 

Fig. G. l (d) for the  sho rte r  surface barrier. T h is  t im e  th e  sca t te r ing  s tru c ­

tu re  is connected  on b o th  sides to  two identical semi-infinite leads (3-QL 

slabs). As before, we begin by looking at th e  transm iss ion  across the  surface 

as shown in Fig. G.13(a). Again  coun te r -p ro p ag a tin g  spin-m om entum -lock(‘d 

s ta te s  yield a j^erfect transm ission  at no rm al incidence. As discussed for the  

single ba rr ie r  case, a t  finite Av th e  transm iss ion  is th en  reducc'd. However, in
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F igure  G.12: (a) Poti'iitial proKlo tor tlio D iia c  luodol. \ \V  iiso I'l =  I'l =  0. \ ’2 =  —1,17  
o \ ' .  (I =  20 A and L  =  GO A. T h e  transm ission as a function o f  onergy is show n d io o s in g  
(1)) =  —0.02 ('V and (c) l-j =  0 .0  Different curves corresjxjud to  the  same' kj.  points
its Fig. (j.7(a).

(oiitra.st to  th(' j)reviotis analysis. tlu'r(' are  also resonant enc'rgies at which 

the  transm iss ion  reaches ii]) the  value of two. i.e.. th e re  is no reflection. At 

these p a r t icu la r  energies th e  syst('in (lisi)lavs F ahry-Pero t  resonances, which 

are charac te r is t ic  of one-dim ensional sca t te r ing  from dcjuhle po ten tia l  ba rr i­

ers. In Fig. G. 13(b) we i)lot the  transm ission  as a function (jf the  incident 

kj. for different energies. Away from the  resonances th e  transm ission  shows 

again a eosine-like behavior with transm ission  going down to T  =  1 a.s the  

incidence angle increa.s('s (Av gets larger). At even larger kj. (not shown) the  

transm ission  dro])s down to  zero when the  b a n d  c'dge for the  Dirac cone is 

reached at the  b o t to m  smface. similar to  the  case of single barrier.

T h e  A’r-resolved and  to ta l  DOS p ro jec ted  on the  surface a to m s  is p lo tted  

in Fig. ().14. where the  l)ound s ta te  can l)c clearly seen in the  4-QL region 

ex tend ing  from 10 A to  GO A. T he  DOS a.ssociated to  such boim d s ta te  

oscillates and  decays towards tlu' center of the  ciuantum well defined by the
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Figure 6.13: (a) Traii,siuissk)n across the ciouhlo harrier on the surfacc at (litf’orciit kj-. 
Note the Fal)ry-Perot type oscillations in transm ission in contrast to Fig. 6.7(a). Diti’ereiit 
cin'ves corres])ond to  the same points a.s Fig. 0.7(a). Intcgrat<'(l transm ission with 
(l)lark curve) and w ithout (red curve) the harriers is i^lotted in the  insi't. Transmi.ssion as 
a function of at different constant energy cuts is shown in (h).

two barriers at the stej) edges. A l)and l)ending similar to that observed for 

the single barrier is also seen for this particular barrier configuration. The 

interaction between the bound states localised at the two barriers s])lits them 

in energy, creating alternating high and low DOS as one uK)ves tij) along the 

energy axis. Another noticeable feature is a state localized in the 4-QL region 

at around 0.1 e \ '  [see Fig. 6.14(b)]. This is an additional state in the 4-QL 

slal). which is decoui)led from the 3-QL leads. The same state is absent in 

the ca.se of a single barrier produced by a step edge between a 3-QL and a 

4-QL semi-inhnite lead. The Fourier transforms of the DOS display similar 

features a.s those shown in Fig. 6.8. However, in the double barrier ca.se the 

resolution is improved over that of the single barrier structure since we now 

have more atoms along the flat region next to the barrier.

W’e also study the energy dispersion of the quasi-bound state obtained 

at the barrier, by calculating the PDOS on the Se atom at the l)arrier, as 

a function of E  — Ef.- and momentum along the stej) (Aj.)- This is shown 

in Fig. 6.9(d), with a comi)arison to the band structure of the imperturbed 

periodic system. Aj)art from the Dirac bands, additional states, dispersing 

along Aj. are visible at the interface. These have a dispersion very similar
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to the case of a single l)arrier [see Fig. 6.9(b)]. However, some additional 

features are seen when this pair of states mixes with the Dirac bands, with 

an alternating pa tte rn  of higher and lower PDOS being visil)le. This is due 

to the interaction between the I x m u k I sta tes  at the  two l)arrier edges. Away 

from the interface the PDOS and the dis])ersion reverts to tha t of the pristine 

system with only the Dirac bands being present.

Distance (A)

Distance (A)

Distance (A) q (I A)

Figure G .1 4 :  P D O S  on  s»irfacc' atoiii.s a lo ng  th o  (loul)lc l )a rr io r  ,scatt( 'r ing  region at (a) 
A'j. =  0. (h )  k\r =  0 .082 A “ ' a n d  (c) in tc 'g ra ted  over  all  Av. N o te  th e  abscnice o f  d('n.sity 
osc i l la t ion s  for A:,,. =  0 a n d  in t e g ra t e d  figure's. In c id e n c e  a t  f in ite  k^. le ad s  to  d e n s i ty  
osc i l la t ion s  c lea rly  s(>en in th e  long Hat region a d ja c e n t  to  th e  h a r r i e r  as  sh o w n  in  (h) .  T h e  
p an e ls  on  t lu '  r igh t  ar( ' t h e  corn 'S])on(ling  F o u r ie r  t r a n s fo r m s .

Note tha t for this i)articular chosen length of the double barrier there are 

no ( |uantum w('ll states formed inside the 4-QL region. However, for a longer 

barrier the ciuantum well sta tes a])pear. as dem onstrated  l)v the PDOS on
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Distance (A) Distance (A)

Figure G.15: PD O S on the surface atom s for a double barrier of length 149.IG A at (a) 
A'j. =  0 and (h) =  0.032 A ~ '. N ote the absence of quantum  well states in (a), hi (b)
(juantum well states interact w ith the bound state at the two barriers leading to energy 
sp litting of the bound state.

the surface atoms at two different Av for a barrier of length 149.16 A (see 

Fig. 6.15). At normal incidence no quantum well states can be formed in 

the energy window of the surface state, since the two surface states have 

opposite s])in projections leading to no interference. In contrast, at finite Aj. 

(luantum well states apj^ear (e.g. a nodeless state at around 0.13 eV and a 

singk'-node state at around 0.16 eV). However, the behavior of these states 

near the edges of the barrier is different from usual because of the presence of 

the IkjiukI state. In fact, these (juantuni well states interact with the bound 

states at the edges of the barrier resulting in an energy splitting of the bound 

state. We observe splitting of the bound states in both the short and the 

long doul)le l)arrier, in the former case due to the interaction between the 

bound states located at the two edges of the 4-QL region, while in the latter 

due to the bound state interacting with the quantmn well state within the 

l)arrier.
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6.2 .3  Sum m ary and C onclusions

T(j ccjiichule, we have used ab initio  transport theory to  study  scattering 

of topological surface states on Bi2Se:5(lll) surface from bo th  single and 

double barriers. We have studied the dependence of the transmission on 

the angle of incidencc' and electron (-nergy. At normal incidence our first- 

principle calculations have confirmed Klein tiumeling. Furthermore, we have 

calculated the density of states on the  surface atoms and found bound states 

occuring only on the higlier side of the barrier. Our local density of sta tes 

])lots have made apparent tlu' three-dimensional nature  of the scattering 

problem, in which the spins of the surface states are no longer confined 

to the ])lane of the topological insulator slab. We have also constructed a 

simplified j^otential barrier model using linear Dirac bands to comjiare with 

our first-principles calculations Tlir(tughout the study we have placed our 

results in the context of recent experimental works.
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Chapter 7

Single atom  m agnetoresistance 

on topological insulator surface

C'oiivrntioiial m agnetori 's istaiu 'o  (MU) devices utilize two m agnetic  m a te r i ­

als as electrodes, one a.s ])olarizer and the  o ther  a.s analyzer, separa ted  1)V a 

si)acer. Rec('utly. Burkov and  H aw thorn fomid a new kind of MR on topo log­

ical in su la to r  surface, which reciuirc's only one ferrom agnetic  e lectrode [105]. 

A si)in-valve on to])ok)gical insulator surface, which shows an  anom alous MR, 

has also been studi( 'd  by model calculatu)us [106].

In th is  Cha])ter. based on ab in itio  e lectron trans})ort calculations, we 

report  an  anisotroi)ic single a tom  m agnetoresis tance  on the  topological insu­

la to r  surface, s tenm iing  from an interi^iay betw een th e  helical surface s ta te s  

and  the  spin ariisotroi)y of the  m agnetic  ada tom . This  is a  novel tyi)c of 

M R, which does not uchhI any m agnetic  electrodes, b u t  refjuires a m agnetic  

ad a to m . or m ore  generally  adsorbed  m agnetic  c lusters  or m agnetic  th in  hhns. 

Crucially, our  ])roposal does not rely on open ing  a b and  ga]) in the  surface 

s ta tes , which recjuires establishing ferrom agnetic  o rder  on the  tO])ological in­

su la to r  surface. hist(>ad \\c  focus on th e  m agnetic  anisotro])y of a d a to m s  on
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to])ologicai insu la to r  surfaces, which is known to l)e significant (a few nieV) 

b o th  from first-principles ca lcu la tions [107] and  m agnetic  c ircular dichroism 

m easurem en ts  [108]. M oreover a contro llab le  m agnetic  doping of Bi2Se:j su r­

face s ta te  has a lready  been achieved [109].

In the  presence of m agnetic  im purities , the  spin of surface e lectrons m ay 

be flipped and  it is expected  th a t  s c a t te r in g  should not be forbidden. How­

ever, there  are exi)eriniental rej^orts, which ha\'e found api)aren tly  con tra ­

d ic ting  conclusions and  it is no t clear w h e th e r  th is  s ca t te r in g  is ol)served or 

not [88. 110], O ur  results  provide a possil)le exp lana tion  to  reconcile these 

observations. We show th a t  in th e  i)resence of m agnetic  im purities  new 

backsca tte r ing  channels  are  oj^ened. These, however, a re  found only at those 

energies w here th e  im purity  presents  a large density  of s ta tes , an d  hybridizes 

w ith  th e  underly ing  topological in su la to r  surface s ta tes . Away from these 

energies the  transm ission  is close to  th e  u n p e r tu rb e d  value and  no s igna tu re  

of the  m agnetic  do p an t  is seen in th e  transm ission . We find th a t  at those 

energies the  conduc tance  dej^ends s trong ly  on th e  o r ien ta t ion  of th e  local 

m om ent on the  m agnetic  ada ton i,  which implies a large m agnetoresis tance . 

O ur  large-scale ca lcu la tions  also allow us to  i^robe th e  rcal-space sj)in tex ­

tu re  around  the  m agnetic  ad a to m . T h e  inclusion of a tom is tic  details, w ithou t 

any free p a ram ete rs ,  reveals significant differences from ])revious m odel based 

calculations [56. 97].
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7.1 Anisotropic m agnetoresistance on topo­

logical insulator surface

7.1.1 C om putational Details

First-priiiei])les transport ealeulations were performed employing the SMEACOL  

code, in a manner similar to the work presented in C’ha])ter 6. We use a 

doul)le-c,“ polarized basis, with a real space mesh cutoff of 300 Ry. The gener­

alized gradient approximation for the exchange-correlation functional is used. 

We treat the Bi G.s and Gy;. Se 4.s and 4/; and Mn 3(1 and 4,s' a.s valence elec­

trons. while norm-conserving Troulli('r-Martins pseudopotc'ntials are used to 

describe the core electrons. The Mn adatom is plac('d in the on-toj) Bi geom­

etry. which is the most stable binding site [107]. One may expect changes in 

details of scattering by changing the ;ulsor])tion site, however the ba.sic ])rin- 

ci])le of single atom MR is ('xpc'cted lo be valid for any adsorption site. F'or 

atomic relaxations, all the atoms in the toj) (juintuple layer (QL) are allowc'd 

to move and the s tructures are rc'laxed until the forces are less tha t 0.001 

eV /A . For transj)ort calculations, semi-infinite electrodes comprising of 3 QL 

slal)s of Bi^Se;} are attached to the left and the right of the scattering region 

(shown in Fig. 7.1). A minimum vacuum region of 25 A is included along the 

slab thickness (.//-direction). We use a 3 x 1 x 1 A'-point grid for converging the 

charge density, while a nmch denser grid of at least 80 A^-points is enii)loye<l 

to evaluate the transmission, reflection am])litudes and densities of states.

7.1.2 R esults

The transmission ccK'fhcient for different orientations of the Mn magnetic 

moment is shown in Fig. 7.2. For =  0 [normal incidence. Fig. 7.2(a)]
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Figure 7 .1 :  T ransport se tu p  w ith  Mn a tom  adsorbed  on 8 (in in tuple hiver B i2 Se;j shih. 
(a) \'ie\ve(i in th e  p lane perpt'ndicnlar to  and  (b) a long  th e  transport d irection  ( i ) .  T h e  
scatt('r ing  region sn p ercell co n sists  o f  8 prim itive  unit ce lls  o f Bi^Se;) in th e  xij  plant' and  
1() unit ce lls  a long  c , g iv in g  a con cen tra tion  o f  1 M n a tom  in 1920 b isn n ith  s('k'nide a to m s  
(r; 0.05% ) allow ing  us to  reach d ilu te  con cen tra tion s comi)aral>le to  ex])erini('nts.
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Figure 7.2: T ransm ission  and p rojected  d en sity  o f  s ta te s  on M u for different M n sp in  
d irection s (a) and (b ) at Av =  0. and (c) and (d) averaged over all in cid en ce angle.s. For 
M n s])in a lon g  ,r. tran sm ission  is un])crturbed . w hile reduced tran sm ission  occurs for o th er  
d irection s, resu ltin g  in a sin g le  a tom  ani.sotro])ic m agn etoresistan ce .

and the Mn spin aligned along the  .r-axis. which is the spin direction of the 

incoming electron's traveling along the  positive c-axis, the transmission is 

close to  two in the energy window of the topological s ta te  (ai)])roxiniately 

-0.1 eV to  0.3 eV), i.e.. there is a miity contril)ution from each surface. In 

contrast, for the two orthogonal Mn spin directions, a dip in transmission 

occurs in the energy range, where a peak in the Mn j)rojected density of 

s ta tes  (PDOS) is found. When the Mn spin is along .r. there is no reduction 

in transmission, even though there is a peak in Mn PDOS with a height 

com parable to the case of the other two directions. In all the three cases 

we find the Mn adatoni having a moment close to 4.5 //b - in agreement with
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previous repo rts  [107]. Furtherm ore , we find a sul^stantial in-i)lane m agnetic  

an iso tro jw  of 6 nieV, a value which we have also verified from ]:»lane wave 

ca lcu la tions  using VASP code for a smaller 3 x 1 x 3  supercell. After in teg ra ting  

over th e  en tire  Brillouin zone for all /,> values a s im ilar p ic ture  is ol)tained 

[see Figs. 7.2(c) an d  7.2(d)]. Thus, we hnd  th a t  at th e  energies of the  M u 

s ta te s  the re  emerges an anisotropiv  M R, de])ending ujx)n the  spin o r ien ta tion  

of the  m agnetic  ada tom . We Hnd a M R. MR =  — Ta.s)/Tc,,s- of 670%

(here Tj.g is the  transm ission  at the  to p  surface w ith  th e  ^ h l  spin along x  

and  Tn.s is the  surface transm ission for th e  o ther  two M n spin directions 

a  =  t / . z).

We emi)hasize th a t  th is  m echanism  for MR does not involve opening  a 

h a n d  gaj) in the  sm face  s ta te  spectrum , hi this ])articular setu]) the  t ra n s ­

port is a long the  :  d irection aud. for uoruuil incidence, th e  sp in-m om ent uni 

relation locks the  spin of the  surface s ta te  along ,r. If th e  M n imi)urity s])iii 

po in ts  a long  th is  d irection, then  electrons suffer m in im al sca t te r ing  and  the  

resistance' is low. while for o ther  Mn si)iii d irections we hnd  a high resistance 

s ta te . Ill con tras t,  if th e  electrodes are positioned  in th e  orthogonal config­

uration . such th a t  t ra n sp o r t  is along ,r. th e n  the  i)roi)agating electron spin 

will he along c. In th is  case th e  low resistance  s ta te  will he ob ta ined  for the  

Mil spin parallel to  the  d irection of p ropaga tion , while the  o ther  two direc­

tions will yield a high resistance s ta te  [see Fig. 7.4(e)]. Since the  resis tance 

is given by the  o r ien ta tion  of the  local m agnetic  m om ent w ith  resi)ect to  the  

trans])ort direction, th is  MR is also anisotropic .

From the  ])revious results  it is not ])ossible to  uneciuivocally d istinguish  

w he ther  the  sca t te r ing  occurs due to  s])in-flii) betw een s ta te s  on one surface or 

if the  MR is an a rtifac t of inter-surface sca t te r ing  caused  by the  finite Bi2 Se 3  

slab thickiK'ss. We clarify this issue by ca lcu la ting  th e  full sca t te r ing  m atr ix
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Figure 7.3: Sc-attcriug vectors ( q )  as a function of the iiiciiieut wave vector [ k j - )  for 
Mn spin along (a) x. (h) y. and (c) ;  directions. Tlie size of circles is i)roportic)nal to 
the reflection anii)litude. The ctirves are ])lotted at energies corres])onding to ]>eaks in 
Mn density of .states. E — E y =  0.08. 0.10 and 0.08 e \', for Mn spin along jc. ij and c. 
n'sjx'ctivelv. Here and fK are lengths of electrode unit cell along s and ;  directions.

and eva luating  the transm ission and reflection am plitudes fo r the in d iv idua l 

sca tte ring  states on the top  and b o tto m  stufaces [111]. \ \ e  ob ta in  in te r­

surface re flection and transm ission am plitudes always sm aller than  0.008. 

For in tra -sm face scattering, in  contrast, these (juantities  reach values up to 

1, which confirm s th a t the slab is th ic k  enough to  prevent s ignificant coupling 

betw('('n opposite smfaces.

A  deeper analysis is j^rovided by s tudy ing  the scatte ring  wave vectors, q .  

and the  reflection am plitudes, r. on the top  smfaco o f the topo log ica l insula­

to r sla li at the peak energy in  M n PDOS, as a fm ic tio n  o f the wave vector A’j. 

along the d irec tion  lie rpend icu la r to  trans j)o rt. Here q  =  the

difference between the outgoing. A'j.out. « iid  incom ing, k z . h u  c-ccnnponents of 

the sca tte ring  wave vectors. Since in  the bu lk  gap bo th  k ^ . m  «nd k ^ , o u t  

the topo log ica l surface states are functions o f Av- we can evaluate q  a.s func­

tio n  o f k j - .  The result is presented in  F ig. 7.3, w ith  the size o f the circles 

denoting  the re flection am i)littu le  r(Av)- Since the constant energy surface in  

the energy range o f the topo log ica l states is a j^proxim ate ly c ircu la r, we also 

find the corresponding q - k j -  p lo t having a c ircu la r shape. For the M n spin 

along X  and for sm all k j .  the re flection am ])litude  is van ish ing ly sm all, w hile  

it  l)ecomes larger when k j -  increas('s. T h is  is because the overlaj) between the
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Figure 7.4: (a) Transniission and  (b) ada to in  projc’ct('(l dcnisity of s ta te s  for the  two- 
diiiieiisional inodc'l. w ith  a d a to n i  s|)in pointing  parallel and  perpen(hc-ular to  electron spin, 
(e) Transm ission an d  (d) avc'rage projeetc'd density  of s ta te s  for m agnetic  cluste r  in the  two 
spin cont ignrations. T lu ' insets are sclienuitic t>f the  two se tups  and  dashed  line's indicate 
transn iiss ion  of one from th(' un])( 'rturbed edge. Here we .set a d a to m  onsite  energy to  0.1. 
ho])ping elenu 'n ts  to  r ibbon  as 0.3. lio])ping bet\v('en m agnetic  a to m s  to  0.5 (in un its  of 
the  nean 's t  nc'ighbor ho])])ing) and  o ther  ])arameters are  sam e as chosen in R('f. [72]. (e) 
Sclu 'uiatic of fom-prob( ' geonu 'try  to  m easure the  anisotrojiic m agneton 's is tance .

two cotiiitc'r-prcji^agatiiig surface stat(\s get larger when k,. increases. Tims, 

when th(' ^hl spin is along x  tlu' ini])nrity behaves as a non-magnetic scat­

tering center [112], In contrast, for tlu' other two directions a large reflection 

is ]>r('sent even for k\. =  0. which p('rsists at larger kj.. The total reflection 

is obtained by integrating this fmiction over all so that the miderlying 

diffen'nce in reflection amplitude for small Av is what yields the anisotro])ic 

MR.

Recent scanning tmmeling microscopy studies of magnetic adatoms on 

topological insulator surfaces hav(> observ('d either new scattering channels, to 

be a.scril)ed to magnetic scatt('riiig [110]. or found the scattering inde])endent 

of the magnc'tic nature of the adatom [88]. Our calculations provide a i)ossible 

explanation for these conflicting observations. The transmission coefficients 

show that a new backscattc'riiig channel is crc'ated only at the energy of the 

adatoni PDOS. whik' at all other energies where the toj)ological state exists, 

no Hnger])rint of the magndic- adatom is visible. Thus, a likely (>xplanation



132 Single a to m  n iagnc torcs is tance  on topological in su la to r  surface

F ig lU 'e  7 .5 :  A co in h in a tio ii o f  jjrojccted  and  loca l d en sity  o f s ta te s  sh ow in g  real space  
sp in  tex tu re  around th e  m agn etic  ad a to in  w ith  its  sp in  p o in tin g  a long  (a) .r. (h) ;y. and  
(c) 2 dirc'ctions. at th e  en ergy o f j^eak in M n d en sity  o f  s ta te s . T h e arrow s d en o te  th e  
in -p lane s])in com p on en ts  ohtainc'd from  atom -])rojected  d en sity  o f s ta tes . T h e  isosurfaces  
corres])ond to  the local d en sity  o f s ta te s  projected  a lon g  th e  d irection  norm al to  th e  ])laiR'. 
w ith  red d en o tin g  i)o sitive  values and  b lue rep resen ting  n egative values. T h e  ('ffect o f 
ad atom  s])in in not lim ited  to  th e  top  surface Se a tom s, but is d istr ib u ted  over the first 
(}uintui)le layer.

to  reconcile ex]:>erinients is th a t  th e  a d a to m  should  not only hybrid ize with 

the  topological insu la to r  surface, b u t  also present peaks in density  of s ta tes  

at relevant energies for being d e tec ted  in the  transm iss ion  spectra .  These 

depend  on the  specific m agnetic  a to m  and the  adso rp t ion  site and  therefore 

can differ in different experim ents.

T he  an iso tropic  MR can  be  u n d e rs to o d  by considering th e  im purity  as 

the  source of an effective local m agne tic  field. If th e  sj)in of the  a d a to m  is 

parallel to  the  si)in of th e  j^ropagating electron such an effective field provides 

a collinear sca t te r ing  po ten tia l ,  th u s  p rec luding  spin m ixing an d  backscat- 

tering. However, if th e  local sj)in forms an  angle w ith  t h a t  of the  i tineran t 

electrons, oj^posite spin e lectrons will couple an d  th u s  backsca tte r ing  between 

helical s ta te s  will becom e possible. A m inim al two-dim ensional m odel can 

be used to  verify th e  generality  of th e  j\IR. use th e  Kane-M ele model [27] 

for a ribl)on w ith  a  m agnetic  a d a to m  or a m agnetic  c luster  j^laced a t  the  r ib ­

bon  edge an d  an exchange coupling l)etween th e  e lec tron  spin an d  th e  imi)u- 

r ity  [72]. T he  edge electrons in th is  m odel c a p t iu e  the  essential physics of the  

kx  =  0 case of th ree-d im ensional topological insu lators , which is responsible 

for the  anisotropic  M R. T h e  resu lts  a re  shown in Fig. 7.4. T h e  transm ission
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is high for the adatoiii spin parallel to the electron spin, while it is low for 

other angles, thus the model calculations confirm our first-principles results. 

Furthermore, for the magnetic cluster the MR is obtained over an energy 

range larger than  that of the single adatom. The fact th a t  the ani.sotropic 

MR is independent of the details of adatom  means th a t  one can select other 

magnetic ions to tailor the anisotropy direction. For instance. Cr and Co on 

Bi^Scu exhibit an out-of-plane easy axis, while Mn and Fe present an in-plane 

one [107].

In addition to a two-terminal device the anisotro])ic MR can be measured 

in a four-i)rot)e setup [Fig. 7.4((')]. When the ini])urity spin points in the di­

rection shown (e.g. due to the magnetic shape anisotro])y). then a measurt'- 

nient of the resistance between the electrodes 1 and 2 yields a low resistance 

state, while high resistance is uu'asui'ed between 3 and -1. If a thin film with 

in-jilane magnetization is used, thc'u a MR will l)e ol)tained dejxMiding on 

the  in-i)lane orientation of the magnetization. Out-of-j)lane magnetization, 

in contrast, always yields a high resistance state. In general, when the ini- 

l)r.rity spin points paralk'l to the helical electron spin the resistance is low, 

while other angles between the two spins will result in a higher resistance. 

A large magnetic anisotropy also implies the likely absence of Kondo-type 

features, which occur with degenerate ground states. Furtherm ore we exjK'ct 

the spin-flip of the impurity to be negligible as long as the l)ias is smaller 

than  the  magnetic anisotropy [73]. Going a stej) further, we have found the 

same anisotro])ic MR for magiu'tic clusters, in which the  aforementioned ef­

fects will be even smaller and the magnetic anisotro[)y may be engineered to 

be large.

Since our n b  i i i i f i o  calculations eni])loy extremely large su])ercells, we 

are in the ])osition to prol)e the real-space spin tex ture  aromid the isolated
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m agnetic  impurity . T h is  ha.s been previously s tud it 'd  w ith  Dirac-like effective 

H am ilton ians  [56. 97]. bu t here th e  full details  of the  electronic  s tru c tu re  are 

included. A com bina tion  of a to m  p ro jec ted  DOS and  local DOS is shown 

in Fig. 7.5 for the  th ree  different o r ien ta tions  of the  ^ h l  spin at th e  energy 

corresponding  to  the  peak  in M n P D O S  of any given o r ien ta tion . T he  induced 

spins on th e  a tom s a round  Ahi are  i^redominantly along th e  d irection of the  

M n spin. For M n spin po in ting  ak)ng y.  we find a hedgehog-like in-pltuie 

si)in tex tu re ,  w ith  the  spins po in ting  ou tw ards  from th e  im p u r ity  site. This  

contrcvsts C(jntinuuni models, which yiekl a vortex-like in-j)lane s tru c tu re  [5G, 

97]. T h e  out-of-plane spin po in ts  a long th e  positive y  d irection, in agreement 

w ith  th e  model results. Th is  spin is induced  over the  first QL. For M n spin 

along y.  th e  spin tex tu re  exh ib its  a thret'-fold ro ta t iona l  sy n n u e try  of the  

underly ing  lattice, which is not c a p tu re d  by th e  con tinuum  low-energy model. 

For th e  o ther  two directions, th is  lat t ice  sy n n n e try  is broken  by the  M n spin 

and  the  neighboring a tom s exhil)it a spin along th e  im])urity spin direction. 

W’e have also investigated  the  spin t e x tm e  a t  o ther  energies an d  found similar 

directkjns as those  pre.sented in Fig. 7.5, a lthough  th e  m ag n i tu d e  of the  

induced  spin decreases a t energies away from M n P D O S  peak. O ur  spin 

te x tu re  i)redictions na tu ra lly  call for an  experim en ta l  co rrobo ra t ion  via s])in- 

polarized scann ing  tunneling  m icroscopy [113, 62].

7.1.3 Sum m ary and C onclusions

In conclusion, we have discovered single-a tom  an iso trop ic  m agnetoresis tance  

on toi)ological in su la to r  surfaces decora ted  w ith  m agne tic  adatonis .  Th is  ef­

fect is a  consequence of th e  sp in -m onien tun i locking of toi)ological insu lator 

surface s ta te s  in te rac t ing  w ith  th e  a d a to m  s])in. T h e  M R does not origi­

na te  from th e  ojjening of a  gap  in th e  surface ])and s t ru c tu re ,  nor from spin
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injection. Our results prcjvide a possible explanation for the conflicting obser­

vations concerning scattering from magnetic atom s on topological insulator 

surfaces. Our orcler-;V code allowed us to study the real s])ace spin texture 

around the adatom. which has differences from previous model calculations. 

Based on these findings we propose a class of magnetoresistive devices with 

])otentially large MR, utilizing either single magnetic atoms or thin film nan­

odots incor])orated between two non-magnctic electrodes, using an in-plane 

rotation of the thin film magnetic moment.
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Chapter 8

Topological tuning of two and 

three dimensional Dirac 

sem im etals

A ])articularly intiiguiiig prosi)oct is tha t of using the interaction between 

(Hfferent materials to create hybrid interfaces with toj)ological ])roperties. 

For instance depositing normal sc'uiiconductors on toj:) of three-dimensional 

toi)ological insulators may result in a structure  tha t under certain condi­

tions exhibits toi)ologically protected interface states [114], An even more 

a ttractive  ])ros])ect is tha t of using this protocol for transferring to])ologically 

])rotected states to graphene. Sincc' grai)hene-l)ased transistors have l)een al­

ready dem onstrated  [115]. one could tlu'n speculate on having grai)hene logic 

elements connected by topological-gra])hene interconnects, i.e.. on realizing 

an all grai>hene high-performance logic circuitry. A m ajor advantage of such 

a strategy is that it is fulh’ comj)atible with two-dimensional patterning, hi 

the first section of this chapter we proj)o,se and show th a t  a topological pha.se 

can be transferrt'd to gi'a])h('U(' by proximity with the three-dimensi(jual topo-
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logical insu la to r  Bi^Se;}. By using density  functi<jnal and  trans])ort  theory  

wo prove th a t ,  a t  the  verge of the  chemical bond  form ation, a hybrid  s ta te  

forms a t  tlie graphene/Bi^Sc;} interface. T he  s ta te  has Dirac-cone-like dis­

persion a t  the  r  point and  a well-defined helical si)in-texture. ind ica ting  its 

topologically p ro tec ted  na tu re .

M otiva ted  l)v the  tw o-dim ensional Dirac-like sem im etallic  s ta te  in graj^hene. 

Dirac seniim etals  in th ree  d im ensions were theore tically  i)roposed recently  [125]. 

Using Hrst-jjrinciples calculations. W ang an d  co-workers pred ic ted  sodium  

b isn iu tha te  (Na.jBi) and  cadm ium  arsenide (C d 3 A s 2 ) to  be  three-d im ensional 

Dirac sem im eta ls  [I2(i. 127]. T he ir  exi)eriniental realization wa,s not far be­

hind a n d  the  prediction ha.s been verified by m eans  of angle resolved pho toe­

mission m easu rem en ts  in a rem arkab ly  rap id  flurry of ac tiv ity  l)y a num ber 

of grou])s [128. 129, 130, 131. 132]. Interestingly, a Dirac sem im etal  s ta te  

wa.s also found in zinc b lende comi)ounds [133]. A part  from hosting  a l)ulk 

Dirac cone, b o th  Na.^Bi an d  C\l3 As 2 also show a b and  inversion at th e  center 

of the  Brillouin zone. Th is  m eans th a t  they  exhibit a surface Dirac si)ectrum  

w hen confined to  a slab geometry, analogous to  conventional to])ological in­

su la to rs  [14]. Given their  unique electronic  s tru c tu re  they  0 ])en up  an  ex­

c iting  p latfo rm  to  s tu d y  topological phase  trans it ions , in terweaving two and  

thretvdin iensional Dirac s ta tes . In th e  second half  of th is  chap te r  we s tu d y  

the  in terp lay  (jf l)ulk and  surface D irac fermions in th ree-d im ensional Dirac 

sem im etals  using first-principles calculations. By coml)ining density  func­

tional theo ry  w ith  th e  coherent po ten t ia l  apj^roximation we reveal a  tojjolog- 

ical phase  t ran s it ion  in the  alloy N aaBii.^-Sbj, w here th e  system  goes from 

a D irac sem im etal to  a triv ia l in su la to r  upon  changing  the  Sb concen tra ­

tion. T h is  tu n in g  of com])osition allows one to  engineer the  i)osition of the  

bulk Dirac ])oints in the  recijnocal space. Interestingly, th e  phase  t ran s it ion
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coiiicideH w ith  a reversal of the  l)aiul o rdering  betw een th e  conduction  and  

valence bands.

8.1 Proxim ity induced topological state in graphene

Se\'('ral pro])osals have l)een a lready  brought forward for m aking  grai)hene a 

topological insulator. Indeed, one of the  first toj)ological insu la to r  m odel was 

based on a s taggered  hexagonal lattice  w ith  helic ity-dependent comi)lex lioj)- 

p ing  ])aram eter, s im ula ting  si)in-orbit in terac tion , i.e.. th e  Kane-M ele model, 

which we have encountered  s('V('ral times in this thesis [27. 28]. However, since 

sp iu-orb it  coujjliug in gra])hene is tiny, a topological pha.se m ay be induced 

only by strong ly  p e r tu rb in g  the  graphen(' e lec tros ta t ic  po ten tia l,  for instance  

by adsorl)ing heavy ions on to]) of the  sheet [llG]. Im portan tly , a lthough  th e ­

oretically  .sound, such i)ro])osal n'cjuires u l tra -accu ra te  fabrica tion  j^recision 

and  a p p e a rs  r a th e r  challenging in i)ractice. Here we suggest a completely 

difl'erent ap])roach: we introduce' toi)ok)gically i)rotected s ta te s  in gra])hene 

by ])roxiniity w ith  a la t t ice -connuensura te  th ree-d im ensional to]K)logical in­

su la tor.  Th is  ha jjpens at the  g ra i)hene /B i2Se:j interface, a com])osite which 

wa-s synthesized  ab o u t  two years ago [117. 118. 119], I)ut whose electronic 

s t ru c tu re  still rem ains  unclear.

8.1.1 C om p u tation a l D eta ils

C’alcu lations  were perform ed l)y density  functional theo ry  (D F T )  as imple­

m en ted  in the  V.VSP code [81]. We used th e  Perdew -B urke-E rnzerhof form 

of the  genc'ralized gradic'nt approx im ation  and  the  core e lectrons were de­

scribed by ])roj( 'ctor-augm('nted-wave ])seudopotentials. T h e  A-space in te­

g ra tion  si)ans a 11 X 11 X 1 M onkhors t-P ack  m esh in the  irreducible Brillouin
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Figure 8 .1 : Side (a) and top  view  (b) o f the g ra i)h e iie /B i2 Se3  interface. The gra])heiu'- 
Bi-jSe.'i se ija ra tion  is d .  In  ])anel (c) we report the graphene ('leetron ic band ga]) as a 
func tion  o f (/.

zone and the plane waves cu to ff is 4U0 eV.

The geom etry o f the s truc tu re  investigated is shown in  Fig. 8 .1 . We con­

sider a B i2 Se,3 slab conta in ing  three ciu intuple layers (Q Ls), for which the ten­

sile stress is m in im a l among the  expe rim en ta lly  investigated B i2 Se3 /graphene 

comj)osites [117]. The Bi^Ses u n it cell is conunensurate w ith  three grai^hene 

u n it ce'lls. hence the  elem entary u n it cell o f the com jiosite  contains an entire 

carl)on ring. The contacting  Sc atom  is placed at the graphene hollow site (in  

the center o f the ring ). The in-p lane la ttice  i)a ran ie tc r is 4.26 A , which is on ly 

2.3% larger than  the la ttice  param eter o f l)u lk  B i2 Se:j; the one perpendicu lar 

to  the interface is instead 40 A  (there is a vacuum  region o f at least 10 A  

between cells }>erio<lic replica). We have also investigated a second geom etry 

where the carbon atoms are on top  o f Se. T h is  con figm a tion , however, is 

not energetically favoral)le and i t  has not been considered in the rest our 

analysis. In te res ting ly  bo th  interface structures present ra the r s im ila r trends 

in  the electronic s truc tu re  properties.
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8.1.2 Results

W’e begin  by investigating tlie evohition of the  g raphene  l)and gap w ith  the  

graphene/B i^Se.j  cHstance, d. W’e assign an electronic b a n d  to  a given m a te ­

rial by ])rojecting the  energy and A-dependent wave function on to  s])herical 

ha rm on ics  centered arcjund particu lar  atom s. We define th e  g raphene  elec­

tron ic  b a n d  gap  from those  bands located near th e  charge neu tra l  point of 

fn 'e -s tand ing  g raphene  and  having dom inan t C character.  In Fig. 8.1(c) one 

can  identify  th ree  different regions. For d > 3 A  (region C) g raphene  has 

no b a n d  gap. Th is  is exj)ected since for large separa tions  th e  in te rac tion  is 

\v('ak an d  the  band  structure ' of th e  com posite  is a suj)erposition of those of 

th e  consti tuen ts .  As such gra])hene rem ains a zero-gap sem iconductor. Re­

gion B is character ized  by the o|)eniug of the  g raphene  l)and gap. T h e  gap 

increases m onotonically  from J  =  A and  it reaches a m ax im m n (0.34 eV) 

for (I =  2.45 A. A fu rther  rt'duction in d  (region A) closes th e  gap, which 

rem ains  closed up  to  d = 2 A.

Next we analyze in Fig. 8.2 the  n a tu re  of the  g raphene ban d s  around  

the  Fermi level. E y .  tis a function of d. For d > 3 A [Fig. 8.2(a)] th e  com- 

])osite fea tures  two superinii)osed band  s tru c tu re s  corresponding  to  those  of 

g raphene  and  Bi2 Se3 , resjK'ctively. At such large se])aration th e re  is no wave 

function (n'erlaj) betw een gra])hcne and Bi^Se^. leaving the  two m ateria ls  

e lectronically  decoupled. Gra])hene's linearly dispersive ban d s  (in blue in 

Fig. 8.2) at each of tlu ' valleys (Dirac K-jioints) a re  two-fold sp in-degenerate , 

w ith  th e  n  {E < E p )  an d  t t *  {E > E f )  bands  ju s t  touch ing  each o ther. T he  

Bi^Se^ surface s ta te s  (grec'n bands in Fig. 8.2) cross E[.' a t  th e  F point.

Decreasing d below 3 A causes a band  gap  open ing  betw een the  n  and  

n* bands  [s(>e Fig. 8 .2(b). d =  2.G A]. Xow th e  graj^hene valleys are placed 

toge the r  with th(' Bi-iSc'.j surface s ta tes  a round  the  F point due  to  th e  bands
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Figure 8,2: E voh ition  o f hand ,structur(' o f  tlie  gra iih ciic /B i'iS en  c'oiiii)osite ;us a fu nction  
o f the si'i>aration d b etw een  th e  tw o con,stituent,s. In jianels (a ), (h ). (c) and  (d) we pre.sent 
th e  hand struct>ire for d = .'},() A, 2.G A. 2,.'i A and 2,2 A respectively . B lack  and gr(>en 
hands are hulk and surface s ta te s  o f B i2 Se;j. l)lue hands are grajjhene hand s, w iiile  th e  red 
ones represent hybrid s ta te s . T h e inset in th e  panel (d) illu stra tes th e  sp in -tex tu re  o f th e  
m ixed s ta te  at 0,0,'j e \ ’ ahove E/.-. N o te  th e  difien'ut A’-point sainj^ling for d — 3 ,0  A,

folding ill th e  superccll s truc tu re .  As tlie g raphene  electronic gaj) increases 

fu rthe r  upon  a reduc t ion  of d [see d =  2,4 A. Fig. 8,2(c)], th e  n* cone lifts up 

in energy hu t the  t ip  of the  7t one rem ains  j)iimed at E y .  T h e  topologically 

])rotected surface s ta te s  of Bi^Se;} (one per surface) are  j:)ositioned in th e  

vicinity  of the  tip  of th e  tt cone. For separa tions  d > 2.6 A these  surface 

s ta te s  form a do iib ly-degenera te  s ta te  since the  two surfaces are  e(}uivalent 

for the  u n p e r tu rb e d  to])ological in su la to r  slal). For d istances  d <  2,6 A 

the  sym m etry  of th e  topological in su la to r  slab breaks due  to  th e  vicinity of 

the  g raphene  layer an d  th e  degeneracy  of th e  surface s ta te s  is lifted. T he  

topological surface s ta te  in con tac t  w ith  g raphene  moves up  in energy a t  F 

by al)out 0,11 eV for d — 2,3 A. Im portan t ly ,  the  g raphene  s ta te s  th a t  are 

I)inned at s ta r t  to  couple  w ith  th e  surface s ta te  and , for d <  2,3 A, th e  4- 

fold degeneracy of the  t t  cone is lifted. Here the  jiure g raphene  l)ands forming 

the  7T cone are jiushed dow n in energy and  only the  m ixed graphene/Bi^Se.j
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bau d  [red in Fig. 8.2(d)] and  th e  Bi^Sc.^ surface s ta te  a t  the  opposite  side of 

the  interface (placed directly  b en ea th  the  m ixed l^aud a t  F) cross Ep.

Intriguingly, such newly formed m ixed g ra i)h en e /B i 2 Se3  l)and presents  

a helical si)in-texture. d e m o n s tra ted  in th e  inset of Fig. 8.2(d). Th is  is a 

sufficient condition for disabling l)ack-scatteriug of charge carriers, and  it is 

not the  case in a pris tine  gra])hene sheet, hi fact, defects in grai)hene allow 

hopi)iug of charge carriers betw een two valleys, which causes l)ack-scattering 

due to  the ir  oi)])osite winding num bers. In con tras t,  hopp ing  is impossible 

in system s w ith  only one valley and  a helical sp in - tex tu re .  which is the  ca.se 

for graphene/B ijSe ij  he te ros tructu re .

T he  supercell s t ru c tu n '  causes the  folding of the  second Brillouin zone 

(BZ) of })rimitive graphene  into th e  first and  cousexjuently th e  m igra tion  of 

the  grai)hene valleys from K to F. T im s, twi) 4-fold degenera te  cones touchh ig  

at E y  are  formed. T he  bands  from th e  two valleys have oi)posite topological 

cliarg('s. whicli causes the ir  m u tua l  am iih ila tion  [120]. T h is  m anifests  itself 

in the  oi)ening in grai)hene of a b a n d  gap  [sec Fig. 8.2(b) and  (c)j. m uch 

larger th a n  rhat  e s t im a ted  for tha llium  a d a to m s  dej^osition [116].

Aftc)' having determin('d  th e  euK'rgence of a m ixed g ra p h e n e /B i 2 Se3  band , 

we now analyze  in detail its electronic proj^erties. T he  electron density  in te­

g ra ted  over a narrow  energy region a round  E f  and  p ro jec ted  over the  m ixed 

s ta te  is shown in Fig. 8.3(b). Th is  is clearly localized over grai)hene and . to  

a smaller degree, over the  Se a tom s in con tac t  to  grai)hene. Since such s ta te  

presents a dom ina ting  C-p~ and  Sc-p, o rb ita l  con tr ibu tion  an d  it is delocal­

ized in th e  j)lane of the  interface, it i)resents tt conjugation . .A m ore (juanti- 

ta t ive  insight is obtainc'd by ))lolting th e  charge density  averaged over p lanes 

parallel to  th e  interface- [Fig. 8.3(c)]- T h is  shows th a t ,  while th e  con tr ibu tion  

to the  e lectron density  o r ig inating  from the  bulk is small, a nmch larger por-
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F igure  8 .3 : C'hargo density a.ss()ciate(i to  the surface o])])()sit(' to  the
g rap lK 'n o /D i2St'3 interface (a ) au(i the mixed interface state (t)) (obtained for d =  2.2 A  at 
1'. Panel (c) shows the s\ini o f the two charge densitl('s av(>raged over a plane i)ara lle l to  
the interface.

t io n  is provided by the two surface states at bo th  sides o f the composite. A t 

the free Bi-iSe.j surface the siu'face state is d i.stributed m a in ly  over the firs t 

fou r a tom ic  layers [Fig. 8.3(a)]. In  contra.st, at the g raphene /B i2 Se3  in te r­

face the electron density m igrates frcnn the to])o logical insu la to r to  gra])liene. 

N o ta b ly  th is  feature resembles closely the one reported for the interface be­

tween the norm al m etal Sb^Ses and the topo log ica l insu la to r B i 2 Se;j [121], 

T h is  behavior is s im ila r to  the  topo log iza tion  o f ZnM  (M = S . Se. Te) u])on 

de])osition on B i2 Se3  [114].

We now s])end a few words on the  i^ossib ility  o f inducing  a topo log ica l 

state  in  graphene due to  its  p ro xh n ity  and bonding to  B i2 Se3 . F irs tly , we 

w ish to  ])o in t out th a t our results do not ind icate  tha t graphene converts in to  

a tw o-d im ensional topo log ica l insu la to r u i)on its  deposition on B i2 Se3 , bu t 

s im p ly  th a t a to j^o log ica lly-protected hyb rid  state is formed. Here the  Ferm i 

siu'face o f grai^hene inidergoes a tra n s itio n  from  a zero-band gap semicon­

duc tin g  i)liase (region C ), prone to  gap opening due to  defects and im p in i-
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ties, to  a to])ologically p ro tec ted  metalUc phase (region A) via an  insu la ting  

phase  (region B). A fundam en ta l  pro]:)erty of th ree-d im ensional topological 

insu la to rs  is the  existence of an odd  num ber  of surface l)ands a round  Ef.'. 

A n o th e r  p roper ty  is th a t  the  topology of th e  surface s ta te s  is such as to  con­

nect th e  bulk  valence b a n d  to  th e  conduction  one chie to  the  pa r i ty  inversion 

o r ig ina ted  l)v th e  s trong  spin-orl)it coupling. In th e  g ra i )h en e /B i 2 Se 3  com ­

plex only one conical band  is present a t  the  Fermi level. ImiM)rtantly th is  

Vjand belongs to  the  surface s ta te  of Bi 2 Se 3  w ith  considerable  con tr ibu tion  

of g raphene  a round  isV- while the  o th e r  i>arts of the  s ta te  (in p a r t icu la r  the  

ends  th a t  connc'ct to  the  valanc(' and  the  conduction  bulk  toj)ok)gical s ta tes)  

still fully bek)ng to  B i 2 Se,j. Thus, the  topologically  p ro te c te d  surface s ta te  

can be u n d e rs tood  a,s a carrier of the  induced  g raphene  s ta tes , an d  the  in tr in ­

sic topological j)r(jtection of th is  s ta te  provides th e  robustness  to  g raphene 

a.s well. Fu r the rm ore ,  th e  toi)ologically-i)rotected hybrid  s ta te  does not sim ­

ply correspond  to  the  i)enetra tion  of the  one of th e  Bi 2 Se,j edge s ta te s  into 

gra])hene. hi th a t  s i tua tion  in terac tion  betw een Bi 2 Se,j and  g raphene  is not 

])resent. hi con tras t  here  the  in terac tion  is s trong  and . in fact, as d  decreases 

first it is responsible for the  oi^'iiiiig of a ban d  ga]) in grai)liene and  then  

for c rea ting  the  topologically-i)rotected hybrid  s ta te .  T h is  behav iour is very 

sim ilar tt) th a t  of th e  Sb 2 Se:{/Bi2 Se:} [121] and  the  Z n M /B i 2 Se:j (M = S . Se, 

Te) [114] interfaces, in which a topological s ta te  is t ran sfe rred  to  the  norm al 

m ate ria l  because  of j)roximity.

As a ttnal cha rac te r iza tion  of the  liybrkl s ta te  we have i)rol)ed its  s c a t ­

ter ing  proi^erties. In part icu lar,  we have j^erformed t ra n s p o r t  calculations, 

with the  SMEACJOL code [77. 78. 79]. for the  coni])osite along the  d irection 

parallel to  the  gra])h('iie sluH't. Xot(' th a t  SMEACOL i)rovides an electronic 

s tru c tu re  for the  conii)osite essentially identical to  t h a t  o b ta in ed  with \ 'ASP.
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Figure 8.4; (a) Conductaiicc' of a Bi2Se,}-coiitact(xl graphene Hlicc't when either 17% or 
C vacancies are introchiced in gra])hene as coni])are(l to 1h<' conchictance of a defect- 

fr('e la,yer. (b) Schematic overview of a i)ro])osed ex])eriniental setup, which may ])rove the 
transfer of a to])ologically protectc'd state from Bi2S<‘:i to grajjhene.

W'e have then calculated the system conductance for a defect-free system 

and for a the case where api)roximately 17% or 33% vacancies per super­

cell are introduced along the direction i)eri)cndicular to the transj^ort [see 

Fig. 8.4(a)], Note that these are extrenu'ly large concentrations and here 

they serve the j)urpose to i)rove the topological protection of tlu' sm’face 

state. From Fig. 8.4(a) one can observe that 17% of vacancies do not affect 

the conductance around E f  indicating that the state is indeed strongly pro­

tected against hack-scattering. Even for a 33% concentration little reduction 

of the conductance is found at around Ep, although the graphene layer is 

almost cut in two parts. Note, however, that the inclusion of impurities re­

duces significantly the conductance for energies away from the Fermi level, 

i.e.. away from the topologically protected j:>art of the graphene spectrum. 

This demonstrate that the transport is indeed throtigh graphene and it is 

protected against back-scattering at aromid the Fermi level.

In concluding we would like to proj)ose an experiment, which may prove 

the transfer of the topologically i)rotected state to graphene. A schematic 

view of the ]m>posed setiij) is shown in Fig. 8.4(b), in which a graphene sheet 

is contacted only in part to Bi2 Se3  while the rest remains free-standing. De-
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fects are then in troduced in grai^hene onl>' at the contacting  region for in ­

stance l)v electrons or ions irra d ia tio n  [122]. I f  there exists topo log ica l p rotec­

tio n  in  grai)hene at the contact region, the e lectronic transpo rt th rough  such 

system w ill not show a conductance reduction  re la tive  to  th a t o f the defect- 

free ca,se. One may s t il l argue tha t the trans i)o rt th rough the irrad ia ted  

region is v ia  the to i)o log ica lly  protected surface state o f B i2 Sc3  ra the r than 

th rough  the defective grai^hene. However, in  th is  case the charge carriers 

need to  hoj) between the to jx jlog ica l insu la to r and the contacting  graphene 

[red arrows in Fig. 8.4(b)] in  order to  continue th e ir flow th rough  the bare 

graphene and close the e lectric c ircu it. T h is  w ill degrade the conductance. In 

contrast i f  the trans])ort is carried solely by states o f graphene (w ith  defects) 

the eflects o f hopping w ill be e lim ina ted  by the proposed geom etry setup.

T h roughou t th is  section we have' presented results as a function  o f the 

graphene/Bi^Se;} distance, therefore we would like to  close by b rie fly  dis­

cussing w hat eciu ilib rium  distance one can expect. U n ftn tu n a te lv  th is  tu rns 

out to  be a d ifficu lt proiiUnn. The exact b ind ing  distance is determ ined by 

a balance ]>etween covak'ut and \a n  dc'r W'aals forces. These la tte r ones are 

not cai)t\n'ed by D F T  loca l/sem i-loca l exchange and corre la tion  functiona ls 

and in fact we hud tha t the tw o m ateria ls do not b ind  when the ca lcu la tion  is 

done at the generaliz('d gradient app rox im a tion  level. Th is  contrasts rea lity  

where g ra i)h en e /B i2 S(':j exists as it has l>een ex]:)erinientally fabricated by few 

grou])s [117. 118. 119]. The inclusion o f van der W'aals forces at the level o f 

local D F T  [123] does not im prove the s itua tion , as screening prevents an ac­

curate evaluation o f the b ind ing  energy in layered compounds [124]. However 

we ex])ect the eciu ilib rium  g ra ]) lie ne /B i2 Se;j distance to  be close to  the sum 

of Se and C covalent rad ii, which am ounts to  2 A. Th is  is w ith in  regi(jn A 

[see F ig .8 .1(c)]- i-<'-- w Ik 'u  the hyb rid  surface state fcjrms. Moreover externa l
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pressure may he introduced f<jr tuning the desinnl se])aration.

8.1 .3  S um m ary  and C onclusions

hi conclusion, we have investigated the electronic proi)erties of graphene in 

contact with Bi^Se.-j. Three phases have been identified, depending on the 

g raphene /B i2Se;< separation. For d > 3.0 A. the electronic structure  of the 

composite is simply the sui)erposition of those of the constituents. The sec­

ond phase, obtained for 2.4 A < d < 3.0 A. witnesses the  opening of a band 

gaj) in graj^heiie. due to the annihilation of graphene states with o])posite 

winding iiiiml)ers. The third phase, when graphene and Bi^Sca chemically 

l)ind. is the most interesting, as a tojiologically protected s ta te  with charge 

distribiiti(Mi mostly localized on gra])hene forms. This backscattering-free 

s ta te  may Vie utilized in graphene-based devices, for instance as an intercou- 

nect. Our results also dem onstra te  the more general principle of engineering 

interfaces between normal and topological materials to obta in  desired func­

tionalities.

8.2 Topological phase transition in three di­

m ensional Dirac sem im etals

In this section we study  the interplay of surface and l)ulk Dirac states us­

ing first-principles density functional theory calculations and ah initio  de­

rived tight-binding models. Based on our first-principles calculations, we 

predict tha t the bulk Dirac cone for Nai^Bi is formed only for films with 

thickness greater th an  90 nm, while the surface Dirac state, originating from 

a bulk band inversion, becomes gapless for hhns with a thickness as small 

as 4.5 nm. Furthermore, by eni])loying the coherent potential approximation
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Figure 8.5: (a) H e x a g o n a l  unit cell for A.-jB co n i] )onnds .  w i th  A = N a .  K. Rb a n d  B = B i .  
SI), (b )  B u lk  a n d  su r fa ce  pro jc 'c ted  B ril lou in  zo n e  for t h e  s t r u c t u r e  w i th  th e  h igh  s y n a u e t r y  
p o in t s  m a rk e d .  T h e  th re ( '-d in iens io na l  D irac  c ro ss in g  oc 'curs a lo ng  th ( '  F — .-1 d i ie c t io n .

ill coiijmictioii with D FT  we uncover a toj)ological j)hase transition in the 

Xa:5Bii_,,.Sbj alloy. We ])ro])ose a method to engineer the k  space pcjsition 

of the l)ulk Dirac i)oiiit by changing the Sb concentration. At a critical Sb 

concentration of 50'X. this crossing reaches the Brillouin zcjiie (BZ) center, 

niec'tiiig its tinu'-reversed i)artner. wher('U]K)n they annihilate and render the 

bulk gap])ed. This topological jjliase transition is accompanied by a simulta­

neous loss (jf the inverted band character. Beyond this Sb concentration the 

ahoy is adiabatically coniK'cted to the to])ok)gically trivial Xa.jSb.

8.2.1 C om p u tation a l D etails

We have carried out hrst-princii)les calculations using the projector aug­

mented plane wave method as iini)lemented in Vienna Ab initio Simulatk)ii 

Package (V A S P )  [81]. We have used the Perdew-Burke-Ernzerhof param e­

terization of the exchange-correlation functional. Si)in-orbit cou])ling was 

included for all coni])utations in the self-consistent calculation. The elec­

tronic s truc tun ' siniulatk)ns wer(' i)erforined with a plane wave cutoff of GOO 

vV  on a 8 X 8 X 4 Ah)iikhorst-Pack /. -point mesh. All A.'^B comi)ounds (A=Xa. 

K. Rb. B=Bi. Sb) iim 'stigated here' crvstalliz(' in the hexagonal structure.
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Figure 8 .6 :  Bulk band  s tru c tu re s  including spin-orbit in te ract ion  for (a) Na.jSb. (b)
Na;jBi. (c) K^Bi and  (d) Rb:jBi. Not(- ti ie Dirac crossing in (b)-(d) .  T h e  ins('ts in (c) and 
(d) sliow a zoom arotnid I' with the  crossing along 1' — .4.

a« shown in Fig. 8.5. D uring s t ru c tu ra l  op tim iza tion  the  a tom ic  coorchnates 

were allowed to  relax until to ta l  energy  differences were less th a n  1 meV. 

From the  bulk first-priuci])les results , we p ro jec ted  onto  a l)a.sis of Na 35 

and  Bi 6p (Sb bp) o rb ita ls  by using a m ax im ally  localized wannier function 

scheme [134]. These  t igh t-b ind ing  p a ra m e te rs  were th e n  used to  s tu d y  slab 

g('onietries. By com bining  th is  schem e w ith  a  coherent po ten t ia l  api)roxinia- 

tion  (CPA) including self-energy corrections for d isorder in terac tion , we have 

investigated  the  N a.jB ii.^Sb^  alloy [135]. We note  th a t  th is  m ethodology has 

been recently  used to  predict the  robustness  of Dirac fermions in topological 

crysta lline  insu la to r  alloys, as well a.s in ferroelectric R ashba  st^miconductor 

alloys [136]. In A ppend ix  E of th is  thesis  we ])rovi(le a di.scussion of the  

C(jherent P o ten tia l  Ai)i)roximation in th e  contex t of a t igh t-b ind ing  model.
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Figur(' 8.7; B a n d  s t n u - ln r c s  for N asB i tliiii fi lms of th ic k n e s s  (a)  2-4 layers,  (h) 5 layers, 
(c) 20 lav( 'rs a n d  (d)  lOO layers. In.set in  (a ) - (b )  sl iows th e  e n e rg y  gaj) at th( '  e('nt(>r o f  th e  
B ri l lo u in  zo ne  for s la b s  o f  th ic k n e s s  1 to  i) layc'rs. h i  (b ) - (d )  D irac  e ross ings  a r e  h ig h l ig h ted  
in red.

8.2.2 Results

\\'(' hc'gin (MU' analysis by ca lculating the  rela tivistic  hulk h and  s tru c tu re s  

for the  four m ateria ls  Xa-jSh. Xa.^Bi. KaBi and  Rh^Bi. as shown in Fig. 8.G. 

For Xa.jBi we h u d  the  three-dinu 'usional Dirac crossing along the  F — .-4 line, 

and  a hand  inversion at the  BZ center, which is consistent w ith  the  previous 

s tu d y  of W ang c f  al .  [12G]. Xa.^Sb. on the  o ther  hand , is a small gaj) insu la tor  

w ith  a conventional band  ordering. Oiu’ ca lcu la tions reveal th a t  on replacing 

Xa in Xa^Bi w ith  heavier a tom s, the  resu lting  com pounds  KaBi and  Rb^Bi 

are  metallic  w ith  small ( 'lectron pockets a round  F. however the  crossing away 

from F is still present. T he  l)and s truc tu re s  for the  two m ateria ls  are  slicnvn 

in Fig. 8.0(c) and  (d). along v.ith a zoom a round  the  BZ center  in the  insets.

Sinc(' Xa^Bi also shows an inverted ban d  cha rac te r  a round  the  Fermi k'vel. 

one ex])ects it to  form surface s ta tes  when confined in to  a two-dinu 'usional
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geometry, s im ilar to  topological insulators. Therefore, we s tu d y  the  evolution 

of the  spec trum  of films of Na.^Bi oriented along the  [010] surface, a.s a func­

tion  of the ir  thickness. For th ickness from 1 to  4 layers, th e  hlms are gapped  

due  to  an  in te rac tion  betw een th e  two surfaces, a.s shown in Fig. 8.7(a). This  

gaj) decreases m onotonically, w ith  the  surface cone at F becom ing gapless for 

a 5-layer-thick Him. O ne can also notice the  shoulder along th e  F — Z  direc­

tion, which rises upw ards in (‘ucrgy  to  form th e  bulk Dirac crossing for thicker 

films. Th is  bulk crossing is fully formed only for him  th icknesses larger th a n  

100 layers 90 nm ). O ur  j:)redictions for th e  thickness dependence  of the  

surface and  l)ulk D irac cones call for verihcation l>y angle resolved i)hotoe- 

mi.ssion experim ents. IncU'ed, sucli m easu rem en ts  w ith  varying Him thickness 

have been recently  u n d e r ta k en  for topological in su la to r  films [137. 138]. In 

the  case of NaijBi [0 1 0 ] slalis. one should be aljle to  see two gap-closing t r a n ­

sitions a t very different Him thicknesses: one for the  surface cone for a few 

layers slab, w ith  th e  next gap-closing occurring  in th e  l)ulk for a hundred  

layers slal). Very recently  th in  Hlms of Na.^Bi have been grown by m olecular 

l)eam ej)itaxy [139], a developm ent which {provides a  clear rou te  to  \-erify our 

predictions.

Now w’e tu rn  our a t te n t io n  to  the  NaaBii-^Sbj. alloy. From th e  bulk band  

s tru c tu re s  in Fig. 8 .6 , we observe th a t  Na^Sb is to]wlogically  triv ia l, having 

ne ither  the  bulk D irac crossing nor a  b a n d  inversion at th e  BZ center, as 

opi)osed to  N a 3 Bi. T h is  opens up  the  in trigu ing  ])ossibility to  o b ta in  a q u a n ­

tu m  pha«e t ran s it io n  in Na.3 B i 1 _j.Sbj. solid solutions. To th is  end, we have 

perform ed DFT-I-CPA ca lcu la tions  for the  alloy. T he  spec tra l  functions at 

different Sb concen tra tion  are shown in Fig. 8 .8 . A\'ith increasing Sb concen­

tra t io n . th e  bulk  Dirac crossing along F — /I moves tow ards  th e  BZ center. 

At a ro im d a critical concen tra t ion  of Xc =  0.5 (Na;jBio.r)Sb().r)), th is crossing
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F ig u r o  8 .8 : Spoctra l functions for ])ri.stin(' (a) N a.jB i and (h) Na.-jSh. (c) S])ectral func­
tions fo r the a lloy N a3B ii_ j.S b j. w ith  increasing Sb concen tra tion  (,r =  0.25. 0..50.0.75 from  
top  t(j b o tto m ). The color scale shows the o rb ita l c o n tr ib u tio n , w ith  red (pos itive  values) 
denoting  B i/S b  p o rb ita ls  and blue (negative vahu's) repr<'S('nting Na ,s o rb ita l (in  un its  o f 
s ta te s /e \ ') .

reaches clo.se to F. U])on subsequent increase in SI) concentration, an energy 

gap ai)iiears. We note that this is the consequence of the annihilation be­

tween this Dirac cone and its time reversed partner along F to —.4 direction. 

The Sb concentration therefore represents an efficient tool to nianijjulate the 

])()sition of the bulk Dirac points in k space along the F —.4 line. Interestingly, 

the disa])pearance of the bulk cone is acconi])anie(l by a loss of the inverted 

band character, a.s can be evidc'uced from the re^'crsal in orbital character 

of the valence and conduction bands, before and after passing through the 

critical Sb concentration. From bulk-botmdary correspondence, one can then 

infer that for slabs made of these alloys there would also be transition in the 

stu’face sj^ectrmn: beknv the surface would display a Dirac crossing, while 

increa.sing Sb concentration beyond this value would lead to o])ening of a 

trivial gaj). Thus, our cakulations reveal a toi)ological phase transition in 

the ])rototypical three-dimensional Dirac semimetal. Recently, such timable
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phase t rans it ions  were experim enta lly  repo rted  for topological insu la to rs  and  

topological crysta lline  insu la to rs  [140, 141, 142, 143]. Th is  m akes us confident 

th a t  our  pred ictions can be verified in the  nea r  future. It is also w orthy  of 

consideration  th a t  our D F T + C P A  calculations reveal a  ])rotection, against 

su b s ti tu t io n a l  disorder, of th e  spec tra l  features of th ree-d im ensional Dirac 

sem inietals  a round  th e  Fermi level. We note, in fact, th e  al)sence of b ro ad en ­

ing of s])ectral fea tures  a round  th e  cone, as com pared  to  o ther  enc'rgies. Such 

a robustness, s im ilar to  w ha t  h ap p en s  for topological crysta lline  insu la to rs  

and  W’eyl ferniion system s, arises from the  three-d im ensional n a tu re  of the  

Dirac cone [136], and  in tu rn  leads to  the  concre te  i)ossibility of exi)erimental 

verification by m eans of s])ectroscopic techniques. As shown in Ref. [136]. 

th is  is a cousecjuence of a vanishing disorder self-energy a round  the  crossing 

point. W’e also propose th a t  a sim ilar ph^use trans it ion , and  a s im ilar ro- 

l)ustness against disorder, would occur in the  Cd:{(Asi_j.Pj - ) 2  alloy, since the  

j)arent conij^ounds C\l;3As 2 a n d  C d 3 P 2 are Dirac seniinietal and  conventional 

insulator, resj^ectively, w ith  th e  form er having an inverted  ban d  (jrder and  

the  la t te r  having a norm al b and  sequence.

8.2.3 Sum m ary and C onclusions

In sm nm ary . we have s tud ied  th e  in terp lay  of bulk  and  surface Dirac fermions 

in i^rototypical th ree-d im ensional D irac sem inietals. using f irst-principles based 

t igh t-b ind ing  calculations. F u r the rm ore ,  l)y m eans of density  functional th e ­

ory w ith  coherent p o ten t ia l  a p p rox im ation  s im ulations, we have revealed a 

to])ological phase  t ran s it io n  in NasBii-xSb^.. T h e  tun ing  of Sb the  concen­

t ra t io n  provides an  efficient way to  engineer the  reciprocal space i)ositioii of 

the  three-d im ensional Dirac cone, w ith  po ten t ia l  im plications for technolog­

ical devices benefiting from th is  add it iona l  degree of freedom. Intriguingly,
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the phase transition from a Dirac seniinietal to an insulator is accompanied 

l)y a change in the bulk band ordering. This can be related, via the bnlk- 

boundary correspondence, to a concomitant transition in the surface state  

spectrum. Around the Dirac crossing, we found a rol)ustness of the sj)ectral 

features against sul^stitutional disorder. This indicates tha t our predictions 

could be readily verihed using existing spectroscopic methods.
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Chapter 9

Conclusions and outlook

111 this thesis we studied different facets of to])ological sta tes  in two and three 

diniensious. employing l)oth model Hamiltonians as well a-s material specific 

first princi])les calculations. Heie w(’ sunnnarize our findings and discuss 

l)ossible future directions.

Our discussion began in Chapter 2. where we introduced the l>asic notions 

of toi)ology in the band picture. Here we also discussed the Kane-Mele model, 

tlu' prototyi)ical lattice model for Z9 tojiological insulator, which was used 

for some subseciuent studies in this work. C hapter 3 i)rovided an overview 

of the main methods used in this thesis: density functional thetuy to tackle 

the many body problem and the non-equilibrium Green 's  function ai)proach 

to the quantum  transport problem.

In Chapter 4 . we presented our results for Andreev reflection at two- 

dimensional topological insulator-su])erconductor junction. W’o comi)ared 

and contracted our results for Z2 and Chern insulators. On the  basis of this 

analysis, we j)roposed a tabk 'top  transport experiment to  distinguish between 

the two kinds of tojjological insulators.

Given the ])eculiar s])in structure' of the (juanttnn spin Hall edge states, 

a natural (pu'stion arises whetlu'r it can i)e used to manii)ulate magnetic ob-
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jects. In C h a p te r  5 we answered this question in the  affirmative. By using the  

non-equilibrium  G reen 's  function m eth o d  for trans])ort coniljined w ith  a per- 

tu rba t ive  approach  to  sp in -scatter ing  from m agnetic  im purities , we showed 

th a t  a m agnetic  in ip m ity  dejxjsited at the  edge of a Z 2  toi)ological insulator 

and  presenting  a  uniaxial m agnetic  anisotro})y. can  be m anii)u lated  l)y the  

(luantum  spin Hall edge current. F tu tlie rm ore . we showed th a t  the  to p o ­

logical n a tu re  of the  c'dge s ta te s  has j^rofound couseciuences on the  spin flip 

inela.stic e lectron tunne ling  conductance  spec trum . At low curren t intensity  

there  is a conij)lete supj)ression of th e  conductance  stej)s a j)pearing at the  

critical biases charac te r is t ic  of the  ac tivation  of an  inelastic si)in-scattering 

cliannel. In con tras t,  for cu rren ts  large enough to  prod\ice si)in pum ping  the 

spin of the  m agnetic  im purity  is driven away from th e  an iso tropy  axis. This  

breaks the  topological j)rotection of th e  helical edge s ta te s  and  the  conduc­

tance  steps  reaj)pear. \ \ e  also pro])osed a four-term inal device designed to  

m anipu la te , by all electrical m eans, th e  sj)in of a m agnetic  a d a to m  jiositioned 

at the  edge of a tw o-dim ensional Z 2  to])ological insulator.

Next we moved on  to  ab initio t ra n sp o r t  investigations of topological m a­

terials. In Cha])tcr  6 we repo rted  our s tu d y  of surface s ta te s  on the  S b ( l l l )  

surface. W’e ca lcu la ted  th e  t ra n sp o r t  proj)erties across surface barriers  and  

directly  com pared  to  scanning  tunne ling  m icroscopy ex])eriments. xA.u ex­

cellent agreem ent was ob ta ined , in i)articular, for lifetimes of ( luan tum  well 

s ta te s  and  th e  allowed sca tte r ing  processes. We also p resen ted  our large 

scale ab initio ca lcu la tions  on analogous s teps  on Bi 2 Se;5 ( l l l )  surface, which 

revealed th a t  backsca tte r ing  is comi^Ietely sui)i)ressed for norm al incidence, 

while sca tter ing  is allowed at all o th e r  incidence angles. We also construc ted  

a {potential ba rr ie r  m odel based on th e  often used Dirac H am ilton ian . A com ­

parison w ith  our first principles resu lts  revealed th e  shortcom ings of such a



C’oiiclusioiis and outlook 159

model.

In Chapter 7 we presented our findings dem onstrating a single atom 

anisotropic magnetoresistance on to])ological insulator surface. This stems 

from an interplay between the helical surface states and spin anisotropy of 

the magnetic adatom. This is a novel type of MR, which does not need 

any magnetic ('lectrodes, but recjuires a magnetic adatom, or more generally 

adsorbed magnetic clusters or thin films. Our first principles calculations 

revealed the underlying mechanism and we complemented our findings with 

a two-dimensi(jual model. This led us to propose a device setup suitable for 

exi)erimental realizaticju.

hi Chapter 8 w'e turnc'd our atten tion  to two- and three- dimensional 

Dirac s('mimetals. W'e siunved how the proximity to a to])ological insulator 

leads to a backscatteriug protei'teil hylnid s ta te  in graphene. This state  

])ossesses helical spin mouK'ntuni locking and a robustness to disorder, which 

w(' investigated by emi)loying trans])ort calculations. We re])orted our studies 

of the interplay between bulk and surface Dirac fermions in prototv])ical three 

dimensional Dirac semimetals. By means of density functional theory with 

coherent i)otential approximation computations, we revf'aled a topological 

l)ha.se transition in Na.jBii.j-Sb^ alloy. W'e showed tha t changing the Sb 

concentration also i)rovides a way to engineer the reciprocal si)ace ])osition 

of the three-dimensional Dirac cone, with possibilities for devices benefiting 

from this additional degree of freedom.

Finally we wish to mention a few possil)le directions, which can l:>e in­

vestigated in future. For the Andreev reflection problem, an interesting ex­

tension would be to study it by taking into account the reahstic electronic 

s tructure  from first-principles. A first step along this direction has already 

been taken by implementing the phenomenology of Andreev reflection in
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the density functional theory i)ased transport code s m e a g o l , employing an 

extended Blonder-Tinkham-Klapwijk model. This can be used to study An- 

dree\’ reflection in three-dimensional variant of the problem as well. Finally 

this approach may also be used to  model experimental setups in large spin- 

orbit nanowires, where possible signatures of M ajorana fermions ha\'e l)een 

recently observed. For inelastic electron tunneling spectroscojw, a possil^le 

direction for future investigations would i)e couj^ling of more than  one sj)in. 

l>oth at the same edge as well as l)etween different edges in narrow-width ril)- 

bons. Inelastic electron tunneling spectroscopy of three-dimensional to])olog- 

ical insulators would also be a na tura l extension of the work presented in this 

thesis. O ur analysis of unusual magnetoresistance obtained on topological in­

sulator surface also points to interesting possibilities for s])in transfer torcjue 

exerted l)y a to])ological insulator substra te  on a magnetic layer. A large 

spin-orbit conj^ling along with a spin-niomentum locking of surface electrons 

could possibly lead to interesting effects on the spin transfer torque, which 

warrant future studies. In the investigation of graphene/Bi^Sc;} system, van 

der W'aals interaction is expected to play a crucial role in determining the 

ecjuilibrimn geometry. A systematic study of the effect of van der W'aals in­

teraction in this system is lacking and  merits further attention. The study of 

three-dimensional Dirac seniinietals is a field th a t  has been growing rapidly. 

At the  time of the writing of this thesis, only two materials are known to 

harbour tliis bulk three-dimensional Dirac cone. A thorough search for more 

materials in this cla,ss would be worth ])ursuing in the future.



A ppendix A

Quantization of the Chern 

number

111 tliis Ai)5)eii(lix we clarify how the Chern number may be viewed as an ol)- 

struction to a smooth gauge choice of the Bloch wavefuiiction in the Brillouin 

zone (BZ) and j)rove its ciuantization. following Ref. [18]. The Chern number 

is an integral of tlu> Bt'rry curvature over the BZ. The Berry curvature itself 

can be ex])iessed a.s the curl of a Berry vector potential. A. The BZ has no 

boundaries as it is a torus (a compact manifold). If one now apj)lies Stokes' 

theorem, then the Chern nunibc'r is w ritten as the integral of A(A ) over the 

boundary of the BZ. Since there is no boundary, it would identically be equal 

to zero, unless A( k)  has singularities in the BZ.

C’onsider a f / ( l )  gauge transformation of the wavefunction of the  /?-th 

energy k'vel

\ „. ky  =  (A. l )

wlu'rc' f  is a smootli function dehiK'd over the BZ. The transformed vectc^r

IGl
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p o ten t ia l  reads  (A(A’) =  { i !' {k) \Vk\k' {k))):

A„(A-)' =  A„(A-) + V /(A -) .  (A.2)

Since th e  C h e ru  n iunber is d irec tly  p ropo rt iona l  to  the  Hall conductance, 

which is an  observable, it nnist i)e gauge invariant. Now, consider a specific 

gauge choice where we choose f ( k )  such th a t  th e  first com ponent of the  

e igenvector |/;. k)  is real. i.e.. we set =  ||?(, A')i|/|/?. k) i .  If such a sm oo th  

gauge could always be found then  the  C hern  num ber  would always be zero. 

W hen  th is  first com ponent of th e  Bloch e igens ta te  becomes zero, then  clearly 

such a gauge choice is not possible. Suppose  th is  hai)pens at A" poin ts  A\,

/ ' ;  A’A’. Define neighl)ourhoods around  these  such tliat  |A’ — A,s| <  c. If

one now picks a different phase  convention in these regions; \ i i . k)2 is real. 

At th e  boundaries  betw een such regions th e  wavefunctions are re la ted  as

ii,^{k) =  (A.3)

while th e  vector po ten tia ls  are  re la ted  a,s

A 2 (A-) =  i'>2Vk02 =  ^ '1  V k ^ i  +  vV\(A-) =  Ai(A-) +  i V x i k ) .  (A.4) 

T h e  Hall conduc tance  is then

(A.S)

and  by app ly ing  Stokes' theo rem  we get

axy J_
h 2ni jJ B Z - R '

V  X A](A-) +  /  V  X A2(A-)
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c j . y  =  ( I  r/k • Ai(A-) +  /  r/k ■ A.2 (A-)') . (A.6)
n 2ni \Ja{BZ-R'^) JiiiR's) /

Since the  to rus  does not have a b ounda ry  0 ( B Z  — R^) — —0(Rg)  and  the  

Hall conduc tance  simplifies to

h ‘I tti

e!  J _
h 'Irri

=  7T"-

dk- i A, ( k} - A2( k) }
J 0 {  R 'J

d k - - i V \ { k )

(A.7)

wlien' n =  7  ̂ For simplicity, consider th e  b o u n d a ry  of tiie

/?!, regions as a circle 0 { n \ )  =  A'., +  f( ’̂  (where 0 G [0. 2n)) .  then

n =
1

2n
(A.8)

Here n has to  be  integer since along a com])lete p a th  a round  the  circular 

the  wavefunction m ust come back to  itself:

M h ’s +  e) =  +

=  (A.9)

which recjuires th a t  \(A'., +  *’ ')  — \ (kg  +  <=) =  2mn.
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A ppendix B 

A brief note on PfafRans

T h e  clotoniiiiiant of every .skew-syiiimetric m atr ix  can always l)o w ri tten  as 

th e  scjuare of a ])olynomial of the  m atr ix  elements.

det( .4) =  [Pf(.4)]'

where Pf(.4) denotes  the  Pfaffian of the  m atr ix  .4. T he  sign of the  Pfaffian 

is am biguous due  to  the  aml)iguity in defining the  sign of th e  scpiare root. It 

is non-zero only for even dim ensional m atrices. For example:

P f

V - a  0
a . (B.2)

/
Using this, a recursion rela tion can be emi)loyed to  find Pfaffians of any 

m atr ix

2.V

Pf(.4) = 5^(-l)^ai,Pf(.4i,). (B.3)

where .4,, is the  m atr ix  .4 with first and  y-th rows and  colunm s removed. 

Some useful Pfafhan identities are:

165



166 A l)rief note on Pfaffians

Pf[.r.4,r^'] =  (let(.r)Ff(.4)

Pf[.4^] =  ( - l ) ‘̂ 'Pf(.4)

Pf[A-4] =  A‘̂ 'Pf(-4). (B.4)

where ,r is any 2 N  x 2A' matrix  and A is a scalar. Finally.

Pf

0 A] 0 0

-A ,  0 0 0

0 0 

0 0

— Ai...A,v- (B.5)

0 0 0 0 0 0 Aa’

\  0 0 0 0 0 -A.v 0

These  identities are used while deriving the Z 2 invariant expression from time 

reversal polarization.



A ppendix C 

Blonder-Tinkham-Klapwijk  

m odel and Andreev reflection

(o n s id e r  a lujriiial (N) - suiicrcoiKluctor (S) junction which is located at 

c =  0. losing the Bogohubov-ih' Gennes ecination

where H  is the particle Hamiltonian. E/.- is the Fermi level. A is the i)airing 

potential and T  is the tinie-revc'rsal o])erator (for a tinie-reversal synnnetric 

system its action is to yield the complex conjugate of the Hamiltonian, i.e.. 

T H T - '  = H*).  Here // and V arc' the i)artiele and hole wavefunctions. 

respectively. The junction is modeled using a step function fen' the order 

])arameter

A(.:) =  ^ ( c ) A r ' ^  (C.2)

If we a.ssunu' tliat the system is s('j)aral)le along the trans])ort [z] and 

perpendicular to tlu' transjjort direction, then the wavefunction can he fac-

u

r I
(CM)



1G8 BloiKler-Tiiikhaiii-Klapwijk model and Andreev reflection

torized a.s

(C.3)

The transverse modes satisfy

h'̂  (  0'̂
i j) =  i j ) . (C.4)

Along trans])ort direction we are left with a one-dimensional problem. In 

order to model the effects of a contact resistance at the interface include a 

Ad(^) potential, giving

A*

A ( z )

+ E ,  - yK--)y
(C.5)

This is the Blonder-Tinkhani-Klai)wijk model [47]. On the normal side the 

eciuation reduces to

fî    F
2m dz^

\  /  , \  lt{z

—  —  +2 )7) d z 2  ^

= E
yv{z ) j

n{z)

whose solutions are

\'V
z ' I ' i  =

\V
(C.7)

where Av =  +  E/ E f . \  = k y ^ / l  — E/Ep-  and k

su])erc'onductor side, we have

F — Oil the
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^ h'̂  d'̂    f '
2 m  •C-F

h'̂  i)'̂  I r  
^1-

^ /  A(/(c'

/

=  E

V' '< = 7

(C.8)

For propagating waves {E > Ao) the al)ove yields.

=  \ /  —  
2E

^ , |c -o sh  * { £ ' /A ) ^ , / 0 /2  

c o s h ~ ' ( £ ; / A ) ^ - i ' 0 / 2

/

^p-^rosh
e

/
(C.9)

wliere =  Ay \J I  + y/{E'^ -  A '^ ) / ^ .  r//, =  k y and

/>F -   r----

In contra.st. f(jr evanescent waves w(' ha\'c

^,^cos  ' (£'/A)^,iV>/2 

c o s “ ' ( £ ' / A ) ^ - ( 0 / 2
Vj/'l =

cos ■ ( E / A ) ^ , - « ? / 2

(C.IO)

where 7, -  k,.-^J I + -  E^)/FJ,-. q„ = k y ^ l  -  i y / { ^  -  E-^)/Ej^.

They have accinired an imaginary })art in addition to th(> real part. The 

matching condition at the boundary is obtained by integrating the equation

around c =  0. to vield

^ ( / ( ( r  ) -  =  ^ ^ / / ( O ) .  (CM2)
Fr
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(CAS)

The analysis of the  scattering i>rocess proceeds by considering incidence 

from the  norm al side

1 1
\

\/2nh i\ 0
(CM4)

The wave reflected back is a sum  of left n u n ing  electron and a left moving 

hole

s/'lirhi

/ A

VV
rhe

\/27Th f'/l VV
(C.15)

T he tran sm itted  wave is a right moving electron and a right moving hole

\/2nhwe

i(p/'2 ^UoC
„ +  iqe2 + th,

v / 2 7 t / ) U ' j uoe

(C.16)

here (/() = *’o =  for p ropagating  waves

and iin =  He /^)  evanescent waves.

- V
. / A p i c o s - i ( £ / A )

2 E ^ '  ’ ‘ 0 V  2£"

The coefficient /’ee denotes reflection from electron to  electron, rhe denotes 

reflection from electron to hole, t^e denotes transm ission from electron to  elec­

tron , and the denotes transm ission from electron to  hole. T he wavefunctions 

are norm alized by the ir grouj:) velocities

Vp —
I  ( I E  h k ' e

h dkp in
1 (IE hk,
h (ikh m

(C.17)
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on the normal side. On the su])erconductor side we have

\ ( IE hq, I (IE h(ih
^  T i ~  ^  h (Iq̂ . n> n dq^ in

W'e also have the relations

-  A -

^ '̂e/h 7̂1 (^^0 ’̂o ) f ' e/ / i -  ( C . I O )

Continuity of the wavefnnction anti its derivative implies

,/(()") =  »(()-). r(()+) =  r(()“ ). (C.20)

and

(■>.»(()") - rA r (O - )  =  ^ c ( O ) .  (C.21)

Xext we a.ssume that

E.A<^Ei . .  (C.2‘2)

which is the Andreev ajjproxiniation. This leads to the following sim])lifica-

tions

'̂( //( ~  (le/h ~  f ' F-  -23)

~  (’F. »V/Vi ~  («0 - 'o)('F- (C.24)

wher(‘ (>■ =  Simpk'. but tedious algebra yields
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(C.25)

» ()(’() (C.2G)

(C.27)

O  /-F .- i  /  o  o  \  ^ (C.28)

Here Z  =  ^  is a diniensionless i)arauieter whicli nioasuros the interface

transparency. Z <§; 1 gives a v(ny transi:)arent interface while Z »  1 yields a 

low transparency. If we now siui])lify to the case of i)erfectly ideal interface, 

i.e.. Z =  0. In this case

So, the probability am plitude \rhe\  ̂ =  1 for E < A.  This shows that for 

an ideal N-S interface, an injected electron is reflected back as a hole with 

unit probability. This phenomenon is called Andreev reflection [41, 48]. In 

contrast to usual reflection, where momentum is not conserved and charge 

is conserved, in Andreev reflection momentum is conserved (at least in the 

Andreev ai:>proximation), whereas charge is not conservc'd. For E > A,  the 

electron also has finite probability to be transm itted as an electron since 

there are states availal)le in the superconductor, above the superconducting

(C.29)

gap.



A ppendix D 

Perturbation expansion in 

electron-spin coupling

111 C'lia])ter 5 . wc discnssc'd tlie pcjssilnlity to iiiaiiii)ulrtto the si)in of an 

aclatoni at the edge of a t\vo-dini('iisioiial to])ological insulator, based on 

a perturbation expansion in the electr(ni-si)in coupling. In this ai)peiidix 

we provide the details of such a perturbation exi^ansion. The electron-s])in 

interaction term  in the Hamiltonian is

//e-.sp =  ’/sd • S +  fo ^  cj^ca. (D.l )
o ..i ' o

Here the first term is the interaction between the localized spin S and the 

conducting electrons, while the second term  represents the elastic contribu­

tion to the scattering and is called the niagnet(jresi.stive elastic term. This 

interacting ])roblem is iii.soluble dirc'ctly. However, here we summarize the 

perturba tion  expansi(;n used to tackle it. This was derived in Refs. [Cl. GG] 

following the ])rocedure laid out in Ref. [G7]. Considering zero tem pera­

ture. the contour ordered spiu-d('i)eudent single-body Green's function in 

the many-body ground sta te  is defined as.
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[^(r, r')]a .a ' =  -/■(|7f-{f’a(T)c^,(r')}|). (D.2)

where T c  is the contour ordering oi)erator and the average is performed over 

the interacting ground state, denoted l)v |). The above expression can be 

expanded to /i-th order in the interaction Hamiltonian using

- 0 " ^ ^  f f , , o ( | r r { / / e - s p ( r i ) . . . / / e - . p ( r „ ) r . ( r ) c ; , ( / ) } | ) o

o(|5 '(-oo. 3c)|)o
(D.3)

where S  is the tinie-evolution operator. Note that the average is now taken 

over the non-interacting ground state. |)o. The contovu' C  goes from —oc to 

+OC and then back from +oc to —oc-. The first order term is a constant, 

while the second-order term reads

^  IdTiJ dViX
i . a . a ' ^  ^

o( |^r{(‘'a(r)fi(ri)ro-(ri)4(r2)c^/(r2)r^,(r')}|)oo(|7f'{5'(ri)5''(T2)}|)o[fT']oa'[^-^]/3/s(D.4)

where the indices i and j run over the local spin operators. A contour ordered 

expansion is now performed on both the electron and sj^in brackets. For the 

electron part one obtains a total of six terms [64, 66].

Out of these six, two terms are Fock-like diagrams, while two Hartree-like 

terms are also obtained. The latter vanish due to spin selection rules. In 

addition one obtains two disconnected diagrams, which vanish under the 

averaging. The simplified expression then becomes
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o ( | ? r { r a ( r ) c , \ ( r i ) r a ' ( T , ) 4 ( T 2 ) r a . ( r 2 ) r ^ , ( r  ) } | ) o  =

^ a a ^ n ' i V a '  ^ 1  ) ] i t ( t  [ G " ( ) ( T ]  .  T 2 ) ] o ' a '  [ G ^ o ( ^ 2 -  ^  ) ] ( t ' ( t '

+  2r^()Va'^'oV'^'/J3'[Go(r. Ti)]aa[GQ{Ti .T'%'„\Go{T2.  T2)]3li- (D -5)

To expand the sj)in bracket consider the spin l>a.sis |/;). where n =  —S, —S  +  

1..... S  — \ . S.  These are used to rewrite the spin operators a,s

S ' [ t ) =  ^ { m \ S ' \ n ) d \ „ { T ) d n { T ) ,  (D.G)
m  n

where d\̂  {(In) creates (annihilates) a <iuasi-particle of the s])in Hamiltonian. 

C’onsidering only a single s])in excitation at a time renders the choice of 

the (luasi-jiarticle statistics irrelevant. For simplicity, these oi)erators are 

assumed to obey fermionic connnutation relations. Now. the contoiu' ordered 

Green's function for spin is defined to be

P ( r . =  - / ( | r r . { r / „ ( r ) 4 , ( r ' ) } | ) .  (D.7)

By inserting the expressions for S'  and the spin propagator D{t , t ') into the

sj)in bracket yields

o(|7}'{S''(ri)5’'^(r2)}|)o =  -  ^ (/;( |S " |/; ) (» |5 |̂/n)[A)(ti, T2)]n,n[A)(r2.
Din

(D.8)

where D q is the unperturbed  spin prcjpagator. By using the two contributions 

from the electronic and sj)in brackets and the Dyson's equation, the second 

order c(nitribution to tiu' interacting self-energy can be written as
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x[G'o(ri,r2)];3;3 J]](/7H5''|/i)(n|S'-'|//?)[D„(ri.r2)]„„[A)(T-2-ri)]„„„. (D.9)
m.7i

From the above expression the real-time (luantities can be evaluated by using 

Langreth's rules. The final expressions read

P%,(E)]'n

PL (£)Iu  = ± ) l u ( - ^  \KS;„„ + PM -  P,„)|.sr„„n
rn.n

 jln ln il -  P„,)|S-J£).ll)
m . n

The unperturbed s j m u  propagators D^{t\, f-z) have been re-exj)ressed in terms 

of the occupations of the spin levels, P„ =  <■/],(/„. Here \  =  eo/-/srf and =

± iS^. The lesser (greater) self-energies descrilje the process where an 

incoming (outgoing) electron excites (relaxes) the si)in system by an energy 

Uj„„ with spin level occuj^ation dependent probabilities. Note the appearance 

of spin selection rules due to the factors of 5"*" in the inelastic terms. The 

first term in both the expressions is the magnetoresistive elaistic term  and it 

preserves the electron s])ins during a scattering processes.

In order to calculate the non-ecjuilibriuni spin po])ulations, consider first a 

non-interacting case when the conducting electrons do not interact with the

— i  i'imn)]ni^"in\PnS^„, -|- P„(l — Pm)|5,",„Ĵ )
rn.71

tn .n



local si)iiis. Assum e th a t  the  local spins are in equilibrium  w ith  a heat b a th  

at te m p e ra tu re  T .  whose only effect is to  genera te  a l)roadening k s T  to  the  

s])in eigenstates. T h e  non-in te rac ting  spin p ro p ag a to r  reads

Pll is the  g round  s ta te  equilibritnn popu la tion  at zero tem p e ra tu re .  Now, 

when the  in terac tion  is switched on. then from th e  first and  second o lder  

conti’ibu tions to  th e  spin self-energy and using the  ecjuation of m otion for 

th e  s])in proi)agator, a mast( 'r  e(}uation for the  non-eciuilibrium ])0 ])ulations 

can  be derived as

(D.12)

=  j- -  mvin -  / ’/(I -  p j n  + {P̂: -  p„)A-«r. (D.13)

where the  t ran s it ion  ra tes  11',,/ read

ir„, =  - 4

+|Swl'(|r„|tt[r,,.|„ + [r„|u[r„.]u) + |S,r/|-[r„k(r./ln + 15„-,flr„|n|r,/lilP^i4)

where (^(.r) =  — c ). is the  chemical po ten t ia l  in lead ij an d  F,,

is the  broaden ing  function of lead //.
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Appendix E 

A brief note on the Coherent 

Potential Approximation

Tlio C o h e re n t  P o te n t ia l  A i)p rox in ia t ion  (C P A ) is w ide ly  used  to  s t u d y  th e  

e lec tro n ic  s t r u c tu r e  of alloys [135]. In tiiis A ])j)endix we o u t l in e  th e  b as ic  idea  

b e h in d  th e  C P A  by using  a singl(> o rb i ta l  t ig h t- l) in d in g  m o d e l  for i l lu s t ra t io n .  

W'e closely follow t lu '  ex p o s i t io n  by M ookerjee  in Ref. [144], W e b eg in  w i th  

a t ig h t -b in d in g  H a m il to n ia n  of th e  form

w ith  t lu '  o n s i te  enc'rgy f, at sit(' / an d  th e  ho])p ing  e le m e n ts  b e tw e en  s i te s  i 

a n d  j  as  i ,j .  I f f ,  a re  ra n d o m , th en  tli<> s im ples t  a p i ) ro x im a t io n  is to  co n s id e r  

ju s t  th e  average  value of t h e  onsit( ' I 'uergy (f ,) .  a n d  re j) lace it in t h e  av e r­

aged  H a m il to n ia n .  T h is  is the' M r t u a l  C ry s ta l  A p ]) ro x im a t io n  ( \"C A ).  a n d  it 

c lea rly  misses ou t o n  th e  ra n d o m  ])o ten tia l f lu c tu a t io n s  a r o u n d  th e  average . 

O n e  can  go a stej) a lu 'ad  a n d  considc'r th e  C o h e re n t  P o tc 'u t ia l  A p p r o x im a ­

tion  (C P A ) as don(' by Sov(>n [135]. T h e  l)a.sic idea  is to  look for a n  effective 

H a m il to n ia n  w ith  t lu ' same' t ra n s la t io n a l  s y n u n e t r i e s  a.s th e  uncU'rlying

( E . l )
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la ttice  and whose corres])onding G reen’s func tion  =  (~ — is a

good approx im a tion  to  the average Green's function  o f the random  H a m ilto ­

nian. For the al)ove tig h t-b in d in g  model the effective H am ilton ian  is o f the 

form

/ /5 '' =  ^ £ ( = ) | , ) ( < |  +  X ' « l ' > 0 l ^  ( E 2 )
i i j

From dehn ition  o f C PA  we have

( 0 ( 2 ) )  =  G ' ‘' ( c ) .  (E .3 )

One can w rite  E { z )  =  ( f)  -I- E (^ ). and then the self-energy S(~)  is the  cor­

rection to  the v ir tu a l c rysta l approx im ation , h i order to  find  E { z ) .  at site

j  replace the effective po ten tia l by the exact random  j)o te n tia l f j .  Then the 

H am ilton ian  o f the system is

=  +  (E .4)

From  the above ecjuation we have

^<etf

=  l - b - W -

For the C PA  one needs to  choose E { z )  such th a t it  satisfies

which translates to

' = ( ) .  (E.;
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In the si)ccial case when f j  has a l)inaiv distribution (i.e. for a l)inary alloy 

system) with onsite energies l)cing e,\ or es  'vitli probal)ilities ;r and ij { x + y  — 

1). resj)ectively. we have

. r y { f A- e B) HGj j { z ) )

where ? =  ye a +  This is the self-consistent equation for the CPA self­

energy. which needs to be iterat('d till self-consistency is reached. In the 

pn'ceding di.scussion we outlined tlu' ai)plicatioii of CPA to th(' case of diago­

nal disorder. In fact CPA has been generalized to trea t off-diagonal disorder 

in an analogous way [145], This allows one to re])lace the ho])ping matrix  by 

an effective CPA medium in a manner closely resembling the aj)proach for 

the onsite term.
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