LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH | TRINITY COLLEGE LIBRARY DUBLIN
Ollscoil Atha Cliath | The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin
Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other IPR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, | accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

| have read and | understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Space & Time Efficient

Sparse Matrix Transpose

A thesis submitted to the
University of Dublin, Trinity College,
for the degree of

Doctor of Philosophy

Robert Croshie

2015

THE UNIVERSITY OF DUBLIN, TRINITY COLLEGE

Y
if TRINITY COLLEGE
i 2 9 JUL 2015

K\J.IERARY DUBLIN

(s 10507

Declaration

[hereby declare that this thesis is entirely my own work and that it has not

been submitted as an exercise for a degree at this or any other university.

UL Do

Robert Crosbie Friday 14" November, 2014

Permission

[agree to deposit this thesis in the University’s open access institutional
repository or allow the library to do so on my behalf, subject to Irish
Copyright Legislation and Trinity College Library conditions of use and

acknowledgement.

Robert Crosbie Friday 14" November, 2014

Robert Crosbie, The University of Dublin, Trinity College il

B
'.‘
F T 1) . [o .
L SR ! .
SIS L o A] e il R ulag [r 4 - (IR | " L N D
i .
:“ 0 i
E i
o
i . o
E L
B ! 8
| a2
. ‘ ,
! ! :
. . -_]. v
i P 3 .
o = B . B =
i ..*ﬂ;'.ﬁl#“: R = ,'*".I . S .

B T - . &

B i I - B

T i) f N e e R
Ll ' -
O - . e
- - . R -
T N I s Is i*,"-: “r. -
o . N . o . Ny A

- lLu | IdH | : N B i Pl .-| - . -

= I A TR IS ' .
BT S Ll e del= . TR .
e T L L : o

P T -

Abstract

Matrix operations are fundamental to linear algebra and have many impor-
tant applications in areas such as simulation of physical systems, economic
modeling, linear optimization and numerical analysis. One of the fundamen-
tal operations on matrices is the matrix transpose. In many linear algebra
applications the matrices are extremely large and require considerable mem-
ory to store. Therefore it is desirable to transpose in-place to avoid creating
a new matrix which would double the memory usage. Transposing dense
matrices in-place has been studied over several decades, and many good
algorithms have been found. An area that has been relatively neglected
is that of in-place transpose of sparse matrices — that is, matrices where
the value of most matrix elements is zero and are stored in a sparse format.
The best previous algorithm requires ©(nnz + n) time and ©O(nnz + n)
additional space to transpose an n x n sparse matrix with nnz non-zero
entries.

This thesis describes our new family of space-efficient in-place transpose
algorithms for sparse matrices stored in the common Compressed Sparse Row
format. These algorithms require only O(n) space, which is asymptotically
better than the best previous algorithm, and greatly reduce the additional
space in practice. This is especially important for very large sparse matrices,
which are often used to model linear algebra problems at ever finer levels
of detail.

Our three best algorithms perform the transpose in ©(nnz+n) time and
©(n) space. Our Corresponding Row algorithm transposes the 259 sample
matrices in 90% of the execution time of the existing Saad algorithm, requir-
ing on average 21% of the memory overhead of Saad. Our HyperPartition
with RadixSort algorithm has negligible memory overhead, less than 1% of
Saad. This algorithm is efficient for most matrices with and has an average
of 90% of the execution time of Saad however. it does not perform well

for some matrices. Our Hybrid HyperPartition with RadixSort transpose

Robert Crosbie, The University of Dublin, Trinity College v

takes the best of our two previous algorithms. Our Hybrid algorithm has
a memory overhead of just 9.3% of Saad and transposes the matrices on

average in 68% of the execution time of Saad in serial and 32% in parallel.

vi Space & Time Efficient Sparse Matrix Transpose

Contents

Abstract v
Contents vii
List of Algorithms xii
List of Examples XV
List of Figures xvii
List of Listings X1
List of Tables xxiil
1 Introduction 1
WIve ‘TRESISE & & o ot oo i 5 ot o6 6t o b S B 6B e E 1
Contribution 3
Thesis Outline 5

2 Background 9
2.1 Dinear Algebtal . . + : v wv s o8 0 6w 8wl 5w oA 8 9
2.2 Dense and Sparse Matrices 11
2.2.1 Dense Linear Algebra 12

2.2.2 Sparse Linear Algebra 13

2.2.3 Direct Methods and Iterative Methods 15

2.2.4 Mathematical Optimisation of Sparse Matrices . . . 16

2.2.5 Software Packages for Sparse Linear Algebra 17

23 MatrixStorageFormats « - « « « s o6 s 5 5 25 55 % 5 4 s 18
2.3.1 Two Dimensional Dense Format 20

Robert Crosbie, The l'lli\‘;’rhil)' 70[’ i)lll;lil]‘ 'l‘rinit)'r i'nllego vii

Contents

2.3.2 One Dimensional Dense Format Al
2.3.3 Morton Ordered Dense Format 21
2.3.4 The Compressed Coordinate (COO) Format 23
2.3.5 The Compressed Sparse Row (CSR) Format 25
2.3.5 The Compressed Sparse Column (CSC) Format . . 25
2.3.6 Block Compressed Row Storage (BCRS) Format . . 26
2.3.7 Compressed Diagonal Storage (CDS) Format 27
2.3.8 The Recursive Sparse Blocks (RSB) Format 28

2.4 Memory Hierarchy and Cache Performance 29
2.5 Complexity Analysis of Algorithms 33
25.1 O(z) — Big-O: UpperBound 34
2.5.2 Q(z) — Big Omega: Lower Bound 34
2.5.3 ©(z) — Big Theta: Double Bound 35
254 ~(x) — Tilde: Tighter Double Bound 35

3 Matrix Transpose 37
3.1 The Matrix Transpose Operation 37
3.2 Dense Matrix Transpose 39
3.2.1 In-Place Dense Matrix Transpose 40
3.2.2 In Place Dense Rectangular Transpose 42

3.3 Sparse Matrix Transpose 53
3.4 Out-of-Place (OOP) Sparse Transpose 54
3.4.1 Parallel Sparse Matrix Transpose %)
3.4.2 Sparse Matrix Transpose Unit 57
3.4.3 Description of Out-of-Place Transpose Algorithm . 57
3.4.4 Analysis of Out-of-Place Algorithm 61

3.5 The In-Place (IP) Sparse Transpose . . . « « + « « « v s « & » 61
3.5.1 The Saad In-Place Transpose Algorithm 62
3.5.2 Analysis of Saad In-Place Algorithm 66

3.6 Performance Evaluation of Algorithms 67
3.6.1 Matrix Collections — Sample Input Matrices 67
302 Experimental SetUp . - < » + = v « 5 v« ¢ w5 55 55 69
3.6.3 PresentationofData:::. il

viii Space & Time [‘fﬁ(ient Spﬁrse f\]atrlx rralxspose

Contents

3.7 Evaluation of Sparse Transpose Algorithms 72
SR R I LT T et i R E 74

4 Space Efficient In-Place Sparse Matrix Transpose 75
4.1 In-Place Transpose with Reduced Memory 76
4.1.1 Finding the old_row_index in ©(n) Space 7

4.1.2 Determine if an Element has Already Been Processed 78

4.2 Generic In-Place Sparse Transpose 83
4.3 In-Place Transpose with Binary Range Search 85
431 DinaryRangebeareh . - - - - o i v v o s vn w s 85

4.3.2 Cycle-Chasing Transpose with Binary Range Search 87
4.3.3 Memory Overhead of Transpose with Binary Range
s O T 89

4.3.4 Execution Time of Transpose with Binary Range Search 90

4.4 1In-Place Sparse Transpose with Radix Lookup Table 91
4.4.1 Building the Radix Table. 92
4.4.2 Radix Table Lookup 94

4.4.3 Cycle Chasing Transpose with Radix Table Lookup 96
444 Memory Usage of Radix Lookup Table Transpose . 98

4.4.5 Execution Time of Radix Lookup Table Transpose . 99

4.5 Ensuring In-RowOrdering . . . - « o« < v o ¢ 5 5 ¢ 95 45 » 105
4.5.1 Sorting Rows with Two Array QuickSort 105
4.5.2 Sorting Sub-Rows with Two Array Insertion Sort . 107
4.5.3 Execution Time of Sorting 107
4.5.4 Runtime Complexity of Sorting Phase 109

B LRI . 5 < s 5 0 s 20 @ 95 6 BE NS LB ERE GE S 110
5 Corresponding Row Cycle-Chasing Transpose i
5.1 Constant-Time Row Index Lookup 112
5.2 Using the Corresponding Row 113
5.3 Search and Update Corresponding Row Table 115
5.4 Building the Corresponding Row Table 118
5.5 Corresponding Row Cycle Chasing Algorithm 119

Robert Crosbie, The University of Dublin, Trinity College ix

Contents

5.6 Cache-Friendly Corresponding Row Algorithm 121
5.7 Corresponding Row Memory Usage 122
5.8 Corresponding Row Algorithm Execution Time 124
5.9 Corresponding Row Performance Evaluation 127
691 Heaxdwars Comptars . « « . « « v v s 5 s v 5 v« % & 127
5.9.2 Branch Misses of CF Corresponding Row 128

5.9.3 Normal Corresponding Row Performance Evaluation 129
5.9.4 Performance Evaluation of Cache-Friendly Algorithm 134

5.9.5 Summary of Normal and Cache-Friendly Evaluation 135

5.10 Factors Influencing Cache Performance 135
5.11 Cycle Length and Cache Performance 139
DT TN S n e § 2 oek s d i AR s R R AR RS 142
6 HyperPartition Sparse Matrix Transpose 145
6.1 The HyperPartition Sparse Matrix Format 146
6.1.1 Grouping Bows - ... « 6+ ws 65 %0 wemw & e 147
6.1.2 Unused Data in CSR Sparse Matrix Format 148
6.1.3 The HyperPartition Structure 149
6.1.4 Using the HyperPartition Format 151

6.2 Converting to HyperPartition Format 152
6.3 HyperPartition Cycle-Chasing Transpose 154
6.4 Sorting HyperPartition after Cycle-Chasing 157
6.5 Converting from HypCSR back to CSR 158
6.6 Heuristic: Choosing Number of Bits to Steal 159
6.6.1 Remaining Bits Heuristic. 161

6.7 HyperPartition Memory Usage 162
6.8 HyperPartition Transpose Execution Time 163

6.8.1 HyperPartition Execution Time: Excluding Symmetric166

6.8.2 Serial Performance of the Remaining Bits Heuristic 168

6.9 Parallel HyperPartition Transpose 170

6.9.1 Parallel Sorting Algorithm 170
6.10 Parallel HyperPartition Memory Usage 17l
6.11 Parallel HyperPartition Execution Time 173

X Space & Time Efficient Sparse Matrix Transpose

Contents

6.11.1 Parallel HyperPartition vs. Serial Saad
6.11.2 Parallel Performance of Remaining Bits Heuristic .
6.12 Reviewing the Remaining Bits Heuristic

B3 SHIBIATY . o ' » s 5 55 55 v 608 siin ow s B % 9w 50

174
175
s

7 Further Optimisations — RadixSort and Hybrid Trans-

pose
7.1 Most Significant Digit (MSD) RadixSort
7.1.1 MSD RadixSort Algorithm
7.1.2 Choosing Number of Buckets for Radix Sort
7.2 HyperPartition RadixSort Results
7.2.1 Parallel HyperPartition with RadixSort Performance
7.3 MSD RadixSort Summary
7.4 Structural Analysis
7.4.1 Detecting Structural Symmetry
Hybrid HyperPartition Transpose Algorithm
Hybrid HyperPartition Transpose Performance
7.6.1 Parallel Hybrid HyperPartition Performance

7.7 Hybrid HyperPartition Summary

8 Conclusion and Future work
8.1 Contributions

8.2 Future Work

8.3 Summary
A Matrix Tables
B Detailed HyperPartition Performance Graphs
C MatrixMarket File Format
Bibliography
Glossary

Robert Crosbie, The University of Dublin, Trinity College

185

193
196
199

215
216
218
219

223

229

271

273

295

xi

,Ii

S hh*“ﬁl“j- (] '..*Illl"l T
e B .

:‘J'.‘J',:-' I
:".L 'i_d-:

..lr..m-_i-'.-.ﬁ. ,-.i-uj.:

r. 'll' i T
D it LR

it R -

T a & wakmn

List of Algorithms

3.1 Dense Square Transpose 40
3.1 Input Matrix M in CSR format o8
3.2 Out-Of-Place sparse matrix transpose 59
3.3 The Saad In-Place sparse transpose - PART I: Initialize . . 63

3.3 The Saad In-Place sparse transpose - PART II: Main Loop 64

4.1 Generic O(n) In-Place Sparse Transpose w/ Row Index Lookup

................................. 84
4.2 Index Lookup using Binary Range Search Algorithm 86
4.3 Sparse Transpose with Binary Row Index Range Search . . 88
4.4 Build Radix Loockup Table 94
4.5 Index Lookup using a Radix Lookup Table 95
4.6 Sparse Transpose with Radix Table Row Index Lookup . . 97
4.7 Two Array QuickSort (Median of Three) 106
A8 Two Array InsertionSort . & <« « .« ¢« v oo v w0 v b 0w 108
5.1 Searching and Updating the corresponding row _table . . . 116
5.2 Building the corresponding row_table 118
5.3 Corresponding Row Cycle-Chasing Sparse Transpose 120
6.1 Convert from CSR format to HyperPartition format 155
6.2 Cycle Chasing HyperPartition Transpose 180
6.3 Convert HyperPartition back to CSR format 182
6.4 Convert HyperPartition back to CSR format in Parallel . . 183
7.1 Radix BucketSort Algorithm - 256 Buckets 190
7.2 Detect Structural Symmetry Heuristic 209

Robert Crosbie, The University of Dublin, Trinity College xiii

':-‘"ﬁ' e

-
I-j--

Jwr . :'}l,.

. .-l- H |
N

|E|l r# -.—J*l' .;I'. ‘. N Lol

ﬂ:ﬁv* S

]
il =
CI
=

P SR

prrn = B . ‘g_—'_’*

List of Examples

1.1 Sample Matrices M and its Transpose M7 1
2.1 Sample Sparse Matrix M 19
2.2 Matrix M in CSR representation 26
3.1 Sample Matrices M and its Transpose M7 38
3.2 Matrix M in CSR representation 58
3.3 Transposed Matrix M7T in CSR representation 61
3.4 Algorithm 3.3 - Saad-IP Circuit Chasing Step: 1 65
3.5 Algorithm 3.3 - Saad-IP Circuit Chasing Step: 2 65
4.1 Matrix M in CSR representation 7
4.2 Building the Radix Table (in reverse) 95
4.3 Radix Table for Matrix M 95
9t SO MEEER M b .. v s b i e e N s R EY G 111
5.2 Matrix M in CSR representation 112
5.3 Corresponding Row-8Step 1l . . - . . « ¢ v« v 5 v v v 55 o s 113
5.4 Corresponding Row-Step2 114
5.5 Corresponding Row-Step3 116
6.1 Matrix M in CSR representation 150
6.2 Matrix M in HyperPartition CSR representation 150
6.3 Matrix M7 in HypCSR after Hyper Circuit Chasing 181
6.4 Matrix M7 in HypCSR after Hyper-Sorting 181
6.5 Transposed Matrix M7 in CSR representation again 181
7.1 Radix bit Pasges of BucketSank . - « 5 < = ¢ 55 2« 5 5 5 « 188

Robert Crosbie, The University of Dublin, Trinity College XV

ks ‘.
[
e
i
G
=
it e L
- :“l "__
P K
T:“..;l.- FLt : ,
C A he ‘_:
= [
l#':' = .
e TS

- “5
gl F@kﬁﬁm&-ﬂlwww}’r T
U e i 5‘- ’L.. - i "
S R TR
= E i -
AR P
ol

. I 1 - .
e B A AR LV
I PR SR

) ' -'-"' '
R

i [

Sy
=l)
FRCE RN
N = iy
-$I“J l“ _‘l" i
-' B

List of Figures

2.1 Example Sparse Matrix: ASIC680k 14
22 Modon Omler ZOUNWe . 5 -« o'c 55 55 3 5. 6 %% 58 %+ 4 22
28 Mordon Opder AITHY s'v iv s o slem i s = oin w5 23
2.4 The Block Compressed Row Storage (BCRS) format . . . 27
2.5 Compressed Diagonal Storage (CDS) Format 28
2.6 Morton Order Z-Curve 29
2.7 "MemorytHierarchyl a8 oot i & S8 s o s n Bk s B 30
3.1 Block Transpose of Dense Matrix 41
32 MortonOnder ATaY . . . + . « s s s s 53 v 05a s 53 53
3.3 OOP Algorithm Memory Overhead T
3.4 OOP Algorithm Runtime 74
4.1 Binary Range Search Algorithm Memory Overhead 90
4.2 Binary Range Search Algorithm Execution Time 91
4.3 Radix Lookup Table Algorithm Memory Overhead 99
4.4 Memory Usage of Radix Table Sizes: %, ¢, 7,m 100
4.5 Memory Usage of Radix Table Sizes: 2n, 4n, 8n, 16n 101
4.6 Radix Lookup Table Algorithm Runtime 102
4.7 Algorithm Runtime of Radix Table Sizes: %, ¢, § 103
4.8 Algorithm Runtime of Radix Table Sizes: 2n, 4n, 8n, 16n 104
4.9 Sort Time stacked on top of Algorithm Time 109
5.1 Corresponding Row Memory Overhead 123
5.2 Corresponding Row Algorithm Execution Time 125
5.3 Corresponding Row Algorithm Execution Time 126
5.4 Branch Misses of CF Corresponding Row Algorithm 129
5.5 Normal Corresponding Row Cache Performance 130

Robert Crosbie, The University of Dublin, Trinity College xvii

List of Figures

5.6
5.7

5.8

5.9

6.1
6.2

6.3
6.4
6.5
6.6
6.7
6.8
6.9

6.10
6.11
6.12
6.13
6.14
6.15

Tk
7.2
1.3
74
7.5
7.6
(1
7.8
79
7.10

CF: Corresponding Row: Cache Performance 133
CF: Corresponding Row: Cache Performance per Element 137
CF: Corresponding Row: Cache Misses vs. Avg. Cycle

I A T SR 141
CF: Corresponding Row: Avg Cycle Length Execution Time 142

Stealing bits from the 32 bit integer 27,993,600 148
Converting an element to HyperPartition using 2 decimal

PIBGRE 0 - i ik s o m o m e ok s e m s e 151
Bit Masks for converting to HyperPartition. sb = steal bits 152

Where information is stored in the HyperPartition Format 154

Integer Bits Available in the number 7,694 162
HyperPartition Memory Overhead 164
HyperPartition Memory Overhead [Close-Up | 164
HyperPartition Serial Execution Time w/ QuickSort 165
HyperPartition UnSymmetric Serial Execution Time w/

(11 GIeS O T S i L e e e 167
Serial Hyperpartition with QuickSort with; £k =1.3,6,10 . 169
Parallel HyperPartition Memory Overhead 172
Parallel HyperPartition Memory Overhead 172
HyperPartition Parallel Execution Time w/ QuickSort . . 174
Parallel HyperPartition and Serial Saad 175

Parallel Hyperpartition with QuickSort with; £ =1,3,6,10 176

HyperPartition Sort Time stacked on top of Algorithm Time 187

RadixSort Number of Buckets 192
HyperPartition Serial Memory with RadixSort 194
HyperPartition Serial Execution Time with RadixSort . . . 195
HyperPartition Parallel Memory with RadixSort 197
HyperPartition Parallel Memory with RadixSort - Zoom . 197
HyperPartition Parallel Execution Time with RadixSort . 198
Some Structurally Symmetric Matrices 201

HyperPartition QuickSort Execution Time Just Symmetric 202

Some Unsymmetric Matrices 203

xviii

Space & Time Efficient Sparse Matrix Transpose

List of Figures

7.11 Some Triangular Matrices - Lower Triangle of Symmetric 204
7.12 Relative Cache Performance of Struct Sym/Unsym Matrices 206

7.13 Hybrid (Hyp/Corr) Memory Overhead 210
7.14 Serial Execution Time of Hybrid HyperPartition with Radix-
S e A P T e - e R e . A TR 211

7.15 Hybrid HyperPartition Parallel Execution Time with RadixSort212
7.16 Hybrid RadixSort Parallel Execution Time Relative vs. Serial213

B.1 Serial Hyperpartition With QuickSort: k=1—10 230
B.2 Parallel HyperPartition with QuickSort: Ak =1—10 . .. 235
B.3 Serial UnSymmetric HyperPartition QuickSort: £ =1 — 10 240
B.4 Serial Symmetric HyperPartition with QuickSort: £ =1 —

| R U I N P g T~ N R SR R /P Iy 1 IR 245
B.5 Serial HyperPartition with RadixSort: k=1—10 250
B.6 Parallel HyperPartition with RadixSort: k=1 — 10 . . . 255
B.7 Serial Hybrid with RadixSort leaving: k=1—10 260
B.8 Parallel Hybrid with RadixSort leaving: k =1— 10 . . . 265

Robert Crosbie, The University of Dublin, Trinity College XiX

A 2 ' IR T
R =
. g T e i - B

re . " e A LY | B o K -
E - IR . . =

s . B
%‘n‘lﬂrrf.‘. : . ".
7y ""f N .:: i R :.”. - B . -

"l-n l"-.r"'- = e

- A _
|".|': -' s
: j F‘}ﬂ’f 2 ytar
:.l-_*" _ - -
L -
El Bl - |
i) l i1

‘ ;41.—|r¢"“y':l;* T
'\i'.:-' TR o
3"‘ ‘1'1'};2‘5 . o

> l] N -

‘? “'rm—”llrlrh '-'n -

.ﬂ_ﬂl _— .

- T = N

- -J.l . thLJ'u--‘mhh. o : .

l.-.ll._.\“_,l "ll

|1_f :r i" TMIHF ,1-'-1‘1 ,,.

]

4 'h' fk ‘{! e - :

N ‘\. ll'r'“”' --» s
b B RS

- - . B
. ! i
S T T S -
' b e
- R
-
B = N
y i of »
I hl g

List of Listings

2.1 Two Dimensional Dense Example 20
2.2 Sparse Coordinate Example 24
2.3 Sparse Compressed Row Example 25
5.1 Cache Friendly Implementation 122
C.1 MatrixMarket File Format atl

Robert Crosbie, The University of Dublin, Trinity College xxi

1 [[
It age, o
s
i Ih

List of Tables

2.1 Stoker: Intel Xeon E7-4820 Cache Details 31
2.2 Stoker: Intel Xeon E7-4820 Cache Miss Latency from Cali-
DIALOTEEO0 M Elvotte A K e S LN N R e el B 32
0.l Monttored PAPIEDlE . o« o o s v v s 9 5 v 64 € 6 ¥ 5 & 128
8.1 Algorithm Complexities . . . : « « o s v« 55 50 5 55 5 = & 221
A.1 Matrix Information 0L 224
) MO EOUIOH " o s » s hom o5 o 2 ls o'l g 0w x w4 225
A.3 Algorithm Memory Usage (MegaBytes) 226
A4 Algorithm Execution Time (seconds) 227

Robert Crosbie, The University of Dublin, Trinity College xxiii

o
e
‘l . -
y
-
CTRCC R
. .# o
FP
HJP!J'. :
=k e
-. ‘
--L.a.;t B
ke (B
L= n \— .
. i
. -
T

Xl ...,!,l-~g.=1- o
"%f'?r o

J i

e
£ 'y, 4

I.‘J _+ tl.-u.‘_fil— == -

|||,

-_- f i

5# e -
£ e b

1 . Lo g
'lll

iy . l'.-'\.- *-
4 2

= |h_l'|.. ? IFI ’ _
o \-

i

Chapter

Introduction

My Thesis:
Sparse matrices in Compressed Sparse Row (CSR) storage for-
mat can be transposed in ©(nnz + n) time using just O(n)
additional space. Additional techniques can be used to further

reduce time and space in practice.

Linear Algebra [Golub 96, Anton (2] and matrix operations are essential
in many areas of science, engineering, finance, and numerous other fields.
It is therefore important to have fast and efficient linear algebra software.
One of the fundamental linear algebra operations on matrices is the Matrix
Transpose [Cayley 59, Golub 96]. From a computational perspective, the
transpose operation is mainly used to change between row-major and
column-major layouts to improve cache reuse and efficiency.

Taking a matrix M, its transpose M7 may be obtained by swapping all
the rows with all the columns and vice-versa. As shown in Example 1.1 the
first column becomes the first row and the fourth row becomes the fourth

column. The elements along the diagonal remain in place.

a b a h
cld € d . f m
M= P SRS MT = 5
h 1 g i
k b 7 |k n
m n o e I "0
(a) (b)

Example 1.1: Sample Matrices M and its Transpose M7

A problem that has been studied since at least the 1950’s [Windley 59,

Knuth 98] is how a matrix can be transposed in-place. By in-place we mean

Robert Crosbie, The University of Dublin, Trinity College 1

Chapter 1. Introduction

that the transpose of the matrix is stored in the same location as the original
matrix, and a minimum of additional temporary storage is needed to perform
the transpose operation. For dense matrices many good algorithms exist. In
particular in-place transposition of a square dense matrix is straightforward
and very cache efficient [Lawson 79, Whaley 97, Knuth 98, Goto 02]. Trans-
posing rectangular dense matrices in-place is more complicated, but several
efficient algorithms have been developed that move “cycles” of matrix
elements with a constant amount of additional space [Laflin 70a, Cate 77al.
There has also been interest in in-place transposition algorithms that achieve

greater data locality at the cost of more data movement [Alltop 75].

There has been comparatively very little research into the problem of
the in-place transposition of a sparse matrix which is arguably a much
more difficult procedure. There have been a number of articles which deal
with the Out-of-Place sparse matrix transpose [IBM 76, Gustavson 78b,
Pissanetzky 84, Gonzalez-Mesa 13] and numerous implementations (see
Section 3.4), however there is very little research to be found on the In-Place
Sparse Transpose and only one publicly available implementation [Saad 94].
In this Thesis we aim to bridge that gap with our “Space and Time Efficient
In-Place Sparse Matrix Transpose™.

A Sparse Matriz is a matrix where the majority of the entries in the
matrix are zero, and the matrix stored in a condensed format in memory
omitting most or all of the zero entries. Storing all elements (including
zeros) of a large sparse matrix in a dense format in memory is inefficient,
and in many cases would require much more memory than is available in
the given machine. Sparse matrices generally use more complex structures
in memory, which makes in-place transposition more difficult. Popular
compact formats such as Compressed Sparse Row (CSR) and Compressed
Sparse Column (CSC) [Duff 86, George 81] (Section 2.3.5) are used, where
only the non-zero values in the matrix are stored explicitly. The location
(i.e. row and column) index of each non-zero value is stored in auxiliary
data structures. For formats such as CSR, accessing the matrix elements
via (and maintaining these auxiliary data structures during) the transpose

is what makes in-place transposition complicated for sparse matrices.

2 Space & Time Efficient Sparse Matrix Transpose

Contribution

For a square n x n sparse matrix, the two important values that affect
the time and space required for transposition are the number of rows,
or order, of the matrix (n) and the number of non-zero values in the
matrix (nnz). The Out-of-Place sparse transpose (Section 3.4) requires
O(nnz + n) time and ©(nnz + n) auxiliary space. The best published /
publicly available in-place transposition algorithm for sparse matrix formats
like CSR is Saad-IP which requires ©(nnz + n) time and ©(nnz) auxiliary
space [Saad 94].

The cycle-chasing in-place sparse transpose permutes elements to their
correct transposed row. However, elements are not necessarily ordered by
column index within the rows. This may be adequate for some applications
however, if we wish to ensure elements are in order then we can add a
second step to the transpose operation to sort the elements within the
rows. This can be done using a comparison sort similar to QuickSort
as shown in Section 4.5 which has a time complexity of O(nnz.log(n)).
Alternatively we can use a non-comparative sorting algorithm such as the
Most Significant Digit Radix Bucket Sort (described in Section 7.1) which
has a time complexity of O(nnz.k) [Knuth 98, Biggar 08a, Shutler 08]. If
n is the number of rows/columns then & = log(n), which remains constant
for any particular integer index used (i.e. for 32 bit integer indexes & < 32

). Thus the complexity of the radix bucket sort essentially becomes O(nnz).

Contribution

We propose a collection of new in-place sparse matrix transpose algorithms
which use asymptotically less memory (©(n) compared to ©(nnz)) while
maintaining the same asymptotic time complexity (©(nnz + n)) of the
existing [Saad 94] in-place algorithm. In most sparse matrices nnz is
much larger than n, so the space saving can be significant. The saving is
particularly important in cases where the sparse matrix occupies much,
or even most, of the available memory and transposition with the current
algorithms may be infeasible or even impossible. Indeed, there will always

be a need to solve larger problems or solve problems in finer detail which will

Robert Crosbie, The University of Dublin, Trinity College 3

Chapter 1. Introduction

result in even larger matrices. Therefore it is essential to support very large
matrices as efficiently as possible. In practice our new algorithms use just
a fraction of the memory overhead of the existing algorithm while actually
improving (often considerably) on the execution time. Our algorithms
also provide more efficient matrix format conversion between row-major
and column-major orderings, which is the exact same procedure as the
transpose operation. We perform an extensive experimental evaluation and
comparison of a number of sparse transpose algorithms using a test suite of
259 large matrices taken from real world applications and investigate their

performance based on appropriate metrics.

Take for example nilpkkt2/0, the largest matrix in our test suite. Trans-
posing this matrix using an Out-of-Place algorithm requires 4,698 MiB
of additional memory. If this almost 5GiB of additional memory is not
available, the existing Saad in-place algorithm [Saad 94] can transpose the
matrix in 223 seconds using 1,530 MiB of additional memory. We propose
a new Corresponding Row Transpose algorithm which reduces the memory
overhead from ©(nnz) to ©(n) while keeping the standard matrix struc-
tures. The Corresponding Row algorithm can transpose this large matrix
using just 320 MiB of additional memory and in this case also takes 223
seconds to transpose the matrix. Of the 259 matrices in our test suite, our
Corresponding Row transpose requires on average just 21% of the memory
of Saad and performs the transposition in 90% of the execution time on
average.

We propose a further HyperPartition Transpose algorithm which main-
tains the reduced O(n) memory overhead and internally converts to our
new HyperPartition format in order to reduce the memory overhead further
and improve on cache reuse to improve performance. The HyperPartition
algorithm can transpose this largest matrix with just 3.3 MiB of additional
memory in just 80.7 seconds. This represents less than 1% of the memory
usage and takes just 36% of the execution time of the existing Saad in-
place algorithm. The HyperPartition algorithm has extremely low memory
overhead and performs well for most sample matrices however, it does not

perform well for some matrices.

4 Space & Time Efficient Sparse Matrix Transpose

Thesis Outline

We examine matrices for which our algorithm does not perform well,

investigate why and propose techniques to improve performance. This

results in a Hybrid Transpose algorithm which maintains our reduced ©(n)

space complexity and also maintains the ©(nnz + n) time complexity of the

existing algorithms. The Hybrid algorithm performs the transpose using

on average 9% of the memory overhead of the existing in-place algorithm

(less than 3% of the out-of-place algorithm) with an average execution time

compared to the existing Saad algorithm of 68% in serial and 38.8% in

parallel.

Thesis Outline

This document is structured as follows.

e Chapter 2 covers background information underlying the work in

this Thesis. We give a basic overview of Linear Algebra, Dense and
Sparse matrices, existing algorithms and software for sparse matrices
and matrix storage formats. We also provide an overview of memory
hierarchy and caches and finish with a description of complexity
analysis and the notation we use to theoretically analyse and discuss

algorithms.

Chapter 3 discusses in detail the Matrix Transpose operation, dis-
cusses related research, introduces the existing algorithms for the
sparse matrix transpose, describes our experimental setup and gives

an analysis of the performance of the existing algorithms.

Chapter 4 introduces two new algorithms for the cycle-chasing in-
place sparse matrix transpose which reduce the memory overhead to
an asymptotic space complexity of ©(n) compared to the ©(nnz) and
O(nnz+n) of the existing algorithms. Although the savings in memory
can be significant, for these first two algorithms this comes at the
cost of an increase in time complexity. This chapter experimentally

analyses the performance of the algorithms in terms of execution

Robert Crosbie, The University of Dublin, Trinity College 5

Chapter 1. Introduction

time and memory usage compared to the existing algorithms. The
increase in complexity is evident in the execution time of the Binary
Range Search Transpose however the execution time of the Radix
Lookup Table Transpose is broadly similar to the existing Saad in-
place algorithm and is actually slightly faster on average. Chapter 4
also outlines our basic procedure for ensuring elements are arranged

in column order within rows after the cycle chasing algorithm.

e Chapter 5 describes our new Corresponding Row transpose which
uses a lookup table to perform the in-place cycle-chasing algorithm
in reduced ©(n) memory overhead while maintaining the ©(nnz + n)
time complexity of the existing algorithms. The novel approach here
is that the look up and update of the table can be done in amortized
constant O(1) time. We perform extensive analysis of the performance
of two implementations of the Corresponding Row algorithm. We
also use hardware counters to look in depth at how the algorithm
uses caches compared to existing algorithms. Using this analysis we
identify properties of the matrices and the factors such as the cycle

length which influence cache usage and performance.

e In Chapter 6 we use the results of the analysis in Chapter 5 to
develop a technique to improve cache performance of the in-place
cycle-chasing transpose. We introduce our new HyperPartition sparse
matrix storage format which we can easily and quickly convert to
during the transpose. We then introduce our HyperPartition Trans-
pose algorithm for the in-place transpose of sparse matrices in the
HyperPartition format. We also introduce a heuristic with which to
select the best parameter to use for determining the size of partitions
in the HyperPartition structure. We analyse the performance of the
heuristic used for different values and recommended favourable values.
We also introduce a parallel version of the HyperPartition transpose
which exploits the data segregation provided by our HyperPartitions
to reorder HyperPartition elements in parallel. Extensive performance

analysis is also provided which shows that the HyperPartition trans-

6 Space & Time Efficient Sparse Matrix Transpose

Thesis Outline

pose has negligible memory overhead and has improved execution
time performance for many of the input matrices due to improved

cache usage.

e Chapter 7 introduces some further optimizations for the HyperParti-
tion in-place sparse transpose. A Radiz Bucket Sort which exploits
the type and layout of of the data in our HyperPartitions to improve
the efficiency of the sorting phase of the transpose. We analyse the
performance of different bucket sizes and recommend a heuristic for
choosing an appropriate bucket size depending on matrix and Hyper-
Partition dimensions.

The HyperPartition transpose from the previous chapter does not
transpose matrices which are structurally symmetric as efficiently as
the previous algorithms. In Chapter 7 we investigate the structural
layout of the matrices in our test suite and introduce an efficient
heuristic test to determine if a particular Square matrix is Struc-
turally Symmetric. We then introduce our Hybrid HyperPartition
Transpose which uses this test for Symmetry to choose between the
HyperPartition and Corresponding Row algorithms. The Hybrid
algorithm provides a suitable trade-off and has moderate memory

overhead with good overall performance.

e We draw conclusions in Chapter 8, discuss contributions and outline
areas for future work. Table 8.1 gives a summary of the algorithm

complexities.

e Appendix A contains tables of information on a selection of the largest
sample matrices used in experiments. Table A.1 gives details of the
dimensions of the matrices. Table A.2 lists the applications and
problem domains which produced the matrices. Details of algorithm
memory usage and execution time for these matrices are given in
Tables A.3 and A.4.

e Appendix B contains detailed graphs of the HyperPartition and
Hybrid algorithms in Serial and Parallel with the QuickSort and

Robert Crosbie, The University of Dublin, Trinity College i

Chapter 1. Introduction

RadixSort algorithms for different & values of the Remaining Bits

Heuristic.
e Appendix C outlines the MatrixMarket file format.
e Bibliography of references and related work is on page 273.

e Glossary on page 295 defines some common terms used in the docu-

ment.

8 Space & Time Efficient Sparse Matrix Transpose

Background

This Chapter contains background information underpinning this research.

Matrix Transpose is one of the basic operations of Linear Algebra [Golub 96,
Anton 02]. Section 2.1 gives a brief introduction to Linear Algebra. The
Matrix Transpose operation itself is discussed in detail along with the
related work and research in that area in Chapter 3. In Section 2.2 we
discusses the two main types of matrices which result from linear algebra
problems, dense and sparse matrices and the two types of matrix software
which are specialised for working with each type. Section 2.3 discusses the
main types of matrix storage formats, the data-structures which are used
to store matrices in memory on computer systems.

A central thrust of this work is modifying sparse matrix transpose
algorithms and data-structures to be more efficient by making better use
of caches. Section 2.4 gives a brief overview of the memory hierarchy in
modern computer systems, how caches work and how they can be exploited.
Section 2.5 outlines complexity analysis and the notation used in this
document when discussing and comparing algorithms from a theoretical

perspective.

2.1 Linear Algebra

Linear Algebra is a branch of mathematics which involves many fields such
as systems of linear equations, vectors, vector spaces, matrices and linear
transformations. Systems of linear equations are produced during many
varied activities such as analysing the forces on components with Finite
Element Analysis [Szab’o 91]. Simulating liquids and gasses with Fluid
Dynamics [Harlow 57]. Optimising problems in transportation, telecom-

munications, and manufacturing with Linear Programming [Schrijver 86,

Robert Crosbie, The University of Dublin, Trinity College 9

Chapter 2. Background

Simulating current in electric circuits [Nagel 73, Kundert 86]. Image Pro-
cessing [Portnoff 99, Na'mneh 06|, and Numerical Analysis [Higham 02,
Stoer 02] in many scientific and engineering fields.

As such, linear algebra provides part of the essential foundations in a
wide range of areas of engineering, economics, statistics and the various

different science disciplines.

Linear Algebra Example

The linear equations that are derived from the problem domains above may

look similar to the equations shown in the small example in Equation 2.1.

T + 2y + 42 = 3
5¢ + 4y — z =1 (2.1}
2z — 3y + 2z = 6

There are three equations and three unknown variables (z,y, z). The
standard technique taught in schools is to use simultaneous equations to
find the unknown variables. However, this technique does not scale. A
better technique is to express the problem in matrix form and use standard
Linear Algebra techniques (and software) to solve the problem. These
equations can be written in a Matrix form where the square 3 x 3 matrix
A holds the coefficients of the unknown variables, the 1 x 3 vector array
v holds the unknown variables (z,y, z) and the product of A and v is the

1 x 3 array b, which holds the right hand sides of the equations.

120 4 7 3
A=|5 4 -1]|, v=1m|, =11 (2.2)
2 =3 2 2z 6

The Full system of equations Av = b then becomes:

1 2 4 . 3
Av=b = |5 4 —1|x|y| = |1 (2.3)
g -3 ¥ : 6

The linear system may be solved by calculating the inverse A=! of

10 Space & Time Efficient Sparse Matrix Transpose

2.2. Dense and Sparse Matrices

the matrix A and pre-multiplying both sides by this inverse. A and its
inverse when multiplied together result in the identity matrix / which when
multiplied by a vector or matrix results in the same matrix. The calculation

proceeds as follows:

Av — b

A Av = A%
e (2.4)
Iv = A%

v = A1

Thus we can find the unknowns by calculating A~!, the inverse of A
and pre-multiplying b by A~!. For efficiency, linear algebra algorithms
generally do not calculate the full inverse, rather they decompose A into
its upper U and lower L components (such that LU = A) and perform two
triangular solves to calculate the value of the unknowns. This reduces the

total number of arithmetic operations required.

2 T
lv=0b = -3 2 |y = |2 (2.5)
2 -3 2 2 6

We use a triangular solve when we have a lower triangular matrix L
multiplied by a vector v as in Equation 2.5. A triangular solve makes it
easier to calculate the values of the unknowns in the vector v. In this case
we can simply read the value of the variable x given that the equation is
2r + y+ 2z =4, thus x = 2. This value of x can then be used to find
the value of y and then z. The same method can be used with an upper
triangular matrix U.

This method of finding the unknown variables in systems of linear
equations is just one of the common uses of Linear Algebra. There are

many many other uses of Linear Algebra.

2.2 Dense and Sparse Matrices

There are two main types of matrices; Dense Matrices and Sparse Matrices.

The main reason for distinguishing between dense and sparse matrices

Robert Crosbie, The University of Dublin, Trinity College 11

Chapter 2. Background

is how they are stored in memory on compnter systems and how the linear
algebra algorithms operate on them. In a dense matrix, all the elements in
the matrix are stored contiguously in memory. We know the exact layout
of the matrix in memory such that every element can be indexed directly.

A sparse matrix is a matrix where the majority of the entries have
a value of zero. Sparse matrices tend to be quite large so storing all
those zeros in memory (as in dense) is inefficient. Performing arithmetic
(adding, multiplying) with all those zeros is also inefficient. Therefore sparse
matrices are stored in memory using a compact format such as Compressed
Sparse Row (CSR) [Duff 86, George 81| (see Section 2.3.5) where just the
non-zero values from the matrix are stored. Additional data structures
store information on the layout and structure of the matrix. Furthermore,
sparse matrix software is designed with this sparsity in mind and use the
compact storage formats to reduce the number of arithmetic operations
required to perform the algorithms by only accessing the non-zero values.

The main storage formats and data-structures used for both dense and

sparse matrices are outlined in Section 2.3.

2.2.1 Dense Linear Algebra

Dense Linear Algebra refers to the class of linear algebra algorithms and
software which operate on matrices stored in dense format in memory.
The Basic Linear Algebra Subprograms (BLAS) define a standard set
of interfaces for performing common linear algebra tasks. The BLAS is
divided into three categories. The level 1 BLAS [Lawson 79] consists of
scalar and vector routines (dot product, vector-vector multiply). Level 2
BLAS [Dongarra 88] consists of routines which deal with one matrix and
one or more vectors (matrix-vector multiply). Level 3 BLAS [Dongarra 90]
consists of more complicated single matrix routines and routines including
two or more matrices (matrix-matrix multiply). LAPACK (Linear Algebra
PACKage) [Anderson 90, Anderson 99] builds on the BLAS and provides
routines for solving systems of linear equations, least squares, eigenvalues

and routines for factorizing matrices. The BLAS and LAPACK have been

12 Space & Time Efficient Sparse Matrix Transpose

2.2. Dense and Sparse Matrices

very successful in standardising the interfaces for linear algebra routines.
The basic BLAS [Lawson 79, Dongarra 88, Dongarra 90] just provides
a reference implementation of the algorithms and interfaces, they are not
tuned for efficiency. With dense matrix algorithms, there are a lot of
techniques such a blocking and paneling which can be used to exploit hard-
ware resources, caches and TLBs [Nishtala 04, Gustavson 12]. There are a
number of efficient serial and parallel dense linear algebra libraries available
which implement the BLAS interfaces and often include routines from LA-
PACK and other useful routines. Some of these optimized implementations
are IBM ESSL [IBM 70|, Intel MKL [Intel 93], AMD ACML [AMD 03], AT-
LAS [Whaley 98, Whaley 01] and GotoBLAS [Goto 02, Goto 08a, Goto 08b].
The BLAS libraries are highly efficient for dense systems or systems
with a specific dense structure (such as banded, skyline, etc.) as they can
exploit the logical, sequential structure of the matrix. As mentioned above,
dense routines however, are generally not appropriate for handling sparse
matrices; The high proportion of zeros means that they require excessive
amounts of space to store them in memory, and any dense routine will spend
a high proportion of its time executing unnecessary operations involving

Zero.

2.2.2 Sparse Linear Algebra

A large proportion of linear systems that occur in real world applications
tend to be sparse, in which the vast majority of the entries are zero. For
example, Figure 2.1 shows the ASTC' 680k matrix from our test suite. A
square matrix with 682,862 rows and 3,871,773 non-zero values, with an
average of 5.7 elements per row/column. With an average of 5.67 elements
per row, this matrix is 99.999% sparse and would require 3,474 GiB to store
in memory in a full dense format however only requires 47 MiB to store
in the Compressed Sparse Row format. The definition of a sparse matrix
also states that the sparsity can be exploited, either to reduce the amount
of storage required to represent the matrix in memory or to reduce the

amount of computation required when operating on the matrix or both.

Robert Crosbie, The University of Dublin, Trinity College 13

Chapter 2. Background

S & " -
U NG T UEEPSIN RN eI .
v o R ok | b
§ 4 u
} RT - BT SRV S e »
L
‘ R . » .
‘ .0 -
. i - \

Figure 2.1: Example Sparse Matrix: ASIC 680k is a 682,862 x 682,862
matrix with 3,871,773 non-zero values meaning just 0.0001% of the elements
are non-zero (5.7 elements per row on average). Pixels in the image
represent locations in the matrix which contain non-zero elements. As the
size of the matrix is much larger than the dimensions of the image, a single
pixel indicates that there is at least one non-zero element within a block of
elements. This matrix would require 3.474 GiB to store in a dense format
however requires just 47 MiB to store in the CSR format.

Section 2.3 outlines a number of the common sparse matrix storage
formats. We will be working mainly with matrices stored in the CSR format
(Section 2.3.5).

The memory layout of sparse matrices is much less amenable to random
access than dense matrices. It is not possible to directly index every element
in the matrix without going through additional meta structures, it may
also be necessary to scan through parts of the array. It is not possible to
directly calculate the location of an element in memory based on its row
and column index, nor indeed know in advance if that particular element is
zero or non-zero. This makes it difficult for algorithms to take advantage of
processor features such as caches. As a result of this, sparse algorithms are

not as efficient as their dense counterparts as they are highly dependent on

14 Space & Time Efficient Sparse Matrix Transpose

2.2. Dense and Sparse Matrices

memory bandwidth and latency. Thus it is very important to investigate

methods to make sparse matrix algorithms more efficient.

2.2.3 Direct Methods and Iterative Methods

There are two main approaches to solving sparse systems, direct methods
and iterative methods. A direct method [George 81, Bunch 76, Duff 86,
Davis 06, Gould 05, Stewart 01] performs calculations based on Gaussian
elimination to carry out the algorithm (decomposition, etc.). The direct
sparse method skips calculations on zeros as only non-zeros are stored in
the sparse structure.

An iterative method [Saad 03, Houscholder 52, Conrad 77| takes a dif-
ferent approach: it takes an initial guess at the unknown variables in
the z vector, then uses a number of mathematical techniques (such as
conjugate gradient [Hestenes 52, Saad 03, Straubhaar 08]) to see how close
the guess was and generate a better estimate of the unknown variables
in x. The process is repeated iteratively until a set of values is found
which are within some pre-defined limits of precision. Iterative methods
depend primarily on sparse matrix-vector multiplication and mathematical
techniques for refining the estimates. Sparse matrix-vector multiplication
has already received a great deal of attention in the research community
[Demmel 01, Vuduc 05, Lee 08].

Iterative methods can often solve the problem in less time and often
using considerably less memory than direct methods. However, iterative
techniques can sometimes be unstable (values may explode to infinity or
degrade to zero). It is also possible that the algorithm may not converge
using an iterative method, depending on the matrix.

There are a number of advantages to using Direct Methods with sparse
matrices. Direct methods are guaranteed to complete with a solution in
an amount of time relative to the number of rows/elements in the matrix
(provided a solution exists). Thus direct methods are more predictable in
their running time, and can find solutions in some cases where iterative

methods fail. Furthermore, it is often required to solve the same set of

Robert Crosbie, The University of Dublin, Trinity College 15

Chapter 2. Background

linear equations with multiple different right hand side arrays b (boundary
conditions). With a direct method, we can decompose the matrix into L
and U once, and then just perform the triangular solve for each different
boundary condition. It is generally possible to perform multiple triangular
solves at the same time in order to improve the cache reuse of the triangular

matrix.

2.2.4 Mathematical Optimisation of Sparse Matrices

The majority of research into optimising sparse linear algebra algorithms [George 81,
Bunch 76, Duff 86, Davis 06] has approached the problem from a mathe-
matical perspective. We can see this in the work on preconditioners and
convergence algorithms such as conjugate gradient [Hestenes 52| from the
iterative methods.

Much of the research on optimising direct methods for sparse linear
algebra focuses on reordering techniques [Gould 05, Duff 86]. These re-
ordering techniques use Linear Algebra, Graph Theory and Combinatorics
to produce an ordering to swap the rows and columns of the matrix to move
elements into positions which will make operations on the matrix more
efficient. There are a number of packages such as Scotch [Chevalier 08].
Metis [Karypis 98, Gupta 97 and CHOLMOD [Chen 08] for working with
graphs which provide methods specifically for reordering sparse matrices.

There are two main goals with the current techniques. The first is to re-
duce the bandwidth of the matrix (Cuthill McKee [Cuthill 69, Cuthill 72]).
that is, swap rows and columns so that the entries in the matrix are closer
to the diagonal line. The second technique is to reorder the rows and
columns to reduce fill-in (AMD [Amestoy 96, Larimore 98], Nested Dissec-
tion [Karypis 98, Gupta 97, Bornstein 99]). Fill-in is where operations on
the matrix cause entries which were originally zero, to become non-zero.
Fill-in is a major difficulty for sparse matrix algorithms because they modify
the structure of the matrix, space for new elements needs to be created
in the middle of the compact matrix arrays. Inserting a new entry into a

sparse data structure can be very expensive. Fill-in is not a problem in

16 Space & Time Efficient Sparse Matrix Transpose

2.2. Dense and Sparse Matrices

dense matrices because there is already a place in the matrix for the new
non-zero value. An additional benefit of the Nested Dissection technique is
that it also reduces some of the dependency between rows and columns in
the matrix, which means that different parts of the matrix can be (largely)

decomposed in isolation.

2.2.5 Software Packages for Sparse Linear Algebra

Sparse linear algebra is an important problem with many practical real-
world applications. As a result, a great deal of research and engineering
effort has been devoted to constructing efficient libraries that implement
both direct and iterative methods. Many of these libraries have been built
using Fortran [Backus 56] or low-level C [Kernighan 88]. In this section we
outline some of the many packages and libraries which are available for
working with sparse matrices.

The Harwell Subroutine Library (HSL) [Gould 04] is a large collection
of FORTRAN routines which implement many different variants of the
sparse linear algebra algorithms. The NIST Sparse Blas [Remington 96]
provides a basic implementation of the BLAS for sparse matrices. The
BeBOP [Demmel 01] group in Berkley have developed a number of opti-
mised packages for Sparse Matrix-Vector Multiplication: OSKI [Vuduc 05
and SPARSITY [Im 04]. Tim Davis has developed a number of packages
which work with sparse matrices CSparse [Davis 06], LDL [Davis 05a],
UMFPACK [Davis 97, Davis 04] and CHOLMOD [Chen 08] which are all
part of SuiteSparse [Davis 05b].

The Sparskit [Saad 94] package which we have mentioned before is
a basic tool-kit for sparse matrix computations. Oblio [Dobrian 04] is
a sparse toolkit for solving linear systems. PETSc [Balay 97] is a tool
for solving applications modeled by partial differential equations which
uses sparse matrix linear algebra algorithms. Spooles [Ashcraft 99] is the
SParse Object Oriented Linear Equations Solver. SuperLU [Li 03, Li 05]
1s another package for sparse matrix decomposition and solving systems

of sparse linear equations. It includes versions for shared memory and dis-

Robert Crosbie, The University of Dublin, Trinity College 17

Chapter 2. Background

tributed memory systems. MUMPS [Amestoy 98] is a Multifrontal Parallel
sparse direct Solver which runs in parallel using MPI [Snir 95, Snir 98].
TAUCS [Toledo 03] implements a number of sparse matrix algorithms using
Cilk [Blumofe 95] for multi-threading. The Watson Sparse Matrix Pack-
age (WSMP) [Gupta 01] is a package from IBM for solving large sparse
linear systems. PARDISO (PARallel DIrect SOlver) [Schenk 01] provides a
number of routines for sparse matrix factorisation.

In addition to the many packages listed above, most of the big mathemat-
ical software systems such as Matlab [MATLAB 10|, Mathematica [Wolfram 03],
Octave [Eaton 09], Sage [Ercal 10], Magma [Bosma 97| and Maple [Monagan 05
also include functionality for working with sparse matrices. In many cases
they simply include (or can be configured to work with) a number of the

sparse matrix packages listed above.

2.3 Matrix Storage Formats

This section describes some of the common data structures and storage
formats for representing dense and sparse matrices in memory on computer
systems.

The matrices used in sparse linear algebra are often extremely large:
matrices with tens of thousands or millions of rows and columns are common.
Although the order of the matrix may be large, typically most of the values
are zero. To reduce memory requirements and processing time, matrices
are stored in so-called compressed formats. Compact may be a better term
than compressed as the format does not use any compression algorithm such
as Huffman [Huffman 52] or LZW [Ziv 77, Welch 84]. The data is simply
stored without the zero elements. That is, only the non-zero values are
stored explicitly in memory. Arrays or other data structures with additional
meta-information define the structure and layout of the matrix.

Compact formats such as CSR are very important for sparse matrices.
As we mentioned above in Section 2.2.2 the AST(C' 680k matrix in Figure 2.1
would require 3,474 GiB to store in a dense format however requires just

47MiB to store in the CSR format. Aside from saving space, compact

18 Space & Time Efficient Sparse Matrix Transpose

2.3. Matrix Storage Formats

formats such as CSR also help avoid a considerable amount of unnecessary
arithmetic (adding/multiplying by zero) during matrix algorithms.

There are many different formats in which a sparse matrix can be stored
in memory and each option has its advantages and disadvantages. These
formats dictate the amount of memory required to store the matrices and
may have considerable influence on the run-time speed and efficiency of
the linear algebra algorithms operating on them. In general the algorithms
need to be altered to varying degrees in order to make more efficient use of
resources when operating on particular storage formats.

However, some storage formats will often be more beneficial for certain
algorithms and some for others. For example, the compressed sparse row
(CSR) format is more appropriate for algorithms which operate on matrices
by rows, as the format facilitates easy access by rows (but not by columns).
Alternatively, a format which stores the matrix in column order (such as

(CSC) is more appropriate for routines which access the matrix by columns.

ah
~
u
~

M = aE AL
h | .9
A
m 0

Example 2.1: Sample Sparse Matrix M

Example 2.1 gives a pedagogical example of a sparse 6 x 6 matrix M.
This matrix is used to demonstrate how a number of the formats below
store the matrices in memory and will be used throughout the document
to demonstrate how the transpose algorithms operate. The elements of the
matrix are represented by the sequential letters of the alphabet from ‘a’ to
‘0" ordered by row. We use letters rather than numbers for matrix values
to ease legibility of the examples and make a clear distinction between
the non-zero values of the matrix elements, the row/column indexes and

pointer values. These letters can be thought of as representing the floating

Robert Crosbie, The University of Dublin, Trinity College 19

Chapter 2. Background

point values in the matrix. The matrix has (n = 6) rows, (m = 6) columns
and is sparse with (nnz = 15) non-zero elements. There are also 21 zeros.
In all our examples we use zero-based indexing as in the C programming
language. Thus the row indexes of an n x n matrix run from 0 — (n — 1)

inclusive.

2.3.1 Two Dimensional Dense Format

The two-dimensional array is a common format for storing dense matrices.
All the values in the matrix are stored together in memory in a two
dimensional array. Listing 2.1 shows an example of our dense 6 x 6 matrix

M from Example 2.1 being statically allocated as a two dimensional array

Al

1 Al6][6] = { { a 0, 0, 0, b, O },
2 4 ¢ d 0; 0; 0, 1
3 { 0, f gy 0, 0, O %
4 { heni0 O A iy 0 R
5 {0, 0; 05 05 k; | }s
6 {105 me 0y Oy n, @

Listing 2.1: Two Dimensional Dense Example

The two dimensional format is very simple; elements are easy to access
directly as matrix element a;; can be found at array position A[¢][j]. In
this representation, the first index ¢, specifies the row and the second index
7. specifies the column.

One difficulty with the two dimensional dense array regards the ordering.
In the C programming language, two dimensional arrays are stored in a
row-major ordering as we have shown in Listing 2.1. However in the
Fortran programing language, two dimensional arrays are stored in a
column-major ordering. This can cause confusion between libraries and
algorithms written in the two languages if this difference is not known.
However, working between the two languages is straightforward once this
difference is addressed; either restructure the ordering of the matrix or

swap the column and row indices in the algorithms.

20 Space & Time Efficient Sparse Matrix Transpose

2.3. Matrix Storage Formats

An issue with naively using the default row-major ordering of two
dimensional arrays in C is that many linear algebra algorithms are column
orientated, so accessing the row-major C arrays by columns is bad for
memory locality. This problem can easily be worked around in a number
of ways; restructure the algorithm to operate by rows (which often can
be simply done by swapping the inner and outer for loops) or storing
the matrix in a transposed form in the array such that it is stored in a
column-major order. M7 in row-major is identical in memory to M in
column-major. Alternatively a one dimensional dense format can be used

with the elements ordered appropriately.

2.3.2 One Dimensional Dense Format

The one-dimensional array is another popular format for storing dense
matrices. This uses a single one-dimensional array of size nrows x ncols
to store the whole matrix contiguously in memory. This format avoids the
row-major and column-major issues of the two-dimensional array. We can
choose ourselves whether to store the matrix by rows or by columns.

Rather than accessing element a;; as A[i][j] as in the two dimensional
array, we calculate the position of the element in the array using arithmetic.
Thus the element a;; can be found at position A[(i * nrows) + j] if the
matrix is stored in a row-major format or A[i + (j * ncols)] if the matrix is
stored in a column-major format.

Column-major algorithm implementations seem to be slightly more com-
mon, perhaps due to the prevalence of codes written in Fortran. However,
there are many algorithm implementations which are column-major and
there are many which are row-major. There are also certain algorithms
which by their nature are specifically row or column orientated, thus both

orientations are important for good data locality.

2.3.3 Morton Ordered Dense Format

A format which is related to the one dimensional array dense format is the

Morton Ordered Dense Format [Morton 66, Wise 01]. This format avoids

Robert Crosbie, The University of Dublin, Trinity College 21

Chapter 2. Background

the problem of having to choose a row-major or column-major ordering by
storing the elements in the matrix in a sequence of 2 x 2 hierarchical blocks.
This ordering means that elements that are close to each other horizontally
and vertically, in adjacent sub-blocks of rows and columns are also stored
closer to each other within the one-dimensional array. This gives better

cache reuse for algorithms which operate on the matrix in blocks.

ZAz
=12 | 13 | 141 15 | 1

\
17118419 120021 | 22 123 241

25 26|27 28|29 30|31 32|
133134135 36|37 | 38] 39 40

41 42[43 44|45 46|47 48

|49 50|51 52|53 54|55 56

57 58|59 60|61 62|63 64

i 4 6
5 5 6 6Z4

Figure 2.2: Morton Order Z-Curve Matrix

Figure 2.2 shows an 8 x8 matrix. At each level of the Morton ordering

the matrix is bisected horizontally and vertically as shown in Figure 2.2

22 Space & Time Efficient Sparse Matrix Transpose

2.3. Matrix Storage Formats

nane] < o)

Figure 2.3: Matrix stored in Morton Order

by the blue lines first dividing the matrix into four, 4x4 sub-matrices,
which are further divided by the green lines into 2x2 blocks. Each block is
recursively stored sequentially in memory in order from top-left to top-right
to bottom-left to bottom-right. Thus giving the Z-Curve path that the
elements are ordered in, as shown by the red line.

The matrix is repeated on the right of Figure 2.2 showing the full path of
the Z-Curve through the matrix. 2x2 blocks which will be stored together
are highlighted in different colours. Figure 2.3 shows the first 28 elements
of the array storing the morton ordered matrix. The 2x2 blocks are again
highlighted by colour.

The advantage of Morton ordering is that the position of each element
can be calculated by simply interleaving the bits of the binary representation

of the row and column indices. Take for example element 20 stored at row

3 (index 2 = 010), column 4 (index 3 = 011). Interleaving these index bits
gives: 001101 = index 13. Thus element 20 is stored at index 13 in the
array.

Variants of the Morton Ordering Format are used in a number of
techniques for fast matrix multiplication [Strassen 69, Coppersmith 90,
Valsalam 02].

2.3.4 The Compressed Coordinate (COO) Format

The Sparse Coordinate Format (COOQ) is the basic sparse matrix storage
format. A triplet of information is stored about every non-zero element in
the matrix: The column index of the element, the row index of the element
and the non-zero value of the element.

Listing 2.2 shows the static allocation of the matrix M in COO format.
Additional whitespace is included to group elements by row for readability.

The sparse coordinate format consists of three arrays of size (nnz), the

Robert Crosbie, The University of Dublin, Trinity College 23

Chapter 2. Background

row_indexes[], the col_indexves|] and the non_zeros[]. These arrays store
respectively the row index, column index and non-zero value of the elements
of the matrix. No zero values are stored in the matrix, the corresponding
row and column index for each non-zero value indicates the location of that

value in the original matrix M in Example 2.1.

row Illtl'\l\{l\r)] = { 0, 0 i | 1 1 R 12, G S J R Y d. 4
54 5, 5 }s
col_indexes[15] = { 0, 4, ©0, 1,5, 1,2, 0,3, 4, 4,5
1004, 50

non_zeros [15] = { a, b, Gus A e, T, I hiy X ds ki L,
m;, n., o)

Listing 2.2: Sparse Coordinate Example

The format does not require elements be stored in order, however
elements would usually be stored in order in a row or column major
ordering. The coordinate format is not an efficient layout for most sparse
algorithms as it is not possible to determine in advance where the elements
of a particular row or column are located in the matrix, the whole matrix
structure must be searched to check for the existence of and find that
element. If elements are ordered a binary search would take O(log(nnz))
time. Finding an element in an unordered COO matrix would take O(nnz)

time.

The sparse coordinate format is sometimes used when initially construct-
ing a sparse matrix in memory. Many of the sparse matrix file formats such
as the MatrixMarket format (Appendix C) store elements in a coordinate
format. The sparse coordinate format is rarely used for computation. A
COO matrix is generally converted to another format such as CSC or CSR
before computation. The Saad In-Place transpose algorithm (Section 3.5) is
one algorithm that does use this Sparse Coordinate format. Saad internally

converts to COQO in order to perform the in-place cycle-chasing transpose.

24 Space & Time Efficient Sparse Matrix Transpose

2.3. Matrix Storage Formats

2.3.5 The Compressed Sparse Row (CSR) Format

The Compressed Sparse Row (CSR) Format and its sister format, Com-
pressed Sparse Column (CSC) [Duff 86, George 81] are two of the most
common sparse matrix representations which are supported by many of
the Sparse Linear Algebra packages listed in Section 2.2. For consistency
we arbitrarily standardize on the Compressed Sparse Row format for the
transpose algorithms in this document.

Compressed Sparse Row stores the non-zero values of the matrix in one
contiguous array. Additional arrays are used to store meta-data relating to
the structure of the matrix; the locations of the start of each row and the
column index corresponding to each element. The elements are stored in a
row-major order, as is evident by name of the structure. The Compressed
Sparse Column format stores elements in column-major order.

Given that the CSR format stores elements in row order and CSC
stores elements in column order, they essentially represent the transpose
of the other. The procedure to transpose a sparse matrix is identical to
the procedure for converting between CSR and CSC formats. Hence the
transpose algorithms presented here can also be used to convert between
row-major and column-major orderings. In fact, the Out-of-Place transpose

procedure in the Sparskit2 package is called csrcsc().

row_ptrs [7] = { O, 2 5 7 10
12, 15 };
col_indexes [15] = { 0, 4 0y L; & i 0 3 4 4y B
1, 4, & | &
non_zeros [15] = { a, b g, d, % £ F h, i j } |
m, n, o }2

Listing 2.3: Sparse Compressed Row Example

Listing 2.3 shows the static allocation of a sparse matrix in CSR format.
Whitespace is added for readability to group elements and pointers by
rows. The format is very similar to the Compressed Coordinate format
(Section 2.3.4). The col_indexes[] and non_zeros[| arrays are identical in

both formats.

Robert Crosbie, The University of Dublin, Trinity College 25

Chapter 2. Background

The row_index is not stored directly in the CSR format as in the COO
format. In CSR the location of the start of each row in the row_ptrs|| array
is stored as an index into the two non_zeros[| and col indexes[] arrays.
The row_ptrs[] array is size (nrows + 1) rather than nrows because it

requires an extra entry in order to indicate the end of the last row.

non zeros = a b c:bdile flag 1hialj [m n
colindexes = 0 4 0 1 5 L322 (034 5 1 4 5
row_ptrs = 0, 2, 5, s 10, 12, 15

Example 2.2: Matrix M in CSR representation

Example (2.2) shows the matrix M in CSR, this time using the repre-
sentation which we will use for describing the transpose algorithms in the
remainder of this document. In the example the subscript values in the
row_ptrs[] array give the row number. These subscript values are shown
only for the sake of clarity.

The CSR format is typically used when we wish to access the matrix
by rows, which is common in certain matrix operations. In order to access
row 3, say, we lookup the position of that row in the row ptrs|] array. We
then know that row 3 lies between row _ptrs[3| and row_ptrs(3 + 1] (i.e.
locations 7 through 9). We can then read that row 3 has the values (h,1, j)

with column indexes (0, 3,4) respectively.

2.3.6 Block Compressed Row Storage (BCRS) For-

mat

Some types of linear systems of equations result in sparse matrices which
are comprised of numerous small dense blocks of values in a regular pattern
where all the blocks are the same size. The discretization of some partial
differential equations which have several degrees of freedom often result in
such matrices as do some matrices arising from Finite Element Analysis

(FEA). Figure 2.4 shows a matrix where all the non-zero elements occur in

26 Space & Time Efficient Sparse Matrix Transpose

2.3. Matrix Storage Formats

small 2 x 2 blocks, thus the number or rows/columns per block, n, = 2. In

other matrices, blocks may occur with different values of n,.

{]3}67

| 2 1][8 2]
| 4
4 1 l
I 3[2|
13 6] 4A

Figure 2.4: The Block Compressed Row Storage (BCRS) format

The Block Compressed Row Storage (BCRS) format is a modification of
the Compressed Row Storage format where all the values of each block are
stored contiguously together in the non_zeros[] array. The col_inderes]]
array then just holds the column index of the top left element in the block.
The row_ptrs[| array thus becomes an array of pointers to blocks. The
BCRS format has slightly lower memory usage than CRS. The non_zeros||

array is the same length. However the length of the col_indexes|] becomes

nnz M

3 and the length of the block_ptrs|| array becomes 7=+ 1 where ny is the
number of rows/columns per block. For a matrix with this structure it is
implied that n, is a factor of both n and m.

The benefit of the Block Compressed Row Storage format is that al-
gorithms can exploit the blocked format in order to gain improved cache
performance. Such algorithms would of course need to have been written
to support matrices stored in the BCRS format and operate on blocks of
size ny,. Variants of the BCRS format supports blocks of variable size in

the matrix.

2.3.7 Compressed Diagonal Storage (CDS) Format

If a sparse matrix is Banded, in that all the non-zero elements are centered
along the diagonal and subdiagonals then we can use the Compressed

Diagonal Storage (CDS) Format. The diagonal is the line of matrices from

Robert Crosbie, The University of Dublin, Trinity College 27

Chapter 2. Background

the top left of the matrix to the bottom right where the row and column
indices are the same, ¢« = j, shown in red in Figure 2.5. A subdiagonal
is a line of elements that runs parallel to the diagonal. The Compressed
Diagonal Storage scheme stores the diagonal in an array of size n. Each
subdiagonal is stored in an additional array of size n. Thus, if all the
non-zero elements of a matrix were located in the diagonal and the two
subdiagonals either side of the diagonal then we could store the matrix in

three arrays of size n corresponding to d — 1, d and d + 1.

2 4

314 d-1: {0 4 4 7 4 7]
5 8 7

£ o Zbd.ﬁlzzzﬂ

1 37 d+1: [3 56 1 3]

o]
W

Figure 2.5: Compressed Diagonal Storage (CDS) Format

Figure 2.5 shows an example of a banded matrix, all the non-zero
elements are along the diagonal and the lines beside the diagonal. Thus
we can store all the non-zero elements in three arrays of size n. The
Compressed Diagonal Storage format may include a number of additional
zero elements which occur in the diagonal and subdiagonals. However
additional arrays of meta-information are not required to identify the
location of elements, meaning CDS often requires less memory than other
sparse formats. Aside from lower memory usage than dense, the benefit of
the CDS format over other sparse formats is that we know the location in
memory of every element and can exploit this in our algorithms to improve

cache performance.

2.3.8 The Recursive Sparse Blocks (RSB) Format

The Recursive Sparse Blocks (RSB) [Martone 10a, Martone 10b, Martone 11]

Format is a cache friendly format for sparse BLAS operations. RSB parti-

28 Space & Time Efficient Sparse Matrix Transpose

2.4. Memory Hierarchy and Cache Performance

tions the sparse matrix into quadrants using a quad-tree [Finkel 74, Wise 01]
structure. A quad-tree is a tree data structure where each internal node has
exactly four children. Figure 2.6 shows where matrix quadrants would be
stored in a 1-level quad-tree. In the RBS format the Matrix is recursively
divided into quadrants and the sparse sub-matrix blocks are stored in the

leaves of the tree in standard COOQO or CSR format.

12 3 -4 F8 R A
QuadTree

9 10 11 2kl 1 s 10 Hont
1718 1920 0y g e
25 26 27 28 [ES S5 |
B9 R 37 38 39 | 40

|234§ 5678‘ ;'73;1415367
:4] SR 45 46 47 48 95100411 12‘ 13 14 15 l(;i “‘u 42 43 4|
? 17 18 19 :ni 2162 29 ui 49 50 51 szj
: 49 50 Sl 52 53 54 55 56 B LW in 29 30 31 32} 57 58 5977 60
59 RS 61 62 63 64

Figure 2.6: Recursive Sparse Blocks QuadTree

The procedure to convert to the Recursive Sparse Blocks format is
expensive. The format is intended to improve the performance of Sparse
Matrix-Vector Multiplication SpM V" which is used repeatedly during itera-
tive solvers, meaning that the cost of the conversion may be recouped over

multiple multiplications.

2.4 Memory Hierarchy and Cache Perfor-
mance

Over the past few decades computer processor speeds have increased
rapidly year on year closely following those increases predicted by Moore’s

Law [Moore 65, Schaller 97]. Processors today are orders of magnitude

Robert Crosbie, The University of Dublin, Trinity College 29

45

53

61

38

46

54 | 59

40

48

56

Chapter 2. Background

more powerful than those of a few decades ago. Unfortunately memory
bandwidth and memory latency (how long it takes to bring data from main
memory into the processor) have not been increasing at the same rate and
have lagged behind. This has led to what is referred to as the Memory
Wall [Wulf 95, McKee 04] or Memory Gap [Wilkes 01, Fernandes 02] —
the gap in performance between processors and memory.

When development of numerical codes was becoming more common on
early computer systems in the "50s and '60s, it only took a few processor
cycles to bring data from main DRAM memory into the processor to
perform calculations. Due to the fact that processor speeds have increased
at a much higher rate than memory speeds, todays computer systems
can take hundreds of processor cycles to fetch data from DRAM memory.
Modern computer systems come with numerous levels of caches, prefetchers
and other components to offset this gap in the speed of the processor and

memory.

Processor Core

Registers |
X
.1 Cache

TLB |
1.2 Cache

P 4 f
¥

L3 Cache

== — e :
Page Table
Main Memory

Figure 2.7: Memory Hierarchy

In order to produce efficient computer programs it is necessary to
understand how these various components work, how they influence how
programs operate and more importantly, how to exploit them [Goedecker 01,
Drepper 07].

The memory hierarchy as shown in Figure 2.7 is important to understand

30 Space & Time Efficient Sparse Matrix Transpose

2.4. Memory Hierarchy and Cache Performance

for our work on the In-Place Sparse Matrix Transpose. Caches are a very
simple mechanism to conceal the gap in memory speeds. Caches are small
amounts of fast memory which are close to the processor core. When the
processor requests data from main DRAM memory, that data is brought
into the processor. In fact, a whole line of data (this is often 64 bytes: 16
integers or eight doubles) is read in at once, incorporating the memory
location requested and the data beside it in memory. This line of data
is then stored in the cache. The theory is that if a piece of code had
instructed the processor to load a particular piece of data (x), then it is
probably likely to either (a) attempt to load that piece of data again soon
(Temporal Locality) or (b) load another piece of data that is near x in

memory (Spatial Locality).

Table 2.1: Stoker: Intel Xeon E7-4820 Cache Details

Cache Size Associativity Entries

L1 32K 8-way 64 byte lines
L2 256K 8-way 64 byte lines
L3 18M 24-way 64 byte lines

The “line” of data will remain in the cache until it is replaced with
another line of data from main memory. Caches have a replacement policy
which decides when to replace lines of cached data. Addresses in main
memory are mapped to locations in the cache with a certain level of
associativity. In an 8-way cache, when a new data line is read in, it replaces
the oldest data line in the cache. Table 2.1 gives details of the sizes and
associativity of the caches in our test system.

Table 2.2 gives details of the latency of cache misses in nanoseconds and
processor cycles, at the different levels of processor cache. The latencies
were determined using the Calibrator [Manegold , Yotov 05, Boncz 08] tool
for Calibrating Cache Memory and TLB.

As we can see from Figure 2.7 and Tables 2.1 and 2.2 modern computers
systems often now come with three levels of cache, L1, L2, and L3. The
L1 cache is small (32K on Stoker, the system in Table 2.1) and is “close”

to the processor, meaning that data from the L1 cache can be loaded into

Robert Crosbie, The University of Dublin, Trinity College 31

Chapter 2. Background

Table 2.2: Stoker: Intel Xeon E7-4820 Cache Miss Latency from Calibrator
tool

Level Miss-Latency Latency Cycles

L1 0.43 ns lcy
L2 5.26 ns 10 cy
L3 67.40 ns 134 cy

the processor in just a few cycles (one cycle according to Calibrator). The
L2 cache is larger (256K on stoker) and slightly further away, taking a
little longer to load data into the processor (ten cycles). The L3 cache is
a lot larger (18M on stoker) and further away (134 cycles), though still
nearer than main memory. The L3 cache is often shared between cores in a

multi-core processor.

When the processor requests a piece of data that is in one of the caches
it can load it relatively quickly depending on which level of cache it is in.
If the data is not in the cache there is a cache miss and the data must be
retrieved from a lower level cache, or main memory. This causes a stall in
the processor as it waits for the data to become available, slowing down the
program. Thus, cache hits are good and cache misses should be avoided
where possible.

Another component is the Translation Lookaside Buffer (TLB). When
a computer program is compiled, it hard codes the addresses in memory of
various components of the program, the code, variables, statically allocated
arrays, etc. These static hard coded addresses are known as virtual addresses.
When the program runs, the processor creates a mapping between these
virtual addresses and real addresses in memory that have been allocated
to the program. This mapping is recorded in the page table which is
stored in main memory. As main memory is slow, the processor uses a
TLB, which is essentially a cache for the page table. If the processor
attempts to look up a virtual address mapping in the TLB that is not
cached, there is a TLB miss and the processor stalls (just like a cache
miss) while waiting for the mapping to be retrieved from the page table

in main memory. Thus TLB misses also influence the performance of

32 Space & Time Efficient Sparse Matrix Transpose

2.5. Complexity Analysis of Algorithms

programs and algorithms. There has been considerable research in optimized
matrix software which attempts to improve performance by reducing TLB
misses [Goto 02, Goto 08b, Simecek 09)

Understanding how the Temporal and Spatial Locality of the caches and
TLB operates aids us in developing algorithms which can be more cache
efficient and can therefore perform better. Using Hardware Counters (see
Section 5.9.1) we can get actual numbers of cache hits and misses, along
with numerous other metrics, which allows us to analyse the performance

of our applications and algorithms.

2.5 Complexity Analysis of Algorithms

When discussing and comparing algorithms it is very beneficial to use
complexity analysis [Bruijn 70, Aho 74, Lewis 81, Greene 81, Sipser 96,
Arora 09]. The Asymptotic Notation gives a general classification of the
performance in (time/space) of an algorithm simply in terms of the size of
its input (z).

In our discussion on algorithms we talk about the memory usage (space)
and time complexity of the different algorithms. We do this because
the memory usage and execution time of the algorithms are particularly
dependent on the dimensions of the matrix, and in most cases increase and
decrease depending on the relative dimensions of the matrix. The number
of rows (n), the number of columns (m) and the number of non-zeros (nnz)
in the matrix all influence the performance of the different algorithms.

In complexity theory we talk about the average or worst case asymptotic
complexity of the algorithm. This means that for an algorithm with a
particular input size (x) we omit all the various other factors involved and
just talk about how the space (memory) or execution time of that algorithm
grows proportionally to some function of the input size (z) as r increases
to infinity. Because, as the input size grows larger and larger the size of
x is the primary factor that influences the performance of the algorithm.
It is then possible to discuss the worst case and average case performance

depending on the input .

Robert Crosbie, The University of Dublin, Trinity College 33

Chapter 2. Background

Take a function f(x) = 7Tx?+4xr+3. As the size of the input () increases
to infinity the 2 term becomes the most dominant term in the equation.
The coefficient, 7 and the other terms, 4z + 3 have less and less influence
on the relative size and become redundant. Asymptotic approximation is
defined where we can state that there is some coefficient (a) of z? such

2 is always greater than or equal to f(z) = 7z* + 4z + 3. In this

that a.x
example, a coefficient of a = 14 would mean that 14.2% is always greater
than or equal to 7z? + 4x + 3 for all positive inputs of z > 1. Thus we
can say that f(z) is asymptotically proportional to z°.

There are a number of notations which we use to define complexity
bounds on the algorithms. Depending on what we know about a particular
function f(z), we may say that the function has a best/average/worst case

asymptotic complexity of; O(z?), Q(z?), O(x?) or ~(7z?).

2.5.1 O(x) — Big-O: Upper Bound

Big-O Notation () [Bachmann 23, Landau 24] is a very useful approxi-
mation that gives an upper bound on the complexity of an algorithm. It
declares that an algorithm will never perform worse than this complexity.

We might say that a particular sorting algorithm has a complexity of
O(z?). This means that it will take no longer than time proportional to
x%. However Big-O does not define a lower bound on the complexity of
the algorithm. The algorithm may complete in O(z .log(x)) or even O(x)
time, depending on the input. Big-O just gives an upper bound. Big-O is
also not a tight bound, it is also true to say that this ? sorting algorithm
is O(z?) or even O(x'®) as it will never perform worse than these bounds.
In practice Big-O bounds are given as tight as possible (as tight as they

can be proved).

2.5.2 Q(x) — Big Omega: Lower Bound

Knuth popularized the Big-Omega Notation (£2) [Knuth 76, Knuth 98]
which provides a lower bound on an algorithm. It states that as an algorithm

grows proportional to x it will always require at least this amount of

34 Space & Time Efficient Sparse Matrix Transpose

2.5. Complexity Analysis of Algorithms

time/space proportional to x, never less. {2 does not put an upper bound
on the complexity. Taking the previous sorting algorithm that was O(z?)
in the worst case. It may also be said that this same sorting algorithm
is Q(x.log(x)) in all cases because it always performs at least x.log(x)
comparisons. Thus with O and € we can give upper and lower bounds to

an algorithm.

2.5.3 ©O(z) — Big Theta: Double Bound

Big-Theta Notation (©) also popularized by Knuth [Knuth 76, Knuth 98]
combines O and (2 to give both an upper and lower bound to the complexity
of an algorithm. It states that a particular algorithm will always perform
(operations/time/space) proportional to another simpler function, g(z).
Thus if we say an algorithm is O(x.log(x)) it implies both O(x . log(x))
and Q(z.log(x)). The algorithm will always perform proportional to
x.log(x). never x and never z?.

This is a very tight bound on an algorithm which gives much more
information about the algorithm. However it is not always possible to
give a Big-Theta complexity. Some algorithms will vary in performance
depending on the content of the input, not just the size of the input. A
sorting algorithm may be O(x) in the best case if the input is already sorted.
O(x.log(x)) in the average case and may even be O(x?) for particularly
degenerate inputs. Thus, even though in each case the input size is the
same, r, the algorithm takes different lengths of time due to the content
of the input, so we can’t have a Theta (©) complexity for this particular

algorithm.

2.5.4 ~(z) — Tilde: Tighter Double Bound

Big-Theta notation (©) above gives a tight upper and lower bound on the
asymptotic complexity of an algorithm, if we wish to compare algorithms
which have the same asymptotic space/time complexity Big-Theta does
not give enough information. This is because all the other components of

the function are lost.

Robert Crosbie, The University of Dublin, Trinity College 35

Chapter 2. Background

Tilde Notation (~) has been promoted by Sedgewick to address this [Sedgewick 11,

Sedgewick 13]. Tilde Notation gives a tight upper and lower bound like
Big-Theta, but gives an even tighter bound because the coefficients of the
main component are retained. Thus a function f(z) = 7z + 4z + 3 would
have a Tilde Complexity of ~(7x?). Comparing this to another function
g(x) which is ~(32?) we can say that g(x) is more efficient. Theta nota-
tion would say that both algorithms are ©(z?) which hides this important

distinction.

Summary

The four notations: Big-O (O), Big Omega (£2), Big Theta (©) and
Tilde (~) are used throughout this document where appropriate. In general
Theta Notation (©) is used where possible. In cases where algorithms have
the same Theta complexity then Tilde (~) complexity may be used to
distinguish between them.

When discussing the complexity of the Matrix algorithms there are two
parameters which we use when discussing an n x n matrix with nnz non-zero
elements. ©(nnz) is used when discussing algorithms which depend on the
Number of Non-Zeros (nnz) in the matrix. ©(n) is used when discussing
algorithms which depend on the Number of Rows (n). In the text nrows

is often used for clarity.

36 Space & Time Efficient Sparse Matrix Transpose

Chapter

Matrix Transpose

The matrix transpose operation is important in many areas such as Compu-
tational Chemistry [Rogers 03, Lewars 03, Sanders 08], Fast Fourier Trans-
forms (FFT) [Cooley 65, Frigo 98, Lippert 98, Al Na'Mneh 05, Frigo 05],
signal processing [Claasen 79, Padgett 09, El-Hadedy 10, Jie 10, Ravankar 11]
and image processing [Portnoff 99, Baumstark 03, Na'mneh 06]

In the previous chapter we gave a general background on Linear Al-
gebra and Dense and Sparse Matrices. In this chapter we give a detailed
discussion on the Matrix Transpose operation itself, outlining the exist-
ing algorithms and research on this linear algebra operation. Section 3.2
gives an overview of the extensive research on the topic of Dense Matrix
Transpose. Section 3.3 gives an overview of the Sparse Matrix Transpose.
Particular focus is given to the two existing Sparse Transpose algorithms.
The Out-of-Place algorithm is discussed in Section 3.4 and the Saad In-
Place algorithm [Saad 94] in Section 3.5. Section 3.6 gives an overview of
our experimental setup and explains our analysis methodology. Finally
in Section 3.7 we evaluate the performance of the two existing Sparse

algorithms in terms of memory usage and execution time.

3.1 The Matrix Transpose Operation

The Matrix Transpose [Cayley 59, Golub 96] is one of the basic linear

algebra operations. The transpose of a matrix is defined as follows:
J [
M;; = M;

That is, the row and column indexes are exchanged. The element at
row 4, column j in the transpose M7 is the element at row j, column 4 in M.
Given a matrix M (Example 3.1(a)), the transpose MT (Example 3.1(b))

Robert Crosbie, The University of Dublin, Trinity College 37

Chapter 3. Matrix Transpose

of that matrix can be constructed by swapping the elements of all columns
in the matrix with the elements in the corresponding rows (and vice versa).
The procedure can be seen in Example 3.1 where column 1 is swapped with

row 1 and row 4 is swapped with column 4, etc.

a b a c h
c|d e d f m
M= |/ & MT = 5
h Tl i
k 1 b 2k n
1771 "o e ! o
(a) (b)

Example 3.1: Sample Matrices M and its Transpose M7

Alternatively we may describe the transpose as flipping the elements in
the matrix across the top left to bottom right diagonal.

Repeating the transpose operation on the transpose of a matrix results
in the original matrix:

(AT)T = A

A Symmetric Matrix is a matrix where the transpose of a matrix is identical

to the original matrix.
Symmetric: A= AT

The transpose operation regularly occurs in linear algebra equations
where the transpose of a matrix or vector is required for some calculation.

The original reference BLAS implementation does not actually include a
procedure to perform the transpose operation. Logically there is no reason
to need one, the procedures can simply access the matrix in a transposed
order by swapping the row and column indexes. As such the procedures
take arguments which tell the routine whether the matrix is stored in

row-major or column-major ordering (see Section 2.3), the length of this

38 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

major dimension, and whether the matrix should be accessed in transposed

form.

Such an approach is acceptable from a mathematical and theoretical
perspective however as we saw in Section 2.4, memory access patterns can
have a huge influence on how well an algorithm re-uses data in the caches and
thus the performance of the algorithms. If a matrix is going to be accessed
many times by a particular ordering then there could be a significant
performance benefit from transposing the matrix so that it is stored in
that ordering. It is for this reason that many optimized linear algebra
and mathematical libraries which include implementations of the BLAS
also include extra optimized transpose procedures. For example, the Intel
Math Kernel Library (MKL) [Intel 93] comes with three dense transpose
routines: mkl imatcopy() for in-place transpose, mkl_omatcopy() for out-
of-place transpose and mkl omatcopy2() for out-of-place transpose with

double-stride.

3.2 Dense Matrix Transpose

This section gives an overview of some of the extensive research into Dense
Matrix Transpose. Although somewhat different to the problem of sparse
matrix transpose, the work listed here demonstrates the importance of

efficient matrix transpose algorithms, be they for dense or sparse matrices.

The Out-of-place transpose of a matrix stored in a Dense format (Sec-
tion 2.3) is straightforward. Simply iterate through the matrix by rows
(or columns depending on the major ordering) and copy each element in
that row to the location of the corresponding column in memory. The
copying can be performed by blocks in order to improve the efficiency of the
transpose [Lam 91, Navarro 96, Gustavson 98, Kagstrém 06, Elmroth 04,
Gustavson 12].

Robert Crosbie, The University of Dublin, Trinity College 39

U - VN

=]

Chapter 3. Matrix Transpose

ALGORITHM 3.1: Dense Square Transpose
for (0 £ i < N)do
for (i+1 < j < N)do
tmp « Ali][j];
Ali)[j] < ALjli;
Alj][1] « tmp;
end

end

3.2.1 In-Place Dense Matrix Transpose

In many situations we have a very large dense matrix stored in memory
(or in external storage) and there is insufficient additional memory to hold
a full copy of the matrix. The matrix then needs to be transposed in
place using as little additional memory as possible. The problem of in-
place transpose of a square or rectangular matrix has received considerable
attention. The related problem of general in-place permutation has also
received considerable attention [Durstenfeld 64, Floyd 72, Duijvestijn 72,
Fraser 76, Melville 79, Feijen 87, Baker 92, Fich 95, Choi 95, Keller 02].
The In-Place transpose of a square matrix stored in a Dense format is
logically straightforward, simply iterate through the upper triangular part
of each row and swap the element at each location A[:][j] with the element
in the opposite column A[j][i] by swapping the row and column indexes.
Algorithm 3.1 shows the basic in-place transpose of a dense square matrix.
Although the algorithm iterates sequentially through the rows of the
matrix where the rows are adjacent, the column access are not sequential
and are dispersed throughout the matrix arrays causing the algorithm to
access memory at strides of size n. This can cause considerable problems

with cache performance [Gatlin 99].
Cache performance can be improved by transposing the dense square

matrix in blocks. Figure 3.1 shows a simple example of the in-place block
transpose of a dense matrix. The yellow blocks along the diagonal are
transposed in place. The benefit of the block transpose can be seen when
transposing the blue and green blocks. Take the green blocks for example.

When reading the first block, 51 and 52 with be adjacent in memory. as

40 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

RSO S - 6 7 8 1 9 GTEEPSE 33 4]
D0 12° 13 14 15 16 2 10 HL3EE26M 34 42
17 24 gl 19 27 35 43
254126 32 4 12 20 28 36 44
33 34 40 5 13 21 29 37 ' 45
41 42 48 6 14 22 30 38 46
49 50 56 7 15 g@NEEREE 39 47
57 58 ESOENGON 61 62 63 64 8 16 24 32 40 48

Matrix M Transposed Matrix MT

Figure 3.1: Block Transpose of Dense Matrix

will 59 and 60, so they should be read in together in a single cache line.
The advantage with the block transpose is that in the destination block 23
and 24, and 31 and 32 will also be adjacent in memory, thus improving on
the cache efficiency.

Chatterjee and Sen investigate the performance of six different algo-
rithms for in-place transpose [Chatterjee 00]. They compare (1) the basic
row major implementation (similar to Algorithm: 3.1) with (2) an in-place
transpose designed to be efficient in terms of the basic I/O memory model
of Aggarwal and Vitter [Aggarwal 87, Aggarwal 88]. Two further algo-
rithms (3) and (4) are designed to be efficient in terms of their cache 1/0
model [Sen 02, Gatlin 99]. i.e. they transpose the matrix in blocks in a
way that that is designed to give good cache performance. Algorithm (5)
is a Cache-Oblivious algorithm from [Frigo 99]. The sixth algorithm (6)
requires that the matrix is stored in their hierarchical matrix layout which
uses sub-blocks arranged in a Morton order [Morton 66, Wise 01] layout
(Section 2.3.3).

The results showed that the matrix arranged in their Morton ordered
layout gave the best performance at about six times faster than the standard

row-ordered transpose. This algorithm requires the user to modify the

Robert Crosbie, The University of Dublin, Trinity College 41

49
50
51
52
53
54
55

56

S
58
59
60

61

63

64

Chapter 3. Matrix Transpose

layout of their matrix which may not be practical. More interesting from
their results was that the two cache optimized algorithms are roughly
four times faster than the naive algorithm while still using the standard

row-major matrix layout.

3.2.2 In Place Dense Rectangular Transpose

The In-place transpose of a Dense Rectangular matrix is more complicated.
We cannot simply exchange elements by swapping their row and column
indices as with a square dense matrix, because in a rectangular matrix the
rows and columns are of different lengths. This means that a particular
row will be at a different location within the array after the transpose. The
position that each element needs to be moved to is still known. Given a
matrix of size (n x m) , element a;; is at A[im + j] in the original matrix
and is moved to position A[i + jn| in the transpose which is the location
of a completely different element in another row and column. As we move
elements during the transpose procedure we move elements in a Cycle-
Chasing fashion. Elements are moved in this cycle-chasing chain until we
eventually reach an element that should be moved to the original location

a;; where the chain started.

Cycle-Chasing In-Place Transpose

The in-place cycle-chasing algorithm was first described by [Berman 58|
however there is a reference in [Pall 60] to a similar algorithm by Shooman
from 1957. Using the two equations for the location x of an element in
the matrix (iM + j) and the location z’ of the element in the transpose

(i + jn), we can define the permutation function 2’ = 7(z) such that:

Permutation Function; Transpose of x:
& =wilz (3.1)
T(im+j) — i+ jn

Thus, for any particular element, ‘z’, we can define a simple for-

42 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

mula [Berman 58, Cate 77b] for the permutation of that element as:

nr mod mn-—1 ifx#mn-1,
i) = . 7 (3.2)

mn — 1 ifr=mn-1
The next location in the chain is found by multiplying the current
location x by n and taking the modulus of (nm — 1) — the index of the last

element in the array. Similarly the inverse may be defined as:

(o) = ma’ mod mn — 1 i.f ' #mn-1, (3.3)
mn — 1 if ' =mn -1

[Berman 58] outlines an algorithm using these relations to transpose a
rectangular matrix in place. The algorithm requires a flag for each element
to record if it has been moved yet. Berman suggests using either the low
order bit of the floating point value of the matrix elements (if exact precision
is not required) or an extra work array of O(n x m) bits.

[Windley 59] presents an algorithm by J.C. Gower which removes the
O(n x m) memory overhead at the cost of additional computation. Given
that any permutation of a number of elements can be represented by a set
of mutually exclusive cycles, meaning that each element will only be moved
by a single cycle. The algorithm scans through the matrix and for each
element at position x it calculates all the addresses in the cycle containing
x. If any of those addresses is less than x, then that element has already
been moved and can be skipped. Otherwise the algorithm starts an element
moving cycle from x. A count of the number of elements moved can be
used to detect when the algorithm has moved all elements.

(Windley 59] presents another algorithm which also does not require the
O(n x m) memory overhead of the [Berman 58] algorithm. This algorithm
reduces the computational overhead of the Gower algorithm at a cost
of an increase in reads and writes to memory. The algorithm calculates
addresses in the cycle in reverse and moves elements such that they are
in the correct order relative to the remaining unmoved elements. CACM
Algorithm: 302 [Boothroyd 67] gives an implementation of an in-place

transpose algorithm based on [Windley 59].

Robert Crosbie, The University of Dublin, Trinity College 43

Chapter 3. Matrix Transpose

Pall and Seiden outline a method [Pall 60] using Abelian Groups of
pre-calculating on paper the cycle leaders of different sized matrices before
proceeding to transpose the matrix. A Cycle leader is the lowest addressed
element in each cycle and thus will be the first element of each cycle
encountered by the algorithm. They also give a procedure for calculating
cycle lengths and demonstrate that the problem of calculating cycle leaders
decomposes into one sub-problem for every divisor d of (mn — 1). Their
experiments show that this method gives much better performance than
the algorithm of Shooman (which appears to be similar to [Berman 58]).

Laflin and Brebner present CACM Algorithm: 380 [Laflin 70b] which is
an improvement over Algorithm: 302 [Windley 59, Boothroyd 67]. In this
algorithm they exploit dual cycles, that is, the cycles starting at position x
and at position (nm — 1 — z). If x is the smallest value of a cycle loop then
(nm — 1 — x) is the largest value of a loop. The dual cycles thus can be
shifted simultaneously to improve efficiency. If both values belong to the
same cycle then this can be detected and handled efficiently. Algorithm:
380 [Laflin 70b] also uses an additional work array of size |1(m + n)| to
record which cycles have already been moved in order to improve efficiency.

Brenner presents CACM Algorithm: 467 [Brenner 73] which further
improves on the previous in-place algorithms. Brenner proves a number of
theorems using number theoretical analysis of the properties of the cycles
in the in-place transpose. Brenner then uses those properties and a method
similar to that in [Pall 60] to predict the location of cycle leaders to produce
an algorithm which improves on Algorithm: 380 [Laflin 70b]. Results show
that when using a work array of size (" +7/2), Algorithm: 467 is faster than
Algorithm: 380 and Algorithm: 302. Considerably so when (nm — 1) has
many factors (hence many subcycles).

Cate and Twig give an in-depth analysis of the in-place cycle-chasing
transpose of non-square matrices [Cate 77b] and present CACM Algo-
rithm: 513 which improves on the performance of the previous algorithms
using the numerical analysis properties they outline. Theorems from previ-
ous papers are reviewed and some new theorems presented. They give the

equations of the permutation 7() and its inverse 7 !() as shown above in

44 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

Equations 3.2 and 3.3. They also show the following:
e The longest cycle is the cycle containing © = 1 and has length L.
e The lengths of all other cycles are divisors of L.
e The number of cycles of a particular length can be calculated.

e Elements 0 and mn — 1 are fixed points (not moved under transpo-

mn—1

I also a fixed

sition), if m and n are odd then the midpoint

point.

e Two formulas are provided for calculating the number of fixed points

in a particular transpose permutation.

e If there is a cycle at address x then there is also a cycle at address

nm-—1-—x.

e In some cases the two cycles at x and nm — 1 — & coincide and are
part of the same cycle. In this case the length of the cycle is even

and the addresses r and —x are separated by half a cycle.

CACM Algorithm: 513 [Cate 77b] uses this cycle symmetry and the
calculation of fixed points to improve on the performance over the previous
algorithms 302 and 380. Results showed that the revised algorithm demon-
strated a performance improvement between 25% and 35% over the previ-
ous algorithms. Leathers however provides a further analysis [Leathers 79]
which shows that the earlier Algorithm: 467 [Brenner 73] performs better
than Algorithm: 513 [Cate 77b] in most cases except where the modulus
(nm — 1) of the matrix is prime in which case Algorithm: 513 has a slight
advantage.

Analysis of in-place transpose permutation [Knuth 71, Fich 95] shows
that if the inverse of a permutation is known (as is the case with the in-place
transpose) then it can be shown that the worst case running time of the

permutation is O(n . log(n)).

Robert Crosbie, The University of Dublin, Trinity College 45

Chapter 3. Matrix Transpose

Other Approaches

[Dow 95] describes and evaluates 5 different algorithms for dense matrix
transpose of rectangular matrices with particular focus on algorithms which
are efficient on vector computers. The first algorithm, V1 is the basic out-of-
place algorithm as in Section 3.2 which copies every element sequentially to
its correct location in a new array of size m x n and then copies the elements
back to the original array in their new order. As discussed above, this
out-of-place V1 algorithm is generally quite fast however it has a significant

memory overhead of ©(m x n).

Algorithms V2 and V3 modify the shape of the rectangular matrices so
that they are square and then use efficient in-place blocked square transpose

algorithms to transpose the matrix.

Algorithm V2 is the Pad Transpose, extra space is added to the rows or
columns (whichever is shorter) in order to make the matrix square. The
pad method can only be used if there is sufficient additional space at the

2 — pm) additional memory locations are

end of the array. (max(n,m)
required. In row-major format, if there are more rows than columns then
each row needs to be padded. This is done by iterating in reverse through
the array and shifting elements of each row towards the end of the array a
number of places equal to the row number times the difference in row and
column lengths. Row zero is not moved, row 1 is moved (1 x [m — n|), row
2 is moved (2 x |m — n|), row 3 is moved (3 x |m — n|), etc. The matrix
is then transposed in place using an efficient blocked square transpose
algorithm [Alltop 75, Ramapriyan 75, Buttari 07, Bikshandi 06]. After the
transpose all the additional columns have become additional rows at the
end of the matrix and can be ignored. If there are more columns than rows
in row-major format then the above steps can be reversed. First transpose
the square (max(n, m) x max(n, m)) matrix which assumes that there are
new padded rows at the end, then left shift all the elements of each row
towards the front of the array leaving the padding at the end. The pad
algorithm is particularly efficient when m and n are of similar magnitude,

in this case the memory usage is much less than the out-of-place algorithm.

46 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

The pad method does require the additional memory to be directly at the

end of the array which can make it impractical.

Algorithm V3 is the Cut Transpose, additional rows or columns are
cut from the matrix to leave a square matrix which can be efficiently
transposed in place [Alltop 75, Ramapriyan 75]. As such, the cut transpose
is the opposite of the pad transpose. In row-major format, if there are more
rows than columns (m > n), the additional rows are copied to the extra
workspace area. The remaining (n X n) square matrix is transposed in
place with an efficient blocked algorithm then the square matrix is “padded”
with extra columns as above by shifting elements in rows towards the end,
expanding the matrix to the full (m x n) size. Finally the extra rows are
copied back from the workspace to their appropriate column. If there are
more columns than rows (m < n) then the elements from the additional
columns are copied to workspace and the columns are cut by shifting rows
towards the top of the array. The square m x m matrix is transposed and
the additional columns are copied from the workspace to their appropriate
rows at the end of the array. The cut method requires (|m —n|x min(m,n))
additional workspace memory. This additional memory is always less than
that required by the out-of-place algorithm. The memory overhead is
considerably less when m and n are similar in magnitude and the algorithm
is also particularly efficient in this case. A major advantage of the cut
method over the pad method is that the additional workspace memory does
not need to be at the end of the matrix.

Algorithms V4 and V5 are rectangular block transpose algorithms [Eklundh 72,
Alltop 75, Ramapriyan 75, Van Voorhis 77, Hegland 96] which can be used
when m and n are composite (have a divisor d greater than 1 which is
not prime). m and n can be made composite using the cut and pad
techniques if required. Both algorithms partition the matrix into blocks
and then transpose the blocks as a whole using the cycle-chasing method
above [Berman 58, Windley 59]. These blocks can be efficiently transposed
in this way on a vector computer. Algorithm V4 partitions the major
dimension of the matrix such that there are m rows and d columns of size

p where dp = n. After the sub-rows are transposed in cycles the elements

Robert Crosbie, The University of Dublin, Trinity College 47

Chapter 3. Matrix Transpose

are reordered between sub-rows to their correct position. Algorithm V5
partitions the matrix into blocks of size d x d where dp = n and dg = m.
The elements of each block are first transposed in place then the blocks are
transposed as a whole. Diagonal blocks remain in-place.

Finally Dow compares these five algorithms to two implementations of
the scalar cycle-chasing algorithms above. CACM Algorithm 467 [Brenner 73]
and NAG FOICRF from the Numerical Algorithms Group Fortran Li-
brary [NAG 93]. The results of these experiments show that the five vector
efficient algorithms outlined are at least an order of magnitude faster than
the scalar cycle-chasing algorithms. For the matrices used in these experi-
ments on the vector computer the out-of-place algorithm V1 was generally
the fastest with the cut method V3 occasionally out performing it. The
pad V2 and cut V3 algorithms perform well at a similar speed for matrices
which are close to square. The pad algorithm does not perform well if a
large amount of padding needs to be added. The blocked algorithms V4
and V5 do not perform as well as V3 in these vector experiments. Algorithm
V5 performs better than V4 as larger amounts of data are moved together

with the larger blocks.

Cache Oblivious Dense Matrix Transpose Algorithms

In recent years Cache Oblivious Algorithms [Frigo 99, Tsifakis 04, Bader 07,
Yzelman 11 have become popular as they can give improved performance
without having to be tuned for a particular architecture or memory hierar-
chy and cache sizes. Cache oblivious algorithms recursively partition the
problem into blocks. At each level of recursion they divide the problem into
smaller and smaller blocks. After a number of recursions the algorithm will
have blocks which are small enough to fit in all the different levels of cache.
Thus the cache oblivious algorithms do not need to be tuned for particular
architecture or cache sizes. Experimental analysis [Chatterjee 00, Yotov 07]
has shown that these cache oblivious transpose algorithms do improve on
the performance of the naive row or column based algorithms, however they

still fall short of the performance of tuned cache-aware blocked algorithms.

48 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

Out-of-Core Dense Matrix Transpose

The ability to transpose a matrix in-place is important when the matrix is
large and there is insufficient extra storage available to store a full copy of
the matrix. In some cases a matrix may be so large that it does not all fit in
main memory, in this case the matrix must be transposed out-of-core where
the matrix is stored in external storage (hard disk / tape) and only small
parts of the matrix can be held in memory at any one time. Transposing a
square matrix out-of-core is simpler than a rectangular matrix as row and
column locations are invariant however, it is more difficult than transposing
a square matrix in memory. The out-of-core transpose is a complicated

problem which has received much attention.

Eklundh presents an efficient out-of-core algorithm [Eklundh 72, Eklundh 73]
for transposing large square matrices of size 2" x 2". The algorithm assumes
that the entire 2" x 2" is stored in external storage. It requires an additional
in-memory working area of at least 2"*! in order to store at least two rows
of the matrix in memory at a time. The algorithm reads in two pairs of
rows from the matrix at a time, swaps certain elements between the rows
and writes the rows back to external storage. The algorithm reads different
pairs of rows over multiple passes continuing to swap elements until all
elements have been moved to their correct transposed location. Thus the
algorithm can transpose an out-of-core matrix in n passes or fewer. If there
1s additional in-core memory available the algorithm can processes multiple
(27) rows at a time to improve efficiency. A similar algorithm was also
presented by [Schumann 72, Schumann 73] using sequential access devices

compared to the direct (random) access devices of [Eklundh 72].

Delcaro outlines a method [Delcaro 74] based on the Eklundh algorithm
for transposing large square and non-square matrices in external storage.
The algorithm requires the row and column dimensions m and n to have
a large number of factors. The matrix is partitioned into blocks based
on these factors and transposed. Twogood also extends the Eklundh
algorithm to the general case [Twogood 76] where 2'(j > 1) of its rows will

fit into main memory and analyses its performance for two-dimensional

Robert Crosbie, The University of Dublin, Trinity College 49

Chapter 3. Matrix Transpose

image filtering. Alltop presents a three step algorithm [Alltop 75] which
is another extension to that of Eklundh to support the transpose in-core
and out-of-core of large square and rectangular matrices by augmenting the
matrix such that its dimensions have a large common divisor d. The matrix
is padded in both directions to increase the size of d and the matrix is then

partitioned similar to Delcaro into a square d x d matrix of blocks of size

n

d
storage of (2nm/d). Ramapriyan presents a generalization [Ramapriyan 75

x 2 which are then transposed. The Alltop algorithm requires additional

of Eklundh’s algorithm which can transpose out-of-core matrices which
are not square powers of two and which are also non-square (m x n). Van
Voorhis presents a further generalization [Van Voorhis 77] of the Alltop
algorithm which removes the requirement of a factor of two for the matrix
dimensions in external storage and also combines the last two steps of the
three step algorithm.

Ari describes two improvements [Ari 79] to Eklundh’s algorithm. The
first reduces the number of accesses to external storage at a cost of an
increase in the amount of data transferred. The second shows how the
efficiency of the algorithm can be improved by using a small amount of extra
external storage if available. Goldbogen presents PRIM [Goldbogen 81]
another in-place out-of-core transpose algorithm which can transposes an
n X m matrix in a series of iterative transformations of the entire ma-
trix. Unlike the algorithm of Eklundh which permutes single elements,
Goldbogen also permutes blocks of elements. Twigg describes an algo-
rithm [Twigg 83] for transposing large matrices stored in external files. The
algorithm is based on sort-merge using a variant of the balanced tape merge
algorithm [Lorin 75] to transpose the matrix by transposing the matrix in
chunks into intermediate files which are then merged together.

Kaushik et al. give a review [Kaushik 93] of a number of the out-
of-core in-place matrix transpose algorithms based on Eklundh’s algo-
rithm [Eklundh 72] and propose another variation based on tensor prod-
ucts [Fraser 76, Johnson 92, Johnson 93] which improves efficiency by re-
ducing the number of disk accesses required by the algorithm. Results

show that the new single radix algorithm considerably reduces both disk

50 Space & Time Efficient Sparse Matrix Transpose

3.2. Dense Matrix Transpose

[/O time and computation time and thus total execution time over a range
of matrix sizes compared to that of Eklundh. The single radix algorithm
reads pairs of contiguous rows whereas Eklundh reads non-continuous rows
which results in a greater number of disk accesses.

Suh presents an improvement of the out-of-core algorithm [Suh 02] which
improves performance over previous algorithms by reducing the number of
[/O operations and eliminating the index computation. 1/0 is reduced by
writing the data onto disk in predefined patterns and balancing the number
of disk read and write operations. The index computation time, an expensive
operation involving two divisions and a multiplication, is eliminated by
partitioning the memory into read and write buffers. Krishnamoorthy also
presents an algorithm [Krishnamoorthy 04] which improves performance
of the out-of-core transpose by minimising the number of I/O operations.
This is done by using the I/O characteristics of the system to determine
optimal block sizes for read, write and communication such that the total

execution time is minimised.

Parallel Dense Transpose

The parallel transpose is another variant of the in-place dense transpose
which has received a lot of attention, particularly for parallel applica-
tions such as FFT [Cooley 65, Lippert 98, Jie 10, Al Na’Mneh 05] where
the dense matrix is partitioned and different sections of the matrix are
distributed across multiple processors/nodes.

Choi describes a parallel transpose algorithm [Choi 95] for use in the
PUMMA library for the parallel multiplication of transposed matrices
which are distributed across numerous processors. The algorithm uses
non-blocking message passing to transfer matrix blocks which are arranged
in a cyclic data distribution. Hegland introduces a new parallel trans-
pose split algorithm [Hegland 96, Calvin 96] which can be used for parallel
matrix transpose as part of FFTs on the Fujitsu VPP 500 vector com-
puter. The algorithm achieves a third of peak performance using 32 pro-

cessors. Wapperom presents a further improvement to the split transpose

Robert Crosbie, The University of Dublin, Trinity College

Chapter 3. Matrix Transpose

method [Wapperom 06] for three dimensional Fourier Transforms. Data is
split along two dimensions to allow for a higher degree of parallelism, the
algorithm also modifies the all-to-all communication to be performed in
groups.

Lippert presents a parallel transpose algorithm [Lippert 98] targeted at
SIMD (Single Instruction Multiple Data) systems, in particular those with
the high speed APE/Quadrics interconnect. The algorithm, which is also
intended for use with Fast Fourier Transforms shows improved performance
on interconnected systems with rigid next-neighbour connectivity and lack
of local addressing. He and Ding investigate the performance [He 02] of
in-place multi-dimensional array transposition with the vacancy tracking
algorithm while using OpenMP, MPI and hybrid MPI/OpenMP for commu-
nication. On a single node OpenMP outperforms MPI and across a cluster
the hybrid MPI/OpenMP outperforms MPI. Al Na’Mneh presents an adap-
tive matrix-transpose algorithm [Al Na’Mneh 05] for transposing matrices,
which is based on all-to-all communication on symmetric multiprocessors.
The algorithm reduced overhead by adaptively choosing a suitable radix
based on a number of factors. Experimental results show the transpose
algorithm gives increased performance for six-step One-Dimensional Fast
Fourier Transforms. Ravankar presents another algorithm [Ravankar 11]
for parallel matrix transpose on a Torus Array Processor which has a time
complexity of O(n). The algorithm uses the matrix-matrix multiply-add
(MMA) operation for transposing the matrix which is carried out in 5n

time-steps.

3-Dimensional Matrix Transpose

3D matrices occur in many problem domains such as seismic and medical
imaging. If we think of a 2D matrix as a square then a 3D matrix can
be thought of as a cuboid. The 3D Matrix transpose operation changes
the axis order of the cuboid. It may simply swap two of the axes or it
may rotate all three axes depending on the requirement of the operation.

Figure 3.2 shows a three axis rotation from XYZ to YZX. The transpose

52 Space & Time Efficient Sparse Matrix Transpose

3.3. Sparse Matrix Transpose

continues to swap row/column elements according to the axis rotation, thus
in Figure 3.2 the element at location (7, j, k) would be moved to location

(J, k,7) and that element would be moved to location (k, 1, j), etc.

N
=

Transpose
B

X v

XYZ Axis YZX Axis

e
-

Figure 3.2: 3D Transpose: Rotate XYZ axis to YZX

Wapperom presents a variation of the split transpose method [Wapperom 06
for three dimensional Fourier Transforms. Data is split along two dimen-
sions to allow for a higher degree of parallelism, the algorithm also modifies
the all-to-all communication to be performed in groups. El-Moursy presents
an algorithm [El-Moursy 08] for parallel transposition of 3-Dimensional
matrices on multicore architectures. The algorithm exploits the software
managed memory hierarchy of SIMD architectures such as the Cell Broad-

band Engine.

3.3 Sparse Matrix Transpose

In the previous section we gave an overview of the considerable research
into the problem of dense matrix transpose. In the following sections
we give an overview of the research into the problem of sparse matrix
transpose [Pissanetzky 84]. We also give a detailed description of the
existing out-of-place and in-place transpose algorithms and experimentally
analyse the performance of the algorithms.

Sparse matrix transpose is the procedure of transposing a matrix which,
due to the high proportion of zeros in the matrix is stored in one of
the compact storage formats outlined in Section 2.3 such as Compressed

Sparse Row. The procedure for transposing a matrix stored in row-major

Robert Crosbie, The University of Dublin, Trinity College 53

Chapter 3. Matrix Transpose

format is also identical to the procedure for converting the matrix to the
column-major Compressed Sparse Column format.

When a matrix is stored in a compact format we do not know the exact
location in memory of every element in the matrix. This makes it more
difficult to produce cache efficient sparse matrix algorithms.

As with dense matrices there are two main ways of transposing a sparse
matrix. The most straightforward method is the out-of-place technique
described in Section 3.4. The out-of-place method creates an entirely
new empty matrix in memory, then each element is copied to its correct
transposed location in this new matrix. The second method is the in-place
technique described in Section 3.5 which reduces the memory overhead
of the algorithm by transposing the matrix in place. Section 3.6 gives an
overview of our experimental setup then Section 3.7 shows the results of

the experimental analysis of these two existing algorithms.

3.4 Out-of-Place (OOP) Sparse Transpose

As with dense matrices, the straightforward method to transpose a sparse
matrix is to copy the elements to their transposed location in a second
separate set of matrix arrays. The out-of-place sparse transpose algorithm
can be loosely compared to an out-of-place bucket sort algorithm. It is
a simple fast algorithm, however the memory overhead of the algorithm
is extremely large as it doubles the memory required for the matrix. For
the largest matrix in our sample collection the OOP algorithm requires
a memory overhead of 4,699 MiB resulting in a total memory usage of at
least 9,398 MiB when performing the transpose.

This Out-of-Place method appears to be the most commonly used
sparse matrix transpose algorithm. Variations of the out-of-place algorithm
described in Section 3.4.3 are implemented in numerous packages. For
example, the Sparskit2 [Saad 94] package contains two Fortran imple-
mentations of the sparse matrix transpose. The CSRCSC() subroutine for
converting from CSC to CSR format (which is the same as transpose)

implements the OOP algorithm similar to Algorithm 3.2. The Bebop

54 Space & Time Efficient Sparse Matrix Transpose

3.4. Out-of-Place (OOP) Sparse Transpose

Sparse Matrix Converter [Demmel 05, Vuduc 05] is a library for converting
sparse matrices between different storage and file formats which includes
an out-of-place transpose routine. The CHOLMOD [Chen 08] package which
comes as part of Tim Davis’s SuiteSparse [Davis 05b] collection of sparse
matrix packages, includes a number of cholmod transpose() procedures
which implement the out-of-place algorithm for transposing and permuting
different types of matrix (real, double, complex, integer, pattern, symmetric,
unsymmetric, etc.). The HSL [Group 63, Gould 04] Mathematical Software
Library from the Numerical Analysis Group is a closed source, commercial,
collection of FORTRAN [Backus 56, Backus 57] codes for large scale scien-
tific computation. HSL includes two routines for performing sparse matrix
transpose. According to the library documentation, transpose algorithm
MC38() requires three output arrays to be allocated. A double array of size
nnz, integer array of size nnz and an integer array of size (m + 1) - this
would indicate that MC38() uses the out-of-place algorithm.

There are far fewer research publications focused on the topic of sparse
transpose than dense transpose. One of the first descriptions of the out-
of-place sparse matrix transpose is from McNamee who presents TRSPMX ()
as part of CACM Algorithm: 406 [McNamee 71] which is a collection of
linear algebra routines for sparse matrices. Further remarks [Sipala 77,
Gustavson 78a] correct some initial errors. Gustavson presents HALFPERM ()
which is a variation on the out-of-place transpose which can be used twice in
order to perform the full sparse matrix permutation PAQ ™! on the matrix
A. The algorithm presented is described as being similar to a distribution
count sort. Experimental results using HALFPERM for permutation show

that it performs up to ten times faster than TRSPMX.

3.4.1 Parallel Sparse Matrix Transpose

When dealing with very large linear algebra problems the matrix can be
partitioned across multiple distributed memory nodes in order to solve
the problem in parallel. If a transpose operation is required as part of

the calculation, such as matrix-transpose-vector multiplication (A7v), it is

Robert Crosbie, The University of Dublin, Trinity College 55

Chapter 3. Matrix Transpose

possible to perform the calculation without transposing by accessing the
elements through transposed indexing. However it may be more efficient to
perform the calculation if there was a quick and simple method to transpose
the distributed matrix. Thus a distributed parallel transpose sparse matrix

transpose is an interesting problem

Hendrickson investigates the problem of partitioning sparse unsym-
metric and rectangular matrices to balance work between nodes and keep
communication costs low [Hendrickson 98]. Results show that multilevel

partitioning methods give the best performance.

Kruskal investigates techniques for the parallel manipulation of sparse
matrices [Kruskal 89], a number of algorithms are considered including
the parallel transpose of sparse matrices. The algorithms are considered
from the perspective of a shared memory MIMD (Multiple Instruction
Multiple Data) system. To transpose a matrix in row major format (in
this case a variation of the CSR format Section 2.3.5), it is converted to
a canonical format where the matrix is stored in triplets similar to COO
(Section 2.3.4). The matrix in canonical format is transposed by swapping
row and column indexes in each element, the elements are reordered by
index using a radix sort, the numbers of elements in each row computed

and the matrix converted back to row major CSR variant.

Buluc again looks at the matrix-transpose-vector multiplication prob-
lem [Bulug 09]. The Compressed Sparse Blocks (CSB) storage format is
introduced. Storing the sparse matrix in the CSB format allows both Ax
and ATz to be computed efficiently. This blocked CSB storage format also
allows the sparse matrix A to be efficiently permuted out-of-place into the

transpose A7,

Gonzalez introduces a parallel out-of-place sparse matrix transpose algo-
rithm [Gonzalez-Mesa 13] which uses Transactional Memory [Herlihy 93]
which supports atomic group load and store instructions thus easing par-
allelisation and ensuring correctness. Results showed that the parallel
algorithm using transactional memory exhibits improved performance over

the baseline.

56 Space & Time Efficient Sparse Matrix Transpose

3.4. Out-of-Place (OOP) Sparse Transpose

3.4.2 Sparse Matrix Transpose Unit

Stathis et. al. describe the Sparse Matriz Transpose Unit [Stathis 04]
which is a proposed hardware co-processor for vector computers. The unit
is designed for efficient transposition of sparse matrices which are stored in
the hierarchical sparse matrix (HiSM) storage format [Stathis 03a] which
is similar to the Recursive Sparse Blocks format (Section 2.3.8). The unit
has internal register memory of size s x s, thus the matrix is stored in
hierarchical HiSM blocks of size s x s. The performance of the unit was
evaluated using their D-SAB Sparse Matrix Benchmark Suite [Stathis 03b].
Results show that the transpose unit exhibits speedups of up to 32 times
compared to those of the standard compressed row storage format with an
average speedup of 17 times.

As we have seen before, it is more efficient to transpose sparse matrices
stored in hierarchical or blocked formats. With a hierarchical format and
specialised hardware, the sparse matrix transpose unit is highly efficient.
However such a blocked hierarchical transpose is only useful for matrices
already stored in such a format as converting a matrix stored in a compressed

sparse column or row format to the HiSM format is expensive.

3.4.3 Description of Out-of-Place Transpose Algorithm

In this section we describe the out-of-place sparse matrix transpose algo-
rithm and analyse how it operates. Section 3.7 presents results of runtime

performance analysis of the algorithm.

Sparse Transpose Input Matrix M in CSR Format

We first describe the structure of the sparse matrix M stored in the CSR
format as shown in Data Structure 3.1. This structure is the standard input
to all the sparse matrix transpose algorithms presented in this document.
The structure contains three integers (nrows, ncols,nnz) which give the

dimensions of the matrix, one real array (non_zeros[]) which contains

~

o

Robert Crosbie, The University of Dublin, Trinity College

Chapter 3. Matrix Transpose

DATA STRUCTURE 3.1: Matrix M in CSR format:
This is the Input and Output for all transpose algorithms

Input: Matrix M in the CSR representation - Containing;:
nrows - the number of rows in the matrix M
ncols - the number of columns in the matrix M
nnz - the number of non-zero values in the matrix M
row_ptrs[] - array of row pointers in M [nrows+1]
non_zeros|| - array of element values in M [nnz]
col_indexes[] - array of element column indexes in M [nnz]

the values of the matrix elements and two integer arrays (row_ptrs|] and
col_indexes||) which define the layout/structure of the matrix. Example 3.2

shows a representation of the matrix M stored in CSR format.

nrows = 6

ncols = 6

nnz = 15
row_ptrs = 0, 2; 5, s 10, 12,
nonzeros = a b ¢ d e f g h i j ki m | %o
colindexes = 0 4 0 1| 5 I't2 {034 4 5 1 4 5

Example 3.2: Matrix M in CSR representation

Out-of-Place Sparse Matrix Transpose Algorithm

Algorithm 3.2, gives a basic pseudo-code implementation of the out-of-place
transpose. The algorithm takes as input the 'C’ structure M representing
the CSR matrix as outlined in Data Structure 3.1 and will have contents
similar to that shown in Example 3.2. The output of the OOP algorithm is
a completely new matrix structure containing M7 as shown in Example 3.3.
First (lines 4-14) the new compressed row pointers array new_row _ptrs||
is created by counting the number of elements in each column (from the
column_index) and performing a cumulative sum on lines 16-18 of those
counts. The new_row_ptrs[] array will contain the starting row indices of

matrix M7, By definition, a transpose reorders columns to rows and hence

58 Space & Time Efficient Sparse Matrix Transpose

3.4. Out-of-Place (OOP) Sparse Transpose

ALGORITHM 3.2: Out-Of-Place sparse matrix transpose

Input: Matrix M as in Data Structure 3.1
Output: New matrix M7 (the transpose of M) in the CSR representation -
Containing:

new_nrows - the number of rows in the matrix M7 [= old_ncols]
new_ncols - the number of columns in the matrix M7 [= old_nrows|
new_nnz - the number of non-zero values in the matrix M7 [= nnz|
new_row_ptrs|| - the new array of row pointers in M7
new_non_zeros|| - the new array of element values in M7
new_col_indexes|] - the new array of element column indexes in M7

* Output arrays are allocated and initialized to zero (not shown for brevity) *

* Swap row & column dimensions of the transpose *
new_-nrows <— nCOlS:
new_ncols < nrows;
* Count the number of indexes in each column and store in new_row_ptrs offset by 2 *
* Offset by 1 as row x + 1 starts after row . *
* Offset by 2 to sidestep need to shift indices in new_row_ptrs|| at end of algorithm
for (0 < row < nrows) do
for (old_row_ptrsirow] < k < old-row_ptrsirow + 1]) do
col « old_col_indezes|k];
if ((col+2) < (newnrows+ 1)) then
| new_row_ptrs|(col + 2)] « new_row_ptrs[(col + 2)] + 1;
end
end

end

* Cumulative sum of new_row_ptrs
for (0 < row < newmrows) do
| new_row_ptrsfrow + 1] ¢ new_row_ptrs[row + 1] + new_row_ptrs[row|;
end
* Loop through each “old™ row *
for (0 < row < nrows) do
for (old_row_ptrsjrow] < k < old_row_ptrs[row + 1]) do
* Copy each element to it's correct new_row position in the transposed matrix *
col « old_col_indexes|k];
pos + new_row_ptrs|(col + 1)]: * offset by 1 *
new_non_zeros[pos| « old_non_zeros[k|;
new_col_indexes|pos| «+ row;
new_row_ptrs|(col + 1)] < new_row_ptrs|(col + 1)] + 1;
end

end

the new_row ptrs[] array is created by counting the number of differing

old column values and accumulating them.

Note: While constructing the new_row_ptrs||] array we save the column

Robert Crosbie, The University of Dublin, Trinity College 59

Chapter 3. Matrix Transpose

counts at a position that is offset by two from the column index as can
be seen by the (col + 2) array index on line 11. We then access the array

offset by one as can be seen by the (col + 1) array index on lines 24 and 27.

Generally when building the row_ptrs[] array we store the column
counts at a position offset by one. This is because we are looking for the
start positions of the new rows. Row z + 1 starts after row x and all
the rows before, thus we store the count of the number of elements in
row x in position x + 1. During the algorithm we use the entries in the
new_row_ptrs|] array to point to the next free slot in each new row and
increment the entries as we copy elements to their new position. At the
end of the algorithm new_row_ptrs[z] would point to the start of row z + 1

and we would need to correct the array by shuffling elements to the right.

If we construct the array offset by two elements, at the end of the
algorithm the array will contain the correct entries and the reshuffle is
not necessary. The additional arithmetic and control flow (line 10) for the
offset by two approach should be optimised by the compiler. Experimental
evaluation shows that it is slightly faster is practice. The if statement on
line 10 ensures we don’t index past the end of the array. It is not necessary
to count the number of elements in the last column as we know the total

number of elements.

Once we have the new new_row _ptrs|] array, we traverse through all
the nnz values of the matrix row-by-row (lines 20-29). Each element
in the row is copied to its correct position in the transposed matrix.
The position is found by using the current column_index of the element
to index into the new_row_ptrs[] array (offset by one) which gives the
index in the new_non_zeros[| and new_col_indexes[| arrays for the ele-
ment. The non_zero value is copied and the old_row_index becomes the
new_column_index. The new_row_ptrs[] is incremented so that the next
element to be copied to that new row will be put in the next free position

in the row.

The resultant transposed matrix M7 in CSR format is shown in Exam-
ple (3.3).

60 Space & Time Efficient Sparse Matrix Transpose

3.5. The In-Place (IP) Sparse Transpose

nionizeres, =ha el wdlf im Lg e o tbl gk in e bl e
colindexes: = |0/ 113 1125 12 ¢3 /0|3 B M pd b
new row ptrs = 0, 3, 6, 1 75 118, 12, 15

Example 3.3: Transposed Matrix M7 in CSR representation

(Integer dimensions remain unchanged)

3.4.4 Analysis of Out-of-Place Algorithm

The OOP algorithm performs the transpose in-order, row by row. A
beneficial side effect of the order in which the OOP algorithm copies matrix
elements is that the values within each new row of the transposed matrix
will also be in order (of column index) within the rows. The OOP algorithm
is simple and generally fast, running with an asymptotic complexity of
O(nnz + n). The input matrix is accessed sequentially which gives good
cache locality. Although fast, the algorithm does require ~(3nnz + n)
additional memory. This actually translates to (12nnz + 4n) bytes if we
assume 8-byte double non-zeros and 4-byte integer indices, meaning OOP
requires 100% of the size of the Matrix in overhead{a}.

This memory overhead may be acceptable for small matrices, however
for larger matrices finding this additional memory may prove difficult, or
indeed impossible. Thus, we need an algorithm which performs reasonably
well in terms of both space and time.

Experimental analysis of the out-of-place algorithm is shown in Sec-
tion 3.7.

3.5 The In-Place (IP) Sparse Transpose

The space complexity of the OOP algorithm can be reduced by using an
In-Place (IP) transpose algorithm. As the name suggests, an IP algorithm

performs the transpose using the original matrix arrays without making

{a} Rectangular matrices require slightly above or below 100% for different size
row_ptrs||

Robert Crosbie, The University of Dublin, Trinity College 61

Chapter 3. Matrix Transpose

an additional copy of the non_zeros[| and col_indexes[] arrays. One ap-
proach to the sparse in-place transpose algorithm is to use a “cycle-chasing”
technique to transpose the matrix within its storage structure. This cycle-
chasing is similar to the cycle-chasing used for dense rectangular in-place
transpose. However due to the sparsity of the matrix it is not possible to
pre-calculate the positions of the elements in the matrix and hence the
positions visited by the cycles.

There is very little research literature dealing with the topic of sparse
in-place transpose. The Sparskit2 package by Youcef Saad [Saad 94| con-
tains an implementation of an in-place cycle chasing algorithm in For-
tran [Backus 56, Backus 57]. The TRANSP() subroutine implements the
Saad-IP algorithm which we discuss in detail in Algorithm 3.3 in Sec-
tion 3.5.1.

HSL [Group 63, Gould 04] is a mathematical software library from the
Numerical Analysis Group, it is a closed source, commercial, collection of
FORTRAN codes for large scale scientific computation. HSL includes two
routines for performing sparse matrix transpose, MC38() mentioned above
which uses an out-of-place algorithm and the routine MC46 () which is an
in-place algorithm. Unfortunately the algorithms have not been published.
According to the documentation, MC46 () requires two arrays of size (m + 1)
in order to perform the transpose. As we will discuss further in Chapter 4,
the algorithm seems to only address the first of the three problems for
an in-place sparse transpose with a memory overhead ©(n). The MC46 ()
routine still requires ©(nnz) additional space in order to record which

elements have been moved and the location of free slots in the matrix.

3.5.1 The Saad In-Place Transpose Algorithm

The pseudo-code for the Saad-IP transpose algorithm is shown in slightly
simplified pseudo code split across Algorithm 3.3 (a) (Part I: Saad-IP
Initialize) and Algorithm 3.3 (b) (Part II: Saad-IP Main Loop).

The Saad-IP Algorithm 3.3 (a) first expands (lines 4-9) the row_ptrs|]

array into a newly allocated, full tmp_row_indexes[] array of size ©(nnz)

62 Space & Time Efficient Sparse Matrix Transpose

© ® N O b

10

3.5. The In-Place (IP) Sparse Transpose

ALGORITHM 3.3 (a): The Saad In-Place sparse transpose - PART I: Ini-
tialize
Input: Matrix M as in Data Structure 3.1
Output: Matrix M containing M7 (the transpose of M) in the CSR representation,
with:
neu'-rou'_pirs[] - new array of pointers to row starts [ncols + 1]

* Moved Flag *
#define 1S MOVED —1

* Expand row_ptrs|] into temporary row_indexesnnz| array *

Allocate: tmp_row_indexes[nnzl;
Initialize: tmp_row_indexes|]; * Initialize to zero *
for (0 < row < nrows) do
for (row_ptrsjrow] < z < row_ptrsjrow+1]) do
| tmp_row_indexes(z] « row;
end
end

* Don’t need contents of row_ptrs any more — but need to re-allocate new_row_ptrs|| for non-square
matrices ¥
Free: row_ptrs|];
Allocate: new_row_ptrs[ncols + 1];
Initialize: new_row_ptrs[]; * Initialize to zero *

* Count number of entries in each new row (old col) - To build row offsets *
for (0 £ ¢ < nnz)do

| col « col_indexes|il;

new_row_ptrs| (col + 1) | « new_row_ptrs| (col +1) | + 1;

end

* Cumulative sum across new_row_ptrs
for (1 < @ < ncols) do

| new_row_ptrs[i] < new_row_ptrs[i] + new_row_ptrs[i — 1];
end

(requiring ~(4 nnz) bytes). Essentially converting matrix M from the CSR
format into the CCO (Compressed Coordinate) format. Algorithm 3.3 (a),
like the OOP Algorithm 3.2, then builds the compressed new_row _ptrs|]
array (lines 14-21), which indicates the starting indices of the rows in the
transposed matrix M7,
The Cycle chasing part of the algorithm is then shown in Algorithm 3.3 (b).

A counter cur_x is used to traverse the nnz values while performing the
in place transpose. Counter cur_r starts from the 0** index which is indi-
cated by the arrow ‘p’ in Example 3.4 with the nnz value a, row_index 0

and column_index 0. This first element is copied to a temporary location

Robert Crosbie, The University of Dublin, Trinity College 63

1
2
3

N o v e

10

11

12

13

14
15

16
17
18

19
20
21

22
23
24

25

26
27
28
29
30
31
32
33
34
35
36
37

38

40
41
42
43
44

Chapter 3. Matrix Transpose

ALGORITHM 3.3 (b): The Saad In-Place sparse transpose - PART II: Main
Loop

* Loop through every element in the matrix *
cur_x «+ 0; * First Element * cyc[es « 0; * Num elements processed *
while (true) do
* Backup current element *
srcval « non_zeros|cur_z);
sre_col + col_indexes|cur_z|;
sre_row < tmp_row_indexes|cur_zxl;

* Flag that we have taken out this element. so it doesn’t need to be moved any more *

tmp_row_indexes|cur_z| < IS.MOVED;

repeat
cycles < cycles + 1; * Cycle Counter++ *
* Find the transposed position of element in ‘src¢’ next unused space in its new row *

dst_x + new_row_ptrs(src_col;

dst_val « non_zeros|dst_z|; * Save the element @ dst_x in ‘dst’ *
dst_col + col_indexes|dst_z);

non_zeros(dst_z| < src_val; * Put ‘src’ in ‘dstx *

col_inderes|dst_x] + src_row; * Old row — New col *
new_row_ptrs|src_col| < new_row_ptrs[src_col] + 1; * o dstx+1*

if (tmp_row_indexes|dst x| = IS_.MOVED) then
1 goto MOVED:; * *dst_x" was an empty slot — indicating the end of a chain *
end
src_val « dst_val, * Copy ‘dst’ into ‘src’ *
src_col < dst_col,
sre-row < tmp_row_indexes|dst_z|;

tmp_row_indexres|dst_x] + IS\MOVED; ¥ Set flag on ‘dst_x *

* Loop until we have gone through all nnz elements *
until (cycles > nnz);
goto END;

* MOVED- Find the next un-moved element to start chasing *
MOVED:
cur-r +—cur-z-+1;
if (cur_r > nnz) then

l goto END; * We have run off the end of the array Jump to the end *
end
if (tmp_row_indexes[cur_r| = ISSMOVED) then

| goto MOVED; * cur_x has already been moved. loop again *
end

end

* END- Right-shift row offsets to make new_row_ptrs[] *
END:
for (ncols > i > 0)do

| new_row_ptrs[i] < new_row_ptrs[i — 1];
end
new_row_ptrs(0] « 0; Free: tmp_row_indexes;
é\!—)rouv.ptrs — new_row_ptrs;

Space & Time Efficient Sparse Matrix Transpose

3.5. The In-Place (IP) Sparse Transpose

ste=:914 |0

non:zeros . = (a B lic [dije| f lg Lholy vglk l 'm|mn o
coliindexes =10 |4 [0 [I[5{1 12 (0 {8 414 ib |1 (4 i'b
new row_ptrs = 0, 3, 6; |\ Tg ! 8, 12,
timp row indexes 0)) 4
]) ?(‘ 1

Example 3.4: Algorithm 3.3 - Saad-IP Circuit Chasing Step: 1

“src”. The tmp_row_indexes|] value for this element is no longer needed,
so this array can be re-used to mark that the element has already been
examined (using the 1s MoveDp flag). Looking up the column_index (0) in
new_row_ptrs|] shows that this element is already in the correct position for
the transposed row, so it is copied back to the same location. The algorithm
jumps from line 21 to line 31 with a coro, where cur_z is incremented
to the next position in the matrix, index 1. This location is still < nnz
(line 33), and has not been moved yet (line 36), so the algorithm loops back
to line 4.

ST b L0 dst / 3 1.3

non _zeros = ¢ |dielf lg lh 'y kil |min o
colindexes = () 0 (Librl (2 [0 (0 (41415 |1 |4 |5
new_row_ptrs = 0, 3. 0, | T 18 12
mp row indexes) 2 : 4

Example 3.5: Algorithm 3.3 - Saad-IP Circuit Chasing Step: 2

The algorithm starts cycle chasing again on line 4 at array position 1
where cur_r = 1, indicated by arrow ‘¢’ in Example 3.4. The element at
"q" with nz value b is copied into “src”, and the destination position of the
element in the transposed matrix is found on line 14 to be position 8 as
indicated by arrow ‘r’ which currently holds nz value i. The element at

position ‘7’ is copied to the “dst” temporary location (lines 14-16). The

Robert Crosbie, The University of Dublin, Trinity College 65

Chapter 3. Matrix Transpose

element that was at ‘¢’ is copied from “sr¢” to position ‘7’ (lines 17-19) as
shown in Example 3.5. The position ‘7’ was not the end of a chain (line 20),
so the element that was at ‘7’ is copied from “dst” to “src¢” (lines 23-
26). The algorithm loops back continuing to cycle chase the element from
position ‘7" which is now in “sr¢” until it finds an element with a destination
in the original row 0 which will be copied to position ‘¢’ to end the chain.

The Saad algorithm continues chasing the next unmoved element until

all elements are moved to their correct new_row in the transposed matrix.

3.5.2 Analysis of Saad In-Place Algorithm

Unlike the OOP algorithm the IP cycle chasing transpose does not work
sequentially through the matrix. Therefore elements are not transposed
“in-order”. This results in a transposed matrix where all the elements are
in their correct transposed row, however it is unlikely that they are in the
correct order by column index within that row.

In many cases this may not be a concern. If elements are required to
be in row order, this can be achieved by performing an additional sort-
ing step after the transpose using a technique similar to standard sorting
algorithms. This sorting step can also be done in place. In Section 4.5
we describe our algorithm based on QuickSort [Hoare 61, Hoare 62] and
Insertion Sort [Knuth 98] which was used for the sorting phase of the exper-
iments presented in Chapters 3, 4, 5 and 6. . The additional sorting step
was included in all the transpose timing results such that every transpose
algorithm resulted in the same output from the same input.

The Saad-IP algorithm as described above in Algorithm 3.3 is imple-
mented in the Sparskit2 package [Saad 94]. The Saad-IP algorithm exhibits
asymptotic time complexity of ©(nnz + n) time, however it is more com-
plicated than the OOP algorithm and accesses the elements in random
order as it jumps around chasing the cycles which results in poor locality
for cache reuse, so in practice is generally slower than the OOP algorithm.
As we see in Figure 3.3 from the experimental evaluation in Section 3.7,

when dealing with large matrices and where memory is tight, performing

66 Space & Time Efficient Sparse Matrix Transpose

3.6. Performance Evaluation of Algorithms

the transpose in place only requires (4nnz) bytest® of additional memory
compared to the (12nnz + 4n) bytes for the OOP algorithm. The perfor-
mance cost may be an acceptable trade-off, however, the memory overhead
is still ©(nnz) which can prove significant for large matrices and for many
matrices increases at a higher rate than the number of rows (n). For the
largest matrix in our collection the OOP algorithm requires 4,698 MiB and
the Saad algorithm requires 1,531 MiB.

To address this memory overhead we have developed a collection of
new in-place transpose algorithms which reduce the asymptotic memory
overhead to ©(n) additional storage (see Chapters 4 and 5). Our HyperPar-
tition algorithm (Chapter 6) requires significantly less memory overhead

in practice.

3.6 Performance Evaluation of Algorithms

For the purpose of comparison with our new in-place matrix transpose algo-
rithms, in Section 3.7 we present an empirical evaluation of the two existing
sparse matrix transpose algorithms previously described in Sections 3.4.3
and 3.5.1. We first outline the methodology used in our experiments and
analysis.

This section describes our experimental setup and how the algorithms
were analysed. We discuss what experiments were run, the sample input
data used, what measurements were recorded and how they were recorded.

We also discuss how the data was analysed and presented.

3.6.1 Matrix Collections — Sample Input Matrices

In order to evaluate the different transpose algorithms and to demonstrate
the advantages of our proposed new algorithms, we performed an extensive
set of experiments on the algorithms. It is important to understand and
evaluate how the algorithms function in real world applications rather than

in synthetic simulations. We therefore used a set of matrices taken from

Hnnz for square matrices, rectangular matrices may require slightly or more or less.

Robert Crosbie, The University of Dublin, Trinity College 67

Chapter 3. Matrix Transpose

real world applications for our experiments. 259 sample input matrices
were collected in the MatrixMarket [Boisvert 95, Boisvert 97] file format
(Appendix C) taken from The University of Florida Sparse Matrix Collec-
tion [Davis 94, Davis 09, Davis 11a, Davis 11b] maintained by Tim Davis.
Tables in Appendix A give detailed information of a sample of the matrices
used.

Our main interest is in the performance of our new transpose algorithms
on large matrices as this is where the reduction in memory overhead is most
desirable. Some low end embedded systems may still be concerned with
memory usage of medium size matrices, therefore for these experiments we
chose sample matrices from the Florida collection with more than 1 million
(1,000,000) non-zero values. A matrix of this size would require roughly
12 MiB to store in memory assuming the matrix is stored in CSR format
with 32-bit row and column indices and double precision non-zero values.
A total of 259 input matrices were used in the experiments to evaluate
the performance of the algorithms. The matrix collection includes 129
symmetric matrices out of the 259. These symmetric matrices are stored
with only the lower triangle represented. It is not necessary to transpose
a symmetric matrix as the transpose of a symmetric matrix is the same
matrix. We included symmetric matrices in our test suite simply treating
them as triangular matrices. The transpose of a triangular matrix often
occurs in calculations such as in the upper and lower triangular solves after
a Cholesky [Golub 96, Stewart 01] decomposition M = LU, where the
lower triangular L is the transpose of the upper triangular U/, i.e. LT = U.
Including symmetric matrices as triangular matrices increases the number
of input matrices for our experiments.

The largest sample input matrix nipkkt240 is a 27,993,600 x 27,993,600
matrix with 401,232,976 non-zero values and requires 4,699 MiB to simply
just store it in memory in the CSR format.

Tables in Appendix A give detailed information on a sample of the
matrices used in our experiments. Table A.1 shows the dimensions and
structure of the matrix. Table A.2 lists the problem domains from which
the matrices were produced. Additionally, Tables A.3 and A.4 show the

68 Space & Time Efficient Sparse Matrix Transpose

3.6. Performance Evaluation of Algorithms

memory usage and execution time for the algorithms when transposing the

sample matrices.

3.6.2 Experimental Setup

The experiments were run on “Stoker” a 32 core machine with 4 x Intel octo-
core Xeon E7 4820 processor @2.00GHz with 18 MiB Cache and 128 GiB
RAM running Debian 6.0. Each core uses two-way simultaneous multi-
threading so there is a total of 64 hardware threads. The implementations
were compiled with the Intel C/C++/Fortran Compiler version 12.0 with

the following optimisation flags:
-03 -fast -openmp

The PAPI [Browne 00] system was used for collecting performance
metrics and information from the machine’s hardware counters (See Sec-
tion 5.9.1).

A subset of the experiments were repeated on other machines which
produced results with very similar trends to the experiments run on Stoker.
For comparability, consistency and clarity only the results from stoker
machine are presented here.

The two main performance properties we are interested in are: The

algorithm’s execution time and the memory usage of the algorithm.

Algorithm Execution Time

Measurements of algorithm execution time were conducted as follows: Each
of the input matrices was read in from the MatrixMarket file into a sparse
coordinate structure which was transformed into the Compressed Sparse
Row (CSR) format structure. Each algorithm was then used to transpose
the algorithm forwards and backwards 19 times. In the case of the in-place
algorithms, the cycle chasing and sorting steps were timed separately. The
timer was started just before calling the cycle chasing transpose routine and
stopped and recorded as soon as it completed. The timer was again started

just before calling the sorting routine and stopped as soon as it completed.

Robert Crosbie, The University of Dublin, Trinity College 69

Chapter 3. Matrix Transpose

For the out-of-place algorithm there is just one step which is measured
by the timer. Except where noted, all execution time results presented
in this document include the time for both the cycle-chasing phase and
the sorting phase combined. The algorithm (cycle chasing) time includes
the time for the actual transpose and all steps relating to the transpose
— such as building arrays before/after the transpose, counting elements,
cycle-chasing, etc.

When conducting time sensitive experiments, background activity on
the experimental machine such as scheduled tasks and system interrupts
can interfere with the running programs, causing delays and inaccurate
timing results. To offset this problem we chose to measure the time for each
algorithm and input 19 times. The median value for the 19 timings was
used for analysis and generating the graphs. The value of 19 was chosen as
it was deemed large enough to satisfactorily reduce the number of outliers
in the timing results and is an odd number which has a single median value.
The median was used as an average rather than the mean as the mean
would also include the timings of any outliers that did occur. The median
value should also be more representative than simply taking the fastest
value of the 19 runs.

In practice the timing results for the algorithms were very consistent
as can be seen in Figure 7.2 on Page 192. This figure shows each of
the individual 19 timing results for the HyperPartition Transpose with
RadixSort for different numbers of buckets. For example the Serial algorithm
indicated with the red plus ('+") has a block of 19 markers at roughly seven
seconds when using two buckets and another block of 19 markers just under
five seconds when using four buckets. For the serial algorithm, the timings
for the 19 runs are almost identical. Some slight variation between the
individual timings can be seen in the parallel algorithm shown with the
blue ("x"), particularly with 16,384 buckets. The variation in the parallel
version is possibly due to other activity on the machine which has more
of an affect when running across 32 cores however it is also likely to be a
result of different distributions of OpenMP threads across the CPU cores

in relation to the location in memory of the data. HyperThreading may

70 Space & Time Efficient Sparse Matrix Transpose

3.6. Performance Evaluation of Algorithms

also be an influence if two threads are allocated to a single core.

Analysing Memory Usage

For these experiments we are interested in the memory overhead of the
algorithms. The additional memory on top of that required to simply store
the matrix in memory that the algorithms allocate in order to perform
their function. The memory overhead required by each algorithm can be
calculated from the dimensions of the matrix, however for completeness
(and to ensure correctness) the memory allocated by the algorithms was also
measured directly. This was done by overloading all memory allocation and
deallocation routines in order to track memory usage. The peak memory in
use during the algorithm was then compared to the baseline usage for each
matrix. Analysis tools such as Valgrind [Nethercote 03, Nethercote 07]

were also used to test the algorithm implementations for memory leaks.

3.6.3 Presentation of Data

The graphs in this document have been generated with GNUplot [Williams 90
and show the execution time, memory overhead, cache performance and
other measurements of the algorithms presented. As discussed in Sec-
tion 3.6.2, the memory overhead is the additional memory allocated by the
algorithm. We are developing algorithms which improve on the memory
usage and execution time, therefore: in all graphs, lower values are better.

When discussing the size of a matrix we may talk about the number of
rows (n), the number of columns (m) or the number of non-zero elements
(nnz) in the matrix. For our purposes the number if non-zeros (nnz) is the
most appropriate as it generally has the greatest effect on the memory usage
and execution time of the algorithms. Our graphs show the performance of
the algorithms relative to the number of non-zeros in the matrix.

Due to the very wide range in the number of non-zero elements in the
matrices (from 1 Million to 401 million elements) and the even greater
relative difference in memory usages and execution time values for the

matrices, it is not possible to directly graph the actual experimental results

Robert Crosbie, The University of Dublin, Trinity College 71

Chapter 3. Matrix Transpose

together. The graphs would be highly skewed and distorted. As such, we
have done a number of things to improve legibility of the graphs. First,
we have elected where possible to display all the memory and execution
time results of all the algorithms relative to the measured results of the
Saad In-Place algorithm. Hence for every graph, the measurements of the
Saad algorithm are all on a horizontal line at (y = 1). For each matrix the
results of the other algorithms are then plotted either above or below this
line showing that that algorithm performs better or worse than the Saad
algorithm for that input matrix, and by what proportion. This applies to
all the metrics - Memory / Execution Time / Cache Misses / etc.

The second way we improve legibility is again due to the wide range in
the number of non-zeros and the fact that most of the matrices fall closer
to the lower end of the range. Even with a log-x axis this results in data
points clustered to the left of the graph. In order to improve legibility, we
have split the graph along the x-axis with a stretched logarithmic scale from
1,000,000 to 16,000,000 over the left 3/1+ of the graph and then a shorter
logarithmic scale from 16,000,000 to 420,000,000 over the right !/1 of the
graph.

One disadvantage of the format in which we have chosen to display the
results is that it is not possible to directly see the exact measurements and
values of memory usage and execution time that the algorithms have for
the various input matrices. In many cases the display format also hides the
vast improvement in memory usage and runtime that these new algorithms
make over the existing algorithms. Table A.3 and Table A.4 show the exact
algorithm memory overhead and actual execution time respectively of a

number of the larger sample matrices used in the experiments.

3.7 Evaluation of Sparse Transpose Algorithms

Figure 3.3 shows the additional memory overhead of the Out-of-Place
algorithm (Alg: 3.2) relative to the Saad In-Place Algorithm (Alg: 3.3).
There is a clear similarity and linearity between the algorithms showing that

both have a space complexity of ©(nnz) with the OOP algorithm requiring

72 Space & Time Efficient Sparse Matrix Transpose

3.8. Summary

Out-Of-Place vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

T T T T T T T T

35 R E
T 3 T st R e .-#,&'. e o S S U E L2 G e
°

@

3

¢ 25 = -
= Legend

] Saad-IP

£ A oop T T
3 Average: 306.2%

oo

o

&

o

=

3

2

s

[}

4

1.5 F + =4

LI s i S L

0.5 £ 4
1 L L L L L L L

im 1.5m 2m 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 3.3: Memory overhead of the Out-of-Place (OOP) algorithm relative to the
Saad In-Place algorithm. OOP uses roughly 3 times more memory than Saad-IP. For
the largest matrix (nlpkkt240) with 401 Million non-zeros, OOP requires 4,699 MiB and
Saad requires 1,531 MiB in memory overhead.

roughly three times more memory than that of Saad. Variability is due to
the differences in lengths of the row ptrs[| array (nrows + 1) compared
to the col_indexes[] and non_zeros|] arrays (nnz). For the largest matrix
used in these experiments, (nlpkkt240, shown on the far right of the graphs)
the OOP algorithm requires 4,698 MiB of additional memory whereas the
Saad-IP algorithm requires 1,531 MiB. This is a considerable overhead of
100% and 33% of the original matrix size respectively for both algorithms.
More details of matrix memory requirements can be found in Table A.3.

The Algorithm runtime of the Out-of-Place algorithm is shown in
Figure 3.4 in comparison to that of the Saad-IP algorithm. OOP is faster
in the majority of cases, however there are actually a number of inputs
where the OOP algorithm is considerably slower than Saad.

The graphs in Figure 3.3 and Figure 3.4 show both the appeal and
drawback of the OOP algorithm. It is simple and (generally) fast, but the
graphs show that this comes at a great cost of 100% additional storage,

which simply may not be feasible in many cases.

Robert Crosbie, The University of Dublin, Trinity College 73

Chapter 3. Matrix Transpose

QOut-Of-Place vs. Saad-IP - - (Serial) Execution Time of Transpose [Relative]

Tooord T T T T T
egen
Saad-IP
1.75 H ooP 3 u
Average: 43.4%
18 o 4
a ki e
B 125} s _
2] -
2 ;
3 B T TV E VLS CUIRST ST F VSNV CHE WL VY- S O MEPEY V DS PO PRI v Y Lo+ -V SUSR— POl
E ¢ T
=
2 4
i 0.75 F + + s s il
-]
@
0.5 |+ : i _ t 1tz 1
R T
& Al T iy e+ T 44 % Sy
025 ; I+ % ' SO, ;S Wil i
i Tyt gtte HF w34
L TR ¢ 4 ¥F | 5B+
1 1 1 1 1 1 1 1
im 1.5m 2m 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 3.4: Runtime of the Out-of-Place (OOP) algorithm relative to the Saad In-Place

algorithm. OOP is generally faster but is slower on some inputs.

3.8 Summary

This chapter reviewed existing research on matrix transpose. There is a large
body of existing research on dense matrix transpose with many algorithms,
each with their own advantages and disadvantages. However there has been
far less focus on transposing sparse matrices. We have reviewed the two
major sparse matrix transpose algorithms from the literature and provided
an experimental evaluation of both which will be used for comparison in
subsequent chapters.

In the forthcoming chapters we present our new Sparse In-Place Trans-
pose algorithms, which reduce the asymptotic space complexity of the
sparse transpose while also reducing the execution time compared to the

existing in-place algorithm.

74 Space & Time Efficient Sparse Matrix Transpose

Chapter

Space Efficient In-Place
Sparse Matrix Transpose

In the previous chapter we introduced the Matrix Transpose operation
and outlined the research and existing algorithms on the topic. We gave
an in-depth analysis of the two main algorithms for transposing Sparse
Matrices:

1) The Out-of-Place Sparse Matrix Transpose Algorithm (3.2) which
has a time complexity of ©(nnz + n) and transposes the matrix by making
a complete new copy of the full sparse matrix structure in memory and
then copies each individual element to its correct location in the trans-
posed matrix. The total space complexity of the Out-of-Place algorithm
1s ~(3nnz + n) meaning the Out-of-Place algorithm can require up to
4,698 MiB in memory overhead for our largest matrix.

2) The Saad In-Place Sparse Matrix Transpose Algorithm (3.3) from
the package Sparskit2 [Saad 94] which also has a time complexity of
O(nnz + n). The Saad algorithm requires an additional temporary ar-
ray (tmp_row_indexes[]) of size (nnz) for the row indexes and transposes
the matrix in-place using a cycle-chasing technique to move elements. Thus
the total space complexity of the Saad In-Place algorithm is ~(nnz), only
33% of the Out-of-Place algorithm. However even at this level, Saad requires
1,531 MiB of additional memory for the largest matrix.

Performing the transpose in-place with reduced space complexity, the
Saad algorithm still requires a considerable memory overhead. As matrices
grow larger, this memory overhead will also continue to grow in proportion
to nnz. For the great majority of real-world sparse matrices the number
of rows (n) in the matrix is far less than the number of non-zeros (nnz).
Thus an in-place transpose which only requires ©(n) additional space could
make a considerable reduction in the memory overhead.

In this chapter we analyse the problems with performing the in-place

o

Robert Crosbie, The University of Dublin, Trinity College 75

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

sparse matrix transpose operation with only ©(n) additional memory and

present a number of solutions to these problems.

4.1 In-Place Transpose with Reduced Mem-

ory

There are three very important problems which need to be solved in order

to reduce the space complexity of the in-place transpose from ©(nnz) to

O(n).

Problems to solve in order to reduce Space Complexity:
(a) How to find the old_row_index of each element in ©(n) space
(b) How to record that an element has been processed in ©(n) space

(c) How to determine the next free slot in each row in ©(n) space and
O(1) time

As we move elements from row to row during the cycle chasing transpose
the first problem is (a) how to find the old row index of each element. In
this chapter and the subsequent chapters we present a number of solutions
to this problem.

Problems (b) and (c) are linked, they both relate to the way in which
we record that elements have been processed/moved, however the problems
manifest themselves in two separate ways. Section 4.1.2 outlines our solution
to problems (b) and (c).

Our solutions to these three problems not only allow us to reduce the
space complexity of the in-place transpose from ©(nnz) to O(n), they also
considerably reduce the memory overhead and algorithm execution time in
practice as can be seen from the extensive experimental analysis throughout

this document.

76 Space & Time Efficient Sparse Matrix Transpose

4.1. In-Place Transpose with Reduced Memory

4.1.1 Finding the old row indexr in ©(n) Space

The first problem (a) that needs to be addressed in order to reduce the space
complexity of the in-place sparse transpose is how to find the old_row_index
of each element in the matrix.

Consider the original CSR representation of the matrix M from Exam-
ple (1.1) shown again in Example (4.1). When performing the in place
transpose using the cycle-chasing technique (see Sections 3.5 and 4.2), on
a matrix in CSR format, at each jump{® in the cycle we know certain
information about the element at that position. We know the position of
the element: p, the value (non_zeros[p|) of the non zero element and we
know the column index (col_indexes|p]) of the element. This col_index will
become the new row_index of the element in M7. The information we are
missing which can not be looked up directly is the current old_row_index

of the element.

non_zeros

col_indexes

Il
= =1 -}

Il

row_ptrs

Example 4.1: Matrix M in CSR representation

As shown in Section 3.5 the Saad-IP (Algorithm 3.3), solves this problem
by expanding the old_row_ptrs[] array of size (n + 1) into an nnz length
array of row indexes (tmp_row_indezes|]) requiring an additional O (nnz)
of memory. As we have seen previously, this complexity can translate to
1,531 MiB of memory overhead. We wish to reduce that overhead.

Usually, when we are accessing the matrix by rows, we look up row
‘r’ in row_ptrs[] in order to find the start, ‘s’, and end, ‘¢’ index of the
row within the non_zeros|] and col_indexes|] arrays. However going the
other direction, starting with a random element ‘p’, in the non_zeros|] and

col_indexes[] arrays, and trying to find the row index of that element is

{2}When we move an element to another row we “jump” to that location in the matrix

Robert Crosbie, The University of Dublin, Trinity College 77

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

more difficult.

Our approach is to perform the in-place transpose using the row_ptrs||
array itself, without expanding row ptrs[] into the tmp_row_indexes||
array. This eliminates the ©(nnz) space requirement in memory overhead
and reduces it to ©(n). We propose a number of solutions to this problem

which are outlined in the following sections and chapters.

Our solutions to finding the old row_index in ©(n) space:
o Binary Range Search Lookup - Section 4.3
o Radix Table Lookup - Section 4.4
o Corresponding Row Table Lookup - Chapter 5

The Binary Range Search and Radix Table Lookup algorithms search
the old_row_ptrs[| array directly in order to reduce the memory overhead.
Although this search does come at an additional cost to the time complexity
of the algorithms, in practice the execution time of the Radix Table Lookup
algorithm is similar to that of Saad with some variation (see the performance
results in Section 4.4.5).

The Corresponding Row algorithm outlined in Chapter 5 uses an addi-
tional table of size ©(n) in order to look up the old row index in constant
O(1) amortized time in order to maintain the ©(nnz + n) runtime of the

in-place transpose.

4.1.2 Determine if an Element has Already Been Pro-
cessed
in ©(n) Space and ©(1) Time.

The second and third problems (b) and (c) that need to be addressed for
the ©(n) in-place sparse matrix transpose both relate to how to determine
whether or not an element has already been processed. By “processed” we
mean that we have either moved the element during a cycle-chasing chain

so it does not need to be moved again or we have scanned the element and

78 Space & Time Efficient Sparse Matrix Transpose

4.1. In-Place Transpose with Reduced Memory

found that it does not need to be moved. In either case, we know that
element does not need to be checked again.

As we iterate through the elements in the matrix using the cycle-chasing
algorithm (see Sections 3.5 and 4.2), we determine if each element is in
the correct row in the transposed matrix. If not, we move that element to
an area of the matrix arrays corresponding to the correct new row. We
continue to move elements in a cycle-chasing manner until the cycle ends.
We then continue scanning through the elements in subsequent rows to
ensure they are in the correct row. Problem (b) arises as we are scanning
through the elements in each row, at this point it is important to know
whether or not an element has already been processed /moved so that we
can skip over it or move it and start cycle-chasing. Problem (c) arises
when moving an element to another row, at this point it is important to
know which elements have already been processed/moved to that row so
that we can move the element to the location of the next “free” slot in that

TOW.

How Saad determines if an element has been processed

The Saad in-place Algorithm (3.3) solves problem (a) using the tmp_row_indexes|]
array. When the algorithm is processing an element, it reads its row index

from the tmp_row_inderes|] array and either moves the element if neces-

sary, starting a cycle, or leaves it in the current row. In both cases the
element’s col_index|] will be updated to contain the old_row_index that

was read. Once an element has been processed, the row index value in the
tmp_row_indexes[] array is no longer needed.

For problem (b), in order to indicate that an element has been processed
(moved or updated in place) the Saad algorithm sets a special value (in
this case -1) in the tmp_row_indexes|] array for that element. The Saad
algorithm can scan through the elements and skip those with a value of -1
in the tmp_row_indexes|] array.

The Saad algorithm solves problem (c) using the new_row_ptrs[] ar-

ray. The old_row_ptrs[] array is no longer needed after expanding it

Robert Crosbie, The University of Dublin, Trinity College 79

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

into the tmp_row_indexes[| array, thus it can reuse the old array as the
new_row_ptrs[] array. Thus the Saad algorithm requires that the length of
the row_ptrs[] array is maz(nrows, ncols). When the algorithm needs to
move an element to a new row it looks up the index of the start of that
row in the new_row_ptrs[| array and moves the element to that location.
It then increments that index in new_row_ptrs[] by one to indicate that
the next free slot in that row is the next position in the array. Thus when
Saad needs to move an element it can look up the location of the next free

position in each row in the new_row_ptrs|| array.

The Saad algorithm solves problems (a) and (b) in ©(nnz) space and
©(1) time, and solves problem (c) in ©(n) space and ©(1) time. We need
to solve both problems in ©(n) space and (1) time.

One possible method to record that an element has been processed in
order to solve problem (b) would be to create an additional data structure
such as a bit vector with one entry for each item. However, this would
require an additional ©(nnz) space, or nnz bits to be precise. Although
for most sparse matrices an additional nnz bits is probably not so very
large in comparison to the sparse matrix itself, the space overhead may
nonetheless be significant. Furthermore, an additional data structure of
O(nnz) is not very satisfying from an theoretical point of view, because

the overall space complexity of the algorithm will include an ©(nnz) term.

Another solution would be to store a flag in the entries of col_indexes|].
We cannot use a specific value, such as the —1 used by Saad, as this would
over-write the index value already stored there. Instead we could use a
high-order bit, or negate the column index value. If the column index is a
signed value, then negating the index to indicate a moved value will work.
But if the column index is not a signed value, then commandeering the
high order bit will reduce the range of column indices, and thus limit the
maximum matrix dimension by a factor of two. It is particularly for such

large matrices where we wish to have a memory efficient in-place transpose.

80 Space & Time Efficient Sparse Matrix Transpose

4.1. In-Place Transpose with Reduced Memory

Record that an element has been processed in ©O(n) space and
O(1) time

As we have seen, it is not possible to have a “processed” flag for each indi-
vidual element in the matrix as this would require ©(nnz) space. However,
having a flag for each individual element is not actually necessary, we just
need to be able to distinguish those elements which have been processed

from those that have not yet been processed.

Consider again how elements are processed and moved during the cycle-
chasing procedure. We process elements sequentially, row by row. When
we move an element we move it to the first “free slot” in the new row. This
means that all the processed and unprocessed elements will be contiguous
together in each row. The processed elements (if any) will be grouped
together at the start of the row and all the remaining unprocessed elements
will be grouped together towards the end of the row. Consequently, if
we record the start and end of the groups of processed and unprocessed
elements in each row we will be able to identify which elements have and

have not been processed.

As with the Out-of-Place and Saad-IP algorithms, in our ©(n) in-place
algorithm, we need to construct a new_row _ptrs|] array of size (n + 1) as
part of the transpose process in order to indicate the start of each new row
in the matrix. Unlike the Saad algorithm we do not have an nnz length
array of tmp_row_indezxes|] so we need to keep the old_row_ptrs[] array in
order to look up the row index to solve problem (a). Therefore we will

need to allocate a new array of size (n + 1) for the new_row_ptrs|[].

With the new_row_ptrs[] array we know the position of the start of
each row. This is also the position of the start of the group of processed
elements in the row. If we then store the position of the first unprocessed
element in each row in a second (n + 1) size array called row_offsets|] we
can then delimit the positions of the processed and unprocessed elements

in each row as follows:

Robert Crosbie, The University of Dublin, Trinity College 81

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

Elements in row i: new_row_ptrs|i new_row_ptrs[i+ 1] —1

[i] =
Processed in row i: new_row_ptrs[i] — row_offsets[i] —1
UnProcessed in row i: row_offsets[i] — new.rowptrs[i+1]—1
We can use these two arrays of size (n + 1) to solve both problems
() and (c) as follows. At the start of the algorithm, both arrays are
initialized to point to the start of each new row. The new_row_ptrs|] array
is not modified during the algorithm and always points to the start of the
row. When scanning through a row (‘7’), we scan through the unprocessed
elements starting at row_offsets[i]. If that element does not need to be
moved we update its col_indez[] entry and increment row_offsets[i] to
indicate it has been processed and to indicate the position of the next
unprocessed element. If the element needs to be moved to another row
(‘y’) we do not want to disturb elements that we have already moved to
row ‘y’ so we find the position of the first unprocessed element in the row
from row_offsets[y]. We move the element to that position, increment

row_offsets[] and continue chasing the element we just took out of row y.

All look ups and updates take constant ©(1) time. Thus, using these
two arrays of size (n + 1) we have solved problems (b) and (c¢) in ©O(n)
space and O(1) time. It would be preferable to reduce the need for two
additional arrays, however for the matrices in the test suite which have
more than 65,536 non-zero elements, it is not possible to combine the
two arrays. Both arrays are required, the row offsets[]| array needs to
be incremented to keep track of the first free slot in each row and the
elements that have already been moved. The new_row_ptrs|] array needs
to remain unchanged in order to keep track of the start of each row. Thus,
the minimum overhead that we can perform the in-place sparse matrix

transpose is ~(2n) additional memory.

In the next section we show our generic ©(n) in-place sparse matrix
transpose algorithm which incorporates our solutions to the three problems

that need to be solved to reduce the memory overhead from ©(nnz) to

82 Space & Time Efficient Sparse Matrix Transpose

4.2. Generic In-Place Sparse Transpose

O(n).

4.2 Generic In-Place Sparse Transpose

Algorithm 4.1 shows our new, Generic ©(n) In-Place Cycle-Chasing Sparse
Transpose algorithm which demonstrates our solutions to the three problems
of transposing a matrix in-place in ©(n) memory overhead as discussed in
Section 4.1. This Generic Transpose is the basic template which we will
base our in-place transpose algorithms on.

Our Generic Algorithm performs the cycle-chasing transpose in a similar
manner to Saad-IP as outlined in Algorithm 3.3 in that it performs the same
cycle-chasing element movements. The algorithm demonstrates how we use
the new_row_ptrs[] and row_offsets[] arrays discussed in Section 4.1.2 to
mark and skip over elements which have already been processed/moved.

The basic procedure of Algorithm 4.1 is: Lines (18-19) - Loop through
each new row and each (unmoved) element in that new row. Lines (21-23)
— copy that element into “sr¢”. Lines (26-31) — find the destination of
the element in “sr¢” and copy the element at that destination into “dst”.
Lines (33-34) — copy element in “src¢” to the destination. Lines (36-38) -
copy element “dst” into “src¢”. Line (24) — keep cycle chasing the element
in “sr¢” until the end of the cycle is reached.

The Generic In-Place algorithm calls two external routines in order to
find the row_index of the element, problem (a) outlined in Section 4.1.1.
It is these external routines which will change in the forthcoming trans-
pose algorithms. The first is on Line (16), initialize lookup table().
This placeholder calls a routine which initializes additional lookup ta-
bles, if any are required to perform the row_index lookup. The second
is on Lines (23 and 31), lookup row_index (). This placeholder calls a
routine which looks up the row_indexr using the current position in the
non_zeros|] and col_inderes|] arrays as a key. The lookup_row_index ()
procedure potentially uses other data structures initialized earlier with
initialize lookup table().

The two algorithms take different arguments depending on how they

Robert Crosbie, The University of Dublin, Trinity College 83

17
18
19
20
21
22
23
24

26
27

29
30
31

33
34

36
37
38
39
40
41
42
43
44
45
46
a7

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALGORITHM 4.1: Generic O(n) In-Place Sparse Transpose w/ Row Index
Lookup

Input: Matrix M as in Data Structure 3.1
Output: Matrix M containing M7 in CSR, with: new_row ptrs[] - new row pointers

[cols+1]
* Allocate Arrays Initialized to Zero *
Allocate: new_row_ptrs[new_nrows + 1]; Allocate: row_offsets[new_nrowsl;
* Count number of elements in each new column - offset by 1 *

for (0 < wndex < nnz)do
col + col_indexes[index];
if (col < (newnrows—1)) then
| new_row_ptrs|col + 1] « new_row_ptrs|col + 1] + 1;
end
end

* Cumulative sum to get new_row_ptrs
for (1 < row < new.nrows) do
new_row_ptrs[row| < new_row_ptrs[row| + new_row_ptrs[row — 1J;
row_offsets[row| « new_row_ptrs[row) ; * Copy to row_offsets
end

* Initialize Lookup Table (if required) *
initialize lookup table ()

* Loop through each ‘new row’ *

for (0 < row < new.nrows) do

for (row-offsets[row] < x < new_row_ptrs[row + 1]) do
* Take out element

src_nz « non_zeros(z|;

sre_col « col_indexes|x];

src_row < lookup row_index(x);

while (src_col # row) do

* While element in ‘sr¢” does not belong in original ‘row’ Cvycle Chase element in
‘src’ *
dst_row < src_col,;
dst_z < row_offsets|dst_rowl; * ‘sr¢” should be at position ‘dst_x" in
‘dst_row’ *

* Take out the element at “dst_x’
dst_nz < non_zeros|dst_z|;
dst_col + col_indexes|dst_z];
dst_row « lookup_row_index(dst_r);

* Put the element we are chasing ‘src’ into destination slot ‘dst_x")
non_zeros|dst_z| « src.nz;
col_indexes|dst_z] « src_row;
* Put the element in ‘dst’ in ‘src¢’ so we can chase it next
srenz — dst_nz;
src_col < dst_col;
sre_row < dst_row;

/* Increment row_offsets|
row_offsets(dst_row| < row_offsets[dst_row] + 1;

end

* Put ‘sr¢’ into original position ‘x’ in the ‘row’ we started with
col_indexes|x] + src_row;
non_zeros(z| < srcnz;

84 Space & Time Efficient Sparse Matrix Transpose

end
Free: M —row _ptrs; M —row_ptrs « new_row_ptrs; Free: row_offsets:;

end

4.3. In-Place Transpose with Binary Range Search

build the lookup tables and perform the lookup. The 1ookup row_index ()
routine takes as arguments; x on line 23 and dst_x on line 31. These are
the positions in the matrix of the elements whose old_row_index needs to
be looked up.

The following sections discuss how we can construct data-structures
which are used by these routines in the Generic Transpose to improve on

the space and time complexity of the Sparse In-Place Transpose.

4.3 In-Place Transpose with Binary Range

Search

One option to find the row_index in the row_ptrs|] array is to scan through
the array looking for the row where index ‘p’ (the position of the element
in the nnz arrays) falls between the start ‘s’ and end ‘e’ of that row. This
would however take O(n) time and would potentially need to be done for
every row index lookup for each of the nnz elements we move, which would
be completely infeasible.
A better alternative is to use a technique similar to Binary Search[Knuth 98]

we can search the row_ptrs[] array in ©(log(n)) time in order to find ‘z’,

the row_index of the element at index ‘p’.

4.3.1 Binary Range Search

Our modified binary search algorithm, Binary Range Search, shown in
Algorithm 4.2, is similar to the standard binary search in that it repeatedly
bisects the array to find the location of the key. Unlike the standard
technique where one searches for key/value pairs which may or may not
be in the array, all the keys which we may search for (0 < p < nnz) are
“covered” in the row_ptrs[] array. We are looking for the position (index) in
the row_ptrs|[] array which covers the range in which that key value falls.
For instance, in the row_ptrs|] array in Example (4.1), if we binary search

for 10, the routine should return 4, given that:

Robert Crosbie, The University of Dublin, Trinity College 85

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALGORITHM 4.2: Index Lookup using Binary Range Search Algorithm

Input: old_row_ptrs[], old_nrows, key
Output: row_index

* Drop to sequential search when array length (high — low) < 20 *
LIMIT « 20;
* Binary search array between ‘low™ and “high’ *
low « 0;
high « (old_nrows — 1);
* While array longer than 'LIMIT" *
while ((high — low) > LIMIT) do

mid + (low + high)/2;
if (key < old_row_ptrsimid]) then
| high < mid — 1,
end
else
| low + mid,
end
end
* Drop to sequential scan at ‘LIMIT’ - scanning upwards from ‘low™ *
while (key > old_row_ptrs[low]) do

1 low « low + 1;
end
return(low — 1)'. * index is 1 below first element greater than ‘key™ *

row_ptrs[4](8) < 10 < row_ptrs[4 + 1](12)

The modified binary range search shown in Algorithm 4.2 uses the
bisecting technique to find the location ‘z’ of the key in the row_ptrs|]
array such that row_ptrs[z] < key < row_ptrs[z + 1]. The location
‘z’ is then returned as the row_index of the element we are looking for.
For efficiency, the algorithm drops to a sequential scan below a certain
LimIT. This is in order to improve branch prediction. Sequential search
causes O(1) branch mispredictions whereas binary search causes O(log(n))
branch mispredictions. Thus for smaller values of n, sequential search
is usually faster [Uht 97, Brodal 05, Kaligosi 06, Biggar 08b]. A range of
values for LimiT were were tested; 4, 8,16, 20, 32, etc. Here we have chosen
an array length of 20 for LimiT as it gave a good average performance in our

environment over a number of sample inputs — other values may prove more

86 Space & Time Efficient Sparse Matrix Transpose

4.3. In-Place Transpose with Binary Range Search

efficient on other platforms. The best choice for LimiT was not investigated
in detail as the focus of the work was on the transpose algorithm rather than
search optimisation. Improving this parameter would have little impact on
the overall performance of the Binary Range Search Transpose as the key

lookup is O(log(n)) while we require O(1).

4.3.2 Cycle-Chasing Transpose with Binary Range

Search

Algorithm 4.3 shows the in-place cycle chasing sparse matrix transpose
with Binary Range Search. This algorithm is a modification of our Generic
in-place transpose algorithm (4.1) for use with the Binary Range Search
(Algorithm 4.2).

The Cycle Chasing Binary Range Search Transpose Algorithm (4.3)
simply calls the binary range search() algorithm on lines (21 and 29).
The binary search algorithm does not require any table initialization
as it searches the row_ptrs[| array directly. The only arguments re-
quired by binary range search() are the old_row ptrs|] array, the length
(old nrows) of the array and the ‘key = p’ we are searching for. The
range search algorithm (4.2) will always return a row index between 0 and
old_nrows for any key: 0 < key < mnnz. The algorithms presented here
assume that the matrix is correct and valid. Input validation could be
included in practice but should be separate from the transpose algorithm
for efficiency.

Applying the binary range search technique to the cycle chasing algo-
rithm results in the same row_index values as obtained from the expanded
tmp_row_indexes|] in the Saad-IP algorithm. Hence the transpose with
binary range search (Algorithms 4.3 and 4.2) and Saad-IP (Algorithm 3.3),
perform the transpose operation using the exact same cycle chasing trans-
formations.

The Binary Range Search Transpose requires a total of two additional
arrays (new_row_ptrs[] and row_offsets[] mentioned earlier) of size ©(n),

which gives a total memory complexity of ~(2n) in order to perform the

Robert Crosbie, The University of Dublin, Trinity College 87

18
19
20
21
22

24
25

26
27
28
29
30
31
32

34
35
36

38
39

41
42
43
44
45

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALGORITHM 4.3: Sparse Transpose with Binary Row Index Range Search

Input: Matrix M as in Data Structure 3.1
Output: Matrix M containing M7 in CSR, with: new_row_ptrs|] - new row pointers

[cols+1]
* Allocate Arrays Initialized to Zero *
Allocate: new_row_ptrsinew nrows + 1J; Allocate: row_offsets[new_nrows|;
* Count number of elements in each new column - offset by 1 *

for (0 < indexr < nnz)do
col + col_indezes[index];
if (col < (nrows—1)) then
| new_row_ptrs[col + 1] « new_row_ptrs|col + 1] + 1:
end
end

* Cumulative sum to get new_row _ptrs
for (0 < row < nrows) do
new_row_ptrs[row| < new_row_ptrs[row| + new_row_ptrs[row — 1J;
row_offsetsrow| « new_row_ptrsrow] ; * Copy to row_offsets
end

* Loop through each ‘new row’
for (0 < row < new_nrows) do
for (row_offsets[row] < z < new_row_ptrsjrow + 1]) do
* Take out element
src.nz + non_zeros(zl;
src_col « col_indexes|x];
src_row ¢ binary range _search(old_row_ptrs||,old-nrows,x);
while (src_col # row) do

* While element in ‘sr¢’ does not belong in original ‘row’ ('yele Chase element in
ol
dst_row « src_col,
dst_r « row_offsets[dst_row]; * ‘src’ should be at position ‘dst x" in
‘dst_row” *

* Take out the element at “dst_x’

dst_nz < non_zeros|dst _z;
dst_col + col_indexes|dst_x|;
dst_row < binary range _search(old_row_ptrs||, old_nrows, dst_x);

* Put the element we are chasing ‘sr¢’ into destination slot ‘dst_x")
non_zeros(dst_t] < srcnz;
col_indexes|dst_z| « src_row;

* Put the element in ‘dst’ in ‘src’ so we can chase it next
srenz < dst_nz;
src_col « dst_col;
Src_row < dSt_T'OU':

* Increment row _offsets
row_offsets(dst_row] « row_offsets|dst_row| + 1;

end

* Put ‘src¢’ into original position ‘x” in the ‘row’” we started with
col_indexes|x] + src_row;
non_zeros[z] « srcnz;

end
Free: M—row_ptrs; M—row_ptrs <+ new_row_ptrs; Free: row_offsets;

@gld Space & Time Efficient Sparse Matrix Transpose

4.3. In-Place Transpose with Binary Range Search

transpose. Even with this extra storage requirement the binary search
variant only exhibits asymptotic space complexity of ©(n) compared to the
O(nnz) required by Saad-IP, which can be a significant saving. This space
saving does however come at a cost of an additional ©(log(n)) overhead in
time complexity for every row index lookup, which occurs at every jump in
the cycle, giving us a total time complexity of ©(nnz. log(n)).

There are a number of techniques and algorithms which could be used
as improvements to the binary search. We could possibly use some type
of Binary Tree[And 62], BTree [Bayer 70, Comer 79] or Trie [Willard 84,
Sinha 04] to reduce the lookup time. However these techniques would
require additional structures in addition to the row_ptrs[| array and may
not be suitable for the “search modification” which we require (for all keys
0 < key < nnz return the row in which the key falls). In addition,
these techniques still have an asymptotic time complexity greater than the
direct lookup of Saad-IP (Algorithm 3.3). Hashing techniques [Knott 75
can considerably improve key lookup time however, hashes generally do

not maintain the order of the keys, which is a feature we require.

4.3.3 Memory Overhead of in-place Sparse Matrix
Transpose with Binary Range Search

The memory usage of the Binary Range Search Transpose (Algorithm 4.3)
compared to that of Saad (Algorithm 3.3) is shown in Figure 4.1. The
Transpose with Binary Range Search algorithm clearly requires less memory
overhead for all input matrices and indeed requires considerably less for a
majority of matrices.

On average, the in-place transpose with Binary Range Search requires
a memory overhead of just 14% of that of Saad, with the majority of the
input matrices requiring even less than this. A handful of matrices in
the test suite have a very low sparsity pattern with very low numbers of
non zero elements in each row. This means that the number of rows (n) for
these few matrices is much closer in size to the number of non_zeros (nnz).

These handful of matrices pull up the average relative overhead overall as

Robert Crosbie, The University of Dublin, Trinity College 89

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

Binary Search vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

- T T T T T T
Legend
Saad-IP
125 H Binary Search * HE 4
Average: 14.0%
a
°
3
%] 1 D0 H S0 A BRONOCH—S———
2
°
@
2
S ot R R
2
o]
g
€
< ¥
2 05 F» S - a * * S 4
< .
&
s ¥
(]
@ " X ¥
0.25 iy o R ¥ e * + . 4

X . . X x * o ¥ e .;’a. e

% X K 5K ok K e SEF *x x * * S T

Tt e, B a5 it By % 1} Ko K X R s, ¥ 1 X |

im 1.5m 2m 4m 8m 16m 50m 150 m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 4.1: Memory overhead of the Binary Range Search transpose algorithm
compared to the Saad-IP algorithm. The new algorithm requires considerably less

memory than Saad, just 14% on average with most inputs requiring even less.

the reduced ©(n) space complexity is less beneficial for these matrices.

4.3.4 Algorithm Execution Time of in-place Sparse

Matrix Transpose with Binary Range Search

Figure 4.2 shows the execution time of the Binary Range Search algorithm
compared to the execution time of Saad. The Binary Search algorithm
performs rather poorly compared to Saad, taking over twice as long as
Saad on average to transpose the matrices in the test suite. The additional
O(log(n)) complexity added to every row index lookup, pushing the time
complexity to ©(nnz . log(n)) overall causes the execution time performance
to deteriorate drastically.

The Binary Range Search Transpose Algorithm is the in-place transpose
algorithm with the minimum memory overhead (without modifying the
matrix structure) that we can have. It uses just 14% of the memory
overhead of Saad. The increase in time complexity is very costly. This

runtime may be an acceptable trade-off in very isolated instances if sufficient

90 Space & Time Efficient Sparse Matrix Transpose

4.4. In-Place Sparse Transpose with Radix Lookup Table

Binary Search vs. Saad-IP - - (Serial) Execution Time of Transpose [Relative]

T T T T T T T
55 H Legend i |
Saad-IP i o
5 H Binary Search =+ . 18 i
Average: 212.2%
45+ + Y
T 47 T 1
2
a 35} = E =4
]
& x
2 3+ e =l
[} *
£ s g : " T '
= .5 | o & -
* F 3
2 X N ¥ X *
E L - . » " . % - x ~
&= XK R R B g Xk KR * X X 7 Xk X
o X R X ¥ T £ x ¥ % £ ToxX * il
3) X R RORE R . 5
B R L
05 £} H
1 1 1 1 A 1 1
im 15m 2m 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 4.2: Algorithm Execution Time of Binary Range Search Transpose relative
to the Saad algorithm. The Binary Range Search algorithm is clearly slower with the

O(nnz.log(n)) time complexity apparent.

memory is not available to use the Saad algorithm.
The next section describes an algorithm that uses slightly more addi-
tional memory to reduce this runtime overhead while maintaining the ©(n)

space complexity in memory overhead.

4.4 In-Place Sparse Matrix Transpose with
Radix Lookup Table

One technique which can improve the runtime performance of the binary
search transpose algorithm is to use a radix lookup table to give a shortcut
index into the row_ptrs[] array. The ©O(log(n)) binary searches of the
row_ptrs[| array can be reduced, or in many cases avoided using this
shortcut. Although using the radix table does not help asymptotically
(there is still a non constant lookup time in the worst case), in practice the
lookup table exhibits a much faster runtime than the basic binary search.

We build a radix lookup table (an associative array) indexing into

Robert Crosbie, The University of Dublin, Trinity College 91

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

row_ptrs|]. For each key ‘p’ (Where: 0 < p < nnz) we right shift the key
by radiz_offset bits and thus the most significant ‘k’ bits of the key ‘p’ are
used as indices into the radix table. In turn, the values in the radix table
provide us with the index into row_ptrs|] which is (ideally) the index of, or
index just below, the row_index we are looking for. As such, with a single
lookup, the radix table gives us a shortcut into the row_ptrs[] array at a

position close to the key we are searching for.

4.4.1 Building the Radix Table

Algorithm 4.4 shows the build_radix () algorithm which is used to initialize
the radix lookup table.

Although the keys that will be searched for in the radix table are
in the range 0 < key < nnz we do not want to have a lookup table
that is proportional to ©(nnz). We want to keep our memory overhead
proportional to ©(n). In order to facilitate this we create a radix table
proportional to ©(n) by creating a radix table of size: the power of 2 just

less than or equal to n. i.e.
table_size = 2llog2n]

We choose a radiz_offset by which to shift the keys such that they fit in
the range:

0 < (key >> radixz_offset) < table_size

This has the disadvantage that a small proportion of the radiz_table may

be left empty. In retrospect, using:
radix_table_size = nnz >> radix_offset

where the offset is chosen to give a table size proportional to ©(n) would
have given a more appropriate table size.
Using a table size of ©(n) maintains the total space complexity of ©(n),

however it increases the memory overhead by 50% over the Binary Range

92 Space & Time Efficient Sparse Matrix Transpose

4.4. In-Place Sparse Transpose with Radix Lookup Table

Search Transpose. It is also valuable to know if using smaller table sizes

proportional to 3, 7 or ¢ would be of benefit to performance. Thus the
build radix () algorithm (4.4) also takes a len_mod parameter which adds
to or subtracts from the power-of-two of the size of the radix table. Hence

halving or doubling the size of the table each time as appropriate.

Take, for example a matrix with n = 321,826 rows; |log2(321,826) | = 18
and 2'® = 262,144, therefore for this matrix a radix table size of 262,144
is ©(n). Similarly, using the “len_mod” parameter we could choose radix
table sizes proportional to the number of rows, n, for this 321,826 row

matrix as follows:

llogan] =2 — ~(n/h) = 216 = 65,536
llogan] —1 — ~(np) = 217 = 131,072
llogan] +0 — ~(n) = 2 262,144
llogon] +1 — ~(2n) = 29 = 524,288
llogan] +2 — ~(4n) = 22 = 1,048,576

The algorithm first (lines 3-5) determines the number of bits required to
store the largest row_indexr and the largest non—zero array index. Using
these, along with the len_mod radix size modifier, the algorithm determines
(lines 7-20) the parameters for the radix table: radix_len — the size of the
radix table in bits, radix_size — the size of the radix table in bytes and
radix_offset — the offset in bits that keys will be shifted. The radix table
is built (lines 24-29) by scanning backwards through the old_row ptrs|]
array, each of the radix keys are generated by right shifting the pointer
index from the row_ptrs[] array by radix_offset bits. The table is filled in
reverse so that it contains the first index in row_ptrs[]| which produces the
radix key k. Lines 31-35 then scan forward through the radix table to fill

in any holes that may be present.

As we scan backwards through the row_ptrs|] array we fill the radix
table with the values (5, 4,2, 0) corresponding to rows (5,4, 2, 0) respectively.

This gives the radix table as shows in Example 4.3.

Robert Crosbie, The University of Dublin, Trinity College 93

U

© o =\ o

10
11
12
13
14
15
16
17
18

19

23
24
25
26
27
28
29
30
31
32
33

34

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALGORITHM 4.4: Build Radix Lookup Table

Input: old_nrows, old_row_ptrs|], len-mod
Output: radiz_table[], radiz_offset

* Determine size of radix table and offset
row_bits « log2(old_nrows);
nz_bits < log2(old_row_ptrs|old_nrows));
diff-bits «+ (nz_bits — row_bits);

* Change exponent of 2 by len_mod for radix length of ~ 2k—len-mod (here p ~ 2k *
Chany t of 2 by | 1 for radix length of ~ 2*

if ((row_bits + len-mod) < 0) then
radir_offset — nz_bits; * Size of radix table would be too small *
radiz_len < 1;
end
else
if (diffbits < len_mod) then
radir_offset «— 0 * Size of radix offset would be too big *
radixz_len < (nz_bits + 1);
end
else
radiz_offset < (diff-bits — len_-mod);
radiz_len « (row_bits + 1 + len_mod);
end
end
* Allocate table */
Allocate: radiz_table|radiz_size + 1];

* Fill radix table in reverse so the table contains the lowest row_ptrs[] ‘index’ corresponding to ‘key

for (old-nrows > i > 0) do
key < old_row_ptrs[i] >> radiz_offset;
radiz_tablelkey] « i;
end
radiz_table[0] < 0;
radiz_table[radixz_size + 1] « (old_nrows — 1);
* Fill in holes in the radix table - Scan and replace zero with previous index *
for (1 < i < radiz_size) do
if (radiz_table[i] = 0) then
| radiz_tableli] < radiz_table[i — 1];
end
end

4.4.2 Radix Table Lookup

The lookup_row_index() routine for the radix table lookup is shown in
Algorithm 4.5. Firstly, the key is right shifted by radix_offset bits in order

to lookup the radix table and get the shortcut index, ‘7', into the row_ptrs||

94 Space & Time Efficient Sparse Matrix Transpose

4.4. In-Place Sparse Transpose with Radix Lookup Table

Taking our running example from Examples 1.1 and 4.1, the radix table is
built as follows:

Row: 5 — 12> 2 =3 — radiz[3] «5
Row:4 — 10> 2 =2 — radiz]2] + 4
Row:2 — 5> 2 =1 — radiz[l] + 2
Row:0 —- 0> 2 =0 — radiz[0)] «0

Example 4.2: Building the Radix Table (in reverse)

Il
(=)
S
oo
)
N
D
(%)
=

radix_table

oldrowptrs = 09 2; 5, 73 104 125 15

Example 4.3: Radix Table for Matrix M

ALGORITHM 4.5: Index Lookup using a Radix Lookup Table

Input: radiz_table, radiz_offset, old_row_ptrs[], key
Output: row_index
x « (key >> radix_offset);
i « radiz_table|z];
while (key > old_row_ptrs[i]) do
| iei+1;

L= I N N

L -

end

/* Key is at old_row_ptrs|] at index i or greater */
return (i —1);

array. Taking this shortcut, the algorithm then starts scanning through
the row_ptrs[] array from that position, ‘7", until it finds a value greater
than key. The row_index is the index just before this first location in the
array where row _ptrs|i] > key, hence we return the value (i — 1) as the
row_index.

Example (4.3), shows the radix table (radiz_table[]) indexing into
the row_ptrs[] array for our running example matrix M from Exam-
ples (1.1 and 4.1). Suppose we are given a key p = 6 and we want to
look up the row index in the old_row_ptrs[] array. We first right-shift ‘p’
by radiz_offset, in this case radix_offset = 2, which gives us i = 1, the

index into radiz_table. Next, radiz_table[i = 1] = 2 gives us the index into

Robert Crosbie, The University of Dublin, Trinity College 95

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

the row ptrs[] array which is below the row_indexr we are searching for.
We start scanning through the array from row_ptrs[i = 2] = 5. The next
location is row ptrsli = 3] = 7, this is > key = 6 hence we stop scanning
and return (¢ — 1) = (3 — 2) = (2) which is the row_index of the element

at location 6.

4.4.3 Cycle Chasing Transpose with Radix Table Lookup

The Cycle Chasing Transpose with Radix Table Lookup (Algorithm 4.6)
is similar to the Generic in-place algorithm (4.1). There is a call to
build radix table() (Algorithm 4.4) on line 16 to build the radix ta-
ble, which passes as arguments old_nrows, old_row_ptrs[| and len_mod.
This returns the radiz_table[] and radiz_offset. On lines 23 and 31 the
radiz_table|] is used to lookup the row index by calling radix lookup () (Al-
gorithm 4.5) with parameters; radiz_table|], radiz_offset, old_row_ptrs|]
and x as the lookup key on line 23 and dst_r as the key on line 31.
Similar to the binary search, the radix search needs two O(n) sized ar-
rays for storing the new_row_ptrs[| and row_offsets|] indices. It also needs
a radiz_table[] which is of similar size to the row_ptrs[] array: our experi-
ments have shown that a radix table of size about /2 gives a good trade-off
between memory overhead and performance (see Sections 4.4.4 and 4.4.5).
The Radix Table approach requires slightly more memory than binary
search (roughly ~(2n + n/2) for Radix compared to ~(2n) for Binary)
however the asymptotic space complexity is still of order ©(n).
Technically the Radix Table lookup algorithm could have a worst case
performance of O(n) for matrices which are particularly degenerate, which
is actually a worse complexity than the Binary Range Search method.
However, in practice the Radix Lookup technique performs much better
than the Binary Search method as can be seen from Figure 4.3 below.
The number of elements scanned during lookups when transposing each
matrix with a radix table size of %2 were counted and averaged. The input
matrix with the highest average scan length had an average scan length of

2.46 elements, all other matrices had lower averages. This means that most

96 Space & Time Efficient Sparse Matrix Transpose

39
40

41

42
43
44
45
46

47

4.4. In-Place Sparse Transpose with Radix Lookup Table

ALGORITHM 4.6: Sparse Transpose with Radix Table Row Index Lookup

Input: Matrix M as in Data Structure 3.1
Output: Matrix M containing M7 in CSR, with: new_row_ptrs|] - new row pointers

* A
Allo

[cols+1]

llocate Arrays — Initialized to Zero *
cate: new_row_ptrs[new nrows + 1J; Allocate: row_offsets[new_nrows;

* Count number of elements in each new column - offset by 1 *

for

end
o
for

end

(0 < index < nnz) do
col + col_indezes[index];
if (col < (nrows—1)) then
| new_row_ptrs|col + 1] « new_row_ptrs[col + 1] + 1;
end

umulative sum to get new_row_ptrs|| *

(0 < row < nrows) do

new_row_ptrs[row| < new_row_ptrs[row| + new_row_ptrs[row — 1J;
row_offsets[row| < new_row_ptrs(row| ; * Copy to row offsets|] *

* Initialize Radix Lookup Table *
(radiz_table[], radiz_offset) «
build radix_table(old-nrows,old_row _ptrs|],len-mod)

»op through each ‘new row’ *

for (0 < row < new_nrows) do
for (row_offsetsrow| < x < new_row_ptrs[row + 1]) do
* Take out element
srcnz < non_zeros|z);
sre_col « col_inderes|r];
sre_row < radix_lookup(radix_table|], radixz_offset, old_row_ptrs|], z);
while (src.col # row) do
* While element in ‘sr¢’ does not belong in original ‘row’ Cyele Chase element in
TST(
dst_row « src_col;
dst_z « row_offsets[dst_row); * ‘sre’ should be at position *dst_x" in
‘dst_row’” *
¥ Take out the element at ‘dst_x’
dst_nz < non_zeros|dst _z;
dst_col « col_indexes|dst_z|;
dst_row «
radix_lookup(radiz_table|], radiz_offset, old_row ptrs(|,dst_x);
* Put the element we are chasing ‘src¢’ into destination slot “dst_x")
non_zeros|dst_x| « src.nz;
col_indexes|dst_z| « src_row;
* Put the element in “dst’ in ‘sr¢’” so we can chase it next
srenz < dst_nz;
src_col + dst_col,
sre_row « dst_row;
* Increment row_offsets
row_offsets|dst_row] < row_offsets[dst_row] + 1;
end
* Put ‘sr¢’ into original position ‘x” in the ‘row’ we started with
col_inderes|x] < src_row;
Robert Croshie; dhos{miversiycofBublin, Trinity College 97
end
Free: M —row ptrs; M —row_ptrs < new_row_ptrs; Free: row_offsets;
end

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

keys were found after scanning 3 elements or less, which are likely to all be
read in together in a single cache line. When the algorithm accesses the
first element, in the majority of cases the elements following that element
in the arrays will also be brought into the cache. Certainly in the majority
of cases all these lookup scans will be completed by just reading a single
cache line from memory.

It would be possible to use a binary search instead of the sequential
scan in the radix lookup. This would give a guaranteed worse case lookup
of O(log(n)). However this would introduce more branches and random
array look ups into the algorithm and in practice the (short) sequential
scan performs better.

Hence, with the radix lookup we do not have a good worst case perfor-
mance complexity, however for the general case, and for the matrices in our

experiments, the radix lookup performs very well with a memory overhead

of just O(n).

4.4.4 Memory Usage of Radix Lookup Table Trans-

pose

The memory usage of the Radix Lookup Transpose (Algorithm 4.6) com-
pared to that of Saad (Algorithm 3.3) is shown in Figure 4.3. The graph
shows the memory usage of the Radix Table Lookup Transpose with a
radix table of size "/2. The algorithm requires less memory overhead for
all input matrices and indeed requires considerably less for a majority of
matrices. On average the Radix Table n/2 Transpose requires just 16%
of the memory overhead of Saad. Comparing to Figure 4.1 shows that
the Radix Table Lookup algorithm requires roughly 25% more additional
memory than Binary Range Search.

For the graph in Figure 4.3 we have chose a Radix Table size of /2 as
this table size was shown from experimentation to give a good trade-off
between memory overhead and runtime performance. Figures 4.4 and 4.5
show the memory usage of the Transpose with Radix Table Lookup with

table sizes "/16, "/s, "/4, n, 2n, 4n, 8n and 16n. For the smaller table sizes,

98 Space & Time Efficient Sparse Matrix Transpose

4.4. In-Place Sparse Transpose with Radix Lookup Table

Radix Table n/2 vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

I T T T T T
Legend
Saad-IP
1.25 H Radix Table n/2 o 4
Average: 16.3%

a
°
3

» M e e L o = b : I PRI — o —————]
]
R
°
@
Q

$ o7t 1 J
>
¢}
o
o
§

= 05 i o
o
2
=
[
4

0.25 i = i

= i aia o S Ay
e 5 (R g L B o i = | |
im 1.5m 2m 4m 8m 16m 50m 150 m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 4.3: Memory overhead of the (7/2) Radix Table Lookup transpose algorithm
compared to the Saad-IP algorithm. The Radix Table algorithm requires considerably
less memory than Saad with an average of 16% of Saad. Most inputs require even less
than this.

n/16 and /s the memory usage is very close to that of the Binary Range
Search Transpose. As the table size increases, the memory overhead for
some of the matrices starts to approach (and surpass) the memory required
for Saad. For the larger table sizes, 4n, 8n and 16n, the overhead for some

of the input matrices starts becoming considerably larger than Saad.

4.4.5 Execution Time of Radix Lookup Table Trans-

pose

Figure 4.6 shows the execution time of the Radix Search (7/2) algorithm
compared to the execution time of Saad. The Radix Search algorithm
shows runtime results which are comparable with Saad. These results are
with memory overheads that are asymptotically less (©(n) vs. ©(nnz))
than Saad and much less in practice for most inputs, 16% on average.
With a table size of about "/2 the average runtime of the radix table

compared to Saad is 98.6% of the runtime of Saad for the 259 matrices in

Robert Crosbie, The University of Dublin, Trinity College 99

001

asodsuea], xujey asredg juatoyyy auwl], 73 9oedg

Relative Memory Overhead (vs. Saad-IP)

Relative Memory Overhead (vs. Saad-IP)

1.5
14
1.3
12

0.9
08
0.7
0.6
0.5
04
03

15
14
13
12

09
08
0.7
0.6
05
0.4
03
0.2

Radix Table n/16 vs. Saad-IP - - Memory Overhead of Aigorithm [Relative]

nggnd T T T T T
i Saad-IP “F 1
H Radix Table n/16 [£ ot
L Average: 14.3%

& ” , Im} - B
Na} 3 i h gL 1
< L] oTg 4
A S WL R 5 | e A .
s fog ©

B8 HF Sog o IS o, o,

4m 8m 16m 50m 150 m 400 m

(a) Memory Radix Table

Matrix Size (million nnz) <LOG scale>

n

1

- Average: 14%

Radix Table n/4 vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

Tegend

Saad-IP
Radix Table n/4
Average: 15.1%

T

B = 4 1
L 4 2
L + §
L . 5 i)
o B gridhm R TR, d
LI g™ o 18} . .
1.5m 2m 4m 8m 16m 50m 150m 400 m

(¢) Memory Radix Table

Matrix Size (million nnz) <LOG scale>

n

4

- Average: 15%

Relative Memory Overhead (vs. Saad-IP)

Relative Memory Overhead (vs. Saad-IP)

Radix Table n/8 vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

15 I I T T T T T
Legend
L Saad-IP T 1
1.3 H Radix Table n/8 4 4
12 Average: 14.6% | |
0 + -
1F e IO
09 + R
08 | + R
07} + "
06 + g
05 | + B
04 L . (8] b
03 }- + o
02 + B
01 F s - I T3
y Ll e "] Y Lk
o Lot HEY Ul el H Sl il L s
im 15m 2m 4am 8m 16m 50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(b) Memory Radix Table § - Average: 15%
Radix Table n vs. Saad-IP - - Memory Overhead of Algorithm [Relative]
15 s T T = T
14 H s + J
Saad-IP
13 H Radix Table n i 4
12| Average: 18.6% 1 R
11} + 4
1 XN il SIS L
09 F + E
08 + -+ ~
07} o E
06 + R
05 5 TD 1
04 + + -3
03+ 2 5 =
02 ke al ! o -
0.1 '=h<'i§ a I 1 (] ::Er t]” z 7
e o Qo &0 3 ;
0 i 5 B AT " BU8 On ity] i .
im 1.5m 2m 4m 8m 16m 50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(d) Memory Radix Table n - Average: 19%

Figure 4.4: Memory Usage of Radix Table Sizes: ¢, ¢, 7, n

osodsuely, xuyepy osredg 20 J-uy Juotoyysy ooedg § 1e3dey))

a8a[[0)) ANULL], ‘uIqN(] JO AJSIGATU[) Y], ‘DIGSOI]) J12OY

101

Relative Memory Overhead (vs. Saad-IP)

Relative Memory Overhead (vs. Saad-IP)

1.5
14
13

12

09
0.8
0.7
0.6
05
0.4
0.3
0.2
0.1

35

25

05

Radix Table 2n vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

L T T T T T

Legend 4
1 Saad-IP T
- Radix Table 2n E B

Average: 23.3% 4
e o L o
L 4 4
L 0 4 4
| & it 8} 1 k 0 T.Ha 2l
- f;@ o 'g_,“: B0 Imh‘ s 1
il B S - T og, i c I
im 1.5m 2m 8m 16m 50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(a) Memory Radix Table 2n - Average: 23%
Radix Table 8n vs. Saad-IP - - Memory Overhead of Algorithm [Relative]
= T T T T
Legend
Saad-IP
I Radix Table 8n £ A
Average: 51.2%
s}
oo e i e e
& - B o ; - . ot
Elﬁf _'U I I By < i D

i ok (1= s = v £ a L g L L
im 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

(¢) Memory Radix Table 8n - Average: 51%

Relative Memory Overhead (vs. Saad-1P)

Relative Memory Overhead (vs. Saad-IP)

25

05

85

45

35

25

0.5

Radix Table 4n

vs. Saad-IP - - Memory Overhead of Algorithm [Relative]

L‘eqﬂd

Saad-IP
Radix Table 4n
Average: 32.6%

r
H a1 4
iy i = - t o~ i
L P 5 3 g S e i
e 0 g oo E @0 gnl AR i A-T,Du‘
Fe: LA gl 4T i1 = | ! P v alnd) L0}l | |
im 15m 2m 4m 8m 16m 50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(b) Memory Radix Table 4n - Average: 33%
Radix Table 16n vs. Saad-IP - - Memory Overhead of Algorithm [Relative]
e T T T T T
egen
H Saad-IP o g 4
Radix Table 16n
Average: 88.5% 7]
L AL 4
L + H
L 4 4
[T + <
(8]
L 4 J
} ‘b :
L : R : i } T 1
AP g i3 3. ug | L
im 2m 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

(d) Memory Radix Table 16n - Average: 88%

Figure 4.5: Memory Usage of Radix Table Sizes: 2n, 4n, 8n, 16n

a[qe, dnoo xtpey yim ossodsuely, asredg o[J-U] F'F

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

Radix Table n/2 vs. Saad-!P - - (Serial) Execution Time of Transpose [Relative]

T T T T T T
Legend
1.6 H Saad-IP A i
Radix Table n/2
sl Average: 98.6% o J
T 12} 4 4
e}
]
2 1 = e {0
l;i ‘f’ - L
s]
£ 08f 7 I ¥
o
2
< o086 + E
o«
04 + |
0.2 + R
ol s L L L f L 1
im 15m 2m 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 4.6: Algorithm runtime of (7/2) Radix Table Lookup Transpose compared
with the Saad algorithm. (7/2) Radix is very much comparable with Saad with an
overall runtime of 98% on average. Radix Table is slightly slower in some cases but also

noticeably faster in a few cases.

the test suite.

Figures 4.7 and 4.8 show the runtime of the Sparse Transpose with Radix

Table lookup for different table sizes of "/16, "/s, "/1, n, 2n, 4n, 8n and 16n.

For smaller table sizes "/16 and "/s the runtime of the Radix Transpose is
worse than Saad at 120% and 109% respectively. As the table size increases
to a size proportional to n the performance improves. However for the
larger table sizes of 8n and 16n the performance deteriorates again as the

larger radix tables cause more cache misses.

Table sizes n, 2n and 4n have slightly better performance than /2,
however this comes at higher memory usages, with the memory overhead
for Radix Transpose approaching that of Saad, even surpassing it for 2n

and 4n for some matrices.

As such, a table size of about 7/2 is recommended as giving reasonable

performance for reasonable memory usage (which is still ©(n)).

102 Space & Time Efficient Sparse Matrix Transpose

989[[0) AjuLL], ‘Uuqn(] Jo AJSIGAIU[) Y [, ‘D1qSOL)) }oqOoYy

€01

Relative Algorithm Execution Time (vs. Saad-IP)

Relative Algorithm Execution Time (vs. Saad-IP)

275

25

225

0.5

0.25

2.75

25

225

0.5

0.25

Radix Table n/16 vs. Saad-IP -- Execution Time of Algorithm [Relative]

T T T T T T T
Legend
H Saad-IP .{- R
Radix Table n/16
1 Average: 121.6% oF]

L e y
L n s L L L L L
im 1.5m 2m 4m 8m 16m S50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(a) Execution Time Radix {5 - Average 122%
Radix Table n/4 vs. Saad-IP - - Execution Time of Algorithm [Relative]
— T T T T T
H Saad-IP + R
Radix Table n/4
[l Average: 103.0% g 5 7
r + 1
+ 4
L B §

1 I 1 L

L

L. <k

1.5m 2m 4m 8m
Matrix Size (million nnz) <LOG scale>

16m

(¢) Execution Time Radix § - Average 103%

Figure 4.7: Algorithm Runtime of Radix Table Sizes: 7=, &

50m

150 m 400 m

Relative Algorithm Execution Time (vs. Saad-IP)

Relative Algorithm Execution Time (vs. Saad-IP)

275

25

2.25

0.5

0.25

275

25

225

1.75

05

0.25

Radix Table n/8 vs. Saad-IP - - Execution Time of Algorithm [Relative]

I T T

tegend

Saad-IP +
Radix Table n/8
Average: 110.4% i

L L s L s L L L
im 1.5m 2m 4m 8m 16m 50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(b) Execution Time Radix % - Average 110%
Radix Table n vs. Saad-IP -- Execution Time of Algorithm [Relative]
e T T T T T
H Saad-IP + 4
Radix Table n
M Average: 96.7% T
L 1k i
L o o
H o4 4

bl 1 i L

I 1 1

15m 2m 4am 8m 16m

Matrix Size (million nnz) <LOG scale>

(d) Execution Time Radix n - Average 97%

N

167 8

50m 150m 400 m

SuLEpI() MOY-Uu] Suumsuy Gy

¥o1

asodsuel], xuepy astedg quatoyyy sul], 2y 2oedg

Relative Algorithm Execution Time (vs. Saad-IP)

Relative Algorithm Execution Time (vs. Saad-IP)

Radix Table 2n vs. Saad-IP - - Execution Time of Algorithm [Relative]

3 Ll T T T T T T

2.75 H Saad-IP 4
Radix Table 2n

25 H Average: 96.1% o R
225 8

2f i
175 | - 2
15k L if

05 L
0.25 L S
L L 1 L i L L)
im 1.5m 2m 4m 8m 16m 50m 150m 400 m
Matrix Size (million nnz) <LOG scale>
(a) Execution Time Radix 2n - Average 96%
Radix Table 8n vs. Saad-IP - - Execution Time of Algorithm [Relative]
3 T T T T T T
2.75 Saad-IP <+
Radix Table 8n
25 H Average: 99.6% ‘L
225 r 4 12
2t 1
175+ ke
1.5 4

05 F

I 1 1 1

I

1

15m 2m 4am 8m
Matrix Size (million nnz) <LOG scale>

16m

(¢) Execution Time Radix 8n - Average 100%

50m

150 m 400 m

Relative Algorithm Execution Time (vs. Saad-IP)

Relative Algorithm Execution Time (vs. Saad-IP)

275

25

2.25

1.75

0.5

0.25

2.75

25

225

1.75

0.5

0.25

Radix Table 4n vs. Saad-IP - - Execution Time of Algorithm [Relative]

T T

fgmd =
H Saad-IP +
Radix Table 4n
M Average: 97.0% &

L L L i L L L L
im 1.5m 2m 4am 8m 16m 50m 150m 400m
Matrix Size (million nnz) <LOG scale>
(b) Execution Time Radix 4n - Average 97%
Radix Table 16n vs. Saad-IP - - Execution Time of Algorithm [Relative]

T T T T - T

Legend
H Saad-IP o

Radix Table 16n

M Average: 102.7% T

B PERREL o
D
i n L L | L L L
1m 15m 2m 4m 8m 16m 50m 150m 400 m

Matrix Size (million nnz) <LOG scale>

(d) Execution Time Radix 16n - Average 103%

Figure 4.8: Algorithm Runtime of Radix Table Sizes: 2n, 4n, 8n, 16n

osodsuel], xuepy osiedg 20v)J-uj LY sordg § 103dery)

4.5. Ensuring In-Row Ordering

4.5 Ensuring In-Row Ordering

Our in-place cycle-chasing transpose algorithm moves elements to the
correct transposed row of the matrix in-place with (©(n)) additional storage.
However, just like the Saad in-place algorithm (3.3), due to the way the
elements are moved during the cycle-chasing, the elements do not necessarily
end up in their correct position within each row in terms of column index
order. A side benefit of the way the OOP algorithm (3.2) copies elements is
that they automatically end up in their correct position in the transposed
row.

In some cases we do not require elements to be in their correct order
in the rows, however in most cases it is required or at least preferred.
Therefore, for all the in-place algorithms we include an additional step
which sorts elements into their correct order in the transposed rows. To
give a balanced representation, the runtime for this additional sorting phase
is included in the total runtime presented in all the results in this document
(except where noted).

Thus the full in-place transpose procedure is as follows: In Phase-1, one
of the in-place cycle chasing algorithms is used to move elements to their
correct rows in the transposed matrix. In Phase-II, the elements in each

individual row are rearranged to ensure that they are in column order.

4.5.1 Sorting Rows with Two Array QuickSort

We can ensure that the elements in the matrix are in their correct or-
der within each row by sorting the values in the two non_zeros[] and
col_inderes|] arrays together at the same time based on the values in the
col_indexes|] array. Our algorithm for this post-sorting pass is shown in
Algorithm 4.7, it uses a technique based on QuickSort [Hoare 61, Hoare 62,
Knuth 98] to sort two arrays based on the contents of one.
Algorithm 4.7 takes as input the two arrays; non_zeros|| and col_inderes] |

along with two integers le ft and right to delimit the section (row) of the

arrays to sort. We use a median of three to select the pivot. Elements in the

Robert Crosbie, The University of Dublin, Trinity College 105

W N -

5

=]

10

11

12

14

15

16

18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34

35

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALGORITHM 4.7: Two Array QuickSort (Median of Three)

Input: Unsorted Row in: cols|], vals|], left, right
Output: The Sorted Row, with: cols|] and vals[] sorted by cols]]

* Set the ISort limit and set the initial positions of indexes [and r at le ft and right *
LIMIT « 32;
L« (left—1);
r < right;
* QuickSort if array length is greater than LINIIT *
if (right > (left+ LIMIT)) then
* Find the mid-point of the array *
midd < ((left + right) / 2);
* Find median of the three elements at le ft. midd and right and swap them so that they are
in-order *
if (cols| left | > cols| midd |) then
exchange(cols[], vals[], left, midd);
if (cols| left | > cols| right —1]) then
exchange(cols|], vals[], left, (right — 1));
if (cols| midd | > cols| right — 1]) then
exchange(cols[], vals|], midd, (right —1));
* Put the median value in the right position *
exchange(cols, vals, midd, right);
* This median value in right is our pivot *
pivot « cols|right];
* Search the array from left and right for values that are less than and greater than the pivot *
while (true) do
while (cols| ++1] < pivot) do noop; * Do nothing in loop */;
while (pivot < cols| ——r]) do noop;
* If the two pointers have overlapped. the array is partitioned - break out of loop *
if ([>r) then break;
* Otherwise exchange the elements *
exchange(cols(], vals(], I, 7):
end
* Put the pivot back in position - *I" is an element with a column index greater than pivot *
exchange(cols|], vals|], I, right);
* Array has been partitioned - Recursively call quicksort on each of the partitions
two_array_quicksort(cols[], vals[], left, (I —1));
two_array_quicksort(cols|], vals[], (I+ 1), right);
end
else
* Otherwise, if the array is shorter than LIMIT, use Insertion Sort to sort the array *
two_array_isort(cols|], vals[], left, right);
end
106 Space & Time Efficient Sparse Matrix Transpose

4.5. Ensuring In-Row Ordering

two arrays are swapped using the exchange (cols[|, vals[], a, b) macro. The
QuickSort algorithm partitions the arrays and recursively calls itself until
the array length is below LiviT at which point it switches to InsertionSort
for efficiency. From brief experimentation a Limit of 32 was chosen for the
point the algorithm drops to InsertionSort, other values may work better

on other systems.

4.5.2 Sorting Sub-Rows with Two Array Insertion
Sort

Insertion Sort generally makes more comparisons and moves elements a
greater number of times than QuickSort. However when working with very
small arrays InsertionSort is more efficient as it has much fewer branch
mispredictions [Brodal 05, Biggar 08b]. Also, the short arrays are in the
cache and it can do the comparisons and moves very quickly. Calling
InsertionSort for small arrays also reduces the number of recursive calls
that need be made to QuickSort, thus reducing the number of function

calls.and the size of the callstack. . . :
oty 1mmplementation ofaq"hea&k\'o Array InsertionSort algorithm is show

i Algorithm 4.8. Insertion Sort takes the same arguments as QuickSort,
the two matrix arrays non_zeros[| and the col_inderes|] that we wish to
sort along with two integers; le ft and right which delimit the location of

the partition in the two arrays that needs to be sorted.

4.5.3 Execution Time of Sorting

Figure 4.9 shows the total execution time for each matrix for performing
the Saad in-place cycle-chasing transpose followed by the post sorting phase
of the algorithm. This graph shows the cycle chasing and sorting runtime
when performing the transpose with the Saad algorithm. Other algorithms
show a similar graph.

The graph uses a stacked area graph to show the differences in runtime
between the Saad cycle chasing phase and the sorting phase. The z-axus

has no scale, it is just the matrices listed one after the other with constant

Rnhert (rosbie, The l niversity of Duh]m Trmn\ (ollege 107

L

2

13
14
15
16
17

18

19

20

21

22
23

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALGORITHM 4.8: Two Array InsertionSort

Input: Unsorted Row in: cols[], vals[], left, right
Output: The Sorted Row, with: cols[| and vals[] sorted by cols|]

* Loop through the arrays *

for ((left+1) < i < right) do

* If we find a col index with a lower value than the index proceeding it *
if (cols|[i] < cols|[i—1]) then
* Take the current element out. and put the previous element in it's place *
cur_col « cols[i ;
cur_val < vals| i |;
cols[i] « cols[i—1];
vals[i]+ vals[i —1[;
* Scan backwards until we find an element greater than the current element or reach end
of array *
j (E-1);
while ((j > left) && (cur_col < cols[(j —1)])) do
* Shift each previous element along one place to the right *
cols[j |« cols| j—1];
vals[j] « vals[j—1];
F= (3=}
end
* Finally, put the current element at that location *
cols| j | « cur_col;
vals[j | + cur_val;

end

* Clontinue Scanning through the array

end

width in order of matrix size (nnz). The y-azxis shows the runtime of the
algorithm in nanoseconds per non-zero matrix element. This runtime per
element is found by taking both the total cycle chasing algorithm runtime
and the total sort time for each matrix and dividing that time by the

number of elements in the matrix (nnz).

Figure 4.9 shows that the cycle chasing algorithm takes by far the
majority of the total runtime. With the sort-time accounting for just a
small proportion of the total runtime. For a small number of matrices the
sorting phase does take a slightly larger proportion of the runtime, however,

overall the execution time of the cycle chasing is dominant.

The Saad Algorithm (3.3) from the previous chapter, the Binary Range
Search Algorithm (4.3) and Radix Table Search Algorithm (4.6) from this

108 Space & Time Efficient Sparse Matrix Transpose

4.5. Ensuring In-Row Ordering

Sort Stacked Saad-IP - - (Serial) Execution Time of Transpose

Legend
Saad-IP Sort Time E——
500 H Saad-IP Cycle-Chase Time M

300 +

200

Execution Time per Element (Nanoseconds)

Matrix

Figure 4.9: Sort Time stacked on top of Algorithm Time

chapter along with the Corresponding Row Algorithm (5.3) presented in
the next chapter, all do the same cycle-chasing element movements for each
input matrix. Thus the sorting step has the exact same input and performs
the exact same sorting operations, taking almost exactly the same time in
each case. The only difference in total runtime between the algorithms is
in the time for the cycle-chasing transpose.

Section 7.1 will investigate methods to improve the runtime performance

of the sorting phase.

4.5.4 Runtime Complexity of Sorting Phase

After transposing the matrix with the cycle chasing transpose the Two
Array QuickSort/InsertionSort algorithm is used to sort the rows of the
matrix so that they are in column order within the rows.

The sorting algorithm is called O(n) times in total, once for each of
the (n) rows in the matrix. The average number of elements per row
is (*2%). The maximum number of elements in any row is bounded by
(n). Sorting a row of (n) elements with QuickSort is O(n.log(n)). The

worst case complexity occurs when the rows being sorted each contain (n)

Robert Crosbie, The University of Dublin, Trinity College 109

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

nnz
n

O(™2= ‘n.log(n)). This gives our worst case complexity for sorting the

n

values. There can be (“2%) such rows, therefore the overall complexity is

matrix as O(nnz.log(n)).

4.6 Conclusion

Both the binary search and radix search methods of in place sparse transpose
reduce the memory overhead to ©(n).

The Sparse Cycle Chasing Transpose with Binary Range Lookup Algo-
rithm (4.3) transposes the matrix with the least memory overhead of just
~(2n). This translates to an average memory overhead of 14% of Saad for
the 259 matrices. However this memory reduction does come with a cost
of increased runtime over Saad to ©(nnz. log(n) + n).

The Sparse Cycle Chasing Transpose with Radix Table Lookup Algo-
rithm uses slightly more memory at ~(2n + n/2) for the /2 table size which
translates to an average of 16% of the memory usage of Saad. The Radix
Table algorithm does not maintain the ©(nnz + n) runtime complexity of
Saad, however in practice it performs the transpose in 98.6% of the time of
Saad.

In the next chapter we introduce a novel technique that reduces the
runtime of our in place algorithm to ©(nnz + n), without forfeiting the

reduction in the asymptotic space complexity to O(n).

110 Space & Time Efficient Sparse Matrix Transpose

Chapter

Corresponding Row
Cycle-Chasing Transpose

Reconsider the running example of the sparse matrix M from previous
chapters, repeated below as Example 5.1 and shown again in the CSR

sparse matrix storage format in Example 5.2.

Examining our new space efficient transpose algorithms introduced
in Chapter 4 we identified that the main overhead contribution to the
imcreased execution time while performing the cycle chasing permutation is
finding the row index of the element as we jump from location to location.
In this section we introduce our novel technique which finds this row index
in a constant amortized O(1) time while maintaining the reduced space

overhead of ©(n) of our previous algorithms.

This gives us an in-place algorithm with the same ©(nnz + n) time
overhead as the Out-of-Place (Algorithm 3.2) and Saad-IP (Algorithm 3.3)
while reducing the memory overhead to ©(n) compared to the overhead
of those existing algorithms; ©(nnz + n) for Out-of-Place and ©(nnz) for
Saad.

a b
c d €
M= e
h %L
1‘.
m n o

Example 5.1: Sample Matrix M

Robert Crosbie, The University of Dublin, Trinity College 111

Chapter 5. Corresponding Row Cycle-Chasing Transpose

5.1 Constant-Time Row Index Lookup

The novel technique is based on a number of key insights about how the

cycle chasing algorithm operates:

1. The new_row_ptrs[| array divides the destination positions into n

groups, where n is the number of new rows in the matrix M.

2. At every jump during cycle chasing we will jump to one of these n

TOWS.

3. There is only one location in each new row that we can jump to - the
first “available” slot in the row as indicated by the current value in
row_offsets].

4. Therefore, it follows that at any one time, we are only concerned with
the row index corresponding to those n possible locations we might

jump to. The other (nnz — n) locations are not currently important.

Thus from the above, if we could employ a corresponding row lookup
table of size ©(n) to hold the row index for these n locations then it would
be possible to perform the cycle chasing in-place sparse transpose with only
O(n) space overhead and maintaining the ©(nnz + n) time complexity of
the existing algorithms.

The challenge is to maintain this table after items are moved during the
permutation. To avoid increasing the complexity of the overall algorithm

we need to do all updates in constant amortized time.

non.-zeros, = o |'b feidie I fFilg thiily k|7 m n
colindexes = 0 4 0 1 5 L0200 SOMES S = 4 5 1 4 5
row ptrs = 0, 2, 5, T 10, 12 15

Example 5.2: Matrix M in CSR representation

112 Space & Time Efficient Sparse Matrix Transpose

5.2. Using the Corresponding Row

ST a () () dst =
old row ptrs = 0, 2 5, 7, 10, 12,
non-zeros. = la ' bie |(dieif 1a [hio a5k m n o
colindexes = 0 4 0 TSGR 2 10 31414 45 L |4 15
t
new row ptrs () () T N
row offsets ()H 5 O 7 N

(1}[[1\\lll;llbl" “H

Example 5.3: Corresponding Row - Step 1

Building the corresponding row table and maintaining it while searching
and performing lookups is a little tricky. Example (5.3) shows the structure
of the matrix M during the cycle chasing with corresponding row. We have
the same 3 arrays from Example 2.2; old_row ptrs|], col_indexes[] and

non_zeros|| along with the two arrays (new_row_ptrs[] and row_offsets|])

required for our ©(n) generic in-place transpose outlined in Algorithm 4.1.

Example (5.3) also shows a new corresp_table[] of size ©(n) which is
required for the corresponding row transpose algorithm. The corresp_table|]
array stores the row index (from the old_row _ptrs|] array), similar to the
Saad Algorithm (3.3), but only for the positions of the first element in each

new row corresponding to the indexes in the new_row _ptrs[] array.

5.2 Using the Corresponding Row

In order to lookup the corresponding row table we need to know the current
new_row of the element. We already know the new_row for the first element
in a cycle because we are traversing the matrix through each of the new
rows. We can see this in Example 5.3. The transpose starts at element
0 as marked by arrow ‘p’. As this is the first element we transpose, we

already know that it is in new row ‘0’ so we can lookup the element’s

old_row_index from the corresponding row table as corresp_table[0] = 0.

Which for element “p’ gives us: old_row_index = 0.

Robert Crosbie, The University of Dublin, Trinity College 113

Chapter 5. Corresponding Row Cycle-Chasing Transpose

When we leave an element in its old position we still need to update its
col_indezes|] entry with its new_col_index value. We get this new column
index from the element’s old row_index which we found by looking it up
in the corresp_table[] array. For element ‘p’ old_row = new_row = 0 so in

this case the update does not change the value in the array.

old_row ptrs = 0, 2 5, 0y 10, ;
nonzeros =|a ' b e |(die|lf (g |h i gk il m n o
coliindexes = 0 4 0 L1941l 2 |0 3 444 15 |4 |5
q 1
new row ptrs 0 3 0 7 S 2
row offsets i 3 { 7 8, 2
corresp table 0 I 2 3 3

0

Example 5.4: Corresponding Row - Step 2

However, for subsequent elements in the cycle, it is a little more difficult.

Example 5.4 shows the next element that the algorithm processes, at
position 1 marked with arrow ‘¢" and value b. Again we can directly read
the old_row_index from corresp_table[l] = 0 as this is the first element
in the cycle. Element ‘¢q" does not belong in this new_row. From its
old_col iindex (4) we know it belongs in new row 4, so we need to chase this
element. We save the value, column and row indexes to ‘src’. The value and
column index come straight from the arrays and the row index comes from
the corresponding row table lookup. We can find the position of the next
free slot in row 4 by looking up row_offsets[4] = 8. Thus, element ‘¢’ needs
to be moved to position 8, marked with label ‘r’. We need to take out the
element at ‘r’ with value ¢ and store it in the temporary ‘dst’ variable. We
know its value and old column index, however we can not directly read the
element’s old_row_index from the arrays. We need to know what new_row
the element is currently in so that we can read the row index from the
corresponding row table. The trick is that we know what new_row this

element is in because it is the new _row that the previous element in the

114 Space & Time Efficient Sparse Matrix Transpose

15

5.3. Search and Update Corresponding Row Table

cycle should be in. In other words (this is the key to the corresponding row
algorithm): we use the old_col_index of the previous element in the cycle to
index into the corresponding row table to find the element’s old_row _index.
For element ‘7" we can find its new row from corresp_table[4] = 3.

In Example 5.5 we can see that the element in ‘dst* which was taken
from position ‘7" with the value 2" has been updated to have row index ‘3.
From this point the cycle chasing continues as normal copying the element
in ‘src¢’ with value ‘b’ to position ‘r’ (swapping row and column indexes).
The algorithm then copies the element ‘2" from ‘dst’ to ‘sr¢’ and continues

chasing the element in ‘src’.

5.3 Search and Update Corresponding Row Table

The procedure for searching and updating the corresponding row table
is shown in Algorithm 5.1. The algorithm requires five arguments; The
corresp-table[] which we will show how to build later, the old_row_ptrs||
and the number of old rows old_nrows, the new_row that we are searching
for and the index idz of the element in the matrix. The search is a straight-
forward lookup using the new row key to index into the corresp_table(]
which returns the old_row_index correspondin