
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Space k, Time Efficient

Sparse Matrix Transpose

A tliesis subm itted to the

University of Dublin, Trinity College,

for the degree of

Doctor of Philosophy

Robert Crosbie

2015

T h e U n i v e r s i t y o f D u b l i n , T r i n i t y C o l l p x j e

TRINITY C O L L E G E ^
M
i j 2 9 JUL 2015

LIBRARY DUBLIN

/ f Iv j iS 1 ^ ^

Declaration

I herei)v declare that this thesis is entirely niy own work and that it has not

been subm itted as an exercise for a degree at this or any other university.

Robert Crosbie Friday 14̂ '̂ November, 2014

Permission

I agree to dej)osit this thesis in the University's open access institutional

repository or allow the library to do so on my behalf, subject to Irish

Copyright Legislation and Trinity College Library conditions of use and

acknowledgement.

Robert Crosbie Friday 14‘*' November, 2014

R obert Crosbie. T he Tniversitv of Dublin. T rinity College ni

Abstract

Matrix operations are fundamental to linear algebra and have many impor

tan t applications in areas such as sinmlation of physical systems, economic

modeling, linear oj)timization and numerical analysis. One of the fundamen

tal operations on matrices is the m atrix transj)ose. In many linear algebra

api)lications the matrices are extremely large and require considerable mem

ory to store. Therefore it is desirable to transpose in-place to avoid creating

a new m atrix which would double the memory usage. Transposing dense

m atrices in-place has been studied over several decades, and many good

algorithm s have been found. An area th a t has been relatively neglected

is that of in-place transj)ose of sparse m atrices - tha t is, m atrices where

the value of most matrix elements is zero and are stored in a sparse format.

The best previous algorithm requires 0 (n n 2 -I- n) tim e and (-)(nr!X -f u)

additional space to transpose an n x n sparse m atrix with nnz non-zero

entries.

This thesis describes our new family of space-efficient in-place transpose

algorithms for sparse matrices stored in the connnon Compressed Sparse Row

format. These algorithms require only 0(/() space, which is asymptotically

better than the t)est])revious algorithm, and greatly reduce the additional

sj)ace in practice. This is especially important for very large sparse matrices,

which are often used to model linear algebra problems at ever finer levels

of detail.

Our three best algorithms perform the transpose in B{7}nz + n) time and

0 (n) space. Our Corresponding Row algorithm transj)oses the 259 sample

matrices in 90% of the execution time of the existing Saad algorithm, requir

ing on average 21% of the memory overhead of Saad. Our H yperPartition

with RadixSort algorithm has negligible memory overhead, less than 1% of

Saad. This algorithm is efficient for most matrices with and has an average

of 90% of the execution tim e of Saad however, it does not perform well

for some matrices. Our Hybrid H yperPartition with RadixSort transpose

R o b er t C rosb ie . T h e U n iv e rs ity o f D ub lin . T r in ity College V

takes the best of our two previous algoritlinis. Our Hybrid algoritlun lias

a memory overhead of ju st 9.3% of Saa(i and transposes the m atrices on

average in 68% of the execution time of Saad in serial and 32% in parallel.

vi Space T im e Efficient Sparse M atrix Transpose

Contents

A bstract v

C ontents vii

List of A lgorithm s xii

List of Exam ples xv

List of Figures xvii

List of Listings xxi

List of Tables xxiii

1 Introduction 1

My T h e s is .. 1

Contribution .. 3

Tliesis Outline ... 5

2 Background 9

2.1 Linear Algebra .. 9

2.2 Dense and Sparse M a tr ic e s ... 11

2.2.1 Dense Linear A lg e b ra .. 12

2.2.2 Sparse Linear Algebra ... 13

2.2.3 Direct M ethods and Iterative M e th o d s 15

2.2.4 M athem atical Optimisation of Sparse Matrices . . . 16

2.2.5 Software Packages for Sparse Linear Algebra 17

2.3 M atrix Storage Formats .. 18

2,3.1 Two Dimensional Dense F o rm a t 20

R o b ert C rosh ie . T h e U niversity of D ub lin . T r in ity C ollege vii

Contents

2.3.2 One Dimensional Dense F o r m a t ...21

2.3.3 M orton Ordered Dense Format ...21

2.3.4 The Compressed Coordinate (COO) Format 23

2.3.5 The Compressed Sparse Row (CSR) Format 25

2.3.5 The Compressed Sparse Column (CSC) Format . . 25

2.3.6 Block Compressed Row Storage (BCRS) Format . . 26

2.3.7 Compressed Diagonal Storage (CDS) Format 27

2.3.8 The Recursive Sparse Blocks (RSB) Format 28

2.4 Memory Hierarchy and Cache P erfo rm ance 29

2.5 Complexity Analysis of A lg o r i th m s .. 33

2.5.1 0{ x) — Big-0: Upper B o u n d 34

2.5.2 Q(x) — Big Omega: Lower Bound 34

2.5.3 0 (x) — Big Theta: Double B o u n d 35

2.5.4 ~ (x) Tilde: T ighter Double Bound 35

3 M a tr ix T ra n sp o se 37

3.1 The M atrix Transpose O p e r a t i o n ... 37

3.2 Dense M atrix T r a n s p o s e .. 39

3.2.1 In-Place Dense M atrix T ra n sp o s e 40

3.2.2 In Place Dense Rectangular T ra n s p o s e 42

3.3 Sparse M atrix T ra n sp o s e .. 53

3.4 Out-of-Place (OOP) Sparse T r a n s p o s e 54

3.4.1 Parallel Sparse M atrix T ra n s p o s e 55

3.4.2 Sparse M atrix Transpose U n i t 57

3.4.3 Description of Out-of-Place Transpose Algorithm . 57

3.4.4 Analysis of Out-of-Place A lg o r ith m 61

3.5 The In-Place (IP) Sparse T ran sp o se ..61

3.5.1 The Saad In-Place Transpose A lg o r i th m 62

3.5.2 Analysis of Saad In-Place A lg o r i th m 66

3.6 Performance Evaluation of Algorithms 67

3.6.1 M atrix Collections - Sample Input M atrices 67

3.6.2 Experim ental S e tu p .. 69

3.6.3 Presentation of D a t a ... 71

V ll l Space Tim e Efficient Sparse M atrix Transpose

Contents

3.7 Evaluation of Sparse Transpose A lg o rith m s............................ 72

3.8 Summary ... 74

4 Space Efficient In -P la ce Sparse M atrix Transpose 75

4.1 In-Place Transpose with Reduced M e m o ry 76

4.1.1 Finding the oldj 'ou 'Jndex in 0 (n) S p a c e 77

4.1.2 Determine if an Element has Already Been Processed 78

4.2 Generic In-Place Sparse T r a n s p o s e ... 83

4.3 In-Place Transpose with Binary Range S e a r c h 85

4.3.1 Binary Range S e a rc h ... 85

4.3.2 Cycle-Chasing Transpose with Binary Range Search 87

4.3.3 Memory Overhead of Transpose with Binary Range

S e a r c h .. 89

4.3.4 Execution Time of Transpose with Binary Range Search 90

4.4 In-Place Sparse Transpose with Radix Lookup Table 91

4.4.1 Building the Radix T a b le .. 92

4.4.2 Radix Table L o o k u p ... 94

4.4.3 Cycle Chasing Transpose with Radix Table Lookup 96

4.4.4 Memory Usage of Radix Lookup Table Transpose . 98

4.4.5 Execution Time of Radix Lookup Table Transpose . 99

4.5 Ensuring In-Row O rd e r in g ... 105

4.5.1 Sorting Rows w’ith Two Array Q u ic k S o r t................. 105

4.5.2 Sorting Sub-Row's with Two Array Insertion Sort . 107

4.5.3 Execution Time of S o r t in g .. 107

4.5.4 Runtime Complexity of Sorting Phase 109

4.6 C onclusion ... 110

5 Corresponding Row C ycle-C hasing Transpose 111

5.1 Constant-Tim e Row Index Lookup .. 112

5.2 Using the Corresponding R o w .. 113

5.3 Search and Update Corresponding Row T a b l e 115

5.4 Building the Corresponding Row T a b l e 118

5.5 Corresponding Row Cycle Chasing A lg o r i th m 119

R obert Crosbie. T he University of DubHn. Trinity College ix

Contents

5.6 Cache-Friendly Corresponding Row A lg o r ith m121

5.7 Corresponding Row Memory U s a g e .. 122

5.8 Corresponding Row Algorithm Execution T i m e 124

5.9 Corresponding Row Performance E v a lu a tio n 127

5.9.1 Hardware C o u n te rs ... 127

5.9.2 Branch Misses of CF Corresponding R o w 128

5.9.3 Normal Corresponding Row Performance Evaluation 129

5.9.4 Performance Evaluation of Cache-Friendly Algorithm 134

5.9.5 Summary of Normal and Cache-Friendly Evaluation 135

5.10 Factors Influencing Cache P e rfo rm a n c e 135

5.11 Cycle Length and Cache P erfo rm ance 139

5.12 Summary ... 142

6 H yperPartition Sparse M atrix Transpose 145

6.1 The HyperPartition Sparse M atrix F o r m a t 146

6.1.1 Grouping R o w s .. 147

6.1.2 Unused D ata in CSR Sparse M atrix Format 148

6.1.3 The HyperPartition S t r u c tu r e 149

6.1.4 Using the H yperPartition F o r m a t 151

6.2 Converting to HyperPartition F o rm a t 152

6.3 HyperPartition Cycle-Chasing T ra n sp o se 154

6.4 Sorting H yperPartition after Cycle-Chasing 157

6.5 Converting from HypCSR back to C S R 158

6.6 Heuristic: Choosing Number of Bits to S t e a l 159

6.6.1 Remaining Bits H eu ris tic .. 161

6.7 HyperPartition Memory U sag e .. 162

6.8 HyperPartition Transpose Execution T i m e 163

6.8.1 HyperPartition Execution Time: Excluding Symmetric 166

6.8.2 Serial Performance of the Remaining Bits Heuristic 168

6.9 Parallel HyperPartition T ran sp o se ... 170

6.9.1 Parallel Sorting A lg o r ith m ... 170

6.10 Parallel HyperPartition Memory U s a g e 171

6.11 Parallel HyperPartition Execution Time 173

X Space ^ Tim e Efficient Sparse M atrix Transpose

Contents

6.11.1 Parallel H yperPartition vs. Serial S a a d 174

G.11.2 Parallel Performance of Rernaimng B its Heuristic . 175

6.12 Reviewing the Remaining Bits H e u r i s t i c 177

6.13 Summary ... 178

7 Further O ptim isations — RadixSort and Hybrid Trans
pose 185

7.1 Most Significant Digit (MSD) R a d ix S o r t 186

7.1.1 MSD RadixSort A lg o rith m ... 189

7.1.2 Choosing Number of Buckets for Radix S o r t 191

7.2 H yperPartition RadixSort R e s u lts .. 193

7.2.1 Parallel H yperPartition with RadixSort Performance 196

7.3 MSD RadixSort S u m m a r y .. 199

7.4 S tructural A n a ly s is .. 200

7.4.1 Detecthig S tructural S y m m e try 207

7.5 Hybrid HyperPartition Transpose A lg o r ith m 208

7.6 Hybrid H yperPartition Transpose P erfo rm ance 209

7.6.1 Parallel Hybrid HyperPartition P e rfo rm an c e 211

7.7 Hybrid H yperPartition S u n n n a r y .. 213

8 C onclusion and Future work 215
8.1 C o n tr ib u tio n s .. 216

8.2 Future W o rk ... 218

8.3 Smnmary ... 219

A M atrix Tables 223

B D etailed H yperPartition Perform ance Graphs 229

C M atrixM arket File Format 271

Bibliography 273

Glossary 295

R ()l)ert C’rosb ie . T h e U n ivers ity of D ub lin . T rin ity C ollege xi

List of Algorithms

3.1 Dense Scjuare Transpose .. 40

3.1 Input M atrix M in CSR fo rm a t .. 58

3.2 ()ut-()f-Place sparse m atrix t r a n s p o s e 59

3.3 The Saad In-Place s])arse transpose - PART I: Initialize , . 63

3.3 The Saad In-Place sparse transpose - PART II: Main Looj) 64

4.1 Generic 0{r?) In-Place Sparse Transpose w / Row Index Lookup

.. 84

4.2 Index Lookup using Binary Range Search Algoritlnn 86

4.3 Sparse Transpose with Binary Row Index Range Search . . 88

4.4 Build Radix Lookup Table ... 94

4.5 Index Lookup using a Radix Lookup Table 95

4.6 Sj)arse Transpose with Radix Table Row Index Lookuj) . . 97

4.7 Two Array Q\iickSort (Mc'dian of Three) 106

4.8 Two Array InsertionSort .. 108

5.1 Searching and U pdating the correspondingjrowJahle . . . 116

5.2 Building the corresponding .ro iL 'Jab le 118

5.3 Correspoufhng Row Cycle-Chasing Sparse Transpose 120

6.1 Convert from CSR format to H yperPartition format 155

6.2 Cycle Chasing H yperPartition Transpose 180

6.3 Convert H yperPartition back to CSR format 182

6.4 Convert H yperPartition back to CSR format in Parallel , . 183

7.1 Radix BucketSort Algorithm - 256 Buckets 190

7.2 Detect S tructural Synnnetry H e u r is t ic 209

R o b e r t C rosb ie . T h e U n ive rs ity o f D u b lin . T r in ity C ollege xiii

List of Examples

1.1 Sample M atrices M and its Transpose 1

2.1 Sample Sparse M atrix M ... 19

2.2 M atrix M in CSR representation ... 26

3.1 Sample Matrices M and its Transpose 38

3.2 M atrix M in CSR representation ... 58

3.3 Transposed M atrix in CSR rep re sen ta tio n61

3.4 Algorithm 3.3 - Saad-IP Circuit Chasing Step: 1 65

3.5 Algorithm 3.3 - Saad-IP Circuit Chasing Step: 2 65

4.1 M atrix M in CSR representation ... 77

4.2 Building the Radix Table (in reverse) 95

4.3 Radix Table for M atrix M ... 95

5.1 Sample M atrix M .. I l l

5.2 M atrix M in CSR representation ... 112

5.3 Corresponding Row - Step 1 ... 113

5.4 Corresponding Row - Step 2 ... 114

5.5 Corresponding Row - Step 3 ... 116

6.1 M atrix M in CSR representation ... 150

6.2 M atrix M in HyperPartition CSR representation 150

6.3 M atrix in HypCSR after Hyper Circuit C h asin g181

6.4 M atrix in HypCSR after H y p e r -S o r tin g 181

6.5 Transposed M atrix A P in CSR representation a g a in 181

7.1 Radix bit Passes of BucketSort .. 188

R o b ert C ro sb ie . T h e U n ive rs ity of D ub lin . T r in ity C ollege xv

List of Figures

2.1 Example Sparse Matrix: ASIC_680k............................... 14

2.2 M orton Order Z -C u rv e ... 22

2.3 M orton Order A r r a y .. 23

2.4 The Block Compressed Row Storage (BCRS) format . . . 27

2.5 Compressed Diagonal Storage (CDS) F o rm a t.............. 28

2.6 M orton Order Z -C u rv e ... 29

2.7 Memory Hierarchy ... 30

3.1 Block Transpose of Dense M a t r i x ... 41

3.2 M orton Order A r r a y .. 53

3.3 OOP Algorithm Memory O v e rh e a d 73

3.4 OOP Algorithm R u n tim e ... 74

4.1 Binary Range Search Algorithm Memory Overheail 90

4.2 Binary Range Search Algorithm Execution T im e91

4.3 Radix Lookup Table Algorithm Memory Overhead 99

4.4 Memory Usage of Radix Table Sizes: fe ’ I ' i ’ ”

4.5 Memory Usage of Radix Table Sizes: 2?), 4/7, 8n, 16?i................101

4.6 Radix Lookup Table Algorithm R u n t im e 102

4.7 Algorithm Runtime of Radix Table Sizes: f , j 103

4.8 Algorithm Runtime of Radix Tal)le Sizes: 2n, 4?;, 8n, 16n 104

4.9 Sort Time stacked on top of Algorithm T im e 109

5.1 Corresponding Row Memory O v e rh e a d 123

5.2 Corresponding Row Algorithm Execution T i m e 125

5.3 Corresponding Row Algorithm Execution T i m e 126

5.4 Branch Misses of CF Corresponding Row Algorithm 129

5.5 Normal Corresponding Row Cache P e rfo rm a n c e 130

R o b er t C rosb ie . T h e U n iv e rs ity of D ub lin . T r in ity C ollege xvii

List of F igures

5.6 CF: C orresponding Row: Cache Perform ance 133

5.7 CF: C orresponding Row: Cache Perform ance per E lem ent 137

5.8 CF: C orrespond ing Row: C ache Misses vs. Avg. Cycle

L ength .. 141

5.9 CF: C orresponding Row: Avg Cycle L ength E xecution T im e 142

6.1 S tealing b its from th e 32 integer 27,993,600 148

6.2 C onverting an elem ent to H y p e rP a rtitio n using 2 decim al

places ..151

6.3 B it M asks for converting to H yp erP artitio n . sb = s teaL b iis 152

6.4 W here inform ation is stored in th e H y p erP artitio n Form at 154

6.5 In teger B its Available in th e num ber 7,694 162

6.6 H y p erP artitio n M em ory O v e rh e a d ... 164

6.7 H y p erP artitio n M em ory O verhead [Close-Up] 164

6.8 H y p erP artitio n Serial Execution T im e w / Q uickSort 165

6.9 H y p e rP a rtitio n U nS ym m etric Serial E xecu tion T im e w /

Q u i c k s o r t ... 167

6.10 Serial H y p erp artitio n w ith Q uickSort w ith; k = 1 ,3 .6 ,1 0 . 169

6.11 Paralle l H y p erP artitio n M em ory O v e r h e a d 172

6.12 Paralle l H y p e rP a rtitio n M em ory O v e r h e a d 172

6.13 H y p erP artitio n Parallel E xecution T im e w / Q uickSort . . 174

6.14 P aralle l H y p erP a rtitio n and Serial S a a d 175

6.15 P arallel H y p erp artitio n w ith Q uickSort w ith; k = 1 .3 ,6 ,1 0 176

7.1 H y p erP artitio n Sort T im e stacked on top of A lgorithm T im e 187

7.2 R adixSort N um ber of B u c k e t s .. 192

7.3 H yperP artition Serial M em ory w ith R a d ix S o r t 194

7.4 H yp erP artition Serial E xecution T im e w ith R adixSort . . . 195

7.5 H yp erP artition Parallel M em ory w ith R a d ix S o r t 197

7.6 H y p e rP a rtitio n Parallel M em ory w'ith R adixSort - Zoom 197

7.7 H y p erP artitio n Parallel E xecution T im e w ith R adixSort . 198

7.8 Som e S tru c tu ra lly S ynnnetric M a t r i c e s ..201

7.9 H y p erP artitio n Q uickSort E xecution T im e Ju s t Sym m etric 202

7.10 Some U nsynunetric M atrices .. 203

xviii Space ^ T im e Efficient Sparse M atrix Transpose

List of Figures

7.11 Some Triangular M atrices - Lower Triangle of Synnnetric 204

7.12 Relative Cache Performance of Struct Sym /U nsym M atrices 206

7.13 Hybrid (H yp/Corr) Memory O v e r h e a d 210

7.14 Serial Execution Time of Hybrid HyperPartition with Radix-

Sort ...211

7.15 Hybrid HyperPartition Parallel Execution Time with RadixSort212

7.16 Hybrid RadixSort Parallel Execution Time Relative vs. Serial213

B .l Serial H yperpartition W ith QuickSort; A’ = 1 10 230

B.2 Parallel H yperPartition with QuickSort: A- = 1 — 10 . . . 235

B.3 Serial UnSymmetric H yperPartition QuickSort: A’ = 1 —> 10 240

B.4 Serial Symmetric H yperPartition with QuickSort: A- = 1 —̂

10 ... 245

B.5 Serial H yperPartition with RadixSort: A’ = 1 —)■ 10 250

B.6 Parallel H yperPartition with RadixSort: A’ = 1 —>■ 10 . . . 255

B.7 Serial Hybrid with RadixSort leaving: A' = 1 —)• 10 260

B.8 Parallel Hybrid with RadixSort leaving: A' = 1 10 . . . 265

R obert C rosb ie . T h e U n ivers ity of D u b lin . T r in ity C ollege xix

List of Listings

2.1 Two Dimensional Dense E x a m p le ... 20

2.2 Sparse Coordinate E x a m p le .. 24

2.3 Sparse Compressed Row' E x a m p le ... 25

5.1 Cache Friendly Im p le m e n ta tio n ... 122

C .l M atrixM arket File F o r m a t .. 271

R obert C rosb ie. T h e U n iversity of D ublin . T r in ity C ollege X X I

List of Tables

2.1 Stoker: Intel Xeoii E7-4820 Cache Details31

2.2 Stoker: Intel Xeon E7-4820 Cache Miss Latency from Cali

brator tool 32

5.1 M onitored PAPI Events .. 128

8.1 Algorithm Complexities .. 221

A .l M atrix Information .. 224

A.2 M atrix Source .. 225

A.3 Algorithm Memory Usage (MegaBytes) 226

A.4 Algorithm Execution Time (s e c o n d s) 227

R o b e r t C rosb ie . T h e U n iv e rs ity of D ub lin . T r in ity College xxiii

Chapter

Introduction

My Thesis:
Sparse matrices in. Compressed Sparse Row (CSR) storage fo r

m at can be transposed in (d{nnz + n) time using ju s t (-)(??)

additional space. Additional techniques can he used to further

reduce time and space in practice.

Linear Algebra [Golub 96, Anton 02] and m atrix operations are essential

in many areas of science, engineering, finance, and numerous other fields.

It is therefore im portant to have fast and efficient linear algebra software.

One of the fundamental linear algebra operations on matrices is the Matrix

Transpose [Cayley 59, Golub 96]. From a com putational perspective, the

transpose operation is m ainly used to change between row-m ajor and

colunm -major layouts to imj)rove cache reuse and efficiency.

Taking a matrix M . its transj)ose may be obtained l)y swapping all

the rows with all the cohunns and vice-versa. As shown in Example 1.1 the

first colunni becomes the first row and the fourth row becomes the fom th

column. The elements along the diagonal remain in place.

M =

 ̂ a ' b ^ / a c \ h
c (1 e <1 / m

f K g
h i j i

k / b j k n
\ 111 11 (> / \ e I ()

(a) (b)

Example f. l : Sample M atrices M and its Transpose

A problem that has been studied since at least the 1950’s [Windley 59,

Kmith 98] is how a m atrix can be transposed in-place. By in-place we mean

R o b ert C rosb ie , T lie I ’n iv e rs ity of D ub lin . T r in ity C ollege 1

C hapter 1. lutrochiction

that the transpose of the m atrix is stored in the same location as the original

matrix, and a minimum of additional tem porary storage is needed to perform

the transpose operation. For dense matrices many good algorithms exist. In

particular in-place transposition of a square dense m atrix is straightforward

and very cache efficient [Lawson 79, W haley 97, Knuth 98, Goto 02]. Trans

posing rectangular dense matrices in-place is more complicated, but several

efficient algorithm s have been developed th a t move “cycles” of m atrix

elements with a constant amount of additional space [Laflin 70a, Cate 77a].

There has also been interest in in-place transposition algorithms that achieve

greater da ta locality at the cost of more data movement [Alltop 75].

There has been comjjaratively very little research into the problem of

the in-place transi)osition of a sparse m atrix which is arguably a much

more difficult procedure. There have been a number of articles which deal

w ith the O ut-of-Place sparse m atrix transpose [IBM 76, Gustavson 78b,

Pissanetzky 84, Gonzalez-Mesa 13] and num erous im plem entations (see

Section 3.4), however there is very little research to be found on the In-Place

Sparse Transj)ose and only one publicly available implementation [Saad 94].

In this Thesis we aim to bridge that gap with our “Space and Time Efficient

In-Place Sparse M atrix Transpose” ,

A Sparse M atrix is a m atrix where the m ajority of the entries in the

m atrix are zero, and the m atrix stored in a condensed format in memory

om itting most or all of the zero entries. Storing all elem ents (including

zeros) of a large sparse m atrix in a dense form at in memory is inefficient,

and in many cases would require much more memory than is available in

the given machine. Sparse matrices generally use more complex structures

in memory, which makes in-place transposition more difficult. Poj)ular

compact formats such as Compressed Sparse Row (CSR) and Compressed

Sparse Column (CSC) [Duff 86, George 81] (Section 2.3.5) are used, where

only the non-zero values in the m atrix are stored explicitly. The location

(i.e. row' and cohmm) index of each non-zero value is stored in auxiliary

d a ta structures. For form ats such as CSR, accessing the m atrix elements

via (and m aintaining these auxiliary data structures during) the transpose

is w'hat makes in-place transposition complicated for sparse matrices.

2 Space T im e Efficient Sparse M atrix Transpose

Contribution

For a scjuare n x ii sparse matrix, the two important vahies that affect

the tim e and space required for transposition are the number of rows,

or order, of the matrix (n) and tlie number of non-zero vahies in the

matrix (rrnz). T he O ut-of-Place sparse transpose (Section 3.4) requires

(-)(7)r?2 -I- n) tim e and Q{ n n z + n) auxihary space. T he best pubhshed /

pubHcly available in-place transposition algorithm for sparse matrix formats

like CSR is Saad-IP which requires Q{ nnz + n) time and Q{nnz) auxiliary

space [Saad 94].

The cycle-chasing in-place sparse transpose permutes elements to their

correct transposed row. However, elements are not necessarily ordered by

cohunn index within the rows. This may be adequate for some applications

however, if we wish to ensure elem ents are in order then we can add a

second step to the transjjose operation to sort the elem ents within the

row's. T his can be done using a comparison sort similar to QuickSort

an shown in Section 4.5 which has a tim e com plexity of 0 { n n z . log{n)).

Alternatively we can use a non-comparative sorting algorithm such aa the

Most Significant Digit Radix Bucket Sort (descril)ed in Section 7.1) which

has a time conij)lexity of 0 (n n z .k) [Kmith 98, Biggar 08a. Sliutler 08]. If

n is the numt)er of rows/cohunns then k = loy{n). which remains constant

for any particular integer index used (i.e. for 32 bit integer indexes k < 32

). Thus the complexity of the radix bucket sort essentially becomes 0 { n u z) .

Contribution

We propose a collection of new in-place sj)arse matrix transpose algorithms

which use asym ptotically less memory (6 (7;) comi)ared to 0 { n v z)) while

m aintaining the sam e asym ptotic tim e com i)lexity (S (n n z + n)) of the

existing [Saad 94] in-place algorithm. In most sj^arse matrices n m is

nmch larger than n, so the space saving can be significant. The saving is

])articularly important in cases where the sparse matrix occupies nmch,

or even m ost, of the available memory and transposition with the current

algorithms may be infeasible or even impossible. Indeed, there will always

be a need to solve larger problems or solve problems in finer detail which will

R o b er t C rosh ie . T h e U n ive rs ity of D u b lin . T r in ity College 3

C hapter 1. Introduction

result in even larger matrices. Therefore it is essential to support very large

matrices as efficiently as possible. In practice our new algorithms use just

a fraction of the memory overhead of the existing algorithm while actually

improving (often considerably) on th e execution tim e. O ur algorithm s

also provide more efficient m atrix form at conversion between row-major

and colum n-m ajor orderings, which is the exact same procedure as the

transpose operation. We perform an extensive experimental evaluation and

conii)arison of a immber of sparse transpose algorithms using a test suite of

259 large matrices taken from real world ai)plications and investigate their

performance based on appropriate metrics.

Take for example nlpkkt,240, the largest m atrix in our test suite. Trans

posing th is m atrix using an O ut-of-Place algorithm requires 4,698 MiB

of additional memory. If th is alm ost 5G iB of additional memory is not

available, the existing Saad in-place algorithm [Saad 94] can transpose the

m atrix in 223 seconds using 1,530 MiB of additional memory. We propose

a new Correspondmg Row Transpose algorithm which reduces the memory

overhead from G{niiz) to (-)(») while keeping the standard m atrix struc

tures. The Corresponding Row algorithm can transpose this large m atrix

using just 320 MiB of additional mem ory and in this case also takes 223

seconds to transpose the matrix. Of the 259 matrices in our test suite, our

Corresponding Row transpose requires on average just 21% of the memory

of Saad and performs the transposition in 90% of the execution tim e on

average.

We propose a further Hyper Partition Transpose algorithm which main

tains the reduced 0 [n) memory overhead and internally converts to our

new HyperPartition format in order to reduce the memory overhead further

and improve on cache reuse to improve performance. The H yperPartition

algorithm can transpose this largest m atrix with just 3.3 MiB of additional

memory in just 80.7 seconds. This represents less than 1% of the memory

usage and takes just 36% of the execution tim e of the existing Saad in-

place algorithm. The HyperPartition algorithm has extremely low memory

overhead and performs well for most sample matrices however, it does not

perform well for some matrices.

4 Space T im e Efficient Sparse M atrix Transpose

Thesis O uthiie

W e exaniiiie m atrices for w hich our a lg o rith m does not perform well,

investigate why and proi)ose techn iques to im prove perform ance. T his

results in a Hybrid Transpose algorithm which m ain tains our reduced 0 (n)

space com plexity and also m aintains the Q{n nz + n) tim e com plexity of the

ex isting algorithm s. T h e H ybrid a lgorithm perform s th e tran sp o se using

on average 9% of th e m em ory overhead of th e ex isting in-place algorithm

(less th an 3% of the out-of-place algorithm) w ith an average execution tim e

com pared to th e ex isting Saad algo rithm of 68% in serial and 38.8% in

parallel.

Thesis Outline

T his docum ent is s tru c tu red as follows.

• C h a p te r 2 covers background in fo rm ation underly ing th e work in

th is Thesis. We give a basic overview of L inear A lgebra, Dense and

Sparse m atrices, existing algorithm s and software for sj)arse m atrices

and m atrix storage form ats. We also provide an overview of m em ory

hierarchy and caches and finish w ith a descrip tion of com plexity

analysis and the no ta tion we use to theoretically analyse and di.scuss

algorithm s.

• C h ap te r 3 d iscusses in d e ta il th e M atrix T ranspose o p era tio n , dis

cusses re la ted research, in troduces th e ex isting a lgorithm s for th e

sparse m atrix transj^ose, describes our experim ental setup and gives

an analysis of th e perform ance of th e existing algorithm s.

• C h a p te r 4 in tro d u ces tw o new a lgo rithm s for th e cycle-chasing in-

place sparse m atrix transpose which reduce the m em ory overhead to

an asym ptotic space com plexity of (-)(?;) com pared to the Q{nnz) and

0 { n n z + n) of the existing algorithm s. A lthough th e savings in m em ory

can be significant, for these first tw o a lgo rithm s th is com es at th e

cost of an increase in tim e com plexity. T h is ch ap te r experim entally

analyses th e perfo rm ance of th e algo rithm s in te rm s of execution

R o b er t C rosb ie . T h e U n iv e rs ity o f I)u!)lin . T r in ity College 5

Chapter 1. Introduction

tim e and m em ory visage com pared to the existing algoritlims. The

increase in complexity is evident in the execution time of the Binary

Range Search Transpose however the execution tim e of the Radix

Lookup Table Transpose is broadly similar to the existing Saad in-

place algorithm and is actually slightly faster on average. Chapter 4

also outlines our basic procedure for ensuring elements are arranged

in cohnnn order w ithin row's after the cycle chasing algorithm.

• C hapter 5 describes our new Corresponding Row transpose which

uses a lookup table to perform the in-place cycle-cha.sing algorithm

in reduced 0(r?) memory overhead while m aintaining the B (n n z + n)

time complexity of the existing algorithms. The novel approach here

is that the look up and update of the table can be done in amortized

constant (9(1) time. We perform extensive analysis of the performance

of two im plem entations of the Corresponding Row algorithm . W'e

also use hardw are counters to look in de])tli at how the algorithm

uses caches compared to existing algorithms. Using this analysis we

identify properties of the m atrices and the factors such as the cycle

length which influence cache usage and performance.

• In C hap ter 6 we use the results of the analysis in C hapter 5 to

develoj) a technique to improve cache perform ance of the in-place

cycle-chasing transpose. We introduce our new HyperPartition sparse

m atrix storage form at which ŵ e can easily and cjuickly convert to

during the transpose. We then introduce our HyperPartition Trans

pose algorithm for the in-place transpose of sparse m atrices in the

H yperPartition format. We also introduce a heuristic with which to

select the best param eter to use for determining the size of partitions

in the H yperPartition structure. We analyse the performance of the

heuristic used for different values and reconnnended favourable values.

We also introduce a parallel version of the H yperPartition transj)ose

which exploits the data segregation provided by our HyperPartitions

to reorder HyperPartition elements in parallel. Extensive performance

analysis is also provided which shows that the H yperPartition trans-

6 Space ^ T im e Efficient Sparse M atrix Transpose

Tliesis Outline

pose has negligible m euiory overhead and has improved execution

tim e perform ance for many of the input m atrices due to improved

cache usage.

• Chapter 7 introduces some further optimizations for the H yperParti-

tion in-place sparse transpose. A Radix Bucket Sort which exploits

the type and layout of of the data in our HyperPartitions to improve

the efficiency of the sorting jihase of the transi)ose. We analyse the

performance of different bucket sizes and recommend a heuristic for

choosing an appropriate bucket size depending on m atrix and Hyper-

Partition dimensions.

The H yperPartition transpose from the previous chapter does not

transpose matrices w'hich are structurally synunetric as efficiently as

the previous algorithms. In C hapter 7 we investigate the structu ral

layout of the m atrices in our test suite and introduce an efficient

heuristic test to determ ine if a particu lar Square m atrix is S truc

turally Synunetric. We then introduce our Hybrid HyperPartition

Transpose which uses this test for Sym metry to choose between the

H yperPartition and Corresj^onding Row algorithm s. The Hybrid

algorithm i)rovides a suital)le trade-off and has m oderate memory

overhead with good overall jjerformance.

• We draw conclusions in Chapter 8, discuss contributions and outline

areas for future work. Table 8.1 gives a sum m ary of the algorithm

complexities.

• Appendix A contains tables of information on a selection of the largest

sample m atrices used in experiments. Table A .l gives details of the

dimensions of the m atrices. Table A .2 lists the applications and

l)robleni domains which i)roduced the matrices. Details of algorithm

memory usage and execution tim e for these m atrices are given in

Tables A.3 and A.4.

• A ppendix B contains detailed graphs of the H yperPartition and

Hybrid algorithm s in Serial and Parallel with the QuickSort and

R obert Crosbie. T he University of Dublin. Trinity College 7

Chapter 1. Introchiction

RachxSort algorithms for different k values of the Remaining Bits

Heuristic.

• Appendix C outlines the MatrixMarket file format.

• Bibliography of references and related work is on page 273.

• Glossary on page 295 defines some common terms used in the docu

ment.

8 Space ^ T im e Efficient Sparse M atrix T ranspose

Chapter

Background

This Chapter contains background inforniatiou underpinning this research.

M atrix Transpose is one of the basic operations of Linear Algebra [Golul) 96,

Anton 02]. Section 2.1 gives a brief in troduction to Linear Algebra. The

M atrix Transpose operation itself is discussed in detail along with the

related work and research in th a t area in C lm pter 3. In Section 2.2 we

discusses the two main types of m atrices which result from linear algebra

problems, dense and sparse matrices and the two types of m atrix software

which are specialised for working with each type. Section 2.3 discusses the

main types of m atrix storage formats, the data-structures which are used

to store m atrices in memory on com puter systems.

A central th rust of this work is m odifying sparse m atrix transpose

algorithm s and data-structm ’es to be more efficient by m aking be tte r tise

of caches. Section 2.4 gives a brief overview of the memory hierarchy in

modern comj)uter systems, how caches work and how they can be exploited.

Section 2.5 outlines complexity analysis and the notation used in this

docm nent when discussing and com paring algorithm s from a theoretical

perspective.

2.1 Linear Algebra

Linear Algebra is a branch of mathematics which involves many fields such

as system s of linear equations, vectors, vector spaces, m atrices and linear

transform ations. System s of linear equations are produced during many

varied activities such as analysing the forces on com ponents w ith Finite

Element Analysis [Szab'o 91]. Sim ulating liquids and gasses w ith Fluid

Dynamics [Harlow' 57]. Optim ising problem s in transporta tion , telecom-

numications. and m anufacturing with Linear Progrannning [Schrijver 86],

R o b er t C rosh ie . T lie U n ivers ity of D ub lin . T r in ity C ollege 9

C hapter 2. Background

Sim ulating current in electric circuits [Nagel 73, K undert 86]. Im age Pro

cessin g [Portnoff 99, N a ’m neh 06], and N um erical A n alysis [Higham 02,

Stoer 02] in m any scientific and engineering fields.

As such, linear algebra provides part o f th e essen tia l foundations in a

w ide range of areas o f engineering, econom ics, s ta tis t ic s and th e various

different science disciplines.

Linear A lgebra Exam ple

T he linear equations that are derived from the problem dom ains above may

look sim ilar to the equations show n in th e sm all exam ple in E quation 2.1.

X + 2y + -iz = 3

5x + Ay — z = 1 (2.1)

2x — 3 y + 2z = Q

T here are th ree eq u ation s and th ree unknow n variables (x , y , 2). T h e

standard technicjue tau gh t in sch oo ls is to use sim ultaneous equations to

find th e unknow n variables. H ow ever, th is techniciue d oes not scale. A

better technique is to express the problem in m atrix form and us(' standard

Linear A lgebra techniciues (and softw are) to solve th e problem . T h ese

equations can be w ritten in a M atrix form w here the scjuare 3 x 3 m atrix

A holds th e coefficien ts o f th e unknow n variables, th e 1 x 3 vector array

V holds th e unknow n variables { x , y , z) and the product o f A and v is the

1 x 3 array b, which holds the right hand s ides o f the equations.

1 2 4 X 3

5 4 - 1 V = y 1

2 - 3 2 z 6

A =

T he Full system o f ecjuations A v = b then becom es:

(2 .2)

A v = b

1 2 4 X 3

5 4 - 1 * y = 1

2 - 3 2 T 6

(2.3)

T h e linear sy stem m ay b e so lved by ca lcu la tin g th e inverse A ' of

10 Space ^ Time Efficient Sparse Matrix Transpose

2.2. Dense and Sj)arse Matrices

the m atrix A and pre-nniltiplying bo th sides by this inverse. A and its

inverse when nniltiphed together resuh in the identity m atrix / whicli when

muitiphed by a vector or m atrix results in the same matrix. The calculation

proceeds as follow's:

(2.4)

Thus we can find the tmknowns by calculating the inverse of A

and pre-niultiplying b by A~^. For efficiency, linear algebra algorithm s

generally do not calculate the full inverse, ra ther they decompose A into

its upper U and lower L components (such that LU = /I) and perform two

triangular solves to calculate the value of the miknowns. This reduces the

to tal num ber of arithm etic operations required.

Av = b

1

II A-^h

Iv — A~^b

V = A-^b

2 X 4

Lv = b => - 3 2 * y = 2

2 - 3 2 z 6

(2.5)

\\'e use a triangular solve when we have a lower triangu lar m atrix L

m ultiplied by a vector v as in Ecjuation 2.5. A triangu lar solve makes it

easier to calculate the values of the unknowns in the vector v. In this case

we can simply read the value of the variable x given th a t the equation is

2x + y + 2 = 4, thus x = 2. This value of x can then be used to find

the value of y and then 2 . The same m ethod can be used w'ith an u])per

triangular m atrix U.

This m ethod of finding the unknown variables in system s of linear

ecjuations is just one of the connnon uses of Linear Algebra. There are

many many other uses of Linear Algebra.

2.2 D ense and Sparse M atrices

There are two main types of matrices; Dense Matrices and Sparse Matrices.

The main reason for distinguishing between dense and sparse matrices

Robert Crosbie. T he I 'n iversity of Dublin. Trinity College 11

Cliapter 2. Backgrouiul

is how tliey are stored in memory on computer systems and how the linear

algebra algorithms operate on them. In a dense matrix, all the elements in

the m atrix are stored contiguously in memory. We know the exact layout

of the m atrix in memory such th a t every element can be indexed directly.

A si)arse m atrix is a m atrix where the m ajority of the entries have

a vahie of zero. Sparse m atrices tend to be quite large so storing all

those zeros in memory (as in dense) is inefficient. Perform ing arithm etic

(adding, multiplying) with all those zeros is also inefficient. Therefore sparse

matrices are stored in memory using a comj^act format such as Compressed

Sparse Row (CSR) [Duff 86, George 81] (see Section 2.3.5) where just the

non-zero values from the m atrix are stored. A dditional da ta structures

store information on the layout and structure of the m atrix. Furthermore,

sparse m atrix softw'are is designed with this sparsity in mind and use the

com pact storage form ats to reduce the m unber of arithm etic operations

required to perform the algorithm s by only accessing the nou-zero values.

The main storage formats and data-structures used for both dense and

sj)arse m atrices are outlined in Section 2.3.

2.2.1 D ense Linear A lgebra

Dense Linear Algebra refers to the class of linear algebra algorithm s and

software wdiich operate on m atrices stored in dense form at in memory.

The Basic Linear Algebra Subprogram s (BLAS) define a s tandard set

of interfaces for perform ing common linear algebra tasks. The BLAS is

divided into th ree categories. The level 1 BLAS [Lawson 79] consists of

scalar and vector routines (dot product, vector-vector nm ltijjly). Level 2

BLAS [Dongarra 88] consists of routines which deal w ith one m atrix and

one or more vectors (matrix-vector nuiltiply). Level 3 BLAS [Dongarra 90]

consists of more complicated single m atrix routines and routines including

two or more matrices (m atrix-m atrix multiply). LAPACK (Linear Algebra

PACKage) [Anderson 90, Anderson 99] builds on the BLAS and provides

routines for solving system s of linear equations, least squares, eigenvalues

and routines for factorizing matrices. The BLAS and LAPACK have been

12 Space ^ T im e Efficient Sparse M atrix T ranspose

2.2. Dense and Sparse M atrices

very successful in standardising the interfaces for linear algebra ro\itines.

The basic BLAS [Lawson 79, Dongarra 88, Dongarra 90] just provides

a reference im plem entation of the algorithm s and interfaces, they are not

tuned for efficiency. W ith dense m atrix algorithm s, there are a lot of

techniques such a blocking and paneling which can be used to exploit hard-

w'are resources, caches and TLBs [Nishtala 04, Gustavson 12]. There are a

number of efficient serial and parallel dense linear algebra libraries available

which implement the BLAS interfaces and often include routines from LA-

PACK and other useful routines. Some of these optimized implementations

are IBM ESSL [IBM 70], Intel MKL [Intel 93], AMD ACML [AMD 03], AT

LAS [Whaley 98, W haley 01] and GotoBLAS [Goto 02, Goto 08a, Goto 08b]

The BLAS libraries are highly efficient for dense system s or system s

with a specific dense structure (such as banded, skyline, etc.) as they can

exploit the logical, sequential structure of the matrix. As mentioned above,

dense routines however, are geuerally not appropriate for handling sparse

m atrices; The high proportion of zeros means th a t they require excessiv'e

amounts of space to store them in memory, and any dense routine will spend

a high proportion of its tim e executing unnecessary operations involving

zero.

2.2.2 Sparse Linear Algebra

A large proportion of linear system s th a t occur in real world applications

tend to be sparse, in which the vast m ajority of the entries are zero. For

example. Figure 2.1 shows the A S I C -680k m atrix from our test suite. A

square m atrix w ith 682,862 rows and 3,871,773 non-zero values, with an

average of 5.7 elements per row/column. W ith an average of 5.67 elements

per row, this m atrix is 99.999% sparse and would require 3,474 GiB to store

in mem ory in a full dense form at however only recjuires 47 MiB to store

in the Compressed Sparse Row form at. The definition of a si)arse m atrix

also states that the sparsity can be exploited, either to reduce the amount

of storage required to represent the m atrix in mem ory or to reduce the

amount of com putation required when operating on the m atrix or both.

R obert Crosbie. T he University of Dublin. T rin ity College 13

Cliapter 2, Background

.k V . . B - . - - L .

- s ^

' I t x t < i r i I 9 . ■ » ,
; ! «

I - I f •

Figure 2.1: Exam ple Sparse M atrix: ASIC_680k is a 682.862 x 682,862
m atrix with 3,871,773 non-zero vahies meaning just 0.0001% of the elements
are non-zero (5.7 elem ents j)er row on average). Pixels in the image
represent locations in the m atrix which contain non-zero elements. As the
size of the m atrix is nmch larger than the dimensions of the image, a single
pixel indicates that there is at least one non-zero element within a block of
elements. This m atrix would recjuire 3.474 GiB to store in a dense format
however requires just 47M iB to store in the CSR format.

Section 2.3 outlines a num ber of the connnon sparse m atrix storage

formats. We will be working mainly with matrices stored in the CSR format

(Section 2.3.5).

The memory layout of sparse matrices is much less amenable to random

access than dense matrices. It is not possible to directly index every element

in the m atrix w ithout going through additional m eta structures, it may

also be necessary to scan through parts of the array. It is not possible to

directly calculate the location of an element in memory based on its row

and column index, nor indeed know in advance if that particular element is

zero or non-zero. This makes it difficult for algorithms to take advantage of

processor features such as caches. As a result of this, sparse algorithms are

not as efficient as their dense counterparts as they are highly dependent on

14 Space T im e Efficient Sparse M atrix T ranspose

2.2. Dense an d Sparse Matrices

m em ory b an d w id th and latency. T hus it is very im p o r tan t to investigate

m ethods to make sparse m atr ix algorithms more efficient.

2.2.3 Direct M ethods and Iterative M ethods

T here are two m ain approaches to solving sparse systems, direct m ethods

and ite ra tive m ethods. A direct m ethod [George 81, Bunch 7G, Duff 86,

Davis 06, Gould 05, S tew art 01] performs calculations based on Gaussian

e lim ination to ca rry ou t th e algorithm (decomi)osition, etc.). T h e direct

sparse m ethod skips calculations on zeros as only non-zeros are s tored in

the sparse s tructure .

An itera tive m ethod [Saad 03, Householder 52, C onrad 77] takes a dif

ferent approach: it takes an initial guess at th e unknow n variables in

th e X vector, th en uses a num ber of m ath em atica l techniques (such as

conjugate gradient [Hestenes 52, Saad 03, S trau b h aa r 08]) to see how close

th e guess was and genera te a b e t te r e s t im a te of th e unknow n variables

in X . T h e process is rej)eated iteratively until a set of values is found

which are w ith in som e pre-defined limits of precision. I te ra t ive m ethods

depend primarily on sparse matrix-vector multiplication and mathem atical

techniques for refining the estimates. Sparse m atrix -vecto r multij)lication

has a lready received a great deal of a t ten t io n in the research connnunity

[Demmel 01, Vuduc 05, Lee 08].

I te ra t ive m e th o d s can often solve th e problem in less t im e an d often

using considerably less m em ory th a n direct m ethods. However, i tera tive

teclmicjues can som etim es be uns tab le (values m ay explode to infinity or

degrade to zero). It is also possible th a t th e algorithm m ay not converge

using an iterative m ethod , depending on th e matrix.

There are a num ber of advantages to using Direct M ethods with sparse

m atrices. Direct m eth o d s are g u aran teed to comj)lete w ith a solution in

an am ount of tim e relative to th e num ber of row s/e lem ents in th e m atrix

(provided a solution exists). T hus direct m ethods are m ore predic table in

the ir runn ing time, and can find solutions in some cases where i tera tive

m e th o d s fail. F u rtherm ore , it is often required to solve th e sam e set of

Robert Crosbie. T he University of Diibhn. Trinity College 15

Chapter 2. Background

linear equations with nmltii)le different right hand side arrays b (boundary

conditions). W ith a direct method, we can decompose the matrix into L
and U once, and then just perform the triangular solve for each different

boundary condition. It is generally possible to jjerform multiple triangular

solves at the same time in order to improve the cache reuse of the triangular

matrix.

2.2.4 M athem atical Optim isation of Sparse Matrices

The majority of research into optimising sparse linear algebra algorithms [George 81,

Bunch 76, Duff 86, Davis 06] has approached the problem from a uiathe-

matical perspective. We can see this in the work on preconditioners and
convergence algorithms such as conjugate gradient [Hestenes 52] from the

iterative methods.

Much of the research on optimising direct methods for sjjarse linear
algebra focuses on reordering techniqvies [Gould 05, Duff 86]. These re
ordering teclmicjues use Linear Algebra. Graph Theory and Combinatorics
to produce an ordering to swap tlie rows and columns of the matrix to move

elements into positions which will make operations on the matrix more
efficient. There are a mnnber of packages such as Scotch [Chevalier 08],
Metis [Karypis 98, Gupta 97] and CHOLMOD [Chen 08] for working with
graphs which provide methods specifically for reordering sparse matrices.

There are two main goals with the current techniques. The first is to re
duce the bandwidth of the matrix (Cuthill McKee [Cuthill 69, Cuthill 72]),

that is, swap rows and colmnns so that the entries in the matrix are closer

to the diagonal line. The second techniciue is to reorder the rows and
columns to reduce fill-in (AMD [Amestoy 96, Larimore 98], Nested Dissec

tion [Karypis 98, Gupta 97, Bornstein 99]). Fill-in is where o[)erations on
the m atrix cause entries which were originally zero, to become non-zero.

Fill-in is a major difficulty for sparse matrix algorithms because they modify
the structure of the matrix, space for new elements needs to be created

in the middle of the compact matrix arrays. Inserting a new' entry into a

sparse data structure can be very expensive. Fill-in is not a problem in

16 Space ^ Time Efficient Sparse Matrix Transpose

2.2. Dense and Sparse M atrices

dense m atrices because there is ah'eady a place in tlie m atrix for tlie new

non-zero vahie. An additional benefit of the Nested Dissection technique is

that it also reduces some of the dependency between rows and colunms in

the m atrix, which means tha t different parts of the m atrix can be (largely)

decomposed in isolation.

2.2.5 Software Packages for Sparse Linear Algebra

Sparse linear algebra is an im portan t problem w ith many practical real-

w'orld applications. As a result, a great deal of research and engineering

effort has been devoted to constructing efficient libraries th a t implem ent

both direct and iterative methods. Many of these libraries have been iMiilt

using Fortran [Backus 56] or low-level C [Kernighan 88]. In this section we

outline some of the m any jjackages and libraries which are available for

working with sparse matrices.

The Harwell Subroutine Library (HSL) [Gould 04] is a large collection

of FORTRAN routines which implem ent many different variants of the

si)arse linear algebra algorithm s. The NIST S])arse Bias [Remington 96]

provides a basic im plem entation of the BLAS for sparse m atrices. The

BeBOP [Dennnel 01] group in Berkley have fleveloped a num ber of op ti

mised])ackages for Sparse Matrix-Vector M ultiplication: OSKI [Vuduc 05]

and SPARSITY [Im 04]. Tim Davis has developed a num ber of packages

which work w ith sparse m atrices CSparse [Davis 06], LDL [Davis 05a],

UMFPACK [Davis 97, Davis 04] and CHOLMOD [Chen 08] which are all

part of SuiteSparse [Davis 05b].

The Sparskit [Saad 94] package which we have m entioned before is

a basic tool-kit for sparse m atrix com putations. Oblio [Dobrian 04] is

a s])arse toolkit for solving linear system s. PET Sc [Balay 97] is a tool

for solving applications modeled by partial differential equations which

uses sparse m atrix linear algebra algorithm s. Spooles [Ashcraft 99] is the

SParse Object O riented Linear Ecjuations Solver. SuperLU [Li 03, Li 05]

is another package for sparse m atrix decom position and solving system s

of sparse linear equations. It includes versions for shared memory and dis-

R o b ert C rosb ie . T h e U n ive rs ity of D u b lin . T r in ity College 17

C h ap te r 2. B ackground

trib u ted m em ory system s. M UM PS [Atnestoy 98] is a M uUifrontal Parallel

sp arse d irect Solver w hich runs in para lle l using M P I [Snir 95, Snir 98].

TAUCS [Toledo 03] im plem ents a num ber of sparse m atrix algorithm s using

Cilk [Blumofe 95] for m u lti-th read in g . T h e W atson S parse M atrix P ack

age (W’SM P) [G upta 01] is a package from IBM for solving large sparse

linear system s. PA RD ISO (PARallel D irect SOlver) [Schenk 01] provides a

num ber of rou tines for sj)arse m atrix factorisation .

In addition to th e m any packages listed above, most of the big m ath em at

ical software system s such as M atlab [M ATLAB 10], M athem atica [W olfram 03],

O ctave [Eaton 09], Sage [Ercal 10], M agm a [Bosnia 97] and M aple [M onagan 05]

also include functionality for working w ith sparse m atrices. In m any cases

th ey sim ply include (or can be configured to work w ith) a num ber of th e

sparse m atrix packages listed above.

2.3 M atrix Storage Formats

T his section flescribes som e of th e com m on d a ta s tru c tu re s and s to rage

form ats for representing dense and sparse m atrices in m em ory on com puter

system s.

T h e m atrices used in sp arse linear a lgeb ra are often ex trem ely large;

m atrices w ith tens of thousands or millions of rows and colum ns are common.

A lthough the order of the m atrix m ay be large, typically m ost of the values

are zero. To reduce m em ory req u irem en ts and processing tim e, m atrices

are stored in so-called compressed form ats. Compact m ay be a b e tte r term

th an compressed as the form at does not use any com pression algorithm such

as H uffm an [HufTinan 52] or L ZW [Ziv 77, Welch 84]. T h e d a ta is sim j)ly

sto red w ith o u t th e zero elem ents. T h a t is, only th e non-zero values arc

stored explicitly in memory. A rrays or o ther d a ta s tru c tu res w ith additional

m eta-in form ation define th e s tru c tu re and layout of th e m atrix .

C om pact fo rm ats such as CSR are very im p o rtan t for sparse m atrices.

As we m entioned above in Section 2.2.2 the .4 5 '/ r ’_G80A' m atrix in F igure 2.1

w ould requ ire 3,474 G iB to s to re in a dense fo rm at how ever requires ju s t

47M iB to s to re in th e CSR fo rm at. A side from saving space, com pact

18 Space ^ Time Efficient Sparse Matrix Transpose

2.3. M atrix Storage Formats

formats such as CSR also help avoid a considerable amount of unnecessary

arithm etic (adding/m ultiplying by zero) during m atrix algorithms.

There are many different formats in which a sparse m atrix can be stored

in memory and each option has its advantages and disadvantages. These

form ats d ictate the am ount of memory required to store the m atrices and

may have considerable influence on the run-tim e speed and efficiency of

the linear algebra algorithms operating on them. In general the algorithms

need to be altered to varying degrees in order to make more efficient use of

resoiu'ces when operating on particular storage formats.

However, some storage formats will often be more beneficial for certain

algorithm s and some for others. For example, the compressed sparse row

(CSR) format is more appropriate for algorithms which operate on matrices

by rows, as the format facilitates easy access by rows (but not by colunms).

A lternatively, a form at which stores the m atrix in column order (such as

CSC) is more approj)riate for routines which access the m atrix by columns.

^ a h ^
c d e

M = , ^ ,
h > J

k I
\ m n o)

Example 2.1: Sample Sparse M atrix M

Exam ple 2.1 gives a j:)edagogical example of a sparse 6 x 6 m atrix M .

This m atrix is used to dem onstrate how a num ber of the form ats below

store the m atrices in memory and will be used throughout the document

to dem onstrate how the transpose algorithms operate. The elements of the

m atrix are represented by the sequential letters of the alphabet from ‘n ’ to

‘o’ ordered by row'. We use letters ra ther th an numbers for m atrix values

to ease legil^ility of the examples and make a clear d istinction betw'een

the non-zero values of the m atrix elements, the row /cohnnn indexes and

pointer values. These letters can be thought of as representing the floating

f^obert C rosb ie , T h e I ’n iv e rs ity o f D u b lin . T r in ity College 19

Cliapter 2. Background

point values in the matrix. The m atrix has (» = (i) rows, (?/; = 6) columns

and is sparse with {nnz = 15) non-zero elements. There are also 21 zeros.

In all our examples we use zero-based indexing as in the C program m ing

language. Thus the row indexes of an r; x n m atrix run from 0 -> (?? - 1)

inclusive.

2.3.1 Two Dim ensional Dense Format

The two-dimensional array is a connnon format for storing dense matrices.

All the values in th e m atrix are stored together in memory in a two

dimensional array. Listing 2.1 shows an example of our dense 6 x 6 m atrix

M from Example 2.1 being statically allocated as a two dimensional array

1
/

■ \ [6] 16] = { { a . 0 . 0 . 0 . l>. 0 }■
2 { ' ■ il . 0 . 0 , 0 , • }.
3 { 0 , f , K • 0 . 0 . 0 }.
4 { l‘ . 0 . 0 , i , j . 0 } .
5 { 0 , 0 , 0. 0 , k , 1 } .
6 { 0 . in. 0 , 0 , 11. (. } } :

V J
Listing 2.1: Two Dimensional Dense Examjjle

The two dimensional format is very simple; elements are easy to access

directly as m atrix elem ent a,j can be found at array position 4̂[?’][j]. In

this representation, the first index i, specifies the row and the second index

j , specifies the column.

One difficulty with the two dimensional dense array regards the ordering.

In th e C program m ing language, two dimensional arrays are stored in a

row-major ordering as we have shown in Listing 2.1. However in the

F o r tr a n program ing language, two dimensional arrays are stored in a

colum n-m ajor ordering. This can cause confusion between libraries and

algorithm s w ritten in the two languages if this difference is not known.

However, working between the two languages is straightforw ard once this

difference is addressed; either restructu re the ordering of the m atrix or

sw'ap the column and row indices in the algorithms.

20 Space T im e Efficient Sparse M atrix Transpose

2.3. M atrix Storage Formats

All issue w ith naively using the default row-m ajor ordering of two

dimensional arrays in C is that many linear algebra algorithm s are column

orientated , so accessing the row-m ajor C arrays by colum ns is bad for

memory locality. This problem can easily be worked around in a number

of w'ays; restructu re the algorithm to operate by rows (which often can

be sim ply done by swapping the inner and outer fo r loops) or storing

the m atrix in a transposed form in the array such th a t it is stored in a

colum n-m ajor order. in row'-major is identical in mem ory to M in

column-major. A lternatively a one dimensional dense form at can be used

with the elements ordered appropriately.

2.3.2 One Dim ensional Dense Format

The one-dim ensional array is another popular form at for storing dense

m atrices. This uses a single one-dimensional array of size nrou's x ncols

to store the whole m atrix contiguously in memory. This format avoids the

row-major and colunm -niajor issues of the two-dimensional array. W’e can

choose ourselves whether to store the m atrix by rows or by columns.

R ather than accessing element a, j as .4[i][j] as in the two dimensional

array, we calculate the i)osition of the element in the array using arithmetic.

Thus the element a,j can be found at position /l[(i * ijrou's) -I- j] if the

m atrix is stored in a row-major format or .4[; - I - {j * ncols)] if the m atrix is

stored in a colum n-m ajor format.

Column-major algorithm implementations seem to be slightly more com

mon. perhaps due to the prevalence of codes w ritten in Fortran, However,

thei'e are m any algorithm im plem entations which are colum n-m ajor and

there are m any which are row-major. There are also certain algorithm s

which by their nature are specifically row or column orientated, thus both

orientations are im portant for good d a ta locality.

2.3.3 M orton Ordered Dense Format

A format which is related to the one dimensional array dense format is the

M orton Ordered Dense Format [Morton 66, Wise 01]. This format avoids

R obert Crosbie. T he I 'n iversity of Dublin, T rinity College 21

C liapter 2. Backgrouiul

the problem of having to choose a row-major or cohmm-major ordering by

storing the elements in the m atrix in a sequence of 2 x 2 hierarchical blocks.

This ordering means that elements tha t are close to each other horizontally

and vertically, in adjacent sub-blocks of rows and columns are also stored

closer to each other w ithin the one-dim ensional array. This gives b e tte r

cache reuse for algorithms which operate on the m atrix in blocks.

/ / l 1 ^ 2

5 6

13 14

7 8

15 16

17 18

25 26

19 20

27 28

21 22

29 30

23 24

31 32

33 34

41 42

35 36

43 44

37 38

45 46

39 40

47 48

49 50

57 58

51 52

59 60

53 54

61 62

55 56

63 64

Figure 2.2: M orton Order Z-Curve M atrix

Figure 2.2 shows an 8 x 8 m atrix. At each level of the M orton ordering

the m atrix is bisected horizontally and vertically as shown in Figure 2.2

22 Space T im e Efficient Sparse M atrix Transi)ose

2.3. M atrix Storage Formats

2 [gj io 3 [4 [n I 12} 17 I 18 I 5 I 26 19 20 21 28 5 j 6] isj^u 7 8 | 15 16 1 2 1 1 22 [291 3^

Figure 2.3: M atrix stored in M orton Order

by the bhie lines first dividing the m atrix into four, 4 x 4 sub-m atrices,

which are fm ther divided by the green lines into 2x2 blocks. Each block is

recursively stored sequentially in memory in order from top-left to top-right

to bottom -left to bottom -right. Thus giving the Z-Curve p a th th a t the

elements are ordered in, as shown by the red line.

The m atrix is repeated on the right of Figure 2.2 showing the full path of

the Z-Curve through the matrix. 2x2 blocks which will be stored together

are highlighted in different colours. Figure 2.3 shows the first 28 elements

of the array storing the m orton ordered matrix. The 2 x 2 blocks are again

highlighted by colour.

The advantage of M orton ordering is that the position of each element

can be calculated by simi)ly interleaving the bits of the binary representation

of the row and column indices. Take for example element 20 stored at row

3 (index 2 = 010), colunm 4 (index 3 = 011). Interleaving these index bits

gives: 001101 = index 13. Thus element 20 is stored at index 13 in the

array.

V ariants of the M orton Ordering Form at are used in a num ber of

techniques for fast m atrix m ultiplication [Strassen 69, Coppersm ith 90,

Valsalam 02].

2.3,4 The Compressed Coordinate (COO) Format

The Sparse Coordinate Format (COO) is the basic sparse m atrix storage

format. A triplet of information is stored about every non-zero element in

the matrix: The colunm index of the element, the row index of the element

and the non-zero value of the element.

Listing 2.2 shows the static allocation of the m atrix M in COO format.

Additional whitespace is included to group elements by row for readability.

The sparse coordinate form at consists of three arrays of size (miz) , the

R o b ert C rosb ie . T h e U n iv e rs ity of D u b lin . T r in ity C ollege 23

Chapter 2. Background

j'owJndexes[]. the colJndexes[] and the no7}.zeros[], Tliese arrays store

respectively the row index, cohnnn index and non-zero vahie of the elements

of the matrix. No zero values are stored in the matrix, the corresponding

row and colunni index for each non-zero value indicates the location of that

value in the original matrix M in Example 2.1.

/
1 i 11< 1 <‘ X < ■ > [15] = { 0 . 0 , 1 . 1 , 1 , 2 . 2 , 3 . 3 . 3 , 4 . 4 ,

5 5 5
2 C (

1
> 1. i u <1«

4 . 5
X<‘s [15] = { 0 . 4 . 0 . 1 , 5 , 1 . 2 . 0 . 3 . 4 , 4 . 5.

3
ni

n o n . /
n ()

■ r os
}:

[15] = { - , 1', >' > ' 1 , . 1' , K , l i , i , j > k , 1 ,

J
Listing 2.2; Sparse Coordinate Example

The format does not recjuire elements be stored in order, however
elements would usually be stored in order in a row" or colunm major
ordering. The coordinate format is not an efficient layout for most sj)arse
algorithms as it is not possible to determine in advance where the elements
of a particular row or colunm are located in the matrix, the whole matrix
structure must be searched to check for the existence of and find tha t
element. If elements are ordered a binary search w^ould take 0{log{nnz))

time. Finding an element in an unordered COO matrix would take 0{nnz)
time.

The sparse coordinate format is sometimes used when initially construct
ing a sparse matrix in memory. Many of the sparse matrix file formats such

as the MatrixMarket format (Appendix C) store elements in a coordinate

format. The sparse coordinate format is rarely used for computation. A

COO matrix is generally converted to another format such as CSC or CSR
before computation. The Saad In-Place transpose algorithm (Section 3.5) is

one algorithm that does use this Sparse Coordinate format. Saad internally

converts to COO in order to perform the in-place cycle-chasing transpose.

24 Space h Time Efficient Sparse Matrix Transpose

2.3. Matrix Storage Formats

2.3.5 The Compressed Sparse Row (CSR) Format

The Compressed Sparse Row (CSR) Format and its sister format, Com

pressed Sparse Column (CSC) [Duff 86, George 81] are two of the most

connnon sparse matrix representations which are supported by many of

the S])arse Linear Algebra packages listed in Section 2.2. For consistency

we arbitrarily standardize on the Compressed Sparse Row format for the

transpose algorithms in this document.

Compressed Sparse Row stores the non-zero values of the matrix in one

contiguous array. Additional arrays are used to store meta-data relating to

the structure of the matrix; the locations of the start of each row' and the

colunm index corresponding to each element. The elements are stored in a

row-major order, as is evirlent by name of the structure. The Compressed

Sparse Colunm format stores elements in column-major order.

Given that the CSR format stores elements in row order and CSC
stores elements in column order, they essentially represent the trans])ose
of the other. The procedure to transjiose a sparse matrix is identical to
the i)roceclure for converting between CSR and CSC formats. Hence the
transpose algorithms presented here can also be used to convert l)etween
row-major and column-major orderings. In fact, the Out-of-Place transpose
procedure in the Sparskit2 package is called csrcscO .

f
r o w . 1)1 r-' [7]

1 2 . 1 5 } :
= { 0 . 2 , 5 , 7 . 1 0 .

CO I i 11 (1 X [1 5]
1 , 4 , 5 } ;

= { 0 . 4 , 0 . 1 . 5 , 1 . 2 , 0 . 3 . 4 , 4 . 5 ,

n o l l . z « ‘ l •o^ [1 5]
ui , u , o } :

V

= { i i , 1), (■ , <1, , I ' , K, li , i , j , k , 1 .

y

Listing 2.3: Sparse Compressed Row Example

Listing 2.3 shows the static allocation of a sparse matrix in CSR format.

\M ntespace is added for readability to grou}) elements and pointers by

rows. The format is very similar to the Comj^ressed Coordinate format

(Section 2.3.4). The colJndexes[] and non.zeros[] arrays are identical in

both formats.

R o b ert C ro sb ie . T h e U n iv e rs ity o f D u b lin . T r in ity C ollege 2 5

Chapter 2. Backgrouiul

The rou'Jndex is not stored directly in the CSR format as in the COO

format, hi CSR the location of the start of each row in the rou'.pirs[] array

is stored as an index into the two non.zeros[] and colJndexes[] arrays.

The row.ptrs[] array is size {nrows + 1) ra ther than nrou's because it

requires an extra entry in order to indicate the end of the last row.

non_zeros = a b c d e f g h i j k I 7J o
coLi ndexes = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

row_ptrs = 0|, 2j 5̂ 7.̂ 10 ̂ 12̂ 15

Exam ple 2.2: M atrix M in CSR representation

Exam ple (2.2) shows the m atrix M in CSR, this tim e using the repre

sentation w’hich we will use for describing the transpose algorithms in the

rem ainder of this docum ent. In the exam ple the subscript values in the

rou'.ptrs[] array give the row num ber. These subscript values are shown

only for the sake of clarity.

The CSR form at is typically used when we wish to access the m atrix

by rows, which is connnon in certain m atrix operations. In order to access

row 3. say, we lookup the jjosition of that row in the r(m'.ptrs[] array. W’e

then know th a t row 3 lies between rou ’_/;/7'.‘i[3] and row-ptrs[i + 1] (i.e.

locations 7 through 9). We can then read th a t row 3 has the values

with column indexes (0 ,3 ,4) respectively.

2.3.6 Block Compressed Row Storage (BCRS) For
mat

Some types of linear system s of equations result in sparse m atrices which

are comprised of numerous small dense blocks of values in a regular pattern

where all the blocks are the same size. The discretization of some partial

differential equations which have several degrees of freedom often result in

such m atrices as do some m atrices arising from Finite Element Analysis

(FEA). Figure 2.4 shows a m atrix where all the non-zero elements occur in

26 Space T im e Efficient Sparse M atrix Transpose

2.3. M atrix Storage Formats

small 2 x 2 blocks, thus the nimiber or rows/cohmms per block, ni, = 2. In

other m atrices, blocks may occur with different values of Jih-

Figure 2.4: The Block Compressed Row Storage (BCRS) format

The Block Compressed Row Storage (BCRS) format is a modification of

the Compressed Row Storage format where all the values of each block are

stored contiguously together in the non^zeros[] array. The co l JTi dexe s []

array then just holds the colunm index of the top left element in the block.

The roiv.ptrs[] array thus becomes an array of pointers to blocks. The

BCRS format has slightly lower memory usage than CRS. The 7wn-zeros[]

array is the same length. However the length of the coLit>de.res[] becomes

^ and the length of the block.ptrs[] array becomes ^ + 1 where Hh is the

num ber of row s/cohnnns per block. For a m atrix with this s tructu re it is

implied th a t Hf, is a factor of both 7? and r?;.

The benefit of the Block Com pressed Row Storage form at is th a t al

gorithm s can exploit the blocked form at in order to gain improved cache

performance. Such algorithm s would of course need to have been w ritten

to support m atrices stored in the BCRS form at and operate on blocks of

size V ariants of the BCRS form at supports blocks of variable size in

the m atrix.

2.3.7 Compressed Diagonal Storage (CDS) Format

If a sparse m atrix is Banded, in that all the non-zero elements are centered

along the diagonal and subdiagonals then we can use the Compressed

Diagonal Storage (CDS) Format. The diagonal is the line of matrices from

R o b ert C ro sb ie . T h e U n iv e rs ity of D u b lin . T r in ity C ollege 27

1 3 6 7

2 i l l s 2
1 4

4 1

1 3 7 2

3 6 4 5

C h ap ter 2. B ackground

th e to p left of th e m a trix to th e b o tto m right w here th e row and cohnnn

inchces are th e sam e, i = j , show n in red in F igu re 2.5. A subdiagonal

is a hue of elem ents th a t ru n s parallel to th e diagonal. T h e C om pressed

D iagonal S to rage schem e sto res th e d iagonal in an a rray of size n. Each

su bd iagonal is s to red in an ad d itio n a l a rray of size n. T hus, if all th e

non-zero elem ents of a m a trix were located in th e d iagonal and th e two

subdiagonals e ither side of th e diagonal th en we could store th e m atrix in

th ree arrays of size n corres])onding to d — 1, d and d + 1.

2 4

3 1 4

5 3 7

6 2 4

I 3 7

3 5

F igure 2.5: C om pressed D iagonal S torage (CDS) Form at

Figm 'e 2.5 shows an exam j)le of a b an d ed m atrix , all th e non-zero

elem ents are along th e d iagonal and th e lines beside th e d iagonal. T h u s

we can s to re all th e non-zero e lem ents in th ree a rray s of size n. T h e

Com pressed D iagonal S torage form at m ay include a num ber of add itional

zei’o elem ents w hich occur in tlie d iagonal and subd iagonals . However

ad d itio n a l a rray s of m eta -in fo rm atio n are not requ ired to identify th e

location of elem ents, m eaning CDS often requires less m em ory th an o ther

sparse form ats. Aside from lower m em ory usage th an dense, the benefit of

th e CDS form at over o th er sparse form ats is th a t we know th e location in

m em ory of every elem ent and can exploit th is in our algorithm s to imi)rove

cache perform ance.

2.3.8 The Recursive Sparse Blocks (RSB) Format

T he Recursive Sparse Blocks (RSB) [M art one 10a, M art one 10b, M art one 11]

Form at is a cache friendly form at for sparse BLAS operations. RSB parti-

d - l : 4 4 7 4 7

d: 2 1 3 2 3 5

d+l : 3 5 6 1 3

28 Space & Tim e Efficient Sparse M atrix Transpose

2.4. Memory Hierarchy and Cache Performance

tions the sparse m atrix into cjuadrants using a quad-tree [Finkel 74, Wise 01]

structure. A ([uad-tree is a tree data structure wliere each internal node has

exactly four chikh'en. Figure 2.6 shows where m atrix (juadrants would be

stored in a 1-level (juad-tree. In the RBS format the M atrix is recursively

divided into cjuadrants and the sparse sub-m atrix blocks are stored in the

leaves of the tree in standard COO or CSR format.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 5! 52 53 54 55 56

57 58 59 60 61 62 63 64

4

9 10 11 12

17 IK 19 20

25 26 27 2K

QuadTree
Root

^ / \

6 7 K

13 14 15 16

21 22 23 24

29 30 31 32

33 34 35 36

4! 42 43 44

49 50 51 52

57 5X 59 60

Figure 2.6: Rx'cursive Sj)arse Blocks QuadTree

37 3K 39 40

45 46 47 4X

53 54 55 56

61 62 63 M

The procedure to convert to the Recm'sive Sparse Blocks form at is

expensive. The form at is intended to imj^rove the i)erformance of Sparse

Matrix-Vector M ultiplication S p M V which is used repeatedly during itera

tive solvers, meaning tha t the cost of the conversion may be recouped over

m ultiple nmlti])lications.

2.4 M em ory Hierarchy and Cache Perfor

mance

Over the past few decades com puter processor speeds have increased

rapidly year on year closely following those increases predicted by Moore’s

Law [Moore 65, Schaller 97]. Processors today are orders of m agnitude

R o b ert C''rQs)>ie. T h e U n iv e rs ity of D ul)liii. T r in ity C ollege 29

C hapter 2. Background

m ore powerful than those of a few' decades ago. U nfortunately memory

bandwidth and memory latency (how long it takes to bring data from main

memory into the processor) have not been increasing at the same rate and

have lagged behind. This has led to wdiat is referred to as the Memory

Wall [Wulf 95, McKee 04] or Memory Gap [Wilkes 01, Fernandes 02] —

the gap in performance betw'een processors and memory.

W hen development of numerical codes was becoming more common on

early com puter system s in the ’50s and ’60s, it only took a few processor

cycles to bring d a ta from m ain DRAM memory into the processor to

perform calculations. Due to the fact that processor speeds have increased

a t a nnich higher ra te th an mem ory speeds, todays com puter system s

can take hundreds of processor cycles to fetch d a ta from DRAM memory.

Modern computer systems come with numerous levels of caches, prefetchers

and other components to offset this gap in the speed of the processor and

memory.

Processor Core

Main Memory

Registers

I’age Table

1.1 Cache

TI.B

L2 Cache

L3 Cache

Figure 2.7: Memory Hierarchy

In order to])roduce efficient com puter program s it is necessary to

understand how ̂ these various com ponents w'ork, how they influence how

programs operate and more importantly, how to exploit them [Goedecker 01,

Drepper 07].

The memory hierarchy as shown in Figure 2.7 is im portant to understand

.30 Space T im e Efficient Sparse M atrix T ranspose

2.4. Memory Hierarchy and Cache Perform ance

for our worlv on the In-Place Sparse M atrix Transpose. Caches are a very

sini[)le mechanism to conceal the gap in memory speeds. Caches are small

am ounts of fast memory which are close to the processor core. W hen the

processor re(|uests da ta from main DRAM memory, th a t d a ta is brought

into the processor. In fact, a whole line of da ta (this is often 64 bytes: 16

integers or eight doubles) is read in at once, incorporating the mem ory

location recjuested and the da ta beside it in memory. This line of d a ta

is then stored in the cache. T he theory is th a t if a piece of code had

instructed the processor to load a particu lar piece of da ta (x), then it is

probably likely to either (a) attem pt to load tha t piece of data again soon

{Temporal Locality) or (b) load another piece of d a ta th a t is near x in

memory {Spatial Locality).

Table 2.1: Stoker: Intel Xeon E7-4820 Cache Details

C ach e Size A s s o c ia tiv ity E n tr ie s
LI 32K 8-wav 64 bvte lines
L2 256K 8-wav 64 bvte lines
L3 18M 24-way 64 byte lines

T he “liue" of d a ta will rem ain in the cache until it is replaced w ith

another line of data from main memory. Caches have a replacement policy

which decides when to replace hues of cached data . Addresses in m ain

mem ory are mapj^ed to locations in the cache w ith a certain level of

associativity. In an 8-way cache, when a new da ta line is read in, it replaces

the oldest d a ta line in the cache. Table 2.1 gives details of the sizes and

associativity of the caches in our test system.

Table 2.2 gives details of the latency of cache misses in nanoseconds and

I)rocessor cycles, at the different levels of processor cache. The latencies

were determined using the Calibrator [Manegold , Yotov 05, Boncz 08] tool

for Calibrating Cache Memory and TLB.

As we can see from Figure 2.7 and Tables 2.1 and 2.2 modern computers

system s often now come w ith three levels of cache, L I, L2, and L3. The

LI cache is small (32K on Stoker, the system in Table 2.1) and is “close”

to the processor, meaning tha t d a ta from the LI cache can be loaded into

R o b er t C ro sh ie . T h e rn iv e r s i ty of D u b lin . T r in ity C’ollege 31

C hapter 2. Background

Table 2.2: Stoker: Intel Xeon E7-4820 Cache Miss Latency from Calibrator
tool

L evel M iss -L a te n c y L a te n c y C ycles
LI 0.43 ns 1 cv
L2 5.26 ns 10 cy
L3 67.40 ns 134 cy

the processor in just a few cycles (one cycle according to Calibrator). The

L2 cache is larger (256K on stoker) and slightly further away, taking a

little longer to load d a ta into the i>rocessor (ten cycles). The L3 cache is

a lot larger (18M on stoker) and further away (134 cycles), though still

nearer than main memory. The L3 cache is often shared between cores in a

m ulti-core processor.

W hen the processor requests a piece of da ta that is in one of the caches

it can load it relatively quickly depending on which level of cache it is in.

If the d a ta is not in the cache there is a cache miss and the data must be

retrieved from a low’er level cache, or main memory. This causes a stall in

the processor as it waits for the data to become available, slowing down the

program . Thus, cache hits are good and cache misses shoukl be avoided

where possible.

Another component is the Translation Lookaside Bujfer (TLB). W hen

a computer program is compiled, it hard codes the addresses in memory of

various components of the program, the code, variables, statically allocated

arrays, etc. These static hard coded addresses are known as virtual addresses.

\ \ 'h e n the program runs, the processor creates a m apping between these

v irtual addresses and real addresses in mem ory th a t have been allocated

to th e program . This m apping is recorded in the page table which is

stored in main memory. As main m em ory is slow, the jirocessor uses a

TLB, which is essentially a cache for the page table. If the processor

a ttem p ts to look up a v irtual address m apping in the TLB th a t is not

cached, there is a TLB miss and the processor stalls (just like a cache

miss) w'hile waiting for the m apping to be retrieved from the page table

in m ain memory. Thus TLB misses also influence the perform ance of

32 Space ^ Time Efficient Sparse Matrix Transpose

2.5. C om plexity A nalysis of A lgorithm s

program s and algorithm s. T here has been considerable research in oi)timized

m atrix software which a ttem p ts to im prove perform ance by reducing TLB

m isses [Goto 02, G oto 08b, Siniecek 09]

U nderstanding how the Tem poral and Spatial Locality of the caches and

T L B o p era te s aids us in developing a lgo rithm s w'hich can be m ore cache

efficient and can therefore perform b e tte r . U sing H ardw are C oun ters (see

Section 5.9.1) we can get ac tu a l num bers of cache h its an d m isses, along

w ith num erous o th er m etrics, which allows us to ana lyse th e perform ance

of our app lica tions and algorithm s.

2.5 Com plexity Analysis of A lgorithm s

\M ien discussing an d com paring a lgo rithm s it is very beneficial to use

com plex ity analysis [Bruijn 70, Aho 74, Lewis 81, G reene 81, Sipser 96,

A rora 09]. T h e A sy m p to tic N o ta tio n gives a general classification of the

perform ance in (tim e/space) of an algorithm sim ply in term s of the size of

its inpu t (x).

In our discussion on algorithm s we talk al)0 Ut the m em ory usage (s])ace)

and tim e com plexity of th e different a lgorithm s. W’e do th is becavise

th e m em ory usage and execu tion tim e of th e a lg o rith m s are p articu la rly

dependent on the dim ensions of th e m atrix , and in most cases increase and

decrease dej^enfling on the relative dim ensions of th e m atrix . T he nm nber

of rows (/?), the nm nber of colum ns (??)) and th e num ber of non-zeros (nnz)

in th e m a trix all influence th e perform ance of th e different algorithm s.

In com plexity theory we talk about the average or worst case asymptotic

com plexity of th e a lgo rithm . T h is m eans th a t for an a lg o rith m w ith a

p articu la r inpu t size (,r) we om it all the various o ther factors involved and

ju st ta lk abou t how th e space (m em ory) or execution tim e of th a t algorithm

grows p ro p o rtio n a lly to som e function of th e in p u t size (x) as x increases

to infinity. B ecause, as th e in p u t size grows larger and larger th e size of

X is th e p rim ary fac to r th a t infliiences th e p erfo rm ance of th e a lgorithm .

It is th en j)ossible to discuss th e worst case and average case jjerform ance

depending on th e in p u t x.

R o b ert CVosbie. T h e I ’n iv e rs ity of D u b lin . T r in ity College 33

C hapter 2. Background

Take a function f (x) = 7x^+ 4x+3 . As the size of tl\e input (,r) increases

to infinity tlie term becomes the most dom inant term in tlie equation.

The coefficient, 7 and the other term s. 4x + 3 have less and less influence

on the relative size and become redundant. A sym ptotic approxim ation is

defined where we can s ta te th a t there is some coefficient (n) of x' ̂ such

th a t a.x^ is always greater th an or equal to f { x) = 7x'^ + 4x + 3. In this

example, a coefficient of a = 14 would m ean th a t 1 4 . is always greater

th an or ecjual to 7x^ + 4.r + 3 for all positive inputs of x > 1. T hus we

can say th a t / (x) is asym ptotically proportional to x^.

There are a num ber of notations which we use to define complexity

bounds on the algorithms. Depending on what we know about a particular

function /(x) , we may say that the function has a best/average/w orst case

asym ptotic complexity of; 0{x^) , Q(x^), 0 (x^) or ~(7x^).

2.5.1 0{x) — Big-O: Upper Bound

Big-O N otation (O) [Bachmann 23, Landau 24] is a very useful approxi

m ation th a t gives an upper bomid on the com])lexity of an algorithm . It

declares th a t an algorithm will never perform worse than this complexity.

We m ight say th a t a particu lar sorting algorithm has a complexity of

C9(x^). This m eans th a t it will take no longer th an tim e proportional to

x^. However Big-O does not define a lower bound on the com plexity of

the algorithm. The algorithm may complete in 0 { x . log{x)) or even 0 { x)

time, depending on the input. Big-O just gives an upper bound. Big-O is

also not a tight bound, it is also true to say tha t this x^ sorting algorithm

is 0{x^) or even 0 (x '° ‘’) as it will never perform worse than these bounds.

In practice Big-O bounds are given as tight as possible (as tight as they

can be proved).

2.5.2 i}{x) — Big Omega: Lower Bound

K nuth popularized the Big-Omega N otation (12) [Knuth 76, K nuth 98]

which provides a lower bound on an algorithm. It states th a t as an algorithm

grows proportional to x it will always recjuire at least th is am ount of

,34 Space ^ Time Efficient Sparse Matrix Transpose

2.5. Coini)lexity Analysis of Algorithms

time/space proportional to x, never less, does not put an upj)er bound

on the c'omplexity. Taking the previous sorting algorithm that was 0{x^)

in the worst case. It may also be said tha t this same sorting algorithm

is Q { x . lo(j{x)) in all cases because it always i)erforms at least x . l og{x)

comparisons. Thus with O and Q w'e can give upper and low'er bounds to

an algorithm.

2.5.3 0(x) — Big Theta: Double Bound

Big-Theta Notation (0) also popularized by Knuth [Knuth 76, Knuth 98]

combines O and f] to give both an upper and lower bound to the complexity

of an algorithm. It states tha t a particular algorithm will always perform

(operations/tim e/space) proportional to another simpler function, g{x).

Thus if we say an algorithm is (-)(x. it implies both 0 { x . log{x))

and Q { x . log{x)). The algorithm will always perform proportional to

x . log{x), never x and never x'^.

This is a very tight bound on an algorithm which gives much more

information about the algorithm. However it is not always possible to

give a Big-Theta coni])loxity. Some algorithms will vary in performance

depending on the content, of the input, not just the size of the input. A

.sorting algorithm may be C9(.r) in the best case if the ini)ut is already sorted.

0 [x . log{x)) in the average case and may even be 0{x'^) for particularly

degenerate inputs. Thus, even though in each case the input size is the

same, x, the algorithm takes different lengths of time due to the content

of the input, so we can’t have a Theta (0) complexity for this particular

algorithm.

2.5.4 ~(x) — Tilde: Tighter Double Bound

Big-Theta notation (0) above gives a tight upper and lower bound on the

asymj^totic complexity of an algorithm, if we w'ish to compare algorithms

which have the same asymptotic space/tim e complexity Big-Theta does

not give enough information. This is because all the other components of

the fmiction are lost.

F^obert Crosbie. T he I 'n iversity of D ublin, T rin ity College 35

C hapter 2. BackgroiiiKl

Tilde N otation (~) has been promoted by Sedgewick to address this [Sedgewick 11,

Sedgewick 13]. T ilde N otation gives a tight upper and lower bound like

Big-Theta, bu t gives an even tighter bound because the coefficients of the

main component are retained. Thus a function f { x) = 7x'^ + 4.r + 3 would

have a T ilde Com plexity of ~ (7x^). Com paring th is to ano ther function

g{x) which is ~(3x^) we can say th a t g{x) is more efficient. T h e ta no ta

tion would say th a t both algorithm s are 0 (x^) which hides this im portant

distinction.

Summary

The four notations: B ig-0 [O), Big Om ega (Jl), Big T h e ta (0) and

Tilde (~) are used throughout this document where appropriate. In general

Theta Notation (0) is used where possible. In cases where algorithms have

the sam e T h e ta com plexity then T ilde (~) com plexity may be used to

distinguish between them.

W hen discussing the complexity of the M atrix algorithms there are two

param eters which we use when discussing an n x n m atrix with 7}riz non-zero

elements. is used when discussing algorithms which depend on the

M unber of A^on-2eros {ruiz) in the m atrix . 0 (n) is u.sed when discussing

algorithm s which depend on the A^unber of Rows {n). In the text nrow s

is often used for clarity.

36 Spare ^ Time Efficient Sparse Matrix Transpose

Chapter

Matrix Transpose

The m atrix transpose operation is im portant in many areas such as Com pu

tational Chemistry [Rogers 03, Lewars 03, Sanders 08], Fast Fourier Trans

forms (F F T) [Cooley 65, Frigo 98, Lippert 98, A1 N a’Mneh 05, Frigo 05],

signal processing [Claasen 79, Padgett 09, El-Hadedy 10, Jie 10, Ravankar 11]

and image processing [Portnoff 99, B aum stark 03, N a’m neh 06]

In the previous chapter we gave a general background on Linear Al

gebra and Dense and Si^arse M atrices. In th is chapter we give a detailed

discussion on the M atrix Transpose operation itself, outlin ing th e exist

ing algorithm s and research on th is linear algebra oj)eration. Section 3.2

gives an overview of the extensive research on the topic of Dense M atrix

Transpose. Section 3.3 gives an overview of the Sparse M atrix Transpose.

Particu lar focus is given to the two existing Sparse Transpose algorithm s.

T he O ut-of-Place algorithm is discussed in Section 3.4 and the Saad In-

Place algorithm [Saad 94] in Section 3.5. Section 3.6 gives an overview of

om' experim ental settip and explains our analysis methodology. Finally

in Section 3.7 we evaluate the perform ance of the two existing Sparse

algorithm s in term s of memory usage and execution time.

3.1 The M atrix Transpose Operation

T he M atrix Transpose [Cayley 59, Golub 96] is one of the basic linear

algebra operations. The transpose of a m atrix is dehned as follows:

\ [T — \ t

T h a t is, the row and cohnnn indexes are exchanged. T he elem ent at

row z, cohnnn] in the transpose M ’ is the element at row j. cohmm i in M.

Given a m atrix M (Exam ple 3.1(a)), the transpose (Exam ple 3.1(b))

R o b ert (’rosb ie . T h e U n iv e rs ity of D u b lin . T r in ity C ollege 37

C hapter 3. M atrix Transpose

of tha t m atrix can be constructed by swapping the elements of all colunms

in the m atrix with the elements in the corresponding rows (and vice versa).

The procedure can be seen in Example 3.1 where column 1 is swapped with

row 1 and row' 4 is swapped with column 4, etc.

 ̂ a b \ / a c h
c <1 e <1 f ni

M = / g
l> I J i

k / b j k n
\ 7 t i n « / \ e I <)

(a) (b)

Example 3.1: Sample M atrices M and its Transpose A F

Alternatively we may describe the transj)ose as flipping the elements in

the m atrix across the top left to bottom right diagonal.

Repeating the transpose operation on the transpose of a m atrix results

in the original m atrix:

(.4^)^ = A

A Symmetric M atrix is a m atrix where the transpose of a m atrix is identical

to the original m atrix.

Symmetric: A = A^

T he transpose operation regularly occurs in linear algebra ecjuations

where the transpose of a m atrix or vector is required for some calculation.

The original reference BLAS implementation does not actually include a

procedure to perform the transpose operation. Logically there is no reason

to need one, the jjrocedures can simply access the m atrix in a transposed

order by swapping the row and colum n indexes. As such the procedures

take argum ents which tell the routine wdiether the m atrix is stored in

row-m ajor or colum n-m ajor ordering (see Section 2.3), the length of this

38 Space ^ T im e Efficient Sparse M atrix T ranspose

3.2. Dense M atrix Transpose

major dimension, and whether the m atrix should l^e accessed in transposed

form.

Such an approach is acceptable from a m athem atical and theoretical

perspective however as we saw in Section 2.4, memory access patterns can

have a huge influence on how well an algorithm re-uses d a ta in the caches and

thus the performance of the algorithms. If a m atrix is going to be accessed

many tim es by a particu lar ordering then there could be a significant

perform ance benefit from transposing the m atrix so th a t it is stored in

th a t ordering. It is for th is reason th a t m any optim ized linear algebra

and m athem atical libraries which include im plem entations of the BLAS

also include ex tra optimized transpose procedures. For example, the Intel

M ath Kernel L ibrary (MKL) [Intel 93] comes v/ith three dense transpose

routines: m kl_im atcopy() for in-place transpose, mkl_omatcopy() for out-

of-place transj)ose and mkl_omatcopy2() for out-of-place transpose w ith

double-stride.

3.2 D ense M atrix Transpose

This section gives an overview of some of the extensive research into Dense

M atrix Transpose. Although somewhat different to the problem of sparse

m atrix transpose, the work listed here dem onstrates the im j)ortance of

efficient m atrix transpose algorithms, be they for dense or sparse matrices.

The Out-of-place transpose of a m atrix stored in a Dense format (Sec

tion 2.3) is straightforw ard. Simply ite rate th rough the m atrix by rows

(or colunm s depending on the m ajor ordering) and copy each element in

th a t row to the location of the corresi^onding column in memory. The

copying can be j)erformed by blocks in order to improve the efficiency of the

transpose [Lam 91, Navarro 96, Gustavson 98, Kagstrom 06, Ehnroth 04,

Gustavson 12].

R o b ert C ro sb ie , T lie r i i iv e r s i ty o f D u b lin . T r in ity C ollege 39

C h ap te r 3. M atrix T ranspose

A L G O R IT H M 3.1 : Dense Square Transpose
for (0 < i < N) d o

for (i + 1 < j < iV) do
i mp ^ A[i]\ j]- ,
A[i] [j] <r- A[j][i]- ,
.4 [j][i] •(- tmp;

end
end

3.2.1 In-Place D ense M atrix Transpose

In m any s itu a tio n s we have a very large dense m a trix s to red in m em ory

(or in ex ternal sto rage) and there is insufficient add itional m em ory to hold

a full copy of th e m a trix . T h e m a tr ix th en needs to be tran sp o sed in

p lace using as litt le ad d itio n a l m em ory as possible. T h e p rob lem of in-

place transpose of a square or rectangular m atrix has received considerable

a tte n tio n . T h e re la ted p rob lem of general in -place p e rm u ta tio n has also

received considerab le a tte n tio n [D urstenfeld 64, F loyd 72, D uijvestijn 72,

F raser 76, M elville 79, Feijen 87, B aker 92, Fich 95, Choi 95. Keller 02].

T h e In-P lace transj)ose of a square m atrix sto red in a Dense form at is

logically stra igh tfo rw ard , sim ply ite ra te th rough th e u pper trian g u la r p art

of each row and swap th e elem ent a t each location .4[?][j] w ith the element

in th e o p p o site co lunm /l[j][?] by sw apping th e row and colum n indexes.

A lgorithm 3.1 shows th e basic in-place transpose of a dense square m atrix .

A lth o u g h th e a lg o rith m ite ra te s sequen tia lly th ro u g h th e rows of th e

m a trix w here th e rows are ad jacen t, th e colum n access are not sequentia l

and are d ispersed th ro u g h o u t th e m atrix a rray s causing th e algo rithm to

access m em ory a t s trid es of size n. T h is can cause considerable problem s

w ith cache perform ance [G atlin 99].
C aclie perfo rm ance can be im proved by tran sp o sin g th e dense sq u are

m atrix in blocks. F igure 3.1 shows a sim ple exam ple of th e in-place block

tran sp o se of a dense m a trix . T h e yellow blocks along th e d iagonal are

tran sp o sed in place. T h e benefit of th e block tran sp o se can be seen w hen

tran sp o sin g th e blue and green blocks. Take th e green blocks for exam ple.

\M ien read in g th e first block, 51 an d 52 w ith be ad jacen t in m em ory, as

40 Space & Tim e Efficient Sparse M atrix T ranspose

3.2. Dense M atrix Transpose

1 2 3 4 5 6 7 8 1 9 17 25 33 41 49 57

9 10 / 12 13 14 15 16 2 10 18 26 34 42 50 58

17 X 19 20 21 22 23 24 3 11 19 27 35 43 51 59

25 26 27 28 29 30 32 4 12 20 28 36 44 52 60

.■̂3 34 35 36 37 39 40 5 13 21 29 37 45 53 61

41 42 43 44 46 47 48 6 14 22 30 38 46 54 62

49 50 51 53 54 55 56 7 15 23 31 39 47 55 63

57 58 59 60 61 62 63 64 8 16 24 32 40 48 56 64

Matrix M Transposed Matrix M^

Figure 3.1: Block Transpose of Dense M atrix

will 59 and 60, so they should be read in together in a single cache line.

The advantage with the block transpose is that in the destination block 23

and 24, and 31 and 32 will also be adjacent in memory, thus improving on

the cache efficiency.

C hatterjee and Sen investigate the perform ance of six different algo

rithms for in-place transj)ose [Chatterjee 00]. They comj)are (1) the basic

row major implementation (similar to Algorithm: 3.1) with (2) an in-place

transpose designed to be efficient in term s of the basic I /O memory model

of Aggarwal and V itter [Aggarwal 87, Aggarwal 88]. Two further algo

rithms (3) and (4) are designed to be efficient in terms of their cache I/O

model [Sen 02, G atlin 99]. i.e. they transpose the m atrix in blocks in a

w’ay tha t tha t is designed to give good cache performance. Algorithm (5)

is a Cache-Oblivious algorithm from [Frigo 99]. The six th algorithm (6)

requires tha t the m atrix is stored in their hierarchical m atrix layout which

uses sub-blocks arranged in a M orton order [Morton 66, \ \ ’ise 01] layout

(Section 2.3.3).

T he results showed that the m atrix arranged in their M orton ordered

layoTit gave the best performance at about six times faster than the standard

row-ordered transpose. This algorithm requires the user to modify the

R()l)ert Cro.sl)io. T h e U n iv e rs ity o f D u b lin . T r in ity C ollege 41

C hapter 3. M atrix Transpose

layout of their m atrix which may not be practical. More interesting from

their results was th a t the two cache optim ized algorithm s are roughly

four tim es faster th an the naive algorithm while still using the standard

row-major m atrix layout.

3.2.2 In Place D ense Rectangular Transpose

The In-place transj)ose of a Dense Rectangular m atrix is more complicated.

We cannot sim ply exchange elem ents by sw'apping their row and colunm

indices as with a square dense m atrix, because in a rectangular m atrix the

rows and colum ns are of different lengths. This m eans th a t a particu lar

row will be at a different location within the array after the transpose. The

position th a t each elem ent needs to be moved to is still known. Given a

m atrix of size {n x m) , element a,j is at A[im + j] in the original m atrix

and is moved to position A[i -I- jn] in the transpose which is the location

of a completely different element in another row and colunm. As we move

elem ents during the transpose procedure w'e move elem ents in a Cycle-

Chasing fashion. Elem ents are moved in this cycle-chasing chain until w'e

eventually reach an element tha t should be moved to the original location

a,j where the chain started.

C ycle-C hasing In -P lace Transpose

T he in-place cycle-chasing algorithm was first described by [Berman 58]

however there is a reference in [Pall 60] to a similar algorithm by Shooman

from 1957. Using the tw'o equations for the location x of an elem ent in

the m atrix {iM -I- j) and the location x' of the elem ent in the transpose

{i -I- j n) , we can define the perm utation function x' = n{x) such that:

Perniutat ion Function', Transpose o f x\

x' = 7t (x) (3.1)

7r(im -I- J) —>■ i -I- j n

Thus, for any particu lar elem ent, ‘x ’, ŵ e can define a sim ple for-

42 Space & Tim e Efficient Sparse M atrix T ranspose

3.2. Dense Matrix Transpose

nuila [Berman 58, Cate 771)] for the permutation of that element as:

I n,r mod mv — 1 if x ^ run — 1, , ^
n{x) = { ^ ' (3.2)

mn — 1 if X = mn - 1

The next location in the chain is found by multiplying the current
location x by n and taking the modulus of {nm — 1) - the index of the last

element in the array. Similarly the inverse may be defined as:

I nix' mod mn - 1 if x' 7̂ mn - 1,
^ . (3.3)

I m n — 1 II X = mn — 1

[Berman 58] outlines an algorithm using these relations to transpose a
rectangular matrix in place. The algorithm requires a flag for each element
to record if it has been moved yet. Berman suggests using either the low

order bit of the floating point value of the matrix elements (if exact precision
is not recjuired) or an extra work array of 0{n x ;??) bits.

[Windley 59] presents an algorithm by J.C. Gower which removes the
0{n X m) memory overhead at the cost of additional computation. Given
that any pernnitation of a number of elements can be represented by a set

of mutually exclvisive cycles, meaning that each element will only be moved
by a single cycle. The algorithm scans through the m atrix and for each

element at])osition x it calculates all the addresses in the cycle containing
X. If any of those addresses is less than x, then that element has already
been moved and can be skipped. Otherwise the algorithm starts an element

moving cycle from x. A count of the number of elements moved can be

used to detect when the algorithm has moved all elements.

[Windley 59] presents another algorithm which also does not require the
0 { n X m) memory overhead of the [Berman 58] algorithm. This algorithm

reduces the computational overhead of the Gower algorithm at a cost

of an increase in reads and writes to memory. The algorithm calculates

addresses in the cycle in reverse and moves elements such that they are

in the correct order relative to the remaining mimoved elements. CACM

Algorithm: 302 [Boothroyd 67] gives an iini)lenientation of an in-])lace

transpose algorithm based on [Windley 59].

R o b ert C ro sb ie . T h e U n iv e rs ity of D u b lin . T r in ity C ollege 43

C liapter 3. M atrix Transpose

Pall and Seiden ou tliu e a m eth od [Pall 60] using A belian G roups of

pre-calculating on paper the cycle leaders of different sized m atrices before

proceeding to transpose tlie m atrix. A Cycle leader is the lowest addressed

elem en t in each cy c le and thus w ill be th e first elem ent of each cycle

encountered by th e algorithm . T h ey also give a procedure for ca lcu lating

cycle lengths and dem onstrate that the problem of calculating cycle leaders

d ecom p oses in to on e sub-prob lem for every d ivisor d o f { m n — 1). T heir

ex p er im en ts show' th a t th is m eth od gives m uch b etter [)erform ance th an

th e algorithm of Shoom an (w hich appears to be sim ilar to [Berman 58]).

Laffin and Brebner present CACM Algorithm ; 380 [Laflin 70b] which is

an im provem ent over Algorithm ; 302 [W indley 59, B oothroyd 67]. In th is

algorithm they exploit dual cycles, that is, the cycles starting at position x

and at position {nrn — 1 — x) . If x is the sm allest value of a cycle loop then

{nm. — 1 — x) is th e largest va lue o f a loop. T h e dual cycles thus can be

sh ifted sim u ltan eou sly to im prove efficiency. If b oth values belong to the

sam e cy c le th en th is can b e d etec ted and handled efficiently. A lgorithm ;

380 [Lafiin 70b] a lso uses an ad d ition a l work array of size \^{m + /?)!

record which cycles have already been m oved in order to improve efficiency.

B renner p resen ts C A C M A lgorithm ; 467 [Brenner 73] w hich further

im proves on the previous in-place algorithm s. Brenner proves a number of

theorem s using num ber theoretica l analysis of th e properties of the cycles

in the in-place transpose. Brenner then uses those properties and a m ethod

sim ilar to that in [Pall 60] to predict the location of cycle leaders to produce

an algorithm w'hich im proves on Algorithm ; 380 [Lafiin 70b]. R esults show

that when using a work array of size (" + "’/ 2), A lgorithm ; 467 is faster than

A lgorithm ; 380 and A lgorithm ; 302. C onsiderably so wdien (r?m — 1) has

m any factors (hence m any su b cycles).

C ate and Twdg g ive an in -d ep th an alysis o f th e in -p lace cycle-chasing

tran sp ose of non-square m atrices [Cate 77b] and present C A C M A lg o

rithm; 513 which im proves on the perform ance of the j^revious algorithm s

using the num erical analysis properties th ey outline. Theorem s from previ

ous papers are review'ed and som e new theorem s presented. T hey give the

eq u ation s o f th e p erm u tation 7r() and its inverse 7r“ ^ () as show'n above in

44 Space T im e Efficient Sparse M atrix T ranspose

3.2. Dense M atrix TrauKpose

Ecjuations 3.2 and 3.3. They also show the following;

• The longest cycle is the cycle containing ,r = 1 and has length L.

• The lengths of all other cycles are divisors of L.

• The num ber of cycles of a particular length can be calculated.

• Elem ents 0 and mn — 1 are fixed points (not moved under tran spo

sition), if rn and n are odd then the m idpoint is also a fixed

po in t.

• Two fornmlas are provided for calculating the number of fixed points

in a particular transpose perm utation.

• If there is a cycle at address x then there is also a cycle at address

71 w — 1 — X .

• In some cases the two cycles a t x and mj) — I — x coincide and are

part of the sam e cycle. In th is case the length of the cycle is even

and the addresses x and - x are separated by half a cycle.

CACM Algorithm: 513 [Cate 77b] uses th is cycle synnnetry and the

calculation of fixed points to improve on the performance over the })revious

algorithms 302 and 380. Results showed that the revised algorithm demon

stra ted a performance improvement between 25% and 35% over the previ

ous algorithms. Leathers however provides a further analysis [Leathers 79]

which show's th a t the earlier Algorithm: 467 [Brenner 73] performs better

than Algorithm: 513 [Cate 77b] in most cases except where the m odulus

{run — 1) of the m atrix is prime in which case Algorithm: 513 has a slight

advantage.

Analysis of in-place transpose perm utation [Knuth 71, Fich 95] shows

that if the inverse of a perm utation is known (as is the case with the in-place

transpose) then it can be shown th a t the worst case running tim e of the

perm utation is 0 { n .log{n)).

R o b ert C’rosh ie . T h e U n iv e rs ity of D u b lin . T r in ity C ollege 45

C hapter 3. M atrix Transpose

Other Approaches

[Dow 95] describes and evahiates 5 different algorithm s for dense m atrix

transpose of rectangular matrices with particular focus on algorithms which

are efficient on vector computers. The first algorithm, VI is the basic out-of-

place algorithm as in Section 3.2 which copies every element sequentially to

its correct location in a new array of size m x n and then copies the elements

back to the original array in their new order. As discussed above, this

out-of-place VI algorithm is generally quite fast however it has a significant

memory overhead of 0 (m x n).

Algorithms V2 and V3 modify the shape of the rectangular matrices so

tha t they are square and then use efficient in-place blocked square transpose

algorithm s to transpose the m atrix.

Algorithm V2 is the Pad Transpose, extra space is added to the rows or

colm nns (whichever is shorter) in order to make the m atrix square. The

j)ad m ethod can only be used if there is sufficient additional sj)ace a t the

end of the array. {rr)ax{n.m)'^ — Dm) additional mem ory locations are

recjuired. In row-m ajor form at, if there are more rows tlian cohmms then

each row needs to be padded. This is done by iterating in reverse through

the array and shifting elements of each row towards the end of the array a

num ber of places equal to the row number times the difference in row and

colunm lengths. Row zero is not moved, row 1 is moved (1 x |n; — 7?|), row

2 is moved (2 x \ m — n |) , row 3 is moved (3 x \jii — r;]), etc. The m atrix

is then transposed in place using an efficient blocked square transpose

algorithm [Alltop 75, Ram apriyan 75, B u ttari 07, Bikshandi 06]. After the

transpose all the additional cohnnns have become additional rows at the

end of the m atrix and can be ignored. If there are more columns than rows

in row-major format then the above steps can be reversed. First transpose

the square { m a x { n , m) x rnax{7i , m)) m atrix which assumes tha t there are

new padded rows at the end, then left shift all the elem ents of each row

towards the front of the array leaving the padding a t the end. T he pad

algorithm is particularly efficient when m and n are of similar m agnitude,

in this case the memory usage is nmch less than the out-of-place algorithm.

46 Space ^ Time Efficient Sparse Matrix Transpose

3.2. Dense M atrix Transpose

Tlie pad m ethod does require the adchtional memory to be directly at the

end of the array which can make it impractical.

A lgorithm V3 is the Cut Transpose, additional rows or columns are

cut from the m atrix to leave a square m atrix which can be efficiently

transposed in place [Alltoj) 75, Ram apriyan 75]. As such, the cut transpose

is the opposite of the pad transj^ose. In row-major format, if there are more

rows th an columns (m > n), the additional row's are copied to the ex tra

workspace area. T he rem aining [n x n) square m atrix is transposed in

place with an efficient blocked algorithm then the square m atrix is “padded”

with extra columns as above by shifting elements in rows towards the end,

expanding the m atrix to the full (m x n) size. Finally the extra row's are

copied back from the worksj)ace to their appropriate column. If there are

more columns th an rows {m < ri) then the elem ents from the additional

colunms are copied to workspace and the columns are cut by shifting rows

towards the top of the array. The square m x m m atrix is transposed and

the additional cohmms are copied from the workspace to their appropriate

rows at the end of the array. The cut method requires {\rii — n| x r;))

additional workspace memory. This additional memory is always less than

th a t recjuired by the out-of-place algorithm . The m em ory overhead is

considerably less when m and n are similar in m agnitude and the algorithm

is also particularly efficient in th is case. A m ajor advantage of the cut

m ethod over the pad m ethod is that the additional worksj^ace memory does

not need to be at the end of the m atrix.

Algorithms V4 and V5 are rectangular block transjjose algorithms [Eklundh 72,

Alltop 75, Ram apriyan 75, Van Voorhis 77, Hegland 96] which can be used

when m and n are com posite (have a divisor d greater th an 1 which is

not prim e), m and n can be m ade com posite using the cut and pad

techniques if required. Both algorithm s partition the m atrix into blocks

and then transpose the blocks as a whole using the cycle-chasing m ethod

above [Berman 58, W indley 59]. These blocks can be efficiently transposed

in th is way on a vector com puter. A lgorithm V4 partitions the m ajor

dimension of the m atrix such tha t there are ni rows and d colunms of size

p where dp = n. After the sub-rows are transj)osed in cycles the elements

R o b er t C rosb ie , T h e U n iv e rs ity of D u b lin . T r in ity College 47

C liapter 3. M atrix Transpose

are reordered between sulvrows to their correct j)osition, A lgoritlnii V5

partitions the m atrix into blocks of size d x d where dp = n and dq = m.

The elements of each block are first transposed in place then the blocks are

transpos('d as a whole. Diagonal blocks remain in-place.

Finally Dow compares these five algorithms to two implem entations of

the scalar cycle-chasing algorithms above. CACM Algorithm 4G7 [Bremier 73]

and NAG FO ICRF from the Num erical A lgorithm s G roup Fortran Li

brary [NAG 93]. The results of these experiments show that the five vector

efficient algorithms outlined are at least an order of m agnitude faster than

the scalar cycle-chasing algorithms. For the matrices used in these experi

ments on the vector com puter the out-of-place algorithm VI was generally

th e fastest w ith the cut m ethod V3 occasionally out perform ing it. The

pad V2 and cut V3 algorithms perform well at a similar speed for matrices

which are close to square. T he pad algorithm does not perform well if a

large am ount of padding needs to be added. The blocked algorithm s V4

and V5 do not j)erform as well as V3 in these vector experiments. Algorithm

V5 performs better than V4 as larger am ounts of da ta are moved together

with the larger blocks.

Cache Oblivious D ense M atrix Transpose A lgorithm s

In recent years Cache Obhvious Algorithm's [Frigo 99, Tsifakis 04, Bader 07,

Yzelman 11] have become popular as they can give improved jjerformance

without having to be tuned for a particular architecture or memory hierar

chy and cache sizes. Cache oblivious algorithm s recursively partition the

problem into blocks. At each level of recursion they divide the problem into

smaller and smaller blocks. After a number of recursions the algorithm will

have blocks which are small enough to fit in all the different levels of cache.

Thus the cache oblivious algorithms do not need to be tuned for particular

architecture or cache sizes. Experim ental analysis [Chatterjee 00, Yotov 07]

has shown th a t these cache oblivious transpose algorithm s do improve on

the performance of the naive row or column based algorithms, however they

still fall short of the performance of tuned cache-aware blocked algorithms.

48 Space ^ T im e Efficient Sparse M atrix T ranspose

3.2. Dense M atrix Transpose

O ut-of-C ore D ense M atrix Transpose

The abihty to transpose a m atrix in-place is im portant when the m atrix is

large and there is insufficient extra storage available to store a full copy of

the matrix, hi some cases a m atrix may be so large that it does not all fit in

main memory, in this case the m atrix nmst be transposed out-of-core where

the m atrix is stored in external storage (hard disk / tape) and only small

parts of the m atrix can be held in memory at any one time. Transposing a

square m atrix out-of-core is simpler than a rectangular m atrix as row and

column locations are invariant however, it is more difficult than transposing

a square m atrix in memory. The out-of-core transpose is a com plicated

problem which has received much attention.

Ekhmdh presents an efRcient out-of-core algorithm [Ekhnidh 72, Eklundh 73]

for transposing large square matrices of size 2" x 2". The algorithm assumes

that the entire 2” x 2" is stored in external storage. It requires an additional

in-memory working area of at least in order to store at least two rows

of the m atrix in memory at a tim e. T he algorithm reads in two pairs of

rows from the m atrix at a time, swaps certain elements between the rows

and writes the rows back to external storage. The algorithm reads different

I>airs of rows over m ultiple passes continuing to swap elem ents until all

elements have been moved to their correct transposed location. Thus the

algorithm can transpose an out-of-core m atrix in n passes or fewer. If there

is additional in-core memory available the algorithm can processes multiple

(2-') rows at a tim e to improve efficiency. A sim ilar algorithm was also

presented by [Schumann 72, Schumann 73] using sequential access devices

compared to the direct (random) access devices of [Eklundh 72].

Delcaro outlines a m ethod [Delcaro 74] based on the Eklundh algorithm

for transposing large square and non-square m atrices in external storage.

The algorithm requires the row and colunm dim ensions m and n to have

a large num ber of factors. The m atrix is j^artitioned into blocks based

on these factors and transposed. Twogood also extends the Eklundh

algorithm to the general case [Tw'ogood 76] where 2 '(j > 1) of its rows will

fit into m ain m em ory and analyses its perform ance for two-dim ensional

R o b er t (’rosb ie . T h e U n iv e rs ity o f D u b lin . T r in ity C ollege 49

C hapter 3. M atrix Transpose

image filtering. Alltoii jn'eseiits a th ree step algorithm [Alltop 75] which

is another extension to th a t of Ekhm dh to supi:>ort the transpose in-core

and out-of-core of large square and rectangular matrices by augmenting the

m atrix such tha t its dimensions have a large connnon divisor d. The m atrix

is padded in both directions to increase the size of d and the m atrix is then

partitioned similar to Delcaro into a square d x d m atrix of blocks of size

^ X ^ which are then transposed. The Alltop algorithm requires additional

storage of {2nm/d) . Ram apriyan presents a generalization [Ramapriyan 75]

of E k lundh’s algorithm which can transpose out-of-core m atrices which

are not square powers of two and which are also non-square {m x 7 7). Van

Voorhis presents a fu rther generalization [Van Voorhis 77] of the A lltop

algorithm which removes the requirement of a factor of two for the m atrix

dimensions in external storage and also combines the last two steps of the

three step algorithm.

Ari describes two improvements [Ari 79] to E khm dh’s algorithm . The

first reduces the m niiber of accesses to external storage at a cost of an

increase in the am ount of d a ta transferred. T he second shows how the

efficiency of the algorithm can be improved by using a small amomit of extra

external storage if available. Goldbogen presents PR IM [Goldbogen 81]

another in-place out-of-core transpose algorithm which can transposes an

n X rn m atrix in a series of iterative transform ations of the entire m a

trix. Unlike the algorithm of Ekhm dh which perm utes single elem ents,

Goldbogen also perm utes blocks of elements. Twigg describes an algo

rithm [Twigg 83] for transposing large matrices stored in external files. The

algorithm is based on sort-merge using a variant of the balanced tape merge

algorithm [Lorin 75] to transpose the m atrix by transposing the m atrix in

chunks into interm ediate files which are then merged together.

K aushik et al. give a review^ [Kaushik 93] of a num ber of the out-

of-core in-place m atrix transpose algorithm s based on E khm dh’s algo

rithm [Ekhmdh 72] and propose ano ther variation based on tensor [)rod-

ucts [Fraser 76, Johnson 92, Johnson 93] which improves efficiency V)y re

ducing the num ber of disk accesses required by the algorithm . Results

show th a t the new single radix algorithm considerably reduces bo th disk

50 Space ^ Time Efficient Sparse Matrix Transpose

3.2. Dense M atrix Transpose

I/O time and com putation time and thus total execution time over a range

of m atrix sizes com pared to th a t of Eklundh. The single radix algorithm

reads pains of contiguous rows whereas Eklundh reads non-continuous rows

which results in a greater num ber of disk accesses.

Suh presents an improvement of the out-of-core algorithm [Suh 02] which

improves performance over previous algorithms by reducing the number of

I/O operations and eliminating the index com putation. I /O is reduced by

writing the data onto disk in predefined patterns and balancing the number

of disk read and write operations. The index com putation time, an expensive

operation involving two divisions and a m ultiplication, is elim inated by

partitioning the memory into read and write buffers. Krishnam oorthy also

presents an algorithm [Krishnamoorthy 04] which improves perform ance

of the out-of-core transpose by minimising the num ber of I /O operations.

This is done by using the I /O characteristics of the system to determ ine

optim al block sizes for read, write and connnunication such th a t the total

execution tim e is minimised.

Parallel D ense Transpose

The parallel transpose is another variant of the in-place dense transpose

which ha.s received a lot of a tten tion , particularly for parallel apj^lica-

tions such as F F T [Cooley 65, Lippert 98, .lie 10, A1 Na'M neh 05] where

the dense m atrix is partitioned and different sections of the m atrix are

distributed across m ultiple processors/nodes.

Choi describes a parallel transpose algorithm [Choi 95] for use in the

PUM M A library for the parallel m ultiplication of transposed m atrices

which are d istribu ted across num erous processors. T he algorithm uses

non-blocking message passing to transfer m atrix blocks which are arranged

in a cyclic d a ta d istribu tion . Hegland introduces a new' parallel tran s

pose split algorithm [Hegland 96, Calvin 96] which can be used for parallel

m atrix transpose as part of F F T s on the Fujitsu V P P 500 vector com

puter. The algorithm achieves a th ird of peak perform ance using 32 j)ro-

cessors. W apperom presents a further improvement to the split transpose

R o b ert C ro sb ie , T h e U n iv e rs ity o f D u b lin . T r in ity C ollege 51

Cliapter 3. M atrix Transpose

method [Wapperoin 06] for three dimensional Fourier Transforms. Data is

spHt along two dimensions to allow for a higher degree of j)arallelism, the

algorithm also modifies the all-to-all conmiunication to be performed in

groups.

Lippert presents a j)arallel transpose algorithm [Lippert 98] targeted at

SIMD (Single Instruction Multiple Data) systems, in particular those with

the high speed A PE/Q uadrics interconnect. The algorithm, which is also

intended for use with Fast Fourier Transforms shows improved performance

on intercomiected systems with rigid next-neighbour connectivity and lack

of local addressing. He and Ding investigate the performance [He 02] of
in-place multi-dimensional array transposition with the vacancy tracking
algorithm while using OpenMP, MPI and hybrid M PI/OpenMP for commu

nication. On a single node OpeuMP outperforms MPI and across a cluster
the hybrid M PI/OpenM P outperforms MPI. A1 Xa'Mneh presents an adap
tive matrix-transpose algorithm [A1 Na’Mneh 05] for transposing matrices,

which is based on all-to-all conununication on synnnetric multiprocessors.
The algorithm reduced overhead by adaptively choosing a suitable radix
based on a number of factors. Experimental results show the transpose
algorithm gives increased performance for six-step One-Dimensional Fast
Fourier Transforms. Ravankar j)resents another algorithm [Ravankar 11]
for parallel matrix transpose on a Torus Array Processor which has a time
complexity of 0{n) . The algorithm uses the m atrix-m atrix nmltiply-add

(MMA) operation for transposing the matrix which is carried out in 5n
time-steps.

3-D im ensional M atrix Transpose

3D matrices occur in many problem domains such as seismic and medical

imaging. If w'e think of a 2D m atrix as a square then a 3D m atrix can

be thought of as a cuboid. The 3D M atrix transpose operation changes

the axis order of the cuboid. It may simply swap tw'o of the axes or it

may rotate all three axes depending on the requirement of the operation.

Figure 3.2 shows a three axis rotation from XYZ to YZX. The transpose

52 Space T im e Efficient Sparse M atrix Transpose

3.3. Si)arse M atrix Transpose

continues to swap row/column elements according to the axis rotation, thus

in Figure 3.2 the element a t location would be moved to location

(j, A’,i) and tha t element would be moved to location etc.

Z

X Y Z Axis Y Z X Axis

Figure 3.2: 3D Transpose: R otate XYZ axis to YZX

W’apperom presents a variation of the split transpose m ethod [VVapperom 06]

for three dimensional Fourier Transforms. D ata is split along two dimen

sions to allow for a higher tlegree of parallelism, the algorithm also modifies

the all-to-all connmmication to be i)erformed in groups. El-Moursy presents

an algorithm [El-Moursy 08] for parallel transposition of 3-Dimensional

m atrices on m ulticore architectures. T he algorithm ex|)loits the software

m anaged memory hierarchy of SIMD architectures such as the Cell Broad

band Engine.

3.3 Sparse M atrix Transpose

In the previous section we gave an overview of the considerable research

into the problem of dense m atrix transpose. In the following sections

we give an over\iew of the research into the problem of sparse m atrix

transpose [Pissanetzky 84]. We also give a detailed description of the

existing out-of-place and in-place transpose algorithms and experimentally

analyse the performance of the algorithms.

Sparse m atrix transpose is the procedure of transposing a m atrix which,

due to the high proportion of zeros in the m atrix is stored in one of

the com pact storage form ats outlined in Section 2.3 such as Com pressed

Sj^arse Row. The])rocedure for transposing a m atrix stored in row-major

R o b e r t C’ro sb ie . T h e r n iv e r s i ty o f D u b lin . T r in ity C ollege 53

C hai)ter 3. M atrix T ranspose

fo rm at is also identical to th e p rocedure for converting th e m atrix to th e

co lunm -m ajor C om pressed Sparse C olm nn form at.

W hen a m atrix is stored in a conijiact form at we do not know the exact

loca tion in m em ory of every elem ent in th e m atrix . T h is m akes it m ore

difficult to p roduce cache efhcient sparse m atrix algorithm s.

As w ith dense m atrices th ere are two m ain ways of transposing a sparse

m a trix . T h e m ost straightforw ^ard m e th o d is th e ou t-of-p lace tech n iq u e

d escribed in Section 3.4. T h e ou t-o f-p lace m eth o d crea tes an en tire ly

new' em p ty m a trix in m em ory, th en each elem ent is copied to its correct

transposed location in th is new m atrix . T he second m ethod is the in-place

tech n iq u e described in Section 3.5 w hich reduces th e m em ory overhead

of th e a lgorithm by tran sp o sin g th e m a trix in place. Section 3.6 gives an

overview of our ex p e rim en ta l se tu p th en S ection 3.7 show s th e re su lts of

th e experim ental analysis of these tw o existing algorithm s.

3.4 Out-of-Place (OOP) Sparse Transpose

As witli dense m atrices, th e s tra igh tfo rw ard m ethod to transj)ose a s])arse

n \a tr ix is to copy th e e lem en ts to th e ir tran sp o se d location in a second

sep a ra te set of m atrix arrays. T h e out-of-place sparse transpose algorithm

can be loosely com pared to an ou t-o f-p lace bucket so rt a lgo rithm . It is

a sim ple fast a lgo rithm , how ever th e m em ory overhead of th e a lg o rith m

is ex trem ely large as it doub les th e m em ory requ ired for th e m atrix . For

th e largest m a trix in o u r sam p le collection th e O O P a lg o rith m requires

a m em ory overhead of 4,699 M iB resu ltin g in a to ta l m em ory usage of a t

least 9,398 MiB wdien perform ing th e transpose .

T h is Out-of-Place m e th o d ap p ea rs to b e th e m ost com m only used

sparse m atrix transpose algorithm . V ariations of the out-of-place algorithm

described in Section 3.4.3 a re im p lem en ted in num erous packages. For

exam ple , th e S p a r s k i t2 [Saad 94] package co n ta in s tw'o F o rtran im ple

m en ta tio n s of th e sparse m a trix tran sp o se . T h e CSRCSCO su b ro u tin e for

converting from C SC to C SR fo rm at (w hich is th e sam e as tran sp o se)

im p lem en ts th e O O P a lg o rith m sim ilar to A lg o rith m 3.2. T h e B ebop

54 Space T im e Efficient Sparse M atrix T ranspose

3.4. Out-of-Place (OOP) Sparse Transpose

Sparse M atrix Converter [Dennnel 05, Vudnc 05] is a library for converting

sparse m atrices l)etween different storage and file form ats which includes

an out-of-place transpose routine. The CHOLMOD [Chen 08] package which

comes as part of Tim Davis’s SuiteSparse [Davis 05b] collection of sparse

m atrix packages, includes a num ber of cho lm od_ transpose() procedures

which implement the out-of-place algorithm for transposing and perm uting

different types of m atrix (real, double, complex, integer, pattern , symmetric,

unsymmetric, etc.). The HSL [Group 63, Gould 04] M athem atical Software

Library from the Numerical Analysis Group is a closed source, commercial,

collection of FORTRAN [Backus 56, Backus 57] codes for large scale scien

tific com putation. HSL includes two routines for performing sparse m atrix

transpose. According to the library docum entation, transpose algorithm

MC380 requires three output arrays to be allocated. A double array of size

n m , integer array of size nnz and an integer array of size {m -I- 1) - this

would indicate tha t MC380 uses the out-of-place algorithm.

There are far fewer research publications focused on the topic of sparse

transpose th an den.se transpose. One of the first descriptions of the out-

of-place sparse m atrix transpose is from McNamee who j)resents T R SP M X O
as part of CACM Algorithm: 406 [McNamee 71] which is a collection of

linear algebra routines for sparse m atrices. Further rem arks [Si})ala 77,

Gustavson 78a] correct some initial errors. Gustavson presents HALFPERM ()

which is a variation on the out-of-})lace transpose which can be used twice in

order to perform the full sparse m atrix])ermutation PAQ~^ on the matrix

A. The algorithm presented is described as being similar to a distribution

count sort. Experim ental results using HALFPERM for perm utation show

that it performs up to ten times faster than TRSPM X.

3.4.1 Parallel Sparse M atrix Transpose

W hen dealing w ith very large linear algebra problem s the m atrix can be

partitioned across nniltiple d istribu ted mem ory nodes in order to solve

the problem in parallel. If a transpose oj)eration is required as p a rt of

the calculation, such as m atrix-transpose-vector multij)hcation {A^ v), it is

R o b ert (’rosl)ie. T h e I ’liiv e rs ity of D u b lin . T r in ity C ollege 55

C hapter 3. M atrix Transpose

])ossible to perform the calculation w ithout transposing by accessing the

elements through transposed indexing. However it may be more efficient to

perform the calculation if there was a quick and simple m ethod to transpose

the distributed matrix. Thus a distributed parallel transpose si)arse matrix

transpose is an interesting problem

Hendrickson investigates the problem of partition ing sparse unsym-

m etric and rectangular m atrices to balance work between nodes and keep

conum m ication costs low [Hendrickson 98]. Results show th a t multilevel

partitioning m ethods give the best performance.

Kruskal investigates techniciues for the parallel m anipulation of sparse

m atrices [Kruskal 89], a num ber of algorithm s are considered including

the parallel transpose of sparse m atrices. T he algorithm s are considered

from the perspective of a shared mem ory MIMD (M ultiple Instruction

M ultiple D ata) system . To transpose a m atrix in row m ajor form at (in

th is case a variation of the CSR form at Section 2.3.5). it is converted to

a canonical form at where the m atrix is stored in trip le ts sim ilar to COO

(Section 2.3.4). The m atrix in canonical format is transposed by swapping

row and column indexes in each elem ent, the elem ents are reordered by

index using a radix sort, the num bers of elem ents in each row com puted

and the m atrix converted back to row m ajor CSR variant.

Buluc again looks at the m atrix-transpose-vector m ultiplication prob

lem [Bulu(^ 09]. The Com pressed Sparse Blocks (CSB) storage form at is

introduced. Storing the sparse m atrix in the CSB format allows bo th Ax

and A^ x to be computed efficiently. This blocked CSB storage format also

allows the sparse m atrix A to be efficiently pernnited out-of-place into the

transpose A^.

Gonzalez introduces a j)arallel out-of-place sparse m atrix transpose algo

rithm [Gonzalez-Mesa 13] wdiich uses Transactional M emory [Herlihy 93]

which supports atom ic group load and store instructions thus easing par-

allelisation and ensuring correctness. Results show'ed th a t the parallel

algorithm using transactional memory exhibits improved performance over

the baseline.

56 Space h Time Efficient Sparse Matrix Transpose

3.4. Out-of-Place (OOP) Sparse Transpose

3.4.2 Sparse M atrix Transpose Unit

S tath is et. al. describe the Sparse Matrix Transpose Unit [Stathis 04]

which is a proposed hardware co-processor for vector computers. The unit

is designed for efficient transposition of sparse matrices which are stored in

the hierarcliical sparse m atrix (HiSM) storage form at [Stathis 03a] which

is similar to the Recursive Sparse Blocks format (Section 2.3.8). The unit

has in ternal register m em ory of size s x s, thus the m atrix is stored in

h ierarchical HiSM blocks of size s x s. The perform ance of the unit was

evaluated using their D-SAB Sparse M atrix Benchmark Suite [Stathis 03b].

Results show th a t the transpose unit exhibits speedups of up to 32 times

compared to those of the standard compressed row storage format with an

average speedup of 17 times.

As we have seen before, it is more efficient to transpose sparse matrices

stored in hierarchical or blocked form ats. W ith a hierarchical format and

specialised hardw are, the sparse m atrix transpose unit is highly efficient.

However such a blocked hierarchical transpose is only useful for m atrices

already stored in such a format as converting a m atrix stored in a compressed

sparse colunm or row format to the HiSM form at is expensive.

3.4.3 D escription of Out-of-Place Transpose Algorithm

In th is section we describe the out-of-place sparse m atrix transpose algo

rithm and analyse how it operates. Section 3.7 presents results of runtim e

performance analysis of the algorithm.

S p a rse T ra n s p o s e I n p u t M a tr ix M in C S R F o rm a t

We first describe the structu re of the sparse m atrix M stored in the CSR

format as shown in D ata Structure 3.1. This structure is the standard input

to all the sparse m atrix transpose algorithm s presented in this docum ent.

The s tru c tu re contains th ree integers {nro ivs ,ncols .nnz) which give the

dim ensions of the m atrix , one real array {no7}-zeros[]) which contains

Robert Crosbie, T he U niversity of Dublin. T rin ity College 57

C hapter 3. M atrix Transpose

D A T A S T R U C T U R E 3 .1 : M a trix M in CSR fo rm at:
T his is th e h ip u t a n d O u tp u t for all tra n sp o se a lg o rith m s
Input: M atrix M in the CSR representation - Containing:

nrows - the num ber of rows in the m atrix M
ncols - the num ber of cohimns in the m atrix M
n n z - the num ber of non-zero vahies in the m atrix M
row^ptrs[\ - array of row pointers in M [nrows+1]
non.zeros[] - array of element values in M [nnz]
colJndexes[] - array of element column indexes in M [nnz]

the values of the m atrix elements and two integer arrays {row.ptrs[] and

coLindexes[]) which define the layout/structure of the matrix. Example 3.2

shows a representation of the m atrix M stored in CSR form at.

nrow s = 6
n cols = 6

nnz = 15
row p trs = o„ 2̂ '‘■s 10. 12,

non .zeros = a h c d e I 9 h i J k I m n a
co l in d ex es = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

Exam ple 3.2: M atrix M in CSR representation

O ut-of-P lace Sparse M atrix Transpose A lgorithm

Algorithm 3.2, gives a basic pseudo-code implementation of the out-of-place

transpose. The algorithm takes as input the ’C ’ s tructu re M representing

the CSR m atrix as outlined in D ata S tructure 3.1 and will have contents

similar to that shown in Example 3.2. The output of the OOP algorithm is

a completely new m atrix structure containing as shown in Example 3.3.

F irst (lines 4-14) the new compressed row pointers array ne^V-ro^v.ptrs[]

is created by counting the num ber of elem ents in each colum n (from the

c o lum nJndex) and perform ing a cum ulative sum on lines 16-18 of those

counts. The new.roxv-ptrsW array will contain the starting row indices of

m atrix . By definition, a transpose reorders colunms to rows and hence

58 Space ^ Time Efficient Sparse Matrix Transpose

1

2
3

4

(>

7

8

9

10

11
1 2

13

14

i r >

16

17

18

i f)

20

21

22
23

24

25

26

27

28

29

3.4, Out-of-Place (OOP) Sparse Transpose

ALGO RITHM 3.2: O u t-O f-P la ce sp a rse m a tr ix tra n sp o se
In p u t: M atrix M as in D ata S tructure 3.1
O u tp u t; New m atrix (the transpose of M) in the CSR representation -

Containing:
neu’jn rou ’s - the num ber of rows in the m atrix [= old.ncols]
neu 'jico ls - the num ber of cokmins in the m atrix [= old.nrows]
new -nnz - the num ber of non-zero vakies in the m atrix [= nnz]
neu'-rou'-ptrs\] - the new array of row pointers in
neu'jion^zeros[] - the new array of element values in
new-CoUndexes[] - the new array of element column indexes in

* O u t p u t a rrays an> allocattHl a u d in i t ia l iz ed t o zero (not s h o w n for l)r<’v i t y) * /

* S w a p row co lu in n d im e n s io n s o f tl ie t r a n s p o s e * /

new-Tirows ncols\
n ew .n co ls ■<— nrow s;

* C o u n l t h e nuinl)er o f in d e x e s in eaeli e o ln in i i a n d s t o r e in n c u ' . r o u .pf7 s [\ offset by 2 * /

* Offset by 1 as row ,r + 1 ■'tarts a f ter row .r. * /

* Offs('t by 2 t o si<l«‘ste]> n eed t o shift in({ic«'s in rx ir-j'()U - i) f rs [] at e n d o f aij^oritbin.

for (0 < row < nrou's) do
fo r (old-rou’-ptrs[row] < k < oldjrou'^ptrs[row -I- 1]) do

col old.colJndexes[k\-,
if ({col + 2) < {neu'-Tirows + 1)) th e n

neu'-row-ptrs[(col + 2)] •<— neu'-row.ptrs[{col + 2)] -I- 1;
e n d

en d
en d

* C in n u l a l iv e "Uin o f m U' . r<) w. p i r s [] * /

fo r (0 < row < n eu '.n ro u s) do
j neu'.rou'.ptrs[row -I- 1] ■<— neu'-rou'.ptrs[row + 1] + 7iew-row-ptrs[row]]

e n d

* l.dop lliroilgh carli old' rcHV */
fo r (0 < row < nrou's) d o

fo r (old.row-ptrs[row] < k < old-rou'-ptrs[row + 1]) do
/* C<>p\' ('ach ('Icnirnt to it's (-(n-rcct in n-^rotr position in the traiispoM-d iiiati'i.x */
col ■<— old-CoLindexes[k]-,
pos neu'.rou'.ptrs[{col + 1)]; /* oftsct In- I */
new^non.zeros[pos] •<— old.nori-zeros[k];
new^coLindexes[pos] rou ’;
neu'-rou’4>trs[{col -I- 1)] i - new-rou'.ptrs[{col + 1)] 1;

e n d
e n d

the nei(,'_rou.'_pfrs[] array is created by counting the numl^er of differing

old cohinni vahies and accum ulating them.

N o te : W'hile constructing the neiL'-row-ptrs[] array we save the column

Robert Crosbie. The University of Dubhn. Trinity College 59

C hapter 3. M atrix Transpose

counts a t a jjosition th a t is offset by two from the cohm m inriex as can

be seen by the {col + 2) array index on hue 11. We tlien access tlie array

offset])y one as can be seen by the {col + 1) array index on hues 24 and 27.

G enerally when building the 7'oiV-ptrs[] array we store the colunm

counts a t a position offset by one. This is because we are looking for the

s ta r t positions of the new rows. Row a; + 1 s ta r ts after row x and all

the rows before, thus we store the count of the num ber of elem ents in

row X in position x + 1. During the algorithm we use the entries in the

new.row.ptrs[] array to point to the next free slot in each new row and

increm ent th e entries as we copy elem ents to their new position. At th e

end of the algorithm new.row.ptrs[x] would point to the start of row x + 1

and W’e w'ould need to correct the array by shuffling elements to the right.

If we construct the array offset by two elem ents, at the end of the

algorithm th e array will contain the correct entries and the reshuffle is

not necessary. The additional arithm etic and control flow' (line 10) for the

offset by two apj^roach should be optimised by the compiler. Exjjerimental

evaluation shows tha t it is slightly faster is practice. The if sta tem ent on

line 10 ensures we don't index })ast the end of the array. It is not necessary

to count the num ber of elem ents in the last colunm as we know the to ta l

num ber of elements.

Once we have the new nexi'-row-ptrs[] array, we traverse through all

the irnz values of the m atrix row-by-row (lines 20-29). Each elem ent

in the row is copied to its correct position in the transposed m atrix .

The position is found by using the curren t columnJndex of the elem ent

to index into the Tiew^rou'.ptrs[] array (offset by one) which gives the

index in the new^7}on-zeros[] and new-ColJ7idexes[] arrays for the ele

m ent. T he non.zero value is copied and the old.rowJndex becom es the

new-column-index. T he new-row-ptrs[] is increm ented so th a t th e next

element to be copied to th a t new row will be put in the next free position

in the row.

The resultant transposed m atrix in CSR format is shown in Exam

ple (3.3).

60 Space k . T im e Efficient Sparse M atrix T ranspose

3.5. The In-Place (IP) Sparse Transpose

non_zeros = a c h d f m g i b j k n e I o
c oLi nde xe s = 0 1 3 1 2 5 2 3 0 3 4 5 1 4 5

new _row _ptrs = 0„ 3j 6̂ 7̂ 8̂ 12, 1

Exam ple 3.3: Transposed M atrix in CSR representation
(Integer dimensions remain unchanged)

3.4.4 Analysis of O ut-of-Place A lgorithm

T he O O P algorithm perform s the transpose in-order, row by row. A

beneficial side effect of the order in which the OOP algorithm copies m atrix

elem ents is th a t the values w ithin each new row of the transposed m atrix

will also be in order (of column index) within the rows. The O O P algorithm

is sim ple and generally fast, running w ith an asym ptotic com plexity of

G {nnz + 77). T he input m atrix is accessed secjueutially which gives good

cache locality. A lthough fast, the algorithm does require ~ (3 7777z + 77)

additional memory. This actually tran sla tes to (12777)2 + 47?) bytes if we

assume 8-byte double non-zeros and 4-byte integer indices, m eaning OO P

requires 100% of the size of the M atrix in overhead^®^

This mem ory overhead may be acceptable for small m atrices, however

for larger m atrices finding th is additional memory may prove difficult, or

indeed impossible. Thus, we need an algorithm which performs reasonably

well in term s of both space and time.

Experim ental analysis of the out-of-place algorithm is shown in Sec

tion 3.7.

3.5 The In-Place (IP) Sparse Transpose

T he s])ace com plexity of the O O P algorithm can be reduced by using an

In-Place (IP) transpose algorithm. As the name suggests, an IP algorithm

perform s th e transpose using the original m atrix arrays w ithout m aking

R ectangular m atrices require slightly above or below 100% for different size
rou'^ptrs[]

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 61

C hapter 3. M atrix Transpose

an additional cf>py of the no»_3ero.s[] and coIJndexes[] arrays. One ap

proach to the sparse in-place transpose algorithm is to use a “cycle-chasing”

teclmicjue to transj)ose the m atrix within its storage structure. This cycle-

chasing is similar to the cycle-chasing used for dense rectangular in-place

transpose. However due to the sparsity of the m atrix it is not possible to

pre-calculate the positions of the elem ents in the m atrix and hence the

positions visited by the cycles.

There is very little research literatu re dealing w ith the topic of sparse

in-place transpose. The Sparskit2 package by Youcef Saad [Saad 94] con

tains an im plem entation of an in-place cycle chasing algorithm in For

tra n [Backus 56, Backus 57]. T he TRANSPO subroutine im plem ents the

Saad-IP algorithm which we discuss in detail in A lgorithm 3.3 in Sec

tion 3.5.1.

HSL [Group 63, Gould 04] is a m athem atical software library from the

Numerical Analysis Group, it is a closed source, commercial, collection of

FORTRAN codes for large scale scientific com putation. HSL includes two

routines for performing sparse m atrix transpose. MC380 m entioned above

which uses an out-of-place algorithm and the routine MC46 0 which is an

in-place algorithm. Unfortunately the algorithms have not been published.

According to the docmnentation, MC460 requires two arrays of size {rn -f-1)

in order to perform the transpose. As we will discuss fm ther in C hapter 4.

th e algorithm seems to only address the first of the three jjroblems for

an in-place sparse transpose w ith a m em ory overhead 0 (r;). T he MC460

routine still requires 0 (nr?2) additional space in order to record wdiich

elements have been moved and the location of free slots in the m atrix.

3.5.1 The Saad In-Place Transpose Algorithm

The j)seudo-code for the Saad-IP transpose algorithm is shown in slightly

simi^lified pseudo code split across A lgorithm 3.3 (a) (P art I: Saad-IP

Initialize) and Algorithm 3.3 (b) (Part II: Saad-IP Main Loop).

The Saad-IP Algorithm 3.3 (a) first expands (lines 4-9) the roiV-ptrs[]

array into a newly allocated, full tm p .rou 'Jndexes [] array of size 0 (r(r?2)

62 Space Sz Time Efficient Sparse Matrix Transpose

1

2

:i

4

5

6

7

8

9

10

11

12
13

14

ir>

16

17

18

19

20

2 1

22
23

3.5. The In-Place (IP) Sparse Transpose

A L G O R IT H M 3.3 (a): The Saad In-Place sparse transpose - PART I: Ini
tialize___
Input: Matrix M as in Data Structure 3.1
O utput: Matrix M containing (the transpose of M) in the CSR representation,

with:
neu>_ro«'_pfrs[] - new array of pointers to row starts [?ico/s + 1]

'* Moved Flag *.

d e f in e IS.MOVED - 1

* K x i)a iu l r o « ’-/>/r.s*[| i n t o t c i i i p o r a r v r o i i - i> } (l f \ r e . ‘i [i) r) z] a r r a y * /

Allocate: tm p-rou ' .m dexes[nnz];
In i t ia l ize : tm p .ro w J n d e x e s [] ; /* Initialize to zero * /

f o r (0 < row < n ro w s) d o

f o r (rou'-p trslrouj < x < ro w .p tr s [rou ’ + 1]) d o

I trnp^rou’Jndexes[x] ■<— row,
e n d

e n d

/* Uoii'I need c()ntent> of r<m -ptr;' au \' uiort' but need to re-allocate] lor non-^(|Uare
mat rice.- *

Free: row’_pfrs[];
Allocate: neu'-rou'jptrs\ncols-\- 1];
In i t ia l ize : 7ieu'_ro!X’-p f r s [] ; /* Initi.alize to zero * /

' * i i u in h (' r o fC n 1 r ie > in e a c h n v w ro w (o ld co l) - I'o h u i l d ro w o f f s e t s * /

f o r (0 < i < n n z) d o

col coLindexes[i]:
new .rou '.p trs[{col + !)] < — 7ieu'.row-ptrs[{col + 1)] + 1;

e n d

* ('ui iiulr tt i\ <‘ >uiii a c r o s s ik ' \ \ ' . ro w _pt rs[] * /

f o r (1 < i < ncols) d o
I new .row -ptrs[i] ■«— n ew -row .p trs[i] + new _row .p trs [i — 1];

e n d

(requiring ~ (4 nnz) bytes). Essentially converting m atrix M from the CSR

format into the CCO (Compressed Coordinate) form at. Algorithm 3.3 (a),

like the O O P A lgorithm 3.2, then builds the com pressed neu'-roxc^ptrs[]

array (lines 14-21), which indicates the starting indices of the rows in the

transposed m atrix M ^ .

The Cycle chasing part of the algorithm is then shown in Algorithm 3.3 (b).

A counter cur .x is used to traverse the n n z values while perform ing the

in place transpose. Counter c?/r_x s ta rts from the 0'^ index which is indi

cated by the arrow ‘p ’ in Exam ple 3.4 w ith the n n z value a, row_index 0

and colunnuindex 0. This first element is copied to a tem porary location

R obert Crosbie. T he Univ'ersity of D ublin. T rin ity College 63

1

2
3

4

5

6

7

H

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2 (>

27

28

2 !)

30

31

32

33

34

35

36

37

38

3 9

40

41

42

43

44

Chapter 3. Matrix Transj)ose

A L G O R IT H M 3.3 (b): The Saad In-Placc sparse transpose - PART II: Main
Loop

/ * l.ciop l l in m g h i ' \ c iy clcniriit in (he iiuilr ix * /

cuTJV ■<— 0 : /'* I'irsi i;ii'iiicin */ cycles 0 : /* Nmu clcniciiix pnHcsscd */
w h ile (true) do

/* Biu ku p currcii t (‘Iciiu'iil */
src.val no7i-zeros[curjr]\
src.col <— colJ7idexes[cur-x]',
src .row tm p-rou 'Jndexes[cur^];

/ * F l a g t h a t w v h a w t a k e n o u t t h i s (‘l e n i e n t , s o it d o e s n ' t ne('<l t o 1m‘ m o v e d a n y m o r e * /

trnp^rou'-indexes[curjr] <— lS _ M O V E D ;

rep ea t
cycles ■<— cycles + 1 ; /* C ycle (' o u i i t e r + + ♦ /

* F i n d t h e t r a i i s i> osed p o s i t i o n ot e l e m e n t in ’s r e ' n e x t u n u s e d >pae(* in i t s n e w ro w * /

dst-X <— new-row-ptrs[src.col];

dst.val •<— non-zeros[ds t^ \ \ j* Save tlic (■Icnifiit q ii] (l>t' *j
dst-col <— colJ.ndexes\dst

non.zeros[dst-x] •<— s r c . r a / ; / * P u t -m t ' in */
coLindexes[dst-x] ■<— src-row\ * o l d nm- -» New cdl */
neu'-rou'-ptrs[src-Col] <— new-rou'.ptrs[src-Col] + 1; /* <- i/.s/ ./• t i */

if (tm p .ro u 'Jn d e xe s[d s t^] = IS.MOVED) th en
I goto M O V E D ; /* wa> an e inp t \ ' ■'lot iiiiiicatitij; th e e n d oi' a cha in */

end

src -va l <— d s t .va i , /* C c ip y ■<i,--t' i n t o -m -c' *,

src.col <— dst-col'.
src-Tow ■«— tm p-row J.ndcxes \dst^]\

tinp.rowJndexes[dst-x] <— I S -M O V E D ; , ■ Set Hag on d^-t.x' * /

/ * Lo<jp u n t i l w e h a v e j ;o ne t l n o n g h al l n n z e U 'm e n t s * /

u ntil (cycles > n n z);

goto E N D ;

/ * M () \ ' l 'd) l-'inil lilt' n(‘Xt nn-ino\ 'ed ('hMiient to .start chas in j; * /

M O V E D :

cur jx <r- c u r ^ + 1;

if (cur jx > n n z) th en
j goto E N D ; /* We liave ru n off th e e n d of th e a r r a y J n n i p to t h e enil */

end
if (tm p -ro w Jn d exes[cu r^] = IS.MOVED) th en

I goto M O V E D ; / * cm'_x ha s ah 'e ady I)een moved, loop aga in * /

end
en d

, * E N D Ki^;ht-siiifl row offsets to m a k e nt' \v_row_ptrs[] */
E N D :

for (ncols > i > 0) do
I new-row.ptrs[i\ new.row-ptrs[i — 1];

end
7 t f 'U '_ ro w '_ p / r s [0] <— 0 ; Free'. tmp-rowJ,ndexes\

-^row-ptrs jieu'-rowjptrs] Space &: T im e Efficient Sparse M atrix Transpose

3.5. The In-Place (IP) Sparse Transpose

>:rc = h 1 0
1 ,

non_zeros = a h c d e / 9 h i J k I ?7i n 0
coL in dexes = 0 4 0 1 5 1 2 0 ;5 4 4 5 1 4 5

new^row ptrs = o „ 3 . 6 . 8 . 12,
t iii|> row indexes II 1 1 1 4 . 1

-f t
p ' q

15

Example 3.4: Algorithm 3.3 - Saad-IP Circuit Chasing Step: 1

“src” . T he tmp.rowJndexes[] value for this elem ent is no longer needed,

so th is array can be re-used to m ark th a t the element has already been

exam ined (using the is_m o v e d flag). Looking up the column_index (0) in

new-row^ptrs[] shows that this element is already in the correct position for

the transposed row, so it is copied back to the same location. The algorithm

jum ps from line 21 to line 31 w ith a g o t o , where c u r _ x is increm ented

to the next position in the m atrix , index 1. T his location is still < luiz

(line 33), and has not been moved yet (line 36), so the algorithm loops back

to line 4.

s r c -- I) 1 0 (Is i I :i ;i

non_zeros = c d e f g h h j k I m n o
coL in d exes = i| 0 1 5 1 2 0 0 4 4 5 1 4 5

new_row_ptrs = 0„ 3j 6̂ 7̂ 8̂ 12̂ 15
Mill) nn\ i i id cxc ' (I ' I .1 4 :>

V t , .

Exam ple 3.5: Algorithm 3.3 - Saad-IP Circuit Chasing Step: 2

The algorithm s ta rts cycle chasing again on line 4 a t array position 1

where cur_.r = 1, indicated by arrow ‘g’ in Exam ple 3.4. The elem ent at

‘g’ with nz vahie h is copied into “src” , and the destination position of the

element in the transposed m atrix is found on line 14 to be position 8 as

indicated by arrow ‘r ’ which curren tly holds n z value i. The elem ent at

position ‘r ’ is copied to the “rf.sf” tem porary location (lines 14-16). The

R obert Croshie. T he rn iv e rs ity of D ublin. T rin ity College 65

Chapter 3. Matrix Transpose

eleiiiPiit that wa.s at ‘g’ is copied from “srr” to position ‘r ’ (hues 17-19) as

shown in Example 3.5. The position ‘r ’ was not the end of a chain (line 20),
so the element tha t was at ‘r ’ is coj^ied from to “^rc” (lines 23-

26). The algorithm loops back continuing to cycle chase the element from

position 'r' which is now in “src’' until it finds an element with a destination

in the original row 0 which will be copied to position ‘g’ to end the chain.

The Saad algorithm contirmes chasing the next unmoved element until
all elements are moved to their correct new-roic in the transposed matrix.

3.5.2 Analysis of Saad In-Place Algorithm

Unlike the OOP algorithm the IP cycle chasing transpose does not wwk

sequentially through the matrix. Therefore elements are not transposed
“in-order” . This results in a transposed matrix where all the elements are
in their correct transposed row, how’ever it is unlikely that they are in the

correct order by colunm index within that row.

In many cases this may not he a concern. If elements are recjuired to
be in row order, this can be achieved by performing an additional sort
ing step after the transpose using a techniciue similar to standard sorting

algorithms. This sorting step can also be done in place. In Section 4.5
we describe our algorithm based on QuickSort [Hoare 61, Hoare 62] and
Insertion Sort [Knuth 98] which was used for the sorting phase of the exper
iments presented in Chapters 3, 4, 5 and 6. . The additional sorting step
w'as included in all the transpose timing results such that every transj)ose
algorithm resulted in the same output from the same input.

The Saad-IP algorithm as described above in Algorithm 3.3 is imple

mented in the Sparskit2 package [Saad 94]. The Saad-IP algorithm exhibits

asymptotic time complexity of Q{nnz -)- n) time, however it is more com

plicated than the OOP algorithm and accesses the elements in random
order as it jumps around chasing the cycles w'hich results in poor locality

for cache reuse, so in practice is generally slower than the OOP algorithm.

As we see in Figure 3.3 from the experimental evaluation in Section 3.7,
when dealing with large matrices and wdiere memory is tight, j^erforming

66 Space ^ T im e Efficient Sparse M atrix T ranspose

3.6. Performance Evaluation of Algorithms

the transpose in j)lace only requires {4m}z) bytes^^'^ of additional memory

com pared to the { I2nnz + 4/!) bytes for the O O P algorithm . The perfor

mance cost may be an acceptable trade-off, however, the memory overhead

is still <d{nnz) which can prove significant for large m atrices and for many

m atrices increases at a higher ra te th an the num ber of rows {n). For the

largest m atrix in our collection the OOP algorithm requires 4,698 MiB and

the Saad algorithm requires 1,531 MiB.

To address th is mem ory overhead we have developed a collection of

new in-place transpose algorithm s which reduce the asym ptotic memory

overhead to Q{n) additional storage (see Chapters 4 and 5). Our HyperPar-

tition algorithm (C hapter 6) requires significantly less memory overhead

in practice.

3.6 Perform ance Evaluation of A lgorithm s

For the purpose of comparison with our new in-place m atrix transpose algo

rithms, in Section 3.7 we present an empirical evaluation of the two existing

sparse m atrix transpose algorithm s previously describe<l in Sections 3.4.3

and 3.5.1. We first outline the m ethodology used in ovu exi)erim ents and

analysis.

This section describes our exj)erimental setuj) and how the algorithm s

w'ere analysed. We discuss w hat experim ents were run, the sami)le inj)ut

data used, what measurem ents were recorded and how they were recorded.

We also discuss how the d a ta was analysed and jn’esented.

3.6.1 M atrix Collections - Sample Input M atrices

In order to evaluate the different transpose algorithms and to dem onstrate

the advantages of our proposed new algorithms, we performed an extensive

set of experim ents on the algorithm s. It is im portan t to understand and

evaluate how the algorithms function in real world applications rather than

in synthetic sim ulations. We therefore used a set of m atrices taken from

for square m atrices, rec tangu la r m atrices m ay require slightly or m ore or less.

R obert Crosbie. T he Tniversity of I)\iblin. T rin ity College 67

C hapter 3. M atrix Transpose

real world applications for our experim ents. 259 sam ple input m atrices

were collected in the M atrixM arket [Boisvert 95, Boisvert 97] file form at

(Appendix C) taken from The University of Florida Sparse M atrix Collec

tion [Davis 94, Davis 09, Davis 11a, Davis 11b] m aintained by Tim Davis.

Tables in Appendix A give detailed information of a sample of the matrices

used.

Our main interest is in the performance of our new transpose algorithms

on large matrices as this is where the reduction in memory overhead is most

desirable. Some low end em bedded system s may still be concerned w ith

memory usage of medium size matrices, therefore for these experiments we

chose sample matrices from the Florida collection with more than 1 million

(1,000,000) non-zero values. A m atrix of th is size would require roughly

12M iB to store in memory assum ing the m atrix is stored in CSR form at

w ith 32-bit row and cohunn indices and double precision non-zero values.

A to ta l of 259 input m atrices were used in the experim ents to evaluate

the perform ance of the algorithm s. T he m atrix collection includes 129

sym m etric m atrices out of the 259. These sym m etric m atrices are stored

w ith only the lower triangle rejjresented. It is not necessary to transpose

a synnnetric m atrix as the transpose of a sym m etric m atrix is the sam e

m atrix. We included synnnetric m atrices in our test suite simply treating

them as triangu lar m atrices. T he transpose of a triangu lar m atrix often

occurs in calculations such as in the upper and lower triangular solves after

a Cholesky [Golub 96, Stewart 01] decom position M = LU^ where the

lower triangular L is the transpose of the upper triangular U, i.e. = U .

Including sym m etric m atrices as triangular m atrices increases the number

of input m atrices for our experiments.

The largest sample input m atrix nlpkkt240 is a 27,993,600 x 27.993,600

m atrix with 401.232,976 non-zero values and requires 4,699 MiB to simply

ju st store it in memory in the CSR format.

Tables in A ppendix A give detailed inform ation on a sam ple of the

m atrices used in our experim ents. Table A .l shows the dim ensions and

s truc tu re of the m atrix. Table A .2 lists the problem dom ains from which

the m atrices w^ere produced. A dditionally, Tables A .3 and A.4 show the

68 Spare ^ Time Efficient Sparse Matrix Transpose

3.6. Perfoniiance Evahiation of Algorithiii,s

ineinory usage and execution time for the algorithms when transj)osing the

sample matrices.

3.6.2 Experimental Setup

The experiments were run on ''Stoker” a 32 core machine with 4 x Intel octo-

core Xeon E7 4820 processor @2.00GHz with 18MiB Cache and 128 GiB

RAM running Debian 6.0. Each core uses two-way sinm ltaneous m ulti

threading so there is a to ta l of 64 hardware threads. The implem entations

were compiled with the I n t e l C /C + + /F o rtran Compiler version 12.0 with

the follow'ing optim isation flags:

-03 - f a s t -openmp

T he PA PI [Browne 00] system was used for collecting perform ance

m etrics and inform ation from the m achine’s hardw are counters (See Sec

tion 5.9.1).

A subset of the experim ents were repeated on other machines which

produced results with very similar trends to the experiments run on Stoker.

For com parability, consistency and clarity only the results from stoker

machine are presented here.

T he two m ain perform ance properties we are in terested in are: The

algorithm 's execution tim e and the memory usage of the algorithm.

A lgorithm E xecution T im e

Measurements of algorithm execution time were conducted as follows: Each

of the input m atrices was read in from the M atrixM arket file into a sparse

coordinate s truc tu re which was transform ed into the Com pressed Sparse

Row (CSR) format structure. Each algorithm w'as then used to transpose

tlie algorithm forwards and backwards 19 times. In the case of the in-place

algorithms, the cycle chasing and sorting steps were tim ed separately. The

tim er was started just before calling the cycle chasing transpose routine and

stopped and recorded as soon as it completed. The tim er was again started

just before calling the sorting routine and stopped as soon as it comj^leted.

R o b ert C ro sb ie . T h e r n iv e r s i ty of O u b lin . T r in ity C ollege 69

C h ap te r 3. M atrix T ranspose

For th e out-of-{)lace a lgoritlin i th e re is ju s t one s tep w hich is m easu red

by th e tim er. E x cep t w here no ted , all execu tion tim e resu lts p resen ted

in th is d ocum en t include th e tim e for b o th th e cycle-chasing p h ase and

th e so rtin g p hase com bined. T h e a lgo rithm (cycle chasing) tim e includes

th e tim e for th e ac tu a l tran sp o se an d all s tep s re la tin g to th e tran sp o se

— such as bu ild ing a rray s b e fo re /a f te r th e tran sp o se , coun ting elem ents,

cycle-chasing, etc.

W h en co n d u c tin g tim e sensitive exp erim en ts, background ac tiv ity on

th e ex p e rim en ta l m achine such as scheduled task s and system in te rru p ts

can in terfere w ith th e ru n n in g p rog ram s, causing delays and in acc u ra te

tim ing results. To offset th is problem we chose to m easure the tim e for each

a lg o rith m and in p u t 19 tim es. T h e m ed ian value for th e 19 tim in g s was

used for analysis and generating th e graphs. T he value of 19 was chosen as

it w’as deem ed large enough to satisfactorily reduce th e num ber of outliers

in th e tim ing resu lts and is an odd num ber which has a single m edian value.

T h e m ed ian was used as an average ra th e r th a n th e m ean as th e m ean

w ould also include th e tim ings of any outliers th a t did occur. T h e m edian

value shou ld also be m ore rep resen ta tiv e th a n sim ply tak in g th e fa ste s t

value of th e 19 runs.

In p rac tice th e tim in g re su lts for th e a lgo rithm s wei'e very consisten t

as can be seen in F ig u re 7.2 on P age 192. T h is figure show s each of

th e ind iv idua l 19 tim in g re su lts for th e H y p e rP a rtitio n T ran sp o se w ith

R adixSort for different num bers of buckets. For exam ple th e Serial algorithm

ind icated w ith th e red plus { ' + ') has a block of 19 m arkers at roughly seven

seconds when using two buckets and ano ther block of 19 m arkers ju s t under

five seconds when using four buckets. For th e serial algorithm , th e tim ings

for th e 19 ru n s a re alm ost iden tical. Som e sligh t v a ria tio n betw 'een th e

in d iv id u a l tim in g s can be seen in th e para lle l a lg o rith m show'n w ith th e

b lue (’x ’), p a rticu la rly w ith 16,384 buckets. T h e v aria tio n in th e parallel

version is possib ly due to o th e r ac tiv ity on th e m achine wdiich has m ore

of an affect wdien ru n n in g across 32 cores however it is also likely to be a

resu lt of different d is trib u tio n s of O penM P th rea d s across th e C P U cores

in re la tio n to th e location in m em ory of th e d a ta . H y p e rT h read in g m ay

70 Space Time Efficient Sparse Matrix Transpose

3.6. Perfonnaiice Evaluation of Algorithnis

also be an influence if two threads are allocated to a single core.

A n a ly s in g M e m o ry U sa g e

For these experim ents we are in terested in the mem ory overhead of the

algorithms. The additionul memory on top of tha t required to simply store

the m atrix in m em ory th a t the algorithm s allocate in order to perform

their function. The mem ory overhead required by each algorithm can be

calculated from the dim ensions of the m atrix , however for com pleteness

(and to ensure correctness) the memory allocated by the algorithms was also

measured directly. This was done by overloading all memory allocation and

deallocation routines in order to track memory usage. The peak memory in

use during the algorithm was then compared to the baseline usage for each

m atrix . Analysis tools such as Valgrind [Nethercote 03, N ethercote 07]

were also used to test the algorithm im plem entations for memory leaks.

3.6.3 Presentation o f D ata

The graphs in this document have been generated with GNUplot [Williams 90]

and show the execution tim e, mem ory overhead, cache perform ance and

o ther m easurem ents of the algorithm s presented. As discussed in Sec

tion 3.6.2, the memory overhead is the additional memory allocated by the

algorithm . We are developing algorithm s which improve on the mem ory

usage and execution time, therefore: in all graphs, lower values are better.

W hen discussing the size of a m atrix we may talk about the number of

rows (ri), the num ber of colunms (m) or the num ber of non-zero elements

[nnz] in the matrix. For our purposes the number if non-zeros [rinz) is the

most appropriate as it generally has the greatest effect on the memory usage

and execution time of the algorithms. Our graphs show the performance of

the algorithm s relative to the num ber of non-zeros in the m atrix.

Due to the very wide range in the num ber of non-zero elements in the

m atrices (from 1 Million to 401 million elem ents) and the even greater

relative difference in m em ory usages and execution tim e values for the

matrices, it is not possible to directly graph the actual exj)erimental results

H obert CVosl)ie. T h e I ’liiv e rs ity of D u b lin . T r in ity C ollege 71

C h ap te r 3. M atrix Transpose

together. T h e graplis w ould be highly skewed and d is to rted . As such, we

have done a n u m b er of th in g s to im prove legibility of th e g raphs. F irs t,

we have elected w here possib le to d isp lay all th e m em ory an d execu tion

tim e re su lts of all th e a lgo rithm s re la tiv e to th e m easu red resu lts of th e

Saad In -P lace algorithm . Hence for every graph , th e m easurem ents of the

Saad algorithm are all on a horizontal line a t (y = 1). For each m atrix the

resu lts of th e o th er algorithm s are th en p lo tted e ither above or below th is

line show ing th a t th a t a lg o rith m perform s b e tte r or worse th a n th e Saad

a lgorithm for th a t inpu t m atrix , and by w hat p roportion . T h is applies to

all th e m etrics - M em ory / E xecu tion T im e / C ache M isses / etc.

T he second way we im prove legibility is again due to the wide range in

th e num ber of non-zeros and the fact th a t m ost of th e m atrices fall closer

to th e lower end of th e range. E ven w ith a log-x axis th is resu lts in d a ta

po in ts c lustered to the left of th e graph . In order to im prove legibility, we

have split the g raph along the x-axis w ith a stretched logarithm ic scale from

1,000,000 to 16,000.000 over th e left /̂-i of th e g rap h an d th e n a sh o rte r

logarithm ic scale from 16.000.000 to 420.000,000 over th e righ t of th e

graph.

O ne d isadvantage of the form at in which we have chosen to display the

results is th a t it is not possible to d irectly see the exact m easurem ents and

values of m em ory usage an d execu tion tim e th a t th e a lg o rith m s have for

th e various inpu t m atrices. In m any cases th e display form at also hides the

vast im provem ent in m em ory usage and runtim e th a t these new algorithm s

m ake over the existing algorithm s. Table A .3 and Table A .4 show th e exact

a lg o rith m m em ory overhead an d ac tu a l execu tio n tim e respectively of a

n um ber of th e larger sam ple m atrices used in th e experim ents.

3.7 Evaluation of Sparse Transpose A lgorithm s

F ig u re 3.3 show s th e ad d itio n a l m em ory overhead of th e O u t-o f-P lace

a lg o rith m (Alg: 3.2) re la tiv e to th e S aad In -P lace A lg o rith m (Alg: 3.3).

T here is a clear sim ilarity and linearity betw een th e algorithm s showing th a t

b o th have a space com plexity of Q { m iz) w ith the O O P algorithm requiring

72 Space ^ T im e Efficient Sparse M atrix T ranspose

3.8. Sum m ary

Out-O f-Place vs. S aad-lP • - Memory O verhead of Algorithm [Relative]

3.5

Q.

2.5

TJ
flj
<X>£

Legend

2
Saad-IP

O O P
Average; 306.2%

0.5

1 m 1.5 m 2 m 4 m 8 m 1 6 m 50 m 150 m 400 m

Matrix S ize (million nnz) <LOG scale>

Figure 3.3: M em ory overhead of th e O u t-o f-P lace (O O P) a lg o r ith m re la tive to th e

Saail In -P lace a lg o rith m . O O P uses rough ly 3 tim es m ore m em ory th a n Saaci-IP. For

the largest m atrix {nlpkkt,240) w ith 401 M illion non-zeros. O O P requires 4 ,699MiB and

Saad requires 1.531 M iB in m em ory overhead.

rouglily three tim es more memory than tha t of Saad. Varial)ility is due to

the differences in lengtlis of the roiL'.pfrs[] array {nroirs + I) com pared

to the colJndexes[] and non^zeros\\ arrays {nnz). For the largest m atrix

used in these experiments, {nlpkkt.240, shown on the far right of the graj)hs)

the OOP algorithm requires 4,698 MiB of additional memory whereas the

Saad-IP algorithm requires 1,531 MiB. This is a consideray:)le overhead of

100% and 33% of the original m atrix size respectively for both algorithms.

More details of m atrix memory requirem ents can be found in Table A .3.

The A lgorithm runtim e of the O ut-of-Place algorithm is showai in

Figure 3.4 in comparison to th a t of the Saad-IP algorithm . OOP is faster

in the m ajority of cases, however there are actually a num ber of inputs

where the O O P algorithm is considerably slower than Saad.

The graphs in Figure 3.3 and Figure 3.4 show bo th the appeal and

drawback of the OO P algorithm. It is simple and (generally) fast, but the

graphs show th a t th is comes at a great cost of 100% additional storage,

which simply m ay not be feasible in many cases.

R o b ert C rosb ie . T h e U n iv e rs ity o f D u b lin . T r in ity C ollege 73

C hapter 3. M atrix Transpose

Out-Of-Place VS. Saad-IP -- (Serial) Execution Time of Transpose [Relative]
2

1.75

1.5

1
CO
V)
>
03 1
E
i-
0
1 0.76
o cc

0.5

0.25

l m 1.5m 2m 4 m 8 m 16m 50m 150m 400 m
Matrix Size {million nnz) <LOG scale>

Figure 3.4: Runtime of the O ut-of-Place (OOP) algorithm relative to the Saad In-Place

algorithm. OOP is generally faster but is slower on som e inputs.

3.8 Sum m ary

This chaj)ter reviewed existing research on m atrix transj)ose. There is a large

l)ody of existing research on dense m atrix transpose with many algoritlnns,

each with their own advantages and disadvantages. However there has been

far less focus on transposing sparse m atrices. We have reviewed th e two

m ajor sparse m atrix transpose algorithms from the literature and provided

an experim ental evaluation of bo th which will be used for com parison in

subsequent chapters.

In the forthcoming chapters we present our new Sparse In-Place Trans

pose algorithm s, which reduce the asym ptotic space com plexity of the

sparse transpose while also reducing the execution tim e com pared to the

existing in-place algorithm.

Leaend
Saad-IP

OOP
Average: 43.4%

-

♦ -r- T*

■u. - - . . . 3 V v.-'. • -

74 Space ^ T im e Efficient Sparse M atrix T ranspose

Chapter

Space Efficient In-Place
Sparse Matrix Transpose

In the previous chapter we introduced the M atrix Transpose operation

and outUned the research and existing algorithm s on the topic. \ \ e gave

an in-depth analysis of the two m ain algorithm s for transposing Sparse

Matrices:

1) The O ut-of-Place Sparse M atrix Transj)ose A lgorithm (3.2) which

has a tim e complexity of 0 { n n z + n) and transposes the m atrix by making

a com plete new copy of th e full sparse m atrix s tru c tu re in m em ory and

then copies each individual elem ent to its correct location in the trans-

])ospd m atrix . The to ta l space com plexity of the O ut-of-Place algorithm

is ~ (3 » r) 2 -I- n) m eaning the O ut-of-Place algorithm can require up to

4.698 MiB in memory overhead for our largest m atrix.

2) T he Saad In-Place Sparse M atrix Transpose A lgorithm (3.3) from

the package Sparskit2 [Saad 94] which also has a tim e com plexity of

G{j}nz + n). T he Saad algorithm requires an additional tem porary ar

ray {t j i^p.rowJndexes[]) of size {nnz) for the row indexes and transposes

the m atrix in-place using a cycle-chasing technique to move elements. Thus

the to ta l space complexity of the Saad In-Place algorithm is ^{ j i nz) , only

33% of the Out-of-Place algorithm. However even at this level, Saad requires

1,531 MiB of additional memory for the largest m atrix.

Perform ing the transpose in-place w ith reduced space complexity, the

Saad algorithm still requires a considerable memory overhead. As matrices

grow larger, this memory overhead will also continue to grow in proportion

to nnz. For the great m ajority of real-world sparse m atrices the num ber

of rows (n) hi the m atrix is far less th an the num ber of non-zeros {nnz).

Thus an in-place transpose which only requires 0 (») additional space could

make a considerable reduction in the memory overhead.

In th is chaj)ter we analyse the problem s w ith perform ing the in-place

R o b er t C ro sb ie . T h e U n iv e rs ity o f D u b lin . T r in ity C ollege 75

Chai)ter 4. Space Efficient In-Place Sparse Matrix Transpose

sparse matrix transpose operation with only additional memory and
present a number of solutions to these problems.

4.1 In-Place Transpose w ith R educed M em

ory

There are three very important problems which need to be solved in order

to reduce the space complexity of the in-place transpose from Q{jinz) to

0(n).

Problem s to solve in order to reduce Space C om plexity:

(a) How to find the old.roxcJudex of each element in 0 (n) space

(b) How to record that an element has been processed in B(/() space

(c) How to determine the next free slot in each row in 0 (t i) space and

(-)(!) time

As we move elements from row to row during the cycle chasing transpose
the first problem is (a) how to find the old row index of each element. In

this chapter and the subseq\ient chapters we j)resent a nmnber of solutions
to this problem.

Problems (b) and (c) are linked, they both relate to the way in which
we record that elements have been processed/moved, however the problems
manifest themselves in two separate ways. Section 4.1.2 outlines our solution

to problems (b) and (c).

Our solutions to these three problems not only allow us to reduce the

space complexity of the in-place transpose from (d{nnz) to 0(7i), they also
considerably reduce the memory overhead and algorithm execution time in

practice as can be seen from the extensive experimental analysis throughout

this document.

76 S pare ^ T im e Efficient Sparse M atrix T ranspose

4.1. In-Place Transpose with Reduced Memory

4.1.1 Finding the old^row Jndex in 0(n) Space

The first problem (a) that needs to be addressed in order to reduce the space

complexity of the in-place sparse transpose is how to find the o ld j 'o w J n d e x

of each element in the m atrix.

Consider the original CSR representation of the m atrix M from Exam

ple (1.1) shown again in Exam ple (4.1). W hen perform ing the in place

transpose using the cycle-chasing techniciue (see Sections 3.5 and 4.2), on

a m atrix in CSR form at, a t each jump^^^ in the cycle we know certain

inform ation about the element at th a t position. We know the position of

the elem ent: p, the value {non.zeros[p]) of the non zero elem ent and we

know the column index {colJndexes[p\) of the element. This colJndex will

become the n e w jrow J nde x of the element in . The information we are

missing w'hich can not be looked up directly is the current o ld j 'o w J n d e x

of the element.

non_zeros = a b c d e f 9 h i j k I ni n o
co L in d ex es = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

row^ptrs = 0„ 2, 5̂ 7̂ 10̂ 12̂ 1

Exam ple 4.1: M atrix M in CSR representation

As shown in Section 3.5 the Saad-IP (Algorithm 3.3), solves this problem

by expanding the old.row.ptrs[] array of size [n + 1) into an m iz length

array of row indexes {twp^rou' jndexes[]) recjuiring an additional Q{nriz)

of memory. As we have seen previously, th is com plexity can tran sla te to

1,531 MiB of memory overhead. We wish to reduce th a t overhead.

Usually, when we are accessing the m atrix by rows, we look up row'

V in roiv^ptrs[] in order to find the s ta r t, ‘s ’, and end, ‘e ’ index of the

row w ithin the non_zeros[] and coLindexes[] arrays. However going the

other direction, starting with a random element ‘p \ in the non^zeros[] and

colJ7idexes[] arrays, and try ing to find the row index of th a t elem ent is

we move an element to another row we '‘junip" to that location in the matrix

R obert Crosbie. T he Ih iiversity of DubHn. T rin ity College 77

C hapter 4. Si)ace Efficient In-Place Sj)arse M atrix Transpose

more difficult.

Our approach is to perform the in-place transpose using the r o w . p t r s []

array itself, w ithout expanding r o w - p t r s [] into the t7npj ' o i i 'Jn dexes[]

array. This eliminates the 0 { n n z) space rec}uirement in memory overhead

and reduces it to 0(7)). We propose a number of solutions to this problem

which are outlined in the following sections and chapters.

Our solutions to finding th e o l d j r o w J n d e x in 0 (n) space:

o Binary Range Search Lookup - Section 4.3

o Radix Table Lookup - Section 4.4

o Corresponding Row Table Lookup - C hapter 5

T he Binary Range Search and Radix Table Lookup algorithm s search

the o l d . r o w . p t r s [] array directly in order to I’educe the memory overhead.

A lthough this search does come at an additional cost to the time complexity

of the algorithms, in j^ractice the execution time of the Radix Table Lookup

algorithm is similar to th a t of Saad with some variation (see the performance

results in Section 4.4.5).

The Corresponding Row algorithm outlined in Chapter 5 uses an addi

tional table of size 0(r)) in order to look up the old row index in constant

0 { \) am ortized tim e in order to m aintahi the Q { r m z -I- ri) runtim e of the

in-place tran.spose.

4,1.2 D eterm ine if an Elem ent has Already Been Pro
cessed
in Q{n) Space and 0(1) Time.

The second and th ird problems (b) and (c) that need to be addressed for

the 0 (n) in-place sparse m atrix transpose both relate to how to determine

whether or not an element ha.s already been processed. By '‘processed” we

m ean th a t we have either moved the element during a cycle-chasing chain

so it does not need to be moved again or we have scanned the element and

78 Space T im e Efficient Sparse M atrix T ranspose

4.1. In-Place Transpose with Reduced Memory

found th a t it does not need to be moved. In either case, we know' that

element does not need to be checked again.

As we iterate through the elements in the matrix using the cycle-chasing

algorithm (see Sections 3.5 and 4.2), we determine if each element is in
the correct row' in the transposed matrix. If not, we move that element to

an area of the m atrix arrays corresponding to the correct new’ row'. We
continue to move elements in a cycle-chasing manner until the cycle ends.

We then continue scanning through the elements in subsequent row’s to

ensure they are in the correct row. Problem (b) arises as w'e are scanning

through the elements in each row, at this point it is im portant to know

whether or not an element has already been processed/moved so that we
can skip over it or move it and start cycle-chasing. Problem (c) arises
w'hen moving an element to another row, at this point it is im portant to

know which elements have already been processed/moved to tha t row' so

that we can move the element to the location of the next “free’’ slot in that
row.

H ow S aad d e te rm in e s if an e lem en t has b een p ro cessed

The Saad in-place Algorithm (3.3) solves problem (a) using the fmp.rou'-wdexes[]
array. When the algorithm is processing an element, it reads its row index
from the tmp.rowJj}dexes[] array and either moves the element if neces

sary, starting a cycle, or leaves it in the current row. In both cases the

element’s coLindex[] w'ill be updated to contain the old.rowJndex that
was read. Once an element has been processed, the row index value in the

tn}pj'ou'Jj}dexes[] array is no longer needed.

For problem (b) , in order to indicate that an element has been processed

(moved or updated in place) the Saad algorithm sets a special value (in

this case -1) in the tmp^rowJ7idexes[] array for that element. The Saad

algorithm can scan through the elements and skip those with a value of -1

in the tnip.roivJndexes[] array.

The Saad algorithm solves problem (c) using the new.rou’-ptrs[] ar
ray. The old.rou’.pt7's[] array is no longer needed after expanding it

R obert Crosbie. T he U niversity of Dublin. T rin ity College 79

C hapter 4. Space Efficient In-Place Sparse M atrix Transpose

into tlie tmp rowJndexes[] array, thus it can reuse the old array as the

new.row.ptrs[] array. Thus the Saad algorithm requires that the length of

the rou'-ptrs[] array is max{nro ivs , ncols). W hen the algorithm needs to

move an elem ent to a new row it looks up the index of the s ta r t of th a t

row in the new-row-ptrs[] array and moves the element to th a t location.

It then increm ents th a t index in new.row.ptrs[] by one to indicate th a t

the next free slot in th a t row is the next position in the array. Thus when

Saad needs to move an element it can look up the location of the next free

position in each row in the new^row-ptrs[] array.

The Saad algorithm solves problems (a) and (b) in Q{jmz) space and

0 (1) time, and solves problem (c) in @{n) space and 0 (1) time. We need

to solve both problems in 0 (t7) space and 0 (1) time.

One possible m ethod to record th a t an element has been processed in

order to solve problem (b) would be to create an additional d a ta structure

such as a bit vector w ith one en try for each item. However, th is would

require an additional Q{nj7z) space, or ymz b its to be precise. A lthough

for most sparse m atrices an additional n n z b its is probably not so very

large in com parison to the sparse m atrix itself, the space overhead may

nonetheless be significant. Furtherm ore, an additional d a ta s tru c tu re of

B{nnz) is not very satisfying from an theoretical point of view, because

the overall space complexity of the algorithm will include an Q{7mz) term .

Another solution would be to store a flag in the entries of coLindexes[].

We cannot use a specific value, such as the —1 used by Saad. as this would

over-write the index value already stored there. Instead we could use a

high-order bit, or negate the column index value. If the column index is a

signed value, then negating the index to indicate a moved value will work.

But if the colum n index is not a signed value, then com m andeering the

high order bit will reduce the range of colunm indices, and thus limit the

maximum m atrix dimension by a factor of two. It is particularly for such

large matrices where we wish to have a memory efficient in-place transpose.

80 Space & T im e Efficient Sparse M atrix Transpose

4.1. In-Place Transpose with Reduced Memory

R ecord th at an elem ent has been processed in 0 (r?) space and
0(1) tim e

A.S we have seen, it is not possible to have a “processed’’ flag for each indi

vidual element in the m atrix as this would require Q{nnz) space. However,

having a flag for each individual element is not actually necessary, we just

need to be able to distinguish those elem ents which have been processed

from those th a t have not yet been processed.

Consider again how elements are processed and moved during the cycle-

chasing procedure. We process elem ents sequentially, row by row. W hen

we move an element we move it to the first “free slot” in the new row. This

means th a t all the processed and unprocessed elements will be contiguous

together in each row. T he processed elem ents (if any) will be grouped

together at the s tart of the row and all the remaining unprocessed elements

will be grouped together tow ards the end of the row. Consequently, if

we record tlie s ta r t and end of the groups of processed and unprocessed

elem ents in each row w'e will be able to identify which elem ents have and

have not been processed.

As with the Out-of-Place and Saad-IP algorithms, in our 0(r?) in-place

algorithm , we need to construct a newjroiL'-ptrs[\ array of size (n -I- 1) as

j)art of the transpose process in order to indicate the start of each new row

in the m atrix . Unlike the Saad algorithm we do not have an n n z length

array of tmp .rowJndexes[\ so we need to keep the old-row^ptrs\] array in

order to look up the row index to solve problem (a) . Therefore we will

need to allocate a new array of size (n -|- 1) for the nevL'jrowjptrs[\.

W'ith the new-roxL'-ptrs[] array we know the position of the s ta r t of

each row. This is also the position of the s ta r t of the group of processed

elements in the row’. If we then store the position of the first unprocessed

element in each row in a second [n -f 1) size array called row.of fsets[] we

can then delimit the positions of the processed and unprocessed elements

in each row as follows:

Robert Crosbie. T he U niversity of D ublin. T rin ity College 81

C hapter 4. Space Efficient In-Place Sparse M atrix Transpose

Elements in row new.row .p trs [i] —> new.roiu.ptrs[i + I] — 1

Processed in row ?: neiL'.row.ptrs[i] —> row.offsets[i] — 1

U nprocessed in row i: row.offset s[i] new-row.p trs[i + 1] — 1

We can use these two arrays of size {n + 1) to solve bo th problem s

(b) and (c) as follow's. At the s ta r t of th e algorithm , both arrays are

initialized to point to the s ta rt of each new row. The Jiew^roiL'.p trs\] array

is not modified during the algorithm and always points to the s ta rt of the

row. W hen scanning through a row (‘i ') , we scan through the unprocessed

elem ents s ta rtin g at row.offsets[i]. If th a t element does not need to be

moved we u pdate its colJndex[] en try and inci'ement row^offsets[i] to

indicate it has been processed and to indicate the position of the next

unprocessed elem ent. If the elem ent needs to be moved to ano ther row

(‘y ’) we do not want to d istu rb elem ents th a t we have already moved to

row ‘y ’ so we find the position of the first unprocessed element in the row

from row.offsets[y]. We move the elem ent to th a t position, increm ent

row ̂ offset s[] and continue chasing the element we just took out of row y.

All look ups and updates take constant 0 (1) tim e. Thus, using these

tw'o arrays of size (r; + 1) we have solved problem s (b) and (c) in 0 (r;)

space and 0 (1) tim e. It would be preferable to reduce the need for two

additional arrays, how'ever for the m atrices in the test su ite which have

m ore th an 65,536 non-zero elem ents, it is not possible to combine the

two arrays. Both arrays are required, the row ̂ offset s[] array needs to

be increm ented to keep track of th e first free slot in each row and the

elem ents th a t have already been moved. The new-row^ptrs[] array needs

to rem ain unchanged in order to keep track of the start of each row. Thus,

the m inim um overhead th a t we can perform the in-place sparse m atrix

transpose is ~ (2 n) additional memorv.

In the next section we show our generic 0 (n) in-place sparse m atrix

transpose algorithm which incorporates our solutions to the three problems

th a t need to be solved to reduce the m em ory overhead from <d{nnz) to

82 Space ^ Time Efficient Sparse Matrix Transpose

4.2. Generic In-Place Sparse Transpose

0 (n) .

4.2 Generic In-Place Sparse Transpose

Algorithm 4.1 shows our new, Generic 0 (n) hi-Place Cycle-Chasing Sparse

Transpose algorithm which demonstrates our solutions to the three problems

of transposing a matrix in-place in 0 (n) memory overhead as discussed in

Section 4.1. This Generic Transpose is the basic tem plate w'hich we will
base our in-place transpose algorithms on.

Our Generic Algorithm performs the cycle-chasing transpose in a similar

manner to Saad-IP as outlined in Algorithm 3.3 in that it performs the same
cycle-chasing element movements. The algorithm demonstrates how we use

the new^rou'^ptrs\] and roiv.offsets[] arrays discussed in Section 4.1.2 to

mark and skip over elements which have already been processed/moved.
The basic procedure of Algorithm 4.1 is- Lines (18-19) - Loop through

each new row and each (unmoved) element in that new row. Lines (21-23)
- copy tha t element into ‘‘src” . Lines (26-31) find the destination of
the element in ‘‘src'" and copy the element at tha t destination into “dst” .
Lines (33-34) copy element in “src” to the destination. Lines (36-38)
copy element “dst" into “src” . Line (24) keep cycle chasing the element
in "src’' until the end of the cycle is reached.

The Generic In-Place algorithm calls tw'o external routines in order to
find the rou'Jndex of the element, problem (a) outlined in Section 4.1.1.
It is these external routines which will change in the forthcoming trans
pose algorithms. The first is on Line (16), in i t ia l iz e _ lo o k u p _ ta b le () .

This placeholder calls a routine which initializes additional lookup ta

bles, if any are recjuired to perform the rowJndex lookup. The second
is on Lines (23 and 31), lookup_row _index(). This placeholder calls a

routine which looks up the rowJndex using the current position in the
non^zeros[] and coLhidexes[] arrays as a key. The lookup_row_index()

procedure potentially uses other data structures initialized earlier with

in i t ia liz e _ lo o k u p _ ta b le 0 .

The two algorithms take different arguments depending on how they

R obert Crosbie. T he U niversity of D ublin. T rin ity College 83

1

2

a
4

5

6

7

8

9

10
11
12

13

14

IT)
16

17

18

19

20

21

22
23

24

2T)

26

27

2H
29

30

31

32

33

34

3n
36

37

38

39

40

41

42

43

44

45

46

47

C hapter 4. Sj)ace Efficient In-Place Sparse M atrix Transpose

A L G O R IT H M 4 .1 : Generic Q(n) In-Place Sparse Transpose w / Row Index
Lookup
In p u t: M atrix M as in D ata S tructure 3,1
O u tp u t : M atrix M containing in CSR, with: new-row.ptrs[] - new row pointers

[cols+1]
/ * A l lo c a U ' .■\rrnv> Inil ii i li zo il l<i ZiTii * /

A llo ca te : new-row-ptrs[newjnrows-\-l]; A llo ca te ; roW-offsets[new-nrows];
* (' (n u i l u u i n l u T o f c l f - i i H ' i i l ? ' in (‘ac li new c o l i n n n - !) > ■ I * /

for (0 < index < n n z) do
col <r- coLindexes[index];
if (col < [new-urows - 1)) th en

I new-TOW-ptrsycol +!]■<— newjrou'jptrs[col + 1] + 1;
end

end

/ * (' u n i n l a t i \ < ‘ >iini t o n(' \v_ ro \v _ j) tr s [] * /

for (1 < rou' < new jnrow s) do
neu'^row.ptrs[row] new^rou'jptrs[row] + neu'.row.ptrs[row - 1];

ro u ’_ o / /s e f s [ro u ’] <— n e u ’_ ro u '_ p frs[ro u '] ; /* (\>i)y to i-oir-o/Jst f.s[] */

end
* I n i t i a l i z e I . o o k n p 1'al>lc (i f rc i ii i ii 'cd) * /

in i t ia l iz e _ lo o k u p _ t a b le ()
/ * L o o |) t l i n m n l i cac l i ' n e w r o w ' * /

for (0 < row < new -urou 's) do
for (rou'.offsets[row] < x < neu ’̂ rou'-ptrs[row + 1]) do

. * lake ont (‘lenient *
src jn z no7i.zeros[x];
src.col <— col-index es[x\.
src-row <— lookup_row_index(x);
w h ile (src^col ^ row) do

/* W h i l e (‘IciiH'iit in *sr< ' d o e s n o t Ix'ldUp, in o r ig i iu i i T o w ' (’v(|e C l i a s e c h ' in e n f ii)

■MV- V
dstjrow ■<— src-col;
dstj€ row .offset s[dst -row]', /* S n ' s h o u l d h e a t p o s i t i o n ■<lst_x‘ in

(1st . r o w ' * /

/* l a k e o u t t h o cl(*inent at <.ist_x' * /

d s t jn z •<— jior]_2eros[dsf j:];
dst-col <— colAndexes\dstjc\\
dst.row •<— lookup_row_index(dst-X);
/ * P u t t lie e h ' i n e n t w e af<‘ c h a s i n g ' s r c ' i n t o d e s t i n a t i o n s lo t ‘d s l ^ x l * /

n o n - z e r o s [d s t< r - srcjnz-,
colJndexes[dst-x] srcjrow,
/ * I ’m t h e elen iP ii t in ' d i ' t ' in sic ' s o w e c a n clui.se it n e x t * /

src jn z i— d s t j iz \
src.col dst-Col\
src-Tow <— dst.row:

84

;* Incrc inent l oi i'-offaf tn] * /
row-offsets[dst-row] ■<— row.offsets[dst-row] + 1;

en d
/ * I ’nt ' s rc ' in to o r ig inal pos i t ion 'x ' in l l u ‘ 'r ow ' we s t a r t e d w i th * /

coLindexes[x\ src.row,
non-zeros[x\ <— srcjnz\

Space X: T i m e Efficient S pa rse M a t r ix T ra n s p o s e

Free: M ^ r o w jp t r s \ M -^row-ptrs newjrowjpirs\ Free: row-offsets]
end

4.3. In-Place Transpose with B inary Range Search

build the lookup tables and perform the lookup. The lookup_row _index()

routine takes as argum ents; x on line 23 and ds t . x on hue 31. These are

the positions in the m atrix of the elements whose old^roivJndex needs to

be looked up.

T he following sections discuss how we can construct d a ta -s tru c tu res

which are used by these routines in the Generic Transpose to improve on

the space and tim e complexity of the Sparse In-Place Transpose.

4.3 In-Place Transpose with Binary Range
Search

One option to find the r o w J n d e x in the row.ptrs[] array is to scan through

the array looking for the row where index ‘p ’ (the position of the element

in the n nz arrays) falls between the s ta rt ‘s ’ and end ‘e’ of th a t row. This

would howev^er take 0{ri) tim e and would potentially need to be done for

every row index lookup for each of the niiz elements we move, which would

be completely infeasible.

A better alternative is to use a technique similar to Binary Search[Kuuth 98]

we can search the ro«'^pfr.s[] array in Q{log{n)) tim e in order to find ' x \

the roiL'-index of the element at index 'p' .

4.3.1 B inary R ange Search

O ur modified binary search algorithm , B inary Range Search, shown in

Algorithm 4.2, is similar to the standard binary search in th a t it repeatedly

bisects the array to find the location of the key. Unlike the s tan d ard

technicjue where one searches for key/value pairs which may or m ay not

be in th e array, all the keys which we m ay search for (0 < p < nnz) are

“covered” in the roiV-pirs[] array. We are looking for the position (index) in

the rou'.ptrs[] array which covers the range in which th a t key value falls.

For instance, in the row.pt rs [] array in Example (4.1), if we binary search

for 10, the routine should return 4, given that:

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 85

C hapter 4. Space Efficient In-Place Sparse M atrix Transpose

A L G O R I T H M 4 .2 ; Index Lookup using Binary Range Search Algorithm
Input: old.rou'-ptrs[]. oldjnrows. key
O u tp ut: row-index

1 / * i)rop to ^(‘(jiiciilial scart 'h w hen a r r a \ Icng ih {hifjit - l ow) < '20 * /

2 L I M I T < - 20 ;

/ * Hillary ^eal(ll a r r a y lic tweeii low' a n d ’liigli ' * /

4 low <— 0;
5 high •(— {old.nrows - 1);

H / * W'liile a r r a y loiif>i'r tl ia ii LIMI 1" */

7 w h ile ((high — low) > L I M I T) do
8

9

10

11
12
13

14

m id ■<— {low + high)/2 \
i f (key < oldjrow4 >trs[mid\) th en

I high •«— m id — 1;
end
e lse

I low ■<— mid\
end

15 end

ifi * D ro p t o ^t‘(|U(‘iitiai scan at '1,1X11]'' - scainiinj^ u p w a rd s from 'low' * /

17 w h ile (key > old-rowjptrs\low]) do
1 8 I low <— low + 1;
19 en d
2 0 r e tu r n (low — 1) ; / * in dex is 1 below first e lement g re a te r tl ia ii key ' * /

ro7t'_pfrs[4](8) < 10 < roM’_p^rs[4 + 1](12)

The modified binary range search shown in A lgorithm 4.2 uses the

bisecting technique to find the location ‘x ’ of the key in th e rowjptrs\]

array such th a t row-ptrs[x\ < key < row.ptrs[x + 1]. T he location

‘x ’ is then re tu rned as the r ow J nde x of the elem ent we are looking for.

For efficiency, the algorithm drops to a sequential scan below a certain

L IM IT . This is in order to improve branch prediction. Sequential search

causes 0 { l) branch mispredictions whereas binary search causes 0{log{n))

b ranch m ispredictions. T hus for sm aller values of n, sequential search

is usually faster [Uht 97, Brodal 05, Kaligosi 06, Biggar 08b]. A range of

values for l i m i t were were tested; 4 ,8 ,16 , 20,32, etc. Here we have chosen

an array length of 20 for l i m i t as it gave a good average performance in our

environment over a number of sample inputs - other values may prove more

86 Space & T im e Efficient Sparse M atrix T ranspose

4.3. In-Place Transpose with B inary Range Search

efficient on other platforms. The best choice for l i m i t was not investigated

in detail as the focus of the work was on the transpose algorithm rather than

search optimisation. Improving this param eter would have little impact on

the overall perform ance of the Binary Range Search Transpose as the key

lookup is O{log{n)) while we require 0(1) .

4.3.2 Cycle-Chasing Transpose w ith Binary Range
Search

A lgorithm 4.3 shows the in-place cycle chasing sparse m atrix transpose

with Binary Range Search. This algorithm is a modification of our Generic

in-place transpose algorithm (4.1) for use w ith the B inary Range Search

(Algorithm 4.2).

The Cycle Chasing B inary Range Search Transpose A lgorithm (4.3)

sim ply calls the b in a ry _ ra n g e _ se a rc h () algorithm on lines (21 and 29).

T he binary search algorithm does not require any tab le initialization

as it searches the rou'.ptrs[] array directly. T he only argum ents re

quired l)y b in a ry _ ra n g e _ se a rc h () are the old.rou'.ptrs[] array, the length

{old.nrou's) of the array and the ' key = p’ we are searching for. T he

range search algorithm (4.2) will always return a row index between 0 and

o l d ju o u ' s for any key; 0 < key < nnz. The algorithm s presented here

assm ne th a t the m atrix is correct and valid. Input validation could be

included in practice but should be separate from the transpose algorithm

for efficiency.

Applying the b inary range search technique to the cycle chasing algo

rithm results in the same ro w J n d e x values as obtained from the expanded

imp.rou'Jndexes[] in the Saad-IP algorithm . Hence the transpose w ith

binary range search (Algorithms 4.3 and 4.2) and Saad-IP (Algorithm 3.3),

perform the transpose operation using the exact same cycle chasing tran s

formations.

The Binary Range Search Transpose requires a to ta l of two additional

arrays {new.rou' .ptrs[\ and row.of fsets[] m entioned earlier) of size Q{n),

which gives a to ta l m em ory com plexity of ^ { 2 n) in order to perform the

R obert Croshie. T he I ’niversity of D ublin. T rin ity College 87

1

2

;i
4

5

6

7

8

9

10
11

12

13

14

ir>

16

17

IH

19

20

21
22
23

24

25

2(i

27

28

29

30
31

32

33

34

35

36

37
38

39

40

41

42

43

44

45

C hapter 4. Space Efficient In-Place Sparse M atrix Transpose

A L G O R IT H M 4.3 : Sparse Tianspose v.’ith Binary Row Index Range Search
Input: Matrix M as in Data Structure 3.1
O u tp ut: Matrix M containing in CSR. with: newjrou'jptrs\\ - new row pointers

[cols+1]
/ * A l l m a t i ’ .■\irav.'. I n i t i a l i z e d I d Z e r o * /

Allocate: n e u ' jro w jp tr s [n e w j iro w s + \\ \ Allocate: rou'-offsetslnew-nrowsY
j * (' o u n t m in i lK ' r (tf f l c i n c i i t s in (-acli n e w c o l u n n i - (tffset l)\" 1 * /

for (0 < index < n n z) do
col <— colJ.ndexes[index\\
if (col < (nrows — 1)) th en

I new.rowjpirs[col + 1] <— new-rowjpirs\col + 1] + 1;
end

end

/* (' i n i i i i l a t i v c .sum li> g e t ne\v_i(nv_|)t rs[] * /

for (0 < row < nrow s) do
neu'_rou'_pfrs[roui] <— neu'-.rowjptrs[row] + new-row.ptrs[row — 1];
row ̂ offset s[row] < r- newjrow-ptrs[row] ; / * ('<>|)y t o / o u -o Z /s i 7.s[] * /

end
/ * l.iHip t l i i i in t ; h ea i li ' n e w n i w ' * /

for (0 < row < new jurow s) do
for (row-offset s[row\ < x < new-row-ptrs[row + 1]) do

/ * Take (lilt e l e in e n l *

s r c j i z <r- iion.zeros[x]',
src-col colJnde.xes[x\\
srcjrow •<— b inary„ran ge_search{ old .row.ptrs[].old^nrows. x);
w h ile (src-col / row) do

/ * \Vliil«‘ in ' s r c ' n o t h c i o i i ^ in o r ig i n a l ' r o w ' C y c h ' ('Iu im ' f‘U‘n ion t in

■n h ' *

dstjrow ■<— src-col:
dst-X ■<- row .o ffse t s[dst .row]; /* M' ' Nlunild he at poMtiou d.si .x' in
■(l l̂_|■(>w' * /

* 'I 'ak(‘ (Hit t h e e l e m e n t a t ‘tiht_.x' * /

d s t jn z <— non.zeros[dstjx\\
dst.col <— colJ,ndexes[dstjc\\
dstjrow <— b in a r y _rcinge_search(old.row.ptrs[], old.nrows. dst ̂);
/ * f ’nt t h e w v a r e r l u t s i n g ’s r c ' i n t o (it>t Ina l ion s lo t (ls t_x '} * /

no7^.zeros[dstjt] •<— srcjiz ' ,
coLindexes[dst.x] <— srcjrow,
/ * I ’nt t h e e l e m e n t in ‘c l^ t ' in ‘m'c' w e c a n ch i tse it ne.xt * /

src jn z ■<— dstjnz\
src-Col dst-coi.
srcjrow <— dstjrow\

l i u r e m e n t l a w . o f f s i l s] * /

row -offse t s[dst^row] <— row .o ffse t s[dst .row] + 1;
end
/ * P u t ' s f c ' i n t o o r ig i n a l p o s i t i o n ' x ' in t h e T o w ' w e s t a r t e d w i t h * /

colj7}dexes[x] ■«— srcjrow,
non.zeros[x] <— src .nz;

end
Free: M ^ r o w - p t r s \ M ^ r o w j p t r s newjrowjptrs\ Free: row-offsets \

Space & T im e Efficient Sparse M atrix T ranspose

4.3. In-Place Transpose w ith B inary Range Search

transpose. Even w ith th is ex tra storage requirem ent the binary searcli

variant only exhibits asym ptotic space complexity of 0 (n) compared to the

<d(nnz) required by Saad-IP, which can be a significant saving. This space

saving does however come at a cost of an additional Q{log{n)) overhead in

tim e complexity for every row index lookup, which occurs at every jum p in

the cycle, giving us a to ta l tim e complexity of Q{nnz . log[n)).

There are a num ber of techniciues and algorithm s which could be used

as im provem ents to the b inary search. We could possibly use some type

of Binary Tree [And 62], BTree [Bayer 70, Comer 79] or Trie [Willard 84,

Sinha 04] to reduce the lookup tim e. How'ever these techniques would

require additional structu res in addition to the row.ptrs[] array and may

not be suitable for the “search modification” which we require (for all keys

0 < key < nnz re tu rn the row in which the key falls). In addition,

these techniques still have an asym ptotic time complexity greater than the

direct lookup of Saad-IP (A lgorithm 3.3). Hashing techniques [Knott 75]

can considerably improve key lookup tim e however, hashes generally do

not m aintain the order of the keys, which is a feature we reciuire.

4.3.3 M emory Overhead of in-place Sparse M atrix
Transpose w ith Binary Range Search

The memory usage of the Binary Range Search Transpose (Algorithm 4.3)

com pared to th a t of Saad (A lgorithm 3.3) is shown in Figure 4.1. The

Transpose with Binary Range Search algorithm clearly requires less memory

overhead for all input m atrices and indeed requires considerably less for a

m ajority of matrices.

On average, the in-place transpose with B inary Range Search requires

a mem ory overhead of just 14% of th a t of Saad, w ith the m ajority of the

input m atrices requiring even less th an this. A handful of m atrices in

the test su ite have a very low' sparsity p a tte rn wdth very low' num bers of

non_zero elements in each row. This means that the number of row's {n) for

these few matrices is much closer in size to the number of non_zeros {nnz).

These handful of m atrices pull up the average relative overhead overall as

R obert Crosbie. T he U niversity of D ubhn. T rin ity College 89

Cliapter 4. Space Efficient In-Place Sparse M atrix Transpose

Binary S earch vs. S aad-IP - - Memory O verhead of Algorithm [Relative]

1.25

■6
w 1
(A

T>
0
1 0 .75
>o
o
E
5 0.5

>

cc
0.25

1 m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 400 m

Matrix S ize (million nnz) <LOG scale>

Figure 4.1: M emory overliead of the Binary R ange Search transpose algorithm

com pared to the Saad-IP algorithm . T he new algorithm requires considerably les.s

memory than Saad. just 14% on average w ith most inputs requiring even less.

the ro'duced 0(?)) space complexity is less beneficial for these matrices.

4.3 .4 A lgorithm E xecution T im e of in-place Sparse

M atrix Transpose w ith B inary R ange Search

Figure 4.2 shows the execution time of the Binary Range Search algorithm

couipared to th e execution tim e of Saad. The B inary Search algorithm

jjerform s ra ther poorly comj)ared to Saad, taking over twice as long as

Saad on average to transpose the matrices in the test suite. The additional

(-) (/ o g (7 ?)) complexity added to every row index lookup, pushing the tim e

complexity to B { n n z . log{n)) overall causes the execution time performance

to deteriorate drastically.

The Binary Range Search Transpose Algorithm is the in-j)lace transpose

algorithm w ith the m inim um m em ory overhead (w ithout m odifying the

m atrix s truc tu re) th a t we can have. It uses ju st 14% of the m em ory

overhead of Saad. T he increase in tim e com plexity is very costly. This

runtim e may be an acceptable trade-off in very isolated instances if sufficient

Legend
Saad-IP

Binary S earch
Average: 14.0%

* 1. k

90 Space ^ T im e Efficient Sparse M atrix T ranspose

4.4. In-Place Sparse Transpose with Radix Lookup Table

B inary S e a r c h v s . S a a d - IP - - (S e ria l) Executior^ T im e of T ra n s p o s e (R elative]

5 .5

5

4 .5

£ “
■D
S 3 .5
CO
«
i 3
0
E

i - 2 .5
>

1 2cc
1 .5

1

0 .5

1 m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

M atrix S iz e {million n n z) < L O G s c a le >

F ig u r e 4.2: Algorithm Execution rime of Binary Range Searcli Transpose relative
to the Saad algorithm. The Binary Range Search algorithm is clearly slower with the
Q{nnz . log(n)) time complexity apparent.

memory is not available to use the Saad algorithm.

The next section describes an algorithm th a t uses slightly more addi

tional memory to reduce this runtim e overhead while m aintaining the 0 (n)

space complexity in memory overhead.

4.4 In-Place Sparse M atrix Transpose with
Radix Lookup Table

One technique which can improve the runtim e perform ance of the binary

search transpose algorithm is to use a radix lookup table to give a shortcut

index into the rou'-ptrs[] array. T he Q{log{n)) b inary searches of the

rou'.pirs[] array can be reduced, or in m any cases avoided using th is

shortcu t. A lthough using the radix tab le does not help asym ptotically

(there is still a non constant lookup tim e in the worst case), in practice the

lookup tab le exhibits a much faster runtim e th an the basic binary search.

We build a radix lookup tab le (an associative array) indexing into

L e o e n d

S a a d - IP

B inary S e a r c h •

A v e ra g e ; 2 1 2 .2 %

^ * •
' • S A •

• % .

» «» • X e / *

• 1 N ‘

. • -* . t . * • i

9 *

it *

1 1 1

R obert Crosbie. T he U niversity of D ublin. T rin ity College 91

C hapter 4. Space Efficient In-Place Sparse M atrix Transpose

roiv^ptrs[]. For each key ‘p ’ (Wliere: 0 < p < nnz) we right shift the key

by radix-.offset bits and thus the most significant ‘A’’ bits of the key ‘p ’ are

used as indices into the radix table. In tu rn , the values in the radix table

provide us with the index into roiL'.ptrs[] which is (ideally) the index of. or

index just below, the r o w J n d e x we are looking for. As such, with a single

lookup, the radix tab le gives us a shortcu t into the r ow .p i r s [\ array at a

position close to the key we are searching for.

4.4.1 Building the Radix Table

Algorithm 4.4 shows the b u ild ^ ra d ix () algorithm which is used to initialize

the radix lookup table.

A lthough th e keys th a t will be searched for in the radix tab le are

in the range 0 < key < nnz we do not want to have a lookup tab le

th a t is proi)ortional to Q{nnz) . We want to keep our mem ory overhead

proportional to 0(?i). In order to facilitate th is we create a radix tab le

proportional to 0 (n) by creating a radix table of size: the power of 2 just

less than or equal to n. i.e.

table.size =

We choose a radix .o f fs e t by which to shift the keys such th a t they fit in

the range:

0 < {key » radix .of fse t) < tab le s i ze

This has the disadvantage th a t a small proportion of the radixJable may

be left empty. In retrospect, using:

radix Jable .s ize = n n z » radix .o f fse t

where the offset is chosen to give a table size proportional to Q{n) would

have given a more appropriate table size.

Using a table size of 0 (n) m aintains the to tal space complexity of 0 (n) ,

how'ever it increases the memory overhead by 50% over the B inary Range

92 Spare ^ Time Efficient Sparse Matrix Transpose

4.4. In-Place Sparse Transpose with Radix Lookup Table

Search Transpose. It is also valuable to know if using smaller table sizes

proportional to ^ or | w'ould be of benefit to performance. Thus the

b u ild _ ra d ix () algorithm (4.4) also takes a len.mod parameter which adds

to or subtracts from the power-of-two of the size of the radix table. Hence

halving or doubling the size of the table each time as appropriate.

Take, for example a matrix with n = 321,826 rows; [^o<72(321,826)J = 18

and 2̂ ® = 262,144, therefore for this m atrix a radix table size of 262,144

is 0(ri). Similarly, using the ''len.Jiiod' param eter we could choose radix

table sizes proportional to the number of row's, n, for this 321,826 row

matrix as follow’s:

[log2n\ - 2 ~(" /4) = 216 _ 65,536

[log-iv] - 1 -> ~(" /2) = 2*7 = 131,072

[log2n\ -1- 0 -> ~ (n) = 218 ^ 262,144
[log2n\ + 1 ->■ ~(2r?) = 219 ^ 524,288
[hg2n\ -1- 2 -> ~(4n) = 2‘20 _ 1,048,576

The algorithm first (lines 3-5) determines the nmnber of bits required to

store the largest row .index and the largest non-zero array index. Using
these, along with the leu-mod radix size modifier, the algorithm determines
(lines 7-20) the parameters for the radix table: radix Jen — the size of the
radix table in bits, r a d i x s i z e — the size of the radix table in bytes and

radix-offset — the offset in bits that keys will be shifted. The radix table
is built (lines 24-29) by scanning backwards through the old.roiL'.ptrs[]

array, each of the radix keys are generated by right shifting the pointer

index from the roiV-ptrs[] array by radix.offset bits. The table is filled in
reverse so that it contains the first index in rou'^ptrs[] which produces the

radix key k. Lines 31-35 then scan forward through the radix table to fill

in any holes that may be present.

As ŵ e scan backwards through the row.ptrs[] array we fill the radix

table with the values (5 ,4 ,2 ,0) corresponding to rows (5,4, 2,0) respectively.

This gives the radix table as shows in Example 4.3.

R obert Crosbie. T he I 'n iversity of D ublin. T rin ity College 93

1

2

3

4

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

2 !)

30

31

32

33

34

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

A L G O R IT H M 4.4: Build Radix Lookup Table
Input: oldjnrows. old-rowjptrs[\, l e n jn o d
O u tp ut: radixJahle[\. rad ix .o f fse t

'* 1)<*t('niiine size of radix tahlo and offset */

row-bits <— log'2{oldjirows)\
nzJbits ■<— log2{oldjrou'-ptrs[oldjnrows])\
diff-b its ■«— { n z M ts — row M s)- ,

j* Ctiaiige ex])(inciil of 2 hv I f n . inod lor radix length of ~ 2^ hn.mml 2* * /

if ((r o w M ts + lenjinod) < 0) th en
r a d i X - O f f s e t <— 7\Z-biis ; /* Size of radix tal>le would l>e loo Miiall */

radix J e n <- 1;
end
else

if (diff-b its < lenjm od) th en
r a d i X - O f f s e t <— 0: /* Size of radix olfsel would he loo hig * /

r a d i x J e n ■<— { n z J b i t s + 1);

end
else

radix-o ffse t ^ {diff-bits — leri-mod);
rad ixden •«— {row-bits + 1 + leri-mod);

end
en d

/* Alloeate lahle * /

Allocate: rad ix - tab le \rad ixs ize + 1];

I'ill radix table in reverse m> tlie tai)le contains the lowest ro» _/>/r.s[] 'index' corresponding to kev'

*!
for (old-nrou's > i > 0) do

key ■<— oldjrowjptrs[i] » radix-offset;
radix-table[key] <— i\

en d
radix-table[0] 0;
rad ix -tab le[rad ixs ize + 1] <— {old-iirows — 1);

* I-ill in lioles in the radix tahle - Scan and rej)lace zero with previous index */

for (1 < i < radix-s ize) do
if (radix-table[i] = 0) th en

] radix-table[i] ■<— radix-table[i — 1];
end

end

4.4.2 R adix Table Lookup

T he lookup_row _index() routine for the radix table lookup is shown in

Algorithm 4.5. Firstly, the key is right shifted by radix -o ff se t bits in order

to lookup the radix table and get the shortcut index, into the row-ptrs[]

94 Space <k T im e Efficient Sparse M atrix T ranspose

4.4. In-Place Sparse Transpose with Radix Lookup Table

Taking our running example from Examples 1.1 and 4.1, the radix table is
built as follows:

Row: 5 —> 12 » 2 = 3 —> radix\i\ ■«— 5
Row: 4 —̂ 10 » 2 = 2 —> radix[2] 4
Row: 2 —> 5 » 2 = 1 radix\l] <— 2
Row: 0 —> 0 » 2 = 0 radix[0] <— 0

Exam ple 4.2: Building the Radix Table (in reverse)

rad ix_ tab le = Oq 2i 4o 64

old_row_ptrs = Oq 2 i 8 2 ?3 IO 4 I 2 5 1 5

Exam ple 4.3: Radix Table for M atrix M

A L G O R IT H M 4.5: Index Lookup using a Radix Lookup Table
Inp u t : radix-table, radix-offset. oIdjrou'jptrs[\. key
O u tp u t : rou'Jndex
X (key » radix-offset)\
i <— radixJahle[x\\
while (key > old.rou'jptrs[i]) do

?■<— ! + 1;

end

/ * K ey is a t o /d _ ro ti'_ p frs[] a t in d e x i or g r e a te r * /

r e t u r n (? — 1);

array. Taking th is sho rtcu t, the algorithm then s ta r ts scanning through

the row.ptrs[] array from th a t position, im til it finds a value g reater

than key. The r o w J n d e x is the index just before this first location in the

array wdiere row-pirs[i\ > key, hence we re tu rn the value (i — 1) as the

rotL' J u d e x .

E xam ple (4.3), shows th e radix tab le {radixJahle[]) indexing into

the row-ptrs[] array for our running exam ple m atrix M from E xam

ples (1.1 and 4.1). Suppose we are given a key p = 6 and we want to

look up the row index in the old-:roiL'-pfrs[] array. We first right-shift ‘/j'

by radix-of fset , in th is case radix .o f fse t = 2, which gives us i = 1, the

index into radixJable. Next, radixJable[i = 1] = 2 gives us the index into

R o b e r t C ro sb ie . T h e U n iv e r s ity o f D u b lin . T r in ity C o lle g e 95

C h ap te r 4. Space Efficient In-Place Sparse M atrix T ranspose

th e roiu.ptrs[] a rray w hich is below^ th e r o w J n d e x we are search ing for.

We s ta r t scan n in g th ro u g h th e a rray from row^pfrs[i = 2] = 5. T h e nex t

location is row.p tr s[i = 3] = 7, th is is > ke y = 6 hence we stop scanning

and re tu rn (i — 1) = (3 - 2) = (2) w'hich is th e r o w J n d e x of th e elem ent

a t location 6.

4.4.3 Cycle Chasing Transpose w ith Radix Table Lookup

T h e C ycle C h asin g T ran sp o se w ith R ad ix T ab le L ookup (A lgorithm 4.6)

is s im ilar to th e G eneric in -p lace a lg o rith m (4.1). T h e re is a call to

b u i ld _ r a d ix _ ta b l e () (A lg o rith m 4.4) on hue 16 to b u ild th e rad ix ta

ble, w hich passes as a rg u m en ts old^nrows, o ld.row.ptrs[] an d lenjmo d.

T his re tu rn s th e radixJable[] an d rad ix^o f f se t . O n lines 23 an d 31 th e

rad ix Jable[] is used to lookup the row index by calling ra d ix _ lo o k u p () (Al

go rith m 4.5) w ith p aram ete rs ; radixJable[] , r a d i x . o f f s e t , old^row-ptrs[]

and X as th e lookuj) key on line 23 and dst -X as th e key on line 31.

S im ilar to th e b inary search, th e rad ix search needs two 0 (n) sized ar

rays for storing th e 7ieiL'.rou'-ptrs[] and rou'^offsets[] indices. It also needs

a radixJable[] which is of sim ilar size to th e rou' .p trs[] array: our experi

m ents have shown th a t a rad ix tab le of size abou t "/2 gives a good trade-off

betw een m em ory overhead and perform ance (see Sections 4.4.4 and 4.4.5).

T h e R adix T able approach requires slightly m ore m em ory th a n b inary

search (roughly ~ (2 n -|- for R ad ix co m p ared to ~ (2 n) for B inary)

however th e asy m p to tic space com plexity is still of o rder

Technically th e R ad ix T able lookup algorithm could have a w orst case

perform ance of 0{7i) for m atrices which are particu la rly degenerate , wdiich

is a c tu a lly a w'orse com plex ity th a n th e B inary R an g e Search m eth o d .

How'ever, in p ra c tice th e R ad ix L ookup tech n iq u e perfo rm s m uch b e t te r

th an th e B inary Search m eth o d as can be seen from F igure 4.3 below.

T he num ber of elem ents scanned during lookups w hen transposing each

m atrix w ith a rad ix tab le size of "A were counted and averaged. T h e inpu t

m atrix w ith th e h ighest average scan length had an average scan leng th of

2.46 elem ents, all o ther m atrices had lower averages. T his m eans th a t m ost

96 Space &; Time Efficient Sparse Matrix Transpose

1

2

3

4

5

6

7

8

9

i n

11
12

13

14

ir>
16

17

18

19

20
2 1

22

23
24

2r>

26

27

2f<
29

30

31

32

33

34

35

36

37

38

39
40

41

42

43

44

45

46

47

4.4. In-Place Sparse Transpose with Radix Lookup Table

Allocate: row .o ffse ts lneu’-rirows]:

A L G O R IT H M 4 .6 : Sparse Transpose with Radix Table Roŵ Index Lookup
I n p u t: M atrix A/ as in D ata S tructure 3.1
O u tp u t : M atrix A/ containing A /^ in CSR. with: neu'-rou'-ptrs[] - new row pointers

[cols+1]

/ * A l l o c a t e A ^ r a y ^ I n i t i a l i z e d t o Z e r o * /

Allocate: new-rou'-ptrs[neu'.nrows + 1];

* (\) \ i n t i n n n h e r o f el(‘ni(' ii1> in e a i h n e w co lu ii i ii - of fset In 1 * /

for (0 < index < n n z) do
col coLindeies[index]',
i f (col < (nrows — 1)) th en

I new-row-ptrs[col + 1] neu:.rowjptrs[col + 1] + 1;
end

en d
* (' u i n u l a t i v e Mini t o g('t ne \v_ro\v_j) t rs[] * /

for (0 < row < nrow s) do
I new.row.ptrs[row\ <— new-rowjptrs[row] + new jrow jptrs\row — 1];
I row-ofJsets\row] new -TO W -p trs[row] \ /* Coin-i(] */

en d

/ * l i i i t i i i l iz c lia d i.x L o o k u p T a b le * /

[radixJable[],radix-o}fset) <—
build^radix_table(old.nrows, old-row-ptrs[], len-inod)

* L o o p t h r o u g h e a c h ’n e w r o w ' * ‘

for (0 < row < new jnrow s) do
for (r o w . o f f s e t s [r o w \ < x < n e w ^ r o w - p t r s [r o w + 1]) do

* T a k e o u l e l e m e n t *

s r c j i z •<— non-zeros[x\\
src-col coLindexes[x\:
src^row <— radix_lookup(rarf?jJaW e[]. radix-offse t. old-row-ptrs[], x);
w h ile (src-col ^ row) do

/ * W h i l e e l e m e n t in ' s r e d o e ^ n o t b e l o n g in o i ' i f ; i n a l T o w (' y e l e C l i a ^ e e l e m e n t i n

■m t ' */
d s t . r o w <— src-col:
d s t - X <— r o w - o f f s e t s[ds t -row]; * ■-re ' > h o u l (l b e a t p o ^ i t i o n d ^ t - x ' in

c lh t _ r o w ' *

/ * Take o u l th e e le m e n t a t 'cl> t_.\' * /

dst-T iz 4- n o n -ze ro s[d s t-x] - ,
d s t - c o l -f- c o l - in d e x e s \d s t - x] \
d s t - r o w <—
radix_lookup(rad ix Jable[], rad ix-o ffse t, old-row -ptrs[\. dst -X);

I ' \ i t t h e e l e n j e n t w e ai e t ha.s inj ; s r c ' int o <lest in a t io n j' lot (l s t_ x ') * /

fio«-5eros[ds^-r] s r c j i z \
colJ.ndexes[dst-x] •<— src-row;
' * I ’m t h e e l e m e n t i n <l sl ' in 'M 'e ' mi w e e a n elia.- .e it n i 'x t * /

s r c - n z <— dst-7'tz',
s r c -c o l <— dst-co l;
s r c - r o w <— d s t - v o w ;

/ * I n e ie m e n t rin i-o f f. ' i ct .s] * /

row-offsets[dst-row] •<— row-offsets[dstjrow] + 1;
end

* P u t s r c ' i n t o o r i g i n a l p o s i t i o n ' x ' i n t h e T o w ' w e > t a r t (' d w i t h * /

col-indexes[x] <— src-row\
C iw gfe>e£9>»9,sl[;pf\« ij:sB f(of)© [ib lin , T r in i ty C o lle g e 9ober

end
Free: AI-^row-ptrs; A l^ r o w - p t r s *r- new-row-ptr.% Free: row-offscts;

end

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

keys were found after scanning 3 elements or less, which are likely to all be
read in together in a single cache line. W hen the algorithm accesses the

first element, in the majority of cases the elements following that element

in the arrays will also be brought into the cache. Certainly in the majority

of cases all these lookup scans will be completed by just reading a single

cache line from memory.

It would be possible to use a binary search instead of the sequential
scan in the radix lookup. This would give a guaranteed worse case lookup
of 0[log{n)). However this would introduce more branches and random

array look ups into the algorithm and in practice the (short) sequential
scan performs better.

Hence, with the radix lookup we do not have a good worst case perfor
mance complexity, however for the general case, and for the matrices in our

experiments, the radix lookup performs very well with a memory overhead
of just Q{n).

4 .4 .4 M em ory U sage o f R adix Lookup Table Trans

pose

The memory usage of the Radix Lookup Transpose (Algorithm 4.6) com
pared to that of Saad (Algorithm 3.3) is shown in Figure 4.3. The graph
shows the memory usage of the Radix Table Lookup Transpose with a
radix table of size "/2 . The algorithm requires less memory overhead for
all input matrices and indeed requires considerably less for a majority of

matrices. On average the Radix Table ” /2 Transpose requires just 16%
of the memory overhead of Saad. Comparing to Figure 4.1 shows tha t
the Radix Table Lookup algorithm requires roughly 25% more additional

memory than Binary Range Search.

For the graph in Figure 4.3 we have chose a Radix Table size of " /2 as

this table size was shown from experim entation to give a good trade-off
between memory overhead and runtime performance. Figures 4.4 and 4.5

show the memory usage of the Transpose with Radix Table Lookup with

table sizes ”/i6, "/s, "/4, n, 2n, 4n, 8n and 16r?. For the smaller table sizes.

98 Space &: T im e Efficient Sparse M atrix T ranspose

4.4. In-Place Sparse Transpose with Raciix Lookuj) Table

Radix Table n/2 vs. Saad-IP ■■ Memory Overhead of Algorithm {Relative]

1.25

■o
0

1 0.75
>o
&■
o

§ 0.5
_>TO
<D

CC
0.25

1m 1.5m 2m 4m 8m 16m 50m 150m 400m
Matrix Size (million nnz) <LOG scale>

Figure 4.3: M em ory overliead o f th e ("/2) R a d ix T ab le L ookup tra n sp o se a lgorith m

com pared to th e S a ad -IP a lgoritlim . T h e R ad ix Table a lgorith m requires con sid erab ly

less m em ory th a n Saad w ith an average o f 16% o f Saad . M ost in p u ts require even less

th an this.

"/i6 anti "/s the m em ory usage is very close to th a t of the B inary Range

Search Transpose. As the tab le size increases, the m em ory overhead for

some of the matrices s tarts to approach (and surpass) the memory required

for Saad. For the larger table sizes, 4t?. 8n and 16n . the overhead for some

of the input m atrices s ta rts becoming considerably larger th an Saad.

4.4.5 Execution Tim e of Radix Lookup Table Trans
pose

Figure 4.6 shows the execution tim e of the R adix Search (”/ 2) algorithm

comj)ared to the execution tim e of Saad. T he Radix Search algorithm

shows runtim e results which are com parable w ith Saad. These results are

w ith m em ory overheads th a t are asym ptotically less (0 (n) vs. Q{nnz))

than Saad and much less in j)ractice for most inputs, 16% on average.

W ith a tab le size of about ” /2 the average runtim e of th e radix tab le

com pared to Saad is 98.6% of the runtim e of Saad for the 259 m atrices in

Leaend
Saad-IP

Radix Table n/2
Average: 16.3%

'«• Q ■ r ' - r m

D

- . 1 1 1

R obert Crosbie. T he U niversity of D ublin. T rin ity College 99

100
Space

Tim
e

Efficient
Sparse

M
atrix

T
ranspose

Radix Table n/16 vs, Saad-IP - - Memory O verhead ol Algorithm [Relative] Radix Table n/8 vs, Saad-IP Memory O verhead of Algorithm [Relative)

Legend

Saad-IP
Radix Table n/16 □
Average: 14.3% -----

1.20.
•o
n

i 0.8

6 0.7

0,9

E

s

0,6

0.5 -D
>
I 0,4

cn 0,3 □a
0.2

0.1

8 m1 m 16m 5 0 m I5 0 m 4 0 0 m4 m

Matrix S ize (million nnz) <LOG scale>

M em ory R ad ix 'I'ab le ^ - A verage: 14%

L ew nd

Saad-IP

Radix Table n/8
Average. 14,6%

1,20.

I 0.8
0)
6 0.7

1 “
2 0,5
»

I 0-̂ft
I 0,3

0.2

0.1

8 16 m 50 m 150 m 400 m2 m 4 m1 m m

Matrix S ize (million nnz) <LOG scale>

(b) M em ory R ad ix 'Fable ^ - A verage: 1.5%

Radix Table n/4 vs. S aad -iP - - Memory O verhead of Algorithm [Relative] Radix Table n vs. S aad -lP - - Memory O verhead of Algorithm [Relative]

Leoefxi

Saad-lP
Radix Table n/4

Average: 15,1%
d

U)

>
0,9

0,8

5 0,7

I 0,6

0,5
a>
2
Q>
>

0,4

cc 0,3

0,2

0,1

m
1.5 m 16 m 50 m 150 m 400 m1 m 2 m 4 m 8 m

Matrix S ize (million nnz) <LOG scale>

Legend

Saad-lP
Radix Table n

Average. 18,6%
0.

>

I 0.8ft
6 0,7

5
E
I

0,6

0.5ft>
0,4_2

«a 0,3

0,2

0,1

I h I
50 m 150 m 4004 m 8 m

Matrix S ize (million nnz) <LOG scale>

1,5 m

(c) M em ory R ad ix T ab le j - A verage: l,'j% (d) M em ory R ad ix T ab le n - A verage: 19%

Figure 4.4: M eniorv Usage of Radix Table Sizes: n

C
hapter

4,
Space

Efficient
In-Place

Sparse
M

atrix
T

ranspose

R
obert

C
rosbie. Tlie

U
niversity

of
D

ublin. Trinity
C

ollege

R adix T a b le 2n v s . S a a d -fP • M em ory O v e rh e a d of A lgorithm [R elative] R adix T a b le 4n v s . S a a d -IP M em ory O v e rh e a d of A lgorithm [Relative]

L ea en i]

S a a d -IP

R ad ix T a b le 2n

A v e ra g e . 2 3 ,3 %
0.
"2
u)
(A
>
■g

c.
a 0 .7

o
E
«

0)
>

0 ,5

0 .4

0 .3

0-2

16 m 50 tn 150 m 4 0 0 m1 m 1.5 m 2 m 4 8m m

M atrix S iz e (million n n z) <LO G s c a le >

(a) Memory Radix 'I’ahle 'In - Average: 2,3%

L e o e n j

S a a d -IP

R ad ix T a b le 4n

A v erag e : 3 2 ,6 %2 .5

a .

■o

U)

>

>
O

o
E

0)>

0)
(T

0 ,5

1 .5 m 2 m 16 m 5 0 m 1 5 0 m 4 0 0 m4 m 81 m

M atrix S iz e (million nnz) <L O G sc a le >

(b) Memory Radix 'Fable in - Average: ,33%

R adix T a b le 8n v s . S a a d - iP - - M em ory O v e rh e a d of A lgorithm [R elative] R ad ix T ab le I 6 n v s. S a a d -IP - • M em ory O v e r h e a d of A lgorithm [Relative]

L e g e n d

S a a d -IP

R adix T a b le 8n

A v e ra g e : 5 1 .2 %

3 .5

0.

> 2 .5
•D
(0
0),c
0)

5
o
E
o>

0)>re
a :

0 ,5

e ii

1 .5 m 2 m 16 m 50 m 150 m 4 0 0 m1 m 4 r r 8
M atnx S iz e (million n n z) <L O G s c a le >

(c) Memory Radix Table Sii - Average: 51%

S a a d IP

R ad ix T ab le I6 n

A v erag e ; 8 8 .5 %

•ei -
.,T

Or:
l i .

Q . I
4 m 8 m

M atrix S iz e (m illion nnz) <L O G sc a le >

16 m 5 0 m 150 m 4 0 0 m

(d) Memory Radix Table I671 - Average: 8 8 %

Figure 4.5: Memory Usage of Raciix Table Sizes: 2n, 4n, 8n, 16n

4.4.
In-Place

Sparse
Transpose

with
Radix

Lookup
Table

C h ap ter 4. Space Efficient In-Place Sparse M atrix T ranspose

R adix T a b le n '2 v s . S a a d - !P - - (S eria l) E x ecu tio n T im e of T ra n s p o s e (R elative]

1,6

1.4

£ 1.2
■o

“ I

V
I o.e
Q>
>

I
a:

0 ,4

0.2

0
1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

M atrix S iz e (million n n z) < L O G sc a le >

F igure 4.6: A lg o r ith m runtim e o f (”/ 2) R ad ix T ab le L ookup T ran sp ose com pared

w ith th e S aad a lg orith m . (”/ 2) R ad ix is very m uch com p arab le w ith S aad w ith an

overall runtim e o f 98% on average. R adix 'I’able is slightly slower in som e cases but also

noticeab ly faster in a few cases.

the test .snite.

F igures 4.7 and 4.8 show the runtim e of the Sparse Transpose w ith RacUx

Table lookup for different table sizes of "/i6, "/s, ”/i, n, 2n, An, 8n and 16??.

For sm aller tab le sizes "/i6 and "/s th e n m tim e of th e R ad ix T ranspose is

worse th an Saad at 120% and 109% respectively. As the tab le size increases

to a size p ro p o rtio n a l to n th e perfo rm ance im proves. How^ever for th e

larger tab le sizes of 8n and 16r? th e perform ance de terio ra tes again as the

larger rad ix tab les cause m ore cache misses.

T able sizes n, 2n an d 4?? have sligh tly b e t te r perfo rm ance th a n " /2 ,

however th is comes a t higher m em ory usages, w ith th e m em ory overhead

for R ad ix T ranspose app roach ing th a t of S aad , even su rp assin g it for 2n

and An for som e m atrices.

As such, a tab le size of ab o u t " /2 is recom m ended as giving reasonable

perform ance for reasonable m em ory usage (which is still 0 (n)) .

S a a d -IP

R ad ix T a b le n '2

A v e ra g e : 9 8 .6 %

102 Space T im e Efficient Sparse M atrix Transpose

R
obert

C
rosbie. The

U
niversity

of
D

ublin. Trinity
College

103

R ad ix T ab le n /1 6 v s . S a a d - lP E x ec u tio n T im e of A lgorithm [R elative] R adix T a b le n /8 v s . S a a d - lP E x ec u tio n T im e of A lgorithm (R elative]

S a a d - lP

R ad ix T a b le n / l 6

A v erag e : 121 ,6 %

2 .7 5

Q. 2 ,5

2 .2 5

>
o>
E

c
o

g 1 .25
c .
0
01
<
4)
>

LXJ
0 .7 5

«

(T 0 .5

0 .2 5

1.5 m 16 m 5 0 m 150 m 4 0 0 m1 m 2 m 84 m m

M atnx S iz e (million n n z) <L O G sc a le >

(a) E x ecu tio n T im e R ad ix - A verage 122%

R adix T a b le n /4 v s. S a a d - lP - - E x ec u tio n T im e of A lgorithm [R elative]

3

2 ,7 5

a 2 ,5
■g
flj
U5 2 .2 5

>
2

E
•- 1 .75
o
3 1.5
«

E 1.25
£

O
o>

1

<

> 0 .7 5

<3
(ti

CC 0 .5

0 .2 5

L e o e n d ' '

S a a d - lP

R adix T a b le n /4

A v e ra g e : 103 .0 %

-

; X j

-

j 1 I

L eoerxJ

S a a d - lP

R ad ix T ab le n/8

A v erag e : 110 ,4%

2 .7 5

0. 2 ,5

2 ,2 5u)

>

E
1.75c

I
g 1.25
c .

%
<
»> 0 .7 5

CC 0 ,5

0 ,2 5

1,5 m 16 m 5 0 m 1 5 0 m 4 0 0 m1 m 2 m 4 m 8 m

16 m 50 m 150 m 4 0 0 n

M atnx S iz e (million n n z) <L O G s c a le >

(b) E x ecu tio n T im e R ad ix ^ - A verage 110%

R adix T a b le n v s , S a a d - lP - • E x ec u tio n T im e of A lgorithm (R elative]

L e o e n d

S a a d - lP

R ad ix T a b le n

A v erag e : 9 6 .7 %

2 .7 5

0. 2 .5

2 .2 5

«
E

1,75co
§

<
ID> 0 .7 5

«
(r 0 .5

0 ,2 5

16 m 50 m 1 5 0 m 4 0 0 m1.5 m 2 m 4 m 81 m m

C l

M atnx S iz e (m illion n n z) <L O G sc a le > M atrix S iz e (million n n z) <L O G s c a le >

(c) E x ecu tio n T im e R ad ix ^ - A verage 10.'5% (d) E x ecu tio n 'I’im e R ad ix n - A verage 97%

Figure 4,7: Algorithm Runtime of Radix Table Size.s: j

Ensuring
In-Row

O
rdering

R
el

at
iv

e
A

lg
on

th
m

E

xe
cu

tio
n

Ti
m

e
(v

s
S

aa
d

-l
P

)
R

el
at

iv
e

A
lg

or
ith

m

E
xe

cu
ti

on

Tt
m

e
(v

s.

S
aa

d
-l

P
)

R ad ix T a b le 2 n v s . S a a d - lP - - E x e c u tio n T im e of A lgorithm [R elative)

L eaenO

S a a d - lP

R adix T a b le 2n

A v erag e : 9 6 .1 %

2 .7 5

2 .5

2 ,2 5

1 .75

1 .25

0 .5

0 .2 5

1 .5 m1 m 2 m 16 m 50 m 150 m 4 0 04 m 8 m

U a tn x S iz e (million n n z) <L O Q sc a le >

(a) Execution Time Radix 2n - Average 9(i%

R adix T a b le 8 n v s . S a a d - lP - • E x ec u tio n T im e of A lgorithm [R elative]

L w e n d

2 .7 5 S a a d - lP

R ad ix T a b le 8n
2 .5 A v erag e : 9 9 .6 %

2 .2 5

2

1 .75

1.5

1 .25

r D • ‘
0 .7 5 -

0 .5

0 .2 5

1 m 1 , 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0

M atrix S iz e (million n n z) <L(DG s c a le >

(c) Execution Time Radix Hn - Average 100%

R adix T a b le 4 n v s . S a a d - lP - - E x ec u tio n T im e of A lgorithm [R elative)

L e o e n d

S a a d - iP

R adix T ab le 4n

A v erag e : 9 7 ,0 %

2 .7 5

■6
<6n
</)

2 .5

2 .2 5

>

i
1,75I

3

UJ
g 1.25
c

<
2
5
o>
cc

0 ,7 5

0 ,5

0 ,2 5

16 m 50 m 1 5 0 m 4 0 0 m1 5 m 82 m 4 m1 m m

M atrix S i z e (million n n z) <L O G s c a le >

(b) Elxecution Time Radix 471 - Average 97%

R ad ix T a b le I6 n v s . S a a d - iP • - E x e c u tio n T im e of A lgorithm [Relative]

S a a d - lP

R ad ix T a b le 16n

A v e ra g e 102 .7%

2 ,7 5

0. 2 ,5

2 ,2 5

>
«>
E

1,75
I
3

g 1,25
£

I 1
3>
<
I 0 ,7 5

■5
cr 0 .5

0 ,2 5

16 m 50 m 1 5 0 m 4 0 0 m81 5 m 2 m 41 m mm

M atrix S iz e (million nnz) <L O G s c a le >

(d) Execution Time Radix I6 7) - Average 103%

Figure 4,8: A lgorithm Runtim e of Radix Table Sizes: 2n, 4n, 8n, 16n

C
hapter

4,
Space

Efficient
In-Place

Sparse
M

atrix
T

ranspose

4.5. Ensuring In-Row Ordering

4.5 Ensuring In-Row Ordering

O ur in-place cycle-chasing transpose algorithm moves elem ents to the

correct transposed row of the m atrix in-place with {0{n)) additional storage.

However, ju st like the Saad in-place algorithm (3.3), due to the way the

elements are moved during the cycle-chasing, the elements do not necessarily

end up in their correct position w ithin each row in term s of column index

order. A side benefit of the way the OOP algorithm (3.2) copies elements is

th a t they autom atically end up in their correct position in the transposed

row'.

In some cases we do not require elem ents to be in their correct order

in the rows, however in m ost cases it is required or a t least preferred.

Therefore, for all th e in-place algorithm s we include an additional step

which sorts elem ents into their correct order in the transposed row's. To

give a balanced representation, the runtim e for this additional sorting phase

is included in the to tal runtim e presented in all the results in this document

(except where noted).

Thus the full in-place transj^ose procedure is as follows: In Phase-I. one

of the iu-place cycle chasing algorithm s is used to move elem ents to their

correct rows in the transposed m atrix . In Phase-II, the elem ents in each

individual row are rearranged to ensure th a t they are in column order.

4,5.1 Sorting Rows w ith Two Array QuickSort

We can ensure th a t the elem ents in the m atrix are in their correct or

der w ithin each row by sorting the values in the two non-zeros[] and

coIJndexes[] arrays together at the same tim e based on the values in the

colJndexes[] array- O ur algorithm for th is post-sorting pass is shown in

Algoritlmi 4.7, it uses a technique based on QuickSort [Hoare 61, Hoare 62,

K nuth 98] to sort two arrays based on the contents of one.

Algorithm 4.7 takes as input the two arrays: non.zeros[] and colJridexes[]

along with two integers l e f i and right to delimit the section (row) of the

arrays to sort. We use a median of three to select the pivot. Elements in the

R obert C’rosbie. T he U niversity of D ublin. T rin ity College 105

1

2

3

4

6
7

8

■)

10

11

12

I A

14

ir,

16

17

18

19

20

21

22

2 A

24

25

2 a

27

2H

29

30

31

32

3 .1

34

35

Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALG O RITH M 4.7: Two Array QuickSort (Median of Three)
Input: Unsorted Row in: co/s[], ra/s[]. l e f t , right
O u tp ut: The Sorted Row. with: ro/s[] and i'nVs[] sorted by cols[]

/ * S(‘t t h e [S o r t li in il a n d set t h e in i t i a l j)(>>iti(>n> o f iii(i«‘x<’s / an<l r a t It f i a i u i rKj h i * /

LIMIT 32;

r ■<— right\

Q ii i ik S o r l if a r r a y l eng th i;- {^reatei- t h a n L I M I T * /

if (right > { le f t + L I M I T)) th en
. * Kiiiil 111!' iiikl-poiiit o f Ihc a r r a y *

midd •<— ({ le f t + right) / 2);

/ * F ind m ed ia n o f t h e tln 'ee e le lnent^ at h f t . n n d d a n d l ifilii a n d >\vap t h e m mi t h a t t h e y a re

m - o r d v T * /

if { cols[l e f t] > cols[midd]) th en
exchange{ co/s[], i'a/s[], l e f t , m idd);
if (co/s[l e f t] > cols[right — 1]) th en
exchange{ co/s[], ra/s[], l e f t , { r i g h t — 1));
i f (coZs[m idd] > co/s[right - 1]) th en
exchange{ co/s[], ra/s[], midd. {right — 1));

* I ’lit t h e v a l u e in t h e n<f h t p o s i t i o n *

exchange{ cols, vals, midd. r ight);
/ * r ii i> n u ’d i a n v a l u e in r i f f h l is o u r p iv o t * /

pivot <— cols[right];
* S e a r c l i tin* a r r a y f r o m left a n d riftht for v a h u ' s t h a t a r e It s s t h a n a n d i j r a i i f r t h a n t h e p iv o t * /

w h ile (t rue) do
w h ile (c o / s [+ + /] < pivot) d o noop: / * Du n o th in g in Idop * ;

w h ile (pivot < cols[— r]) d o noop-,
* If t h e t w o [) () in ters h a v e o v e r l a p p « ‘d . t h (‘ a r r a v is p a r t i t i o n e d - h n - a k o u t o f l o o p * /

if (/ > r) th e n break;
/ * O t l ie rw ise exc l iange th e e le m en ts * /

exchange{ coZs[], ra/s[], I. r);
end

/* I 'n t th e p i v o t h ack in pos i t ion - 7 ' is an e lement w i th a eol tm ni index g reate i' t h a n pi t ' o t * /

exchange{ co/s[], i'a/s[], /, right);

/ * Arra\- ha s been p a r t i t i o n e d - Heenrsive ly eal l qn ieksor t on each of t h e p a r t i t io n s . * /

tu'0-array-quicksort{ co/s[], ra/s[], l e f t , {I — 1));
two-array-quicksort{ ro/s[], ra/s[], {I + 1), right);

en d
e lse

/ * OthtM'wise. if t h e a r ra \ ' is s h o r te r t ln m L IM IT , nse Inse r t ion Sor t to sort ih t' arrf iy * /

two-arrayJsort { co/s[], ra/s[], l e f t , r ight);
en d

106 Space ir T im e Efficient Sparse M atrix T ranspose

4.5. E nsu ring In-Row O rdering

two arrays are sw apped using the exchcLnge(co/s[], a, b) m acro. T he

Q u ick so rt a lgo rithm p a r titio n s th e arrays and recursively calls itself un til

th e a rray leng th is below l i m i t a t which point it sw itches to InsertionS ort

for efficiency. From brief ex p e rim en ta tio n a l i m i t of 32 was chosen for the

po in t th e a lg o rith m drops to In se rtio n S o rt, o th e r values m ay w'ork b e tte r

on o th er system s.

4.5.2 Sorting Sub-Rows with Two Array Insertion

Sort

In se rtio n Soi't generally m akes m ore com parisons an d m oves e lem en ts a

greater num ber of tim es th a n Q uickSort. However when working w ith very

sm all a rray s In se rtio n S o rt is m ore efficient as it has m uch fewer b ran ch

m isp red ic tio n s [Brodal 05, B iggar 08b]. Also, th e sh o rt a rray s a re in th e

cache an d it can do th e com parisons an d m oves very quickly. C alling

In se rtio n S o rt for sm all a rray s also reduces th e n u m b er of recursive calls

th a t need b e m ad e to Q u ickS ort, th u s reducing th e n u m b er of func tion

c a lk and th e size of th e c a lls ta c k . c * i ■ i(.)ur nnp lem en tation of Ih e Iw o A rray InsertionSort a lgorithm is siiow

in A lg o rith m 4.8. In se rtio n Sort tak es th e sam e a rg u m en ts as Q uickS ort,

th e tw o m a tr ix a rray s nor?_2 eros[] and th e coLi jidexes[] th a t we w ish to

so rt along w ith tw o integers; l e f t and r igh t w'hich delim it th e location of

th e p a r titio n in th e tw o arrays th a t needs to be sorted .

4.5.3 Execution Tim e of Sorting

F ig u re 4.9 show s th e to ta l execu tion tim e for each m a tr ix for perfo rm ing

the Saad in-place cycle-chasing transpose followed by th e post sorting phase

of th e a lgorithm . T h is g rap h shows th e cycle chasing and so rtin g ru n tim e

w hen perform ing th e transpose w ith th e Saad algorithm . O th er algorithm s

show a sim ilar graph.

T he g raph uses a stacked area graph to show the differences in run tim e

b etw een th e S aad cycle chasing p h ase an d th e so rtin g phase . T h e x-axis

has no scale, it is ju s t the m atrices listed one after the o th er w ith constan t

R obert Crosbie. T he U niversity of D ublin. T rin ity College 107

C hapter 4. Space Efficient In-Place Sparse M atrix Transpose

A L G O R I T H M 4 .8 : Tw o Array InsertionSort
Input: Uiisorted Row in: co/s[], i'a/s[], l e f t , r ight
O utput: The Sorted Row. with: cols[\ and ra/s[] sorted by co/s[]

1 / * Loop th ro u g h th e a r r a y s * /

2 for ({ l e f t + 1) < ? < r ight) do
/ * II wv tind a col iiul(*x wit li a lower \alvu' th a n tlie iiidf'x p ro t f cc h n g it * /

if (co/s[i] < cols[i - 1]) th en
/ * Take th e curren t el(*nient o u t . a n d put th e prev ious eleuieut in itV p l a t e * /

6 cur^col <— cols[i];
r curjval ■<— ra/s[i];
8 cols[i] <— cols[i — 1];
9 t'a/s[i] <— vals[i — 1];

/ * Scan ha<k\var(l> unti l we find an e lement g re a te r t h a n th e curren t e lement or reach end

of arra>’ * /

11
1 2 w h ile ((j > l e f t) (cut-CoI < cois[(j — 1)])) do
13 /* Shift each previous e lement a long one place tt> th e right * /

14 cols[j] cols[j — 1];
15 vals[j] vals[j — 1];
16 i <- (i - 1);
17 end

* f-'inallv. pu t th e c urren t e lement at th a t loca t ion */

19 co/s[j] i - cur.col\
2 0 vals[j] <— curjval \
21 end

'* C o n t in u e S ca im ing th rn u g h th e a r ra y * /

end

w idth in order of m atrix size (nnz) . The y-axts show's the runtim e of the

algorithm in nanoseconds per non-zero m atrix element. This runtim e per

element is found by taking both the total cycle chasing algorithm runtim e

and the to ta l sort tim e for each m atrix and dividing th a t tim e by the

nm nber of elements in the m atrix (nnz).

Figure 4.9 shows th a t the cycle chasing algorithm takes by far the

m ajority of the to ta l runtim e. W ith the sort-tim e accounting for ju st a

small proportion of the to tal runtime. For a small number of m atrices the

sorting phase does take a slightly larger proportion of the runtime, how'ever,

overall the execution tim e of the cycle chasing is dominant.

The Saad Algorithm (3.3) from the previous chapter, the Binary Range

Search Algorithm (4.3) and Radix Table Search Algorithm (4.6) from this

108 Space Time Efficient Sparse Matrix Transpose

4.5. Ensuring In-Row Ordering

Sort S tacked Saad-IP - - (Serial) Execution Time of T ranspose

Leaend
S aad-IP Sort Time

S aad-IP C ycle-C hase Time500

0}v>oc
z

400

c
0)
I 300
LU

a
4>
E
H 200c
Z3o

100

Matrix

Figure 4.9: Sort Tim e stacked on top of Algorithm Tim e

chapter along with the Corresponding Row Algorithm (5.3) presented in
the next chapter, all do the same cycle-chasing element movements for each
input matrix. Thus the sorting step has the exact same input and performs
the exact same sorting operations, taking almost exactly the same time in

each case. The only difference in to tal runtime between the algorithms is
in the time for the cycle-chasing transpose.

Section 7.1 will investigate methods to improve the runtime performance
of the sorting phase.

4.5,4 Runtim e C om plexity of Sorting Phase

After transposing the m atrix with the cycle chasing transpose the Two
Array QuickSort/InsertionSort algorithm is used to sort the rows of the

matrix so that they are in colunm order within the row's.

The sorting algorithm is called 0{n) times in total, once for each of

the (n) row's in the matrix. The average number of elements per row"
(22^). The maxinunn number of elements in any row is bounded by

(n). Sorting a row of (n) elements with QuickSort is 0{n . log{n)). The

worst case complexity occurs when the rows being sorted each contain (n)

R obert Crosbie. T he U niversity of D ublin. T rin ity College 109

C h ap te r 4. Space Efficient In-Place Sparse M atrix T ranspose

vahies. T h ere can be (^) such rows, th ere fo re th e overall com plex ity is

0 { ^ . n . log{n)) . T h is gives ou r w orst case com plex ity for so rtin g th e

m a trix as 0 { m i z . log{n)).

4.6 Conclusion

B oth the b inary search and rad ix search m ethods of in place sparse transpose

reduce th e m em ory overhead to 0 (n) .

T he Sparse Cycle C hasing T ranspose w ith B inary R ange Lookup Algo

rith m (4.3) tran sp o ses th e m a trix w ith th e least m em ory overhead of ju st

~ (2 /?). T h is tran sla te s to an average m em ory overhead of 14% of Saad for

th e 259 m atrices. However th is m em ory red u c tio n does com e w ith a cost

of increased ru n tim e over Saad to Q { n n z . log[n) + n).

T h e Sparse C ycle C h asin g T ran sp o se w ith R ad ix T able Lookup Algo

rith m uses slightly m ore m em ory at ~ (2 n -t- "/s) for th e ”/2 tab le size which

tra n s la te s to an average of 16% of th e m em ory usage of Saad. T h e R ad ix

T able algorithm does not m ain ta in th e Q { n n z -t- n) ru n tim e com plexity of

Saad, however in practice it perform s the transpose in 98.6% of the tim e of

Saad.

In th e n ex t c h a p te r we in tro d u ce a novel tech n iq u e th a t reduces th e

ru n tim e of o u r in p lace a lg o rith m to Q { n n z -I- r?), w ith o u t forfeiting th e

red u ctio n in th e asy m p to tic space com plexity to 0 (n) .

no Space U Time Efficient Sparse Matrix Transpose

Chapter

Corresponding Row
Cycle-Chasing Transpose

Reconsider the running example of the sparse m atrix M from previous

chapters, rejjeated below as Example 5.1 and shown again in the CSR

sparse m atrix storage format in Example 5.2.

Examining our new space efficient transpose algorithms introduced

in C hapter 4 we identified tha t the main overhead contribution to the
increased execution time while performing the cycle chasing pernuitation is

finding the row index of the element as we jump from location to location.
In this section we introduce our novel technique which finds this row index

in a constant amortized 0{1) time while maintaining the reduced space
overhead of 0(r;) of our previous algorithms.

This gives us an in-place algorithm with the same Q(nnz + n) time
overhead as the Out-of-Place (Algorithm 3.2) and Saad-IP (Algorithm 3.3)
while reducing the memory overhead to 0 (n) compared to the overhead
of those existing algorithms; Q{m}z + n) for Out-of-Place and Q{nnz) for
Saad.

/ n
c

M =

d

f 9

m

J
k I
n o /

Example 5.1: Sample Matrix M

R obert Crosbie. T he I ’niversity of D ublin. T rin ity College 111

C hapter 5. Corresponding Row Cycle-Chasing Transpose

5.1 C onstant-T im e Row Index Lookup

The novel technique is based on a num ber of key insights about how the

cycle chasing algorithm operates:

1. T he new.i'ow.ptrs[] array divides the destination positions into n

groups, where n is the num ber of new rows in the m atrix M .

2. At every jum p during cycle chasing we will jum p to one of these n

rows.

3. There is only one location in each new row th a t we can jum p to - the

first “available” slot in the row as indicated by the current value in

rou'.offseis[].

4. Therefore, it follows tha t at any one time, we are only concerned with

the row index corresponding to those n possible locations we m ight

jum p to. The other {nnz — n) locations are not currently im portant.

Thus from the above, if we could employ a corresponding row lookup

table of size G{n) to hold the row index for these n locations then it would

be possible to perform the cycle chasing in-place sparse transpose with only

B (n) space overhead and m aintaining the 0 (n n z + n) tim e complexity of

the existing algorithms.

The challenge is to m aintain this table after items are moved during the

perm utation . To avoid increasing the complexity of the overall algorithm

w'e need to do all updates in constant am ortized time.

n o n .zero s = a b c d e / 9 h i j k I m
co L in d ex es = 0 4 0 1 5 1 2 0 3 4 4 5 1

row _ptrs = o„ 2̂ 73 10. 12,

Exam ple 5.2: M atrix M in CSR representation

112 Space & T im e Efficient Sparse M atrix T ranspose

5.2. Using the Corresponding Row

sec = II 0 0 dst — ,■

old_row p t r s = o„ 2. 7s 10, 12,

n o n .z e r o s = a 6 c d e f 9 h 1 j k I m 71 0
c o L in d e x e s = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

p
n ew low |) ti> (1 (, S 12

lo w oHscIs » o (i - S 1 2 -

c o r n ' s p t a l lie Oo ■) : ! : i

Exam ple 5.3: Corresponding Row - Step 1

Building the corresponding row table and m aintaining it while searching

and performing lookups is a little tricky. Example (5.3) shows the structure

of the m atrix M during the cycle chasing with corresponding row. We have

the same 3 arrays from Exam ple 2.2; oId.row.ptrs[], coLindexes[] and

non.zeros[] along with the tw'o arrays {new-rou'.ptrs[] and row ̂ offset s[])

required for our 0 (n) generic in-place transpose outlined in Algorithm 4.1.

Exam ple (5.3) also shows a new c o r r e s p _ ta b le [] of size 0 (n) which is

required for the corresponding row transpose algorithm. The correspJabIe[]

array stores the row index (from the o}d.rou'.ptrs[] array), sim ilar to the

Saad Algorithm (3.3), but only for the positions of the first element in each

new row corresponding to the indexes in the new.rou'^pirs[] array.

5.2 U sing the Corresponding Row

hi order to lookup the corresponding row table we need to know the current

7ieiL'-V0U' of the element. We already know the new .row for the first element

in a cycle because we are traversing the m atrix through each of the new

rows. W'e can see th is in Exam ple 5.3. The transpose s ta r ts a t element

0 as m arked by arrow ‘/J • As th is is the first elem ent we transpose, we

already know' th a t it is in new row ‘0’ so w'e can lookup the elem ent’s

old .rowJndex from the corresponding row tab le as correspJable[Qi\ = 0.

W hich for element ‘p ’ gives us: old .row Jndex = 0.

R obert Crosbie. T he U niversity of D ublin. T rin ity College 113

C hapter 5. Corresponding Row Cycle-Chasing Transpose

W hen we leave an element in its old position we still need to update its

coLi7idexes[] entry with its new .co lJndex value. We get this new colunm

index from the elem ent’s oldjroivJndex wdiich we found by looking it up

in the corresp-tahle\] array. For element ‘p ’ old-vow = new .row = 0 so in

this case the update does not change the value in the array.

•sri h , I , 0 ds! : i

o ld_ row _p trs = o„ 2, 5. 7-s 10. 12s

non^zeros = a h c d e / 9 h i j k I in n 0

c o L in d e x e s = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

tq t..
iK'w row p ti N (1 li V I'i.

row ofl'scts 1 „ (i -
8 4

c o r rc s p ta b le <»o 1 ■) • > •V

Example 5.4; Corresponding Row - Step 2

However, for subsequent elements in the cycle, it is a little more difficult.

Exam ple 5.4 shows the next elem ent th a t the algorithm processes, at

position 1 m arked with arrow 'q and value h. Again we can directly read

the oldjrow.index from correspJable\\\ = 0 as this is the first element

in the cycle. Element V/’ does not belong in th is new.row. From its

old.col.index (4) we know it belongs in new row 4, so we need to chase this

element. We save the value, column and row indexes to ‘s rc ’. The value and

column index come straight from the arrays and the row index comes from

the corresponding row table lookup. W'e can find the position of the next

free slot in row 4 by looking up row.offsets[A] = 8. Thus, element ‘g’ needs

to be moved to position 8, m arked with label ‘r ’. W'e need to take out the

element at ‘r ’ with value i and store it in the tem porary ' d s f variable. We

know its value and old column index, however we can not directly read the

elem ent’s old.row.index from the arrays. W'e need to know what new.row

the elem ent is c u r r e n t ly in so th a t we can read the row index from the

corresponding row table. T he trick is th a t we know wdiat new .row this

elem ent is in because it is the new .row th a t the previous elem ent in the

114 Space & T im e Efficient Sparse M atrix Transpose

5.3. Search and U pdate Corresponding Row Table

cycle should be in. In other words (this is the key to the corresponding row

algorithm): we use the old-CoIJndex of the previous element in the cycle to

index into the corresponding row table to find the elem ent’s old .roivJndex.

For element ‘r ’ we can find its new row from correspJablelA] = 3.

In Exam ple 5.5 we can see th a t the elem ent in ‘d s f which was taken

from position ‘r ’ with the value ‘i ’ has been updated to have row index ‘3’.

From this point the cycle chasing continues as normal copying the element

in ‘s rc ’ w ith value ‘5’ to position ‘r ’ (sw'apping row and colum n indexes).

The algorithm then copies the element from 'dst' to ‘s rc ’ and continues

chasing the element in ‘s rc ’.

5.3 Search and U pdate Corresponding Row Table

T he procedure for searching and updating the corresponding row tab le

is shown in A lgorithm 5.1. T he algorithm requires five argum ents; T he

correspJable[] which we will show how to build later, th e old.roiL'^ptrs[]

and the num ber of old rows o ld .n ro iv s , the neu' jrow that we are searching

for and the index idx of the element in the m atrix. The search is a straight

forward lookup using the nexc-row key to index into the correspJable[]

which re tu rns the o l d . r o i c J n d e x corresponding to th a t new-row in the

m atrix. The old.roivJridex we found is returned at the end of the algorithm.

Every tim e we search the corresponding row table, we also need to

ui)date the contents of the table “If necessary” . T he u pdate procedure

is show in lines 3-8 of Algorithm 5.1. The table only needs to be updated

if th e next elem ent ‘x ’ in the new row after the curren t elem ent (‘r ’) is

in a different oldjrow to the current elem ent. The algorithm looks at the

pointer for the next old^row in the oldj'ou>^ptrs[] array (okLrow 4 in the

case of elem ent ‘r ‘). If th is pointer has a value less than the index of the

next element after ‘r ’ (the element at ‘x ’ w ith value ‘j ’ in this case) then

th e corresponding row' tab le needs to be upda ted to contain the index of

this new row. Otherwise the next element is in the same row and does not

need to be updated . In order to handle em pty rows, the algorithm scans

through the old.row.ptrs[] array to find an index pointer row^ptrs[z] th a t

R obert Crosbie, T h e U niversity of D ublin. T rin ity College 115

C hapter 5. Corresponding Row Cycle-Chasing Transpose

has a value greater than the position of the element.

•src b , ! 0 ■ (Is l

old_row_ptrs = o„ 5, 10,

non_zeros = a c d e I 9 h h j k I m n 0
coL in d exes = 0 0 1 5 1 2 0 0 4 4 5 1 4 5

1 tr tx tv
new row])trs (1 : i , (i I s 12

row offsets 2o
- 94 12.

<'orrcs|) faille lo 3 .

Exam ple 5.5: Corresponding Row - Step 3

In Exam ple 5.5 we can see th a t bo th element ‘r ’ at position 8 and the

next element (‘.r’) at position 9 are both in old.row 3 so the corresponding

row' entry for new jrow 4 does not (yet) need to be updated . How'ever. at

some later point in the algorithm we will need to move another element to

new .row 4 which will be put into the arrays at position 9 ('x'). The element

a t 'x ' will need to be taken out and again we lookup its o ld .row Jndex to be

correspj'ow[A] = 3. however, th is tim e when updating the corresponding

row table, the next elem ent in new-vow 4 w ith label ‘y’ at index 10 is

in old.row 4 therefore th e tab le will need to be updated w'ith th is value:

correspJable[^ <— 4.

A L G O R I T H M 5 .1 : Searching and Updating the co r r e s p o n d in g .r o w . table
Input: correspJable^. old.ro'w.ptrs\\, old.nrows. neu'.row, idx
O u tp ut: old.T O W . index, Updated corres'p.tahle\\

;* id.r is tlu* in d ex in a n d rol_in(i(.rf's[] o f llie e lem en t we a re m ov ing * /

(*(‘t tlie <)l<l-roii ,ir)(i(\v coITe^I)onding to n(w . r o w * /

old .row.index <r- correspJahlelnew.roxL^,

/* I ’p d a te tlie <.()rre> pond ing row tal>le if n ecessary , s k ip p in g over en)j)ty row s, if n ecessa ry *j

z ^ [old.row.index + 1) ;
w h ile ({z < nrows) k.k. ({ i d x 1) > oldjrow.ptrs[z\)) do

corresp.table[new.row] ■<— corresp.table[new.row] + 1;
Z i — 2 + 1 ;

en d
re tu rn io ld .row .in dex);

116 S p ace ic T im e E ffic ient S p a rse M a tr ix T ran sp o se

5.4. Building the Corresponding Row Table

Examples 5.4 and 5.5 also show the rou'-offseis[] array being updated

every tim e we process an element in the m atrix so th a t the array points to

the next “unm oved” element in th a t particular row'.

T he corresponding row' transpose perform s the row’ index lookup (Al

gorithm 5.1) in constan t 0 (1) tim e am ortized over the w'hole transpose

algorithm. Each tim e the co rresp _ srch _ u p d () routine is called to look up

a row index it will check if the table needs to be updated for th a t row. The

while loop w'ill only be entered in the subset of lookups w'here th e tab le

en try needs to be updated . The en try for the row w'ill only need to be

updated if the next element in tha t new row is in a different old row. Each

tim e there is a lookup, the conditional on the while will be tested and the

loop will only be entered wlien we cross a row boundary. There can only be

0 { n) row boundaries in the array which could potentially be encountered

while transposing the n n z elements of the m atrix.

W hen the upda te does actually enter the loop it will u pda te the entry

for the row', then w^hen it tests the loop condition again it will generally

find th a t no more updates are necessary and exit the loop. T hus m ost

updates will only execute the contents of the loop a single time. The only

times the loop will execute more than once is when there are empty rows in

the m atrix. A single update could potentially loop over a large proportion

(.r) of th e row' boundaries in new.rou'-ptrs[]. However th is w'ould m ean

th a t there were only (r; — x) boundaries left th a t could po ten tia lly cause

subsequent lookups to enter the w'hile loop.

T hus over all th e Q{r im) lookups, the w'hile loop will only ite ra te a

possible 0 { n) times in total. This gives an amortized 0 (1) complexity for

each lookup over the nnz lookups. Therefore the full cost of all the {nnz)

corresponding row lookups and updates during the full corresponding row

transpose is no m ore th an 0 { n n z + n). This is no m ore th an th e tim e

com plexity of the cycle-chasing transpose. Thus, searching and updating

the corresponding row does not increase the complexity of the corresponding

row transpose w'hich is Q{nnz -I- n), ju st like the existing O O P and Saad

sparse transpose algorithm s.

R obert Crosbie. T he U niversity of D ublin. T rin ity College 117

Chapter 5. Corresponding Row Cycle-Chasing Transpose

A L G O R I T H M 5 .2 : Building the c o r re sp o n d in g . r o w J a b le
Input: old.nrou's. newjnrou's. oldjrowjptrs. neu'jrowjptrs
O utput: correspJahle\\ - The Corresponding Row Table

A l l o c a t e (' () r n ‘s])o n (l in g Row I'al)!*' *

Allocate: correspJable[newjirows + 1];

/ * 'j' >lart>. ill th e c i id iif */

j <— old-nrows\

/ * l o r e a c h x ' in ni u'^roir^i)fr.H[] (in r e v e r s e) * /

for (new Jirou's > a: > 0) do
/ * S c a n b ackvvnnl> ih r o i ig l i ol iLrow-pl i s [] t o fiiui a n ini i('x >n ia l l i ' r t h a n * /

w h ile (neu'-rou'jptrs[x] < old.rou'-ptrs[j]) do
I

end

/ * r < / r r [j ‘] is t l i c i n d e x , ' j ' in (>lfLn>ir^}ttrs[] o f ' l i i c firs t cl(‘n i (‘nt s in i i i l c r t h a n lit tr-r<nr^ittrs[.v] "*/

correspJable[x] <— j ;
end

5.4 B u ild ing th e C orresponding R ow Table

The corresi)onding row table can be built in 0(/)) time. The procedure
is shown in Algoritlnn 5.2. The algorithm requires 4 arguments; The two
pointers arrays old.roiv.ptrs[] and neu'.rou'.ptrs[] and the respective sizes

of the two arrays old.nroivs and newjnrows. The algorithm allocates a
new correspJable[\ of size {newjnrows +1) . It is assumed that this array
will be deallocated by the caller later.

The corresponding row table stores the old^rowJndex of the first entry
in each of the corresponding new row's. The technique to build the table

in 0 (n) time is to scan backwards through both the oldjrow-pirs[\ and
new^rowjptrs[] arrays at the same time. For every entry in new.row^ptrs[\
(line 6) we scan backwards through old^row^ptrs[\ (line 8) until we find an

entry that is less than or equal to the newjrow.ptr. The index, ‘j ’ into the

old.rowjptrs[\ array that gives us this value is added to the correspJable[\
array at position "x\ as this is the old.rowJndex corresi)onding to new

row ‘x ’. The scan is repeated for each of the new' rows.

Due to the nested loops the algorithm may appear to be 0(n^) however
this is not the case as when we repeat the outer loop, the inner loop

118 Space ^ T im e E fficient Sparse M atrix T ran sp ose

5.5. Corresponding Row Cycle Chasing Algorithm

continues scanning the old.row.ptrs[] array from the same j position it
was at the last time. The algorithm only makes a single complete traversal

of each of the arrays. Thus the complexity of the build corresponding row

algorithm is 6)(r?). Empty roŵ s and rectangular matrices are automatically

handled by the algorithm.

5.5 Corresponding Row Cycle Chasing Algorithm

The Corresponding Row Cycle Chasing algorithm is outlined in Algo

rithm 5.3. Like the algorithms in the previous chapter it is based on our

Generic In-Place algorithm described in Algorithm 4.1.
At the s ta rt of the Corresponding row algorithm, after building the

7}eu'^roiL'-ptrs[] and row^offsets[] arrays the algorithm calls the b u ild _ c o rre sp _ ta b le ()

routine from Algorithm 5.2 in order to build the corresponding row ta

ble. In order to build the table the routine needs the oldj'ow.p7'ts[] and
neiv.roii'-ptrs[] arrays which are passed as arguments to the routine along

with their respective sizes old-nrows and neiV-nrows.

The algorithm starts the cycle chasing algorithm processing each element
in the m atrix as outlined in Section 4. W'hen it needs to find the old row

index of an element it calls the corresp_srch_upd() routine outlined
in Algorithm 5.1 on lines 23 and 31 to search the correspJable[] and
old.row-ptrs[] arrays for the old row index of the element, updating the

entry if necessary.
The search takes different arguments at the two different times it is

called. Both calls take the same first three arguments: correspJahle[].
old.row.ptrs[\ and old^nroxvs. The first call on line 23 also passes the

current new rotu th a t we are processing and the index x of the element

in th a t row' tha t w'e are starting a chase from. The second call on line 31

also passes as arguments dstjrow. the destination new row tha t we want

to move the element in ‘s rc ’ to and dst^x, the index into the non-zeros[]
and colJndexes[] arrays of the first free slot in that new' row'.

Sections 5.7 and 5.8 show the memory and execution time of the algo
rithm under experimental evaluation. Later sections and chapters analyse

R obert Crosbie. T h e T niversity of D ublin. T rin ity College 119

1

2

4

5

6

7

8

9

10

11

12
13

14

ir>
16

1 7

18

19

20

21

22

23

24

2r,

2 b

27

28
29

30

31

M2
33

34

;tr»
36

37

38
3!)

40

41

42

43

44

45

46

47

48

Chapter 5. Corresponding Row Cycle-Chasing Transpose

A L G O R I T H M 5 .3 : C o rre sp o n d in g Row C y c le -C h asin g S parse T ra n sp o se
In p u t: M atrix M as in D ata S truc tu re 3.1
O u tp u t : M atrix M containing in CSR. with: 7ieix'_rou'_pfrs[] - new row pointers

[cols+1]
/* A l loca te A rra v - */
Allocate: new-row-ptrs[new-nrows + 1]; Allocate: rou'-offsets[neu'-nrows];
/ * (' (Hint huiiiIkm’ o f fh - in c i i l ^ in t ' a t h n r w c o l u m n - offse t l)\' 1 /

fo r (0 < index < n n z) do
col e - col-indexes[index]\
if (col < {nrou's - 1)) th e n

j new.row.pfrs[col + 1] ^ neu'jroW-ptrs[col -I- 1] + 1;
e n d

e n d
/ * (' u i n u l a t i \ ' e s u m t o ge t nc \v _ ro \v _p tr s [] * /

fo r (0 < row < nrow s) d o
'] + new.rou'-ptrs[rou' — 1];

end
* Build tin* (’(nrcs])on(iiug liow L o o k u p rah ic

b u ild _ c o rre sp _ ta b le (oldjiirou's. n ew j iro w s . old.row.ptrs[], neu'^row^ptrs[])
^ Loo|) lli rougli each new n m ' *

for (0 < row < new jnrow s) do
! for (rou'-of}seis[row\ < x < new-row.ptrs[row + Ij) do

'* Take out e lement *

src jnz <— non.zeros[x]\
src-col f - col-indexes[x\\
srcjrow ■<—
corresp_srch_upd(correspJable[], oldjrow.ptrs[\, o ld.nrows. row. x);
w h ile (src-col / row) do

(1st . r o w ' * /

* ' l a k e o u t t l n ‘ eN ' in cn t a t (U l_x ' * /

d s t jn z <— non-zeros\dst
dst-col *r- colAndexes[dst-x\\
dst.row •<—
corresp_srch_upd(correspJa6/e[]. old-row-ptrs\]. old.nrows, dst-row,

/ * P u t th e ele ineut wt' a f e cluisiug S r c ' in to d e s t i n a t io n slot ‘d s l_x ') * /
n o n _ z e r o s [d s t f - srcjiiz;
col- i7 idexes[ds t^] src-row;

/ * I ’lit t h e e lement in (1st' in s ic ' so wo c an cha.se it next * /
s r c j i z ■<— d s t j i z ' ,
src-col dst-Col\
src jTow dstjvow;

/ * Inc rem ent r o i r . o f f m Is] * /
row.offsets[dst.row\ <— row.offsets[dst^row] + 1;

end
/* P u t ' s r c ‘ in to o rig inal p o s i t io n 'x ' in th e ’row ' we s t a r t e d wi t h * /
coLindexes[x] <— srcjrow;

)

row -Offset s[row\ new -row -ptrs[rou '\ ;

dstjTow 4- src.col;
d s t ^ <r- row .o f fse ts[d s t .row];

non_zeros[x\ <— src-Tiz;
end
Free: M ^ r o w -p t r s ; M
Free: ro w .o f f se t s : Free

end

M ^ r o w j p t r s new.row-ptrs',
Free: correspJable\

Space ^ Time Efficient Sparse Matrix Transpose

5.6. Cache-Friendly Corresponding Row Algorithm

the perform ance of the algorithm in greater detail.

5.6 Cache-Friendly Corresponding Row Algorithm

A m ajor concept of th is Thesis is the im pact of cache performance on the

execution tim e of the algorithms and conversely, modifying algorithms and

data-structures such th a t they make more efficient use of caches. The Cor

responding Row algorithm (Algorithm 5.3 outlined in the previous section)

allocates two additional work arrays of size 0 (n) which are completely inde

pendent of the arrays which store the m atrix in the CSR format and which

only exist for the duration of the algorithm . As such we can implem ent

these arrays how'ever we see fit. These tw'o arrays are the row-offsets[]

and correspJable[] arrays.

E xam ining the corresponding row cycle-chasing algorithm outlined

in A lgorithm 5.3 along wdtli the Corresponding Row Seai'ch and U pdate

Algorithm 5.1 we see tha t every tim e we access these arrays we always access

the same index in both of the arrays at the same time. We use the current

roiv to index }'ow.offsets[] on line 19 and we again use row to index into

the correspJable[] array on line 23 via the call to the co rresp _ srch _ u p d ()

routine. Later w'e use dst-rou: to index the arrays again, rou'.offsets[] on

lines 27 and 40 and correspJable[] on line 31 again via the function call.

This information gives us the opportunity to improve the cache locality

of the algorithm im plem entation with a Cache Friendly Corresponding Row

algorithm . By interleaving the two arrays we can improve the tem poral

and spatia l locality of the access to those two arrays. W hen we access,

say. roiL'^offsets[3‘i2] then when the memory subsystem fetches th a t array

location from memory, it will also draw the data from the memory locations

following th a t index into the caches. If the arrays are interleaved, th a t

w'ould m ean th a t correspJable[342] w'ould also be brought into the cache.

T he Cache Friendly im plem entation as show'n in Listing 5.1 defines a

“C ” data -structu re containing two integers^®^, the first (corr) w'ill contain

<a}Qr w hatever v'ariable size is required to represent an index

R obert Crosbie. T he U niversity of D ublin. T rin ity College 121

C hapter 5. Corresponding Row Cycle-Chasing Transpose

r

i n f c o r r ;
i n t o f f ;

} (• () r r () f f _ s ;

i n f c o r r ;

r o w _ i n < l (' x = c o r r o f f [r o w] . c o r r ;

| / / Acc - (' s s C’o r r o s p o i K l i n o ; Row

I () f f s (' f = (■ () r r () f f [r o w] . () f f ; / / A c c c ' s s How O f f s (‘t J
Listing 5.1: Cache Friendly Im plementation

the correspJable[] entry for the row and the second {of f) will contain the

row-offset[]. An array of these corro f f . s structm ’es is created instead of

the two separate arrays. The values of the individual structure members can

be accessed using the standard "C" dot (.) notation as shown in Listing 5.1

on lines 7 and 8.

We created two im plem entations of the corresponding row algorithm

for experimental analysis. A "Normal" version which has the two separate

arrays and a "'Cache Friendly" version which combines the two arrays.

We can see from the perform ance evaluation in Section 5.8 and the

detailed performance analysis in Section 5.9 tha t the two algorithms have

a b e tte r execution tim e than Saad and th a t due to the improved cache

locality, the Cache Friendly version also performs slightly faster than the

normal version.

5.7 Corresponding Row M em ory Usage

In Figure 5.1 we see the memory overhead of the corresponding row algo

rithm which is shown in relative comparison to the memory overhead of

the Saad-IP algorithm . Both the Norm al Corresponding Row algorithm

described in Section 5.5) and the Cache Friendly Corresponding Row' Im

plementation outlined in Section 5.6 use the exact same amount of memory

overhead. The Cache Friendly version has a single array which is the same

122 Space Time Efficient Sparse Matrix Transpose

5.7. C orrespond ing Row M em ory Usage

C orresp Row [CF] vs. Saad-IP Memory O verhead of Algorithm (Relative]
1.4

1.3

1.2

£ 1.1

§ 0.9

1 0-8
£

I 0.7
O
^ 0.6
0
E
1 0.5

.1 0.4ro
(r 0.3

0.2

0-1

0
1 m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m l 5 0 m 400 m

Matrix S ize (million nnz) <LOG scale>

Figure 5.1: M em ory overhead o f the C orrespond ing R ow algorithm com pared to th a t

o f S aad . B o th N orm an an d C a c lie F rien dly im p lem e n ta tio n s have th e sa m e m em ory

o verh ead . C o rresp o n d in g R ow uses m uch less m em ory (< 20% for th e m a jo rity o f

in p u ts) th a n Sfiad w ith ju st a handfu l o f in p u ts requiring a m em ory overh ead c lose to

th a t o f Saad . T h is g iv es an average o f 21% overall.

size as tlie two sep a ra te a rrays in tlie N orm al version added together.

T h e C o rresp o n d in g Row' A lgorithm , as o u tlin ed in A lg o rith m (5.3)

along w ith th e B uild C o rresp o n d in g Row T ab le A lg o rith m (5.2) an d th e

S ea rch /U p d a te C orresponding Row A lgorithm (5.1), require th e additional

storage for th e correspJable[] a rray of size n, along w ith th e two size 0 (n)

arrays neiL'.roiv.ptrs[] and roiv.o ff sets[] required by th e G eneric In-P lace

tran sp o se . T h is gives a to ta l m em ory overhead of ~(3t7) for th e co rre

sponding row algorithm . T h is is slightly m ore th a n R ad ix T able Search at

~ (2 n + ^/2) and B inary at ~ (2 n) , however the asym pto tic space com plexity

rem ains 0 (n) . F igure 5.1 shows th a t even a t ~(3r?) th e corresponding row

a lg o rith m for th e m a jo rity of in p u ts uses considerab ly less m em ory th a n

th e Saad algorithm , w'hich is Q {nnz) . In m ost cases th e num ber of rows is

nm ch less th a n th e nu m b er of non-zeros {n « nnz) .

T h e m a jo rity of m a trice s req u ire less th a n 20% how^ever th e re a re a

handful of m atrices which are very sparse and hence have a very large nm n-

L egend
Saad-IP

C orresp Row/ [CF]
A verage: 21.0%

v' 0 - 0 ■■

bkSu__

R obert Crosbie. T he U niversity of D ublin. T rin ity College 123

Cliapter 5. Corresponding Row Cycle-Chasing Transpose

her of rows (nroivs) compared to the number of non-zero {7}nz) elements.
This causes the corresponding row algorithm to use a higher proportion of

meuiory for these matrices which pushes the memory usage of Corresjjond-
ing Row’ nuich closer to Saad for these handful of matrices, which in turn

distorts the average. Thus, on average the corresponding row' requires 21%
of the memory overhead of Saad.

For very large matrices this reduction represents a significant saving.

For the largest matrix, nlpkkt240, Saad requires an overhead of 1,531 MiB

whereas our Corresponding Row' algorithms require just 320 MiB, this

constitutes a significant saving of 1,211 MiB. Exact details of memory

usages of the different transpose algorithms can be found for a number of
sample matrices in Table A.3.

5.8 C orresponding Row A lgorithm E xecu

tion Tim e

Figure 5.2 shows the algorithm execution time of Normal Corresponding
Row Algorithm relative to Saad and Figure 5.3 shows the algorithm exe
cution tim e of the Cache Friendly implementation of the Corresponding
R(w Algorithm relative to Saad. Both algorithms have an asymptotic time
complexity of Q{nnz + n). The Normal Corresponding Row algorithm is a
little faster than Saad for the majority of inputs. The algorithm is slightly
slower than Saad for just a few inputs. Overall the Normal Corresponding

Row algorithm transposes the matrices in just 92% of the execution time
of Saad. The Cache Friendly implementation (Figure 5.3) performs slightly
better, improving by 2% to run at 90% the execution time of Saad on
average.

This is a very good result for the Corresponding Row algorithm given the

memory savings show'n in Figure 5.1. This result is somew’hat unintuitive

given that Corresponding Row performs the same movements of data in the

cycle chasing method as Saad yet actually executes more instructions at each
step of the algorithm. The improved performance is because Corresponding

124 Space & T im e Efficient Sparse M atrix T ranspose

5.8. Corresponding Row A lg o rith m Execution T im e

Corresp Row [N] vs. Saad-IP • • (Serial) Execution Time of Transpose [Relative]
1.4

1,3

1.2

1.1

_ 1a
^ 0,9

f 0.8

0 0.7
E

^ 0.6
>
1 0.5
(D

^ 0.4

0.3

0.2

0.1

0
1m 1.5m 2 m 4 m 8 m 16m 50m 150m 400m

Matrix Size (million nnz) <LOG scale>

F igure 5.2: A lg o r ith m execution tim e o f the N o rm a l C orrespond ing Row Transpose

com pared to Saad. C o rrespond ing Row runs faster in ne a rly a ll cases w ith ju s t a few'

cases where i t is s lig h tly slower. On average the N orm a l C orrespond ing Row pe rfo rm s

the in-place transpose in 92% o f the tim e o f Saad w ith an average o f 21% o f the m em ory

overhead.

Row is m a lting b e tte r use o f the com pu ta tion a l resources (C a c h e /T L B)

available. We discuss th is fu rth e r in Section 5.9.

The asym pto tic tim e com p lex ity fo r correspond ing row' is <3{nnz + r?)

w h ich is equivalent to the ex is ting In-P lace and O u t-o f-P lace a lgo rithm s.

In the a lg o rith m , nnz elements are moved. Each element requires a look

up and update o f the cor ' respJable[] , W'hich takes am ortized (D{\) tim e .

There are some 0(t7) operations, e.g., com puting the in it ia l n e w j ro w -p t r s [] ,

row ̂ offset s[] and corresp Jahle[] arrays, hence the overa ll co m p le x ity o f

(-)(ru?2 + n).

As w ith a ll the previous In-P lace a lgo rithm s, the correspond ing row'

a lg o rith m does not preserve the co lum n o rder w ith in new rows. Hence a

post sorting pass is required to ensure in-row ordering. The Q u ickS o rt/In -

sertionSort based technique described in Section 4.5 was used for the post

sort pass. A ll the tim in g results fo r the a lgorithm s thus far have included

the tim e to pe rfo rm the post so rting step using Q u ickS o rt/In se rtio n S o rt.

L ^ n d
Saad-IP

Corresp Row [N]
Average; 92.1%

R o b e rt C rosb ie . T h e U n iv e rs ity o f D u b lin . T r in i t y C o llege 125

Chapter 5. Corresponding Row Cycle-Chasing Transpose

C o r re s p R o w [CF] v s . S a a d - IP - - (S e r ia l) E x e c u tio n T im e of T ra n s p o s e (R ela tive)

1.4

1.3

1.2

1.1

_ 1

■D 0 ,9
CD
CO

“ 0.8
>
O 0 .7
E

0.6
0

1 0 .5
o

0 .4

0 ,3

0.2

0,1

0
1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

M atrix S iz e (m illion n n z) < L O G s c a le >

F ig u r e 5 ,3 : A lgorithm execution tim e o f the Cache Friendly C orresponding Row

Transpose com pared to Saad. C F C orresponding Row runs faster in nearly all cases

with just a few cases where it is slightly slower. Comparing to Figure 5.2 shows that the

Cache Friendly version is slightly faster than the normal, transposing the 259 m atrices

in just 90% of the tim e of Saad. again at 21% of the mem ory overhead.

The sorting step has httle effect on the results as for every algorithm the
sort performs the exact same operations on the exact same data taking
almost the exact same time in every case. The time I'equired to perform
the sorting is included in the execution time experiments displayed in
Figures 5.2 and 5.3.

These figures show tha t despite the considerable memory reductions,

requiring just 21% on average, and increased complexity of the algorithm,

the corresponding row algorithm is similar to the existing Saad algorithm

and is faster in the majority of cases, taking just 90% of the time on average.

L e a e n d

S a a d - IP

C o rre s p R ow (CF]

A v e ra g e : 9 0 .4 %

0 '*

^ 'd k . . . a . A i
r •• ' ' ' " '■ 9 - ic3

126 Space T im e Efficient Sparse M atrix T ranspose

5.9. Corresponding Row Performance Evaluation

5.9 Corresponding Row Perform ance Eval

uation

The previous sections presented experimental results of the memor}' and
execution time of the two new corresponding row in-place transpose imple
mentations compared to the existing Saad in-place algorithm. We found
that both the corresponding row algorithms required much less memory
than Saad, about 21% on average. Both new algorithms also had a slightly
faster execution time than Saad transposing the matrices on average in
92% and 90% of the execution time of Saad respectively.

In this section we investigate why the corresponding row algorithms
perform better than Saad. Corresponding Row and Saad have the same
time complexity of Q{nnz + n), indeed the new algorithms perform more
oj^erations at each step in the cycle chasing algorithm, yet they have a
better execution time in practice. The new algorithms also perform the
exact same cycle-chasing operations, moving the same elements to the
same locations in the matrix as Saad. So how can the two variants of the
corresponding row algorithm achieve the performance improvements shown
in Figm'e 5.2 and Figure 5.3? The reason for the improved performance
is the reduced memory overhead from G{7ttiz) to 0 (n), which can be a
significant difference for some matrices. This reduced memory leads to
more efficient use of the caches and TLB and other computational resources
available.

5.9.1 Hardware Counters

In order to gain a better understanding of how the algorithms operate in
practice, on real machines, the algorithm testing framework was instru
mented with code using PAPI [Browne 00] and PerfCtr [Pettersson 05].
This allowed us to access the in-processor hardware coimters in order to
measure how the algorithms were performing in terms of cache and TLB
misses and other metrics. Table 5.1 lists the PAPI events that w’ere moni
tored and their descriptions. As it is not possible to measure all events at

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 127

C hapter 5. Corresponding Row Cycle-Chasing Transpose

the same time, events were monitored individually (or in small groups) for

m ultiple runs and the median values taken. Details of the machine, Stoker,

th a t the experim ents w'ere run on are given in Section 2.4.

Event Description
BR_TKN Conditional branch instructions Taken
BR_MSP Conditional branch instructions m ispredicted
L1_TCM Level 1 cache misses
L2_TCM Level 2 cache misses
L3_TCM Level 3 cache misses
L1_LDM Level 1 load misses
L2_LDM Level 2 load misses
LST JN S Load/store instructions completed
RES-STL Cycles stalled on any resource
TLB_TL Total translation lookaside buffer misses
T O T CYC Total cycles
T O T JX S Instructions completed

Table 5.1: M onitored PAPI Events

5.9 .2 Branch M isses o f CF C orresponding Row

W’e can see a com parison of the com plexity of the Corresponding Row

algorithm compared to Saad in Figure 5.4 which shows the relative number

of branch misses of the two algorithms. Corresponding Row has many more

branch m ispredictions for the m ajority of inputs. Over twice as m any in

some cases. The reason for the increased immber of branch misses is due to

the increased number of conditionals th a t the corresponding row algorithm

executes during each step of the cycle chasing, accessing the additional

row.of fsets[] and correspJable[] arrays and checking if the corresponding

row tab le needs to be updated.

T he Corresponding Row algorithm accesses m ore arrays th an Saad.

At each step of the cycle chasing, Saad (A lgorithm 3.3) will access 4

different arrays: th e non.zeros[], coLindexes[], tmp.rowJndexes[] and

new.row.ptrs[] arrays. The corresponding row algorithm (Algorithm 5.3)

128 Space ^ Time Efficient Sparse Matrix Transpose

5.9. Corresponding Row Perform ance Evaluation

C orresp Row (CF] vs. S aad-IP • • Branch M isses [Relative]

4 .8

4.4

4

3.6

3.2

2.8

2.4

2

1.6

1.2

0.8

0.4

0

Leoend
Saad-IP

C orresp Row [CF]

-4i<-

o &

1.5 m 2 m 4 m 8 m

Matrix S ize (million nnz) <LOG scale>

16 m 50 m 150 m 400 m

F ig u r e 5 .4 : X nniber o f Branch M ispredictions o f th e Cache Friendly Corresponding

Row Algorithm when performing the cycle chasing transpose compared to that of Saad.

The corresponding Row algorithm has a much higher proportion of branch misspredations

than Saad l)ecause it perform s more operations during each step o f the cycle cliasing

with more conditional control flow.

will access 6 arrays at each step: /io/)_2ero.s[], colJndexes[] . neu'-roiv.ptrs[],

fow^of fsets[], con'espJahle[] and old.rou'^ptrs[]. These extra accesses will

cause more lookui)s, more cache misses and more branch m is-predictions.

Despite this increased complexity, the reduced memory of the corresjjonding

row algorithm leads to improved perform ance for the m ajority of inputs.

In the following sections w'e will analyse how th e reduced m em ory

overhead of the corresponding row im plem entations means th a t they make

more efficient use of th e caches and TLB (Translation Lookaside Buffer).

W hich transla tes into improved execution time.

5.9.3 Norm al Corresponding Row Perform ance Eval
uation

T he four graphs in F igure 5.5 show th e perform ance of the th ree L I, L2

and L3 caches and the TLB for the Normal Corresponding Row Algorithm

R obert Cros])ie. T h e U niversity of D ublin. T rin ity College 129

R
el

at
iv

e
N

um
be

r
of

L3
C

ac
he

M

is
se

s
(v

s.
 S

aa
d-

IP
)

R
el

at
iv

e
N

um
be

r
of

 L
i

C
ac

fie

M
is

se
s

(v
s.

 S
aa

d-
IP

)

Corresp Row |N) vs. Saad-IP LI Cache Misses [Relative] Corresp Row (N) vs. Saad-IP L2 Cache Misses jRelative]

1.4

1.2

1

0.8

0,6

0.4

0.2

Lw end ~

Saad-IP
Corresp Row [N]
Average: 99.5%

-K « -

J ________________________ L

L ^ n d ’~
Saad-IP

Corresp Row [N]
Average: 95.2%

4 m 8 m

Matrix Size (million nnz) <LOG scale>

(a) L I C’ a rh e M isses - 100%

16m 50 m 150 m 400 m 4 m 8 m

Matrix Size (million nnz) <LOG scale>

(h) L 2 (’ ache M isses - 9.')%

16m 50 m 150 m 400 m

Corresp Row [N] vs. Saad-IP -■ L3 Cache Misses [Relative)

Lwend
Saad-IP

Corresp Row |N)
Average: 66.8%

Matrix Size (million nnz) <LOG scale>

(c) L 3 C’ ac lie M isses - (>7%

s
CD

I: 0,8
0

1
I 0.6

16 m 50 m 150 m 400 m

l-ewnd

Corresp Row [N] vs. Saad-IP - • TLB Misses [Relative]

Saad-IP
Corresp Row [N]

Average: 77,2%

Matrix Size (million nnz) <LOG scale>

(d) T L B M isses - 77%

16 m 50 m 150 m 400 m

F igure 5.5: N orm al CorreKi)on(liug Row Cache Perform ance

C
hapter

5.
C

orresponding
Row

C
ycle-C

hasing
T

ranspose

5.9. Corresponding Row Performance Evaluation

compared to the performance of the Saad algorithm. Figure 5.5 (a) show's

the number of LI Cache Misses compared to those of Saad while performing

the full transpose algorithm. Figure 5.5 (b) shows the relative number of L2
Cache Misses. Figure 5.5 (c) shows the relative number of L3 Cache Misses.

And Figure 5.5 (d) shows the relative number of TLB Misses encountered

by the algorithm.

From these graphs we see that the L l and L2 cache performance of the

Normal Corresponding Row algorithm is broadly similar to tha t of Saad,

however the relative measurements are quite scattered. On average the

two algorithms actually have the same number of L l cache misses as each
other with the Normal Corresponding row having an average of 99.5% of

Saad. The Corresponding Row algorithm has marginally better L2 cache

performance with just 95% of the L2 cache misses as Saad. This is to be
expected. As discussed above, although the Corresponding Row algorithm

has a lower memory overhead than Saad, which should lead to a reduction
in cache misses, the algorithm is accessing 6 different arrays at each step of
the cycle chasing compared to the 4 accessed by Saad.

The L3 and TLB graphs in Figure 5.5 (c) and (d) tell a different story.
There is a very clear distinction in the L3 cache performance of the Normal
Corresponding Row compared to Saad. The Corresponding Row has 30%-

60% less L3 cache misses than Saad for the majority of inputs. On average
the Normal Corresponding Row algorithm incurs just 67% of the L3 cache
misses of Saad. As discussed below, the reason for the reduced L3 and TLB

misses is due to the reduced memory overhead of the corresponding row
algorithm (21% of Saad).

There is also an indication from Figure 5.5 (c) that the Normal Corre

sponding Row has an even greater reduction in L3 misses for the smaller
matrices, those matrices with 2 million non-zeros or less. This is to be

expected as the L3 cache is very large and these smaller matrices are of

comparable size. The machine these experiments were performed on has an

L3 cache of 18MiB. A m atrix with 2,000,000 non-zero values w’ill require

approx 23MiB to store in the CSR sparse format. Assuming n « nnz
then the corresponding row algorithm will only add perhaps a few hundred

R obert Crosbie. T he I'liiversity of D ublin. T rin ity College 131

Chapter 5. Corresponding Row Cycle-Chasing Transpose

KiB on top of that. Thus for matrices with less than approx 2 million or 4

million non-zero values, a large proportion of the matrix will remain in the

L3 cache — depending on replacement policy.

The measurements for the number of TLB misses shown in Figure 5.5 (d)

are somewhat more scattered than those of L3, however there is still a very
clear trend towards Corresponding Row with a large proportion of inputs

having 20% - 40% fewer TLB misses. On average the Normal Corresponding

Row incurs 77% of the TLB misses of Saad.

The graphs in Figure 5.5 show that although the Normal Corresponding
Row algorithm does not improve on LI and L2 cache efficiency compared
to Saad, it does however improve on the L3 cache and TLB efficiency over

Saad w'hich results in the improved performance as shown in Figure 5.2.
The reason for the improved L3 cache and TLB efficiency is due to the
reduced memory overhead of the algorithm. Corresponding row uses three
arrays of size 0 (n) compared to the Q{nnz) array required by Saad.

Key to this is the size of the total working set. That is, the total amount
of memory in use by the algorithm while performing the transpose. This
includes the memory overhead of the algorithm and the memory required
to store the m atrix in memory. For the 259 matrices in our test suite,
corresponding row has a w'orkiug set size which varies between 75%-1(30%

of that of Saad. The “average of the percentages” shows that the average
w'orking set of Corresponding Row is 80% of tha t of Saad. This is still

a very large w'orking set, however a reduction of up to 25% of memory
usage is significant. Particularly for the larger matrices it could represent

Inmdreds of megabytes of memory.

This reduction in working set size is the reason for the improved L3

cache and TLB performance and thus for the improved performance seen

in Figure 5.2.

132 Space & T im e Efficient Sparse M atrix T ranspose

R
obert

C
rosbie. The

U
niversity

of
D

ublin. Trinity
College

133

C o rfe s p R ow [CF) v s . S a a d - lP - - L i C a c h e M is s e s (Relative) C o r re s p R ow [CF] v s . S a a d -IP L2 C a c h e M is s e s [R elative]

l-M e n d

S a a d -IP

C o r r e s p R ow (CF)

A v erag e : 8 7 .3 %
q .

o -

0 .7

0.60

1 0 .5

0 ,4z

>
0 .3

o>
CC 0.2

1 .5 m 16 m 50 m 150 m 4 0 0 m1 m 2 m 4 m 8 m

(a;
M atrix S iz e (million

Ll C’ache
nnz) <L O G sc a ie >

Misses - 87%

t e o e n d

S a a d -IP

C o r re s p R ow [CF]

A v erag e : 8 4 .1 %•D

w

>
ifli:iinii rp iy»*)|i>(: ni'ufe <i 'mMW

p-0 ? - ft

4)

JZ

0 .7

0.6o

0 .5

0.4

.2 0 .3
o>

CC 0.2

16 m 50 m 150 m 4 0 0 m1.5 m 2 m 4 m 81 m m

M atrix S iz e (million n n z) <L O G sc a le >

(b) L2 Cache Misses - 84%

C o rre s p R ow [CF] v s. S a a d -IP • • L3 C a c h e M iss es [R elative] C o r re s p R ow [CF] v s. S a a d -IP - - TLB M is s e s (Relative]

1.5

1.4

1.3

1.2

1 .1

1

0 .9

0.8

0 .7

0.6

0 .5

0 .4

0 .3

0.2

0.1

0

L e o e n d

S a a d -IP

C o r r e s p R ow [CF]

A v erag e : 6 5 .0 %

0

- ' o

o

• r i i

16 m 50 m 150 m 4 0 0 m

M atrix S iz e (million n n z) <L O G s c a le >

(c) L3 Cache Misses - 65%

1.5

1.4

1.3

1.2

1. 1

1

0 .9

0.8

0 .7

0.6

0 .5

0.4

0 .3

0.2

0.1

0

S a a d -IP

C o r re s p R ow [CF]

A v erag e : 7 0 .9 %

car-

M atrix S iz e (m illion n n z) <L O G sc a le >

(d) TLB Misses - 71%

/ . j S '

’ O ' .

16 m 50 m 150 m 4 0 0 n

Figure 5.6: CF: Corres{)oucliug Row: Cache Perform ance

C
orresponding

Row
Perform

ance
E

valuation

C hapter 5. Corresponding Row Cycle-Chasing Transpose

5.9.4 Performance Evaluation of Cache-Friendly Al
gorithm

Cache and TLB perform ance of the Cache Friendly Corresponding Row

algorithm as outlined in Section 5.6 is shown in com parison to th e Saad

algorithm in Figure 5.6. Again 5.6(a) show's the relative num ber of LI

misses incurred by the two algorithms, (b) shows the number of L2 misses,

(c) the num ber of L3 misses, and (d) show's the relative num ber of TLB

misses of the tw'o algorithm s incurred while transposing the 259 m atrices

in our test suite.

It is very informative to com pare these four graphs to the four graphs

in Figure 5.5 which show' the cache and TLB perform ance of the Normal

C orresponding Row algorithm im plem entation which uses two separate

roir.offsets[] and correspJahle[] arrays. C om paring Figure 5.6(a) with

Figure 5.5(a) and Figure 5.6(b) with Figure 5.5(b) we can see the l^enefit of

combining the two arrays in term s of reduced LI and L2 cache misses. The

Cache friendly Corresponding Row algorithm produces, on average 87% of

the LI cache misses and 84% of the L2 of the Saad algorithm. A reduction

of 16% and 11% respectively compared to the Normal Corresponding Row.

T he Cache Friendly algorithm has less of an im pact on the L3 cache

and TLB misses. There is still a slight decrease of 2% to 65% of the L3

cache misses and a reduction of 6% to 71% on the num ber of TLB misses

compared to Saad. Once again we can see from Figure 5.6(c) th a t there is

an ex tra decrease in L3 cache misses for m atrices sm aller th an 2 million

non-zero values. As discussed above, these sm aller m atrices are of a size

which require a similar amount of memory to that which is available in the

L3 cache. As such, as we will see below, there are very few L3 misses when

transposing these m atrices so even small I’eductions in m em ory size can

make a big impact here.

It is clear from a cursory glance at the graphs in Figure 5.6 th a t the

Cache Friendly Corresponding Row algorithm is generally much more

efficient in term s of the L I, L2 and L3 caches and TLB usage. This shows

why the algorithm j)erforms well in Figure 5.3 where the algorithm performs

1.34 Space T im e Efficient Sparse M atrix Transpose

5.10. Factors Influencing Cache Performance

the transpose of the 259 matrices in, on average, 90% of the time of Saad.

Although the Cache Friendly algorithm has better LI and L2 reuse,
this (along with the small improvement to L3 and TLB) only results in an

average reduction of 2% in execution time from 92% to 90% compared to
Saad. It would appear that the L3 and TLB performance (along with some

other factors) have a larger impact on performance than the LI and L2

caches do. As discussed in Section 5.9.3, the reduction in overall memory

usage (working set) of the Corresponding Row’ algorithm results in better

L3 and TLB reuse compared to Saad, thus reducing its execution time.

5.9.5 Sum m ary of Norm al and Cache-Friendly Eval
uation

As we have seen from the last two sections, both im plementations of the
Corresponding Row algorithm show a marked improvement in execution
time compared to the Saad algorithm while only using, on average, 21%
of the memory of Saad. The array interleaving of the Cache Friendly

im plem entation does give it a slight performance advantage, as such, we
will just be using the Cache Friendly implementation of the algorithm for
the remaining experiments and discussions in this document.

5.10 Factors Influencing Cache Perform ance

The graphs in Figure 5.6 in the previous section show the cache and TLB

performance of the Cache Friendly Corresponding Row algorithm compared
to Saad. These graphs are good for comparisons, however they do not

give a true representation of the actual numbers of hits and misses of the

algorithm. Showing the actual numbers of cache hits/misses is difficult due

to the enormous range of m atrix sizes and hence measiu'ements. Instead
we can show, for example, the number of LI cache misses the algorithm

encounters per non-zero element in the matrix. We do this by taking

the to tal number of LI misses the algorithm incurs during the transpose

and divide tha t by the number of non-zeros {nnz) in the matrix. Thus

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 135

C hapter 5. Corresponding Row Cycle-Chasing Transpose

normalizing the num ber of LI misses compared to the size of the m atrix.

F igure 5.7 thus shows the num ber of L I, L2, L3 and TLB misses per

non-zero elem ent in each m atrix incurred by the Cache Friendly C orre

sponding Row' A lgorithm wdiile transposing th a t m atrix . T he cache and

TLB perform ance num bers shown in all these graphs are the (norm alized

per element) num ber of misses incurred during the entire transpose opera

tion, including building the w^ork and lookup arrays and the cycle chasing

transpose.

Figure 5.7(a) shows th a t there is a large num ber of LI cache misses for

most of the m atrices with the m ajority of inputs causing between 4 and 8 LI

cache misses per non-zero element in the m atrix. This is a very large number

of cache misses. All of the in-place cycle-chasing transpose algorithm s suffer

from poor cache and TLB perform ance, th is is because nm nerous arrays

are accessed sequentially and random ly with very little reuse. For example,

the corresponding row algorithm scans the <r){nm) size coLindexesl] array

to l)uild the nen'.row.ptrfi[] and rou' .offsets[] arrays, then scans bo th

the rieu'_rou'_p/rs[] and old-roii'-ptrs[] arrays to build the correspJahle[].

(The correspJahle[] and roii'^offsets[] are of course combined in the cache

friendly im plem entation). T he algorithm then random ly jum ps around

the coLindexesl] and rwn^zeros[] arrays while chasing cycles and also

sem i-random ly accesses the Jieu'-row.pij'fi[] oULrou'-ptrs[], row-offsets[]

and correspJable[] arrays at each jum p. This all results in a large number

of cache misses.

There is a very wide scattering of m easurem ents of LI cache misses for

the Cache-Friendly C orresponding Row algorithm in Figure 5.7(a) wdth

no clear trend apparen t. T here is a slight suggestion of an increase in

LI misses as m atrix size increases from left to right, however tliere is no

obvious correspondence. T here are also a num ber of m atrices (of a w'ide

range of sizes) which have inexplicably low num bers of LI cache misses

w'ith m any having less th an 1 cache miss per non-zero m atrix elem ent. A

surprising result given th e com plexity of the algorithm described in the

above parag raph . We w-ill investigate these m atrices fm 'ther, exam ining

the perform ance of the algorithm s while transposing them in the following

136 Space ^ T im e Efficient Sparse M atrix T ranspose

R
obert

C
rosbie. The

I'liiversity
of

D
ubH

n. Trinity
College

137

Corresp Row (CF) vs. Saad-lP LI C ache M isses per Element Corresp Row [CF) vs. Saad-IP L2 C ache M isses per Element

11

10

9

Leoeod

C orresp Row |CF]

' O

- ^ . 7 . " a , -

■ *-0 -

1 .5m 2 m

Matrix Size (million nnz) <LOG scale>

(a) LI Cache Mis.ses [ier Element

” r L m end

Corresp Row [CF]

0

■ ■■ - c ; c

® ■ V '
' o . 0 ' ■ ■■'

o CD

Matrix Size (million nnz) <LOG scale>

(b) L2 C'ache Misses per Element

C orresp Row (CF] vs. S aad -lP - - L3 C ache M isses per Element

Legend
C orresp Row [CF]

' t f - ' F #

O ' ^ '

j £ _
16 m 50 m 150 m 400 n

Maiiix S ize imitlicn nr^z) < \.0G scale>

(c) L3 C’ache Misses per Element

Corresp Row (CF) vs. S aad-IP - • TLB M isses per Element

C orresp Row (CF)

o ,3^

.-ot.irjrVri
2 m

Ma\nx S ize (miWion nnz^ <LOG scate>

(d) 'I'LB Misses per Element

16 m 50 m 150 m 400 m

Figure 5.7: CF: Corresponding Row: Cache Performance per Element

5.10.
Factors

Influencing
Cache

Perform
ance

Chapter 5. Corresi)oiiding Row Cycle-Chasing Transpose

section and in Section 7.4 in Chapter 7.
The L2 Cache Misses of the Cache Friendly Corresponding Row' are

shown in Figure 5.7(b). Again there is a very wide scattering of measure
ments w'ith most inputs incurring between 3 and 6 L2 cache misses per
non-zero element in the matrix. There is a slightly stronger suggestion
here of an increase in L2 misses as matrix size increases from left to right
but still not quite a trend. Again there are a large number of matrices (of
a wdde range of sizes) which have very loŵ numbers of L2 cache misses,
below 1 or even V2 of a cache miss per non-zero element which is very low
compared to other matrices of comparable size.

The L3 cache misses of the Cache Friendly Corresponding Row algorithm
are shown in Figure 5.7(c). Here w'e see that there is almost a trend in
L3 misses increasing in proportion to increases in matrix size. Certainly
for the smaller matrices there are very few (or even zero) L3 misses per
non-zero element. This is not surprising given the size of the L3 cache as
discussed above.

The number of TLB misses per non-zero element in the matrix are
shown in Figure 5.7(d). There is a very wide scattering of TLB misses
showing that the in-place cycle-chasing transpose is not very TLB efficient.
There is no significant trend in the graph apart from the slight increase in
TLB misses as matrix size increases from left to right. Most matrix inputs
incur between 1 and 4 TLB misses per non-zero element. Again there are a
certain number of matrices which have apparently inexplicably good TLB
performance having zero, or close to zero TLB misses per non-zero element
in the matrix.

For the graphs in Figure 5.7 we divided the total number of Cache/TLB
misses by the total number of non-zeros (nnz) in the matrix. This removed
the dominating influence of the huge matrix size from the measurements.
We can still however see that there is a strong correlation betw’een matrix
size and cache performance, particularly for the L3 cache and to a lesses
extent the L2 cache.

There are however other factors which influence the performance of the
transpose algorithms.

138 Space Time Efficient Sparse M atrix Transpose

5.11. Cycle Length and Cache Performance

5.11 C ycle Length and Cache Perform ance

In the last section (5.10) we examined the cache and TLB performance

per non-zero element in the m atrix of the Cache Friendly Corresponding

Row' algorithm. When we accounted for the major influence of the matrix
size by looking at cache performance per element we found that there was

still a certain amount of influence of the matrix size on cache performance,

particularly for the L3 cache. However there nuist be other factors which

influence cache and indeed execution time.

Deeper analysis of the operation of the Cache Friendly Correspond
ing Row' algorithm , examining metrics and covinters, shows tha t there is
something else wdiich has a greater relative influence on the cache/TLB

performance of the Cache Friendly Corresponding Row transpose algorithm.
Intuitively, the length of the chains w'e process during the cycle chasing
transpose will have an influence on the cache performance, and hence
execution time, of the cycle-chasing algorithm. If we are chasing a short
chain, then after just a few jum ps w'e will quickly return to the starting
row. which will hopefully still be in the cache. Subsequent chains may then
jum p to rows which were visited by the previous chain and which have a
better chance of still being in the cache. W ith longer chains, every time we
jump we are jumping to a new row which has less and less chance of being
in the cache the more times we jump. W hat's more, when we finally finish
this long chain and jump back to the starting row, it is likely to have been
flushed from the cache at this point.

Cycle chains can be extremely long, they are not just limited by the

number of rows or colunms in the matrix, they can be almost nnz elements
long, transposing nearly the whole matrix in one chain. The longest cycle

encountered in our test suite was while transposing the nlpkkt200 matrix.

A 16,240,000 X 16,240,000 square (triangular) m atrix wdth 232,232.816

non-zero elements. There were just 22 cycles chased wdiile transposing

this matrix, the longest was 149,827,091 elements long, transposing 64.5%

of the m atrix in ju st one cycle. The longest cycle by relative length was

wdien transposing the aJ^shelllO matrix, a 1,508,065 x 1,508.065 m atrix

R obert Crosbie. T he l^niversity of D ublin. T rin ity College 139

C hapter 5. Corresponding Row Cycle-Chasing Transpose

with 27,090,195 non-zero elements. A 27,047,251 element chain transposed

99.8% of this m atrix in ju st one cycle.

F igure 5.8 shows the L I, L2, L3 and TLB misses per m atrix non-zero

elem ent of the Cache Friendly C orresponding Row’ algorithm in term s of

the average cycle length. T his is the sam e d a ta from Figure 5.7 ju st w ith

the d a ta ordered along th e x-axis by the average cycle length ra the r than

the m atrix size {nnz).

T he graphs in Figure 5.8 show a clear trend in cache and TLB misses

increasing as th e average cycle length increases. T he trend is certain ly

very evident in (a) L I C ache misses, (b) L2 Cache Misses and (d) TLB

Misses. In each of these th ree graphs there is somewdiat of a scattering of

m easurem ent betw^een th e average cycle lengths of 100 and 10,000. This

is possibly because a t these levels, such average cycle lengths could be

a very large p roportion , or indeed very sm all p roportion of the num ber

of elem ents in th e m atrix , hence th e variability. As such, some of these

averages m ay not be rep resen ta tive of the cycles th a t are chased when

transposing those p articu la r m atrices. Sm aller m atrices are also likely to

have sm aller average cycle lengths and conversely larger average lengths

for larger m atrices. F u rth e r analysis of s tan d a rd deviations or perhaps a

geom etric m ean might shed some more light, however, there is still a very

clear trend and correlation between the cycle length and cache performance.

Again, the num ber of L3 cache misses shows th a t for sm aller m atrices,

there are naturally a very small num ber of L3 cache misses. However above

an average cycle length of about 50,000 elements, the num ber of L3 cache

misses s ta r ts to increase as the average cycle length increases.

Finally, in each of these g raphs there is an anom aly w'hich we have

om itted to m ention until now. To the left of each of the 5 graphs there is a

cluster of m atrices which all have a very small average cycle chain length

between ju st 1 and 2 elem ents long and which also have very low numbers

of cache and TLB misses. The m ajority of the m atrices which we identified

in the previous section as having unusually low num ber of Cache and TLB

misses are now clustered in the lower left corner of each of the graphs (see

also Figure 7.12.). The reason why these m atrices have such short average

140 Space Time Efficient Sparse M atrix Transpose

R
obert

C
rosbie. The

U
niversity

of
D

ublin. Trinity
C

ollege

Corresponding Row [CF] ■ Li Cache Misses per Element for Average Cycle Length Corresponding Row [CF] L2 Cache Misses per Element for Average Cycle Length

Leoend
Corresponding Row |CF]

-
0 ^

0
0 ,

' i -

1 10 1 00 1.000 10.000 100.000 1 million 10 million
Average Cycle Length <LOG Scale>

(a) LI Cache M isses per Elem ent

Corresponding Row [CF] L3 Cache Misses per Element for Average Cycle Length
10

Corresponding Row [CF]9

8

7

6

5

4

3

2

1

0
1 10 100 1.000 10,000 100,000 1 million 10 million

Average Cycle Length <LOG Scale>

(c) L3 C-ache M isses p('r Eloincnt

10

9

8

7

6

5

4

3

2

1

0
1 10 100 1,000 10.000 100.000 1 million lOmillion

Average Cycle Length <LOG Scale>

(b) L2 C ache M isses per E lem ent

Corresponding Row [CF] TLB Misses per Element for Average Cycle Length
10

9

8

7

6

5

4

3

2

1

0

Corresponding Row [CF]

1,000 10,000 100.000
Average Cycle Length <LOG Scale>

(cl) I ’LB M isses per E lem ent

Leoend
Corresponding Row (CF]

■ f ? - # ■

g % - 1
a ^

Q .Q
 ̂ ■■

0 '̂
C f - ' 0

lii 1 i 1 1 1

Figure 5.8: CF: Corresponding Row: Cache Misses vs. Avg. Cycle Length

5.11.
Cycle

Length
and

Cache
P

erform
ance

C hapter 5. Corresponding Row Cycle-Chasing Transpose

C orresponding Row [OF] - Execution Time (ns) p er E lem ent for A verage Cycle Length

600

i 500
c o

(0 o
§ 400

c
0)
E «
u 300
c
Q.

£
c 200

3

LU
100

0

Figure 5.9: E xecution T im e of the C ache-F riendly Corresponding Row algoritlm i in

nanoseconds per non-zero m atrix elem ent com pared to the average cycle length when

transposing llie m atrix. T here is a clear correlation betw een average cycle length and

execution tim e. N ote that a nanosecond is the length of tim e o f two processor cycles in

the experim ental machine (Clock speed 2GHz).

cycle lengths is because they are "'Structurally Symmetric'' . They are not

actually symmetric, but they have the layout of a synnnetric matrix. W hen

an elem ent is moved, the element a t the destination position always ju st

needs to be moved back to the s ta rtin g row, hence the longest cycle is 2

elem ents. T his is the reason th a t these m atrices have such good cache

perform ance and can be transposed far m ore efficiently th an m atrices of

com parable size. These structu rally sym m etric m atrices will be discussed

further in Section 7.4.

5.12 Summary

In th is C h ap te r w'e introduced our C orresponding Row In-Place Sparse

M atrix T ranspose algorithm which transposes a sparse m atrix in-place

w ith only 0 (n) memory overhead while m aintaining the &{nnz + n) tim e

com plexity of th e existing sparse transpose algorithm s. This is done by

Leoend
C orresponding Row [CF]

1 10 100 1.000 10.000 100.000 1 million 10 million

A verage Cycle Length <LOG Scale>

142 Space & T im e Efficient Sparse M atrix T ranspose

5.12. Summary

using a Corresponding Row lookup table to find the old.jrow-index of an
element as we move it during cycle-chasing. We show how we can search

and update this table in amortized 0(1} time.

The Corresponding Row algorithm reduces the memory overhead of the

transpose to 21% of the Saad-IP algorithm. The Normal Corresponding

Row algorithm transposes the 259 matrices in the test suite in 92% of the
time of Saad on average and the Cache Friendly version transposes the

matrices in 90% of the time of Saad.

W’e performed extensive experimental analysis of the performance of the

algorithm using hardware counters to monitor cache and TLB misses. We
can see how the cache performance in relation to the average cycle length

as shown in Figure 5.8 influences the execution time in relation the average

cycle length. Figure 5.9 shows the execution time of the Cache Friendly

Corresponding Row algorithm in nanoseconds per non-zero element in the
matrix as a function of the average cycle length of the chains chased while

transposing the matrix. This graph shows that there is a clear correlation
between the length of the cycles chased and the execution tim e of the
transpose.

We have learned from the in-dei)th analysis and testing with hardware

counters and the results dem onstrated in Figure 5.8 and Figure 5.9 tha t
short chains in the cycle chasing transpose lead to better cache performance
and indeed reduced execution time. C hapter 6 addresses the c}uestion of

how to use this knowledge to design a more efficient m atrix transpose
algorithm.

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 143

id-1:'

i - - I ■ ' ■ '
rfw I* 1 ■■,♦,•- V '

‘ *■ K r ' l i - r ■“ V, -!
II

I r ■

y . .,V ^ . l iS j ; .* ;! , J L ! 4 > . > ■.
i I • ^ • • . , 1 '4. - i > V j- t V - -fc. ^ ^ ^

. ■' ■- ■ I- ̂ ■*■■ ■

r' 9 -"i'^

. ̂ - I -jm ^ W •, > ;. * - r “ .. s " ■'. -^ d' -r '•= :s rS '» = I -3 •=• -• *-i rv -.^ ' y
■' _ I ' II ■' " _n

p

I., i! ^
t ■

■■

■ -r h

■ i - " ■' ■"

■ - » i - H p .'C ^ ' ■?r r.! -. >1 ■

fi t

j
•Jil

I

4i -t.

: ^ ^ r I f » ' - T - . V . . T i» . . ■ I, "̂ ■■ ■ ' — t ' . ■Jf

■ 3 f c ■■ ’t o n . V i * ,.•» " ^ j I - ^ ■ * * " 1 1 ^ ^ +• ' ' *• ? I V b - ■—l i - ■ - I J t fcp? J
1 , ' ‘ ̂ - - - I _ -L 1 - - '

- ^ , ^ " j j * - _ " i i^Ti ito , . ' . r_';'i ' ■ '■ i | U" V ' f . ^ S ’ ' ■ *.: ' ■' '■

; . ; . . v ; y . v :
: f i

____________________ Chapter

HyperPartition Sparse Matrix
Transpose

In Chapters 4 and 5 we introduced a number of algorithms based on our
Generic In-Place Algorithm (4.1) which reduced the memory overhead of
the in-place sparse matrix transpose from a space complexity of 0(rinz) for
the Saad algorithm and 0(nnz + n) for Out-of-Place, to just 0(n). For the
largest matrices this reduced the extra workspace memory required during
the transpose by over a Gigabyte (See Table A.3). These culminated in
the corresponding row cycle chasing transpose which not only has a nmch
lower memory overhead of 21% on average (see Figure 5.1) than Saad, the
existing in-place algorithm, it also performs the transpose operation more
efficiently taking just 90% of the execution time of Saad (Figure 5.3) for
the sample input matrices.

As discussed previously, analysis with hardware counters demonstrated
that the reason for the improved performance, despite being more com
plicated, is due to improved locality from smaller work arrays and hence
reduction in cache and TLB misses. In Sections 5.10 and 5.11 we investi
gated the influence of the cycle length on the cache and execution time of
the in-place cycle-chasing transpose with corresponding row lookup table.
We found that there was a correlation between the average lengths of the
cycles and the cache performance of the algorithm, and hence with the
performance of the algorithm in terms of execution time.

Analysis shows that we could improve the performance of the in-place
transpose algorithm if we could reduce the nmnber of cache and TLB misses
occurring. Reducing the length of the cycles would improve locality and
improve cache and TLB performance.

This Chapter introduces our new Sparse matrix storage format: The
HyperPartition, (or HypCSR) structure. The HyperPartition structure
allows us to shorten the length of the cycles while performing the in-place

R obert Crosbie. T he T n iversity of D ublin. T rin ity College 145

Chapter 6. H yperPartition Sparse M atrix Transpose

cycle-chasing transpose. This gives improved cache reuse and reduced

execution time while also drastically reducing the memory overhead of the

algorithm. We discuss how' to perform the in-place sparse transpose wdth

reduced memory overhead and improved execution time by converting to
the H yperPartition format, performing the H yperPartition transpose in

place, and then converting the m atrix back to the standard CSR format.

6.1 The H yperP artition Sparse M atrix For

m at

One way of reducing the cycle length w'ould be to group rows together
into blocks of rows, or Hyper Partitions'" of rows. We can then split

the cycle chasing algorithm into two parts. The first part moves each
element (if required) between HyperPartitions [blocks of rows] to its correct
HyperPartition, rather than moving elements betw'een individual rows. In

the second part of the algorithm we take each individual HyperPartition in
turn and move elements within that HyperPartition to their correct row in
the HyperPartition and correct position within that row. This second part
of the HyperPartition transpose can be combined with the Phase-H sorting

phase of the in-place transpose algorithm for efficiency.
Performing the transpose in this manner could increase the number of

times an element is moved. Elements are already moved multiple times
during the corresponding row in-place transpose: Once during the cycle-

chasing and possibly a num ber of times again during the sorting phase.
Improving cache performance at the cost of increased copies/moves of
elements is a common trade-off in cache efficient algorithm design. If the

H yperPartitions are big enough this w'ould greatly reduce the number of

cache misses in four ways:

1. Large H yperPartitions mean tha t there is a greater chance tha t an
element does not have to be moved.

2. Large H yperPartitions mean fewer H yperPartitions, which means

146 Space Sz Time Efficient Sparse Matrix Transpose

6.1. The HyperPartition Sparse Matrix Format

fewer destinations for an element to move to. Therefore it is more
likely that the destination HyperPartition (or part of it) is in the
cache.

3. These both lead to shorter cycles which means we come to the end of
a cycle quicker and then return to the next element in the original
row that needs to be moved, which is more likely to still be in the
cache.

4. The second phase of the HyperPartition algorithm operates on only a
single HyperPartition, and only reads/writes/moves elements within
that HyperPartition. This means that we are more likely to get cache
hits and it also opens up the possibility of performing this step in
parallel.

6.1.1 G rouping Rows

The question is how to represent the HyperPartition. We could recjuire
the u.ser to convert the CSR matrix to a hierarchical type structure which
would allow us to grouj) rows into blocks or HyperPartitions. However,
as outlined in our aims we want our transpose algorithms to take the
standard CSR/CSC format matrices without requiring the user to modify
the structure of their matrix. The cost of conversion would not be worth it
for an 0{nnz) operation such as transpose. Indeed, copying the matrix to
another internal structure would be inefficient and use additional memory
which w'e are trying to avoid.

We could use an additional array of order 0{^/k) to group rows together,
however after moving an element to a new HyperPartition we somehow
need to record the row within that HyperPartition that the element belongs
to. In order to store this data for every element we w'ould need an extra
array of order 0{nnz) . We would prefer not to allocate any more additional
memory than is required and we certainly do not want to p\ish our space
complexity back to 0{nnz).

R obert C rosbie, T h e U niversity of D ublin. T rin ity College 147

Chapter 6. H yperPartition Sparse M atrix Transpose

7 b i ts f re e 7 b i ts s to le n 7 b i ts - lo w c o l in d ex

2 5 b i ts u se d 18 b its r e m a in in g - H y p e rP a r t i t io n id

(a) (b)

Figure 6.1: Steahng bits from the 32bit integer 27,993,600

6.1.2 Unused D ata in CSR Sparse M atrix Format

There is another option. There is in fact some additional unused data

within the standard CSR and CSC structures which we may be able to

exploit. We know that all the bits in the nori-zeros[] array are unavailable
as they are all being used to store a “double” (or similar) variable for

the value of each element. How'ever, there is also the colJndexes[] array
which is typically an array of integers. In most current implementations
an array of 32-bit integers is used. The largest (by n) m atrix in ovu'
set of sample matrices from the Florida Sparse M atrix Collection (see
Section 3.6.2) is the Schenk/nlpkkt240 matrix. nlpkkt240 has 27,993,600
rows. 27,993,600 columns and 401.232,976 \on-zeros. As such, the largest
value stored in the column indexes array will be 27,993,600 and given that
[/oge(27,993,600)] = 25 and th a t 2"® = 33,554,432, it therefore only takes
25 bits to store all the possible row' indexes. This means that there are at
least 32 — 25 = 7 bits (assuming unsigned integer) which are left miused in
every one of the nnz indexes in the column indexes array.

We can see this in Figure 6.1(a). The colunm and row indexes require
25 bits to represent all their possible values, leaving seven bits unused in

the 32-bit integer. In Figure 6.1(b) w'e could choose to steal all of these

T O P seven bits to store the row id of the element within the HyperPartition.
After an element is moved during transpose the bottom seven bits will

become the column index (or new' row' index) of the element within the

partition. This leaves the 18 bits in the middle which are the HyperPartition

id of the element. (The H yperPartition id is accessed by masking the top

and bottom seven bits and right shifting - This is described in detail later).

1 4 8 Space T im e Efficient Sparse M atrix T ranspose

6.1. The HyperPartitioii Sparse M atrix Format

W ith 18 bits for the H yperPartitioii id, we therefore have 2'^ = 262,144
HyperPartitioiis.

By exploiting these unused bits in each of the entries in the colJndexes[]

array we can record which row within each HyperPartition each element is in.

For the largest matrix nlpkkt240, we can steal seven bits, therefore for this

m atrix we can have x = 2^ = 128 rows per HyperPartition. Thus reducing

the number of locations an element can be moved to from 27,000,000 to

just 211,000, a significant reduction in the number of places that a non-zero

value can be moved to. O ther matrices have an even larger reduction and
for matrices with fewer rows we could also have even larger HyperPartitions.

The second largest m atrix in the test suite is Fluorem/HV15R which is a
2,017,169 X 2,017,169 m atrix with 283,073,458 non-zeros. In this m atrix

it is possible to steal 11 bits meaning we can put 2,048 rows in each
H yperPartition and reduce the number of locations an element can be

moved to from ~ 2 million to just ~985 and also the possibility tha t any

jum p would end a cycle from ~283 million to ~138 thousand. Stealing 11
bits from HV15R reduces the average cycle length from 159.567.3 to 1,177.5
and the longest cycle from 20.982,531 to 7,627,015 which led to a reduction
in total execution time of the full transpose (cycle chasing and QuickSort)

from 115.6 seconds to 31 seconds (just 26.8% of the original execution
time). The number of moves dining the cycle chasing was reduced by only

0.05% from 283.073,458 to 282,908.847, a reduction of just 164,611, clearly
showing that the main benefit is from improved locality.

6.1.3 The H yperPartition Structure

Figure 6.1 shows our matrix M in the CSR format again. Figure 6.2 shows

the same m atrix converted into the HyperPartition CSR format.

The non^zeros[] array remains unchanged as the elements remain in

the same order within the matrix. The row.ptrs[] pointers array has been

replaced with a hyp.pfrs[] array. In this small example we are stealing

one [b = 1) bit giving two rows per H yperPartition. Therefore, in this

representation there are three HyperPartitions which start at array locations

R obert Crosbie. T h e U niversity of DubHn. T rin ity College 149

Chapter 6. HyperPartition Sparse M atrix Transpose

0, 5 and 10, respectively. The colJjidexesl] array has been updated to
also include the ''HyperPartition row number'' of each element within each

HyperPartition.

old row p trs = 0„ ■)“ 1 5. 73 10. 12,
non_zeros = a b c d e / 9 h i J k I in n 0

co L in d e x es = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

Example 6.1: Matrix M in CSR representation

old_hyp_ptrs = 0„ 5j lÔ
non_zeros = a b c d e f 9 h i j k I m n o

coL in de xe s = 0:0 qA i;0 i- l i 5 o:l O:̂ lO i 3 i 4 o:4 o;5 i J i.4 i.

Example 6.2: M atrix M in HyperPartition CSR representation

The H yperPartition th a t an element is in is found in this case by
taking the row index of the element and right shifting by {h = 1) bit.

The HyperPartition row number is found by taking (masking) the least
significant bit of the element’s row index. The HyperPartition row number
for each element can be seen as the subscript before the colon (:) in the

colJndexes[\ entry for each element in Example 6.2. As only one bit is being
stolen, the HyperPartition row number can only be 0 or 1. 0 for the first row
in each H yperPartition and 1 for the second. In Example 6.2 the element
at position 4 with value ‘e ’ was in row 1 but is now in HyperPartition 0, so

its colunm index has been updated to contain (i:5) to indicate that it is in

row 1 w'ithin H yperPartition 0 and has colunm index 5.

Figure 6.2 shows an example of how an element is converted to Hyper
P artition format. In this case using two places of decimal (base 10) for

simplicity. The element has row index 28,362 and colunm index 19,079.
The low row digits (62) are masked off from the row index and added to

150 Space T im e Efficient Sparse M atrix T ranspose

6.1. T h e H y p e rP a rtitio n Sparse M atrix F o n n a t

Row Index: 2 8 3 62 '=D> HypNum: 2 8 3

Col Index: 1 9 0 7 9 '= [> Col Index: 62 1 9 0 7 9

F igure 6.2: C onverting an elem ent to H y p erP a rtitio n using 2 decim al places

th e colum n index en try for th e elem ent in th e high order digits. T he H yper

P a r ti t io n n u m b er is found by righ t sh iftin g th e row index by tw o decim al

p laces to give 283. T h u s th is elem ent w'ill be in row’ 62 in H y p e rP a rtitio n

m n n b er 283.

A n ad d itio n a l benefit of th e H y p e rP a r ti tio n sp arse m a tr ix fo rm a t, as

can be seen from F igure 6.6, is th a t th ere is a huge reduction in th e m em ory

usage of in-place tran sp o se algorithm when using the H y p e rP a rtitio n form at.

T h is is because th e hyp.pt rs[] a rrays are m uch sm aller th a n the row-pt rs[]

a rray s , p ro p o r tio n a l to th e n u m b er of b its th a t w'e s tea l. Four a rray s a re

needed for th e H y p e rP a rtitio n transpose , th u s th e ac tu a l m em ory usage of

th e H y p e rP a rtitio n transpose is This could be ~ (^) ,

or d ep en d in g on th e b its ava ilab le in th e m a trix . T h is m em ory

overhead com pares very favovu’ably to th e ~ (3 n) visage of th e corresponding

row. th e ~ (n n 2) usage of S aad an d th e + 1}) usage of th e O ut-of-

P lace algo rithm . A ctua l m em ory usages for th e a lg o rith m s for a selection

of m atrices are show n in T able A .3.

6.1 .4 U sing th e H y p erP artition Form at

T he procedure for perform ing th e sparse m atrix tran sp o se using th e H yper

P a rtit io n fo rm at is as follows:

a) C onvert th e m a tr ix from C SR fo rm at to H y p e rp a rtit io n (H ypC S R)

fo rm a t.

b) Perform th e H y p erP artitio n cycle chasing algorithm to move elem ents

to th e ir correct H y p e rP a rtitio n .

R obert Crosbie, T h e U niversity of D ubhn . T rin ity College 151

Chapter 6. H yperPartition Sparse M atrix Transpose

c) Sort each of the HyperPartitions so the elements are in their correct
row and correct row order.

d) Convert the m atrix back to standard CSR format.

6.2 C onverting to H yperP artition Format

The procedure for converting from CSR format to the HyperPartition CSR

format [HypCSR] is shown in A lgorithm 6.1. The algorithm sets up the
m atrix and a number of variables and arrays so the H yperPartition cycle

chasing algorithm (6.2) can be used to transpose the matrix. The algorithm
takes an extra input of the steaLbits parameter which is the mnnber of bits

we are stealing from the colJndexes[] array to use as the ' 'HyperPartition
row number". Based on this input of the steaLbits parameter, the algorithm

first (Lines 2-9) calculates a num ber of integer variables, binary masks
and shift offsets which will be used later to perform the bit manipulations
necessary to massage the row and colunm indices into the HyperPartition
form at.

-e— sb — '

LOW_MASK: __
' — sb —

TOP_MASK: !
^ --------------------- 3 2 - s b ---------------------- -

BOT_MASK:

Figure 6.3: Bit Masks for converting to HyperPartition. sb = steaLbits

Figure 6.3 show which parts of the entry in coLindexes[] is isolated by

each of the three bit masks l o w ^m a s k . t o p _m a s k , b o t _m a s k and show’s the

length (32 — sb) of the rem a iu M ts offset.

T he variables, b it m asks and offsets are as follows:

152 Space Time Efficient Sparse Matrix Transpose

6.2. Converting to H yperPartition Format

remain J)its - The number of bits remaining which are required to store

the cohnnn index of each matrix entry. Note, for rectangular matrices
we need to leave enough bits to store both the maximum row and

cohnnn index, thus; remairi-bits > max{nrou'.bits, ncoLbits).

LOW_MASK - The bit mask required to get the low order bits from the
row index - these low bits become the row number of the element

w'ithin the HyperPartition which we will place in the top part of the

element’s coLindex[] entry.

BOT_MASK - The bit mask used to get the bottom part of the integer

which contains the column index of the m atrix entry.

TOP-M ASK - The bit mask used to get the top part of the integer which
contains the element's row number within the HyperPartition the
low order bits of the row index which have been right shifted to the
top of the integer.

roiL's^perJiyp The number of rows per HyperPartition =

n.old.hyp The number of HyperPartitions in the original input matrix.

u-neu'-hyp The number of HyperPartitions in the transposed matrix.

Figure 6.4 shows where the different information is stored in the entry
in the colJndexes[] array. The top ‘s 6 ’ bits (t o p _m a s k) contain the old

H yperPartition row (which row within the H yperPartition the element

is in). The bottom ‘32 - sb" bits (b o t . m a s k) contain the old column
index. The lower ‘ s 6 ’ bits (l o w . m a s k) contain the new H yperPartition

row number after the transpose. Finally the middle ‘32 — sb — sb' bits

(b o t _m a s k » remain Jbiis) contain the new HyperPartition id the element
is in.

Algorithm 6.1 then allocates the old.hyp.ptrs[\ and newJiyp^ptrs[\

arrays (Lines 10-11). The oldJ}yp.ptrs[] array contains pointers to the

s ta rt of each of the current H yperPartitions. It is built on lines 13-15 by

Robert Crosbie. The University of Dublin. Trinity College 153

Chapter 6. HyperPartitioii Sparse M atrix Transpose

-e— o ld J iyp j'o w — ----------------------------- ()ld_c(>l_index — ------

— new_hyp ------------ ne\vJiyp_ro\v —^

Figure 6.4; Where information is stored in the HyperPartition Format

taking every n.old.hyp^^‘ pointer in the old.row-ptrs[] array. The hnes 18-

25 are the core of the algorithm which convert the matrix to HypCSR. The

algorithm loops through each of the old rows in the CSR matrix. For each
row it gets the low order bits by masking the row numV)er. These bits

will become the row number of the element within each HyperPartition so
they are left-shifted to the top of the integer. The algorithm then loops
through each of the elements in the old row. The newJiyp tha t this entry

should be in is calculated by taking the column index of the entry and
right shifting it by steaLbits. The new^hyp is used to count the number of
elements in each of the new HyperPartitions by accumulating the count in

7}eiL'J}yp^ptrs[]. The row munber is then added by adding the low order
bits we isolated earlier to the top of the column index and storing the
combined number back in the colJndexes[\ array. Finally, the cunnilative

sum of the newJ}yp.ptrs[\ array is calculated on lines 27-29 in order to
convert from counts to new H yperPartition array pointers.

The algorithm for converting from CSR to HypCSR format is a 0 {nnz +
?;) operation. This is the same as the initialization of all the other in-
place algorithms. The only difference is th a t during the H yperPartition
initialization, the colJndexes[] array is updated to contain the low order

row bits in the top of each entry.

6.3 H yperP artition C ycle-C hasing Transpose

The next step is performing the cycle chasing algorithm on the matrix

stored in H yperPartition form at — moving elements to their correct Hy

perPartition. The procedure is just like the normal cycle chasing algorithm
except tha t we need to use a number of bit manipulations to get the column

index and HyperPartition row number of the element from the coLindexes[]

154 Space ^ T im e Efficient Sparse M atrix T ranspose

1

2

3

4

5

()

7

8

9

10

11

1 2

13

14

15

16

17

\H
19

20

21

22

23

24

25

26

27

28

29

30

31

■i2

33

6.3. HyperPartition Cycle-Chasiiig Transpose

ALGORITHM 6.1 : C onveit from CSR format to H yperPartition format
Input: Matrix M as in Data Structure 3.1. steal-bits
O utput; Matrix in HyperPartition CSR format
/ * C a l c u l a t e iiiiusk^ a n d o if sc ts * /

remainJbits (32 — steaLbits):
LO\V_MASK <— (OxFFFFFFFF » remainJbits)-,
(IxOOOOOO.if */

TO P_M A SK <— (l o w _ M A S K « remain-bits)',
OxIVODDOOd * /

B O T -M A S K (OxFFFFFFFF © TO P_M A SK);
oxo.'iffirtf * /

/* .Mlixiitc IlyperPcirtiticiii I’oiiitcrs */
rou'S-per-hyp ■«— pow{2, steaLbits)-,
_ - y s t n h * j

U-old-hyp <— old-urows % rows-per-hyp-.
M a tr ix . M * /

n-ueu'-hyp ■«— new-nrows % rows-per-hyp-,
M ‘ *■

Allocate: old-hyp-ptrs[ri-old-hyp + 1];
Allocate: neu’-hyp-ptrs[n-neu'-hyp + 1];
/* Build O ld I I v p o r l ’a r t i t io i i I ’oii ite r^ lining cvcrv r<m-s_pi in d ex in old-row- i i t f f i l] * /

for (0 < z < n-old-hyp) do
old-hyp-ptrs[i] ^ old-row-ptrs[i * rou'S-perJiyp\,

end
old-hyp-ptrs[n-old_hyp\ oldjrou'jptrs[old-nrows\-,

* P m I lie low k ' hit!- o l t h e row index in I he lo p k' l)it;~ o f . r i a r r a y * i

* AUo coun t t h e n u n ih e r o f e le m en ts p e r 1 h 'p e r P a r t it ion to liiiild tu i / _ / (r.s[] * /

for (0 < row < old-urou's) do
low-row-bits <— ((row fc L O W .M A S K) « re main-bits)-,
for (p <r- old-row-ptrs[row] : p < old-row-ptrs[roiv + 1] ; p •<— p + 1) do

new-hyp ((col-i7idexes[p] » steaLbits) + \)-,
coLindexes[p\ <— (coLindexes[p] | | low-row-bits)-,
new-hyp-ptrs[new-hyp] ■<— new-hyp-p1rs[new-hyp] + 1;

end
end
/ * (’u iimla t ivc s u m o f liyp c o u n t s to cr<*atc t i c t r r s [] - Also sf‘t h i j p ^ o f f s i f s [] * /

for (1 < hyp < n-new-hyp) do
new-hyp-ptrs[hyp] ■<— new-hyp-ptrs[hyp] + new-hyp-ptrs[hyp — 1];
hyp-offsets[hyp] new-hyp-ptrs[hyp]-,

end
. * Build th e ('o m *s |)ou(l iu^ How Lookuj) I 'ahlc */

build_corresp_table(o/rf_nrou'S', new-urows. old-row-ptrs[\, new-row-ptrs[\)-,

array. We also need to do some housekeeping when we move an element.
We must swap the row and column indexes and the 'row number hits' at

/ * Bit> r e m a in in g : :i2 - (i = 24 * /

/ * .\)a>k Low (jjvlcr hits :

/ * M as k nif^li O n i f f hits :

/ * Ma.sk B o t to m index:

/ * N u m row s pe r H y p e r P a r t i t i o n

/ * N u m 1 lyp< 'rPart it ions in Orig ina l

/* N u m Hvp<*rPar ti tious in Transpose

R obert C rosbie, T he U niversity of D ublin. T rin ity College 155

C hapter 6. H yperPartition Sparse M atrix Transpose

the top of the entry in the coLindexes[] array. Note: it is also necessary

to update the colJndexes[] entry even if the element remains in the same

H yperPartition.

The algorithm for j)erforming the In-Place HyperPartition Cycle-Chasing

Sparse M atrix Transpose is shown in Algorithm 6.2. The CSR to HypCSR

conversion A lgorithm (6.1) m ust be run first, then th is cycle chasing al

gorithm continues. The cycle-chasing algorithm (6.2) re-uses the binary

masks, ofTsets and H yperPartition arrays initialized during the conversion.

The H yperPartition cycle chasing s ta rts (line 2) by looping through

each of the new H yperPartitions just like the Corresponding Row in-place

Algorithm (5.3) loops through row's. The algorithm loops through each of

the elements in the new H yperPartition and copies the element into the “src’"

tem porary location (Lines 6-11). The old cohnnn index is found by masking

the entry for the element in the col Jndexes[] array with b o x . m a s k . A s in

the generic cycle chasing algorithm we look up the old H yperPartition that

the current element resides in by searching the corresponding HyperPartition

table using the current new-hyp as the key. We obtain lowbrows, the old

row’s least significant low order b its by m asking them from the top of

the integer in colJndexes[\ w ith t o p m̂ a s k and right shifting them down

by rem ain .b its to the bo ttom of the integer, lowbrows is used as an

interm ediary step for clarity and to prevent line wrapping. T he current

old row of the elem ent is calculated by right shifting the elem ent’s old

H yperPartition number to the top of the integer and then adding low.roivs.

target-hyp, the new H yperP artition th a t th is elem ent should be in is

calculated by taking src^col (which is the newjrow the element should be

in) and right shifting it by steal.bits.

We now have our trip le t of inform ation abou t the element; srcjvaU

src.row and src-col along w ith target^hyp, the H yperP artition th a t the

element should be moved to. T he algorithm th en s ta r ts chasing th is

element in ‘src’ as norm al on line 12 until it finds an element th a t should

be in cur^hyp, the new H yperPartition the algorithm started chasing from.

Line 14 finds the destination location d s t .x th a t it needs to move the

element in ‘src’ to. On lines 15-19 the old element at th a t location (dst.x)

156 Space Time Efficient Sparse Matrix Transpose

6.4. Sorting H yperPartition after Cycle-Chasing

is copied into the 'd s f temporary location using the same bit manipulations

as lines 6-11 to get the elements value, row index and column index

triplet of information. On lines 21-23 the element in ‘src’ is copied to the

arrays at position dst^x, and rou).offsets[] is updated to mark tha t this
element has already been moved. Line 22 is im portant. W hen updating

the colJndeses[] array we need to swap the old cohnnn index with the old

row index (aka: new col index) as always. How^ever we also need to swap

the low order bits from the old row index at the t o p of the integer with the

low order bits from the old column index (aka: new row index) in order

to know later which new row within the new' H yperPartition the element

needs to be in.
The algorithm then copies the row, col and val triplet from ‘d s t’ into

‘src’ and calculates a new target .hyp for this new element in src. The
algorithm then loops back to line 12 chasing this new element in 'src’ until
it finds an element which should be in the cur.hyp we started from, at
which point (lines 31-32) it copies that element in ‘s rc ’ back to position 'x'
in the original cur.hyp where we started chasing the chain. row.offsets[]

is finally updated on line 33 to indicate that that element has been moved.
The algorithm continues looping through each H yperPartition and each
(unmoved) element in each Hyj)erPartition until all elements have been
moved to their correct HyperPartition.

6.4 Sorting H yperPartition after Cycle-Chasing

At this point the algorithm has performed the cycle chasing such that all

the elements are in their correct ‘new’ H yperPartition as can be seen in
Example 6.3. Elements are however not necessarily in their correct new rows

within the HyperPartition, nor are they in the correct column order within
these rows. In Figure 6.3, the elements in the first Hyperpartition (hyp 0)

are actually all in their correct row's within the H yperPartition as can be

seen by the subscripts in their col-indexes[] entries, but they are not in the

correct order within each of the rows. Elements in row 0 are {a,h,c) where
they should be in the order [a,c,h). In row 1 elements (d .m ,/) should be

R obert Crosbie. T he U niversity of D ublin. T rin ity College 157

Chapter 6. HyperPartition Sparse M atrix Transpose

in the order {d j ,m) . In HyperPartition 2, elements are in the wrong rows.
Element ‘e ’ in row 0 should be in the second row in HyperPartition 2, and

element ‘r?’ in row 1 should be in the first row in the HyperPartition. The

ordered elements in HyperPartition 2 should be {b,j,k,n) and {e,l,o).
The procedure from here is to take each individual H yperPartition

and sort the elements of th a t H yperPartition into their correct rows and
into the correct column index order w ithin the rows. Due to the w'ay w'e

added the low order bits of the row number to the t o p of the integer in the

coUndexes[] array we can actually just re-use the QuickSort/InsertionSort

algorithm outlined in Section 4.5 to sort the H yperPartitions by simply
passing the H yperPartition segment of the tw'o arrays to the algorithm

where previously we passed just the segments of each of the rows. Note: We
are now using all the high order bits of the integers in colJndexes[] so it is
important that the sorting algorithms treat the entries in the colJ7}dexes[]

array as unsigned integers. We will investigate optimizations to this sorting
step further in Section 7.1 in the next Chapter.

Using both the row number and column index means tha t when w'e

sort the two arrays based on the full integer values in the coLindexes\]
array, then the sorting will arrange the elements into the correct rows in
the HyperPartition and also into the correct colunm order within each row,
at the same time.

The sorted H yperPartition m atrix can be seen in Figure 6.4. All the
Elements are now in their correct row and column index ordering within
each HyperPartition.

6.5 C onverting from H ypC SR back to C SR

After sorting the H yperPartitions, we then have to convert the m atrix

from HypCSR, the HyperPartition CSR format, back to the standard CSR

format. The procedure is show'n in Algorithm 6.3, it involves going through
each element in each new' H yperPartition and removing the low order new

row index bits from the elem ent's colJndexes[] entry. This is done on

line 15 by ANo’ing the entry with b o t . m a s k . We also need to count the

158 Space T im e Efficient Sparse M atrix T ranspose

6.6. Heuristic: Choosing Num ber of B its to Steal

num ber of entries in each of the new rows in the transposed m atrix in order

to rebuild the new-rowjptrs[\ array for the transposed m atrix. We do this

by taking the low' order row index bits w-e ju st removed (line 13) from the

colJndexes[\ entry, right shifted to the bottom of the integer and adding it

to the current H yperP artition num ber left sh ifted by steaLbits to get the

high order bits of the row index (lines 10, 13 and 15). The algorithm finally

does a cum ulative sum to tu rn the new' row counts into new.row.ptrs[] .

For efficiency we combine the sorting and HypCSR to CSR conversion

into the one procedure. After sorting, m any of the elem ents in this Hyper-

P artition are still likely to be in caches, so it is appropriate to then convert

th is H yperPartition in HypCSR format back into the standard CSR format

before sorting ano ther H y p erP artitio n which would likely overw rite the

cached data. As can be seen on line 8 of Algorithm 6.3, the algorithm goes

th rough each H y p erP artitio n and first calls th e H y p e r P a r t i t io n _ S o r t ()

routine on the appropriate segm ents of the non.zeros[] and coLindexes[]

arrays. For now' we are using the tw o-array Q u ickS ort/InsertionS ort ou t

lined in Section 4.5, we revisit the sorting phase again in Section 7.1 in the

next C hapter.

6.6 Heuristic: Choosing N um ber of B its to

Steal

The num ber of bits we steal in the H yperPartition cycle chasing algorithm

influences th e perform ance of the algorithm . In m any cases, particu larly

for large m atrices, stealing all the available b its seems like the best option.

However for smaller m atrices this could end up leaving us with a very small

num ber of very large H yperP artitions. In th e w'orst case we m ay end up

w ith a single gigantic H yperPartition containing all the rows in the matrix.

In this case the entire transpose operation would be done by just the sorting

phase - sorting the entire m atrix at once.

The only actual restriction on the num ber of b its we can steal is needJbits.

W here needJbits is the num ber of bits required to store rnax{m'ows, ncols).

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 159

Chapter 6. HyperPartitioii Sparse M atrix Transpose

i.e.

needMts — \log2 {rrMx{nrows,nco^s))^^

There must be at least enough bits remaining [remain Jbits > need.biis)
in order to represent both the largest possible row index and the largest

possible column index. Aside from this, we can steal anyw'here between

(0 < steaLbits < (32 — need.bits)). There is also httle point in stealing

any more than needMts, if needJbits = 12 therefore there are (32 — 12 = 20)
bits available to steal however stealing this many would leave us with a

single HyperPartition containing all the rows. The limits of the number of

bits tha t are available to steal are straightforward:

0 < steaLbits < (32 — needMts)

0 < steaLbits < needMts

need.bits = \log2 {max{nrows,ncols))'\

How'ever, actually knowing the best number to steal is more difficult.

Experimental analysis showed that the number of stolen bits w'hich produced
the best performance differed from matrix to matrix with no clear consensus.

The number of bits we steal, in combination with the relative dimensions
of the m atrix {nrows,ncols,nnz) influence the size and number of Hyper-
Partitions which in tu rn influences the relative performance of both the
cycle chasing H yperPartition transpose (Phase-I) and the H yperPartition
sorting (Phase-H). Pushing too much work into one phase or the other will
impact on performance. There are a number of naive approaches we could

take to choosing the rmmber of bits to steal. Some of the heuristics include:

N aive H euristics:

• Alw'ays steal the maximum number of bits

• Always steal the minimum number of bits

• Alw'ays steal (at least) ‘x ’ bits

• Alw'ays steal (at most) bits

160 Space T im e Efficient Sparse M atrix T ranspose

6.6. Heuristic: Choosing Number of Bits to Steal

As discussed above, stealing all available bits is good for some (large)

matrices but detrim ental to others. Stealing the minimum (zero) number

of bits is pointless. The other strategies of always stealing at least ‘x ’ or

at most ‘x ’ run into the same problem th a t it would be good for some

matrices but detrim ental to others.

6.6.1 R em aining B its H euristic

The number of bits we steal influences the structure of the matrix in three
W'ays;

1) The number of bits we steal determines the number of rows in

each H yperPartition. The size of the HyperPartitions then depends

on tlie average number of elements in each row which depends on the

sparsity of the matrix.

2) The number of bits remaining {remainJbits) controls the number
of H yperPartitions created as we put number of rows into
each HyperPartition.

3) Therefore the number HyperPartitions created is

Balancing these two variables is im portant for good performance of
the H yperPartition transpose. We can balance the number of and size of
H yperPartitions with the following relation which we call the Remaining

Bits Heuristic.

T he R em ain ing B its H euristic:

remnin^bits = {need^bits — steaLbits) > k

In other w'ords:

Steal as many bits as possible but always leave at least 'k ’ need.bits remaining.

The advantage of this heuristic is that it is agnostic of matrix dimensions.
It will keep a balance between the size of the HyperPartitions and number

of HyperPartitions regardless of m atrix dimensions.

R o b ert C’rosbie. T h e U niversity of D ublin , T rin ity College 161

Chapter 6. H yperPartition Sparse M atrix Transpose

We can see this in Figure 6.5 which shows that in in the 32—bit integer
number 7,694, there are 13 bits used and 19 bits tliat are available to be

stolen.

19 bits ava ilab le 13 bits used

Figure 6.5: Integer Bits Available in the number 7,694

In this case, although there are 19 bits available, for a ‘A’’ value of the

hemistic of k = 4, w'e would only steal nine bits, thus ensuring tha t there
are still four bits left in the row index. This would leave us with ~2'^ = 16
HyperPartitions with ~2® = 512 row’s per H yperPartition.

The Remaining Bits Hem istic is the only heuristic presented in the
HyperPartition experiments below'.

We can vary the ‘A’’ param eter to balance the work of the transpose
between the cycle chasing phase and the sorting phase. Using this heuristic
we have found from experim entation th a t the follow’ing values for the k
param eter of the remaining bits heuristic give good performance.

• A’ = 9 or k = 10 for Serial H yperPartition

• A’ = 5 or A- = 6 for Parallel H yperPartition

As discussed above, steaLbits also influences memory usage as it de
term ines the numljer of H yperPartitions and hence the size of the four

hyp-* arrays the algorithm needs. In all cases we steal enough bits and the
HyperPartitions are large enough tha t memory usage is negligible.

6.7 H yp erP artition M em ory U sage

As discussed in Section 6.1.3, the memory overhead of the H yperPartition
algorithm is 0 (7?) , however in practice it is just a tiny fraction of n depending

on the number of bits stolen, so could be of the order of ~ (^) or less.

This is evident from Figure 6.6. Even showdng relative memory usage of

162 Space T im e Efficient Sparse M atrix T ranspose

6.8. H yperParti t ion Transpose Execution Time

the H y p erP a r t i t io n algorithm com pared to Saad, the m em ory usage of

H yperPartition is just a flat line a t zero at the bo ttom of the graph.

In order to see the ineniory of the HyperPartition algorithm for different

matrices, Figure 6.7 shows a zoomed close-up of the bottom of the memory

usage graph from Figure 6.6. Given the memory usage for Saad is so much

larger and does not fit on the graph, we show two dotted lines representing

1% and 0.25% of the relative m em ory usage of Saad. Aside from three

outliers, the m em ory overhead of the H y p erP a r t i t io n algorithm for the

m ajority of inpu ts m atrices from our test su ite is well below the 0.25%

line. T he overall average m em ory usage of th e H yperParti t ion algorithm

for these matrices is 0.07% of th a t of Saad.

T he H yperP a rt i t ion algorithm perform s the In-Place Sparse M atr ix

Transpose with negligible memory overhead particularly compared to Saad

and O O P which for the largest m atr ix nlpkkt240 require up to 1,531 MiB

and 4,699 MiB respectively. HyperPartition uses a maximmn of just 3.3 MiB

for this lai'gest m atrix.

F igures 6.6 and 6.7 show the H y p erP a r t i t io n algorithm where we are

using the heuristic described in Section 6.6 where we always a t te m p t to

leave behind at least k bits in order for the H yperPartition Cycle Chasing to

be efficient. In this case we are using a value of k = 9, which we have found

experimentally to give good efficiency overall for the serial HyperPartition

algorithm across the sample matrices used.

Table A .3 on page 226 shows the num ber of b its which have been

stolen, left behind and rem ain available for a set of sample m atrices from

the test su ite when using the H y p erP a r t i t io n algorithm w ith the k =

9 heuristic. Table A .3 also shows the m em ory overhead of the various

transpo.se algorithms for the set of samj)le matrices.

6.8 H yp erP artition Transpose E xecution T im e

Figure 6.8 shows the execution t im e of th e H yperP art i t ion A lgorithm

relative to the Saad-IP algorithm. The H yperParti t ion algorithm is being

run serially with a heuristic setting of k = 9 and using the sini])le Two-Array

R obert C rosbie . T h e r i iiv e rs ity of D ublin . T rin ity College 163

C hapter 6. H yperPartition Sparse M atrix Transpose

H yperPartition (k=9) vs. S aad -iP - • M emory O v e rh ea d of Algorithm [Relative]

O

o
Eo
S

LeoervJ
S aad-IP

H yperPartition (k=9)
A verage: 0 .071%

4 m 8 m
Matrix S ize {million nnz) <LOG sca le>

16 m 50 m 150 m 400 m

Figure 6.6 : The relative memory usage of the HyperPartition Transpose (k = 9)
algorithm is negligible compared to Saad, only showing as a line along the bottom at
zero.

S 0 .0125

0
0 .0075

1 <]>
2

I 0.005ro
o

QC

H yperPartition (k=9) vs. S aad - iP - - M emory O v e rh ea d of Algorithm (Relative] • (C lose Up)

L eoend
0 .25 % of S aad -IP

H yperPartition (k=9)
A verage; 0 .071%

1 . j O f S a a d - i P

0.25 .. of S aad - lP

1 m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 40 0 m

Matrix S iz e (million nnz) <LOG sca le>

Figure 6.7; Close-up Relative memory usage of the HyperPartition Transpose (k = 9).
This graph shows two dotted lines to represent 1% and 0.25% of the memory usage Saad.

Most inputs use less than 0.25% with an average of 0.07%.

164 Space T im e Efficient Sparse M atrix T ranspose

6.8. H yperP artition T ranspose Execution T im e

HyperPartition (Quicksort - k=9 } vs. Saad-IP -- (Serial) Execution Time of Transpose [Relative]
5

4.5

4

"D
(TJ
« 3

(O ^
</>
o 2.5
E

I -

,2 2 ra
^ 1.5

1

0.5

1m 1.5 m 2m 4m 8m 1 6 m 5 0 m l 5 0 m 400 m
Matrix Size {million nnz) <LOG scale>

Figure 6.8: Serial execution time of HyperPartition Transpose {k = 9) with QuickSort
compared to Saad. I'he time complexity of HyperPartition is G(nnz + n) however
the performance is quite variable due to cache performance. HyperPartition is quite a
bit slower in some cases, however for a large number of matrices the HyperPartition
performs the transpose much faster than Saad showing the benefit of improved caching.

Quicksort from Section 4.5 for the Phase-II sorting part of the algorithm .

N ote th a t these graj^hs show th e full transpose tim e which includes b o th

th e tim e for th e cycle chasing tran sp o se phase and th e so rting phase for

b o th algorithm s.

In Figure 6.8 the graph shows the execution tim e of the algorithm using

th e p a ram ete r k = 9 for our Remaining Bits heiu'istic (Section 6.6.1). As

we will see in Section 6.8.2 th is gives th e best overall perform ance for the

serial H y p erP artitio n algorithm .

It is clear from the graph th a t for a num ber of m atrices the H yperP arti

tion transpose is considerably slower th an Saad. The m ajority of these slow

m atrices are the ''Structurally Symmetric'^ m atrices which we identified in

Sections 5.10 and 5.11. These structu ra lly sym m etric m atrices already have

very short cycle lengths and have very good perform ance for th e in-place

S aad and C orrespond ing Row a lgorithm s com pared to o th e r m atrices of

com parable size. These m atrices will be exam ined in d ep th in Section 7.4

Leaerxj
Saad-IP

HyperPartition (Quicksort - k=9)
Average; 115.7%

A

A

I I I 1 1

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 165

Chapter 6. H yperPartition Sparse M atrix Transpose

where we show th a t the reason for H yperPartition being slower for these

matrices is tha t switching to the H yperPartition format means tha t we no

longer get the two-element cycles and thus no longer enjoy the benefit that
Saad and Corresponding Row gain from the synnnetry.

In Chapter 7 we also propose methods to quickly identify and efficiently
handle these structurally symmetric matrices and improve the performance

of the algorithm when transposing them.

6.8.1 Excluding S tructurally Sym m etric M atrices
— For H yp erP artition Transpose E xecution T im e

Given tha t we know these S tructurally Symmetric matrices cause a partic
ular problem for the H yperPartition transpose and we show how to simply

identify and handle them in C hap ter 7 it is inform ative to see how the

H yperPartition algorithm performs on the other, non-synnnetric matrices.
Figure 6.9 shows the perform ance of the serial H yperPartition excluding
those m atrices which are structura lly synmietric. This figure again shows
the performance of the serial H yperPartition transpose w'ith a remaining
bits hem'istic value of k = 9. Varying the value of k had very little impact
on the overall performance of the serial H yperPartition transpose after the
structu rally sym m etric m atrices w'ere excluded. The value did alter the
perform ance of the algorithm for individual matrices, however for some
matrices it improved and others it degraded. The result of this is tha t the
average perform ance of the algorithm to Saad does not vary greatly for

different values of the k heuristic.

Figure 6.9 highlights a number of things that were somewhat obscured in
Figure 6.8. When we look past the Structurally Synnnetric matrices we find

that the H yperPartition in-place transpose is very efficient at transposing a
large number of these matrices. For quite a few matrices the HyperPartition

algorithm transposes the m atrix in less than 50% of the execution tim e

of Saad, wdiile using less than 0.25% of the memory. Overall the serial

H yperPartition algorithm transposed this subset of matrices in just 80.3%

of the tim e of the Saad algorithm.

166 Space ^ T im e Efficient Sparse M atrix Transpose

6.8. H yperP artition Transpose Execution T im e

H yperPartition (Q u ickso rt - k=9 } vs. S aad -IP - - (Serial) UnSym Execution Tim e of T ra n sp o se (Relative]

5

4.5

4

a 3-5

<5? 3

t 2 .5
.£

% 2

a>
oc 1.5

1

0.5

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

Matrix S iz e (million nnz) <LOG scale>

F ig u r e 6.9: Syn im etric M atrices E xcluded: Serial execu tion tim e o f H yperP artition

T ranspose {k = 9) w ith Q uickSort com pared to Saad for non stru ctu ra lly sym m etric

m atrices. T his is the sam e graph as Figure 6.8 just w ith results for sym m etric m atrices

o m itted . N o te : T h is figure and F igures 7.9, B .3 and B .4 are th e on ly figures w ith

m atrices excluded. A ll other graphs include results o f all m atrices in the test su ite.

There also seems to be a strong trend indicating th a t the H yperP artition

Transpose is becoming even more efficient th an Saad as m atrix size increases.

Fiu 'therm ore, th ere is ac tua lly a g rea te r th a n 50% reduction for m ost of

th e large m atrices. Coupled w ith the huge reduction in m em ory overhead,

th is is a very good resu lt. Recall th a t for th e largest m atrix , nlpkkt240,

O O P requires 4,699 MiB in m em ory overhead, Saad requires 1,531 MiB and

H yperP artition requires ju st 3.3 MiB and can transpose the m atrix in 80.7

seconds, ju st 36% of the execution tim e of Saad.

These resu lts clearly show th a t by perform ing th e in-place transj)Ose

using th e H y p erP a rtitio n form at reduced th e average cycle leng th which

led to im proved cache reuse and th u s m uch b e tte r execu tion tim e for a

large num ber of m atrices.

There are still a small num ber of m atrices for which the H yperP artition

tran sp o se perform s poorly which pulls up the average rela tive execu tion

tim e. However, do recall from Figure 6.6 (and refer to Table A .3) th a t the

Legend
S aad -IP

H yperPartition (Q u ickso rt - k=9)
A verage; 80 .6%

Robert Crosbie. The University of Dublin. Trinity College 167

C hap ter 6. H yperP artitio ii Sparse M atrix Transpose

H yperPartition transpose uses ju s t a tiny fraction of the m em ory overhead

of Saad, 0.07% on average. F u rther m ethods to im prove th e perform ance

of th e H yperP artition transpose will be investigated in C hap ter 7.

6.8.2 Serial Performance of the Remaining Bits Heuris
tic

Section 6.6 discussed th e 'remaining bits' heuristic which w'e can use to

de te rm ine th e num ber of b its th a t should rem ain beh ind after we steal

som e of the available b its when converting to th e H y p erP artitio n form at.

T h is p a ram ete r d irec tly influences th e trade-off betw een th e num ber of

H yperPartitions and the num ber of row s/elem ents per H yperPartition . This

in tu rn controls the trade-off in work done during the Phase-I cycle-chasing

p a rt of the algorithm and the P hase-Il sorting p a rt of the algorithm .

F igure 6.10 shows the influence of selecting different values of ‘A’’ on

the execution tim e of the Serial H yperP artition algorithm w ith QuickSort.

T he figure ju s t shows four values of k: k = 1, A' = 3, A' = 6 and k = 10.

Figure B .l in A ppendix B shows the perform ance for all values of k between

1 and 10.

We can see from Figure 6.10 and Figure B .l th a t the ‘A’’ value does not

have a very big im pact on the overall perform ance of Serial H yperPartition

w ith Q uicksort. Overall the perform ance of the algorithm transposing our

259 m atrices runs from an average relative execution tim e of 120% of Saad

w ith a p a ra m ete r of A’ = 1 to 115% w ith a p a ra m e te r of k = 10. T he

im provem ent is not d ram a tic b u t it is still a reasonable reduction of 5%.

Thus for Serial H yperP artition w ith QuickSort, the reconnnended value for

th e ‘A’’ heuristic is A = 9 or A’ = 10.

Closer inspection shows th a t for some individual m atrices as the num ber

of rem aining b its (as determ ined by the value of ‘A-’) increases, the execution

tim e perform ance improves. However, for o ther m atrices, as the value of ‘A’’

increased the execution tim e of the algorithm for these m atrices deteriorates.

Thus showing how this trade-off in work differs between m atrices. For some

m atrices the algorithm perform s b e tte r doing more of the work in the cycle

168 Space T im e Efficient Sparse Matrix Transpose

H
yp

er
P

ar
tit

io
n

(Q
ui

ck
so

rt

• k
=l

)

vs
.

S
aa

d-
lP

--

(S

er
ia

l)
E

xe
cu

tio
n

T
im

e
of

 T
ra

r>
sp

os
e

[R
el

at
iv

e]

H
yp

er
P

ar
tit

io
n

(Q
uc

kS
or

t
• k

=
3

)
vs

.
S

aa
d-

lP

--

(S
er

ia
l)

E
xe

cu
tio

n
Ti

m
e

of
Tr

an
sp

os
e

[R
el

at
iv

e]

6.8. H y p erP artitio n T ranspose E xecution T im e

(di-pees SA) 8UJI1 aAjjeiau (d l-P B B S SA) S U JIi 8A!JB(eu

(dl-Pees SA) SLuii SAijeiey (dl PB®S SA) 8 U I ! i 8A H B|8y

R o b e rt C ro s b ie . T h e U n iv e rs ity o f D u h U n . T r in i t y C o lleg e 169

Fi
gu

re

6.
10

:
Se

ria
l

H
yp

er
pa

rt
iti

on

wi
th

Q

ui
ck

So
rt

w

ith
;

k
=

1,
3,

6,
10

C hai)ter 6. H yperP artition Sparse M atrix Transpose

chasing phase and for o ther m atrices th e algorithm perform s b e tte r doing

m ore of th e work in the sorting phase. T his leaves us w ith an overall

perform ance th a t only improves slightly w ith larger ' k ' values.

Seeing how th is trade-off in work betw een cycle-chasing and so rting

influences perform ance, it shows th a t as we give more work to the sorting

phase it means th a t we should look at ways of improving the sorting phase.

This can be done in two ways; a) Perform ing the sort in parallel, which we

will investigate next and b) hnproving the sorting operation which we will

investigate in C hap ter 7.

6.9 Parallel H yperP artition Transpose

A side benefit of performing a larger proportion of the work of the transpose

in the Phase-II Sorting step is th a t the work of sorting each H yperPartition

is com pletely isolated from all the o ther H yperPartitions. This m eans th a t

it becomes incredibly easy to parallelize a large proportion of the transpose.

It has always been easy to perform the sorting in parallel, however as we

saw in F igure 4.9 in Section 4.5, it was only a sm all p ropo rtion of the

to ta l work. In which case, perform ing the Q uickSort in parallel would

not im prove g reatly on the overall execution tim e of the transj)ose. W ith

H yperPartition sorting there is nm ch m ore to be gained from doing th is in

parallel. Figure 7.1 in C hapter 7 shows the proportion of tim e being spent

on each of the cycle-chasing and sorting phases of the serial H yperPartition

transpose w ith QuickSort.

6.9.1 Parallel Sorting A lgorithm

Parallelizing th e so rting step is very s tra igh tfo rw ard as shown in Algo

rithm 6.4 which is a modified parallel version of A lgorithm 6.3. The easiest

way is sim ply to com pile w ith O penM P[D agum 98] enabled and to add

a “#pragm a omp p a r a l l e l f o r ” before the f o r O loop on line 3 in Algo

rithm 6.4. Setting openmp_num_threads (x) at the s ta r t of the application

will cause O penM P to au tom atically split iterations of the for loop across

170 Space & Tim e Efficient Sparse M atrix Transpose

6.10. Parallel H yperPartitioii Memory Usage

‘.r’ processor threads on the machine. This has the added benefit tha t the
HypCSR to CSR conversion routine will also rim in parallel. All the opera

tions on th e H yperPartitions are independent on the different processors

so they should not interfere w ith each other. However all processes write

to the sam e new.row.ptrs[] array when counting the new row indexes.

Therefore it is necessary to include a "#pragma omp atom ic” before this

increment on line 15 to ensure synchronisation.

Using O penM P is a quick and simple m ethod of parallelizing which

works quite well in this case as we simply wish to split the HyperPartitions

up between processors to be sorted independently. Some more focus on
the distribution of work, parallelization and synchronization with OpenMP

could lead to further improvements in throughput.

6.10 Parallel H yp erP artition M em ory U sage

Similar to Section 6.7 which showed the memory for the serial Hyper-
Partition transpose, this section shows the memory usage for the parallel
H yperPartition transpose with a heuristic value of {k — 6) compared to the
parallel Saad algorithm . A value of {k = 6) was chosen because values of
k = b and A' = 6 give the best performance for the parallel H yperPartition
transpose. As lower values of k mean tha t we steal more bits, we therefore
have a smaller number of larger H yperPartitions. This reduces the size of

the arrays used during cycle chasing which gives a lower overall memory
usage when k = 6.

Figure 6.11 shows the relative memory usage of the parallel H yperPar
tition transpose algorithm compared to the parallel Saad algorithm. Again

the memory overhead of H yperPartition is such a tiny fraction of Saad

tha t it just shows as a line on the bottom of the graph at zero. We show a

close-up of the bottom of the graph in Figure 6.12. Here again the memory

usage of Saad is so high th a t we ju s t show a do tted line for 0.25% of the

memory usage of Saad. The memory usage of H yperPartition at A- = 6 is

below this 0.25% line for all input matrices in our test suite and well below
this line for the majority. The average memory overhead is 0.016%.

Robert Crosbie. T he University of Dublin. Trinity College 171

Chapter 6. H yperPartition Sparse M atrix Transpose

Parallel HyperPartition (k=6) vs. Parallel Saad-iP - - Memory Overhead of Algorithm [Relative)

Legend
Parallel Saad-IP

Parallel HyperPartition (k=6)
Average; 0.016%

1,25CL

■O
CO

CO
o

a.

■D 0.75
Vx:
Q>
>

0.5
o
2
Q>

_>

iS
o 0.25
cr

1 m 1 , 5 m 2 m 4 m 8 m 1 6 m 50 m 1 5 0 m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 6.11: I’he relative m einory usage of th e Parallel H y p erP artitio n T ranspose
{k = 6) algorithm is negligible com pared to Parallel Saad. again, only showing as a line
along the bo ttom a t zero.

Parallel HyperPartition (k=s6) vs. Parallel Saad-IP -• Memory Overhead of Algorithm (Relative) ■ (Close Up)

Legend
0 ,25% of Parallel Saad-IP

Parallel HyperPartition (k=6)
Average: 0,016%

0-0035

a
0.003

0.25 ' . of Pafallel Saad-IP
0,0025

Q.

0,002

>
o 0.0015
&■
o
E

5 0.001

TO
a: 0.0005

1m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 400 m

Matrix Size (million nnz) <LOG scale>

Figure 6.12: Close-up relative memory usage of the Parallel H yperPartition Transpose
(k = 6). 'I'his graph shows a do tted line to represent 0.25% of the memory usage of Saad.
All inpu t m atrices use less th an 0.25% w ith an average of 0.016%.

172 Space ^ T im e E ff ic ie n t Sparse M a tr ix T ra n spo se

6.11. Parallel H yperPartition Execution Time

The memory usage of the serial and parallel HyperPartition algorithms

w ith Q uicksort are identical. However, the value of k for the remaining
bits hem'istic does influence the memory usage of the algorithm. In this

case, because we are using a value of A' = 6 compared to k = 9 for the serial

version, the memory usage is lower. The parallel algorithm at k = 6 has an

average overall usage of 0.016% compared to the 0.071% usage of the serial

version at k = 9.

Larger values of ‘A’’ result in greater memory usage for the H yperParti

tion algorithm as we are stealing fewer bits and this causes the HyperParti

tion structure to have a larger number of HyperPartitions each containing
fewer rows.

W ith all values of k for the remaining bits heuristic between k = 0 and

k = 10 the memory usage of the H yperPartition algorithm is uuich less

than Saad.

6.11 Parallel H yperPartition Execution Tim e

Note: In these graphs of the parallel H yperPartition we also show the
parallel execution tim e of the Saad algorithm. W ith the Saad algorithm
only the sorting phase can be done in parallel so there is some parallel

speedup, but it is minimal.
Figure 6.13 shows the execution time of the H yperPartition algorithm

with Quicksort running in j^arallel for the sorting phase across 32 cores on
our experimental machine. Figure 6.13 shows the execution tim e of the
algorithm using a remaining biis heuristic param eter of A' = 6 which we

found to give the best overall performance. See Section 6.11.2 for further
details.

The Parallel H yperPartition with QuickSort is significantly faster than

the parallel Saad with QuickSort for the m ajority of inputs. Taking 42.7%

of the execution time of Saad on average, w ith many matrices requiring

even less than this.

Earlier in Section 6.6 we discussed the selection of the nmnber of bits

to steal and found when using the heuristic {{needJjits — steal.biis) >

R o b e rt Crosbie. T h e U niversity of D ublin . T rin ity College 173

C h ap te r 6. H yperP artitio ii Sparse M atrix Transpose

32-w ay H yperPartition (Q uicksort - k=6) vs. S aad -IP - - (Parallel) E xecution Tim e of T ra n sp o se [Relative)

6

5.5

5

4.5

? 4

M 3 .5
vi
>
Q) 3
E

® 2.5
>

0) 2
a;

1.5

1

0 .5

1 m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 00 m

Matrix S iz e (million nnz) <LOG sca le>

F igure 6.13; P arallel execu tion tim e o f H yp erP artition T ranspose w ith Q uickSort

(w ith a heuristic value o f (k = 6) com pared to Saad. T h e parallel H yp erP artition is

slightly slower for a sm all number of inputs, however it is considerably faster than Saad

for the m ajority of inputs taking on average 42.7% of the execution tim e of Saad overall.

k) th a t a vahie of aVjout k = 9 or k = 10 gave good resu lts for the

serial H yperP artition w ith Q uickSort/InsertionSort. W hen perform ing the

H yperPartition w ith Q uickSort/InsertionSort in parallel across 32 processor

th read s , we can afford to do m ore work in the so rting P hase-(II) p a rt of

th e algorithm . As such, we have found experim en tally th a t a value of

A- = 6 gives a good jjerform ance for H y j)erP artition w ith Q uickSort in

parallel on 32 cores based on our sam ple set of m atrices from F lorida (see

Section 3.6.2).

6.11.1 Parallel H yp erP artition vs. Serial Saad

Note th a t for these parallel results, th e sorting phase of the Saad algorithm

was also perform ed in parallel on 32 cores and is displayed as such on the

g raphs. In o rder to see how th e parallel H y p e rP a rtitio n com pares to the

original serial version of Saad, Figure 6.14 shows the execution tim e of the

jjarallel version of the H yperP artition Transi:)ose w ith QuickSort com pared

Legend
P ar-32 S aad -IP

P ar-32 H yperPartition (Q uickSort - k=6)
A verage: 42 .7%

174 Space ^ Tim e Efficient Sparse M atrix Transpose

6.11. Parallel H y p erP artitio u E xecution T im e

32*way H yperPartition {Q uicksort - k=6) vs. S aad -IP - - (Parallel) Execution T im e of T ra n sp o se [Relative]

6

5.5

5

4 .5

? 4ro
w 3.5

0) 3
E

© 2 .5
>

o 2
CC

1.5

1

0.5

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 400 m

Matrix S iz e (million nnz) <LOG sca le >

F igure 6.14: Parallel execution tim e of H yperPartition Transpose with Q\iickSort
compared to the execution time of the Serial version of Saad. The Parallel Hyperpartition
performs transpose on average in 35% of the tim e of Saad.

to th e s e r ia l execution tim e of Saad. U sing less th a n 1% of th e m em ory

overhead of Saad the H yperP artition algorithm perform s the transpose on

average in 35% of th e tim e of Saad w ith th e m ajo rity of inpu t m atrices

tak ing even less tim e th an this.

6.11,2 Parallel Performance of R em ain ing B its Heuris
tic

F ig iu e 6.15 shows th e perfo rm ance of th e P aralle l H y p e rp a rtitio n w ith

Q u ickso rt for the remaining bits heuristic for th e ‘A’’ p a ram ete r values of

k = 1, k = 3, k = 6 and k = 10. F igure B.2 in A ppend ix B shows th e

perform ance of th is algorithm for all ‘A:’ values betw'een 1 and 10.

U nlike th e g raphs for th e serial H y p e rp a rtitio n in Section 6.8, these

graphs show th a t different values of the ‘A-’ param eter have a very profound

influence on the perform ance of the A lgorithm for the m atrices overall. The

para lle l H y p e rP a rtitio n w ith Q uickSort has an overall average execution

tim e of 86% of Saad a t A- = 1 to 42.7% of Saad for k = 6. In terestingly ,

Leoend
S erial S aad-IP

Par-32 H yperPartition (Q uickSorl - k=6)
A verage: 35 .4%

R o b e rt C rosb ie , T h e U niversity of D ublin . T rin ity College 175

32
-w

ay

H
yp

er
Pa

rti
tio

n
(Q

ui
ck

so
rt

• k
=

1
)

vs
.

Sa
ad

-I
P

••
(P

ar
al

le
l)

Ex
ec

ut
io

n
Ti

me

of
Tr

an
sp

os
e

[R
el

at
iv

e]

32
-w

ay

H
yp

er
Pa

rti
tio

n
(Q

ui
ck

So
rl

- k
*3

}

vs
.

Sa
ad

-I
P

--

(P
ar

al
le

l)
Ex

ec
ut

io
n

Ti
me

of

Tr
an

sp
os

e
(R

el
at

iv
e]

Chapter 6. H yperPartition Sparse M atrix Transpose

< ' j

' - I i « * * 3

I C

(d l - p e e s SA) e m i i eA ije i© u

CO s

O
X

(di-pees SA) 8uiii SAijeidti

m
0)cr

a

o

E

cg

Q.

flj
UD

>

O

O
cg
c
(TJQ.

I

s

O
o

o

I

(d l - P e e s SA) e u J ! i 8 A ijB |e y

>

cr

a

o
a>£
cg

ffl
0,

a

sfl)
C/D

troin

O
cg

a .

I
X

(d l - p e e s SA) a u i i i 8 a iib | 8 u

176 Space & Time Efficient Sparse M atrix Transpose

O

CO

O
C O

S

p:
3

Ui

tin

L O
1—H

o

0)

a
q C

6.12. Reviewing the Remaining Bits H euristic

A' = 6 appears to be th e sweet spot for th is a lgorithm as th e i)erforniance

then begins to d e te rio ra te again for larger values of k, going up to 50% of

Saacl at k = 10.

It is ev iden t from these g raphs th a t th e heuristic and th e value of ‘A’’

has a bigger im pact on the sm aller m atrices. This is because for the larger

m atrices, even if ŵ e steal all the available bits, there are still a large num ber

of b its rem ain ing . T hus, changing th e value of ‘A’ will no t change the

nm nber of b its w'e steal from these m atrices until ‘A’’ becom es very large.

For the sm aller m atrices, increasing the value of ‘A’’ m eans th a t we can

do m ore of th e tra n sp o sin g w'ork in para lle l du ring th e so rting phase. A

value of A’ = 6 gives the best perform ance in th is case, running at an average

of 42.7% of th e E xecu tion T im e of Saad overall w ith a large p ropo rtion

of the m atrices ru n n in g m uch faster th a n th is. T h is is a very good result

for an algorithm th a t has a m em ory overhead of less th an 1% of Saad (see

m em ory usage in F igure 6.6).

6.12 R eview ing the R em ain in g B its Heuris
tic

In Section 6.6 we p roposed th e Rem ain ing B its heiu 'istic for deciding on

th e num ber of b its th a t should be sto len wdien converting from th e CSR

sparse m atrix storage form at to our new H yperP artition CSR form at. The

heuristic suggests th a t we should: Steal as m any bits as possible hut always

leave at least ‘k ’ bits behind.

W’e saw' how th is heu ristic influenced th e perfo rm ance of the Serial

H y i)e rP artitio n wdth Q uickSort in F igure 6.10 in Section 6.8.2. W e also

saw how it iuflnenced the perform ance of th e Parallel H yperP artition with

Q uicksort in F igure 6.15 in Section 6.11.2.

We found th a t the heuristic only ha.s a sm all effect on the perform ance

of th e serial H y p e rP a rtitio n transj)ose. T h e execu tion tim e d id im prove

from a re la tive perfo rm ance of 120% of Saad wdien stea ling all available

b its to 114.7% when leaving a t least k = 10 b its behind. An im provem ent

R()!)ert C roshie . T h e U niversity o f D ublin . T rin ity College 177

C h ap te r 6. H y perP artitio ii Sparse M atrix Transpose

of over 5%.

T h e heuristic had a m uch larger influence on th e perform ance of the

Parallel H yperP artition algorithm as the heuristic allowed more of the work

to be done in th e para lle l so rting phase of th e transpose. T he rela tive

p erfo rm ance of th e a lgo rithm com pared to Saad w ent from 94.6% wdien

s tea ling all available b its to 42.7% wdien ensuring th a t th e re are a t least

k = 6 b its left. This is a very significant halving of the overall perform ance

of th e algorithm .

Larger values of 'k' caused the perform ance of the parallel H y p erP arti

tion to increase to 50% of Saad w hen k = 10. This is because th is creates

a greater num ber of sm aller H yperPartitions which loses the benefit of per

form ing the sorting in parallel. T he heuristic had a much greater effect on

the perform ance of th e parallel H yperP artition algorithm when transposing

th e sm aller m atrices in th e te s t su ite w here, as we pred ic ted , s tea ling all

available b its would have an averse affect resulting in a very small num ber

of very large H yperP artitions.

A n im p o rta n t po in t to no te from investiga ting th e influence of the

heuristic on th e perform ance of th e algorithm is th a t while m odifying the

p a ram ete r im proved th e perform ance of the a lgorithm for some m atrices,

it also deg raded th e perfo rm ance of th e a lgorithm for o th er m atrices at

th e sam e tim e. T h is behav iou r should be investigated fu rther. It m ay

be ap p ro p ria te to use different heuristic param eters for different m atrices

which have different dim ensions and which lead to different H yperPartition

sizes.

6 .13 S u m m ary

W e have seen in th is c h ap te r how' our new H y p erP a rtitio n sparse m atrix

form at greatly reduces the m em ory overhead of the in-place sparse m atrix

tran sp o se to ju s t a fraction (less th an 1%) of th e existing algorithm s.

W e have seen in th is c h ap te r how" we can use our new H y p erP artitio n

sp a rse m atr ix fo rm at to perfo rm th e in-place cycle-chasing tran sp o se in

a m ore cache friendly m anner by reducing th e length of cycles which

178 Space T im e Efficient Sparse M atrix T ran sp o se

6.13. Summary

are chased during the transpose. Thus allowing us to transpose the non-

sym m etric m atrices in an average overall execution tim e of ju st 80% of
Saad with many of the larger matrices having a greater than 50% reduction

in execution time.

We also found th a t switching to our H yperPartition form at allowed

us to perform a larger am ount of the transpose work during the sorting

phase of the transpose allowing even further benefits from good cache reuse

and also allowing us to perform the sorting phase in parallel. For our 259

m atrices, the parallel H yperPartition gave an overall average runtim e of
42.7% of the execution tim e of the parallel version of Saad and 35.4% of

the execution tim e of the serial version, over all input m atrices. In the

next chapter we present m ethods to improve the execution tim e of the

H yperPartition sorting phase in order to further improve the throughput

of the sorting phase of the transpose.
In this chapter we also presented our remaining bits heuristic which

allows us to balance the am ount of work being done between the cycle-
chasing and sorting phases of the transpose. W’e found tha t values of about
k = 9 or k = 10 gave good perform ance for the serial H yperPartition
transjjose and values of about A’ = 5 or k — 6 gave good perform ance for

the parallel H yperPartition transpose.
In this cha])ter we identified tha t that the HyperPartition transpose algo

rithm does not perform as well as Saad or Corresponding Row on matrices

that are Structurally Symmetric. This is because the H yperPartition format
interferes w ith their structm ’e thus losing the benefit of the two-element
cycle length.. In the next chapter we will show how to quickly and easily

detect if an input matrix is structurally synnnetric and outline a technique
for a Hybrid H yperPartition transpose to handle it more efficiently.

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 179

C hap ter 6. H yperP artition Sparse M atrix Transpose

A L G O R I T H M 6.2 : Cycle Chasing HyperPartition Transpose
Input: Matrix M in HyperPartition format from Algorithm 6.1
Output: Transposed Matrix in HyperPartition format

1 / * l-ooj) e a c h n e w 11\p<-ri)ar1 it io n * /

2 for (0 < curJiyp < n .new Jiyp) do
I'or (*ach of tin* (u n m o v e d) e le in e i i l . s in (u r J i y p ' *

for { hyp.of fsets{curMyp] < x < neu' -hyp-p t rs [curJ iyp + I]) d o
/ * ral\t* out clcin^Mit at ‘x ' a n d p ut in ■'>n ' *

srcjval <— non-zeros[x]\
src-col <r- coLindexes[x] ^ B O T _ M A S K ;

S T C - h y p ■<—

srch_upd_corresp (corresp[], cur-hyp. x, ri-oldJiyp. old-hyp-ptrs[])\
lou'.row ^ ((coLmd€xes[x] T 0 P _ M A S K) » remain.bits);
src-vow {(srC-hyp « steaLbits) + lowbrow;
target-hyp ■<— {src-col » steaLbits); * Vhv h y p t h e e l c in c n t in M c ' shouhi Ik- in

12

14

15

16

17

20

21
22

24

25

26

27

28

29

3 0

31

32

33

34

35 end

while (target-hyp / curJ iyp) d o

I ’in il (Ic^tiiiiiti<iii for f l c i i i c i i t in 'm c' a n d cIc-miMil at i n t o il>t' */
dst-jT •<— hyp-offsets[targetJiyp]: ■'* n c s t i n a i i o n imU-x * /

dst^val •<— nori-zeros[dst^]\
dst^col coU ndexes[ds t^] & B O T - M A S K ;

dst.hyp <—

s r c h _ u p d _ c o r r e s p (c o r r e s p [] , target-hyp. dst-X, n.old-hyp, oldJiyp-ptrs[])

lou'-row <r- {colJiidexes\dst-x] & T 0 P _ M A S K) » remain-bits',
dst-Tou' •<— (dstJiyp « steal-bits) + low.row,

* (' o p v i n t o n e w (U t ' p o s i t i o n *

nori-zeros[dst^\ <— srcjval\
colAndexes[d.<it-x] <—

{{{src-col (k L 0 \ V _ M A S K) « remainJbits) + src-roxr);
hyp-offsets[target-hyp] hyp-offsets[target-hyp] + 1: / * I'lafi, ha.-

niov(*d * /

/ * (*op> ’d ^ t ' i n t o 'M c ' S o \v<* c a n c o n t in u « ' c v t l4 -(iia>iuj» t l u ’ n e w <“I(’ni<*nl in ' m c '

src-val dst-vai,
src-rou' •<— dst-rou';
src-Col dst-coi.
target-hyp {dst-col » steal-bits); / * 'I'lic l i y p t l i c c l c n ic i i i in 'm c ' . - i / i o H / J

h e in * ■'

end
/ * i ' o u n d (‘U‘n ir i i1 t l ia l sh(nil<i Ik> in ' c i i r - h y p ' - co in - t iu il from 'src ' h a ck int<) ‘x ' */
non-zeros[x\ ■<— src-val;
col-indexes[x] •<— {{{src-Col i k L O W . M A S K) « remain-hits) + src-row);
hyp-offsets[curJiyp\ <— hyp-offsets[cur-hyp] + 1;

end

180 Space ^ T im e Efficient Sparse M atrix Transpose

6.13. Summary

n ew _hyp_ptrs = 0„ 6j 83
n on_zeros — a h c d m f i g b e j k l n

c o L in d e x e s = o;0 o:3 o:l i: l i 5 1,2 i 3 o:2 oO i:l o:3 oA l A 0:5

Exam ple 6.3: M atrix in HypCSR after Hyper Circuit Chasing
Note: Elements are not in correct row or column order.

n ew _hyp p tr s = 0„ 6j 8̂
n on_zeros = a c h d f m g i b j k n e I

C O l_ in c l6 X G S = O ; 0 0:1 1:1 \ ‘2 q 2 1;3 0 :^ O:"! 0:^ 1;1 1:

Exam ple 6.4: M atrix in HypCSR after Hyper-Sorting
Note: Elements are now sorted into their correct row and column index

ordering.

n o n ze ro s = a c h d / m 9 i h J k n e
c o L in d e x e s = 0 1 3 1 2 5 2 3 0 3 4 5 1

n ew row p tr s = o„ 3 . 6. 12:

Exam ple 6.5: Transposed M atrix in CSR representation
after sorting and conversion back.

R obert C rosb ie . T h e Ih iiv e rs ity of D ublin , T rin ity College 181

Chapter 6. HyperPartition Sparse Matrix Transpose

A L G O R IT H M 6.3: Convert HyperPartition back to CSR format
I n p u t : M atrix in H yperPart i t ion format from Algorithm 6.2
O u t p u t : M atrix in CSR format

1 Allocate: 7 ie w-rou ' -p t r s [7 ieu ' .n rou ' s I] ;

2 / * I . ooj) lhr<>ug,li e ac h l iy ix T p a r t il i on *

3 fo r (0 < hyp < n . n e w . h y p) d o

12

13

14

15
16

17

19

20

/ * i^('giiining a n d e n d o f l iy p c rp a i tit ion h y p ' * /

f i tart <— hyp-pf rs[hyp] \
s to p <r- h y p jp t r s [h y p + 1] — 1;

/ * Sor t liii?' HyjJtM'I’a r t i l i o n S('<’ S(‘rli(>n^ 1.5 a n d 7.1 */

H y p erP art it ion _S ort(co /j7 ir fexes[] , no n -zero s \ \ . s tar t , stop);

/ * (i<‘l t i u ’ nu)sl s ign if ican t l>it> o f t l i f row ind<“x f ro m c u r r r n i i i y p ' * /

row -insb <r- {hyp « steaLbits)-,

/ * ('ount row to l)iiil<i in ir ̂ roit'-pf r s [\ . t lic ii fi.\ ;tll o i't he f(>Liii(icx<*s[] in tlii>

h \ ix rpart it ion * /

for (s ta r t < x < stop) d o
r o i v { r o u ' - m s b + {{colJiidej'es[x] & T 0 P _ M A S K) » remain-bits))-,
new .row -p trs[row + 1] <— neu '-row .p trs[ron ' + 1] + 1; , * Count row iin lcxcf

Ofl'M't hv I *

colJndexes[x] <— {colJndexcs[x] k B 0 T _ M .4 S K) ;

en d
e n d

IM * (' u ini i l i i t i \ T > u i n - T u r n i n d e x ccmi i l ^ i n t o I ' ow p o i n t < ’f>

fo r (1 < i < neu ' ^nrou’s) d o
I neu<-rou'.ptrs[i] <— 7iew.rou'-ptrs[i] + neu' -row^ptrs[i — 1];

2 1 e n d

182 Space h Time Efficient Sparse Matrix Transpose

1

2

3

4

6

7

K
9

I I)

11

12

13

14

15
16

17

IH

19

21)

2 1

22
2 3

6.13. Sunimary

A L G O R IT H M 6.4: Convert HyperPartition back to CSR format in Parallel
Input: M atrix in H yperPart i t ion format from Algorithm 6.2
O u tp u t: M atrix in CSR format

Allocate: n e x v - r o w -p tr s \n e w j i r o w s + 1];

L o o p ih r o i ig h e a i ’li Ii\'[>(‘r p a i i it ion * /

#pragma omp parallel for
for (0 < h yp < n -u e w M y p) d o

/ * f5('gi]Hji])^» a n d (')nl o f i]\ j)(’rp j) r t i l io n 'h> 'p ' * /

s ta r t hyp jp trs \hyp \,
stop hyp jp trs[hyp + 1] — 1;

/ * Sor t tlii.s i i \ p c r l ’a r l i1 i(tn Sec Si' c tio ii s 1..") a n d 7.1 * /

Hyper P art it ion_Sort(co /_ i7 irfejes[] , non.zeros[] . s ta r t , stop)\

/ * (Jet t lic iiio^t sinii if irai it hi1> o f t h e I'ow in d ex f ro m c u r rc n l ' h y p ' * /

rou '-msb •<— {hyp « steaLbits)',

* C o u n l row indc xch t o b u i ld]. t h e n fix all of t h e c o l J n d c x f s l) in tlii>

ii\'l)‘ 'i'])art it ion * /

for (s ta r t < Jr < stop) do
row<— {row jnsh+ {{coL i7 idexes[x] & TOP.MASK) » reinaiij.bits))',
#pragma omp atomic
i iew-rou '-p trs[rou’ + 1] <— new-rou'-ptrs[rou' + 1] + 1; / * (' o m i t row in d c x f s -

OffM't l)v 1 ♦

colJ7}dexes[x] <— {colJndexes[x] L: BOT_MASK);
en d

en d

* (’l u i Mi l a ! ivj ' ‘') u i) - l i i n i i n d e x c o u n t s i n t o r o w p o i n t e r s * /

for (1 < ! < iieu'.iirou's) d o
I new-row-ptrs[i] <— ncu'-roiv^ptrs[i] + neu'-rou'-ptrs[i — 1];

en d

R o b ert C rosbie , T h e U niversity of D ublin , T rin ity College 183

Chapter

Further Optimisations
Radix Sort and Hybrid

Transpose

111 Chapter 5 we introduced the Corresponding Row transpose algorithm
which reduced the space complexity of the Sparse In-Place Transpose to
(-)(/)) while maintaining the time complexity of Q{nnz + n). Then in
C hapter 6 we presented our HyperPartition algorithm which drastically
reduced the ineniory overhead required for the sparse in-place transpose to
just a fraction of both Saad and Corresponding Row in practice (Figure 6.6),
while also improving the execution time for the majority of the matrix
inputs (Figure 6.8).

In this Chapter we investigate further ways in which the HyperPartition
algorithm can be improved. Section 7.1 presents the MSD RadixSort
algorithm which improves the execution time of the sorting phase of the in-
place transpose. With the HyperPartition algorithm, a larger proportion of
the work of the transpose operation is being done during the sorting phase.
Section 7.2 presents the performance results of the RadixSort Algorithm.
Section 7.4 discusses structural analysis of sparse matrices in order to
detect the structurally symmetric matrices for which the HyperPartition
algorithm does not i:>erform as well as Saad-IP. This leads to a quick and
simple heuristic algorithm which can predict the likelihood that a particular
m atrix is structurally symmetric. We use this heuristic in Section 7.5 to
develop a Hybrid H yperPartition in-place transpose algorithm which is
more efficient at transposing structurally symmetric matrices at the cost of
a quick test and a small increase in memory overhead. Section 7.6 presents
the performance results of the Hybrid HyperPartition in-place algorithm.

R o b e rt C rosbie, T h e l-n iv e rs ity of D ub lin . T rin ity College 185

C hapter 7. Further Optim isations - RaclixSort anci Hybrid Transpose

7.1 M ost Significant D igit (M SD) R adixSort

As discussed in Section 4.5 the In-Place Sparse M atrix Transj)ose is per

formed in two phases. The first is the cycle chasing phase which moves

elements into their correct new row in the transposed matrix. After the
cycle-chasing phase there is no guarantee that the elements will be in column

order within each row. Therefore the second phase involves sorting the two
7wn.zeros[] and colJndexes[] arrays based on the indexes in coLindexes[]

to ensure the elements are stored in-order within each of the rows.

T he existing Saad in-place circuit-chasing algorithm in the Sparskit2

package only moves elements to the correct new row. It does not ensure
elements are ordered within the rows. The HSL library])rovides a routine

MC59 0 for re-ordering completely imsorted sparse matrices in COO format.
This routine also has an option for ordering the elements within columns of
a CSC matrix. In many cases it is more desirable to have in-row' elements

which are in the correct order by colunm index, therefore we feel th a t it
is im portant to also examine and improve the algorithm s for this sorting
step. In this section we investigate ways of improving the performance of
the Phase-II step of ordering the H yperPartition sparse matrix.

W hen transposing with the Saad-IP, Binary Range Search, Radix Table
Lookup, and Corresponding Row in-i)lace algorithm s, the sorting step
accounts for ju st a small percentage of the overall execution tim e of the
transpose as can be seen in Figm'e 4.9 in C hapter 4. As discussed in
Section 4.5, we have been using a simj^le Two-Array QuickSort which drops

to InsertionSort when {length < l i m i t) . However, as we improved the per
formance of the cycle chasing algorithm with the HyperPartition transpose,

the relative cost of the sorting phase has become a nnich higher j)roportion

of the overall execution time. Figure 7.1 shows the proportion of execution

time of the serial HyperPartition algorithm with the remainiiigJyiis heuris

tic param eter of A- = 6 as shown in Figure 6.8. There is less work being

done in the cycle chasing phase and more work being done in the sorting

phase. We are also performing fewer sort operations, each on a nnich larger

amount of da ta — so improvements to the sorting algorithm will have an

186 Space T im e Efficient Sparse M atrix T ranspose

7.1. Most Significant Digit (MSD) RadixSort

S ort S ta ck e d H yperPartition - - (Serial) Execution Time of T ra n sp o se

150

_ 125
</)
T3
C0
0> v>g 100
CD

Z

c

1 75

I
o
E

c 50
g
3

25

Matrix

Figure 7.1: H yperPart it ion Sort T im e stacked on top of Algorithm Time

ever bigger impact on the to ta l execution time. W ith the H yperPartition
algorithm , in some cases over 95% of the work of the transpose is being
clone in the sorting phase. Therefore it is worth investigating improvements
to the sorting algorithm.

Using our knowledge of the type and d istribution of the keys in the
colJiidexes[] array and the way the H yperPartitions need to be sorted
in-place we believe th a t a Two-Array (see Section 4.5) version of a Most

Significant Digit (MSD) In-Place RadixSort would be the best choice of
algorithm in order to give good cache and execution time i)erformance for
sorting the m atrix entries w ithin the H yperPartitions. W e need a Two-

Array version, because like our Q uickSort/InsertionSort algorithm , our
new RadixSort needs to sort corresponding sections of the two non.zeros[]

and coLindexes[] arrays based on the contents of the coLindexes[] array.

N ote also th a t when sorting the H yperPartitions we need to trea t the

integer values in the colJ7idexes[] array as unsignc'd integers in order to

sort correctly.

In some ways, the generic cycle chasing method (Algorithm 4.1) we have

been using is concei)tually similar to a BucketSort algorithm. Except th a t

Legend
H yperPartition Q u ick so rt Time

H yperPartition C ycle-C hase Time

R obert C rosbie . T h e I 'liiv e rs ity of D ublin . T rin ity College 187

Chapter 7. Further Optimisations — RadixSort and Hybrid Transpose

cycle chasing uses a very large number of very small buckets which makes

the algorithm inefficient due to poor cache re-use. The H yperPartition

algorithm groups rows into HyperPartitions which reduces the number of

buckets and hence increases the average size of each bucket.

The RadixSort involves reading and copying/moving many elements
nniltiple times. It seems unintuitive th a t moving elements three or more

times gives better execution tim e performance than the generic cycle-

chasing algorithm which only moves each element a single time. As w-e

showed previously in Section 5.9, the cache performance of these algorithms

when dealing with extremely large matrices has a huge impact on the
execution tim e of the algorithms. The first (and second) pass of the

RadixSort algorithm moves elements to buckets much closer to where they
actually belong. In subsequent passes the algorithm will only need to

process a smaller number of entries which are all contiguous in memory
which would give much better temporal and spatial locality and therefore
improved performance. The RadixSort is more cache friendly than using

cycle chasing for the whole matrix and indeed it is more cache friendly than
the Quicksort/InsertionSort algorithm we have been using.

985 .042.230 = 00111010 10110110 10001101 00110110
pass = P ' 2"'̂ 3'''̂ 4"'

Example 7.1: Radix bit Passes of BucketSort

For our RadixSort we use a 'Radix' on the bits of the integers in the

colJndexes[] array to sort the m atrix partition entries into buckets. For
example; if we are using a RadixSort with 256 buckets, then we would
use sets of eight bits (256 = 2*) of the integers in colJndexes[] to sort the

elements into buckets. Example 7.1 shows the bits in a 32-bit integer used

on each of the four passes. In the first sorting pass we w'ould use the first

eight most significant bits (bits 31-24) to decide which bucket to place each

element in. If an element had the first 8 bits 00111010 = 58, then it would
be moved to bucket[58]. On the second pass the algorithm goes through

188 Space ^ T im e Efficient Sparse M atrix T ranspose

7.1. Most Significant Digit (MSD) RadixSort

each of th e original 256 buckets, which now all have the sam e first eight

bits, and further sorts them into sub-buckets based on the next eight most

significant bits (bits: 23-16 = 10110110).

Using 256 buckets and a radix length of eight the RadixSort would sort

all the elem ents in the H yperP artition after four levels of passes. A radix

length of four bits (= 16 buckets) would take eight levels of passes to sort

the arrays. As the R adixSort is not a com parison sort it will always sort

the array in a constan t k nvnnber of passes based on a given radix length

and size of integer used for the indices. As such, no m atte r the size of the

m atrix and no m atte r the size of the H yperP artition , for any given radix

leng th /num ber of buckets the RadixSort will alw'ays sort the p artition in

a constan t num ber of passes. T hus the com plexity of the R adixSort is

0 { n n z . A). Given k is constant for a particular radix length and index size,

and does not vary with the size of input nnz^ the complexity of the sort is

essentially proportional to 0 { n n z) .

7.1.1 M SD RadixSort Algorithm

A lgorithm 7.1 shows our Tw o-A rray varia tion of the M ost Significant

Digit In-Place R adixSort algorithm for sorting H yperP artitions using a

radix length of eight bits which gives 256 buckets. On th e first pass

the algorithm sorts elem ents into buckets based on the m ost significant

eight bits. The algorithm calls itself recursively, such th a t on subsequent

passes the algorithm then .sorts each sub-bucket based on the next eight bits.

As w ith the QuickSort algorithm (Section 4.5), for efficiency we drop to

InsertionSort when the array length is below a certain limit.

The algorithm needs two integer arrays of size n u m B u c k e t s = 256. The

memory overhead of the In-Place RadixSort is therefore very low. W ith 256

buckets the overhead is just 2 KiB. Two arrays are needed for every level of

the RadixSort, using eight bits or 256 buckets would give four levels which

would still require only 8 KiB. Even running th is RadixSort in parallel over

32 cores would require at m ost 256 KiB of m em ory overhead. Given th a t

the mem ory overhead of the Saad-IP algorithm for the sm allest m atrix in

R obert Crosbie, T he I 'n iv ersity of DubHn. T rin ity College 189

A L G O R IT H M 7.1: Radix BucketSoit Algorithm - 256 Buckets
Input: Matrix in HyperPartition format from Algorithm 6.2
O u tp ut: Matrix in HyperPartition format with ordered HyperPartitions

1 r a d i x — 2 ') f i * /

2 rad ix B i t s <— 8; n u m B i n s <— 256;
3 Allocate: star tBi7i[numBinss]; Allocate: endBi7i[numBinss];

4 / * S c a n t h e a r r a y a n d c o u n t t h e n u n i)) c r o f iten i.s t h a t will h e in e a c h b in * /

5 for (0 < cur < last) do
digit <r- {[indexes\cur] k. b i tMask) > > sh i f tAmt)- ,
if {digit + 1 < n u m B i n s) th en

I star tBin[digi t +!]■<— start Bin[digi t + 1] + 1;
end

en d

1 1 / * (' i i lcuUitc l l i c ^ t a r t a n d o m l o f ca c l i b in f r o m t l i c c o u n t */

12 for (1 < i < n u m B i n s) do
13 I startBin[i] <— endBin[i] <— startBin[i] + s tar tB in[i — 1];
14 en d

15 / * (i o t h r o u g h c a c h " c u r " e l e m e n t i n t h e a r r a y a n d m o v e it t o t l u ’ c o r r e c t i) i n ii u i ' c e s s a r y * /

1 6 for (0 < cur < last) do
ir w h ile {true) do
i» * e x t r a c t t h e digit wc a re s o r t in g liased on * /

19 digit = {{indexes[cur] & b i tMask) >> s h i f t Amt)-,
2 0 if {endBin[digit] == cur) th e n
2 1 I break',
2 2 end
23 SVAP{indexes, values, cur. endBi7i[digit])-,
24 endBin[digit] ■«— endBin[digit] + 1;
25 end
2 6 endBin[digi t + 1] <— endBin \d ig i t + !] + !: /* lea \< ‘ t l i e e l e m e n t a t ii> l o c a t i o n a n d g r o w

t h e b in *

27 cur cur + 1; * a d v a n c e t h e c l i r r e n t p o i n t e r t o t l i e n e x t e l e n ie n t *
2 8 w h ile {cur > s tar tB in[nex tB in] L’i: n e x t B i n < n u m B i n s) do
29 I n e x t B i n n e x t B i n + 1;
30 end
31 w h ile {en dB in[nex tB in — 1] = = s tar tB in[nex tB in] k .k . nextBiri < n u m B i n s)

do
32 I n e x t B i n <— n e x t B i n + 1;
33 end
34 if {cur < e n d B in [n ex tB in — 1]) th en
35 I cur = en d B in \n ex t B in — 1];
36 end
37 en d
38 b i tM a sk •<— b i t M a sk » radixBits-,
39 if {b i tMask ^ 0) th en
40

41

42

43

44

4.1

46

47

48

49

50

51

52

53

54

, * en d recnrsit)!! w hen all t h e b it^ liave been proce.sses * /

s h i f t A m t <— s h i f t A m t — radixBits-,
for (0 < z < n u m B i n s) do

n u m E l e ■<— {endBin[i] — startBin[i])-,
if {{numEle) > I S O R T . D B O P) th e n

/ * e i idB in acttiallx' point> to one b e \ ‘on d t lie bin * /

Ka.dixSort {indexes, values, startBin[i], {n um Ele —
1), b i tMask . shi f t Amt)-,

end
else

lSORT(indexes. values. startBin[i], numEle)-,
end

end
Free: startBi ir ,
Free: endBin' ,

en d

7.1. Most Significant Digit (MSD) RadixSort

our test suite is 3,910KiB, this is still a small overhead and is very small

compared to the memory required to store these very large matrices. In

addition, with careful programming the bucket delimiting arrays can be

reused during lower level passes in the sorting.

7.1.2 C hoosing N um ber o f Buckets for R adix Sort

There are a number of param eters/factors which influence the performance

of the HyperPartition RadixSort. As discussed in Section 6.6, the number
of bits we choose to steal when converting to H yperPartition format will

influence the proportion of work th a t is split between the Phase-I cycle-
chasing part of the transpose and the Phase-II sorting part of the transpose.
Tlie munber of bits will also influence the size of the HyperPartition which

will also influence the performance of the radix sort as the sort performs
better on a smaller number of larger H yperPartitions. Another factor, as
discussed in Section 6.9 is parallelism. Clearly the ability to perform more
of the work in parallel will influence the performance of the algorithm and
thus the scalability of the Radix Sort algorithm in sorting tlie two arrays
(and converting back to CSR) is im portant.

The RadixSort adds another param eter to this, the number of buckets
per level of the sort. The number of buckets per level affects the performance
of the sort. A very small radix means there are just a few buckets, then

we end up with a small number of very large buckets. This means tha t
there will be a larger number of levels of the sort which will likely result in

elements being moved many times and poor cache performance. \ \ ’ith a
large radix length there will be many buckets each with just a few elements.
The sort begins attem pting to move the elements to their exact location on

the first pass which is not cache efficient as it runs into the same locality

problems tha t we are trying to avoid with the HyperPartition algorithm.

Figure 7.2 shows the performance of the RadixSort algorithm for different

numbers of buckets from 2 —> 16,384 for a particular matrix {RM07R) which

is a 381,689 x 381,689 matrix with 37,464,962 non-zero values. This matrix

requires 19 bits to re{)resent the row and colmnn index leaving 13 bits

R obert Crosbie. T h e U niversity of D ublin. T rin ity College 191

C h a p te r 7. F u rth e r O p tim isa tio n s - R ad ixS ort and Hyl)rid T ranspose

SorlTime for different Q uantities of Buckets - Matrix RM07R

20

15

§v>
0
£

1 '0
(£

5

0

F ig u re 7.2: Serial and Parallel execution time (seconds) of the RadixSort for the

RM07H matrix stealing 13 bits for different quantities of buckets. The algorithm
was repeated in serial and parallel on 16 cores for 20 iterations at each quantity of
buckets between 2 and 16,384. The cycle-chasing phase took roughly 0.441 seconds. For
comparison: Saad-IP = 8.07 sec, Corresp Row = 7.73 sec.

available. If we steal all 13 b its leaving A' = 6 behind then at th e first level

we have 64 H y p erP a rtitio n s each w ith 8,192 rows and an average of 804,093

elem ents per H y p erP artitio n . T he transpose was repeated 20 tim es for each

q u an tity of buckets for th is p a rticu la r m atrix and H y p erP artitio n size. T he

g raph shows ju s t th e tim e for th e P hase-II so rting part of th e transpose as

th e tim e for th e cycle-chasing p o rtio n is alm ost identical for all bucket sizes.

T he cycle chasing phase takes roughly 0.441 seconds in bo th th e serial and

parallel transpose . In Serial th e division of w'ork (in term s of tim e) is 16%

cycle-chasing and 84% sorting . In P arallel th e division of work (in tim e) is

49% cycle-chasing and 51% sorth ig .

T h e p erfo rm an ce in F ig u re 7.2 is very co n sis ten t a t each n u m b er of

buckets. T he perform ance of th e serial R adixSort has a very d istinc t profile

for th is m atrix . S ta rtin g a t ab o u t 8.1 seconds a t 6 = 2 buckets {radix = 1),

im p ro v in g wdth increasing n u m b er of bucke ts to a sweet sp o t a t a b o u t

b = 128 to b = 256 w ith a ex ecu tio n tim e of 2.4 seconds. E x ecu tio n tim e

Legend
Serial Saad-IP

Serial C orresp Row
Serial HyperPartition R adixSort • RM07R • (ka13)

16-W ay Parallel HyperPartition RadixSort ■ RM07R • {k=13}

64 128 2 56 512
N um ber of Buckets

1024 2048 4096 8192 16384

192 Space ^ Time Efficient Sparse Matrix Transpose

7.2. Hypei'Partition RadixSort Results

then begins to increase rapidly for larger quantities of buckets up to about
20 seconds at b = 16,384 buckets {radix = 14). The profile of the parallel

RadixSort in Figure 7.2 is much flatter, starting at about 1 second for

6 = 2 buckets, down to about 0.42 at 6 = 128 buckets and increasing to

3.5 seconds at 6 = 16,384 buckets. For comparison the graph also shows

the performance of serial Saad-IP = 8.07 seconds and serial Corresponding

Row = 7.73 seconds for transposing this matrix.

The RadixSort exhibits a performance profile very similar to this across

many of the combinations of input m atrix and H yperPartition size. Un

fortunately there is a large am ount of variability in performance of the

RadixSort algorithm betw'een the different input matrices. No single pair
of values for the remainingJbits heuristic and bucket.size gives optim al

performance on all input matrices. A more complicated heuristic w^ould
need to be constructed which took in the many factors of matrix dimensions,

bit availability, bits stolen and remaining, number of buckets (hence bucket
size) and parallelism. For the results in the following Section we used a fixed
quantity of buckets of 5 = 256 as this appeared to give a good performance

for most inj)uts, however sj)ecific number of buckets (and hence bucket
sizes) for each individual matrix w’ould give better performance.

As discussed in Section 6.6.1 we found that for the 259 matrices in our
test suite a value of A’ = 9 for the remaining bits heuristic — the number
of needed bits left after stealing — gave a good performance. This value
gave a good balance of work between the HyperPartition cycle chasing and

sorting with QuickSort/InsertionSort. For serial RadixSort we again found
tha t a value of A’ = 9 was a good choice for the H yperPartition transpose.
For parallel RadixSort on 32 cores w'e also again found tha t k = 6 w'as a

good choice as this value gives a higher proportion of work to the RadixSort

portion which can be done in parallel.

7.2 H yperPartition RadixSort R esults

Figure 7.3 shows the memory overhead of the Serial HyperPartition in-place
transpose with RadixSort. The H yperPartition transpose was performed

R obert C rosbie. T h e U niversity of D ublin. T rin ity College 193

C hapter 7. Fvirther Optim isations RadixSort and Hybrid Transpose

S erial H yperPariition RadixSort {V»9) vs. S aad -IP • ■ M emory O verhead (Relative)

O
S '

Legend
Saad-IP

Serial H yperPartition RBSort (l‘=9)
A verage; 0 .0 ’’1%

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

Matrix S ize (million nnz) <LOG sca le>

F ig u r e 7.3: Serial M em ory overhead o f H yp erP artition I'ranspose [k = 9) w ith

R adixSort { B = 2.56) com pared to Saad. T h e m em ory usage is ahnost identical to

H yperP artition w ith Q uickSort. There is ju st a tiny increase o f 0.01% to an average of

0.017%. The mem ory requirem ents of Serial H yperPartition with RadixSort is less than

0.2.5% o f that o f Saad for all 259 input m atrices.

using a rem aining bits heuristic vahie of k = 9 and the RadixSoit using
b = 256 buckets {radix = 8). This graph is ahnost identical to the memory
overhead of H yperPartition with QuickSort shown in Figure 6.11. The
average memory overhead has increased slightly by 0.01% to 0.017%. The
overhead rem ains less than 0.25% of th a t of Saad for all input m atrices.
The RadixSort has a memory overhead of 8KiB which is very small so has

little im pact. Also, the RadixSort runs after the old.row^ptrs[] array has
been deallocated after converting the m atrix to the HyperPartition format,

thus in many cases the extra 8KiB does not increase the memory overhead

at all.

Figure 7.4 shows the serial execution time for the H yperPartition algo
rithm with RadixSort. The HyperPartition transpose was again performed

tising a rem aining bits heuristic value of A- = 9 and the RadixSort using

b = 256 buckets {radix = 8). H yperPartition j)erforms much be tte r than

Saad for the majority of inputs. As discussed j^reviously, there are a nmnber

194 Space T im e Efficient Sparse M atrix T ran sp o se

7.2. HyperPartitioii RaclixSort Results

H yperPartition (RB-Sort - k s9) vs. S aad -IP - - (Serial) E xecution Time of T ra n sp o se (Relative]

6

5.5

5

4 .5

? 4
■s
m 3.5
cn

0) 3
E

2.5
>

I 2cc
1.5

1

0.5

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

Matrix S ize (million nnz) <LOG sca le>

Figure 7.4: Serial execution tim e of H yperPartition Transpose {k = 9) w ith RadixSort

(B = 256) com pared to Saad. I’he R adixSort im proves th e execu tion tim e o f H yper-

P artition com pared to QuickSort. H yperPartition w ith R adixSort is significantly faster

than Saad for a large number of inputs, however as certain m atrices cause problem s (see

S ection 7.4).

of input matrices that are structurally symmetric for which HyperPartition

does not perform as well on as the Saad and Corresponding Row algo
rithms. These structurally synnnetric matrices will be examined finther in
Section 7.4.

Figiu'e 7.4 shows the serial execution time of the HyperPartition algo

rithm using the RadixSort algorithm from Algorithm 7.1 in Section 7.1
for performing the Phasc-II sorting step of the Sparse In-Place Transpose.
The execution time of the algorithm is still quite variable depending on

inputs, however there is a distinct imi)rovement over the HyperPartition

with Quicksort with the jjerformance significantly improving for nearly all

input matrices. There are still some matrices slow^er than Saad, but the

majority are faster with a large i)roportion nnming more than 50% faster.

One point to note for the results in this Section, the sorting phase of the

Hy])erPartition in-place transpose is now different to that of the Saad and
Corresponding Row algorithms. HyperPartition is using RadixSort (Algo-

L w e n j
S aad-IP

H yperPartition (RB-Sort - k=9) ♦
A verage: 89 .9%

^ ♦ ♦ ♦

R o b ert C rosbie , T h e U niversity of D ublin . T rin ity College 195

C hapter 7. Further Optim isations - RachxSort and Hybrid Transpose

rithm 7.1) and Saad is still using QuickSort (Algorithm 4.7). W ith Saad-IP
and Corresponding Row the sorting phase is only a small proportion of the

to tal execution time (typically about 5%) also, there are a large number of

small rows which do not benefit from the RadixSort algorithm . However

the graphs still show the to tal execution time of the full transpose operation
both including cycle chase and sorting, so results are still comparable.

7.2.1 Parallel H yperP artition w ith R adixSort Perfor
m ance

As we discussed in Section 7.1, a huge benefit of perform ing more of the
trans])ose in the second sorting phase is that all the sorting operations just

process a single row (or H yperPartition). This means we can perform this
second phase in parallel.

Figiu'e 7.5 shows the memory usage of th e Parallel H yperPartition
transpose with RadixSort running on 32 cores. The parallel HyperPartition

transpose was again perform ed using a rem aining bits heuristic value of
A- = 6 which proved a good value for Parallel H yperPartition with QuickSort.
This value again j)roved a good value for parallel H yperPartition with
RadixSort. The RadixSort again used h = 256 buckets {radix = 8). In this
case the memory overhead of the RadixSort is a lot larger because each of
the 32 process threads recjuires its own set of buckets. Each thread has an
overhead of 8K iB which is 256 KiB overall. The RadixSort runs after the
ol(i^row.ptrs[] array has been deallocated so for many inj)ut matrices which
have a large nroivs the 256 KiB does not increase the memory overhead.

As can be see from Figure 7.5, the 32-Way Parallel H yperPartition
w ith RadixSort does increase the memory overhead com pared to Serial

H yperPartition w ith R adixSort in Figure 7.3 and H yperPartition with

Quicksort in Figure 6.6. In Figure 7.6 we can see a close-up of the memory

overhead of the algorithm . Here we can see th a t th e overhead of using

RadixSort in parallel on 32 cores does slightly increase the memory overhead
for some of the smaller m atrices. There is a dotted line to indicate 5% of

the memory overhead of the Saad algorithm, for some inj)ut matrices the

196 Space ^ Time Efficient Sparse Matrix Transpose

7.2. H yperPartition RadixSort Results

Parallel HyperPartition RadixSort (k=6) vs. Saad-lP - - Memory Overhead [Relative]

Leoend
Parallel Saad-IP

Parallel HyperPartition RBSort (k=6)
Average; 0.614%

1.25

a
■6
(0

(A
>

0.75

0.5
Q>
>

3

0.25

1 m 1 . 5 m 2 m 4 m 8 m 16m 50 m l 50 m 400 m

Matrix Size {million nnz) <LOG scaie>

Figure 7.5; M em o ry usage o f 32-W ay P a ra lle l H y p e rP a rtit io n w ith R a d ixS o rt. H yp e r

P a r t it io n w ;is ru n w ith k = 6 and th e R a d ix S o rt was ru n w i t l i b = 256 buckets. T h e

m em ory overhead for the a lg o r ith m when transpos ing the sm alle r m atrices has increased

s lig h t ly b u t the overhead is m uch less th a n Saad w ith an average o f 0.6%.

Parallel HyperPartition RadixSort (k=6) vs. Saad-IP - - Memory Overhead [Relative] • (Close Up)

Leoend"
5 % of Parallel Saad-IP

Parallel HyperPartition RBSort (k=6)
Average: 0.614%

of Parallel Saad-IP

4 m

Matrix Size (million nnz) <LOG scale>

16 m 50 m 150 m 400 m

Figure 7.6: C lose-U p o f F ig u re 7.5. A d o tte d line shows 5% o f the m em o ry usage o f

Saad. R a d ix S o rt s lig h t ly increases re la t iv e m e m o ry overhead fo r some o f t i ie sm a lle r

m atrices.

R obert C rosbie , T h e I 'n iv e rs ity o f D ublin . T rin ity College 197

Chapter 7. Further Optim isations — RadixSort anci Hybrid Transpose

32-W ay HyperPartition (RB-Sort - k=6) vs. S aad -IP - • {Parallel) Execution Tim e of T ra n sp o se (Relative]

5.5

5

4.5

4

■6 3 5n»n(/)
i ^o
P 2.5
Q>

H 2
Vcc

1.5

1

0,5

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

Matrix S iz e (million nnz) <LOG sca le>

Figure 7.7: 32-Way Parallel execution tim e of H yperPartition I'ranspose (A' = 6) with

RadixSort compared to Saad. T his shows the parallel performance improvement exploited

by H yperP artition w ith R adixSort over th e serial version in F igure 7.4. Perform ance

is considerably im proved w ith on ly 3 in p u ts running sligh tly slower and th e m ajority

less than 50% and many less than 25% of Saad w ith an average of 39.6% of Saad. This

com pares well w ith th e O ut-o f-P lace algorithm in Figure 3.3. N ote: Saad QuickSort

also run in 32-way parallel.

HyperPartition with RadixSort approaclies and in a few cases surpasses this
level. The average memory overhead for the 259 matrices in the collection
is still just 0.6% of the memory overhead of Saad.

The RadixSort step is performed in parallel using OpenMP using all 32

cores of the ‘Stoker’ machine described in Sections 2.4 and 3.7.

Figure 7.7 shows the execution tim e of the Parallel H yperPartition

in-place transpose with RadixSort compared to the Parallel version of

Saad-IP. It is more appropriate to compare Parallel H yperPartition to

Parallel Saad-IP. The parallel version of Saad-IP performs slightly faster

than the serial version, however the improvement is minor. Saad does not
benefit from RadixSort as most of the work of the Saad algorithm is in the

original cycle-chasing transpose and the resulting partitions are too small

to benefit from RadixSort. The H yperPartition trans])ose w-as j^erformcd

Legend
Par-32 S aad -IP

Par*32 H yperPartition (RB-Sort ■ k=6)
A verage; 39 .6%

198 Space ^ T im e Efficient Sparse M atrix T ranspose

7.3. MSD RadixSort Siiiiiinary

using a leniaining bits heuristic vahie of /c = 6 which proved a good vahie

for Parallel H yj)erPartition w ith QuickSort. The RadixSort again used

b = 256 buckets {radix = 8).

Figure 7.7 clearly shows the benefit of using the RadixSort in parallel.

W hile using only 0.6% of the memory overhead of Saad-IP, the 32-way

])arallel H yperPartition w ith RadixSort performs be tte r than Saad-IP

for nearly all input m atrices. For the m ajority of m atrices the parallel

H yperP artition performs the in-place transpose in less than 50% of the
execution time of Saad-IP with an average of 39.6% of the execution time

of Saad for the 259 m atrices in the test suite.

From this figure we can see that the HyperPartition with Parallel Radix
sort perform s more than 50% faster than Saad for the m ajority of the

input matrices, and indeed a large proportion run in less than 25% of the

execution tim e of Saad. A very satisfactory result for a complicated three
step algorithm whicli has only a tiny fraction of the memory overliead of

the existing Saad algorithm.

7.3 M SD R adixSort Sum m ary

In Section 7.1 we presented our variant of the Most Significant Digit In-

Place RadixSort algorithm for sorting HyperPartitions which improves the

efficiency of the second sorting phase of the Hyj)erPartition transpose algo
rithm. Performance analysis in Section 7.2 shows tha t the MSD RadixSort

gives a significant improvement over the QuickSort/InsertionSort algorithm

presented earlier in Section 4.5, reducing the execution tim e of the serial

H yperP artition transjiose from 115% of Saad to 90% of Saad using less

than 1% of the memory overhead. The MSD RadixSort also improved the

parallel H yperPartition transpose from 42.7% to 39.6% of the execution
tim e of Saad. Again with less than 1% of the memory overhead.

R obert ('ro sb ie . T lie U niversity of D ublin . T rin ity College 199

Chapter 7. Further O ptim isations — RadixSort and Hybrid Transpose

7,4 Structural A nalysis

In Section 5.11 we found th a t certain m atrices had cycles which were no

longer than two elem ents long. This resulted in excellent cache usage,

and hence perform ance when transposing these m atrices. Analysing the
structure of these matrices we find th a t the reason th a t these 51 matrices

have a m aximum cycle lengtli of tw'o and exhibit such good cache per
formance is th a t they are s tructu ra lly sym m etric. A sym m etric m atrix

is a m atrix th a t is identical to i t ’s own transpose {M = M ^) , where all
the elements m irrored through the diagonal have the sam e value, i . e .

M i j = Mj,i I V,j G n,ni . G enerally w'hen a m atrix is tru ly sym m etric,
only one triangle of the m atrix is stored to save on space. The other triangle
can be obtained by accessing the first triangle in reverse. As outlined in

Section 3.6.2 we have included a num ber of sym m etric m atrices in our
test suite to increase the num ber of m atrices, however as transposing a
symmetric m atrix is pointless we are just using them as triangular matrices.
Some of these triangular m atrices can be seen in Figure 7.11.

In Section 6.8 we then found th a t th e H yperPartition transpose did
not perform as well as the Saad or Corresponding Row algorithm s for
these structm ally sym m etric m atrices. This can be seen in Figure 6.8 on
page 165. It is not tha t H yperPartition performs poorly for these matrices,
it is ju st th a t Saad and C orresponding Row perform unexpectedly well

due to tlie short cycle lengths. \M ien converted to the H yperPartition
format the matrices are no longer in a structurally symmetric layout, hence
the drop in perform ance. H yperP artition looses the benefit of s tructu ra l

sym m etry because it groups rows into H yperPartitions so it is no longer
moving elements to the location of their corresponding opposite element.

Figure 7.9 shows the execution tim e of the H yperPartition algorithm

w ith Q uicksort w ith k = 9 com pared to the execution tim e of the Saad-

IP algorithm . T he graph shows th e execution tim e of the algorithm s

transposing ju s t the 51 structu ra lly sym m etric m atrices in the test suite,

the tim ings for the o ther 208 m atrices are om itted. The H yperPartition

transpose clearly does not perform as well as Saad for these types of matrices

200 Space & Tim e Efficient Sparse M atrix Transpose

7.4. Structural Analysis

► - 4 ^
> -T t *

>1 I M tr* t ft- ■ » .

(a) ASIC_680k

m.

m

1̂ ’
at.

(c) para-10

(b) cagel4

1 1 .

(d) thernioiiiech_dK

e) niixtank-iiew

111..... .

(f) heart 1

Figure 7.8: Some Structurally Symmetric Matrices

Robert Crosl)ie. T h e University of Dul)lin. Trinity College 201

Cliapter 7. Further O ptim isations — R adixSort and Hybrid Transpose

H y p erP a rti t io n { Q u ic k so rt - k=9) v s . S a a d - IP - • (S e r ia l) S y m E x e c u tio n T im e of T r a n s p o s e [R ela tive]

5

4 ,5

4

S 3

® 2 .5
E
i -

> 2
«
a>
^ 1 .5

1

0 .5

1 m 1 ,5 m 2 m 4 m 8 m 1 6 m 50 m l 5 0 m 4 0 0 m

M atrix S iz e {million n n z) < L O G s c a le >

Figure 7.9: J u s t S tru c tu ra lly S y m m etr ic — T h e Seria l ex ecu tio n tim e of th e I ly p e r-

P a rtitio n tran sp o se w ith Q uickS ort w ith K = 9. O nly th e re la tive execu tion tim e of the

a lg o rith m s for tr a n sp o s in g s t ru c tu ra l ly sy n m ie tr ic m a tr ic e s is show’n. H y p e rP a r t i t io n

perfo rm s poorly co m p ared to S aad for these m atrices .

witl) tlie average execution tim e for tliese 51 m atrices being 258% of tlie

execution tim e of Saad.

Tlie 51 m atrices th a t are causing problem for H y p erP a rtitio n are not

sym m etric (or trian g u la r) , th ey are s tru c tu ra lly sym m etric . T hey have

the sam e s tru c tu ra l layout of th e elem ents in a synm ietric m a trix w ith

elem ents in the sam e locations m irrored through the diagonal, however in

these m atrices the opposite elem ents th rough th e d iagonal do not have

th e sam e value. Therefore th ey are no t sym m etric . Some s tru c tu ra lly

sym m etric m atrices used in the test su ite are show in Figure 7.8 and some

general unsym m etric m atrices are shown in Figure 7.10. It is the s tructural

sym m etry of these m atrices which resu lts in cycles which are only two

elem ents long which gives m uch b e tte r tem p o ra l and spa tia l locality to

m em ory lookups, wdiich in tu rn g reatly im proves execution tim e of Saad

and Corresponding Row.

Analysis of th e run tim e perform ance of th e algorithm s using ha rd

ware counters in Section 5.9 show'ed th a t for these m atrices th e Saad and

L e g e n d

S a a d - I P

H y p e rP a rti t io n (Q u ic k s o r t - k= 9)

A v e ra g e ; 2 5 8 .5 %

202 Space &; Tim e Efficient Sparse M atrix Transpose

7.4. Structural Analysis

(a) language

f r -

\
\

(b) HaiiirleS

am
<ni

I I

ifr-
!5 .-:

(c) webbase_lM (d) Zd-Jac3

\

\
V

\ \

\
\

\
\ \

y .

, N \ \ \ \
S W S X

\ V ' ' ' \ \ V ■

\

\

' n \ N \ » W N

' \ V

(e) invextrl-iiew (f) av41092

Figure 7.10: Some Uiisyinmetric Matrices

R o b e rt Crosbie. T he U niversity of D ublin , T rin ity College 203

C hapter 7. Further O ptim isations — RadixSort and Hybrid Transpose

(a) gsm_106857 (b) S i0 2

V

N'

(c) F2

5': ’ . - •x>̂
•< .'.aT-’X > \x-: c> ■ : •! , >.5 . : ̂ ‘

* '> V -'A<) • . 0 ^
)x . : ^ ̂ ̂ • V * « •. V

i * V • \
. . . X

. . . . N 5 . .' I ‘ ; o Av
, , , . . ; . 1; : <■ ■< J .i ,

■ : o . '

(d) nd3k

■ X
C > > .

C • : X

(e) filter3D

. '*-•

-i .V-a(iitf4s4

(f) darcyOOS

Figure 7.11; Some Triangular M atrices - Lower Triangle of Symmetric

204 Space ^ T im e Efficient Sparse M atrix T ranspose

7.4. S tructural Analysis

Corresponding row algorithm s have surprisingly good cache performance

com pared to matrices of com parable size. Deeper analysis of the internal

operation of the algorithm s as they j^rocess the matrices showed an inter

esting feature of 51 of these “slow” m atrices. For these 51 m atrices the
average cycle length of all the cycles when perform ing the cycle chasing

transpose w'ith Saad and Corresponding row is just tw'o elements. Indeed,

for these 51 m atrices the m axim um cycle length of all the chains chased

is ju s t two elements. Every tim e w’e s ta rt a cycle, the first element th a t

we jum p to ju s t jum ps straight back to the source row th a t w'e sta rted

in. W h a t’s more, the element actually jum ps to the exact position tha t it

should be in in the transposed m atrix m eaning th a t the Phase-II sorting
step is not required for these m atrices. These short cycle lengths are the

reason for the good cache perform ance of Saad and Corresponding Row\
We know' from Section 5.10 tha t shorter cycles lead to an improvement in
cache performance.

Figure 7.12 shows the LI, L2, L3 cache and TLB perform ance of the

s tructu ra lly sym m etric m atrices com pared to the unsym m etric m atrices
while transposing the m atrix with the Corresponding Row algorithm. Each
of the four graphs shows the relative num ber of cache/TL B misses per
non-zero element in the m atrix relative to the average cycle length. T he
structu ra lly sym m etric m atrices can be seen in the left of each graph as

they have average cycle lengths between one and two elements long. It is

clear from these graphs tha t the structurally symmetric matrices incur far
less LI, L2 and TLB misses than the vast majority of the other matrices in

the test suite. This means that the Corresponding Row algorithm has much
be tte r cache perform ance when transposing these structura lly synnnetric

m atrices. T here is less of a difference in term s of L3 misses as for most

input m atrices the algorithm incurs relatively few L3 misses, how'ever the

s tructu ra lly sym m etric m atrices once again occupy the lower end of the

scale.

R obert C roshie , T h e U niversity of D ublin . T rin ity College 205

206
Space

 ̂
Tim

e
Efficient

Sparse
M

atrix

C o rre sp o n d rn g R ow (CF) - L1 C a c h e M is s e s p e r E le m en t for A v erag e C y c le L ength C o r re sp o n d in g R ow [CF] L2 C a c h e M is s e s p e r E le m en t for A v e ra g e C y c le L eng th

H

w 6

2

^ 4

L e a e n d
I 1

(JoiiB bpoitdM ig H ow [GH] ■ S truc tu ra lly S y m m etric - A vg le 2 ▼

C o r re sp o n d in g R ow [CF) • U n sy m m e tric - A vg > 2

0 '

'
o ►

►

1
1

1 .000 10 ,0 0 0 1 0 0 ,0 0 0 1 million lO m illion

A v e ra g e C yc le L eng th <LO G S c a le>

(a) L I (^ache M isses per N on-Z ero E lem en t

1.000 10,000 100,000

A v e ra g e C yc le L en g th <LO G S c a le >

1 million 10 million

(c) L.3 C'aclio M issos por N on-Z oro E loincnt

C o rre sp o n d in g R ow (CF) L3 C a c h e M is s e s p e r E le m en t for A v erag e C yc le L ength

10

C o r re sp o n d in g R ow (CF) - S truc tu ra lly S y m m etric • A vg le 2 ▼

C o rre sp o n d in g R ow [CF] - U nsym m etric - Avg > 2

8

6

4

2

O '0

Li

G o jre sp o iid in g H ow [U!-] ■ b ttu c tu ra i iy s y m m e tr ic - A vg le 'i

C o r re sp o n d in g R ow [CF] - U n sy m m e tric ■ A vg > 2

. . O '

^ -I-
Or ^

0 O

1.000 10,000 100,000

A v e ra g e C y c le L en g th <L O G S c a le >

1 million 10 million

(1)) L2 C’achc M isses p e r N on-Z ero E lem en t

C o rre sp o n d in g R ow [CF] TLB M is s e s p e r E le m en t for A v e ra g e C y c le L ength

C o r re sp o n d in g R ow (CF) - S truc tu ra lly S y m m etric - Avg le 2 ▼

C o rre sp o n d in g R ow [CF) • U n sy m m e tric - A vg > 2

■ Sr. '

1,000 10.000 100.000

A v e ra g e C y c le L en g th <L O G S c a le >

1 million 10 million

(cl) T L B M isses per N on-Z ero E lem ent

Figure 7.12: [CF] Corresponding Row : R('lative Cache Performance of structurally synnnetric matrices
compared to unsymmetric matrices in relation to Average Cycle Length

o
CD

C
hapter

7.
Further

O
ptim

isations
R

adixSort
and

H
ybrid

T
rans

7.5. Hybrid H yperPartition Transpose Algorithm

7.4.1 D etecting Structural Sym m etry

There is an accurate (and computationally expensive) method to determine

if a matrix is structurally symmetric. First, the matrix needs to be square,

i.e. m = n or indeed nrows = ncols. We then check if all the Corresponding

Rows and columns have the same pattern of non-zeros. To do this, we make

a copy of the old^col-indexes[\ array and transpose the m atrix. We then

compare every index in old.colJndexes[\ array with every corresponding
entry in neic^colAndexes[] array. If every entry is the same, such that the

two arrays are identical, then we know’ th a t the m atrix has the identical
pattern of non-zero elements in every Corresponding Row' and cohnnn in
the matrix. Meaning tha t it is structurally symmetric.

We analysed all of the matrices in our test suite using this “Expensive
Test” method. Out of the 259 matrices we found that 51 of the matrices are
structurally symmetric. The very same 51 matrices with the two-element
cycle chains tha t caused j)roblems for H yperPartition. No other matrices

were found to be structurally symmetric. Comparing the performance
of H yperPartition compared to Saad for these 51 matrices as shown in
Figm'e 7.9 we find that HyperPartition is slower than Saad for every one of
the 51 matrices. We also compared the execution time of Corresponding

Row compared to Saad as shown in Figure 5.3 for these 51 matrices and
found tliat Corresponding Row performs better in all cases. Also comparing

the memory usage of Corresponding Row with Saad as in Figure 5.1 shows

that Corresponding Row also uses less memory than Saad for all of the 51
matrices.

This means tha t if we had a simple m ethod of determ ining structural

synnnetry then we could have a hybrid algorithm that could choose between

the H yperPartition and Corresponding Row' algorithms depending on the

structural symmetry of the input matrix in order to give better performance.

R obert Crosbie. T h e rn iv e rs i ty of D ublin. T rin ity College 207

C hapter 7. Further O ptim isations — RadixSort and Hybrid Transpose

7.5 H ybrid H yp erP artition Transpose A lgo

rithm

This gives the opportunity for a Hybrid algorithm which will choose either
to run the Corresponding Row algorithm if the input m atrix is structurally

symmetric, otherwise run the H yperPartition algorithm.

The m ethod outlined above for testing if a m atrix is structm ’ally sym
m etric is too expensive to use. There is however a quick test th a t we can
use th a t is very inexpensive and is actually quite accurate in practice. We
check if the m atrix is square {nrows = ncols) and then simply com pare
the num ber of elements in every row with every corresponding column. If
every row has the same mmiber of elements as its opposite colunm then it
is possible th a t the m atrix is structu ra lly symmetric. At the s ta rt of our
generic in-place cycle-chasing transpose we need to construct an array of
neu'^row^ptrs[] to point to the start of every new row in the matrix. While
calculating the cum ulative sum on this array we can compare all the new
row pointers in this array w ith the old row pointers in the old.rou’̂ ptrs[]
array. If every pointer for each new/old row is the same in both arrays then
we know tha t each row in the m atrix has the same number of elements as
its corresponding column. W here we have such a m atrix then there is a
strong probability th a t the m atrix is structurally symmetric.

We used this quick test on the 259 matrices in our collection. The test
accurately identified all of the 51 structurally symmetric matrices w ithout

a single false positive. The te s t is very quick and inexpensive. It can be

performed in Q{n) tim e while building the new.coLptrs[] array which we
needs to be done anyway. As such the overhead of the check is negligible.

Algorithm 7.2 shows the pseudo code for the simple test algorithm used by
the Hybrid H yperPartition Transpose.

208 Space T im e Efficient Sparse M a trix T ranspose

1

2
3

4

5

6

7

N

<)
10

11

12
1 3

14

15

16

17

7.6. Hybrid H yperParti t ion Transpose Performance

A L G O R I T H M 7 .2 : Detect Structural Symmetry Heuristic
/ * (' o u i i t i i u i i i I x T o f <‘l<‘Ui(‘n l " i n e a c h n e w c o l u i i n i - o IFm 'I h y I * /

fo r (0 < in d e x < rinz) do
col *r- c o l- in d e x e s [in d e i \ \
if (col < {nrou'S — 1)) th e n

I n ew -rou ' jp fr s [co l + !] • < — n e w -ro w -p t r s [c o l + 1] + 1;
en d

en d

/ * (' u n m l a l i \ ' (‘ t o g e t iH’Vv_rc)W_p1 r s [] * /

/ * (' h i ' c k i f S l n i c t i i i i i l l y . Sy l i i i i i c t r i c */

isSym n i •<— true;
for (0 < r o w < r irow s) do

iiew.rou'-ptrs[row] <— neu'-row-ptrs[rou'] + neu'-rou'-ptrs[rou' — 1];
row-offsets[row] <— neu'.rou’.ptrs[row] ; /* t» nm-.offsi */
if {new-Tou'jptrs[rou'\ / old-rou'-ptrs[row]) th e n

I isSy in <— falser.
en d

en d

7.6 H ybrid H yp erP artition T ranspose P er
form ance

T h e H ybrid a lgorithm increases th e m em ory requ irem ent over th a t of

H yperP art i t ion . T here is a trade-off between m em ory and j)erformance.

As we see in F igure 6.6 in the previous chap ter, the m em ory overhead

of H y])erPartition is negligible. As such, H y p erP a r t i t io n is still th e best

choice of transpose algorithm for very low m em ory usage and although it

is very efhcient for the m ajority of input matrices, the low memory feature

does however come at the cost of poor perform ance of some (s truc tm ally

synnnetric) matrices.

F igure 7.13 shows th e m em ory usage of th e H ybrid H y p e rP a r t i t io n

in-place transpose algorithm. The Hybrid algorithm requires more memory

th an the H yperP a rt i t ion algorithm because in o rder to check for possible

s truc tm al synnnetry the algorithm needs to build the new^ro2i ’̂ pirs[] array

before the old^row^ptrs[] array has been deallocated. Thus the algorithm

needs (-)(/?) memory overhead for the sym m etry check. The HyperPartition

a lgorithm avoids th is 0(7)) by deallocating the old.ro^i'-pt^'s[] array, per-

R obert Crosl)ie. T h e U niversity of D ublin . T rin ity College 209

Chapter 7. Ftirther ()i)timisatioiis — RadixSort and Hybrid Transpose

Hybrid (k=6) vs. Saad-iP - - Memory Overhead of Algorithm (Relative]

Leoend
Saad-IP

Hybrid (k=6) •
Average; 9.3%

a 1. 1

■6
a 1
r t I</)

0-9

g 0.8
£
f 0.7

O
^ 0.6
0

1 0.5
o >
o
tt 0.3

0.4

• • • * ••
• ••• •
• I

0.2

1 m 1.5 m 2 m 4 m 8 m 1 6 m 5 0 m l 5 0 m 400 m
Matrix Size {million nnz) <LOG scale>

Figure 7.13; M em ory overhead o f the Hybrid H yperP artitio ii a lgorithm com pared to

that o f Saad. I ’he Hybrid algorithm uses more inem ory than H yperP artition how ever it

still requires considerab ly less m em ory than Saad w ith m ost inputs requiring less than

10-20% than th at o f Saad w ith an average o f 9.3%.

forming the cycle-chasing and sorting algorithms and only then building
the 77eiv.roii'^ptrs[] array at the end. This is why the nieniory overhead of
HyperPartition is so low.

T he Hybrid algorithm uses the {new.7-ow.ptr's[]) array of size n to
check for symmetry. If the m atrix is sym m etric the Corresponding Row'
algorithm is used to transpose the matrix, requiring a total of 3 arrays of

size n {roiV-offse ts [] and correspJable[] in addition to the neu'-row.ptrs[]
array). Otherwise the HyperPartition algorithm is used which has minimal
additional memory requirements. Thus the Hybrid algorithm requires less
memory th an the Corresponding Row' algorithm and much less th an the
Saad algorithm, only requiring 9.3% of the memory overhead of Saad on

average for the 259 matrices in the test suite.

Figure 7.14 show's the execution time of the Hybrid H yperPartit ion
algorithm w'ith RadixSort w ith a remaining bits heuristic value of k = 9.

As can be seen comparing this graph to Figure 7.4, the 51 s tructu ra lly
symmetric matrices for which H yperPartit ion did not perform so w'ell on

210 Space T im e Efficient S parse M a trix T ran sp o se

7.6. Hybrid H yperParti t ion Transjjose Performance

Hybrid (R B -Sort - k=9) vs. S aad -IP • • (Serial) E xecution Tim e of T ra n sp o se (Relative]

4 .5

4

3 .5

^ 3I
m
» 2 .5

0

1 2
o
>

ffi 1.5
cc

1

0.5

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

Matrix S iz e (million nnz) <LOG sca le >

Figure 7.14: Serial execution tim e of the Hybrid H yperPartition k = 9 transpose algo

rithm relative to Saad-IP. The Hybrid algorithm uses C orresponding Row for structurally

sym m etric m atrices, otherw ise H yperP artition . For these m atrices. C orresponding Row

is faster than b oth H yp erP artition and Saad m aking th is H ybrid a lgorith m not only

com petitive w ith Saad but considerably faster for the vast m ajority o f inputs w ith much

less m em ory usage. I'he Serial Hybrid H yperP artition w ith RadixSort has an execution

tim e o f 68% of Saad on average.

are now all below the line. There are a small number of matrices for which

the H ybrid a lgo rithm does not perform as well as Saad how'ever for the

m ajority of input matrices the Hybrid algorithm performs b e tte r than Saad,

and in some ca.ses performs nnich b e t te r with the algorithm requiring less

th a n 50% of the execution t im e of Saad for a num ber of m atrices. On

average the Hybrid H yperParti t ion algorithm transj)oses the 259 matrices

from the test suite in 68.2% of the execution tim e of Saad.

7.6.1 Parallel H ybrid H yp erP artition Perform ance

Ju s t as w ith th e H y p e rP a r t i t io n a lgorithm , th e H ybrid H y p erP a r t i t io n

algorithm performs a large p roport ion of its w'ork (for non s truc tu ra lly

•symmetric matrices) dtiring the sorting phase of the transpose. This sorting

l)hase, w’hich w’e have improved the performance of w'ith the RadixSort in

Leoenj
S aad -IP

Hybrid (R B -Sort • k=9) •
A verage: 68 .2%

R o b e rt C roshie . T h e U niversity of D ublin . T rin ity College 211

Chapter 7. Further Optimisations Ra(hxSort and Hybrid Transpose

Par-32 Hybrid (RB-Sort • k=6) vs. S aad -IP • • (Parallel) Execution Time of T ra n sp o se [Relative]

4 .5

4

3 .5

^ 3
•D
<0

05
» 2.5
>

0.5

1 m 1.5 m 2 m 4 m 8 m I 6 m 5 0 m 1 5 0 m 4 00 m

Matnx S iz e (million nnz) <LOG scale>

Figure 7.15: 32-W ay O penM P Parallel execu tion tim e o f Hybrid Transpose (w ith

H yperP artition of A’ = 6 w ith R adixSort) com pared to Saad. T h is show s the parallel

perform ance im provem ent exp loited by H yperP artition w ith R adixSort over the serial

version in Figure 7.14. Performance is considerably improved with the m ajority o f inputs

running less than 50% and m any less than 25% o f Saad. T h is com pares well w ith the

execution tim e of the high mem ory OO P A lgorithm in Figure 3.4. Note: Saad Quicksort

also run in 32-way parallel.

Section 7.1 can benefit greatly from parallel execution.

The parallel Hybrid HyperPartition in-place transpose with RadixSort
is shown in Figure 7.15. Again a remaining bits heuristic value of A’ = 6
is used for parallel execution along with h = 256 buckets for the sorting
phase which was run in parallel across 32 cores. This graph shows that the
parallel Hybrid algorithm performs much better than the Parallel Saad-IP
Algorithm. The Hybrid is faster than Saad on all bar one of the input
matrices which is just a fraction slower. The parallel Hybrid algorithm
transposes the majority of the input matrices in less than 50% of the time
of Saad and in less than 25% for many. On average the Parallel Hybrid
algorithm transposes the 259 matrices in the test suite in 38.8% of the time
of Saad while only requiring 9.3% of the memory.

Figure 7.15 showed the performance of the parallel Hybrid transpose

Leoend
Par-32 S aad-IP

Par-32 Hybrid (RB-Sort - k*6) ®
A verage; 38 .8%

-

. , n . n .

212 Space Time Efficient Sparse Matrix Transpose

7.7. Hybrid HyperPartition Suininary

P ar-32 Hybrid (RB-Sorl • k=6) vs. S aad-IP - • (Parallel) Execution T im e of T ra n sp o se [Relative)

4.5
Legend

Serial S aad-IP
Par-32 Hybrid {RB-Sort - k=6) ©

A verage: 32 .0%
3.5

>

>

cc

0,5

1.5 m 2 m1 m 4 m 1 6 m 50 m 150 m 4 00 m8 m

Matrix S ize (million nnz) <LOG sca ie>

Figure 7.16: Execution I 'i ine of F’arallel Hybrid H yperPart it ion transpose relative to

th a t of Serial Saad-IP.

compared to the Parallel Saad-IP transpose. Figure 7.16 shows the perfor
mance of the parallel Hybrid transpose compared to the Serial Saad-IP
transpose. We can see from this graph that the parallel Hybrid algorithm
is nmch faster than the original serial Saad algorithm with the majority
of the input matrices taking less than 50% of the time of the Serial Saad
algorithm to transpose. On average the parallel Hybrid takes 32% of the
time of the Serial Saad-IP algorithm to transpose the 259 matrices in the

test suite while only requiring 9.3% of the memory overhead of Saad.

7.7 H ybrid H yperP artition Sum m ary

We have introduced the Hybrid HyperPartition in-place transpose algorithm
which use's a “Quick Test” to check for j)ossible structural synnnetry in

an inj)ut matrix and use.s this to decide to transjjose the matrix with the

Corresi)onding Row algorithm or the Hyj)erPartition algorithm. At the

cost of this test which is very quick and a small increase in memory to 9.3%

of Saad we have improved the execution time of the Hybrid transpo.se to

R()l)ert C rosbie. T h e Ih iiversity of D ublin . T rin ity College 213

C hapter 7. Further Optim isations RadixSort and Hybrid Transj)ose

68.2% of Saad in serial and 38.8% in Parallel.

There are still a small number of matrices for which the Hybrid Hyper-

Partition algorithm does not perform cjuite as well as Saad. It is probable

th a t for these matrices there is some aspect of the structin’e of the matrix

w'hich allows Saad to perform better, wdiich ŵ e lose when we sw'itch the

m atrix to the H yperPartition format. Further investigation of these m atri

ces may also produce a simple test which could allow further imi)rovenient

to the hybrid algorithm.
It is possible to improve the Hybrid algorithm some more. W hen we

transpose a m atrix tha t is actually structurally symmetric it not necessary

to i)erform the sorting step of the transpose and elements will be moved
into their correct position. Our “Quick Test” does not give a guarantee of

structural synnnetry, however if we think the matrix might be synnnetrical

the addition of a small check during the Corresponding Row algorithm that
all cycles are no more than 2 elements long would indicate a synnnetrical

m atrix and the unnecessary sorting step can be avoided.

214 Space ^ Time Efficient Sparse Matrix Transpose

____________________ Chapter

Conclusion and Future work

Sparse M atrix Transpose is an im portan t hnear algebra operation which

occurs in calculations of numerous applications such as Fast Fourier Trans

forms, C om putational Chemistry, Signal Processing and many others. In

particular, the sparse transpose is im portant for converting a m atrix from

the row-major CSR storage format to the column-major CSC storage for

mat (and vice versa) to improve the efficiency of accessing the m atrix by
colunms (rows).

T he transpose of a sparse m atrix stored in a sparse storage form at
such as CSR can be com plicated and difficult to optimise. In order to

perform the tianspose, the two existing sparse m atrix algorithms, the out-
of-place algorithm and the Saad In-Place algorithm both require additional
storage in memor\' pro{)ortional to the number of non-zeros in the matrix.

(-) (? ? ? ? 2 - I - n) for the out-of-place and Q{nnz) for the Saad-IP transpose.
This transla tes to roughly 100% and 30% respectively of the size of the
m atrix in additional memory overhead for the algorithm s which is cjuite
considerable.

W'e have introduced a collection of novel space and time saving in-place
sparse m atrix transpose algorithm s which were evaluated w ith extensive

experim entation and analysis using a test suite of 259 large matrices from
real world applications. The algorithms use a variant of the in-place cycle

chasing algorithm similar to Saad yet only require 0 (n) tem porary storage

for an n x n sparse m atrix w ith r? < < nnz non-zeros, com pared to the

G{nnz) and Q{nnz + n) required for Saad and out-of-place. Moreover,

om' algorithm s are able to achieve this large savings in space com plexity
without forfeiting the Q{rmz + n) execution time complexity of the existing

algorithm s. Finally, our algorithm s are able to handle non square sparse
m atrices and m atrices w ith em pty rows and columns. Custom transpose

R o b ert C rosb ie . T h e U niversity of D ub lin . T rin ity College 215

Chapter 8. Conchision and Future work

algorithms for specific matrix layouts could potentially be more efficient
however our algorithms provide good performance across all matrix types.

8.1 Contributions

We describe (Chapter 4) the three problems associated with reducing the
space complexity of the in-place transpose to 0(r?) memory overhead. Our
Generic in-place algorithm solves problems (b) recording that an element
has been moved and (c) finding the location of the next free slot in a row.
We present two initial solutions to problem (a) finding the old row index.
Binary Range Search and Radix Table which both have a space complexity
of 0 (n) and a memory overhead of just 14% and 16% of Saad respectively.
Experimental analysis shows that the execution time of the Radix Table
transpose is broadly similar to Saad despite the increased time complexity,
actually running at 98.6% of the execution time of Saad on average.

We introduced (Chapter 5) our Corresponding Row transpose algorithm
that solved problem (a) reducing the memory overhead of the in-place
s])arse transpose to 0(r?) while maintaining the time complexity of ©(nr? 2 +
n). A lookup table is used which can be searched and updated in amortized
0{\) time. Tw'o implementations of our Corresponding Row algorithm
reduce the memory overhead of the transpose to 21% of Saad on average.
The Corresponding Row algorithms also rim faster than Saad. The Normal
version runs at 92% of the execution time of Saad on average and the Cache
Friendly version improves on this by 2% at 90% of Saad on average. Results
of detailed experimental analysis using hardware counters are presented.
These results show that the Corresponding Row algorithms run faster as
they have fewer Cache and TLB misses than Saad. The Cache Friendly
implementation is faster than the Normal version because of improved
LI and L2 cache reuse from the interleaved arrays. Analysis of these
experimental results also demonstrates that the average cycle length has
a direct influence on the cache performance of the in-place cycle chasing
transpose. Transposing a matrix with a larger number of shorter cycles
results in better cache reuse and reduced execution time.

216 Space T im e Efficient Sparse M atrix T ranspose

8.1. Contributions

Taking the knowledge tha t shorter cycles results in improved cache
performance we developed our HyperPartition matrix storage format (Chap

ter 6). The H yperPartition format is a modification on the CSR storage

form at which allows us to groups rows together into H yperPartitions by

exploiting unused d a ta in the GSR format. Performing the cycle chasing

in-place transpose on a matrix in HyperPartition format reduces the average

cycle length in most cases, thus improving cache performance and reducing

execution time. We present our Remmmng Bits heuristic for calculating the

number of bits to steal when converting to H yperPartition CSR tha t will

give reasonable performance for most m atrix types. We recommend values

of A- = 9 or k = 10 in serial and k = 5 or k — 6 in parallel for the hemistic

param eter based on the m atrices in our test suite. The H yperPartition

transpose also has a space complexity of ©(?;) however in practice as it
drastically reduces the memory overhead to less than 1% of Saad for the

matrices in our test suite. For the m ajority of matrices, H yperPartition

nm s faster than Saad with some of the larger matrices taking less than
50% of the time.

H yj)erPartition transjjose performs a higher proportion of the work
during the sorting phase of the transpose. Therefore, we present (Chap

ter 7) a more efficient HyperPartition sorting algorithm based on the Most
Significant Digit RadixSort algorithm. The complexity of the RadixSort is
0 { n n z . p) where p is proportional to the number of bits in the index inte
gers divided by the radix length and remains constant for any given radix

length. Using the MSD RadixSort we improve on the execution time of the

serial Hyj^erPartition transpose from 115% of Saad when using QuickSort
to 90% of Saad with RadixSort. In parallel on 32 cores the HyperPartition

transpose improves from 42.7% of parallel Saad with QuickSort to 39.6%
w ith RadixSort. There is a small increase in memory overhead for the
RadixSort. W hen using a radix of 8 (256 buckets) the average memory

overhead remains less than 1% of Saad. In j)arallel each thread recjuires

two small work arrays. This results in a slight increase up to 5% of Saad

for a few input matrices, however the average remains at 0.6%.

We present results (Chapter 7) of structural analysis of the input ma-

R o b ert Croshie. T h e U niversity of D ublin , T rin ity College 217

C hapter 8. Conchision and Futu re work

trices and transpose algorithm s w hich show th a t H yperPartition transpose

does not perform as well as Saad an d Corresponding Row on m atrices which

are s tructu rally sym m etric. Converting to H yperPartition CSR form at loses

the benefit of the s tru c tu ra l sym m etry . We present a heuristic algorithm

th a t can quickly and easily d e te c t if a m atrix in CSR form at is probably

s tru c tu ra lly sym m etric . We p resen t a H ybrid H y p erP artitio n transpose

w’hich uses th is heuristic algorithm to allow the H yperP artition transpose

to efficiently handle s tru c tu ra lly sym m etric m atrices. T he serial H ybrid

H y p erP artitio n runs a t 68% of th e execution tim e of Saad on average at

cost of a slight 0(r?) increase in m em ory overhead to 9.3% of Saad. In

Parallel the Hybrid H yperP artition transposes the m atrices in 38.8% of the

tim e of Parallel Saad and 32% of the tim e of Serial Saad.

8.2 Future W ork

T here are a num ber of possible areas where th is work could be extended.

Inco rpo ra ting th e a lgorithm s presen ted here into a publicly available

sparse m atrix package such as th e Sparse Bias or B eB O P Sparse M atrix

C onverter would be an easy way of m aking them available to th e L inear

A lgebra C onnnunity so they can benefit from their improved efficiency.

In Section 6.6.1 we presented our Rem aining Bits heuristic for choosing

th e num ber of b its to steal wdien converting a m atrix in CSR form at to

H yperP artition CSR form at. T h is heuristic allows us to choose a num ber

of b its to steal from each m atr ix w hich gives us an im proved average

perform ance for the m atrices in the test su ite at values of A' = 9 in serial and

k = 6 in parallel. However, experim ental analysis shows th a t while changing

the k param eter of the heuristic improves performance of the H j'perPartition

algorithm for some m atrices, for other m atrices the performance degrades. A

be tte r alternative would be to: F irst, individually examine the performance

of the R adixSort algorithm for different H yperP artition sizes in serial and

parallel. Secondly, exam ine th e perform ance of the H yperP artition cycle-

chasing algorithm stealing different num bers of b its from different m atrix

sizes. T hen , com bining th e resu lts of th e two experim ents to develop a

218 Sp)ace Tim e Efficient Sparse Matrix Transpose

8.3. Sunmiarv

heuristic which for each individual matrix w'ould choose the best number
of bits to steal based on its dimensions and sparsity.

In Section 7.1.2 we recommended a radix size of 8 which gives 256 buckets
at each level of the RadixSort as this gives a reasonable performance of the
RadixSort on average for the matrices in our test suite. A heuristic w'hich
was based on the dimensions of the matrix, the number of HyperPartitions
and the size of HyperPartitions of each individual matrix would give better
performance of the RadixSort. Again this would require analysis of the
performance of the RadixSort algorithm on different sizes and numbers of
HyperPartition.

In Chapters 6 and 7 w'e presented results of running the sorting phase
of the HyperPartition transpose in parallel using OpenMP. This assumes
a shared memory machine where each processor core can address all the
available memory. In some cases it is desirable to solve large linear algebra
j)roblems on distributed memory machines where matrices are partitioned
onto different nodes. The Compressed Sparse Row format is not well suited
to this partitioning, instead hierarchical blocked formats such as Hyper-
Matrix [Herrero 03] are used. In some cases the hierarchical partitioning
is just used between nodes and then a standard format such as CSR is
used locally on each nodes. In these situations our Hybrid HyperPartition
transpose could be incorporated into the local portion of the distributed
memory parallel transpose.

8.3 Sum m ary

We have shown that matrices stored in Compressed Sparse Row storage
format can be efficiently transposed in Q{nnz + n) time using just 0(r?)
additional space. We present three in-place transpose algorithms wdiich
adhere to these asymptotic complexities with runtime characteiistics that
make different trade-offs between memory usage and runtime. The Cor
responding Row algorithm has a good relative execution time of 90% of
Saad for all matrices with a memory cost of 21% of the space used by
Saad. The HyperPartition with RadixSort algorithm has extremely low

R obert C rosbie. T h e U niversity of D ublin . T rin ity College 219

Chapter 8. Conclusion and Futvu’e work

relative memory usage under 1% of Saad and very good execution time
for most input matrices also with an relative average of 90% of Saad in
serial and 40% in parallel, however for some matrices it does not perform
w'ell. The Hybrid HyperPartition algorithm takes the best of both with a
good relative execution time for almost all matrices at an average of 68%
of the time at a cost of 9.3% of the memory. Running in parallel on 32
cores improves the execution time of the Hybrid Transpose to just 32% of
Saad on average for the 259 large matrices.

220 Space T im e Efficient Sparse M atrix Transpose

8.3. Summary

Table 8.1: Algorithm Complexities

A lgorithm

O ut-O f-P lace

R u ntim e M em ory A ctu a l M em ory

O ut-O f-P lace

Saad In -P lace

Saad In-Place

B inary R ange Lookup

Single B inary Range Search
T o tal for B inary R ange Searches
Transpose w ith B inary R.Srch

R ad ix Table Lookup
B uild R adix Table
Single R adix Table Lookup
T otal for R adix Table Lookups
Transpose w ith R adix Table

C orresponding R ow Lookup
B uild corespJable
Single correspJable lookup
T otal for correspJable lookups
Transpose w ith correspJable

H yp erP artition Transpose

Convert from CSR to HypCSR
Convert HypCSR back to CSR
H yperP artition Transpose

H ybrid T ranspose

Test for S tru c tu ra l Sym m etry
Hybrid Transpose

Quick Sort

Quick Sort

Insertion Sort

Insertion Sort

B ucket Sort

Bucket Sort

n

n n z

sb

passes

buckets

' {3nnz -I- n)

' {nnz)

^(2n)

'{2n + 2/n)

<3{nnz + n) &{nnz + n)

&{nnz + n) 0(nnz)

0(log(n))
0 (nnz . log(n))

0 (nnz . log{n) + n) Q{n)

0(n)
n (l) - C > (n)
0 (n n z . n)

0 {nnz . n + n) 0 (??)

0(r7)
n (l) - C > (n)
0{nnz + 7?)
G(nnz + n) 0(n)

(-)(nnz + n)
0 { u n z + n)
0{7inz + n) 0 (77)

0 (77)

0(77775 + 77) 0 (77)

0 { n n z . log{n))

0 { n n z . n)

0 { n n z . passes) G{buckets) ^ { 2 .buckets)

- N u m b er of row s in th e m a tr ix

- N u m b er of N on-Zero e lem en ts in th e m a tr ix

- S tea l B its — T h e n u m b e r of b its sto len in H y p e rP a rtit io n T ran sp o se

- N u m b er o f passes o f th e B ucketS ort a lg o rith m

- N u m b er of buckets in each pass of B ucketS ort

^(377)

or ~ (V i28)

^(377) or ("/l28)

R o b e rt C rosbie . T h e U n iversity of D ub lin . T rin ity College 221

Appendix A
Matrix Tables

This appendix contains tables of inform ation for 41 of the 259 input m atrices

from th e U niversity of F lo rida Sparse M atrix Collection (Section 3.6.1)

which were used in the experim ents outlined in Section 3.6.2.

Table A .l shows s truc tu ra l inform ation of the m atrices. The dimensions

of the m atrix; num ber of rows, rmmber of columns and num ber of non-zero

elem ents in th e m atrix . T he average num ber of elem ents per row, the

% sparsity and a descrij)tion of the s tru c tu ra l shape of the m atrix .

Table A .2 lists the source of these m atrices. T he type of linear algebra

problem being exam ined which produced the m atrix .

Table A .3 shows the algorithm m em ory usage (in M egaBytes) for O ut-

of-place, Saad, B inary range search. Radix Table (|) , Corresponding Row

and Serial H yperPartition w ith k = 9. The final column of the table shows

the num ber of V)its which have been stolen, left behind and remain available

for these sam ple m atrices when using the H y p erP artitio n algorithm with

the value of k = 9 for th e rem aining bits heuristic.

Table A.4 shows the algorithm execution tim e (in seconds) for a number

of the transpose algorithm s as follows:

O O P - Out-of-place transpose

S a a d - Saad ui-place transpose

B in a ry - B inary R ange Search transpose

R a d ix 1 - R adix Table (^) transpose

C o r r - C orresponding Row transpose

H y p - Serial H yperP artition transpose with k

H y b r id - Serial H ybrid transpose w ith A' = 9

H y b r id -3 2 - 32-\Vay Parallel H ybrid transpose w ith

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 223

Appendix A. M atrix Tables

Table A.l: M atrix Infonnatioii

M a tr ix R ow s C o ls N N Z
P e r

R o w
%

S p a rc ity S h a p e
torso2 115,967 115.967 1.033.473 9 0.008 Square
nenisem nil 3.945 75.352 1.053.986 267 0.355 Rectangle
dbir2 18,906 45.877 1,158,159 61 0.134 Rectangle
darc>-Q03 389,874 389.874 1.167.685 3 0.001 Lower Triangle
xenon 1 48.600 48.600 1.181,120 24 0.050 Square S truct-Sym
ct20stif 52.329 52.329 1,375.396 26 0.050 Lower Triangle
heart 1 3.557 3.557 1,387,773 390 10.969 Square Struct-Syin
venkatOl 62.424 62.424 1,717,792 28 0.044 Square Struct-Syni
appu 14.000 14.000 1.853.104 132 0.945 Square Struct-Syni
pdblH Y S 36.417 36.417 2.190.591 60 0.165 Lower Triangle
s3dkq4iii2 90,449 90.449 2,455.670 27 0.030 Lower 'I'riangle
Si34H36 97,569 97.569 2.626.974 27 0.028 Lower Triangle
shipsecl 140,874 140.874 3.977,139 28 0.020 Lower Triangle
G3_circuit 1.585,478 1.585.478 4.623,152 3 0.000 Lower Triangle
nanirle3 1,447,360 1.447,360 5.514.242 4 0.000 Square
bni\v3_2 227,362 227,362 5,757.996 25 0.011 Lower Triangle
aLshellS 504,855 504,855 9.046.865 18 0.004 Lower Triangle
nisdoor 415.863 415,863 10.328.399 25 0.006 Lower Triangle
ohne2 181,343 181,343 11.063.545 61 0.034 Square
boiie010_M 986,703 986,703 12.437,739 13 0.001 Lower Triangle
FI 343,791 343,791 13.590.452 40 0.011 Lower I'riangle
nd24k 72,000 72,000 14.,393.817 200 0.278 Lower I'riangle
Fault Ji39 638,802 638.802 14.626.683 23 0.004 Lower Triangle
nljikktSO 1,062.400 1.062.400 14.883.536 14 0.001 Lower Triangle
iiiline_l 503,712 503.712 18.660.027 37 0.007 Lower Triangle
rajat31 4,690,002 4.690,002 20.316.253 4 0.000 Square Struct-Syin
Idoor 952,203 952.203 23,737.339 25 0.003 Lower 'Triangle
aLshelllO 1,508,065 1,508.065 27.090.195 18 0.001 Low'er 'I'riangle
cage 14 1,505,785 1.505.785 27.130.349 18 0.001 Square S tnict-Syin
Serena 1,391,349 1.391.349 32.961.525 24 0.002 Lower 'Triangle
bundle! __L 10,581 10.581 35,781.540 3,382 31.960 Square
boiieOlO 986,703 986.703 36.326.514 37 0.004 Low'er Triangle
RM07H 381.689 381.689 37.464.962 98 0.026 Square
audikw_l 943.695 943.695 39.297,771 42 0.004 Lower Triangle
nlpkkt 120 3.542.400 3.542.400 50.194.096 14 0.000 Lower Triangle
cage]5 5.154.859 5.154.859 99.199.551 19 0.000 Square Struct-Syni
ML_Geer 1.504.002 1.504.002 110.879.972 74 0.005 Square S truct-Syni
n lpkkt KiO 8.345.600 8.345.600 118.931,856 14 0.000 Lower 'Triangle
nlpkkt200 16,240,000 16.240.000 232.232.816 14 0.000 Lower 'Triangle
HV15H 2,017,169 2,017,169 283.073.458 140 0.007 Square
nlpkkt240 27,993,600 27,993,600 401.232.976 14 0.000 Lower 'Triangle

224 Space ^ Time Efficient Sparse Matrix Transpose

Appendix A. M atrix Tables

Table A.2: M atrix Source

M a tr ix S o u rce
torso2 FEA: 2D model of torso
nem sem m l Linear programming problem
dbir2 Linear programming problem
darcy003 FEA: 2D /3D problem
xenonl Materials problem - Complex Crystals
ct20stif S truc tural problem - Engine Block Stiffness
h ea r t l FEA: Heart
venkatOl Com putational fluid dynamics
appu A P P Benchmark - directed weighted random graph
p db lH Y S Prote in d a ta bank IHYS
s3dkq4m2 FEA: S truc tural problem - cylindrical shell
Si34H36 Q uan tum chemistry problem
shipsecl FEA: S truc tural problem - Ship section/deta il
G3_circuit Circuit simulation problem
Hamrle3 Circuit simulation problem
bmw3_2 S truc tural problem
af_shell8 S truc tural problem - Sheet metal forming
msdoor S truc tural problem - Medium size door
ohne2 Semiconductor device problem
bone010_M Model reduction - 3D trabecular bone
F I S truc tural problem - AUDI engine crankshaft
nd24k ND problem set - 2D /3D problem
P’'ault-639 S truc tural problem - Faulted gas reservoir
nlpkktSO K K 'r Bitmedical Optimization Problem - Nonconvex 3D PDE
inline_l S truc tural problem - Stiffness
rajat31 Circuit simulation problem
Idoor S truc tura l problem
af-shelllO S truc tural problem - Sheet metal forming
cagel4 DNA electrophoresis - 14 monomers in polymer
Serena S truc tural - Gas resevoir simulation for C 0 2 sequestration
bundlel__L Unknown
boneOlO Model reduction - 3D trabecular bone
RM07R CFD: 3D viscous case
audikw_l S truc tura l problem
n lpkk tl20 K K T Bitmedical Optimization F^roblem - Nonconvex 3D PDE
cagel5 DNA electrophoresis - Lt monomers in polymer
ML_Geer Poroelastic S truc tural Problem
nlpkktl60 K K T Bitmedical Optimization F’roblem - Nonconvex 3D PDE
nlpkkt200 K K T Bitmedical Optimization Problem - Nonconvex 3D PD E
HV15R CFD: 3D engine fan
nlpkkt240 K K T Bitmedical Optimization Problem - Nonconvex 3D PD E

R obert Crosbie. T h e U niversity of D ublin . T rin ity College 225

Appendix A. Matrix Tables

Table A.3: Algorithm Memory Usage (MegaBytes)

M a tr ix O O P S a a d B in a ry
tor&o2 12.270 3.942 0.885
nem seninil 12.077 4.021 0.030
dbir2 13.326 4.418 0.144
darcy003 14.850 4.454 2.975
xenon1 13.702 4.506 0.371
ct20stif 15.940 5.247 0.399
heart 1 15.895 5.294 0.027
venkatOl 19.897 6.553 0.476
appu 21.261 7.069 0.107
pdblH Y S 25.208 8.356 0.278
s3dkq4in2 28.448 9.368 0.690
Si34H36 30.436 10.021 0.744
sliipsecl 46.052 15.172 1.075
G3_circuit 58.956 17.636 12.096
Hanirle3 68.627 21.035 11.042
bni\v3^2 66.762 21.965 1.735
af_shell8 105.459 34.511 3.852
nisdoor 119.786 39.400 3.173
ohne2 127.304 42.204 1.384
boneOlO^M 146.103 47.446 7.528
FI 156.842 51.843 2.623
nd24k 164.999 54.908 0.549
Fault-639 169.826 55.796 4.874
nlpkktSO 174.381 56.776 8.105
inliue_l 215.469 71.182 3.843
rajat31 250.392 77.500 35.782
Idoor 275.285 90.551 7.265
af_shelllO 315.775 103.341 11.506
cage14 316.226 103.494 11.488
Serena 382.522 125.738 10.615
binidlel__L 409.528 136.496 0.081
boneOlO 419.488 138.575 7.528
RM07R 430.208 142.917 2.912
audik\v_l 453.327 149.909 7.200
n lpkk tl20 587.939 191.475 27.026
cage15 1154.913 378.416 39.328
ML_Geer 1274.658 422.974 11.475
n lpkk tl60 1392.903 453.689 63.672
nlpkkt200 2719.644 885.898 123.901
HV15R 3247.214 1079.840 15.390
nlpkkt240 4698.534 1530.582 213.574

R a d ix § C o r r H y p (S " " /L ^ 7 A '' ')
1.010 " 1.327 0,000923 1 5 / 2 / 0
0.155 0.045 0.005257 12 / - / 3
0.207 0.216 0.000820 1 5 / - / 1
3.475 4.462 0.000786 1 3 / 6 / 0
0.433 0.556 0.000786 1 6 / - / O
0.462 0.599 0.000847 1 6 / - / O
0.031 0.041 0,000908

00

0.539 0.714 0,000984 1 6 / - / O
0.122 0.160 0,000893 1 4 / - / 4
0.340 0.417 0,000603 1 6 / - / O
0.815 1.035 0,000740 1 5 / 2 / 0
0.869 1,117 0,000786 1 5 / 2 / 0
1.325 1.612 0,000587 1 4 / 4 / 0

14.096 18.144 0.011879 1 1 / 1 0 / 0
13.042 16.564 0.010841 1 1 / 1 0 / 0
1.985 2.602 0.000908 1 4 / 4 / 0
4.352 5.778 0.000999 1 3 / 6 / 0
3.673 4.759 0.000832 13 / 6 / 0
1.634 2,075 0,000740 1 4 / 4 / 0
8.528 11.292 0.003731 1 2 / 8 / 0
3.123 3.934 0.000694 13 / 6 / 0
0.674 0.824 0.000603 1 5 / 2 / 0
5.874 7.311 0.002434 1 2 / 8 / 0
10.105 12.158 0.007973 1 1 / 1 0 / 0
4,343 5.765 0.000999 1 3 / 6 / 0

43.782 53.673 0.139839 9 / 1 4 / 0
8.265 10.897 0.003609 1 2 / 8 / 0
13.506 17.258 0.011299 1 1 / 1 0 / 0
13.488 17,232 0,011284 1 1 / 1 0 / 0
12.615 15,923 0,010429 1 1 / 1 0 / 0
0.096 0,121 0.000694 1 4 / - / 4
8.528 11,292 0.003731 1 2 / 8 / 0
3.412 4,368 0.000771 1 3 / 6 / 0
8.200 10.800 0,003578 1 2 / 8 / 0

31.026 40.540 0,052849 10 / 12 / 0
47.328 58.993 0.153694 9 / 1 4 / 0
13.475 17.212 0.011269 1 1 / 1 0 / 0
71.672 95.508 0.248772 9 / 1 4 / 0
139.901 185,852 0.968040 8 / 1 6 / 0
17.390 23,085 0.015083 1 1 / 1 0 / 0

245.574 320.361 3.337151 7 / 1 8 / 0

226 Space k . T im e Efficient Sparse M atrix T ranspose

Appendix A. M atrix Tables

Table A.4: Algorithm Execution Time (seconds)

M a tr ix O O P S aad B in a ry R a d ix 1 C o rr H y p H y b rid H y b rid -3 2
torso2 0.014 0.026 0.105 0.029 0.023 0.038 0.042 0.014
nenisemin 1 0.032 0.107 0.207 0.115 0.100 0.086 0.076 0.027
dl)ir2 0.039 0.120 0.204 0.122 0.112 0.097 0.097 0.047
darcyOOS 0.052 0.125 0.332 0.122 0.120 0.065 0.078 0.032
xenon1 0.033 0.030 0.102 0.033 0.022 0.058 0.022 0.018
ct20stif 0.028 0.144 0.250 0.143 0.133 0,091 0.089 0.033
heart 1 0.065 0.050 0.111 0.046 0.040 0.130 0.039 0.026
venkatOl 0.055 0.048 0.157 0.051 0.038 0,094 0.038 0.029
appu 0.113 0.120 0.186 0.085 0.072 0.216 0.075 0.053
pdblHYS 0.060 0.260 0.412 0.256 0.244 0.211 0.211 0.073
s3dkq4ni2 0.038 0.143 0.336 0.153 0.129 0.141 0.179 0.051
Si34H36 0.104 0.342 0.593 0.324 0.303 0.237 0.238 0.083
shipsecl 0.074 0.572 0.912 0.561 0.491 0.293 0.403 0.091
G3_circuit 0.102 1.063 2.423 1.101 1.099 0.344 0.344 0.214
Hanirle3 0.099 1.458 3.172 1.565 1.527 0.427 0.427 0.247
bniw3-2 0.123 1.157 1.940 1.226 1.041 0.478 0.689 0.220
aLshellS 0.130 0.756 1.527 0.743 0.689 0.562 0.877 0.178
nisdoor 0.305 2.570 4.169 2.374 2.335 0,851 1.023 0.334
ohne2 0.490 0.446 1.316 0.442 0.364 0.927 0.367 0.339
bone010_M 0.189 2.879 5.079 3.205 2.640 0.961 1.020 0.323
P'l 0.760 3.411 5.483 3.656 3.079 1.251 1.304 0.506
nd24k 0.657 2.465 3.465 2.278 2.225 1.797 1.635 0.486
Fault_639 0.256 3.776 5.638 3.480 3.488 1.247 1.506 0.458
nlpkkt80 0.367 3.623 6.823 3.584 3.331 1.449 1.449 0.682
inline.l 0.799 5.947 7.843 4.680 5.674 1.661 1.804 0.728
raj at 31 0.343 0.616 2.592 0.632 0.572 0.790 0.570 0.455
Idoor 0.741 8.535 11.965 6.913 8.469 2.252 2.721 0.989
aLshelllO 0.372 2.321 4,484 2.043 2.193 1.752 1.752 0.506
cage14 1.892 1.392 3.739 1.088 1.126 2.029 1.154 1.289
Serena 0.905 10.673 18.215 10.597 10.391 3.034 3.034 1.215
bundle 1__L 2.087 6,635 7.387 6.043 6.183 2.975 2.758 1.262
boneOlO 0.602 9.701 13.552 7.555 9.128 3.568 3.721 0.911
RM07R 1.246 9.380 13.854 8.441 8.488 4.881 3.744 1.001
audikw_l 1.497 14.650 20.802 11.987 14.529 4.519 4.416 1.638
nlpkktl20 1.931 18.307 31.829 15.837 18.431 5.102 5.102 3.033
cage15 8.012 5.453 15.235 4.194 4.474 9.176 4.595 4.162
ML^Geer 2.182 3.727 12.894 3.408 2.961 11.504 2.982 2.381
nlpkktl60 5.858 53.069 111.354 48.345 55.650 14.475 14.475 10.283
nlpkkt200 11.796 116.659 276.918 110.659 124.855 31.985 31.985 24.500
HV15R 12.718 115.562 198.619 115.123 111.141 31.879 31,879 10.396
nlpkkt240 20.422 223.478 610.015 267.240 237.771 80.765 80,765 79.097

R obert C rosbie , T he U niversity of D ublin . T rin ity College 227

Appendix

Detailed HyperPartition
Performance Graphs

This appendix shows additional graphs with more detailed breakdowns of

the performance of the H yperPartition algorithms with different values of

the Remaining Bits param eter betw'een k = 1 and k = 10.

Figure B .l shows Serial H yperpartit ion with QuickSort with values of

the remaining bits heuristic of A’ = 1 to k = 10.

Figure B.2 shows Parallel H yperParti t ion w ith QuickSort with values

of the remaining bits heuristic of A’ = 1 to k = 10.

Figure B.3 shows Serial H yperP art i t ion w ith QuickSort of ju s t the

UnSymmetric matrices with values of the remaining bits heuristic of A- = 1

to A- = 10.

F igure B.4 shows Serial H yperP art i t ion w ith QuickSort of just the

Symmetric matrices with values of the remaining bits heuristic of A’ = 1 to

k = 10.

Figure B.5 shows Serial H yperPartition with RadixSort with values of

the remaining bits heuristic of A- = 1 to k = 10.

Figure B.6 shows Parallel H yperParti t ion w ith RadixSort with values

of the remaining bits heuristic of A’ = 1 to k = 10.

Figure B.7 show's Serial Hybrid w ith R ad ixSort with values of the

remaining bits heuristic of A’ = 1 to k = 10.

Figure B.8 shows Parallel Hybrid w ith R adixSort w ith values of the

remaining bits heuristic of A' = 1 to k = 10.

R obert C rosbie. T h e U niversity of D ublin . T rin ity College 229

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.l (a,b); Serial Hyperpartition With QuickSort: A- = 1 ^ 10

H yperPartition (Q uicksort - k=1) vs. S aad -IP ■■ (Serial) Execution Time of T ran sp o se (Relative]

n^end
S aad-IP

H yperPartition (QuickSort - k=1)
Average: 119.8%

3.5

3

2.5

2

1.5

1 m 1.5 n
Matrix S iz e (million nnz) <LOG scale>

16 m 50 m 150 m 400 m

Figure B .l (a): Serial H y p e rp a r t i t io n W ith Q uickSort: k = 1

HyperPartition (Q uicksort - k«2) vs. S aad-IP •• (Serial) Execution Time of T ranspose [Relative]
5

Legend
Saad-IP

HyperPartition (Q uickSort - k»2)
A verage; 119.4%

4.5

4

3.5

3

2.5

2

1.5

1

0.5

50 m 150 m 400 m1.5 m 16 m1 m 2 m 8 m4 m
Matrix S iz e (million nnz) <LOG sca le>

F igure B . l (b): Serial H y p e rp a r t i t io n W i th Q uickSort: k = 2

230 Space iic Time Efficient Sparse Matrix Transpose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B .l (c,d); Serial Hyperpartition W ith QuickSort; A’ = 1 —>■ 10

H yperPartition {Q uicksort - k=3) vs. S aad - iP - - (Serial) Execution Time of T ra n sp o se (Relative]

LeoervJ ~
S aad -iP

HyperPartition (Q uicksort ■ k=3)
A verage: 118.5%

4.5

3 .5a.

(Q
CO

>
2 .5

o>>

cn

0.5
ZUf- I.

50 m 150 m 400 m1.5 m 2 m 16 m1 m 4 m 8 m
Matrix S ize (million nnz) <LOG sca le>

F'igure B . l (c): Serial H y p e rp a r t i t io n W ith Q uickSort : k = 3

5

4 .5

4

3.5

3

2.5

2

HyperPartition (Q uicksort • k=4) vs. S aad -IP - - (Serial) Execution Time of T ra n sp o se [Relative]

Leoerxj
S aad-IP

H yperPartition (Q uickSort - k=4)
A verage: 118.6%

1 m 1.5 m 2 r 4 m 8 m
f^atrix S ize (million nnz) <LOG sca le>

1 6 m 50 m 150 m 4 00 ri

F igu re B . l (d): Serial H y p e rp a r t i t io n W i th Q u ickS o r t ; A: = 4

R obert Crosbie, T he U niversity of D ublin . T rin ity College 231

Appendix B. Detailed HyperPartition Perfoniiaiice Graphs

Figure B .l (e,f): Serial Hyperpartition W ith QuickSort: A- = 1 ^ 10

H y p erP a rtitio n (Q u ic k s o r t • k = 5) v s . S a a d - IP - - (S e r ia l) E x ec u tio n T im e of T ra n s p o s e (R ela tive]

L e n e n d

S a a d - IP
H y p e rP a rti t io n (Q u ick S o rt • k=5)

A v e ra g e : 1 1 8 .6 %

A

A

■■ * A . . . A '

4 ^̂ . ■ I -

I I I 1 1

1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

M atrix S iz e (m illion n n z) < L O G s c a le >

Figure B . l (e): Serial H yperparti t io ii W ith QuickSort: k = 5

H y p e rP a flitio n (Q u ic k so r t • k « 6) v s . S a a d - IP (S e ria l) E x ec u tio n T im e of T ra n s p o s e [R ela trve j

5

S a a d - IP
H y p e rP a rtitio n (Q u ic k S o rt - k - 6)

A v e ra g e : 1 1 8 ,2 %

4 .5

4

3 .5

3

2 .5

2

1.5

0 .5

1 .5 m 16 m 5 0 m 150 m 4 0 0 m1 m 2 m 84 m m

M atrix S iz e (m illion n n z) < L O G s c a le >

Figure B . l (f): Seria l H yperp art i t io i i W ith QuickSort: k = 6

232 Space T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B .l (g,li); Serial H yperpartition W ith QuickSort: A' = 1 —> 10

H yperPartition (Q uicksort • k=7) vs. S aad -IP ■ - (Serial) Execution Tim e of T ra n sp o se (Relative)

S aad-IP
H yperPartition (Q uicksort - k=7)

A verage: 117.5%

4.5

3.5

>
2.5o>e

0>

0.5

1 m 1 . 5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 40 0 m
Matrix S iz e (million nnz) <LOG sca le>

F igure B . l (g): Serial H y p e rp a r t i t io n W ith Q uickSort : k = 7

H yperPartition (Q u ickso rt - k»8) vs. S aad -fP - • (Serial) Execution Time of T ra n sp o se fRelativeJ
5

4.5

4

3 .5

3

2 .5

2

1.5

1

0.5

LeaefKj
S aad -IP

HyfjerPartition (Q uickSort - k=8)
A verage: 116.3%

4 m 8 m I 6 m 5 0 m 1 5 0 m 400 m
Matrix S ize (million nnz) <LOG sca le>

F igure B . l (li): Serial H y p e rp a r t i t io n W i th Q uickSort : k = 8

R obert Crosbie, T h e U niversity of D ublin , T rin ity College 233

Appendix B. Detailed H yperPartition Performance Graplis

Figure B .l (i.j): Serial H yperpartition W ith QuickSort: A’ = 1 —> 10

H yperPartition (Q uicksort - k=9) vs. S aad -IP - - (Serial) Execution Time of T ra n sp o se [Relative]

LsQerxi
S aad -IP

HyperPartition (Q uicksort - k=9)
A verage; 115.7%

4.5

3.5Q.
T3rere
c/5

>
2.5

E

0)>re
0)cn

0.5

1 m 1.5 m 2 m 16 m 50 m 150 m 400 m4 m 8 m
Matrix S iz e (million nnz) <LOG sca le>

F igure B . l (i): Serial H y p e rp a r t i t io n W i th Q uickSort : k = 9

H yperPartition (Q uicksort - k=lO) vs. S aad -IP -■ (Serial) Execution Tim e of T ra n sp o se (Relative]
5

4.5

4

3.5

3

2 .5

2

1.5

Legend
S aad -IP

H yperPartition (Q uickSort - k=10)
A verage; 114.7%

1 m 1.5 m 2 m 16 m 50 m 150 m 400 m
Matrix S iz e (million nnz) <LOG sca le>

F igure B . l (j): Serial H y p e rp a r t i t io n W i th Q uickSort : k = 10

234 Space & T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.2 (a.b): Parallel H yperPartition with QuickSort: A- = 1 —> 10

32-w ay H yperPartition (Q uicksort ■ k=1) vs. S aad -IP - - (Parallel) Execution Tim e of T ra n sp o se [Relative]

Leoerxj
Par-32 S aad-IP

P ar-32 H yperPartition (Q uicksort • k=1)
A verage: 86.4%

5.5

4 .5

CL

<0
3.5

>
o>
E

2.5a>
>

o>cr

0.5

1 m 16 m 50 tn 150 m 400 m1.5 m 2 m 4 m 6 m
Matrix S iz e (million nnz) <LOG scale>

F igure B.2 (a): P ara l le l H y p e rP a r t i t io n w ith Q u ickS ort : k = \

32-w ay H yperPartition (Q uicksort - k »2) vs. S aad -IP - - (ParaWe() Execution Time of T ra n sp o se (Relative]

Leoerxi
Par-32 S aad-IP

P ar-32 H yperPartition (Q uickSort - k -2)
A verage: 75.5%

5.5

4 .5

Q.

3.5
>
o>
E

2.5

tr

0.5

1 m 16 m 50 m 150 m 400 m1.5 m 2 m 4 m 8 m
Matrix S ize (million nnz) <LOG sca le>

F ig u re B.2 (b): Para l le l H y p e rP a r t i t io n w i th Q uickS ort : /r = 2

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 235

Appendix B. Detailed H yperP art i t ion Performance Graphs

Figure B.2 (c,d): Parallel H yperP art i t ion with QuickSort: k — 1 ^ 10

32-w ay H yperPartition (Q u ickso rt - k=3) vs. S aad -IP - - {Parallel) E xecution Tim e of T ra n sp o se (Relative)
6

L eoend
P ar-32 S a a d IP

P ar-32 H yperPartition {QuickSorr - k=3)
A verage: 5 7 .1 %

5.5

5

4 .5

4

3 .5

3

2 .5

2

1.5

1

0 .5

1.5 m1 m 2 m 16 50 m 150 m 4 0 0 m4 m 0 m m
Matrix S iz e (million nnz) <LOG sca le>

F igure B .2 (c): Parallel H y p e r F a r t i t io n w i th Q uickSort: k = 3

32-w ay H yperPartition (Q u ickso rt - k .4) vs. S a a d -(P - - (Parallel) E xecution Time of T ra n sp o se (Relative}
6

5.5

5

4 .5

Lggano
P ar-3 2 S a a d -IP

P ar-3 2 H yperPartition (Q uickSort - k -4)
A verage: 4 8 .2%

w 3 .5
>
o> 3
E
« 2.5

,>

<b 2cc
1.5

1

0.5

1.5 m 2 m 4 m 8 m
Matrix S iz e (million nnz) <LOG sca le >

16 m 50 m 150 m 4 0 0 r

F igu re B .2 (d); Paralle l H y p e r P a r t i t io n w i t h Q uickSort: A' = 4

236 Space & T im e Efficient Sparse M atrix Transpose

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.2 (e,f): Parallel HyperPartition with QuickSort: A: = 1 ^ 10

32-w ay H yperPartition {Q uicksort - k=5) vs. S aad -IP - - (Parallel) Execution Tim e of T ra n sp o se [Relative)
6

5.5

5

4,5

4
■6ro
C/) 3.5

o 3
e

2.5

e 2
(X

1,5

Legend
P ar-32 S aad-IP

Par-32 H yperPartition (Q uicksort ■ k=5)
A verage; 43 .5%

1 m 1.5 r 16 m 50 m 150 m 40 0 n
Matrix S iz e (million nnz) <LOG scale>

Figure B .2 (e): Parallel H yperPartition w ith Quick.Sort: k = 5

32-w ay H yperPartition (Q u ickso rt - k=6) vs. S aad-IP •• (Parallel) Execution Time of T ra n sp o se [Relative]
6

L eoend
P ar-32 S aad-IP

Par-32 H yperPartition (Q uickSort - k=6)
A verage: 42 .7%

5.5

5

4.5

4

3.5

3

2.5

2

1.5

1

0.5

1 6 m 50 m 150 m 400 m1.5 m1 m 2 m 84 m m
Matrix S ize (million nnz) <LOG scale>

Figure B .2 (f): Parallel H yperP artition w ith QuickSort: k = 6

R obert C rosbie. T h e I 'n iv e rs ity of D ublin . T rin ity College 237

Appendix B. Detailed HyperPartition Perfonnance Graphs

Figure B.2 (g,h); Parallel HyperPartition with QuickSort: A’ = 1 10

32-way HyperPartition {Quicksort - k=7) vs. Saad-IP - - (Parallel) Execution Time of Transpose [Relative)

LeoerKl ' 1 1 1

5,5 Par-32 Saad-IP
Par-32 HyperPartition {Quicksort - k=7) *

-

b Average; 43.1%

4,5 r

4 -

3.5

3 -

2,5 -

2

1.5 A
A * .

'

0.5 . t

1m 1.5m 2 m 4 m 8 m I6 m 50m 150m 400m
Matrix Size {million nnz) <LOG scale>

F'igiire B .2 (g): Parallel HyperF’artition with QuickSort: k = 7

32-way HyperPartition {Quicksort - k»8) vs. Saad-IP - - {Parallel) Execution Time of Transpose (Relative)

Par-32 Saad-IP
Par-32 HyperPartition (QuickSort - k*8)

Average: 44.2%

5,5

<TJ
n>

3.5
>
0)
E

2.50)_>

0,5

16 m 50 m 150 m 400 m1 m 1,5 m 2 m 84 m m
Matrix Size (million nnz) <LOG scale>

Figure B.2 (h): Parallel HyperPartition w ith QuickSort: k = 8

238 Space ^ Time Efficient Sparse Matrix Transpose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.2 (i.j): Parallel H yperPartition with QiiickSort: A- = 1 -> 10

32-w ay H yperPartition (Q uicksort - k=9) vs. S aad -IP ■■ (Parallel) Execution Time of T ra n sp o se (Relative)

Ueoend
P ar-32 S aad-IP

P ar-32 HyperPartition (Q u ickso rt • k=9)
A verage: 46 .5%

5,5

Q .
T3
(D
03

C/3 3.5
>
a>
E

2.5

occ

0.5

1.5 m 2 m 16 m 50 m 150 m 4 00 m1 m 4 m 8 m
Matrix S iz e (million nnz) <LOG scale>

F igu re B .2 (i): Parallel H y p e rP a r t i t io n w ith QiiickSort: k = 9

32-w ay H yperPartition (Q uicksort - k -1 0) vs. S aad -IP - • (Parallel) E xecution Tim e of T ra n sp o se IRetative)

Leoend _ _ .
Par-32 S aad-IP

P ar-32 H yperPartition (Q u ickso rt - k -1 0)
A verage; 50.0%

5.5

Q.

S
<0

3.5ir>
>
<i)
,E

2.5

. . ▲0.5

1.5 m 2 m 1 6 m 50 m 150 m 400 m1 m 4 m 8 m
Matrix S ize (million nnz) <LOG sca le>

Figure B .2 (j): Parallel H y p e rP a r t i t io n w i th Q u ick so r t : k = 10

R o b e rt C rosbie . T h e U niversity of D ublin . T rin ity College 239

Appendix B. Detailed H yperPartition Performance Graj)hs

Figure B.3 (a.b): Serial UnSynmietric HyperPartition QuickSort; A- = 1
10

5

4.5

4

3 .5

3

2 .5

2

1.5

H yperPartilion (Q u ick so rt - k=1) vs. S a a d -IP • • (Seria l) U nSym E xecu tion T im e of T ra n sp o se [Relative]

teoend
S aad -IP

H yperPartition (Q uickSort • k = \)
A verage : 8 1 .4%

-ft ' ■ A

4 m 8 m
Matrix S iz e (million n nz) <LO G sca le >

16 m 50 m 150 m 4 00 m

F'igure B .3 (a): Ser ia l I 'n S y n i i i i e t r ic H y p e r P a r t i t i o n Q uick Sort: k = I

H yperPartition (Q u ic k so rt k«2) vs. S a a d -IP ■■ (Seria l) U nSym E xecu tion Tim e of T ra n sp o se (Relative)
5

4 .5

4

3 .5

C13
C/3 3

_ >
0> 2 .5
i

01 2

■a>
o c 1.5

Legend
S a a d -IP

H yperP artition (Q uickSort - k -2)
A verage ; 8 1 .1%

1

1 m 1.5 m 2 m 16 m 50 m 150 m 4 0 0 m
Matrix S iz e (million n nz) <LO G sca le>

F ig u r e B .3 (b): Seria l U n S y m n ie t r i c H y p e r P a r t i t i o n Q uick Sort: k = 2

240 S pace & T im e Efficient S parse M atrix T ran sp o se

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.3 (c,d): Serial UnSyninietric HyperPartition QuickSort: A’ = 1
10

H yperPartition (Q uickSoft - k*3) vs. S aad -IP •• (Serial) U nSym E xecution T im e of T ra n sp o se (Relative)

S aad -IP
H yperPartition (Q u ickso rt - k=3)

A verage: 80 .5%

3 .5

3

2.5

2

1.5

1 m 1.5 m 2 m 4 m 0 m
Matrix S iz e (million nnz) <LOG sca le >

16 m 50 m 150 m 4 00 n

Figure F .̂3 (c): Serial UnSyiinuetric HyperPartition QuickSort: A- = 3

H yperPartition (O uickSori - k«4) vs. S aad -IP •• (S ena!) U nSym E xecution Tim e of T ra n sp o se [Relativel

3 .5

3

2 .5

2

1.5

L ea en o
S aad-IP

H yperPartition (O uickSoft • k -4)
A verage: 00 .3%

1 m 1.5 r
Matrix S iz e (million nnz) <LOG sca le >

16 m 50 m 150 m 40 0 m

Figure B .3 (d): Serial UnSyiiinietrir HyperPartition QuickSort: k = 4

R obert (’rosbie. T h e I ’liiversity of D ublin , T rin ity College 241

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.3 (e,f): Serial UnSymmetric HyperPartition QuickSort; A’ = 1
10

5

4.5

4

^ 3.5

m T

 ̂ 2.5
,E

I 2TO
0>

1.5

1

HyperPartition (Quicksort • k=5) vs. Saad-IP - - (Serial) UnSym Execution Time of Transpose [Relative)

LeaeTKl
Saad-IP

HyperPartition (Quicksort ■ k*5)
Average: 80.6%

A

1m 1.5 m 2 m 16m 50 m 150 m 400 r
Matrix Size (million nnz) <LOG scale>

Figure B .3 (e): Serial U nSym m etric H yperPartition QuickSort: k = 5

HyperPartition (QurckSort - k«6) vs. Saad-IP - - (Serial) UnSym Execution Time of Transpose (Relative]
5

Legend
Saad-IP

HyperPartition (QuickSort - k=6)
Average: 81.0%

4.5

4

3.5

3

2.5

2

1.5

1 ^
0.5

1.5 m 2 m 8 m 16 m 50 m 150 m 400 m1 m 4 m
Matrix Size (million nnz) <LOG scale>

Figure B .3 (f): Serial U nSym m etric H yperP artition QuickSort: k = 6

242 Space & T im e Efficient Sparse M atrix T ranspose

Ap])endix B. Detailed H yperPartition Perfonnance Graphs

Figure B.3 (g,h): Serial UiiSymmetric HyperPartition QuickSort: k = 1
10

H yperPartition (Q u ickso rt ■ k=7) vs. S aad -IP ■■ (Serial) UnSym Execution Tim e of T ra n sp o se [Relative]

^ ~ ~ t^ e n d
S aad-IP

H yperPartition (Q uickSort - k=7)
A verage; 81 .0%

3.5CL

c/>
V)>

2.5
E

o
>

0)
t r

0.5

1 m 1,5 m 2 m 4 m 50 m 150 m 400 m8 16 mm
Matrix S iz e (million nnz) <LOG sca le>

F igu re B.3 (g): Serial U iiSyin inetric H y p e rP a r t i t io n Q uickSort : k = 7

5

4.5

4

3.5

3(/)

0> 2.5
E
i—
d>> 2

cc 1.5

H yperPartition (Q u ickso rt - k=8) vs. S aad -IP -■ (Serial) UnSym Execution Tim e of T ra n sp o se [Relative]

Legend

1

0.5

S aad -IP
H yperPartition (Q uickSort ■ k=8)

A verage; 80 .6%

1.5 m 2 m 4 m 8 m
Matrix S ize (million nnz) <LQG scale>

1 6 m 50 m 150 m 4 00 n

F igure B.3 (h): Serial U nS y in in e tr ic H y p e rP a r t i t io n Q uickS ort : k = 8

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 243

Appendix B. Detailed HyperPartitioii Performance Graphs

Figure B.3 (i.j): Serial UnSymmetric HyperPartitioii QuickSort: A: = 1
10

5

4 .5

4

3 .5

3

2 .5

2

1 .5

1

0 .5

H y p e rP a rtitio n (O u ic k S o n • k = 9) v s . S a a d - IP - - (S e ria l) U n S y m E x ec u tio n T im e of T r a n s p o s e (R ela tive]

Legend
S a a d - IP

H y p e rP a rtitio n (Q u ic k S o rt • k=9)

A v e ra g e : 8 0 .6 %

1 m 1 .5 m 2 m 4 m 8 m

M atrix S iz e (m illion n n z) < L O G s c a le >

16 m 50 m 150 m 4 0 0 m

Figure B.3 (i): Serial UnSymmetric HyperPartition QuickSort: k = 9

5

4 .5

4

3 .5

s(« 3
c/5

2 ,5

> 2

(T 1 .5

H y p e rP a rtitio n (Q u ic k s o r t • k « 1 0) v s . S a a d - IP - - (S e ria l) U n S y m E x e c u tio n T im e of T r a n s p o s e (R ela tive)

Leoend
S a a d - IP

H y p e rP a rti t io n (Q u ic k S o rt - k -1 0)
A v e ra g e : 8 0 .5 %

1

0 .5

1 m 1 .5 m 2 m 16 m 50 m 150 m 4 0 0 m

M atrix S iz e (m illion n n z) < L O G s c a le >

Figure B.3 (j): Serial UnSymmetric HyperPartition QuickSort: k = 10

244 Space ^ Time Efficient Sparse Matrix Transpose

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.4 (a,b): Serial Symmetric HyperPartition with QuickSort: k
1 ^ 10

5

4 .5

4

3 .5

3

2 .5

2

1 .5

H y p e rP a rti t io n (Q u ic k s o r t - k=1) v s . S a a d - I P -■ (S e ria l) S y m E x e c u tio n T im e of T r a n s p o s e [R ela tive)

t e o ^
S a a d I P

H yp>erPartition (Q u ic k S o rt - k= 1)

A v e ra g e : 2 7 6 .6 %

1 .5 m 2 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

M atrix S iz e (m illion n n z) < L O G s c a le >

Figure B .4 (a): Serial Sy i iu i ie tr ic H y p e rP a r t i t io n w i th Q uickSort: k = I

H y p e rP a r ti t io n (Q u ic k s o r t - k - 2 } v s . S a a d - I P - - (S e r ia l) S y m E x e c u tio n T im e of T r a n s p o s e (R e la tiv e)

5

4 .5

4

Q. 3 .5

■6ra 3

>
o> 2 .5
E

i -
> 2

o
(L 1 .5

Legend
S a a d - IP

H y p e rP a r ti t io n (Q u ic k S o rt - k « 2)

A v e ra g e : 2 7 5 .8 %

1.5 m 2 m 1 6 m 5 0 m 150 m 4 0 0 m

M atrix S iz e (m illion n n z) < L O G s c a le >

P’igure B .4 (b): Serial Sy in ii ie tr ic H y p e rP a r t i t io n w i th Q uickSort: k = 2

R oliert C rosbie . T h e I 'n iv e rs ity of D ublin . T rin ity College 245

Appendix B. Detailed HyperPartition Performance Graphs

Figiu'e B.4 (c.d): Serial Symmetric HyperPartition with QuickSort: k
1 ^ 10

H y p e rP a r ti t io n (Q u ic k s o r t - k » 3) v s . S a a d - I P (S e r ia l) S y m E x e c u t io n T im e of T r a n s p o s e (R e la tiv e)

Legend
5

4 .5

4

CL 3 .5

■6
<0

CO 3

>
a> 2 .5
E

t—
o>> 2

. 2

1 .5

S a a d - I P

H y p e rP a r ti t io n { Q u ic k s o r t - k= 3)
A v e ra g e : 2 7 3 .8 %

1 .5 m 2 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

M atrix S iz e (m illion n n z) < L O G s c a le >

F ig u re B .4 (c): Seria l S y m m e t r ic H y p e r P a r t i t io n w ith Q uickSort: k = 3

5

4 .5

4

3 .5

3

2 .5

2

1 .5

H y p e rP a r ti t io n (Q u ic k s o r t - k » 4) v s . S a a d - I P ■■ (S e r ia l) S y m E x e c u tio n T im e of T r a n s p o s e (R e la tiv e)

' Leoeixi
S a a d - I P

H y p e rP a r ti t io n (Q u ic k s o r t k « 4)
A v e ra g e : 2 7 5 .0 %

1 .5 m 2 m 16 m 5 0 m 1 5 0 m 4 0 0 m

ly^atrix S i z e (m illion n n z) < L Q G s c a le >

F ig u re B .4 (d): Ser ia l S y m m e t r i c H y p e r P a r t i t io n w ith Q uickSort: k = 4

246 Space K ' T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed HyperPartition Performance Graj^hs

Figure B.4 (e.f): Serial Symmetric HyperPartition w ith QuickSort: k
1 10

5

4.5

4

3.5

3

2.5

2

1.5

H yperP artition (Q u ickso rt • k=5) vs. S aad-IP - • (S eria l) S ym Execution T im e o f T ranspose [R elative)

Leger>d
Saad-IP

H yperP artition (Q u ic k s o rt - k=5)
A ve rage ; 273.5%

1 m 1.5 m 2 m 4 m 0 m

M atrix S ize (m illion nnz) < LO G scale>

16 m 50 m 150 m 4 00 m

Figure B.4 (e): Serial Syiniiietric HyperPartition w ith QuickSort: k = 5

H yperP artition (Q u ickS on • k» 6) vs. S aad-IP - - (S eria l) S ym Execution T im e o f T ranspose (R elative]

5

4 .5

4

a 3.5

■D
« 3

(/)

0) 2.5
E
i—
> 2

a 1.5

tebend
S aad-IP

H yperP artition (Q u ickS ort - k»6)
A verage; 270 .2%

1 m 1.5 m 2 r 1 6 m 50 m 150 m 4 00 m

M atrix S ize (m illion nnz) <LO G scale>

Figure B.4 (f): Serial Symmetric HyperPartition w ith QuickSort: A’ = 6

R o b e rt C 'rosb ie, T h e U n iv e rs ity o f D v ib lin . T r in i t y C 'ollege 247

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.4 (g,h): Serial Symmetric HyperPartition with QuickSort: k
1 ^ 10

H yperPartition (Q uicksort • k -7) vs. S aad-IP - - (Serial) Sym Execution Tim e of T ra n sp o se [Relative)

3.5

3

2.5

2

1.5

S aad-IP
HyperPartition (Q uickSort - k=7)

A verage: 266 .5%

4 m 8 m
Matrix S iz e (million nnz) <LOG scale>

16 m 50 m 150 m 400 m

Figure B.4 (g): Serial Syniinetric HyperPartition with QuickSort: k = 7

HyperPartition (Q uicksort k«8) vs, S aad -IP - • (Serial) Sym Execution Tim e o(T ra n sp o se [Relative]

LeoerKi

4.5

4

3.5

3

2.5

2

1.5

S aad -IP
H yperPartition (Q uicksort - k«8)

A verage: 261 ,8%

it

1,5 m 2 m 4 m 8 m
Matrix S iz e (million nnz) <LOG sca le>

1 6 m 50 m 150 m 400 m

Figure B.4 (h): Serial Symnietric HyperPartition with QuickSort: k = 8

248 Space & T im e Efficient Sparse M atrix T ranspose

A ppendix B. Detailed H yperParti t ion Performance Graphs

Figure B.4 (i,j): Serial Sym m etric H y p erP a r t i t io n with QuickSort: k =
1 ^ 10

H yperPartition {Q uicksort - k*9) vs. S aad-IP - - (Serial) Sym Execution Tim e of T ra n sp o se [Relative]

Leoend
S aad -IP

H yperPartition {Q uicksort • k=9)
A verage: 258 .5%

A &

- -

1 m 1 ,5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m
Matrix S ize (million nnz) <LOG sca le >

’ig'ure B.4 (i): Serial Symmetric H yperPart it ion with QuickSort: k = 9

H yperPartition (Q uicksort - k -1 0) vs, S a a d IP - - (Serial) Sym E xecution Tim e of T ra n sp o se [Relative]

-

S aad -IP
H yperPartition (Q u ickso rt - k - l0)

A verage: 254 ,3%

1
1

1
1

1
1

>

>

E>

-

1 m 1 ,5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m
Matrix S ize {million nnz) <LOG sca le>

F'igtire B.4 (j): Serial Symmetric H yperPart i t ion with QuickSort: k = 10

R obert C rosbie. T h e U niversity of D ublin , T rin ity College 249

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.5 (a,b): Serial H yperPartition with RadixSort: A- = 1 —>■ 10

HyperPartition {RB-Sort - k=1) vs. S aad -IP - - (Serial) Execution Time of T ra n sp o se [Relative)

L^end
S aad -tP

HyperPartition (RB-Sort - k=1) ♦
A verage: 97.1%

5.5

4.5

3,5
>
o>
E

2.5
> ♦ ♦
S3
9cc

♦ ♦
0.5

1.5 m 2 m 50 m 150 m 40 0 m1 m 4 m 8 16 mm
Matrix S iz e {million nnz) <LOG scaie>

Figure B.5 (a): Serial H yperPartit ion with RadixSort: /o = 1

HyperPartition (RB-Sort - k=2) vs. S aad-IP - - (Serial) Execution Time of T ra n sp o se (Relative)

Leoend
5.5

5

4.5

4

3.5

3

2.5

2

1.5

Saad-IP
HyperPartition (RB-Sort - k=2)

A verage: 98 .6%

1.5 m 2 m 4 m 8 m
Matrix S iz e (million nnz) <LOG scale>

1 6 m 50 m 150 m 4 00 m

Figure B.5 (b): Serial H yperPart it ion with RadixSort: A: = 2

250 Space T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.5 (c,d): Serial H yperPartition with RadixSort; /,■ = 1 —)• 10

H yperPartition (RB-Sort - k=3) vs. S aad -IP - - (Serial) E xecution Tim e of T ra n sp o se [Relative]

L«3end
S aad -IP

H yperPartition {RB-Sort - k=3) ♦
A verage: 102.6%

5.5

4.5

Q.
■o

3.5
(A>
<1>
E

2.5o>
> ♦ ♦n
<i>cc ♦ ♦

V

« * ♦ ♦
0.5

1.5 m 2 m 16 m 50 m 150 m 400 m1 m 4 m 8 m
Matrix S ize (million nnz) <LOG sca ie>

Figure R .5 (c); Serial H y p e rP a r t i t io n w ith Radix.Sort: k = 3

H yperPartition (RB-Sort • k -4) vs. S aad -IP - (Serial) Execution Time of T ra n sp o se (Relative)

L M end
S aad-IP

H yperPartition (RB-Sort - k -4)
A verage: 107.7%

5.5

4.5

0.

s
3.5

>
o>
E

2.5
♦ ♦

SS0)tr

* ** * *
0.5

1.5 m 2 m 8 m 16 m 50 m 150 m 400 m1 m 4 m
Matrix S ize (million nnz) <LOG sca le>

F igu re B .5 (d): Serial H y p e rP a r t i t io n w ith R ad ixS ort: k = A

R o b ert Crosbie, T h e U niversity of D ublin . T rin ity College 251

A])pen(lix B. Detailed H y p e rP a rtitio ii Perforinance Graphs

Figure B.5 (e,f): Serial H y p e rP a rtitio ii w ith RadixSort: A’ = 1 ^ 10

HyperPartition (RB-Sorl • k=5) vs. Saad-IP (Serial) Execution Time of Transpose (Relative)

Saad-lP
HyperPartition (RB-Sort • k=5) ♦

Average: 104.9%

5.5

4.5

Q.

ni

3.5

4>
E

2.5o>
> ♦ ♦m
o>cc

♦ t ♦♦ ♦ ♦
♦0.5

1.5 m 2 m 50 m 150 m 400 m1 m 4 m 6 16 mm
Matrix Size (million nnz) <LOG scale>

F igure B.5 (e): Serial H yp e rP a rtitio n w ith R adixSort: k = 5

HyperPartition (RB Sort k -6) vs. Saad-IP - - (Serial) Execution Time of Transpose (Relative]

Saad-IP
HyperPartition (RB-Sort ■ k -6)

Average: 101.3%

5.5

4.5

Q.

(0
CO 3.5
>

j - 2.54>>
♦ ♦

S3a>
CC

ît r i mrM m

* » «*
0.5

1,5 m 2 m 50 m 150 m 400 m1 m 4 m 8 m 16 m
Matrix Size (million nnz) <LOG scale>

F igure B.5 (f): Serial H yp e rP a rtitio n w ith R adixSort: k = 6

252 Space ^ T im e E ff ic ie n t S parse M a t r ix T ra n sp o se

A p])e ii(lix B. Detailed H yperP artition Performance Graphs

Figure B.5 (g,h); Serial H yperP artition w ith RadixSort; A- = 1 10

HyperPartition {RB-Sort - k=7) vs. Saad-IP - - (Serial) Execution Time of Transpose [Relative)
6

L^epd
Saad-IP

HyperPartition (RB-Sort - k=7) ♦
Average: 94.8%

5.5

5

4.5

4

3.5

3

2.5

2

1.5

• ♦%
0.5

1.5 m 50 m 150 m 400 m1 m 2 m 4 m 8 m 16 m
Matrix Size (million nnz) <LOG scale>

F'igurc R.,5 (g): Seria l H y p e rP a rtit io n w ith R a d ixS o rt: k = 7

HyporPartition (RB-Sort ■ k*8) vs. Saad-IP •• (Serial) Execution Time of Transpose [Relative]
6

5.5

5

4.5

4

3.5

3

2.5

2

1.5

LTOerxj
Saad-IP

HyperPartilion (RB-Sort • k»8)
Average: 91.3%

4 m 8 m
Matrix Size (million nnz) <LOG scale>

16 m 50 m 150 m 400 r

F ig u re B ,5 (h): Seria l H y p e rP a rtit io n w it l i R a d ixS o rt; k = 8

R o b e rt C rosb ie . T h e U n iv e rs ity o f D u b lin . T r in i t y C o llege 253

Appendix B. Detailed HyperPartitioii Performance Graphs

Figure B.5 (i,j): Serial HyperPartition with RadixSort: A' = 1 —> 10

H yperPartition (RB-Sort - k=9) vs. S aad -IP - - (Serial) Execution Tim e of T ra n sp o se (Relalive)

Leoend
S aad-IP

HyperPartition (RB-Sort - k=9) ♦
A verage: 89.9%

5.5

4.5

Q,

1
3.5

>
a>e

2.5
2

o>
CC

0.5

16 m 50 m 150 m 4 00 m1 m 1.5 m 2 m 8 m4 m
Matrix S iz e (million nnz) <LOG sca le>

Figure B.5 (i): Serial HyperPartition with RadixSort: /c = 9

HyperPartHion (RB-Sort - k - 10) vs. S aad -IP - - (Serial) E xecution T im e ot T ra n sp o se jRelalive]

Leoend
Saad-IP

HyperPartition (RB-Sort • k»10) ♦
A verage: 92 .3%

5.5

4.5

a.

le
c/3 3.5
</>

Q>
I

2.5Q>2
JS0)
cc

♦ u*
♦ ♦ ♦ ♦

0.5

1 m 1.5 m 2 m 50 m 150 m 4 0 0 m4 8 1 6 mm m
Matrix S iz e (million nnz) <LOG sca le>

F'igure B.5 (j): Serial HyperPartition with RadixSort: k = 10

254 Space T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed HyperPartition Performance Graphs

Figure B.6 (a,b): Parallel HyperPartition with RadixSort: A- = 1 —> 10

32-W ay H yperPartition (RB-Sort • k=1) vs. S aad -IP ■■ (Parallel) Execution Tim e of T ra n sp o se [Relative)
5.5

5

4 .5

4

3 .5
«

CO

i 3
a>

I
>
S 2
0) cc

1.5

1

0 .5

l m 1.5 m 2 m 4 m 8 m 16 m 50 m 150 m 400 m
Matrix S ize (million nnz) <LOG sca le>

Figure B.6 (a): Parallel HyperPartition with RadixSort: A’ = 1

Legend
P ar-32 S aad -IP

Par-32 H yperPartition (R B -Sort - k=1)
A verage: 71 .4%

32-W ay H yperPartition (RB-Sort - k«2) vs, S a a d - iP - - (Parallel) E xecution Tim e ot T ra n sp o se {Relalive)
5 .5

5

4 .5

4

^ 3 .5
«

CO

i 3

I 2-5
0)>
« 2
(D
t t

1.5

Legend
Par-32 S aad-IP

P ar-32 H yperPartition (R B -Sort - k«2)
A verage: 65 .1%

4 m 8 m
Matrix S iz e (million nnz) <LOG sca le>

16 m 50 m I 5 0 m 400 n

Figure B.6 (b): Parallel HyperPartition with RadixSort: k = 2

R obert C rosbie , T h e I 'n iv e rs ity of D ublin , T rin ity College 255

A ppend ix B. D eta iled H y p e rP a rtit io ii P e rfo riiia iice G raj)hs

F igure B.6 (c,ci): Para lle l H y p e rP a rtit io n w ith R adixSort; A’ = 1 —)• 10

5.5

5

4.5

4

3.5

3

2.5

2

1.5

32-Way HyperPartition {RB-Sort • k=3) vs. Saad-IP • • (Parallel) Execution Time of Transpose (Relative]

Legend
Pai-32 Saad-lP

Par-32 HyperPartition (RB-Sort - k=3)
Average: 51.2%

1-5 m 2 m 4 m 8 m
Matrix Size (million nnz) <LOG scaie>

16 m 50 m 150 m 400 n

F igu re B.G (c): P a ra lle l H y p e rP a rtit io n w ith R a d ixS ort: k — 3

5.5

5

4.5

4

3.5

3

2.5

2

1.5

32-Way HyperPartition (RB-Sort - k=4) vs. Saad-IP - - (Parallel) Execution Time of Transpose [Relative]

Legend
Par-32 Saad-IP

Par-32 HyperPartition (RB-Sort - k=4)
Average: 44.9%

16m 50 m 150 m 400 m
Matrix Size (million nnz) <LOG scale>

F igu re B .6 (d): P a ra lle l H y p e rP a rtit io n w ith R ad ixS ort: k = A

256 Space T im e E ff ic ie n t S parse M a tr ix T ranspose

Appendix B. Detailed HyperPartitioii Performance Graphs

Figure B.6 (e,f): Parallel H yperPartition with RadixSort: A- = 1 —> 10

5.5

5

4 .5

4

3 .5

3

2.5

2

1.5

32-W ay H yperPartition (RB-Sort - k=5) vs. S aad -IP - - (Parallel) Execution Tim e of T ra n sp o se (Relative)

Legend
P ar-32 S aad -IP

P ar-32 H yperPartition (RB-Sort - k=5)
A verage: 40 .2%

■nda w-LiT».iarf8iigBmninB».?̂ (Ct<'nnr>'

' c

Matrix S ize (million nnz) <LOG scale>
16 m 50 m I 5 0 m 400 m

P'igure B.6 (e): P ara l le l H y p e rP a r t i t io n w ith R ad ixS o r t : k — 5

5.5

5

4 .5

32-W ay H yperPartition (RB-Sort - k=6) vs. Saad-<P • - (Paral(ef) Execution Time of T ra n sp o se [Relative]

L ^ e n j ~

Par-32 S aad-IP
Par-32 HyperPartition (RB-Sort • k=6)

A verage: 39 .6%

3 .5 ̂

3

2.5

2

1.5

1

0.5

r> « m n? ^
N <1& V

, .1.

4 m 8 m
Matrix S ize (million nnz) <LOG scale>

16 m 50 m 150 m 400 m

1‘̂ igure B.6 (f): Para l le l H y p e rP a r t i t io n w ith R ad ixS o r t : k = 6

R o b ert C rosbie , T h e U niversity of D ublin . T rin ity College 257

Appendix B. Detailed HyperPartitioii Performance Graphs

Figure B.6 (g,!i): Parallel HyperPartition with RadixSort; A- = 1 -> 10

32-W ay H yperPartition (RB-Sorl - k=7) vs. S a a d -IP - - (Parallel) Execution Tim e of T ra n sp o se (Relative]
5.5

5

4.5

4

3.5

3

2.5

2

1.5

Legend
P ar-32 S aad -IP

P ar-32 H yperPartition (RB-Sort - k=7)
A verage: 3 9 .7%

' 3J>V,

Matrix S iz e (million nnz) <LOG sca le>
16 m 50 m 150 m 400 m

Figure B.6 (g): Parallel HyperPartition with RadixSort: k = 7

32-W ay H yperPartition (R B -Sort - k -0) vs. S aad -IP - - (Parallel) E xecution Tim e of T ra n sp o se (Relative]
5.5

5

4 .5

4

3.5

3

2.5

2

1.5

L eoend
P ar-3 2 S aad -IP

P ar-3 2 H yperPartition (R B -Sort • k»8)
A verage: 40 .6%

<¥>

%
1,5 m 2 m 4 m 8 m

Matrix S ize (million nnz) <LOG sca le>
16 m 50 m 150 m 4 00 r

Figure B .6 (h): Parallel HyperPartition w ith RadixSort: k = 8

258 Space & T im e Efficient Sparse M atrix Transpose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.6 (i.j): Parallel H yperPartition with RadixSort: /,• = 1 —)• 10

32-W ay H yperPartition (R B -Sotl - k=9) vs. S aad - iP - - (Parallel) Execution Tim e of T ra n sp o se (Relative)
5.5

Legend
P ar-32 S aad -IP

P ar-32 H yperPartition (RB-Sorl - k=9)
A verage: 43 .5%4.5

3.5

2.5

0.5

X ±
1 m 1 .5 m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 4 0 0 m

Matrix S ize (million nnz) <LOG scale>

F igure B.f> (i): Para lle l H y p e rP a r t i t io n w i th R ad ix S o r t : k = 9

32 W ay H yperPartition (RB-Sort • k»10) vs. S aad -iP - (Parallel) E xecution Tim e of T ra n sp o se (Relative)
5,5

Legend
P ar-32 S a a d IP

P ar-32 H yperPartition (RB-Sort - k»10)
A verage: 47 .2%4.5

Q.

3.5
to
>

I 2.5

SSo
CC

0.5

1.5 m1 m 2 m 4 m 50 m 150 m 4 00 m8 m 16 m
Matrix S ize (million nnz) <LOG sca le>

F ig u re B.6 (j): P ara l le l H y p e rP a r t i t io n w ith R ad ix S o r t : k = 10

R obert C rosbie . T h e I ’n iversity of D ublin , T rin ity C'ollege 259

Appendix B. Detailed HyperPartition Perfonuaiice Graphs

Figure B.7 (a,b): Serial Hybrid with RadixSort leaving: A- = 1 10

Hybrid (RB-Sort - k=1) vs. Saad-IP - - (Serial) Execution Time of Transpose [Relative)
4.5

L eoerxj
Saad-IP

Hybrid (RB-Sort - k*1)
Average: 72.0%

3.5

Q.
■ore
(Q

c /5
 ̂ 2.5

n>
E

re

• «»
0.5

16m 50 m 150 m 400 m1 m 1.5 m 2 m 8 m4 m
Matrix Size (million nnz) <LOG scale>

F ig u re B .7 (a): .Serial H y b rid w ith R ad ix S o rt leaving: k = 1

Hybrid (RB-Sort • k-2) vs. Saad-IP - - (Serial) Execution Time of Transpose [Relative]
4.5

Leoen^^
Saad-IP

Hybrid (RB-Sort - k-2) •
Average; 72.8%

3.5

CL

2.5
>

V.£re
o

cc

• t •
0.5

16m 50 m 150 m 400 m1 m 1.5 m 2 m 84 m m
f» âtrix Size (million nnz) <LOG scale>

Figvire B .7 (b): S eria l H y b rid w ith R a d ix S o rt leaving: k = 2

260 Space & T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed H yperPartitioii Perforinance G raphs

Figure B.7 (c,d): Serial Hybrid with RadixSort leaving: A’ = 1 ^ 10

Hybrid (RB-Sort - k»3) vs. S aad -IP - - (Serial) Execution Tim e of T ra n sp o se (Relative]
4 ,5

LeQenj
Saad-IP

Hybrid (RB-Sort • k=3) •
A verage: 75 .3%

4

3.5

3

2.5

2

1,5

i • •

1

0.5

2 m 50 m 150 m 4 00 m1 m 1.5 m 8 16 m4 m m
Matrix S iz e (million nnz) <LOG sca le>

F igu re B.7 (c): Serial H y br id w ith RaciixSort leaving: k = .'3

Hybrid (RB-Sort k=4) vs. S aad -IP - • (Serial) E xecution Time ot 1 ra n sp o se (Relative)
4.5

Leoerxj
S aad-IP

Hybrid (RB-Sort - k -4) •
A verage: 77.1%

4

3.5

3

2.5

2

1.5

1

.* *•:
0.5

2 m 50 m 150 m 4 0 0 m1 m 1.5 m 8 m 16 m4 m
Matrix S iz e (million nnz) <LOG sca le>

F ig u re B.7 (d): Serial H y b r id w i th R a d ix S o r t leaving: k = A

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 261

Appendix B. Detailed H yperPartition Peifonnance Graphs

Figure B.7 (e.f): Serial Hybrid with RadixSort leaving: /.’ = 1 —>• 10

Hybrid (RB-Sort • k=5) vs. S aad -IP ■■ (Serial) Execution Tim e of T ra n sp o se [Relative]

LeaerxJ '
S aad-IP

Hybrid (RB-Sorl - k=5)
A verage: 76.5%

3

2.5

* II •<! ir^ iii i iw -1*1̂ ^ wr in Tr- iT '-a- --j

1 m 1.5 m 2 r 4 m 8 m
Matrix S iz e (million nnz) <LOG sca le>

• * r .
16 m 50 m 150 m 400 r

F'igure B .7 (e): Serial Hybrid w ith R adixSort leaving: k = 5

Hybr»d (RB-Sort - k«6) vs. S a a d -IP - • (Serial) Execution Tim e of T ra n sp o se (Relative)
4.5

L e o e n J ~
S aad-IP

Hybrid (R B -Sort - k=6) •
A verage: 73 .9%

3.5

Q.

2.5
>
o
E

m
o>tr

t • • • •
» • • • • •: •0.5

4 m 8 m I 6 m 5 0 m 1 5 0 m 400 m
f^atrix S iz e (million nnz) <LOG sca le>

Figure B .7 (f): Serial Hybrid w ith R adixSort leaving: k = 6

262 Space & T im e Efficient Sparse M atrix T ranspose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.7 (g,li): Serial Hybrid with RadixSort leaving: A: = 1 10

Hybrid (RB-Sort • k=7) vs. S aad -IP ■■ (Serial) E xecution Tim e of T ra n sp o se (Relative)
4 ,5

Leaenj
Saad-IP

Hybrid {RB-Sort - k=7) •
A verage: 70 .6%

4

3.5

3

2.5

2

1,5

1
• •

0,5

50 m 150 m 4 0 0 m1 m 1,5 m 8 m 16 m2 m 4 m
Matrix S iz e (million nnz) <LOG sca le >

Figure B .7 (g): Serial Hybrid with RadixSort leaving: k = 7

Hybrid (RB-Sorl • k-8) vs, S aad -(P - - (Seriaf) Execution Time of T ra n sp o se [Relative]
4 ,5

Leaen</
Saad-IP

Hybrid (RB-Sort • k«8)
A verage: 68 ,9%

4

3.5

3

2.5

2

1,5

1

0.5

1 6 m 50 m 150 m 4 00 m1 m 1.5 m 2 m 84 m m
Matrix S ize (million nnz) <LOG sca le >

Figure H.7 (h): Serial Hybrid with RadixSort leaving: k = 8

R o b ert C rosbie . T h e U niversity of D ublin . T rin ity College 263

Appendix B. Detailed H yperP artition Performance Graphs

Figure B.7 (i.j): Serial H ybrid w ith RadixSort leaving; A- = 1 ^ 10

Hybrid {RB Sorl • k=9) vs. Saad-lP -■ (Serial) Execution Time of Transpose (Relative)
4.5

Saad-IP
Hybrid (RB-Sort - k=9) •

Average: 68.2%
3.5

0 .
•o

CO
w 2.5
>
0)
E

re
CC

0.5

8 m 50 m 150 m 400 m1 m 1.5 m 2 m 16 m4 m
Matrix Size (million nnz) <LOG sca!e>

F igu re B .7 (i): Serial H y b r id w ith R ad ixS ort leaving: k = 9

Hybrid (RB-Sort - k-10) vs. Saad-IP - • (Serial) Execution Time of Transpose (Relative]

Leaen^
Saad-IP

Hybrid (RB-Sort k*10) •
Average: 69.6%

•

- •

• •

• * * * %
• • * *

• .V- . . !
• • % • • • • • • • • • ! • • •

’•ST' ^
•

1 1 I
1 m 1.5m 2 m 4 m 8 m 1 6 m 5 0 m 1 5 0 m 400m

Matrix Size {million nnz) <LOG scale>

F igu re B .7 (j) : Serial H y b r id w ith R a d ixS o rt leaving; fc = 10

264 Space U Time Efficient Sparse Matrix Transpose

Appendix B. Detailed H yperPartition Performance Graphs

Figure B.8 (a,b): Parallel Hybrid with RadixSort leaving: A: = 1 ^ 10

P ar-32 Hybrid (RB-Sort • k=1) vs. S aad -IP - • (Parallel) E xecution T im e of T ra n sp o se [Relative]
4.5

L egend ~
P ar-32 S aad-IP

P ar-32 Hybrid (R B -Sort - k=1) ©
A verage: 60 .1%

3.5

CL

CO
« 2.5

o>
E

.2re
0)cr

0.5

1 m 1.5 m 2 m 8 16 m 50 m 150 m 400 m4 m m
Matrix S ize (million nnz) <LOG sca le >

F igu re B.8 (a): Para l le l H ybr id w i th R a d ix S o r t leaving: A' = 1

P ar-32 Hybrid (RB-Sort • k -2) vs. S aad -IP - - (Parallel) E xecution Time of T ra n sp o se (Relative)
4.5

Leoerxj
Par-32 S a a d IP

P ar-32 Hybrid (RB Sorl • k -2) ®
A verage: 56.2%

3.5

CO
<y>

2.5
>
(i>
E
a>
ara
o>cr

0.5

50 m 150 m 4 00 m1 m 1.5 m 2 m 8 m 164 mm
Matrix S ize {million nnz) <LOG sca le >

F igu re B.8 (b): Para l le l H ybr id w i th R a d ix S o r t leaving; k = 2

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 265

A ppend ix B. Detailed H yp e rP a rtitio ii Performance Graphs

Figure B.8 (c,d): Parallel H yb rid w ith RadixSort leaving: A- = 1 —> 10

Par-32 Hybrid (RB-Sort - k=3) vs. Saad-IP • • (Parallel) Execution Time of Transpose [Relative)
4.5

Leoend
Par-32 Saad-IP

Par-32 Hybrid (RB-Sort - k=3) ®
Average: 46.9%

3.5

Q.
■Q
n>

CO
2.5

,E
i—
a>
.>re

0.5

© % © ®

50 m 150 m 400 m1 m 1.5 m 2 m 8 16 m4 m m
Matrix Size (million nnz) <LOG scale>

F igu re B .8 (c): P a ra lle l H y b r id w ith R a d ix S o rt leaving: k = 3

Par-32 Hybrid (RB-Sort - k -4) vs, Saad-tP - - (Parallel) Execution Time of Transpose (Relative)
4.5

Legend
Par-32 Saad-IP

Par-32 Hybrid (RB-Sort - k -4)
Average: 41.8%

3.5

a.

<Q

2.5

_>

(Dcr

0.5

1 m 1.5 m 2 m 16 m 50 m 150 m 400 m4 m 8 m
Matrix Size (million nnz) <LOG scale>

F ig u re B .8 (d): P a ra lle l H y b r id w ith R a d ix S o rt leaving: k = 4

266 Space i f T im e E ff ic ie n t S parse M a t r ix T ra n s p o s e

Appendix B. Detailed H yperPartition Performance Graj)hs

Figure B.8 (e,f): Parallel Hybrid with RadixSort leaving: A’ = 1 10

P ar-32 Hybrid (RB-Sort - k*5) vs. S aad -IP - - (Parallel) Execution Time of T ra n sp o se (Relative)

LeoerKj '
P ar-32 S aad -IP

P ar-32 Hybrid (RB-Sort - k=5) ©
A verage: 39 .1%

3

2.5

1.5 m 2 m 4 m 8 m
Matrix S iz e (million nnz) <LOG sca le>

16 m 50 m 150 m 4 00 m

Figure B.8 (e)- Parallel Hybrid with RadixSort leaving: k = 5

P ar-32 Hybrid (R B -Son - k«6) vs. S aad-JP - (Parade!) E xecution Time of T ra n sp o se fR ela(ive|
4.5

L e^nd
Par-32 S aad-IP

P ar-32 Hybrid (RB Sort • k -6) ®
A verage: 38 .8%

3.5

Q.
TD
m

c/3
2.5

>
o
,E

re

0.5

1 m 50 m 150 m 4 00 m1.5 m 2 m 4 m 16 m8 m

Matrix S iz e (million nnz) <LOG sca le >

Figure B.8 (f): Parallel Hybrid with RadixSort leaving; /c = 6

R obert C rosbie , Th<> I 'n iv e rs ity of D ublin . T rin ity College 267

A i)pe ii(lix B. Detailed H yp e rP a rtitio ii Performance Graphs

Figure B.8 (g,h): Parallel H yb rid w ith RadixSort leaving: A- - 1 —>• 10

Par-32 Hybrid (RB-Sort - k=7) vs. Saad-IP - • (Parallel) Execution Time of Transpose (Relative)

Legend
Par-32 Saad-IP

Par-32 Hybrid (RB-Sort • k=7) ®
Average: 39.1%

3.5

CL
T3

CO
« 2.5
>
0)e

S5
CC

0.5

« e,
, ® » e e

50 m 150 m 400 m1 m 1.5 m 2 m 8 16 m4 m m
Matrix Size (million nnz) <LOG scale>

F igu re B .8 (g): P a ra lle l H y b r id w ith R a d ixS o rt leaving: /c = 7

Par-32 Hybrid (RB-Sort - k«8) vs, Saad-IP - - (Parallel) Execution Time of Transpose [Relative]
4,5

Legend
Par-32 Saad-IP

Par-32 Hybrid (RB-Sort - k -8) 0
Average: 39,9%

3.5

0.

2.5
>

a>>TO
o>
tr

0.5

1 m 1.5 m 2 m 8 16 m 50 m 150 m 400 m4 m m
Matrix Size (million nnz) <LOG scale>

F ig u re B .8 (h): P a ra lle l H y b r id w ith R a d ixS o rt leaving: k = S

268 Space & T im e E ffic ien t Sparse M a tr ix Transpose

Appendix B. Detailed H yperPartitioii Performance Graphs

Figure B.8 (i,j): Parallel Hybrid with RadixSort leaving: A- = 1 —)• 10

P ar-32 Hybrid (RB-Sort ■ k=9) vs. S aad -IP •• (Parallel) E xeculion Tim e of T ra n sp o se [Relative]
4 .5

Leoend
Par-32 S aad-IP

Par-32 Hybrid (RB-Sort - k=9) ®
A verage; 41 .9%

3.5

Q.
■Q
CQ

C/3
CO 2.5
>
d)
E

cr

0,5

50 m 150 m 400 m1.5 m 2 m 4 m 16 m1 m 8 m
Matrix S ize (million nnz) <LOG sca le>

F igu re B .8 (i): Para l le l H ybr id w ith R a d ix S o r t leaving: k = 9

P ar-3 2 Hybrid (RB-Sort - k«lO) vs. S aad -IP - - (Parallel) E xecution Time of T ra n sp o se (Relative!

(/}

K 2

a

0) 1.5cc

1

Leoend
P ar-3 2 S aad-IP

P ar-32 Hybrid (RB-Sort - k -1 0) ®
A verage: 44 ,2%

—— .. - -f*

1.5 m 2 m 16 m 50 m 150 m 400 m
Matrix S ize {million nnz) <LOG sca le >

F ig u re B .8 (j): Para l le l H ybr id w i th R a d ix S o r t leaving: k = 10

R o b ert C rosbie , T h e I 'n iv e rs ity of D ublin . T rin ity College 269

Appendix

MatrixMarket File Format

There are a iiunii)er of different file formats which can be used to persistently

store sparse matrices on disk. There are binary formats and text formats,

some formats require more overhead than others and some are more flexible.

T he matrices used in our test suite (Section 3.6.1) were obtained in the
MatrixMarket [Boisvert 95, Boisvert 97] file format. The M atrixMarket

file essentially stores the elements in the matrix in a format similar to the
Compressed Coordinate format (Section 2.3.4).

An example of the MatrixMarket file format for the matrix M is shown
in Listing C .l . T he hie begins wath the M atrixMarket header w'hich is

a single line th a t begins with ’/.'/.MatrixMarket followed l)v a munber of

declarations which define the structure of the matrix contained within the
hie. The hrst non-comment, non-header line contains 3 integer numbers
which declare the size of the matrix by giving respectively "the number
of rows", "the number of colunms" and "the munber of non-zeros" in the

Listing C .l: MatrixMarket File Format

R o b ert C rosbie . T lie U n iversity of D ub lin . T rin ity College 271

Appendix C. M atrixM arket File Format

matrix. The format of the remaining lines of the file will be determined by

the contents of the M atrixM arket header.

In the case of “m atrix coordinate real general” which is a normal(general)

format m atrix, with “real” values (as against integer or complex) each line

contains two integers and a floating point (real) munber. The integers
specify the row and colmnn coordinates resi)ectively of the location of the

floating point value in the matrix. The M atrixM arket format is one-indexed.
the indexes s ta rt at 1 ra ther than 0 as in our examples. Again we use the

letters a through o to represent the non-zero values in the matrix.

272 S pace T im e Efficient S p arse M atrix T ranspose

Bibliography

[Aggarwal 87]

[Aggarwal 88]

[Aho 74]

[A1 N a'M iieh 05]

[Alltop 75]

[AMD 03]

[Ainestoy 96]

[Aiiiestov 98]

[And 62]

[Anderson 90]

Alok A ggarw al. A shok K. C h a n d ra & M arc Snir. Hierarchical

m em o ry with block transfer. In P roceed ings of th e 28th A nnual

Sym posium on Foundations of C om puter Science. SFCS "87. pages

204-216. W ashington. DC, USA, 1987. IE E E C om puter Society.

Alok A ggarw al & S. V itte r Jeffrey. The in p u t/o u tp u t com plexity

o f sorting and related problems. C 'ommun. A CM , vol. 31, no. 9,

pages 1116-1127. Septem ber 1988.

A.V. Aho, J.E . Ilopcroft &: .I.D. Ullnian. T he design and analysis

of com puter algorithm s. Addison-W esley series in com puter science

and inform ation proce.ssing. Addi.son-W esley P ub. C’o., 1974.

R. Al N a 'M neh . W .D . P an &: H. A dham i. C onm m nica tion effi
cient adaptive m atrix transpose algorithm fo r F F T on sym m etric

multiprocessors. In System Theory. 2005. SSST '05. Proceedings of

th e T hirty -Seventli S ou theaste rn Sym posium on. pages 312 315.
2005,

\V. (). A lltop. A C om puter Algorithm fo r Transposing Nonsquare

Matrices. IEEE Trans. C om put.. vol. 24. pages 1038-1040. O ctober

1975.

AMD. A C M L: A M D Core M ath Library, 2003.

P atrick K. A niestoy, T im othy A. D avis & Iain S. Duff. A n A p
proxim ate M in im um Degree Ordering Algorithm. SIAM .]. M atrix

Anal. A ppl., vol. 17, no. 4. pages 886 905. 1996.

P. Amestoy. 1. Duff k . ,]. L 'Excellent. M umps multifi'ontal massively

parallel solver version. 1998.

And. A n Algorithm fo r the Organization o f Inform ation. Doklady

Akademii N auk USSR. vol. 146. no. 2. pages 263 266. 1962.

E. A nderson. Z. Bai. .1. D ongarra. k . G reenbaum . .4. M cKenney.

.1. Du Croz. S. Hannnerling, .1. Demniel. C. Bischof fc D. Sorensen.

LA P A C K : a portable linear algebra library fo r high-perform ance

computers. In Proceedings of the 1990 .\C M /IE E E conference on

R o b ert C rosbie . T h e U niversity of D ublin . T rin ity C’ollege 273

Bibliography

[Anderson 99]

[Anton 02]

[Ari 79]

[Arora 09]

[Ashcraft 99]

[B achm ann 23]

[Backus 56]

[Backus 57]

[Bader 07]

Superco inputing , S upercon ipu ting ’90. pages 2 11. Los A laniitos,

CA. USA. 1990. IE E E C om pu ter Society Press.

E. Anderson. Z. Bai. C. Bischof, S. Blackford. J. Dennnel. J. Don-

garra . .1. Du Croz, A. G reenbauni. S. H anunarling, A. M cKenney

D. Sorensen. LAPAC’K users' guide. Society for Industria l and

A pplied M athem atics. Ph iladelphia , PA, th ird edition . 1999.

Howard A nton & R obert C. Busby. C ontem porary linear algebra.

W iley. 2002.

M .B. Ari. On I'ransposing Large 2" x 2'‘ M atrices. C o m p u ters ,

lElEE T ransactions on. vol. C-28. no. 1. pages 72-75, 1979.

S anjeev A ro ra & Boaz B arak . C o m p u ta tio n al com plex ity : A

m odern approach . C am bridge U niversity Press, New York, NY,

USA, 1st edition . 2009,

C’leve A shcraft & Roger Grim es. SPO O LES: A n O bject-O riented

Sparse M atrix Library. In In Proceedings of the 9th SIAM Confer

ence on Parallel P rocessing for Scientific C om puting, page pages.

1999.

P .G .II. B achm ann. Zahlentheorie: th. die arithm etik de quadratis-
chen formen (1898). Zahlentheorie'. Versuch einer G esam m tdarstel-
hm g dieser W isseuschaft in ihren H a\ip tthe ilen . B. G. T eubner,

1923.

J . W . Backus. T h e fo rtran au to m atic coding system for tlie ibm
704 edpm . IBM C orp., 1956.

J . \V. B ackus. R. J. B eeber, S. B est. R. G oldljerg, L. M. H aib t,

II. L. H errick, R . A. Nelson, D. Sayre, P. B. Sheridan , II. S tern ,

I. Ziller. R. A, H ughes k R. N u tt. The F O R T R A N a u tom a tic

coding system . In P apers p resen ted a t th e F ebruary 26-28, 1957,

w estern joint com puter conference: Techniques for reliability, IRE-

A IE E -A C M '57 (W estern), pages 188 198. New York, NY, USA,

1957. ACM .

M iciiael B ader & C h ris tian M ayer. Cache Oblivious M a tr ix O p

era tions Using Peano Cun>es. In Bo K agstrom . E rik E lm ro th .

Ja c k D o n g arra & Je rzy W asniew ski, ed iteu rs. A pplied P aralle l

C om puting. S ta te of the Art in Scientific Com puting, volume 4699

o f Lecture N o tes in C om pu ter Science, pages 521-530. S pringer

B erlin H eidelberg. 2007.

274 Space T im e Efficient Sparse M atrix T ran sp o se

Bibliograj)hy

[Baker 92]

[Balay 97]

[B aum stark 03]

[Bayer 70]

[Berm an 58]

[Biggar 08a]

[Biggar 08b]

[Biksliandi 06]

[Bluniofe 95]

H enry G. B aker J r . On the p eu n u ta tio n s o f a vector obtainable

through the restructure and transpose func tions o f A PL. SIG A PL

A PL Q uote Q uad. vol. 23. no. 2, pages 27-32, Decem ber 1992.

Satish Balay, W illiam D. G ropp. Lois Curfm an M clnnes B arry F".

Sm itli. E ffic ien t M anagem ent o f Parallelism in Object O riented

N um erica l Softw are Libraries. In E. A rge, A. M. B n iase t &

H. P. L angtangen, editeurs. M odern Softw are Tools in Scientific

C om puting , pages 163-202. B irkhauser Press, 1997.

Lewis B au m sta rk , M u ra t G uler & L inda W'ills. E xtracting an

E xplicitly Data-Parallel Representation o f Image-Processing Pro

grams. In Proceedings of the 10th W orking Conference on Reverse

Engineering. W C R E 03. pages 24-, W ashington. DC, USA. 2003.

IE E E C om puter Society.

R. Bayer E. M cCreight. Organization and m aintenance o f large

ordered indices. In Proceedings of the 1970 ACM S IG FID E T (now
SIG M O D) W orkshop on D ata D escrip tion , Access and C ontro l.

S IG FID E T 7 0 , pages 107-141. New York. NY, USA, 1970. ACM.

M artin F. Berm an. A Method fo r Transposing a M atrix. .1. ACM.

vol. 5. no. 1. pages 383 384. O ctober 1958.

P au l B iggar. N icholas Nsush. K evin W illiam s k D avid G regg.

.-An experim ental study o f sorting and branch prediction. .1. E xp.

A lgorithniics. vol. 12. pages 1.8:1-1.8:39. Ju n e 2008.

P aul Biggar, N icholas N ash, K evin \N’illiaiiis k D avid G regg.

A n experim ental study o f sorting and branch prediction. J . Exji.

A lgorithniics, vol. 12. pages 1 39, 2008.

G anesh Bikshandi. J ia Guo. Daniel Hoefiinger, G heorghe Almasi.

Basilio B. Fraguela. M an'a J. G arzaran . David P adua & C hristoph

von P ra im . Program m ing fo r Parallelism and Locality w ith H i

erarchically Tiled Arrays. In P roceedings of th e E leventh A CM

SIG PLA N Sym posium on Principles and P ractice of Parallel P ro

gram m ing, P P o P P '06. pages 48-57. New York, NY, USA, 2006.

ACM.

R obert D, Blumofe. C hristopher F. Joerg. B radley C. K uszniaul.

d ia r i e s E. Leiser.son. K eith II. R an d all & Yuli Zhou. Cilk: A n

E ffic ien t M ultithreaded R u n tim e System . In P roceedings of the

F'ifth AC’M SIG PLA N Sym posium on P rincip les an d P rac tice of

R obert C rosbie , T h e U niversity of D ublin . T rin ity College 275

Bibliography

[Boisvert 95]

[Boisvert 97]

[Boncz 08]

[Boothroyd 67]

[Bornstein 99]

[Bosnia 97]

[Brenner 73]

[Brodal 05]

[Browne 00]

Parallel Program m ing. I’P O P P '95. pages 207-216. New York,
NY, USA. 1995. ACM.

Ronald F. Boisvert. Ronald F. Boisvert. Roldan Pozo, Roldan
Pozo, Karin A. Remington & Karin A. Remington. 'J’he M atrix
M arket Exchange Formats: Initial Design. NIS'l'IR. vol. 5935,
1995.

Ronald F. Boisvert, Roldan Pozo, Karin Remington, Richard F.
B arrett &: Jack J. Dongarra. Matrix Market: A Web Resource for
Test M atrix Collections. In 'I’he Quality of’ Numerical Software:
Assessment and Enhancement, pages 125-137. Chapm an & Hall,
1997.

Peter A. Boncz. M artin L. Kersten & Stefan Manegold. Breaking
the M emory Wall in MonetDB. Comnnm. ACM. vol. 51. no. 12,
pages 77-85, December 2008.

J. Boothroyd. Algorithm 302: Transpose Vector Stored Array.
Commun. ACM. vol. 10. no. 5, pages 292 293. May 1967.

Claudson F. Bornstein, Bruce M. Maggs k Gary L. Miller. Trade
offs between parallelism and fill in nested dissection. In SPAA '99:
Proceedings of the eleventh annual ACM symposium on Parallel
algorithms and architectures, pages 191-200. New York. NY, USA.
1999. ACM.

W ieb Bosnia, John C'annon & C atherine Playoust. The Magma
algebra system.. I. The user language. J. Symbolic Comput., vol. 24,
no. 3-4. pages 235 -265. 1997. Computational algebra and number
theory (London. 1993).

N orm an FJrenner. Algorithm J,61: m atrix transposition in place
[FI]. Commun. ACM. vol. 16. no. 11, pages 692 694. November
1973.

G erthStlting Brodal k. Gabriel Moruz. Tradeoffs Between Branch
Mispredictions and Comparisons for Sorting Algorithms. In Frank
Dehne, A lejandro Lpez-Ortiz & Jrg-R diger Sack, editeurs. Al
gorithm s and Data S tructures, volume 3608 of Lecture Notes in
Com puter Science, pages 385-395. Springer Berlin Heidelberg,
2005.

S. Browne, J. Dongarra, N. Garner. G. Ho k. P. Mncci, A Portable
Programming Interface fo r Performance Evaluation on Modern

276 Space T im e Efficient Sparse M atrix Transpose

Bibliography

[Bruijii 70]

[Buluq- 09]

[Bunch 76]

[B uttari 07]

[Calvin 96]

[Cate 77a]

[Cate 77b]

[Cayley 59]

[C hatterjee 00]

[Chen 08]

Processors. The In ternational Journal of High Perform ance Com

pu ting A pplications, vol. 14. no. 3. pages 189-204, fall 2000.

N.G. Bruijn. A sym ptotic m ethods in analysis. B ibliotheca m athe-

m atica. Dover Publications. 1970.

Aydin Bulug, Jerem y T. F inem an. M atteo Frigo. John H. G ilbert

& Charles E. Leiserson. Parallel sparse m atrix-vector and matrix-

transpose-vector multiplication usiny compressed sparse blocks. In

P roceedings of th e tw enty-first annual sym posium on Parallelism

in a lgorithm s and arch itec tu res, SPAA '09, pages 233-244, New

York. NY, USA, 2009. ACM.

J. R. Bunch & D. J. Rose, editeurs. Sparse m atrix com putations.

A cadem ic Press, New York, NY. USA. 1976.

A lfredo B u tta ri. Ju lien Langou, Jak u b K urzak & Jack D ongarra.

A Class o f Parallel Tiled Linear Algebra Algorithms fo r Multicore

Architectures, 2007.

C. C alvin. Im p lem en ta tion o f Parallel F F T A lgorithm s on D is
tributed M em ory M achines w ith a M in im u m Overhead o f C om

m unica tion . Parallel C om pu t., vol. 22. no. 9, pages 1255 1279,
Novem ber 1996.

Esko C. C 'ate A: D avid \ \ ’. 'I’wigg. Algorithm 513: A na lysis o f
In -S itu 'fransposition [F lj. ACM Trans. M ath . Softw .. vol. 3.

pages 104-110. M arch 1977.

Esko G. C a te <t’ D avid \V. 'I’wigg. Algorithm. 513: A nalysis o f
In -S itu Transposition jF l]. ACM I ’rans. M ath . Sof'tw., vol. 3,

no. 1. pages 104 110, M arch 1977.

A rtiiu r Cayley. A m em o ir on the theory o f m atrices. P h ilosoph

ical T ransactions of th e Royal Society of London: G iving Some

A ccounts of th e P resen t U ndertak ings. S tudies, and Labours, of

the Ingenious, in Many Considerable P arts of the W orld, vol. 148.
pages pp. 17-37. 1859.

S id d h artiia C h a tte rjee & S andeep Sen. C ache-E ffic ien t M atrix

Transposition. In HPCA. pages 195-205. IEE E C om puter Society.

2000 .

Yancjing C hen, T im othy A. Davis, W illiam W . H ager &

S ivasankaran R ajam anickan i. Algorithm. 887: C IIO LM O D . Su-

p em oda l Sparse Cholesky F actorization and U pdate/D ow n date.

ACM IVansactions on M athem atical Software, vol. 35, no. 3, 2008.

R obert C rosbie . T h e I 'n iv e rs ity of D ublin . T rin ity College 277

Bibliography

[Chevalier 08]

[Choi 95]

[Claasen 79]

[Comer 79]

[Conrad 77]

[Cooley 65]

[C oppersm ith 90]

[Cuthill 69]

[Cuthill 72]

[Dagum 98]

[Davis 94]

C. C hevalier &: F. Pellegrini. Pl'-Scotch: A tool fo r efficient

parallel graph ordering. Parallel Com puting, vol. 34, no. 6-8. pages

318 331. 2008. Parallel M atrix A lgorithm s and A pplications.

Jaey o u n g Clioi, Jack D ongarra D avid \V. W alker. Parallel

m atrix transpose algorithms on distributed m em ory concurrent
computers. P arallel C om puting, vol. 21. no. 9, pages 1387 - 1405.

1995.

T . A C M C laasen & W . F G M ecklenbrauker. Application of

transposition to decimation and interpolation in digital signal
processing systems. In A coustics. Speech, and Signal Processing.

IE E E In te rn a tio n a l Conference on ICASSP 79., volum e 4, pages

832-835. 1979.

Douglas Com er. The ubiquitous B-tree. ACM C om puting Surveys,

vol. 11. pages 121 '137, 1979.

V. C onrad & Y. W allach. Iterative Solution of Linear Equations

on a Parallel Processor System. IE E E T rans. C o m p u t., vol. 26,

no. 9, pages 838-847, 1977.

Jam es \V. (’ooley & Jo h n W . I'ukey. An Algorithm fo r the M a
chine Calculation of Complex Fourier Series. M a th em atic s of

C o m p u ta tio n , vol. 19. no. 90. pages 297-301, 1965.

Don C 'oppersm ith k Shmuel W’inograd. Matrix multiplication via
arithmetic progressions. Jou rna l of Symbolic C om putation , vol. 9.

no. 3, pages 251 280, 1990. jc e :title^C o m p u ta tio n a l algebraic
com plexity ed ito rialj/ce :title^ ,.

E. C uthill k J . McKee. Reducing the bandwidth of sparse sym m et
ric matrices. In Proceedings of the 1969 24th national conference,

pages 157-172, New York. NY, USA, 1969. ACM Press.

E. C u th ill. Several s tra teg ie s for reducing th e b an d w id th of

m atrices. P lenum Press, New York. 1972.

L eonardo D agun i k R aniesh M enon. OpenMP: An Industry-

Standard A P I fo r Shared-Memory Programming. IE E E C om pu

ta tio n a l Science and E ngineering , vol. 05, no. 1, pages 46-55,

1998.

I'im o th y A. Davis. University of Florida Sparse Matrix Collection.

NA Digest, vol. 92, 1994.

278 Space ^ T im e Efficient Sparse M a trix T ran sp o se

B ibliography

[Davis 97]

[Davis 04]

[Davis 05a]

[Davis 05b]

[Davis 06]

[Davis 09]

[Davis 11a]

[Davis 11 b]

[Delcaro 74]

[Demine! 01]

[Demmel 05]

[Dobrian 04]

T in io tliy A. D avis & Iain S. Duff. A n U n sym m etrie-P a ttern

M ultifrontal M ethod fo r Sparse LU Factorization. SIAM J. M atrix

Anal. AppL, vol. 18. no. 1. pages 140-158, 1997.

T im o thy A. Davis. Algorithm 832: U M F P A C K V4-3— an

u n sy m m e tr ic -p a ttem m ultifron ta l method. ACM T rans. M ath .

Softw.. vol. 30, no. 2, pages 196-199. 2004.

T im o th y A. Davis. A lgorithm 849: A concise sparse Cholesky

fac to riza tio n package. ACM T rans. M ath . Softw ., vol. 31, no. 4,

pages 587-591. 2005.

T im o thy A. Davis. SuiteSparse: Collection o f sparse software.

2005.

T in w th y A. Davis. D irect m ethods for sparse hnear system s

(fundam entals of algorithm s 2). Society for Industrial and Applied

M athem atics. Ph iladelph ia , PA, USA, 2006.

T im othy A. Davis k Yifan Hu. University o f florida sparse m atrix

collection. 2009.

T im othy A. Davis k: Yifan Hu. The U niversity o f Florida Sparse
M atrix Collection. ACM Transactions on M athem atical Software,

vol. 38, no. 1. 2011.

T im othy A. Davis Yifan Hu. The U niversity o f Florida Sparse

M a trix Collection. R a p p o rt technique, ACM T ransac tions on
M athem atical Software. Ja n u ary 2011.

L. G. D elcaro k G. L. S icuranza. A M ethod fo r Transposing

E xternally Stored M atrices. IEE E Trans. C om put.. vol. 23. no. 9.

pages 967-970. S eptem ber 1974.

Jam es Demmel. K atherine Yelickei al. BeBQ P: The Berkey Bench

m arking and o p tim isa tio n Group. 2001.

J . D ennnel, J . D ongarra , V. E ijkhou t. E. Euentes, A. P e tite t.

R. Vuduc. R.C. W haley fc K. Yelick. Self-Adapting Linear Algebra

Algorithms and Software. Proceedings of the IEEE, vol. 93, no. 2.

pages 293-312. Feb. 2005.

F lorin D obrian & Alex P othen . Oblio: Design and Perform ance.

In Jack D ongarra . K aj M adsen Je rz y W asniew ski. ed iteu rs.

PARA, volume 3732 of Lecture Notes in Com puter Science, pages

758-767. Springer. 2004.

R obert C rosbie . T h e U niversity of D ublin . T rin ity College 279

Bibliography

[Dongarra 88]

[Dongarra 90]

[Dow 95]

[Drepper 07]

[Duff 86]

[Duijvestijn 72]

[Dursteufeki 64]

[Eaton 09]

[Eklundh 72]

[Eklundh 73]

[El-Hadcdy 10]

[El-Moursy 08]

Jack J. Dongarra. Jeremy Du Croz. Sven Hanunarling & Richard J.
Hanson. An extended set. o f F O R T R A N basic linear algebra sub
programs. ACM Trans. M ath. Softw., vol. 14, no. 1, pages 1-17,
1988.

J. J. Dongarra. Jerem y Du Croz. Sven Hammarling & I. S. Duff
A set o f level 3 basic linear algebra subprograms. ACM Trans.
M ath. Sof'tw., vol. 16. no. 1. pages 1-17. 1990.

Murray Dow. Transposing a matrix on a vector computer. Parallel
Computing, vol. 21, no. 12. pages 1997 - 2005, 1995.

Ulrich Drepper. W hat every progrannner slioiild know about
memory. Red Hat, Inc., 2007.

lain S Duff, A lbert M Erism an .John K Reid. Direct metliods
for sparse matrices. Oxford University Press. Inc., New York, NY.
USA, 1986.

A.J.W . Duijvestijn. Correctness proof of an in-place permutation.
BI'I' Numerical M athem atics, vol. 12. no. 3. pages 318 324, 1972.

Richard Durstenfeld. Algorithm. 235: Random permutation. Com-
num. ACM. vol. 7, no. 7, pages 420 . July 1964.

John W. Eaton. David Batem an k Soreii llauberg. GNU Octave
version 3.0.1 manual: a high-level interactive language for inimeri-
cal computations. CreateSpace Independent Publishing Platform.
2009. ISBN 1441413006.

J. O. Ekhnidh. A Fast Computer Method fo r Matrix 'Transposing.
IEEE Trans. Com put.. vol. 21. no. 7. pages 801 803. July 1972.

,1. O. Eklundh. A uthor's Reply. IEEE Trans. C’om put., vol. 22.
no. 5, pages 543-544, May 1973.

M. El-Hadedy, S. P uro ln t, M. M argala & S.J. Knapskog. Low
latency transpose memory for high throughput signal processing. In
NEWCAS C’onference (NEW CAS), 2010 8th IEEE International,
pages 373-376, 2010.

Ah EI-Moursy, Ahmed El-M ahdy k Hisham El-Shishiny. A n
E fficient In-place 3D Transpose fo r Multicore Processors with
Software Managed M em ory Hierarchy. In Proceedings of the
1st International Forum on Next-generation M ulticore/M anycore
Technologies, IFM T '08, pages 10:1-10;6. New York, NY, USA,
2008. ACM.

280 Space T im e Efficient Sparse M atrix Transpose

Bibliography

[Elniroth 04]

[Ercal 10]

[Feijeii 87]

[Fernandes 02]

[P'ich 95]

[Fiiikrl 74]

[Floyd 72]

[Fraser 76]

[Frigo 98]

[Frigo 99]

E rik E lm ro th , Fred G ustavson . Isak Jonsson & Bo K agstrom .

Recursive blocked a lyonthm s and hybrid data structures fo r dense

m atrix library software. SIAM Review, vol. 46, pages 3--45. 2004.

B urin E rcal & W illiam Stein. The Sage Project: U nifying Free

M athem atical Software to Create a Viable A lternative to Magma,

M aple, M athem atica and M A T L A B . In Komei F ukuda. Joris-

vander Iloeven, M ichael Josw'ig & N obuki T akayam a, editeurs,

M athem atical Software ICMS 2010, volume 6327 of Lecture Notes

in C om puter Science, pages 12 27. Springer B erlin H eidelberg,

2010 .

W . II. J. Feijen, A. J. M. Van G asteren & D avid Gries. In -situ

inversion o f a cyclic permutation. Inf. Process. L ett., vol. 24. no. 1,

pages 11 14. Jan u ary 1987.

Edil S. Tavares Fernandes. Valmir C. B arbosa & Fabiano Ramos.

Instruction Usage and the M em ory Gap Problem. In SBAC-PAD,

pages 169 175, IEE E C om puter Society. 2002.

F aith El. Fich. J. Ian M unro & P a tric io V. P oblete . P erm uting

In Place. SIAM J. C om i)ut.. vol. 24. no. 2, pages 266 278. April
1995.

K.A. Fiiikel & .J.L. Bentley. Q uad trees a data structure fo r

retrieval on composite keys. .'Vcta Inforniatica. vol. 4. no. 1. pages

1-9. 1974.

Robert VV. Floyd. P erm uting In form ation in Idealized Two-Level

Storage. In R aym ond E. M iller k- Jam es \V. I 'ha tcher, editeurs,

C’om plexity of C om puter C om putations. The IBM Research Sym
posia Series, pages 105 109. P iem un Press, New York, 1972.

D onald F raser. A rray P erm u ta tio n by Index-D ig it P erm utation .

J . AC'M. vol. 23. no. 2, pages 298 309, A pril 1976.

M atteo Frigo k Steven G. Johnson, F F T W : A n adaptive software

architecture fo r the FFT. In Proc. IEEE Intl. Conf, on Acoustics.

Speech, and Signal Processing, volume 3. pages 1381-1384. Seattle.

WA. May 1998.

M atteo P>igo, C harles E. Leiserson. I la ra ld P rokop & S ridhar

R am ach an d ran . Cache-O blivious A lgorithm s. In P roceedings

of th e 40 th A nnual Sym posium on F oundations of C om puter

Science. FO C S ‘99. pages 285 . W ash ing ton . D C, USA, 1999.

IE E E C 'om puter Society.

R o b ert C rosbie . T h e rn iv e rs i ty of D ublin . T rin ity C’ollege 281

Bibliography

[Frigo 05]

[Gatlin 99]

[George 81]

[Goedecker 01]

[Goldbogen 81]

[Gohib 96]

[Gonzalez-Mesa 13]

[Goto 02]

[Goto 08a]

[Goto 08b]

[Gould 04]

M. Frigo & S.G . Johnson. The Design and Im plem entation o f
F F TW 3. Proceedings of the lEElE. vol. 93. no. 2. pages 216-231,
2005.

Kang Su G atlin k L. C arter. M emory hierarchy considerations for
fa st transpose and hit-reversals. In High-Perform ance C om puter
A rchitecture. 1999. F’roceedings. Fifth In ternational Symposium
On. pages 33 42. IEEE. 1999.

Alan George & Joseph W. Liu. C'omputer solution of large sparse
positive defin ite system s. P ren tice Hall Professional lech n ica l
Reference. 1981.

Stefan G oedecker & Adolfy Hoisie. Perform ance optim ization
of num erically intensive codes. Software, environm ents, tools.
Philadelphia. Pa. Society for Industrial and Applied M athematics.
2001 .

G. C. Goldbogeii. PRIM : A Fast M atrix Transpose Method. IEEE
Trans. Softw. Eng., vol. 7. no. 2, pages 255-257, March 1981.

Gene II. G olub C harles P". Van Loan. M atrix com putations
(3rd ed.). Johns Hopkins University Press, Baltimore. MD, USA,
1996.

Miguel A. G onzalez-M esa. E ladio D. G utierrez & Oscar P la ta .
Parallelizing the Sparse M atrix Transposition: Reducing the Pro
grammer Effort Using Transactional Memory. Procedia Com puter
Science, vol. 18- no. 0. pages 501 510, 2013. 2013 In ternational
Conference on C om putational Science.

K. G oto & H. van de G eijn. On reducing T L B m isses in m atrix
multiplication. R apport technique, Univ. of Texas at Austin, 2002.

K azushige G oto & Robert Van De Geijn. High-performance im
plem entation o f the level-3 BLAS. ACM Transactions on M athe
m atical Softw are, vol. 35. no. 1, pages 1-14. 2008.

K azushige G o to k R obert A. van de Geijn. A natom y o f high-
performance m atrix multiplication. ACM Transactions on M athe
m atical Softw are, vol. 34, no. 3, jiages 1-25, 2008.

Nicholas I. M. Gould & Jennifer A. Scott. A numerical evaluation
o f IISL packages for the direct solution o f large sparse, symmetric
linear system s o f equations. ACM Trans. M ath. Softw., vol. 30,
no. 3. pages 300 325. 2004.

282 Space & T im e Efficient Sparse M atrix Transpose

Bibliography

[CJould 05]

[Creeiie 81]

[G roup 63]

[G up ta 97]

[G up ta 01]

[G iistavson 78a]

[(Justavson 78b]

[CJustavsoii 98]

[CJustavson 12]

[Harlow 57]

[lie 02]

N .I.M . G ould , Y. Hu J . A. S co tt. A numerical evaluation of

sparse direct solvers for the solution of large sparse, symmetric lin
ear systems of equations. R ap p o rt technique. R utherford A ppleton

L aborato ry , A pril 2005.

D .H . G reene & D .E . K niith . M a th em a tic s for th e ana lysis of

a lgorithm s. P rogress in co m p u te r science. B irkhauser. 1981.

N innerical A nalysis G roup. A collection of Fortran codes for large

scale scientific computation, h ttp://ww w.hsl .r l .ac .uk, 1963.

A nshul G u p ta , G eorge K aryp is & V ipin K um ar. Highly scalable

parallel algorithms f o r sparse m a tr ix factorization. P ara lle l and

D is tr ib u te d S ystem s. IE E E T ran sac tio n s on. vol. 8. no. 5. pages

502-520, M ay 1997.

A nshu l G u p ta L' M ahesh Josh i. WSMP: A High-Performance

Shared- and Distributed-Memory Parallel Sparse Linear Equation

Solver. 2001.

Fred G. G ustavson . Remark on Algorithm 408: A Sparse Matrix

Package (Par t 1) IF4]. AC'M Trans. M ath . Softw ., vol. 4, no. 3,

pages 295- . S ep tem ber 1978.

F red G. (Ju stav so n . Two Fast Algorithms f o r Sparse Matrices:

Multiplication and P erm uted Transpositton. ACM 'IVans. M ath .

Softw ., vol. 4, no. 3, pages 250 269. S ep tem ber 1978.

F . G u stav so n , A. H enriksson . I. Jo n sso n k B. K aag stro m . R e

cursive blocked d a ta fo rm ats an d b ias 's for dense linear a lgebra

algorithm s., volume 1541 of LNCS. pages 195-206. Springer. 1998.

F redG . G ustavson . Cache Blocking. In K ris tjn Jn asso n . ed iteu r,

A])plied P ara lle l an d Scientific C o m p u tin g , vo lum e 7133 of Lec

ture N otes tn C om puter Science, pages 22 32. S p ringer B erlin

H eidelberg. 2012.

F"rancis H. Harlow. Hydrodynamic Problems Involving Large Fluid

Distortions. J . AC'M, vol. 4. no. 2, pages 137-142. A pril 1957.

Y un He & C h ris H. Q . D ing. M P l and O pen M P Paradigms on

Cluster o f S M P Architectures: The Vacancy Tracking Algorithm

fo r M ulti-d im ensional A rray Transposition. In P ro ceed in g s of

th e 2002 A C M /IE E E Conference on S upercom puting , Supercom

p u tin g '02. pages 1-14. Los A lam ito s. C A . U SA , 2002. lElEE

C 'om puter Society Press.

R o b e rt C 'rosbie. T h e U n iv ersity o f D ub lin . T rin ity College 283

Bibliography

[Hegland 96]

[Hendrickson 98]

[Herliliy 93]

[Herrero 03]

[Hestenes 52]

[Highani 02]

[Hoare 61]

[Hoare 62]

[Householder 52]

[Huffman 52]

[IBM 70]

[IBM 76]

M arkus Heglanci. Real and com plex fa s t F ourier transform s on

the F ujitsu V P P 500. P aralle l C om pu ting , vol. 22. no. 4. pages

539 - 553. 1996.

B ruce H endrickson lii I 'am ara G. K olda. P a rtitio n in g Sparse

Rectangular M atrices fo r Parallel C om putations o f A x and ATv. In

Proceedings of the 4 th In ternational W orkshop on Applied Parallel

C’oniputing . Large Scale Scientific and Industrial Problem s. PARA

’98. pages 239-247, London. I ’K. UK. 1998. Springer-V erlag.

M aurice Ilerlihy & J. Elliot B. Moss. Transactional M em ory: A r

chitectural Support fo r Lock-free Data Sti'uctures. In P roceedings

of th e 20th A nnual In te rn a tio n a l S ym posium on C o m p u te r A r

ch itec tu re . ISCA '93. pages 289-300. New York. NY. L'SA, 1993.

ACM .

.lose R. H errero & ,luan J . N avarro , Im proving P erfo rm ance o f

H yperm a trix C holesky F actorization . In E u ro -P a r 2003, volum e

2790 of L N C S. pages 461 469. Springer, A ug 2003.

M. R. H estenes & E. Stiefel. M ethods o f conjugate gradients fo r

solving linear system s. Journal of research of th e N ational B ureau

of S tan d a rd s, vol. 49. pages 409-436. 1952.

N icholas .1. H igham . A ccuracy and s ta b ility of num erical algo

rithm s. Society for Industrial and .Applied M athem atics. P h iladel

phia, PA, USA, 2002.

C. A. R. Hoare. Algorithm 64: Quicksort. Conm iun. ACM. vol. 4,

no. 7, pages 321-, Ju ly 1961.

C. A . R. Hoare. Quicksort.. T he C’om p u te r Jo u rn a l, vol. 5. no. 1,

pages 10-16, Ja n u a ry 1962,

A. S, H ouseholder, Errors in iterative solutions o f linear system s.

In ACM ’52: P roceed ings of th e 1952 A CM n a tio n a l m eeting

(Toronto), pages 30-33, New York. NY, USA. 1952. ACM,

D avid H uffm an, A M ethod fo r the C on stru c tio n o f M in im u m -

Redundancy Codes. P roceedings of the IR E . vol, 40. no. 9, pages

1098-1101. S ep tem ber 1952,

IBM, Engineering and Scientific Subroutine Library (E SSL), 1970,

In te rn a tio n a l B usiness M achines C o rp o ra tio n IBM & F ,G , Gus-

tavson. P erm u ting m atrices sto red in sparse form at, IBM . 1976,

284 Space T im e E fficient S parse M a trix T ran sp o se

Bibliograi)hy

[Im 04]

[Intel 93]

[.lie 10]

[Johnson 92]

[Johnson 93]

[Kagstroni 06]

[Kaligosi ()()]

[Karypis 98]

[Kaushik 93]

[Keller 02]

E un-Jin Ini, K atherine A. Yelick & R ichard Vuduc. SPARSITY:

Framework for Optimiziny Sparse Matrix-Vector Multiply. In te r

n a tio n al Jo u rn a l ol Higli P erfo rm ance C 'om piiting A pplications,

vol. 18. no. 1, pages 135 158. Pehruary 2004.

Intel. Intel MKL: Intel Math Kernel Library. 1993.

Yuan Jie , W u Jian -p in g & W ang Zheng-hua. Parallel transpos

ing and communication strategies for F F T on cluster of SM P

architectures with multicore processors. In Im age and Signal P ro

cessing (C IS P), 2010 3rd In te rn a tio n a l C ongress on, volum e 7,

pages 3280- 3283. 2010.

R. Johnson, C.H. H uang & R. \V. Johnson. Tensor permutations

and block matrix allocation. In G. gains & L. M ullin. ed iteu rs.

Second In terna tional W orkshop on A rray S tru c tu res (ATABLE).

D ept, of In form ation and O peration Research. 1992.

R. Johnson. A tensor product formulation of matrix transposition.

Appl. M ath L etters. 1993.

Bo Kagstroni. Management of deep memory hierarchies: recursive

blocked algorithms and hybrid data structures fo r dense matrix

computations. In Proceedings of the 7th in te rnational conference

on A pplied Parallel C 'om puting: s ta te of the A rt in Scientific
C 'oiiiputiiig. PA H A '04. pages 21 32. Berlin, H eidelberg. 2006.

Springer-Verlag.

K anela Kaligosi P e te r Sanders. How branch mispredictions

affect quicksort. In P roceed ings of th e 14th conference on A n

nual E uropean Sym posium - Volume 14. ESA'06. pages 780 791,

London. T K , UK, 2006. Springer-V erlag.

G eorge K arypis & V ipin K um ar. A Fast and High Quality Mul
tilevel Scheme for Partit ioning Irregular Graphs. SIAM J. Sci.

C om put.. vol. 20, no. 1. pages 359-392. 1998.

S. D. K aushik , C .-H . H uang. R. W . John.soii, P. S adayappan

& J. R. Johnson . Efficient transposition algorithms for large

matrices. In P roceedings of th e 1993 A C M /IE E E conference on

Supercoiiiputing. S uperconiputing '93. pages 656-665. New York.

NY, USA, 1993. ACM.

Jo rg Keller. A heuristic to accelerate in-situ peunutation algo
rithms. Inf. Process. L ett., vol. 81. no. 3, pages 119-125. February

2002 .

K obert (’rosbie. T h e U niversity of D ublin . T rin ity College 285

Bibliography

[K ernighan 88]

[K nott 75]

[K nuth 71]

[K nutli 76]

[K nuth 98]

[K rislinam oortliy 04]

[Kruskal 89]

[K undert 86]

[Laflin 70a]

[Laflin 70b]

[Lam 91]

[Landau 24]

B rian VV. K eniig lian & D eunis M. R itcliie. I ’he c p rogra inn iing

language second edition . P rentice-H all. Inc.. 1988.

G. D. K no tt. Hashiny functions. T he C om puter .Journal, vol. 18,

no. 3, i)ages 265-278. 1975.

D onald E. K nuth . Mathematical Analysis of Alyonthms. In IF'IP

Congress (1), pages 19-27, 1971.

D onald E. K nu th . Big Omicron and big Omega and big Theta.

S IG A C T News, vol. 8. no. 2, pages 18-24, 1976.

D onald E. K nu th , T h e art of co m p u ter p rogram m ing , A ddison

Wesley Longm an P ub lish ing Co,, Inc,, Redw ood City, CA, USA,

second ed ition , 1998.

S riram K rishnam oorthy , G erald B au m g artn e r, D aniel C ociorva,

C h i-C hung Lam fc P. S adayappan . Efficient parallel out-of-core

matrix transposition. Int. J. High Perform. C om put. Netw.. vol. 2,

no. 2-4, pages 110-119, F ebruary 2004.

C lyde P. K ruskal, L arry R udolph <L’ M arc Snir. I'echniques for

parallel manipulation of sparse matrices. T heoretica l C om pu ter

Science, vol, 64, no, 2, pages 135 - 157. 1989,

K. S. K undert. Sparse Matrix Techniques and Their Applications
to Circuit Simulation. In A. E. Ruehli. editeiir. C ircuit Analysis,

S im ulation and Design. New York; N orth-H olland, 1986.

Susan Laflin M A. Brebner. Algorithm 380: in-situ transposition

of a rectangular matrix [FlJ. Conunun. ACM. vol. 13. pages 324

326. M ay 1970.

Susan Laflin & M. A. Brebner. Algorithm. 380: in-situ transposition

of a rectangular matrix [FI]. Com m un. ACM, vol. 13. no. 5. pages

324-326. M ay 1970.

M onica D. Lam , E dw ard E, R o th b erg & M ichael E, Wolf, 'The

Cache Performance and Optimizations of Blocked Algorithms. In

P roceedings of th e F ourth In tern a tio n al Conference on A rchitec

tu ra l S upport for P rogram m ing Languages and O perating System s,

A SPLO S IV, pages 63-74. New York. NY. USA, 1991. ACM.

E. Landau, her die Anzahl der Gitterpunkte in gewissen Bereichen.
N achrichten von der Gesellschaft der W issenschaften zu G ttingen,

M athem atisch -P hysika lische K lasse, vol, 1924, pages 137 150,

1924.

286 Space ^ T im e Efficient S parse M atrix T ran sp o se

Bibliography

[Lariinore 98]

[Lawson 79]

[Leathers 79]

[Lee 08]

[Lewars 03]

[Lewis 81]

[Li 03]

[Li 05]

[Lippert 98]

[Lorin 75]

S. Lariniore. An approximate m in im um degree column ordering

algorithm. R apport teclin ique rR -98-016 . C ISE, U niversity of

F lorida. 1998. MS Thesis.

C. L. Lawson. R. .1. Hanson. D. R. Kincaid fe F. T. Krogh, Basic

Lmear Algebra Subprograms for Fortran Usage. ACM 'IVans. M ath.

Softw., vol. 5, no. 3, pages 308-323. 1979.

B u rton L. Leatliers. Remark on Algorithm 513: Analysis of In-

Situ Transposition [FI] and Remark on Algorithm 467: Matrix

Transposition in Place [FlJ. ACM T rans. M ath . Softw ., vol. 5,

no. 4. pages 520-. Decem ber 1979.

Seyong Lee & R udolf E igenm anii. Adaptive runtime tuning of

parallel sparse matrix-vector multiplication on distributed memory
systems. In ICS '08: Proceedings of the 22nd annual international

conference on S upercon ipu ting . pages 195-204. New York. NY,
USA, 2008. ACM.

E.G . Lewars. C o m p u ta tio n a l chem istry : In tro d u c tio n to the

theo ry and app lica tions of m olecu lar and q u an tu m m echanics.

Springer. 2003.

H R. Lewis k C.H. Papim itriou. Elem ents of the theory of com pu

ta tion . Preiitire-H all Software Series. Pearson E ducation Canada.
1981.

Xiaoye S. Li .James W. D enunel. SupcrLlLDIST: A scalable

distributed-memory sparse direct solver for unsymmetric linear

systems. ACM Trans. M ath. Softw.. vol. 29. no. 2. j)ages 110 140.

2003.

Xiaoye S. Li. An overview of SuperLU: Algorithms, implementa
tion. and user interface. ACM Trans. M ath. Softw., vol. 31. no. 3.

pages 302- 325. 2005.

T h . L ippert. K. Scliilling, F. Toschi, S. I 'ren tm an n & R. I'ripic-

cione. Transpose algorithm fo r F F T on A PE /Q uadrics . In P e

te r S loot. M arian B ubak t Bob H ertzberger. ed iteu rs. High-

Perform ance C om puting and Networking, volume 1401 of Lecture

Notes in Computer Science, pages 439 448. Springer Berlin Hei

delberg. 1998.

Harold Lorin. Sorting and sort system s (the system s program m ing

series). A ddison-W esley Longm an P ub lish ing Co.. Inc., Boston.

MA, USA, 1975.

R obert C’rosbie. T h e U niversity of D ublin . T rin ity C’ollege 287

Bibliography

[Manegoki]

[M artone 10a]

[M art one 10b]

[M artone 11]

[MATLAB 10]

[McKee 04]

[M cNaniee 71]

[Melville 79]

[M onagan 05]

[Moore 65]

[M orton 66]

S tefan M anegold . T he calibrator: a cache-m em ory and T L B

calibration tool.

M. M artone , S. F 'ilippone. S. Tucci & M. Paprzycki. A ssem -

bliny recursively stored sparse m atrices. In C o m p u ter Science

an d In form ation Technology (IM C SIT), P roceedings of th e 2010

In te rn a tio n a l M ulticonference on. pages 317 325. 2010.

M ichele M artone , S alva to re F ilippone . S alva to re Tucci, M arcin

Paprzycki & M aria G anzha. Utilizing Recursive Storage in Sparse

M a trix -V ecto r M ultip lica tion - P relim inary C onsiderations. In

Thom as Philips, ed iteu r, CA'I'A, pages 300 305. ISCA, 2010.

Michele M artone, M arcin Paprzycki &; Salvatore F'ilippone. A n Im

proved Sparse M atrix- Vector M ultiply Based on Recursive Sparse

Blocks Layout. In Ivan Lirkov. Svetozar M argenov & Jerzy Was-

niewski, ed iteu rs , LSSC, volum e 7116 of Lecture N o tes in C om

p u te r Science, pages 606 613. Springer. 2011.

M ATLAB. version 7.10.0 (r2010a). T he M athW orks Inc.. Natick.

M assachusetts. 2010.

Sally A. McKee. Reflections on the M em ory Wall. In Proceedings
of th e 1st Conference on C om puting Frontiers. C F '04. pages 162-.

New York. NY, USA, 2004. ACM .

John Michael M cNamee. Algorithm 408: A Sparse M atrix Package
(Part I) [F4]. Conm iun. ACM. vol. 14. no. 4, pages 265-273, April

1971.

R o b e rt C. M elville. A T im e-Space tra d e o ff fo r In -P lace A rray
P erm uta tion . R ap p o rt technique. Cornell I'n iversity . Ithaca. NY,

USA, 1979.

M ichael B. M onagan. K eith (). G eddes. K. M ichael Heal, George

Labahn, S tefan M. V orkoetter. Jam es McC’arron & Paul DeMarco.

M aple 10 program m ing guide. M aplesoft. W aterloo ON. C anada.

2005.

G ordon E. M oore. C ram m ing m ore com ponents onto integrated

circuits. E lectronics, vol. 38. no. 8, A |)ril 1965.

G .M . M orton . A co m p u te r o rien ted geodetic d a ta base and a

new technique in file seqiiencing. In ternational Business M achines

C'ompany. 1966.

288 S pace ^ T im e Efficient S parse M atrix T ran sp o se

Bibliograi)hy

[NAG 93]

[Nagel 73]

[N a'nnieh 06]

[Navarro 96]

[N ethercote 03]

[N ethercote 07]

[Nislitala 01]

[P adgett 09]

[Pall 60]

[Pettersson 05]

[P issanetzky 84]

[Portnoff 99]

T h e N \iinerical A lgo rithm s G roup NAG. N A G Fortran Library

Mark 15. 1993.

Laurence \ \ . Nagel D.O. Pederson. SPICE (Simulation Program
with Integrated Circuit Emphasis). R apport technique U G B /E H L

M382, EEC'S D eiJartinent, U niversity of California. Berkeley, A pr

1973.

R am i A1 N a’m neh , W . D avid P an & Seong-M oo Yoo. Efficient

Adaptive Algorithms fo r Transposing Small and Large Matrices

on Sym m etric Multiprocessors. In forn ia tica . vol. 17, no. 4, pages

535-550. D ecem ber 2006.

Ju a n J. N avarro, E. G arcia & Jose R. H errero. Data Prefetching

and Multilevel Blocking fo r Linear Algebra Operations. In P ro

ceedings of th e 10th in te rnational conference on Supercom puting ,

pages 109-116. ACM Press. May 1996

N icholas N e th e rco te & Ju lian Sew ard. Valgrind: A Program

Supervision Framework. E lectronic Notes in I 'heo re tical C om puter

Science, vol. 89. pages 44- 66, 2003.

N icholas N e th e rco te Ju lia n Sew ard. Valgrind: a fram ework

for heavyweight dynamic binary instrumentation. SIG PLA N N ot.,
vol. 42. no. 6. pages 89 100. 2007.

R a jesh N ish ta la . R ichard V\iduc. Jam es D enunel & K a th e rin e

Yelick. When cache blocking sparse matrix vector multiply works
and why. In P roceedings of the PARA'04 W orkshop on the S ta te -

o f-th e -a rt in Scientific C om puting , C openhagen . D enm ark . Ju n e

2004.

W .T . P a d g e tt & D .V . A nderson . F ix ed -p o in t signal p rocessing.

S ynthesis lecttu’es on signal processing. M organ &; C laypool. 2009.

G ordon F^all & E sth e r Seiden. A problem, in abelian groups, with

application to the transposition of a matrix on an electronic com

puter. M athem atics of C om putation , vol. 14. pages 189-192. 1960.

M. P ettersson . Perfctr: Linux Performance Monitoring Counters

Driver. R a p p o rt technique, U ppsala U niversity, 2005.

S. P issanetzky. S parse m atrix technology. A cadem ic P ress. 1984.

M. R. Portnoff. An efficient parallel-processing method fo r trans
posing large matrices in place. IE E E T ra n sa c tio n s on Im age

F’rocessing. vol. 8. no. 9. pages 1265 1275, S ep tem ber 1999.

R obert C rosbie . T lie U n iversity of D ub lin , T rin ity College 289

Bibliography

[Rainapriyaii 75]

[R avail kar 11]

[Remington 96]

[Rogers 03]

[Saad 94]

[Saad 03]

[Sanders 08]

[Schaller 97]

[Schenk 01]

[Schrijver 86]

[Schumann 72]

[Schmnann 73]

[Sedgewick 11]

H. K. Rama])riyan. A Generalization o f Eklundh’s Algorithm fo r
Transposiny Large Matrices. IEEE Trans. Comput.. vol. 24. no. 12,
pages 1221 1226. Decem ber 1975.

A.A. Ravankar k: S.G. Sedukhin. A n 0 (n) 'I'iine-Complexity
M atrix Transpose on Torus Array Processor. In Networking and
C om puting (IC N C), 2011 Second In ternational Conference on,
pages 242 247, 2011.

K arin R em ington & R oldan Pozo. N IS I ' Sparse B L A S User's
Guide. R apport technique. Internal Report NISTIR 6744. National
In stitu te of S tandards and Technology. 1996.

D.W. Rogers. C om putational chemistry using the pc. Wiley, 2003.

Youcef Saad. SP A R SK IT : a basic tool kit fo r sparse m atrix com
putations - Version 2. 1994.

Y. Saad. Ite ra tive m ethods for sparse linear system s. Society
for Industrial and Applied M athem atics. Philadelphia. PA. USA.
2003.

Beverly A. Sanders. Erik Deumens, Victor Lotrich k Mark Ponton.
Refactoring a Language fo r F’arallel Computational Chemistry. In
Proceedings of th e 2Nd W orkshop on Refactoring Ibols. W R’I'
08. pages 11:1-11:4. New York. N’V'. I ’SA. 2008. AC'M.

Robert R. Schaller. Moore's law: past, present, and future. lEiĤ El
.Spectr., vol. 34. no. 6, pages 52 59, June 1997.

O. Schenk & K. G artner. Sparse Factorization with Two-Level
Scheduling in P A R A D ISO . 2001.

Alexander Schrijver. riieo ry of linear and integer program m ing.
John W iley & Sons. Inc., New York. NY, USA, 1986.

U. Schum ann. E in Verfahren zum Transponieren grosser, se-
quentiell gespeicherter M atrizen. Angew. Inform., pages 213-216.
1972.

U. Schum ann. C om m ents on ”A Fast Com puter M ethod fo r
M atrix Transposing” and Application to the Solution o f Poisson’s
Equation. lEElE Trans. C’oniput., vol. 22. no. 5, pages 542-543,
May 1973.

R. Sedgewick & K. Wayne. Algorithms. Pearson Education, 2011.

290 Space kz Time Efficient Sparse Matrix Transpose

Bibliography

[Sedgewick 13]

[Sen 02]

[Shutler 08]

[Siiiiecek 09]

[Sinha 04]

[Sipala 77]

[Sipser 96]

[Snir 95]

[Snir 98]

[Stathis 03a]

[Stathis 03b]

R. Sedgewirk k P. F lajolet. An in troduction to the analysis of
algorithms. Pearson Education, 2013.

Sandeep Sen, Siddhartha C hatterjee & Neeraj Dumir. Towards a
theory o f cache-efficient alyorithms. J. ACM, vol. 49, no. 6, pages
828-858, November 2002.

Paul M. E. Shutler, Seok Woon Sim & Wei Yin Selina Lini.
Analysis o f Linear Time Sorting Alyorithms. Comput. .1., vol. 51.
no. 4, pages 451-469, July 2008.

1. Simecek. M em ory Hierarchy Behavior Study during the E xe
cution o f Recursive L inear Algebra Library. A cta Polytechnica,
vol. 49. no. 5/2008, pages 29-36, 2009.

R. Sinha. Using Compact Tries fo r Cache-Efficient Sorting of
Integers. In C. C. Riheiro. editeiu'. Proceedings of the l l i i r d
International Workshop on Efficient and Experimental Algorithms
(W EA 2004), pages 513-528. A ngra dos Reis, Rio de Janeiro,
Brazil, may 2004. LNCS 3059.

Paolo Sipala. R em ark on “Algorithm 408: A Sparse M atrix
Package (Part I) lF 4 j”. ACM Trans. M ath. Softw., vol. 3, no. 3.
pages 3 0 3 Septem ber 1977.

Michael Sipser. Introduction to the tlieory of com putation. Inter
national rhom sou Publishing. 1st edition. 1996.

Marc Snir, Steve W. O tto , David W. Walker. Jack D ongarra k
Steven IIuss-Lederman. Mpi: I’he complete reference. MI T Press.
C^ambridge. MA, USA. 1995.

M arc Snir & Steve O tto . M pi-the com plete reference: The mpi
core. Mi r Press. Cambridge. MA. USA, 1998.

P. S tath is, S. Vassihadis k S. C'otofana. A Hierarchical sparse
m atrix storage form at fo r vector processors. In I’arallel and Dis-
trib\ited Processing Symposium. 2003. Proceedings. International,
pages 8 pp.-, 2003.

Pyrrhos S tathis. S tam atis Vassiliadis k Sorin C’otofana. D -SAB:
A Sparse M atrix Benchmark Suite. In VictorE. Malyshkin. editeur.
Parallel C’om putiug Technologies, volume 2763 of Lecture Notes
in Computer Science, pages 549-554. Springer Berlin Heidelberg.
2003.

R o b ert C rosh ie , T h e U n iversity o f D ub lin . T rin ity College 291

B ibliography

[Stathis 04]

[Stewart 01]

[Stoer 02]

[Strassen 69]

[Straubhaar 08]

[Suh 02]

[Szab'o 91]

[Toledo 03]

[Tsifakis 04]

[Twigg 83]

[Twogood 76]

[Uht 97]

P. Stathis, I). Cheresiz. S. Vassiliadis k B. .luurlink. Sparse matrix
transpose unit. In Parallel and Distributed Processing Syniposiuni.
2004. Proceedings. 18th International, pages 90 , 2004.

G. W . Stew art. M atrix algorithm s. Society for Industrial and
Applied M athem atics, Philadelphia. PA, USA, 2001.

Josef Stoer & Roland Bulirsch. Introduction to Numerical Analysis.
Springer Verlag. 2002.

Volker Strassen. Gaussian elimination is not optimal. Numerische
M athem atik, vol. 13. no. 4, pages 354 -356, August 1969.

Julien S traubhaar. Parallel preconditioners fo r the conjugate
gradient algorithm using G ram -Schm idt and least squares m eth
ods. Parallel Com puting. 2008. In Press. Accepted M anuscript,
Available online 19 June 2008.

J. Suh k V. K. Prasanna. An Ejficient Algorithm for Out-of-Core
M atrix 'lYansposition. IEEE 'I’rans. Com put., vol. 51. no. 4, pages
420-438. April 2002.

B. Szab'o I. Babuska. F in ite element analysis. John W iley (k
Sons. 1991.

Sivan 'I'oledo. Taucs: A library o f sparse linear solvers. 2003.

Dimitrios Tsifakis. AlistairP. Rendell k: PeterE. Strazdins. Cache
Oblivious M atrix Transposition: Sim ulation and Experiment. In
M arian Bubak. GeertDick Albada. PeterM .A. Sloot k. Jack Don-
garra. editeurs. Com putational Science - ICCS 2004. volume 3037
of Lecture Notes in C om puter Science, pages 17-25. Springer
Berlin Heidelberg, 2004.

D. W. Tw’igg. Transposition o f M atrix Stored on Sequential File.
IEEE Trans. Com put., vol. 32. no. 12, pages 1185-1188, December
1983.

R.E. Twogood & M.P. P^kstrom. A n Extension o f E klundh’s
M atrix Transposition Algorithm and Its Application in Digital
Image Processing. C om puters, IEEE tran sac tio n s on, vol. C-25,
no. 9, pages 950 952. 1976.

A ugustus K. Uht, Vijay Sindagi & Sajee Som anathan. Branch
Effect Reduction Techniques. C om puter, vol. 30, no. 5, pages
71-81, May 1997.

292 ■Space T im e Efficient Sparse M atrix Transpose

Bibliography

[Valsalain 02]

[Van Voorhis 77]

[Vuduc 05]

[W apperoni 06]

[Welch 84]

[W haley 97]

[W haley 98]

[W haley 01]

[Wilkes 01]

[W illard 84]

V inod V alsalaiii & A ntliony Skjelliini. A framework for high-

performance matrix rnultiplication based on hierarchical abstrac
tions, algorithms and optimized low-level kernels. C oncurrency

and Coinptitation: P ractice and Experience, vol. 14, no. 10, pages

80.5-839, 2002.

D. C. Van Voorhis. Com m ents on ”A Com puter Algorithm for

Transposing Nonsquare Matrices”. IEEE Trans. C oniput., vol. 26,

no. 6, pages 607-608, Ju n e 1977.

R ichard Vuduc, Jam es W. Deniniel <k K atherine A. Yelick. OSKl:

A library of automatically tuned sparse matrix kernels. In Proceed

ings of SciDAC 2005, Jou rna l of Physics: Conference Series. San

Francisco. CA, USA, Ju n e 2005. In s titu te of Physics Publishing.

P. W apperoni, A. N. Beris & M. A. S traka. A N ew Transpose

Split Method fo r Three-dimtnsional FFTs: Performance on an

0rig in2000 and AlphaServer Cluster. P arallel C o n ip u t., vol. 32.

no. 1, pages 1-13, Ja n u ary 2006.

'I’.A. Welch. A Technique for High-Performance Data Compression.
C om puter, vol. 17, no. 6, pages 8 19. 1984.

R. C'lint W haley ic’ Jack D ongarra . Automatically Tuned Linear
Algebra Software. R apport techiiic)ue UT-C'S-97-366, U niversity

of Tennessee. D ecem ber 1997.

R. C'lint W haley it’ .lack D ongarra . Automatically Tuned Linear

Algebra Software. In S u p erC o n ip u tin g 1998: High Perform ance
N etw orking and C’oniputing , 1998. C'D-ROM Proceedings. W in

n e r , b e s t p a p e r in t h e s y s te m s c a te g o ry .

R. C lint W haley, A ntoine P etite t & Jack .1. D ongarra. Automated

Empirical Optimization of Software and the ATLA S Project. P a r

allel C om puting, vol. 27, no. 1-2, pages 3 35, 2001. Also available

as U niversity of Tennessee LA PA C K W orking N ote # 1 4 7 , U l -

CS-00-448. 2000.

M aurice V. W ilkes. 'The m em ory gap and the future of high

performance memories. SIG A RCH C om puter A rch itecture News,

vol. 29, no. 1. pages 2 -7. 2001,

D an E. W illard. New trie data structures which support very fast
search operations. .1. Coni])ut. Syst. Sci., vol. 28. no. 3, pages

379-394, 1984.

R o b e rt CVoshie, T h e I ’n iversity of I)u))lin. T rin ity College 293

Bibliography

[W illiams 90]

[W indley 59]

[Wise 01]

[W olfram 03]

[Wulf 95]

[Yotov 05]

[Yotov 07]

[Yzelman 11]

[Ziv 77]

rh o m a s W illiam s & Colin Kelley. G N U P L O T - A n In terac tive

Plotting Program. 1990.

P. F. W indley. Transposing M atrices in a D igital C om puter, j-

CO M P-.]. vol. 2. no. 1, pages 47-48, ajjr 1959.

David S. W ise. Jerem y D. Frens, Yuhong G u & G regory A. A lexan

der. Language support fo r M orton-order matrices. In Proceedings

of the eighth ACM SIG PLA N sym posium on Principles and prac

tices of parallel progrannning. P P o P P '01, pages 24 -33, New York,

NY, USA, 2001. ACM .

Stephen W olfram. T he m athem atica book. W olfram M ed ia /C am

bridge U niversity Press, fifth ed ition ed ition , 2003.

\N'ni. A. W ulf & Sally A. M cKee. H itting the M em o ry Wall:

Im plica tions o f the Obvious. S IG A R C H C om pu t. A rch it. News,

vol. 23. no. 1. pages 20-24. M arch 1995.

K am en Yotov. K eshav Pingali & P aul Stodghill. A utom a tic M ea

su rem en t o f M em o ry H ieiarchy P aram eters. In P roceed ings oi
th e 2005 ACM S IC M E 'l'R IC S In te rn a tio n a l Conference on M ea

surem ent and M odeling of C om puter System s. S IG M E l’RIC'S 05.

pages 181 192. New York. NY, USA, 2005. AC’M.

K am en Y otov, T om R oeder. K eshav P ingali, Jo h n G unnels &

Fred G \istavson . A n e.tpe.rimental com parison o f cache-oblivious
and cache-conscious programs. In P roceedings of th e n in e teen th

annual AC'M sym posium on Parallel algorithm s and arch itectures,
SPAA '07, pages 93-104, New York, NY, USA, 2007. AC'M.

A .N . Y zelm an & R ob II. B isseling. T w o-d im ensiona l cache-

ohlivious sparse m atrix-vector m ultiplication. Parallel C om puting ,

vol. 37, no. 12, pages 806 - 819, 2011. jce :title^6 th In te rn a

tional W orkshop on Parallel M atrix A lgorithm s and A pplications

(P M A A 10)i/ce :title^ .

J. Ziv & A. L em pel. A un iversa l algorithm fo r sequentia l data

compression. Inform ation Theory, IE E E T ransactions on, vol. 23,

no. 3, pages 337-343. 1977.

294 Space T im e Efficient Sparse M atrix Transpose

Glossary

Algorithm

BLAS

C ache

Caclie Obhvioiis

COO

CSR

CSC

Cycle

Cycle-Chasing

Dense

A step by step procedure for performing a calculation or carry
ing out a task.

Basic Linear Algebra Subprogram m es - A software library of

routines for performing standard Linear Algebra operations.

The cache is part of the Central Processing Unit (CPU) which

is used to reduce the average time to access data from the main
memory. It is a smaller, faster memory which stores copies of
data from recently used main memory locations.

An algorithm designed to take advantage of CPU caches w ith

out needing to know the size of the cache.

Compressed Coordinate m atrix storage format (Section 2.3.4).

Compressed Sparse Row m atrix storage format (Section 2.3.5).

Conii:)ressed Sparse Colunm m atrix storage form at (Sec
tion 2.3.5).

A pernm tation of (a subset) of the elements - The com plete

chain of elements tha t are rearranged one after the other.

The processes during in-place transpose of moving elements
from location to location one after another in the m atrix,

perm uting the elements.

A m atrix where all values are stored in memory - There are

very few zero values in a dense matrix.

R obert C rosbie . T h e I ’n iversity of D ublin . T rin ity College 295

Glossary

Diagonal

DRAM

Element

Fill-In

lu-Place

Jump

LAPACK

Linear Algebra

Matrix

MIMD

The line of elements from top left of the m atrix to bottom

right. Diagonal elements have the same row and column index,

I = J -

Dynamic Random-Access Memory - Main memory.

The inihvidual items/values/entries in a matrix.

hi high order routines, when a row or cohnnn of a sparse matrix

is added to another - zero elements may become non-zero -

space must be made in the compact s truc ture for these new

elements.

\Mien an algorithm alters data while keeping it in the original

array/data-structure .

During the cycle-chasing transpose, the algorithm moves an
element from one location in the matrix arrays to i t ’s new row
in a different location in the matrix arrays. The algorithm will
then need to move the existing element at th a t new location
to yet another location, and so on until the cycle completes.
We use the term “Jiuni)” to describe how the algorithm moves
from location to location during the cycle-chasing.

Linear Algebra PACKage - A software library of high order
Linear Algebra routines, similar to BLAS.

The branch of mathematics tha t deals with the theory of sys

tems of linear equations, matrices, vector spaces, determinants,
and linear transformations.

A rectangular array of numbers arranged in rows and columns
- A mathematical representation of Linear Algebra Equations.

Multiple Instruction Multiple D ata - A type of parallel archi

tecture. nniltiple processors can carry out different instructions

on different da ta at the same time.

Glossary

Page Table

PA PI

Perm u ta tion

Out-of-Place

SIMD

Sparse

TLB

Transpose

Triangular Solve

T h e m app ing betw een v irtua l addresses in a j)rogram and

physical addresses on th e machine.

Performance Application Programming Interface - A library for

m onitoring hardware counters used to measure cache /T L B /e tc .

performance.

Rearrange elements in a particu lar p a t te rn (perm ute).

W h en an a lgorithm alters d a ta by copying it to a completely

new a r r a y /d a ta - s t ru c tu re of the sam e size.

Single instruction M ultip le D a ta - A type of parallel architec

tu re where multiple processors carry out th e same instruction

on different d a ta values at the same time.

A m atr ix w ith a high p roport ion of zero e lem ents s tored in a

condensed format.

M any m atrices have a high p roportion of elements which

have a value of zero, often 99% of the e lem ents or more. A

sparse m a tr ix is a m a tr ix w ith a high p ropo rt ion of zero ele

m ents which is s tored in a compact format (such as C SC /C SR)

in m em ory in order to avoid explicitly s toring the zero values.

This compact format reduces the memory required to store the

m a tr ix and can reduce th e num ber of a r i th m e tic opera tions

th a t need to be perform ed during Linear Algebra algorithms.

Translation Lookaside Buffer - A Cache of the Page Table.

A linear a lgebra o p e ra t ion th a t reflects a m a tr ix th ro u g h its

m ain top left to b o t to m right diagonal - sw apping rows with

colunms - element A j j is swapped with

Solving th e unknow ns in the vector x in an equa tion such as

A x = b where A is lower (L) or upj^er {LI) t r ia n g u la r - An

nmch simj)ler process th a n when ^ is a full m atrix .

