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Abstract

Matrix operations are fundamental to linear algebra and have many impor

tan t applications in areas such as sinmlation of physical systems, economic 

modeling, linear oj)timization and numerical analysis. One of the fundamen

tal operations on matrices is the m atrix transj)ose. In many linear algebra 

api)lications the matrices are extremely large and require considerable mem

ory to store. Therefore it is desirable to transpose in-place to avoid creating 

a new m atrix  which would double the memory usage. Transposing dense 

m atrices in-place has been studied over several decades, and many good 

algorithm s have been found. An area th a t has been relatively neglected 

is that of in-place transj)ose of sparse m atrices - tha t is, m atrices where 

the value of most matrix elements is zero and are stored in a sparse format. 

The best previous algorithm  requires 0 (n n 2  -I- n) tim e and (-)(nr!X -f u) 

additional space to  transpose an n x  n sparse m atrix  with nnz  non-zero 

entries.

This thesis describes our new family of space-efficient in-place transpose 

algorithms for sparse matrices stored in the connnon Compressed Sparse Row 

format. These algorithms require only 0(/() space, which is asymptotically 

better than  the t)est ])revious algorithm, and greatly reduce the additional 

sj)ace in practice. This is especially important for very large sparse matrices, 

which are often used to model linear algebra problems at ever finer levels 

of detail.

Our three best algorithms perform the transpose in B{7}nz + n) time and 

0 ( n )  space. Our Corresponding Row algorithm transj)oses the 259 sample 

matrices in 90% of the execution time of the existing Saad algorithm, requir

ing on average 21% of the memory overhead of Saad. Our H yperPartition 

with RadixSort algorithm has negligible memory overhead, less than 1% of 

Saad. This algorithm is efficient for most matrices with and has an average 

of 90% of the execution tim e of Saad however, it does not perform  well 

for some matrices. Our Hybrid H yperPartition with RadixSort transpose
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takes the best of our two previous algoritlinis. Our Hybrid algoritlun lias 

a memory overhead of ju st 9.3% of Saa(i and transposes the m atrices on 

average in 68% of the execution time of Saad in serial and 32% in parallel.
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Chapter

Introduction

My Thesis:
Sparse matrices in. Compressed Sparse Row (CSR) storage fo r

m at can be transposed in (d{nnz +  n) time using ju s t  (-)(??) 

additional space. Additional techniques can he used to further  

reduce time and space in practice.

Linear Algebra [Golub 96, Anton 02] and m atrix operations are essential 

in many areas of science, engineering, finance, and numerous other fields. 

It is therefore im portant to have fast and efficient linear algebra software. 

One of the fundamental linear algebra operations on matrices is the Matrix 

Transpose [Cayley 59, Golub 96]. From a com putational perspective, the 

transpose operation is m ainly used to  change between row-m ajor and 

colunm -major layouts to  imj)rove cache reuse and efficiency.

Taking a matrix M . its transj)ose may be obtained l)y swapping all 

the rows with all the cohunns and vice-versa. As shown in Example 1.1 the 

first colunni becomes the first row and the fourth row becomes the fom th 

column. The elements along the diagonal remain in place.

M  =

 ̂ a  ' b ^ /  a  c \ h
c (1 e <1 / m

f  K g
h i j i

k / b j k n
\  111 11 (> / \  e I ()

(a) (b)

Example f. l :  Sample M atrices M  and its Transpose

A problem that has been studied since at least the 1950’s [Windley 59, 

Kmith 98] is how a m atrix can be transposed in-place. By in-place we mean
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C hapter 1. lutrochiction

that the transpose of the m atrix is stored in the same location as the original 

matrix, and a minimum of additional tem porary storage is needed to perform 

the transpose operation. For dense matrices many good algorithms exist. In 

particular in-place transposition of a square dense m atrix is straightforward 

and very cache efficient [Lawson 79, W haley 97, Knuth 98, Goto 02]. Trans

posing rectangular dense matrices in-place is more complicated, but several 

efficient algorithm s have been developed th a t move “cycles” of m atrix  

elements with a constant amount of additional space [Laflin 70a, Cate 77a]. 

There has also been interest in in-place transposition algorithms that achieve 

greater da ta  locality at the cost of more data  movement [Alltop 75].

There has been comjjaratively very little research into the problem of 

the  in-place transi)osition of a sparse m atrix  which is arguably a much 

more difficult procedure. There have been a number of articles which deal 

w ith the O ut-of-Place sparse m atrix  transpose [IBM 76, Gustavson 78b, 

Pissanetzky 84, Gonzalez-Mesa 13] and num erous im plem entations (see 

Section 3.4), however there is very little research to be found on the In-Place 

Sparse Transj)ose and only one publicly available implementation [Saad 94]. 

In this Thesis we aim to bridge that gap with our “Space and Time Efficient 

In-Place Sparse M atrix Transpose” ,

A Sparse M atrix  is a m atrix  where the  m ajority  of the entries in the 

m atrix  are zero, and the  m atrix  stored in a condensed format in memory 

om itting  most or all of the zero entries. Storing all elem ents (including 

zeros) of a large sparse m atrix  in a dense form at in memory is inefficient, 

and in many cases would require much more memory than  is available in 

the given machine. Sparse matrices generally use more complex structures 

in memory, which makes in-place transposition  more difficult. Poj)ular 

compact formats such as Compressed Sparse Row (CSR) and Compressed 

Sparse Column (CSC) [Duff 86, George 81] (Section 2.3.5) are used, where 

only the non-zero values in the m atrix  are stored explicitly. The location 

(i.e. row' and cohmm) index of each non-zero value is stored in auxiliary 

d a ta  structures. For form ats such as CSR, accessing the m atrix  elements 

via (and m aintaining these auxiliary data  structures during) the transpose 

is w'hat makes in-place transposition complicated for sparse matrices.

2 Space T im e Efficient Sparse M atrix  Transpose



Contribution

For a scjuare n x ii sparse matrix, the two important vahies that affect 

the tim e and space required for transposition are the number of rows, 

or order, of the matrix (n) and tlie number of non-zero vahies in the  

matrix (rrnz).  T he O ut-of-Place sparse transpose (Section 3.4) requires 

(-)(7)r?2 -I- n) tim e and Q{ n n z  +  n) auxihary space. T he best pubhshed /  

pubHcly available in-place transposition algorithm for sparse matrix formats 

like CSR is Saad-IP which requires Q{ nnz  +  n) time and Q{nnz)  auxiliary 

space [Saad 94].

The cycle-chasing in-place sparse transpose permutes elements to their 

correct transposed row. However, elements are not necessarily ordered by 

cohunn index within the rows. This may be adequate for some applications 

however, if we wish to ensure elem ents are in order then we can add a 

second step to the transjjose operation to sort the elem ents within the  

row's. T his can be done using a comparison sort similar to  QuickSort 

an shown in Section 4.5 which has a tim e com plexity of 0 { n n z . log{n)).  

Alternatively we can use a non-comparative sorting algorithm such aa the 

Most Significant Digit Radix Bucket Sort (descril)ed in Section 7.1) which 

has a time conij)lexity of 0 ( n n z  .k)  [Kmith 98, Biggar 08a. Sliutler 08]. If 

n is the numt)er of rows/cohunns then k =  loy{n).  which remains constant 

for any particular integer index used (i.e. for 32 bit integer indexes k <  32 

). Thus the complexity of the radix bucket sort essentially becomes 0 { n u z ) .

Contribution

We propose a collection of new in-place sj)arse matrix transpose algorithms 

which use asym ptotically less memory (6 (7;) comi)ared to 0 { n v z ) )  while 

m aintaining the sam e asym ptotic tim e com i)lexity ( S ( n n z  +  n)) of the 

existing [Saad 94] in-place algorithm. In most sj^arse matrices n m  is 

nmch larger than n, so the space saving can be significant. The saving is 

])articularly important in cases where the sparse matrix occupies nmch, 

or even m ost, of the available memory and transposition with the current 

algorithms may be infeasible or even impossible. Indeed, there will always 

be a need to solve larger problems or solve problems in finer detail which will
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result in even larger matrices. Therefore it is essential to support very large 

matrices as efficiently as possible. In practice our new algorithms use just 

a fraction of the memory overhead of the existing algorithm while actually 

improving (often considerably) on th e  execution tim e. O ur algorithm s 

also provide more efficient m atrix  form at conversion between row-major 

and colum n-m ajor orderings, which is the exact same procedure as the 

transpose operation. We perform an extensive experimental evaluation and 

conii)arison of a immber of sparse transpose algorithms using a test suite of 

259 large matrices taken from real world ai)plications and investigate their 

performance based on appropriate metrics.

Take for example nlpkkt,240, the largest m atrix in our test suite. Trans

posing th is m atrix  using an O ut-of-Place algorithm  requires 4,698 MiB 

of additional memory. If th is alm ost 5G iB  of additional memory is not 

available, the existing Saad in-place algorithm [Saad 94] can transpose the 

m atrix in 223 seconds using 1,530 MiB of additional memory. We propose 

a new Correspondmg Row Transpose algorithm which reduces the memory 

overhead from G{niiz) to  (-)(») while keeping the standard  m atrix  struc

tures. The Corresponding Row algorithm  can transpose this large m atrix  

using just 320 MiB of additional mem ory and in this case also takes 223 

seconds to transpose the matrix. Of the 259 matrices in our test suite, our 

Corresponding Row transpose requires on average just 21% of the memory 

of Saad and performs the  transposition  in 90% of the execution tim e on 

average.

We propose a further Hyper Partition Transpose algorithm which main

tains the reduced 0 [ n )  memory overhead and internally converts to  our 

new HyperPartition format in order to reduce the memory overhead further 

and improve on cache reuse to  improve performance. The H yperPartition 

algorithm can transpose this largest m atrix with just 3.3 MiB of additional 

memory in just 80.7 seconds. This represents less than  1% of the memory 

usage and takes just 36% of the execution tim e of the  existing Saad in- 

place algorithm. The HyperPartition algorithm has extremely low memory 

overhead and performs well for most sample matrices however, it does not 

perform well for some matrices.
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Thesis O uthiie

W e exaniiiie m atrices for w hich our a lg o rith m  does not perform  well, 

investigate  why and  proi)ose techn iques to  im prove perform ance. T his 

results in a Hybrid Transpose algorithm  which m ain tains our reduced 0 (n )  

space com plexity and also m aintains the Q{n nz  +  n) tim e com plexity of the 

ex isting  algorithm s. T h e  H ybrid  a lgorithm  perform s th e  tran sp o se  using 

on average 9% of th e  m em ory overhead of th e  ex isting  in-place algorithm  

(less th an  3% of the  out-of-place algorithm ) w ith an average execution tim e 

com pared  to  th e  ex isting  Saad  algo rithm  of 68% in serial and  38.8% in 

parallel.

Thesis Outline

T his docum ent is s tru c tu red  as follows.

•  C h a p te r 2 covers background  in fo rm ation  underly ing  th e  work in 

th is Thesis. We give a basic overview of L inear A lgebra, Dense and 

Sparse m atrices, existing algorithm s and software for sj)arse m atrices 

and m atrix  storage form ats. We also provide an overview of m em ory 

hierarchy  and  caches and  finish w ith  a descrip tion  of com plexity  

analysis and the  no ta tion  we use to  theoretically  analyse and di.scuss 

algorithm s.

•  C h ap te r 3 d iscusses in d e ta il th e  M atrix  T ranspose  o p era tio n , dis

cusses re la ted  research, in troduces th e  ex isting  a lgorithm s for th e  

sparse m atrix  transj^ose, describes our experim ental setup  and gives 

an analysis of th e  perform ance of th e  existing algorithm s.

•  C h a p te r 4 in tro d u ces tw o new a lgo rithm s for th e  cycle-chasing in- 

place sparse m atrix  transpose which reduce the  m em ory overhead to  

an asym ptotic space com plexity of (-)(?;) com pared to  the  Q{nnz)  and 

0 { n n z + n )  of the  existing algorithm s. A lthough th e  savings in m em ory 

can  be significant, for these  first tw o a lgo rithm s th is  com es at th e  

cost of an  increase in tim e com plexity. T h is ch ap te r experim entally  

analyses th e  perfo rm ance of th e  algo rithm s in te rm s of execution
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Chapter 1. Introduction

tim e and m em ory visage com pared to  the existing algoritlims. The 

increase in complexity is evident in the execution time of the Binary 

Range Search Transpose however the  execution tim e of the Radix  

Lookup Table Transpose is broadly similar to  the  existing Saad in- 

place algorithm  and is actually slightly faster on average. Chapter 4 

also outlines our basic procedure for ensuring elements are arranged 

in cohnnn order w ithin row's after the cycle chasing algorithm.

• C hapter 5 describes our new Corresponding Row  transpose which 

uses a lookup table to perform the in-place cycle-cha.sing algorithm  

in reduced 0(r?) memory overhead while m aintaining the B (n n z  + n) 

time complexity of the existing algorithms. The novel approach here 

is that the look up and update of the table can be done in amortized 

constant (9(1) time. We perform extensive analysis of the performance 

of two im plem entations of the Corresponding Row algorithm . W'e 

also use hardw are counters to  look in de])tli at how the  algorithm  

uses caches compared to  existing algorithms. Using this analysis we 

identify properties of the m atrices and the factors such as the cycle 

length which influence cache usage and performance.

• In C hap ter 6 we use the  results of the analysis in C hapter 5 to  

develoj) a technique to  improve cache perform ance of the in-place 

cycle-chasing transpose. We introduce our new HyperPartition sparse 

m atrix  storage form at which ŵ e can easily and cjuickly convert to  

during the transpose. We then introduce our HyperPartition Trans

pose algorithm  for the in-place transpose of sparse m atrices in the 

H yperPartition format. We also introduce a heuristic with which to 

select the best param eter to  use for determining the size of partitions 

in the H yperPartition structure. We analyse the performance of the 

heuristic used for different values and reconnnended favourable values. 

We also introduce a parallel version of the H yperPartition transj)ose 

which exploits the data segregation provided by our HyperPartitions 

to reorder HyperPartition elements in parallel. Extensive performance 

analysis is also provided which shows that the H yperPartition trans-
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pose has negligible m euiory overhead and has improved execution 

tim e perform ance for many of the input m atrices due to  improved 

cache usage.

• Chapter 7 introduces some further optimizations for the H yperParti- 

tion in-place sparse transpose. A Radix Bucket Sort which exploits 

the type and layout of of the data  in our HyperPartitions to improve 

the efficiency of the sorting jihase of the transi)ose. We analyse the 

performance of different bucket sizes and recommend a heuristic for 

choosing an appropriate bucket size depending on m atrix and Hyper- 

Partition  dimensions.

The H yperPartition  transpose from the previous chapter does not 

transpose matrices w'hich are structurally  synunetric as efficiently as 

the previous algorithms. In C hapter 7 we investigate the structu ral 

layout of the m atrices in our test suite and introduce an efficient 

heuristic test to  determ ine if a particu lar Square m atrix  is S truc

turally  Synunetric. We then  introduce our Hybrid HyperPartition  

Transpose which uses this test for Sym metry to choose between the 

H yperPartition  and Corresj^onding Row algorithm s. The Hybrid 

algorithm  i)rovides a suital)le trade-off and has m oderate memory 

overhead with good overall jjerformance.

•  We draw conclusions in Chapter 8, discuss contributions and outline 

areas for future work. Table 8.1 gives a sum m ary of the algorithm  

complexities.

• Appendix A contains tables of information on a selection of the largest 

sample m atrices used in experiments. Table A .l gives details of the 

dimensions of the m atrices. Table A .2 lists the applications and 

l)robleni domains which i)roduced the matrices. Details of algorithm 

memory usage and execution tim e for these m atrices are given in 

Tables A.3 and A.4.

• A ppendix B contains detailed graphs of the H yperPartition  and 

Hybrid algorithm s in Serial and Parallel with the  QuickSort and
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RachxSort algorithms for different k values of the Remaining Bits 

Heuristic.

• Appendix C outlines the MatrixMarket file format.

• Bibliography of references and related work is on page 273.

• Glossary on page 295 defines some common terms used in the docu

ment.
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Chapter

Background

This Chapter contains background inforniatiou underpinning this research.

M atrix Transpose is one of the basic operations of Linear Algebra [Golul) 96, 

Anton 02]. Section 2.1 gives a brief in troduction to  Linear Algebra. The 

M atrix Transpose operation itself is discussed in detail along with the 

related work and research in th a t area in C lm pter 3. In Section 2.2 we 

discusses the two main types of m atrices which result from linear algebra 

problems, dense and sparse matrices and the two types of m atrix  software 

which are specialised for working with each type. Section 2.3 discusses the 

main types of m atrix  storage formats, the data-structures which are used 

to store m atrices in memory on com puter systems.

A central th rust of this work is m odifying sparse m atrix  transpose 

algorithm s and data-structm ’es to be more efficient by m aking be tte r tise 

of caches. Section 2.4 gives a brief overview of the memory hierarchy in 

modern comj)uter systems, how caches work and how they can be exploited. 

Section 2.5 outlines complexity analysis and the notation  used in this 

docm nent when discussing and com paring algorithm s from a theoretical 

perspective.

2.1 Linear Algebra

Linear Algebra is a branch of mathematics which involves many fields such 

as system s of linear equations, vectors, vector spaces, m atrices and linear 

transform ations. System s of linear equations are produced during many 

varied activities such as analysing the  forces on com ponents w ith Finite 

Element Analysis [Szab'o 91]. Sim ulating liquids and gasses w ith Fluid 

Dynamics [Harlow' 57]. Optim ising problem s in transporta tion , telecom- 

numications. and m anufacturing with Linear Progrannning [Schrijver 86],
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Sim ulating current in electric circuits [Nagel 73, K undert 86]. Im age Pro

cessin g  [Portnoff 99, N a ’m neh 06], and N um erical A n alysis [Higham 02, 

Stoer 02] in m any scientific and engineering fields.

As such, linear algebra provides part o f th e  essen tia l foundations in a 

w ide range of areas o f engineering, econom ics, s ta tis t ic s  and th e  various  

different science disciplines.

Linear A lgebra Exam ple

T he linear equations that are derived from the problem dom ains above may 

look sim ilar to  the equations show n in th e  sm all exam ple in E quation 2.1.

X +  2y +  -iz =  3

5x  +  Ay — z  = 1  (2.1)

2x — 3 y  +  2z  =  Q

T here are th ree eq u ation s and th ree unknow n variables ( x , y , 2 ). T h e  

standard  technicjue tau gh t in sch oo ls is to  use sim ultaneous equations  to  

find th e  unknow n variables. H ow ever, th is  techniciue d oes not scale. A 

better technique is to express the problem in m atrix form and us(' standard  

Linear A lgebra techniciues (and  softw are) to  solve th e  problem . T h ese  

equations can be w ritten  in a M atrix form w here the scjuare 3 x 3  m atrix  

A  holds th e  coefficien ts o f th e  unknow n variables, th e  1 x 3  vector array 

V holds th e  unknow n variables { x , y , z )  and the product o f A  and v  is the  

1 x 3  array b, which holds the right hand s ides  o f the equations.

1 2 4 X 3

5 4 - 1 V = y 1

2 - 3  2 z 6

A =

T he Full system  o f ecjuations A v  =  b then  becom es:

( 2 .2 )

A v  =  b

1 2 4 X 3

5 4 - 1 * y = 1

2 - 3 2 T 6

(2.3)

T h e  linear sy stem  m ay b e so lved  by ca lcu la tin g  th e  inverse A  ' of
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the m atrix  A  and pre-nniltiplying bo th  sides by this inverse. A  and its 

inverse when nniltiphed together resuh in the identity m atrix /  whicli when 

muitiphed by a vector or m atrix results in the same matrix. The calculation 

proceeds as follow's:

(2.4)

Thus we can find the tmknowns by calculating the  inverse of A 

and pre-niultiplying b by A~^. For efficiency, linear algebra algorithm s 

generally do not calculate the full inverse, ra ther they decompose A  into 

its upper U and lower L components (such that LU = /I) and perform two 

triangular solves to calculate the value of the miknowns. This reduces the 

to tal num ber of arithm etic operations required.

Av  = b

1

II A-^h

Iv  — A~^b

V = A-^b

2 X 4

Lv = b => - 3  2 * y = 2

2 - 3  2 z 6

(2.5)

\\'e  use a triangular solve when we have a lower triangu lar m atrix  L 

m ultiplied by a vector v as in Ecjuation 2.5. A triangu lar solve makes it 

easier to calculate the values of the unknowns in the vector v. In this case 

we can simply read the  value of the variable x  given th a t the  equation is 

2x +  y + 2 =  4, thus x  = 2. This value of x  can then  be used to  find 

the value of y  and then  2 . The same m ethod can be used w'ith an u])per 

triangular m atrix  U.

This m ethod of finding the unknown variables in system s of linear 

ecjuations is just one of the connnon uses of Linear Algebra. There are 

many many other uses of Linear Algebra.

2.2 D ense and Sparse M atrices

There are two main types of matrices; Dense Matrices and Sparse Matrices. 

The main reason for distinguishing between dense and sparse matrices
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is how tliey are stored in memory on computer systems and how the linear 

algebra algorithms operate on them. In a dense matrix, all the elements in 

the m atrix  are stored contiguously in memory. We know the exact layout 

of the m atrix in memory such th a t every element can be indexed directly.

A si)arse m atrix  is a m atrix  where the m ajority  of the entries have 

a vahie of zero. Sparse m atrices tend  to  be quite large so storing all 

those zeros in memory (as in dense) is inefficient. Perform ing arithm etic 

(adding, multiplying) with all those zeros is also inefficient. Therefore sparse 

matrices are stored in memory using a comj^act format such as Compressed 

Sparse Row (CSR) [Duff 86, George 81] (see Section 2.3.5) where just the 

non-zero values from the  m atrix  are stored. A dditional da ta  structures 

store information on the layout and structure  of the m atrix. Furthermore, 

sparse m atrix  softw'are is designed with this sparsity in mind and use the 

com pact storage form ats to  reduce the  m unber of arithm etic operations 

required to  perform the algorithm s by only accessing the nou-zero values.

The main storage formats and data-structures used for both dense and 

sj)arse m atrices are outlined in Section 2.3.

2.2.1 D ense Linear A lgebra

Dense Linear Algebra refers to  the class of linear algebra algorithm s and 

software wdiich operate on m atrices stored in dense form at in memory. 

The Basic Linear Algebra Subprogram s (BLAS) define a s tandard  set 

of interfaces for perform ing common linear algebra tasks. The BLAS is 

divided into th ree categories. The level 1 BLAS [Lawson 79] consists of 

scalar and vector routines (dot product, vector-vector nm ltijjly). Level 2 

BLAS [Dongarra 88] consists of routines which deal w ith one m atrix  and 

one or more vectors (matrix-vector nuiltiply). Level 3 BLAS [Dongarra 90] 

consists of more complicated single m atrix routines and routines including 

two or more matrices (m atrix-m atrix multiply). LAPACK (Linear Algebra 

PACKage) [Anderson 90, Anderson 99] builds on the BLAS and provides 

routines for solving system s of linear equations, least squares, eigenvalues 

and routines for factorizing matrices. The BLAS and LAPACK have been
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very successful in standardising the interfaces for linear algebra ro\itines.

The basic BLAS [Lawson 79, Dongarra 88, Dongarra 90] just provides 

a reference im plem entation of the algorithm s and interfaces, they are not 

tuned for efficiency. W ith  dense m atrix  algorithm s, there are a lot of 

techniques such a blocking and paneling which can be used to exploit hard- 

w'are resources, caches and TLBs [Nishtala 04, Gustavson 12]. There are a 

number of efficient serial and parallel dense linear algebra libraries available 

which implement the BLAS interfaces and often include routines from LA- 

PACK and other useful routines. Some of these optimized implementations 

are IBM ESSL [IBM 70], Intel MKL [Intel 93], AMD ACML [AMD 03], AT

LAS [Whaley 98, W haley 01] and GotoBLAS [Goto 02, Goto 08a, Goto 08b]

The BLAS libraries are highly efficient for dense system s or system s 

with a specific dense structure  (such as banded, skyline, etc.) as they can 

exploit the logical, sequential structure of the matrix. As mentioned above, 

dense routines however, are geuerally not appropriate for handling sparse 

m atrices; The high proportion of zeros means th a t they require excessiv'e 

amounts of space to store them in memory, and any dense routine will spend 

a high proportion of its tim e executing unnecessary operations involving 

zero.

2.2.2 Sparse Linear Algebra

A large proportion of linear system s th a t occur in real world applications 

tend to be sparse, in which the vast m ajority  of the entries are zero. For 

example. Figure 2.1 shows the A S  I C  -680k m atrix  from our test suite. A 

square m atrix  w ith 682,862 rows and 3,871,773 non-zero values, with an 

average of 5.7 elements per row/column. W ith an average of 5.67 elements 

per row, this m atrix is 99.999% sparse and would require 3,474 GiB to store 

in mem ory in a full dense form at however only recjuires 47 MiB to store 

in the Compressed Sparse Row form at. The definition of a si)arse m atrix  

also states that the sparsity can be exploited, either to reduce the amount 

of storage required to  represent the m atrix  in mem ory or to  reduce the 

amount of com putation required when operating on the m atrix or both.
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Figure 2.1: Exam ple Sparse M atrix: ASIC_680k is a 682.862 x 682,862 
m atrix with 3,871,773 non-zero vahies meaning just 0.0001% of the elements 
are non-zero ( 5.7 elem ents j)er row on average). Pixels in the image 
represent locations in the m atrix which contain non-zero elements. As the 
size of the m atrix is nmch larger than the dimensions of the image, a single 
pixel indicates that there is at least one non-zero element within a block of 
elements. This m atrix  would recjuire 3.474 GiB to store in a dense format 
however requires just 47M iB to store in the CSR format.

Section 2.3 outlines a num ber of the connnon sparse m atrix  storage 

formats. We will be working mainly with matrices stored in the CSR format 

(Section 2.3.5).

The memory layout of sparse matrices is much less amenable to random 

access than dense matrices. It is not possible to directly index every element 

in the  m atrix  w ithout going through additional m eta structures, it may 

also be necessary to  scan through parts  of the array. It is not possible to 

directly calculate the  location of an element in memory based on its row 

and column index, nor indeed know in advance if that particular element is 

zero or non-zero. This makes it difficult for algorithms to take advantage of 

processor features such as caches. As a result of this, sparse algorithms are 

not as efficient as their dense counterparts as they are highly dependent on
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m em ory  b an d w id th  and latency. T hus  it is very im p o r tan t  to  investigate 

m ethods to  make sparse m atr ix  algorithms more efficient.

2.2.3 Direct M ethods and Iterative M ethods

T here  are two m ain  approaches to  solving sparse systems, direct m ethods 

and  ite ra tive  m ethods. A direct m ethod  [George 81, Bunch 7G, Duff 86, 

Davis 06, Gould 05, S tew art 01] performs calculations based on Gaussian  

e lim ination  to  ca rry  ou t  th e  algorithm  (decomi)osition, etc.).  T h e  direct 

sparse m ethod  skips calculations on zeros as only non-zeros are s tored in 

the sparse s tructure .

An itera tive m ethod  [Saad 03, Householder 52, C onrad  77] takes a dif

ferent approach: it takes an  initial guess  at th e  unknow n variables in 

th e  X vector, th en  uses a num ber of m ath em atica l  techniques (such as 

conjugate gradient [Hestenes 52, Saad 03, S trau b h aa r  08]) to  see how close 

th e  guess was and  genera te  a b e t te r  e s t im a te  of th e  unknow n variables 

in X .  T h e  process is rej)eated iteratively  until  a set of values is found 

which are w ith in  som e pre-defined limits of precision. I te ra t ive  m ethods  

depend primarily on sparse matrix-vector multiplication and  mathem atical 

techniques for refining the  estimates. Sparse m atrix -vecto r multij)lication 

has a lready received a great deal of a t ten t io n  in the  research connnunity  

[Demmel 01, Vuduc 05, Lee 08].

I te ra t ive  m e th o d s  can often solve th e  problem  in less t im e an d  often 

using considerably  less m em ory  th a n  direct m ethods. However, i tera tive 

teclmicjues can som etim es be uns tab le  (values m ay explode to  infinity or 

degrade to  zero). It is also possible th a t  th e  algorithm  m ay not converge 

using an iterative m ethod , depending on th e  matrix.

There  are a num ber of advantages to  using Direct M ethods with sparse 

m atrices. Direct m eth o d s  are g u aran teed  to  comj)lete w ith  a solution in 

an am ount of tim e relative to  th e  num ber of row s/e lem ents  in th e  m atrix  

(provided a solution exists). T hus direct m ethods  are m ore predic table  in 

the ir  runn ing  time, and  can find solutions in some cases where i tera tive 

m e th o d s  fail. F u rtherm ore ,  it is often required to  solve th e  sam e set of
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linear equations with nmltii)le different right hand side arrays b (boundary 

conditions). W ith a direct method, we can decompose the matrix into L  
and U  once, and then just perform the triangular solve for each different 

boundary condition. It is generally possible to jjerform multiple triangular 

solves at the same time in order to improve the cache reuse of the triangular 

matrix.

2.2.4 M athem atical Optim isation of Sparse Matrices

The majority of research into optimising sparse linear algebra algorithms [George 81, 

Bunch 76, Duff 86, Davis 06] has approached the problem from a uiathe- 

matical perspective. We can see this in the work on preconditioners and 
convergence algorithms such as conjugate gradient [Hestenes 52] from the 

iterative methods.

Much of the research on optimising direct methods for sjjarse linear 
algebra focuses on reordering techniqvies [Gould 05, Duff 86]. These re
ordering teclmicjues use Linear Algebra. Graph Theory and Combinatorics 
to produce an ordering to swap tlie rows and columns of the matrix to move 

elements into positions which will make operations on the matrix more 
efficient. There are a mnnber of packages such as Scotch [Chevalier 08],
Metis [Karypis 98, Gupta 97] and CHOLMOD [Chen 08] for working with 
graphs which provide methods specifically for reordering sparse matrices.

There are two main goals with the current techniques. The first is to re
duce the bandwidth of the matrix (Cuthill McKee [Cuthill 69, Cuthill 72]), 

that is, swap rows and colmnns so that the entries in the matrix are closer 

to the diagonal line. The second techniciue is to reorder the rows and 
columns to reduce fill-in (AMD [Amestoy 96, Larimore 98], Nested Dissec

tion [Karypis 98, Gupta 97, Bornstein 99]). Fill-in is where o[)erations on 
the m atrix cause entries which were originally zero, to become non-zero.

Fill-in is a major difficulty for sparse matrix algorithms because they modify 
the structure of the matrix, space for new elements needs to be created 

in the middle of the compact matrix arrays. Inserting a new' entry into a 

sparse data structure can be very expensive. Fill-in is not a problem in
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dense m atrices because there is ah'eady a place in tlie m atrix  for tlie new 

non-zero vahie. An additional benefit of the Nested Dissection technique is 

that it also reduces some of the dependency between rows and colunms in 

the m atrix, which means tha t different parts of the m atrix can be (largely) 

decomposed in isolation.

2.2.5 Software Packages for Sparse Linear Algebra

Sparse linear algebra is an im portan t problem  w ith many practical real- 

w'orld applications. As a result, a great deal of research and engineering 

effort has been devoted to  constructing efficient libraries th a t implem ent 

both direct and iterative methods. Many of these libraries have been iMiilt 

using Fortran [Backus 56] or low-level C [Kernighan 88]. In this section we 

outline some of the m any jjackages and libraries which are available for 

working with sparse matrices.

The Harwell Subroutine Library (HSL) [Gould 04] is a large collection 

of FORTRAN routines which implem ent many different variants of the 

si)arse linear algebra algorithm s. The NIST S])arse Bias [Remington 96] 

provides a basic im plem entation of the BLAS for sparse m atrices. The 

BeBOP [Dennnel 01] group in Berkley have fleveloped a num ber of op ti

mised ])ackages for Sparse Matrix-Vector M ultiplication: OSKI [Vuduc 05] 

and SPARSITY [Im 04]. Tim  Davis has developed a num ber of packages 

which work w ith sparse m atrices CSparse [Davis 06], LDL [Davis 05a], 

UMFPACK [Davis 97, Davis 04] and CHOLMOD [Chen 08] which are all 

part of SuiteSparse [Davis 05b].

The Sparskit [Saad 94] package which we have m entioned before is 

a basic tool-kit for sparse m atrix  com putations. Oblio [Dobrian 04] is 

a s])arse toolkit for solving linear system s. PET Sc [Balay 97] is a tool 

for solving applications modeled by partial differential equations which 

uses sparse m atrix  linear algebra algorithm s. Spooles [Ashcraft 99] is the 

SParse Object O riented Linear Ecjuations Solver. SuperLU [Li 03, Li 05] 

is another package for sparse m atrix  decom position and solving system s 

of sparse linear equations. It includes versions for shared memory and dis-
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trib u ted  m em ory system s. M UM PS [Atnestoy 98] is a M uUifrontal Parallel 

sp arse  d irect Solver w hich runs in para lle l using M P I [Snir 95, Snir 98]. 

TAUCS [Toledo 03] im plem ents a  num ber of sparse m atrix  algorithm s using 

Cilk [Blumofe 95] for m u lti-th read in g . T h e  W atson  S parse M atrix  P ack

age (W’SM P) [G upta 01] is a package from  IBM  for solving large sparse 

linear system s. PA RD ISO  (PARallel D irect SOlver) [Schenk 01] provides a 

num ber of rou tines for sj)arse m atrix  factorisation .

In addition to  th e  m any packages listed above, most of the big m ath em at

ical software system s such as M atlab  [M ATLAB 10], M athem atica [W olfram 03], 

O ctave [Eaton 09], Sage [Ercal 10], M agm a [Bosnia 97] and M aple [M onagan 05] 

also include functionality  for working w ith  sparse m atrices. In m any cases 

th ey  sim ply include (or can be configured to  work w ith) a num ber of th e  

sparse m atrix  packages listed above.

2.3 M atrix Storage Formats

T his section  flescribes som e of th e  com m on d a ta  s tru c tu re s  and  s to rage 

form ats for representing dense and sparse m atrices in m em ory on com puter 

system s.

T h e  m atrices used in sp arse  linear a lgeb ra  are often  ex trem ely  large; 

m atrices w ith tens of thousands or millions of rows and colum ns are common. 

A lthough the order of the  m atrix  m ay be large, typically m ost of the  values 

are zero. To reduce m em ory req u irem en ts  and  processing tim e, m atrices 

are stored  in so-called compressed form ats. Compact m ay be a b e tte r  term  

th an  compressed as the  form at does not use any com pression algorithm  such 

as H uffm an [HufTinan 52] or L ZW  [Ziv 77, Welch 84]. T h e  d a ta  is sim j)ly 

sto red  w ith o u t th e  zero elem ents. T h a t is, only th e  non-zero  values arc 

stored explicitly in memory. A rrays or o ther d a ta  s tru c tu res  w ith additional 

m eta-in form ation  define th e  s tru c tu re  and  layout of th e  m atrix .

C om pact fo rm ats such as CSR are very im p o rtan t for sparse m atrices.

As we m entioned above in Section 2.2.2 the  .4 5 '/ r ’_G80A' m atrix  in F igure 2.1 

w ould requ ire  3,474 G iB  to  s to re  in a dense fo rm at how ever requires ju s t 

47M iB  to  s to re  in th e  CSR fo rm at. A side from  saving space, com pact
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formats such as CSR also help avoid a considerable amount of unnecessary 

arithm etic (adding/m ultiplying by zero) during m atrix algorithms.

There are many different formats in which a sparse m atrix can be stored 

in memory and each option has its advantages and disadvantages. These 

form ats d ictate  the am ount of memory required to store the m atrices and 

may have considerable influence on the run-tim e speed and efficiency of 

the linear algebra algorithms operating on them. In general the algorithms 

need to be altered to varying degrees in order to make more efficient use of 

resoiu'ces when operating on particular storage formats.

However, some storage formats will often be more beneficial for certain 

algorithm s and some for others. For example, the compressed sparse row 

(CSR) format is more appropriate for algorithms which operate on matrices 

by rows, as the format facilitates easy access by rows (but not by colunms). 

A lternatively, a form at which stores the m atrix  in column order (such as

CSC) is more approj)riate for routines which access the m atrix by columns.

^ a h ^
c d e

M =  ,  ^ ,
h  > J

k I
\  m n o )

Example 2.1: Sample Sparse M atrix M

Exam ple 2.1 gives a j:)edagogical example of a sparse 6 x 6  m atrix  M . 

This m atrix  is used to  dem onstrate how a num ber of the  form ats below 

store the m atrices in memory and will be used throughout the document 

to dem onstrate how the transpose algorithms operate. The elements of the 

m atrix are represented by the sequential letters of the alphabet from ‘n ’ to 

‘o’ ordered by row'. We use letters ra ther th an  numbers for m atrix  values 

to  ease legil^ility of the examples and make a clear d istinction betw'een 

the non-zero values of the  m atrix  elements, the  row /cohnnn indexes and 

pointer values. These letters can be thought of as representing the floating

f^obert C rosb ie , T h e  I ’n iv e rs ity  o f D u b lin . T r in ity  College 19



Cliapter 2. Background

point values in the matrix. The m atrix has (» =  (i) rows, (?/; =  6) columns 

and is sparse with {nnz  =  15) non-zero elements. There are also 21 zeros. 

In all our examples we use zero-based indexing as in the  C program m ing 

language. Thus the  row indexes of an r; x n m atrix  run from 0 -> (?? -  1) 

inclusive.

2.3.1 Two Dim ensional Dense Format

The two-dimensional array is a connnon format for storing dense matrices. 

All the  values in th e  m atrix  are stored together in memory in a two 

dimensional array. Listing 2.1 shows an example of our dense 6 x 6  m atrix 

M  from Example 2.1 being statically allocated as a two dimensional array

1
/

■ \ [ 6 ] 16 ]  =  { { a . 0 . 0 . 0 . l>. 0 }■
2 { ' ■ il . 0 . 0 , 0 , • }.
3 { 0 , f , K • 0 . 0 . 0 }.
4 { l‘ . 0 . 0 , i , j . 0 } .
5 { 0 , 0 , 0. 0 , k , 1 } .
6 { 0 . in. 0 , 0 , 11. (. } } :

V J
Listing 2.1: Two Dimensional Dense Examjjle

The two dimensional format is very simple; elements are easy to access 

directly  as m atrix  elem ent a,j can be found at array position 4̂[?’][j]. In 

this representation, the first index i, specifies the row and the second index 

j ,  specifies the column.

One difficulty with the two dimensional dense array regards the ordering. 

In th e  C program m ing language, two dimensional arrays are stored in a 

row-major ordering as we have shown in Listing 2.1. However in the 

F o r tr a n  program ing language, two dimensional arrays are stored in a 

colum n-m ajor ordering. This can cause confusion between libraries and 

algorithm s w ritten  in the  two languages if this difference is not known. 

However, working between the two languages is straightforw ard once this 

difference is addressed; either restructu re  the ordering of the  m atrix  or 

sw'ap the  column and row indices in the algorithms.
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All issue w ith naively using the default row-m ajor ordering of two 

dimensional arrays in C is that many linear algebra algorithm s are column 

orientated , so accessing the row-m ajor C arrays by colum ns is bad for 

memory locality. This problem can easily be worked around in a number 

of w'ays; restructu re  the  algorithm  to operate by rows (which often can 

be sim ply done by swapping the  inner and outer fo r  loops) or storing 

the m atrix  in a transposed form in the  array such th a t it is stored in a 

colum n-m ajor order. in row'-major is identical in mem ory to  M  in 

column-major. A lternatively a one dimensional dense form at can be used 

with the elements ordered appropriately.

2.3.2 One Dim ensional Dense Format

The one-dim ensional array is another popular form at for storing dense 

m atrices. This uses a single one-dimensional array of size nrou's  x ncols 

to store the whole m atrix contiguously in memory. This format avoids the 

row-major and colunm -niajor issues of the two-dimensional array. W’e can 

choose ourselves whether to  store the m atrix  by rows or by columns.

R ather than  accessing element a, j  as .4[i][j] as in the two dimensional 

array, we calculate the i)osition of the element in the array using arithmetic. 

Thus the  element a,j can be found at position /l[(i * ijrou's) -I- j] if the 

m atrix is stored in a row-major format or .4[; - I -  {j * ncols)] if the m atrix is 

stored in a colum n-m ajor format.

Column-major algorithm implementations seem to be slightly more com

mon. perhaps due to  the prevalence of codes w ritten in Fortran, However, 

thei'e are m any algorithm  im plem entations which are colum n-m ajor and 

there are m any which are row-major. There are also certain  algorithm s 

which by their nature are specifically row or column orientated, thus both 

orientations are im portant for good d a ta  locality.

2.3.3 M orton Ordered Dense Format

A format which is related to the one dimensional array dense format is the 

M orton Ordered Dense Format [Morton 66, Wise 01]. This format avoids
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the problem of having to choose a row-major or cohmm-major ordering by 

storing the elements in the m atrix in a sequence of 2 x 2 hierarchical blocks. 

This ordering means that elements tha t are close to each other horizontally 

and vertically, in adjacent sub-blocks of rows and columns are also stored 

closer to  each other w ithin the  one-dim ensional array. This gives b e tte r  

cache reuse for algorithms which operate on the m atrix  in blocks.

/ / l 1 ^ 2

5 6 

13 14

7 8 

15 16

17 18

25 26

19 20 

27 28

21 22 

29 30

23 24 

31 32

33 34 

41 42

35 36 

43 44

37 38 

45 46

39 40 

47 48

49 50 

57 58

51 52 

59 60

53 54 

61 62

55 56 

63 64

Figure 2.2: M orton Order Z-Curve M atrix

Figure 2.2 shows an 8 x 8  m atrix. At each level of the M orton ordering 

the  m atrix  is bisected horizontally and vertically as shown in Figure 2.2
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2 [ gj io 3 [ 4 [n I  12} 17 I  18 I 5 I  26 19 20 21 28 5 j 6 ] isj^u 7 8 | 15 16 1 2 1 1 22 [ 291 3^

Figure 2.3: M atrix stored in M orton Order

by the  bhie lines first dividing the m atrix  into four, 4 x 4  sub-m atrices, 

which are fm ther divided by the green lines into 2x2  blocks. Each block is 

recursively stored sequentially in memory in order from top-left to top-right 

to  bottom -left to  bottom -right. Thus giving the  Z-Curve  p a th  th a t the 

elements are ordered in, as shown by the red line.

The m atrix is repeated on the right of Figure 2.2 showing the full path of 

the Z-Curve through the matrix. 2x2  blocks which will be stored together 

are highlighted in different colours. Figure 2.3 shows the first 28 elements 

of the array storing the m orton ordered matrix. The 2 x 2  blocks are again 

highlighted by colour.

The advantage of M orton ordering is that the position of each element 

can be calculated by simi)ly interleaving the bits of the binary representation 

of the row and column indices. Take for example element 20 stored at row 

3 (index 2 =  010), colunm 4 (index 3 =  011). Interleaving these index bits 

gives: 001101 =  index 13. Thus element 20 is stored at index 13 in the 

array.

V ariants of the M orton Ordering Form at are used in a num ber of 

techniques for fast m atrix  m ultiplication [Strassen 69, Coppersm ith 90, 

Valsalam 02].

2.3,4 The Compressed Coordinate (COO) Format

The Sparse Coordinate Format (COO) is the basic sparse m atrix  storage 

format. A triplet of information is stored about every non-zero element in 

the matrix: The colunm index of the element, the row index of the element 

and the non-zero value of the element.

Listing 2.2 shows the static allocation of the m atrix M  in COO format. 

Additional whitespace is included to group elements by row for readability. 

The sparse coordinate form at consists of three arrays of size (miz) ,  the
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j'owJndexes[]. the colJndexes[] and the no7}.zeros[], Tliese arrays store 

respectively the row index, cohnnn index and non-zero vahie of the elements 

of the matrix. No zero values are stored in the matrix, the corresponding 

row and colunni index for each non-zero value indicates the location of that 

value in the original matrix M  in Example 2.1.

/
1 i 11< 1 <‘ X < ■ > [ 15 ] =  { 0 . 0 , 1 . 1 , 1 , 2 . 2 , 3 . 3 . 3 , 4 . 4 ,

5 5 5
2 C ( 

1
> 1. i u <1«

4 .  5
X<‘s [ 15 ] =  { 0 . 4 . 0 .  1 , 5 , 1 . 2 . 0 . 3 . 4 , 4 .  5.

3
ni

n o n . /  
n ()

■ r os  
}:

[ 15 ] =  { - , 1', >' > ' 1 , . 1' , K , l i , i , j > k , 1 ,

J
Listing 2.2; Sparse Coordinate Example

The format does not recjuire elements be stored in order, however 
elements would usually be stored in order in a row" or colunm major 
ordering. The coordinate format is not an efficient layout for most sj)arse 
algorithms as it is not possible to determine in advance where the elements 
of a particular row or colunm are located in the matrix, the whole matrix 
structure must be searched to check for the existence of and find tha t 
element. If elements are ordered a binary search w^ould take 0{log{nnz))  

time. Finding an element in an unordered COO matrix would take 0{nnz)  
time.

The sparse coordinate format is sometimes used when initially construct
ing a sparse matrix in memory. Many of the sparse matrix file formats such 

as the MatrixMarket format (Appendix C) store elements in a coordinate 

format. The sparse coordinate format is rarely used for computation. A 

COO matrix is generally converted to another format such as CSC or CSR 
before computation. The Saad In-Place transpose algorithm (Section 3.5) is 

one algorithm that does use this Sparse Coordinate format. Saad internally 

converts to COO in order to perform the in-place cycle-chasing transpose.
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2.3.5 The Compressed Sparse Row (CSR) Format

The Compressed Sparse Row (CSR) Format and its sister format, Com

pressed Sparse Column (CSC) [Duff 86, George 81] are two of the most 

connnon sparse matrix representations which are supported by many of 

the S])arse Linear Algebra packages listed in Section 2.2. For consistency 

we arbitrarily standardize on the Compressed Sparse Row format for the 

transpose algorithms in this document.

Compressed Sparse Row stores the non-zero values of the matrix in one 

contiguous array. Additional arrays are used to store meta-data relating to 

the structure of the matrix; the locations of the start of each row' and the 

colunm index corresponding to each element. The elements are stored in a 

row-major order, as is evirlent by name of the structure. The Compressed 

Sparse Colunm format stores elements in column-major order.

Given that the CSR format stores elements in row order and CSC 
stores elements in column order, they essentially represent the trans])ose 
of the other. The procedure to transjiose a sparse matrix is identical to 
the i)roceclure for converting between CSR and CSC formats. Hence the 
transpose algorithms presented here can also be used to convert l)etween 
row-major and column-major orderings. In fact, the Out-of-Place transpose 
procedure in the Sparskit2 package is called csrcscO .

f
r o w  . 1)1 r-' [ 7  ] 

1 2 .  1 5  } :
=  { 0 . 2 , 5 , 7  . 1 0  .

CO I i 11 (1 X [ 1 5  ] 
1 , 4 , 5  } ;

=  { 0  . 4  , 0  . 1 . 5 , 1 . 2  , 0 .  3 .  4 , 4 .  5 ,

n o l l . z « ‘ l •o^ [ 1 5 ]
ui ,  u , o  } :

V

=  { i i ,  1), (■ , <1,  , I ' ,  K, li , i , j , k , 1 .

y

Listing 2.3: Sparse Compressed Row Example

Listing 2.3 shows the static allocation of a sparse matrix in CSR format. 

\M ntespace is added for readability to grou}) elements and pointers by 

rows. The format is very similar to the Comj^ressed Coordinate format 

(Section 2.3.4). The colJndexes[] and non.zeros[] arrays are identical in 

both formats.
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The rou'Jndex  is not stored directly in the CSR format as in the COO 

format, hi CSR the location of the start of each row in the rou'.pirs[] array 

is stored as an index into the two non.zeros[]  and colJndexes[]  arrays. 

The row.ptrs[] array is size {nrows  +  1) ra ther than  nrou's because it 

requires an extra entry in order to indicate the end of the last row.

non_zeros  = a b c d e f  g h i j  k I 7J o
coLi ndexes  =  0 4  0 1 5  1 2 0 3 4 4 5  1 4 5

row_ptrs  =  0|, 2j 5̂  7.̂  10  ̂ 12̂  15

Exam ple 2.2: M atrix M  in CSR representation

Exam ple (2.2) shows the m atrix  M  in CSR, this tim e using the repre

sentation w’hich we will use for describing the transpose algorithms in the 

rem ainder of this docum ent. In the exam ple the subscript values in the 

rou'.ptrs[] array give the  row num ber. These subscript values are shown 

only for the sake of clarity.

The CSR form at is typically used when we wish to  access the  m atrix  

by rows, which is connnon in certain m atrix  operations. In order to access 

row 3. say, we lookup the jjosition of that row in the r(m'.ptrs[] array. W’e 

then know th a t row 3 lies between rou ’_/;/7'.‘i[3] and row-ptrs[i  +  1] (i.e. 

locations 7 through 9). We can then read th a t row 3 has the values 

with column indexes (0 ,3 ,4 ) respectively.

2.3.6 Block Compressed Row Storage (BCRS) For
mat

Some types of linear system s of equations result in sparse m atrices which 

are comprised of numerous small dense blocks of values in a regular pattern  

where all the blocks are the same size. The discretization of some partial 

differential equations which have several degrees of freedom often result in 

such m atrices as do some m atrices arising from Finite  Element Analysis 

(FEA). Figure 2.4 shows a m atrix where all the non-zero elements occur in
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small 2 x 2  blocks, thus the nimiber or rows/cohmms per block, ni, = 2. In 

other m atrices, blocks may occur with different values of Jih-

Figure 2.4: The Block Compressed Row Storage (BCRS) format

The Block Compressed Row Storage (BCRS) format is a modification of 

the Compressed Row Storage format where all the values of each block are 

stored contiguously together in the non^zeros[] array. The co l JTi dexe s [ ]  

array then just holds the colunm index of the top left element in the block. 

The roiv.ptrs[] array thus becomes an array of pointers to  blocks. The 

BCRS format has slightly lower memory usage than CRS. The 7wn-zeros[] 

array is the same length. However the length of the coLit>de.res[] becomes 

^  and the length of the block.ptrs[] array becomes ^  +  1 where Hh is the 

num ber of row s/cohnnns per block. For a m atrix  with this s tructu re  it is 

implied th a t Hf, is a factor of both 7? and r?;.

The benefit of the  Block Com pressed Row Storage form at is th a t al

gorithm s can exploit the blocked form at in order to  gain improved cache 

performance. Such algorithm s would of course need to have been w ritten 

to support m atrices stored in the BCRS form at and operate on blocks of 

size V ariants of the  BCRS form at supports blocks of variable size in 

the m atrix.

2.3.7 Compressed Diagonal Storage (CDS) Format

If a sparse m atrix is Banded, in that all the non-zero elements are centered 

along the  diagonal and subdiagonals then  we can use the Compressed 

Diagonal Storage (CDS) Format. The diagonal is the line of matrices from
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th e  to p  left of th e  m a trix  to  th e  b o tto m  right w here th e  row and  cohnnn 

inchces are th e  sam e, i =  j ,  show n in red  in F igu re  2.5. A subdiagonal  

is a hue of elem ents th a t  ru n s parallel to  th e  diagonal. T h e  C om pressed 

D iagonal S to rage schem e sto res th e  d iagonal in an  a rray  of size n. Each 

su bd iagonal is s to red  in an  ad d itio n a l a rray  of size n. T hus, if all th e  

non-zero elem ents of a m a trix  were located  in th e  d iagonal and  th e  two 

subdiagonals e ither side of th e  diagonal th en  we could store th e  m atrix  in 

th ree  arrays of size n  corres])onding to  d — 1, d and  d +  1.

2 4

3 1 4 

5 3 7

6 2 4 

I 3 7 

3 5

F igure 2.5: C om pressed D iagonal S torage (CDS) Form at

Figm 'e 2.5 shows an  exam j)le of a b an d ed  m atrix , all th e  non-zero 

elem ents are along th e  d iagonal and  th e  lines beside th e  d iagonal. T h u s 

we can  s to re  all th e  non-zero  e lem ents in th ree  a rray s of size n. T h e  

Com pressed D iagonal S torage form at m ay include a num ber of add itional 

zei’o elem ents w hich occur in tlie  d iagonal and  subd iagonals . However 

ad d itio n a l a rray s  of m eta -in fo rm atio n  are not requ ired  to  identify  th e  

location of elem ents, m eaning CDS often requires less m em ory th an  o ther 

sparse form ats. Aside from lower m em ory usage th an  dense, the  benefit of 

th e  CDS form at over o th er sparse form ats is th a t  we know th e  location in 

m em ory of every elem ent and can exploit th is in our algorithm s to  imi)rove 

cache perform ance.

2.3.8 The Recursive Sparse Blocks (RSB) Format

T he Recursive Sparse Blocks (RSB) [M art one 10a, M art one 10b, M art one 11] 

Form at is a cache friendly form at for sparse BLAS operations. RSB parti-

d - l : 4 4 7 4 7

d: 2 1 3 2 3 5

d+l : 3 5 6 1 3
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tions the sparse m atrix into cjuadrants using a quad-tree [Finkel 74, Wise 01] 

structure. A ([uad-tree is a tree data  structure wliere each internal node has 

exactly four chikh'en. Figure 2.6 shows where m atrix  (juadrants would be 

stored in a 1-level (juad-tree. In the RBS format the M atrix is recursively 

divided into cjuadrants and the sparse sub-m atrix blocks are stored in the 

leaves of the tree in standard  COO or CSR format.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 5! 52 53 54 55 56

57 58 59 60 61 62 63 64

4

9 10 11 12

17 IK 19 20

25 26 27 2K

QuadTree
Root

^ /  \

6 7 K

13 14 15 16

21 22 23 24

29 30 31 32

33 34 35 36

4! 42 43 44

49 50 51 52

57 5X 59 60

Figure 2.6: Rx'cursive Sj)arse Blocks QuadTree

37 3K 39 40

45 46 47 4X

53 54 55 56

61 62 63 M

The procedure to  convert to  the Recm'sive Sparse Blocks form at is 

expensive. The form at is intended to imj^rove the i)erformance of Sparse 

Matrix-Vector M ultiplication S p M V  which is used repeatedly during itera

tive solvers, meaning tha t the cost of the conversion may be recouped over 

m ultiple nmlti])lications.

2.4 M em ory Hierarchy and Cache Perfor

mance

Over the  past few decades com puter processor speeds have increased 

rapidly year on year closely following those increases predicted by Moore’s 

Law [Moore 65, Schaller 97]. Processors today are orders of m agnitude
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m ore powerful than  those of a few' decades ago. U nfortunately memory 

bandwidth and memory latency (how long it takes to bring data  from main 

memory into the processor) have not been increasing at the same rate and 

have lagged behind. This has led to  wdiat is referred to  as the  Memory  

Wall [Wulf 95, McKee 04] or Memory Gap [Wilkes 01, Fernandes 02] — 

the gap in performance betw'een processors and memory.

W hen development of numerical codes was becoming more common on 

early com puter system s in the ’50s and ’60s, it only took a few processor 

cycles to bring d a ta  from m ain DRAM memory into the  processor to  

perform calculations. Due to the fact that processor speeds have increased 

a t a nnich higher ra te  th an  mem ory speeds, todays com puter system s 

can take hundreds of processor cycles to  fetch d a ta  from DRAM memory. 

Modern computer systems come with numerous levels of caches, prefetchers 

and other components to  offset this gap in the speed of the processor and 

memory.

Processor Core

Main Memory

Registers

I’age Table

1.1 Cache

TI.B

L2 Cache

L3 Cache

Figure 2.7: Memory Hierarchy

In order to  ])roduce efficient com puter program s it is necessary to  

understand  how  ̂ these various com ponents w'ork, how they  influence how 

programs operate and more importantly, how to exploit them [Goedecker 01, 

Drepper 07].

The memory hierarchy as shown in Figure 2.7 is im portant to understand
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for our worlv on the In-Place Sparse M atrix Transpose. Caches are a very 

sini[)le mechanism to conceal the gap in memory speeds. Caches are small 

am ounts of fast memory which are close to the processor core. W hen the 

processor re(|uests da ta  from main DRAM memory, th a t d a ta  is brought 

into the processor. In fact, a whole line of da ta  (this is often 64 bytes: 16 

integers or eight doubles) is read in at once, incorporating the  mem ory 

location recjuested and the  da ta  beside it in memory. This line of d a ta  

is then  stored in the  cache. T he theory is th a t  if a piece of code had 

instructed  the processor to  load a particu lar piece of da ta  (x), then  it is 

probably likely to either (a) attem pt to  load tha t piece of data  again soon 

{Temporal Locality) or (b) load another piece of d a ta  th a t is near x  in 

memory {Spatial Locality).

Table 2.1: Stoker: Intel Xeon E7-4820 Cache Details

C ach e Size A s s o c ia tiv ity E n tr ie s
LI 32K 8-wav 64 bvte lines
L2 256K 8-wav 64 bvte lines
L3 18M 24-way 64 byte lines

T he “liue" of d a ta  will rem ain in the  cache until it is replaced w ith 

another line of data  from main memory. Caches have a replacement policy 

which decides when to  replace hues of cached data . Addresses in m ain 

mem ory are mapj^ed to  locations in the cache w ith a certain  level of 

associativity. In an 8-way cache, when a new da ta  line is read in, it replaces 

the oldest d a ta  line in the cache. Table 2.1 gives details of the  sizes and 

associativity of the caches in our test system.

Table 2.2 gives details of the latency of cache misses in nanoseconds and 

I)rocessor cycles, at the  different levels of processor cache. The latencies 

were determined using the Calibrator [Manegold , Yotov 05, Boncz 08] tool 

for Calibrating Cache Memory and TLB.

As we can see from Figure 2.7 and Tables 2.1 and 2.2 modern computers 

system s often now come w ith three levels of cache, L I, L2, and L3. The 

LI cache is small (32K on Stoker, the system  in Table 2.1) and is “close” 

to the processor, meaning tha t d a ta  from the LI cache can be loaded into
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Table 2.2: Stoker: Intel Xeon E7-4820 Cache Miss Latency from Calibrator 
tool

L evel M iss -L a te n c y L a te n c y  C ycles
LI 0.43 ns 1 cv
L2 5.26 ns 10 cy
L3 67.40 ns 134 cy

the processor in just a few cycles (one cycle according to Calibrator). The 

L2 cache is larger (256K on stoker) and slightly further away, taking a 

little longer to  load d a ta  into the i>rocessor (ten cycles). The L3 cache is 

a lot larger (18M on stoker) and further away (134 cycles), though still 

nearer than main memory. The L3 cache is often shared between cores in a 

m ulti-core processor.

W hen the processor requests a piece of da ta  that is in one of the caches 

it can load it relatively quickly depending on which level of cache it is in. 

If the d a ta  is not in the cache there is a cache miss and the data  must be 

retrieved from a low’er level cache, or main memory. This causes a stall in 

the processor as it waits for the data to become available, slowing down the 

program . Thus, cache hits are good and cache misses shoukl be avoided 

where possible.

Another component is the Translation Lookaside Bujfer (TLB). W hen 

a computer program is compiled, it hard codes the addresses in memory of 

various components of the program, the code, variables, statically allocated 

arrays, etc. These static hard coded addresses are known as virtual addresses. 

\ \ 'h e n  the  program  runs, the  processor creates a m apping between these 

v irtual addresses and real addresses in mem ory th a t have been allocated 

to  th e  program . This m apping is recorded in the  page table which is 

stored in main memory. As main m em ory is slow, the jirocessor uses a 

TLB, which is essentially a cache for the  page table. If the  processor 

a ttem p ts  to  look up a v irtual address m apping in the TLB th a t is not 

cached, there is a TLB miss and the  processor stalls (just like a cache 

miss) w'hile waiting for the  m apping to  be retrieved from the  page table 

in m ain memory. Thus TLB misses also influence the perform ance of
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program s and algorithm s. T here has been considerable research in oi)timized 

m atrix  software which a ttem p ts  to  im prove perform ance by reducing TLB 

m isses [Goto 02, G oto  08b, Siniecek 09]

U nderstanding  how the  Tem poral and Spatial Locality  of the  caches and 

T L B  o p era te s  aids us in developing a lgo rithm s w'hich can  be m ore cache 

efficient and  can therefore perform  b e tte r . U sing H ardw are  C oun ters  (see 

Section 5.9.1) we can get ac tu a l num bers of cache h its  an d  m isses, along 

w ith  num erous o th er m etrics, which allows us to  ana lyse th e  perform ance 

of our app lica tions and  algorithm s.

2.5 Com plexity Analysis of A lgorithm s

\M ien  discussing an d  com paring  a lgo rithm s it is very  beneficial to  use 

com plex ity  analysis [Bruijn 70, Aho 74, Lewis 81, G reene 81, Sipser 96, 

A rora 09]. T h e  A sy m p to tic  N o ta tio n  gives a general classification of the  

perform ance in (tim e/space) of an algorithm  sim ply in term s of the  size of 

its inpu t (x).

In our discussion on algorithm s we talk  al)0 Ut the  m em ory usage (s])ace) 

and  tim e  com plexity  of th e  different a lgorithm s. W’e do th is  becavise 

th e  m em ory  usage and  execu tion  tim e of th e  a lg o rith m s are p articu la rly  

dependent on the  dim ensions of th e  m atrix , and in most cases increase and 

decrease dej^enfling on the  relative dim ensions of th e  m atrix . T he nm nber 

of rows (/?), the  nm nber of colum ns (??)) and th e  num ber of non-zeros (nnz)  

in th e  m a trix  all influence th e  perform ance of th e  different algorithm s.

In com plexity theory  we talk  about the average or worst case asymptotic  

com plexity  of th e  a lgo rithm . T h is  m eans th a t  for an  a lg o rith m  w ith  a 

p articu la r inpu t size (,r) we om it all the  various o ther factors involved and 

ju st ta lk  abou t how th e  space (m em ory) or execution tim e of th a t algorithm  

grows p ro p o rtio n a lly  to  som e function  of th e  in p u t size (x) as x  increases 

to  infinity. B ecause, as th e  in p u t size grows larger and  larger th e  size of 

X is th e  p rim ary  fac to r th a t  infliiences th e  p erfo rm ance of th e  a lgorithm . 

It is th en  j)ossible to  discuss th e  worst case and  average case jjerform ance 

depending  on th e  in p u t x.
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Take a function f ( x )  = 7x^+ 4x+3 . As the size of tl\e input (,r) increases 

to  infinity tlie term  becomes the most dom inant term  in tlie equation. 

The coefficient, 7 and the other term s. 4x +  3 have less and less influence 

on the relative size and become redundant. A sym ptotic approxim ation is 

defined where we can s ta te  th a t there  is some coefficient (n) of x'  ̂ such 

th a t a.x^ is always greater th an  or equal to  f { x )  =  7x'^ +  4x +  3. In this 

example, a coefficient of a =  14 would m ean th a t  1 4 . is always greater 

th an  or ecjual to  7x^ +  4.r +  3 for all positive inputs of x >  1. T hus we 

can say th a t / ( x )  is asym ptotically proportional to  x^.

There are a num ber of notations which we use to  define complexity 

bounds on the algorithms. Depending on what we know about a particular 

function /(x ) ,  we may say that the function has a best/average/w orst case 

asym ptotic complexity of; 0{x^) ,  Q(x^), 0 (x^) or ~(7x^).

2.5.1 0{x)  — Big-O: Upper Bound

Big-O N otation (O) [Bachmann 23, Landau 24] is a very useful approxi

m ation th a t gives an upper bomid on the  com])lexity of an algorithm . It 

declares th a t an algorithm  will never perform worse than  this complexity.

We m ight say th a t a particu lar sorting algorithm  has a complexity of 

C9(x^). This m eans th a t it will take no longer th an  tim e proportional to  

x^. However Big-O does not define a lower bound on the  com plexity of 

the algorithm. The algorithm  may complete in 0 { x  . log{x)) or even 0 { x )  

time, depending on the input. Big-O just gives an upper bound. Big-O is 

also not a tight bound, it is also true to  say tha t this x^ sorting algorithm 

is 0{x^)  or even 0 ( x '° ‘’) as it will never perform worse than  these bounds. 

In practice Big-O bounds are given as tight as possible (as tight as they 

can be proved).

2.5.2 i}{x) — Big Omega: Lower Bound

K nuth popularized the Big-Omega N otation (12) [Knuth 76, K nuth 98] 

which provides a lower bound on an algorithm. It states th a t as an algorithm 

grows proportional to  x it will always recjuire at least th is am ount of
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time/space proportional to x, never less, does not put an upj)er bound 

on the c'omplexity. Taking the previous sorting algorithm that  was 0{x^)  

in the worst case. It may also be said tha t  this same sorting algorithm 

is Q { x . lo(j{x)) in all cases because it always i)erforms at least x . l og{x )  

comparisons. Thus with O  and Q w'e can give upper and low'er bounds to 

an algorithm.

2.5.3 0(x) —  Big Theta: Double Bound

Big-Theta Notation (0 )  also popularized by Knuth [Knuth 76, Knuth 98] 

combines O  and f] to give both an upper and lower bound to the complexity 

of an algorithm. It states tha t  a particular algorithm will always perform 

(operations/tim e/space) proportional to  another simpler function, g{x).  

Thus if we say an algorithm is (-)(x. it implies both 0 { x . log{x)) 

and Q { x . log{x)).  The algorithm will always perform proportional to 

x . log{x),  never x  and never x'^.

This is a very tight bound on an algorithm which gives much more 

information about the  algorithm. However it is not always possible to 

give a Big-Theta coni])loxity. Some algorithms will vary in performance 

depending on the content, of the  input, not just the size of the input. A 

.sorting algorithm may be C9(.r) in the best case if the ini)ut is already sorted. 

0 [ x . log{x))  in the average case and may even be 0{x'^)  for particularly 

degenerate inputs. Thus, even though in each case the input size is the 

same, x, the  algorithm takes different lengths of time due to the content 

of the input, so we can’t have a Theta  (0 )  complexity for this particular 

algorithm.

2.5.4 ~(x) —  Tilde: Tighter Double Bound

Big-Theta notation (0 )  above gives a tight upper and lower bound on the 

asymj^totic complexity of an algorithm, if we w'ish to compare algorithms 

which have the same asymptotic space/tim e complexity Big-Theta does 

not give enough information. This is because all the other components of 

the fmiction are lost.
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Tilde N otation (~ ) has been promoted by Sedgewick to address this [Sedgewick 11, 

Sedgewick 13]. T ilde N otation gives a tight upper and lower bound like 

Big-Theta, bu t gives an even tighter bound because the coefficients of the 

main component are retained. Thus a function f { x )  =  7x'^ +  4.r +  3 would 

have a T ilde Com plexity of ~ (7x^). Com paring th is to  ano ther function 

g{x)  which is ~(3x^) we can say th a t  g{x) is more efficient. T h e ta  no ta

tion would say th a t both  algorithm s are 0 (x^) which hides this im portant 

distinction.

Summary

The four notations: B ig-0  [O),  Big Om ega (Jl), Big T h e ta  (0 )  and 

Tilde (~ ) are used throughout this document where appropriate. In general 

Theta Notation (0 ) is used where possible. In cases where algorithms have 

the  sam e T h e ta  com plexity then  T ilde (~ ) com plexity may be used to  

distinguish between them.

W hen discussing the complexity of the M atrix algorithms there are two 

param eters which we use when discussing an n  x n m atrix with 7}riz non-zero 

elements. is used when discussing algorithms which depend on the

M unber of A^on-2eros {ruiz) in the  m atrix . 0 (n )  is u.sed when discussing 

algorithm s which depend on the  A^unber of Rows {n). In the text nrow s  

is often used for clarity.
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Chapter

Matrix Transpose

The m atrix transpose operation is im portant in many areas such as Com pu

tational Chemistry [Rogers 03, Lewars 03, Sanders 08], Fast Fourier Trans

forms (F F T ) [Cooley 65, Frigo 98, Lippert 98, A1 N a’Mneh 05, Frigo 05], 

signal processing [Claasen 79, Padgett 09, El-Hadedy 10, Jie 10, Ravankar 11] 

and image processing [Portnoff 99, B aum stark 03, N a’m neh 06]

In the  previous chapter we gave a general background on Linear Al

gebra and Dense and Si^arse M atrices. In th is chapter we give a detailed 

discussion on the  M atrix  Transpose operation itself, outlin ing th e  exist

ing algorithm s and research on th is linear algebra oj)eration. Section 3.2 

gives an overview of the extensive research on the  topic of Dense M atrix  

Transpose. Section 3.3 gives an overview of the Sparse M atrix  Transpose. 

Particu lar focus is given to  the two existing Sparse Transpose algorithm s. 

T he O ut-of-Place algorithm  is discussed in Section 3.4 and the  Saad In- 

Place algorithm  [Saad 94] in Section 3.5. Section 3.6 gives an overview of 

om' experim ental settip and explains our analysis methodology. Finally 

in Section 3.7 we evaluate the  perform ance of the two existing Sparse 

algorithm s in term s of memory usage and execution time.

3.1 The M atrix Transpose Operation

T he M atrix  Transpose [Cayley 59, Golub 96] is one of the  basic linear 

algebra operations. The transpose of a m atrix  is dehned as follows:

\ [T — \ t

T h a t is, the  row and cohnnn indexes are exchanged. T he elem ent at 

row z, cohnnn ] in the transpose M ’ is the element at row j. cohmm i in M.  

Given a m atrix  M  (Exam ple 3.1(a)), the transpose (Exam ple 3.1(b))
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of tha t m atrix can be constructed by swapping the elements of all colunms 

in the m atrix with the elements in the corresponding rows (and vice versa). 

The procedure can be seen in Example 3.1 where column 1 is swapped with 

row 1 and row' 4 is swapped with column 4, etc.

 ̂ a b \ / a  c h
c <1 e <1 f ni

M  = /  g
l> I J i

k / b j k n
\  7 t i  n « / \  e I <)

(a) (b)

Example 3.1: Sample M atrices M  and its Transpose A F

Alternatively we may describe the transj)ose as flipping the elements in 

the m atrix  across the top left to bottom  right diagonal.

Repeating the transpose operation on the transpose of a m atrix results 

in the original m atrix:

(.4^)^ =  A

A Symmetric M atrix is a m atrix where the transpose of a m atrix is identical 

to  the original m atrix.

Symmetric:  A =  A^

T he transpose operation regularly occurs in linear algebra ecjuations 

where the  transpose of a m atrix  or vector is required for some calculation.

The original reference BLAS implementation does not actually include a 

procedure to perform the transpose operation. Logically there is no reason 

to  need one, the jjrocedures can simply access the m atrix  in a transposed 

order by swapping the row and colum n indexes. As such the  procedures 

take argum ents which tell the  routine wdiether the  m atrix  is stored in 

row-m ajor or colum n-m ajor ordering (see Section 2.3), the length of this
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major dimension, and whether the m atrix should l^e accessed in transposed 

form.

Such an approach is acceptable from a m athem atical and theoretical 

perspective however as we saw in Section 2.4, memory access patterns can 

have a huge influence on how well an algorithm re-uses d a ta  in the caches and 

thus the performance of the algorithms. If a m atrix is going to be accessed 

many tim es by a particu lar ordering then  there  could be a significant 

perform ance benefit from transposing the  m atrix  so th a t  it is stored in 

th a t ordering. It is for th is reason th a t m any optim ized linear algebra 

and m athem atical libraries which include im plem entations of the BLAS 

also include ex tra  optimized transpose procedures. For example, the Intel 

M ath Kernel L ibrary (MKL) [Intel 93] comes v/ith three dense transpose 

routines: m kl_im atcopy() for in-place transpose, mkl_omatcopy() for out- 

of-place transj)ose and mkl_omatcopy2() for out-of-place transpose w ith 

double-stride.

3.2 D ense M atrix Transpose

This section gives an overview of some of the extensive research into Dense 

M atrix Transpose. Although somewhat different to the problem of sparse 

m atrix  transpose, the  work listed here dem onstrates the im j)ortance of 

efficient m atrix  transpose algorithms, be they for dense or sparse matrices.

The Out-of-place transpose of a m atrix stored in a Dense format (Sec

tion 2.3) is straightforw ard. Simply ite rate  th rough the  m atrix  by rows 

(or colunm s depending on the m ajor ordering) and copy each element in 

th a t row to the location of the  corresi^onding column in memory. The 

copying can be j)erformed by blocks in order to improve the efficiency of the 

transpose [Lam 91, Navarro 96, Gustavson 98, Kagstrom  06, Ehnroth 04, 

Gustavson 12].
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A L G O R IT H M  3.1 : Dense Square Transpose
for ( 0  < i <  N  ) d o

for ( i + 1 < j  <  iV ) do 
i mp  ^  A[i ]\ j ]- ,
A[ i ] [ j ]  <r- A[j][i ]- ,
.4 [j][i] •(- tmp;

end
end

3.2.1 In-Place  D ense M atrix Transpose

In  m any  s itu a tio n s  we have a very large dense m a trix  s to red  in m em ory

(or in ex ternal sto rage) and there is insufficient add itional m em ory to  hold

a full copy of th e  m a trix . T h e  m a tr ix  th en  needs to  be  tran sp o sed  in

p lace  using as litt le  ad d itio n a l m em ory  as possible. T h e  p rob lem  of in-

place transpose of a square or rectangular m atrix  has received considerable

a tte n tio n . T h e  re la ted  p rob lem  of general in -place p e rm u ta tio n  has also

received considerab le  a tte n tio n  [D urstenfeld 64, F loyd 72, D uijvestijn  72,

F raser 76, M elville 79, Feijen 87, B aker 92, Fich 95, Choi 95. Keller 02].

T h e  In-P lace transj)ose of a square m atrix  sto red  in a Dense form at is

logically stra igh tfo rw ard , sim ply ite ra te  th rough  th e  u pper trian g u la r p art

of each row and swap th e  elem ent a t each location .4[?][j] w ith the  element

in th e  o p p o site  co lunm  /l[j][?] by sw apping  th e  row and  colum n indexes.

A lgorithm  3.1 shows th e  basic in-place transpose  of a dense square m atrix .

A lth o u g h  th e  a lg o rith m  ite ra te s  sequen tia lly  th ro u g h  th e  rows of th e

m a trix  w here th e  rows are ad jacen t, th e  colum n access are not sequentia l

and  are d ispersed  th ro u g h o u t th e  m atrix  a rray s  causing th e  algo rithm  to

access m em ory a t s trid es  of size n.  T h is  can  cause considerable problem s

w ith  cache perform ance [G atlin  99].
C aclie perfo rm ance  can be  im proved by tran sp o sin g  th e  dense sq u are

m atrix  in blocks. F igure 3.1 shows a sim ple exam ple of th e  in-place block

tran sp o se  of a dense m a trix . T h e  yellow blocks along th e  d iagonal are

tran sp o sed  in place. T h e  benefit of th e  block tran sp o se  can be seen w hen

tran sp o sin g  th e  blue and  green blocks. Take th e  green blocks for exam ple.

\M ien  read in g  th e  first block, 51 an d  52 w ith  be  ad jacen t in m em ory, as
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1 2 3 4 5 6 7 8 1 9 17 25 33 41 49 57

9 10 / 12 13 14 15 16 2 10 18 26 34 42 50 58

17 X 19 20 21 22 23 24 3 11 19 27 35 43 51 59

25 26 27 28 29 30 32 4 12 20 28 36 44 52 60

.■̂3 34 35 36 37 39 40 5 13 21 29 37 45 53 61

41 42 43 44 46 47 48 6 14 22 30 38 46 54 62

49 50 51 53 54 55 56 7 15 23 31 39 47 55 63

57 58 59 60 61 62 63 64 8 16 24 32 40 48 56 64

Matrix M Transposed Matrix M^

Figure 3.1: Block Transpose of Dense M atrix

will 59 and 60, so they should be read in together in a single cache line. 

The advantage with the block transpose is that in the destination block 23 

and 24, and 31 and 32 will also be adjacent in memory, thus improving on 

the cache efficiency.

C hatterjee  and Sen investigate the perform ance of six different algo

rithms for in-place transj)ose [Chatterjee 00]. They comj)are (1) the basic 

row major implementation (similar to Algorithm: 3.1) with (2) an in-place 

transpose designed to be efficient in term s of the basic I /O  memory model 

of Aggarwal and V itter [Aggarwal 87, Aggarwal 88]. Two further algo

rithms (3) and (4) are designed to be efficient in terms of their cache I/O  

model [Sen 02, G atlin 99]. i.e. they  transpose the m atrix  in blocks in a 

w’ay tha t tha t is designed to give good cache performance. Algorithm (5) 

is a Cache-Oblivious algorithm  from [Frigo 99]. The six th  algorithm  (6) 

requires tha t the m atrix is stored in their hierarchical m atrix layout which 

uses sub-blocks arranged in a M orton order [Morton 66, \ \ ’ise 01] layout 

(Section 2.3.3).

T he results showed that the m atrix  arranged in their M orton ordered 

layoTit gave the best performance at about six times faster than the standard 

row-ordered transpose. This algorithm  requires the user to  modify the
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layout of their m atrix  which may not be practical. More interesting from 

their results was th a t the two cache optim ized algorithm s are roughly 

four tim es faster th an  the naive algorithm  while still using the standard  

row-major m atrix  layout.

3.2.2 In Place  D ense Rectangular Transpose

The In-place transj)ose of a Dense Rectangular m atrix is more complicated. 

We cannot sim ply exchange elem ents by sw'apping their row and colunm 

indices as with a square dense m atrix, because in a rectangular m atrix the 

rows and colum ns are of different lengths. This m eans th a t a particu lar 

row will be at a different location within the array after the transpose. The 

position th a t  each elem ent needs to  be moved to  is still known. Given a 

m atrix  of size {n x  m)  , element a,j is at A[im +  j] in the original m atrix  

and is moved to position A[i -I- jn]  in the transpose which is the  location 

of a completely different element in another row and colunm. As we move 

elem ents during the  transpose procedure w'e move elem ents in a Cycle- 

Chasing fashion. Elem ents are moved in this cycle-chasing chain until w'e 

eventually reach an element tha t should be moved to the original location 

a,j where the chain started.

C ycle-C hasing In -P lace Transpose

T he in-place cycle-chasing algorithm  was first described by [Berman 58] 

however there is a reference in [Pall 60] to a similar algorithm by Shooman 

from 1957. Using the  tw'o equations for the  location x  of an elem ent in 

the  m atrix  {iM  -I- j )  and the  location x'  of the elem ent in the  transpose 

{i -I- j n ) ,  we can define the perm utation function x'  =  n{x)  such that:

Perniutat ion Function', Transpose o f  x\

x' = 7t ( x )  (3.1)

7r(im -I- J) —>■ i -I- j n

Thus, for any particu lar elem ent, ‘x ’, ŵ e can define a sim ple for-
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nuila [Berman 58, Cate 771)] for the permutation of that element as:

I n,r mod mv  — 1 if x ^  run — 1, , ^
n{x) = { ^  ' (3.2)

mn  — 1 if X =  mn -  1

The next location in the chain is found by multiplying the current 
location x  by n and taking the modulus of {nm — 1) -  the index of the last 

element in the array. Similarly the inverse may be defined as:

I nix' mod mn -  1 if x' 7̂  mn  -  1,
^ . (3.3)

I m n  — 1 II X =  mn — 1

[Berman 58] outlines an algorithm using these relations to transpose a 
rectangular matrix in place. The algorithm requires a flag for each element 
to record if it has been moved yet. Berman suggests using either the low 

order bit of the floating point value of the matrix elements (if exact precision 
is not recjuired) or an extra work array of 0{n  x ;??) bits.

[Windley 59] presents an algorithm by J.C. Gower which removes the 
0{n  X m) memory overhead at the cost of additional computation. Given 
that any pernnitation of a number of elements can be represented by a set 

of mutually exclvisive cycles, meaning that each element will only be moved 
by a single cycle. The algorithm scans through the m atrix and for each 

element at ])osition x it calculates all the addresses in the cycle containing 
X. If any of those addresses is less than x, then that element has already 
been moved and can be skipped. Otherwise the algorithm starts an element 

moving cycle from x. A count of the number of elements moved can be 

used to detect when the algorithm has moved all elements.

[Windley 59] presents another algorithm which also does not require the 
0 { n  X m)  memory overhead of the [Berman 58] algorithm. This algorithm 

reduces the computational overhead of the Gower algorithm at a cost 

of an increase in reads and writes to memory. The algorithm calculates 

addresses in the cycle in reverse and moves elements such that they are 

in the correct order relative to the remaining mimoved elements. CACM 

Algorithm: 302 [Boothroyd 67] gives an iini)lenientation of an in-])lace 

transpose algorithm based on [Windley 59].
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Pall and Seiden  ou tliu e  a m eth od  [Pall 60] using A belian  G roups of 

pre-calculating on paper the cycle leaders  of different sized m atrices before 

proceeding to  transpose tlie m atrix. A Cycle leader is the lowest addressed  

elem en t in each cy c le  and thus w ill be th e  first elem ent of each cycle  

encountered  by th e  algorithm . T h ey  also give a procedure for ca lcu lating  

cycle lengths and dem onstrate that the problem  of calculating cycle leaders 

d ecom p oses in to  on e  sub-prob lem  for every d ivisor d  o f { m n  — 1). T heir  

ex p er im en ts  show' th a t th is m eth od  gives m uch b etter  [)erform ance th an  

th e  algorithm  of Shoom an (w hich appears to  be sim ilar to  [Berman 58]).

Laffin and Brebner present CACM  Algorithm ; 380 [Laflin 70b] which is 

an im provem ent over Algorithm ; 302 [W indley 59, B oothroyd 67]. In th is  

algorithm  they  exploit dual cycles,  that is, the cycles starting at position  x  

and at position  {nrn — 1 — x) .  If x  is the sm allest value of a cycle loop then  

{nm.  — 1 — x) is th e  largest va lue o f a loop. T h e  dual cycles thus can be  

sh ifted  sim u ltan eou sly  to  im prove efficiency. If b oth  values belong to  the  

sam e cy c le  th en  th is  can b e d etec ted  and handled  efficiently. A lgorithm ; 

380 [Lafiin 70b] a lso  uses an ad d ition a l work array of size \^{m  +  /?)! 

record which cycles have already been m oved in order to  improve efficiency.

B renner p resen ts C A C M  A lgorithm ; 467 [Brenner 73] w hich further  

im proves on the previous in-place algorithm s. Brenner proves a number of 

theorem s using num ber theoretica l analysis of th e  properties of the cycles  

in the in-place transpose. Brenner then uses those properties and a m ethod  

sim ilar to that in [Pall 60] to  predict the location  of cycle leaders to  produce 

an algorithm  w'hich im proves on Algorithm ; 380 [Lafiin 70b]. R esults show  

that when using a work array of size (" + "’/ 2 ), A lgorithm ; 467 is faster than  

A lgorithm ; 380 and A lgorithm ; 302. C onsiderably  so wdien (r?m — 1) has 

m any factors (hence m any su b cycles).

C ate  and Twdg g ive an in -d ep th  an alysis o f th e  in -p lace cycle-chasing  

tran sp ose  of non-square m atrices [Cate 77b] and present C A C M  A lg o 

rithm; 513 which im proves on the perform ance of the j^revious algorithm s  

using the num erical analysis properties th ey  outline. Theorem s from previ

ous papers are review'ed and som e new  theorem s presented. T hey give the  

eq u ation s o f th e  p erm u tation  7r()  and its inverse 7r“ ^ ()  as show'n above in
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Ecjuations 3.2 and 3.3. They also show the following;

• The longest cycle is the cycle containing ,r =  1 and has length L.

• The lengths of all other cycles are divisors of L.

•  The num ber of cycles of a particular length can be calculated.

•  Elem ents 0 and mn — 1 are fixed points (not moved under tran spo 

sition), if rn and n are odd then the m idpoint is also a fixed

po in t.

•  Two fornmlas are provided for calculating the number of fixed points 

in a particular transpose perm utation.

• If there  is a cycle at address x  then there  is also a cycle at address 

71 w  —  1 —  X .

•  In some cases the  two cycles a t x  and mj) — I — x  coincide and are 

part of the  sam e cycle. In th is case the  length of the  cycle is even 

and the addresses x  and - x  are separated by half a cycle.

CACM Algorithm: 513 [Cate 77b] uses th is cycle synnnetry  and the 

calculation of fixed points to improve on the performance over the })revious 

algorithms 302 and 380. Results showed that the revised algorithm demon

stra ted  a performance improvement between 25% and 35% over the previ

ous algorithms. Leathers however provides a further analysis [Leathers 79] 

which show's th a t the earlier Algorithm: 467 [Brenner 73] performs better 

than  Algorithm: 513 [Cate 77b] in most cases except where the  m odulus 

{run — 1) of the m atrix  is prime in which case Algorithm: 513 has a slight 

advantage.

Analysis of in-place transpose perm utation [Knuth 71, Fich 95] shows 

that if the inverse of a perm utation is known (as is the case with the in-place 

transpose) then it can be shown th a t the worst case running tim e of the 

perm utation is 0 { n  .log{n)).
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Other Approaches

[Dow 95] describes and evahiates 5 different algorithm s for dense m atrix  

transpose of rectangular matrices with particular focus on algorithms which 

are efficient on vector computers. The first algorithm, VI is the basic out-of- 

place algorithm as in Section 3.2 which copies every element sequentially to 

its correct location in a new array of size m x n  and then copies the elements 

back to  the original array in their new order. As discussed above, this 

out-of-place VI algorithm is generally quite fast however it has a significant 

memory overhead of 0 (m  x n).

Algorithms V2 and V3 modify the shape of the rectangular matrices so 

tha t they are square and then use efficient in-place blocked square transpose 

algorithm s to  transpose the m atrix.

Algorithm V2 is the Pad Transpose, extra space is added to the rows or 

colm nns (whichever is shorter) in order to  make the  m atrix  square. The 

j)ad m ethod can only be used if there is sufficient additional sj)ace a t the 

end of the  array. {rr)ax{n.m)'^ — Dm)  additional mem ory locations are 

recjuired. In row-m ajor form at, if there are more rows tlian cohmms then 

each row needs to  be padded. This is done by iterating in reverse through 

the array and shifting elements of each row towards the end of the array a 

num ber of places equal to the row number times the difference in row and 

colunm lengths. Row zero is not moved, row 1 is moved (1 x |n; — 7?|), row 

2 is moved (2 x \ m — n |) , row 3 is moved (3 x \jii — r;]), etc. The m atrix  

is then  transposed in place using an efficient blocked square transpose 

algorithm [Alltop 75, Ram apriyan 75, B u ttari 07, Bikshandi 06]. After the 

transpose all the  additional cohnnns have become additional rows at the  

end of the m atrix and can be ignored. If there are more columns than  rows 

in row-major format then the above steps can be reversed. First transpose 

the square { m a x { n , m )  x rnax{7i , m) )  m atrix which assumes tha t there are 

new padded rows at the  end, then  left shift all the  elem ents of each row 

towards the front of the  array  leaving the  padding a t the  end. T he pad 

algorithm  is particularly  efficient when m  and n  are of similar m agnitude, 

in this case the memory usage is nmch less than the out-of-place algorithm.
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Tlie pad m ethod does require the adchtional memory to  be directly at the 

end of the array which can make it impractical.

A lgorithm  V3 is the  Cut Transpose, additional rows or columns are 

cut from the  m atrix  to  leave a square m atrix  which can be efficiently 

transposed in place [Alltoj) 75, Ram apriyan 75]. As such, the cut transpose 

is the opposite of the pad transj^ose. In row-major format, if there are more 

rows th an  columns (m >  n), the  additional row's are copied to  the ex tra  

workspace area. T he rem aining [n x n) square m atrix  is transposed in 

place with an efficient blocked algorithm then the square m atrix is “padded” 

with extra columns as above by shifting elements in rows towards the end, 

expanding the m atrix  to  the full (m x n) size. Finally the  extra row's are 

copied back from the worksj)ace to  their appropriate column. If there are 

more columns th an  rows {m < ri) then the  elem ents from the additional 

colunms are copied to workspace and the columns are cut by shifting rows 

towards the top of the array. The square m x m m atrix  is transposed and 

the additional cohmms are copied from the workspace to their appropriate 

rows at the end of the array. The cut method requires {\rii — n| x r;))

additional workspace memory. This additional memory is always less than  

th a t recjuired by the out-of-place algorithm . The m em ory overhead is 

considerably less when m and n are similar in m agnitude and the algorithm 

is also particularly  efficient in th is case. A m ajor advantage of the  cut 

m ethod over the pad m ethod is that the additional worksj^ace memory does 

not need to be at the end of the m atrix.

Algorithms V4 and V5 are rectangular block transjjose algorithms [Eklundh 72, 

Alltop 75, Ram apriyan 75, Van Voorhis 77, Hegland 96] which can be used 

when m and n are com posite (have a divisor d greater th an  1 which is 

not prim e), m  and n can be m ade com posite using the  cut and pad 

techniques if required. Both algorithm s partition  the m atrix  into blocks 

and then  transpose the blocks as a whole using the cycle-chasing m ethod 

above [Berman 58, W indley 59]. These blocks can be efficiently transposed 

in th is way on a vector com puter. A lgorithm  V4 partitions the m ajor 

dimension of the m atrix  such tha t there are ni rows and d colunms of size 

p where dp = n. After the sub-rows are transj)osed in cycles the elements
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are reordered between sulvrows to  their correct j)osition, A lgoritlnii V5 

partitions the m atrix  into blocks of size d x d where dp =  n and dq = m. 

The elements of each block are first transposed in place then the blocks are 

transpos('d as a whole. Diagonal blocks remain in-place.

Finally Dow compares these five algorithms to two implem entations of 

the scalar cycle-chasing algorithms above. CACM Algorithm 4G7 [Bremier 73] 

and NAG FO ICRF from the  Num erical A lgorithm s G roup Fortran  Li

brary [NAG 93]. The results of these experiments show that the five vector 

efficient algorithms outlined are at least an order of m agnitude faster than 

the scalar cycle-chasing algorithms. For the matrices used in these experi

ments on the vector com puter the out-of-place algorithm VI was generally 

th e  fastest w ith the  cut m ethod V3 occasionally out perform ing it. The 

pad V2 and cut V3 algorithms perform well at a similar speed for matrices 

which are close to  square. T he pad algorithm  does not perform  well if a 

large am ount of padding needs to  be added. The blocked algorithm s V4 

and V5 do not j)erform as well as V3 in these vector experiments. Algorithm 

V5 performs better than  V4 as larger am ounts of da ta  are moved together 

with the larger blocks.

Cache Oblivious D ense M atrix Transpose A lgorithm s

In recent years Cache Obhvious Algorithm's [Frigo 99, Tsifakis 04, Bader 07, 

Yzelman 11] have become popular as they can give improved jjerformance 

without having to be tuned for a particular architecture or memory hierar

chy and cache sizes. Cache oblivious algorithm s recursively partition  the 

problem into blocks. At each level of recursion they divide the problem into 

smaller and smaller blocks. After a number of recursions the algorithm will 

have blocks which are small enough to fit in all the different levels of cache. 

Thus the cache oblivious algorithms do not need to be tuned for particular 

architecture or cache sizes. Experim ental analysis [Chatterjee 00, Yotov 07] 

has shown th a t these cache oblivious transpose algorithm s do improve on 

the performance of the naive row or column based algorithms, however they 

still fall short of the performance of tuned cache-aware blocked algorithms.
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O ut-of-C ore D ense M atrix Transpose

The abihty to transpose a m atrix in-place is im portant when the m atrix is 

large and there is insufficient extra storage available to store a full copy of 

the matrix, hi some cases a m atrix may be so large that it does not all fit in 

main memory, in this case the m atrix nmst be transposed out-of-core where 

the m atrix  is stored in external storage (hard disk /  tape) and only small 

parts of the m atrix can be held in memory at any one time. Transposing a 

square m atrix  out-of-core is simpler than  a rectangular m atrix  as row and 

column locations are invariant however, it is more difficult than  transposing 

a square m atrix  in memory. The out-of-core transpose is a com plicated 

problem which has received much attention.

Ekhmdh presents an efRcient out-of-core algorithm [Ekhnidh 72, Eklundh 73] 

for transposing large square matrices of size 2" x 2". The algorithm assumes 

that the entire 2” x 2" is stored in external storage. It requires an additional 

in-memory working area of at least in order to store at least two rows 

of the m atrix  in memory at a tim e. T he algorithm  reads in two pairs of 

rows from the m atrix  at a time, swaps certain elements between the rows 

and writes the rows back to external storage. The algorithm reads different 

I>airs of rows over m ultiple passes continuing to  swap elem ents until all 

elements have been moved to  their correct transposed location. Thus the 

algorithm can transpose an out-of-core m atrix in n passes or fewer. If there 

is additional in-core memory available the algorithm can processes multiple 

(2-') rows at a tim e to  improve efficiency. A sim ilar algorithm  was also 

presented by [Schumann 72, Schumann 73] using sequential access devices 

compared to the direct (random) access devices of [Eklundh 72].

Delcaro outlines a m ethod [Delcaro 74] based on the Eklundh algorithm 

for transposing large square and non-square m atrices in external storage.

The algorithm  requires the row and colunm dim ensions m  and n to  have 

a large num ber of factors. The m atrix  is j^artitioned into blocks based 

on these factors and transposed. Twogood also extends the  Eklundh 

algorithm to the general case [Tw'ogood 76] where 2 '( j >  1) of its rows will 

fit into m ain m em ory and analyses its perform ance for two-dim ensional
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image filtering. Alltoii jn'eseiits a th ree step  algorithm  [Alltop 75] which 

is another extension to  th a t of Ekhm dh to supi:>ort the transpose in-core 

and out-of-core of large square and rectangular matrices by augmenting the 

m atrix such tha t its dimensions have a large connnon divisor d. The m atrix 

is padded in both directions to increase the size of d and the m atrix is then 

partitioned similar to  Delcaro into a square d x d m atrix  of blocks of size 

^  X ^  which are then transposed. The Alltop algorithm requires additional 

storage of {2nm/d) .  Ram apriyan presents a generalization [Ramapriyan 75] 

of E k lundh’s algorithm  which can transpose out-of-core m atrices which 

are not square powers of two and which are also non-square {m x 7 7 ). Van 

Voorhis presents a fu rther generalization [Van Voorhis 77] of the  A lltop 

algorithm which removes the requirement of a factor of two for the m atrix  

dimensions in external storage and also combines the last two steps of the 

three step algorithm.

Ari describes two improvements [Ari 79] to  E khm dh’s algorithm . The 

first reduces the  m niiber of accesses to  external storage at a cost of an 

increase in the  am ount of d a ta  transferred. T he second shows how the  

efficiency of the algorithm can be improved by using a small amomit of extra 

external storage if available. Goldbogen presents PR IM  [Goldbogen 81] 

another in-place out-of-core transpose algorithm  which can transposes an 

n X rn m atrix  in a series of iterative transform ations of the  entire m a

trix. Unlike the  algorithm  of Ekhm dh which perm utes single elem ents, 

Goldbogen also perm utes blocks of elements. Twigg describes an algo

rithm  [Twigg 83] for transposing large matrices stored in external files. The 

algorithm is based on sort-merge using a variant of the balanced tape merge 

algorithm  [Lorin 75] to  transpose the m atrix  by transposing the m atrix  in 

chunks into interm ediate files which are then merged together.

K aushik et al. give a review^ [Kaushik 93] of a num ber of the  out- 

of-core in-place m atrix  transpose algorithm s based on E khm dh’s algo

rithm  [Ekhmdh 72] and propose ano ther variation based on tensor [)rod- 

ucts [Fraser 76, Johnson 92, Johnson 93] which improves efficiency V)y re

ducing the  num ber of disk accesses required by the algorithm . Results 

show th a t the new single radix algorithm  considerably reduces bo th  disk
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I/O  time and com putation time and thus total execution time over a range 

of m atrix  sizes com pared to  th a t of Eklundh. The single radix algorithm  

reads pains of contiguous rows whereas Eklundh reads non-continuous rows 

which results in a greater num ber of disk accesses.

Suh presents an improvement of the out-of-core algorithm [Suh 02] which 

improves performance over previous algorithms by reducing the number of 

I/O  operations and eliminating the index com putation. I /O  is reduced by 

writing the data  onto disk in predefined patterns and balancing the number 

of disk read and write operations. The index com putation time, an expensive 

operation involving two divisions and a m ultiplication, is elim inated by 

partitioning the memory into read and write buffers. Krishnam oorthy also 

presents an algorithm  [Krishnamoorthy 04] which improves perform ance 

of the out-of-core transpose by minimising the num ber of I /O  operations. 

This is done by using the  I /O  characteristics of the system  to  determ ine 

optim al block sizes for read, write and connnunication such th a t the total 

execution tim e is minimised.

Parallel D ense Transpose

The parallel transpose is another variant of the  in-place dense transpose 

which ha.s received a lot of a tten tion , particularly  for parallel apj^lica- 

tions such as F F T  [Cooley 65, Lippert 98, .lie 10, A1 Na'M neh 05] where 

the dense m atrix  is partitioned  and different sections of the  m atrix  are 

distributed across m ultiple processors/nodes.

Choi describes a parallel transpose algorithm  [Choi 95] for use in the 

PUM M A library for the  parallel m ultiplication of transposed m atrices 

which are d istribu ted  across num erous processors. T he algorithm  uses 

non-blocking message passing to transfer m atrix blocks which are arranged 

in a cyclic d a ta  d istribu tion . Hegland introduces a new' parallel tran s

pose split algorithm [Hegland 96, Calvin 96] which can be used for parallel 

m atrix  transpose as part of F F T s on the  Fujitsu V P P  500 vector com

puter. The algorithm  achieves a th ird  of peak perform ance using 32 j)ro- 

cessors. W apperom presents a further improvement to  the split transpose
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method [Wapperoin 06] for three dimensional Fourier Transforms. Data is 

spHt along two dimensions to allow for a higher degree of j)arallelism, the 

algorithm also modifies the all-to-all conmiunication to be performed in 

groups.

Lippert presents a j)arallel transpose algorithm [Lippert 98] targeted at 

SIMD (Single Instruction Multiple Data) systems, in particular those with 

the high speed A PE/Q uadrics interconnect. The algorithm, which is also 

intended for use with Fast Fourier Transforms shows improved performance 

on intercomiected systems with rigid next-neighbour connectivity and lack 

of local addressing. He and Ding investigate the performance [He 02] of 
in-place multi-dimensional array transposition with the vacancy tracking 
algorithm while using OpenMP, MPI and hybrid M PI/OpenMP for commu

nication. On a single node OpeuMP outperforms MPI and across a cluster 
the hybrid M PI/OpenM P outperforms MPI. A1 Xa'Mneh presents an adap
tive matrix-transpose algorithm [A1 Na’Mneh 05] for transposing matrices, 

which is based on all-to-all conununication on synnnetric multiprocessors. 
The algorithm reduced overhead by adaptively choosing a suitable radix 
based on a number of factors. Experimental results show the transpose 
algorithm gives increased performance for six-step One-Dimensional Fast 
Fourier Transforms. Ravankar j)resents another algorithm [Ravankar 11] 
for parallel matrix transpose on a Torus Array Processor which has a time 
complexity of 0{n) .  The algorithm uses the m atrix-m atrix nmltiply-add 

(MMA) operation for transposing the matrix which is carried out in 5n 
time-steps.

3-D im ensional M atrix Transpose

3D matrices occur in many problem domains such as seismic and medical 

imaging. If w'e think of a 2D m atrix as a square then a 3D m atrix can 

be thought of as a cuboid. The 3D M atrix transpose operation changes 

the axis order of the cuboid. It may simply swap tw'o of the axes or it 

may rotate all three axes depending on the requirement of the operation. 

Figure 3.2 shows a three axis rotation from XYZ to YZX. The transpose

52 Space T im e Efficient Sparse M atrix  Transpose



3.3. Si)arse M atrix Transpose

continues to  swap row/column elements according to the axis rotation, thus 

in Figure 3.2 the  element a t location would be moved to  location

(j, A’,i)  and tha t element would be moved to  location etc.

Z

X Y Z  Axis Y Z X  Axis

Figure 3.2: 3D Transpose: R otate XYZ axis to  YZX

W’apperom presents a variation of the split transpose m ethod [VVapperom 06] 

for three dimensional Fourier Transforms. D ata is split along two dimen

sions to allow for a higher tlegree of parallelism, the algorithm also modifies 

the all-to-all connmmication to be i)erformed in groups. El-Moursy presents 

an algorithm  [El-Moursy 08] for parallel transposition  of 3-Dimensional 

m atrices on m ulticore architectures. T he algorithm  ex|)loits the software 

m anaged memory hierarchy of SIMD architectures such as the Cell Broad

band Engine.

3.3 Sparse M atrix Transpose

In the previous section we gave an overview of the considerable research 

into the  problem  of dense m atrix  transpose. In the following sections 

we give an over\iew  of the  research into the problem  of sparse m atrix  

transpose [Pissanetzky 84]. We also give a detailed description of the 

existing out-of-place and in-place transpose algorithms and experimentally 

analyse the  performance of the algorithms.

Sparse m atrix transpose is the procedure of transposing a m atrix which, 

due to  the  high proportion  of zeros in the m atrix  is stored in one of 

the  com pact storage form ats outlined in Section 2.3 such as Com pressed 

Sj^arse Row. The ])rocedure for transposing a m atrix  stored in row-major
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fo rm at is also identical to  th e  p rocedure  for converting  th e  m atrix  to  th e  

co lunm -m ajor C om pressed Sparse C olm nn form at.

W hen a m atrix  is stored in a conijiact form at we do not know the  exact 

loca tion  in m em ory  of every  elem ent in th e  m atrix . T h is  m akes it m ore 

difficult to  p roduce cache efhcient sparse m atrix  algorithm s.

As w ith dense m atrices th ere  are two m ain ways of transposing a sparse 

m a trix . T h e  m ost straightforw ^ard m e th o d  is th e  ou t-of-p lace tech n iq u e  

d escribed  in Section 3.4. T h e  ou t-o f-p lace  m eth o d  crea tes  an  en tire ly  

new' em p ty  m a trix  in m em ory, th en  each elem ent is copied to  its  correct 

transposed  location in th is  new m atrix . T he second m ethod is the  in-place 

tech n iq u e  described  in Section  3.5 w hich reduces th e  m em ory overhead  

of th e  a lgorithm  by tran sp o sin g  th e  m a trix  in place. Section 3.6 gives an  

overview  of our ex p e rim en ta l se tu p  th en  S ection 3.7 show s th e  re su lts  of 

th e  experim ental analysis of these tw o existing  algorithm s.

3.4 Out-of-Place  (OOP) Sparse Transpose

As witli dense m atrices, th e  s tra igh tfo rw ard  m ethod  to  transj)ose a s])arse 

n \a tr ix  is to  copy th e  e lem en ts to  th e ir  tran sp o se d  location  in a second 

sep a ra te  set of m atrix  arrays. T h e  out-of-place sparse transpose  algorithm  

can  be loosely com pared  to  an  ou t-o f-p lace  bucket so rt a lgo rithm . It is 

a sim ple fast a lgo rithm , how ever th e  m em ory  overhead  of th e  a lg o rith m  

is ex trem ely  large as it doub les th e  m em ory  requ ired  for th e  m atrix . For 

th e  largest m a trix  in o u r sam p le  collection th e  O O P  a lg o rith m  requires 

a m em ory  overhead of 4,699 M iB resu ltin g  in a to ta l  m em ory usage of a t 

least 9,398 MiB wdien perform ing  th e  transpose .

T h is  Out-of-Place  m e th o d  ap p ea rs  to  b e  th e  m ost com m only  used 

sparse m atrix  transpose algorithm . V ariations of the  out-of-place algorithm  

described  in Section 3.4.3 a re  im p lem en ted  in num erous packages. For 

exam ple , th e  S p a r s k i t2  [Saad 94] package co n ta in s  tw'o F o rtran  im ple

m en ta tio n s  of th e  sparse  m a trix  tran sp o se . T h e  CSRCSCO su b ro u tin e  for 

converting  from  C SC  to  C SR  fo rm at (w hich is th e  sam e as tran sp o se ) 

im p lem en ts th e  O O P  a lg o rith m  sim ilar to  A lg o rith m  3.2. T h e  B ebop
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Sparse M atrix Converter [Dennnel 05, Vudnc 05] is a library for converting 

sparse m atrices l)etween different storage and file form ats which includes 

an out-of-place transpose routine. The CHOLMOD [Chen 08] package which 

comes as part of Tim  Davis’s SuiteSparse [Davis 05b] collection of sparse 

m atrix  packages, includes a num ber of cho lm od_ transpose() procedures 

which implement the out-of-place algorithm for transposing and perm uting 

different types of m atrix (real, double, complex, integer, pattern , symmetric, 

unsymmetric, etc.). The HSL [Group 63, Gould 04] M athem atical Software 

Library from the Numerical Analysis Group is a closed source, commercial, 

collection of FORTRAN [Backus 56, Backus 57] codes for large scale scien

tific com putation. HSL includes two routines for performing sparse m atrix 

transpose. According to  the  library docum entation, transpose algorithm  

MC380 requires three output arrays to be allocated. A double array of size 

n m ,  integer array of size nnz  and an integer array of size {m -I- 1) - this 

would indicate tha t MC380 uses the out-of-place algorithm.

There are far fewer research publications focused on the topic of sparse 

transpose th an  den.se transpose. One of the first descriptions of the  out- 

of-place sparse m atrix  transpose is from McNamee who j)resents T R SP M X O  
as part of CACM Algorithm: 406 [McNamee 71] which is a collection of 

linear algebra routines for sparse m atrices. Further rem arks [Si})ala 77, 

Gustavson 78a] correct some initial errors. Gustavson presents HALFPERM ( )  

which is a variation on the out-of-})lace transpose which can be used twice in 

order to perform the full sparse m atrix ])ermutation PAQ~^  on the matrix 

A. The algorithm  presented is described as being similar to a distribution 

count sort. Experim ental results using HALFPERM  for perm utation show 

that it performs up to  ten times faster than  TRSPM X.

3.4.1 Parallel Sparse M atrix Transpose

W hen dealing w ith very large linear algebra problem s the  m atrix  can be 

partitioned  across nniltiple d istribu ted  mem ory nodes in order to  solve 

the  problem  in parallel. If a transpose oj)eration is required as p a rt of 

the calculation, such as m atrix-transpose-vector multij)hcation {A^ v), it is
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])ossible to perform  the calculation w ithout transposing by accessing the 

elements through transposed indexing. However it may be more efficient to 

perform the calculation if there was a quick and simple m ethod to transpose 

the distributed matrix. Thus a distributed parallel transpose si)arse matrix 

transpose is an interesting problem

Hendrickson investigates the  problem  of partition ing  sparse unsym- 

m etric and rectangular m atrices to  balance work between nodes and keep 

conum m ication costs low [Hendrickson 98]. Results show th a t multilevel 

partitioning m ethods give the best performance.

Kruskal investigates techniciues for the parallel m anipulation of sparse 

m atrices [Kruskal 89], a num ber of algorithm s are considered including 

the  parallel transpose of sparse m atrices. T he algorithm s are considered 

from the  perspective of a shared mem ory MIMD (M ultiple Instruction 

M ultiple D ata) system . To transpose a m atrix  in row m ajor form at (in 

th is case a variation of the  CSR form at Section 2.3.5). it is converted to 

a canonical form at where the m atrix  is stored in trip le ts sim ilar to  COO 

(Section 2.3.4). The m atrix in canonical format is transposed by swapping 

row and column indexes in each elem ent, the  elem ents are reordered by 

index using a radix sort, the  num bers of elem ents in each row com puted 

and the m atrix  converted back to  row m ajor CSR variant.

Buluc again looks at the  m atrix-transpose-vector m ultiplication prob

lem [Bulu(^ 09]. The Com pressed Sparse Blocks (CSB) storage form at is 

introduced. Storing the sparse m atrix  in the CSB format allows bo th  Ax 

and A^ x to be computed efficiently. This blocked CSB storage format also 

allows the sparse m atrix A to  be efficiently pernnited out-of-place into the 

transpose A^.

Gonzalez introduces a j)arallel out-of-place sparse m atrix transpose algo

rithm  [Gonzalez-Mesa 13] wdiich uses Transactional M emory [Herlihy 93] 

which supports atom ic group load and store instructions thus easing par- 

allelisation and ensuring correctness. Results show'ed th a t the parallel 

algorithm  using transactional memory exhibits improved performance over 

the baseline.
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3.4.2 Sparse M atrix Transpose Unit

S tath is et. al. describe the  Sparse Matrix Transpose Unit [Stathis 04] 

which is a proposed hardware co-processor for vector computers. The unit 

is designed for efficient transposition of sparse matrices which are stored in 

the hierarcliical sparse m atrix  (HiSM) storage form at [Stathis 03a] which 

is similar to  the Recursive Sparse Blocks format (Section 2.3.8). The unit 

has in ternal register m em ory of size s x  s, thus the m atrix  is stored in 

h ierarchical HiSM blocks of size s x s. The perform ance of the  unit was 

evaluated using their D-SAB Sparse M atrix Benchmark Suite [Stathis 03b]. 

Results show th a t the transpose unit exhibits speedups of up to  32 times 

compared to those of the standard  compressed row storage format with an 

average speedup of 17 times.

As we have seen before, it is more efficient to transpose sparse matrices 

stored in hierarchical or blocked form ats. W ith  a hierarchical format and 

specialised hardw are, the  sparse m atrix  transpose unit is highly efficient. 

However such a blocked hierarchical transpose is only useful for m atrices 

already stored in such a format as converting a m atrix stored in a compressed 

sparse colunm or row format to the HiSM form at is expensive.

3.4.3 D escription of Out-of-Place Transpose Algorithm

In th is section we describe the out-of-place sparse m atrix  transpose algo

rithm  and analyse how it operates. Section 3.7 presents results of runtim e 

performance analysis of the  algorithm.

S p a rse  T ra n s p o s e  I n p u t  M a tr ix  M  in  C S R  F o rm a t

We first describe the  structu re  of the sparse m atrix  M  stored in the CSR 

format as shown in D ata Structure 3.1. This structure is the standard input 

to all the sparse m atrix  transpose algorithm s presented in this docum ent. 

The s tru c tu re  contains th ree integers {nro ivs ,ncols .nnz)  which give the 

dim ensions of the  m atrix , one real array {no7}-zeros[]) which contains
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D A T A  S T R U C T U R E  3 .1 : M a trix  M  in  CSR fo rm at: 
T his is th e  h ip u t a n d  O u tp u t  for all tra n sp o se  a lg o rith m s 
Input: M atrix M  in the CSR representation - Containing: 

nrows  -  the num ber of rows in the m atrix  M  
ncols -  the num ber of cohimns in the m atrix M  
n n z  -  the num ber of non-zero vahies in the m atrix M  
row^ptrs[\  - array of row pointers in M  [nrows+1] 
non.zeros[] -  array of element values in M  [nnz] 
colJndexes[] -  array of element column indexes in M  [nnz]

the  values of the m atrix  elements and two integer arrays {row.ptrs[]  and 

coLindexes[])  which define the layout/structure of the matrix. Example 3.2 

shows a representation of the  m atrix  M  stored in CSR form at.

nrow s = 6
n cols = 6

nnz = 15
row  p trs = o„ 2̂ '‘■s 10. 12,

non .zeros = a h c d e I 9 h i J k I m n a
co l in d ex es = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

Exam ple 3.2: M atrix M  in CSR representation

O ut-of-P lace Sparse M atrix Transpose A lgorithm

Algorithm 3.2, gives a basic pseudo-code implementation of the out-of-place 

transpose. The algorithm  takes as input the ’C ’ s tructu re  M  representing 

the CSR m atrix  as outlined in D ata  S tructure  3.1 and will have contents 

similar to that shown in Example 3.2. The output of the OOP algorithm is 

a completely new m atrix structure containing as shown in Example 3.3. 

F irst (lines 4-14) the  new compressed row pointers array  ne^V-ro^v.ptrs[] 

is created  by counting the  num ber of elem ents in each colum n (from the 

c o lum nJndex )  and perform ing a cum ulative sum  on lines 16-18 of those 

counts. The new.roxv-ptrsW array will contain the starting  row indices of 

m atrix  . By definition, a transpose reorders colunms to  rows and hence
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3.4, Out-of-Place (OOP) Sparse Transpose

ALGO RITHM  3.2: O u t-O f-P la ce  sp a rse  m a tr ix  tra n sp o se  
In p u t:  M atrix M  as in D ata S tructure 3.1
O u tp u t;  New m atrix  (the transpose of M )  in the CSR representation - 

Containing:
neu’jn rou ’s - the num ber of rows in the m atrix  [= old.ncols] 
neu 'jico ls  - the num ber of cokmins in the m atrix [= old.nrows] 
new -nnz  - the num ber of non-zero vakies in the m atrix  [= nnz] 
neu'-rou'-ptrs\] - the new array of row pointers in 
neu'jion^zeros[] - the new array of element values in 
new-CoUndexes[] - the new array of element column indexes in

* O u t p u t  a rrays  an> allocattHl a u d  in i t ia l iz ed  t o  zero  (not  s h o w n  for l)r<’v i t y )  * /

* S w a p  row co lu in n  d im e n s io n s  o f  tl ie  t r a n s p o s e  * /

new-Tirows ncols\ 
n ew .n co ls  ■<—  nrow s;

* C o u n l  t h e  nuinl)er  o f  in d e x e s  in eaeli  e o ln in i i  a n d  s t o r e  in n c u ' . r o u  .pf7 s [ \  offset by 2 * /

* Offset by 1 as  row ,r +  1 ■'tarts a f ter  row .r. * /

* Offs('t by  2 t o  si<l«‘ste]> n eed  t o  shift in({ic«'s in rx ir-j'()U - i ) f rs [ ]  at e n d  o f  aij^oritbin.

for ( 0 <  row < nrou's ) do
fo r ( old-rou’-ptrs[row] < k < oldjrou'^ptrs[row -I- 1] ) do  

col old.colJndexes[k\-, 
if  ( {col + 2) <  {neu'-Tirows + 1) ) th e n

neu'-row-ptrs[(col +  2)] •<— neu'-row.ptrs[{col +  2)] -I- 1;
e n d

en d
en d

* C in n u l a l iv e  "Uin o f  m  U' . r<) w. p i r s [ ]  * /

fo r ( 0 <  row < n eu '.n ro u  s ) do  
j neu'.rou'.ptrs[row  -I- 1] ■<— neu'-rou'.ptrs[row  +  1] +  7iew-row-ptrs[row]] 

e n d

* l.dop lliroilgh carli old' rcHV */
fo r ( 0 <  row < nrou's  ) d o

fo r ( old.row-ptrs[row] < k < old-rou'-ptrs[row +  1] ) do
/* C<>p\' ('ach ('Icnirnt to it's (-(n-rcct in n-^rotr position in the traiispoM-d iiiati'i.x */
col ■<— old-CoLindexes[k]-,
pos neu'.rou'.ptrs[{col + 1)]; /* oftsct In- I */
new^non.zeros[pos]  •<— old.nori-zeros[k]; 
new^coLindexes[pos] rou ’;
neu'-rou’4>trs[{col -I- 1)] i -  new-rou'.ptrs[{col + 1)] 1;

e n d
e n d

the nei(,'_rou.'_pfrs[] array is created  by counting the  numl^er of differing 

old cohinni vahies and accum ulating them. 

N o te : W'hile constructing the neiL'-row-ptrs[] array we save the column

Robert Crosbie. The University of Dubhn. Trinity College 59



C hapter 3. M atrix  Transpose

counts a t a jjosition th a t is offset by two from the  cohm m  inriex as can 

be seen by the  {col +  2) array index on hue 11. We tlien access tlie array  

offset ])y one as can be seen by the {col +  1) array index on hues 24 and 27.

G enerally when building the  7'oiV-ptrs[] array we store the  colunm  

counts a t a position offset by one. This is because we are looking for the 

s ta r t positions of the  new rows. Row a; +  1 s ta r ts  after row x and all 

the  rows before, thus we store the  count of the  num ber of elem ents in 

row X in position  x +  1. During the  algorithm  we use the  entries in the  

new.row.ptrs[]  array to  point to  the  next free slot in each new row and 

increm ent th e  entries as we copy elem ents to  their new position. At th e  

end of the algorithm  new.row.ptrs[x]  would point to  the start of row x +  1 

and W’e w'ould need to  correct the array by shuffling elements to  the  right.

If we construct the  array offset by two elem ents, at the  end of the  

algorithm  th e  array  will contain the  correct entries and the  reshuffle is 

not necessary. The additional arithm etic and control flow' (line 10) for the 

offset by two apj^roach should be optimised by the compiler. Exjjerimental 

evaluation shows tha t it is slightly faster is practice. The if  sta tem ent on 

line 10 ensures we don't index })ast the end of the array. It is not necessary 

to  count the num ber of elem ents in the last colunm  as we know the to ta l 

num ber of elements.

Once we have the  new nexi'-row-ptrs[] array, we traverse through  all 

the  irnz values of the  m atrix  row-by-row (lines 20-29). Each elem ent 

in the  row is copied to  its correct position in the  transposed  m atrix . 

The position is found by using the  curren t columnJndex  of the  elem ent 

to  index into the  Tiew^rou'.ptrs[] array  (offset by one) which gives the  

index in the  new^7}on-zeros[] and new-ColJ7idexes[] arrays for the  ele

m ent. T he non.zero  value is copied and the  old.rowJndex  becom es the  

new-column-index.  T he new-row-ptrs[]  is increm ented so th a t th e  next 

element to be copied to th a t new row will be put in the next free position 

in the row.

The resultant transposed m atrix in CSR format is shown in Exam 

ple (3.3).
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non_zeros  = a c h d f  m g  i b j  k n e I o
c oLi nde xe s  =  0 1  3 1 2 5  2 3 0 3 4 5  1 4 5

new _row _ptrs =  0„ 3j 6̂  7̂  8̂  12, 1

Exam ple 3.3: Transposed M atrix in CSR representation
(Integer dimensions remain unchanged)

3.4.4 Analysis of O ut-of-Place A lgorithm

T he O O P algorithm  perform s the  transpose  in-order, row by row. A 

beneficial side effect of the order in which the OOP algorithm  copies m atrix  

elem ents is th a t the values w ithin each new row of the  transposed m atrix  

will also be in order (of column index) within the rows. The O O P algorithm 

is sim ple and generally fast, running w ith an asym ptotic  com plexity of 

G {nnz  +  77).  T he input m atrix  is accessed secjueutially which gives good 

cache locality. A lthough fast, the  algorithm  does require ~ (3  7777z +  77) 

additional memory. This actually  tran sla tes  to  (12777)2 +  47?) bytes if we 

assume 8-byte double non-zeros and 4-byte integer indices, m eaning OO P 

requires 100% of the size of the M atrix in overhead^®^

This mem ory overhead may be acceptable for small m atrices, however 

for larger m atrices finding th is additional memory may prove difficult, or 

indeed impossible. Thus, we need an algorithm  which performs reasonably 

well in term s of both  space and time.

Experim ental analysis of the  out-of-place algorithm  is shown in Sec

tion 3.7.

3.5 The In-Place  (IP) Sparse Transpose

T he s])ace com plexity of the  O O P algorithm  can be reduced by using an 

In-Place (IP) transpose algorithm. As the name suggests, an IP algorithm  

perform s th e  transpose using the  original m atrix  arrays w ithout m aking

R ectangular m atrices require slightly above or below 100% for different size 
rou'^ptrs[]
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an additional cf>py of the no»_3ero.s[] and coIJndexes[]  arrays. One ap

proach to the sparse in-place transpose algorithm is to use a “cycle-chasing” 

teclmicjue to transj)ose the m atrix  within its storage structure. This cycle- 

chasing is similar to  the cycle-chasing used for dense rectangular in-place 

transpose. However due to the  sparsity  of the m atrix  it is not possible to 

pre-calculate the  positions of the elem ents in the  m atrix  and hence the 

positions visited by the cycles.

There is very little research literatu re  dealing w ith the topic of sparse 

in-place transpose. The Sparskit2 package by Youcef Saad [Saad 94] con

tains an im plem entation of an in-place cycle chasing algorithm  in For

tra n  [Backus 56, Backus 57]. T he TRANSPO subroutine im plem ents the 

Saad-IP  algorithm  which we discuss in detail in A lgorithm  3.3 in Sec

tion 3.5.1.

HSL [Group 63, Gould 04] is a m athem atical software library from the 

Numerical Analysis Group, it is a closed source, commercial, collection of 

FORTRAN codes for large scale scientific com putation. HSL includes two 

routines for performing sparse m atrix  transpose. MC380 m entioned above 

which uses an out-of-place algorithm  and the routine MC46 0  which is an 

in-place algorithm. Unfortunately the algorithms have not been published. 

According to the docmnentation, MC460 requires two arrays of size {rn -f-1) 

in order to  perform the transpose. As we will discuss fm ther in C hapter 4. 

th e  algorithm  seems to  only address the  first of the  three jjroblems for 

an in-place sparse transpose w ith a m em ory overhead 0 (r;). T he MC460 

routine still requires 0 (nr?2 ) additional space in order to  record wdiich 

elements have been moved and the location of free slots in the m atrix.

3.5.1 The Saad In-Place Transpose Algorithm

The j)seudo-code for the Saad-IP transpose algorithm  is shown in slightly 

simi^lified pseudo code split across A lgorithm  3.3 (a) (P art I: Saad-IP  

Initialize) and Algorithm 3.3 (b) (Part II: Saad-IP Main Loop).

The Saad-IP Algorithm 3.3 (a) first expands (lines 4-9) the roiV-ptrs[]  

array into a newly allocated, full tm p .rou 'Jndexes []  array of size 0 (r(r?2 )
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3.5. The In-Place (IP) Sparse Transpose

A L G O R IT H M  3.3 (a): The Saad In-Place sparse transpose - PART I: Ini
tialize_________________________________________________________________
Input: Matrix M  as in Data Structure 3.1
O utput: Matrix M  containing (the transpose of M)  in the CSR representation,

with:
neu>_ro«'_pfrs[] - new array of pointers to row starts [?ico/s +  1]

'* Moved Flag *.

# d e f in e  IS.MOVED - 1

* K x i)a iu l  r o « ’-/>/r.s*[| i n t o  t c i i i p o r a r v  r o i i  - i> } ( l f \ r e . ‘i [ i ) r ) z ]  a r r a y  * /

Allocate: tm p-rou ' .m dexes[nnz];
In i t ia l ize :  tm p .ro w J n d e x e s [ ] ;  /* Initialize to zero * /

f o r  ( 0  <  row <  n ro w s  ) d o

f o r  ( rou'-p trslrouj <  x  <  ro w .p tr s [rou ’ +  1] ) d o  

I trnp^rou’Jndexes[x ]  ■<— row,  
e n d

e n d

/*  Uoii'I need c()ntent> of r<m -ptr;' au \' uiort' but need to  re-allocate ] lor non-^(|Uare
mat rice.- *

Free:  row’_pfrs[];
Allocate: neu'-rou'jptrs\ncols-\-  1];
In i t ia l ize :  7ieu'_ro!X’-p f r s [ ] ;  /*  Initi.alize to  zero * /

' *  i i u in h ( ' r  o fC n 1 r ie >  in e a c h  n v w  ro w  ( o ld  co l )  - I'o h u i l d  ro w  o f f s e t s  * /

f o r  ( 0  <  i <  n n z  ) d o  

col coLindexes[i]:
new .rou '.p trs[ {col + ! ) ] < — 7ieu'.row-ptrs[ {col +  1) ] +  1;

e n d

* ( 'ui iiulr tt  i\ <‘ >uiii  a c r o s s  ik ' \ \ ' . ro w  _pt rs[ ] * /

f o r  ( 1 <  i <  ncols ) d o  
I new .row -ptrs[ i]  ■«— n ew -row .p trs[ i ]  +  new _row .p trs [ i  — 1]; 

e n d

(requiring ~ (4  nnz) bytes). Essentially converting m atrix  M  from the CSR 

format into the CCO (Compressed Coordinate) form at. Algorithm 3.3 (a), 

like the  O O P A lgorithm  3.2, then  builds the com pressed neu'-roxc^ptrs[] 

array (lines 14-21), which indicates the starting  indices of the rows in the 

transposed m atrix  M ^ .

The Cycle chasing part of the algorithm is then shown in Algorithm 3.3 (b). 

A counter cur .x  is used to  traverse the  n n z  values while perform ing the 

in place transpose. Counter c?/r_x s ta rts  from the  0'^ index which is indi

cated by the arrow ‘p ’ in Exam ple 3.4 w ith the  n n z  value a, row_index 0 

and colunnuindex 0. This first element is copied to  a tem porary  location
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Chapter 3. Matrix Transj)ose

A L G O R IT H M  3.3 (b): The Saad In-Placc  sparse transpose - PART II: Main 
Loop

/ *  l.ciop l l in m g h  i ' \ c iy  clcniriit in (he  iiuilr ix * /

cuTJV ■<— 0 : /'* I'irsi i;ii'iiicin */ cycles 0 : /* Nmu clcniciiix pnHcsscd */
w h ile  ( true  ) do

/*  Biu ku p  currcii t (‘Iciiu'iil */ 
src.val no7i-zeros[curjr]\ 
src.col <— colJ7idexes[cur-x]', 
src .row tm p-rou 'Jndexes[cur^];

/ *  F l a g  t h a t  w v  h a w  t a k e n  o u t  t h i s  (‘l e n i e n t ,  s o  it d o e s n ' t  ne('<l t o  1m‘ m o v e d  a n y  m o r e  * /

trnp^rou'-indexes[curjr]  <— lS _ M O V E D ; 

rep ea t
cycles  ■<— cycles  + 1 ;  /*  C ycle  ( ' o u i i t e r + +  ♦ /

* F i n d  t h e  t r a i i s i> osed  p o s i t i o n  ot  e l e m e n t  in ’s r e '  n e x t  u n u s e d  >pae(* in i t s  n e w  ro w  * /

dst-X <— new-row-ptrs[src.col];

dst.val  •<— non-zeros[ds t^ \ \  j* Save tlic  (■Icnifiit q ii] (l>t' *j
dst-col <— colJ.ndexes\dst

non.zeros[dst-x]  •<— s r c . r a / ;  / *  P u t  -m t '  in */
coLindexes[dst-x]  ■<— src-row\  * o l d  nm- -»  New cdl */
neu'-rou'-ptrs[src-Col] <— new-rou'.ptrs[src-Col] +  1; /*  <- i/.s/ ./• t  i */

if  ( tm p .ro u 'Jn d e xe s[d s t^]  = IS.MOVED ) th en  
I goto  M O V E D ;  /* wa> an  e inp t \ '  ■'lot iiiiiicatitij; th e  e n d  oi' a cha in  */

end

src -va l  <— d s t .va i ,  /* C c ip y  ■<i,--t' i n t o  -m -c' *,

src.col  <— dst-col'.
src-Tow ■«— tm p-row J.ndcxes \dst^]\

tinp.rowJndexes[dst-x] <— I S -M O V E D ;  , ■ Set Hag on  d^-t.x' * /

/ *  Lo<jp u n t i l  w e h a v e  j ;o ne  t l n o n g h  al l n n z  e U 'm e n t s  * /

u ntil ( cycles > n n z  ); 

goto  E N D ;

/ *  M ( ) \ ' l 'd )  l-'inil lilt' n(‘Xt nn-ino\ 'ed  ('hMiient to  .start chas in j;  * /

M O V E D :

cur jx  <r- c u r ^  + 1;

if  ( cur jx  > n n z  ) th en
j goto E N D ;  /* We liave ru n  off th e  e n d  of th e  a r r a y  J n n i p  to  t h e  enil */

end
if  ( tm p -ro w Jn d exes[cu r^]  =  IS.MOVED ) th en

I goto M O V E D ;  / *  cm'_x ha s  ah 'e ady  I)een moved,  loop aga in  * /

end
en d

, * E N D  Ki^;ht-siiifl row offsets  to  m a k e  nt' \v_row_ptrs[] */
E N D :

for ( ncols > i > 0  ) do  
I new-row.ptrs[i\ new.row-ptrs[i — 1]; 

end
7 t f 'U '_ ro w '_ p / r s [0 ]  <— 0 ;  Free'. tmp-rowJ,ndexes\

-^row-ptrs jieu'-rowjptrs] Space &: T im e Efficient Sparse M atrix  Transpose



3.5. The In-Place (IP) Sparse Transpose

>:rc = h 1 0
1 ,

non_zeros = a h c d e / 9 h i J k I ?7i n 0
coL in dexes  = 0 4 0 1 5 1 2 0 ;5 4 4 5 1 4 5

new^row ptrs = o „ 3 . 6 . 8 . 12,
t iii|> row indexes II 1 1 1 4 . 1

-f t
p ' q

15

Example 3.4: Algorithm  3.3 - Saad-IP Circuit Chasing Step: 1

“src” . T he tmp.rowJndexes[]  value for this elem ent is no longer needed, 

so th is array  can be re-used to  m ark th a t the  element has already been 

exam ined (using the  is_m o v e d  flag). Looking up the column_index (0) in 

new-row^ptrs[] shows that this element is already in the correct position for 

the transposed row, so it is copied back to the same location. The algorithm 

jum ps from line 21 to  line 31 w ith a g o t o , where c u r _ x  is increm ented 

to  the next position in the  m atrix , index 1. T his location is still <  luiz 

(line 33), and has not been moved yet (line 36), so the algorithm loops back 

to line 4.

s r c  -- I) 1 0  (Is i  I  :i ;i

non_zeros =  c d e f  g h h j  k I m n o
coL in d exes  =  i| 0 1 5 1 2 0 0 4 4 5 1 4 5

new_row_ptrs =  0„ 3j 6̂  7̂  8̂  12̂  15
Mill) nn\ i i id cxc '  (I ' I .1 4 :>

V t , .

Exam ple 3.5: Algorithm  3.3 - Saad-IP Circuit Chasing Step: 2

The algorithm  s ta rts  cycle chasing again on line 4 a t array position 1 

where cur_.r =  1, indicated by arrow ‘g’ in Exam ple 3.4. The elem ent at 

‘g’ with nz  vahie h is copied into “src” , and the destination position of the 

element in the  transposed m atrix  is found on line 14 to  be position 8 as 

indicated by arrow ‘r ’ which curren tly  holds n z  value i. The elem ent at 

position ‘r ’ is copied to  the  “rf.sf” tem porary  location (lines 14-16). The
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eleiiiPiit that wa.s at ‘g’ is copied from “srr” to position ‘r ’ (hues 17-19) as 

shown in Example 3.5. The position ‘r ’ was not the end of a chain (line 20), 
so the element tha t was at ‘r ’ is coj^ied from to “^rc” (lines 23-

26). The algorithm loops back continuing to cycle chase the element from 

position 'r' which is now in “src’' until it finds an element with a destination 

in the original row 0 which will be copied to position ‘g’ to end the chain.

The Saad algorithm contirmes chasing the next unmoved element until 
all elements are moved to their correct new-roic in the transposed matrix.

3.5.2 Analysis of Saad In-Place Algorithm

Unlike the OOP algorithm the IP cycle chasing transpose does not wwk 

sequentially through the matrix. Therefore elements are not transposed 
“in-order” . This results in a transposed matrix where all the elements are 
in their correct transposed row, how’ever it is unlikely that they are in the 

correct order by colunm index within that row.

In many cases this may not he a concern. If elements are recjuired to 
be in row order, this can be achieved by performing an additional sort
ing step after the transpose using a techniciue similar to standard sorting 

algorithms. This sorting step can also be done in place. In Section 4.5 
we describe our algorithm based on QuickSort [Hoare 61, Hoare 62] and 
Insertion Sort [Knuth 98] which was used for the sorting phase of the exper
iments presented in Chapters 3, 4, 5 and 6. . The additional sorting step 
w'as included in all the transpose timing results such that every transj)ose 
algorithm resulted in the same output from the same input.

The Saad-IP algorithm as described above in Algorithm 3.3 is imple

mented in the Sparskit2 package [Saad 94]. The Saad-IP algorithm exhibits 

asymptotic time complexity of Q{nnz -)- n) time, however it is more com

plicated than the OOP algorithm and accesses the elements in random 
order as it jumps around chasing the cycles w'hich results in poor locality 

for cache reuse, so in practice is generally slower than the OOP algorithm. 

As we see in Figure 3.3 from the experimental evaluation in Section 3.7, 
when dealing with large matrices and wdiere memory is tight, j^erforming

66 Space ^  T im e Efficient Sparse M atrix  T ranspose



3.6. Performance Evaluation of Algorithms

the  transpose in j)lace only requires {4m}z) bytes^^'^ of additional memory 

com pared to  the  { I2nnz  +  4/!) bytes for the  O O P algorithm . The perfor

mance cost may be an acceptable trade-off, however, the memory overhead 

is still <d{nnz) which can prove significant for large m atrices and for many 

m atrices increases at a higher ra te  th an  the num ber of rows {n). For the 

largest m atrix in our collection the OOP algorithm requires 4,698 MiB and 

the Saad algorithm  requires 1,531 MiB.

To address th is mem ory overhead we have developed a collection of 

new in-place transpose algorithm s which reduce the  asym ptotic  memory 

overhead to Q{n)  additional storage (see Chapters 4 and 5). Our HyperPar- 

tition  algorithm  ( C hapter 6) requires significantly less memory overhead 

in practice.

3.6 Perform ance Evaluation of A lgorithm s

For the purpose of comparison with our new in-place m atrix transpose algo

rithms, in Section 3.7 we present an empirical evaluation of the two existing 

sparse m atrix  transpose algorithm s previously describe<l in Sections 3.4.3 

and 3.5.1. We first outline the  m ethodology used in ovu exi)erim ents and 

analysis.

This section describes our exj)erimental setuj) and how the algorithm s 

w'ere analysed. We discuss w hat experim ents were run, the  sami)le inj)ut 

data  used, what measurem ents were recorded and how they were recorded. 

We also discuss how the d a ta  was analysed and jn’esented.

3.6.1 M atrix Collections -  Sample Input M atrices

In order to evaluate the different transpose algorithms and to  dem onstrate 

the advantages of our proposed new algorithms, we performed an extensive 

set of experim ents on the algorithm s. It is im portan t to  understand  and 

evaluate how the algorithms function in real world applications rather than 

in synthetic  sim ulations. We therefore used a set of m atrices taken from

for square m atrices, rec tangu la r m atrices m ay require slightly  or m ore or less.
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real world applications for our experim ents. 259 sam ple input m atrices 

were collected in the  M atrixM arket [Boisvert 95, Boisvert 97] file form at 

(Appendix C) taken from The University of Florida Sparse M atrix Collec

tion [Davis 94, Davis 09, Davis 11a, Davis 11b] m aintained by Tim  Davis. 

Tables in Appendix A give detailed information of a sample of the matrices 

used.

Our main interest is in the performance of our new transpose algorithms 

on large matrices as this is where the reduction in memory overhead is most 

desirable. Some low end em bedded system s may still be concerned w ith 

memory usage of medium size matrices, therefore for these experiments we 

chose sample matrices from the Florida collection with more than  1 million 

(1,000,000) non-zero values. A m atrix  of th is size would require roughly 

12M iB to store in memory assum ing the m atrix  is stored in CSR form at 

w ith 32-bit row and cohunn indices and double precision non-zero values. 

A to ta l of 259 input m atrices were used in the  experim ents to  evaluate 

the  perform ance of the  algorithm s. T he m atrix  collection includes 129 

sym m etric m atrices out of the 259. These sym m etric m atrices are stored 

w ith only the lower triangle rejjresented. It is not necessary to  transpose 

a synnnetric  m atrix  as the  transpose of a sym m etric m atrix  is the  sam e 

m atrix. We included synnnetric m atrices in our test suite simply treating  

them  as triangu lar m atrices. T he transpose of a triangu lar m atrix  often 

occurs in calculations such as in the upper and lower triangular solves after 

a Cholesky [Golub 96, Stewart 01] decom position M  = LU^ where the 

lower triangular L is the transpose of the upper triangular U, i.e. =  U . 

Including sym m etric m atrices as triangular m atrices increases the number 

of input m atrices for our experiments.

The largest sample input m atrix  nlpkkt240 is a 27,993,600 x 27.993,600 

m atrix  with 401.232,976 non-zero values and requires 4,699 MiB to simply 

ju st store it in memory in the CSR format.

Tables in A ppendix A give detailed  inform ation on a sam ple of the 

m atrices used in our experim ents. Table A .l shows the  dim ensions and 

s truc tu re  of the  m atrix. Table A .2 lists the  problem dom ains from which 

the  m atrices w^ere produced. A dditionally, Tables A .3 and A.4 show the
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ineinory usage and execution time for the algorithms when transj)osing the 

sample matrices.

3.6.2 Experimental Setup

The experiments were run on ''Stoker” a 32 core machine with 4 x Intel octo- 

core Xeon E7 4820 processor @2.00GHz with 18MiB Cache and 128 GiB 

RAM  running Debian 6.0. Each core uses two-way sinm ltaneous m ulti

threading so there is a to ta l of 64 hardware threads. The implem entations 

were compiled with the I n t e l  C /C + + /F o rtran  Compiler version 12.0 with 

the follow'ing optim isation flags:

-03 - f a s t  -openmp

T he PA PI [Browne 00] system  was used for collecting perform ance 

m etrics and inform ation from the  m achine’s hardw are counters (See Sec

tion 5.9.1).

A subset of the  experim ents were repeated on other machines which 

produced results with very similar trends to the experiments run on Stoker. 

For com parability, consistency and clarity  only the results from stoker 

machine are presented here.

T he two m ain perform ance properties we are in terested in are: The 

algorithm 's execution tim e and the memory usage of the algorithm.

A lgorithm  E xecution  T im e

Measurements of algorithm execution time were conducted as follows: Each 

of the input m atrices was read in from the M atrixM arket file into a sparse 

coordinate s truc tu re  which was transform ed into the Com pressed Sparse 

Row (CSR) format structure. Each algorithm  w'as then used to  transpose 

tlie algorithm forwards and backwards 19 times. In the case of the in-place 

algorithms, the cycle chasing and sorting steps were tim ed separately. The 

tim er was started  just before calling the cycle chasing transpose routine and 

stopped and recorded as soon as it completed. The tim er was again started  

just before calling the sorting routine and stopped as soon as it comj^leted.
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For th e  out-of-{)lace a lgoritlin i th e re  is ju s t one s tep  w hich is m easu red  

by th e  tim er. E x cep t w here no ted , all execu tion  tim e resu lts  p resen ted  

in th is  d ocum en t include th e  tim e  for b o th  th e  cycle-chasing p h ase  and  

th e  so rtin g  p hase  com bined. T h e  a lgo rithm  (cycle chasing) tim e includes 

th e  tim e  for th e  ac tu a l tran sp o se  an d  all s tep s  re la tin g  to  th e  tran sp o se  

— such as bu ild ing  a rray s b e fo re /a f te r  th e  tran sp o se , coun ting  elem ents, 

cycle-chasing, etc.

W h en  co n d u c tin g  tim e  sensitive exp erim en ts, background  ac tiv ity  on 

th e  ex p e rim en ta l m achine such as scheduled  task s  and  system  in te rru p ts  

can  in terfere  w ith  th e  ru n n in g  p rog ram s, causing  delays and  in acc u ra te  

tim ing  results. To offset th is  problem  we chose to  m easure the  tim e for each 

a lg o rith m  and  in p u t 19 tim es. T h e  m ed ian  value for th e  19 tim in g s was 

used for analysis and  generating  th e  graphs. T he value of 19 was chosen as 

it w’as deem ed large enough to  satisfactorily  reduce th e  num ber of outliers 

in th e  tim ing  resu lts and  is an  odd num ber which has a single m edian value. 

T h e  m ed ian  was used as an  average ra th e r  th a n  th e  m ean as th e  m ean 

w ould also include th e  tim ings of any outliers th a t  did occur. T h e  m edian 

value shou ld  also be  m ore rep resen ta tiv e  th a n  sim ply  tak in g  th e  fa ste s t 

value of th e  19 runs.

In  p rac tice  th e  tim in g  re su lts  for th e  a lgo rithm s wei'e very  consisten t 

as can  be seen in F ig u re  7.2 on P age 192. T h is  figure show s each of 

th e  ind iv idua l 19 tim in g  re su lts  for th e  H y p e rP a rtitio n  T ran sp o se  w ith  

R adixSort for different num bers of buckets. For exam ple th e  Serial algorithm  

ind icated  w ith  th e  red plus { ' + ' )  has a block of 19 m arkers at roughly seven 

seconds when using two buckets and ano ther block of 19 m arkers ju s t under 

five seconds when using four buckets. For th e  serial algorithm , th e  tim ings 

for th e  19 ru n s a re  alm ost iden tical. Som e sligh t v a ria tio n  betw 'een th e  

in d iv id u a l tim in g s can  be seen in th e  para lle l a lg o rith m  show'n w ith  th e  

b lue ( ’x ’), p a rticu la rly  w ith  16,384 buckets. T h e  v aria tio n  in th e  parallel 

version is possib ly  due to  o th e r  ac tiv ity  on  th e  m achine wdiich has m ore 

of an  affect wdien ru n n in g  across 32 cores however it is also likely to  be a 

resu lt of different d is trib u tio n s  of O penM P  th rea d s  across th e  C P U  cores 

in re la tio n  to  th e  location  in m em ory  of th e  d a ta . H y p e rT h read in g  m ay
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also be an influence if two threads are allocated to a single core. 

A n a ly s in g  M e m o ry  U sa g e

For these experim ents we are in terested in the  mem ory overhead of the  

algorithms. The additionul memory  on top of tha t required to  simply store 

the  m atrix  in m em ory th a t the  algorithm s allocate in order to  perform  

their function. The mem ory overhead required by each algorithm  can be 

calculated from the  dim ensions of the  m atrix , however for com pleteness 

(and to ensure correctness) the memory allocated by the algorithms was also 

measured directly. This was done by overloading all memory allocation and 

deallocation routines in order to track memory usage. The peak memory in 

use during the algorithm was then compared to  the baseline usage for each 

m atrix . Analysis tools such as Valgrind [Nethercote 03, N ethercote 07] 

were also used to  test the algorithm  im plem entations for memory leaks.

3.6.3 Presentation  o f D ata

The graphs in this document have been generated with GNUplot [Williams 90] 

and show the execution tim e, mem ory overhead, cache perform ance and 

o ther m easurem ents of the  algorithm s presented. As discussed in Sec

tion 3.6.2, the memory overhead is the additional memory allocated by the 

algorithm . We are developing algorithm s which improve on the  mem ory 

usage and execution time, therefore: in all graphs, lower values are better.

W hen discussing the size of a m atrix  we may talk about the number of 

rows (ri), the num ber of colunms (m) or the num ber of non-zero elements 

[nnz]  in the matrix. For our purposes the number if non-zeros [rinz) is the 

most appropriate as it generally has the greatest effect on the memory usage 

and execution time of the algorithms. Our graphs show the performance of 

the algorithm s relative to the num ber of non-zeros in the m atrix.

Due to the very wide range in the num ber of non-zero elements in the 

m atrices (from 1 Million to  401 million elem ents) and the  even greater 

relative difference in m em ory usages and execution tim e values for the  

matrices, it is not possible to directly graph the actual exj)erimental results
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together. T h e  graplis w ould be highly  skewed and  d is to rted . As such, we 

have done a n u m b er of th in g s to  im prove legibility  of th e  g raphs. F irs t, 

we have elected  w here possib le to  d isp lay  all th e  m em ory  an d  execu tion  

tim e  re su lts  of all th e  a lgo rithm s re la tiv e  to  th e  m easu red  resu lts  of th e  

Saad In -P lace algorithm . Hence for every graph , th e  m easurem ents of the  

Saad algorithm  are all on a horizontal line a t (y = 1). For each m atrix  the 

resu lts of th e  o th er algorithm s are th en  p lo tted  e ither above or below th is 

line show ing th a t  th a t  a lg o rith m  perform s b e tte r  or worse th a n  th e  Saad 

a lgorithm  for th a t  inpu t m atrix , and  by w hat p roportion . T h is  applies to  

all th e  m etrics - M em ory /  E xecu tion  T im e /  C ache M isses /  etc.

T he second way we im prove legibility is again due to  the  wide range in 

th e  num ber of non-zeros and the  fact th a t  m ost of th e  m atrices fall closer 

to  th e  lower end  of th e  range. E ven  w ith  a  log-x axis th is  resu lts  in d a ta  

po in ts c lustered  to  the  left of th e  graph . In order to  im prove legibility, we 

have split the  g raph  along the  x-axis w ith  a stretched  logarithm ic scale from 

1,000,000 to  16,000.000 over th e  left /̂-i of th e  g rap h  an d  th e n  a sh o rte r 

logarithm ic  scale from  16.000.000 to  420.000,000 over th e  righ t of th e  

graph.

O ne d isadvantage of the  form at in which we have chosen to  display the 

results is th a t it is not possible to  d irectly  see the  exact m easurem ents and 

values of m em ory  usage an d  execu tion  tim e  th a t  th e  a lg o rith m s have for 

th e  various inpu t m atrices. In m any cases th e  display form at also hides the 

vast im provem ent in m em ory usage and  runtim e th a t these new algorithm s 

m ake over the  existing algorithm s. Table A .3 and Table A .4 show th e  exact 

a lg o rith m  m em ory  overhead  an d  ac tu a l execu tio n  tim e  respectively  of a 

n um ber of th e  larger sam ple m atrices used in th e  experim ents.

3.7 Evaluation of Sparse Transpose A lgorithm s

F ig u re  3.3 show s th e  ad d itio n a l m em ory  overhead  of th e  O u t-o f-P lace  

a lg o rith m  (Alg: 3.2) re la tiv e  to  th e  S aad  In -P lace  A lg o rith m  (Alg: 3.3). 

T here is a clear sim ilarity  and linearity  betw een th e  algorithm s showing th a t 

b o th  have a space com plexity of Q { m iz )  w ith  the  O O P algorithm  requiring
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Out-O f-Place vs. S aad-lP  • - Memory O verhead of Algorithm [Relative]
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Figure 3.3: M em ory overhead  of th e  O u t-o f-P lace  (O O P ) a lg o r ith m  re la tive  to  th e  

Saail In -P lace  a lg o rith m . O O P  uses rough ly  3 tim es m ore m em ory  th a n  Saaci-IP. For 

the largest m atrix  {nlpkkt,240) w ith  401 M illion non-zeros. O O P  requires 4 ,699MiB and  

Saad  requires 1.531 M iB in m em ory overhead.

rouglily three tim es more memory than  tha t of Saad. Varial)ility is due to 

the  differences in lengtlis of the  roiL'.pfrs[] array  {nroirs + I) com pared 

to the colJndexes[]  and non^zeros\\  arrays {nnz).  For the largest m atrix  

used in these experiments, {nlpkkt.240, shown on the far right of the graj)hs) 

the OOP algorithm  requires 4,698 MiB of additional memory whereas the 

Saad-IP algorithm  requires 1,531 MiB. This is a consideray:)le overhead of 

100% and 33% of the original m atrix  size respectively for both  algorithms. 

More details of m atrix  memory requirem ents can be found in Table A .3.

The A lgorithm  runtim e of the  O ut-of-Place algorithm  is showai in 

Figure 3.4 in comparison to th a t of the Saad-IP algorithm . OOP is faster 

in the  m ajority  of cases, however there  are actually  a num ber of inputs 

where the O O P algorithm  is considerably slower than  Saad.

The graphs in Figure 3.3 and Figure 3.4 show bo th  the  appeal and 

drawback of the OO P algorithm. It is simple and (generally) fast, but the 

graphs show th a t th is comes at a great cost of 100% additional storage, 

which simply m ay not be feasible in many cases.
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Out-Of-Place VS. Saad-IP -- (Serial) Execution Time of Transpose [Relative]
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Figure 3.4: Runtime of the O ut-of-Place (OOP) algorithm relative to the Saad In-Place 

algorithm. OOP is generally faster but is slower on som e inputs.

3.8 Sum m ary

This chaj)ter reviewed existing research on m atrix transj)ose. There is a large 

l)ody of existing research on dense m atrix transpose with many algoritlnns, 

each with their own advantages and disadvantages. However there has been 

far less focus on transposing sparse m atrices. We have reviewed th e  two 

m ajor sparse m atrix transpose algorithms from the literature and provided 

an experim ental evaluation of bo th  which will be used for com parison in 

subsequent chapters.

In the forthcoming chapters we present our new Sparse In-Place Trans

pose algorithm s, which reduce the  asym ptotic space com plexity of the 

sparse transpose while also reducing the execution tim e com pared to  the 

existing in-place algorithm.

Leaend
Saad-IP

OOP
Average: 43.4%

-

♦ -r- T*

■u. -  - . . .  3 V v.-'. • -
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Chapter

Space Efficient In-Place 
Sparse Matrix Transpose

In the  previous chapter we introduced the  M atrix  Transpose operation 

and outUned the  research and existing algorithm s on the  topic. \ \ e  gave 

an in-depth  analysis of the  two m ain algorithm s for transposing  Sparse 

Matrices:

1) The O ut-of-Place Sparse M atrix  Transj)ose A lgorithm  (3.2) which 

has a tim e complexity of 0 { n n z  + n) and transposes the m atrix by making 

a com plete new copy of th e  full sparse m atrix  s tru c tu re  in m em ory and 

then  copies each individual elem ent to  its correct location in the trans- 

])ospd m atrix . The to ta l space com plexity of the  O ut-of-Place algorithm  

is ~ ( 3 » r ) 2  -I- n) m eaning the  O ut-of-Place algorithm  can require up to  

4.698 MiB in memory overhead for our largest m atrix.

2) T he Saad In-Place Sparse M atrix  Transpose A lgorithm  (3.3) from 

the  package Sparskit2 [Saad 94] which also has a tim e com plexity of 

G{j}nz + n). T he Saad algorithm  requires an additional tem porary  ar

ray {t j i^p.rowJndexes[])  of size {nnz)  for the row indexes and transposes 

the m atrix in-place using a cycle-chasing technique to move elements. Thus 

the to ta l space complexity of the Saad In-Place algorithm  is ^{ j i nz ) ,  only 

33% of the Out-of-Place algorithm. However even at this level, Saad requires 

1,531 MiB of additional memory for the largest m atrix.

Perform ing the transpose in-place w ith reduced space complexity, the 

Saad algorithm still requires a considerable memory overhead. As matrices 

grow larger, this memory overhead will also continue to grow in proportion 

to  nnz.  For the  great m ajority  of real-world sparse m atrices the  num ber 

of rows (n) hi the  m atrix  is far less th an  the  num ber of non-zeros {nnz).  

Thus an in-place transpose which only requires 0 (» )  additional space could 

make a considerable reduction in the memory overhead.

In th is chaj)ter we analyse the  problem s w ith perform ing the  in-place
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sparse matrix transpose operation with only additional memory and 
present a number of solutions to these problems.

4.1 In-Place Transpose w ith R educed M em 

ory

There are three very important problems which need to be solved in order 

to reduce the space complexity of the in-place transpose from Q{jinz) to 

0(n).

Problem s to  solve in order to  reduce Space C om plexity:

(a) How to find the old.roxcJudex of each element in 0 (n ) space

(b) How to record that an element has been processed in B(/() space

(c) How to determine the next free slot in each row in 0 ( t i ) space and 

(-)(!) time

As we move elements from row to row during the cycle chasing transpose 
the first problem is (a) how to find the old row index of each element. In 

this chapter and the subseq\ient chapters we j)resent a nmnber of solutions 
to this problem.

Problems (b) and (c) are linked, they both relate to the way in which 
we record that elements have been processed/moved, however the problems 
manifest themselves in two separate ways. Section 4.1.2 outlines our solution 

to problems (b) and (c).

Our solutions to these three problems not only allow us to reduce the 

space complexity of the in-place transpose from (d{nnz) to 0(7i), they also 
considerably reduce the memory overhead and algorithm execution time in 

practice as can be seen from the extensive experimental analysis throughout 

this document.
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4.1. In-Place Transpose with Reduced Memory

4.1.1 Finding the old^row Jndex  in 0(n) Space

The first problem (a) that needs to be addressed in order to reduce the space 

complexity of the in-place sparse transpose is how to find the o ld j 'o w J n d e x  

of each element in the m atrix.

Consider the original CSR representation of the m atrix  M  from Exam 

ple (1.1) shown again in Exam ple (4.1). W hen perform ing the  in place 

transpose using the cycle-chasing techniciue (see Sections 3.5 and 4.2), on 

a m atrix  in CSR form at, a t each jump^^^ in the  cycle we know certain  

inform ation about the element at th a t position. We know the  position of 

the  elem ent: p, the  value {non.zeros[p]) of the  non zero elem ent and we 

know the column index {colJndexes[p\) of the element. This colJndex  will 

become the n e w jrow J nde x  of the element in . The information we are 

missing w'hich can not be looked up directly is the  current o ld j 'o w J n d e x  

of the element.

non_zeros = a b c d e f  9 h i j  k I ni n o
co L in d ex es =  0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

row^ptrs =  0„ 2, 5̂  7̂  10̂  12̂  1

Exam ple 4.1: M atrix M  in CSR representation

As shown in Section 3.5 the Saad-IP (Algorithm 3.3), solves this problem 

by expanding the  old.row.ptrs[]  array of size [n +  1) into an m iz  length 

array of row indexes {twp^rou' jndexes[])  recjuiring an additional Q{nriz) 

of memory. As we have seen previously, th is com plexity can tran sla te  to  

1,531 MiB of memory overhead. We wish to reduce th a t overhead.

Usually, when we are accessing the  m atrix  by rows, we look up row' 

V  in roiv^ptrs[] in order to  find the s ta r t, ‘s ’, and end, ‘e ’ index of the  

row w ithin the non_zeros[] and coLindexes[]  arrays. However going the  

other direction, starting  with a random element ‘p \  in the non^zeros[] and 

colJ7idexes[] arrays, and try ing  to  find the  row index of th a t  elem ent is

we move an element to another row we '‘junip" to that location in the matrix
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more difficult.

Our approach is to perform the in-place transpose using the r o w . p t r s [ ]  

array  itself, w ithout expanding r o w - p t r s [ ]  into the  t7npj ' o i i 'Jn dexes[ ]  

array. This eliminates the 0 { n n z )  space rec}uirement in memory overhead 

and reduces it to 0(7)). We propose a number of solutions to this problem 

which are outlined in the following sections and chapters.

Our solutions to  finding th e o l d j r o w J n d e x  in 0 (n ) space:

o Binary Range Search Lookup - Section 4.3

o Radix Table Lookup - Section 4.4

o Corresponding Row Table Lookup - C hapter 5

T he Binary Range Search and Radix Table Lookup algorithm s search 

the o l d . r o w . p t r s [ ]  array directly in order to  I’educe the memory overhead. 

A lthough this search does come at an additional cost to the time complexity 

of the algorithms, in j^ractice the execution time of the Radix Table Lookup 

algorithm  is similar to th a t of Saad with some variation (see the performance 

results in Section 4.4.5).

The Corresponding Row algorithm  outlined in Chapter 5 uses an addi

tional table of size 0(r)) in order to  look up the old row index in constant 

0 { \ )  am ortized tim e in order to m aintahi the Q { r m z  -I- ri) runtim e of the 

in-place tran.spose.

4,1.2 D eterm ine if an Elem ent has Already Been Pro
cessed
in Q{n) Space and 0(1) Time.

The second and th ird  problems (b) and (c ) that need to  be addressed for 

the 0 (n )  in-place sparse m atrix  transpose both relate to  how to determine 

whether or not an element ha.s already been processed. By '‘processed” we 

m ean th a t we have either moved the element during a cycle-chasing chain 

so it does not need to be moved again or we have scanned the element and
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found th a t it does not need to be moved. In either case, we know' that 

element does not need to be checked again.

As we iterate through the elements in the matrix using the cycle-chasing 

algorithm (see Sections 3.5 and 4.2), we determine if each element is in 
the correct row' in the transposed matrix. If not, we move that element to 

an area of the m atrix arrays corresponding to the correct new’ row'. We 
continue to move elements in a cycle-chasing manner until the cycle ends.

We then continue scanning through the elements in subsequent row’s to 

ensure they are in the correct row. Problem (b) arises as w'e are scanning 

through the elements in each row, at this point it is im portant to know 

whether or not an element has already been processed/moved so that we 
can skip over it or move it and start cycle-chasing. Problem (c) arises 
w'hen moving an element to another row, at this point it is im portant to 

know which elements have already been processed/moved to tha t row' so 

that we can move the element to the location of the next “free’’ slot in that 
row.

H ow  S aad  d e te rm in e s  if an  e lem en t has b een  p ro cessed

The Saad in-place Algorithm (3.3) solves problem (a) using the fmp.rou'-wdexes[] 
array. When the algorithm is processing an element, it reads its row index 
from the tmp.rowJj}dexes[] array and either moves the element if neces

sary, starting a cycle, or leaves it in the current row. In both cases the 

element’s coLindex[] w'ill be updated to contain the old.rowJndex  that 
was read. Once an element has been processed, the row index value in the 

tn}pj'ou'Jj}dexes[] array is no longer needed.

For problem (b ) , in order to indicate that an element has been processed 

(moved or updated in place) the Saad algorithm sets a special value (in 

this case -1) in the tmp^rowJ7idexes[] array for that element. The Saad 

algorithm can scan through the elements and skip those with a value of -1 

in the tnip.roivJndexes[] array.

The Saad algorithm solves problem (c) using the new.rou’-ptrs[] ar
ray. The old.rou’.pt7's[] array is no longer needed after expanding it
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into tlie tmp rowJndexes[]  array, thus it can reuse the  old array as the 

new.row.ptrs[]  array. Thus the Saad algorithm requires that the length of 

the rou'-ptrs[] array is max{nro ivs , ncols). W hen the algorithm  needs to  

move an elem ent to  a new row it looks up the  index of the s ta r t of th a t 

row in the new-row-ptrs[]  array  and moves the  element to  th a t location. 

It then increm ents th a t  index in new.row.ptrs[]  by one to  indicate th a t 

the next free slot in th a t row is the next position in the array. Thus when 

Saad needs to  move an element it can look up the location of the next free 

position in each row in the new^row-ptrs[]  array.

The Saad algorithm  solves problems (a) and (b) in Q{jmz)  space and 

0 (1 ) time, and solves problem (c) in @{n) space and 0 (1 ) time. We need 

to solve both  problems in 0 ( t7) space and 0 ( 1) time.

One possible m ethod to  record th a t an element has been processed in 

order to solve problem (b) would be to create an additional d a ta  structure 

such as a bit vector w ith one en try  for each item. However, th is would 

require an additional Q{nj7z) space, or ymz  b its to  be precise. A lthough 

for most sparse m atrices an additional n n z  b its  is probably not so very 

large in com parison to  the  sparse m atrix  itself, the  space overhead may 

nonetheless be significant. Furtherm ore, an additional d a ta  s tru c tu re  of 

B{nnz)  is not very satisfying from an theoretical point of view, because 

the overall space complexity of the algorithm  will include an Q{7mz)  term .

Another solution would be to store a flag in the entries of coLindexes[].  

We  cannot use a specific value, such as the —1 used by Saad. as this would 

over-write the  index value already stored there. Instead  we could use a 

high-order bit, or negate the column index value. If the column index is a 

signed value, then  negating the index to  indicate a moved value will work. 

But if the  colum n index is not a signed value, then  com m andeering the 

high order bit will reduce the  range of colunm indices, and thus limit the 

maximum m atrix  dimension by a factor of two. It is particularly  for such 

large matrices where we wish to have a memory efficient in-place transpose.
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R ecord th at an elem ent has been  processed in 0 (r? )  space and 
0(1) tim e

A.S we have seen, it is not possible to have a “processed’’ flag for each indi

vidual element in the m atrix as this would require Q{nnz)  space. However, 

having a flag for each individual element is not actually necessary, we just 

need to  be able to  distinguish those elem ents which have been processed 

from those th a t have not yet been processed.

Consider again how elements are processed and moved during the cycle- 

chasing procedure. We process elem ents sequentially, row by row. W hen 

we move an element we move it to the first “free slot” in the new row. This 

means th a t all the processed and unprocessed elements will be contiguous 

together in each row. T he processed elem ents (if any) will be grouped 

together at the s tart of the row and all the remaining unprocessed elements 

will be grouped together tow ards the  end of the  row. Consequently, if 

we record tlie s ta r t and end of the  groups of processed and unprocessed 

elem ents in each row w'e will be able to  identify which elem ents have and 

have not been processed.

As with the Out-of-Place and Saad-IP algorithms, in our 0(r?) in-place 

algorithm , we need to  construct a newjroiL'-ptrs[\ array of size (n -I- 1) as 

j)art of the transpose process in order to indicate the start of each new row 

in the  m atrix . Unlike the  Saad algorithm  we do not have an n n z  length 

array of tmp .rowJndexes[ \  so we need to keep the old-row^ptrs\]  array in 

order to  look up the  row index to  solve problem  (a ) . Therefore we will 

need to  allocate a new array of size (n -|- 1) for the nevL'jrowjptrs[\.

W'ith the  new-roxL'-ptrs[] array we know the  position of the  s ta r t of 

each row. This is also the  position of the  s ta r t of the group of processed 

elements in the row’. If we then store the  position of the first unprocessed 

element in each row in a second [n -f 1) size array called row.of fsets[]  we 

can then  delimit the positions of the processed and unprocessed elements 

in each row as follows:
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Elements in row new.row .p trs [ i ]  —> new.roiu.ptrs[i  +  I] — 1

Processed in row ?: neiL'.row.ptrs[i] —> row.offsets[ i ]  — 1 

U nprocessed in row i: row.offset s[ i ]  new-row.p trs[ i  +  1] — 1

We can use these two arrays of size {n +  1) to  solve bo th  problem s 

(b) and (c) as follow's. At the  s ta r t of th e  algorithm , both  arrays are 

initialized to point to the s ta rt of each new row. The Jiew^roiL'.p trs\]  array 

is not modified during the algorithm  and always points to  the s ta rt of the 

row. W hen scanning through a row (‘i ') , we scan through the unprocessed 

elem ents s ta rtin g  at row.offsets[  i]. If th a t element does not need to  be 

moved we u pdate  its colJndex[]  en try  and inci'ement row^offsets[i] to  

indicate it has been processed and to  indicate the  position of the  next 

unprocessed elem ent. If the  elem ent needs to  be moved to  ano ther row 

(‘y ’) we do not want to  d istu rb  elem ents th a t we have already moved to  

row ‘y ’ so we find the position of the  first unprocessed element in the  row 

from row.offsets[y].  We move the  elem ent to  th a t position, increm ent 

row ̂ offset s[] and continue chasing the element we just took out of row y.

All look ups and updates take constant 0 (1 )  tim e. Thus, using these 

tw'o arrays of size (r; +  1) we have solved problem s (b) and (c) in 0 (r;)  

space and 0 (1 )  tim e. It would be preferable to  reduce the  need for two 

additional arrays, how'ever for the  m atrices in the  test su ite which have 

m ore th an  65,536 non-zero elem ents, it is not possible to  combine the  

two arrays. Both arrays are required, the  row ̂ offset s[] array  needs to  

be increm ented to  keep track  of th e  first free slot in each row and the  

elem ents th a t have already been moved. The new-row^ptrs[]  array needs 

to  rem ain unchanged in order to keep track of the start of each row. Thus, 

the  m inim um  overhead th a t  we can perform  the  in-place sparse m atrix  

transpose is ~ (2 n ) additional memorv.

In the  next section we show our generic 0 (n )  in-place sparse m atrix  

transpose algorithm which incorporates our solutions to the three problems 

th a t  need to  be solved to  reduce the  m em ory overhead from <d{nnz) to
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0 ( n ) .

4.2 Generic In-Place  Sparse Transpose

Algorithm 4.1 shows our new, Generic 0 (n ) hi-Place Cycle-Chasing Sparse 

Transpose algorithm which demonstrates our solutions to the three problems 

of transposing a matrix in-place in 0 (n ) memory overhead as discussed in 

Section 4.1. This Generic Transpose is the basic tem plate w'hich we will 
base our in-place transpose algorithms on.

Our Generic Algorithm performs the cycle-chasing transpose in a similar 

manner to Saad-IP as outlined in Algorithm 3.3 in that it performs the same 
cycle-chasing element movements. The algorithm demonstrates how we use 

the new^rou'^ptrs\] and roiv.offsets[] arrays discussed in Section 4.1.2 to 

mark and skip over elements which have already been processed/moved.
The basic procedure of Algorithm 4.1 is- Lines (18-19) -  Loop through 

each new row and each (unmoved) element in that new row. Lines (21-23) 
-  copy tha t element into ‘‘src” . Lines (26-31) find the destination of 
the element in ‘‘src'" and copy the element at tha t destination into “dst” . 
Lines (33-34) copy element in “src” to the destination. Lines (36-38) 
copy element “dst" into “src” . Line (24) keep cycle chasing the element 
in "src’' until the end of the cycle is reached.

The Generic In-Place algorithm calls tw'o external routines in order to 
find the rou'Jndex  of the element, problem (a) outlined in Section 4.1.1. 
It is these external routines which will change in the forthcoming trans
pose algorithms. The first is on Line (16), in i t ia l iz e _ lo o k u p _ ta b le ( ) . 

This placeholder calls a routine which initializes additional lookup ta 

bles, if any are recjuired to perform the rowJndex  lookup. The second 
is on Lines (23 and 31), lookup_row _index(). This placeholder calls a 

routine which looks up the rowJndex  using the current position in the 
non^zeros[] and coLhidexes[] arrays as a key. The lookup_row_index() 

procedure potentially uses other data structures initialized earlier with 

in i t ia liz e _ lo o k u p _ ta b le  0 .

The two algorithms take different arguments depending on how they
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C hapter 4. Sj)ace Efficient In-Place  Sparse M atrix Transpose

A L G O R IT H M  4 .1 : Generic Q(n)  In-Place Sparse Transpose w / Row Index 
Lookup
In p u t:  M atrix M  as in D ata S tructure 3,1
O u tp u t :  M atrix M  containing in CSR, with: new-row.ptrs[] - new row pointers 

[cols+1]
/ *  A l lo c a U '  .■\rrnv> Inil ii i li zo il  l<i ZiTii * /

A llo ca te : new-row-ptrs[newjnrows-\-l];  A llo ca te ; roW-offsets[new-nrows];
*  ( ' ( n u i l  u u i n l u T  o f  c l f - i i H ' i i l ? '  in  (‘ac li  new c o l i n n n  -  ! ) > ■ I  * /

for ( 0 <  index < n n z  ) do  
col <r- coLindexes[index]; 
if  ( col < [new-urows -  1) ) th en  

I new-TOW-ptrsycol +!]■<— newjrou'jptrs[col +  1] +  1; 
end  

end

/ *  ( ' u n i n l a t i \ < ‘ >iini t o  n( ' \v_ ro \v _ j) tr s [ ] * /

for ( 1 <  rou' < new jnrow s  ) do
neu'^row.ptrs[row] new^rou'jptrs[row] + neu'.row.ptrs[row -  1]; 

ro u ’_ o / /s e f s [ ro u ’] <— n e u ’_ ro u '_ p frs[ro u ']  ; /* (\>i)y to i-oir-o/Jst f.s[] */

end
* I n i t i a l i z e  I . o o k n p  1'al>lc (i f  rc i ii i ii 'cd) * /  

in i t ia l iz e _ lo o k u p _ t a b le  ( )
/ *  L o o | )  t l i n m n l i  cac l i  ' n e w  r o w '  * /

for ( 0 <  row < new -urou 's  ) do
for ( rou'.offsets[row] < x  < neu ’̂ rou'-ptrs[row  +  1] ) do

. * lake ont (‘lenient *
src jn z  no7i.zeros[x];
src.col  <— col-index es[x\. 
src-row  <— lookup_row_index( x  ); 
w h ile  ( src^col ^  row ) do

/* W h i l e  (‘IciiH'iit in  *sr< ' d o e s  n o t  Ix'ldUp, in o r ig i iu i i  T o w '  ( ’v( |e  C l i a s e  c h ' in e n f  ii)

■MV- V
dstjrow  ■<— src-col;
dstj€  row .offset s[dst -row]', /* S n '  s h o u l d  h e  a t  p o s i t i o n  ■<lst_x‘ in

(1st . r o w '  * /

/*  l a k e  o u t  t h o  cl(*inent at  <.ist_x' * /

d s t jn z  •<— jior]_2eros[dsf j:]; 
dst-col <— colAndexes\dstjc\\  
dst.row  •<— lookup_row_index( dst-X  );
/ *  P u t  t lie e h ' i n e n t  w e af<‘ c h a s i n g  ' s r c '  i n t o  d e s t i n a t i o n  s lo t ‘d s l ^ x l  * /

n o n - z e r o s [ d s t< r -  srcjnz-, 
colJndexes[dst-x] srcjrow,
/ *  I ’m  t h e  elen iP ii t  in  ' d i ' t ' in sic ' s o  w e  c a n  clui.se it n e x t  * /

src jn z  i— d s t j iz \  
src.col dst-Col\ 
src-Tow <— dst.row:

84

;*  Incrc inent  l oi i'-offaf tn] * /
row-offsets[dst-row]  ■<— row.offsets[dst-row]  +  1;

en d
/ *  I ’nt ' s rc ' in to  o r ig inal pos i t ion  'x ' in l l u ‘ 'r ow '  we s t a r t e d  w i th  * /

coLindexes[x\ src.row,
non-zeros[x\ <— srcjnz\

Space  X: T i m e  Efficient S pa rse  M a t r ix  T ra n s p o s e  

Free: M ^ r o w jp t r s \  M  -^row-ptrs newjrowjpirs\  Free: row-offsets]
end



4.3. In-Place Transpose with B inary Range Search

build the lookup tables and perform the lookup. The lookup_row _index() 

routine takes as argum ents; x  on line 23 and ds t . x  on hue 31. These are 

the positions in the m atrix  of the elements whose old^roivJndex  needs to 

be looked up.

T he following sections discuss how we can construct d a ta -s tru c tu res  

which are used by these routines in the Generic Transpose to  improve on 

the space and tim e complexity of the Sparse In-Place Transpose.

4.3 In-Place  Transpose with Binary Range 
Search

One option to find the r o w J n d e x  in the row.ptrs[] array is to scan through 

the array looking for the row where index ‘p ’ (the position of the element 

in the n nz  arrays) falls between the s ta rt ‘s ’ and end ‘e’ of th a t row. This 

would howev^er take 0{ri)  tim e and would potentially  need to  be done for 

every row index lookup for each of the niiz  elements we move, which would 

be completely infeasible.

A better alternative is to use a technique similar to Binary Search[Kuuth 98] 

we can search the  ro«'^pfr.s[] array  in Q{log{n)) tim e in order to  find ' x \  

the roiL'-index of the element at index 'p' .

4.3.1 B inary R ange Search

O ur modified binary  search algorithm , B inary Range Search, shown in 

Algorithm 4.2, is similar to the standard binary search in th a t it repeatedly 

bisects the  array to  find the  location of the  key. Unlike the  s tan d ard  

technicjue where one searches for key/value pairs which may or m ay not 

be in th e  array, all the  keys which we m ay search for (0 <  p <  nnz )  are 

“covered” in the roiV-pirs[]  array. We are looking for the position (index) in 

the  rou'.ptrs[] array which covers the range in which th a t key value falls. 

For instance, in the row.pt rs [ ]  array in Example (4.1), if we binary search 

for 10, the routine should return  4, given that:
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A L G O R I T H M  4 .2 ;  Index Lookup using Binary Range Search Algorithm 
Input: old.rou'-ptrs[]. oldjnrows. key  
O u tp ut: row-index

1 / *  i )rop  to  ^(‘(jiiciilial scart 'h  w hen  a r r a \  Icng ih  {hifjit -  l ow)  < '20 * /

2 L I M I T  < -  20 ;

/ *  Hillary  ^eal( ll  a r r a y  lic tweeii low' a n d  ’liigli ' * /

4 low <— 0;
5 high  •(— {old.nrows  -  1);

H / *  W'liile a r r a y  loiif>i'r tl ia ii LIMI 1" */

7 w h ile  ( (high — low) > L I M I T  ) do
8

9

10

11
12
13

14

m id  ■<— {low + high)/2 \  
i f  ( key < oldjrow4 >trs[mid\ ) th en  

I high •«— m id  — 1; 
end  
e lse  

I low ■<— mid\ 
end

15 end

ifi * D ro p  t o  ^t‘(|U(‘iitiai scan  at '1,1X11]'' - scainiinj^ u p w a rd s  from 'low' * /

17 w h ile  ( key  >  old-rowjptrs\low] ) do
1 8  I low <— low +  1;
19 en d
2 0  r e tu r n ( low — 1 ) ;  / *  in dex  is 1 below first e lement g re a te r  tl ia ii key ' * /

ro7t'_pfrs[4](8) <  10 <  roM’_p^rs[4 +  1](12)

The modified binary  range search shown in A lgorithm  4.2 uses the 

bisecting technique to  find the  location ‘x ’ of the  key in th e  rowjptrs\] 

array  such th a t  row-ptrs[x\  <  key < row.ptrs[x  +  1]. T he location 

‘x ’ is then  re tu rned  as the  r ow J nde x  of the  elem ent we are looking for. 

For efficiency, the  algorithm  drops to  a sequential scan below a certain  

L IM IT . This is in order to  improve branch prediction. Sequential search 

causes 0 { l )  branch mispredictions whereas binary search causes 0{log{n))  

b ranch  m ispredictions. T hus for sm aller values of n, sequential search 

is usually faster [Uht 97, Brodal 05, Kaligosi 06, Biggar 08b]. A range of 

values for l i m i t  were were tested; 4 ,8 ,16 , 20,32, etc. Here we have chosen 

an array length of 20 for l i m i t  as it gave a good average performance in our 

environment over a number of sample inputs -  other values may prove more
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4.3. In-Place Transpose with B inary Range Search

efficient on other platforms. The best choice for l i m i t  was not investigated 

in detail as the focus of the work was on the transpose algorithm rather than  

search optimisation. Improving this param eter would have little impact on 

the  overall perform ance of the Binary Range Search Transpose as the key 

lookup is O{log{n))  while we require 0(1) .

4.3.2 Cycle-Chasing Transpose w ith Binary Range 
Search

A lgorithm  4.3 shows the  in-place cycle chasing sparse m atrix  transpose 

with Binary Range Search. This algorithm is a modification of our Generic 

in-place transpose algorithm  (4.1) for use w ith the  B inary Range Search 

(Algorithm  4.2).

The Cycle Chasing B inary Range Search Transpose A lgorithm  (4.3) 

sim ply calls the  b in a ry _ ra n g e _ se a rc h ()  algorithm  on lines (21 and 29). 

T he binary search algorithm  does not require any tab le  initialization 

as it searches the  rou'.ptrs[] array directly. T he only argum ents re

quired l)y b in a ry _ ra n g e _ se a rc h ()  are the old.rou'.ptrs[] array, the length 

{old.nrou's) of the array  and the ' key = p’ we are searching for. T he 

range search algorithm  (4.2) will always return  a row index between 0 and 

o l d ju o u ' s  for any key; 0 <  key < nnz.  The algorithm s presented here 

assm ne th a t the  m atrix  is correct and valid. Input validation could be 

included in practice but should be separate from the transpose algorithm  

for efficiency.

Applying the  b inary  range search technique to  the  cycle chasing algo

rithm  results in the same ro w J n d e x  values as obtained from the expanded 

imp.rou'Jndexes[]  in the  Saad-IP  algorithm . Hence the  transpose w ith 

binary range search (Algorithms 4.3 and 4.2) and Saad-IP (Algorithm 3.3), 

perform the transpose operation using the exact same cycle chasing tran s

formations.

The Binary Range Search Transpose requires a to ta l of two additional 

arrays {new.rou' .ptrs[\  and row.of fsets[]  m entioned earlier) of size Q{n),  

which gives a to ta l m em ory com plexity of ^ { 2 n )  in order to  perform  the
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C hapter 4. Space Efficient In-Place  Sparse M atrix Transpose

A L G O R IT H M  4.3 : Sparse Tianspose v.’ith Binary Row Index Range Search 
Input: Matrix M  as in Data Structure 3.1
O u tp ut: Matrix M  containing in CSR. with: newjrou'jptrs\\ - new row pointers 

[cols+1]
/ *  A l l m a t i ’ .■\irav.'. I n i t i a l i z e d  I d  Z e r o  * /

Allocate: n e u ' jro w jp tr s [ n e w j iro w s + \\ \  Allocate: rou'-offsetslnew-nrowsY
j *  ( ' o u n t  m in i lK ' r  (tf f l c i n c i i t s  in (-acli n e w  c o l u n n i  - (tffset l)\" 1 * /

for ( 0 <  index < n n z  ) do  
col <— colJ.ndexes[index\\ 
if  ( col < (nrows  — 1) ) th en  

I new.rowjpirs[col +  1] <— new-rowjpirs\col  +  1] +  1; 
end

end

/* ( ' i n i i i i l a t i v c  .sum li> g e t  ne\v_i(nv_|)t rs[ ] * /

for ( 0 <  row < nrow s ) do
neu'_rou'_pfrs[roui] <— neu'-.rowjptrs[row] +  new-row.ptrs[row — 1]; 
row ̂ offset s[row] < r- newjrow-ptrs[row] ; / *  ('<>|)y t o  / o u -o Z /s i  7.s[] * /

end
/ *  l.iHip t l i i i in t ; h  ea i  li ' n e w  n i w '  * /

for ( 0 <  row < new jurow s  ) do
for ( row-offset s[row\ < x  < new-row-ptrs[row  +  1] ) do

/ *  Take  (lilt e l e in e n l  *

s r c j i z  <r- iion.zeros[x]', 
src-col colJnde.xes[x\\
srcjrow  •<— b inary„ran ge_search{ old .row.ptrs[].old^nrows. x  ); 
w h ile  ( src-col /  row  ) do

/ *  \Vliil«‘ in  ' s r c '  n o t  h c i o i i ^  in o r ig i n a l  ' r o w '  C y c h '  ( 'Iu im ' f‘U‘n ion t  in

■n h ' *

dstjrow  ■<— src-col:
dst-X  ■<- row .o ffse t  s[dst .row]; /* M' ' Nlunild he at poMtiou d.si .x' in
■(l l̂_|■(>w' * /

* 'I 'ak(‘ (Hit t h e  e l e m e n t  a t  ‘tiht_.x'  * /

d s t jn z  <— non.zeros[dstjx\\ 
dst.col <— colJ,ndexes[dstjc\\
dstjrow  <— b in a r y  _rcinge_search( old.row.ptrs[], old.nrows. dst  ̂  );
/ *  f ’nt t h e  w v  a r e  r l u t s i n g  ’s r c '  i n t o  (it>t Ina l ion  s lo t ( ls t_x '}  * /

no7^.zeros[dstjt] •<— srcjiz ' ,  
coLindexes[dst.x] <— srcjrow,
/ *  I ’nt t h e  e l e m e n t  in  ‘c l^ t ' in ‘m'c'  w e  c a n  ch i tse  it ne.xt * /

src jn z  ■<— dstjnz\  
src-Col dst-coi. 
srcjrow  <— dstjrow\

l i u r e m e n t  l a w . o f f s i l s ]  * /

row -offse t s[dst^row] <— row .o ffse t  s[dst .row] +  1;
end
/ *  P u t  ' s f c '  i n t o  o r ig i n a l  p o s i t i o n  ' x '  in t h e  T o w '  w e  s t a r t e d  w i t h  * /

colj7}dexes[x] ■«— srcjrow, 
non.zeros[x] <— src .nz;

end
Free: M ^ r o w - p t r s \  M ^ r o w j p t r s  newjrowjptrs\  Free: row-offsets \
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4.3. In-Place Transpose w ith B inary Range Search

transpose. Even w ith th is ex tra  storage requirem ent the  binary searcli 

variant only exhibits asym ptotic space complexity of 0 (n )  compared to the 

<d(nnz) required by Saad-IP, which can be a significant saving. This space 

saving does however come at a cost of an additional Q{log{n)) overhead in 

tim e complexity for every row index lookup, which occurs at every jum p in 

the cycle, giving us a to ta l tim e complexity of Q{nnz . log[n)).

There are a num ber of techniciues and algorithm s which could be used 

as im provem ents to  the  b inary  search. We could possibly use some type 

of Binary  Tree [And 62], BTree  [Bayer 70, Comer 79] or Trie [Willard 84, 

Sinha 04] to  reduce the  lookup tim e. How'ever these techniques would 

require additional structu res in addition to  the row.ptrs[]  array and may 

not be suitable for the “search modification” which we require (for all keys 

0 <  key < nnz  re tu rn  the  row in which the  key falls). In addition, 

these techniques still have an asym ptotic time complexity greater than  the 

direct lookup of Saad-IP  (A lgorithm  3.3). Hashing techniques [Knott 75] 

can considerably improve key lookup tim e however, hashes generally do 

not m aintain the order of the  keys, which is a feature we reciuire.

4.3.3 M emory Overhead of in-place Sparse M atrix  
Transpose w ith Binary Range Search

The memory usage of the Binary Range Search Transpose (Algorithm 4.3) 

com pared to  th a t of Saad (A lgorithm  3.3) is shown in Figure 4.1. The 

Transpose with Binary Range Search algorithm clearly requires less memory 

overhead for all input m atrices and indeed requires considerably less for a 

m ajority  of matrices.

On average, the in-place transpose with B inary Range Search requires 

a mem ory overhead of just 14% of th a t of Saad, w ith the  m ajority  of the 

input m atrices requiring even less th an  this. A handful of m atrices in 

the  test su ite  have a very low' sparsity  p a tte rn  wdth very low' num bers of 

non_zero elements in each row. This means that the number of row's {n) for 

these few matrices is much closer in size to the number of non_zeros {nnz). 

These handful of m atrices pull up the average relative overhead overall as
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Binary S earch  vs. S aad-IP  - -  Memory O verhead  of Algorithm [Relative]
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Figure 4.1: M emory overliead of the Binary R ange Search transpose algorithm

com pared to the Saad-IP  algorithm . T he new algorithm  requires considerably les.s 

memory than Saad. just 14% on average w ith most inputs requiring even less.

the ro'duced 0(?)) space complexity is less beneficial for these matrices.

4.3 .4  A lgorithm  E xecution  T im e of in-place Sparse  

M atrix  Transpose w ith  B inary R ange Search

Figure 4.2 shows the execution time of the Binary Range Search algorithm 

couipared to  th e  execution tim e of Saad. The B inary Search algorithm  

jjerform s ra ther poorly comj)ared to  Saad, taking over twice as long as 

Saad on average to transpose the matrices in the test suite. The additional 

( - ) ( / o g ( 7 ? ) )  complexity added to  every row index lookup, pushing the  tim e 

complexity to B { n n z  . log{n)) overall causes the execution time performance 

to deteriorate drastically.

The Binary Range Search Transpose Algorithm is the in-j)lace transpose 

algorithm  w ith the  m inim um  m em ory overhead (w ithout m odifying the  

m atrix  s truc tu re) th a t  we can have. It uses ju st 14% of the  m em ory 

overhead of Saad. T he increase in tim e com plexity is very costly. This 

runtim e may be an acceptable trade-off in very isolated instances if sufficient

Legend 
Saad-IP  

Binary S earch  
Average: 14.0%

* 1. k
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B inary  S e a r c h  v s . S a a d - IP  - -  (S e ria l)  Executior^ T im e  of T ra n s p o s e  (R elative]
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F ig u r e  4.2: Algorithm Execution rime of Binary Range Searcli Transpose relative 
to the Saad algorithm. The Binary Range Search algorithm is clearly slower with the 
Q{nnz . log(n))  time complexity apparent.

memory is not available to  use the Saad algorithm.

The next section describes an algorithm  th a t  uses slightly more addi

tional memory to  reduce this runtim e overhead while m aintaining the 0 (n )  

space complexity in memory overhead.

4.4 In-Place  Sparse M atrix Transpose with  
Radix Lookup Table

One technique which can improve the runtim e perform ance of the  binary 

search transpose algorithm is to use a radix lookup table to  give a shortcut 

index into the  rou'-ptrs[] array. T he Q{log{n))  b inary searches of the 

rou'.pirs[] array can be reduced, or in m any cases avoided using th is 

shortcu t. A lthough using the  radix tab le  does not help asym ptotically  

(there is still a non constant lookup tim e in the worst case), in practice the 

lookup tab le  exhibits a much faster runtim e th an  the basic binary search. 

We build a radix lookup tab le  (an associative array) indexing into

L e o e n d  
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roiv^ptrs[]. For each key ‘p ’ (Wliere: 0 <  p <  nnz)  we right shift the  key 

by radix-.offset  bits and thus the most significant ‘A’’ bits of the key ‘p ’ are 

used as indices into the radix table. In tu rn , the values in the radix table 

provide us with the index into roiL'.ptrs[] which is (ideally) the index of. or 

index just below, the r o w J n d e x  we are looking for. As such, with a single 

lookup, the radix tab le  gives us a shortcu t into the  r ow .p i r s [ \  array at a 

position close to  the key we are searching for.

4.4.1 Building the Radix Table

Algorithm 4.4 shows the b u ild ^ ra d ix  () algorithm which is used to initialize 

the  radix lookup table.

A lthough th e  keys th a t will be searched for in the  radix tab le  are 

in the  range 0 <  key < nnz  we do not want to  have a lookup tab le  

th a t is proi)ortional to  Q{nnz) .  We want to  keep our mem ory overhead 

proportional to  0(?i). In order to  facilitate th is we create a radix tab le  

proportional to  0 (n )  by creating a radix table of size: the power of 2 just  

less than or equal to n. i.e.

table.size =

We choose a radix .o f fs e t  by which to  shift the keys such th a t they  fit in 

the range:

0 <  {key »  radix .of fse t)  < tab le s i ze

This has the disadvantage th a t a small proportion of the radixJable  may 

be left empty. In retrospect, using:

radix Jable .s ize  =  n n z  »  radix .o f fse t

where the offset is chosen to give a table size proportional to  Q{n)  would 

have given a more appropriate table size.

Using a table size of 0 (n )  m aintains the to tal space complexity of 0 (n ) , 

how'ever it increases the  memory overhead by 50% over the B inary Range
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Search Transpose. It is also valuable to know if using smaller table sizes 

proportional to ^ or |  w'ould be of benefit to performance. Thus the 

b u ild _ ra d ix ()  algorithm (4.4) also takes a len.mod  parameter which adds 

to or subtracts from the power-of-two of the size of the radix table. Hence 

halving or doubling the size of the table each time as appropriate.

Take, for example a matrix with n =  321,826 rows; [^o<72(321,826)J =  18 

and 2̂ ® =  262,144, therefore for this m atrix a radix table size of 262,144 

is 0(ri). Similarly, using the ''len.Jiiod' param eter we could choose radix 

table sizes proportional to the number of row's, n, for this 321,826 row 

matrix as follow’s:

[log2n\ -  2 ~(" /4 ) = 216 _ 65,536

[log-iv] -  1 -> ~(" /2 ) = 2*7 = 131,072

[log2n\ -1- 0 -> ~ (n ) = 218 ^ 262,144
[log2n\ +  1 ->■ ~(2r?) = 219 ^ 524,288
[hg2n\ -1- 2 -> ~(4n) = 2‘20 _ 1,048,576

The algorithm first (lines 3-5) determines the nmnber of bits required to 

store the largest row .index  and the largest non-zero array  index. Using 
these, along with the leu-mod radix size modifier, the algorithm determines 
(lines 7-20) the parameters for the radix table: radix Jen  — the size of the 
radix table in bits, r a d i x s i z e  — the size of the radix table in bytes and 

radix-offset  — the offset in bits that keys will be shifted. The radix table 
is built (lines 24-29) by scanning backwards through the old.roiL'.ptrs[] 

array, each of the radix keys are generated by right shifting the pointer 

index from the roiV-ptrs[] array by radix.offset  bits. The table is filled in 
reverse so that it contains the first index in rou'^ptrs[] which produces the 

radix key k. Lines 31-35 then scan forward through the radix table to fill 

in any holes that may be present.

As ŵ e scan backwards through the row.ptrs[]  array we fill the radix 

table with the values (5 ,4 ,2 ,0) corresponding to rows (5,4, 2,0) respectively. 

This gives the radix table as shows in Example 4.3.
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A L G O R IT H M  4.4: Build Radix Lookup Table 
Input: oldjnrows. old-rowjptrs[\, l e n jn o d  
O u tp ut: radixJahle[\.  rad ix .o f fse t

'* 1 )<*t('niiine size of radix tahlo and offset */

row-bits <— log'2{oldjirows)\
nzJbits  ■<— log2{oldjrou'-ptrs[oldjnrows])\
diff-b its  ■«— { n z M ts  — row M s)- ,

j*  Ctiaiige ex])(inciil of 2 hv I f  n . inod  lor radix length of ~  2^ hn.mml  2* * /

if  ( ( r o w M ts  + lenjinod  ) <  0 ) th en
r a d i X - O f f s e t  <— 7\Z-biis ;  /*  Size of radix tal>le would l>e loo Miiall */

radix  J e n  <- 1;
end
else

if  ( diff-b its  < lenjm od  ) th en
r a d i X - O f f s e t  <— 0: /*  Size of radix olfsel would he loo hig * /

r a d i x J e n  ■<— { n z J b i t s  +  1);

end
else

radix-o ffse t ^  {diff-bits — leri-mod); 
rad ixden  •«— {row-bits  +  1 +  leri-mod);

end
en d

/*  Alloeate lahle * /

Allocate: rad ix - tab le \rad ixs ize  +  1];

I'ill radix table in reverse m> tlie tai)le contains the lowest ro» _/>/r.s[ ] 'index' corresponding to kev'

*!
for ( old-nrou's  >  i >  0 ) do

key  ■<— oldjrowjptrs[i]  »  radix-offset;  
radix-table[key] <— i\

en d
radix-table[0] 0;
rad ix -tab le[rad ixs ize  +  1] <— {old-iirows — 1);

* I-ill in lioles in the radix tahle - Scan and rej)lace zero with previous index */

for ( 1 <  i <  radix-s ize  ) do
if  ( radix-table[i] =  0 ) th en

] radix-table[i] ■<— radix-table[i — 1]; 
end

end

4.4.2 R adix Table Lookup

T he lookup_row _index() routine for the radix table lookup is shown in 

Algorithm 4.5. Firstly, the key is right shifted by radix -o ff se t  bits in order 

to lookup the radix table and get the shortcut index, into the row-ptrs[ ]
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4.4. In-Place Sparse Transpose with Radix Lookup Table

Taking our running example from Examples 1.1 and 4.1, the radix table is 
built as follows:

Row: 5 —> 12 »  2 = 3  —> radix\i\ ■«— 5
Row: 4 —̂ 10 »  2 = 2  —> radix[2] 4
Row: 2 —> 5 » 2  = 1  radix\l] <— 2
Row: 0 —> 0 » 2  = 0  radix[0] <— 0

Exam ple 4.2: Building the Radix Table (in reverse)

rad ix_ tab le  =  Oq 2i 4o 64 

old_row_ptrs =  Oq 2 i  8 2  ?3 IO 4  I 2 5  1 5

Exam ple 4.3: Radix Table for M atrix M

A L G O R IT H M  4.5: Index Lookup using a Radix Lookup Table
Inp u t :  radix-table, radix-offset.  oIdjrou'jptrs[\. key 
O u tp u t :  rou'Jndex  
X (key »  radix-offset)\  
i <— radixJahle[x\\
while ( key > old.rou'jptrs[i] ) do 

?■<— ! +  1;

end

/ *  K ey  is a t o /d _ ro ti'_ p frs[] a t  in d e x  i or g r e a te r  * /  

r e t u r n  ( ? — 1 );

array. Taking th is sho rtcu t, the  algorithm  then  s ta r ts  scanning through  

the  row.ptrs[] array  from th a t  position, im til it finds a value g reater 

than  key.  The r o w J n d e x  is the index just before this first location in the 

array  wdiere row-pirs[i\  >  key,  hence we re tu rn  the value (i — 1) as the  

rotL' J u d e x .

E xam ple (4.3), shows th e  radix tab le  {radixJahle[])  indexing into 

the  row-ptrs[] array  for our running exam ple m atrix  M  from E xam 

ples (1.1 and 4.1). Suppose we are given a key p =  6 and we want to  

look up the  row index in the  old-:roiL'-pfrs[] array. We first right-shift ‘/j' 

by radix-of fset ,  in th is case radix .o f fse t  = 2, which gives us i = 1, the  

index into radixJable.  Next, radixJable[i  =  1] =  2 gives us the index into
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th e  roiu.ptrs[]  a rray  w hich is below^ th e  r o w J n d e x  we are  search ing  for.

We s ta r t  scan n in g  th ro u g h  th e  a rray  from  row^pfrs[ i  =  2] =  5. T h e  nex t 

location is row.p tr s[ i  =  3] =  7, th is  is >  ke y  = 6 hence we stop  scanning 

and  re tu rn  (i — 1) =  (3 -  2) =  (2) w'hich is th e  r o w J n d e x  of th e  elem ent 

a t location  6.

4.4.3 Cycle Chasing Transpose w ith Radix Table Lookup

T h e  C ycle C h asin g  T ran sp o se  w ith  R ad ix  T ab le  L ookup  (A lgorithm  4.6) 

is s im ilar to  th e  G eneric  in -p lace a lg o rith m  (4.1). T h e re  is a call to  

b u i ld _ r a d ix _ ta b l e ( )  (A lg o rith m  4.4) on hue 16 to  b u ild  th e  rad ix  ta 

ble, w hich passes as a rg u m en ts  old^nrows,  o ld.row.ptrs[]  an d  lenjmo d.

T his re tu rn s  th e  radixJable[]  an d  rad ix^o f f se t .  O n lines 23 an d  31 th e  

rad ix  Jable[]  is used to  lookup the  row index by calling ra d ix _ lo o k u p  () (Al

go rith m  4.5) w ith  p aram ete rs ; radixJable[] ,  r a d i x . o f f s e t ,  old^row-ptrs[]  

and  X as th e  lookuj) key on line 23 and  dst -X  as th e  key on line 31.

S im ilar to  th e  b inary  search, th e  rad ix  search needs two 0 ( n )  sized ar

rays for storing  th e  7ieiL'.rou'-ptrs[] and  rou'^offsets[]  indices. It also needs 

a radixJable[]  which is of sim ilar size to  th e  rou' .p trs[]  array: our experi

m ents have shown th a t a rad ix  tab le  of size abou t "/2 gives a good trade-off 

betw een m em ory overhead and  perform ance (see Sections 4.4.4 and  4.4.5).

T h e  R adix  T able approach  requires slightly  m ore m em ory th a n  b inary  

search  (roughly  ~ ( 2 n  -|- for R ad ix  co m p ared  to  ~ (2 n )  for B inary) 

however th e  asy m p to tic  space com plexity  is still of o rder

Technically th e  R ad ix  T able lookup algorithm  could have a w orst case 

perform ance of 0{7i)  for m atrices which are particu la rly  degenerate , wdiich 

is a c tu a lly  a  w'orse com plex ity  th a n  th e  B inary  R an g e  Search m eth o d . 

How'ever, in p ra c tice  th e  R ad ix  L ookup  tech n iq u e  perfo rm s m uch b e t te r  

th an  th e  B inary  Search m eth o d  as can  be seen from  F igure 4.3 below.

T he num ber of elem ents scanned during  lookups w hen transposing  each 

m atrix  w ith  a  rad ix  tab le  size of "A were counted and  averaged. T h e  inpu t 

m atrix  w ith  th e  h ighest average scan length  had an  average scan leng th  of 

2.46 elem ents, all o ther m atrices had  lower averages. T his m eans th a t  m ost
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4.4. In-Place Sparse Transpose with Radix Lookup Table

Allocate: row .o ffse ts lneu’-rirows]:

A L G O R IT H M  4 .6 :  Sparse Transpose with Radix Table Roŵ  Index Lookup 
I n p u t:  M atrix A/  as in D ata S tructure 3.1
O u tp u t :  M atrix A/ containing A /^  in CSR. with: neu'-rou'-ptrs[] - new row pointers 

[cols+1]

/ *  A l l o c a t e  A ^ r a y ^  I n i t i a l i z e d  t o  Z e r o  * /

Allocate: new-rou'-ptrs[neu'.nrows  +  1];

* ( \ ) \ i n t  i n n n h e r  o f  el( ‘ni(' ii1> in  e a i  h n e w  co lu ii i ii  - of fset  In  1 * /

for ( 0 < index  < n n z  ) do  
col coLindeies[index]',  
i f  ( col < (nrows  — 1) ) th en  

I new-row-ptrs[col  +  1] neu:.rowjptrs[col +  1] +  1; 
end  

en d
* ( ' u i n u l a t i v e  Mini t o  g( 't ne \v_ro\v_j) t rs[]  * /

for ( 0 <  row < nrow s ) do
I new.row.ptrs[row\ <— new-rowjptrs[row] + new jrow jptrs\row  — 1];
I row-ofJsets\row] new -TO W -p trs[row ] \ /* Coin-i(] */

en d

/ *  l i i i t i i i l iz c  lia d i.x  L o o k u p  T a b le  * /

[radixJable[],radix-o}fset)  <—
build^radix_table( old.nrows, old-row-ptrs[], len-inod )

* L o o p  t h r o u g h  e a c h  ’n e w  r o w '  * ‘

for ( 0 <  row < new jnrow s  ) do
for ( r o w . o f f s e t s [ r o w \  < x  < n e w ^ r o w - p t r s [ r o w  +  1] ) do

* T a k e  o u l  e l e m e n t  *

s r c j i z  •<— non-zeros[x\\  
src-col coLindexes[x\:
src^row  <— radix_lookup(rarf?jJaW e[ ]. radix-offse t.  old-row-ptrs[], x); 
w h ile  ( src-col ^  row  ) do

/ * W h i l e  e l e m e n t  in  ' s r e  d o e ^  n o t  b e l o n g  in  o i ' i f ; i n a l  T o w  ( ' y e l e  C l i a ^ e  e l e m e n t  i n

■m t ' */
d s t . r o w  <— src-col:
d s t - X  <— r o w - o f f s e t  s[ds t -row ];  *  ■-re '  > h o u l ( l  b e  a t  p o ^ i t i o n  d ^ t - x '  in

c lh t _ r o w '  *

/ *  Take o u l th e  e le m e n t a t 'cl> t_.\' * /

dst-T iz 4- n o n -ze ro s[d s t-x ] - ,  
d s t - c o l -f- c o l - in d e x e s \d s t - x ] \  
d s t - r o w  <—
radix_lookup( rad ix  Jable[], rad ix-o ffse t,  old-row -ptrs[\. dst -X  );

I ' \ i t  t h e e l e n j e n t  w e  ai  e t ha.s inj ; s r c '  int o  <lest in a t  io n  j' lot ( l s t_ x ' )  * /

fio«-5eros[ds^-r] s r c j i z \  
colJ.ndexes[dst-x] •<— src-row;
' *  I ’m  t h e  e l e m e n t  i n  <l sl '  in 'M 'e '  mi w e  e a n  elia.- .e it n i 'x t  * /

s r c - n z  <— dst-7'tz', 
s r c -c o l  <— dst-co l;  
s r c - r o w  <— d s t - v o w ;

/ *  I n e ie m e n t  rin i-o f f. ' i ct .s]  * /

row-offsets[dst-row]  •<— row-offsets[dstjrow]  +  1;
end

* P u t  s r c '  i n t o  o r i g i n a l  p o s i t i o n  ' x '  i n  t h e  T o w '  w e  > t a r t ( ' d  w i t h  * /

col-indexes[x] <— src-row\
C iw gfe>e£9>»9,sl[;pf\« ij:sB f(of)© [ib lin , T r in i ty  C o lle g e  9ober

end
Free: AI-^row-ptrs; A l^ r o w - p t r s  *r- new-row-ptr.% Free: row-offscts;

end
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keys were found after scanning 3 elements or less, which are likely to all be 
read in together in a single cache line. W hen the algorithm accesses the 

first element, in the majority of cases the elements following that element 

in the arrays will also be brought into the cache. Certainly in the majority 

of cases all these lookup scans will be completed by just reading a single 

cache line from memory.

It would be possible to use a binary search instead of the sequential 
scan in the radix lookup. This would give a guaranteed worse case lookup 
of 0[log{n)).  However this would introduce more branches and random 

array look ups into the algorithm and in practice the (short) sequential 
scan performs better.

Hence, with the radix lookup we do not have a good worst case perfor
mance complexity, however for the general case, and for the matrices in our 

experiments, the radix lookup performs very well with a memory overhead 
of just Q{n).

4 .4 .4  M em ory U sage o f R adix  Lookup Table Trans

pose

The memory usage of the Radix Lookup Transpose (Algorithm 4.6) com
pared to that of Saad (Algorithm 3.3) is shown in Figure 4.3. The graph 
shows the memory usage of the Radix Table Lookup Transpose with a 
radix table of size "/2 . The algorithm requires less memory overhead for 
all input matrices and indeed requires considerably less for a majority of 

matrices. On average the Radix Table ” /2  Transpose requires just 16% 
of the memory overhead of Saad. Comparing to Figure 4.1 shows tha t 
the Radix Table Lookup algorithm requires roughly 25% more additional 

memory than Binary Range Search.

For the graph in Figure 4.3 we have chose a Radix Table size of " /2  as 

this table size was shown from experim entation to give a good trade-off 
between memory overhead and runtime performance. Figures 4.4 and 4.5 

show the memory usage of the Transpose with Radix Table Lookup with 

table sizes ”/i6, "/s, "/4, n, 2n, 4n, 8n and 16r?. For the smaller table sizes.
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less m em ory th a n  Saad w ith  an average o f 16% o f Saad . M ost in p u ts require even  less  

th an  this.

"/i6 anti "/s the m em ory usage is very close to  th a t of the  B inary Range 

Search Transpose. As the  tab le  size increases, the  m em ory overhead for 

some of the matrices s tarts  to approach (and surpass) the memory required 

for Saad. For the larger table sizes, 4t?. 8n and 16n . the overhead for some 

of the input m atrices s ta rts  becoming considerably larger th an  Saad.

4.4.5 Execution Tim e of Radix Lookup Table Trans
pose

Figure 4.6 shows the  execution tim e of the  R adix Search (”/ 2) algorithm  

comj)ared to  the  execution tim e of Saad. T he Radix Search algorithm  

shows runtim e results which are com parable w ith Saad. These results are 

w ith m em ory overheads th a t  are asym ptotically  less (0 (n )  vs. Q{nnz) )  

than  Saad and much less in j)ractice for most inputs, 16% on average.

W ith  a tab le  size of about ” /2  the  average runtim e of th e  radix tab le  
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R adix  T a b le  n '2  v s . S a a d - !P  - -  (S eria l) E x ecu tio n  T im e of T ra n s p o s e  (R elative]
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F igure  4.6: A lg o r ith m  runtim e o f  (”/ 2) R ad ix  T ab le  L ookup T ran sp ose  com pared  

w ith  th e  S aad  a lg orith m . (”/ 2) R ad ix  is very  m uch com p arab le  w ith  S aad  w ith  an 

overall runtim e o f 98% on average. R adix 'I’able is slightly  slower in som e cases but also 

noticeab ly  faster in a few cases.

the  test .snite.

F igures 4.7 and 4.8 show the  runtim e of the  Sparse Transpose w ith  RacUx 

Table lookup for different table sizes of "/i6, "/s, ”/i, n, 2n, An, 8n and 16??. 

For sm aller tab le  sizes "/i6 and  "/s th e  n m tim e  of th e  R ad ix  T ranspose  is 

worse th an  Saad at 120% and 109% respectively. As the  tab le  size increases 

to  a size p ro p o rtio n a l to  n  th e  perfo rm ance im proves. How^ever for th e  

larger tab le  sizes of 8n and  16r? th e  perform ance de terio ra tes again as the  

larger rad ix  tab les cause m ore cache misses.

T able sizes n, 2n an d  4?? have sligh tly  b e t te r  perfo rm ance  th a n  " /2 , 

however th is comes a t higher m em ory usages, w ith  th e  m em ory overhead 

for R ad ix  T ranspose app roach ing  th a t  of S aad , even su rp assin g  it for 2n 

and An for som e m atrices.

As such, a tab le  size of ab o u t " /2  is recom m ended as giving reasonable 

perform ance for reasonable m em ory usage (which is still 0 ( n ) ) .

S a a d -IP  

R ad ix  T a b le  n '2  

A v e ra g e : 9 8 .6 %
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4.5. Ensuring In-Row Ordering

4.5 Ensuring In-Row Ordering

O ur in-place cycle-chasing transpose algorithm  moves elem ents to  the 

correct transposed row of the m atrix in-place with {0{n))  additional storage. 

However, ju st like the  Saad in-place algorithm  (3.3), due to  the  way the 

elements are moved during the cycle-chasing, the elements do not necessarily 

end up in their correct position w ithin each row in term s of column index 

order. A side benefit of the way the OOP algorithm (3.2) copies elements is 

th a t they autom atically end up in their correct position in the transposed 

row'.

In some cases we do not require elem ents to  be in their correct order 

in the rows, however in m ost cases it is required or a t least preferred. 

Therefore, for all th e  in-place algorithm s we include an additional step 

which sorts elem ents into their correct order in the  transposed  row's. To 

give a balanced representation, the runtim e for this additional sorting phase 

is included in the to tal runtim e presented in all the results in this document 

(except where noted).

Thus the full in-place transj^ose procedure is as follows: In Phase-I. one 

of the  iu-place cycle chasing algorithm s is used to  move elem ents to  their 

correct rows in the  transposed  m atrix . In Phase-II, the  elem ents in each 

individual row are rearranged to ensure th a t they  are in column order.

4,5.1 Sorting Rows w ith Two Array QuickSort

We can ensure th a t the  elem ents in the  m atrix  are in their correct or

der w ithin each row by sorting the  values in the  two non-zeros[]  and 

coIJndexes[]  arrays together at the same tim e based on the values in the 

colJndexes[]  array- O ur algorithm  for th is post-sorting  pass is shown in 

Algoritlmi 4.7, it uses a technique based on QuickSort [Hoare 61, Hoare 62, 

K nuth 98] to sort two arrays based on the  contents of one.

Algorithm 4.7 takes as input the two arrays: non.zeros[]  and colJridexes[] 

along with two integers l e f i  and right  to  delimit the  section (row) of the 

arrays to sort. We use a median of  three to select the pivot. Elements in the
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Chapter 4. Space Efficient In-Place Sparse Matrix Transpose

ALG O RITH M  4.7: Two Array QuickSort (Median of Three)
Input: Unsorted Row in: co/s[], ra/s[]. l e f t ,  right
O u tp ut: The Sorted Row. with: ro/s[] and i'nVs[] sorted by cols[]

/ *  S(‘t t h e  [S o r t  li in il a n d  set  t h e  in i t i a l  j)(>>iti(>n> o f  iii(i«‘x<’s / an<l r  a t It f i  a i u i  rKj h i  * /

LIMIT 32; 

r ■<— right\

Q ii i ik S o r l  if a r r a y  l eng th  i;- {^reatei- t h a n  L I M I T  * /  

if  ( right  > { le f t  + L I M I T )  ) th en
. * Kiiiil 111!' iiikl-poiiit o f  Ihc  a r r a y  *

midd  •<— ( { le f t  + right)  /  2 );

/ *  F ind  m ed ia n  o f  t h e  tln 'ee e le lnent^  at h  f t .  n n d d  a n d  l ifilii a n d  >\vap t h e m  mi t h a t  t h e y  a re  

m - o r d v T  * /

if  { cols[ l e f t  ] >  cols[ midd  ] ) th en
exchange{  co/s[], i'a/s[], l e f t ,  m idd  ); 
if  ( co/s[ l e f t  ] >  cols[ right  — 1 ] ) th en
exchange{  co/s[], ra/s[], l e f t ,  { r i g h t — 1) );
i f  ( coZs[ m idd  ] > co/s[ right  -  1 ] ) th en
exchange{  co/s[], ra/s[], midd.  {right — 1) );

* I ’lit t h e  v a l u e  in t h e  n<f h t  p o s i t i o n  *

exchange{ cols, vals,  midd.  r ight  );
/ *  r ii i>  n u ’d i a n  v a l u e  in r i f f h l  is o u r  p iv o t  * /

pivot <— cols[right];
* S e a r c l i  tin* a r r a y  f r o m  left a n d  riftht for v a h u ' s  t h a t  a r e  It s s  t h a n  a n d  i j r a i i f r  t h a n  t h e  p iv o t  * /

w h ile  ( t rue  ) do
w h ile  ( c o / s [  + + /  ] <  pivot  ) d o noop: / *  Du n o th in g  in Idop * ;

w h ile  ( pivot < cols[ — r ] ) d o  noop-,
* If t h e  t w o  [ ) () in ters  h a v e  o v e r l a p p « ‘d .  t h ( ‘ a r r a v  is p a r t i t i o n e d  - h n - a k  o u t  o f  l o o p  * /

if  ( /  >  r ) th e n  break;
/ *  O t l ie rw ise  exc l iange  th e  e le m en ts  * /

exchange{  coZs[], ra/s[], I. r );
end

/*  I 'n t  th e  p i v o t  h ack  in pos i t ion  - 7 ' is an  e lement  w i th  a eol tm ni  index  g reate i'  t h a n  pi t ' o t  * /

exchange{  co/s[], i'a/s[], /, right  );

/ *  Arra\- ha s  been  p a r t i t i o n e d  - Heenrsive ly  eal l qn ieksor t  on  each of  t h e  p a r t i t io n s .  * /

tu'0-array-quicksort{  co/s[], ra/s[], l e f t ,  {I — 1) ); 
two-array-quicksort{  ro/s[], ra/s[], {I +  1), right  );

en d  
e lse

/ *  OthtM'wise. if t h e  a r ra \ '  is s h o r te r  t ln m  L IM IT ,  nse Inse r t ion  Sor t to  sort ih t'  arrf iy * /

two-arrayJsort {  co/s[], ra/s[], l e f t ,  r ight  );
en d
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two arrays are sw apped using the  exchcLnge(co/s[], a, b) m acro. T he

Q u ick so rt a lgo rithm  p a r titio n s  th e  arrays and  recursively calls itself un til 

th e  a rray  leng th  is below l i m i t  a t which point it sw itches to  InsertionS ort 

for efficiency. From  brief ex p e rim en ta tio n  a l i m i t  of 32 was chosen for the  

po in t th e  a lg o rith m  drops to  In se rtio n S o rt, o th e r values m ay w'ork b e tte r  

on o th er system s.

4.5.2 Sorting Sub-Rows with Two Array Insertion  

Sort

In se rtio n  Soi't generally  m akes m ore com parisons an d  m oves e lem en ts a

greater num ber of tim es th a n  Q uickSort. However when working w ith  very

sm all a rray s  In se rtio n S o rt is m ore efficient as it has m uch fewer b ran ch

m isp red ic tio n s [Brodal 05, B iggar 08b]. Also, th e  sh o rt a rray s  a re  in th e

cache an d  it can  do  th e  com parisons an d  m oves very  quickly. C alling

In se rtio n S o rt for sm all a rray s also reduces th e  n u m b er of recursive calls

th a t  need b e  m ad e  to  Q u ickS ort, th u s  reducing  th e  n u m b er of func tion

c a lk  and  th e  size of th e  c a lls ta c k . c * i ■ i(.)ur nnp lem en tation  of Ih e  Iw o  A rray InsertionSort a lgorithm  is siiow

in A lg o rith m  4.8. In se rtio n  Sort tak es  th e  sam e a rg u m en ts  as Q uickS ort,

th e  tw o m a tr ix  a rray s  nor?_2 eros[] and  th e  coLi jidexes[]  th a t  we w ish to

so rt along w ith  tw o integers; l e f t  and  r igh t  w'hich delim it th e  location  of

th e  p a r titio n  in th e  tw o arrays th a t  needs to  be  sorted .

4.5.3 Execution Tim e of Sorting

F ig u re  4.9 show s th e  to ta l  execu tion  tim e for each m a tr ix  for perfo rm ing  

the  Saad in-place cycle-chasing transpose  followed by th e  post sorting  phase 

of th e  a lgorithm . T h is g rap h  shows th e  cycle chasing and  so rtin g  ru n tim e 

w hen perform ing th e  transpose  w ith  th e  Saad algorithm . O th er algorithm s 

show  a sim ilar graph.

T he g raph  uses a stacked area graph  to  show the  differences in run tim e 

b etw een  th e  S aad  cycle chasing  p h ase  an d  th e  so rtin g  phase . T h e  x-axis  

has no scale, it is ju s t the  m atrices listed one after the  o th er w ith  constan t
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A L G O R I T H M  4 .8 :  Tw o Array InsertionSort
Input: Uiisorted Row in: co/s[], i'a/s[], l e f t ,  r ight  
O utput: The Sorted Row. with: cols[\  and ra/s[] sorted by co/s[]

1 / *  Loop th ro u g h  th e  a r r a y s  * /

2 for ( { l e f t  +  1) <  ? <  r ight  ) do
/ *  II wv  tind a  col iiul(*x wit li a lower \alvu' th a n  tlie iiidf'x p ro t f cc h n g  it * /

if  ( co/s[ i ] <  cols[ i -  1 ] ) th en
/ *  Take th e  curren t  el(*nient o u t .  a n d  put th e  prev ious  eleuieut in itV p l a t e  * /

6 cur^col <— cols[ i ];
r curjval  ■<— ra/s[ i ];
8 cols[ i ] <— cols[ i — 1 ];
9 t'a/s[ i ] <— vals[  i — 1 ];

/ *  Scan ha<k\var(l> unti l we find an e lement g re a te r  t h a n  th e  curren t  e lement or reach  end 

of arra>’ * /

11
1 2  w h ile  ( (j >  l e f t )  (cut-CoI <  cois[ (j — 1) ]) ) do
13 /*  Shift each  previous  e lement a long  one  place tt> th e  right * /

14 cols[ j  ] cols[ j  — 1 ];
15 vals[  j  ] vals[  j  — 1 ];
16 i  <- ( i  -  1 );
17 end

* f-'inallv. pu t  th e  c urren t  e lement at th a t  loca t ion  */

19 co/s[ j  ] i -  cur.col\
2 0  vals[ j  ] <— curjval \
21 end

'* C o n t in u e  S ca im ing  th rn u g h  th e  a r ra y  * /

end

w idth in order of m atrix  size (nnz) .  The y-axts show's the runtim e of the 

algorithm  in nanoseconds per non-zero m atrix  element. This runtim e per 

element is found by taking both the total cycle chasing algorithm runtim e 

and the  to ta l sort tim e for each m atrix  and dividing th a t tim e by the 

nm nber of elements in the m atrix  (nnz).

Figure 4.9 shows th a t the  cycle chasing algorithm  takes by far the  

m ajority  of the to ta l runtim e. W ith  the  sort-tim e accounting for ju st a 

small proportion of the to tal runtime. For a small number of m atrices the 

sorting phase does take a slightly larger proportion of the runtime, how'ever, 

overall the execution tim e of the cycle chasing is dominant.

The Saad Algorithm (3.3) from the previous chapter, the Binary Range 

Search Algorithm (4.3) and Radix Table Search Algorithm (4.6) from this
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Sort S tacked  Saad-IP  - -  (Serial) Execution Time of T ranspose
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Figure 4.9: Sort Tim e stacked on top of Algorithm  Tim e

chapter along with the Corresponding Row Algorithm (5.3) presented in 
the next chapter, all do the same cycle-chasing element movements for each 
input matrix. Thus the sorting step has the exact same input and performs 
the exact same sorting operations, taking almost exactly the same time in 

each case. The only difference in to tal runtime between the algorithms is 
in the time for the cycle-chasing transpose.

Section 7.1 will investigate methods to improve the runtime performance 
of the sorting phase.

4.5,4 Runtim e C om plexity of Sorting Phase

After transposing the m atrix with the cycle chasing transpose the Two 
Array QuickSort/InsertionSort algorithm is used to sort the rows of the 

matrix so that they are in colunm order within the row's.

The sorting algorithm is called 0{n)  times in total, once for each of 

the (n) row's in the matrix. The average number of elements per row" 
(22^). The maxinunn number of elements in any row is bounded by 

(n). Sorting a row of (n) elements with QuickSort is 0{n . log{n)). The 

worst case complexity occurs when the rows being sorted each contain (n)
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vahies. T h ere  can  be  ( ^ )  such rows, th ere fo re  th e  overall com plex ity  is 

0 { ^  . n . log{n)) .  T h is  gives ou r w orst case com plex ity  for so rtin g  th e  

m a trix  as 0 { m i z  . log{n)).

4.6 Conclusion

B oth  the  b inary  search and rad ix  search m ethods of in place sparse transpose 

reduce th e  m em ory  overhead to  0 ( n ) .

T he Sparse Cycle C hasing T ranspose w ith  B inary  R ange Lookup Algo

rith m  (4.3) tran sp o ses  th e  m a trix  w ith  th e  least m em ory  overhead of ju st 

~ (2 /?). T h is tran sla te s  to  an  average m em ory overhead of 14% of Saad for 

th e  259 m atrices. However th is  m em ory  red u c tio n  does com e w ith  a cost 

of increased ru n tim e  over Saad  to  Q { n n z  . log[n)  +  n).

T h e  Sparse C ycle C h asin g  T ran sp o se  w ith  R ad ix  T able Lookup Algo

rith m  uses slightly  m ore m em ory at ~ (2 n  -t- "/s) for th e  ”/2 tab le  size which 

tra n s la te s  to  an  average of 16% of th e  m em ory usage of Saad. T h e  R ad ix  

T able algorithm  does not m ain ta in  th e  Q { n n z  -t- n) ru n tim e com plexity  of 

Saad, however in practice it perform s the  transpose  in 98.6% of the  tim e of 

Saad.

In  th e  n ex t c h a p te r we in tro d u ce  a  novel tech n iq u e  th a t  reduces th e  

ru n tim e  of o u r in p lace a lg o rith m  to  Q { n n z  -I- r?), w ith o u t forfeiting  th e  

red u ctio n  in th e  asy m p to tic  space com plexity  to  0 (n ) .
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Chapter

Corresponding Row 
Cycle-Chasing Transpose

Reconsider the running example of the sparse m atrix M  from previous 

chapters, rejjeated below as Example 5.1 and shown again in the CSR 

sparse m atrix storage format in Example 5.2.

Examining our new space efficient transpose algorithms introduced 

in C hapter 4 we identified tha t the main overhead contribution to the 
increased execution time while performing the cycle chasing pernuitation is 

finding the row index of the element as we jump from location to location. 
In this section we introduce our novel technique which finds this row index 

in a constant amortized 0{1)  time while maintaining the reduced space 
overhead of 0(r;) of our previous algorithms.

This gives us an in-place algorithm with the same Q(nnz  +  n) time 
overhead as the Out-of-Place (Algorithm 3.2) and Saad-IP (Algorithm 3.3) 
while reducing the memory overhead to 0 (n )  compared to  the overhead 
of those existing algorithms; Q{m}z + n) for Out-of-Place and Q{nnz)  for 
Saad.

/  n
c

M  =

d

f  9

m

J
k I 
n o /

Example 5.1: Sample Matrix M
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5.1 C onstant-T im e Row Index Lookup

The novel technique is based on a num ber of key insights about how the 

cycle chasing algorithm  operates:

1. T he new.i'ow.ptrs[] array divides the  destination  positions into n 

groups, where n  is the  num ber of new rows in the m atrix  M .

2. At every jum p during cycle chasing we will jum p  to  one of these n 

rows.

3. There is only one location in each new row th a t we can jum p to -  the 

first “available” slot in the  row as indicated by the  current value in 

rou'.offseis[].

4. Therefore, it follows tha t at any one time, we are only concerned with 

the  row index corresponding to those n possible locations we m ight 

jum p to. The other {nnz — n) locations are not currently im portant.

Thus from the above, if we could employ a corresponding row lookup 

table of size G{n)  to  hold the row index for these n locations then it would 

be possible to perform the cycle chasing in-place sparse transpose with only 

B (n) space overhead and m aintaining the  0 (n n z  +  n) tim e complexity of 

the existing algorithms.

The challenge is to  m aintain this table after items are moved during the 

perm utation . To avoid increasing the  complexity of the  overall algorithm  

w'e need to  do all updates in constant am ortized time.

n o n .zero s  = a b c d e / 9 h i j k I m
co L in d ex es = 0 4 0 1 5 1 2 0 3 4 4 5 1

row _ptrs = o„ 2̂ 73 10. 12,

Exam ple 5.2: M atrix M  in CSR representation
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5.2. Using the  Corresponding Row

sec = II 0 0 dst — ,■

old_row p t r s  = o„ 2. 7s 10, 12,

n o n .z e r o s  = a 6 c d e f 9 h 1 j k  I m 71 0
c o L in d e x e s  = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

p
n ew  low  |) ti> (1 (, S 12

lo w  oHscIs » o ( i - S 1 2 -

c o r n ' s p  t a l  lie Oo ■) : ! : i

Exam ple 5.3: Corresponding Row - Step 1

Building the corresponding row table and m aintaining it while searching 

and performing lookups is a little tricky. Example (5.3) shows the structure 

of the m atrix M  during the cycle chasing with corresponding row. We have 

the  same 3 arrays from Exam ple 2.2; oId.row.ptrs[], coLindexes[]  and 

non.zeros[]  along with the tw'o arrays {new-rou'.ptrs[]  and row ̂ offset s[]) 

required for our 0 (n )  generic in-place transpose outlined in Algorithm 4.1. 

Exam ple (5.3) also shows a new c o r r e s p _ ta b le [ ] of size 0 (n )  which is 

required for the corresponding row transpose algorithm. The correspJabIe[] 

array stores the  row index (from the  o}d.rou'.ptrs[] array), sim ilar to  the 

Saad Algorithm (3.3), but only for the positions of the first element in each 

new row corresponding to  the  indexes in the new.rou'^pirs[]  array.

5.2 U sing the Corresponding Row

hi order to  lookup the corresponding row table we need to know the current 

7ieiL'-V0U' of the element. We already know the new .row  for the first element 

in a  cycle because we are traversing the  m atrix  through each of the  new 

rows. W'e can see th is in Exam ple 5.3. The transpose s ta r ts  a t element 

0 as m arked by arrow ‘/J • As th is is the  first elem ent we transpose, we 

already know' th a t it is in new row ‘0’ so w'e can lookup the  elem ent’s 

old .rowJndex  from the  corresponding row tab le  as correspJable[Qi\ =  0. 

W hich for element ‘p ’ gives us: old .row Jndex  =  0.
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W hen we leave an element in its old position we still need to update its 

coLi7idexes[] entry with its new .co lJndex  value. We get this new colunm 

index from the  elem ent’s oldjroivJndex  wdiich we found by looking it up 

in the corresp-tahle\] array. For element ‘p ’ old-vow =  new .row  =  0 so in 

this case the update does not change the value in the array.

•sri h , I , 0 ds! : i

o ld_ row _p trs = o„ 2, 5. 7-s 10. 12s

non^zeros = a h c d e /  9 h i j k I in n 0

c o L in d e x e s  = 0 4 0 1 5 1 2 0 3 4 4 5 1 4 5

tq t..
iK'w row p ti N (1 li V I'i.

row ofl'scts 1 „ (i -
8 4

c o r rc s p  ta b le <»o 1 ■) • > •V

Example 5.4; Corresponding Row - Step 2

However, for subsequent elements in the cycle, it is a little more difficult. 

Exam ple 5.4 shows the next elem ent th a t the  algorithm  processes, at 

position 1 m arked with arrow 'q and value h. Again we can directly read 

the  oldjrow.index  from correspJable\\\  =  0 as this is the  first element 

in the  cycle. Element V/’ does not belong in th is new.row. From its 

old.col.index  (4) we know it belongs in new row 4, so we need to  chase this 

element. We save the value, column and row indexes to ‘s rc ’. The value and 

column index come straight from the arrays and the row index comes from 

the corresponding row table lookup. W'e can find the position of the next 

free slot in row 4 by looking up row.offsets[A] = 8. Thus, element ‘g’ needs 

to  be moved to position 8, m arked with label ‘r ’. W'e need to take out the 

element at ‘r ’ with value i and store it in the tem porary ' d s f  variable. We 

know its value and old column index, however we can not directly read the 

elem ent’s old.row.index  from the arrays. W'e need to know what new.row  

the elem ent is c u r r e n t ly  in so th a t we can read the  row index from the 

corresponding row table. T he trick is th a t we know wdiat new .row  this 

elem ent is in because it is the  new .row  th a t the  previous elem ent in the
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5.3. Search and U pdate Corresponding Row Table

cycle should be in. In other words (this is the key to the corresponding row 

algorithm): we use the old-CoIJndex  of the previous element in the cycle to 

index into the corresponding row table to  find the elem ent’s old .roivJndex.

For element ‘r ’ we can find its new row from correspJablelA] = 3.

In Exam ple 5.5 we can see th a t  the  elem ent in ‘d s f  which was taken 

from position ‘r ’ with the value ‘i ’ has been updated to have row index ‘3’.

From this point the cycle chasing continues as normal copying the element 

in ‘s rc ’ w ith value ‘5’ to  position ‘r ’ (sw'apping row and colum n indexes).

The algorithm  then copies the element from 'dst'  to ‘s rc ’ and continues 

chasing the  element in ‘s rc ’.

5.3 Search and U pdate Corresponding Row Table

T he procedure for searching and updating  the  corresponding row tab le  

is shown in A lgorithm  5.1. T he algorithm  requires five argum ents; T he 

correspJable[]  which we will show how to  build later, th e  old.roiL'^ptrs[]  

and the num ber of old rows o ld .n ro iv s ,  the neu' jrow  that we are searching 

for and the index idx of the element in the m atrix. The search is a straight

forward lookup using the  nexc-row key to  index into the  correspJable[]  

which re tu rns the  o l d . r o i c J n d e x  corresponding to  th a t new-row  in the  

m atrix. The old.roivJridex  we found is returned at the end of the algorithm.

Every tim e we search the  corresponding row table, we also need to  

ui)date the  contents of the  table “If necessary” . T he u pdate  procedure 

is show in lines 3-8 of Algorithm  5.1. The table only needs to  be updated  

if th e  next elem ent ‘x ’ in the  new row after the  curren t elem ent (‘r ’) is 

in a different oldjrow to  the  current elem ent. The algorithm  looks at the 

pointer for the next old^row in the oldj'ou>^ptrs[] array (okLrow 4 in the 

case of elem ent ‘r ‘). If th is pointer has a value less than the index of the 

next element after ‘r ’ (the element at ‘x ’ w ith value ‘j ’ in this case) then  

th e  corresponding row' tab le  needs to  be upda ted  to  contain the  index of 

this new row. Otherwise the next element is in the same row and does not 

need to  be updated . In order to  handle em pty rows, the  algorithm  scans 

through the old.row.ptrs[]  array to find an index pointer row^ptrs[z] th a t
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has a value greater than  the position of the element.

•src b , ! 0 ■ (Is l

old_row_ptrs = o„ 5, 10,

non_zeros = a c d e I 9 h h j k I m n 0
coL in d exes  = 0 0 1 5 1 2 0 0 4 4 5 1 4 5

1 tr tx tv
new row ])trs (1 : i , ( i I s 12

row offsets 2o
- 94 12.

<'orrcs|) faille lo 3 .

Exam ple 5.5: Corresponding Row - Step 3

In Exam ple 5.5 we can see th a t bo th  element ‘r ’ at position 8 and the 

next element (‘.r’) at position 9 are both in old.row  3 so the corresponding 

row' entry for new jrow  4 does not (yet) need to  be updated . How'ever. at 

some later point in the algorithm  we will need to  move another element to 

new .row  4 which will be put into the arrays at position 9 ('x'). The element 

a t 'x '  will need to  be taken out and again we lookup its o ld .row Jndex  to be 

correspj'ow[A] = 3. however, th is tim e when updating  the corresponding 

row table, the  next elem ent in new-vow  4 w ith label ‘y’ at index 10 is 

in old.row  4 therefore th e  tab le  will need to  be updated  w'ith th is value: 

correspJable[^ <— 4.

A L G O R I T H M  5 .1 :  Searching and Updating the co r r e s p o n d in g .r o w  . table  
Input: correspJable^. old.ro'w.ptrs\\, old.nrows. neu'.row, idx  
O u tp ut:  old.T O W . index, Updated corres'p.tahle\\

;*  id.r is tlu* in d ex  in a n d  rol_in(i( .rf's[] o f llie  e lem en t we a re  m ov ing  * /

(*(‘t tlie  <)l<l-roii ,ir)(i(\v coITe^I)onding to  n( w . r o w  * /

old .row.index <r- correspJahlelnew.roxL^,

/*  I ’p d a te  tlie  <.()rre> pond ing  row  tal>le if n ecessary , s k ip p in g  over en)j)ty  row s, if n ecessa ry  *j

z ^  [old.row.index  + 1 ) ;
w h ile  ( {z <  nrows) k.k. ( { i d x 1) >  oldjrow.ptrs[z\)  ) do  

corresp.table[new.row]  ■<— corresp.table[new.row] +  1;
Z  i — 2 +  1 ;

en d
re tu rn io ld .row .in dex );

116 S p ace  ic  T im e  E ffic ient S p a rse  M a tr ix  T ran sp o se



5.4. Building the  Corresponding Row Table

Examples 5.4 and 5.5 also show the rou'-offseis[] array being updated 

every tim e we process an element in the m atrix so th a t the array points to 

the  next “unm oved” element in th a t particular row'.

T he corresponding row' transpose perform s the  row’ index lookup (Al

gorithm  5.1) in constan t 0 (1 )  tim e am ortized over the  w'hole transpose 

algorithm. Each tim e the co rresp _ srch _ u p d () routine is called to  look up 

a row index it will check if the table needs to be updated for th a t row. The 

while loop w'ill only be entered in the  subset of lookups w'here th e  tab le  

en try  needs to  be updated . The en try  for the  row w'ill only need to  be 

updated if the next element in tha t new row is in a different old row. Each 

tim e there is a lookup, the conditional on the while will be tested  and the 

loop will only be entered wlien we cross a row boundary. There can only be 

0 { n )  row boundaries in the array which could potentially  be encountered 

while transposing the  n n z  elements of the  m atrix.

W hen the  upda te  does actually  enter the loop it will u pda te  the  entry 

for the  row', then  w^hen it tests  the  loop condition again it will generally 

find th a t  no more updates are necessary and exit the  loop. T hus m ost 

updates will only execute the contents of the loop a single time. The only 

times the loop will execute more than  once is when there are empty rows in 

the m atrix. A single update  could potentially loop over a large proportion 

(.r) of th e  row' boundaries in new.rou'-ptrs[].  However th is w'ould m ean 

th a t there  were only (r; — x)  boundaries left th a t could po ten tia lly  cause 

subsequent lookups to  enter the w'hile loop.

T hus over all th e  Q{r im)  lookups, the  w'hile loop will only ite ra te  a 

possible 0 { n )  times in total. This gives an amortized 0 (1 )  complexity for 

each lookup over the  nnz  lookups. Therefore the  full cost of all the  {nnz)  

corresponding row lookups and updates during the full corresponding row 

transpose  is no m ore th an  0 { n n z  +  n). This is no m ore th an  th e  tim e 

com plexity of the  cycle-chasing transpose. Thus, searching and updating  

the corresponding row does not increase the complexity of the corresponding 

row transpose w'hich is Q{nnz  -I- n),  ju st like the existing O O P and Saad 

sparse transpose algorithm s.
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A L G O R I T H M  5 .2 :  Building the c o r re sp o n d in g  . r o w  J a b le  
Input: old.nrou's. newjnrou's. oldjrowjptrs. neu'jrowjptrs  
O utput:  correspJahle\\ - The Corresponding Row Table

A l l o c a t e  ( ' ( ) r n ‘s ] )o n ( l in g  Row I'al)!*' *

Allocate: correspJable[newjirows  +  1];

/ *  'j' >lart>. ill th e c i id  iif */

j  <— old-nrows\

/ *  l o r  e a c h  x '  in  ni  u'^roir^i)fr.H[] ( in  r e v e r s e )  * /

for ( new Jirou's >  a: >  0 ) do
/ *  S c a n  b ackvvnnl>  ih r o i ig l i  ol iLrow-pl i s [ ]  t o  fiiui a n  ini i( 'x  >n ia l l i ' r  t h a n  * /

w h ile  ( neu'-rou'jptrs[x] <  old.rou'-ptrs[j] ) do
I

end

/ *  r < / r r [ j ‘] is t l i c  i n d e x ,  ' j '  in  (>lfLn>ir^}ttrs[] o f ' l i i c  firs t cl(‘n i ( ‘nt  s in i i i l c r  t h a n  lit tr-r<nr^ittrs[.v] "*/

correspJable[x] <— j ;
end

5.4 B u ild ing  th e C orresponding R ow  Table

The corresi)onding row table can be built in 0(/)) time. The procedure 
is shown in Algoritlnn 5.2. The algorithm requires 4 arguments; The two 
pointers arrays old.roiv.ptrs[] and neu'.rou'.ptrs[] and the respective sizes 

of the two arrays old.nroivs and newjnrows. The algorithm allocates a 
new correspJable[\ of size {newjnrows +1) .  It is assumed that this array 
will be deallocated by the caller later.

The corresponding row table stores the old^rowJndex  of the first entry 
in each of the corresponding new row's. The technique to build the table 

in 0 (n )  time is to scan backwards through both the oldjrow-pirs[\ and 
new^rowjptrs[] arrays at the same time. For every entry in new.row^ptrs[\ 
(line 6) we scan backwards through old^row^ptrs[\ (line 8) until we find an 

entry that is less than or equal to the newjrow.ptr. The index, ‘j ’ into the 

old.rowjptrs[\ array that gives us this value is added to the correspJable[\ 
array at position "x\ as this is the old.rowJndex  corresi)onding to new 

row ‘x ’. The scan is repeated for each of the new' rows.

Due to the nested loops the algorithm may appear to be 0(n^) however 
this is not the case as when we repeat the outer loop, the inner loop
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5.5. Corresponding Row Cycle Chasing Algorithm

continues scanning the old.row.ptrs[] array from the same j  position it 
was at the last time. The algorithm only makes a single complete traversal 

of each of the arrays. Thus the complexity of the build corresponding row 

algorithm is 6)(r?). Empty roŵ s and rectangular matrices are automatically 

handled by the algorithm.

5.5 Corresponding Row Cycle Chasing Algorithm

The Corresponding Row Cycle Chasing algorithm is outlined in Algo

rithm  5.3. Like the algorithms in the previous chapter it is based on our 

Generic In-Place algorithm described in Algorithm 4.1.
At the s ta rt of the Corresponding row algorithm, after building the 

7}eu'^roiL'-ptrs[] and row^offsets[] arrays the algorithm calls the b u ild _ c o rre sp _ ta b le ()  

routine from Algorithm 5.2 in order to build the corresponding row ta 

ble. In order to build the table the routine needs the oldj'ow.p7'ts[] and 
neiv.roii'-ptrs[] arrays which are passed as arguments to the routine along 

with their respective sizes old-nrows and neiV-nrows.

The algorithm starts the cycle chasing algorithm processing each element 
in the m atrix as outlined in Section 4. W'hen it needs to find the old row 

index of an element it calls the corresp_srch_upd() routine outlined 
in Algorithm 5.1 on lines 23 and 31 to search the correspJable[] and 
old.row-ptrs[] arrays for the old row index of the element, updating the 

entry if necessary.
The search takes different arguments at the two different times it is 

called. Both calls take the same first three arguments: correspJahle[]. 
old.row.ptrs[\ and old^nroxvs. The first call on line 23 also passes the 

current new rotu th a t we are processing and the index x  of the element 

in th a t row' tha t w'e are starting  a chase from. The second call on line 31 

also passes as arguments dstjrow.  the destination new row tha t we want 

to move the element in ‘s rc ’ to and dst^x, the index into the non-zeros[] 
and colJndexes[] arrays of the first free slot in that new' row'.

Sections 5.7 and 5.8 show the memory and execution time of the algo
rithm under experimental evaluation. Later sections and chapters analyse
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Chapter 5. Corresponding Row Cycle-Chasing Transpose

A L G O R I T H M  5 .3 : C o rre sp o n d in g  Row  C y c le -C h asin g  S parse  T ra n sp o se  
In p u t:  M atrix M  as in D ata S truc tu re 3.1
O u tp u t :  M atrix M  containing in CSR. with: 7ieix'_rou'_pfrs[] - new row pointers 

[cols+1]
/*  A l loca te  A rra v -  */
Allocate: new-row-ptrs[new-nrows + 1]; Allocate: rou'-offsets[neu'-nrows];
/ *  ( ' (Hint huiiiIkm’ o f  fh - in c i i l ^  in t ' a t h  n r w  c o l u m n  - offse t l)\' 1 /

fo r ( 0 <  index < n n z  ) do  
col e -  col-indexes[index]\ 
if  ( col < {nrou's -  1) ) th e n  

j new.row.pfrs[col  +  1] ^  neu'jroW-ptrs[col -I- 1] +  1; 
e n d

e n d
/ *  ( ' u i n u l a t i \ ' e  s u m  t o  ge t  nc \v _ ro \v _p tr s [ ]  * /

fo r ( 0 <  row < nrow s ) d o
'] +  new.rou'-ptrs[rou' — 1];

end
* Build  tin* ( ’(nrcs])on( iiug liow L o o k u p  rah ic

b u ild _ c o rre sp _ ta b le  ( oldjiirou's. n ew j iro w s .  old.row.ptrs[], neu'^row^ptrs[])
^ Loo|) lli rougli  each  new n m '  *

for ( 0 <  row < new jnrow s  ) do  
! for ( rou'-of}seis[row\ < x  < new-row.ptrs[row  +  Ij ) do

'* Take out e lement *

src jnz  <— non.zeros[x]\ 
src-col f -  col-indexes[x\\ 
srcjrow  ■<—
corresp_srch_upd( correspJable[], oldjrow.ptrs[\, o ld.nrows. row. x  ); 
w h ile  ( src-col /  row ) do

(1st . r o w '  * /

* ' l a k e  o u t  t l n ‘ eN ' in cn t  a t  (U l_x '  * /

d s t jn z  <— non-zeros\dst  
dst-col *r- colAndexes[dst-x\\ 
dst.row  •<—
corresp_srch_upd( correspJa6/e[]. old-row-ptrs\]. old.nrows, dst-row,

/ *  P u t  th e  ele ineut wt' a f e  cluisiug S r c '  in to  d e s t i n a t io n  slot ‘d s l_x ')  * /
n o n _ z e r o s [ d s t f -  srcjiiz;  
col- i7 idexes[ds t^]  src-row;

/ *  I ’lit t h e  e lement  in (1st' in s ic '  so  wo c an  cha.se it next * /
s r c j i z  ■<—  d s t j i z ' ,  
src-col dst-Col\ 
src jTow  dstjvow;

/ *  Inc rem ent  r o i r . o f f m  Is] * /
row.offsets[dst.row\ <— row.offsets[dst^row] + 1;

end
/*  P u t  ' s r c ‘ in to  o rig inal p o s i t io n  'x ' in th e  ’row ' we s t a r t e d  wi t h * /
coLindexes[x] <— srcjrow;

)

row  -Offset s[row\ new -row -ptrs[rou '\  ;

dstjTow  4-  src.col;
d s t ^  <r- row .o f fse ts[d s t .row ];

non_zeros[x\ <— src-Tiz;
end
Free: M ^ r o w -p t r s ;  M
Free: ro w .o f f se t s :  Free

end

M ^ r o w j p t r s  new.row-ptrs', 
Free: correspJable\
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the  perform ance of the algorithm  in greater detail.

5.6 Cache-Friendly Corresponding Row Algorithm

A m ajor concept of th is Thesis is the im pact of cache performance on the 

execution tim e of the algorithms and conversely, modifying algorithms and 

data-structures such th a t they make more efficient use of caches. The Cor

responding Row algorithm  (Algorithm 5.3 outlined in the previous section) 

allocates two additional work arrays of size 0 (n )  which are completely inde

pendent of the arrays which store the m atrix  in the CSR format and which 

only exist for the  duration  of the  algorithm . As such we can implem ent 

these arrays how'ever we see fit. These tw'o arrays are the  row-offsets[]  

and correspJable[]  arrays.

E xam ining the  corresponding row cycle-chasing algorithm  outlined 

in A lgorithm  5.3 along wdtli the  Corresponding Row Seai'ch and U pdate 

Algorithm 5.1 we see tha t every tim e we access these arrays we always access 

the same index in both of the arrays at the same time. We use the current 

roiv to index }'ow.offsets[] on line 19 and we again use row to  index into 

the correspJable[]  array on line 23 via the call to the co rresp _ srch _ u p d () 

routine. Later w'e use dst-rou: to  index the arrays again, rou'.offsets[]  on 

lines 27 and 40 and correspJable[]  on line 31 again via the function call.

This information gives us the opportunity to improve the cache locality 

of the algorithm  im plem entation with a Cache Friendly Corresponding Row 

algorithm . By interleaving the  two arrays we can improve the  tem poral 

and spatia l locality of the  access to  those two arrays. W hen we access, 

say. roiL'^offsets[3‘i2] then when the memory subsystem  fetches th a t array 

location from memory, it will also draw the data  from the memory locations 

following th a t  index into the  caches. If the  arrays are interleaved, th a t 

w'ould m ean th a t correspJable[342] w'ould also be brought into the cache.

T he Cache Friendly im plem entation as show'n in Listing 5.1 defines a 

“C ” data -structu re  containing two integers^®^, the first (corr) w'ill contain

<a}Qr w hatever v'ariable size is required to  represent an index

R obert Crosbie. T he U niversity of D ublin. T rin ity  College 121



C hapter 5. Corresponding Row Cycle-Chasing Transpose

r

i n f  c o r r ; 
i n t  o f f ;

} (• () r r  () f f _ s ;

i n f  c o r r ;

r o w _ i n < l ( ' x  =  c o r  r  o f  f [ r o w  ] . c o r r  ;

| / /  Acc - ( ' s s  C’o r r o s p o i K l i n o ;  Row

I ( ) f f s ( ' f  =  (■ () r  r  () f f [ r o w  ] . () f f ; / /  A c c c ' s s  How O f f s ( ‘t J
Listing 5.1: Cache Friendly Im plementation

the correspJable[] entry for the row and the second {of f )  will contain the 

row-offset[].  An array of these corro f f . s  structm ’es is created instead of 

the two separate arrays. The values of the individual structure members can 

be accessed using the standard "C" dot (.) notation as shown in Listing 5.1 

on lines 7 and 8.

We created two im plem entations of the  corresponding row algorithm  

for experimental analysis. A "Normal" version which has the two separate 

arrays and a "'Cache Friendly" version which combines the two arrays.

We can see from the  perform ance evaluation in Section 5.8 and the 

detailed performance analysis in Section 5.9 tha t the two algorithms have 

a b e tte r  execution tim e than  Saad and th a t due to  the  improved cache 

locality, the Cache Friendly version also performs slightly faster than  the 

normal version.

5.7 Corresponding Row M em ory Usage

In Figure 5.1 we see the memory overhead of the corresponding row algo

rithm  which is shown in relative comparison to  the memory overhead of 

the  Saad-IP  algorithm . Both the  Norm al Corresponding Row algorithm  

described in Section 5.5) and the  Cache Friendly Corresponding Row' Im 

plementation outlined in Section 5.6 use the exact same amount of memory 

overhead. The Cache Friendly version has a single array which is the same
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5.7. C orrespond ing  Row M em ory Usage

C orresp  Row [CF] vs. Saad-IP  Memory O verhead  of Algorithm (Relative]
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Figure 5.1: M em ory overhead o f  the C orrespond ing R ow  algorithm  com pared  to  th a t  

o f  S aad . B o th  N orm an  an d  C a c lie  F rien dly  im p lem e n ta tio n s  have  th e  sa m e m em ory  

o verh ead . C o rresp o n d in g  R ow  uses m uch less m em ory  ( <  20% for th e  m a jo rity  o f  

in p u ts) th a n  Sfiad w ith  ju st a handfu l o f  in p u ts requiring a  m em ory overh ead  c lose  to  

th a t o f Saad . T h is  g iv es an average o f 21% overall.

size as tlie  two sep a ra te  a rrays in tlie N orm al version added  together.

T h e  C o rresp o n d in g  Row' A lgorithm , as o u tlin ed  in A lg o rith m  (5.3) 

along  w ith  th e  B uild  C o rresp o n d in g  Row T ab le A lg o rith m  (5.2) an d  th e  

S ea rch /U p d a te  C orresponding  Row A lgorithm  (5.1), require th e  additional 

storage for th e  correspJable[]  a rray  of size n, along w ith  th e  two size 0 (n )  

arrays neiL'.roiv.ptrs[] and roiv.o ff sets[]  required  by th e  G eneric In-P lace 

tran sp o se . T h is  gives a to ta l  m em ory  overhead  of ~(3t7) for th e  co rre

sponding  row algorithm . T h is is slightly  m ore th a n  R ad ix  T able Search at 

~ (2 n  + ^/2 ) and B inary  at ~ (2 n ) , however the  asym pto tic  space com plexity 

rem ains 0 (n ) .  F igure 5.1 shows th a t  even a t ~(3r?) th e  corresponding  row 

a lg o rith m  for th e  m a jo rity  of in p u ts  uses considerab ly  less m em ory  th a n  

th e  Saad algorithm , w'hich is Q {nnz) .  In m ost cases th e  num ber of rows is 

nm ch less th a n  th e  nu m b er of non-zeros {n «  nnz) .

T h e  m a jo rity  of m a trice s  req u ire  less th a n  20% how^ever th e re  a re  a 

handful of m atrices which are very sparse and hence have a very large nm n-

L egend
Saad-IP  

C orresp  Row/ [CF] 
A verage: 21.0%

v'  0 - 0  ■■

bkSu__
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her of rows (nroivs) compared to the number of non-zero {7}nz) elements. 
This causes the corresponding row algorithm to use a higher proportion of 

meuiory for these matrices which pushes the memory usage of Corresjjond- 
ing Row’ nuich closer to Saad for these handful of matrices, which in turn 

distorts the average. Thus, on average the corresponding row' requires 21% 
of the memory overhead of Saad.

For very large matrices this reduction represents a significant saving. 

For the largest matrix, nlpkkt240, Saad requires an overhead of 1,531 MiB 

whereas our Corresponding Row' algorithms require just 320 MiB, this 

constitutes a significant saving of 1,211 MiB. Exact details of memory 

usages of the different transpose algorithms can be found for a number of 
sample matrices in Table A.3.

5.8 C orresponding Row A lgorithm  E xecu

tion Tim e

Figure 5.2 shows the algorithm execution time of Normal Corresponding 
Row Algorithm relative to  Saad and Figure 5.3 shows the algorithm exe
cution tim e of the Cache Friendly implementation of the Corresponding 
R(w Algorithm relative to Saad. Both algorithms have an asymptotic time 
complexity of Q{nnz + n). The Normal Corresponding Row algorithm is a 
little faster than Saad for the majority of inputs. The algorithm is slightly 
slower than Saad for just a few inputs. Overall the Normal Corresponding 

Row algorithm transposes the matrices in just 92% of the execution time 
of Saad. The Cache Friendly implementation (Figure 5.3) performs slightly 
better, improving by 2% to run at 90% the execution time of Saad on 
average.

This is a very good result for the Corresponding Row algorithm given the 

memory savings show'n in Figure 5.1. This result is somew’hat unintuitive 

given that Corresponding Row performs the same movements of data in the 

cycle chasing method as Saad yet actually executes more instructions at each 
step of the algorithm. The improved performance is because Corresponding
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5.8. Corresponding Row A lg o rith m  Execution  T im e

Corresp Row [N] vs. Saad-IP • •  (Serial) Execution Time of Transpose [Relative]
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F igure 5.2: A lg o r ith m  execution  tim e  o f the  N o rm a l C orrespond ing  Row Transpose 

com pared to  Saad. C o rrespond ing  Row runs faster in  ne a rly  a ll cases w ith  ju s t  a few' 

cases where i t  is s lig h tly  slower. On average the  N orm a l C orrespond ing  Row pe rfo rm s 

the in-place transpose in 92% o f the tim e  o f Saad w ith  an average o f 21% o f the m em ory 

overhead.

Row is m a lting  b e tte r use o f the  com pu ta tion a l resources (C a c h e /T L B ) 

available. We discuss th is  fu rth e r in  Section 5.9.

The asym pto tic  tim e  com p lex ity  fo r correspond ing row' is <3{nnz +  r?) 

w h ich is equivalent to  the  ex is ting  In-P lace  and O u t-o f-P lace  a lgo rithm s. 

In  the a lg o rith m , nnz  elements are moved. Each element requires a look 

up and update  o f the  cor ' respJable[] ,  W'hich takes am ortized  (D{\ )  tim e . 

There are some 0(t7) operations, e.g., com puting the in it ia l n e w j ro w -p t r s [ ] ,  

row  ̂ offset s[]  and corresp Jahle[ ]  arrays, hence the  overa ll co m p le x ity  o f 

(-)(ru?2 +  n).

As w ith  a ll the  previous In-P lace  a lgo rithm s, the  correspond ing row' 

a lg o rith m  does not preserve the co lum n o rder w ith in  new rows. Hence a 

post sorting  pass is required to  ensure in-row  ordering. The Q u ickS o rt/In - 

sertionSort based technique described in  Section 4.5 was used for the  post 

sort pass. A ll the  tim in g  results fo r the a lgorithm s thus far have included 

the  tim e  to  pe rfo rm  the post so rting  step using Q u ickS o rt/In se rtio n S o rt.

L ^ n d
Saad-IP 

Corresp Row [N] 
Average; 92.1%
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C o r re s p  R o w  [CF] v s . S a a d - IP  - -  (S e r ia l)  E x e c u tio n  T im e  of T ra n s p o s e  (R ela tive)
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F ig u r e  5 ,3 : A lgorithm  execution  tim e o f the Cache Friendly C orresponding Row  

Transpose com pared to  Saad. C F C orresponding Row runs faster in nearly all cases 

with just a few cases where it is slightly slower. Comparing to Figure 5.2 shows that the 

Cache Friendly version is slightly faster than the normal, transposing the 259 m atrices 

in just 90% of the tim e of Saad. again at 21% of the mem ory overhead.

The sorting step has httle effect on the results as for every algorithm the 
sort performs the exact same operations on the exact same data taking 
almost the exact same time in every case. The time I'equired to perform 
the sorting is included in the execution time experiments displayed in 
Figures 5.2 and 5.3.

These figures show tha t despite the considerable memory reductions, 

requiring just 21% on average, and increased complexity of the algorithm, 

the corresponding row algorithm is similar to the existing Saad algorithm 

and is faster in the majority of cases, taking just 90% of the time on average.

L e a e n d  
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5.9. Corresponding Row Performance Evaluation

5.9 Corresponding Row Perform ance Eval

uation

The previous sections presented experimental results of the memor}' and 
execution time of the two new corresponding row in-place transpose imple
mentations compared to the existing Saad in-place algorithm. We found 
that both the corresponding row algorithms required much less memory 
than Saad, about 21% on average. Both new algorithms also had a slightly 
faster execution time than Saad transposing the matrices on average in 
92% and 90% of the execution time of Saad respectively.

In this section we investigate why the corresponding row algorithms 
perform better than Saad. Corresponding Row and Saad have the same 
time complexity of Q{nnz + n), indeed the new algorithms perform more 
oj^erations at each step in the cycle chasing algorithm, yet they have a 
better execution time in practice. The new algorithms also perform the 
exact same cycle-chasing operations, moving the same elements to the 
same locations in the matrix as Saad. So how can the two variants of the 
corresponding row algorithm achieve the performance improvements shown 
in Figm'e 5.2 and Figure 5.3? The reason for the improved performance 
is the reduced memory overhead from G{7ttiz) to 0 (n ), which can be a 
significant difference for some matrices. This reduced memory leads to 
more efficient use of the caches and TLB and other computational resources 
available.

5.9.1 Hardware Counters

In order to gain a better understanding of how the algorithms operate in 
practice, on real machines, the algorithm testing framework was instru
mented with code using PAPI [Browne 00] and PerfCtr [Pettersson 05]. 
This allowed us to access the in-processor hardware coimters in order to 
measure how the algorithms were performing in terms of cache and TLB 
misses and other metrics. Table 5.1 lists the PAPI events that w’ere moni
tored and their descriptions. As it is not possible to measure all events at
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the same time, events were monitored individually (or in small groups) for 

m ultiple runs and the median values taken. Details of the machine, Stoker, 

th a t the  experim ents w'ere run on are given in Section 2.4.

Event Description
BR_TKN Conditional branch instructions Taken
BR_MSP Conditional branch instructions m ispredicted
L1_TCM Level 1 cache misses
L2_TCM Level 2 cache misses
L3_TCM Level 3 cache misses
L1_LDM Level 1 load misses
L2_LDM Level 2 load misses
LST JN S Load/store instructions completed
RES-STL Cycles stalled on any resource
TLB_TL Total translation  lookaside buffer misses
T O T  CYC Total cycles
T O T JX S Instructions completed

Table 5.1: M onitored PAPI Events

5.9 .2  Branch M isses o f CF C orresponding Row

W’e can see a com parison of the  com plexity of the  Corresponding Row 

algorithm  compared to Saad in Figure 5.4 which shows the relative number 

of branch misses of the two algorithms. Corresponding Row has many more 

branch m ispredictions for the  m ajority  of inputs. Over twice as m any in 

some cases. The reason for the increased immber of branch misses is due to 

the increased number of conditionals th a t the corresponding row algorithm  

executes during each step of the  cycle chasing, accessing the  additional 

row.of fsets[]  and correspJable[]  arrays and checking if the corresponding 

row tab le  needs to  be updated.

T he  Corresponding Row algorithm  accesses m ore arrays th an  Saad. 

At each step  of the  cycle chasing, Saad (A lgorithm  3.3) will access 4 

different arrays: th e  non.zeros[],  coLindexes[], tmp.rowJndexes[]  and 

new.row.ptrs[]  arrays. The corresponding row algorithm  (Algorithm  5.3)
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C orresp  Row (CF] vs. S aad-IP  • •  Branch M isses [Relative]
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F ig u r e  5 .4 : X nniber o f Branch M ispredictions o f th e Cache Friendly Corresponding  

Row Algorithm when performing the cycle chasing transpose compared to that of Saad. 

The corresponding Row algorithm has a much higher proportion of branch misspredations 

than Saad l)ecause it perform s more operations during each step  o f the cycle cliasing  

with more conditional control flow.

will access 6 arrays at each step: /io/)_2ero.s[], colJndexes[] . neu'-roiv.ptrs[], 

fow^of fsets[],  con'espJahle[]  and old.rou'^ptrs[]. These extra accesses will 

cause more lookui)s, more cache misses and more branch m is-predictions. 

Despite this increased complexity, the reduced memory of the corresjjonding 

row algorithm  leads to  improved perform ance for the  m ajority  of inputs.

In the  following sections w'e will analyse how th e  reduced m em ory 

overhead of the corresponding row im plem entations means th a t they make 

more efficient use of th e  caches and TLB  (Translation Lookaside Buffer). 

W hich transla tes into improved execution time.

5.9.3 Norm al Corresponding Row Perform ance Eval
uation

T he four graphs in F igure 5.5 show th e  perform ance of the  th ree  L I, L2 

and L3 caches and the TLB for the Normal Corresponding Row Algorithm
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5.9. Corresponding Row Performance Evaluation

compared to the performance of the Saad algorithm. Figure 5.5 (a) show's 

the number of LI Cache Misses compared to those of Saad while performing 

the full transpose algorithm. Figure 5.5 (b) shows the relative number of L2 
Cache Misses. Figure 5.5 (c) shows the relative number of L3 Cache Misses. 

And Figure 5.5 (d) shows the relative number of TLB Misses encountered 

by the algorithm.

From these graphs we see that the L l and L2 cache performance of the 

Normal Corresponding Row algorithm is broadly similar to tha t of Saad, 

however the relative measurements are quite scattered. On average the 

two algorithms actually have the same number of L l cache misses as each 
other with the Normal Corresponding row having an average of 99.5% of 

Saad. The Corresponding Row algorithm has marginally better L2 cache 

performance with just 95% of the L2 cache misses as Saad. This is to be 
expected. As discussed above, although the Corresponding Row algorithm 

has a lower memory overhead than Saad, which should lead to a reduction 
in cache misses, the algorithm is accessing 6 different arrays at each step of 
the cycle chasing compared to the 4 accessed by Saad.

The L3 and TLB graphs in Figure 5.5 (c) and (d) tell a different story. 
There is a very clear distinction in the L3 cache performance of the Normal 
Corresponding Row compared to Saad. The Corresponding Row has 30%- 

60% less L3 cache misses than Saad for the majority of inputs. On average 
the Normal Corresponding Row algorithm incurs just 67% of the L3 cache 
misses of Saad. As discussed below, the reason for the reduced L3 and TLB 

misses is due to the reduced memory overhead of the corresponding row 
algorithm (21% of Saad).

There is also an indication from Figure 5.5 (c) that the Normal Corre

sponding Row has an even greater reduction in L3 misses for the smaller 
matrices, those matrices with 2 million non-zeros or less. This is to be 

expected as the L3 cache is very large and these smaller matrices are of 

comparable size. The machine these experiments were performed on has an 

L3 cache of 18MiB. A m atrix with 2,000,000 non-zero values w’ill require 

approx 23MiB to store in the CSR sparse format. Assuming n «  nnz 
then the corresponding row algorithm will only add perhaps a few hundred
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KiB on top of that. Thus for matrices with less than approx 2 million or 4 

million non-zero values, a large proportion of the matrix will remain in the 

L3 cache — depending on replacement policy.

The measurements for the number of TLB misses shown in Figure 5.5 (d) 

are somewhat more scattered than those of L3, however there is still a very 
clear trend towards Corresponding Row with a large proportion of inputs 

having 20% - 40% fewer TLB misses. On average the Normal Corresponding 

Row incurs 77% of the TLB misses of Saad.

The graphs in Figure 5.5 show that although the Normal Corresponding 
Row algorithm does not improve on LI and L2 cache efficiency compared 
to Saad, it does however improve on the L3 cache and TLB efficiency over 

Saad w'hich results in the improved performance as shown in Figure 5.2. 
The reason for the improved L3 cache and TLB efficiency is due to  the 
reduced memory overhead of the algorithm. Corresponding row uses three 
arrays of size 0 (n ) compared to the Q{nnz)  array required by Saad.

Key to this is the size of the total working set. That is, the total amount 
of memory in use by the algorithm while performing the transpose. This 
includes the memory overhead of the algorithm and the memory required 
to store the m atrix in memory. For the 259 matrices in our test suite, 
corresponding row has a w'orkiug set size which varies between 75%-1(30% 

of that of Saad. The “average of the percentages” shows that the average 
w'orking set of Corresponding Row is 80% of tha t of Saad. This is still 

a very large w'orking set, however a reduction of up to 25% of memory 
usage is significant. Particularly for the larger matrices it could represent 

Inmdreds of megabytes of memory.

This reduction in working set size is the reason for the improved L3 

cache and TLB performance and thus for the improved performance seen 

in Figure 5.2.
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C hapter 5. Corresponding Row Cycle-Chasing Transpose

5.9.4 Performance Evaluation of Cache-Friendly Al
gorithm

Cache and TLB perform ance of the  Cache Friendly Corresponding Row 

algorithm  as outlined in Section 5.6 is shown in com parison to  th e  Saad 

algorithm  in Figure 5.6. Again 5.6(a) show's the  relative num ber of LI 

misses incurred by the two algorithms, (b) shows the number of L2 misses, 

(c) the  num ber of L3 misses, and (d) show's the  relative num ber of TLB 

misses of the tw'o algorithm s incurred while transposing the  259 m atrices 

in our test suite.

It is very informative to  com pare these four graphs to  the four graphs 

in Figure 5.5 which show' the cache and TLB perform ance of the  Normal 

C orresponding Row algorithm  im plem entation which uses two separate 

roir.offsets[]  and correspJahle[]  arrays. C om paring Figure 5.6(a) with 

Figure 5.5(a) and Figure 5.6(b) with Figure 5.5(b) we can see the l^enefit of 

combining the two arrays in term s of reduced LI and L2 cache misses. The 

Cache friendly Corresponding Row algorithm  produces, on average 87% of 

the LI cache misses and 84% of the L2 of the Saad algorithm. A reduction 

of 16% and 11% respectively compared to the Normal Corresponding Row.

T he Cache Friendly algorithm  has less of an im pact on the  L3 cache 

and TLB misses. There is still a slight decrease of 2% to  65% of the  L3 

cache misses and a reduction of 6% to 71% on the num ber of TLB misses 

compared to Saad. Once again we can see from Figure 5.6(c) th a t there is 

an ex tra  decrease in L3 cache misses for m atrices sm aller th an  2 million 

non-zero values. As discussed above, these sm aller m atrices are of a size 

which require a similar amount of memory to that which is available in the 

L3 cache. As such, as we will see below, there are very few L3 misses when 

transposing  these m atrices so even small I’eductions in m em ory size can 

make a big impact here.

It is clear from a cursory glance at the  graphs in Figure 5.6 th a t the 

Cache Friendly Corresponding Row algorithm  is generally much more 

efficient in term s of the L I, L2 and L3 caches and TLB usage. This shows 

why the algorithm j)erforms well in Figure 5.3 where the algorithm performs
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the transpose of the 259 matrices in, on average, 90% of the time of Saad.

Although the Cache Friendly algorithm has better LI and L2 reuse, 
this (along with the small improvement to L3 and TLB) only results in an 

average reduction of 2% in execution time from 92% to 90% compared to 
Saad. It would appear that the L3 and TLB performance (along with some 

other factors) have a larger impact on performance than  the LI and L2 

caches do. As discussed in Section 5.9.3, the reduction in overall memory 

usage (working set) of the Corresponding Row’ algorithm results in better 

L3 and TLB reuse compared to Saad, thus reducing its execution time.

5.9.5 Sum m ary of Norm al and Cache-Friendly Eval
uation

As we have seen from the last two sections, both im plementations of the 
Corresponding Row algorithm show a marked improvement in execution 
time compared to the Saad algorithm while only using, on average, 21% 
of the memory of Saad. The array interleaving of the Cache Friendly 

im plem entation does give it a slight performance advantage, as such, we 
will just be using the Cache Friendly implementation of the algorithm for 
the remaining experiments and discussions in this document.

5.10 Factors Influencing Cache Perform ance

The graphs in Figure 5.6 in the previous section show the cache and TLB 

performance of the Cache Friendly Corresponding Row algorithm compared 
to Saad. These graphs are good for comparisons, however they do not 

give a true representation of the actual numbers of hits and misses of the 

algorithm. Showing the actual numbers of cache hits/misses is difficult due 

to  the enormous range of m atrix sizes and hence measiu'ements. Instead 
we can show, for example, the number of LI cache misses the algorithm 

encounters per non-zero element in the matrix. We do this by taking 

the to tal number of LI misses the algorithm incurs during the transpose 

and divide tha t by the number of non-zeros {nnz)  in the matrix. Thus
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normalizing the num ber of LI misses compared to  the size of the  m atrix.

F igure 5.7 thus shows the  num ber of L I, L2, L3 and TLB misses per 

non-zero elem ent in each m atrix  incurred by the  Cache Friendly C orre

sponding Row' A lgorithm  wdiile transposing  th a t m atrix . T he cache and 

TLB perform ance num bers shown in all these graphs are the  (norm alized 

per element) num ber of misses incurred during the entire transpose opera

tion, including building the  w^ork and lookup arrays and the cycle chasing 

transpose.

Figure 5.7(a) shows th a t there is a large num ber of LI cache misses for 

most of the m atrices with the m ajority of inputs causing between 4 and 8 LI 

cache misses per non-zero element in the m atrix. This is a very large number 

of cache misses. All of the in-place cycle-chasing transpose algorithm s suffer 

from poor cache and TLB  perform ance, th is is because nm nerous arrays 

are accessed sequentially and random ly with very little reuse. For example, 

the corresponding row algorithm  scans the <r){nm) size coLindexesl]  array 

to  l)uild the  nen'.row.ptrfi[]  and rou' .offsets[]  arrays, then  scans bo th  

the rieu'_rou'_p/rs[] and old-roii'-ptrs[] arrays to  build the correspJahle[].  

(The correspJahle[]  and roii'^offsets[] are of course combined in the cache 

friendly im plem entation). T he algorithm  then random ly jum ps around 

the  coLindexesl]  and rwn^zeros[] arrays while chasing cycles and also 

sem i-random ly accesses the  Jieu'-row.pij'fi[] oULrou'-ptrs[], row-offsets[]  

and correspJable[]  arrays at each jum p. This all results in a large number 

of cache misses.

There is a very wide scattering of m easurem ents of LI cache misses for 

the  Cache-Friendly C orresponding Row algorithm  in Figure 5.7(a) wdth 

no clear trend  apparen t. T here  is a slight suggestion of an increase in 

LI misses as m atrix  size increases from left to  right, however tliere is no 

obvious correspondence. T here  are also a num ber of m atrices (of a w'ide 

range of sizes) which have inexplicably low num bers of LI cache misses 

w'ith m any having less th an  1 cache miss per non-zero m atrix  elem ent. A 

surprising  result given th e  com plexity of the  algorithm  described in the  

above parag raph . We w-ill investigate these m atrices fm 'ther, exam ining 

the perform ance of the algorithm s while transposing them  in the following
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Chapter 5. Corresi)oiiding Row Cycle-Chasing Transpose

section and in Section 7.4 in Chapter 7.
The L2 Cache Misses of the Cache Friendly Corresponding Row' are 

shown in Figure 5.7(b). Again there is a very wide scattering of measure
ments w'ith most inputs incurring between 3 and 6 L2 cache misses per 
non-zero element in the matrix. There is a slightly stronger suggestion 
here of an increase in L2 misses as matrix size increases from left to right 
but still not quite a trend. Again there are a large number of matrices (of 
a wdde range of sizes) which have very loŵ  numbers of L2 cache misses, 
below 1 or even V2 of a cache miss per non-zero element which is very low 
compared to other matrices of comparable size.

The L3 cache misses of the Cache Friendly Corresponding Row algorithm 
are shown in Figure 5.7(c). Here w'e see that there is almost a trend in 
L3 misses increasing in proportion to increases in matrix size. Certainly 
for the smaller matrices there are very few (or even zero) L3 misses per 
non-zero element. This is not surprising given the size of the L3 cache as 
discussed above.

The number of TLB misses per non-zero element in the matrix are 
shown in Figure 5.7(d). There is a very wide scattering of TLB misses 
showing that the in-place cycle-chasing transpose is not very TLB efficient. 
There is no significant trend in the graph apart from the slight increase in 
TLB misses as matrix size increases from left to right. Most matrix inputs 
incur between 1 and 4 TLB misses per non-zero element. Again there are a 
certain number of matrices which have apparently inexplicably good TLB 
performance having zero, or close to zero TLB misses per non-zero element 
in the matrix.

For the graphs in Figure 5.7 we divided the total number of Cache/TLB 
misses by the total number of non-zeros (nnz)  in the matrix. This removed 
the dominating influence of the huge matrix size from the measurements. 
We can still however see that there is a strong correlation betw’een matrix 
size and cache performance, particularly for the L3 cache and to a lesses 
extent the L2 cache.

There are however other factors which influence the performance of the 
transpose algorithms.
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5.11 C ycle Length and Cache Perform ance

In the last section (5.10) we examined the cache and TLB performance 

per non-zero element in the m atrix of the Cache Friendly Corresponding 

Row' algorithm. When we accounted for the major influence of the matrix 
size by looking at cache performance per element we found that there was 

still a certain amount of influence of the matrix size on cache performance, 

particularly for the L3 cache. However there nuist be other factors which 

influence cache and indeed execution time.

Deeper analysis of the operation of the Cache Friendly Correspond
ing Row' algorithm , examining metrics and covinters, shows tha t there is 
something else wdiich has a greater relative influence on the cache/TLB 

performance of the Cache Friendly Corresponding Row transpose algorithm. 
Intuitively, the length of the chains w'e process during the cycle chasing 
transpose will have an influence on the cache performance, and hence 
execution time, of the cycle-chasing algorithm. If we are chasing a short 
chain, then after just a few jum ps w'e will quickly return to the starting 
row. which will hopefully still be in the cache. Subsequent chains may then 
jum p to rows which were visited by the previous chain and which have a 
better chance of still being in the cache. W ith longer chains, every time we 
jump we are jumping to a new row which has less and less chance of being 
in the cache the more times we jump. W hat's more, when we finally finish 
this long chain and jump back to the starting row, it is likely to have been 
flushed from the cache at this point.

Cycle chains can be extremely long, they are not just limited by the 

number of rows or colunms in the matrix, they can be almost nnz  elements 
long, transposing nearly the whole matrix in one chain. The longest cycle 

encountered in our test suite was while transposing the nlpkkt200 matrix. 

A 16,240,000 X 16,240,000 square (triangular) m atrix wdth 232,232.816 

non-zero elements. There were just 22 cycles chased wdiile transposing 

this matrix, the longest was 149,827,091 elements long, transposing 64.5% 

of the m atrix in ju st one cycle. The longest cycle by relative length was 

wdien transposing the aJ^shelllO matrix, a 1,508,065 x 1,508.065 m atrix
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with 27,090,195 non-zero elements. A 27,047,251 element chain transposed 

99.8% of this m atrix  in ju st one cycle.

F igure 5.8 shows the  L I, L2, L3 and TLB misses per m atrix  non-zero 

elem ent of the  Cache Friendly C orresponding Row’ algorithm  in term s of 

the average cycle length. T his is the  sam e d a ta  from Figure 5.7 ju st w ith 

the  d a ta  ordered along th e  x-axis by the  average cycle length ra the r than  

the  m atrix  size {nnz).

T he graphs in Figure 5.8 show a clear trend  in cache and TLB misses 

increasing as th e  average cycle length increases. T he trend  is certain ly  

very evident in (a) L I C ache misses, (b) L2 Cache Misses and (d) TLB 

Misses. In each of these th ree  graphs there is somewdiat of a scattering  of 

m easurem ent betw^een th e  average cycle lengths of 100 and 10,000. This 

is possibly because a t these  levels, such average cycle lengths could be 

a very large p roportion , or indeed very sm all p roportion  of the  num ber 

of elem ents in th e  m atrix , hence th e  variability. As such, some of these 

averages m ay not be rep resen ta tive  of the  cycles th a t are chased when 

transposing  those p articu la r m atrices. Sm aller m atrices are also likely to 

have sm aller average cycle lengths and conversely larger average lengths 

for larger m atrices. F u rth e r analysis of s tan d a rd  deviations or perhaps a 

geom etric m ean might shed some more light, however, there is still a very 

clear trend  and correlation between the cycle length and cache performance.

Again, the num ber of L3 cache misses shows th a t for sm aller m atrices, 

there are naturally  a very small num ber of L3 cache misses. However above 

an average cycle length of about 50,000 elements, the  num ber of L3 cache 

misses s ta r ts  to  increase as the  average cycle length increases.

Finally, in each of these  g raphs there  is an anom aly w'hich we have 

om itted to  m ention until now. To the left of each of the 5 graphs there is a 

cluster of m atrices which all have a very small average cycle chain length 

between ju st 1 and 2 elem ents long and which also have very low numbers 

of cache and TLB misses. The m ajority  of the m atrices which we identified 

in the previous section as having unusually low num ber of Cache and TLB 

misses are now clustered in the  lower left corner of each of the graphs (see 

also Figure 7.12.). The reason why these m atrices have such short average
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nanoseconds per non-zero m atrix elem ent com pared to the average cycle length when  

transposing llie  m atrix. T here is a clear correlation betw een average cycle length and  

execution tim e. N ote that a nanosecond is the length of tim e o f two processor cycles in 

the experim ental machine (Clock speed 2GHz).

cycle lengths is because they are "'Structurally Symmetric'' . They are not 

actually symmetric, but they have the layout of a synnnetric matrix. W hen 

an elem ent is moved, the  element a t the  destination  position always ju st 

needs to  be moved back to  the s ta rtin g  row, hence the  longest cycle is 2 

elem ents. T his is the  reason th a t these m atrices have such good cache 

perform ance and can be transposed  far m ore efficiently th an  m atrices of 

com parable size. These structu rally  sym m etric m atrices will be discussed 

further in Section 7.4.

5.12 Summary

In th is  C h ap te r w'e introduced our C orresponding Row In-Place Sparse 

M atrix  T ranspose algorithm  which transposes a sparse m atrix  in-place 

w ith only 0 (n )  memory overhead while m aintaining the &{nnz +  n) tim e 

com plexity of th e  existing sparse transpose  algorithm s. This is done by
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using a Corresponding Row lookup table to find the old.jrow-index of an 
element as we move it during cycle-chasing. We show how we can search 

and update this table in amortized 0(1}  time.

The Corresponding Row algorithm reduces the memory overhead of the 

transpose to  21% of the Saad-IP algorithm. The Normal Corresponding 

Row algorithm transposes the 259 matrices in the test suite in 92% of the 
time of Saad on average and the Cache Friendly version transposes the 

matrices in 90% of the time of Saad.

W’e performed extensive experimental analysis of the performance of the 

algorithm using hardware counters to monitor cache and TLB misses. We 
can see how the cache performance in relation to the average cycle length 

as shown in Figure 5.8 influences the execution time in relation the average 

cycle length. Figure 5.9 shows the execution time of the Cache Friendly 

Corresponding Row algorithm in nanoseconds per non-zero element in the 
matrix as a function of the average cycle length of the chains chased while 

transposing the matrix. This graph shows that there is a clear correlation 
between the length of the cycles chased and the execution tim e of the 
transpose.

We have learned from the in-dei)th analysis and testing with hardware 

counters and the results dem onstrated in Figure 5.8 and Figure 5.9 tha t 
short chains in the cycle chasing transpose lead to better cache performance 
and indeed reduced execution time. C hapter 6 addresses the c}uestion of 

how to use this knowledge to design a more efficient m atrix transpose 
algorithm.
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____________________ Chapter

HyperPartition Sparse Matrix 
Transpose

In Chapters 4 and 5 we introduced a number of algorithms based on our 
Generic In-Place Algorithm (4.1) which reduced the memory overhead of 
the in-place sparse matrix transpose from a space complexity of 0(rinz) for 
the Saad algorithm and 0(nnz  + n) for Out-of-Place, to just 0(n). For the 
largest matrices this reduced the extra workspace memory required during 
the transpose by over a Gigabyte (See Table A.3). These culminated in 
the corresponding row cycle chasing transpose which not only has a nmch 
lower memory overhead of 21% on average (see Figure 5.1) than Saad, the 
existing in-place algorithm, it also performs the transpose operation more 
efficiently taking just 90% of the execution time of Saad (Figure 5.3) for 
the sample input matrices.

As discussed previously, analysis with hardware counters demonstrated 
that the reason for the improved performance, despite being more com
plicated, is due to improved locality from smaller work arrays and hence 
reduction in cache and TLB misses. In Sections 5.10 and 5.11 we investi
gated the influence of the cycle length on the cache and execution time of 
the in-place cycle-chasing transpose with corresponding row lookup table. 
We found that there was a correlation between the average lengths of the 
cycles and the cache performance of the algorithm, and hence with the 
performance of the algorithm in terms of execution time.

Analysis shows that we could improve the performance of the in-place 
transpose algorithm if we could reduce the nmnber of cache and TLB misses 
occurring. Reducing the length of the cycles would improve locality and 
improve cache and TLB performance.

This Chapter introduces our new Sparse matrix storage format: The 
HyperPartition, (or HypCSR) structure. The HyperPartition structure 
allows us to shorten the length of the cycles while performing the in-place
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cycle-chasing transpose. This gives improved cache reuse and reduced 

execution time while also drastically reducing the memory overhead of the 

algorithm. We discuss how' to  perform the in-place sparse transpose wdth 

reduced memory overhead and improved execution time by converting to 
the H yperPartition format, performing the H yperPartition transpose in 

place, and then converting the m atrix back to the standard CSR format.

6.1 The H yperP artition  Sparse M atrix For

m at

One way of reducing the cycle length w'ould be to group rows together 
into blocks of rows, or Hyper Partitions'" of rows. We can then split 

the cycle chasing algorithm  into two parts. The first part moves each 
element (if required) between HyperPartitions [blocks of rows] to its correct 
HyperPartition, rather than moving elements betw'een individual rows. In 

the second part of the algorithm we take each individual HyperPartition in 
turn and move elements within that HyperPartition to their correct row in 
the HyperPartition and correct position within that row. This second part 
of the HyperPartition transpose can be combined with the Phase-H sorting 

phase of the in-place transpose algorithm for efficiency.
Performing the transpose in this manner could increase the number of 

times an element is moved. Elements are already moved multiple times 
during the corresponding row in-place transpose: Once during the cycle- 

chasing and possibly a num ber of times again during the sorting phase. 
Improving cache performance at the cost of increased copies/moves of 
elements is a common trade-off in cache efficient algorithm design. If the 

H yperPartitions are big enough this w'ould greatly reduce the number of 

cache misses in four ways:

1. Large H yperPartitions mean tha t there is a greater chance tha t an 
element does not have to be moved.

2. Large H yperPartitions mean fewer H yperPartitions, which means
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fewer destinations for an element to move to. Therefore it is more 
likely that the destination HyperPartition (or part of it) is in the 
cache.

3. These both lead to shorter cycles which means we come to the end of 
a cycle quicker and then return to the next element in the original 
row that needs to be moved, which is more likely to still be in the 
cache.

4. The second phase of the HyperPartition algorithm operates on only a 
single HyperPartition, and only reads/writes/moves elements within 
that HyperPartition. This means that we are more likely to get cache 
hits and it also opens up the possibility of performing this step in 
parallel.

6.1.1 G rouping Rows

The question is how to represent the HyperPartition. We could recjuire 
the u.ser to convert the CSR matrix to a hierarchical type structure which 
would allow us to grouj) rows into blocks or HyperPartitions. However, 
as outlined in our aims we want our transpose algorithms to take the 
standard CSR/CSC format matrices without requiring the user to modify 
the structure of their matrix. The cost of conversion would not be worth it 
for an 0{nnz)  operation such as transpose. Indeed, copying the matrix to 
another internal structure would be inefficient and use additional memory 
which w'e are trying to avoid.

We could use an additional array of order 0{^/k) to group rows together, 
however after moving an element to a new HyperPartition we somehow 
need to record the row within that HyperPartition that the element belongs 
to. In order to store this data for every element we w'ould need an extra 
array of order 0{nnz) .  We would prefer not to allocate any more additional 
memory than is required and we certainly do not want to p\ish our space 
complexity back to 0{nnz).
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7 b i ts  f re e 7 b i ts  s to le n 7 b i ts  -  lo w  c o l in d ex

2 5  b i ts  u se d 18 b its  r e m a in in g  -  H y p e rP a r t i t io n  id

(a) (b)

Figure 6.1: Steahng bits from the 32bit integer 27,993,600 

6.1.2 Unused D ata  in CSR  Sparse M atrix Format

There is another option. There is in fact some additional unused data  

within the standard  CSR and CSC structures which we may be able to 

exploit. We know that all the bits in the nori-zeros[] array are unavailable 
as they are all being used to store a “double” (or similar) variable for 

the value of each element. How'ever, there is also the colJndexes[] array 
which is typically an array of integers. In most current implementations 
an array of 32-bit integers is used. The largest (by n) m atrix in ovu' 
set of sample matrices from the Florida Sparse M atrix Collection (see 
Section 3.6.2) is the Schenk/nlpkkt240  matrix. nlpkkt240 has 27,993,600 
rows. 27,993,600 columns and 401.232,976 \on-zeros. As such, the largest 
value stored in the column indexes array will be 27,993,600 and given that 
[/oge(27,993,600)] =  25 and th a t 2"® =  33,554,432, it therefore only takes 
25 bits to store all the possible row' indexes. This means that there are at 
least 32 — 25 =  7 bits (assuming unsigned integer) which are left miused in 
every one of the nnz  indexes in the column indexes array.

We can see this in Figure 6.1(a). The colunm and row indexes require 
25 bits to represent all their possible values, leaving seven bits unused in 

the 32-bit integer. In Figure 6.1(b) w'e could choose to  steal all of these 

T O P  seven bits to store the row id of the element within the HyperPartition. 
After an element is moved during transpose the bottom  seven bits will 

become the column index (or new' row' index) of the element within the 

partition. This leaves the 18 bits in the middle which are the HyperPartition 

id of the element. (The H yperPartition id is accessed by masking the top 

and bottom seven bits and right shifting - This is described in detail later).
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W ith 18 bits for the H yperPartitioii id, we therefore have 2'^ =  262,144 
HyperPartitioiis.

By exploiting these unused bits in each of the entries in the colJndexes[] 

array we can record which row within each HyperPartition each element is in. 

For the largest matrix nlpkkt240, we can steal seven bits, therefore for this 

m atrix we can have x = 2^ = 128 rows per HyperPartition. Thus reducing 

the number of locations an element can be moved to  from 27,000,000 to 

just 211,000, a significant reduction in the number of places that a non-zero 

value can be moved to. O ther matrices have an even larger reduction and 
for matrices with fewer rows we could also have even larger HyperPartitions. 

The second largest m atrix in the test suite is Fluorem/HV15R  which is a 
2,017,169 X 2,017,169 m atrix with 283,073,458 non-zeros. In this m atrix 

it is possible to steal 11 bits meaning we can put 2,048 rows in each 
H yperPartition and reduce the number of locations an element can be 

moved to from ~ 2  million to  just ~985 and also the possibility tha t any 

jum p would end a cycle from ~283 million to ~138 thousand. Stealing 11 
bits from HV15R reduces the average cycle length from 159.567.3 to 1,177.5 
and the longest cycle from 20.982,531 to 7,627,015 which led to a reduction 
in total execution time of the full transpose (cycle chasing and QuickSort) 

from 115.6 seconds to 31 seconds (just 26.8% of the original execution 
time). The number of moves dining the cycle chasing was reduced by only 

0.05% from 283.073,458 to 282,908.847, a reduction of just 164,611, clearly 
showing that the main benefit is from improved locality.

6.1.3 The H yperPartition Structure

Figure 6.1 shows our matrix M  in the CSR format again. Figure 6.2 shows 

the same m atrix converted into the HyperPartition CSR format.

The non^zeros[] array remains unchanged as the elements remain in 

the same order within the matrix. The row.ptrs[] pointers array has been 

replaced with a hyp.pfrs[] array. In this small example we are stealing 

one [b =  1) bit giving two rows per H yperPartition. Therefore, in this 

representation there are three HyperPartitions which start at array locations
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0, 5 and 10, respectively. The colJjidexesl] array has been updated to 
also include the ''HyperPartition row number'' of each element within each 

HyperPartition.

old  row  p trs = 0„ ■)“ 1 5. 73 10. 12,
non_zeros = a b c d e / 9 h i J k I in n 0

co L in d e x es  = 0 4 0 1 5 1 2 0 3 4 4 5 1 4  5

Example 6.1: Matrix M in CSR representation

old_hyp_ptrs =  0„ 5j lÔ
non_zeros = a b c d e f  9 h i j  k I m n o

coL in de xe s  =  0:0 qA  i;0 i- l  i 5  o:l O:̂  lO i 3  i 4  o:4 o;5 i J  i.4 i.

Example 6.2: M atrix M  in HyperPartition CSR representation

The H yperPartition th a t an element is in is found in this case by 
taking the row index of the element and right shifting by {h =  1) bit. 

The HyperPartition row number is found by taking (masking) the least 
significant bit of the element’s row index. The HyperPartition row number 
for each element can be seen as the subscript before the colon (:) in the 

colJndexes[ \ entry for each element in Example 6.2. As only one bit is being 
stolen, the HyperPartition row number can only be 0 or 1. 0 for the first row 
in each H yperPartition and 1 for the second. In Example 6.2 the element 
at position 4 with value ‘e ’ was in row 1 but is now in HyperPartition 0, so 

its colunm index has been updated to contain (i:5) to indicate that it is in 

row 1 w'ithin H yperPartition 0 and has colunm index 5.

Figure 6.2 shows an example of how an element is converted to Hyper
P artition  format. In this case using two places of decimal (base 10) for 

simplicity. The element has row index 28,362 and colunm index 19,079. 
The low row digits (62) are masked off from the row index and added to
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Row Index: 2 8 3  62 '=D> HypNum: 2 8 3

Col Index: 1 9 0 7 9 '= [>  Col Index: 62 1 9 0 7 9

F igure 6.2: C onverting  an  elem ent to  H y p erP a rtitio n  using 2 decim al places

th e  colum n index en try  for th e  elem ent in th e  high order digits. T he H yper

P a r ti t io n  n u m b er is found by righ t sh iftin g  th e  row index  by  tw o decim al 

p laces to  give 283. T h u s  th is  elem ent w'ill be  in row’ 62 in H y p e rP a rtitio n  

m n n b er 283.

A n ad d itio n a l benefit of th e  H y p e rP a r ti tio n  sp arse  m a tr ix  fo rm a t, as 

can be seen from F igure 6.6, is th a t  th ere  is a huge reduction  in th e  m em ory 

usage of in-place tran sp o se  algorithm  when using the  H y p e rP a rtitio n  form at. 

T h is  is because th e  hyp.pt rs[]  a rrays are m uch sm aller th a n  the  row-pt rs[]  

a rray s , p ro p o r tio n a l to  th e  n u m b er of b its  th a t  w'e s tea l. Four a rray s  a re  

needed for th e  H y p e rP a rtitio n  transpose , th u s th e  ac tu a l m em ory usage of 

th e  H y p e rP a rtitio n  transpose  is This could be ~ ( ^ ) ,

or d ep en d in g  on th e  b its  ava ilab le  in th e  m a trix . T h is  m em ory

overhead com pares very favovu’ably to  th e  ~ (3 n )  visage of th e  corresponding  

row. th e  ~ ( n n 2 ) usage of S aad  an d  th e  + 1}) usage of th e  O ut-of-

P lace  algo rithm . A ctua l m em ory  usages for th e  a lg o rith m s for a selection  

of m atrices  are show n in T able A .3.

6.1 .4  U sing  th e  H y p erP artition  Form at

T he procedure for perform ing th e  sparse m atrix  tran sp o se  using th e  H yper

P a rtit io n  fo rm at is as follows:

a ) C onvert th e  m a tr ix  from  C SR  fo rm at to  H y p e rp a rtit io n  (H ypC S R ) 

fo rm a t.

b ) Perform  th e  H y p erP artitio n  cycle chasing algorithm  to move elem ents 

to  th e ir  correct H y p e rP a rtitio n .
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c) Sort each of the HyperPartitions so the elements are in their correct 
row and correct row order.

d) Convert the m atrix back to standard CSR format.

6.2 C onverting to H yperP artition  Format

The procedure for converting from CSR format to the HyperPartition CSR 

format [HypCSR] is shown in A lgorithm 6.1. The algorithm sets up the 
m atrix and a number of variables and arrays so the H yperPartition cycle 

chasing algorithm (6.2) can be used to transpose the matrix. The algorithm 
takes an extra input of the steaLbits parameter which is the mnnber of bits 

we are stealing from the colJndexes[] array to use as the ' 'HyperPartition 
row number". Based on this input of the steaLbits parameter, the algorithm 

first (Lines 2-9) calculates a num ber of integer variables, binary masks 
and shift offsets which will be used later to perform the bit manipulations 
necessary to massage the row and colunm indices into the HyperPartition 
form at.

-e—  sb — '

LOW_MASK: ________________________________________
' —  sb —

TOP_MASK: !
^ --------------------- 3 2 - s b  ---------------------- -

BOT_MASK:

Figure 6.3: Bit Masks for converting to HyperPartition. sb = steaLbits

Figure 6.3 show which parts of the entry in coLindexes[] is isolated by 

each of the three bit masks l o w ^m a s k . t o p _m a s k , b o t _m a s k  and show’s the 

length (32 — sb) of the rem a iu M ts  offset.

T he variables, b it m asks and offsets are as follows:

152 Space Time Efficient Sparse Matrix Transpose



6.2. Converting to H yperPartition Format

remain J)its - The number of bits remaining which are required to store 

the cohnnn index of each matrix entry. Note, for rectangular matrices 
we need to  leave enough bits to store both the maximum row and 

cohnnn index, thus; remairi-bits > max{nrou'.bits,  ncoLbits).

LOW_MASK -  The bit mask required to get the low order bits from the 
row index -  these low bits become the row number of the element 

w'ithin the HyperPartition which we will place in the top part of the 

element’s coLindex[] entry.

BOT_MASK -  The bit mask used to get the bottom  part of the integer 

which contains the column index of the m atrix entry.

TOP-M ASK  - The bit mask used to get the top part of the integer which 
contains the element's row number within the HyperPartition the 
low order bits of the row index which have been right shifted to the 
top of the integer.

roiL's^perJiyp The number of rows per HyperPartition =

n.old.hyp  The number of HyperPartitions in the original input matrix.

u-neu'-hyp The number of HyperPartitions in the transposed matrix.

Figure 6.4 shows where the different information is stored in the entry 
in the colJndexes[] array. The top ‘s 6 ’ bits ( t o p _m a s k ) contain the old 

H yperPartition row (which row within the H yperPartition the element 

is in). The bottom  ‘32 -  sb" bits ( b o t . m a s k ) contain the old column 
index. The lower ‘ s 6 ’ bits ( l o w . m a s k ) contain the new H yperPartition 

row number after the transpose. Finally the  middle ‘32 — sb — sb' bits 

( b o t _m a s k  »  remain Jbiis) contain the new HyperPartition id the element 
is in.

Algorithm 6.1 then allocates the old.hyp.ptrs[\ and newJiyp^ptrs[\  

arrays (Lines 10-11). The oldJ}yp.ptrs[] array contains pointers to  the 

s ta rt of each of the current H yperPartitions. It is built on lines 13-15 by
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-e— o ld J iyp j'o w  — ----------------------------- ()ld_c(>l_index — ------

— new_hyp ------------ ne\vJiyp_ro\v —^

Figure 6.4; Where information is stored in the HyperPartition Format

taking every n.old.hyp^^‘ pointer in the old.row-ptrs[] array. The hnes 18- 

25 are the core of the algorithm which convert the matrix to HypCSR. The 

algorithm loops through each of the old rows in the CSR matrix. For each 
row it gets the low order bits by masking the row numV)er. These bits 

will become the row number of the element within each HyperPartition so 
they are left-shifted to  the top of the integer. The algorithm then loops 
through each of the elements in the old row. The newJiyp  tha t this entry 

should be in is calculated by taking the column index of the entry and 
right shifting it by steaLbits. The new^hyp  is used to count the number of 
elements in each of the new HyperPartitions by accumulating the count in 

7}eiL'J}yp^ptrs[]. The row munber is then added by adding the low order 
bits we isolated earlier to the top of the column index and storing the 
combined number back in the colJndexes[\  array. Finally, the cunnilative 

sum of the newJ}yp.ptrs[\  array is calculated on lines 27-29 in order to 
convert from counts to new H yperPartition array pointers.

The algorithm for converting from CSR to HypCSR format is a 0 {nnz  + 
?;) operation. This is the same as the initialization of all the other in- 
place algorithms. The only difference is th a t during the H yperPartition 
initialization, the colJndexes[] array is updated to contain the low order 

row bits in the top of each entry.

6.3 H yperP artition  C ycle-C hasing Transpose

The next step is performing the cycle chasing algorithm  on the matrix 

stored in H yperPartition form at — moving elements to their correct Hy

perPartition. The procedure is just like the normal cycle chasing algorithm 
except tha t we need to use a number of bit manipulations to get the column 

index and HyperPartition row number of the element from the coLindexes[]
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6.3. HyperPartition Cycle-Chasiiig Transpose

ALGORITHM 6.1 : C onveit from CSR format to H yperPartition format 
Input: Matrix M  as in Data Structure 3.1. steal-bits 
O utput; Matrix in HyperPartition CSR format
/ *  C a l c u l a t e  iiiiusk^ a n d  o if sc ts  * /

remainJbits  (32 — steaLbits):
LO\V_MASK <— (OxFFFFFFFF »  remainJbits)-,
(IxOOOOOO.if */

TO P_M A SK  <— ( l o w _ M A S K  «  remain-bits)',
OxIVODDOOd * /

B O T -M A S K  (OxFFFFFFFF ©  TO P_M A SK );  
oxo.'iffirtf * /

/* .Mlixiitc IlyperPcirtiticiii I’oiiitcrs */ 
rou'S-per-hyp ■«— pow{2, steaLbits)-,
_  - y s t n h  *  j

U-old-hyp <— old-urows % rows-per-hyp-.
M a tr ix .  M  * /

n-ueu'-hyp  ■«— new-nrows % rows-per-hyp-,
M ‘  *■

Allocate: old-hyp-ptrs[ri-old-hyp + 1];
Allocate: neu’-hyp-ptrs[n-neu'-hyp +  1];
/*  Build  O ld  I I v p o r l ’a r t i t io i i  I ’oii ite r^  lining cvcrv  r<m-s_pi in d ex  in old-row- i i t f f i l ]  * /

for ( 0  <  z <  n-old-hyp  ) do
old-hyp-ptrs[i] ^  old-row-ptrs[i * rou'S-perJiyp\,

end
old-hyp-ptrs[n-old_hyp\ oldjrou'jptrs[old-nrows\-,

*  P m  I lie low k '  hit!- o l  t h e  row index  in I he lo p  k'  l)it;~ o f  . r i a r r a y  * i

* AUo coun t  t h e  n u n ih e r  o f  e le m en ts  p e r  1 h 'p e r P a r t  it ion to  liiiild tu  i / _ / (  r.s[ ] * /

for ( 0 < row <  old-urou's ) do
low-row-bits <— ((row fc L O W .M A S K ) «  re main-bits)-,
for ( p <r- old-row-ptrs[row] : p < old-row-ptrs[roiv + 1 ]  ; p •<— p +  1 ) do 

new-hyp ((col-i7idexes[p] »  steaLbits) + \)-, 
coLindexes[p\ <— (coLindexes[p] | | low-row-bits)-, 
new-hyp-ptrs[new-hyp] ■<— new-hyp-p1rs[new-hyp] +  1;

end
end
/ *  ( ’u iimla t ivc s u m  o f  liyp  c o u n t s  to  cr<*atc t i c t r  r s [ ]  - Also sf‘t h i j p ^ o f f s i  f s [ ]  * /

for ( 1 < hyp <  n-new-hyp  ) do
new-hyp-ptrs[hyp] ■<— new-hyp-ptrs[hyp] + new-hyp-ptrs[hyp — 1]; 
hyp-offsets[hyp] new-hyp-ptrs[hyp]-,

end
. * Build  th e  ( 'o m *s |)ou( l iu^  How Lookuj)  I 'ahlc */

build_corresp_table(o/rf_nrou'S', new-urows. old-row-ptrs[\, new-row-ptrs[\)-,

array. We also need to do some housekeeping when we move an element. 
We must swap the row and column indexes and the 'row number hits' at

/ *  Bit> r e m a in in g :  :i2 -  (i =  24 * /  

/ *  .\ )a>k Low (jjvlcr hits :

/ *  M as k  nif^li O n i f f  hits :

/ *  Ma.sk B o t to m  index:

/ *  N u m  row s  pe r  H y p e r P a r t i t i o n  

/ *  N u m  1 lyp< 'rPart it ions  in Orig ina l  

/*  N u m  Hvp<*rPar ti tious  in Transpose
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the top  of the  entry  in the  coLindexes[]  array. Note: it is also necessary 

to update the colJndexes[]  entry even if the element remains in the same 

H yperPartition.

The algorithm for j)erforming the In-Place HyperPartition Cycle-Chasing 

Sparse M atrix Transpose is shown in Algorithm 6.2. The CSR to HypCSR 

conversion A lgorithm  (6.1) m ust be run first, then  th is cycle chasing al

gorithm  continues. The cycle-chasing algorithm  (6.2) re-uses the  binary 

masks, ofTsets and H yperPartition arrays initialized during the conversion.

The H yperPartition  cycle chasing s ta rts  (line 2) by looping through 

each of the new H yperPartitions just like the Corresponding Row in-place 

Algorithm  (5.3) loops through row's. The algorithm  loops through each of 

the elements in the new H yperPartition and copies the element into the “src’" 

tem porary location (Lines 6-11). The old cohnnn index is found by masking 

the entry for the element in the col Jndexes[]  array with b o x  . m a s k . A s  in 

the generic cycle chasing algorithm we look up the old H yperPartition that 

the current element resides in by searching the corresponding HyperPartition 

table using the current new-hyp  as the key. We obtain  lowbrows, the old 

row’s least significant low order b its  by m asking them  from the  top of 

the integer in colJndexes[\  w ith  t o p m̂ a s k  and right shifting them  down 

by rem ain .b its  to  the  bo ttom  of the  integer, lowbrows is used as an 

interm ediary step for clarity and to  prevent line wrapping. T he current 

old row of the  elem ent is calculated  by right shifting the  elem ent’s old 

H yperPartition number to the top of the integer and then adding low.roivs. 

target-hyp, the  new H yperP artition  th a t th is elem ent should  be in is 

calculated by taking src^col (which is the newjrow  the element should be 

in) and right shifting it by steal.bits.

We now have our trip le t of inform ation abou t the element; srcjvaU 

src.row  and src-col along w ith target^hyp, the  H yperP artition  th a t the 

element should be moved to. T he  algorithm  th en  s ta r ts  chasing th is 

element in ‘src’ as norm al on line 12 until it finds an element th a t should 

be in cur^hyp, the new H yperPartition the algorithm  started  chasing from. 

Line 14 finds the  destination  location d s t .x  th a t  it needs to  move the 

element in ‘src’ to. On lines 15-19 the  old element at th a t location (dst.x)
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is copied into the 'd s f  temporary location using the same bit manipulations 

as lines 6-11 to get the elements value, row index  and column index 

triplet of information. On lines 21-23 the element in ‘src’ is copied to the 

arrays at position dst^x, and rou).offsets[] is updated to  mark tha t this 
element has already been moved. Line 22 is im portant. W hen updating 

the colJndeses[] array we need to swap the old cohnnn index with the old 

row index (aka: new col index) as always. How^ever we also need to swap 

the low order bits from the old row index at the t o p  of the integer with the 

low order bits from the old column index (aka: new row index) in order 

to  know later which new row within the new' H yperPartition the element 

needs to be in.
The algorithm then copies the row, col and val triplet from ‘d s t’ into 

‘src’ and calculates a new target .hyp for this new element in src. The 
algorithm then loops back to line 12 chasing this new element in 'src’ until 
it finds an element which should be in the  cur.hyp  we started  from, at 
which point (lines 31-32) it copies that element in ‘s rc ’ back to position 'x' 
in the original cur.hyp  where we started  chasing the chain. row.offsets[] 

is finally updated on line 33 to indicate that that element has been moved.
The algorithm  continues looping through each H yperPartition and each 
(unmoved) element in each Hyj)erPartition until all elements have been 
moved to their correct HyperPartition.

6.4 Sorting H yperPartition after Cycle-Chasing

At this point the algorithm has performed the cycle chasing such that all 

the elements are in their correct ‘new’ H yperPartition as can be seen in 
Example 6.3. Elements are however not necessarily in their correct new rows 

within the HyperPartition, nor are they in the correct column order within 
these rows. In Figure 6.3, the elements in the first Hyperpartition (hyp 0) 

are actually all in their correct row's within the H yperPartition as can be 

seen by the subscripts in their col-indexes[] entries, but they are not in the 

correct order within each of the rows. Elements in row 0 are {a,h,c) where 
they should be in the order [a,c,h). In row 1 elements (d .m ,/) should be
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in the order {d j ,m ) .  In HyperPartition 2, elements are in the wrong rows. 
Element ‘e ’ in row 0 should be in the second row in HyperPartition 2, and 

element ‘r?’ in row 1 should be in the first row in the HyperPartition. The 

ordered elements in HyperPartition 2 should be {b,j,k,n) and {e,l,o).
The procedure from here is to take each individual H yperPartition 

and sort the elements of th a t H yperPartition into their correct rows and 
into the correct column index order w ithin the rows. Due to the w'ay w'e 

added the low order bits of the row number to the t o p  of the integer in the 

coUndexes[]  array we can actually just re-use the QuickSort/InsertionSort 

algorithm outlined in Section 4.5 to  sort the H yperPartitions by simply 
passing the H yperPartition segment of the tw'o arrays to the algorithm  

where previously we passed just the segments of each of the rows. Note: We 
are now using all the high order bits of the integers in colJndexes[] so it is 
important that the sorting algorithms treat the entries in the colJ7}dexes[] 

array as unsigned integers. We will investigate optimizations to this sorting 
step further in Section 7.1 in the next Chapter.

Using both  the row number and column index means tha t when w'e 

sort the two arrays based on the full integer values in the coLindexes\] 
array, then the sorting will arrange the elements into the correct rows in 
the HyperPartition and also into the correct colunm order within each row, 
at the same time.

The sorted H yperPartition m atrix can be seen in Figure 6.4. All the 
Elements are now in their correct row and column index ordering within 
each HyperPartition.

6.5 C onverting from H ypC SR  back to  C SR

After sorting the H yperPartitions, we then have to convert the m atrix 

from HypCSR, the HyperPartition CSR format, back to the standard CSR 

format. The procedure is show'n in Algorithm 6.3, it involves going through 
each element in each new' H yperPartition and removing the low order new 

row index bits from the elem ent's colJndexes[] entry. This is done on 

line 15 by ANo’ing the entry with b o t . m a s k . We also need to count the
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num ber of entries in each of the new rows in the  transposed m atrix  in order 

to  rebuild the new-rowjptrs[ \  array for the transposed m atrix. We do this 

by taking the  low' order row index bits w-e ju st removed (line 13) from the 

colJndexes[\  entry, right shifted to the bottom  of the integer and adding it 

to  the  current H yperP artition  num ber left sh ifted  by steaLbits  to  get the 

high order bits of the row index (lines 10, 13 and 15). The algorithm  finally 

does a cum ulative sum  to tu rn  the  new' row counts into new.row.ptrs[] .

For efficiency we combine the  sorting and HypCSR to CSR conversion 

into the one procedure. After sorting, m any of the  elem ents in this Hyper- 

P artition  are still likely to  be in caches, so it is appropriate  to then  convert 

th is H yperPartition  in HypCSR format back into the standard  CSR format 

before sorting  ano ther H y p erP artitio n  which would likely overw rite the  

cached data. As can be seen on line 8 of Algorithm  6.3, the algorithm  goes 

th rough  each H y p erP artitio n  and first calls th e  H y p e r P a r t i t io n _ S o r t () 

routine on the  appropriate  segm ents of the  non.zeros[]  and coLindexes[]  

arrays. For now' we are using the  tw o-array Q u ickS ort/InsertionS ort ou t

lined in Section 4.5, we revisit the sorting phase again in Section 7.1 in the 

next C hapter.

6.6 Heuristic: Choosing N um ber of B its to 

Steal

The num ber of bits we steal in the H yperPartition  cycle chasing algorithm  

influences th e  perform ance of the  algorithm . In m any cases, particu larly  

for large m atrices, stealing all the available b its  seems like the best option. 

However for smaller m atrices this could end up leaving us with a very small 

num ber of very large H yperP artitions. In th e  w'orst case we m ay end up 

w ith a single gigantic H yperPartition containing all the rows in the matrix. 

In this case the entire transpose operation would be done by just the sorting 

phase -  sorting the  entire m atrix  at once.

The only actual restriction on the num ber of b its we can steal is needJbits. 

W here needJbits is the num ber of bits required to  store rnax{m'ows, ncols).
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i.e.

needMts  — \log2 {rrMx{nrows,nco^s))^^

There must be at least enough bits remaining [remain Jbits > need.biis) 
in order to represent both the largest possible row index and the largest 

possible column index. Aside from this, we can steal anyw'here between 

(0 < steaLbits < (32 — need.bits)). There is also httle point in stealing 

any more than needMts,  if needJbits =  12 therefore there are (32 — 12 =  20) 
bits available to steal however stealing this many would leave us with a 

single HyperPartition containing all the rows. The limits of the number of 

bits tha t are available to steal are straightforward:

0 < steaLbits < (32 — needMts)

0 <  steaLbits < needMts

need.bits = \log2 {max{nrows,ncols))'\

How'ever, actually knowing the best number to  steal is more difficult. 

Experimental analysis showed that the number of stolen bits w'hich produced 
the best performance differed from matrix to matrix with no clear consensus.

The number of bits we steal, in combination with the relative dimensions 
of the m atrix {nrows,ncols,nnz)  influence the size and number of Hyper- 
Partitions which in tu rn  influences the relative performance of both the 
cycle chasing H yperPartition transpose (Phase-I) and the H yperPartition 
sorting (Phase-H). Pushing too much work into one phase or the other will 
impact on performance. There are a number of naive approaches we could 

take to choosing the rmmber of bits to steal. Some of the heuristics include:

N aive H euristics:

• Alw'ays steal the maximum number of bits

• Always steal the minimum number of bits

• Alw'ays steal (at least) ‘x ’ bits

• Alw'ays steal (at most) bits
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As discussed above, stealing all available bits is good for some (large) 

matrices but detrim ental to others. Stealing the minimum (zero) number 

of bits is pointless. The other strategies of always stealing at least ‘x ’ or 

at most ‘x ’ run into the same problem th a t it would be good for some 

matrices but detrim ental to others.

6.6.1 R em aining B its H euristic

The number of bits we steal influences the structure of the matrix in three 
W'ays;

1) The number of bits we steal determines the number of rows in 

each H yperPartition. The size of the HyperPartitions then depends 

on tlie average number of elements in each row which depends on the 

sparsity of the matrix.

2) The number of bits remaining {remainJbits) controls the number 
of H yperPartitions created as we put number of rows into 
each HyperPartition.

3) Therefore the number HyperPartitions created is

Balancing these two variables is im portant for good performance of 
the H yperPartition transpose. We can balance the number of and size of 
H yperPartitions with the following relation which we call the Remaining 

Bits Heuristic.

T he R em ain ing B its  H euristic:

remnin^bits  =  {need^bits — steaLbits) > k 

In other w'ords:

Steal as many bits as possible but always leave at least 'k ’ need.bits remaining.

The advantage of this heuristic is that it is agnostic of matrix dimensions.
It will keep a balance between the size of the HyperPartitions and number 

of HyperPartitions regardless of m atrix dimensions.
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We can see this in Figure 6.5 which shows that in in the 32—bit integer 
number 7,694, there are 13 bits used and 19 bits tliat are available to be 

stolen.

19 bits  ava ilab le  13 bits  used

Figure 6.5: Integer Bits Available in the number 7,694

In this case, although there are 19 bits available, for a ‘A’’ value of the

hemistic of k = 4, w'e would only steal nine bits, thus ensuring tha t there 
are still four bits left in the row index. This would leave us with ~2'^ =  16 
HyperPartitions with ~2® =  512 row’s per H yperPartition.

The Remaining Bits Hem istic is the only heuristic presented in the 
HyperPartition experiments below'.

We can vary the ‘A’’ param eter to  balance the work of the transpose 
between the cycle chasing phase and the sorting phase. Using this heuristic 
we have found from experim entation th a t the follow’ing values for the k 
param eter of the remaining bits heuristic give good performance.

• A’ =  9 or k = 10 for Serial H yperPartition

• A’ =  5 or A- =  6 for Parallel H yperPartition

As discussed above, steaLbits  also influences memory usage as it de
term ines the numljer of H yperPartitions and hence the size of the four 

hyp-* arrays the algorithm needs. In all cases we steal enough bits and the 
HyperPartitions are large enough tha t memory usage is negligible.

6.7 H yp erP artition  M em ory U sage

As discussed in Section 6.1.3, the memory overhead of the H yperPartition 
algorithm is 0 ( 7?) ,  however in practice it is just a tiny fraction of n depending 

on the number of bits stolen, so could be of the order of ~ ( ^ )  or less. 

This is evident from Figure 6.6. Even showdng relative memory usage of
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the  H y p erP a r t i t io n  algorithm  com pared  to  Saad, the  m em ory usage of 

H yperPartition  is just a flat line a t zero at the  bo ttom  of the  graph.

In order to see the ineniory of the  HyperPartition algorithm for different 

matrices, Figure 6.7 shows a zoomed close-up of the bottom  of the  memory 

usage graph from Figure 6.6. Given the memory usage for Saad is so much 

larger and does not fit on the graph, we show two dotted lines representing 

1% and  0.25% of the  relative m em ory usage of Saad. Aside from three  

outliers, the  m em ory overhead of the  H y p erP a r t i t io n  algorithm  for the  

m ajority  of inpu ts  m atrices from our test  su ite  is well below the  0.25% 

line. T he  overall average m em ory usage of th e  H yperParti t ion  algorithm 

for these matrices is 0.07% of th a t  of Saad.

T he  H yperP a rt i t ion  algorithm  perform s the  In-Place Sparse M atr ix  

Transpose with negligible memory overhead particularly compared to Saad 

and O O P  which for the  largest m atr ix  nlpkkt240  require up to  1,531 MiB 

and 4,699 MiB respectively. HyperPartition  uses a maximmn of just 3.3 MiB 

for this lai'gest m atrix.

F igures 6.6 and  6.7 show the  H y p erP a r t i t io n  algorithm  where we are 

using the  heuristic  described in Section 6.6 where we always a t te m p t  to  

leave behind at least k  bits in order for the H yperPartition Cycle Chasing to 

be efficient. In this case we are using a value of k =  9, which we have found 

experimentally to give good efficiency overall for the  serial HyperPartition  

algorithm across the  sample matrices used.

Table A .3 on page 226 shows the  num ber of b its  which have been 

stolen, left behind and rem ain  available for a set of sample m atrices from 

the test su ite  when using the  H y p erP a r t i t io n  algorithm  w ith  the  k =

9 heuristic. Table A .3 also shows the  m em ory  overhead of the  various 

transpo.se algorithms for the  set of samj)le matrices.

6.8 H yp erP artition  Transpose E xecution  T im e

Figure 6.8 shows the  execution t im e of th e  H yperP art i t ion  A lgorithm  

relative to  the  Saad-IP  algorithm. The H yperParti t ion  algorithm is being 

run serially with a heuristic setting of k =  9 and using the sini])le Two-Array

R obert C rosbie . T h e  r i iiv e rs ity  of D ublin . T rin ity  College 163



C hapter 6. H yperPartition Sparse M atrix Transpose

H yperPartition (k=9) vs. S aad -iP  - • M emory O v e rh ea d  of Algorithm [Relative]

O

o
Eo
S

LeoervJ
S aad-IP  

H yperPartition (k=9) 
A verage: 0 .071%

4 m 8 m
Matrix S ize {million nnz) <LOG sca le>

16 m 50 m 150 m 400 m

Figure 6.6 : The relative memory usage of the HyperPartition Transpose (k =  9) 
algorithm is negligible compared to Saad, only showing as a line along the bottom  at 
zero.
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H yperPartition (k=9) vs. S aad - iP  - -  M emory O v e rh ea d  of Algorithm (Relative] • (C lose Up)

L eoend
0 .25  %  of S aad -IP  

H yperPartition (k=9) 
A verage; 0 .071%
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Matrix S iz e  (million nnz) <LOG sca le>

Figure 6.7; Close-up Relative memory usage of the HyperPartition Transpose (k =  9). 
This graph shows two dotted lines to represent 1% and 0.25% of the memory usage Saad. 

Most inputs use less than 0.25% with an average of 0.07%.
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HyperPartition (Quicksort - k=9 } vs. Saad-IP --  (Serial) Execution Time of Transpose [Relative]
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Matrix Size {million nnz) <LOG scale>

Figure 6.8: Serial execution time of HyperPartition Transpose {k =  9) with QuickSort 
compared to Saad. I'he time complexity of HyperPartition is G(nnz  +  n) however 
the performance is quite variable due to cache performance. HyperPartition is quite a 
bit slower in some cases, however for a large number of matrices the HyperPartition 
performs the transpose much faster than Saad showing the benefit of improved caching.

Quicksort  from Section 4.5 for the  Phase-II sorting  part of the  algorithm . 

N ote th a t  these graj^hs show th e  full transpose  tim e which includes b o th  

th e  tim e  for th e  cycle chasing tran sp o se  phase and  th e  so rting  phase for 

b o th  algorithm s.

In Figure 6.8 the  graph shows the execution tim e of the  algorithm  using 

th e  p a ram ete r k =  9 for our Remaining Bits  heiu'istic (Section 6.6.1). As 

we will see in Section 6.8.2 th is  gives th e  best overall perform ance for the  

serial H y p erP artitio n  algorithm .

It is clear from the  graph th a t for a num ber of m atrices the  H yperP arti

tion  transpose is considerably slower th an  Saad. The m ajority  of these slow 

m atrices are the  ''Structurally Symmetric'^ m atrices which we identified in 

Sections 5.10 and 5.11. These structu ra lly  sym m etric m atrices already have 

very short cycle lengths and have very good perform ance for th e  in-place 

S aad  and  C orrespond ing  Row a lgorithm s com pared  to  o th e r  m atrices of 

com parable  size. These m atrices will be exam ined in d ep th  in Section 7.4

Leaerxj
Saad-IP

HyperPartition (Quicksort - k=9) 
Average; 115.7%

A

A

I I I  1 1
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where we show th a t the reason for H yperPartition being slower for these 

matrices is tha t switching to the H yperPartition format means tha t we no 

longer get the two-element cycles and thus no longer enjoy the benefit that 
Saad and Corresponding Row gain from the synnnetry.

In Chapter 7 we also propose methods to quickly identify and efficiently 
handle these structurally symmetric matrices and improve the performance 

of the algorithm when transposing them.

6.8.1 Excluding S tructurally  Sym m etric M atrices
—  For H yp erP artition  Transpose E xecution  T im e

Given tha t we know these S tructurally Symmetric matrices cause a partic
ular problem for the H yperPartition transpose and we show how to simply 

identify and handle them  in C hap ter 7 it is inform ative to  see how the 

H yperPartition algorithm performs on the other, non-synnnetric matrices. 
Figure 6.9 shows the perform ance of the serial H yperPartition  excluding 
those m atrices which are structura lly  synmietric. This figure again shows 
the performance of the serial H yperPartition  transpose w'ith a remaining 
bits hem'istic value of k = 9. Varying the value of k had very little impact 
on the overall performance of the serial H yperPartition transpose after the 
structu rally  sym m etric m atrices w'ere excluded. The value did alter the 
perform ance of the algorithm  for individual matrices, however for some 
matrices it improved and others it degraded. The result of this is tha t the 
average perform ance of the algorithm  to Saad does not vary greatly for 

different values of the k  heuristic.

Figure 6.9 highlights a number of things that were somewhat obscured in 
Figure 6.8. When we look past the Structurally Synnnetric matrices we find 

that the H yperPartition in-place transpose is very efficient at transposing a 
large number of these matrices. For quite a few matrices the HyperPartition 

algorithm  transposes the m atrix  in less than  50% of the execution tim e 

of Saad, wdiile using less than  0.25% of the memory. Overall the  serial 

H yperPartition algorithm transposed this subset of matrices in just 80.3% 

of the tim e of the Saad algorithm.
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H yperPartition (Q u ickso rt - k=9 } vs. S aad -IP  - -  (Serial) UnSym  Execution Tim e of T ra n sp o se  (Relative]
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F ig u r e  6.9: Syn im etric M atrices E xcluded: Serial execu tion  tim e o f H yperP artition  

T ranspose {k =  9) w ith  Q uickSort com pared to  Saad for non stru ctu ra lly  sym m etric  

m atrices. T his is the sam e graph as Figure 6.8 just w ith results for sym m etric m atrices 

o m itted . N o te :  T h is figure and F igures 7.9, B .3 and B .4 are th e  on ly  figures w ith  

m atrices excluded. A ll other graphs include results o f all m atrices in the test su ite.

There also seems to  be a strong trend  indicating th a t the H yperP artition  

Transpose is becoming even more efficient th an  Saad as m atrix  size increases. 

Fiu 'therm ore, th ere  is ac tua lly  a g rea te r th a n  50% reduction  for m ost of 

th e  large m atrices. Coupled w ith  the  huge reduction in m em ory overhead, 

th is  is a very good resu lt. Recall th a t  for th e  largest m atrix , nlpkkt240,  

O O P requires 4,699 MiB in m em ory overhead, Saad requires 1,531 MiB and 

H yperP artition  requires ju st 3.3 MiB and can transpose the  m atrix  in 80.7 

seconds, ju st 36% of the  execution tim e of Saad.

These resu lts  clearly  show th a t  by perform ing  th e  in-place transj)Ose 

using th e  H y p erP a rtitio n  form at reduced th e  average cycle leng th  which 

led to  im proved cache reuse and  th u s  m uch b e tte r  execu tion  tim e  for a 

large num ber of m atrices.

There are still a small num ber of m atrices for which the  H yperP artition  

tran sp o se  perform s poorly  which pulls up  the  average rela tive  execu tion  

tim e. However, do recall from Figure 6.6 (and refer to Table A .3) th a t  the

Legend
S aad -IP

H yperPartition (Q u ickso rt - k=9) 
A verage; 80 .6%
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H yperPartition  transpose uses ju s t a tiny fraction of the m em ory overhead 

of Saad, 0.07% on average. F u rther m ethods to  im prove th e  perform ance 

of th e  H yperP artition  transpose will be investigated in C hap ter 7.

6.8.2 Serial Performance of the Remaining Bits  Heuris
tic

Section 6.6 discussed th e  'remaining bits' heuristic  which w'e can use to  

de te rm ine  th e  num ber of b its  th a t  should  rem ain  beh ind  after we steal 

som e of the  available b its  when converting to  th e  H y p erP artitio n  form at. 

T h is  p a ram ete r d irec tly  influences th e  trade-off betw een th e  num ber of 

H yperPartitions and the  num ber of row s/elem ents per H yperPartition . This 

in tu rn  controls the  trade-off in work done during the Phase-I cycle-chasing 

p a rt of the  algorithm  and the  P hase-Il sorting p a rt of the  algorithm .

F igure  6.10 shows the  influence of selecting different values of ‘A’’ on 

the  execution tim e of the  Serial H yperP artition  algorithm  w ith QuickSort. 

T he  figure ju s t shows four values of k: k =  1, A' =  3, A' =  6 and k =  10. 

Figure B .l in A ppendix B shows the  perform ance for all values of k between 

1 and 10.

We can see from Figure 6.10 and Figure B .l th a t the  ‘A’’ value does not 

have a very big im pact on the overall perform ance of Serial H yperPartition  

w ith Q uicksort. Overall the  perform ance of the algorithm  transposing our 

259 m atrices runs from an  average relative execution tim e of 120% of Saad 

w ith  a p a ra m ete r  of A’ =  1 to  115% w ith  a p a ra m e te r  of k =  10. T he 

im provem ent is not d ram a tic  b u t it is still a reasonable  reduction  of 5%. 

Thus for Serial H yperP artition  w ith QuickSort, the  reconnnended value for 

th e  ‘A’’ heuristic  is A =  9 or A’ =  10.

Closer inspection shows th a t for some individual m atrices as the num ber 

of rem aining b its  (as determ ined by the value of ‘A-’) increases, the execution 

tim e perform ance improves. However, for o ther m atrices, as the  value of ‘A’’ 

increased the execution tim e of the algorithm  for these m atrices deteriorates. 

Thus showing how this trade-off in work differs between m atrices. For some 

m atrices the  algorithm  perform s b e tte r  doing more of the  work in the cycle
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C hai)ter 6. H yperP artition  Sparse M atrix  Transpose

chasing phase and for o ther m atrices th e  algorithm  perform s b e tte r  doing 

m ore of th e  work in the  sorting  phase. T his leaves us w ith  an overall 

perform ance th a t  only improves slightly w ith larger ' k '  values.

Seeing how th is trade-off in work betw een cycle-chasing and  so rting  

influences perform ance, it shows th a t as we give more work to  the  sorting 

phase it means th a t we should look at ways of improving the sorting phase. 

This can be done in two ways; a )  Perform ing the sort in parallel, which we 

will investigate next and b) hnproving the sorting operation which we will 

investigate in C hap ter 7.

6.9 Parallel H yperP artition  Transpose

A side benefit of performing a larger proportion of the  work of the transpose 

in the Phase-II Sorting step is th a t the work of sorting each H yperPartition  

is com pletely isolated from all the  o ther H yperPartitions. This m eans th a t 

it becomes incredibly easy to  parallelize a large proportion of the  transpose. 

It has always been easy to  perform  the  sorting  in parallel, however as we 

saw in F igure  4.9 in Section 4.5, it was only a sm all p ropo rtion  of the  

to ta l work. In which case, perform ing  the  Q uickSort in parallel would 

not im prove g reatly  on the  overall execution tim e of the  transj)ose. W ith  

H yperPartition  sorting there is nm ch m ore to  be gained from doing th is in 

parallel. Figure 7.1 in C hapter 7 shows the proportion of tim e being spent 

on each of the cycle-chasing and sorting phases of the  serial H yperPartition  

transpose  w ith QuickSort.

6.9.1 Parallel Sorting A lgorithm

Parallelizing  th e  so rting  step  is very s tra igh tfo rw ard  as shown in Algo

rithm  6.4 which is a modified parallel version of A lgorithm  6.3. The easiest 

way is sim ply to  com pile w ith  O penM P[D agum  98] enabled  and  to  add 

a “#pragm a omp p a r a l l e l  f o r ” before the  f o r O  loop on line 3 in Algo

rithm  6.4. Setting  openmp_num_threads (x ) at the  s ta r t  of the  application 

will cause O penM P to  au tom atically  split iterations of the for loop across
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6.10. Parallel H yperPartitioii Memory Usage

‘.r’ processor threads on the machine. This has the added benefit tha t the 
HypCSR to CSR conversion routine will also rim in parallel. All the opera

tions on th e  H yperPartitions are independent on the different processors 

so they should not interfere w ith each other. However all processes write 

to  the  sam e new.row.ptrs[]  array when counting the  new row indexes. 

Therefore it is necessary to include a "#pragma omp atom ic” before this 

increment on line 15 to ensure synchronisation.

Using O penM P is a quick and simple m ethod of parallelizing which 

works quite well in this case as we simply wish to split the HyperPartitions 

up between processors to  be sorted independently. Some more focus on 
the distribution of work, parallelization and synchronization with OpenMP 

could lead to  further improvements in throughput.

6.10 Parallel H yp erP artition  M em ory U sage

Similar to  Section 6.7 which showed the  memory for the  serial Hyper- 
Partition  transpose, this section shows the memory usage for the parallel 
H yperPartition transpose with a heuristic value of {k — 6) compared to the 
parallel Saad algorithm . A value of {k = 6) was chosen because values of 
k = b and A' =  6 give the best performance for the parallel H yperPartition 
transpose. As lower values of k mean tha t we steal more bits, we therefore 
have a smaller number of larger H yperPartitions. This reduces the size of 

the arrays used during cycle chasing which gives a lower overall memory 
usage when k = 6.

Figure 6.11 shows the relative memory usage of the parallel H yperPar
tition transpose algorithm compared to the parallel Saad algorithm. Again 

the  memory overhead of H yperPartition  is such a tiny fraction of Saad 

tha t it just shows as a line on the bottom  of the graph at zero. We show a 

close-up of the bottom  of the graph in Figure 6.12. Here again the memory 

usage of Saad is so high th a t we ju s t show a do tted  line for 0.25% of the 

memory usage of Saad. The memory usage of H yperPartition at A- =  6 is 

below this 0.25% line for all input matrices in our test suite and well below 
this line for the majority. The average memory overhead is 0.016%.
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Parallel HyperPartition (k=6) vs. Parallel Saad-iP - -  Memory Overhead of Algorithm [Relative)
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Figure 6.11: I’he relative m einory usage of th e  Parallel H y p erP artitio n  T ranspose 
{k =  6) algorithm  is negligible com pared to  Parallel Saad. again, only showing as a line 
along the bo ttom  a t zero.
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Figure 6.12: Close-up relative memory usage of the Parallel H yperPartition  Transpose 
(k =  6). 'I'his graph shows a do tted  line to  represent 0.25% of the memory usage of Saad. 
All inpu t m atrices use less th an  0.25% w ith an average of 0.016%.
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6.11. Parallel H yperPartition Execution Time

The memory usage of the serial and parallel HyperPartition algorithms 

w ith Q uicksort are identical. However, the value of k  for the remaining 
bits hem'istic does influence the memory usage of the algorithm. In this 

case, because we are using a value of A' =  6 compared to k = 9 for the serial 

version, the memory usage is lower. The parallel algorithm at k = 6 has an 

average overall usage of 0.016% compared to the 0.071% usage of the serial 

version at k = 9.

Larger values of ‘A’’ result in greater memory usage for the H yperParti

tion algorithm as we are stealing fewer bits and this causes the HyperParti

tion structure to have a larger number of HyperPartitions each containing 
fewer rows.

W ith all values of k  for the remaining bits heuristic between k = 0 and 

k  =  10 the memory usage of the H yperPartition  algorithm  is uuich less 

than Saad.

6.11 Parallel H yperPartition  Execution Tim e

Note: In these graphs of the parallel H yperPartition  we also show the 
parallel execution tim e of the Saad algorithm. W ith the Saad algorithm  
only the sorting phase can be done in parallel so there is some parallel 

speedup, but it is minimal.
Figure 6.13 shows the execution time of the H yperPartition algorithm 

with Quicksort running in j^arallel for the sorting phase across 32 cores on 
our experimental machine. Figure 6.13 shows the  execution tim e of the 
algorithm  using a remaining biis heuristic param eter of A' =  6 which we 

found to give the best overall performance. See Section 6.11.2 for further 
details.

The Parallel H yperPartition with QuickSort is significantly faster than 

the parallel Saad with QuickSort for the m ajority of inputs. Taking 42.7% 

of the execution time of Saad on average, w ith many matrices requiring 

even less than this.

Earlier in Section 6.6 we discussed the selection of the nmnber of bits 

to  steal and found when using the heuristic {{needJjits — steal.biis) >
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32-w ay H yperPartition (Q uicksort - k=6 ) vs. S aad -IP  - -  (Parallel) E xecution Tim e of T ra n sp o se  [Relative)
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F igure  6.13; P arallel execu tion  tim e o f H yp erP artition  T ranspose w ith  Q uickSort 

(w ith  a heuristic value o f (k =  6) com pared to  Saad. T h e parallel H yp erP artition  is 

slightly slower for a sm all number of inputs, however it is considerably faster than Saad 

for the m ajority of inputs taking on average 42.7% of the execution tim e of Saad overall.

k) th a t  a vahie of aVjout k =  9 or k =  10 gave good resu lts  for the  

serial H yperP artition  w ith Q uickSort/InsertionSort. W hen perform ing the 

H yperPartition  w ith Q uickSort/InsertionSort in parallel across 32 processor 

th read s , we can afford to  do m ore work in the  so rting  P hase-(II) p a rt of 

th e  algorithm . As such, we have found experim en tally  th a t  a value of 

A- =  6 gives a good jjerform ance for H y j)erP artition  w ith  Q uickSort in 

parallel on 32 cores based on our sam ple set of m atrices from F lorida (see 

Section 3.6.2).

6.11.1 Parallel H yp erP artition  vs. Serial Saad

Note th a t for these parallel results, th e  sorting phase of the Saad algorithm  

was also perform ed in parallel on 32 cores and is displayed as such on the  

g raphs. In o rder to  see how th e  parallel H y p e rP a rtitio n  com pares to  the  

original serial version of Saad, Figure 6.14 shows the execution tim e of the 

jjarallel version of the  H yperP artition  Transi:)ose w ith QuickSort com pared

Legend
P ar-32  S aad -IP  

P ar-32  H yperPartition (Q uickSort - k=6) 
A verage: 42 .7%
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32*way H yperPartition {Q uicksort - k=6 ) vs. S aad -IP  - -  (Parallel) Execution T im e of T ra n sp o se  [Relative]
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F igure  6.14: Parallel execution tim e of H yperPartition Transpose with Q\iickSort 
compared to the execution time of the Serial version of Saad. The Parallel Hyperpartition 
performs transpose on average in 35% of the tim e of Saad.

to  th e  s e r ia l  execution  tim e of Saad. U sing less th a n  1% of th e  m em ory 

overhead of Saad the  H yperP artition  algorithm  perform s the  transpose on 

average in 35% of th e  tim e of Saad  w ith  th e  m ajo rity  of inpu t m atrices 

tak ing  even less tim e th an  this.

6.11,2 Parallel Performance of R em ain ing  B its  Heuris
tic

F ig iu e  6.15 shows th e  perfo rm ance of th e  P aralle l H y p e rp a rtitio n  w ith  

Q u ickso rt for the  remaining bits heuristic  for th e  ‘A’’ p a ram ete r values of 

k =  1, k =  3, k =  6 and  k =  10. F igure  B.2 in A ppend ix  B shows th e  

perform ance of th is algorithm  for all ‘A:’ values betw'een 1 and 10.

U nlike th e  g raphs for th e  serial H y p e rp a rtitio n  in Section 6.8, these  

graphs show th a t different values of the ‘A-’ param eter have a very profound 

influence on the perform ance of the A lgorithm  for the  m atrices overall. The 

para lle l H y p e rP a rtitio n  w ith  Q uickSort has an overall average execution 

tim e of 86% of Saad  a t A- =  1 to  42.7%  of Saad for k =  6. In terestingly ,

Leoend
S erial S aad-IP  

Par-32  H yperPartition (Q uickSorl - k=6) 
A verage: 35 .4%
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6.12. Reviewing the  Remaining Bits  H euristic

A' =  6 appears to  be th e  sweet spot for th is  a lgorithm  as th e  i)erforniance 

then  begins to  d e te rio ra te  again for larger values of k, going up to  50% of 

Saacl at k  =  10.

It is ev iden t from  these  g raphs th a t  th e  heuristic  and  th e  value of ‘A’’ 

has a bigger im pact on the  sm aller m atrices. This is because for the larger 

m atrices, even if ŵ e steal all the  available bits, there  are still a large num ber 

of b its  rem ain ing . T hus, changing th e  value of ‘A’ will no t change the  

nm nber of b its  w'e steal from these m atrices until ‘A’’ becom es very large.

For the sm aller m atrices, increasing the  value of ‘A’’ m eans th a t we can 

do m ore of th e  tra n sp o sin g  w'ork in para lle l du ring  th e  so rting  phase. A 

value of A’ =  6 gives the  best perform ance in th is case, running at an average 

of 42.7% of th e  E xecu tion  T im e of Saad  overall w ith  a large p ropo rtion  

of the  m atrices ru n n in g  m uch faster th a n  th is. T h is is a very good result 

for an algorithm  th a t  has a m em ory overhead of less th an  1% of Saad (see 

m em ory usage in F igure 6.6).

6.12 R eview ing the R em ain in g  B its  Heuris
tic

In Section 6.6 we p roposed  th e  Rem ain ing  B its  heiu 'istic for deciding on 

th e  num ber of b its  th a t  should  be sto len  wdien converting  from  th e  CSR 

sparse m atrix  storage form at to  our new H yperP artition  CSR form at. The 

heuristic suggests th a t we should: Steal as m any bits as possible hut always 

leave at least ‘k ’ bits behind.

W’e saw' how th is  heu ristic  influenced th e  perfo rm ance of the  Serial 

H y i)e rP artitio n  wdth Q uickSort in F igure  6.10 in Section 6.8.2. W e also 

saw how it iuflnenced the  perform ance of th e  Parallel H yperP artition  with 

Q uicksort in F igure 6.15 in Section 6.11.2.

We found th a t the  heuristic only ha.s a sm all effect on the perform ance 

of th e  serial H y p e rP a rtitio n  transj)ose. T h e  execu tion  tim e d id  im prove 

from  a re la tive  perfo rm ance of 120% of Saad  wdien stea ling  all available 

b its to  114.7% when leaving a t least k = 10 b its  behind. An im provem ent
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of over 5%.

T h e  heuristic  had  a m uch larger influence on th e  perform ance of the  

Parallel H yperP artition  algorithm  as the heuristic allowed more of the  work 

to  be done in th e  para lle l so rting  phase  of th e  transpose. T he  rela tive 

p erfo rm ance of th e  a lgo rithm  com pared  to  Saad  w ent from  94.6% wdien 

s tea ling  all available b its  to  42.7%  wdien ensuring  th a t  th e re  are a t least 

k =  6 b its left. This is a very significant halving of the  overall perform ance 

of th e  algorithm .

Larger values of 'k' caused the  perform ance of the  parallel H y p erP arti

tion  to  increase to  50% of Saad w hen k =  10. This is because th is creates 

a greater num ber of sm aller H yperPartitions which loses the  benefit of per

form ing the  sorting  in parallel. T he heuristic had a much greater effect on 

the perform ance of th e  parallel H yperP artition  algorithm  when transposing 

th e  sm aller m atrices in th e  te s t su ite  w here, as we pred ic ted , s tea ling  all 

available b its would have an averse affect resulting in a very small num ber 

of very large H yperP artitions.

A n im p o rta n t po in t to  no te  from  investiga ting  th e  influence of the  

heuristic  on th e  perform ance of th e  algorithm  is th a t while m odifying the  

p a ram ete r im proved th e  perform ance of the  a lgorithm  for some m atrices, 

it also deg raded  th e  perfo rm ance of th e  a lgorithm  for o th er m atrices at 

th e  sam e tim e. T h is  behav iou r should  be investigated  fu rther. It m ay 

be ap p ro p ria te  to  use different heuristic  param eters  for different m atrices 

which have different dim ensions and which lead to  different H yperPartition  

sizes.

6 .13  S u m m ary

W e have seen in th is  c h ap te r how' our new  H y p erP a rtitio n  sparse m atrix  

form at greatly  reduces the  m em ory overhead of the  in-place sparse m atrix  

tran sp o se  to  ju s t a fraction  (less th an  1%) of th e  existing algorithm s.

W e have seen in th is  c h ap te r how" we can use our new H y p erP artitio n  

sp a rse  m atr ix  fo rm at to  perfo rm  th e  in-place cycle-chasing tran sp o se  in 

a m ore cache friendly  m anner by reducing  th e  length  of cycles which
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are chased during the transpose. Thus allowing us to  transpose the  non- 

sym m etric m atrices in an average overall execution tim e of ju st 80% of 
Saad with many of the larger matrices having a greater than 50% reduction 

in execution time.

We also found th a t switching to  our H yperPartition  form at allowed 

us to perform  a larger am ount of the  transpose work during the  sorting 

phase of the transpose allowing even further benefits from good cache reuse 

and also allowing us to  perform the sorting phase in parallel. For our 259 

m atrices, the parallel H yperPartition  gave an overall average runtim e of 
42.7% of the execution tim e of the parallel version of Saad and 35.4% of 

the execution tim e of the serial version, over all input m atrices. In the 

next chapter we present m ethods to  improve the  execution tim e of the 

H yperPartition sorting phase in order to  further improve the throughput 

of the sorting phase of the transpose.
In this chapter we also presented our remaining bits heuristic which 

allows us to  balance the  am ount of work being done between the  cycle- 
chasing and sorting phases of the transpose. W’e found tha t values of about 
k = 9 or k =  10 gave good perform ance for the serial H yperPartition  
transjjose and values of about A’ =  5 or k — 6 gave good perform ance for 

the parallel H yperPartition transpose.
In this cha])ter we identified tha t that the HyperPartition transpose algo

rithm does not perform as well as Saad or Corresponding Row on matrices 

that are Structurally Symmetric. This is because the H yperPartition format 
interferes w ith their structm ’e thus losing the  benefit of the  two-element 
cycle length.. In the next chapter we will show how to  quickly and easily 

detect if an input matrix is structurally synnnetric and outline a technique 
for a Hybrid H yperPartition transpose to  handle it more efficiently.
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A L G O R I T H M  6.2 :  Cycle Chasing HyperPartition Transpose 
Input: Matrix M  in HyperPartition format from Algorithm 6.1 
Output: Transposed Matrix in HyperPartition format

1 / *  l-ooj)  e a c h  n e w  11\p<-ri)ar1 it io n  * /

2 for (0 <  curJiyp  < n .new Jiyp)  do
I'or (*ach of tin* ( u n m o v e d )  e le in e i i l . s  in ( u r J i y p '  *

for { hyp.of fsets{curMyp] < x  < neu' -hyp-p t rs [curJ iyp  + I] ) d o
/ *  ral\t* out  clcin^Mit at ‘x ' a n d  p ut  in ■'>n ' *

srcjval  <— non-zeros[x]\ 
src-col <r- coLindexes[x]  ^  B O T _ M A S K ;

S T C - h y p  ■<—

srch_upd_corresp (corresp[], cur-hyp. x, ri-oldJiyp. old-hyp-ptrs[])\ 
lou'.row ^  ((coLmd€xes[x]  T 0 P _ M A S K )  »  remain.bits);  
src-vow {(srC-hyp «  steaLbits)  +  lowbrow;
target-hyp  ■<— {src-col »  steaLbits);  * Vhv h y p  t h e  e l c in c n t  in M c '  shouhi Ik- in

12

14

15

16 

17

20

21
22

24

25

26

27

28

29

3 0

31

32

33

34

35 end

while  ( target-hyp  /  curJ iyp  ) d o

I ’in il (Ic^tiiiiiti<iii for f l c i i i c i i t  in 'm c' a n d  cIc-miMil at i n t o  il>t' */
dst-jT •<— hyp-offsets[targetJiyp]: ■'* n c s t i n a i i o n  imU-x * /

dst^val  •<— nori-zeros[dst^]\ 
dst^col coU ndexes[ds t^]  &  B O T - M A S K ;  

dst.hyp  <—

s r c h _ u p d _ c o r r e s p ( c o r r e s p [ ] ,  target-hyp. dst-X, n.old-hyp, oldJiyp-ptrs[])

lou'-row <r- {colJiidexes\dst-x]  &  T 0 P _ M A S K )  »  remain-bits', 
dst-Tou' •<— (dstJiyp «  steal-bits) + low.row,

* ( ' o p v  i n t o  n e w  ( U t '  p o s i t i o n  *

nori-zeros[dst^\  <— srcjval\  
colAndexes[d.<it-x] <—

{{{src-col (k  L 0 \ V _ M A S K )  «  remainJbits)  +  src-roxr); 
hyp-offsets[target-hyp] hyp-offsets[target-hyp]  +  1: / *  I'lafi, ha.-

niov(*d * /

/ *  ( *op> ’d ^ t '  i n t o  'M c '  S o  \v<* c a n  c o n t in u « '  c v t  l4 -(iia>iuj» t l u ’ n e w  <“I(’ni<*nl in  ' m c '

src-val dst-vai, 
src-rou' •<— dst-rou'; 
src-Col dst-coi.
target-hyp {dst-col »  steal-bits);  / * 'I'lic l i y p  t l i c  c l c n ic i i i  in 'm c ' . - i / i o H / J

h e  in  * ■'

end
/ *  i ' o u n d  (‘U‘n ir i i1 t l ia l  sh(nil<i Ik> in ' c i i r - h y p '  - co in -  t iu il  from  'src ' h a ck  int<) ‘x '  */
non-zeros[x\  ■<— src-val;
col-indexes[x] •<— {{{src-Col i k  L O W . M A S K )  «  remain-hits)  +  src-row); 
hyp-offsets[curJiyp\  <— hyp-offsets[cur-hyp] + 1;

end
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n ew _hyp_ptrs =  0„ 6j 83
n on_zeros — a h c d m  f  i g b e j k l n  

c o L in d e x e s  =  o;0 o:3 o:l i: l i 5 1,2 i 3 o:2 oO i:l o:3 oA l A 0:5

Exam ple 6.3: M atrix in HypCSR after Hyper Circuit Chasing 
Note: Elements are not in correct row or column order.

n ew _hyp  p tr s  =  0„ 6j 8̂
n on_zeros = a c h d f  m  g i b j  k  n e I

C O l_ in c l6 X G S  =  O ; 0  0:1 1:1 \ ‘2 q 2  1;3 0 :^  O:"! 0:^  1;1 1:

Exam ple 6.4: M atrix in HypCSR after Hyper-Sorting 
Note: Elements are now sorted into their correct row and column index

ordering.

n o n  ze ro s  = a c h d /  m 9 i h J k n e
c o L in d e x e s  = 0 1 3 1 2 5 2 3 0 3 4 5 1

n ew  row  p tr s  = o„ 3 . 6. 12:

Exam ple 6.5: Transposed M atrix in CSR representation 
after sorting and conversion back.
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A L G O R IT H M  6.3: Convert HyperPartition back to CSR format
I n p u t :  M atrix  in H yperPart i t ion  format from Algorithm 6.2 
O u t p u t :  M atrix  in CSR format

1 Allocate: 7 ie w-rou ' -p t r s [7 ieu ' .n rou ' s I ] ;

2  / *  I . ooj )  lhr<>ug,li e ac h  l iy ix T p a r t  il i on  *

3 fo r  (0 <  hyp  < n . n e w . h y p )  d o

12

13

14

15
16 

17

19

20

/ * i^('giiining  a n d  e n d  o f  l iy p c rp a i  tit ion h y p '  * /

f i tart  <— hyp-pf rs[hyp] \  
s to p  <r- h y p jp t r s [ h y p  +  1] — 1;

/ *  Sor t  liii?' HyjJtM'I’a r t i l i o n  S('<’ S(‘rli(>n^ 1.5 a n d  7.1 */ 

H y p erP art it ion _S ort(co /j7 ir fexes[ ] ,  no n -zero s \ \ .  s tar t ,  stop);

/ *  (i<‘l t i u ’ nu)sl s ign if ican t  l>it> o f  t l i f  row ind<“x f ro m  c u r r r n i  i i y p '  * /

row -insb  <r- {hyp «  steaLbits)-,

/ *  ( 'ount row to  l)iiil<i in ir ̂ roit'-pf r s [ \ .  t lic ii fi.\ ;tll o i't he f(>Liii(icx<*s[ ] in tlii>

h \ ix  rpart it ion * /

for ( s ta r t  < x  < stop  ) d o
r o i v { r o u ' - m s b  + {{colJiidej'es[x]  &  T 0 P _ M A S K )  »  remain-bits))-,  
new .row -p trs[row  +  1] <— neu '-row .p trs[ron '  +  1] +  1; , *  Count row iin lcxcf

Ofl'M't hv I *

colJndexes[x]  <— {colJndexcs[x] k  B 0 T _ M .4 S K ) ;  

en d
e n d

IM * ( ' u ini i l i i t  i \ T  > u i n  - T u r n  i n d e x  ccmi i l ^  i n t o  I ' ow p o i n t < ’f>

fo r  ( 1 <  i <  neu ' ^nrou’s ) d o  
I neu<-rou'.ptrs[i] <— 7iew.rou'-ptrs[i]  +  neu' -row^ptrs[i  — 1];

2 1  e n d
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6.13. Sunimary

A L G O R IT H M  6.4: Convert HyperPartition back to CSR format in Parallel
Input:  M atrix  in H yperPart i t ion  format from Algorithm 6.2 
O u tp u t:  M atrix  in CSR format

Allocate: n e x v - r o w -p tr s \n e w j i r o w s +  1];

L o o p  ih r o i ig h  e a i ’li Ii\'[>(‘r p a i i  it ion * /

#pragma omp parallel for 
for (0 <  h yp  < n -u e w M y p )  d o

/ *  f5('gi]Hji])^» a n d  (')nl o f  i]\ j)(’rp j ) r t i l io n  'h> 'p ' * /

s ta r t  hyp jp trs \hyp \,  
stop  hyp jp trs[hyp  +  1] — 1;

/ *  Sor t tlii.s i i \ p c r l ’a r l  i1 i(tn Sec Si' c tio ii s  1..") a n d  7.1 * /

Hyper P art  it ion_Sort(co /_ i7 irfejes[] ,  non.zeros[] .  s ta r t ,  stop)\

/ *  (Jet t lic  iiio^t sinii if irai it  hi1> o f  t h e  I'ow in d ex  f ro m  c u r rc n l  ' h y p '  * /

rou '-msb  •<— {hyp «  steaLbits)',

* C o u n l  row  indc xch  t o  b u i ld  ]. t h e n  fix all of  t h e  c o l J n d c x f s l ) in tlii>

ii\'l)‘ 'i'])art it ion * /

for ( s ta r t  < Jr < stop  ) do
row<— {row jnsh+ {{coL i7 idexes[x]  & TOP.MASK) »  reinaiij.bits))',  
#pragma omp atomic
i iew-rou '-p trs[rou’ +  1] <— new-rou'-ptrs[rou' +  1] +  1; / *  ( ' o m i t  row  in d c x f s  -

OffM't l)v 1 ♦

colJ7}dexes[x] <— {colJndexes[x] L: BOT_MASK);
en d

en d

* ( ’l u i Mi l a !  ivj '  ‘' ) u i )  - l i i n i  i n d e x  c o u n t s  i n t o  r o w  p o i n t e r s  * /

for ( 1 <  ! <  iieu'.iirou's  ) d o  
I new-row-ptrs[i] <— ncu'-roiv^ptrs[i] +  neu'-rou'-ptrs[i — 1]; 

en d
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Chapter

Further Optimisations 
Radix Sort and Hybrid 

Transpose

111 Chapter 5 we introduced the Corresponding Row transpose algorithm 
which reduced the space complexity of the Sparse In-Place Transpose to 
(-)(/)) while maintaining the time complexity of Q{nnz + n). Then in 
C hapter 6 we presented our HyperPartition algorithm which drastically 
reduced the ineniory overhead required for the sparse in-place transpose to 
just a fraction of both Saad and Corresponding Row in practice (Figure 6.6), 
while also improving the execution time for the majority of the matrix 
inputs (Figure 6.8).

In this Chapter we investigate further ways in which the HyperPartition 
algorithm can be improved. Section 7.1 presents the MSD RadixSort 
algorithm which improves the execution time of the sorting phase of the in- 
place transpose. With the HyperPartition algorithm, a larger proportion of 
the work of the transpose operation is being done during the sorting phase. 
Section 7.2 presents the performance results of the RadixSort Algorithm. 
Section 7.4 discusses structural analysis of sparse matrices in order to 
detect the structurally symmetric matrices for which the HyperPartition 
algorithm does not i:>erform as well as Saad-IP. This leads to a quick and 
simple heuristic algorithm which can predict the likelihood that a particular 
m atrix is structurally symmetric. We  use this heuristic in Section 7.5 to 
develop a Hybrid H yperPartition in-place transpose algorithm which is 
more efficient at transposing structurally symmetric matrices at the cost of 
a quick test and a small increase in memory overhead. Section 7.6 presents 
the performance results of the Hybrid HyperPartition in-place algorithm.
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C hapter 7. Further Optim isations - RaclixSort anci Hybrid Transpose

7.1 M ost Significant D igit (M SD ) R adixSort

As discussed in Section 4.5 the  In-Place Sparse M atrix Transj)ose is per

formed in two phases. The first is the cycle chasing phase which moves 

elements into their correct new  row in the transposed matrix. After the 
cycle-chasing phase there is no guarantee that the elements will be in column 

order within each row. Therefore the second phase involves sorting the two 
7wn.zeros[] and colJndexes[]  arrays based on the indexes in coLindexes[] 

to ensure the elements are stored in-order within each of the rows.

T he existing Saad in-place circuit-chasing algorithm  in the Sparskit2 

package only moves elements to  the correct new row. It does not ensure 
elements are ordered within the rows. The HSL library ])rovides a routine 

MC59 0  for re-ordering completely imsorted sparse matrices in COO format. 
This routine also has an option for ordering the elements within columns of 
a CSC matrix. In many cases it is more desirable to have in-row' elements 

which are in the correct order by colunm index, therefore we feel th a t it 
is im portant to also examine and improve the algorithm s for this sorting 
step. In this section we investigate ways of improving the performance of 
the Phase-II step of ordering the H yperPartition sparse matrix.

W hen transposing with the Saad-IP, Binary Range Search, Radix Table 
Lookup, and Corresponding Row in-i)lace algorithm s, the sorting step 
accounts for ju st a small percentage of the overall execution tim e of the 
transpose as can be seen in Figm'e 4.9 in C hapter 4. As discussed in 
Section 4.5, we have been using a simj^le Two-Array QuickSort which drops 

to InsertionSort when {length < l i m i t ) .  However, as we improved the per
formance of the cycle chasing algorithm with the HyperPartition transpose, 

the relative cost of the sorting phase has become a nnich higher j)roportion 

of the overall execution time. Figure 7.1 shows the proportion of execution 

time of the serial HyperPartition algorithm with the remainiiigJyiis  heuris

tic param eter of A- =  6 as shown in Figure 6.8. There is less work being 

done in the cycle chasing phase and more work being done in the sorting 

phase. We are also performing fewer sort operations, each on a nnich larger 

amount of da ta  — so improvements to the sorting algorithm will have an
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7.1. Most Significant Digit (MSD) RadixSort

S ort S ta ck e d  H yperPartition - -  (Serial) Execution Time of T ra n sp o se
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Figure 7.1: H yperPart it ion  Sort T im e stacked on top  of Algorithm Time

ever bigger impact on the to ta l execution time. W ith the H yperPartition 
algorithm , in some cases over 95% of the  work of the  transpose is being 
clone in the sorting phase. Therefore it is worth investigating improvements 
to the sorting algorithm.

Using our knowledge of the type and d istribution of the keys in the 
colJiidexes[] array and the way the H yperPartitions need to  be sorted 
in-place we believe th a t a Two-Array (see Section 4.5) version of a Most 

Significant Digit (MSD) In-Place RadixSort would be the  best choice of 
algorithm in order to give good cache and execution time i)erformance for 
sorting the m atrix  entries w ithin the H yperPartitions. W e  need a Two- 

Array version, because like our Q uickSort/InsertionSort algorithm , our 
new RadixSort needs to sort corresponding sections of the two non.zeros[] 

and coLindexes[] arrays based on the contents of the coLindexes[] array. 

N ote also th a t when sorting the H yperPartitions we need to  trea t the 

integer values in the colJ7idexes[] array as unsignc'd integers in order to 

sort correctly.

In some ways, the generic cycle chasing method (Algorithm 4.1) we have 

been using is concei)tually similar to a BucketSort algorithm. Except th a t

Legend
H yperPartition Q u ick so rt Time 

H yperPartition C ycle-C hase  Time
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Chapter 7. Further Optimisations — RadixSort and Hybrid Transpose

cycle chasing uses a very large number of very small buckets which makes 

the algorithm inefficient due to poor cache re-use. The H yperPartition 

algorithm groups rows into HyperPartitions which reduces the number of 

buckets and hence increases the average size of each bucket.

The RadixSort involves reading and copying/moving many elements 
nniltiple times. It seems unintuitive th a t moving elements three or more 

times gives better execution tim e performance than the generic cycle- 

chasing algorithm which only moves each element a single time. As w-e 

showed previously in Section 5.9, the cache performance of these algorithms 

when dealing with extremely large matrices has a huge impact on the 
execution tim e of the algorithms. The first (and second) pass of the 

RadixSort algorithm moves elements to buckets much closer to where they 
actually belong. In subsequent passes the algorithm will only need to  

process a smaller number of entries which are all contiguous in memory 
which would give much better temporal and spatial locality and therefore 
improved performance. The RadixSort is more cache friendly than using 

cycle chasing for the whole matrix and indeed it is more cache friendly than 
the Quicksort/InsertionSort algorithm we have been using.

985 .042.230 =  00111010  10110110 10001101 00110110
pass =  P ' 2"'̂  3'''̂  4"'

Example 7.1: Radix bit Passes of BucketSort

For our RadixSort we use a 'Radix'  on the bits of the integers in the 

colJndexes[] array to  sort the m atrix partition  entries into buckets. For 
example; if we are using a RadixSort with 256 buckets, then we would 
use sets of eight bits (256 =  2*) of the integers in colJndexes[] to sort the 

elements into buckets. Example 7.1 shows the bits in a 32-bit integer used 

on each of the four passes. In the first sorting pass we w'ould use the first 

eight most significant bits (bits 31-24) to decide which bucket to place each 

element in. If an element had the first 8 bits 00111010 =  58, then it would 
be moved to bucket[58]. On the second pass the algorithm goes through
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7.1. Most Significant Digit (MSD) RadixSort

each of th e  original 256 buckets, which now all have the  sam e first eight 

bits, and further sorts them  into sub-buckets based on the next eight most 

significant bits (bits: 23-16 =  10110110).

Using 256 buckets and a radix length of eight the RadixSort would sort 

all the elem ents in the  H yperP artition  after four levels of passes. A radix 

length of four bits (=  16 buckets) would take eight levels of passes to sort 

the  arrays. As the  R adixSort is not a com parison sort it will always sort 

the array in a constan t k  nvnnber of passes based on a given radix length 

and size of integer used for the indices. As such, no m atte r the size of the 

m atrix  and no m atte r  the  size of the  H yperP artition , for any given radix 

leng th /num ber of buckets the  RadixSort will alw'ays sort the  p artition  in 

a constan t num ber of passes. T hus the  com plexity  of the  R adixSort is 

0 { n n z  . A). Given k  is constant for a particular radix length and index size, 

and does not vary with the size of input nnz^ the complexity of the sort is 

essentially proportional to  0 { n n z ) .

7.1.1 M SD RadixSort Algorithm

A lgorithm  7.1 shows our Tw o-A rray varia tion  of the  M ost Significant 

Digit In-Place R adixSort algorithm  for sorting  H yperP artitions  using a 

radix length of eight bits which gives 256 buckets. On th e  first pass 

the  algorithm  sorts elem ents into buckets based on the  m ost significant 

eight bits. The algorithm  calls itself recursively, such th a t on subsequent 

passes the algorithm  then .sorts each sub-bucket based on the next eight bits. 

As w ith the  QuickSort algorithm  (Section 4.5), for efficiency we drop to 

InsertionSort when the array length is below a certain  limit.

The algorithm needs two integer arrays of size n u m B u c k e t s  = 256. The 

memory overhead of the In-Place RadixSort is therefore very low. W ith 256 

buckets the overhead is just 2 KiB. Two arrays are needed for every level of 

the RadixSort, using eight bits or 256 buckets would give four levels which 

would still require only 8 KiB. Even running th is RadixSort in parallel over 

32 cores would require at m ost 256 KiB of m em ory overhead. Given th a t 

the mem ory overhead of the Saad-IP algorithm  for the sm allest m atrix  in
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A L G O R IT H M  7.1: Radix BucketSoit Algorithm - 256 Buckets
Input: Matrix in HyperPartition format from Algorithm 6.2 
O u tp ut: Matrix in HyperPartition format with ordered HyperPartitions

1 r a d i x  — 2 ' ) f i  * /

2 rad ix B i t s  <— 8; n u m B i n s  <— 256;
3 Allocate: star tBi7i[numBinss];  Allocate: endBi7i[numBinss];

4 / *  S c a n  t h e  a r r a y  a n d  c o u n t  t h e  n u n i ) ) c r  o f  iten i.s t h a t  will h e  in e a c h  b in  * /

5 for (0 <  cur < last) do
digit  <r- {[indexes\cur] k. b i tMask)  > >  sh i f tAmt )- ,  
if  {digit  +  1 <  n u m B i n s )  th en

I star tBin[digi t  +!]■<— start  Bin[digi t  +  1] +  1; 
end

en d

1 1  / *  ( ' i i lcuUitc l l i c  ^ t a r t  a n d  o m l  o f  ca c l i  b in  f r o m  t l i c  c o u n t  */

12  for (1 <  i  < n u m B i n s )  do
13 I startBin[i] <— endBin[i]  <— startBin[i]  +  s tar tB in[ i  — 1];
14 en d

15 / *  ( i o  t h r o u g h  c a c h  " c u r "  e l e m e n t  i n  t h e  a r r a y  a n d  m o v e  it  t o  t l u ’ c o r r e c t  i ) i n  ii  u i ' c e s s a r y  * /

1 6  for (0 <  cur < last)  do
ir w h ile  {true)  do
i»  * e x t r a c t  t h e  digit  wc a re  s o r t in g  liased on * /

19 digit = {{indexes[cur] & b i tMask)  >> s h i f t  Amt)-,
2 0  if  {endBin[digit] == cur)  th e n
2 1  I break',
2 2  end
23 SVAP{indexes,  values,  cur. endBi7i[digit])-,
24 endBin[digit]  ■«— endBin[digit] + 1;
25 end
2 6  endBin[digi t  +  1] <— endBin \d ig i t  +  !] +  !: /* lea \< ‘ t l i e  e l e m e n t  a t  ii> l o c a t i o n  a n d  g r o w

t h e  b in  *

27 cur cur  +  1; * a d v a n c e  t h e  c l i r r e n t  p o i n t e r  t o  t l i e  n e x t  e l e n ie n t  *
2 8  w h ile  {cur > s tar tB in[nex tB in]  L’i:  n e x t B i n  < n u m B i n s )  do
29 I n e x t B i n  n e x t B i n  +  1;
30 end
31 w h ile  {en dB in[nex tB in  — 1] = =  s tar tB in[nex tB in]  k .k . nextBiri  < n u m B i n s )

do
32 I n e x t B i n  <— n e x t B i n  +  1;
33 end
34 if  {cur < e n d B in [n ex tB in  — 1]) th en
35 I cur = en d B in \n ex t  B in  — 1];
36 end
37 en d
38 b i tM a sk  •<— b i t M a sk  »  radixBits-,
39 if  {b i tMask ^  0) th en
40

41

42

43

44 

4.1

46

47

48

49

50

51

52

53

54

, * en d  recnrsit)!! w hen  all t h e  b it^  liave been  proce.sses * /

s h i f t  A m t  <— s h i f t  A m t  — radixBits-,  
for (0 <  z <  n u m B i n s )  do

n u m E l e  ■<— {endBin[i] — startBin[i])-, 
if  {{numEle )  > I S O R T . D B O P )  th e n

/ *  e i idB in  acttiallx' point> to  one  b e \ ‘on d  t lie  bin * /

Ka.dixSort  {indexes,  values,  startBin[i],  {n um Ele  — 
1), b i tMask .  shi  f t  Amt)-,

end  
else

lSORT(indexes. values.  startBin[i],  numEle)-,
end  

end
Free: startBi ir ,
Free: endBin' ,

en d



7.1. Most Significant Digit (MSD) RadixSort

our test suite is 3,910KiB, this is still a small overhead and is very small 

compared to the memory required to store these very large matrices. In 

addition, with careful programming the bucket delimiting arrays can be 

reused during lower level passes in the sorting.

7.1.2 C hoosing N um ber o f Buckets for R adix Sort

There are a number of param eters/factors which influence the performance 

of the HyperPartition RadixSort. As discussed in Section 6.6, the number 
of bits we choose to steal when converting to H yperPartition format will 

influence the proportion of work th a t is split between the Phase-I cycle- 
chasing part of the transpose and the Phase-II sorting part of the transpose. 
Tlie munber of bits will also influence the size of the HyperPartition which 

will also influence the performance of the radix sort as the sort performs 
better on a smaller number of larger H yperPartitions. Another factor, as 
discussed in Section 6.9 is parallelism. Clearly the ability to perform more 
of the work in parallel will influence the performance of the algorithm and 
thus the scalability of the Radix Sort algorithm in sorting tlie two arrays 
(and converting back to CSR) is im portant.

The RadixSort adds another param eter to this, the number of buckets 
per level of the sort. The number of buckets per level affects the performance 
of the sort. A very small radix means there are just a few buckets, then 

we end up with a small number of very large buckets. This means tha t 
there will be a larger number of levels of the sort which will likely result in 

elements being moved many times and poor cache performance. \ \ ’ith a 
large radix length there will be many buckets each with just a few elements. 
The sort begins attem pting to move the elements to their exact location on 

the first pass which is not cache efficient as it runs into the same locality 

problems tha t we are trying to avoid with the HyperPartition algorithm.

Figure 7.2 shows the performance of the RadixSort algorithm for different 

numbers of buckets from 2 —> 16,384 for a particular matrix {RM07R) which 

is a 381,689 x 381,689 matrix with 37,464,962 non-zero values. This matrix 

requires 19 bits to  re{)resent the row and colmnn index leaving 13 bits
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C h a p te r  7. F u rth e r O p tim isa tio n s -  R ad ixS ort and  Hyl)rid T ranspose

SorlTime for different Q uantities of Buckets -  Matrix RM07R
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F ig u re  7.2: Serial and Parallel execution time (seconds) of the RadixSort for the 

RM07H  matrix stealing 13 bits for different quantities of buckets. The algorithm  
was repeated in serial and parallel on 16 cores for 20 iterations at each quantity of 
buckets between 2 and 16,384. The cycle-chasing phase took roughly 0.441 seconds. For 
comparison: Saad-IP =  8.07 sec, Corresp Row =  7.73 sec.

available. If we steal all 13 b its leaving A' =  6 behind  then  at th e  first level 

we have 64 H y p erP a rtitio n s each w ith  8,192 rows and  an average of 804,093 

elem ents per H y p erP artitio n . T he transpose  was repeated  20 tim es for each 

q u an tity  of buckets for th is  p a rticu la r m atrix  and H y p erP artitio n  size. T he 

g raph  shows ju s t th e  tim e for th e  P hase-II so rting  part of th e  transpose  as 

th e  tim e for th e  cycle-chasing p o rtio n  is alm ost identical for all bucket sizes. 

T he cycle chasing phase takes roughly  0.441 seconds in bo th  th e  serial and 

parallel transpose . In Serial th e  division of w'ork (in term s of tim e) is 16% 

cycle-chasing and  84% sorting . In P arallel th e  division of work (in tim e) is 

49% cycle-chasing and  51% sorth ig .

T h e  p erfo rm an ce  in F ig u re  7.2 is very  co n sis ten t a t each n u m b er of 

buckets. T he perform ance of th e  serial R adixSort has a very d istinc t profile 

for th is m atrix . S ta rtin g  a t ab o u t 8.1 seconds a t 6 =  2 buckets {radix =  1), 

im p ro v in g  wdth increasing  n u m b er of bucke ts  to  a sweet sp o t a t  a b o u t 

b =  128 to  b =  256 w ith  a  ex ecu tio n  tim e  of 2.4 seconds. E x ecu tio n  tim e

Legend
Serial Saad-IP  

Serial C orresp  Row 
Serial HyperPartition R adixSort • RM07R • (ka13) 

16-W ay Parallel HyperPartition RadixSort ■ RM07R • {k=13}

64 128 2 56  512
N um ber of Buckets

1024 2048 4096 8192 16384
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7.2. Hypei'Partition RadixSort Results

then begins to increase rapidly for larger quantities of buckets up to about 
20 seconds at b =  16,384 buckets {radix = 14). The profile of the parallel 

RadixSort in Figure 7.2 is much flatter, starting at about 1 second for 

6 =  2 buckets, down to  about 0.42 at 6 =  128 buckets and increasing to 

3.5 seconds at 6 =  16,384 buckets. For comparison the graph also shows 

the performance of serial Saad-IP =  8.07 seconds and serial Corresponding 

Row =  7.73 seconds for transposing this matrix.

The RadixSort exhibits a performance profile very similar to this across 

many of the combinations of input m atrix and H yperPartition size. Un

fortunately there is a large am ount of variability in performance of the 

RadixSort algorithm betw'een the different input matrices. No single pair 
of values for the remainingJbits heuristic and bucket.size  gives optim al 

performance on all input matrices. A more complicated heuristic w^ould 
need to be constructed which took in the many factors of matrix dimensions, 

bit availability, bits stolen and remaining, number of buckets (hence bucket 
size) and parallelism. For the results in the following Section we used a fixed 
quantity of buckets of 5 =  256 as this appeared to give a good performance 

for most inj)uts, however sj)ecific number of buckets (and hence bucket 
sizes) for each individual matrix w’ould give better performance.

As discussed in Section 6.6.1 we found that for the 259 matrices in our 
test suite a value of A’ =  9 for the remaining bits heuristic — the number 
of needed bits left after stealing — gave a good performance. This value 
gave a good balance of work between the HyperPartition cycle chasing and 

sorting with QuickSort/InsertionSort. For serial RadixSort we again found 
tha t a value of A’ =  9 was a good choice for the H yperPartition transpose. 
For parallel RadixSort on 32 cores w'e also again found tha t k = 6 w'as a 

good choice as this value gives a higher proportion of work to the RadixSort 

portion which can be done in parallel.

7.2 H yperPartition RadixSort R esults

Figure 7.3 shows the memory overhead of the Serial HyperPartition in-place 
transpose with RadixSort. The H yperPartition transpose was performed

R obert C rosbie. T h e  U niversity  of D ublin. T rin ity  College 193



C hapter 7. Fvirther Optim isations RadixSort and Hybrid Transpose

S erial H yperPariition RadixSort {V»9) vs. S aad -IP  • ■ M emory O verhead  (Relative)

O
S '

Legend
Saad-IP

Serial H yperPartition RBSort (l‘=9) 
A verage; 0 .0 ’’1%
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F ig u r e  7.3: Serial M em ory overhead o f H yp erP artition  I'ranspose [ k  =  9) w ith

R adixSort { B  =  2.56) com pared  to  Saad. T h e  m em ory usage is ahnost identical to  

H yperP artition  w ith Q uickSort. There is ju st a tiny increase o f 0.01% to  an average of 

0.017%. The mem ory requirem ents of Serial H yperPartition with RadixSort is less than  

0.2.5% o f that o f Saad for all 259 input m atrices.

using a rem aining bits heuristic vahie of k = 9 and the RadixSoit using 
b = 256 buckets {radix = 8). This graph is ahnost identical to the memory 
overhead of H yperPartition  with QuickSort shown in Figure 6.11. The 
average memory overhead has increased slightly by 0.01% to 0.017%. The 
overhead rem ains less than  0.25% of th a t of Saad for all input m atrices. 
The RadixSort has a memory overhead of 8KiB which is very small so has 

little im pact. Also, the RadixSort runs after the old.row^ptrs[] array has 
been deallocated after converting the m atrix to the HyperPartition format, 

thus in many cases the extra 8KiB does not increase the memory overhead 

at all.

Figure 7.4 shows the serial execution time for the H yperPartition algo
rithm  with RadixSort. The HyperPartition transpose was again performed 

tising a rem aining bits heuristic value of A- =  9 and the RadixSort using 

b =  256 buckets {radix  =  8). H yperPartition j)erforms much be tte r than  

Saad for the majority of inputs. As discussed j^reviously, there are a nmnber
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7.2. HyperPartitioii RaclixSort Results

H yperPartition (RB-Sort - k s9) vs. S aad -IP  - -  (Serial) E xecution Time of T ra n sp o se  (Relative]
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Figure 7.4: Serial execution tim e of H yperPartition Transpose {k =  9) w ith RadixSort 

( B  =  256)  com pared to  Saad. I’he R adixSort im proves th e  execu tion  tim e o f  H yper- 

P artition  com pared to  QuickSort. H yperPartition w ith R adixSort is significantly faster 

than Saad for a large number of inputs, however as certain m atrices cause problem s (see 

S ection  7.4).

of input matrices that are structurally symmetric for which HyperPartition 

does not perform as well on as the Saad and Corresponding Row algo
rithms. These structurally synnnetric matrices will be examined finther in 
Section 7.4.

Figiu'e 7.4 shows the serial execution time of the HyperPartition algo

rithm  using the RadixSort algorithm from Algorithm 7.1 in Section 7.1 
for performing the Phasc-II sorting step of the Sparse In-Place Transpose. 
The execution time of the algorithm is still quite variable depending on 

inputs, however there is a distinct imi)rovement over the HyperPartition 

with Quicksort with the jjerformance significantly improving for nearly all 

input matrices. There are still some matrices slow^er than  Saad, but the 

majority are faster with a large i)roportion nnming more than 50% faster.

One point to note for the results in this Section, the sorting phase of the 

Hy])erPartition in-place transpose is now different to that of the Saad and 
Corresponding Row algorithms. HyperPartition is using RadixSort (Algo-

L w e n j
S aad-IP

H yperPartition (RB-Sort - k=9) ♦
A verage: 89 .9%

^  ♦ ♦ ♦
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rithm  7.1) and Saad is still using QuickSort (Algorithm 4.7). W ith Saad-IP 
and Corresponding Row the sorting phase is only a small proportion of the 

to tal execution time (typically about 5%) also, there are a large number of 

small rows which do not benefit from the RadixSort algorithm . However 

the graphs still show the to tal execution time of the full transpose operation 
both including cycle chase and sorting, so results are still comparable.

7.2.1 Parallel H yperP artition  w ith  R adixSort Perfor
m ance

As we discussed in Section 7.1, a huge benefit of perform ing more of the 
trans])ose in the second sorting phase is that all the sorting operations just 

process a single row (or H yperPartition). This means we can perform this 
second phase in parallel.

Figiu'e 7.5 shows the memory usage of th e  Parallel H yperPartition 
transpose with RadixSort running on 32 cores. The parallel HyperPartition 

transpose was again perform ed using a rem aining bits heuristic value of 
A- =  6 which proved a good value for Parallel H yperPartition with QuickSort. 
This value again j)roved a good value for parallel H yperPartition  with 
RadixSort. The RadixSort again used h = 256 buckets {radix =  8). In this 
case the memory overhead of the RadixSort is a lot larger because each of 
the 32 process threads recjuires its own set of buckets. Each thread has an 
overhead of 8K iB which is 256 KiB overall. The RadixSort runs after the 
ol(i^row.ptrs[] array has been deallocated so for many inj)ut matrices which 
have a large nroivs  the 256 KiB does not increase the memory overhead.

As can be see from Figure 7.5, the 32-Way Parallel H yperPartition 
w ith RadixSort does increase the memory overhead com pared to  Serial 

H yperPartition  w ith R adixSort in Figure 7.3 and H yperPartition  with 

Quicksort in Figure 6.6. In Figure 7.6 we can see a close-up of the memory 

overhead of the  algorithm . Here we can see th a t th e  overhead of using 

RadixSort in parallel on 32 cores does slightly increase the memory overhead 
for some of the smaller m atrices. There is a dotted  line to indicate 5% of 

the memory overhead of the Saad algorithm, for some inj)ut matrices the
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7.2. H yperPartition RadixSort Results

Parallel HyperPartition RadixSort (k=6) vs. Saad-lP - -  Memory Overhead [Relative]
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Figure 7.5; M em o ry  usage o f 32-W ay P a ra lle l H y p e rP a rtit io n  w ith  R a d ixS o rt. H yp e r

P a r t it io n  w ;is ru n  w ith  k =  6 and th e  R a d ix S o rt was ru n  w i t l i  b =  256 buckets. T h e  

m em ory overhead for the  a lg o r ith m  when transpos ing  the sm alle r m atrices has increased 

s lig h t ly  b u t the  overhead is m uch less th a n  Saad w ith  an average o f 0.6%.

Parallel HyperPartition RadixSort (k=6) vs. Saad-IP - -  Memory Overhead [Relative] • (Close Up)

Leoend"
5 % of Parallel Saad-IP 

Parallel HyperPartition RBSort (k=6) 
Average: 0.614%

of Parallel Saad-IP

4 m

Matrix Size (million nnz) <LOG scale>

16 m 50 m 150 m 400 m

Figure 7.6: C lose-U p o f F ig u re  7.5. A  d o tte d  line  shows 5% o f the  m em o ry  usage o f 

Saad. R a d ix S o rt s lig h t ly  increases re la t iv e  m e m o ry  overhead fo r some o f  t i ie  sm a lle r 

m atrices.
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32-W ay HyperPartition (RB-Sort - k=6) vs. S aad -IP  - •  {Parallel) Execution Tim e of T ra n sp o se  (Relative]

5.5 

5

4.5 

4

■6 3 5n»n(/)
i  ^o
P  2.5
Q>

H 2
Vcc

1.5 

1

0,5

1 m  1 .5 m  2 m  4 m  8 m  1 6 m  5 0 m  1 5 0 m  4 0 0 m

Matrix S iz e  (million nnz) <LOG sca le>

Figure 7.7: 32-Way Parallel execution tim e of H yperPartition I'ranspose (A' = 6) with 

RadixSort compared to Saad. T his shows the parallel performance improvement exploited  

by H yperP artition  w ith  R adixSort over th e  serial version in F igure 7.4. Perform ance 

is considerably  im proved w ith  on ly  3 in p u ts running sligh tly  slower and th e  m ajority  

less than 50% and many less than 25% of Saad w ith an average of 39.6% of Saad. This 

com pares well w ith  th e O ut-o f-P lace  algorithm  in Figure 3.3. N ote: Saad QuickSort 

also run in 32-way parallel.

HyperPartition with RadixSort approaclies and in a few cases surpasses this 
level. The average memory overhead for the 259 matrices in the collection 
is still just 0.6% of the memory overhead of Saad.

The RadixSort step is performed in parallel using OpenMP using all 32 

cores of the ‘Stoker’ machine described in Sections 2.4 and 3.7.

Figure 7.7 shows the execution tim e of the Parallel H yperPartition 

in-place transpose with RadixSort compared to  the Parallel version of 

Saad-IP. It is more appropriate to  compare Parallel H yperPartition to 

Parallel Saad-IP. The parallel version of Saad-IP performs slightly faster 

than the serial version, however the improvement is minor. Saad does not 
benefit from RadixSort as most of the work of the Saad algorithm is in the 

original cycle-chasing transpose and the resulting partitions are too small 

to benefit from RadixSort. The H yperPartition trans])ose w-as j^erformcd

Legend
Par-32 S aad -IP  

Par*32 H yperPartition (RB-Sort ■ k=6) 
A verage; 39 .6%
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7.3. MSD RadixSort Siiiiiinary

using a leniaining bits heuristic vahie of /c =  6 which proved a good vahie 

for Parallel H yj)erPartition w ith QuickSort. The RadixSort again used 

b =  256 buckets {radix = 8).

Figure 7.7 clearly shows the benefit of using the RadixSort in parallel. 

W hile using only 0.6% of the  memory overhead of Saad-IP, the  32-way 

])arallel H yperPartition  w ith RadixSort performs be tte r than  Saad-IP 

for nearly all input m atrices. For the  m ajority  of m atrices the  parallel 

H yperP artition  performs the in-place transpose in less than  50% of the 
execution time of Saad-IP with an average of 39.6% of the execution time 

of Saad for the 259 m atrices in the test suite.

From this figure we can see that the HyperPartition with Parallel Radix 
sort perform s more than  50% faster than  Saad for the m ajority  of the 

input matrices, and indeed a large proportion run in less than 25% of the 

execution tim e of Saad. A very satisfactory result for a complicated three 
step  algorithm  whicli has only a tiny fraction of the memory overliead of 

the existing Saad algorithm.

7.3 M SD  R adixSort Sum m ary

In Section 7.1 we presented our variant of the Most Significant Digit In- 

Place RadixSort algorithm for sorting HyperPartitions which improves the 

efficiency of the second sorting phase of the Hyj)erPartition transpose algo
rithm. Performance analysis in Section 7.2 shows tha t the MSD RadixSort 

gives a significant improvement over the QuickSort/InsertionSort algorithm 

presented earlier in Section 4.5, reducing the execution tim e of the serial 

H yperP artition  transjiose from 115% of Saad to 90% of Saad using less 

than  1% of the memory overhead. The MSD RadixSort also improved the 

parallel H yperPartition  transpose from 42.7% to 39.6% of the execution 
tim e of Saad. Again with less than  1% of the memory overhead.
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7,4 Structural A nalysis

In Section 5.11 we found th a t certain  m atrices had cycles which were no 

longer than  two elem ents long. This resulted in excellent cache usage, 

and hence perform ance when transposing  these m atrices. Analysing the 
structure of these matrices we find th a t the reason th a t these 51 matrices 

have a m aximum cycle lengtli of tw'o and exhibit such good cache per
formance is th a t they  are s tructu ra lly  sym m etric. A sym m etric m atrix  

is a m atrix  th a t is identical to  i t ’s own transpose {M = M ^ ) ,  where all 
the  elements m irrored through the  diagonal have the sam e value, i . e .  

M i j  = Mj,i I V,j G n,ni .  G enerally w'hen a m atrix  is tru ly  sym m etric, 
only one triangle of the m atrix is stored to save on space. The other triangle 
can be obtained by accessing the first triangle in reverse. As outlined in 

Section 3.6.2 we have included a num ber of sym m etric m atrices in our 
test suite to  increase the num ber of m atrices, however as transposing a 
symmetric m atrix is pointless we are just using them as triangular matrices. 
Some of these triangular m atrices can be seen in Figure 7.11.

In Section 6.8 we then  found th a t th e  H yperPartition  transpose did 
not perform as well as the  Saad or Corresponding Row algorithm s for 
these structm ally  sym m etric m atrices. This can be seen in Figure 6.8 on 
page 165. It is not tha t H yperPartition performs poorly for these matrices, 
it is ju st th a t Saad and C orresponding Row perform  unexpectedly well 

due to  tlie short cycle lengths. \M ien converted to  the H yperPartition  
format the matrices are no longer in a structurally symmetric layout, hence 
the drop in perform ance. H yperP artition  looses the  benefit of s tructu ra l 

sym m etry because it groups rows into H yperPartitions so it is no longer 
moving elements to  the location of their corresponding opposite element.

Figure 7.9 shows the execution tim e of the H yperPartition  algorithm  

w ith Q uicksort w ith k = 9 com pared to  the execution tim e of the Saad- 

IP algorithm . T he graph shows th e  execution tim e of the  algorithm s 

transposing ju s t the  51 structu ra lly  sym m etric m atrices in the test suite, 

the tim ings for the  o ther 208 m atrices are om itted. The H yperPartition  

transpose clearly does not perform as well as Saad for these types of matrices
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7.4. Structural Analysis
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Figure 7.8: Some Structurally Symmetric Matrices
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Figure 7.9: J u s t  S tru c tu ra lly  S y m m etr ic  —  T h e  Seria l ex ecu tio n  tim e  of th e  I ly p e r-  

P a rtitio n  tran sp o se  w ith  Q uickS ort w ith  K  =  9. O nly th e  re la tive  execu tion  tim e  of the 

a lg o rith m s  for tr a n sp o s in g  s t ru c tu ra l ly  sy n m ie tr ic  m a tr ic e s  is show’n. H y p e rP a r t i t io n  

perfo rm s poorly  co m p ared  to  S aad  for these  m atrices .

witl) tlie average execution tim e for tliese 51 m atrices being 258% of tlie 

execution tim e of Saad.

Tlie 51 m atrices th a t  are  causing problem  for H y p erP a rtitio n  are not 

sym m etric  (or trian g u la r) , th ey  are s tru c tu ra lly  sym m etric . T hey  have 

the  sam e s tru c tu ra l layout of th e  elem ents in a synm ietric  m a trix  w ith 

elem ents in the  sam e locations m irrored through  the  diagonal, however in 

these m atrices the  opposite  elem ents th rough  th e  d iagonal do not have 

th e  sam e value. Therefore th ey  are no t sym m etric . Some s tru c tu ra lly  

sym m etric m atrices used in the  test su ite are show in Figure 7.8 and some 

general unsym m etric m atrices are shown in Figure 7.10. It is the s tructural 

sym m etry  of these m atrices which resu lts  in cycles which are only two 

elem ents long which gives m uch b e tte r  tem p o ra l and  spa tia l locality to  

m em ory lookups, wdiich in tu rn  g reatly  im proves execution  tim e of Saad 

and Corresponding Row.

Analysis of th e  run tim e perform ance of th e  algorithm s using ha rd 

ware counters in Section 5.9 show'ed th a t  for these m atrices th e  Saad and

L e g e n d

S a a d - I P

H y p e rP a rti t io n  (Q u ic k s o r t  - k= 9) 

A v e ra g e ; 2 5 8 .5 %
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7.4. Structural Analysis
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7.4. S tructural Analysis

Corresponding row algorithm s have surprisingly good cache performance 

com pared to  matrices of com parable size. Deeper analysis of the internal 

operation of the algorithm s as they j^rocess the matrices showed an inter

esting feature of 51 of these “slow” m atrices. For these 51 m atrices the 
average cycle length of all the  cycles when perform ing the  cycle chasing 

transpose w'ith Saad and Corresponding row is just tw'o elements. Indeed, 

for these 51 m atrices the  m axim um  cycle length of all the chains chased 

is ju s t two elements. Every tim e w’e s ta rt a cycle, the first element th a t 

we jum p to  ju s t jum ps straight back to  the  source row th a t w'e sta rted  

in. W h a t’s more, the element actually jum ps to the exact position tha t it 

should be in in the transposed m atrix  m eaning th a t the Phase-II sorting 
step is not required for these m atrices. These short cycle lengths are the 

reason for the  good cache perform ance of Saad and Corresponding Row\ 
We know' from Section 5.10 tha t shorter cycles lead to  an improvement in 
cache performance.

Figure 7.12 shows the  LI, L2, L3 cache and TLB perform ance of the 

s tructu ra lly  sym m etric m atrices com pared to the unsym m etric m atrices 
while transposing the m atrix with the Corresponding Row algorithm. Each 
of the  four graphs shows the  relative num ber of cache/TL B  misses per 
non-zero element in the  m atrix  relative to  the average cycle length. T he 
structu ra lly  sym m etric m atrices can be seen in the  left of each graph as 

they have average cycle lengths between one and two elements long. It is 

clear from these graphs tha t the structurally symmetric matrices incur far 
less LI, L2 and TLB misses than  the vast majority of the other matrices in 

the test suite. This means that the Corresponding Row algorithm has much 
be tte r cache perform ance when transposing these structura lly  synnnetric 

m atrices. T here is less of a difference in term s of L3 misses as for most 

input m atrices the  algorithm  incurs relatively few L3 misses, how'ever the 

s tructu ra lly  sym m etric m atrices once again occupy the  lower end of the 

scale.
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7.5. Hybrid H yperPartition Transpose Algorithm

7.4.1 D etecting  Structural Sym m etry

There is an accurate (and computationally expensive) method to determine 

if a matrix is structurally symmetric. First, the matrix needs to be square, 

i.e. m = n or indeed nrows = ncols. We then check if all the Corresponding 

Rows and columns have the same pattern of non-zeros. To do this, we make 

a copy of the old^col-indexes[\ array and transpose the m atrix. We then 

compare every index in old.colJndexes[\ array with every corresponding 
entry in neic^colAndexes[] array. If every entry is the same, such that the 

two arrays are identical, then we know’ th a t the m atrix has the identical 
pattern  of non-zero elements in every Corresponding Row' and cohnnn in 
the matrix. Meaning tha t it is structurally symmetric.

We analysed all of the matrices in our test suite using this “Expensive 
Test” method. Out of the 259 matrices we found that 51 of the matrices are 
structurally symmetric. The very same 51 matrices with the two-element 
cycle chains tha t caused j)roblems for H yperPartition. No other matrices 

were found to be structurally  symmetric. Comparing the  performance 
of H yperPartition compared to Saad for these 51 matrices as shown in 
Figm'e 7.9 we find that HyperPartition is slower than Saad for every one of 
the 51 matrices. We also compared the execution time of Corresponding 

Row compared to Saad as shown in Figure 5.3 for these 51 matrices and 
found tliat Corresponding Row performs better in all cases. Also comparing 

the memory usage of Corresponding Row with Saad as in Figure 5.1 shows 

that Corresponding Row also uses less memory than Saad for all of the 51 
matrices.

This means tha t if we had a simple m ethod of determ ining structural 

synnnetry then we could have a hybrid algorithm that could choose between 

the H yperPartition and Corresponding Row' algorithms depending on the 

structural symmetry of the input matrix in order to give better performance.
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7.5 H ybrid H yp erP artition  Transpose A lgo

rithm

This gives the opportunity for a Hybrid algorithm which will choose either 
to  run the Corresponding Row algorithm if the input m atrix is structurally 

symmetric, otherwise run the H yperPartition algorithm.

The m ethod outlined above for testing if a m atrix  is structm ’ally sym
m etric is too expensive to use. There is however a quick test th a t we can 
use th a t is very inexpensive and is actually quite accurate in practice. We 
check if the  m atrix  is square {nrows  =  ncols) and then simply com pare 
the num ber of elements in every row with every corresponding column. If 
every row has the same mmiber of elements as its opposite colunm then it 
is possible th a t the  m atrix  is structu ra lly  symmetric. At the s ta rt of our 
generic in-place cycle-chasing transpose we need to  construct an array of 
neu'^row^ptrs[] to point to the start of every new row in the matrix. While 
calculating the cum ulative sum on this array we can compare all the new 
row pointers in this array w ith the old row pointers in the old.rou’̂ ptrs[] 
array. If every pointer for each new/old row is the same in both arrays then 
we know tha t each row in the m atrix  has the same number of elements as 
its corresponding column. W here we have such a m atrix  then there is a 
strong probability th a t the m atrix  is structurally  symmetric.

We used this quick test on the 259 matrices in our collection. The test 
accurately identified all of the 51 structurally  symmetric matrices w ithout 

a single false positive. The te s t is very quick and inexpensive. It can be 

performed in Q{n)  tim e while building the new.coLptrs[] array which we 
needs to  be done anyway. As such the overhead of the check is negligible. 

Algorithm 7.2 shows the pseudo code for the simple test algorithm used by 
the Hybrid H yperPartition  Transpose.
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7.6. Hybrid H yperParti t ion  Transpose Performance

A L G O R I T H M  7 .2 : Detect Structural Symmetry Heuristic
/ *  ( ' o u i i t  i i u i i i I x T  o f  <‘l<‘Ui( ‘n l "  i n  e a c h  n e w  c o l u i i n i  - o IFm 'I h y  I * /

fo r ( 0 <  in d e x  <  rinz  ) do  
col *r- c o l- in d e x e s [ in d e i \ \  
if  ( col <  {nrou'S  — 1) ) th e n  

I n ew -rou ' jp fr s [co l  + ! ] • < — n e w -ro w -p t r s [ c o l  +  1] +  1; 
en d

en d

/ *  ( ' u n m l a l  i \ ' ( ‘ t o  g e t  iH’Vv_rc)W_p1 r s [  ] * /

/ *  ( ' h i ' c k  i f  S l n i c t  i i i i i l l y  . Sy l i i i i i c t  r i c  */

isSym n i  •<— true;
for ( 0 <  r o w  <  r irow s  ) do

iiew.rou'-ptrs[row] <— neu'-row-ptrs[rou'] +  neu'-rou'-ptrs[rou' — 1]; 
row-offsets[row] <— neu'.rou’.ptrs[row] ; /* t» nm-.offsi */
if  {new-Tou'jptrs[rou'\ /  old-rou'-ptrs[row]) th e n  

I isSy in  <— falser. 
en d

en d

7.6 H ybrid H yp erP artition  T ranspose P er
form ance

T h e  H ybrid  a lgorithm  increases th e  m em ory  requ irem ent over th a t  of 

H yperP art i t ion .  T here  is a trade-off between m em ory  and  j)erformance. 

As we see in F igure  6.6 in the  previous chap ter,  the  m em ory  overhead 

of H y])erPartition  is negligible. As such, H y p erP a r t i t io n  is still th e  best 

choice of transpose  algorithm  for very low m em ory usage and  although it 

is very efhcient for the  m ajority  of input matrices, the  low memory feature 

does however come at the  cost of poor perform ance of some (s truc tm ally  

synnnetric) matrices.

F igure  7.13 shows th e  m em ory  usage of th e  H ybrid  H y p e rP a r t i t io n  

in-place transpose algorithm. The Hybrid algorithm requires more memory 

th an  the H yperP a rt i t ion  algorithm  because in o rder to  check for possible 

s truc tm al  synnnetry  the algorithm needs to build the  new^ro2i ’̂ pirs[] array 

before the  old^row^ptrs[]  array  has been deallocated. Thus the  algorithm  

needs (-)(/?) memory overhead for the  sym m etry  check. The HyperPartition  

a lgorithm  avoids th is  0(7)) by deallocating  the  old.ro^i'-pt^'s[] array, per-
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Chapter 7. Ftirther ()i)timisatioiis — RadixSort and Hybrid Transpose

Hybrid (k=6) vs. Saad-iP  - -  Memory Overhead of Algorithm (Relative]
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Figure 7.13; M em ory overhead o f the Hybrid H yperP artitio ii a lgorithm  com pared to  

that o f Saad. I ’he Hybrid algorithm  uses more inem ory than H yperP artition  how ever it 

still requires considerab ly  less m em ory than  Saad w ith  m ost inputs requiring less than  

10-20% than th at o f  Saad w ith  an average o f 9.3%.

forming the  cycle-chasing and sorting algorithms and only then  building 
the 77eiv.roii'^ptrs[] array at the end. This is why the nieniory overhead of 
HyperPartition is so low.

T he  Hybrid algorithm uses the  {new.7-ow.ptr's[]) array of size n to  
check for symmetry. If the m atrix  is sym m etric the Corresponding Row' 
algorithm is used to transpose the matrix, requiring a total of 3 arrays of 

size n {roiV-offse ts [ ]  and correspJable[] in addition to the neu'-row.ptrs[]  
array). Otherwise the HyperPartition algorithm is used which has minimal 
additional memory requirements. Thus the Hybrid algorithm requires less 
memory th an  the  Corresponding Row' algorithm and much less th an  the 
Saad algorithm, only requiring 9.3% of the  memory overhead of Saad on 

average for the 259 matrices in the test suite.

Figure 7.14 show's the  execution time of the Hybrid H yperPartit ion  
algorithm w'ith RadixSort w ith  a remaining bits heuristic value of k =  9. 

As can be seen comparing this graph to  Figure 7.4, the  51 s tructu ra lly  
symmetric matrices for which H yperPartit ion  did not perform so w'ell on
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7.6. Hybrid H yperParti t ion  Transjjose Performance

Hybrid (R B -Sort - k=9) vs. S aad -IP  • •  (Serial) E xecution  Tim e of T ra n sp o se  (Relative]
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Figure 7.14: Serial execution  tim e of the Hybrid H yperPartition k =  9 transpose algo

rithm relative to  Saad-IP. The Hybrid algorithm  uses C orresponding Row for structurally  

sym m etric m atrices, otherw ise H yperP artition . For these m atrices. C orresponding Row  

is faster than  b oth  H yp erP artition  and Saad m aking th is  H ybrid a lgorith m  not only  

com petitive w ith Saad but considerably faster for the vast m ajority o f inputs w ith much 

less m em ory usage. I'he Serial Hybrid H yperP artition  w ith  RadixSort has an execution  

tim e o f 68% of Saad on average.

are now all below the line. There are a small number of matrices for which 

the  H ybrid  a lgo rithm  does not perform  as well as Saad  how'ever for the  

m ajority  of input matrices the  Hybrid algorithm performs b e tte r  than  Saad, 

and in some ca.ses performs nnich b e t te r  with the  algorithm  requiring less 

th a n  50% of the  execution t im e  of Saad  for a num ber  of m atrices. On 

average the  Hybrid H yperParti t ion  algorithm  transj)oses the  259 matrices 

from the test suite  in 68.2% of the  execution tim e of Saad.

7.6.1 Parallel H ybrid H yp erP artition  Perform ance

Ju s t  as w ith  th e  H y p e rP a r t i t io n  a lgorithm , th e  H ybrid  H y p erP a r t i t io n  

algorithm  performs a large p roport ion  of its w'ork (for non s truc tu ra lly  

•symmetric matrices) dtiring the  sorting phase of the  transpose. This sorting 

l)hase, w’hich w’e have improved the  performance of w'ith the  RadixSort in

Leoenj
S aad -IP  

Hybrid (R B -Sort • k=9) •
A verage: 68 .2%
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Par-32 Hybrid (RB-Sort • k=6) vs. S aad -IP  • •  (Parallel) Execution Time of T ra n sp o se  [Relative]
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Figure 7.15: 32-W ay O penM P  Parallel execu tion  tim e o f Hybrid Transpose (w ith  

H yperP artition  of A’ =  6 w ith R adixSort) com pared to  Saad. T h is show s the parallel 

perform ance im provem ent exp loited  by H yperP artition  w ith R adixSort over the serial 

version in Figure 7.14. Performance is considerably improved with the m ajority o f inputs 

running less than  50% and m any less than 25% o f Saad. T h is com pares well w ith  the  

execution tim e of the high mem ory OO P A lgorithm  in Figure 3.4. Note: Saad Quicksort 

also run in 32-way parallel.

Section 7.1 can benefit greatly from parallel execution.

The parallel Hybrid HyperPartition in-place transpose with RadixSort 
is shown in Figure 7.15. Again a remaining bits heuristic value of A’ =  6 
is used for parallel execution along with h =  256 buckets for the sorting 
phase which was run in parallel across 32 cores. This graph shows that the 
parallel Hybrid algorithm performs much better than the Parallel Saad-IP 
Algorithm. The Hybrid is faster than Saad on all bar one of the input 
matrices which is just a fraction slower. The parallel Hybrid algorithm 
transposes the majority of the input matrices in less than 50% of the time 
of Saad and in less than 25% for many. On average the Parallel Hybrid 
algorithm transposes the 259 matrices in the test suite in 38.8% of the time 
of Saad while only requiring 9.3% of the memory.

Figure 7.15 showed the performance of the parallel Hybrid transpose

Leoend
Par-32  S aad-IP  

Par-32  Hybrid (RB-Sort - k*6) ® 
A verage; 38 .8%

-

. , n .  n .
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7.7. Hybrid HyperPartition Suininary

P ar-32  Hybrid (RB-Sorl • k=6) vs. S aad-IP  - •  (Parallel) Execution T im e of T ra n sp o se  [Relative)

4.5
Legend

Serial S aad-IP  
Par-32  Hybrid {RB-Sort - k=6) ©

A verage: 32 .0%
3.5

>

>

cc

0,5

1.5 m 2 m1 m 4  m 1 6 m  50 m 150 m 4 00  m8 m

Matrix S ize (million nnz) <LOG sca ie>

Figure 7.16: Execution I 'i ine of F’arallel Hybrid H yperPart it ion  transpose relative to 

th a t  of Serial Saad-IP.

compared to the Parallel Saad-IP transpose. Figure 7.16 shows the perfor
mance of the parallel Hybrid transpose compared to the Serial Saad-IP 
transpose. We can see from this graph that the parallel Hybrid algorithm 
is nmch faster than  the original serial Saad algorithm with the majority 
of the input matrices taking less than 50% of the time of the Serial Saad 
algorithm to transpose. On average the parallel Hybrid takes 32% of the 
time of the Serial Saad-IP algorithm to transpose the 259 matrices in the 

test suite while only requiring 9.3% of the memory overhead of Saad.

7.7 H ybrid H yperP artition  Sum m ary

We have introduced the Hybrid HyperPartition in-place transpose algorithm 
which use's a “Quick Test” to check for j)ossible structural synnnetry in 

an inj)ut matrix and use.s this to decide to transjjose the matrix with the 

Corresi)onding Row algorithm or the Hyj)erPartition algorithm. At the 

cost of this test which is very quick and a small increase in memory to 9.3% 

of Saad we have improved the execution time of the Hybrid transpo.se to
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68.2% of Saad in serial and 38.8% in Parallel.

There are still a small number of matrices for which the Hybrid Hyper- 

Partition algorithm does not perform cjuite as well as Saad. It is probable 

th a t for these matrices there is some aspect of the structin’e of the matrix 

w'hich allows Saad to  perform better, wdiich ŵ e lose when we sw'itch the 

m atrix to the H yperPartition format. Further investigation of these m atri

ces may also produce a simple test which could allow further imi)rovenient 

to the hybrid algorithm.
It is possible to  improve the Hybrid algorithm  some more. W hen we 

transpose a m atrix tha t is actually structurally symmetric it not necessary 

to  i)erform the sorting step of the transpose and elements will be moved 
into their correct position. Our “Quick Test” does not give a guarantee of 

structural synnnetry, however if we think the matrix might be synnnetrical 

the addition of a small check during the Corresponding Row algorithm that 
all cycles are no more than  2 elements long would indicate a synnnetrical 

m atrix and the unnecessary sorting step can be avoided.
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____________________ Chapter

Conclusion and Future work

Sparse M atrix  Transpose is an im portan t hnear algebra operation which 

occurs in calculations of numerous applications such as Fast Fourier Trans

forms, C om putational Chemistry, Signal Processing and many others. In 

particular, the sparse transpose is im portant for converting a m atrix from 

the row-major CSR storage format to the column-major CSC storage for

mat (and vice versa) to  improve the efficiency of accessing the m atrix  by 
colunms (rows).

T he transpose of a sparse m atrix  stored in a sparse storage form at 
such as CSR can be com plicated and difficult to optimise. In order to 

perform the tianspose, the two existing sparse m atrix algorithms, the out- 
of-place algorithm and the Saad In-Place algorithm both require additional 
storage in memor\' pro{)ortional to  the number of non-zeros in the matrix. 

( - ) ( ? ? ? ? 2  - I -  n) for the out-of-place and Q{nnz)  for the Saad-IP  transpose. 
This transla tes  to  roughly 100% and 30% respectively of the size of the 
m atrix  in additional memory overhead for the algorithm s which is cjuite 
considerable.

W'e have introduced a collection of novel space and time saving in-place 
sparse m atrix  transpose algorithm s which were evaluated w ith extensive 

experim entation and analysis using a test suite of 259 large matrices from 
real world applications. The algorithms use a variant of the in-place cycle 

chasing algorithm similar to Saad yet only require 0 (n )  tem porary storage 

for an n x n sparse m atrix  w ith r? < <  nnz  non-zeros, com pared to  the 

G{nnz)  and Q{nnz  +  n) required for Saad and out-of-place. Moreover, 

om' algorithm s are able to  achieve this large savings in space com plexity 
without forfeiting the Q{rmz +  n) execution time complexity of the existing 

algorithm s. Finally, our algorithm s are able to  handle non square sparse 
m atrices and m atrices w ith em pty rows and columns. Custom  transpose
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algorithms for specific matrix layouts could potentially be more efficient 
however our algorithms provide good performance across all matrix types.

8.1 Contributions

We describe (Chapter 4) the three problems associated with reducing the 
space complexity of the in-place transpose to 0(r?) memory overhead. Our 
Generic in-place algorithm solves problems (b) recording that an element 
has been moved and (c) finding the location of the next free slot in a row. 
We present two initial solutions to problem (a) finding the old row index. 
Binary Range Search and Radix Table which both have a space complexity 
of 0 (n ) and a memory overhead of just 14% and 16% of Saad respectively. 
Experimental analysis shows that the execution time of the Radix Table 
transpose is broadly similar to Saad despite the increased time complexity, 
actually running at 98.6% of the execution time of Saad on average.

We introduced (Chapter 5) our Corresponding Row transpose algorithm 
that solved problem (a) reducing the memory overhead of the in-place 
s])arse transpose to 0(r?) while maintaining the time complexity of ©(nr? 2  + 
n). A lookup table is used which can be searched and updated in amortized 
0{\)  time. Tw'o implementations of our Corresponding Row algorithm 
reduce the memory overhead of the transpose to 21% of Saad on average. 
The Corresponding Row algorithms also rim faster than Saad. The Normal 
version runs at 92% of the execution time of Saad on average and the Cache 
Friendly version improves on this by 2% at 90% of Saad on average. Results 
of detailed experimental analysis using hardware counters are presented. 
These results show that the Corresponding Row algorithms run faster as 
they have fewer Cache and TLB misses than Saad. The Cache Friendly 
implementation is faster than the Normal version because of improved 
LI and L2 cache reuse from the interleaved arrays. Analysis of these 
experimental results also demonstrates that the average cycle length has 
a direct influence on the cache performance of the in-place cycle chasing 
transpose. Transposing a matrix with a larger number of shorter cycles 
results in better cache reuse and reduced execution time.
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8.1. Contributions

Taking the knowledge tha t shorter cycles results in improved cache 
performance we developed our HyperPartition matrix storage format (Chap

ter 6). The H yperPartition format is a modification on the CSR storage 

form at which allows us to groups rows together into H yperPartitions by 

exploiting unused d a ta  in the GSR format. Performing the cycle chasing 

in-place transpose on a matrix in HyperPartition format reduces the average 

cycle length in most cases, thus improving cache performance and reducing 

execution time. We present our Remmmng Bits heuristic for calculating the 

number of bits to steal when converting to H yperPartition CSR tha t will 

give reasonable performance for most m atrix types. We recommend values 

of A- =  9 or k = 10 in serial and k = 5 or k — 6 in parallel for the hemistic 

param eter based on the  m atrices in our test suite. The H yperPartition 

transpose also has a space complexity of ©(?;) however in practice as it 
drastically reduces the memory overhead to less than  1% of Saad for the 

matrices in our test suite. For the m ajority of matrices, H yperPartition 

nm s faster than  Saad with some of the larger matrices taking less than  
50% of the time.

H yj)erPartition transjjose performs a higher proportion of the work 
during the sorting phase of the transpose. Therefore, we present (Chap

ter 7) a more efficient HyperPartition sorting algorithm based on the Most 
Significant Digit RadixSort algorithm. The complexity of the RadixSort is 
0 { n n z  . p) where p is proportional to the number of bits in the index inte
gers divided by the radix length and remains constant for any given radix 

length. Using the MSD RadixSort we improve on the execution time of the 

serial Hyj^erPartition transpose from 115% of Saad when using QuickSort 
to 90% of Saad with RadixSort. In parallel on 32 cores the HyperPartition 

transpose improves from 42.7% of parallel Saad with QuickSort to 39.6% 
w ith RadixSort. There is a small increase in memory overhead for the 
RadixSort. W hen using a radix of 8 (256 buckets) the average memory 

overhead remains less than  1% of Saad. In j)arallel each thread  recjuires 

two small work arrays. This results in a slight increase up to 5% of Saad 

for a few input matrices, however the average remains at 0.6%.

We present results (Chapter 7) of structural analysis of the input ma-
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trices and transpose algorithm s w hich show th a t H yperPartition  transpose 

does not perform as well as Saad an d  Corresponding Row on m atrices which 

are s tructu rally  sym m etric. Converting to  H yperPartition  CSR form at loses 

the  benefit of the  s tru c tu ra l sym m etry . We present a heuristic algorithm  

th a t  can quickly and  easily d e te c t if a m atrix  in CSR form at is probably 

s tru c tu ra lly  sym m etric . We p resen t a H ybrid H y p erP artitio n  transpose  

w’hich uses th is heuristic  algorithm  to  allow the  H yperP artition  transpose 

to  efficiently handle s tru c tu ra lly  sym m etric  m atrices. T he serial H ybrid 

H y p erP artitio n  runs a t 68% of th e  execution tim e of Saad on average at 

cost of a slight 0(r?) increase in m em ory overhead to  9.3% of Saad. In 

Parallel the Hybrid H yperP artition  transposes the m atrices in 38.8% of the 

tim e of Parallel Saad and 32% of the  tim e of Serial Saad.

8.2 Future W ork

T here are a num ber of possible areas where th is work could be extended.

Inco rpo ra ting  th e  a lgorithm s presen ted  here into a publicly available 

sparse  m atrix  package such as th e  Sparse Bias or B eB O P Sparse M atrix  

C onverter would be an easy way of m aking  them  available to  th e  L inear 

A lgebra C onnnunity  so they  can benefit from their improved efficiency.

In Section 6.6.1 we presented our Rem aining Bits heuristic for choosing 

th e  num ber of b its  to  steal wdien converting a m atrix  in CSR form at to 

H yperP artition  CSR form at. T h is  heuristic  allows us to  choose a num ber 

of b its  to  steal from  each m atr ix  w hich gives us an im proved average 

perform ance for the m atrices in the  test su ite  at values of A' =  9 in serial and 

k  = 6 in parallel. However, experim ental analysis shows th a t while changing 

the k  param eter of the  heuristic improves performance of the H j'perPartition  

algorithm  for some m atrices, for other m atrices the performance degrades. A 

be tte r alternative would be to: F irst, individually examine the performance 

of the  R adixSort algorithm  for different H yperP artition  sizes in serial and 

parallel. Secondly, exam ine th e  perform ance of the  H yperP artition  cycle- 

chasing algorithm  stealing different num bers of b its  from different m atrix  

sizes. T hen , com bining th e  resu lts  of th e  two experim ents to  develop a
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8.3. Sunmiarv

heuristic which for each individual matrix w'ould choose the best number 
of bits to steal based on its dimensions and sparsity.

In Section 7.1.2 we recommended a radix size of 8 which gives 256 buckets 
at each level of the RadixSort as this gives a reasonable performance of the 
RadixSort on average for the matrices in our test suite. A heuristic w'hich 
was based on the dimensions of the matrix, the number of HyperPartitions 
and the size of HyperPartitions of each individual matrix would give better 
performance of the RadixSort. Again this would require analysis of the 
performance of the RadixSort algorithm on different sizes and numbers of 
HyperPartition.

In Chapters 6 and 7 w'e presented results of running the sorting phase 
of the HyperPartition transpose in parallel using OpenMP. This assumes 
a shared memory machine where each processor core can address all the 
available memory. In some cases it is desirable to solve large linear algebra 
j)roblems on distributed memory machines where matrices are partitioned 
onto different nodes. The Compressed Sparse Row format is not well suited 
to this partitioning, instead hierarchical blocked formats such as Hyper- 
Matrix [Herrero 03] are used. In some cases the hierarchical partitioning 
is just used between nodes and then a standard format such as CSR is 
used locally on each nodes. In these situations our Hybrid HyperPartition 
transpose could be incorporated into the local portion of the distributed 
memory parallel transpose.

8.3 Sum m ary

We have shown that matrices stored in Compressed Sparse Row storage 
format can be efficiently transposed in Q{nnz  +  n) time using just 0(r?) 
additional space. We present three in-place transpose algorithms wdiich 
adhere to these asymptotic complexities with runtime characteiistics that 
make different trade-offs between memory usage and runtime. The Cor
responding Row algorithm has a good relative execution time of 90% of 
Saad for all matrices with a memory cost of 21% of the space used by 
Saad. The HyperPartition with RadixSort algorithm has extremely low
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Chapter 8. Conclusion and Futvu’e work

relative memory usage under 1% of Saad and very good execution time 
for most input matrices also with an relative average of 90% of Saad in 
serial and 40% in parallel, however for some matrices it does not perform 
w'ell. The Hybrid HyperPartition algorithm takes the best of both with a 
good relative execution time for almost all matrices at an average of 68% 
of the time at a cost of 9.3% of the memory. Running in parallel on 32 
cores improves the execution time of the Hybrid Transpose to just 32% of 
Saad on average for the 259 large matrices.
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8.3. Summary

Table 8.1: Algorithm Complexities

A lgorithm

O ut-O f-P lace

R u ntim e M em ory A ctu a l M em ory

O ut-O f-P lace

Saad In -P lace

Saad In-Place

B inary R ange Lookup

Single B inary Range Search 
T o tal for B inary R ange Searches 
Transpose w ith  B inary R.Srch

R ad ix  Table Lookup
B uild R adix Table 
Single R adix Table Lookup 
T otal for R adix Table Lookups 
Transpose w ith R adix Table

C orresponding R ow  Lookup
B uild corespJable  
Single correspJable  lookup 
T otal for correspJable  lookups 
Transpose w ith correspJable

H yp erP artition  Transpose

Convert from CSR to  HypCSR 
Convert HypCSR back to  CSR 
H yperP artition  Transpose

H ybrid T ranspose

Test for S tru c tu ra l Sym m etry 
Hybrid Transpose

Quick Sort

Quick Sort

Insertion  Sort 

Insertion  Sort

B ucket Sort 

Bucket Sort

n

n n z

sb

passes

buckets

' {3nnz  -I- n)

' {nnz)

^(2n)

'{2n +  2/n)

<3{nnz +  n) &{nnz + n)

&{nnz  +  n) 0(nnz)

0( log(n ))
0 (nnz  . log(n))

0 (nnz  . log{n) + n) Q{n)

0(n)
n ( l ) - C > ( n )
0 ( n n z . n)

0 {nnz  . n + n) 0 (??)

0(r7)
n ( l ) - C > ( n )
0{nnz  +  7?)
G(nnz + n) 0(n)

(-)(nnz + n)
0 { u n z + n)
0{7inz + n) 0 (77)

0 ( 77)

0(77775 +  77) 0 (77)

0 { n n z . log{n))

0 { n n z . n)

0 { n n z . passes)  G{buckets) ^ { 2  .buckets)

-  N u m b er of row s in th e  m a tr ix

- N u m b er of N on-Zero  e lem en ts  in th e  m a tr ix

- S tea l B its —  T h e  n u m b e r  of b its  sto len  in H y p e rP a rtit io n  T ran sp o se

- N u m b er o f passes o f th e  B ucketS ort a lg o rith m

- N u m b er of buckets in each  pass of B ucketS ort

^(377)

or ~ (V i28)

^(377) or ("/l28)
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Appendix A
Matrix Tables

This appendix contains tables of inform ation for 41 of the 259 input m atrices 

from  th e  U niversity  of F lo rida Sparse M atrix  Collection (Section 3.6.1) 

which were used in the  experim ents outlined in Section 3.6.2.

Table A .l shows s truc tu ra l inform ation of the  m atrices. The dimensions 

of the  m atrix; num ber of rows, rmmber of columns and num ber of non-zero 

elem ents in th e  m atrix . T he  average num ber of elem ents per row, the 

% sparsity  and a descrij)tion of the  s tru c tu ra l shape of the  m atrix .

Table A .2 lists the  source of these m atrices. T he type of linear algebra 

problem  being exam ined which produced the  m atrix .

Table A .3 shows the algorithm  m em ory usage (in M egaBytes) for O ut- 

of-place, Saad, B inary range search. Radix Table ( | ) ,  Corresponding Row 

and Serial H yperPartition  w ith k =  9. The final column of the table shows 

the num ber of V)its which have been stolen, left behind  and remain available 

for these sam ple m atrices when using the  H y p erP artitio n  algorithm  with 

the value of k  =  9 for th e  rem aining bits heuristic.

Table A.4 shows the  algorithm  execution tim e (in seconds) for a number 

of the  transpose algorithm s as follows:

O O P - Out-of-place transpose

S a a d - Saad ui-place transpose

B in a ry - B inary R ange Search transpose

R a d ix  1 - R adix Table (^) transpose

C o r r - C orresponding Row transpose

H y p - Serial H yperP artition  transpose  with k

H y b r id - Serial H ybrid transpose  w ith A' =  9

H y b r id -3 2 - 32-\Vay Parallel H ybrid transpose  w ith
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Appendix A. M atrix  Tables

Table A.l: M atrix Infonnatioii

M a tr ix R ow s C o ls N N Z
P e r

R o w
%

S p a rc ity S h a p e
torso2 115,967 115.967 1.033.473 9 0.008 Square
nenisem nil 3.945 75.352 1.053.986 267 0.355 Rectangle
dbir2 18,906 45.877 1,158,159 61 0.134 Rectangle
darc>-Q03 389,874 389.874 1.167.685 3 0.001 Lower Triangle
xenon 1 48.600 48.600 1.181,120 24 0.050 Square S truct-Sym
ct20stif 52.329 52.329 1,375.396 26 0.050 Lower Triangle
heart 1 3.557 3.557 1,387,773 390 10.969 Square Struct-Syin
venkatOl 62.424 62.424 1,717,792 28 0.044 Square Struct-Syni
appu 14.000 14.000 1.853.104 132 0.945 Square Struct-Syni
pdblH Y S 36.417 36.417 2.190.591 60 0.165 Lower Triangle
s3dkq4iii2 90,449 90.449 2,455.670 27 0.030 Lower 'I'riangle
Si34H36 97,569 97.569 2.626.974 27 0.028 Lower Triangle
shipsecl 140,874 140.874 3.977,139 28 0.020 Lower Triangle
G3_circuit 1.585,478 1.585.478 4.623,152 3 0.000 Lower Triangle
nanirle3 1,447,360 1.447,360 5.514.242 4 0.000 Square
bni\v3_2 227,362 227,362 5,757.996 25 0.011 Lower Triangle
aLshellS 504,855 504,855 9.046.865 18 0.004 Lower Triangle
nisdoor 415.863 415,863 10.328.399 25 0.006 Lower Triangle
ohne2 181,343 181,343 11.063.545 61 0.034 Square
boiie010_M 986,703 986,703 12.437,739 13 0.001 Lower Triangle
FI 343,791 343,791 13.590.452 40 0.011 Lower I'riangle
nd24k 72,000 72,000 14.,393.817 200 0.278 Lower I'riangle
Fault Ji39 638,802 638.802 14.626.683 23 0.004 Lower Triangle
nljikktSO 1,062.400 1.062.400 14.883.536 14 0.001 Lower Triangle
iiiline_l 503,712 503.712 18.660.027 37 0.007 Lower Triangle
rajat31 4,690,002 4.690,002 20.316.253 4 0.000 Square Struct-Syin
Idoor 952,203 952.203 23,737.339 25 0.003 Lower 'Triangle
aLshelllO 1,508,065 1,508.065 27.090.195 18 0.001 Low'er 'I'riangle
cage 14 1,505,785 1.505.785 27.130.349 18 0.001 Square S tnict-Syin
Serena 1,391,349 1.391.349 32.961.525 24 0.002 Lower 'Triangle
bundle! __L 10,581 10.581 35,781.540 3,382 31.960 Square
boiieOlO 986,703 986.703 36.326.514 37 0.004 Low'er Triangle
RM07H 381.689 381.689 37.464.962 98 0.026 Square
audikw_l 943.695 943.695 39.297,771 42 0.004 Lower Triangle
nlpkkt 120 3.542.400 3.542.400 50.194.096 14 0.000 Lower Triangle
cage]5 5.154.859 5.154.859 99.199.551 19 0.000 Square Struct-Syni
ML_Geer 1.504.002 1.504.002 110.879.972 74 0.005 Square S truct-Syni
n lpkkt KiO 8.345.600 8.345.600 118.931,856 14 0.000 Lower 'Triangle
nlpkkt200 16,240,000 16.240.000 232.232.816 14 0.000 Lower 'Triangle
HV15H 2,017,169 2,017,169 283.073.458 140 0.007 Square
nlpkkt240 27,993,600 27,993,600 401.232.976 14 0.000 Lower 'Triangle
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Appendix A. M atrix Tables

Table A.2: M atrix Source

M a tr ix  S o u rce
torso2 FEA: 2D model of torso
nem sem m l Linear programming problem
dbir2 Linear programming problem
darcy003 FEA: 2D /3D  problem
xenonl Materials problem - Complex Crystals
ct20stif S truc tural  problem - Engine Block Stiffness
h ea r t l  FEA: Heart
venkatOl Com putational fluid dynamics
appu A P P  Benchmark - directed weighted random graph
p db lH Y S  Prote in d a ta  bank IHYS
s3dkq4m2 FEA: S truc tural problem - cylindrical shell
Si34H36 Q uan tum  chemistry problem
shipsecl FEA: S truc tural problem - Ship section/deta il
G3_circuit Circuit simulation problem
Hamrle3 Circuit simulation problem
bmw3_2 S truc tural problem
af_shell8 S truc tural  problem - Sheet metal forming
msdoor S truc tural  problem - Medium size door
ohne2 Semiconductor device problem
bone010_M Model reduction - 3D trabecular  bone
F I  S truc tural  problem - AUDI engine crankshaft
nd24k ND problem set - 2D /3D  problem
P’'ault-639 S truc tural  problem - Faulted gas reservoir
nlpkktSO K K 'r  Bitmedical Optimization Problem - Nonconvex 3D PDE
inline_l S truc tural problem - Stiffness
rajat31 Circuit simulation problem
Idoor S truc tura l  problem
af-shelllO S truc tural problem - Sheet metal forming
cagel4 DNA electrophoresis - 14 monomers in polymer
Serena S truc tural  - Gas resevoir simulation for C 0 2  sequestration
bundlel__L Unknown
boneOlO Model reduction - 3D trabecular  bone
RM07R CFD: 3D viscous case
audikw_l S truc tura l  problem
n lpkk tl20  K K T Bitmedical Optimization F^roblem - Nonconvex 3D PDE
cagel5 DNA electrophoresis - Lt monomers in polymer
ML_Geer Poroelastic S truc tural Problem
nlpkktl60  K K T Bitmedical Optimization F’roblem - Nonconvex 3D PDE
nlpkkt200 K K T  Bitmedical Optimization Problem - Nonconvex 3D PD E
HV15R CFD: 3D engine fan
nlpkkt240 K K T  Bitmedical Optimization Problem - Nonconvex 3D PD E
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Appendix A. Matrix Tables

Table A.3: Algorithm Memory Usage (MegaBytes)

M a tr ix O O P S a a d B in a ry
tor&o2 12.270 3.942 0.885
nem seninil 12.077 4.021 0.030
dbir2 13.326 4.418 0.144
darcy003 14.850 4.454 2.975
xenon1 13.702 4.506 0.371
ct20stif 15.940 5.247 0.399
heart 1 15.895 5.294 0.027
venkatOl 19.897 6.553 0.476
appu 21.261 7.069 0.107
pdblH Y S 25.208 8.356 0.278
s3dkq4in2 28.448 9.368 0.690
Si34H36 30.436 10.021 0.744
sliipsecl 46.052 15.172 1.075
G3_circuit 58.956 17.636 12.096
Hanirle3 68.627 21.035 11.042
bni\v3^2 66.762 21.965 1.735
af_shell8 105.459 34.511 3.852
nisdoor 119.786 39.400 3.173
ohne2 127.304 42.204 1.384
boneOlO^M 146.103 47.446 7.528
FI 156.842 51.843 2.623
nd24k 164.999 54.908 0.549
Fault-639 169.826 55.796 4.874
nlpkktSO 174.381 56.776 8.105
inliue_l 215.469 71.182 3.843
rajat31 250.392 77.500 35.782
Idoor 275.285 90.551 7.265
af_shelllO 315.775 103.341 11.506
cage14 316.226 103.494 11.488
Serena 382.522 125.738 10.615
binidlel__L 409.528 136.496 0.081
boneOlO 419.488 138.575 7.528
RM07R 430.208 142.917 2.912
audik\v_l 453.327 149.909 7.200
n lpkk tl20 587.939 191.475 27.026
cage15 1154.913 378.416 39.328
ML_Geer 1274.658 422.974 11.475
n lpkk tl60 1392.903 453.689 63.672
nlpkkt200 2719.644 885.898 123.901
HV15R 3247.214 1079.840 15.390
nlpkkt240 4698.534 1530.582 213.574

R a d ix  § C o r r H y p ( S " " /L ^ 7 A '' ')
1.010 " 1.327 0,000923 1 5 / 2 / 0
0.155 0.045 0.005257 12 /  - /  3
0.207 0.216 0.000820 1 5 / - /  1
3.475 4.462 0.000786 1 3 / 6 / 0
0.433 0.556 0.000786 1 6 / - / O
0.462 0.599 0.000847 1 6 / - / O
0.031 0.041 0,000908

00

0.539 0.714 0,000984 1 6 / - / O
0.122 0.160 0,000893 1 4 / - / 4
0.340 0.417 0,000603 1 6 / - / O
0.815 1.035 0,000740 1 5 / 2 / 0
0.869 1,117 0,000786 1 5 / 2 / 0
1.325 1.612 0,000587 1 4 / 4 / 0

14.096 18.144 0.011879 1 1 / 1 0 / 0
13.042 16.564 0.010841 1 1 / 1 0 / 0
1.985 2.602 0.000908 1 4 / 4 / 0
4.352 5.778 0.000999 1 3 / 6 / 0
3.673 4.759 0.000832 13 /  6 /  0
1.634 2,075 0,000740 1 4 / 4 / 0
8.528 11.292 0.003731 1 2 / 8 / 0
3.123 3.934 0.000694 13 /  6 /  0
0.674 0.824 0.000603 1 5 / 2 / 0
5.874 7.311 0.002434 1 2 / 8 / 0
10.105 12.158 0.007973 1 1 / 1 0 / 0
4,343 5.765 0.000999 1 3 / 6 / 0

43.782 53.673 0.139839 9 / 1 4 / 0
8.265 10.897 0.003609 1 2 / 8 / 0
13.506 17.258 0.011299 1 1 / 1 0 / 0
13.488 17,232 0,011284 1 1 / 1 0 / 0
12.615 15,923 0,010429 1 1 / 1 0 / 0
0.096 0,121 0.000694 1 4 / - / 4
8.528 11,292 0.003731 1 2 / 8 / 0
3.412 4,368 0.000771 1 3 / 6 / 0
8.200 10.800 0,003578 1 2 / 8 / 0

31.026 40.540 0,052849 10 /  12 /  0
47.328 58.993 0.153694 9 / 1 4 / 0
13.475 17.212 0.011269 1 1 / 1 0 / 0
71.672 95.508 0.248772 9 / 1 4 / 0
139.901 185,852 0.968040 8 / 1 6 / 0
17.390 23,085 0.015083 1 1 / 1 0 / 0

245.574 320.361 3.337151 7 / 1 8 / 0
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Appendix A. M atrix Tables

Table A.4: Algorithm Execution Time (seconds)

M a tr ix O O P S aad B in a ry R a d ix  1 C o rr H y p H y b rid H y b rid -3 2
torso2 0.014 0.026 0.105 0.029 0.023 0.038 0.042 0.014
nenisemin 1 0.032 0.107 0.207 0.115 0.100 0.086 0.076 0.027
dl)ir2 0.039 0.120 0.204 0.122 0.112 0.097 0.097 0.047
darcyOOS 0.052 0.125 0.332 0.122 0.120 0.065 0.078 0.032
xenon1 0.033 0.030 0.102 0.033 0.022 0.058 0.022 0.018
ct20stif 0.028 0.144 0.250 0.143 0.133 0,091 0.089 0.033
heart 1 0.065 0.050 0.111 0.046 0.040 0.130 0.039 0.026
venkatOl 0.055 0.048 0.157 0.051 0.038 0,094 0.038 0.029
appu 0.113 0.120 0.186 0.085 0.072 0.216 0.075 0.053
pdblHYS 0.060 0.260 0.412 0.256 0.244 0.211 0.211 0.073
s3dkq4ni2 0.038 0.143 0.336 0.153 0.129 0.141 0.179 0.051
Si34H36 0.104 0.342 0.593 0.324 0.303 0.237 0.238 0.083
shipsecl 0.074 0.572 0.912 0.561 0.491 0.293 0.403 0.091
G3_circuit 0.102 1.063 2.423 1.101 1.099 0.344 0.344 0.214
Hanirle3 0.099 1.458 3.172 1.565 1.527 0.427 0.427 0.247
bniw3-2 0.123 1.157 1.940 1.226 1.041 0.478 0.689 0.220
aLshellS 0.130 0.756 1.527 0.743 0.689 0.562 0.877 0.178
nisdoor 0.305 2.570 4.169 2.374 2.335 0,851 1.023 0.334
ohne2 0.490 0.446 1.316 0.442 0.364 0.927 0.367 0.339
bone010_M 0.189 2.879 5.079 3.205 2.640 0.961 1.020 0.323
P'l 0.760 3.411 5.483 3.656 3.079 1.251 1.304 0.506
nd24k 0.657 2.465 3.465 2.278 2.225 1.797 1.635 0.486
Fault_639 0.256 3.776 5.638 3.480 3.488 1.247 1.506 0.458
nlpkkt80 0.367 3.623 6.823 3.584 3.331 1.449 1.449 0.682
inline.l 0.799 5.947 7.843 4.680 5.674 1.661 1.804 0.728
raj at 31 0.343 0.616 2.592 0.632 0.572 0.790 0.570 0.455
Idoor 0.741 8.535 11.965 6.913 8.469 2.252 2.721 0.989
aLshelllO 0.372 2.321 4,484 2.043 2.193 1.752 1.752 0.506
cage14 1.892 1.392 3.739 1.088 1.126 2.029 1.154 1.289
Serena 0.905 10.673 18.215 10.597 10.391 3.034 3.034 1.215
bundle 1__L 2.087 6,635 7.387 6.043 6.183 2.975 2.758 1.262
boneOlO 0.602 9.701 13.552 7.555 9.128 3.568 3.721 0.911
RM07R 1.246 9.380 13.854 8.441 8.488 4.881 3.744 1.001
audikw_l 1.497 14.650 20.802 11.987 14.529 4.519 4.416 1.638
nlpkktl20 1.931 18.307 31.829 15.837 18.431 5.102 5.102 3.033
cage15 8.012 5.453 15.235 4.194 4.474 9.176 4.595 4.162
ML^Geer 2.182 3.727 12.894 3.408 2.961 11.504 2.982 2.381
nlpkktl60 5.858 53.069 111.354 48.345 55.650 14.475 14.475 10.283
nlpkkt200 11.796 116.659 276.918 110.659 124.855 31.985 31.985 24.500
HV15R 12.718 115.562 198.619 115.123 111.141 31.879 31,879 10.396
nlpkkt240 20.422 223.478 610.015 267.240 237.771 80.765 80,765 79.097
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Appendix

Detailed HyperPartition 
Performance Graphs

This appendix  shows additional graphs with more detailed breakdowns of 

the  performance of the  H yperPartition  algorithms with different values of 

the Remaining Bits param eter  betw'een k  = 1 and k  =  10.

Figure B .l  shows Serial H yperpartit ion  with QuickSort with values of 

the remaining bits heuristic of A’ =  1 to  k  =  10.

Figure B.2 shows Parallel H yperParti t ion  w ith  QuickSort with values 

of the  remaining bits heuristic of A’ =  1 to  k  =  10.

Figure  B.3 shows Serial H yperP art i t ion  w ith  QuickSort of ju s t  the  

UnSymmetric matrices with values of the remaining bits heuristic of A- =  1 

to A- =  10.

F igure  B.4 shows Serial H yperP art i t ion  w ith  QuickSort of just the  

Symmetric matrices with values of the remaining bits heuristic of A’ =  1 to 

k  =  10.

Figure B.5 shows Serial H yperPartition  with RadixSort with values of 

the  remaining bits heuristic of A- =  1 to  k  =  10.

Figure B.6 shows Parallel H yperParti t ion  w ith  RadixSort with values 

of the  remaining bits heuristic of A’ =  1 to  k  =  10.

Figure  B.7 show's Serial Hybrid  w ith  R ad ixSort  with values of the

remaining bits heuristic of A’ =  1 to  k  =  10.

Figure  B.8 shows Parallel Hybrid w ith  R adixSort w ith  values of the

remaining bits heuristic of A' =  1 to k  =  10.
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Appendix B. Detailed HyperPartition Performance Graphs

Figure B.l (a,b); Serial Hyperpartition With QuickSort: A- =  1 ^  10

H yperPartition (Q uicksort - k=1 ) vs. S aad -IP  ■■ (Serial) Execution Time of T ran sp o se  (Relative]

n^end
S aad-IP

H yperPartition (QuickSort - k=1) 
Average: 119.8%
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Figure  B .l  (a): Serial H y p e rp a r t i t io n  W ith  Q uickSort:  k =  1

HyperPartition (Q uicksort - k«2  ) vs. S aad-IP  ••  (Serial) Execution Time of T ranspose  [Relative]
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F igure  B . l  (b): Serial H y p e rp a r t i t io n  W i th  Q uickSort:  k  =  2
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Appendix B. Detailed H yperPartition Performance Graphs

Figure B .l (c,d); Serial Hyperpartition W ith QuickSort; A’ =  1 —>■ 10

H yperPartition {Q uicksort - k=3 ) vs. S aad - iP  - -  (Serial) Execution Time of T ra n sp o se  (Relative]
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F'igure B . l  (c): Serial H y p e rp a r t i t io n  W ith  Q uickSort :  k  = 3
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F igu re  B . l  (d): Serial H y p e rp a r t i t io n  W i th  Q u ickS o r t ;  A: =  4
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Appendix B. Detailed HyperPartition  Perfoniiaiice Graphs

Figure B .l  (e,f): Serial Hyperpartition W ith  QuickSort: A- =  1 ^  10

H y p erP a rtitio n  (Q u ic k s o r t  • k = 5  ) v s . S a a d - IP  - -  (S e r ia l)  E x ec u tio n  T im e of T ra n s p o s e  (R ela tive]
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Figure B .l (g,li); Serial H yperpartition W ith QuickSort: A' =  1 —> 10

H yperPartition (Q uicksort • k=7 ) vs. S aad -IP  ■ - (Serial) Execution Tim e of T ra n sp o se  (Relative)
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F igure  B . l  (g): Serial H y p e rp a r t i t io n  W ith  Q uickSort :  k  = 7
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F igure  B . l  (li): Serial H y p e rp a r t i t io n  W i th  Q uickSort :  k  =  8
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Figure B .l (i.j): Serial H yperpartition W ith QuickSort: A’ =  1 —> 10

H yperPartition (Q uicksort - k=9 ) vs. S aad -IP  - -  (Serial) Execution Time of T ra n sp o se  [Relative]
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F igure  B . l  (i): Serial H y p e rp a r t i t io n  W i th  Q uickSort :  k  =  9
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F igure  B . l  (j): Serial H y p e rp a r t i t io n  W i th  Q uickSort :  k  =  10
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Figure B.2 (a.b): Parallel H yperPartition with QuickSort: A- =  1 —> 10

32-w ay H yperPartition (Q uicksort ■ k=1 ) vs. S aad -IP  - -  (Parallel) Execution Tim e of T ra n sp o se  [Relative]
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F igure  B.2 (a): P ara l le l  H y p e rP a r t i t io n  w ith  Q u ickS ort :  k  =  \
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F ig u re  B.2 (b): Para l le l  H y p e rP a r t i t io n  w i th  Q uickS ort :  /r =  2
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Figure B.2 (c,d): Parallel H yperP art i t ion  with QuickSort: k  — 1 ^  10
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F igure  B .2  (c): Parallel  H y p e r F a r t i t io n  w i th  Q uickSort:  k  =  3
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Figure B.2 (e,f): Parallel HyperPartition with QuickSort: A: =  1 ^  10

32-w ay H yperPartition {Q uicksort - k=5 ) vs. S aad -IP  - -  (Parallel) Execution Tim e of T ra n sp o se  [Relative)
6

5.5

5

4,5

4
■6ro
C/) 3.5

o 3
e

2.5

e 2
(X

1,5

Legend
P ar-32  S aad-IP  

Par-32  H yperPartition (Q uicksort ■ k=5) 
A verage; 43 .5%

1 m  1.5 r 16 m 50 m 150 m 40 0  n
Matrix S iz e  (million nnz) <LOG scale>

Figure B .2 (e): Parallel H yperPartition w ith Quick.Sort: k =  5
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Figure B .2 (f): Parallel H yperP artition  w ith QuickSort: k =  6
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Figure B.2 (g,h); Parallel HyperPartition with QuickSort: A’ =  1 10

32-way HyperPartition {Quicksort - k=7 ) vs. Saad-IP - -  (Parallel) Execution Time of Transpose [Relative)
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Figure B.2 (h): Parallel HyperPartition w ith  QuickSort: k =  8
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Figure B.2 (i.j): Parallel H yperPartition with QiiickSort: A- =  1 -> 10

32-w ay H yperPartition (Q uicksort - k=9 ) vs. S aad -IP  ■■ (Parallel) Execution Time of T ra n sp o se  (Relative)

Ueoend
P ar-32  S aad-IP  

P ar-32  HyperPartition (Q u ickso rt • k=9) 
A verage: 46 .5%

5,5

Q .
T3
(D
03

C/3 3.5
>
a>
E

2.5

occ

0.5

1.5 m 2 m 16 m 50 m 150 m 4 00  m1 m 4 m 8  m
Matrix S iz e  (million nnz) <LOG scale>
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Figure  B .2  (j): Parallel  H y p e rP a r t i t io n  w i th  Q u ick so r t :  k  =  10
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Figure B.3 (a.b): Serial UnSynmietric HyperPartition QuickSort; A- =  1 
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Figure B.3 (c,d): Serial UnSyninietric HyperPartition QuickSort: A’ =  1 
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Figure B.3 (e,f): Serial UnSymmetric HyperPartition QuickSort; A’ =  1 
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Figure B .3  (f): Serial U nSym m etric H yperP artition  QuickSort: k =  6
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Figure B.3 (g,h): Serial UiiSymmetric HyperPartition QuickSort: k  = 1 
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Figure B.3 (i.j): Serial UnSymmetric HyperPartitioii QuickSort: A: =  1 
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Figure B.3 (j): Serial UnSymmetric HyperPartition QuickSort: k  =  10
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Figure B.4 (a,b): Serial Symmetric HyperPartition with QuickSort: k 
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Figiu'e B.4 (c.d): Serial Symmetric HyperPartition with QuickSort: k 
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Figure B.4 (e.f): Serial Symmetric HyperPartition w ith  QuickSort: k 
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Figure B.4 (g,h): Serial Symmetric HyperPartition with QuickSort: k 
1 ^  10
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Figure B.4 (g): Serial Syniinetric HyperPartition with QuickSort: k =  7
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Figure B.4 (h): Serial Symnietric HyperPartition with QuickSort: k  = 8
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Figure B.4 (i,j): Serial Sym m etric  H y p erP a r t i t io n  with QuickSort: k  =  
1 ^  10

H yperPartition {Q uicksort - k*9  ) vs. S aad-IP  - -  (Serial) Sym  Execution Tim e of T ra n sp o se  [Relative]
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F'igtire B.4 (j): Serial Symmetric H yperPart i t ion  with QuickSort: k  =  10
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Figure B.5 (a,b): Serial H yperPartition with RadixSort: A- =  1 —>■ 10

HyperPartition {RB-Sort - k=1) vs. S aad -IP  - -  (Serial) Execution Time of T ra n sp o se  [Relative)
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Figure B.5 (a): Serial H yperPartit ion  with RadixSort: /o =  1

HyperPartition (RB-Sort - k=2) vs. S aad-IP  - -  (Serial) Execution Time of T ra n sp o se  (Relative)

Leoend
5.5 

5

4.5 

4

3.5 

3

2.5 

2

1.5

Saad-IP
HyperPartition (RB-Sort - k=2) 

A verage: 98 .6%

1.5 m 2 m 4 m 8 m
Matrix S iz e  (million nnz) <LOG scale>

1 6 m  50 m 150 m 4 00  m

Figure B.5 (b): Serial H yperPart it ion  with RadixSort: A: =  2
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Figure B.5 (c,d): Serial H yperPartition with RadixSort; /,■ =  1 —)• 10

H yperPartition (RB-Sort - k=3) vs. S aad -IP  - -  (Serial) E xecution Tim e of T ra n sp o se  [Relative]
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Figure  R .5  (c); Serial H y p e rP a r t i t io n  w ith  Radix.Sort:  k  =  3
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F igu re  B .5  (d): Serial H y p e rP a r t i t io n  w ith  R ad ixS ort:  k  =  A
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Figure B.5 (e,f): Serial H y p e rP a rtitio ii w ith  RadixSort: A’ =  1 ^  10

HyperPartition (RB-Sorl • k=5) vs. Saad-IP (Serial) Execution Time of Transpose (Relative)
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F igure B.5 (e): Serial H yp e rP a rtitio n  w ith  R adixSort: k =  5
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F igure B.5 (f ):  Serial H yp e rP a rtitio n  w ith  R adixSort: k =  6
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Figure B.5 (g,h); Serial H yperP artition  w ith  RadixSort; A- =  1 10

HyperPartition {RB-Sort - k=7) vs. Saad-IP - -  (Serial) Execution Time of Transpose [Relative)
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Figure B.5 (i,j): Serial HyperPartition with RadixSort: A' =  1 —> 10

H yperPartition (RB-Sort - k=9) vs. S aad -IP  - -  (Serial) Execution Tim e of T ra n sp o se  (Relalive)
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Figure B.5 (i): Serial HyperPartition with RadixSort: /c =  9

HyperPartHion (RB-Sort - k - 10) vs. S aad -IP  - -  (Serial) E xecution T im e ot T ra n sp o se  jRelalive]

Leoend
Saad-IP

HyperPartition (RB-Sort • k»10) ♦
A verage: 92 .3%

5.5

4.5

a.

le
c/3 3.5
</>

Q>
I

2.5Q>2
JS0)
cc

♦ u* 
♦ ♦  ♦ ♦

0.5

1 m 1.5 m 2 m 50 m 150 m 4 0 0  m4 8 1 6 mm m
Matrix S iz e  (million nnz) <LOG sca le>

F'igure B.5 (j): Serial HyperPartition with RadixSort: k =  10
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Figure B.6 (a,b): Parallel HyperPartition with RadixSort: A- =  1 —> 10

32-W ay H yperPartition (RB-Sort • k=1) vs. S aad -IP  ■■ (Parallel) Execution Tim e of T ra n sp o se  [Relative)
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Figure B.6 (a): Parallel HyperPartition with RadixSort: A’ =  1
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Figure B.6 (b): Parallel HyperPartition with RadixSort: k =  2
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F igure  B.6 (c,ci): Para lle l H y p e rP a rtit io n  w ith  R adixSort; A’ =  1 —)• 10
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Figure B.6 (e,f): Parallel H yperPartition with RadixSort: A- =  1 —> 10
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Figure B.6 (g,!i): Parallel HyperPartition with RadixSort; A- =  1 -> 10

32-W ay H yperPartition (RB-Sorl - k=7) vs. S a a d -IP  - -  (Parallel) Execution Tim e of T ra n sp o se  (Relative]
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Figure B.6 (g): Parallel HyperPartition with RadixSort: k  = 7
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Figure B .6  (h): Parallel HyperPartition w ith  RadixSort: k  = 8
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Figure B.6 (i.j): Parallel H yperPartition with RadixSort: /,• =  1 —)• 10
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F ig u re  B.6 (j): P ara l le l  H y p e rP a r t i t io n  w ith  R ad ix S o r t :  k =  10
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Figure B.7 (a,b): Serial Hybrid with RadixSort leaving: A- =  1 10

Hybrid (RB-Sort - k=1) vs. Saad-IP - -  (Serial) Execution Time of Transpose [Relative)
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F ig u re  B .7  (a): .Serial H y b rid  w ith  R ad ix S o rt leaving: k  =  1
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Figvire B .7  (b): S eria l H y b rid  w ith  R a d ix S o rt leaving: k =  2
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Figure B.7 (c,d): Serial Hybrid with RadixSort leaving: A’ =  1 ^  10

Hybrid (RB-Sort - k»3) vs. S aad -IP  - -  (Serial) Execution Tim e of T ra n sp o se  (Relative]
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F igu re  B.7 (c): Serial H y br id  w ith  RaciixSort leaving: k  =  .'3
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F ig u re  B.7 (d): Serial H y b r id  w i th  R a d ix S o r t  leaving: k =  A
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Figure B.7 (e.f): Serial Hybrid with RadixSort leaving: /.’ =  1 —>• 10

Hybrid (RB-Sort • k=5) vs. S aad -IP  ■■ (Serial) Execution Tim e of T ra n sp o se  [Relative]
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F'igure B .7 (e): Serial Hybrid w ith  R adixSort leaving: k =  5
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Figure B .7 (f): Serial Hybrid w ith  R adixSort leaving: k =  6
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Figure B.7 (g,li): Serial Hybrid with RadixSort leaving: A: =  1 10

Hybrid (RB-Sort • k=7) vs. S aad -IP  ■■ (Serial) E xecution Tim e of T ra n sp o se  (Relative)
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Figure B .7 (g): Serial Hybrid with RadixSort leaving: k =  7
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Figure H.7 (h): Serial Hybrid with RadixSort leaving: k =  8
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Figure B.7 (i.j): Serial H ybrid  w ith  RadixSort leaving; A- =  1 ^  10
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F igu re  B .7 ( i): Serial H y b r id  w ith  R ad ixS ort leaving: k =  9

Hybrid (RB-Sort - k-10 ) vs. Saad-IP - •  (Serial) Execution Time of Transpose (Relative]

Leaen^
Saad-IP 

Hybrid (RB-Sort k*10) •  
Average: 69.6%

•

- •

•  •

•  * *  *  % 
•  •  *  *

• .V- . . !  
•  • %  • •  •  • • • •  • • ! • • •

’•ST' ^
•

1 1 I
1 m 1.5m 2 m  4 m  8 m  1 6 m 5 0 m 1 5 0 m  400m

Matrix Size {million nnz) <LOG scale>

F igu re  B .7  ( j) :  Serial H y b r id  w ith  R a d ixS o rt leaving; fc =  10
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Figure B.8 (a,b): Parallel Hybrid with RadixSort leaving: A: =  1 ^  10
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F igu re  B.8 (a): Para l le l  H ybr id  w i th  R a d ix S o r t  leaving: A' =  1

P ar-32  Hybrid (RB-Sort • k -2 ) vs. S aad -IP  - -  (Parallel) E xecution Time of T ra n sp o se  (Relative)
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F igu re  B.8 (b): Para l le l  H ybr id  w i th  R a d ix S o r t  leaving; k =  2
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Figure B.8 (c,d): Parallel H yb rid  w ith  RadixSort leaving: A- =  1 —> 10

Par-32 Hybrid (RB-Sort - k=3) vs. Saad-IP • •  (Parallel) Execution Time of Transpose [Relative)
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F igu re  B .8  (c): P a ra lle l H y b r id  w ith  R a d ix S o rt leaving: k  =  3

Par-32 Hybrid (RB-Sort - k -4 ) vs, Saad-tP - -  (Parallel) Execution Time of Transpose (Relative)
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F ig u re  B .8  (d ): P a ra lle l H y b r id  w ith  R a d ix S o rt leaving: k =  4
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Figure B.8 (e,f): Parallel Hybrid with RadixSort leaving: A’ =  1 10
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Figure B.8 (f): Parallel Hybrid with RadixSort leaving; /c =  6
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Figure B.8 (g,h): Parallel H yb rid  w ith  RadixSort leaving: A- -  1 —>• 10

Par-32 Hybrid (RB-Sort - k=7) vs. Saad-IP - •  (Parallel) Execution Time of Transpose (Relative)

Legend
Par-32 Saad-IP 

Par-32 Hybrid (RB-Sort • k=7) ®
Average: 39.1%

3.5

CL
T3

CO
«  2.5
>
0)e

S5
CC

0.5

« e,
, ® »  e  e

50 m 150 m 400 m1 m 1.5 m 2 m 8 16 m4 m m
Matrix Size (million nnz) <LOG scale>

F igu re  B .8 (g): P a ra lle l H y b r id  w ith  R a d ixS o rt leaving: /c =  7
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F ig u re  B .8  (h ): P a ra lle l H y b r id  w ith  R a d ixS o rt leaving: k =  S
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Figure B.8 (i,j): Parallel Hybrid with RadixSort leaving: A- =  1 —)• 10
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F igu re  B .8  (i): Para l le l  H ybr id  w ith  R a d ix S o r t  leaving: k =  9
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F ig u re  B .8 (j): Para l le l  H ybr id  w i th  R a d ix S o r t  leaving: k  =  10
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Appendix

MatrixMarket File Format

There are a iiunii)er of different file formats which can be used to persistently 

store sparse matrices on disk. There are binary formats and text formats, 

some formats require more overhead than others and some are more flexible. 

T he matrices used in our test suite (Section 3.6.1) were obtained in the 
MatrixMarket [Boisvert 95, Boisvert 97] file format. The M atrixMarket 

file essentially stores the elements in the matrix in a format similar to the 
Compressed Coordinate format (Section 2.3.4).

An example of the MatrixMarket file format for the matrix M  is shown 
in Listing C .l .  T he  hie begins wath the M atrixMarket header w'hich is 

a single line th a t  begins with ’/.'/.MatrixMarket followed l)v a munber of 

declarations which define the structure of the matrix contained within the 
hie. The hrst non-comment, non-header line contains 3 integer numbers 
which declare the size of the matrix  by giving respectively "the number 
of rows", "the number of colunms" and "the munber of non-zeros" in the

Listing C .l: MatrixMarket File Format
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Appendix C. M atrixM arket File Format

matrix. The format of the remaining lines of the file will be determined by 

the contents of the M atrixM arket header.

In the case of “m atrix coordinate real general” which is a normal(general) 

format m atrix, with “real” values (as against integer or complex) each line 

contains two integers and a floating point (real) munber. The integers 
specify the row and colmnn coordinates resi)ectively of the location of the 

floating point value in the matrix. The M atrixM arket format is one-indexed. 
the indexes s ta rt at 1 ra ther than  0 as in our examples. Again we use the 

letters a through o to  represent the non-zero values in the matrix.
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Glossary

Algorithm

BLAS

C ache

Caclie Obhvioiis

COO

CSR

CSC

Cycle

Cycle-Chasing

Dense

A step by step procedure for performing a calculation or carry
ing out a task.

Basic Linear Algebra Subprogram m es - A software library of 

routines for performing standard  Linear Algebra operations.

The cache is part of the Central Processing Unit (CPU) which 

is used to reduce the average time to access data from the main 
memory. It is a smaller, faster memory which stores copies of 
data from recently used main memory locations.

An algorithm designed to take advantage of CPU caches w ith

out needing to know the size of the cache.

Compressed Coordinate m atrix storage format (Section 2.3.4).

Compressed Sparse Row m atrix storage format (Section 2.3.5).

Conii:)ressed Sparse Colunm m atrix  storage form at (Sec
tion 2.3.5).

A pernm tation of (a subset) of the elements - The com plete 

chain of elements tha t are rearranged one after the other.

The processes during in-place transpose of moving elements 
from location to  location one after another in the m atrix, 

perm uting the elements.

A m atrix  where all values are stored in memory - There are 

very few zero values in a dense matrix.

R obert C rosbie . T h e  I ’n iversity  of D ublin . T rin ity  College 295



Glossary

Diagonal

DRAM

Element

Fill-In

lu-Place

Jump

LAPACK 

Linear Algebra

Matrix

MIMD

The line of elements from top left of the  m atrix  to bottom  

right. Diagonal elements have the same row and column index, 

I =  J -

Dynamic Random-Access Memory - Main memory.

The inihvidual items/values/entries in a matrix.

hi high order routines, when a row or cohnnn of a sparse matrix 

is added to another - zero elements may become non-zero - 

space must be made in the compact s truc ture  for these new 

elements.

\Mien an algorithm alters data  while keeping it in the original 

array/data-structure .

During the  cycle-chasing transpose, the algorithm moves an 
element from one location in the matrix arrays to i t ’s new row 
in a different location in the matrix arrays. The algorithm will 
then need to  move the existing element at th a t  new location 
to yet another location, and so on until the  cycle completes. 
We use the term “Jiuni)” to describe how the algorithm moves 
from location to location during the cycle-chasing.

Linear Algebra PACKage - A software library of high order 
Linear Algebra routines, similar to BLAS.

The branch of mathematics tha t deals with the theory of sys

tems of linear equations, matrices, vector spaces, determinants, 
and linear transformations.

A rectangular array of numbers arranged in rows and columns 
- A mathematical representation of Linear Algebra Equations.

Multiple Instruction Multiple D ata  - A type of parallel archi

tecture. nniltiple processors can carry out different instructions 

on different da ta  at the same time.



Glossary

Page Table 

PA PI

Perm u ta tion

Out-of-Place

SIMD

Sparse

TLB

Transpose 

Triangular Solve

T h e  m app ing  betw een  v irtua l  addresses in a j)rogram and  

physical addresses on th e  machine.

Performance Application Programming Interface - A library for 

m onitoring hardware counters used to measure cache /T L B /e tc . 

performance.

Rearrange elements in a  particu lar p a t te rn  (perm ute).

W h en  an a lgorithm  alters  d a ta  by copying it to  a completely 

new a r r a y /d a ta - s t ru c tu re  of the  sam e size.

Single instruction  M ultip le  D a ta  - A type  of parallel architec

tu re  where multiple processors carry out th e  same instruction 

on different d a ta  values at the  same time.

A m atr ix  w ith  a  high p roport ion  of zero e lem ents s tored in a 

condensed format.

M any m atrices have a high p roportion  of elements which 

have a value of zero, often 99% of the  e lem ents or more. A 

sparse  m a tr ix  is a m a tr ix  w ith  a high p ropo rt ion  of zero ele

m ents  which is s tored in  a compact format (such as C SC /C SR ) 

in m em ory in order to  avoid explicitly s toring the  zero values. 

This compact format reduces the memory required to store the 

m a tr ix  and  can reduce  th e  num ber of a r i th m e tic  opera tions  

th a t  need to  be perform ed during Linear Algebra algorithms.

Translation  Lookaside Buffer - A Cache of the  Page Table.

A linear a lgebra  o p e ra t ion  th a t  reflects a  m a tr ix  th ro u g h  its 

m ain  top  left to  b o t to m  right diagonal - sw apping  rows with  

colunms - element A j j  is swapped with

Solving th e  unknow ns in the  vector x  in an  equa tion  such as 

A x  =  b where  A  is lower (L) or upj^er {LI) t r ia n g u la r  - An 

nmch simj)ler process th a n  when ^  is a full m atrix .


