
LEABHARLANN CHOLAISTE NA TRIONOIDE, BAILE ATHA CLIATH TRINITY COLLEGE LIBRARY DUBLIN
OUscoil Atha Cliath The University of Dublin

Terms and Conditions of Use of Digitised Theses from Trinity College Library Dublin

Copyright statement

All material supplied by Trinity College Library is protected by copyright (under the Copyright and
Related Rights Act, 2000 as amended) and other relevant Intellectual Property Rights. By accessing
and using a Digitised Thesis from Trinity College Library you acknowledge that all Intellectual Property
Rights in any Works supplied are the sole and exclusive property of the copyright and/or other I PR
holder. Specific copyright holders may not be explicitly identified. Use of materials from other sources
within a thesis should not be construed as a claim over them.

A non-exclusive, non-transferable licence is hereby granted to those using or reproducing, in whole or in
part, the material for valid purposes, providing the copyright owners are acknowledged using the normal
conventions. Where specific permission to use material is required, this is identified and such
permission must be sought from the copyright holder or agency cited.

Liability statement

By using a Digitised Thesis, I accept that Trinity College Dublin bears no legal responsibility for the
accuracy, legality or comprehensiveness of materials contained within the thesis, and that Trinity
College Dublin accepts no liability for indirect, consequential, or incidental, damages or losses arising
from use of the thesis for whatever reason. Information located in a thesis may be subject to specific
use constraints, details of which may not be explicitly described. It is the responsibility of potential and
actual users to be aware of such constraints and to abide by them. By making use of material from a
digitised thesis, you accept these copyright and disclaimer provisions. Where it is brought to the
attention of Trinity College Library that there may be a breach of copyright or other restraint, it is the
policy to withdraw or take down access to a thesis while the issue is being resolved.

Access Agreement

By using a Digitised Thesis from Trinity College Library you are bound by the following Terms &
Conditions. Please read them carefully.

I have read and I understand the following statement: All material supplied via a Digitised Thesis from
Trinity College Library is protected by copyright and other intellectual property rights, and duplication or
sale of all or part of any of a thesis is not permitted, except that material may be duplicated by you for
your research use or for educational purposes in electronic or print form providing the copyright owners
are acknowledged using the normal conventions. You must obtain permission for any other use.
Electronic or print copies may not be offered, whether for sale or otherwise to anyone. This copy has
been supplied on the understanding that it is copyright material and that no quotation from the thesis
may be published without proper acknowledgement.

Interheap GC

Sim on Dardis

A thesis submitted to the

University Of Dubhn, Trinity College

for the degree of Doctor of Philosopy

January 2015

D eclaration

I, the undersigned, declare tha t th is work has not previously been

subm itted to th is or any other University, and th a t unless otherwise stated,

i t is entire ly my own work.

Simon Dardis

Dated: January 21. 2014

r TRINITY COLLEGEI 1 < MAY 2015

LIBRARY DUBLIN

■ / . ̂ J '
V ' w r 4

1

Perm ission to Lend an d /or Copy

I, the undersigned, agree that Trinity College Library may lend or copy this
thesis upon request.

 ̂uvmTVi

Simon Dardis
Dated; January 21, 2014

2

Acknowledgements:
My family for supporting these past three years and dealing my infrequent

communication.
My supervisor, Dr. Abrahamson for his excellent advice and support.

3

Abstract

Garbage collection is the automation of memory management for com­

puter programs. It is an important feature of both the Java and .NET

environments, and it is a key component of the runtime system for many

high level language implementations. A garbage collector’s critical tasks in­

clude recording program roots (global variables and thread stacks), finding

all objects directly and transitively reachable from these roots, and finally

reclaiming unused space.

Current research in this area has conc(mtrat ed on non-blocking root scan­

ning, efficient space reclamation or some form of heap partitioning. P arti­

tioning the heap allows the collector to avoid traversing the entire object

graph when identifying unused memory. Existing heap partitioning schemes

segregate objects into heaps based on an analysis of their use or by how

recently they have been allocated.

This thesis describes a novel method that- allows the programmer to spec­

ify partitions at point of thread creation while allowing a variety of existing

collectors and automatic heap partitioning techniques. The proposed tech­

nique differs from existing methods by supporting general purpose com puta­

tion and allowing collections of heap partitions in any order.

Contents

1 Introduction 1

1.1 M otivation .. 2

2 L iterature review 6

2.1 Generational Collection... 7

2.1.1 Generalizing techniques in generational collection . . . 10

2.1.2 Beltway c o lle c to r .. 11

2.2 Connectivity based garbage co llec to rs .. 13

2.3 Hierarchical real-time garbage collection 16

2.3.1 Thread local heaps for M L ... 18

2.3.2 Thread local heaps for Hgiskell... 19

2.4 Other thread-local heap co llec to rs ... 20

2.5 Escape analysis for thread-local h e a p s ... 21

2.5.1 Steensgaard’s m e th o d .. 21

2.5.2 King’s method .. 22

2.5.3 Comparison of Steensgaard’s and King’s methods . . . 23

2.5.4 Type based p a r t i t io n in g ... 24

2.5.5 Shared heap for E r la n g .. 25

2.6 D iscussion .. 26

2.6.1 C la ss ifica tio n ... 28

i

3 Resecirch question 30

4 Software testb ed 32

4.1 Research vehicle.. 32

4.1.1 Compilation s t a g e s .. 35

4.1.2 LLVM b a c k e n d .. 36

4.2 JH C’s runtime system .. 36

4.2.1 S ta c k .. 37

4.2.2 Objects .. 37

4.2.3 Event lo g g in g .. 38

4.2.4 T h r e a d s .. 41

4.2.5 TestE vac.. 41

4.2.6 Underlying storage d e s ig n ... 45

4.2.7 Stop the world GC d e s ig n ... 47

4.2.8 Concurrent GC d e s ig n ... 47

4.2.9 Observations on concurrent collection for Haskell . . . 48

5 Inter-heap garbage collector dtisign 50

5.1 M otivation .. 50

5.2 Interheap GC e x a m p le ... 51

5.3 Inter heap GC design g o a l s .. 54

5.4 Interheap GC reference counting.. 54

5.4.1 Graphical Overview.. 56

5.5 Base GC p ro p erties .. 57

5.5.1 Inter-heap G C .. 59

5.5.2 Reference c o u n t s ... 59

5.5.3 Invariants required for Inter-heap G C 60

5.5.4 M utator m od ifica tions.. 65

5.5.5 Write barrier exam ples... 69

5.5.6 Interheap GC reference count m od ifica tion 72

i i

5.5.7 Spurious reference table reclamation example 75
5.5.8 Cycle d e te c tio n ... 77

5.6 Description of Interheap GC’s im plem entation............................ 86
5.6.1 Pseudo c o d e .. 91

5.7 Im plem entation.. 98
5.7.1 Write barrier .. 98
5.7.2 Objects .. 99
5.7.3 G roups... 99
5.7.4 H e a p .. 100
5.7.5 Collection within a group ...100
5.7.6 Inter-heap GC implementation.. 101

5.8 Sketch implementation of an incremental collector........................102

6 Evaluation and experim ents 104
6.1 M easurements..105
6.2 Shared object c o u n ts ... 107
6.3 Comparisons of Interheap GC to a concurrent collector 107

6.3.1 Stabihty of concurrent collector r e s u l ts112
6.3.2 Discussion... 112

6.4 Comparisons of Interheap GC to a stop-the-world collector . . 113
6.4.1 Stability of stop-the-world r e s u lts118
6.4.2 Overview ... 118
6.4.3 Discussion... 122

6.5 C onclusions...123

7 Conclusions 125
7.1 C ontribu tions..125
7.2 Future w o rk ... 126

7.2.1 Automation of heap d ivision... 127
7.2.2 Heap jo in s ... 127

8 A ppend ix 128

8.1 Appendix A - Interheap GC A P I .. 128
8.2 Appendix B - Terminologj'... 129

8.2.1 Basic Terminology .. 130
8.3 Collection Terminology... 131

8.3.1 A llocators.. 132
8.3.2 Important concepts in the field of garbage collection . . 132

iv

Chapter 1

Introduction

Garbage collection is a mechanism tha t simplifies program construction[4] by

automating the identification and reclamation of unused blocks of memory.

It is usually provided in one of two ways: as part of the virtual machine

on which the program runs (i.e. Java, Smalltalk, some LISP/Scheme imple­

mentations) or is linked with the program during compilation (i.e. Haskell,

Eiffel. Boehm’s garbage collector). The application code is called the m uta­

tor, while the collection routines are referred to as the collector. Roots in

collection terminology refers to the set of global variables tha t a program

can access and all local variables containing references tha t are stored in a

program’s stack(s) along with registers tha t contain pointers. A block of

memory is live when it is transitively referenced from a root.

There are two broad types of garbage collection: tracing collectors and

reference counting.

For a basic tracing collector implementation, the memory allocation rou­

tines are modified so tha t w'hen a program’s heap reaches a size threshold,

the collector is invoked. The m utator is halted, and the collector traces out

the program state from the roots. Once all the live objects in memory have

been identified, unused space can be found and reclaimed. The m utator then

1

resumes operation.

A basic reference counting[22] scheme augments every object with a lo­

cation for storing a reference count that is initially set to zero. When a

reference to an object is created, that object’s reference count is incremented

and when a reference to an object is deleted or overwritten, its reference

count is decremented. The space occupied by an object is reclaimed when its

reference count reaches zero. Reference counting schemes require additional

support to identify and reclaim cyclical data-structures. This additional

support takes the form of dedicated cycle detectors [48] [51] or backup tracing

collectors [34].

Many variations to these schemes have been developed, such as concurrent

collectors which are capable of performing most of their work without pausing

the entire program[27]. Other collector variants include different allocators,

modifications to the m utator to increase efficiency, segregation of data based

on how likely it is to become unreachable and segregation of data based on its

use. Work on reference count ing schemes lia.s been directed towards reducing

or if possible removing reference count modifications. Published schemes

include those that can defer reference (’ount modifications to objects due to

manipulations of the stack[24], those which elide modifications to counts due

to manipulation of objects (coalesced reference counting) [45] and those which

combine reference counting and tracing colkiction [6] [11] .

1.1 M otivation

The work performed by a tracing collector can be broken down into three

areas: taking a snapshot of the roots; tracing the live object graph; and

reclaiming the space held by dead objects. The literature review describes

work done by others in bounding or otherwise controlling the amount of time

spent performing these tasks and how it is sj>ent (i.e. one long pause or many

short pauses).
Concurrent collectors are those that allow the mutator to continue to exe­

cute while the heap is being traced. Depending on the design of the collector,
root scanning and/or space reclamation may be performed concurrently as
well. Generally the two longest periods of time are spent tracing out the
object graph and reclaiming space.

While reclaiming space with concurrent copying collectors, applications
are paused so that all pointers to relocated data can be updated. Some con­
current collectors use Brooks’ read barrier[16] which eliminates the need to
update all pointers to a moved object in this case they update a forwarding
pointer that each object possesses which is used to track its actual location.
In published designs, both Metronome and Chicken[59] use Brook’s read bar­
rier and rely on the next collection cycle to update the pointers to objects
that have been relocated.

For stop-the-world collectors, the mutator is paused for the duration of
the collection cycle. This pause time is proportional to the amount of live
data and in some designs, the amount of space to be reclaimed as well.

For stop-the-world and concurrent collectors, the ability to partition the
heap changes the time taken for collection to time proportional to the size
of the part of the heap rather than the size of the entire heap. W^rk done
in this area includes escape analysis for imperative programming languages
such as Java[38][21][13][44] . The apphcation of escape analysis for garbage
collection provides an optimization where the compiler determines a safe

estimation of which objects become visible to more than one thread. The
set of objects which are visible only to the thread that created them can be
stored in a thread local heap. For functional languages such as ML, Leroy and
Gonthier[28] designed a collector which takes advantage of ML’s reliance on
immutable data and the language’s semantics to provide thread local heaps.

For reference counting collectors which use a coalescing mechanism there

3

are two aspects tha t determine the length of time required to reclaim space:

reconciliation of reference counts and cycle detection. Reference count mod­

ifications can applied immediately, spreading the cost throughout the pro­

grams runtime or they can be deferred. Deferred updates can take the form

of buffers of object addresses which must be periodically obtained from all

mutators[7]. Other forms require that the zero-count table—a table record­

ing objects which have a reference count of zero-be periodically scanned for

reclaiming objects which are unreachable from the stack[24]. Cycle detection

can be performed in a synchronous manner, blocking the m utators for time

proportional to the number of cycle candidates [47] or gisynchronously[9].

This thesis examines the design and implementation of a collection system

that partitions an application's heap and threads into logically separate areas

from the collector’s point of view. Partitioning ensures that no single collector

instance can block all m utator threads and reduces the amount of work any

single collector has to perform.

The motivation of this work is to provide programmers with the capabil­

ity to split an application’s heap without the need for complex code analysis

schemes for heap partitioning or extensive rewriting to use real-time schemes.

Different implementations of code analysis schemes may deliver different heap

partitions complicating development and maintenance. Other schemes such

as Pizlo et al’s HRTGC[58] also require rewriting to make use of heap parti­

tioning.

The motivation for enabling the programmer to split the heap into inde­

pendent sections rests on the notion that the programmer will have a better

understanding of how their program shares data between separate threads

compared to a compiler. The second reason is that by relying on the pro­

grammer to provide such information is that the optimization does not rely

on any type of code analysis. This choice avoids the reliance on the specifics

of particular code analysis algorithm and hence avoids any (severe) changes

4

in performance source after code modification.
The contributions of this thesis are; the design and description of a

garbage collector that supports independently collected heaps without any
structure between them and a novel but collector specific method of detecting
cycles.

5

Chapter 2

Literature review

This Uterature review describes research on partitioning the heap for garbage

collection. Partitioning the heap allows a collector to avoid traversing the

entire object graph during the collection cycle, which brings the advantage

tha t the length of time spent performing collection is generally proportional

to the size of the heap section.

Early garbage collectors examined the entire heap on each collection cycle.

Figure 2.1 shows the garbage collector's view of the program’s heap storage as

a single object (large rectangle) and multiple thread stacks (small rectangles).

Pause times for these types of collectors are approximately of 0{number of

live objects).

6

Thread Stacks Heap

Figure 2.1; Basic garbage collector’s view of program storage

2.1 G enerational C ollection

Generational garbage collectors[69][3][46] are copying collectors designed on
the basis of two distinct premises; a strong generational hypothesis the
older the object the less likely it will become unreachable; and a weak gener­
ational hypothesis- that the majority of objects most recently allocated on
the heap do not persist for long periods. To take advantage of the strong
generational hypothesis the collector must be able to identify the most re­
cent allocations quickly. To determine live objects the object graph must be
traversed and by relying on the weak generational hypothesis and recording
the creation of pointers that cross from the old to new generation only the
most recently created sections of the graph need to be traversed.

To take advantage of these concepts basic collectors can be designed to
divide the heap into two sections; a creation area (where space is drawn from
for new objects); and a major heap, and mutators can be modified at either
compile or runtime so that information about the creation of pointers from
the major heap to the creation area are recorded using a write barrier. The

7

location of these pointers is stored in a remembered set. Such collectors are

built so th a t they can perform two types of collection: a collection of the

creation area alone; and a collection of the entire heap.

Collection of the creation area is performed by traversing the object graph

using the union of a program ’s roots and the locations pointed to by the

rem em bered set as the roots of the program sta te . The collector does not

need to follow pointers from the creation area to the m ajor heap since live

objects in the creation area are transitively reachable from either the roots

or from the rem em bered set. Live objects are copied to the m ajor heap and

pointers to them are updated to record their new locations.

This design reduces the amount of time spent perform ing garbage col­

lection for a variety of reasons: typically a m ajority of short lived objects

will be reclaimed during collection of the creation area. The collector can

quickly find pointers from the m ajor area to the creation area since their

locations have been stored in the remeniben>d set, thereby allowing the col­

lector to forgo traversing the (>ntire heap. To perform a collection of the

m ajor heap, the creation area must first l)e colle'cted since th is is the only

way to determ ine which objects ai'e transitively live in the m ajor heap.

8

Young generation Old generation

Thread Staclcs Heap Heap

Heaj) spht age Collection dependency

Figure 2.2: Layout of a program’s heap using generational garbage collection

With generational scavenging, collectors divide an application’s heap into

nuiltiple (two or more) generations. Objects are promoted from one genera­

tion to the next if they survive a collection of their current generation. Figure

2.2 show's a program’s storage layout as a large heap (older generation) shared

by several threads and a number of smaller heaps unicjue to each thread.

Unfortunately, because of cross heap pointers, collection of a young heap

may require information from an older heap (and/or other younger heaps);

and likewise older heap(s) cannot be collected independently of the younger

heaps. These dependencies are represented by a double-headed green arrow

in the diagram. W ith generational scavenging, the collector records pointers

tha t cross from an older to a younger generation, enabling the collection of

younger heaps without the need for a full examination of the older heap.

Typical behavior of this type of collector is to frequently collect the

youngest generation. If the collection of an older generation is required.

9

it is performed immediately following a collection of the younger generation

since the younger generation may possess liveness information about some

objects in the older generation. For this type of collector, pause time are

approximately 0{number of live objects in the generations to be collected).

2.1.1 Generalizing techniques in generational collec­

tion

In collector designs by Detlefs et al[23] and Sachindran et al[61] the heap is

split into multiple regions. Sachindran et al’s design builds a remembered

set based off a computed hveness bitmask of the regions th a t are not to be

evacuated. This remembered set is used during the collector’s copying phase

to avoid re-traversal of the entire object graph to update objects tha t are not

moved.

The Garbage First garbage collector[23] requires tha t nm tators are modi­

fied to record information aboiit, now pointers th a t point outside their regions

into remembered sets similar to a gen(;rational collector. W ith this scheme,

the collector can defer the choice of which heap regions to evacuate until after

the amount of live data in each region has been determined. If remembered

sets were not used the collector would need to pick a region before counting

live da ta so tha t it can find all pointers to the region, or use another structure

to record objects tha t have to updated or it would need to traverse the graph

twice: first to count live data in each region; then a second time to find all

pointers to the region to be evacuated.

These collectors can move objects without traversing the entire object

graph to identify all references to such objects. Since the sizes of the heap

regions are fixed, collectors can estimate the amount of time required to

evacuate each region based on the amount of live data it contains and the

size of its remembered set.

10

2.1.2 Beltw ay collector

The Beltway collector by Blackburn et al[10] is another form of generalized

copying collector. The collector divides the heap into belts which are fur­

ther divided into one or more increments. The object promotion policy used

by Beltway collector determines how it behaves, either similar to a canon­

ical copying collector (semi-space, generational collector) or more complex

incremental copying schemes.

To support the promotion of objects between increments and belts, incre­

ments are implements as frames which are aligned on power of two memory

addresses and numbered for collection. The write barrier for the m utator

records inter-frame pointers where the target frame is likely to be collected

before the source frame. Each pair of source and target frames has its own

remembered set.

The beltway collector can implement a variety of collection policies by

varying the number of belts and increments and where survivors are evacu­

ated to. Blackburn et al’s paper shows a number of configurations; canonical

copying collector, generational collector and other novel schemes.

11

Increments
Old

New
— ►

Belts

Initial allocation arena

New

Figure 2.3: Layout of a j)rogranrs heap using the Beltway collector

Figure 2.3 shows a simple heaj) layout using the Beltway collector. The

heap is broken down initially into three bdts which are further broken down

into two or three increments clei^ending on the age categorization of the belt

in question. The diagram shows the oldest belt as having three increments

and the younger two belts—each composed of two increments.

12

Increm ents

Survivors

Figure 2.4: Collection of an increm ent in Beltway

Figure 2.4 shows where objects are relocated after collection of an oldest

increm ent in this Beltway configuratio. O bjects are relocated to the youngest

increm ent of the next older belt.

2.2 C onnectivity based garbage collectors

Hirzel[32] described the design and im plem entation of an analysis combined

with a purpose built collector to achieve lower collection tim es by partitioning

the heap. Hirzel’s work determ ines allocation sites and points-to relations

in the code to determ ine structures called partitions. These partitions are

combined w'ith two runtim e com ponents: an estim ator which gauges the

am ount of free space th a t can be reclaim ed in a partition and a chooser

which selects partitions to collect.

His analysis is based on A ndersen’s pointer analysis for C[2]— a control

flow-insensitive analysis which determ ines the set of locations a variable may

13

point to during a program ’s execution. In contrast, control flow sensitive

analysis determ ines location sets a t every point (or points of interest) in the

program .

A ndersen’s original analysis identified where a variable may point— points-

to relations— by using constraints th a t are associated w ith s ta tem en ts in C.

By propagating these constraints until a fixed point is reached, the points-to

sets can be determ ined for each variable. Hirzel applied A ndersen’s ideas to

the Java progrannning language for garbage collection.

Hirzel’s analysis cissociates each object th a t can be created a t run tim e

with a s tru c tu re called a partition may contain m ultiple objects. Pointers

w ithin objects can point to other objects associated w ith their partition or

objects in another partition . A points-to relation between the two partitions

is created when a pointer in an object i)oiiits to an object in a different p a r­

tition. The set of in ter-partition points-to relations forms a directed acyclic

graph w'ith the i)artitions as nodes and the relations as edges. M ultiple p a rti­

tions are collapsed into a single partition during construction of the partition

graph whenever two partitions have edges between them th a t form a cycle.

The association of objects with [partitions enables partial garbage collection

since any set of topographically ordei’ed partitions contains do not have un­

known roots.

A connectivity based garbage collector can collect any set of partitions

th a t are topographically ordered. Hirzel’s design relies on an estim ator func­

tion which gauges the am ount of live and dead d a ta in each partition . Several

techniques are described: examining global variables; m odeling object death

as a decay function and profiling memory access to partitions. The estim a­

to r re tu rns a survival rate s with (0 < s < 1) for each partition based on

the result of one or more heuristic functions. At the s ta r t of a collection a

chooser function is passes the results of the estim ator function for each par­

tition and selects an topographically ordered set of partitions for collection.

14

The chooser m ust balance the cost of exam ining partitions to the benefit

of space reclam ation. Hirzel observed th is problem can be reduced into a

m axed-weight closed set form which can be solved by existing m ethods[l].

Heap partitionsT hread Stacks

Collection dependency Heap split by
^ _______ partitioning

Figure 2.5: Layout of a p rogram ’s heap w ith connectivity-based garbage

collection

Figure 2.5 shows a sam ple heap layout of Hirzel’s connectivity based

garbage collector. The partition dependencies are determ ined by the com­

piler, avoiding the need for wTite barriers. Collection of any partition requires

the collection of its dependencies. Collection tim es in th is system are pro­

portional to th e num ber of objects in the exam ined partitions, however the

collector can a ttem p t to maximize the am ount of space reclaim ed per unit

of tim e by the use of heuristics to guide the choice of partitions to collect.

15

2.3 Hierarchical real-time garbage collection

Pizlo e t al described a garbage collector[58] capable of servicing real-tim e

and non-real-tim e workloads on a single Java virtual machine. The collector

is designed to replace the use of Scoped Memory sections in the Real T im e

Java Specification[30].

Scoped memory sections provide an application w ith allocation arenas

which are not garbage collected[57]. Instead, they operate in a stack-like

fashion where m ultiple objects can be allocated in them bu t only the topm ost

scoj^e can be reclaimed when there are no references to it. These mem ory

sections are used by real-tim e threads so th a t they are not affected by the

garbage collector. However, pointers are restricted in th a t they may only

reference objects in their scope or into youngei- scopes. Sim ilar restrictions

aj^ply to the use of the inunortal m<'mory area and the main heap in th a t

they m ay not hold references to the scoped ni('mory while the scoped mem ory

may hold references to the main lieaj) and im m ortal memory area.

T he Hierarchical real-tim e garbage colle(’to r (HRTGC) restructures an

app lication’s heap into i)rogrammer s|)ecified allocation arenas which exhibit

collection dependencies called heaplets. I 'h e api)lication’s initial heaplet is

called th e root heaplet and any heaplets which are created afterw'ards are re­

ferred to as its child heaplets. The key aspect of the parent-child relationship

is th a t references from child heaplets to pan 'n t heaplets are effectively free

while o ther heaplet-to-heaplet reference are more expensive as they have to

be recorded^

Collection of a heaplet th a t has child heaplets involves finding references

located in the child heaplets to objects in the parent heaplets. Child heaplets

do not need to be traced out; instead their allocation arenas are linearly

^My contribution is the design of a collector which lacks th is tree s truc tu re and is

th read orientated.

IG

scanned skipping dead objects. Any live objects found during th is scan are

exam ined for references to parent heaplets. Partition ing the heap in this

m anner means only the leaf heaplets are independently collected since their

collectors only exam ine their heaplet.

Inter-heaplet structu res th a t are formed w ithout the use of child to parent

references are unconditionally retained. The creation of references th a t form

such structu res are recorded by the H R TG C ’s w rite barrier into a s truc tu re

called th e cross set which is an additional set of roots for heaplet collectors.

A global garbage collector is used to reclaim dead cyclic cross heap struc­

tures by perform ing a collection cycle th a t ignores heap boundaries. W hen

this collection is com plete the cross set is exam ined and entries referring to

dead objects are removed allowing the heaplet collectors to eventually reclaim

the com ponents of dead structures.

T hread Stacks Root Heaplet H eaplets

Heap split by partition Collection dependency

Figure 2.6: Layout of a program ’s heap w ith heaplet-based garbage collection

17

HRTGC allows the programmer to specify the creation of heaplets for

real-time tasks. The collection of a heaplet requires examination of all its

sub-heaplets. This dependency is the reverse of the dependencies between

partitions in connecti\'ity based garbage collection.

The time taken for a collection in this system is relative to the number of

objects in the heaplets tha t are to be collected. Leaf heaplets can be collected

independently of others, pro^'iding real-time guarantees.

2.3.1 Thread local heaps for ML

Doligez and Leroy designed a collector[28] for ML which leverages two aspects

of ML: tha t most data is immutable; and that equality of two data-structures

does not depend on their location in memor>-.

The heap is divided into N+1 sub-heaps where N is the number of threads

used by the application. Each thread possesses a local heap which initially

contains all immutable data created bv that thread. A shared heap is used

as an allocation space for mutable data and objects which have survived

a local collection cycle. When a pointer i)i a mutable object these are

always stored in the shared heap is updated to point to a data-structure in

a th read’s local heap, the data-structure is copied into the shared heap and

the mutable object is updated to j)oint to the copy in the shared heap.

This design allows for mutator threads to collect their heaps indepen­

dently of each other but requires global synchronization to collect the shared

heap. The synchronization however does not require threads to block waiting

for the collector, instead they shade all objects tha t are reachable from their

local heaps in the main heap. The collector determine the set of hve objects

from these initial grey objects.

18

2.3.2 Thread local heaps for Haskell

Marlow et al[50] designed a collector similar to that of Dohgez[28] et al and
Domani et al[29] which permits thread local heaps. Their garbage collector
utilizes features of the Haskell programming language such as the common
presence of immutable objects and implementation of lazy evaluation thunks.
Each thread possesses a local heap which is split into two parts: a sticky area
for objects which are mutable and a separate area for immutable objects.
Collection of a local heap copies immutable objects into the global heap but
mutable objects are collected using a mark-sweep algorithm.

Their design differs from that of Doligez et al by permitting pointers from
the global heap into a local heap but accesses to another thread’s local heap
are mediated through a read barrier. A write barrier is used to construct a
proxy object in the global heap when a local pointer would be written into
the global heap. This proxy object is implemented as a thunk a deferred
computation taking advantage of GHC’s implementation of thunks to pro­
vide a more complex read barrier on-demand. The standard read-barrier for
GHC determines if an object needs to be evaluated first. The more com­
plex read barrier signals the owning heap to copy the immutable structure
in question into the global heap and delaying the accessing thread until this
work is done. The immutable structure does not have to be copied in total,
instead proxy objects can be created for its sub-components.

If a pointer to a local mutable object is to be written into the global
heap, then that object is logically moved into the global heap by means of a
global flag in the object’s header. Objects which have that flag set can only
be reclaimed during a global collection cycle.

19

Young generation Old g enera tion

T h read S tacks Heaj) Heap

H eap sp lit by age Collect ion dependency H eap sp lit by
_______ ^ _____ ► th rea d g ro u p

F igure 2.7: Layout of a])rogram ’s heap w ith local g enera tiona l garbage col­

lection

2.4 O ther thread-local heap collectors

Steensgard[66], K ing and o thers have designed co llec tors w here each th re a d

has its own local heap th a t can be collected in d ep en d en tly of th e o th ers

(F igu re 2.7). T h is ty p e of design reduces th e need for g lobal sy n ch ro n iza tio n

used in garbage collection. B u t th e older genera tion can only be collected

in n n ed ia te ly a fte r a collection cycle of the younger heaps.

T h ese collectors differ from th e m ethods o u tlin ed above as th e y requ ire

th e aid of th e com piler to d istinguish betw een alloca tions th a t can be m ade

in a th re a d local heaj) or th e m ain heap.

20

2.5 Escape analysis for thread-local heaps

Escape analysis is an optimization technique for imperative languages tha t

determines which objects “escape”—become visible to threads other than

the thread tha t created them or outlive the stack frame which created them.

Knowing tha t an object does not escape allows for several possible optimiza­

tions: synchronization operations for those objects can be removed; such

objects can be created a different allocator. This technique has been used in

the field of garbage collection to enable the use of thread-local heaps which

can be collected independently of each other and the main heap.

2.5.1 S teen sgaard ’s m eth od

Bjarne Steensgaard[66] designed a collector and an associated compile time

analysis to enable the use of t hread local heaps in Java programs. In this sys­

tem the compiler performs a thread escape analysis for all allocation sites in

a program. Each allocation site is examined and a subset of them have their

allocator call replaced by a thread-local allocator call. The analysis is based

on Erik Ruf’s[60] technique for the removal of synchronization operations in

J ava.

The m utator code is modified based the results of an analysis—similar

to Anderson’s pointer analysis for C—which gathers information about each

allocation site and the use of variables. Each allocation is associated with

an alias set which describes how its corresponding value is accessed. Each

method has an associated alias context which contains alias sets for its ar­

guments and its return value. Each operation—assigning one variable to

another, throwing an exception, calling a method, etc—is associated with

a rule th a t describes how the alias set(s) for the value(s) involved are to

be modified. When the analysis is complete each allocation site’s alias set

shows whether or not the value it produces is thread-local data, and if it is

21

the allocation site is modified to use a thread-local allocator.

The heap is logically divided into two sections: one containing the shared

heap which is made up of shared and large objects^; and the other containing

thread-local heaps—one for each thread. Each heap section is further divided

into a generational style young/old pair.

At the outset garbage collection requires an initial global rendezvous after

which the collector examines the combined root set of all thread stacks and

global variables. It then evacuates all shared objects directly reachable from

the roots. Once these have been evacuated, threads can collect their local

heaps. A thread may encounter an object in the shared heap tha t is reachable

from a thread-local heap but which has yet not been evacuated. If this

happens, a lock is taken against the shared heap, the object is evacuated and

has a forw’arding pointer written into the old copy. W’hen multiple threads

attem pt to copy the same object, the first to take the lock copies the object

and the others wait for tha t object to be copied before finishing collection.

2.5.2 K in g ’s m ethod

Andrew' King et al[38] described how to augment a Java virtual machine so

tha t it performs thread-local garbage collection. Their technique splits the

heap into multiple sections and performs an online^ escape analysis of the

Java class files to determine which objects become shared (or “escape” the

scope of the thread tha t created them).

The analysis is run shortly after the A'irtual machine has started w^hich

ensures th a t a majority of the class files have been loaded. Working on a

snapshot basis, it operates on the set of classes th a t were already loaded when

the analysis began. The initial phase constructs and merges alias sets for

methods using a technique based on the work of Steensgaard[66] and Ruf[60]

^Objects whose size is greater than 25CKb.
^An online analysis is performed while the application is running.

22

which determines an approximate alias set for each variable encountered.
Further phases construct a conservative call graph, analyze thread creation
contexts and unify the alias sets using data from the previous two phases.
The resulting information is used to specialize method code so that it utilizes
thread-local heaps for non-escaping objects. If a thread-local object is used
in an unresolved method call, it may be stored in an “optimistically local
heap” rather than in a local heap.

The heap space is divided into two sections: a global heap for shared
objects; and a section containing thread-local heaps. Threads are associated
with a local heap and an optimistically local heap containing non-shared
objects and objects that are unlikely to become shared respectively. Pointers
are restricted to point to addresses in the heap where they are located or to
point to addresses in the global heap. Pointers in a thread-local heap may
also point to addresses in an optimistically local heap.

The mutator is modified so that new objects are stored in a heap deter­
mined by the analysis. The local heap for each thread contains those objects
which the analysis has determined cannot escape a thread’s context, and the
optimistically local heap contains objects that may become shared if a new
class is dynamically loaded at some point in the future. The global heap
contains all other objects. Collection of the global and the optimistically
local heaps requires global synchronization, while collection of a thread-local
heap does not require synchronization with any other thread.

2.5.3 Comparison of Steensgaard’s and K ing’s m eth­

ods

Both methods partition the heap into sub-heaps based on an analysis of how
the program accesses objects. The code analyzed is an intermediate form
normally used for performing optimizations, not the original source code

23

the programmer wrote. The drawbacks of Steengaard’s method[66] are tha t

it still requires a global rendezvous to collect the shared heap which must

be done before thread-local heaps can be collected. King’s m ethod[38] in

contrast splits the heap into more sections on a per-thread basis, allowing it

to perform thread-local collections without global rendezvous.

Although both methods are based upon the analysis of intermediate

code—which could retain annotations describing new object placement, the

programmer cannot specify where objects are to be allocated. Thus, with

either method, objects may (unexpectedly) end up on the global heap which

requires global rendezvous to collect. The lack of direct control in object

placement is similar to the use of Taulpin and Tofte’s region inferencing

system[67] w'hich assigns objects to regions that are managed using a stack.

In their system this lack of control can lead to high memory usage.

2.5.4 T yp e based partitioning

Shuf et al[64] describe a method of lieap partitioning using types with op­

tional allocation placement. T}'pe-b<ised j^artitioning relies on a hypothesis

tha t the majority of objects with a prolific type—a tj’pe shared by some

significant fraction of allocated objects—have a short life span. This is com­

parable to the premise underlying generational collection tha t a significant

amount of objects do not live for long periods.

Prolific types can be identified in two ways. The simplest is to profile

allocations over several sample executions of the program to build a census

of object types and the number allocations. The second method is to dy­

namically profile the allocations of the program to determine prolific types

then trea t further allocations of those types as prolific types.

Type based partitioning splits the heap into two spections, the P(rolific)

section for objects with a prolific type and an Non-Prolific section for all

24

other types. Again, this is compaxable to a generational collector with the
nursery and a tenured area. In contrast, objects are never moved physically
or logically from the P section into the NP section.

Collection of the P section—a. minor collection—requires recording of
pointers from the NP section to the P section. This is achieved through
selectively adding write barriers at compile time or execution time if the
code is being interpreted. The selectivity comes from the requirement to
only record pointers to objects in the P section from the NP section. The
recorded pointers are used as an additional set of roots to trace out the P
section during a minor collection. Minor collections do not follow pointers
into the NP section as the collector relies on type information during object
scanning to only consider pointers to other objects in the P section.

2.5 .5 Shared heap for Erlang

Sagonas et al[62] describe a partitioned collector with a shared area for Er­
lang. Erlang[5] is a functional concurrent language which makes heavy use
of lightweight threads and message passing. The default implementation is
that each thread possesses its own heap and that messages are copied be­
tween heaps. This enables any heap to be collected independently of the
others without examination of their data.

Sagonas’ design introduces a shared area for messages, reducing the amount
of data any single thread has to examine. The roots of this shared area can
be found in stacks and heaps of all runnable threads. Collection of the shared
area therefore requires global synchronization. The shared area is collected
using a copying generational collector for a creation area coupled with a non­
copying mark-sweep old generation. Messages are speculatively allocated in
the shared area based on work by Carlsson[18] which produced an analysis
for determining which objects may become part of a message.

25

The design uses a variant of generational stack scanning[20] which caches

roots found in a thread stack for collection of the creation area. Every thread

tha t has performed some work or received a message since the last collection

of the creation area examined as the threads tha t have not run since the last

collection only reference data in the old generation.

Erlang however is something of a special case as the language prohibits

destructive updates to data-structures and uses message passing for commu­

nication between heaps. The previous work examined so far covers languages

with m utable data and th a t directly share data.

2.6 D iscussion

In summary, existing methods for heap partitioning can be broken down into

four areas: garbage collector driven partitioning such as generational col­

lection; autom atic code transformation such as Steensgaard’s [66] and con­

nectivity based garbage collection; Hierarchical real-time garbage collection’s

programmer specified heap divisions and Elrlang’s separate heaps.

Garbage collector driven partitioning divides the heap into partitions

based on the age in bytes allocated, logically separating the newest from

older objects. These partitions are collected in a youngest to oldest fashion,

perm itting the younger generations to be collected where only a small section

of older generations have to be inspected. This technique has the advantage

of requiring no analysis of an application’s code, though appUcation of this

technique may require recompilation of an application’s code. Variants of

moving collectors can partition the heap for relocating of objects efficiently.

Marlow et al’s design uses a combination of type-based allocation and

signalling read barriers to provide thread-local heaps. Collection of objects

which are reachable from other heaps within local heaps requires a global

collection cycle.

26

King’s method allows for the use of thread local heaps that do not require
global synchronization for collection but cannot divide the main heap. The
technique is based on analysis of an application's code and modification of
allocation sites to produce thread-local objects.

Hirzel’s connectivity based garbage collector (CBGC) uses pointer anal­
ysis to segregate the heap into partitions: objects in a partition may only
have internal references or refer to objects in descendant partitions. This
imposes a topological ordering of bottom to top in terms of partitions being
collected.

HRTGC is a similar idea to Hirzel’s except the programmer specifies
the partitions and the collector supports arbitrary and transparent cross­
partition links at the cost of extra collection time and storage dependent on
the source and target. The collection dependencies between heaplets is from
top to bottom. Both of these methods have cases where heaplets or partitions
can be scanned independently of others but cannot collect arbitrary portions
of the heap.

Erlang by default uses separate heaps for each thread, guaranteeing low
collection times since only a small fraction of the entire heap has to be exam­
ined. This is at the cost of not sharing data between heaps except in highly
specific circumstances, requiring that data is copied between heaps for mes­
sage passing. Furthermore, Erlang does not allow destructive updates in the
general case which simplifies garbage collector design.

King et al[37] gives an overview of heap partitioning. It discusses vari­
ous reasons for partitioning the heap, notable partitioning by thread and for
pause times. Inter-heap GC is designed to do both those things by parti­
tioning the heap in terms of which threads can access specific sections and
reducing pause times by controlling how much data since the collector will

only examine a subset of the heap for any collection.
Overall it can be seen that analysis driven partitioning can create thread

27

local heaps and split the main heap w ithout the use of w rite barriers. G arbage

collector driven partition ing requires the use of w rite barriers to record the

creation of cross-heap references. Only HRTGC enables program m ers to

specify the creation of separate shared heaps but imposes a collection ordering

of heap and requires global collection to deal w ith cross heap structures.

Erlang possess unshared heaps but has requirem ents to achieve soft-real tim e

perform ance and has relatively unique language characteristics.

2.6.1 Classification

Program m er
control

In terheap G C

□
HHTGC

(iarbage F irst
Type-based])artitioning

Gen(^ational collection
3eltwav

□ □□

Steensgard
King, DLG, Marlowe

U i
G ranularity of heap divison

Figure 2.8: Classification of garbage collectors

Figure 2.8 outlines a classification scheme for garbage collectors based on

two axis: the granularity of the heap divisions and the control the program ­

m er has in using them . Collectors which use pure runtim e based m ethods

28

are underlined in red while those th a t rely on code analysis or progrannner

specification are black.

29

Chapter 3

Research question

Can a program m er specified heap division policy im prove applica­

tion perform ance in a sp lit heap system ?

The motivation for this question came from a study of previous collector de­

signs. Some designs, such jis generational collectors can restrict the amoimt

of the heap tha t is traversed while scanning or copying. O ther designs such as

garbage first had either generational collector or could chose arbitrarily the

amount of data copied during each collection cycle. The goal was to build a

collector design tha t could arbitrarily divide the heap and not require global

synchronization.

The goal of having loose global synchronization came from the realization

tha t requiring global synchronization would render the capability of collection

a separate area relatively small benefit.

The lack of global synchronization between collectors of different heap

sections maximizes the potential utility of this system. By enforcing this

requirement, the capability to arbitrarily scan a heap section is more valuable

since heap sections can be collected concurrently and without regard to other

heap sections.

30

This type of system sphts an apphcation’s heap into multiple sections.

Each thread of execution is associated with a single heap section, and each

heap section may be associated with multiple threads. D ata in one heap

can reference another heap’s data provided such cross heap references are

captured. This would allow for heap sections to be independently collected

since there would be no cross section references or they would be known prior

to collection.

The goal of this system is to perm it heaps to be independently collected

and for the system to operate in a transparent fashion. This entails mini-

malistic changes to the model tha t the programmer possesses when writing

programs, i.e. objects are not restricted by type when shared between heaps

and do not acquire visible properties when they are shared between heaps.

Several sub-areas of this topic deserve investigation:

1. Identifying the elements o f a collector's design that are affected by how

the runtime shares data between heaps. W ith sharing semantics there

must be a wTite barrier and possibly a read barrier to capture the usage

of cross heap references.

2. Since an application’s heap is physically divided, would there be any

benefit to using several different collectors in tandem? This could al­

low a collector to chosen based on a group of threads’ memory usage

characteristics.

3. What trade-offs occur for this system,? Trade-offs th a t occur are more

frequent collection cycles since each heap section is smaller when com­

pared to a non-partitioned heap layout.

31

Chapter 4

Software testbed

This section describes the software systems that will be used to investigate

the research question and also outlines the rt^asons behind their selection.

4.1 R esearch vehicle

The programming language Haskell[49] has been chosen for this work be­

cause it enables a wide variety of garbage collectors to be examined such

as those designed to work with ML, e.g. Gonthier and Leroy’s collector[28]

and Cheng’s collector[19]. These collectors rely on the majority of objects

being immutable^, a characteristic which is common in Haskell programs.

This allows objects to be shared instead of being copied and hence enables

the investigation of the proposed sj’stem where da ta is shared as well as

copied. Languages which explicitly rely on garbage collection such as C # ,

Java, Google’s Go or Lua typically use mutable data which requires those

objects be explicitly copied or shared.

Using Erlang would be of little benefit since the proposed sj'stem would

bring few changes to the existing Erlang implementation. Erlang already

^Immutable objects cannot be modified after creation.

32

possesses a similar architecture in terms of threads and heap sections but only
permits one thread to be associated with a heap section. Furthermore, the
only mutable structures in Erlang are the private per-thread hash-table and
ETS (Erlang Term Storage) an optionally public hash-table. Erlang already
avoids much of the mutator overhead of garbage collection since mutation is
so infrequent. Finally, work done by Johansson et al[35] examines various
heap architectures for Erlang which include shared and communal heaps.

The JHC[53] Haskell compiler has been selected as the research vehicle.
It is a whole-program optimizing compiler^ where a complete program is
examined as a single unit and optimizations related to memory management
are simplified. It provides a basic form of region inferencing[68] and a basic
mark-sweep collector. Other compilers for Haskell, such as Yhc[63], are too
basic while the de-facto standard compiler GHC[56] is substantially larger
and more complex than JHC.

There are three major differences between JHC and GHC. The two most
basic differences are the type checkers and nmtime systems. JHC’s type
checker supports the Haskell 2010 standard but GHC supports a large num­
ber of extensions to that standard. The second basic difference is the so­
phistication of the runtime provided to a compiled Haskell program. The
most striking difference, is the choice of intermediate languages used by JHC
compared to GHC.

The first intermediate language used by JHC and GHC is called Core
(Haskell). Both of these languages are fairly similar, consisting of function
clauses, case and let statements. JHC’s differs in that types are first class
values which allows for different implementation of Haskell constructs such
as type-classes^.

^In contrast to other compilers which work on one file or translation unit a t a time.
^The basic usage of type-classes allows the use of “-I-” for any two objects of the same

niimeric type. Contrast with OCaml which has ‘‘-I-” for integers. for floating point

33

The next difference is the choice of lower level intermediate languages.

GHC compiles Core into a language called STG[40]. The Spineless Tagless

G-machine (STG) is a language for the execution of lazy functional languages.

Values in STG programs are represented as closures, objects containing zero

or more values and a pointer to program code or to another closure. Ex­

pressions and functions are similar to tha t of Core Haskell augmented with

explicit free variable information and the update of evaluated closures. STG

is compiled down to a language called C minus minus [42], a high level as­

sembly language.

JHC uses GRIN (Graph Reduction Intermediate Notation) [14] as its sec­

ond intermediate language. Programs compiled into GRIN code are first

order‘d. Objects possess type tags unlike closures in STG programs. GRIN

is compiled to C code and passed to a C compiler.

There are how'ever, several drawbacks in choosing JHC; it currently acts

as a Haskell to C compiler; it does not sup})ort multiple threads of execution;

it is somewhat basic in terms of features; and the LLVM[43] compiler requires

configuration to provide m eta-data for garbage collection.

JH C ’s C backend is unsuitable for this work since ANSI C compilers

do not emit type information when producing assembly or machine code,

making precise garbage collection difficult. Previous work by Wick[70] and

Henderson[31] enable C programs to use precise collection. Wick’s Mag­

pie is aimed at modif\dng existing C programs to support precise collection,

whereas Henderson’s technique restricts the use of some optimizations bj- a

C compiler. Using LLVM as the backend and its ability to generate “info-

tables” [26]^—recording which stack slots contain references—should yield

better performance than either of the previous two techniques,

numbers
^There axe no higher order functions used.
®Also known as stack maps.

34

4.1.1 Com pilation stages

C runtime

Grin

LLVU code

Core Haskell

Binary

Haskell source

Figure 4.1: Compilation pipeline

JHC uses three transformations to turn Haskell source code into a binary.
Figure 4.1 graphically describes the series of transformations to produce a
binary. The first transformation produces Core Haskell from valid Haskell 98
or 2010 code. Core Haskell as implemented in JHC is a variant of Henk[41]
which is a typed lambda calculus. The Core Haskell program is compiled into
GRIN® [15] code. GRIX is a strict first order functional language. JHC’s im­
plementation of GRIN shares a common subset of operations that Boquist[15]
et al’s GRIN and includes some extra primitives. Notably the eval mecha­
nism for the evaluation of deferred computations is a primitive rather than

® Graph Reduction Interm ediate Notation

35

a series of more basic primitive operations.

4.1.2 LLVM backend

As part of this research a new LLVM backend was built to so th a t programs

compiled by JHC could use precise garbage collection. Since LLVM was

designed to operate with C-like languages the C backend was cloned and

then modified to emit LLVM code. This was simple barring a few notable

aspects, such as stack slots since a local variable can be declared anywhere

in C but LLVM requires local variables to be declared in the first basic block

if they are to be garbage collected. Other issues included: computing the

size of structures in the LLVM backend since the LLVM language doesn’t

provide such a feature; emitting a type-table describing types for garbage

collection purposes; implementing the GRIN primitive eval which produces

values from thunks.

4.2 JH C ’s runtime system

A program compiled with JHC consists of two parts: Haskell code written by

the programmer, and the runtime stub which is combined with the compiled

Haskell code to produce the full program. The runtime handles low-level op­

erations for the Haskell program such as: the allocation and reclamation of

memory; interfacing wdth the operating system to read and write to files or

to a terminal; creation of new threads of execution and recording of times-

tam ped events for debugging the runtime, gathering data for experiments

and optimizing Haskell code.

The initial runtime system was extended to provide the listed capabihties.

It initially provided only conservative garbage collection, basic time profiling

and input/output operations.

36

4.2.1 Stack

JHC constructs programs that use the machine stack hke a C program. This
stack consists of: local variables which may need to be traced; function
parameters dependent on the apphcation binary interface (ABI) return
addresses and the occasional saved frame pointer. The stack can be spht
into three parts: an initial C stack containing frames from the runtime, a
number of Haskell stack frames and another group of C stack frames.

Since LLVM produces stack maps for Haskell derived code only, the run­
time must record the stack pointer when transiting from C code to Haskell
code and vice versa. The stack pointer is recorded using an LLVM intrinsic
and specialized transition functions between Haskell and C code.

4.2.2 O bjects

Haskell uses two types of objects: plain data objects consisting of a tag and a
number of values dependent on the tag; and thunks which represent deferred
computations. Thunks reference a function and its parameters which are
evaluated or “entered” when the value they represent is examined.

JHC’s last intermediate language (GRIN) has a simple object model:
objects consist of a tag which identifies the type and a number of slots. The
C backend for JHC does not conform to this model, only incorporating tags
into objects when required, e.g. for distinguishing if an object represents the
end or a cell of a list. Thunks were modeled after GHC’s implementation,
consisting of a pointer to code for evaluation and a variable number of slots
depending on the function to be called.

The LLVM backend incorporates tags into all objects so they can be easily
examined by the garbage collector and emits a tj^pe table describing: the size

^ABI specifies whether param eters should be passed in registers or the stack or a

combination and the location of the return value.

37

of each object; and a bitm ask of slots containing pointers. Thunks have tags

instead of code pointers and a lookup table is used to determ ine the relevant

function.

JH C generates the set of tags for objects and assigns num bers to them

from the Haskell code being compiled. This has the side effect th a t it is

difficult for the runtim e to directly return Haskell objects to the compiled

program since the tag values are program dependent. Instead such functions

m ust be w rapped with stub functions in the standard library which call ou t to

runtim e. These functions m ust be w ritten in very low-level Haskell: relying

on unboxed values and references; require type assum ptions and coercions;

and passing the world token-w hich is normally h idden-around.

JH C im plem ents JO R efs-a tyjje of m utable object in H askell-and arrays

by creating a bare array with as many slots as required. T he creation of

such objects was modified so th a t an array was created which carried a

header m arking that object as an array and the num ber of slots in the object.

Those objects are accessed using GRIN primitives, so there was no difficulty

in adding this functionality barring bugs within the compiler itself.

4.2 .3 E vent logging

Events such as the creation and term ination of th reads, the s ta r t and end

of a garbage collection cycle are recorded through two mechanisms. T he

first is a po rt of G H C's event logging mechanism to JH C. This allows the

exam ination of program behavior through the “threadscope” [36] tool® th a t

shows graphically which threads are m im ing and garbage collection behavior.

T he second mechanism is DTrace[17], a tool built for Solaris which Apple

ported to OS X. DTrace is a more general tool for exam ining the operation of

*Built by the developers of GHC for examining the behavior of parallel and concurrent

program s.

38

a live system. It operates as part of the OS’s kernel and enables users to write

event-driven programs for examining the actions of the kernel. It provides

a mechanism called USDT (user-land statically defined tracing) which can

monitor the operations of a user-land program.

GHC’s eventlog mechanism can only record data from the program’s point

of view, while DTrace allows for a system-wide view. A detailed eventlog

can be generated by using DTrace and a basic DTrace program to monitor

kernel scheduling behavior. This log contains a combined CPU and program

activity trace, recording the periods in which the program was active on the

CPU and what type of work it w'as doing. This trace can be processed into

a format readable by Threadscope.

The implementation in JHC is direct im port of GHC’s event logging in­

frastructure coupled with modifications to JH C ’s runtime so the relevant

events are em itted at the runtime. The events hooks for DTrace are imple­

mented by using a wTapper so tha t only a single macro corresponds to both

event systems.

Os 30ms 40ms SOms 60ms 70ms 80ms 90ms
I _ _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ ^_ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ ^ ^ ^ _ _ _ _ _

Figure 4.2: GHC-style eventlog

Figure 4.2 shows a GHC-style event log view where the green bars rep­

resent periods of m utator work and the orange bars represent periods of

garbage collection. GHC generates events and thread state transitions, so

Threadscope displays green bars between the events where a m utator starts

39

working and pausing for garbage collection. HECs^ on the left correspond to

individual m u ta to r th reads in this diagram. The fluctuating green bar above

the three HECs displays to ta l nn ita to r utilization of the system.

Os O .ls 0 .2 s 0 .3 s 0 .4 s O S s

I i 1 1 1 1 1 1 . 1 1 1 1 . 1 1 1 1 1 . 1 1 1 . . 1 1 1 ■ 1 I 1 1 1 ■ I I 1 I ■ 1 I 1 1 . I ■ I I 1 I 1 . 1 I I I

Acfvtty

II I I I I I I I I ■ I I H H i l l I I I J ■ ! I I B i I J ' l i I M I I I I I I

M iBiii II III II II mil I II I ■ II, nil II iiinii

F'igure 4.3; DTrace deriv(>d eventlog

Figure 4.3 shows a more accurate view of the program ’s behavior with

periods where the program was not miming coloured white. Threadscope

at this tim e doesn't display what program was using the CPU during this

idle periods. There are two broad eases: anotlicr program on the system was

using the CPU; or th a t a Haskell thread was scheduled bu t was waiting for

an event from the runtim e to proceed.

®Haskell execution capability, i.e. a (’PU core

40

4.2.4 Threads

JH C ’s runtime system uses a one-to-one mapping of OS threads to Haskell

threads, in contrast to GHC’s one-to-many scheme of OS thread to Haskell

threads. Each thread maintains a control block which contains its:

• local status (which GG phase the thread is in, current markbit, blocked

on FFI)

• pointers to the top and bottom of its set of Haskell stack frames;

• allocation arena;

• serial immber

• pointer to a sequential store buffer for operating with the concurrent

collector.

4.2.5 TestEvac

A test garbage collector was built to exercise the compiled Haskell code

from a collection perspective. This collector consisted of a stop-the-world

semi-space collector tha t ran before every allocation. The collector would

create a new allocation region and copy all live objects there and update

references. The old allocation region would then have its VM pages marked

PROT.NONE, disallowing the m utator from reading or writing to objects

through stale references.

The construction and use of this collector highlighted multiple issues re­

garding correctness of a collector for JHG. The first major issue is the use

of tagged pointers-which have their lowest bits set depending on whether or

not they are lazy-relocating an object requires copying those tag bits into

the new reference. They also can cause problems with relocated objects as

the forwarding pointer needs the appropriate tag bits set.

41

Indirections caused a few minor problems as they can be created in two

ways: by the collector overwriting an ob ject’s tag w ith a forw arding pointer

or by the m u ta to r when a thunk is evaluated, a pointer to the result is w ritten

into the o b jec t’s tag slot. The collector handles indirections by overwTiting

the ob ject or stack slot referring to the forwarded item with the forwarded

address with any tag bits set appropriately. The forwarding pointer is then

exam ined and if it points into the old space, th a t slot is pushed back onto

the m ark stack for another examination.

LLVM does not support live-precise stackm aps’” a t this tim e b u t stack

slots which are roots are initialized to null upon entry to a Haskell function.

Furtherm ore, a filter is used to gather all references which pointed into the

heap, based on the low est/highest allocation address. An occasional anom aly

occurred th a t if the last object allocaled was referred to by a tagged pointer

it would be ignored since tiie allocator recorded the highest address allocated

but tag bits would push this address ov('r the high limit.

W hen evaluating a thunk, the C backend would overwrite the code pointer

of a thunk with a sentinel value so that it can only be evaluated once. Once

the thunk is evaluated the object returned from the result ob ject is w ritten

into the header of the thunk.

^^Stackmaps which record only the live slots.

42

Code pointer Sentinel value Heap pointer

Header

Slot 1

Slot 2

Unevaluated thunk Thunk undergoing Evaluated thunk
evaluation

Figure 4.4: Evaluation of a s tandard thunk in JHC

The LLVM implementation with the new object model retained the tag

when undergoing evaluation and wrote a sentinel value into the upper half

word of the tag slot. When a thunk is evaluated, the address of the result

object is written into the result slot of the thunk. This keeps the invariant

th a t a thunk can only be entered once and th a t the forwarding address can

be distinguished from all other cases when a thunk has finished evaluation.

43

Tag

Header

Result
Slot

Slot 1

Slot 2

Uiievaluated thunk

Sentinel value
and Tag

Sentinel value
and Tag

Heap pointer

Thunk undergoing
evaluation

Evaluated thunk

Figure 4.5; Evaluation of a standard 1 h\ink in JH C w ith the LLVM backend

A thunk ’s s ta te and type can be deterniiiKKl by checking for th is sentinel

value when exam ining the header during collection and evaluation. Tag bits

in pointers to evaluated thunks have to be propagated carefully since it is

possible for a value produced from a thunk to be referred to in two ways:

from a direct pointer and from the overwritten header word which can refer­

enced by a tagged pointer. If the tag bits are incorrectly propagated , when

th a t value is passed to eval, the program will in terpret the tag as a forw ard­

ing pointer and a ttem p t to access memory on the lowest page, causing a

segm entation fault.

44

4.2 .6 U n d erly in g storage design

JH C ’s runtime system uses Immix[12] for allocation space and mechanism. It

operates using blocks of thirty-two kilobytes, split into lines of one hundred

and twenty-eight bytes. The m eta-data associated with a block includes

a bytemap with each byte describing if the corresponding line is empty or

full, hiitial allocation uses bump allocation and allocations after collection

scan the line-map to find the largest (or sufficiently large) free space within

the block. Bump allocation is an allocation strategy which uses a pointer

recording the start of free space in a memory arena. Space is allocated

by “bumping” or incrementing the pointer by the size of the object to be

allocated.

45

128 bytes per line

256 Lines per block

Legend

32 Kilobytes per block

Line containing
m etadata

Line containing
m uta to r d a ta

Figure 4.6: Layout of an Inmiix })lock used by JH C

The storage design keeps ineta-data associated w ith a block into the first

th ree lines of the block (highlighted green in 4.6). This simplifies the im­

plem entation when an Imniix block is aligned to its size, since the lowest

bits of an object address can be logically andfd away, allowing access to the

m eta-da ta for purposes such as marking a line as live, counting live d a ta in

a block precisely, etc.

46

4.2 .7 Stop th e world GC design

A stop the world type collector was built drawing upon Imniix and the

DLG[28] collector for design elements. The design uses Immix’s underlying

storage mechanism and a simplified heuristic for selecting blocks for evacua­

tion. DLG-style phase variables (one for each m utator and one for the GC)

are used to coordinate the s ta rt of a collection. Each thread maintains its

own phase variable, allowing a thread to signal its state back to the collector.

A thread will estim ate the percentage of heap space used every time it

requests a new block and if the free space falls below a threshold, a collection

cycle is requested by raising the GC sta rt flag. At the start of a GC cycle,

any allocation will cause tha t thread to construct and populate a mark stack

of all objects reachable from a th read’s stack—this is a partial collection. A

mutex ensures tha t one thread then changes the shared mark bit, gathers all

mark stacks produced the rest of the m utator threads, and then traces out

all live data and updates the m etadata for the blocks.

4.2 .8 C oncurrent G C design

JH C ’s concurrent collector uses the same code and data-structures as the

stop-the-world collector but most of the work is performed concurrently with

the mutators.

The basic design is th a t of Yuasa’s collector[72] where all overwritten

pointers are recorded—a snapshot-at-the-beginning type collector as classi­

fied by Wilson [71]. The m utators use a pool of sequential store buffers for

recording overwritten pointers. Yuasa’s collector was chosen over Steele’s[65]

and D ijkstra’s[25] due to its simplicity. Similarly, concurrent copying col­

lectors such as Huelsbergen’s [33] collector which handles da ta based on its

(im)mutability or concurrent replicating collectors such as O ’Toole et al’s[54]

were not used to keep the implementation simple.

47

A partial collection is used as in the stop-the-world collector, allowing

the mutators to progress without the main collection examining or rewriting

references in m utator stacks. A collection cycle is performed with the com­

bined stacks, then the mutators are paused once again to scan their SSBs

and sweep the Immix line-maps.

Concurrent collection for JHC faces an interesting problem where the item

being examined by the garbage collector can change type. Normal thunks

contain a tag word, a second indirection slot and a type dependent number

of slots. As the m utator can evaluate a thunk while the collector examines

it, a race may arise where the collector attem pts to set the mark bit and the

m utator attem pts to write an indirection into the header. This is resolved by

the use of compare-and-swap instructions, combined with a retry mechanism

tha t safely handles the transitions from t hunk to evaluating thunk to header.

4.2 .9 O bservations on concurrent co llection for H askell

The concurrent collector reduces pause t inies compared to the stop-the-world

collector as would be expected provided the heap is sufficiently large. For

small heaps, the initial and final pause is comparable to the stop-the-world

collector. One issue tha t arose was the delay in starting the concurrent col­

lector. In some cases, waking the GC thread can occasion take twenty to

forty times longer than usual. This occurs when the kernel makes a subopti-

mal scheduling decision where the waiting m utator threads are rescheduled

rather than the GC thread.

The scheduling issue is compounded by OS X’s CPU affinity mechanism.

OS X doesn't permit threads to directly specify what CPU they are to run

on. Instead threads can register a “tag” with the OS. Threads with the same

tag are generally scheduled onto a set of CPUs tha t share cache. For dual­

core machines the result is that the affinity mechanism is ignored since both

48

cores share the same cache. This can result in some programs exhibiting
far less parallelism than would be expected under some cases and frequent
migration of program threads from one CPU to another.

49

C hapter 5

Inter-heap garbage collector

design

5.1 M otivation

Inter-heap GC is a combination of the jjrevious ideas. The lieap is cUvided

into distinct sections where one or more threads are associated with, and

responsible for, each section’s collection. This system reciuires the identifica­

tion and recording of all pointers tliat cross section boundaries, resulting in

a collection dependency between such sections. The unconditional recording

of cross-heap pointers ensures th a t any partition can be collected without

examination of o ther partitions.

50

t k t

y

Thread Stacks Heap

' '

Heap split by age Gollection dependency Heap split by
 ̂ ̂ threadgroup

Figure 5.1: Layout of a program’s heap witli inter-heap garbage collection

Figure 5.1 shows an example of this system at runtime. The heaj) is

divided into two sections, one with two threads and the other with a single

thread.

Pause times in a system using inter-heap GG are approximately of 0{number

of live objects in the heap section).

5.2 Inter heap GC exam ple

For programmers to take advantage of Interheap GG only a small change

is required provided there is source code access to where the parallelization

implemented in a program, i.e. the code is not in a library the programmer

doesn’t have access.

51

data GCType = STW I Cone I Default deriving(Eq)

data ThreadID = ThreadID CInt deriving (Eq)

— Create a new thread with its own heap section
— with the specified type of garbage collector.
forkNewGroup :: GCType -> 10 () -> 10 ThreadID

— Create a new heap with its own heap section using
— the default garbage collector'
forkNewGroupWithDefaults :: 10 () -> ID ThreadID

— Create a new thread in the current group.
forklO :: 10 () -> 10 ThreadID

Figure 5.2: Programmer facing Jnterheap GC API

Figure 5.2 shows the type signatures of l.he main portions of Interheap

G C’s API and the standard forklO for comparison. forkNewGroup takes a

garbage collector descriptor for the type of collector to be used with the new

heap partition either a stop-the-world or concurrent collector with the option

of defaulting to the collector tj’pe specified by command line arguments.

Interheap GC operates in a thread-centric manner from the programm er’s

point for view for ease of use. All threads are associated with the heap

section of the thread tha t created them essentially forming a group of threads.

Creating a new heap section is as simple as creating a new thread.

This near trivial API enables the use of heap partitioning by simple re-

placement of a function call.

f = . . .
main = do

lock <- newMVar False
mvar <- newMVar 10
fin <- (newEmptyMVar)::(10 (MVar Integer))
let r = f (mvar, lock, fin)

idl <- forkNewGroupWithDefaults r
id2 <- forkNewGroupWithDefaults r

t <- takeMVar fin
r <- tcikeMVar fin
s <- takeMVar mvar
r2 <- tryTakeMVair fin
print $ "Done " ++ (show r2)

Figure 5.3: Example code using Interheap GC’s API

Figure 5.2 shows a program fragment using the Interheap API, detailed

in 8.1. In this example, forkNewGroup creates a new thread which has its

own heap partition. The API is deliberately similar to the supplied Haskell

threading API for the ease of programmer use. forkNewGroupW ithDef aults

was the same type signature and semantics as forklO

53

5.3 Interheap GC design goals

The first design goal is to reduce the amount of time spent collecting garbage

by dividing the heap into sections based on thread activity. Individual

threads have different allocation and data retention characteristics. By split­

ting the heap into sections based on activity, the time taken for garbage

collection will be reduced since only the heap sections tha t require collection

are examined.

The second design goal of Inter-heap GC is the elimination of global syn­

chronization for garbage collection. The time taken for global synchroniza­

tion is proportional to the number of processors an application uses. Global

synchronization is required for stop-the-world collectors since marking live

data cannot safely begin until all mutator threads have been paused. Concur­

rent and on-the-fly collectors do not use blocking global synchronization like

stop-the-world collectors but need to record nieta-data describing changes to

the object graph as marking occurs. On-the-fly collector designs—those tha t

stop one thread at a time don’t require immediate global synchronization

but spend a longer time gathering roots to complete the marking phase.

The Inter-heap GC supplements an existing collector (base GC) relying

on it to pro\'ide liveness information, and it also enables each heap section

to have varying collector configurations: minor differences such as the free

space threshold for collection; or major differences such as the use of another

base GC design. The capability to use multiple collectors is often dependent

on the design of the collectors tha t are to be used.

5.4 Interheap GC reference counting

Canonical reference counting systems update reference counts when objects

are copied, modified or destroyed. Hence an object’s reference count will

54

only be out of sync while it is being updated. On the other hand, coalesced
reference counting systems compute counts at discrete moments in time. This
is done by copying an object when it is first modified in the current period
and subsequently comparing it to the original object when reference counts
are being updated. Inter-heap GC controls the lifespan of objects that are
accessible through inter-heap references using coalesced reference counting.

Inter-heap GC’s implementation of coalesced reference counting uses the
base GC to identify inter-heap pointers needing inspection on every collec­
tion cycle—rather than simply copying a heap section and then scanning for
changes. The inter-heap pointers found in the current and previous cycles
are used to compute reference count modifications. The mutator uses write
barriers to record the creation and destruction of inter-heap pointers since
referenced objects are kept alive by Inter-heap GC.

Inter-heap GC relies on stored reference counts being equal to or greater
than the actual number of heaps that reference an object. Under certain
conditions (described below in section 5.5.2), objects may have reference
counts which overestimate the number of heaps that have access to them.
Such objects can be reclaimed provided that Inter-heap GC can determine
that they are unreachable from all heaps. This unreachable-from relation,
determined on a per-heap basis, is used by the Inter-heap GC as it performs
reference count modifications for remotely accessible objects.

The Inter-heap GC must be able to detect and reclaim unreachable cycles
since these can be constructed with either constant or mutable data. This
can be achieved with the above mechanism and dedicated cycle detection
since reference counting systems with liveness detection (like mark-sweep)
can reclaim unreachable data.

The modification of Inter-heap GC’s meta-data can be parallehzed using
a work-pool of threads where each heap that has running mutator threads
has an associated Inter-heap GC thread in the pool.

55

5.4,1 Graphical Overview

Iiiterlieap GC

Base GC Base GC

Heaj) Heaj)

Legend

 ► Rpfereiice count deltas, PC C objects?
 ̂ Liveness information

Reference count modification

Figure 5.4: An overview of information flow in In terheap GC.

Figure 5.4 outlines how' information is gathered in a hierarchal style. Each

heap has an associated garbage collector which determ ines liveness infor­

m ation. Reference count deltas are computed and the existence of Possible

Cycle Com ponent (PCC) objects is determined from the liveness inform a­

tion gathered from a heap. This information is forwarded to the Iriterheap

GC which performs the reference count m odifications and s ta r ts the cycle

detector if necessary.

56

5.5 B ase GC properties

Base garbage collectors collect m eta-data to work with Inter-heap GC:

R e ta in list A per-thread list of references to local objects which are acces­

sible through inter-heap pointers.

C u r re n t re m o te livese t The set of references to objects reachable from,

but not located in, the current heap. This information is gathered

during collection cycles.

P re v io u s re m o te livese t A set of references to objects reachable from,

but not located in, the current heap found during the previous garbage

collection cycle.

The retain list records an additional set of roots for the base GC tha t are

scanned after the heap has been traversed. These are references to objects

located in a local heap which are reachable through inter-heap pointers but

for which the base GC has only partial liveness information. Objects are

added to the list with an initial reference count of at least two and a single

postponed decrement. When an object is made accessible by modifying a

shared object, the newly accessible object’s reference count is initialized to

the reference count of the shared object.

Objects cannot be added to the list for a second time— instead their

reference count is updated; whereas objects on the retain list th a t become

unreachable from their own heap (along with all objects pointed to by them)

have their reference counts decremented.

The current remote liveset is computed in two steps: first the base GC

records all inter-heap references found during a GC cycle in a buffer; then the

buffer is processed into a per-heap set of buckets each of which contains a set

of object references. Inter-heap pointers tha t are found in objects referenced

by a heap’s retain list but were not found during the initial heap scan are

57

tagged and added to the current remote liveset as those remote objects are

not hve from the base GC’s perspective.

The previous remote liveset is the current remote liveset from the last

garbage collection cycle.

The base GCs have a number of implementation restraints/requirem ents:

• They cannot safely follow inter-heap pointers.

• They must be able to pin arbitrary objects—they cannot be moved

either by reference rewriting or by the use of read barriers.

• They all must use the same read barrier.

• They cannot be blocked indefinitely by the m utator.

Base GCs are not allowed to follow inter-heap pointers because m utator

operations on other heaps may not be paused. Objects which hav^e reference

counts tha t are discovered during tracing of the local heap are added to

the retain list if they are not already on it and have increments issued for

them. The graph formed by the retain lists is traced out afterwards. Objects

which are locally unaccessible but remotely reachable whose transitive closure

includes foreign pointers are flagged as cycle candidates.

Objects that are transitively reachable from a retain list cannot be moved

or reclaimed because their base GC cannot locate all references to them. If a

single base GC design is used, then objects in different heaps can be moved

asynchronously using the appropriate read barrier. The base and inter-heap

collectors update m etadata for objects when they are moved.

Base GCs must share the same read barrier since m utators can access

multiple heaps.

To ensure timely reclamation of cycles and certain classes of objects

shared among multiple heaps, each base GC must report its previous and

current remote livesets regularly. This can be perform in a t least two ways:

58

ensuring the base GC can run while all its corresponding mutator threads
are blocked or the use of a concurrent collector that can be signaled by the
Inter-heap GC.

5.5.1 Inter-heap GC

Since the Inter-heap GC is designed to retain and reclaim objects that are
remotely accessible, it utilizes buffers of inter-heap pointers created by Base
GCs to manipulate reference counts and reclaim unaccessible objects.

The Inter-heap GC maintains a table of objects {spurious retention table)
which have survived having their reference counts decremented. This table
serves two related purposes: gathering components of cycles; identifying ob­
jects whose reference count is incorrect but still positive. Objects pointed-to
by this table can be reclaimed when the Inter-heap GC determines that they
are unreachable from all heaps. Each entry in the table has an associated
bitmask describing which heaps can access that object and a copy of the
object’s reference count.

5.5.2 Reference counts

Inter-heap GC uses reference counts to describe the number of heaps that can
access an object. Normal reference counting systems record the total number
of pointers to an object. The usage of heap centric reference counting allows
Inter-heap GC to coalesce multiple occurrences of the same reference into a
singleton for reference count modifications.

Heap centric reference counting has a key drawback: it records the num­
ber of heaps that have access to an object rather than which heaps have
access to an object. Reference counts ai-e attached to objects before they
become accessible to other heaps. HandUng the combination of these two
factors requires slightly different mechanics compared to standard reference

59

counting systems.

All objects have an initial reference count of zero, only shared or unreach­

able objects possess non-zero positive reference counts. An object’s reference

count is updated before it becomes accessible to any other heap. Objects

become accessible in two different ways: a thread of a new group is created

with an argument object which becomes shared; or a shared mutable object

is updated to point to an unshared object.

An object which becomes shared through the creation of a new group

will have its reference count initialized to two; otherwise its reference count

is incremented by one. However an object tha t becomes accessible through

the manipulation of pointers in shared objects will have its reference count

incremented by the count of the shared object.

Summing reference counts is necessary since the m utator cannot deter­

mine if a re-shared object is already accessible from the heaps it is being

shared with. An object's true reference count will lie between its current

count and its summed count de[)endmg on how many heaps can access tha t

object.

Since object reference counts may stay positive after they have become

unreachable from all heaps, a separate mechanism will be needed to reclaim

some objects and cycles (described in section 5.5.6).

5.5 .3 Invariants required for Inter-heap GC

To place the following proofs into context, the invariants tha t Inter-heap GC

must implement are summarized.

Shared objects contain a reference count which records the number of

heaps that have access to them. However reference counts must be inherited

from shared objects to unshared objects when they become shared. Addi­

tionally, objects which are become shared again by some means, must have

60

their reference counts updated in a conservative manner.

Inter-heap GC must ensure th a t objects can only be reclaimed when

they are unreachable from any heap. Hence, objects which are provable

unaccessible from all heaps can be reclaimed.

Reference counts for objects must be summed rather than incremented

as any single heap will never possess an accurate global view of which heaps

can access any object. In this view, unshared objects th a t will be shared

have a reference count of zero.

The write barrier must capture the object whose reference is written into

another heap along with all child objects reachable from it.

Base GCs must only reclaim formerly shared objects when their refer­

ence counts are zero or through another mechanism tha t shows an object is

inaccessible from all heaps to ensure there are no space leaks.

P roofs

P rop osition 5.5.1 I f a local object (A) becomes shared when a shared object

(B) is updated with a pointer to the local object (A), the newly shared object

(A) must inherit the reference count o f the shared object (B).

P ro o f Let Hi, H2, ..., be heaps in a program, let B be an empty mutable

variable located in some heap and is accessible from all heaps and let A be

unshared constant data in one of the heaps.

Let R b and R a be the reference counts of B and A.

The pointer to A is copied into K heaps (K < N) before the pointer to A

in B is overwritten.

If R a is less than K, then a race condition exists between the heap hosting

A and the other heaps. The heap hosting A will have to reclaim the space

used by A whenever R a of the K heaps issue a decrement for R a - The other

heaps will retain a pointer to A th a t is now invalid.

61

If R a is equal to K, then A will be reclaimed whenever it becomes un­

reachable from the K heaps. However, in the general case, K cannot be

determined ahead of time. Dynamically determining K requires: updating

R c when any thread obtains a pointer to C; and eliminating race conditions

between updates of R c and the reclamation of C.

Hence, R a must equal R b to avoid premature reclamation and to avoid

introducing race conditions between incrementing R a and decrementing R a

followed by A’s reclamation. |

C o ro lla ry 5.5.2 To prevent premature reclamation, every time an object 0

with a non-zero reference count has a pointer to it written into another object

S that also has a non-zero reference count, R q must be updated to contain

the sum of R q a.nd Rs-

S ketch o f p ro o f Consider the previous proof regarding the inheritance of

reference counting extended with: another heap H i th a t does not have access

to the mutable variable M; and another shared mutable variable J th a t is

shared between H i and some other heaps.

When a pointer to C is written into J after it is written into M, the value

of R c must be incremented with R j.

The reference counts must be summed for C for the same reasons that

C must initially inherit the reference count of M: dynamically calculating its

actual reference count cannot be done prartically and requires race condition

handhng.

Hence, reference count summation is reciuired when an object made is

accessible through multiple shared objects. |

P ro p o s itio n 5.5.3 Let H^, H \ be heaps in a program, let M be an

empty mutable variable that is reachable from all heaps and let C be unshared

constant data in some heap.

62

I f M is updated with a pointer to C by a thread, and subsequently that

pointer is copied and destroyed by a thread associated with a different heap,

heaps that did not read from or write to M may never observe the change,

resulting in an incorrect reference count fo r C.

P ro o f Let H \, H-i be heaps in a program, let be M an empty mutable

variable tha t is reachable from all heaps and let C be constant data in H \.

Let a thread associated with H\ update M with a pointer to C, such tha t

R c is set to R m -
When a thread associated with copies the pointer to C from M and

then overwrites the pointer to C in M before any thread associated with H2

or its garbage collector can observe the change, C is at most accessible from

Hi and i/3.

However, C will still have a reference count of three but is only reachable

from at most two heaps.

Hence this system can create overestimated reference counts when objects

are shared. |

P ro p o s itio n 5 .5.4 The Inter-heap GC write barrier ensures that updates to

any object graph that is accessed through a pointer into a foreign heap do not

cause subgraphs to be reclaimed without global consensus on their reachability.

P ro o f Let H i, H2 be heaps in a program, let M and N be empty mutable

variables in Hi and H2 respectively th a t are shared between the two heaps

and let C and D be object graphs with a mix of mutable and constant data

located in Hi and H2 respectively.

If M is updated with a pointer to C by a thread associated with H i , then

C is traced out and all mutable objects in C any mutable objects they point

to are added to the retain list.

Any updates to C by threads associated with Hi will not cause any object

sub-graph to be lost as all sub-graphs pointed to by mutable objects have

63

been recorded in tlie retain list and th a t the write barrier records overw ritten

values into H i's sequential store buffer.

Any updates to C by th reads associated w ith H 2 will also not cause any

ob jec t sub-graph to become unreachable to the garbage collector as those

sub-graphs are recorded in the retain list and H \'s sequential store buffer.

Hence this system can create overestim ated reference counts when objects

are shared. |

P r o p o s i t io n 5 .5 .5 A n object O, referenced by the spurious retention table,

can only be reclaimed when it is unreachable from all heaps.

P r o o f Let H i, H 2 , Hr^ be heaps in a program , let O be an object located

in some heap, let R q be O 's reference count, and let S R o , S U o be O ’s stored

reference count and reachability mask respectively in the spurious reten tion

table.

W hen Ro is first decremented, a pointer to O is recorded in th e spurious

reten tion table along with its new reference count, and it is then m arked

unreachable from the heap th a t lost access to O.

If O is unreachable from all heaps, then a reference to O cannot be w ritten

in to another object because th is would cause R q to become unequal to S R q -

In ter-heap GC will observe th a t R q is ecjual to S R o as each heap perform s a

collection cycle and SU q will be updated to reflect O ’s unreachability. W hen

S U o records th a t O is unreachable from all heaps, O can be reclaimed.

If O is unreachable from some heaps and references to O are not subse­

quently wTitten into another object, then O ’s accessibility is fixed. Therefore

O will be retained despite R o equaling S R o since S U o will record th a t O is

only reachable from some heaps.

However if 0 is unreachable from some heaps and references to O are

w ritten into one or more shared objects, then R o will differ from S R o causing

S U o to be reset. W henever R o differs from S R o during reference count

64

modifications, SUo will be reset, preventing stale information from causing
O’s reclamation.

Hence 0 can be reclaimed iff every heap performs a collection cycle while
Ro equals SR q , with Rq remaining constant and with SUq recording the
unreachability of O from all heaps. |

5.5.4 M utator m odifications

Programs start with a single thread associated with the initial heap. Addi­
tional threads created during execution are associated with the heap of their
parent thread or with a newly created heap. The set of threads associated
with a single heap is called a group. Programmers decide whether or not
to create a new heap, rather than relying on some automatic mechanism to
make the decision.

Each group has an associated structure that records the information for
all threads in a group. This information includes GC control variables and
the group’s remote store buffer. The remote store buffer is used in select
circumstances described below.

All mutators make use of an additional Inter-heap GC-specific write bar­
rier along with each base GC’s dependent write barriers. This barrier records
modifications to remotely accessible objects by recording overwritten pointers
so that an object pointed-to by a destroyed reference will have its reference
count correctly modified.

To ensure that portions of structures containing mutable variables are not
inadvertently reclaimed, overwritten intra-heap pointers located in a remote
object are saved to the hosting heap’s remote sequential store buffer. Each
heap has an sequential store buffer to record references that are overwritten
by non-local threads.

Regardless of the location of the pointed-to data, the barriers operate

65

on pointers which are written into shared objects. Objects which are being
made accessible have their reference count updated to the sum of their current
reference count and the reference count of the object they are being written
into. If the head of a data-structure containing mutable and constant data
is to be written into a local shared object, then that data structure must be
traced out and reachable mutable objects must have their reference counts
updated along with the objects they point to and be added to the retain list
along with the head of the structure.

The write barrier is uninterruptible by the garbage collector as the garbage
collector can only be invoked before a mutator allocation.

66

The following pseudo-code describes the write barrier for Inter-heap GC.

/ / The write barrier updates object[fieldIndex] with pointer to
/ / targetObject and updates the Interheap GC metadata if
/ / required
p ro ced u re WRlTEBARRlER(o6ject, fie ldlndex, targetObject)

localHeap ■(— GetCurrentHeapID{)
I I Get the id of the heap containing object to be updated
remoteHeap ■<— HeaplDContaining{object)
if object.rc > 0 th e n

10: targetObject.rc targetObject.rc -I- object.rc

targetObject Is Local ■(— HeapI DContaining{targetObject) = localHeap
if targetObject I sLocal th e n

/ / targetObject and its descendants are to be retained
/ / if it is local since it is about to become remotely accessible
AddToCurrentRetainList{targetObject)

end if
/ / Overwritten pointer to be saved to the relevant
/ / heap's sequential store buffer

20: if remoteHeap = localHeap th e n
LocalSSB ■(— object[fieldIndex]

else
remoteHeap[RemoteSSB] ■<— object[fieldIndex]

end if
end if

object[fieldIndex\ -f- targetObject
end p ro ced u re

67

T he w rite barrier is a relatively simple piece of code. It first checks if the

ob jec t which is to be updated is already shared by v irtue of having a positive

reference count. If the object is shared, the reference count for targetObject

is updated to be the sum of targetObject's reference count and the reference

count of the object to be updated. targetObject and its descendants are then

added to the current heap’s retain list if they are local.

The value to be overw ritten is stored in the local sequential store buffer

if the object is located in the local heap otherwise it is stored in the rem ote

h eap ’s sequential store buffer. The value is recorded to ensure accurate com­

pu ta tio n of the current and previous remote' livesets. Finally, the field in

question is updated.

68

5.5.5 W rite barrier exam ples

Retain List Local H e a p R e m o te H e a p Retain List

RC: 0 RC: X

Local SSB R e m o te SSB

New v a lu e s
RC: X --------- 1

Pre-ex is t ing v a lu e s S a v e d v a lu e s
RC: X ---------^ ^

Figure 5.5: Initial heap state

Figure 5.5 describes an example initial sta te of two heaps for the following

set of diagrams. Each heap possesses its own retain list and sequential store

buffers, with the (presence of) letters representing symbolic addresses of ob­

jects referenced by the base and Inter-heap GC m etadata. For illustrative

purposes a single object is shown in each heap with the local heap containing

a local object and the remote heap containing a single remotely accessible

object with a symbolic reference count of “X” .

69

Retain List Local H eap R e m o te H e a p Retain List

IRC: 0 + X RC: X

Local SSB R em ote SSB

Pre-ex is t ing v a lu e s S av ed values
RC: X --------- ^ ^

New v a lu e s
RC: X --------- 1

Figure 5.(i: A local object is made accessible.

This diagram shows the modifications (i)i red and blue) m ade by the

write barrier when a pointer to a previously unshared local object is written

into a remote object. The coloured arrows show' the modifications by the

write barrier; they are labeled sequentially. In order, the object in the local

heap has its reference comit incremented by the count of the remote object

(1), the object is added to the local heap’s retain list (2), the pointer to be

overwritten is saved to the remote heap's sequential store buffer (3) and the

remote object is updated to poitit to the local object (4).

70

Retain List Local H e a p R e m o te H e a p Retain List

RC: Y + X RC: X

Local SSB R e m o te SSB

Pre-ex is t ing v a lu e s S a v e d v a lu e s

RC:X --------- ^ ^

New v a lu e s

RC: + X 1

Figure 5.7: A local object is made accessible a second time.

The modifications made by the write barrier when a local object is made

accessible a second time are similar to the set of changes made when an object

becomes accessible initially. The local object’s reference count is incremented

by the count of the remote object (1), the pointer to be overwritten in the

remote object is saved to th a t heap’s SSB (2) and finally the remote object

is updated to point to the local object (3). The local heap’s retain list is not

modified since the local object already possesses a positive reference count,

and hence must already be on the retain list.

71

Retain List Local H ea p R e m o te H e a p R eta in List

RC: Y RC: X + Y

Local SSB Rennote SSB

Pre-ex is t ing v a lu e s S a v e d values
RC:Y --------- ^ ^

New v a lu e s
RC: + Y 1

Figure 5.8: A local object is uj^dated with a po in ter to a rem ote object.

Before an accessible m utal)le local object is upda ted witli a pointer to a

rem ote object (3), its reference count i.s incremented by the reference count of

the local ob ject (1) and the overwritten]:)()inter is stored into the sequential

store buffer of the heap th a t contains the objf'ct (2).

5.5.6 Interheap GC reference count m odification

Inter-heap GC transform s the buffers of inter-heap references created by base

GCs into strictly m onotonically increasing sequences^ of in ter-heap refer­

ences. Reference count deltas for the referenced objects are com puted us­

ing a m erge-sort form of iteration through the current and previous remote

livesets. Inter-heap GC operates on the smaller elem ent of the two sequences

or on the first conunon elem ent in both seciuences. Elem ents of the two se-

^The buffers are sorted and duplicate entries are eliminated.

72

quences are logically discarded after the Inter-heap GC has computed the

reference count delta for the referenced object.

To avoid spurious incrementing followed by decrementing modifications,

objects referenced from both buffers will not have their reference counts mod­

ified. Whereas the count for objects referenced solely from the current re­

mote liveset will be incremented. Object references which occur solely in the

previous remote liveset will be copied into a tem porary buffer^ so tha t decre­

ments can be applied after the increments. Any object whose reference count

is decremented but remains live will be recorded in the spurious retention

table.

At the end of a collection cycle, base GCs scan their retain lists removing

objects with a reference count of zero. A structured object whose head has

a reference count of zero will be traced out and any of its sub-structures

with a positive reference count will be inserted into the relevant retain list.

A spurious retention table is used by the Inter-heap collector to identify

objects th a t are unreachable from all heaps, since objects may have a positive

reference count preventing their reclamation but are unreachable from any

heap. The table records sharing-related information about objects which may

be spuriously retained. Each entry in the table is comprised of an object’s

address, its reference count at the time the entry was last updated, a second

reference count called the cyclic reference count, a colour field and a bitmask

whose size corresponds to the number of heaps th a t the program has created

(the unreachable-from bitmask). The cyclic reference count and colour are

used for the reclamation of cross-heap cycles. The bitmask records the state

of an object’s unreachable-from heap relations with the default state of the

bitmask expressing tha t an object is reachable from all heaps.

All objects referenced through the spurious retention table have their

unreachable-from bitmasks updated when a heap’s reference count modifica-

^Or the previous remote liveset is rewritten in-place.

73

tions are being applied. Every tim e an object’s unreachable-from bitm ask is

to be updated , its reference count is compared to th e reference count stored

for it in the table. If the counts are equal the unreachable-from b itm ask is

updated . O bjects w ith a non-negative reference count de lta are m arked as

reachable and the rest are marked as unreachable. O therw ise, the b itm ask

is reset and then updated with the current unreachable-from inform ation,

and the stored reference count in the table is u pda ted to the o b jec t’s curren t

reference count. Any object which is unreachable from all heaps will have

its reference count set to zero, allowing the owning base GC to reclaim the

object.

W hen all of a heap’s associated threads have term inated , a collection cycle

is perform ed to reclaim the space used by any unshared objects. A heap th a t

has no running th reads m ust have its retain list assigned to another heap so

th a t its shared objects can be reclaimed and the inireachable-from bitm asks

can be updated for unreachability with regards to the dead heap.

74

5.5.7 Spurious reference table reclam ation exam ple

Initial state

Heap 1 Heap 2

Spurious Retention Table

Object RC Reachability Mask
Heap 1 Heap 2

A X Live Live
C Y Live Live
E Z Live Live

State 1

Heap 1 Heap 2

Spurious Retention Table

Object RC Reachability Mask
Heap Heap 2

A X Live Live
C Y Live Live
E Z Live Live

Legend

Destroyed pointer Live pointer Dead 0 X - 1

^ ^ Changed
Dead object Live object value

Figure 5.9: Initial heap state

The initial state in this figure shows an example of a application’s heap tha t

is partitioned into two sections. Objects A, C and E with reference counts

of X,Y,Z respectively are reachable from both heaps.

In state 1, the pointers to E from D and C have been destroyed by the

m utators and so E is unreachable from both heaps. However, the spurious

retention table records E as live so no amount of collections of heap two can

75

reclaim E provided heap one does not perform a collection cycle in the m ean

time.

S ta te 2

Heap 1 Heap 2

S))urious Retention Table

Object RC Reachabilitv KLisk
Heap 1 Heap 2

A X Live Live
C Y Live Live
E Z - 1 Dead Live

S ta te 3

Heap 1 Heap 2

Spurious R etention Table

O bject RC Reachability Mask
Heap Heap 2

A X Live Live
C Y Live Live
E 0 Dead Dead

Legend__
— ■> ►

Destroyed pointer Live pointer Dead 0 X - 1

^ ^ Changed
Dead object Live object value

Figure 5.10: O bject E has died and the heaps have been collected

S ta te two describes the spurious retention tab le after the collection of

heap one. Values which have changed from the initial s ta te are underlined

in red. O bject E ’s reference count has l)een decrem ented by one and its

reachability m ask has been updated to show' tha t it is inaccessible from heap

one. T he th ird s ta te occurs after a collection of heap two. It shows th a t

O bject E ’s reference count is reduced to zero as it reachability m ask shows

76

tha t it is unreachable from all heaps.

5.5.8 Cycle detection

The spurious retention table and the above outlined mechanism can reclaim

cross heap non-cyclic da ta structures but cannot reclaim dead cycles since

the components of a cycle are kept alive by positive reference counts and

reachability from other heaps. Cyclic structures are a known problem case

for reference counting system s[52] [39]. For systems which use a single heap

a back-up mark-sweep collector or specific cycle detector such as Bacon et

al’s concurrent cycle detector[9] can be used to reclaim unreachable cyclic

structures. A mark-sweep collector cannot be used without requiring global

synchronization to pause all threads. A novel, Inter-heap GC specific method

is presented to deal with unreachable cross heap cyclic stuctures.

D etectio n o f possib le cycle com ponents

A heap potentially contains components of a dead cycle when it has objects

with positive reference counts, which are locally unreachable but remotely

reachable and whose transitive closure within tha t heap contains pointers to

objects in other heaps. Objects which have these properties are herein called

potential cycle component objects or PCC objects for short.

The base GCs perform a two-phase heap scan during their collection

cycles to identify cycle components th a t can be potentially reclaimed. The

first phase traces out objects in the heap from the roots as normal without

any reference to the retain list. Any local object th a t has a reference count

discovered during this phase has an increment issued for it and is added to

the retain list if necessary. The second phase traces out the heap with only

the unvisited elements of the retain list as the source of roots enabling base

GCs to determine the existence of PCC objects.

77

Notably, this two-phase approach to tracing delivers a higher standard
of cycle component identification compared to canonical reference counting
systems due to greater liveness information since PCC objects are either
members of a (dead) cycle or are members of a non-cyclic cross-heap struc­
ture. In contrast, canonical reference counting systems must consider any
object which possess a non-zero reference count after decrementing as a pos­
sible member of a cycle. Both systems can statically reject some objects as
components of a cycle if their types are acyclic.

C ycle reclam ation

Inter-heap GC attempts cycle reclamation when tŵ o heaps report the exis­
tence of PCC objects in their heap. The method used to reclaim cycles is
a variation of Bacon et al's concurrent cycle detector[9] with modifications,
relying on trial decrementing to determine if objects are kept alive by be­
ing part of a cycle and to determine if they have external references. The
cycle reclamation mechanism uses the reachability masks for computing ac­
curate reference counts. This would normally be inaccurate as well but since
garbage exhibits stability—it cannot be modified and its reachability masks
eventually describe precisely what heaps “reference” a particular garbage
object true reference counts can be computed from an object’s reachability
mask.

Cycle reclamation is broken down into two phases: discovery and marking;
testing and reclamation. Each phase itself is broken down into two sub­
phases. The Inter-heap GC only paints and modifies the second reference
count (described later) of objects which already have reference counts as
there may be multiple links of a cycle within a single heap.

The Inter-heap GC signals the base GCs u.sing a phase variable to perform
phase dependent actions. Phase transitions occur when phase-dependent
conditions are met; discovery and marking occurs when tw'o or more heaps

78

observe that they possess PCC objects; transition to testing and reclamation
occurs when all base GCs have performed at least one collection cycle after
the appropriate time.

Suprious retention Heap 1 Heap 2

Heap 4 Heap 3

Figure 5.5.8 shows four objects forming a cycle through four heaps. This
diagram will be used in a running example of the Bacon et al’s cycle detector
modified to w'ork with Inter-heap GC. It is a simple example of a circular
object graph with no objects being pointed to by the components of the
cycle.

The discovery and marking phase requires that all base GCs inform the
Inter-heap GC their PCC objects, which are painted purple treating them
as potential cycle components. Locally accessible reference counted objects
and locally reachably foreign objects are painted black. Once all base GCs
have marked their PCC objects, the marking sub-phase begins. The spurious
retention table is scanned and all objects that are purple and have a positive
reference count are added to a specialized roots buffer.

79

Suprious retention
table

Heap 1

| A i
B 1
C 1

_L

Roots buffer

A
B
C
D

Heap 4

Heap 2

f
^ 1

Heap 3

The Inter-heap GC iterates through th(> mots buffer j)ainting purple ob­

jects grey and initializes Iht'ir cycli<" lefeVPUce counts (CRCs) to the number

of heaps tha t have access to that object. Figure 5.5.8 shows the cyclic refer­

ence counts written into the spurious retention table and the entries coloured

])urj)le. Then a depth-first traversal is])erfonned from any object th a t has

been painted grey, marking any objects found grey and initializing their cyclic

reference counts. If a grey object is encountered during traversal, its cyclic

reference count is decremented.

80

Suprious retention
tab le

Heap 1

A 0
B 0
C 0
D 0

Roots buffer

A
B
C
D

A

D

Heap 4

Heap 2

B

Heap 3

C 1

Figure 5.5.8 shows the results of the greying step and decrem ented CRCs

in the spurious retention table.

Once all roots have been processed, the buffer is iterated through a second

tim e and all grey items w ith a CRC of zero are coloured white, otherwise the

object and those reachable from it are painted black. This transform ation is

applied to the descendants of grey objects.

The roots buffer is scanned again and each w hite object is coloured orange

and added to a cycle buffer which will reference all objects belonging to a

cyclic structure . W hite objects reachable from an object which has been

painted orange are added to the sam e buffer. Non-white objects are ignored.

After all objects reachable from the root have been processed, the cycle buffer

is added to the global set of cycle buffers. Non-white item s are removed from

the roots buffer.

81

Spurious retention
table

A 0
B 0
C 0
D 0

Roots buffer

Cycle Buffer

Heap 1

D 1

Heaj) 4

Heap 2

Heap 3

B 1

C 1

I

C

Figure 5.5.8 skij)s showing grey to white transition and shows the com­

ponents of the cycle coloured orange.

Tlie Inter-heap GC then performs sigma-j)reparation which comprises of

ite rating through the set of cycle buffers and for each one, colouring all of

its objects red and setting their CRCs to the. num ber of heaps which have

access to them . The num ber of external references is then com puted by

decrem enting the CRC of any red object th a t is pointed to by ano ther red

object. All red objects are then recoloured orange.

82

Spurious retention
table

Heap 1

A 1
B 1
C 1
D 1

Roots buffer

Cycle Buffer

A
B
C
D

D 1

Heap 4

Heap 2

B 1

Heap 3

Figure 5.5.8 shows all components of the cycle coloured red with their

CRC set to the number of heaps th a t have access to them.

83

Spurious retention Heap 1
table

A 0
B 0
C 0
D 0

Roots bufTer

A 1

D 1

Heap 2

B 1

C 1

Cycle Buffer
Heap 4 Heap 3

Figure 5.11: Cycle detection exam ple

Figure 5.11 shows the s ta te of the CRC and object colouring prior to the

delta test.

The Inter-heap GC collector waits for all base GCs to perform a t least one

cycle after the last cycle has undergone stgma-preparation, then it traverses

the set of cycle buffers from the most recently added to the first. T he delta

tes t processes each cycle buffer in the set, exam ining them to see if any

com ponent object has had its reference count increm ented and thus been

recoloured black since the last stgma-preparat7on. If a cycle has not had any

of its com ponents coloured black and the sigma tes t which com putes the

sum of the CRC counts in th a t cycle is zero, the objects in the cycle can be

84

reclaimed. If the cycle is not reclaimed its objects are coloured purple and

re-added to the roots buffer.

Reclamation is performed by colouring each object in a cycle red. Or­

ange objects reachable from objects in a cycle buffer have both of their counts

decremented. Otherwise a decrement is issued for them. Objects tha t com­

prise the cycle have their reference counts set to zero and have their spurious

retention table entries deleted, allowing the base GCs to reclaim them.

85

5.6 D escription of Interheap G C ’s im plem en­

tation

Tlie following diagram s outline graphically how the In terheap GC updates

the spurious retention table and the reference counts of objects referenced.

T he m odifications th a t are to be made depend on which set of buffers refer­

ence an object.

A B C D E F G

Spurious

retention table

Increm ents □ □ □ □
Decrements □ □ □ □

Figure 5.12: Inter-heap GC reference count buffers and m etadata

Figure 5.12 shows an example case with a small num ber of decrem ents,

increm ents and some m atching SRT entries. The SRT entries are shown as

grey dashed boxed and are colotu’ed in the following diagram s as they are

processed. Segm ents of the diagram containing a com bination of increm ents,

decrem ents and spurious retention table entries are labelled from A to G.

8G

A B C D E F G
Spurious

retention table

Increments

Decrements

Reference count
modification

□
□ □ □ □

□ □ □ □
+ +

SRT modification legend

□ □
Unchanged New Reachable Unreachable No matching

entry

Figure 5.13; Inter-heap GC reference count buffers and m etadata

The above diagram shows how segment A is processed. The spurious

retention table is unaltered since there is no corresponding entry and the

reference count of object referenced by segment A is incremented. Segment

B has a reference to an object tha t in both the SRT and increment buffer.

Since the object is referenced by the SRT and the increments buffer, the SRT

entry is marked as reachable. Additionally, the reference count of the object

is incremented.

87

A B C D E F G
Spurious

retention table □
Increments □ □ □ □
Decrements □ □ □ □
Reference count
modification + +

SRT modification legend□□ L“i
Unprocessed New R('achable Um'eachable No matching

entry

Figure 5.14: Iiiter-heap GC reference count buffers and m etadata

The objects referenced in segments C and D have their counts decre­

mented as they are only referenced from the decretnents anti spurious reten­

tion table. The entries in the SRT for the objects in segments C and D are

marked as unreachable, since the heap which generated the increments and

decrements cannot access those objects.

A B C D E F G
Spurious
retention table □ □ □
Increments □ □ □ □
Decrements □ □ □ □
Reference count
modification + + — — 0 0

SRT modification legend□□

'/i
Unprocessed New Reachable Unreachable No matching

entry

Figure 5.15: Inter-heap GC reference count buflFers and m etadata

Segments E and F reference the same objects in both the increment and

decrement buffers. When this situation occurs the referenced objects do

not have their reference counts modified. Their SRT entries are marked as

reachable as those objects are still reachable from the heap th a t generated

the reference count deltas.

89

A B C D E F G

Spurious

retention table □ □ □
Increm ents □ □ □ □
Decrem ents □ □ □ □
Reference count
modification + + — — 0 0 0

SRT inoclification legend

□ □
Unprocessed New Reachable Unreachable No m atching

entry

Figure 5.16: Inter-heap GC reference count buffers and m etad a ta

The object referenced from the spurious retention table in segm ent G does

not have any m atching increm ents or decrem ents and therefore is m arked as

unreachable from the heaj) from which the increm ents and decrem ents are

drawn.

90

5.6.1 Pseudo code

The following pseudo code procedures outline the algorithms used by the

Inter-heap GC to apply reference count modifications and reclaim unreach­

able objects. The U pdateO bjectRC’s procedure applies the reference count

modifications to a set of objects found in the increment and decrement buffers

and drives the updating of reachability masks. The UpdateUnreachableMask

procedure updates an object’s reachability mask and enables unreachable ob­

jects to be reclaimed.

/ / This is the high level procedure tha t performs the work of

/ / Interheap GC.

p ro c e d u re In t e r h e a p G C { R C D e l t a P i p e)

PCCHeaps •<— newBooleanSet{)

S R T ^ new SR Ti)

r e p e a t

R C DeltaPipe .BlockU nt i lNot E riipfy{)

RCDelta ^ R.CDeltaPipe.Head{)

HeapID <— R C Delta. H eapi D

10: PCCHeaps[HeapID] ^ RCD el ta .P CCHeap

if CountTrue{PCCHeaps) > 2 th e n

StartCydeDetector {PCCHeaps)

e n d if

Incs <r- R C Delta. increments

Decs R C Delta. increments

UpdateObjectRCs{Incs, Decs, SRT , HeapID)

u n til Shutdown

en d p ro c e d u re

The above procedure describes how Interheap GC operates. Interheap GC

initializes the spurious retention table, then waits on a shared pipe where it

91

receives reference count delta structures from each GC at the end of their
collection cycles. These structures contain the addresses of all objects whose
counts are to be incremented and/or decremented. First, the set of heaps
that containing PCC objects is updated and if a cycle can exist the cycle
detector is started. In either case, the set of decrements and increments is
applied as described below.

92

/ / This procedure modifies the reference counts and reachability masks
/ / for the objects pointed to by the increment, decrement buff^ers
/ / and the SRT
procedure UPDATEOBJECTRCs(mcremen^s, decrements, S R T , heapid)

/ / The increments and decrements buffers contain the addresses of
/ / objects to be incremented and decremented respectively
/ / SRT is the spurious retention table and heapid is the unique id
/ / assigned to the heap from where the increments and decrements
/ / are generated

10:

/ / Symbohc constants for expressing reachability
Reachable ■«— 0

Unreachable •<— 1

/ / delayedDecrements is used to perform the decrements after
/ / increments, and the SRTIterator is used to walk through the
/ / spurious retention table
delayedDecrements •(— N ew A d d re ssB u f fe r {)

S R T Ite ra to r <— SR T . N ew Iterator {SRT. start)

/ / The following loop applies all increments unless there is a
20: / / matching decrement, and it saves unmatched decrements for

/ / later application
for each increm ent in increments do

if decrement s. E m p ty 0 th en

increment.rc increment.ro + 1

SRT.UpdateUnreachableMask{increment, heapid, Reachable)

for each obj in increments do

obj.rc <— obj.re + 1

SRT.UpdateUnreachableMask{inc, heapid. Reachable)

93

30: en d for

/ / Break out of the for loop that appHes increments

b reak

e lse

w h ile decrement s. f i r s t < increment do

delay edDecrements.add{decrem.ents. f i r s t)

decrement s.pop{)

en d w h ile

en d if

/ / Mark all objects whose address is less than the current

40: / / object in the increment buffer as unreachable

w h ile S R T I ter at or. cur r ent < increment d o

SRT.UpdateUnreachableMask{SRTIterator.current, heapid, Unreachable)

S R T Iterator.next{)

en d w h ile

I I increm enl is either equal to or less than the next decrement.

/ / I n either case, the object is reachable from heapid

SRT.UpdateU nreachable M ask {increment, heapid. Reachable)

if increm ent = decrement s. f i r s t th e n

/ / No reference count modification necessary

50: decrements.pop{)

e lse

/ / The object is only referenced from the increment buffer, so

/ / increment its reference count

increment.rc increment.rc + 1

en d if

en d for

/ / Add any remaining decrements to the delayed decrements buffer

delayedDecrements.multiadd{decrements)

94

60 : / / Mark all other objects referenced from the SRT as unreachable,
w hile S R T Iterator.current < S R T Iterator.end do

SRT.UpdateUnreachableMask{SRTIterator.current, heapid, Unreachable)
S R T Iterator.nextQ

end w hile

/ / Apply all decrements,
for each dec in delayedDecrements do

dec.rc ■«— dec.rc — 1
if dec.rc > 0 th e n

70: SRT.add{dec)
end if
SRT.UpdateUnreachableMask{dec, heapId, Unreachable)

end for
end p rocedure

UpdateObjectRCs consists of two major parts: a selection mechanism
for positive reference count modifications; and performing decrements and
marking remaining objects as unreachable. The first part covering lines 22
to 57 attempts to match increments to corresponding decrements. Lines 24 to
31 apply all increments and mark objects as reachable from the current heap
provided there are no decrements to be applied. Otherwise as all decrements
up to the first increment at are stored in a buffer for later application (lines
33 - 38). All objects referenced by the spurious retention table up to the first
increment are marked inaccessible from the current heap (lines 41-45).

The current increment is then compared the first decrement and if it
matches, no reference count is modified, otherwise the object referenced by
the increment buffer has its reference count incremented. In both cases the
object referenced by increment is marked as reachable from the current heap

95

on the spurious retention table. Once all increments have been processed,
any remaining decrements are added to the delayed decrements buffer (line

59).
The second part consists of two parts: lines 61 to 65 which mark all other

objects referenced by the spurious retention table as inaccessible and lines
67 to 73 which apply all the decrements which didn’t have a corresponding
increment and mark the referenced object as unreachable from the spurious

retention table.

96

/ / Update the unreachable mask for an object, potentially

/ / allowing it to be reclaimed.

procedure UPDATEUNREACHABLEM ASK(o6jerf, heapld, isReachable?)

/ / heapld: unique id assigned to the heap from which

/ / the increments and decrements are generated

/ / Spurious reference table (SRT) is implicitly in scope

/ / The SRT references objects whose reference counts have

/ / been decremented,

if object in S R T th en

10: / / An object’s unreachable mask is updated provided its current

/ / reference count is equal to or one less than its stored

/ / reference count. If it is one less than the stored reference

/ / i t has just become unreachable from a heap.

BecameUnreachable i - object.rc — 1 = SRT[object].rc

if object.rc = SRT[object].rc || BecameU nreachable then

SRT\ohjeci\.unreachableMask\heapld\ •<— isReachable

SRT[object].rc 4- object.rc

O bjectlsDead ■<— SRT[object].unreachableMask = SRT.deadObjectM ask

if O bjectlsDead th en

20: object.rc •<— 0

S R T .R em o veE n try (object)

end if

else

/ / A s the reference counts are different for the object, so the

/ / previously stored unreachability information is invalid.

new M ask -f- SRT.liveO bjectM ask

newMask[heapld] isReachable

SRT[object].unreachableMask ■<— new M ask

SRT[object].rc object.rc

97

30: end if
end if

end procedure

UpdateUnreachableMask is a simple procedure th a t updates an object’s

unreachable mask depending on the relationship between the objects refer­

ence count, the stored reference count and whether it is reachable from the

heap which the update is coming from.

If the object’s reference count matches or is one less than its stored ref­

erence count, the corresponding unreachable mask is updated. Furthermore,

the object’s unreachable is checked to see if it has become unreachable from

all heaps. If so, the object’s reference count is set to zero and the object is

removed from the SRT.

If the stored referenced count is otherwise different, it is presumed tha t

the object has undergone a more drastic change in reachability and hence the

unreachable mask is wiped so tha t it shows all heaps can access the object.

5.7 Im plem entation

The implementation of Inter-heap GC for .JHC is structured in the following

way:

5.7.1 W rite barrier

The m utator is modified at compile time by inserting calls to a write barrier

routine so tha t when a cross heap reference is created, the local object is

added to the retain list and the local object’s reference count is updated

when updating a remote object with a local object reference. The write

barrier when modif}'ing any type of mutable \'ariable in Haskell such as MVars

(mutable thread-safe variables), 10 references, mutable arrays and updating

98

thunks with results.

5.7.2 Objects

4 bits 11 bits 1 bit 16 bits

Evaluation Sentinel Reference Count Retain flag Type and tag

Figure 5.17: Object header

Both JHC’s compiler and it’s runtime system use a single 32-bit machine
word for an object’s header. Figure 5.17 shows its division into: a nibble (four
bits) for a sentinel value for thunks undergoing evaluation; eleven bits for a
reference count; one bit recording if the object is recorded on a retain hst; and
two bytes for an object’s type and tag bits. The size reserved for an object’s
reference count field allows a maximum of 2047 references before requiring
additional logic for handling reference count overflows. This additional logic
would take the form of sticky reference counts—counts that stay at their
maximum value when reached and are not incremented or decremented until
specifically corrected.

5.7.3 Groups

JHC’s runtime system exposes heap division by letting the programmer di­
vide threads into groups. Before performing any mutator work, threads are

associated with a single group and all threads in a group share a single heap
section. Each thread in a group creates and retains a group member struc­
ture which contains (multi)sets of references to a thread’s remotely accessible
objects {retain list), along with pointers to remote objects accessible from
local objects found during the current and previous collection cycles.

99

A single param eter is used when creating a group— the type of GC tha t

it will use (stop-the-world or concurrent). Creating a group wdth a concur­

rent collector also initiahzes its concurrent collection thread. Each group

maintains a data-structure which contains: its serial number; GC state and

control values; a sub-structure indexing threads belonging to th a t group; and

sub-structures indexing objects tha t have associated finalizers, and indexing

objects tha t are explicitly retained for use in foreign function calls.

5.7.4 H eap

JH C ’s runtime system maintains a pool of Inimix blocks for storage. A

block’s m etadata records the serial number of its associated group- empty

blocks use a sentinel value for this. Base GCs dissociate any empty blocks

from their group during sweeping, whereas partially filled blocks retain their

association and can be used by any of th(̂ group’s threads. The base GCs

can claim empty blocks for their groups duriiig allocation.

5.7.5 C ollection w ithin a group

Collection of a group's storage is triggered when the amount free space in

th a t group’s blocks along with the space available in unassociated blocks

falls below a specified threshold. The local GC state and control variables

are manipulated to start a collection cycle.

Collection proceeds as described above (4.2.6) but objects tha t are located

in a different group’s blocks are neither marked nor examined. Instead,

references to such objects are simply added to a th read’s current remote

liveset. Any object found during a collection tha t possess a positive reference

coimt is added to the retain list. After collection the current remote liveset

and previous remote liveset are passed to the Interheap GC and the previous

remote liveset logically discarded while the current remote liveset becomes

100

the previous remote liveset.

The last objects to be scanned are the dead elements in the retain list

after noting the current size of the current remote liveset. If it increases, then

the heap contains PCC objects which will cause the Interheap collector to

start the cycle detector when it processes the current and previous remote

livesets.

Finally, the GC iterates through each thread’s retain list. Objects refer­

enced by the list are examined and if their reference count are zero, they are

removed. If entries in the list have been removed or duplicate entries found,

the list is compacted and its size field is updated. Decrements are enqueued

for unreachable local objects.

However, objects tha t have a reference count of one remain on a retain

list—an implementation choice based on two premises: it simplifies retain list

operations; and objects tha t were remotely accessible in the past are likely

to become accessible again. This removes the need for cross heap allocation

calls to move objects that can only be accessed remotely but in this case

the heap sections involved will have incorrectly counted space usage which

may cause more collection cycles than expected. For local objects which

were remotely accessible, the space and time costs are superfluous entries on

a retain list^ and a delay in reclaiming their storage space if they become

unreachable.

5.7 .6 In ter-heap G C im p lem en tation

The Interheap GC operates on a separate thread, receiving buffers containing

previous and current remote livesets with their associated heap ids. These

buffers are sorted into sets of ascending object addresses. The buffers and

spurious retention table are then iterated through as described in the pseudo

®The space cost is just over a word per object.

101

code above.

5.8 Sketch im plem entation of an increm ental

collector

The implementation of inter-heap GC for concurrent and stop-the-world col­
lectors was judged sufficient to show that inter-heap GC does not rely on
stop-the-world behavior, and hence an incremental collector was not built
for JHC. For completeness the modifications required for an incremental col­
lector design are described below so that it can be extended to operate with
inter-heap GC.

An incremental collector is one which divides a processor’s time between
garbage collection and mutator work by an some implementation dependent
ratio. This generally takes the form of examining M words when marking
for every N words of allocation (and a ratio of a similar form for sweep­
ing/copying). An incremental collector using multiple CPUs can be built
to operate concurrently or with stop-the-world behavior. A stop-the-world,
parallel incremental collector would need all CPUs to synchronize before
performing collection work. A concurrent parallel collector has no need for
an initial synchronization step since it only require synchronization for the
manipulation of GC related structures.

Several modifications and design decisions must be made to an incremen­
tal collector to enable it to work with inter-heap GC. The collector’s write
barrier must be extended to record the writing of local references to remote
objects. The designer must decide on the ratio of GC to mutator work for
marking and sweeping as normal. The inter-heap GC to mutator work ratio

may be difficult to balance since it uses atomic compare-and-swap instruc­
tions to set the reference counts. These instructions can take a variable

102

amount of time depending on where the cache lines associated with objects
are currently located—either in memory or another processor’s cache. The
ratio of mutator to inter-heap GC work can be decided by taking the me­
dian execution time of such instructions (ignoring their time variability), or
by structuring the incremental collector to operate on a time-based schedule
similar to IBM’s Metronome collector[8].

103

Chapter 6

Evaluation and experim ents

To evaluate garbage collection (GC) based on heap division, several mea­

surements can be taken no m atter what type of program is used for testing:

• Collection cycle time

• Overall memory usage

• Time costs for each part of the collection cycle

The characteristics of inter-heap garbage collection should be visible un­

der a variety of experiments. The results should show a difference in collection

time based on the number of shared objects and communication patterns.

The partitioned heap mechanism should result in more collection cycles

since the m utators will have initially smaller heaps. These smaller heaps

will trigger the collectors to expand a partitioned heap with respect to the

memory available: blocks tha t are part of that heap and those tha t belong

to no heap.

A system which uses heap division is expected to have lower collection

cycle times in comparison to a system that treats the heap as single unit.

This is because the allocation beha^'ior in one heap section will not cause

another section to be collected.

104

However overall memory usage is expected to be slightly higher because a
single heap section may go without collection for a longer period than would
be the case for a system without heap division.

Time costs for each part of a collection cycle can tell us how long the
inter-heap GC specific work takes.

To evaluate the benefits of GC based on heap division over schemes which
do not divide the heap, it is necessary to modify applications to use heap
division using an appropriate policy based on the applications’s memory
allocation rate and access patterns.

6.1 M easurem ents

Results were generated on a factory-fresh Mac Pro^ with a quad-core Intel(R)
Xeon(R) CPU E5-1620 clocked at 3.70GHz with two logical processors per
core, 10 MB of CPU cache with 12 GB of RAM, running OS X Mavericks.
DTrace was used to record data from multiple runs of the same program with
and without heap partitioning. The results are drawn from the fastest of five
runs and show relative performance of programs not using heap partitioning.

Eight programs drawn from the nofib benchmark suite[55] were chosen
based on their ease of parallelization and successful compilation and execu­
tion. The parallelization was generally done by inserting forklO or forkNew-
Group at the most practical looking point closest to the main entry point. No
substantial efforts were undertaken to achieve optimal levels of loading bal­
ancing unless a program by end of testing, had by inspection, had a lopsided
allocation pattern.

blackscholes An implementation of the Black-scholes algorithm for finan­
cial contracts.

^MacPro6,l model

105

nbody A program which calculates the forces due to gravity of a number of

bodies in a three dimensional space.

parfib A parallel implementation of the nfib program which calculates its

result in parallel.

p a r tre e Constructs a tree where each node has an expensive computation,

then the entire tree is evaluated in parallel.

p rsa Encodes information using RSA in parallel.

ray A ray-tracer for a simple fixed scene.

coins Computes for a sum of money the list of ways it can be created with

a set of coins.

m in m ax A program to find the best move in a four by four game of noughts

and crosses using an aipha-beta search tree.

Each program uses at least three m utator threads and is benchmarked

with a single threaded stop the world collector and single threaded concurrent

collector in separate tests. The concurrent collector operates on a per-group

basis. A concurrent collection cycle begins when the free space available

within a partitioned heap and unassociated blocks reaches three tenths of

the total heap size. Heap expansion adds unassociated blocks to the heap.

The results presented here are the average of ten runs of a program and

compare a partitioned run to a non-partitioned run. Garbage collection time

does not include write barrier execution.

Time is measured from just before the compiled Haskell code starts run­

ning and ends after the main Haskell thread has finished and all threads are

marked as finished. Memory usage is measured as the maximum heap size

of the program. The time taken measurement is by wall-clock time, whereas

106

the time spend collecting garbage is measured by time spent on the CPU of
thread performing garbage collection.

6.2 Shared object counts

P ro g ram C o n cu rren t collector ST W collector

blackscholes 0.0041% 0.40%
coins 0.00005% 0.001%
minmax 0.0012% 0.0013%
nbody 0.003% 0.0047%
partree 0.009% 0.0099%
prsa 3.04% 16.16%
ray 1.46% 2.58%
sumeuler 0.0012% 0.20%

Figure 6.1: Average percentage of allocated objects which are shared

Figure 6.2 shows the average count of objects shared between two or more
heap sections. Notably, the stop the world collector shares more objects than
the concurrent collector.

6.3 Com parisons of Interheap GC to a con­

current collector

The following tables show the relative performance of Interheap GC com­
pared to a stock concurrent collector. All results are gathered using DTrace

to collect time data and the runtime itself records the maximum heap size
and number of collection cycles. All results are expressed as normalized
difference of Interheap GC performance to the stock concurrent collector.

107

Program Relative runtime difference
blackscholes 0.54

coins 1.33

minmax 0.36

nbody 0.53

partree 0.87

prsa 1.18

ray 1.62

sumeuler 1.03

Minimum 0.36

Maximum 1.62

Geometric mean 0.84

Figure 6.2: Relative runtimes

This group of tests shows half the programs run faster than their non-heap

partitioned counterparts. Overall the programs running time tend towards

84% of their non-partitioned counter})arts.

108

Program Relative total collection tim e

blackscholes 0.43

coins 1.27

minmax 0.92

nbody 0.50

partree 1.08

prsa 1.48

ray 8.22

sumeuler 0.94

Minimum 0.43

Maximum 8.22

Geometric mean 1.15

Figure 6.3: Relative to tal garbage collection time

Overall these results show th a t half of the programs spend less time col­

lecting garbage than their non-partitioned counterparts, ray, coins and prsa

are the outliers here, managing to spend over eight times and one and a

half times the time collecting garbage of their non-partitioned counterparts.

Notably, although the increase in garbage collection time for those two pro­

grams is much higher, their running times are not as disproportionally high.

pariree spends more time collecting garbage but has a lower running time

tha t its non-partitioned counterpart.

109

Program Relative collection cycle count

blackscholes 1.53

coins 1.20

minmax 2.79

nbody 6.18

partree 4.73

prsa 1.8

ray 6.25

sumeuler 3.2

Minimum 1.20

Maximum 6.25

Geometric mean 2.93

Figure 6.4: Number of collection cycles relative to non-partitioned run

As expected, collection cycles are more frequent under this system since

the available heap is divided into multiple sections and a collection cycle

starts when the free space available in the union of a group’s space and

unassociated blocks falls below a threshold. Collection cycles as a result are

more frequent.

110

P ro g ra m R e la tiv e m e m o ry usage

blackscholes 0.95

coins 1.0

minmax 0.80

nbod}' 0.53

partree 0.70

prsa 0.67

ray 0.59

sumeuler 1.0

Minimum 0.53

Maximum 1.0

Geometric mean 0.76

Figure 6.5: Memory usage compared to non-partitioned run

All programs performed their tasks in an approximately equal or less

space than their non-partitioned counterparts. Notably, ray and prsa have

executed their task in less space but taking more more time, coins on the

other hand took the same amount of space while taking more time.

I l l

6.3.1 Stability of concurrent collector results

P ro g ra m R e la tiv e s ta n d a rd dev ia tio n

blackscholes 4.92

coins 1.66

minmax 10.4

nbody 2.37

partree 12.2

prsa 6.74

ray 2.64

sumeuler 5.34

Figure 6.6: Relative standard deviation of wail clock times

The table above shows the relative standard deviation compared to the base-

Une standard deviations of the running times of the test programs. It shows

tha t all programs except for partree, minmax and partree experience a small

increased in their variability of their running times.This shows the approxi­

mate stability of the time results presented above.

6.3.2 D iscussion

Several programs have displayed notable results, ray has notably performed

its task within 162% of the non-partitioned counterpart with 60% of the

space usage and over eight times the time spent collecting garbage. This can

be attributed to its characteristic of having large amounts of intermediate

data from calculating ray intersections with a relatively small heap for each

thread. Since each collection cycle are more frequent, enough garbage is

collected to slow down the expansion of the heap, prsa performed similarly,

taking a 20% longer than the time of the non-partitioned run.

112

coins displays some interesting overall results. It has the smallest amount
of shared objects yet takes more time than the non-partitioned version. Fur­
ther examination of the raw data shows that the collection cycles are longer
due to fixed processing in the Interheap GC processing at the base heap end.

Program Configuration Minimum Standard deviation Average Maximum

coins groups 1900 5424.99 11394 70700
coins one group 3500 3266.93 8930 38150
ray groups 950 13736.07 20691 96600
ray one group 5700 9047.73 14924 65600
prsa groups 2900 105333.43 135752 419900
prsa one group 11250 206855.96 143705 605100

Figure 6.7; Statistical analysis of the wall clock length of collection cycles in
nanoseconds

As can be seen above, the programs which ran slower than their non­
partitioned counter parts experienced on average more variable and longer
lasting collection cycles. Although some of these collection cycles overlap
between partitions, the overlap is determined by allocation rates and load
balancing between the active mutation threads in a heap partition.

6.4 Com parisons of Interheap GC to a stop-

the-w orld collector

As before, results were generated using DTrace and a combination of tools.
The results presented are drawn from the average of ten runs. The programs
used are the same as those used for the concurrent collector tests. This set
of experiments uses a stop-the-world collector to examine the performance
of Inter heap GC.

113

Program Relative run times

blackscholes 1.02

coins 1.38

minmax 0.12

nbody 0.82

partree 0.53

prsa 1.97

ray 1.15

sumeuler 1.58

Minimum 0.12

Maximum 1.97

Geometric mean 0.85

Figure 6.8: Relative run times

The stop-the-world collector runtimes are broadly similar to the concur­

rent collector with the exception of coins, pr sa. ray and sumeuler, all other

programs run in approximately or less time than the non-partitioned coun-

terpards. prsa and sum.euler are the major outhers, taking over one and a

half times to finish their task. Those programs suffer badly as results depend

on threads in separate sections finishing their ahotted task as other threads

as waiting for those results.

114

Program R elative co llection tim e

blackscholes 0.80
coins 1.37
minmax 0.75
nbody 0.31
partree 0.27
prsa 2.00
ray 1.54
sumeuler 4.64

Minimum 0.27
Maximum 4.64
Geometric mean 1.00

Figure 6.9: Relative total garbage collection time

The stop-the-world collector broadly follows the results of the concurrent
collector and takes less time collecting garbage for half of the runs, sumeuler
sees a significant increase in time spent collecting garbage, whole prsa and
ray are high as the concurrent collector results, sumeuler sees a significant
increase in garbage collection time, while partree sees a significant drop in
comparison to the concurrent collector.

115

P ro g ram R elative cycle count

blackscholes 2.1
coins 1.22
minmax 2.46
nbody 4.61
partree 3.73
prsa 3.25
ray 4.58
sumeuler 3.87

Minimum 1.22
Maximum 4.61
Geometric mean 2.98

Figure 6.10; Relative number of cycles

As expected the number of collection cycles is greater for all programs
due to heap partitioning.

116

P ro g ram R elative m em ory usage

blackscholes 1.0
coins 1.0
minmax 1.11
nbody 0.87
partree 1.01
prsa 1.08
ray 0.94
sumeuler 1.0

Minimum 0.87
Maximum 1.11
Geometric mean 1.00

Figure 6.11: Relative memory usage

Memory usage is broadly comparable to the non-partitioned runs with
most programs taking the same or within approximately 13% more or less
space than the non-partitioned runs.

117

6.4.1 Stability of stop-the-world results

P r o g r a m R e la t iv e s t a n d a r d d e v ia t io n

blackscholes 4.03

coins 1.53

m inm ax 2.99

n b o d y 24.3

p a r tre e 6.55

p rsa 6.95

ray 2.51

sum euler 6.76

F igure 6.12: R elative s tan d a rd deviation of wall clock ru n n in g tim e

A gain , all p rogram s a p a rt from nbody theses p rogram s experienced little vari­

ab ility in th e ir wall clock run-tim es.

6.4.2 Overview

T h e follow ch a rts show norm alized results for b o th collectors com pared to a

baseline of 1.0 for all m easurem ents.

118

Normalized runtime performance
2.5

2 -

1.5 -

1 -

0.5

Baseline
Concurrent

Stop-the-world

sumeulerblackscholes coins minmax nbody partree

As can be seen here, Interheap G C’s performance does not Imgely change

depending on the collector it is working alongside, prsa, ray and sumeuler

both increase in running time when operating under Interheap GC.

119

Normalized to ta l collection tim e
10

9

8

7

6

5

4

3

2

1

0

Baseline
C oncurrent

Stop-the-w orld

j l k u I
blackscholes coins minmax nhtody j)artree prsa ray sum euler

ray and sum euler here again are the outliers, b u t in this case it is collector

dependent. O ther program s have small increases and blackscholes, nbody and

m inm ax all spend less tim e performing garbage collection.

120

Normalized garbage collection cycle count

7 h

6 -

5 -

4 -

Baseline
Concurrent

Stop-the-world

sumeulerpartree prsablackscholes coins minmax

As expected, the collector type doesn’t make a difference in the number of

collection cycles as Interheap GC’s heap splitting gives each group of threads

a smaller heap causing more cycles.

121

Normalized m axim um heap size

 ̂ ' ' ' Basehne
Concurrent

Stop-the-w orld

blackscholes c'oins m inniax nbody partree p rsa ray suineuler

Since the collection cycles are more frequent and the na tu re of Haskell

code to produce lots of short lived objects, all program s run in the sam e

space as the baseline collectors or in less space. Program s th a t operate in

less space are benefitting from the more frequent collection cycles as garbage

is being collected more eagerly.

6.4.3 D iscussion

Overall, the stop-the-world collector performance does not improve signif­

icantly with Interheap GC. Some programs gain a small of speed-up bu t

m any program s do not dram atically improve their overall performance. Fac­

tors which have been highlighted before sucii increased num ber and length

122

of collection cycles hamper any performance gains. Furthermore the stop-

the-world suffers in tha t increased concurrency in collection does not give

any space benefits unlike the concurrent collector.

Program Configuration Minimum Standard deviation Average Maximum

coins groups 850 2203.22 4886 23900

coins one group 1700 938.71 3323 4200

prsa groups 1400 542711.41 226016 2242950
prsa one group 1550 236279.45 183443 608150

ray groups 150 3499.54 4697 31150

ray one group 1300 1064.61 3909 8000
sumeuer groups 300 2676.31 2808 22950

sumeuer one group 1500 859.68 2049 3900

Figure 6.13: Statistical analysis of the wall clock length of collection cycles

in nanoseconds

As shown above, the stop-the-world collector also suffers from on average;

longer, more variable collection times. Compounded with more frequent col­

lection cycles tha t do return space at least as efficient as the non-partitioned

program due to relative closeness of the memory usage. Interheap GC does

not appear to offer significant benefits to the stop-the-world collector.

6.5 Conclusions

W'e have seen tha t the gains tha t Inter-heap GC brings are dependent on the

program and collector used. Programs which have few shared objects tend

to improve in space used. When using the concurrent collector this extends

to increased cpu utilization as the the time spend perform garbage collection

increases while only slightly increasing runtime. For programs th a t decrease

123

their runtimes is can be attributed to faster thought more frequent collection

cycles and the decreased synchronization requirements. The space benefits

arise from the increased frequency of collection which reduces the amount of

floating garbage.

The gains mostly occur with programs that share little amounts of data

such as black-scholes, ray, nbody gain the most. O ther programs sta rt to

approach their non-partitioned memory usage. Overall the stop-the-world

collector performs somewhat poorly compared with Inter-heap GC with few

programs gaining a significant time or space benefit.

124

Chapter 7

Conclusions

7.1 C ontributions

The primary contribution of this work in this thesis is the design of a collec­
tor that is capable of partitioning an application's heap as directed by the
programmer. Inter-heap GC is capable of performing this task; collection of a
partition only requires inspection of associated thread stacks; tracing within
the memory assigned to that partition and updating metadata regarding that
partition’s memory.

The reclamation cross-partition structures requires either the collection
of the heaps involved or the collection of all heaps. However that degenerate
case does not require a global collection cycle, but the time taken to reclaim
that structure is dependent on how often the partitions have a garbage col­
lection cycle. Cychc cross-heap structures are also reclaimed through the use
of a dedicated cycle detector.

Inter-heap GC has the capability to run multiple collector configurations
within the same application. This ability can be used to provide an appro­
priate collector to sections of a program that could benefit from the use of a
different collector than the collector used for the rest of the application.

125

Overall, the Inter-heap GC gives programmers greater control over how
an apphcation’s heap is garbage collected. The gain from Inter-heap GC
is dependent on ratio of computation and communication and the type of
collector used. Programs with a large amount of fixed data perform well
enough under Inter heap GC.

A second issue is that making use of Inter-heap GC requires access to an
application’s or libraries’ source code. This dependency can compUcate the
development of an application as it may require the customization of libraries

depending on how they use threads.
A final issue is that the Interheap GC collector is sensitive to the type of

collector used for searching for performance gains. The concurrent collector
managed to perform the same tasks as the non-partitioned collector wdthin
broadly the same time frames.

The gains shown here by the programs here are dependent on the nature of
the Haskell programming language since it relies heavily on immutable data
with mutable data primarily consisting of lluuiks or deferred computations
objects that reference a function and its arguments. The evaluation of a
thunk in Haskell has no immediate comparison to common idioms in lan­
guages such as Java and C #. Those languages are likely to see benefits
with Inter-heap GC but only in the “side computation” case. For cases with
a high ratio of shared objects to private objects, Inter-heap GC devolves
into an inefficient reference counting scheme on top of the existing garbage
collector.

7.2 Future work

Two issues are highlighted for future investigation with Inter-heap GC.

126

7.2.1 A utom ation of heap division

The division of an appUcation’s heap could possibly be automated by gath­
ering information during a collection cycle. This entails associating memory
blocks to threads and determining which blocks are shared among threads.
Finally, retention lists must be construct that record all objects that are ac­
cessible from others threads in the heap section to be partitioned from the
main heap.

That system should be able to partition off threads whose work is quite
different from others such as threads which are responsible for error logging.
The general case warrants significant investigation to determine the benefits.

7.2.2 Heap joins

Recall that Inter-heap GC causes slowdown when there is a high ratio of com­
munication to computation. If Inter-heap GC could be extended with the
capability to recognize those situations at runtime, it is theoretically possible
for Inter-heap GC to join together heaps whose threads are in frequent com­
munication. This would alleviate situations where the overall computation
is bounded by thread-to-thread communication.

127

Chapter 8

A ppendix

8.1 A pp en d ix A - Interheap GC A P I

— GroupIDs are wrapped integers.
data GroupID = GroupID Int deriving (Eq)

— GC tjrpes
data GCType = STW I Cone I Default deriving(Eq)

— Create a new thread in another group given the ID of
— a thread in that group. This can fail if the other thread is
— not running anymore.
forklntoGroup :: ThreadID -> 10 () -> 10 (Maybe ThreadID)

— Create a new group with a single thread with a specified GC.
forkNewGroup :: GCType -> 10 () -> 10 ThreadID

— Create a new group with a single thread with the default gc.

128

forkNewGroupWithDefaults :: 10 () -> 10 ThreadID

— Non visible calls used in the implementation

— The current thread joins the specified group. This fiinction
— has to be called before the thread performs any allocation
— so that all metadata for that thread is correct with respect
— to the allocation and collection layer of the runtime system.
joinGroupBylD :; Int -> 10 ()

— Creates a new group and returns its ID.
newGroup :: GCType -> 10 Int

— Create a new thread in the specified group. This is the lowest
— level function that creates a new thread as it directly calls runtime
— fianctions in instantiate a new thread.
forkGroup :: Int -> 10 () -> 10 ThreadID

— Get the group ID associated with the current thread.
getGroupID :: 10 Int

— Get the group ID associated with the specified thread.
getGroupIDbyTID :: ThreadID -> 10 Int

8.2 A ppendix B - Term inology

The meaning of technical terms used in this document are described below.

129

8.2.1 Basic Terminology

O b je c t A grouping of data values along with functions to manipulate those

values.

P o in te r The address of an object in memory.

R eferen ce An alias for pointer.

F ree space Unused memory that can be used to allocate new objects.

G a rb a g e Objects which are no longer reachable.

S tack A block of memory used in a last-in first-out manner to record the

value of local variables (which may contain references to objects on the

heap) and the return addresses of fimctions being executed.

H eap A block of memory where programs store data with dynamic lifetimes.

R o o t A pointer (or structure) known to the collector. All reachable data in

a program exists on at least one j)alh irom the root set.

T h re a d An execution context that may be interleaved (or run in parallel)

with other executions.

A to m ic co m pare-and -sw ap This is a hardware capability of some CPUs

tha t can conditional update the contents of a w-ord when supplied the

current contents of that word without being interrupted by another

CPU or thread. If the contents are different the update fails.The CPU

signals success or failure back to the program.

R eg io n In fe ren c in g A form of static nieniorv management which consists

of objects being assigned to regions which are determined by the com­

piler.

130

Immutable Object An object that cannot be modified after creation.

M utable Object An object which can be modified after creation.

Stop-the-world collector A type of garbage collector that pauses all mu­
tator threads to perform collection work.

Concurrent collector A type of garbage collector that can perform the
majority of it’s work without pausing the collector.

8.3 C ollection T erm inology

Reference counting A system of memory management that stores the cur­
rent number of references to an object and reclaims them when their
count reaches zero.

M utator A program w itten in a language that uses garbage collection.^

Collector A routine which is combined with the mutator during compila­
tion. ^

Concurrent collector One whose execution may be interleaved with the
mutator or which may operate in parallel to the mutator.

Incremental collector Similar to a concurrent collector, but one which
operates in a co-operative fashion with the mutator.

Collection cycle Progress of a collector through the states of idle, marking
live data, reclamation of memory and then idling again.

^Or more precisely, a program written for an implementation of a language that uses

garbage collection.
^Or is part of an interpreter for a language.

131

8.3.1 A llocators

Allocators play an important role in garbage collection as they place con­
straints how space can be reclaimed.

B um p allocation A fast, pointer-arithmetic based allocation scheme. To
safely reclaim space in a region of the heap that uses bump allocation
all live data must be evacuated.

F ree-list allocation A data-structure based scheme for tracking free space
and allocated objects. Free-list type allocators can reclaim space an
object granularity.

8.3.2 Im portant concepts in th e field o f garbage col­

lection

H ard real-tim e A system that has deadlines for responses or periodic ac­
tions; system correctness depends upon deadlines being met.

Soft recil-time A system that makes a "best-efFort” approach to keeping
deadlines.

S top-the-w orld Collectors pause the application to perform some or all of
their work.

W rite b a rrie r A fragment of code which executes before a mutator updates
a pointer in an object in tlie heap--generally recording changes to the

connectivity of the object graph.

R ead b a rrie r A fragment of code which executes before a mutator reads
a value from an object in the heap—sometimes used to transparently
redirect mutator access to objects.

132

B ibliography

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network

flows: theory, algorithms, and applications. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1993.

[2] L O Andersen. Program Analysis and Specialization for the C Program­

ming Language. PhD thesis, University of Copenhagen, 1994.

[3] A. W. Appel. Simple generational garbage collection and fast allocation.

Softw. Pract. Exper., 19(2): 171 183, February 1989.

[4] Andrew W. Appel. Garbage collection can be faster than stack alloca­

tion. Inf. Process. Lett., 25(4);275-279, June 1987.

[5] Joe Armstrong and To Helen. Making reliable distributed systems in

the presence of software errors, 2003.

[6] Hezi Azatchi and Erez Petrank. Integrating generations w ith advanced

reference counting garbage collectors. In Proceedings of the 12th inter­

national conference on Compiler construction, CC’03, pages 185-199,

Berlin, Heidelberg, 2003. Springer-Verlag.

[7] David F. Bacon, Clement R. Attanasio, Han B. Lee, V. T. Rajan, and

Stephen Smith. Java without the coffee breaks: a nonintrusive multi­

processor garbage collector. SIG PLAN Not., 36(5):92-103, May 2001.

133

[8] David F. Bacon, Perry Cheng, and V. T. Rajan. A real-time garbage
collector with low overhead and consistent utilization. In Proceedings
of the 30th ACM SIGPLAN-SIGACT symposium on Principles of pro­
gramming languages, POPL ’03, pages 285-298, New York, NY, USA,
2003. ACM.

[9] David F. Bacon and V. T. Rajan. Concurrent cycle collection in refer­
ence counted systems. In In European Conference on Object-Oriented
Programming, pages 18-22. Springer-Verlag, 2001.

[10] Stephen M Blackburn, Richard Jones, Kathryn S. McKinley, and
J Eliot B Moss. Beltway: getting around garbage collection gridlock.
SICPLAN N ot, 37(5):153-164, May 2002.

[11] Stephen M. Blackburn and Kathryn S. McKinley. Ulterior reference
counting: fast garbage collection without a long wait. SIGPLAN Not.,
38:344 358, October 2003.

[12] Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region
garbage collector with space efficiency, fast collection, and mutator per­
formance. In Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’08, pages 22-
32, New York, NY, USA, 2008. ACM.

[13] Bruno Blanchet. Escape analysis for Javatm: Theory and practice. ACM
Trans. Program. Lang. Syst., 25(6):713-775, November 2003.

[14] Urban Boquist and Thomas Johnsson. The grin project: A highly op­
timising back end for lazy functional languages. In In Proc IFL 96,
volume 1268 of LNCS, pages 58-84. Springer-Verlag, 1996.

[15] Urban Boquist and Thomas Johnsson. The grin project: A highly opti­
mising back end for lazy functional languages. In Selected Papers from

134

the 8th International Workshop on Implementation of Functional Lan­
guages, IFL ’96, pages 58-84, London, UK, UK, 1997. Springer-Verlag.

[16] Rodney A. Brooks. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. In Proceedings of the
1984 ACM Symposium on LISP and functional programming, LFP ’84,
pages 256-262, New York, NY, USA, 1984. ACM.

[17] Bryan M. Cantrill, Michael W. Shapiro, Adam H. Leventhal, and Sun
Microsystems. Dynamic instrumentation of production systems. In Pro­
ceedings Of USENIX 2004, pages 15- 28, 2004.

[18] Richard Carlsson, Konstantinos Sagonas, and Jesper Wilhelmsson. Mes­
sage analysis for concurrent languages. In Proceedings of the 10th in­
ternational conference on Static analysis, SAS’03, pages 73-90, Berlin,
Heidelberg, 2003. Springer-Verlag.

[19] Perry Cheng and Guy E. Blelloch. A parallel, real-time garbage collec­
tor. SIGPLAN N ot, 36:125-136, May 2001.

[20] Perry Cheng, Robert Harper, and Peter Lee. Generational stack col­
lection and profile-driven pretenuring. SIGPLAN Not., 33(5):162 173,
May 1998.

[21] Jong-Deok Choi, Manish Gupta, Mauricio J. Serrano, Vugranam C.
Sreedhar, and Samuel P. Midkiff. Stack allocation and synchronization
optimizations for Java using escape analysis. ACM Trans. Program.
Lang. Syst., 25(6):876 910, November 2003.

[22] George E. CoUins. A method for overlapping and erasure of lists. Com-
mun. ACM, 3(12):655 657, December 1960.

135

[23] David Detlefs, Christine Flood, Steve Heller, and Tony Printezis.
Garbage-first garbage collection. In Proceedings of the 4th international
symposium on Memory management. ISMM ’04, pages 37- 48, New York,
NY, USA, 2004. ACM.

[24] L. Peter Deutsch and Daniel G. Bobrow. An efficient, incremental,
automatic garbage collector. Commun. ACM, 19:522-526, September
1976.

[25] Edsger W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and
E. F. M. Steffens. On-the-fly garbage collection: an exercise in cooper­
ation. Commun. ACM, 21(ll):966-975, November 1978.

[26] Amer Diwan, Eliot Moss, and Richard Hudson. Compiler support for
garbage collection in a statically typed language. In In Proceedings of
the ACM SIGPLAN '92 Conference on Programming Language Design
and Implementation, pages 273-282. SIGPLAN, ACM Press, 1992.

[27] Damien Doligez and Georges Gonthier. Portable, unobtrusive garbage
collection for multiprocessor systems. In Proceedings of the 21st
ACM SIGPLAN-SICACT symposium on Principles of programming
languages, POPL ’94, pages 70 83, New York, NY, USA, 1994. ACM.

[28] Damien Doligez and Xavier Leroy. A concurrent, generational garbage
collector for a multithreaded implementation of ml. In Proceedings of
the 20th ACM SIGPLAN-SICACT symposium on Principles of program­
ming languages, POPL ’93, pages 113-123, New York, NY, USA, 1993.

ACM.

[29] Tamar Domani, Gal Goldshtein, Elliot K. Kolodner, Ethan Lewis, Erez
Petrank, and Dafna Sheinwald. Thread-local heaps for Java. SIGPLAN
N ot, 38(2 supplement):76-87, June 2002.

136

[30] James Gosling and Greg Bollella. The Real-Time Specification for Java.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[31] Fergus Henderson. Accurate garbage collection in an uncooperative en­
vironment. In Proceedings of the Third International Symposium on
Memory Management, pages 150-156. ACM Press, 2002.

[32] Martin J. Hirzel. Connectivity Based Garbage collection. PhD thesis,
University of Colorado, 2004.

[33] Lorenz Huelsbergen and James R. Larus. A concurrent copying garbage
collector for languages that distinguish (im)mutable data. In Proceedings
of the fourth ACM SIGPLAN symposium on Principles and practice of
parallel programming, PPOPP ’93, pages 73-82, New York, NY, USA,
1993. ACM.

[34] Lorenz Huelsbergen and Phil Winterbottom. Very concurrent mark-<§;-
sweep garbage collection without fine-grain synchronization. SIGPLAN
Not., 34:166 175, October 1998.

[35] Erik Johansson, Konstantinos Sagonas, and Jesper Wilhelmsson. Heap
architectures for concurrent languages using message passing. SIGPLAN
Not., 38(2 supplement):88-99, June 2002.

[36] Don Jones, Jr., Simon Marlow, and Satnam Singh. Parallel performance
tuning for Haskell. In Proceedings of the 2Nd ACM SIGPLAN Sympo­
sium on Haskell. Haskell ’09, pages 81 92, New York, NY, USA, 2009.
ACM.

[37] Richard Jones, Antony Hosking, and Eliot Moss. The Garbage Collection
Handbook: The Art of Automatic Memory Management. Chapman &:
Hall/CRC, 1st edition, 2011.

137

[38] Richard Jones and Andy King. A fast analysis for thread-local garbage
collection with dynamic class loading. In Fifth IEEE International
Workshop on Source Code Analysis and Manipulation, pages 129-138,
Budapest, September 2005. IEEE Computer Society.

[39] Richard Jones and Rafael Lins. Garbage collection: algorithms for au­
tomatic dynamic memory management. John Wiley Sons, Inc., New
York, NY, USA, 1996.

[40] Simon L. Pejlon Jones. Implementing lazy functional languages on
stock hardware: the spineless tagless g-machine - version 2.5. Joum,al
of Functional Programming, 2:127- 202, 1992.

[41] Simon Peyton Jones and Erik Meijer. Henk: A typed intermediate
language. In In Proc. First Int'l Workshop on Types in Compilation,
1997.

[42] Simon Peyton Jones, Norman Ramsey, and Fermin Reig. C-: A portable
assembly language that supports garbage collection. In IN INTER­
NATIONAL CONFERENCE ON PRINCIPLES AND PRACTICE OF
DECLARATIVE PROGRAMMING, pages 1-28. Springer Verlag, 1999.

[43] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Opti­
mization. Master’s thesis. Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
h t t p : / / l lv m . c s .u iu c . edu.

[44] Kj'ungAÂ oo Lee and Samuel P. Midkiff. A two-phase escape analysis
for parallel Java programs. In Proceedings of the 15th international
conference on Parallel architectures and compilation techniques, PACT
’06, pages 53 62, New York, NY, USA, 2006. ACM.

138

[45] Yossi Levanoni and Erez Petrank. An on-the-fly reference-counting
garbage collector for Java. ACM Trans. Program. Lang. Syst, 28:1-
69, January 2006.

[46] Henry Lieberman and Carl Hewitt. A real-time garbage collector based
on the lifetimes of objects. Commun. ACM, 26(6):419-429, June 1983.

[47] Rafael D. Lins. Cyclic reference counting with lazy mark-scan. Inf.
Process. Lett., 44(4);215-22G, December 1992.

[48] Rafael Dueire Lins. New algorithms and applications of cyclic refer­
ence counting. In Proceedings of the Third international conference
on Graph Transformations, ICGT’06, pages 15-29, Berlin, Heidelberg,
2006. Springer-Verlag.

[49] Simon Marlow. Haskell 2010 language report, 2010.

[50] Simon Marlow and Simon Peyton Jones. Multicore garbage collection
with local heaps. SIGPLAN Not., 46(11):21 32, June 2011.

[51] A. D. Martmez, R. Wachenchauzer, and R. D. Lins. Cyclic reference
counting with local mark-scan. In f Process. Lett, 34(l):31-35, February
1990.

[52] J. Harold McBeth. Letters to the editor; on the reference counter
method. Commun. ACM, 6(9):575-, September 1963.

[53] John Meacham. http://repetae.net/com puter/jhc/. Retrieved
16/2/2011.

[54] James O’Toole and Scott Nettles. Concurrent rephcating garbage col­
lection. SIGPLAN Lisp Pointers, VH(3);34-42, July 1994.

139

[55] Will Partain. The nofib benchmark suite of Haskell programs. In Pro­

ceedings of the 1992 Glasgow Workshop on Functional Programming,

pages 195-202, London, UK, UK, 1993. Springer-Verlag.

[56] Simon Peyton-Jones, Simon Marlow, and Manuel Chakravarty et al.

http://wT\^w.haskell.org/ghc/. Retrieved 16/2/2011.

[57] F. Pizlo, J.M. Fox, D. Holmes, and J. Vitek. Real-time Java scoped

memory: design patterns and semantics. In Object-Oriented Real-Time

Distributed Computing, 2004- Proceedings. Seventh IEEE International

Symposium on, pages 101-110. IEEE, 2004.

[58] Filip Pizlo, Antony L. Hosking, and Jan Vitek. Hierarchical real-time

garbage collection. SIG PLAN Not., 42:123 133, June 2007.

[59] Filip Pizlo, Erez Petrank, and Bjarne Steensgaard. A study of concurrent

real-time garbage collectors. SIG PLAN Not., 43:33 44, June 2008.

[60] Erik Ruf. Effective synchronization removal for Java. SIG PLAN Not.,

35:208 218, May 2000.

[61] Narendran Sachindran, J. Ehot B. Moss, and Emery D. Berger. Mc2:

high-performance garbage collection for memory-constrained environ­

ments. In Proceedings of the 19th annual AC M SIG PLAN conference

on Object-oriented programming, systems, languages, and applications,

OOPSLA ’04, pages 81 98, New York, NY, USA, 2004. ACM.

[62] Konstantinos Sagonas and Jesper Wilhelmsson. Message analysis-guided

allocation and low-pause incremental garbage collection in a concurrent

language. In Proceedings o f the 4th international symposium on Memory

management, ISMM ’04, pages 1 12, New York, NY, USA, 2004. ACM.

140

[63] Tom Shackell, Neil Mitchell, Andrew Wilkinson,
Mike Dodds, Bob Davie, and Dimitry Golubovsky.

http://wT\"w.haskell.org/haskellwiki/Yhc, Retrieved 16/2/2011.

[64] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal
Singh. Exploiting prolific types for memory management and optimiza­
tions. In Proceedings of the 29th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’02, pages 295 306,
New York, NY, USA, 2002. ACM.

[65] Guy L. Steele, Jr. Multiprocessing compactifying garbage collection.
Commun. ACM, 18(9):495 508, September 1975.

[66] Bjarne Steensgaard. Thread-specific heaps for multi-threaded programs.
SIGPLAN N ot, 36:18-24, October 2000.

[67] M. Tofte, L. Birkedal, M. Elsman, and N. Hallenberg. A retrospec­
tive on region-based memory management. Higher-Order and Symbolic
Computation, 17:2004, 2004.

[68] Mads Tofte. Implementation of the typed call-by-value -calculus using
a stack of regions. In In Twenty-First ACM Symposium on Principles
of Programming Languages, pages 188-201. ACM Press, 1994.

[69] David Ungar. Generation scavenging: A non-disruptive high perfor­
mance storage reclamation algorithm. SIGSOFT Softw. Eng. Notes,
9:157-167, April 1984.

[70] Adam Wick. Magpie: Precise Garbage Collection For C. PhD thesis.
University of Utah, 2006.

[71] Paul R. Wilson. Uniprocessor garbage collection techniques. In Proceed­
ings of the International Workshop on Memory Management, IWMM
’92, pages 1-42, London, UK, UK, 1992. Springer-Verlag.

141

[72] Taichi Yuasa. Real-time garbage collection on general purpose machines.

Journal of Software and Systems, 11:181-199, 1990.

142

