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Abstract

Garbage collection is the automation of memory management for com­

puter programs. It is an important feature of both the Java and .NET 

environments, and it is a key component of the runtime system for many 

high level language implementations. A garbage collector’s critical tasks in­

clude recording program roots (global variables and thread stacks), finding 

all objects directly and transitively reachable from these roots, and finally 

reclaiming unused space.

Current research in this area has conc(mtrat ed on non-blocking root scan­

ning, efficient space reclamation or some form of heap partitioning. P arti­

tioning the heap allows the collector to avoid traversing the entire object 

graph when identifying unused memory. Existing heap partitioning schemes 

segregate objects into heaps based on an analysis of their use or by how 

recently they have been allocated.

This thesis describes a novel method that- allows the programmer to spec­

ify partitions at point of thread creation while allowing a variety of existing 

collectors and automatic heap partitioning techniques. The proposed tech­

nique differs from existing methods by supporting general purpose com puta­

tion and allowing collections of heap partitions in any order.
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Chapter 1

Introduction

Garbage collection is a mechanism tha t simplifies program construction[4] by 

automating the identification and reclamation of unused blocks of memory. 

It is usually provided in one of two ways: as part of the virtual machine 

on which the program runs (i.e. Java, Smalltalk, some LISP/Scheme imple­

mentations) or is linked with the program during compilation (i.e. Haskell, 

Eiffel. Boehm’s garbage collector). The application code is called the m uta­

tor, while the collection routines are referred to as the collector. Roots in 

collection terminology refers to the set of global variables tha t a program 

can access and all local variables containing references tha t are stored in a 

program’s stack(s) along with registers tha t contain pointers. A block of 

memory is live when it is transitively referenced from a root.

There are two broad types of garbage collection: tracing collectors and 

reference counting.

For a basic tracing collector implementation, the memory allocation rou­

tines are modified so tha t w'hen a program’s heap reaches a size threshold, 

the collector is invoked. The m utator is halted, and the collector traces out 

the program state from the roots. Once all the live objects in memory have 

been identified, unused space can be found and reclaimed. The m utator then
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resumes operation.

A basic reference counting[22] scheme augments every object with a lo­

cation for storing a reference count that is initially set to zero. When a 

reference to an object is created, that object’s reference count is incremented 

and when a reference to an object is deleted or overwritten, its reference 

count is decremented. The space occupied by an object is reclaimed when its 

reference count reaches zero. Reference counting schemes require additional 

support to identify and reclaim cyclical data-structures. This additional 

support takes the form of dedicated cycle detectors [48] [51] or backup tracing 

collectors [34].

Many variations to these schemes have been developed, such as concurrent 

collectors which are capable of performing most of their work without pausing 

the entire program[27]. Other collector variants include different allocators, 

modifications to the m utator to increase efficiency, segregation of data  based 

on how likely it is to become unreachable and segregation of data  based on its 

use. Work on reference count ing schemes lia.s been directed towards reducing 

or if possible removing reference count modifications. Published schemes 

include those that can defer reference (’ount modifications to objects due to 

manipulations of the stack[24], those which elide modifications to counts due 

to manipulation of objects (coalesced reference counting) [45] and those which 

combine reference counting and tracing colkiction [6] [11] .

1.1 M otivation

The work performed by a tracing collector can be broken down into three 

areas: taking a snapshot of the roots; tracing the live object graph; and 

reclaiming the space held by dead objects. The literature review describes 

work done by others in bounding or otherwise controlling the amount of time 

spent performing these tasks and how it is sj>ent (i.e. one long pause or many



short pauses).
Concurrent collectors are those that allow the mutator to continue to exe­

cute while the heap is being traced. Depending on the design of the collector, 
root scanning and/or space reclamation may be performed concurrently as 
well. Generally the two longest periods of time are spent tracing out the 
object graph and reclaiming space.

While reclaiming space with concurrent copying collectors, applications 
are paused so that all pointers to relocated data can be updated. Some con­
current collectors use Brooks’ read barrier[16] which eliminates the need to 
update all pointers to a moved object in this case they update a forwarding 
pointer that each object possesses which is used to track its actual location. 
In published designs, both Metronome and Chicken[59] use Brook’s read bar­
rier and rely on the next collection cycle to update the pointers to objects 
that have been relocated.

For stop-the-world collectors, the mutator is paused for the duration of 
the collection cycle. This pause time is proportional to the amount of live 
data and in some designs, the amount of space to be reclaimed as well.

For stop-the-world and concurrent collectors, the ability to partition the 
heap changes the time taken for collection to time proportional to the size 
of the part of the heap rather than the size of the entire heap. W^rk done 
in this area includes escape analysis for imperative programming languages 
such as Java[38][21][13][44] . The apphcation of escape analysis for garbage 
collection provides an optimization where the compiler determines a safe 

estimation of which objects become visible to more than one thread. The 
set of objects which are visible only to the thread that created them can be 
stored in a thread local heap. For functional languages such as ML, Leroy and 
Gonthier[28] designed a collector which takes advantage of ML’s reliance on 
immutable data and the language’s semantics to provide thread local heaps.

For reference counting collectors which use a coalescing mechanism there

3



are two aspects tha t determine the length of time required to reclaim space: 

reconciliation of reference counts and cycle detection. Reference count mod­

ifications can applied immediately, spreading the cost throughout the pro­

grams runtime or they can be deferred. Deferred updates can take the form 

of buffers of object addresses which must be periodically obtained from all 

mutators[7]. Other forms require that the zero-count table—a table record­

ing objects which have a reference count of zero-be periodically scanned for 

reclaiming objects which are unreachable from the stack[24]. Cycle detection 

can be performed in a synchronous manner, blocking the m utators for time 

proportional to the number of cycle candidates [47] or gisynchronously[9].

This thesis examines the design and implementation of a collection system 

that partitions an application's heap and threads into logically separate areas 

from the collector’s point of view. Partitioning ensures that no single collector 

instance can block all m utator threads and reduces the amount of work any 

single collector has to perform.

The motivation of this work is to provide programmers with the capabil­

ity to split an application’s heap without the need for complex code analysis 

schemes for heap partitioning or extensive rewriting to use real-time schemes. 

Different implementations of code analysis schemes may deliver different heap 

partitions complicating development and maintenance. Other schemes such 

as Pizlo et al’s HRTGC[58] also require rewriting to make use of heap parti­

tioning.

The motivation for enabling the programmer to split the heap into inde­

pendent sections rests on the notion that the programmer will have a better 

understanding of how their program shares data between separate threads 

compared to a compiler. The second reason is that by relying on the pro­

grammer to provide such information is that the optimization does not rely 

on any type of code analysis. This choice avoids the reliance on the specifics 

of particular code analysis algorithm and hence avoids any (severe) changes
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in performance source after code modification.
The contributions of this thesis are; the design and description of a 

garbage collector that supports independently collected heaps without any 
structure between them and a novel but collector specific method of detecting 
cycles.
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Chapter 2

Literature review

This Uterature review describes research on partitioning the heap for garbage 

collection. Partitioning the heap allows a collector to avoid traversing the 

entire object graph during the collection cycle, which brings the advantage 

tha t the length of time spent performing collection is generally proportional 

to the size of the heap section.

Early garbage collectors examined the entire heap on each collection cycle. 

Figure 2.1 shows the garbage collector's view of the program’s heap storage as 

a single object (large rectangle) and multiple thread stacks (small rectangles). 

Pause times for these types of collectors are approximately of 0{number of 

live objects).
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Thread Stacks Heap

Figure 2.1; Basic garbage collector’s view of program storage

2.1 G enerational C ollection

Generational garbage collectors[69][3][46] are copying collectors designed on 
the basis of two distinct premises; a strong generational hypothesis the 
older the object the less likely it will become unreachable; and a weak gener­
ational hypothesis- that the majority of objects most recently allocated on 
the heap do not persist for long periods. To take advantage of the strong 
generational hypothesis the collector must be able to identify the most re­
cent allocations quickly. To determine live objects the object graph must be 
traversed and by relying on the weak generational hypothesis and recording 
the creation of pointers that cross from the old to new generation only the 
most recently created sections of the graph need to be traversed.

To take advantage of these concepts basic collectors can be designed to 
divide the heap into two sections; a creation area (where space is drawn from 
for new objects); and a major heap, and mutators can be modified at either 
compile or runtime so that information about the creation of pointers from 
the major heap to the creation area are recorded using a write barrier. The
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location of these pointers is stored in a remembered set. Such collectors are 

built so th a t they can perform two types of collection: a collection of the 

creation area alone; and a collection of the entire heap.

Collection of the creation area is performed by traversing the  object graph 

using the  union of a program ’s roots and the locations pointed to  by the 

rem em bered set as the  roots of the program sta te . The collector does not 

need to  follow pointers from the creation area to the m ajor heap since live 

objects in the creation area are transitively reachable from either the roots 

or from the  rem em bered set. Live objects are copied to  the  m ajor heap and 

pointers to them  are updated  to record their new locations.

This design reduces the amount of time spent perform ing garbage col­

lection for a variety of reasons: typically a m ajority  of short lived objects 

will be reclaimed during collection of the creation area. The collector can 

quickly find pointers from the m ajor area to the creation area since their 

locations have been stored in the remeniben>d set, thereby allowing the col­

lector to forgo traversing the (>ntire heap. To perform a collection of the 

m ajor heap, the creation area must first l)e colle'cted since th is is the only 

way to  determ ine which objects ai'e transitively live in the  m ajor heap.
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Young generation Old generation

Thread Staclcs Heap Heap

Heaj) spht age Collection dependency

Figure 2.2: Layout of a program’s heap using generational garbage collection

With generational scavenging, collectors divide an application’s heap into 

nuiltiple (two or more) generations. Objects are promoted from one genera­

tion to the next if they survive a collection of their current generation. Figure 

2.2 show's a program’s storage layout as a large heap (older generation) shared 

by several threads and a number of smaller heaps unicjue to each thread.

Unfortunately, because of cross heap pointers, collection of a young heap 

may require information from an older heap (and/or other younger heaps); 

and likewise older heap(s) cannot be collected independently of the younger 

heaps. These dependencies are represented by a double-headed green arrow 

in the diagram. W ith generational scavenging, the collector records pointers 

tha t cross from an older to a younger generation, enabling the collection of 

younger heaps without the need for a full examination of the older heap.

Typical behavior of this type of collector is to frequently collect the 

youngest generation. If the collection of an older generation is required.
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it is performed immediately following a collection of the younger generation 

since the younger generation may possess liveness information about some 

objects in the older generation. For this type of collector, pause time are 

approximately 0{number of live objects in the generations to be collected).

2.1.1 Generalizing techniques in generational collec­

tion

In collector designs by Detlefs et al[23] and Sachindran et al[61] the heap is 

split into multiple regions. Sachindran et al’s design builds a remembered 

set based off a computed hveness bitmask of the regions th a t are not to be 

evacuated. This remembered set is used during the collector’s copying phase 

to avoid re-traversal of the entire object graph to update objects tha t are not 

moved.

The Garbage First garbage collector[23] requires tha t nm tators are modi­

fied to  record information aboiit, now pointers th a t point outside their regions 

into remembered sets similar to a gen(;rational collector. W ith this scheme, 

the collector can defer the choice of which heap regions to evacuate until after 

the amount of live data in each region has been determined. If remembered 

sets were not used the collector would need to pick a region before counting 

live da ta  so tha t it can find all pointers to the region, or use another structure 

to record objects tha t have to updated or it would need to traverse the graph 

twice: first to count live data  in each region; then a second time to find all 

pointers to the region to be evacuated.

These collectors can move objects without traversing the entire object 

graph to identify all references to such objects. Since the sizes of the heap 

regions are fixed, collectors can estimate the amount of time required to 

evacuate each region based on the amount of live data it contains and the 

size of its remembered set.
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2.1.2 Beltw ay collector

The Beltway collector by Blackburn et al[10] is another form of generalized 

copying collector. The collector divides the heap into belts which are fur­

ther divided into one or more increments. The object promotion policy used 

by Beltway collector determines how it behaves, either similar to a canon­

ical copying collector (semi-space, generational collector) or more complex 

incremental copying schemes.

To support the promotion of objects between increments and belts, incre­

ments are implements as frames which are aligned on power of two memory 

addresses and numbered for collection. The write barrier for the m utator 

records inter-frame pointers where the target frame is likely to be collected 

before the source frame. Each pair of source and target frames has its own 

remembered set.

The beltway collector can implement a variety of collection policies by 

varying the number of belts and increments and where survivors are evacu­

ated to. Blackburn et al’s paper shows a number of configurations; canonical 

copying collector, generational collector and other novel schemes.
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Increments
Old

New 
— ►

Belts

Initial allocation arena

New

Figure 2.3: Layout of a j)rogranrs heap using the Beltway collector

Figure 2.3 shows a simple heaj) layout using the Beltway collector. The 

heap is broken down initially into three bdts which are further broken down 

into two or three increments  clei^ending on the age categorization of the  belt 

in question. The diagram shows the oldest belt as having three increments 

and the younger two belts—each composed of two increments.
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Increm ents

Survivors

Figure 2.4: Collection of an increm ent in Beltway

Figure 2.4 shows where objects are relocated after collection of an oldest 

increm ent in this Beltway configuratio. O bjects are relocated to  the youngest 

increm ent of the next older belt.

2.2 C onnectivity based garbage collectors

Hirzel[32] described the  design and im plem entation of an analysis combined 

with a  purpose built collector to  achieve lower collection tim es by partitioning 

the heap. Hirzel’s work determ ines allocation sites and points-to  relations 

in the code to  determ ine structures called partitions. These partitions are 

combined w'ith two runtim e com ponents: an estim ator which gauges the 

am ount of free space th a t can be reclaim ed in a partition  and a chooser 

which selects partitions to  collect.

His analysis is based on A ndersen’s pointer analysis for C[2]— a control 

flow-insensitive analysis which determ ines the  set of locations a variable may
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point to  during a program ’s execution. In contrast, control flow sensitive 

analysis determ ines location sets a t every point (or points of interest) in the  

program .

A ndersen’s original analysis identified where a variable may point— points- 

to relations— by using constraints th a t are associated w ith s ta tem en ts in C. 

By propagating these constraints until a fixed point is reached, the  points-to  

sets can be determ ined for each variable. Hirzel applied A ndersen’s ideas to  

the Java progrannning language for garbage collection.

Hirzel’s analysis cissociates each object th a t can be created  a t run tim e 

with a  s tru c tu re  called a partition  may contain m ultiple objects. Pointers 

w ithin objects can point to other objects associated w ith their partition  or 

objects in another partition . A points-to relation between the  two partitions 

is created  when a pointer in an object i)oiiits to  an object in a different p a r­

tition. The set of in ter-partition  points-to relations forms a directed acyclic 

graph w'ith the i)artitions as nodes and the relations as edges. M ultiple p a rti­

tions are collapsed into a single partition during construction of the  partition  

graph whenever two partitions have edges between them  th a t  form a cycle. 

The association of objects with [partitions enables partial garbage collection 

since any set of topographically ordei’ed partitions contains do not have un­

known roots.

A connectivity based garbage collector can collect any set of partitions 

th a t are topographically ordered. Hirzel’s design relies on an estim ator func­

tion which gauges the  am ount of live and dead d a ta  in each partition . Several 

techniques are described: examining global variables; m odeling object death  

as a decay function and profiling memory access to partitions. The estim a­

to r re tu rns a survival rate  s with ( 0 <  s <  1) for each partition  based on 

the result of one or more heuristic functions. At the s ta r t  of a collection a 

chooser function is passes the results of the estim ator function for each par­

tition  and selects an topographically ordered set of partitions for collection.

14



The chooser m ust balance the  cost of exam ining partitions to the  benefit 

of space reclam ation. Hirzel observed th is problem  can be reduced into a 

m axed-weight closed set form which can be solved by existing m ethods[l].

Heap partitionsT hread  Stacks

Collection dependency Heap split by 
^ _______ partitioning

Figure 2.5: Layout of a p rogram ’s heap w ith connectivity-based garbage 

collection

Figure 2.5 shows a sam ple heap layout of Hirzel’s connectivity based 

garbage collector. The partition  dependencies are determ ined by the  com­

piler, avoiding the  need for wTite barriers. Collection of any partition  requires 

the collection of its dependencies. Collection tim es in th is system  are pro­

portional to  th e  num ber of objects in the  exam ined partitions, however the 

collector can a ttem p t to  maximize the  am ount of space reclaim ed per unit 

of tim e by the  use of heuristics to  guide the  choice of partitions to  collect.
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2.3 Hierarchical real-time garbage collection

Pizlo e t al described a garbage collector[58] capable of servicing real-tim e 

and non-real-tim e workloads on a single Java virtual machine. The collector 

is designed to replace the  use of Scoped Memory sections in the  Real T im e 

Java Specification[30].

Scoped memory sections provide an application w ith allocation arenas 

which are not garbage collected[57]. Instead, they operate  in a stack-like 

fashion where m ultiple objects can be allocated in them  bu t only the  topm ost 

scoj^e can be reclaimed when there are no references to  it. These mem ory 

sections are used by real-tim e threads so th a t they are not affected by the  

garbage collector. However, pointers are restricted in th a t  they  may only 

reference objects in their scope or into youngei- scopes. Sim ilar restrictions 

aj^ply to  the use of the inunortal m<'mory area and the main heap in th a t  

they m ay not hold references to the scoped ni('mory while the  scoped mem ory 

may hold references to  the main lieaj) and im m ortal memory area.

T he Hierarchical real-tim e garbage colle(’to r (HRTGC) restructures an 

app lication’s heap into i)rogrammer s|)ecified allocation arenas which exhibit 

collection dependencies called heaplets. I 'h e  api)lication’s initial heaplet is 

called th e  root heaplet and any heaplets which are created  afterw'ards are re­

ferred to  as its child heaplets. The key aspect of the  parent-child relationship 

is th a t references from child heaplets to pan 'n t heaplets are effectively free 

while o ther heaplet-to-heaplet reference are more expensive as they have to 

be recorded^

Collection of a heaplet th a t has child heaplets involves finding references 

located in the child heaplets to  objects in the parent heaplets. Child heaplets 

do not need to  be traced out; instead their allocation arenas are linearly

^My contribution  is the design of a collector which lacks th is tree s truc tu re  and is 

th read  orientated.
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scanned skipping dead objects. Any live objects found during th is scan are 

exam ined for references to  parent heaplets. Partition ing  the  heap in this 

m anner means only the leaf heaplets are independently  collected since their 

collectors only exam ine their heaplet.

Inter-heaplet structu res th a t  are formed w ithout the  use of child to  parent 

references are unconditionally retained. The creation of references th a t form 

such structu res are recorded by the  H R TG C ’s w rite barrier into a s truc tu re  

called th e  cross set which is an additional set of roots for heaplet collectors.

A global garbage collector is used to reclaim  dead cyclic cross heap struc­

tures by perform ing a collection cycle th a t ignores heap boundaries. W hen 

this collection is com plete the  cross set is exam ined and entries referring to 

dead objects are removed allowing the  heaplet collectors to  eventually reclaim 

the com ponents of dead structures.

T hread  Stacks Root Heaplet H eaplets

Heap split by partition  Collection dependency

Figure 2.6: Layout of a program ’s heap w ith heaplet-based garbage collection
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HRTGC allows the programmer to specify the creation of heaplets for 

real-time tasks. The collection of a heaplet requires examination of all its 

sub-heaplets. This dependency is the reverse of the dependencies between 

partitions in connecti\'ity based garbage collection.

The time taken for a collection in this system is relative to the number of 

objects in the heaplets tha t are to be collected. Leaf heaplets can be collected 

independently of others, pro^'iding real-time guarantees.

2.3.1 Thread local heaps for ML

Doligez and Leroy designed a collector[28] for ML which leverages two aspects 

of ML: tha t most data is immutable; and that equality of two data-structures 

does not depend on their location in memor>-.

The heap is divided into N+1  sub-heaps where N  is the number of threads 

used by the application. Each thread possesses a local heap which initially 

contains all immutable data created bv that thread. A shared heap is used 

as an allocation space for mutable data and objects which have survived 

a local collection cycle. When a pointer i)i a mutable object these are 

always stored in the shared heap is updated to point to a data-structure in 

a th read’s local heap, the data-structure is copied into the shared heap and 

the mutable object is updated to j)oint to the copy in the shared heap.

This design allows for mutator threads to collect their heaps indepen­

dently of each other but requires global synchronization to collect the shared 

heap. The synchronization however does not require threads to block waiting 

for the collector, instead they shade all objects tha t are reachable from their 

local heaps in the main heap. The collector determine the set of hve objects 

from these initial grey objects.
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2.3.2 Thread local heaps for Haskell

Marlow et al[50] designed a collector similar to that of Dohgez[28] et al and 
Domani et al[29] which permits thread local heaps. Their garbage collector 
utilizes features of the Haskell programming language such as the common 
presence of immutable objects and implementation of lazy evaluation thunks. 
Each thread possesses a local heap which is split into two parts: a sticky area 
for objects which are mutable and a separate area for immutable objects. 
Collection of a local heap copies immutable objects into the global heap but 
mutable objects are collected using a mark-sweep algorithm.

Their design differs from that of Doligez et al by permitting pointers from 
the global heap into a local heap but accesses to another thread’s local heap 
are mediated through a read barrier. A write barrier is used to construct a 
proxy object in the global heap when a local pointer would be written into 
the global heap. This proxy object is implemented as a thunk a deferred 
computation taking advantage of GHC’s implementation of thunks to pro­
vide a more complex read barrier on-demand. The standard read-barrier for 
GHC determines if an object needs to be evaluated first. The more com­
plex read barrier signals the owning heap to copy the immutable structure 
in question into the global heap and delaying the accessing thread until this 
work is done. The immutable structure does not have to be copied in total, 
instead proxy objects can be created for its sub-components.

If a pointer to a local mutable object is to be written into the global 
heap, then that object is logically moved into the global heap by means of a 
global flag in the object’s header. Objects which have that flag set can only 
be reclaimed during a global collection cycle.
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Young generation  Old g enera tion

T h read  S tacks Heaj) Heap

H eap sp lit by age Collect ion dependency  H eap sp lit by 
_______  ^ _____ ► th rea d g ro u p

F igure  2.7: Layout of a ])rogram ’s heap w ith local g enera tiona l garbage  col­

lection

2.4 O ther thread-local heap collectors

Steensgard[66], K ing and  o thers have designed co llec tors w here each th re a d  

has its  own local heap  th a t  can be collected in d ep en d en tly  of th e  o th ers  

(F igu re  2.7). T h is ty p e  of design reduces th e  need for g lobal sy n ch ro n iza tio n  

used in garbage collection. B u t th e  older genera tion  can  only be collected  

in n n ed ia te ly  a fte r a  collection cycle of the  younger heaps.

T h ese  collectors differ from th e  m ethods o u tlin ed  above as th e y  requ ire  

th e  aid of th e  com piler to  d istinguish  betw een alloca tions th a t  can  be  m ade 

in a  th re a d  local heaj) or th e  m ain heap.

20



2.5 Escape analysis for thread-local heaps

Escape analysis is an optimization technique for imperative languages tha t 

determines which objects “escape”—become visible to threads other than 

the thread tha t created them or outlive the stack frame which created them. 

Knowing tha t an object does not escape allows for several possible optimiza­

tions: synchronization operations for those objects can be removed; such 

objects can be created a different allocator. This technique has been used in 

the field of garbage collection to enable the use of thread-local heaps which 

can be collected independently of each other and the main heap.

2.5.1 S teen sgaard ’s m eth od

Bjarne Steensgaard[66] designed a collector and an associated compile time 

analysis to enable the use of t hread local heaps in Java programs. In this sys­

tem the compiler performs a thread escape analysis for all allocation sites in 

a program. Each allocation site is examined and a subset of them have their 

allocator call replaced by a thread-local allocator call. The analysis is based 

on Erik Ruf’s[60] technique for the removal of synchronization operations in 

J ava.

The m utator code is modified based the results of an analysis—similar 

to Anderson’s pointer analysis for C—which gathers information about each 

allocation site and the use of variables. Each allocation is associated with 

an alias set which describes how its corresponding value is accessed. Each 

method has an associated alias context which contains alias sets for its ar­

guments and its return value. Each operation—assigning one variable to 

another, throwing an exception, calling a method, etc—is associated with 

a rule th a t describes how the alias set(s) for the value(s) involved are to 

be modified. When the analysis is complete each allocation site’s alias set 

shows whether or not the value it produces is thread-local data, and if it is
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the allocation site is modified to use a thread-local allocator.

The heap is logically divided into two sections: one containing the shared 

heap which is made up of shared and large objects^; and the other containing 

thread-local heaps—one for each thread. Each heap section is further divided 

into a generational style young/old pair.

At the outset garbage collection requires an initial global rendezvous after 

which the collector examines the combined root set of all thread stacks and 

global variables. It then evacuates all shared objects directly reachable from 

the roots. Once these have been evacuated, threads can collect their local 

heaps. A thread may encounter an object in the shared heap tha t is reachable 

from a thread-local heap but which has yet not been evacuated. If this 

happens, a lock is taken against the shared heap, the object is evacuated and 

has a forw’arding pointer written into the old copy. W’hen multiple threads 

attem pt to copy the same object, the first to take the lock copies the object 

and the others wait for tha t object to be copied before finishing collection.

2.5.2 K in g ’s m ethod

Andrew' King et al[38] described how to augment a Java virtual machine so 

tha t it performs thread-local garbage collection. Their technique splits the 

heap into multiple sections and performs an online^ escape analysis of the 

Java class files to determine which objects become shared (or “escape” the 

scope of the thread tha t created them).

The analysis is run shortly after the A'irtual machine has started w^hich 

ensures th a t a majority of the class files have been loaded. Working on a 

snapshot basis, it operates on the set of classes th a t were already loaded when 

the analysis began. The initial phase constructs and merges alias sets for 

methods using a technique based on the work of Steensgaard[66] and Ruf[60]

^Objects whose size is greater than 25CKb.
^An online analysis is performed while the application is running.
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which determines an approximate alias set for each variable encountered. 
Further phases construct a conservative call graph, analyze thread creation 
contexts and unify the alias sets using data from the previous two phases. 
The resulting information is used to specialize method code so that it utilizes 
thread-local heaps for non-escaping objects. If a thread-local object is used 
in an unresolved method call, it may be stored in an “optimistically local 
heap” rather than in a local heap.

The heap space is divided into two sections: a global heap for shared 
objects; and a section containing thread-local heaps. Threads are associated 
with a local heap and an optimistically local heap containing non-shared 
objects and objects that are unlikely to become shared respectively. Pointers 
are restricted to point to addresses in the heap where they are located or to 
point to addresses in the global heap. Pointers in a thread-local heap may 
also point to addresses in an optimistically local heap.

The mutator is modified so that new objects are stored in a heap deter­
mined by the analysis. The local heap for each thread contains those objects 
which the analysis has determined cannot escape a thread’s context, and the 
optimistically local heap contains objects that may become shared if a new 
class is dynamically loaded at some point in the future. The global heap 
contains all other objects. Collection of the global and the optimistically 
local heaps requires global synchronization, while collection of a thread-local 
heap does not require synchronization with any other thread.

2.5.3 Comparison of Steensgaard’s and K ing’s m eth­

ods

Both methods partition the heap into sub-heaps based on an analysis of how 
the program accesses objects. The code analyzed is an intermediate form 
normally used for performing optimizations, not the original source code
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the programmer wrote. The drawbacks of Steengaard’s method[66] are tha t 

it still requires a global rendezvous to collect the shared heap which must 

be done before thread-local heaps can be collected. King’s m ethod[38] in 

contrast splits the heap into more sections on a per-thread basis, allowing it 

to perform thread-local collections without global rendezvous.

Although both methods are based upon the analysis of intermediate 

code—which could retain annotations describing new object placement, the 

programmer cannot specify where objects are to be allocated. Thus, with 

either method, objects may (unexpectedly) end up on the global heap which 

requires global rendezvous to collect. The lack of direct control in object 

placement is similar to the use of Taulpin and Tofte’s region inferencing 

system[67] w'hich assigns objects to regions that are managed using a stack. 

In their system this lack of control can lead to high memory usage.

2.5.4 T yp e  based partitioning

Shuf et al[64] describe a method of lieap partitioning using types with op­

tional allocation placement. T}'pe-b<ised j^artitioning relies on a hypothesis 

tha t the majority of objects with a prolific type—a tj’pe shared by some 

significant fraction of allocated objects—have a short life span. This is com­

parable to the premise underlying generational collection tha t a significant 

amount of objects do not live for long periods.

Prolific types can be identified in two ways. The simplest is to profile 

allocations over several sample executions of the program to build a census 

of object types and the number allocations. The second method is to dy­

namically profile the allocations of the program to determine prolific types 

then trea t further allocations of those types as prolific types.

Type based partitioning splits the heap into two spections, the P(rolific) 

section for objects with a prolific type and an Non-Prolific section for all
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other types. Again, this is compaxable to a generational collector with the 
nursery and a tenured area. In contrast, objects are never moved physically 
or logically from the P section into the NP section.

Collection of the P section—a. minor collection—requires recording of 
pointers from the NP section to the P section. This is achieved through 
selectively adding write barriers at compile time or execution time if the 
code is being interpreted. The selectivity comes from the requirement to 
only record pointers to objects in the P section from the NP section. The 
recorded pointers are used as an additional set of roots to trace out the P 
section during a minor collection. Minor collections do not follow pointers 
into the NP section as the collector relies on type information during object 
scanning to only consider pointers to other objects in the P section.

2.5 .5  Shared heap for Erlang

Sagonas et al[62] describe a partitioned collector with a shared area for Er­
lang. Erlang[5] is a functional concurrent language which makes heavy use 
of lightweight threads and message passing. The default implementation is 
that each thread possesses its own heap and that messages are copied be­
tween heaps. This enables any heap to be collected independently of the 
others without examination of their data.

Sagonas’ design introduces a shared area for messages, reducing the amount 
of data any single thread has to examine. The roots of this shared area can 
be found in stacks and heaps of all runnable threads. Collection of the shared 
area therefore requires global synchronization. The shared area is collected 
using a copying generational collector for a creation area coupled with a non­
copying mark-sweep old generation. Messages are speculatively allocated in 
the shared area based on work by Carlsson[18] which produced an analysis 
for determining which objects may become part of a message.
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The design uses a variant of generational stack scanning[20] which caches 

roots found in a thread stack for collection of the creation area. Every thread 

tha t has performed some work or received a message since the last collection 

of the creation area examined as the threads tha t have not run since the last 

collection only reference data  in the old generation.

Erlang however is something of a special case as the language prohibits 

destructive updates to data-structures and uses message passing for commu­

nication between heaps. The previous work examined so far covers languages 

with m utable data and th a t directly share data.

2.6 D iscussion

In summary, existing methods for heap partitioning can be broken down into 

four areas: garbage collector driven partitioning such as generational col­

lection; autom atic code transformation such as Steensgaard’s [66] and con­

nectivity based garbage collection; Hierarchical real-time garbage collection’s 

programmer specified heap divisions and Elrlang’s separate heaps.

Garbage collector driven partitioning divides the heap into partitions 

based on the age in bytes allocated, logically separating the newest from 

older objects. These partitions are collected in a youngest to oldest fashion, 

perm itting the younger generations to be collected where only a small section 

of older generations have to be inspected. This technique has the advantage 

of requiring no analysis of an application’s code, though appUcation of this 

technique may require recompilation of an application’s code. Variants of 

moving collectors can partition the heap for relocating of objects efficiently.

Marlow et al’s design uses a combination of type-based allocation and 

signalling read barriers to provide thread-local heaps. Collection of objects 

which are reachable from other heaps within local heaps requires a global 

collection cycle.
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King’s method allows for the use of thread local heaps that do not require 
global synchronization for collection but cannot divide the main heap. The 
technique is based on analysis of an application's code and modification of 
allocation sites to produce thread-local objects.

Hirzel’s connectivity based garbage collector (CBGC) uses pointer anal­
ysis to segregate the heap into partitions: objects in a partition may only 
have internal references or refer to objects in descendant partitions. This 
imposes a topological ordering of bottom to top in terms of partitions being 
collected.

HRTGC is a similar idea to Hirzel’s except the programmer specifies 
the partitions and the collector supports arbitrary and transparent cross­
partition links at the cost of extra collection time and storage dependent on 
the source and target. The collection dependencies between heaplets is from 
top to bottom. Both of these methods have cases where heaplets or partitions 
can be scanned independently of others but cannot collect arbitrary portions 
of the heap.

Erlang by default uses separate heaps for each thread, guaranteeing low 
collection times since only a small fraction of the entire heap has to be exam­
ined. This is at the cost of not sharing data between heaps except in highly 
specific circumstances, requiring that data is copied between heaps for mes­
sage passing. Furthermore, Erlang does not allow destructive updates in the 
general case which simplifies garbage collector design.

King et al[37] gives an overview of heap partitioning. It discusses vari­
ous reasons for partitioning the heap, notable partitioning by thread and for 
pause times. Inter-heap GC is designed to do both those things by parti­
tioning the heap in terms of which threads can access specific sections and 
reducing pause times by controlling how much data since the collector will 

only examine a subset of the heap for any collection.
Overall it can be seen that analysis driven partitioning can create thread
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local heaps and split the main heap w ithout the use of w rite barriers. G arbage 

collector driven partition ing  requires the use of w rite barriers to  record the  

creation of cross-heap references. Only HRTGC enables program m ers to  

specify the  creation of separate shared heaps but imposes a collection ordering 

of heap and requires global collection to deal w ith cross heap structures. 

Erlang possess unshared heaps but has requirem ents to  achieve soft-real tim e 

perform ance and has relatively unique language characteristics.

2.6.1 Classification

Program m er
control

In terheap G C 

□
HHTGC

(iarbage F irst
Type-based ])artitioning

Gen(^ational collection
3eltwav

□ □□

Steensgard
King, DLG, Marlowe

U  i
G ranularity of heap divison

Figure 2.8: Classification of garbage collectors

Figure 2.8 outlines a classification scheme for garbage collectors based on 

two axis: the granularity  of the  heap divisions and the control the  program ­

m er has in using them . Collectors which use pure runtim e based m ethods
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are underlined in red while those th a t rely on code analysis or progrannner 

specification are black.
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Chapter 3 

Research question

Can a program m er specified heap division policy  im prove applica­

tion  perform ance in a sp lit heap system ?

The motivation for this question came from a study of previous collector de­

signs. Some designs, such jis generational collectors can restrict the amoimt 

of the heap tha t is traversed while scanning or copying. O ther designs such as 

garbage first had either generational collector or could chose arbitrarily the 

amount of data  copied during each collection cycle. The goal was to build a 

collector design tha t could arbitrarily divide the heap and not require global 

synchronization.

The goal of having loose global synchronization came from the realization 

tha t requiring global synchronization would render the capability of collection 

a separate area relatively small benefit.

The lack of global synchronization between collectors of different heap 

sections maximizes the potential utility of this system. By enforcing this 

requirement, the capability to arbitrarily scan a heap section is more valuable 

since heap sections can be collected concurrently and without regard to other 

heap sections.
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This type of system sphts an apphcation’s heap into multiple sections. 

Each thread of execution is associated with a single heap section, and each 

heap section may be associated with multiple threads. D ata in one heap 

can reference another heap’s data  provided such cross heap references are 

captured. This would allow for heap sections to be independently collected 

since there would be no cross section references or they would be known prior 

to collection.

The goal of this system is to perm it heaps to be independently collected 

and for the system to operate in a transparent fashion. This entails mini- 

malistic changes to the model tha t the programmer possesses when writing 

programs, i.e. objects are not restricted by type when shared between heaps 

and do not acquire visible properties when they are shared between heaps.

Several sub-areas of this topic deserve investigation:

1. Identifying the elements o f a collector's design that are affected by how 

the runtime shares data between heaps. W ith sharing semantics there 

must be a wTite barrier and possibly a read barrier to capture the usage 

of cross heap references.

2. Since an application’s heap is physically divided, would there be any 

benefit to using several different collectors in tandem? This could al­

low a collector to chosen based on a group of threads’ memory usage 

characteristics.

3. What trade-offs occur for this system,? Trade-offs th a t occur are more 

frequent collection cycles since each heap section is smaller when com­

pared to a non-partitioned heap layout.
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Chapter 4

Software testbed

This section describes the software systems that will be used to investigate 

the research question and also outlines the rt^asons behind their selection.

4.1 R esearch  vehicle

The programming language Haskell[49] has been chosen for this work be­

cause it enables a wide variety of garbage collectors to be examined such 

as those designed to work with ML, e.g. Gonthier and Leroy’s collector[28] 

and Cheng’s collector[19]. These collectors rely on the majority of objects 

being immutable^, a characteristic which is common in Haskell programs. 

This allows objects to be shared instead of being copied and hence enables 

the investigation of the proposed sj’stem where da ta  is shared as well as 

copied. Languages which explicitly rely on garbage collection such as C # , 

Java, Google’s Go or Lua typically use mutable data  which requires those 

objects be explicitly copied or shared.

Using Erlang would be of little benefit since the proposed sj'stem would 

bring few changes to the existing Erlang implementation. Erlang already 

^Immutable objects cannot be modified after creation.
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possesses a similar architecture in terms of threads and heap sections but only 
permits one thread to be associated with a heap section. Furthermore, the 
only mutable structures in Erlang are the private per-thread hash-table and 
ETS (Erlang Term Storage) an optionally public hash-table. Erlang already 
avoids much of the mutator overhead of garbage collection since mutation is 
so infrequent. Finally, work done by Johansson et al[35] examines various 
heap architectures for Erlang which include shared and communal heaps.

The JHC[53] Haskell compiler has been selected as the research vehicle. 
It is a whole-program optimizing compiler^ where a complete program is 
examined as a single unit and optimizations related to memory management 
are simplified. It provides a basic form of region inferencing[68] and a basic 
mark-sweep collector. Other compilers for Haskell, such as Yhc[63], are too 
basic while the de-facto standard compiler GHC[56] is substantially larger 
and more complex than JHC.

There are three major differences between JHC and GHC. The two most 
basic differences are the type checkers and nmtime systems. JHC’s type 
checker supports the Haskell 2010 standard but GHC supports a large num­
ber of extensions to that standard. The second basic difference is the so­
phistication of the runtime provided to a compiled Haskell program. The 
most striking difference, is the choice of intermediate languages used by JHC 
compared to GHC.

The first intermediate language used by JHC and GHC is called Core 
(Haskell). Both of these languages are fairly similar, consisting of function 
clauses, case and let statements. JHC’s differs in that types are first class 
values which allows for different implementation of Haskell constructs such 
as type-classes^.

^In contrast to other compilers which work on one file or translation unit a t a time.
^The basic usage of type-classes allows the use of “-I-” for any two objects of the same 

niimeric type. Contrast with OCaml which has ‘‘-I-” for integers. for floating point
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The next difference is the choice of lower level intermediate languages. 

GHC compiles Core into a language called STG[40]. The Spineless Tagless 

G-machine (STG) is a language for the execution of lazy functional languages. 

Values in STG programs are represented as closures, objects containing zero 

or more values and a pointer to program code or to  another closure. Ex­

pressions and functions are similar to tha t of Core Haskell augmented with 

explicit free variable information and the update of evaluated closures. STG 

is compiled down to a language called C minus minus [42], a high level as­

sembly language.

JHC uses GRIN (Graph Reduction Intermediate Notation) [14] as its sec­

ond intermediate language. Programs compiled into GRIN code are first 

order‘d. Objects possess type tags unlike closures in STG programs. GRIN 

is compiled to C code and passed to a C compiler.

There are how'ever, several drawbacks in choosing JHC; it currently acts 

as a Haskell to C compiler; it does not sup})ort multiple threads of execution; 

it is somewhat basic in terms of features; and the LLVM[43] compiler requires 

configuration to provide m eta-data for garbage collection.

JH C ’s C backend is unsuitable for this work since ANSI C compilers 

do not emit type information when producing assembly or machine code, 

making precise garbage collection difficult. Previous work by Wick[70] and 

Henderson[31] enable C programs to use precise collection. Wick’s Mag­

pie is aimed at modif\dng existing C programs to support precise collection, 

whereas Henderson’s technique restricts the use of some optimizations bj- a 

C compiler. Using LLVM as the backend and its ability to generate “info- 

tables” [26]^—recording which stack slots contain references—should yield 

better performance than either of the previous two techniques, 

numbers
^There axe no higher order functions used.
®Also known as stack maps.
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4.1.1 Com pilation stages

C runtime

Grin

LLVU  code

Core Haskell

Binary

Haskell source

Figure 4.1: Compilation pipeline

JHC uses three transformations to turn Haskell source code into a binary. 
Figure 4.1 graphically describes the series of transformations to produce a 
binary. The first transformation produces Core Haskell from valid Haskell 98 
or 2010 code. Core Haskell as implemented in JHC is a variant of Henk[41] 
which is a typed lambda calculus. The Core Haskell program is compiled into 
GRIN® [15] code. GRIX is a strict first order functional language. JHC’s im­
plementation of GRIN shares a common subset of operations that Boquist[15] 
et al’s GRIN and includes some extra primitives. Notably the eval mecha­
nism for the evaluation of deferred computations is a primitive rather than 

® Graph Reduction Interm ediate Notation
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a series of more basic primitive operations.

4.1.2 LLVM backend

As part of this research a new LLVM backend was built to  so th a t programs 

compiled by JHC could use precise garbage collection. Since LLVM was 

designed to operate with C-like languages the C backend was cloned and 

then modified to emit LLVM code. This was simple barring a few notable 

aspects, such as stack slots since a local variable can be declared anywhere 

in C but LLVM requires local variables to be declared in the first basic block 

if they are to be garbage collected. Other issues included: computing the 

size of structures in the LLVM backend since the LLVM language doesn’t 

provide such a feature; emitting a type-table describing types for garbage 

collection purposes; implementing the GRIN primitive eval which produces 

values from thunks.

4.2 JH C ’s runtime system

A program compiled with JHC consists of two parts: Haskell code written by 

the programmer, and the runtime stub which is combined with the compiled 

Haskell code to produce the full program. The runtime handles low-level op­

erations for the Haskell program such as: the allocation and reclamation of 

memory; interfacing wdth the operating system to read and write to files or 

to a terminal; creation of new threads of execution and recording of times- 

tam ped events for debugging the runtime, gathering data  for experiments 

and optimizing Haskell code.

The initial runtime system was extended to provide the listed capabihties. 

It initially provided only conservative garbage collection, basic time profiling 

and input/output operations.
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4.2.1 Stack

JHC constructs programs that use the machine stack hke a C program. This 
stack consists of: local variables which may need to be traced; function 
parameters dependent on the apphcation binary interface (ABI) return 
addresses and the occasional saved frame pointer. The stack can be spht 
into three parts: an initial C stack containing frames from the runtime, a 
number of Haskell stack frames and another group of C stack frames.

Since LLVM produces stack maps for Haskell derived code only, the run­
time must record the stack pointer when transiting from C code to Haskell 
code and vice versa. The stack pointer is recorded using an LLVM intrinsic 
and specialized transition functions between Haskell and C code.

4.2.2 O bjects

Haskell uses two types of objects: plain data objects consisting of a tag and a 
number of values dependent on the tag; and thunks which represent deferred 
computations. Thunks reference a function and its parameters which are 
evaluated or “entered” when the value they represent is examined.

JHC’s last intermediate language (GRIN) has a simple object model: 
objects consist of a tag which identifies the type and a number of slots. The 
C backend for JHC does not conform to this model, only incorporating tags 
into objects when required, e.g. for distinguishing if an object represents the 
end or a cell of a list. Thunks were modeled after GHC’s implementation, 
consisting of a pointer to code for evaluation and a variable number of slots 
depending on the function to be called.

The LLVM backend incorporates tags into all objects so they can be easily 
examined by the garbage collector and emits a tj^pe table describing: the size

^ABI specifies whether param eters should be passed in registers or the stack or a 

combination and the location of the return value.
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of each object; and a bitm ask of slots containing pointers. Thunks have tags 

instead of code pointers and a  lookup table is used to  determ ine the relevant 

function.

JH C  generates the  set of tags for objects and assigns num bers to  them  

from the  Haskell code being compiled. This has the  side effect th a t it is 

difficult for the  runtim e to  directly return  Haskell objects to  the compiled 

program  since the tag  values are program  dependent. Instead such functions 

m ust be w rapped with stub  functions in the standard  library which call ou t to  

runtim e. These functions m ust be w ritten in very low-level Haskell: relying 

on unboxed values and references; require type assum ptions and coercions; 

and passing the world token-w hich is normally h idden-around.

JH C  im plem ents JO R efs-a tyjje of m utable object in H askell-and arrays 

by creating  a bare array with as many slots as required. T he creation of 

such objects was modified so th a t an array was created  which carried a 

header m arking that object as an array and the num ber of slots in the object. 

Those objects are accessed using GRIN primitives, so there  was no difficulty 

in adding this functionality barring bugs within the  compiler itself.

4.2 .3  E vent logging

Events such as the  creation and term ination of th reads, the  s ta r t  and end 

of a garbage collection cycle are recorded through two mechanisms. T he 

first is a po rt of G H C's event logging mechanism to  JH C. This allows the  

exam ination of program  behavior through the “threadscope” [36] tool® th a t  

shows graphically which threads are m im ing and garbage collection behavior. 

T he second mechanism is DTrace[17], a tool built for Solaris which Apple 

ported  to  OS X. DTrace is a more general tool for exam ining the  operation of

*Built by the developers of GHC for examining the behavior of parallel and concurrent 

program s.
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a live system. It operates as part of the OS’s kernel and enables users to write 

event-driven programs for examining the actions of the kernel. It provides 

a mechanism called USDT (user-land statically defined tracing) which can 

monitor the operations of a user-land program.

GHC’s eventlog mechanism can only record data  from the program’s point 

of view, while DTrace allows for a system-wide view. A detailed eventlog 

can be generated by using DTrace and a basic DTrace program to monitor 

kernel scheduling behavior. This log contains a combined CPU and program 

activity trace, recording the periods in which the program was active on the 

CPU and what type of work it w'as doing. This trace can be processed into 

a format readable by Threadscope.

The implementation in JHC is direct im port of GHC’s event logging in­

frastructure coupled with modifications to JH C ’s runtime so the relevant 

events are em itted at the runtime. The events hooks for DTrace are imple­

mented by using a wTapper so tha t only a single macro corresponds to both 

event systems.

Os 30ms 40ms SOms 60ms 70ms 80ms 90ms
I _ _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ , _ _ _ _ _ _ _ _ _ _ _ _ ^_ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ I _ _ _ _ _ _ _ _ _ _ _ _ ^ ^ ^ _ _ _ _ _

Figure 4.2: GHC-style eventlog

Figure 4.2 shows a GHC-style event log view where the green bars rep­

resent periods of m utator work and the orange bars represent periods of 

garbage collection. GHC generates events and thread state  transitions, so 

Threadscope displays green bars between the events where a m utator starts
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working and pausing for garbage collection. HECs^ on the  left correspond to 

individual m u ta to r th reads in this diagram. The fluctuating green bar above 

the  three HECs displays to ta l nn ita to r utilization of the  system.

Os O .ls  0 .2 s  0 .3 s  0 .4 s  O S s

I  i  1 1 1 1 1 1 . 1 1  1 1 . 1 1 1 1 1 . 1  1 1 . .  1 1 1 ■ 1 I  1 1 1 ■ I I 1 I ■ 1 I 1 1 . I ■ I I 1 I 1 . 1 I I I

Acfvtty

II I I I  I I  I I I  ■  I I  H H i l l  I I I J  ■ !  I I B i I J ' l i  I M I  I I I  I I

M  iBiii II III II II mil I II I ■  II,  nil II iiinii

F'igure 4.3; DTrace deriv(>d eventlog

Figure 4.3 shows a more accurate view of the program ’s behavior with 

periods where the  program  was not miming coloured white. Threadscope 

at this tim e doesn't display what program was using the  CPU  during this 

idle periods. There are two broad eases: anotlicr program  on the  system  was 

using the CPU; or th a t  a Haskell thread was scheduled bu t was waiting for 

an event from the  runtim e to proceed.

®Haskell execution capability, i.e. a ( ’PU core
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4.2.4 Threads

JH C ’s runtime system uses a one-to-one mapping of OS threads to Haskell 

threads, in contrast to GHC’s one-to-many scheme of OS thread to Haskell 

threads. Each thread maintains a control block which contains its:

•  local status (which GG phase the thread is in, current markbit, blocked 

on FFI)

• pointers to the top and bottom  of its set of Haskell stack frames;

• allocation arena;

• serial immber

• pointer to a sequential store buffer for operating with the concurrent 

collector.

4.2.5 TestEvac

A test garbage collector was built to exercise the compiled Haskell code 

from a collection perspective. This collector consisted of a stop-the-world 

semi-space collector tha t ran before every allocation. The collector would 

create a new allocation region and copy all live objects there and update 

references. The old allocation region would then have its VM pages marked 

PROT.NONE,  disallowing the m utator from reading or writing to objects 

through stale references.

The construction and use of this collector highlighted multiple issues re­

garding correctness of a collector for JHG. The first major issue is the use 

of tagged pointers-which have their lowest bits set depending on whether or 

not they are lazy-relocating an object requires copying those tag bits into 

the new reference. They also can cause problems with relocated objects as 

the forwarding pointer needs the appropriate tag bits set.
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Indirections caused a few minor problems as they can be created  in two 

ways: by the  collector overwriting an ob ject’s tag  w ith a forw arding pointer 

or by the  m u ta to r when a thunk is evaluated, a pointer to  the result is w ritten  

into the  o b jec t’s tag  slot. The collector handles indirections by overwTiting 

the  ob ject or stack slot referring to the forwarded item  with the  forwarded 

address with any tag  bits set appropriately. The forwarding pointer is then 

exam ined and if it points into the old space, th a t slot is pushed back onto 

the  m ark stack for another examination.

LLVM does not support live-precise stackm aps’” a t this tim e b u t stack 

slots which are roots are initialized to null upon entry to  a Haskell function. 

Furtherm ore, a filter is used to gather all references which pointed into the 

heap, based on the low est/highest allocation address. An occasional anom aly 

occurred th a t  if the  last object allocaled was referred to  by a tagged pointer 

it would be ignored since tiie allocator recorded the highest address allocated 

but tag  bits would push this address ov('r the high limit.

W hen evaluating a thunk, the C backend would overwrite the code pointer 

of a thunk  with a sentinel value so that it can only be evaluated once. Once 

the  thunk  is evaluated the  object returned from the result ob ject is w ritten  

into the  header of the thunk.

^^Stackmaps which record only the live slots.
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Code pointer Sentinel value Heap pointer

Header 

Slot 1 

Slot 2

Unevaluated thunk Thunk  undergoing Evaluated thunk
evaluation

Figure 4.4: Evaluation of a s tandard  thunk in JHC

The LLVM implementation with the new object model retained the tag 

when undergoing evaluation and wrote a sentinel value into the upper half 

word of the tag  slot. When a thunk is evaluated, the  address of the  result 

object is written into the result slot of the  thunk. This keeps the invariant 

th a t  a thunk can only be entered once and th a t  the  forwarding address can 

be distinguished from all other cases when a thunk has finished evaluation.

43



Tag

Header

Result
Slot

Slot 1 

Slot 2

Uiievaluated thunk

Sentinel value 
and Tag

Sentinel value 
and Tag

Heap pointer

Thunk undergoing 
evaluation

Evaluated thunk

Figure 4.5; Evaluation of a standard  1 h\ink in JH C w ith the LLVM backend

A thunk ’s s ta te  and type can be deterniiiKKl by checking for th is sentinel 

value when exam ining the  header during collection and evaluation. Tag bits 

in pointers to evaluated thunks have to be propagated carefully since it is 

possible for a value produced from a thunk to  be referred to  in two ways: 

from a direct pointer and from the overwritten header word which can refer­

enced by a tagged pointer. If the tag  bits are incorrectly propagated , when 

th a t value is passed to  eval, the  program will in terpret the  tag  as a forw ard­

ing pointer and a ttem p t to access memory on the  lowest page, causing a 

segm entation fault.
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4.2 .6  U n d erly in g  storage design

JH C ’s runtime system uses Immix[12] for allocation space and mechanism. It 

operates using blocks of thirty-two kilobytes, split into lines of one hundred 

and twenty-eight bytes. The m eta-data associated with a block includes 

a bytemap with each byte describing if the corresponding line is empty or 

full, hiitial allocation uses bump allocation and allocations after collection 

scan the line-map to find the largest (or sufficiently large) free space within 

the block. Bump allocation is an allocation strategy which uses a pointer 

recording the start of free space in a memory arena. Space is allocated 

by “bumping” or incrementing the pointer by the size of the object to be 

allocated.

45



128 bytes per line

256 Lines per block

Legend

32 Kilobytes per block

Line containing 
m etadata

Line containing 
m uta to r d a ta

Figure 4.6: Layout of an Inmiix })lock used by JH C

The storage design keeps ineta-data  associated w ith a block into the first 

th ree lines of the block (highlighted green in 4.6). This simplifies the im­

plem entation when an Imniix block is aligned to  its size, since the  lowest 

bits of an object address can be logically andfd  away, allowing access to  the  

m eta-da ta  for purposes such as marking a line as live, counting live d a ta  in 

a block precisely, etc.
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4.2 .7  Stop th e  world GC design

A stop the world type collector was built drawing upon Imniix and the 

DLG[28] collector for design elements. The design uses Immix’s underlying 

storage mechanism and a simplified heuristic for selecting blocks for evacua­

tion. DLG-style phase variables (one for each m utator and one for the GC) 

are used to coordinate the s ta rt of a collection. Each thread maintains its 

own phase variable, allowing a thread to signal its state back to the collector.

A thread will estim ate the percentage of heap space used every time it 

requests a new block and if the free space falls below a threshold, a collection 

cycle is requested by raising the GC sta rt flag. At the start of a GC cycle, 

any allocation will cause tha t thread to construct and populate a mark stack 

of all objects reachable from a th read’s stack—this is a partial collection. A 

mutex ensures tha t one thread then changes the shared mark bit, gathers all 

mark stacks produced the rest of the m utator threads, and then traces out 

all live data  and updates the m etadata for the blocks.

4.2 .8  C oncurrent G C  design

JH C ’s concurrent collector uses the same code and data-structures as the 

stop-the-world collector but most of the work is performed concurrently with 

the mutators.

The basic design is th a t of Yuasa’s collector[72] where all overwritten 

pointers are recorded—a snapshot-at-the-beginning type collector as classi­

fied by Wilson [71]. The m utators use a pool of sequential store buffers for 

recording overwritten pointers. Yuasa’s collector was chosen over Steele’s[65] 

and D ijkstra’s[25] due to its simplicity. Similarly, concurrent copying col­

lectors such as Huelsbergen’s [33] collector which handles da ta  based on its 

(im)mutability or concurrent replicating collectors such as O ’Toole et al’s[54] 

were not used to keep the implementation simple.
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A partial collection is used as in the stop-the-world collector, allowing 

the mutators to progress without the main collection examining or rewriting 

references in m utator stacks. A collection cycle is performed with the com­

bined stacks, then the mutators are paused once again to scan their SSBs 

and sweep the Immix line-maps.

Concurrent collection for JHC faces an interesting problem where the item 

being examined by the garbage collector can change type. Normal thunks 

contain a tag word, a second indirection slot and a type dependent number 

of slots. As the m utator can evaluate a thunk while the collector examines 

it, a race may arise where the collector attem pts to set the mark bit and the 

m utator attem pts to write an indirection into the header. This is resolved by 

the use of compare-and-swap instructions, combined with a retry mechanism 

tha t safely handles the transitions from t hunk to evaluating thunk to header.

4.2 .9  O bservations on concurrent co llection  for H askell

The concurrent collector reduces pause t inies compared to the stop-the-world 

collector as would be expected provided the heap is sufficiently large. For 

small heaps, the initial and final pause is comparable to the stop-the-world 

collector. One issue tha t arose was the delay in starting the concurrent col­

lector. In some cases, waking the GC thread can occasion take twenty to 

forty times longer than usual. This occurs when the kernel makes a subopti- 

mal scheduling decision where the waiting m utator threads are rescheduled 

rather than the GC thread.

The scheduling issue is compounded by OS X’s CPU affinity mechanism. 

OS X doesn't permit threads to directly specify what CPU they are to run 

on. Instead threads can register a “tag” with the OS. Threads with the same 

tag are generally scheduled onto a set of CPUs tha t share cache. For dual­

core machines the result is that the affinity mechanism is ignored since both
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cores share the same cache. This can result in some programs exhibiting 
far less parallelism than would be expected under some cases and frequent 
migration of program threads from one CPU to another.
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C hapter 5

Inter-heap garbage collector  

design

5.1 M otivation

Inter-heap GC is a combination of the jjrevious ideas. The lieap is cUvided 

into distinct sections where one or more threads are associated with, and 

responsible for, each section’s collection. This system reciuires the  identifica­

tion and recording of all pointers tliat cross section boundaries, resulting in 

a collection dependency between such sections. The unconditional recording 

of cross-heap pointers ensures th a t  any partition can be collected without 

examination of o ther partitions.
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Thread Stacks Heap
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Heap split by age Gollection dependency Heap split by
 ̂  ̂ threadgroup

Figure 5.1: Layout of a program’s heap witli inter-heap garbage collection

Figure 5.1 shows an example of this system at runtime. The heaj) is 

divided into two sections, one with two threads and the other with a single 

thread.

Pause times in a system using inter-heap GG are approximately of 0{number  

of live objects in the heap section).

5.2 Inter heap GC exam ple

For programmers to take advantage of Interheap GG only a small change 

is required provided there is source code access to where the parallelization 

implemented in a program, i.e. the code is not in a library the programmer 

doesn’t have access.
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data GCType = STW I Cone I Default deriving(Eq) 

data ThreadID = ThreadID CInt deriving (Eq)

—  Create a new thread with its own heap section
—  with the specified type of garbage collector. 
forkNewGroup :: GCType -> 10 () -> 10 ThreadID

—  Create a new heap with its own heap section using
—  the default garbage collector'
forkNewGroupWithDefaults :: 10 () -> ID ThreadID

—  Create a new thread in the current group. 
forklO :: 10 () -> 10 ThreadID

Figure 5.2: Programmer facing Jnterheap GC API

Figure 5.2 shows the type signatures of l.he main portions of Interheap 

G C’s API and the standard forklO  for comparison. forkNewGroup takes a 

garbage collector descriptor for the type of collector to  be used with the new 

heap partition either a stop-the-world or concurrent collector with the option 

of defaulting to the collector tj’pe specified by command line arguments.

Interheap GC operates in a thread-centric manner from the programm er’s 

point for view for ease of use. All threads are associated with the heap 

section of the thread tha t created them essentially forming a group of threads. 

Creating a new heap section is as simple as creating a new thread.

This near trivial API enables the use of heap partitioning by simple re-



placement of a function call.

f = . . .
main = do

lock <- newMVar False 
mvar <- newMVar 10
fin <- (newEmptyMVar)::(10 (MVar Integer)) 
let r = f (mvar, lock, fin)

idl <- forkNewGroupWithDefaults r 
id2 <- forkNewGroupWithDefaults r

t <- takeMVar fin
r <- tcikeMVar fin 
s <- takeMVar mvar 
r2 <- tryTakeMVair fin 
print $ "Done " ++ (show r2)

Figure 5.3: Example code using Interheap GC’s API

Figure 5.2 shows a program fragment using the Interheap API, detailed 

in 8.1. In this example, forkNewGroup creates a new thread which has its 

own heap partition. The API is deliberately similar to the supplied Haskell 

threading API for the ease of programmer use. forkNewGroupW ithDef aults 

was the same type signature and semantics as forklO
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5.3 Interheap GC design goals

The first design goal is to reduce the amount of time spent collecting garbage 

by dividing the heap into sections based on thread activity. Individual 

threads have different allocation and data retention characteristics. By split­

ting the heap into sections based on activity, the time taken for garbage 

collection will be reduced since only the heap sections tha t require collection 

are examined.

The second design goal of Inter-heap GC is the elimination of global syn­

chronization for garbage collection. The time taken for global synchroniza­

tion is proportional to the number of processors an application uses. Global 

synchronization is required for stop-the-world collectors since marking live 

data cannot safely begin until all mutator threads have been paused. Concur­

rent and on-the-fly collectors do not use blocking global synchronization like 

stop-the-world collectors but need to record nieta-data describing changes to 

the object graph as marking occurs. On-the-fly collector designs—those tha t 

stop one thread at a time don’t require immediate global synchronization 

but spend a longer time gathering roots to complete the marking phase.

The Inter-heap GC supplements an existing collector (base GC) relying 

on it to pro\'ide liveness information, and it also enables each heap section 

to have varying collector configurations: minor differences such as the free 

space threshold for collection; or major differences such as the use of another 

base GC design. The capability to use multiple collectors is often dependent 

on the design of the collectors tha t are to be used.

5.4 Interheap GC reference counting

Canonical reference counting systems update reference counts when objects 

are copied, modified or destroyed. Hence an object’s reference count will
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only be out of sync while it is being updated. On the other hand, coalesced 
reference counting systems compute counts at discrete moments in time. This 
is done by copying an object when it is first modified in the current period 
and subsequently comparing it to the original object when reference counts 
are being updated. Inter-heap GC controls the lifespan of objects that are 
accessible through inter-heap references using coalesced reference counting.

Inter-heap GC’s implementation of coalesced reference counting uses the 
base GC to identify inter-heap pointers needing inspection on every collec­
tion cycle—rather than simply copying a heap section and then scanning for 
changes. The inter-heap pointers found in the current and previous cycles 
are used to compute reference count modifications. The mutator uses write 
barriers to record the creation and destruction of inter-heap pointers since 
referenced objects are kept alive by Inter-heap GC.

Inter-heap GC relies on stored reference counts being equal to or greater 
than the actual number of heaps that reference an object. Under certain 
conditions (described below in section 5.5.2), objects may have reference 
counts which overestimate the number of heaps that have access to them. 
Such objects can be reclaimed provided that Inter-heap GC can determine 
that they are unreachable from all heaps. This unreachable-from relation, 
determined on a per-heap basis, is used by the Inter-heap GC as it performs 
reference count modifications for remotely accessible objects.

The Inter-heap GC must be able to detect and reclaim unreachable cycles 
since these can be constructed with either constant or mutable data. This 
can be achieved with the above mechanism and dedicated cycle detection 
since reference counting systems with liveness detection (like mark-sweep) 
can reclaim unreachable data.

The modification of Inter-heap GC’s meta-data can be parallehzed using 
a work-pool of threads where each heap that has running mutator threads 
has an associated Inter-heap GC thread in the pool.
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5.4,1 Graphical Overview

Iiiterlieap GC

Base GC Base GC

Heaj) Heaj)

Legend

 ► Rpfereiice count deltas, PC C  objects?
 ̂ Liveness information

Reference count modification

Figure 5.4: An overview of information flow in In terheap GC.

Figure 5.4 outlines how' information is gathered in a  hierarchal style. Each 

heap has an associated garbage collector which determ ines liveness infor­

m ation. Reference count deltas are computed and the  existence of Possible 

Cycle Com ponent (PCC ) objects is determined from the  liveness inform a­

tion gathered from a heap. This information is forwarded to  the  Iriterheap 

GC which performs the reference count m odifications and s ta r ts  the  cycle 

detector if necessary.
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5.5 B ase GC properties

Base garbage collectors collect m eta-data to work with Inter-heap GC:

R e ta in  list A per-thread list of references to local objects which are acces­

sible through inter-heap pointers.

C u r re n t  re m o te  livese t The set of references to objects reachable from, 

but not located in, the current heap. This information is gathered 

during collection cycles.

P re v io u s  re m o te  livese t A set of references to objects reachable from, 

but not located in, the current heap found during the previous garbage 

collection cycle.

The retain list records an additional set of roots for the base GC tha t are 

scanned after the heap has been traversed. These are references to objects 

located in a local heap which are reachable through inter-heap pointers but 

for which the base GC has only partial liveness information. Objects are 

added to the list with an initial reference count of at least two and a single 

postponed decrement. When an object is made accessible by modifying a 

shared object, the newly accessible object’s reference count is initialized to 

the reference count of the shared object.

Objects cannot be added to the list for a second time— instead their 

reference count is updated; whereas objects on the retain list th a t become 

unreachable from their own heap (along with all objects pointed to by them) 

have their reference counts decremented.

The current remote liveset is computed in two steps: first the base GC 

records all inter-heap references found during a GC cycle in a buffer; then the 

buffer is processed into a per-heap set of buckets each of which contains a set 

of object references. Inter-heap pointers tha t are found in objects referenced 

by a heap’s retain list but were not found during the initial heap scan are

57



tagged and added to the current remote liveset as those remote objects are 

not hve from the base GC’s perspective.

The previous remote liveset is the current remote liveset from the last 

garbage collection cycle.

The base GCs have a number of implementation restraints/requirem ents:

• They cannot safely follow inter-heap pointers.

• They must be able to pin arbitrary objects—they cannot be moved 

either by reference rewriting or by the use of read barriers.

•  They all must use the same read barrier.

•  They cannot be blocked indefinitely by the m utator.

Base GCs are not allowed to follow inter-heap pointers because m utator 

operations on other heaps may not be paused. Objects which hav^e reference 

counts tha t are discovered during tracing of the local heap are added to 

the retain list if they are not already on it and have increments issued for 

them. The graph formed by the retain lists is traced out afterwards. Objects 

which are locally unaccessible but remotely reachable whose transitive closure 

includes foreign pointers are flagged as cycle candidates.

Objects that are transitively reachable from a retain list cannot be moved 

or reclaimed because their base GC cannot locate all references to them. If a 

single base GC design is used, then objects in different heaps can be moved 

asynchronously using the appropriate read barrier. The base and inter-heap 

collectors update m etadata for objects when they are moved.

Base GCs must share the same read barrier since m utators can access 

multiple heaps.

To ensure timely reclamation of cycles and certain classes of objects 

shared among multiple heaps, each base GC must report its previous and 

current remote livesets regularly. This can be perform in a t least two ways:
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ensuring the base GC can run while all its corresponding mutator threads 
are blocked or the use of a concurrent collector that can be signaled by the 
Inter-heap GC.

5.5.1 Inter-heap GC

Since the Inter-heap GC is designed to retain and reclaim objects that are 
remotely accessible, it utilizes buffers of inter-heap pointers created by Base 
GCs to manipulate reference counts and reclaim unaccessible objects.

The Inter-heap GC maintains a table of objects {spurious retention table) 
which have survived having their reference counts decremented. This table 
serves two related purposes: gathering components of cycles; identifying ob­
jects whose reference count is incorrect but still positive. Objects pointed-to 
by this table can be reclaimed when the Inter-heap GC determines that they 
are unreachable from all heaps. Each entry in the table has an associated 
bitmask describing which heaps can access that object and a copy of the 
object’s reference count.

5.5.2 Reference counts

Inter-heap GC uses reference counts to describe the number of heaps that can 
access an object. Normal reference counting systems record the total number 
of pointers to an object. The usage of heap centric reference counting allows 
Inter-heap GC to coalesce multiple occurrences of the same reference into a 
singleton for reference count modifications.

Heap centric reference counting has a key drawback: it records the num­
ber of heaps that have access to an object rather than which heaps have 
access to an object. Reference counts ai-e attached to objects before they 
become accessible to other heaps. HandUng the combination of these two 
factors requires slightly different mechanics compared to standard reference
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counting systems.

All objects have an initial reference count of zero, only shared or unreach­

able objects possess non-zero positive reference counts. An object’s reference 

count is updated before it becomes accessible to any other heap. Objects 

become accessible in two different ways: a thread of a new group is created 

with an argument object which becomes shared; or a shared mutable object 

is updated to point to an unshared object.

An object which becomes shared through the creation of a new group 

will have its reference count initialized to two; otherwise its reference count 

is incremented by one. However an object tha t becomes accessible through 

the manipulation of pointers in shared objects will have its reference count 

incremented by the count of the shared object.

Summing reference counts is necessary since the m utator cannot deter­

mine if a re-shared object is already accessible from the heaps it is being 

shared with. An object's true reference count will lie between its current 

count and its summed count de[)endmg on how many heaps can access tha t 

object.

Since object reference counts may stay positive after they have become 

unreachable from all heaps, a separate mechanism will be needed to reclaim 

some objects and cycles (described in section 5.5.6).

5.5 .3  Invariants required for Inter-heap  GC

To place the following proofs into context, the invariants tha t Inter-heap GC 

must implement are summarized.

Shared objects contain a reference count which records the number of 

heaps that have access to them. However reference counts must be inherited 

from shared objects to unshared objects when they become shared. Addi­

tionally, objects which are become shared again by some means, must have
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their reference counts updated in a conservative manner.

Inter-heap GC must ensure th a t objects can only be reclaimed when 

they are unreachable from any heap. Hence, objects which are provable 

unaccessible from all heaps can be reclaimed.

Reference counts for objects must be summed rather than  incremented 

as any single heap will never possess an accurate global view of which heaps 

can access any object. In this view, unshared objects th a t will be shared 

have a reference count of zero.

The write barrier must capture the object whose reference is written into 

another heap along with all child objects reachable from it.

Base GCs must only reclaim formerly shared objects when their refer­

ence counts are zero or through another mechanism tha t shows an object is 

inaccessible from all heaps to ensure there are no space leaks.

P roofs

P rop osition  5.5.1 I f  a local object (A ) becomes shared when a shared object 

(B) is updated with a pointer to the local object (A), the newly shared object 

(A) must inherit the reference count o f the shared object (B).

P ro o f Let Hi,  H2, ..., be heaps in a program, let B be an empty mutable 

variable located in some heap and is accessible from all heaps and let A be 

unshared constant data  in one of the heaps.

Let R b  and R a be the reference counts of B and A.

The pointer to  A is copied into K heaps (K <  N) before the pointer to A 

in B is overwritten.

If R a is less than K, then a race condition exists between the heap hosting 

A and the other heaps. The heap hosting A will have to reclaim the space 

used by A whenever R a of the K heaps issue a decrement for R a - The other 

heaps will retain a pointer to A th a t is now invalid.
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If R a is equal to K, then A will be reclaimed whenever it becomes un­

reachable from the K heaps. However, in the general case, K cannot be 

determined ahead of time. Dynamically determining K requires: updating 

R c  when any thread obtains a pointer to C; and eliminating race conditions 

between updates of R c  and the reclamation of C.

Hence, R a must equal R b to avoid premature reclamation and to avoid 

introducing race conditions between incrementing R a and decrementing R a 

followed by A’s reclamation. |

C o ro lla ry  5.5.2 To prevent premature reclamation, every time an object 0  

with a non-zero reference count has a pointer to it written into another object 

S  that also has a non-zero reference count, R q must be updated to contain 

the sum of R q a.nd Rs-

S ketch  o f p ro o f  Consider the previous proof regarding the inheritance of 

reference counting extended with: another heap H i th a t does not have access 

to the mutable variable M; and another shared mutable variable J th a t is 

shared between H i  and some other heaps.

When a pointer to C is written into J after it is written into M, the value 

of R c  must be incremented with R j.

The reference counts must be summed for C for the same reasons that 

C must initially inherit the reference count of M: dynamically calculating its 

actual reference count cannot be done prartically and requires race condition 

handhng.

Hence, reference count summation is reciuired when an object made is 

accessible through multiple shared objects. |

P ro p o s itio n  5.5.3 Let H^, H \  be heaps in a program, let M  be an

empty mutable variable that is reachable from all heaps and let C be unshared 

constant data in some heap.
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I f  M  is updated with a pointer to C by a thread, and subsequently that 

pointer is copied and destroyed by a thread associated with a different heap, 

heaps that did not read from  or write to M  may never observe the change, 

resulting in an incorrect reference count fo r  C.

P ro o f  Let H \, H-i be heaps in a program, let be M an empty mutable 

variable tha t is reachable from all heaps and let C be constant data  in H \.

Let a thread associated with H\ update M with a pointer to C, such tha t 

R c  is set to R m -
When a thread associated with copies the pointer to  C from M and 

then overwrites the pointer to C in M before any thread associated with H2 

or its garbage collector can observe the change, C is at most accessible from 

Hi and i/3.

However, C will still have a reference count of three but is only reachable 

from at most two heaps.

Hence this system can create overestimated reference counts when objects 

are shared. |

P ro p o s itio n  5 .5.4 The Inter-heap GC write barrier ensures that updates to 

any object graph that is accessed through a pointer into a foreign heap do not 

cause subgraphs to be reclaimed without global consensus on their reachability.

P ro o f  Let H i, H2 be heaps in a program, let M and N be empty mutable 

variables in Hi and H2 respectively th a t are shared between the two heaps 

and let C and D be object graphs with a mix of mutable and constant data 

located in Hi and H2 respectively.

If M is updated with a pointer to C by a thread associated with H i , then 

C is traced out and all mutable objects in C any mutable objects they point 

to are added to the retain list.

Any updates to C by threads associated with Hi will not cause any object 

sub-graph to be lost as all sub-graphs pointed to by mutable objects have
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been recorded in tlie retain list and th a t the write barrier records overw ritten 

values into H i's  sequential store buffer.

Any updates to  C by th reads associated w ith H 2 will also not cause any 

ob jec t sub-graph to  become unreachable to  the  garbage collector as those 

sub-graphs are recorded in the  retain list and H \'s  sequential store buffer.

Hence this system  can create overestim ated reference counts when objects 

are shared. |

P r o p o s i t io n  5 .5 .5  A n  object O, referenced by the spurious retention table, 

can only be reclaimed when it is unreachable from  all heaps.

P r o o f  Let H i, H 2 , Hr^ be heaps in a program , let O be an  object located 

in some heap, let R q be O 's reference count, and let S R o ,  S U o  be O ’s stored 

reference count and reachability mask respectively in the spurious reten tion  

table.

W hen Ro  is first decremented, a pointer to  O is recorded in th e  spurious 

reten tion  table along with its new reference count, and it is then  m arked 

unreachable from the heap th a t lost access to O.

If O is unreachable from all heaps, then a reference to  O cannot be w ritten  

in to  another object because th is would cause R q to  become unequal to  S R q - 

In ter-heap GC will observe th a t R q  is ecjual to  S R o  as each heap perform s a 

collection cycle and SU q will be updated to reflect O ’s unreachability. W hen 

S U o  records th a t O is unreachable from all heaps, O can be reclaimed.

If O is unreachable from some heaps and references to  O are not subse­

quently  wTitten into another object, then O ’s accessibility is fixed. Therefore 

O will be retained despite R o  equaling S R o  since S U o  will record th a t  O is 

only reachable from some heaps.

However if 0  is unreachable from some heaps and references to  O are 

w ritten  into one or more shared objects, then R o  will differ from S R o  causing 

S U o  to  be reset. W henever R o  differs from S R o  during reference count
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modifications, SUo will be reset, preventing stale information from causing 
O’s reclamation.

Hence 0  can be reclaimed iff every heap performs a collection cycle while 
Ro equals SR q , with Rq remaining constant and with SUq recording the 
unreachability of O from all heaps. |

5.5.4 M utator m odifications

Programs start with a single thread associated with the initial heap. Addi­
tional threads created during execution are associated with the heap of their 
parent thread or with a newly created heap. The set of threads associated 
with a single heap is called a group. Programmers decide whether or not 
to create a new heap, rather than relying on some automatic mechanism to 
make the decision.

Each group has an associated structure that records the information for 
all threads in a group. This information includes GC control variables and 
the group’s remote store buffer. The remote store buffer is used in select 
circumstances described below.

All mutators make use of an additional Inter-heap GC-specific write bar­
rier along with each base GC’s dependent write barriers. This barrier records 
modifications to remotely accessible objects by recording overwritten pointers 
so that an object pointed-to by a destroyed reference will have its reference 
count correctly modified.

To ensure that portions of structures containing mutable variables are not 
inadvertently reclaimed, overwritten intra-heap pointers located in a remote 
object are saved to the hosting heap’s remote sequential store buffer. Each 
heap has an sequential store buffer to record references that are overwritten 
by non-local threads.

Regardless of the location of the pointed-to data, the barriers operate
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on pointers which are written into shared objects. Objects which are being 
made accessible have their reference count updated to the sum of their current 
reference count and the reference count of the object they are being written 
into. If the head of a data-structure containing mutable and constant data 
is to be written into a local shared object, then that data structure must be 
traced out and reachable mutable objects must have their reference counts 
updated along with the objects they point to and be added to the retain list 
along with the head of the structure.

The write barrier is uninterruptible by the garbage collector as the garbage 
collector can only be invoked before a mutator allocation.
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The following pseudo-code describes the write barrier for Inter-heap GC.

/ /  The write barrier updates object[fieldIndex] with pointer to 
/ /  targetObject and updates the Interheap GC metadata if 
/  /  required
p ro ced u re  WRlTEBARRlER(o6ject, fie ldlndex, targetObject) 

localHeap ■(— GetCurrentHeapID{)
I I  Get the id of the heap containing object to be updated 
remoteHeap ■<— HeaplDContaining{object) 
if object.rc > 0 th e n  

10: targetObject.rc targetObject.rc -I- object.rc

targetObject Is  Local ■(— HeapI DContaining{targetObject) =  localHeap 
if targetObject I  sLocal th e n

/ /  targetObject and its descendants are to be retained 
/ /  if it is local since it is about to become remotely accessible 
AddToCurrentRetainList{targetObject) 

end  if
/ /  Overwritten pointer to be saved to the relevant 
/ /  heap's sequential store buffer 

20: if remoteHeap =  localHeap th e n
LocalSSB  ■(— object[fieldIndex] 

else
remoteHeap[RemoteSSB] ■<— object[fieldIndex] 

end  if 
end  if

object[fieldIndex\ -f- targetObject 
end  p ro ced u re
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T he w rite barrier is a relatively simple piece of code. It first checks if the 

ob jec t which is to  be updated  is already shared by v irtue of having a positive 

reference count. If the  object is shared, the reference count for targetObject 

is updated  to  be the sum of targetObject's reference count and the  reference 

count of the object to be updated. targetObject and its descendants are then 

added to  the  current heap’s retain  list if they are local.

The value to  be overw ritten is stored in the local sequential store buffer 

if the  object is located in the local heap otherwise it is stored in the  rem ote 

h eap ’s sequential store buffer. The value is recorded to  ensure accurate com­

pu ta tio n  of the current and previous remote' livesets. Finally, the  field in 

question is updated.

68



5.5.5 W rite barrier exam ples

Retain List Local H e a p R e m o te  H e a p  Retain List

RC: 0 RC: X

Local SSB R e m o te  SSB

New v a lu e s  
RC: X --------- 1

Pre-ex is t ing  v a lu e s  S a v e d  v a lu e s  
RC: X ---------^  ^

Figure 5.5: Initial heap state

Figure 5.5 describes an example initial sta te  of two heaps for the following 

set of diagrams. Each heap possesses its own retain list and sequential store 

buffers, with the (presence of) letters representing symbolic addresses of ob­

jects referenced by the base and Inter-heap GC m etadata. For illustrative 

purposes a single object is shown in each heap with the local heap containing 

a local object and the remote heap containing a single remotely accessible 

object with a symbolic reference count of “X” .
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Retain  List Local H eap R e m o te  H e a p  Retain  List

IRC: 0 +  X RC: X

Local SSB R em ote  SSB

Pre-ex is t ing  v a lu e s  S av ed  values  
RC: X --------- ^  ^

New v a lu e s  
RC: X --------- 1

Figure 5.(i: A local object is made accessible.

This diagram shows the modifications (i)i red and blue) m ade by the 

write barrier when a pointer to a previously unshared local object is written 

into a remote object. The coloured arrows show' the  modifications by the 

write barrier; they are labeled sequentially. In order, the  object in the  local 

heap has its reference comit incremented by the count of the  remote object 

(1), the object is added to  the  local heap’s retain list (2), the  pointer to  be 

overwritten is saved to the  remote heap's sequential store buffer (3) and the 

remote object is updated  to poitit to the local object (4).
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Retain List Local H e a p R e m o te  H e a p  Retain  List

RC: Y +  X RC: X

Local SSB R e m o te  SSB

Pre-ex is t ing  v a lu e s  S a v e d  v a lu e s  

RC:X --------- ^  ^

New v a lu e s  

RC: +  X  1

Figure 5.7: A local object is made accessible a second time.

The modifications made by the write barrier when a local object is made 

accessible a second time are similar to the set of changes made when an object 

becomes accessible initially. The local object’s reference count is incremented 

by the count of the remote object (1), the pointer to be overwritten in the 

remote object is saved to th a t heap’s SSB (2) and finally the remote object 

is updated to point to the local object (3). The local heap’s retain list is not 

modified since the local object already possesses a positive reference count, 

and hence must already be on the retain list.
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Retain List Local H ea p R e m o te  H e a p  R eta in  List

RC: Y RC: X +  Y

Local SSB Rennote SSB

Pre-ex is t ing  v a lu e s  S a v e d  values 
RC:Y --------- ^  ^

New v a lu e s  
RC: +  Y  1

Figure 5.8: A local object is uj^dated with a po in ter to  a rem ote object.

Before an accessible m utal)le local object is upda ted  witli a pointer to  a 

rem ote object (3), its reference count i.s incremented by the  reference count of 

the local ob ject (1) and the  overwritten ]:)()inter is stored into the sequential 

store buffer of the heap th a t  contains the objf'ct (2).

5.5.6 Interheap GC reference count m odification

Inter-heap GC transform s the buffers of inter-heap references created  by base 

GCs into strictly  m onotonically increasing sequences^ of in ter-heap refer­

ences. Reference count deltas for the referenced objects are com puted us­

ing a m erge-sort form of iteration through the current and previous remote 

livesets. Inter-heap GC operates on the smaller elem ent of the  two sequences 

or on the  first conunon elem ent in both seciuences. Elem ents of the  two se- 

^The buffers are sorted and duplicate entries are eliminated.
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quences are logically discarded after the Inter-heap GC has computed the 

reference count delta for the referenced object.

To avoid spurious incrementing followed by decrementing modifications, 

objects referenced from both buffers will not have their reference counts mod­

ified. Whereas the count for objects referenced solely from the current re­

mote liveset will be incremented. Object references which occur solely in the 

previous remote liveset will be copied into a tem porary buffer^ so tha t decre­

ments can be applied after the increments. Any object whose reference count 

is decremented but remains live will be recorded in the spurious retention 

table.

At the end of a collection cycle, base GCs scan their retain lists removing 

objects with a reference count of zero. A structured object whose head has 

a reference count of zero will be traced out and any of its sub-structures 

with a positive reference count will be inserted into the relevant retain list. 

A spurious retention table is used by the Inter-heap collector to identify 

objects th a t are unreachable from all heaps, since objects may have a positive 

reference count preventing their reclamation but are unreachable from any 

heap. The table records sharing-related information about objects which may 

be spuriously retained. Each entry in the table is comprised of an object’s 

address, its reference count at the time the entry was last updated, a second 

reference count called the cyclic reference count, a colour field and a bitmask 

whose size corresponds to the number of heaps th a t the program has created 

(the unreachable-from bitmask). The cyclic reference count and colour are 

used for the reclamation of cross-heap cycles. The bitmask records the state 

of an object’s unreachable-from heap relations with the default state of the 

bitmask expressing tha t an object is reachable from all heaps.

All objects referenced through the spurious retention table have their 

unreachable-from bitmasks updated when a heap’s reference count modifica- 

^Or the previous remote liveset is rewritten in-place.
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tions are being applied. Every tim e an object’s unreachable-from  bitm ask  is 

to  be updated , its reference count is compared to  th e  reference count stored 

for it in the  table. If the  counts are equal the unreachable-from  b itm ask  is 

updated . O bjects w ith a  non-negative reference count de lta  are m arked as 

reachable and the  rest are marked as unreachable. O therw ise, the  b itm ask  

is reset and then updated  with the current unreachable-from  inform ation, 

and the  stored reference count in the table is u pda ted  to  the  o b jec t’s curren t 

reference count. Any object which is unreachable from all heaps will have 

its reference count set to  zero, allowing the owning base GC to reclaim  the 

object.

W hen all of a heap’s associated threads have term inated , a collection cycle 

is perform ed to  reclaim the  space used by any unshared objects. A heap th a t  

has no running th reads m ust have its retain list assigned to  another heap so 

th a t its shared objects can be reclaimed and the  inireachable-from  bitm asks 

can be updated  for unreachability with regards to the  dead heap.
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5.5.7 Spurious reference table reclam ation exam ple

Initial state 

Heap 1 Heap 2

Spurious Retention Table

Object RC Reachability Mask
Heap 1 Heap 2

A X Live Live
C Y Live Live
E Z Live Live

State 1

Heap 1 Heap 2

Spurious Retention Table

Object RC Reachability Mask
Heap Heap 2

A X Live Live
C Y Live Live
E Z Live Live

Legend

Destroyed pointer Live pointer Dead 0 X - 1

^  ^  Changed
Dead object Live object value

Figure 5.9: Initial heap state

The initial state in this figure shows an example of a application’s heap tha t 

is partitioned into two sections. Objects A, C and E with reference counts 

of X,Y,Z respectively are reachable from both heaps.

In state 1, the pointers to E from D and C have been destroyed by the 

m utators and so E is unreachable from both heaps. However, the spurious 

retention table records E as live so no amount of collections of heap two can
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reclaim  E provided heap one does not perform a collection cycle in the  m ean 

time.

S ta te  2

Heap 1 Heap 2

S))urious Retention Table

Object RC Reachabilitv KLisk
Heap 1 Heap 2

A X Live Live
C Y Live Live
E Z - 1 Dead Live

S ta te  3

Heap 1 Heap 2

Spurious R etention Table

O bject RC Reachability Mask
Heap Heap 2

A X Live Live
C Y Live Live
E 0 Dead Dead

Legend____________________________________________
—  ■>  ►

Destroyed pointer Live pointer Dead 0 X - 1

^  ^  Changed
Dead object Live object value

Figure 5.10: O bject E has died and the heaps have been collected

S ta te  two describes the spurious retention tab le  after the  collection of 

heap one. Values which have changed from the initial s ta te  are underlined 

in red. O bject E ’s reference count has l)een decrem ented by one and its 

reachability  m ask has been updated to  show' tha t it is inaccessible from heap 

one. T he th ird  s ta te  occurs after a collection of heap two. It shows th a t 

O bject E ’s reference count is reduced to zero as it reachability  m ask shows
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tha t it is unreachable from all heaps.

5.5.8 Cycle detection

The spurious retention table and the above outlined mechanism can reclaim 

cross heap non-cyclic da ta  structures but cannot reclaim dead cycles since 

the components of a cycle are kept alive by positive reference counts and 

reachability from other heaps. Cyclic structures are a known problem case 

for reference counting system s[52] [39]. For systems which use a single heap 

a back-up mark-sweep collector or specific cycle detector such as Bacon et 

al’s concurrent cycle detector[9] can be used to reclaim unreachable cyclic 

structures. A mark-sweep collector cannot be used without requiring global 

synchronization to pause all threads. A novel, Inter-heap GC specific method 

is presented to deal with unreachable cross heap cyclic stuctures.

D etectio n  o f possib le cycle  com ponents

A heap potentially contains components of a dead cycle when it has objects 

with positive reference counts, which are locally unreachable but remotely 

reachable and whose transitive closure within tha t heap contains pointers to 

objects in other heaps. Objects which have these properties are herein called 

potential cycle component objects or PCC  objects for short.

The base GCs perform a two-phase heap scan during their collection 

cycles to identify cycle components th a t can be potentially reclaimed. The 

first phase traces out objects in the heap from the roots as normal without 

any reference to the retain list. Any local object th a t has a reference count 

discovered during this phase has an increment issued for it and is added to 

the retain list if necessary. The second phase traces out the heap with only 

the unvisited elements of the retain list as the source of roots enabling base 

GCs to determine the existence of PCC  objects.
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Notably, this two-phase approach to tracing delivers a higher standard 
of cycle component identification compared to canonical reference counting 
systems due to greater liveness information since PCC  objects are either 
members of a (dead) cycle or are members of a non-cyclic cross-heap struc­
ture. In contrast, canonical reference counting systems must consider any 
object which possess a non-zero reference count after decrementing as a pos­
sible member of a cycle. Both systems can statically reject some objects as 
components of a cycle if their types are acyclic.

C ycle reclam ation

Inter-heap GC attempts cycle reclamation when tŵ o heaps report the exis­
tence of PCC  objects in their heap. The method used to reclaim cycles is 
a variation of Bacon et al's concurrent cycle detector[9] with modifications, 
relying on trial decrementing to determine if objects are kept alive by be­
ing part of a cycle and to determine if they have external references. The 
cycle reclamation mechanism uses the reachability masks for computing ac­
curate reference counts. This would normally be inaccurate as well but since 
garbage exhibits stability—it cannot be modified and its reachability masks 
eventually describe precisely what heaps “reference” a particular garbage 
object true reference counts can be computed from an object’s reachability 
mask.

Cycle reclamation is broken down into two phases: discovery and marking; 
testing and reclamation. Each phase itself is broken down into two sub­
phases. The Inter-heap GC only paints and modifies the second reference 
count (described later) of objects which already have reference counts as 
there may be multiple links of a cycle within a single heap.

The Inter-heap GC signals the base GCs u.sing a phase variable to perform 
phase dependent actions. Phase transitions occur when phase-dependent 
conditions are met; discovery and marking occurs when tw'o or more heaps
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observe that they possess PCC  objects; transition to testing and reclamation 
occurs when all base GCs have performed at least one collection cycle after 
the appropriate time.

Suprious retention Heap 1 Heap 2

Heap 4 Heap 3

Figure 5.5.8 shows four objects forming a cycle through four heaps. This 
diagram will be used in a running example of the Bacon et al’s cycle detector 
modified to w'ork with Inter-heap GC. It is a simple example of a circular 
object graph with no objects being pointed to by the components of the 
cycle.

The discovery and marking phase requires that all base GCs inform the 
Inter-heap GC their PCC  objects, which are painted purple treating them 
as potential cycle components. Locally accessible reference counted objects 
and locally reachably foreign objects are painted black. Once all base GCs 
have marked their PCC  objects, the marking sub-phase begins. The spurious 
retention table is scanned and all objects that are purple and have a positive 
reference count are added to a specialized roots buffer.
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Suprious retention 
table

Heap 1

| A i
B 1
C 1

_L

Roots buffer

A
B
C
D

Heap 4

Heap 2

f
^ 1

Heap 3

The Inter-heap GC iterates through th(> mots buffer j)ainting purple ob­

jects grey and initializes Iht'ir cycli<" lefeVPUce counts (CRCs) to the  number 

of heaps tha t  have access to that object. Figure 5.5.8 shows the  cyclic refer­

ence counts written into the spurious retention table and the entries coloured 

])urj)le. Then a depth-first traversal is ])erfonned from any object th a t  has 

been painted grey, marking any objects found grey and initializing their cyclic 

reference counts. If a grey object is encountered during traversal, its cyclic 

reference count is decremented.
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Suprious retention 
tab le

Heap 1

A 0
B 0
C 0
D 0

Roots buffer

A
B
C
D

A

D

Heap 4

Heap 2

B

Heap 3

C 1

Figure 5.5.8 shows the results of the  greying step  and decrem ented CRCs 

in the  spurious retention table.

Once all roots have been processed, the buffer is iterated  through a second 

tim e and all grey items w ith a CRC of zero are coloured white, otherwise the 

object and those reachable from it are painted  black. This transform ation is 

applied to  the  descendants of grey objects.

The roots buffer is scanned again and each w hite object is coloured orange 

and added to  a cycle buffer which will reference all objects belonging to  a 

cyclic structure . W hite objects reachable from an object which has been 

painted  orange are added to  the  sam e buffer. Non-white objects are ignored. 

After all objects reachable from the  root have been processed, the cycle buffer 

is added to  the global set of cycle buffers. Non-white item s are removed from 

the  roots buffer.
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Spurious retention 
table

A 0
B 0
C 0
D 0

Roots buffer

Cycle Buffer

Heap 1

D 1

Heaj) 4

Heap 2

Heap 3

B 1

C 1

I

C

Figure 5.5.8 skij)s showing grey to white transition  and shows the  com­

ponents of the  cycle coloured orange.

Tlie Inter-heap GC then  performs sigma-j)reparation which comprises of 

ite rating  through the  set of cycle buffers and for each one, colouring all of 

its objects red and setting  their CRCs to the. num ber of heaps which have 

access to  them . The num ber of external references is then  com puted by 

decrem enting the  CRC of any red object th a t is pointed to  by ano ther red 

object. All red objects are then recoloured orange.
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Spurious retention 
table

Heap 1

A 1
B 1
C 1
D 1

Roots buffer

Cycle Buffer

A
B
C
D

D 1

Heap 4

Heap 2

B 1

Heap 3

Figure 5.5.8 shows all components of the cycle coloured red with their 

CRC set to the number of heaps th a t have access to them.
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Spurious retention Heap 1 
table

A 0
B 0
C 0
D 0

Roots bufTer

A 1

D 1

Heap 2

B 1

C 1

Cycle Buffer
Heap 4 Heap 3

Figure 5.11: Cycle detection exam ple

Figure 5.11 shows the s ta te  of the CRC and object colouring prior to  the 

delta test.

The Inter-heap GC collector waits for all base GCs to  perform  a t least one 

cycle after the  last cycle has undergone stgma-preparation, then  it traverses 

the  set of cycle buffers from the most recently added to  the  first. T he delta 

tes t processes each cycle buffer in the set, exam ining them  to  see if any 

com ponent object has had its reference count increm ented and thus been 

recoloured black since the  last stgma-preparat7on. If a cycle has not had any 

of its com ponents coloured black and the sigma tes t which com putes the 

sum  of the CRC counts in th a t cycle is zero, the  objects in the  cycle can be
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reclaimed. If the cycle is not reclaimed its objects are coloured purple and 

re-added to the roots buffer.

Reclamation is performed by colouring each object in a cycle red. Or­

ange objects reachable from objects in a cycle buffer have both of their counts 

decremented. Otherwise a decrement is issued for them. Objects tha t com­

prise the cycle have their reference counts set to zero and have their spurious 

retention table entries deleted, allowing the base GCs to reclaim them.
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5.6 D escription of Interheap G C ’s im plem en­

tation

Tlie following diagram s outline graphically how the  In terheap GC updates 

the  spurious retention table and the reference counts of objects referenced. 

T he m odifications th a t  are to  be made depend on which set of buffers refer­

ence an object.

A B C D E F G

Spurious

retention table

Increm ents □ □ □ □
Decrements □ □ □ □

Figure 5.12: Inter-heap GC  reference count buffers and m etadata

Figure 5.12 shows an example case with a small num ber of decrem ents, 

increm ents and some m atching SRT entries. The SRT entries are shown as 

grey dashed boxed and are colotu’ed in the following diagram s as they are 

processed. Segm ents of the diagram containing a com bination of increm ents, 

decrem ents and spurious retention table entries are labelled from A to G.
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A B C D E F G
Spurious 

retention table

Increments

Decrements

Reference count 
modification

□
□ □ □ □

□ □ □ □
+ +

SRT modification legend

□ □
Unchanged New Reachable Unreachable No matching

entry

Figure 5.13; Inter-heap GC reference count buffers and m etadata

The above diagram shows how segment A is processed. The spurious 

retention table is unaltered since there is no corresponding entry and the 

reference count of object referenced by segment A is incremented. Segment 

B has a reference to an object tha t in both the SRT and increment buffer. 

Since the object is referenced by the SRT and the increments buffer, the SRT 

entry is marked as reachable. Additionally, the reference count of the object 

is incremented.
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A B C D E F G
Spurious

retention table □
Increments □ □ □ □
Decrements □ □ □ □
Reference count
modification + +

SRT modification legend□□ L“i
Unprocessed New R('achable Um'eachable No matching

entry

Figure 5.14: Iiiter-heap GC reference count buffers and m etadata

The objects referenced in segments C and D have their counts decre­

mented as they are only referenced from the decretnents anti spurious reten­

tion table. The entries in the SRT for the objects in segments C and D are 

marked as unreachable, since the heap which generated the increments and 

decrements cannot access those objects.



A B C D E F G
Spurious
retention table □ □ □
Increments □ □ □ □
Decrements □ □ □ □
Reference count
modification + + — — 0 0

SRT modification legend□□

'/i
Unprocessed New Reachable Unreachable No matching

entry

Figure 5.15: Inter-heap GC reference count buflFers and m etadata

Segments E and F reference the same objects in both the increment and 

decrement buffers. When this situation occurs the referenced objects do 

not have their reference counts modified. Their SRT entries are marked as 

reachable as those objects are still reachable from the heap th a t generated 

the reference count deltas.
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A B C D E F G

Spurious 

retention table □ □ □
Increm ents □ □ □ □
Decrem ents □ □ □ □
Reference count 
modification + + — — 0 0 0

SRT inoclification legend

□ □
Unprocessed New Reachable Unreachable No m atching

entry

Figure 5.16: Inter-heap GC reference count buffers and m etad a ta

The object referenced from the spurious retention table in segm ent G does 

not have any m atching increm ents or decrem ents and therefore is m arked as 

unreachable from the  heaj) from which the increm ents and decrem ents are 

drawn.
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5.6.1 Pseudo code

The following pseudo code procedures outline the algorithms used by the 

Inter-heap GC to apply reference count modifications and reclaim unreach­

able objects. The U pdateO bjectRC’s procedure applies the reference count 

modifications to a set of objects found in the increment and decrement buffers 

and drives the updating of reachability masks. The UpdateUnreachableMask 

procedure updates an object’s reachability mask and enables unreachable ob­

jects to be reclaimed.

/ /  This is the high level procedure tha t performs the work of 

/ /  Interheap GC.

p ro c e d u re  In t e r h e a p G C { R C D e l t a P i p e )

PCCHeaps  •<— newBooleanSet{)

S R T  ^  new SR Ti )  

r e p e a t

R C  DeltaPipe .BlockU nt i lNot E riipfy{)

RCDelta ^  R.CDeltaPipe.Head{)

HeapID <— R C  Delta. H  eapi D 

10: PCCHeaps[HeapID] ^  RCD el ta .P CCHeap

if CountTrue{PCCHeaps)  > 2 th e n  

StartCydeDetector {PCCHeaps)  

e n d  if

Incs  <r- R C  Delta. increments  

Decs R C  Delta. increments  

UpdateObjectRCs{Incs, Decs, SRT ,  HeapID)  

u n til Shutdown  

en d  p ro c e d u re

The above procedure describes how Interheap GC operates. Interheap GC 

initializes the spurious retention table, then waits on a shared pipe where it
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receives reference count delta structures from each GC at the end of their 
collection cycles. These structures contain the addresses of all objects whose 
counts are to be incremented and/or decremented. First, the set of heaps 
that containing PCC objects is updated and if a cycle can exist the cycle 
detector is started. In either case, the set of decrements and increments is 
applied as described below.
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/ /  This procedure modifies the reference counts and reachability masks 
/ /  for the objects pointed to by the increment, decrement buff^ers 
/ /  and the SRT
procedure UPDATEOBJECTRCs(mcremen^s, decrements, S R T ,  heapid) 

/  /  The increments and decrements buffers contain the addresses of 
/ /  objects to be incremented and decremented respectively 
/ /  SRT is the spurious retention table and heapid is the unique id 
/ /  assigned to the heap from where the increments and decrements 
/ /  are generated

10:

/ /  Symbohc constants for expressing reachability 
Reachable ■«— 0 

Unreachable •<— 1

/ /  delayedDecrements is used to perform the decrements after 
/ /  increments, and the SRTIterator is used to walk through the 
/ /  spurious retention table 
delayedDecrements  •(— N ew A d d re ssB u f fe r { )

S R T Ite ra to r  <— SR T . N ew  Iterator {SRT. start)

/ /  The following loop applies all increments unless there is a 
20: / /  matching decrement, and it saves unmatched decrements for

/ /  later application
for each increm ent  in  increments  do

if decrement s. E m p ty  0  th en

increment.rc increment.ro  +  1

SRT.UpdateUnreachableMask{increment, heapid, Reachable) 

for each obj in  increments  do 

obj.rc <— obj.re +  1

SRT.UpdateUnreachableMask{inc, heapid. Reachable)
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30: en d  for

/ /  Break out of the for loop that appHes increments 

b reak  

e lse

w h ile  decrement s. f i r s t  < increment do  

delay edDecrements.add{decrem.ents. f i r s t )  

decrement s.pop{) 

en d  w h ile  

en d  if

/ /  Mark all objects whose address is less than the current 

40: / /  object in the increment buffer as unreachable

w h ile  S  R T  I  ter at or. cur r ent < increment d o

SRT.UpdateUnreachableMask{SRTIterator.current, heapid, Unreachable) 

S R T  Iterator.next{) 

en d  w h ile

I I  increm enl  is either equal to or less than the next decrement.

/ / I n  either case, the object is reachable from heapid  

SRT.UpdateU nreachable M ask {increment, heapid. Reachable) 

if  increm ent = decrement s. f i r s t  th e n

/ /  No reference count modification necessary 

50: decrements.pop{)

e lse

/ /  The object is only referenced from the increment buffer, so 

/ /  increment its reference count 

increment.rc increment.rc  +  1 

en d  if  

en d  for

/  /  Add any remaining decrements to the delayed decrements buffer 

delayedDecrements.multiadd{decrements)
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60 : / /  Mark all other objects referenced from the SRT as unreachable,
w hile S  R T  Iterator.current < S R T  Iterator.end do

SRT.UpdateUnreachableMask{SRTIterator.current, heapid, Unreachable) 
S R T  Iterator.nextQ  

end  w hile

/ /  Apply all decrements, 
for each dec in  delayedDecrements do 

dec.rc ■«— dec.rc — 1 
if dec.rc > 0 th e n  

70: SRT.add{dec)
end  if
SRT.UpdateUnreachableMask{dec, heapId, Unreachable) 

end  for 
end  p rocedure

UpdateObjectRCs consists of two major parts: a selection mechanism 
for positive reference count modifications; and performing decrements and 
marking remaining objects as unreachable. The first part covering lines 22 
to 57 attempts to match increments to corresponding decrements. Lines 24 to 
31 apply all increments and mark objects as reachable from the current heap 
provided there are no decrements to be applied. Otherwise as all decrements 
up to the first increment at are stored in a buffer for later application (lines 
33 - 38). All objects referenced by the spurious retention table up to the first 
increment are marked inaccessible from the current heap (lines 41-45).

The current increment is then compared the first decrement and if it 
matches, no reference count is modified, otherwise the object referenced by 
the increment buffer has its reference count incremented. In both cases the 
object referenced by increment is marked as reachable from the current heap
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on the spurious retention table. Once all increments have been processed, 
any remaining decrements are added to the delayed decrements buffer (line 

59).
The second part consists of two parts: lines 61 to 65 which mark all other 

objects referenced by the spurious retention table as inaccessible and lines 
67 to 73 which apply all the decrements which didn’t have a corresponding 
increment and mark the referenced object as unreachable from the spurious 

retention table.
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/ /  Update the unreachable mask for an object, potentially 

/ /  allowing it to be reclaimed.

procedure UPDATEUNREACHABLEM ASK(o6jerf, heapld, isReachable?)

/ /  heapld: unique id assigned to the heap from which 

/ /  the increments and decrements are generated 

/ /  Spurious reference table (SRT) is implicitly in scope 

/ /  The SRT references objects whose reference counts have 

/ /  been decremented, 

if  object in S R T  th en  

10: / /  An object’s unreachable mask is updated provided its current

/ /  reference count is equal to or one less than its stored 

/ /  reference count. If it is one less than the stored reference 

/ / i t  has just become unreachable from a heap.

BecameUnreachable i -  object.rc — 1 =  SRT[object].rc 

if  object.rc = SRT[object].rc || BecameU nreachable then  

SRT\ohjeci\.unreachableMask\heapld\ •<— isReachable 

SRT[object].rc 4-  object.rc

O bjectlsDead  ■<— SRT[object].unreachableMask =  SRT.deadObjectM ask  

if  O bjectlsDead  th en  

20: object.rc •<— 0

S R T .R em o veE n try  (object) 

end if  

else

/ / A s  the reference counts are different for the object, so the 

/ /  previously stored unreachability information is invalid. 

new M ask  -f- SRT.liveO bjectM ask  

newMask[heapld] isReachable

SRT[object].unreachableMask  ■<— new M ask  

SRT[object].rc object.rc
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30: end if
end if 

end procedure

UpdateUnreachableMask is a simple procedure th a t updates an object’s 

unreachable mask depending on the relationship between the objects refer­

ence count, the stored reference count and whether it is reachable from the 

heap which the update is coming from.

If the object’s reference count matches or is one less than its stored ref­

erence count, the corresponding unreachable mask is updated. Furthermore, 

the object’s unreachable is checked to see if it has become unreachable from 

all heaps. If so, the object’s reference count is set to zero and the object is 

removed from the SRT.

If the stored referenced count is otherwise different, it is presumed tha t 

the object has undergone a more drastic change in reachability and hence the 

unreachable mask is wiped so tha t it shows all heaps can access the object.

5.7 Im plem entation

The implementation of Inter-heap GC for .JHC is structured in the following 

way:

5.7.1 W rite barrier

The m utator is modified at compile time by inserting calls to a write barrier 

routine so tha t when a cross heap reference is created, the local object is 

added to the retain list and the local object’s reference count is updated 

when updating a remote object with a local object reference. The write 

barrier when modif}'ing any type of mutable \'ariable in Haskell such as MVars 

(mutable thread-safe variables), 10 references, mutable arrays and updating
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thunks with results.

5.7.2 Objects

4 bits 11 bits 1 bit 16 bits

Evaluation Sentinel Reference Count Retain flag Type and tag

Figure 5.17: Object header

Both JHC’s compiler and it’s runtime system use a single 32-bit machine 
word for an object’s header. Figure 5.17 shows its division into: a nibble (four 
bits) for a sentinel value for thunks undergoing evaluation; eleven bits for a 
reference count; one bit recording if the object is recorded on a retain hst; and 
two bytes for an object’s type and tag bits. The size reserved for an object’s 
reference count field allows a maximum of 2047 references before requiring 
additional logic for handling reference count overflows. This additional logic 
would take the form of sticky reference counts—counts that stay at their 
maximum value when reached and are not incremented or decremented until 
specifically corrected.

5.7.3 Groups

JHC’s runtime system exposes heap division by letting the programmer di­
vide threads into groups. Before performing any mutator work, threads are 

associated with a single group and all threads in a group share a single heap 
section. Each thread in a group creates and retains a group member struc­
ture which contains (multi)sets of references to a thread’s remotely accessible 
objects {retain list), along with pointers to remote objects accessible from 
local objects found during the current and previous collection cycles.
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A single param eter is used when creating a group— the type of GC tha t 

it will use (stop-the-world or concurrent). Creating a group wdth a concur­

rent collector also initiahzes its concurrent collection thread. Each group 

maintains a data-structure which contains: its serial number; GC state and 

control values; a sub-structure indexing threads belonging to th a t group; and 

sub-structures indexing objects tha t have associated finalizers, and indexing 

objects tha t are explicitly retained for use in foreign function calls.

5.7.4 H eap

JH C ’s runtime system maintains a pool of Inimix blocks for storage. A 

block’s m etadata records the serial number of its associated group- empty 

blocks use a sentinel value for this. Base GCs dissociate any empty blocks 

from their group during sweeping, whereas partially filled blocks retain their 

association and can be used by any of th(  ̂ group’s threads. The base GCs 

can claim empty blocks for their groups duriiig allocation.

5.7.5 C ollection  w ithin  a group

Collection of a group's storage is triggered when the amount free space in 

th a t group’s blocks along with the space available in unassociated blocks 

falls below a specified threshold. The local GC state and control variables 

are manipulated to start a collection cycle.

Collection proceeds as described above (4.2.6) but objects tha t are located 

in a different group’s blocks are neither marked nor examined. Instead, 

references to such objects are simply added to a th read’s current remote 

liveset. Any object found during a collection tha t possess a positive reference 

coimt is added to the retain list. After collection the current remote liveset 

and previous remote liveset are passed to the Interheap GC and the previous 

remote liveset logically discarded while the current remote liveset becomes
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the previous remote liveset.

The last objects to be scanned are the dead elements in the retain list 

after noting the current size of the current remote liveset. If it increases, then 

the heap contains PCC  objects which will cause the Interheap collector to 

start the cycle detector when it processes the current and previous remote 

livesets.

Finally, the GC iterates through each thread’s retain list. Objects refer­

enced by the list are examined and if their reference count are zero, they are 

removed. If entries in the list have been removed or duplicate entries found, 

the list is compacted and its size field is updated. Decrements are enqueued 

for unreachable local objects.

However, objects tha t have a reference count of one remain on a retain 

list—an implementation choice based on two premises: it simplifies retain list 

operations; and objects tha t were remotely accessible in the past are likely 

to become accessible again. This removes the need for cross heap allocation 

calls to move objects that can only be accessed remotely but in this case 

the heap sections involved will have incorrectly counted space usage which 

may cause more collection cycles than expected. For local objects which 

were remotely accessible, the space and time costs are superfluous entries on 

a retain list^ and a delay in reclaiming their storage space if they become 

unreachable.

5.7 .6  In ter-heap  G C im p lem en tation

The Interheap GC operates on a separate thread, receiving buffers containing 

previous and current remote livesets with their associated heap ids. These 

buffers are sorted into sets of ascending object addresses. The buffers and 

spurious retention table are then iterated through as described in the pseudo 

®The space cost is just over a word per object.
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code above.

5.8 Sketch im plem entation of an increm ental 

collector

The implementation of inter-heap GC for concurrent and stop-the-world col­
lectors was judged sufficient to show that inter-heap GC does not rely on 
stop-the-world behavior, and hence an incremental collector was not built 
for JHC. For completeness the modifications required for an incremental col­
lector design are described below so that it can be extended to operate with 
inter-heap GC.

An incremental collector is one which divides a processor’s time between 
garbage collection and mutator work by an some implementation dependent 
ratio. This generally takes the form of examining M  words when marking 
for every N  words of allocation (and a ratio of a similar form for sweep­
ing/copying). An incremental collector using multiple CPUs can be built 
to operate concurrently or with stop-the-world behavior. A stop-the-world, 
parallel incremental collector would need all CPUs to synchronize before 
performing collection work. A concurrent parallel collector has no need for 
an initial synchronization step since it only require synchronization for the 
manipulation of GC related structures.

Several modifications and design decisions must be made to an incremen­
tal collector to enable it to work with inter-heap GC. The collector’s write 
barrier must be extended to record the writing of local references to remote 
objects. The designer must decide on the ratio of GC to mutator work for 
marking and sweeping as normal. The inter-heap GC to mutator work ratio 

may be difficult to balance since it uses atomic compare-and-swap instruc­
tions to set the reference counts. These instructions can take a variable
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amount of time depending on where the cache lines associated with objects 
are currently located—either in memory or another processor’s cache. The 
ratio of mutator to inter-heap GC work can be decided by taking the me­
dian execution time of such instructions (ignoring their time variability), or 
by structuring the incremental collector to operate on a time-based schedule 
similar to IBM’s Metronome collector[8].
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Chapter 6 

Evaluation and experim ents

To evaluate garbage collection (GC) based on heap division, several mea­

surements can be taken no m atter what type of program is used for testing:

• Collection cycle time

• Overall memory usage

• Time costs for each part of the collection cycle

The characteristics of inter-heap garbage collection should be visible un­

der a variety of experiments. The results should show a difference in collection 

time based on the number of shared objects and communication patterns.

The partitioned heap mechanism should result in more collection cycles 

since the m utators will have initially smaller heaps. These smaller heaps 

will trigger the collectors to expand a partitioned heap with respect to the 

memory available: blocks tha t are part of that heap and those tha t belong 

to no heap.

A system which uses heap division is expected to have lower collection 

cycle times in comparison to a system that treats the heap as single unit. 

This is because the allocation beha^'ior in one heap section will not cause 

another section to be collected.
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However overall memory usage is expected to be slightly higher because a 
single heap section may go without collection for a longer period than would 
be the case for a system without heap division.

Time costs for each part of a collection cycle can tell us how long the 
inter-heap GC specific work takes.

To evaluate the benefits of GC based on heap division over schemes which 
do not divide the heap, it is necessary to modify applications to use heap 
division using an appropriate policy based on the applications’s memory 
allocation rate and access patterns.

6.1 M easurem ents

Results were generated on a factory-fresh Mac Pro^ with a quad-core Intel(R) 
Xeon(R) CPU E5-1620 clocked at 3.70GHz with two logical processors per 
core, 10 MB of CPU cache with 12 GB of RAM, running OS X Mavericks. 
DTrace was used to record data from multiple runs of the same program with 
and without heap partitioning. The results are drawn from the fastest of five 
runs and show relative performance of programs not using heap partitioning.

Eight programs drawn from the nofib benchmark suite[55] were chosen 
based on their ease of parallelization and successful compilation and execu­
tion. The parallelization was generally done by inserting forklO  or forkNew- 
Group at the most practical looking point closest to the main entry point. No 
substantial efforts were undertaken to achieve optimal levels of loading bal­
ancing unless a program by end of testing, had by inspection, had a lopsided 
allocation pattern.

blackscholes An implementation of the Black-scholes algorithm for finan­
cial contracts.

^MacPro6,l model
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nbody A program which calculates the forces due to gravity of a number of 

bodies in a three dimensional space.

parfib  A parallel implementation of the nfib program which calculates its 

result in parallel.

p a r tre e  Constructs a tree where each node has an expensive computation, 

then the entire tree is evaluated in parallel.

p rsa  Encodes information using RSA in parallel.

ray A ray-tracer for a simple fixed scene.

coins Computes for a sum of money the list of ways it can be created with 

a set of coins.

m in m ax  A program to find the best move in a four by four game of noughts 

and crosses using an aipha-beta search tree.

Each program uses at least three m utator threads and is benchmarked 

with a single threaded stop the world collector and single threaded concurrent 

collector in separate tests. The concurrent collector operates on a per-group 

basis. A concurrent collection cycle begins when the free space available 

within a partitioned heap and unassociated blocks reaches three tenths of 

the total heap size. Heap expansion adds unassociated blocks to the heap. 

The results presented here are the average of ten runs of a program and 

compare a partitioned run to a non-partitioned run. Garbage collection time 

does not include write barrier execution.

Time is measured from just before the compiled Haskell code starts run­

ning and ends after the main Haskell thread has finished and all threads are 

marked as finished. Memory usage is measured as the maximum heap size 

of the program. The time taken measurement is by wall-clock time, whereas

106



the time spend collecting garbage is measured by time spent on the CPU of 
thread performing garbage collection.

6.2 Shared object counts

P ro g ram C o n cu rren t collector ST W  collector

blackscholes 0.0041% 0.40%
coins 0.00005% 0.001%
minmax 0.0012% 0.0013%
nbody 0.003% 0.0047%
partree 0.009% 0.0099%
prsa 3.04% 16.16%
ray 1.46% 2.58%
sumeuler 0.0012% 0.20%

Figure 6.1: Average percentage of allocated objects which are shared

Figure 6.2 shows the average count of objects shared between two or more 
heap sections. Notably, the stop the world collector shares more objects than 
the concurrent collector.

6.3 Com parisons of Interheap GC to a con­

current collector

The following tables show the relative performance of Interheap GC com­
pared to a stock concurrent collector. All results are gathered using DTrace 

to collect time data and the runtime itself records the maximum heap size 
and number of collection cycles. All results are expressed as normalized 
difference of Interheap GC performance to the stock concurrent collector.
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Program Relative runtime difference
blackscholes 0.54

coins 1.33

minmax 0.36

nbody 0.53

partree 0.87

prsa 1.18

ray 1.62

sumeuler 1.03

Minimum 0.36

Maximum 1.62

Geometric mean 0.84

Figure 6.2: Relative runtimes

This group of tests shows half the programs run faster than  their non-heap 

partitioned counterparts. Overall the programs running time tend towards 

84% of their non-partitioned counter})arts.
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Program Relative total collection tim e

blackscholes 0.43

coins 1.27

minmax 0.92

nbody 0.50

partree 1.08

prsa 1.48

ray 8.22

sumeuler 0.94

Minimum 0.43

Maximum 8.22

Geometric mean 1.15

Figure 6.3: Relative to tal garbage collection time

Overall these results show th a t half of the programs spend less time col­

lecting garbage than their non-partitioned counterparts, ray, coins and prsa 

are the outliers here, managing to spend over eight times and one and a 

half times the time collecting garbage of their non-partitioned counterparts. 

Notably, although the increase in garbage collection time for those two pro­

grams is much higher, their running times are not as disproportionally high. 

pariree spends more time collecting garbage but has a lower running time 

tha t its non-partitioned counterpart.
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Program Relative collection cycle count

blackscholes 1.53

coins 1.20

minmax 2.79

nbody 6.18

partree 4.73

prsa 1.8

ray 6.25

sumeuler 3.2

Minimum 1.20

Maximum 6.25

Geometric mean 2.93

Figure 6.4: Number of collection cycles relative to non-partitioned run

As expected, collection cycles are more frequent under this system since 

the available heap is divided into multiple sections and a collection cycle 

starts when the free space available in the union of a group’s space and 

unassociated blocks falls below a threshold. Collection cycles as a result are 

more frequent.
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P ro g ra m R e la tiv e  m e m o ry  usage

blackscholes 0.95

coins 1.0

minmax 0.80

nbod}' 0.53

partree 0.70

prsa 0.67

ray 0.59

sumeuler 1.0

Minimum 0.53

Maximum 1.0

Geometric mean 0.76

Figure 6.5: Memory usage compared to non-partitioned run

All programs performed their tasks in an approximately equal or less 

space than their non-partitioned counterparts. Notably, ray and prsa have 

executed their task in less space but taking more more time, coins on the 

other hand took the same amount of space while taking more time.
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6.3.1 Stability of concurrent collector results

P ro g ra m R e la tiv e  s ta n d a rd  dev ia tio n

blackscholes 4.92

coins 1.66

minmax 10.4

nbody 2.37

partree 12.2

prsa 6.74

ray 2.64

sumeuler 5.34

Figure 6.6: Relative standard deviation of wail clock times

The table above shows the relative standard deviation compared to the base- 

Une standard deviations of the running times of the test programs. It shows 

tha t all programs except for partree, minmax and partree experience a small 

increased in their variability of their running times.This shows the approxi­

mate stability of the time results presented above.

6.3.2 D iscussion

Several programs have displayed notable results, ray has notably performed 

its task within 162% of the non-partitioned counterpart with 60% of the 

space usage and over eight times the time spent collecting garbage. This can 

be attributed to its characteristic of having large amounts of intermediate 

data from calculating ray intersections with a relatively small heap for each 

thread. Since each collection cycle are more frequent, enough garbage is 

collected to slow down the expansion of the heap, prsa performed similarly, 

taking a 20% longer than the time of the non-partitioned run.
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coins displays some interesting overall results. It has the smallest amount 
of shared objects yet takes more time than the non-partitioned version. Fur­
ther examination of the raw data shows that the collection cycles are longer 
due to fixed processing in the Interheap GC processing at the base heap end.

Program Configuration Minimum Standard deviation Average Maximum

coins groups 1900 5424.99 11394 70700
coins one group 3500 3266.93 8930 38150
ray groups 950 13736.07 20691 96600
ray one group 5700 9047.73 14924 65600
prsa groups 2900 105333.43 135752 419900
prsa one group 11250 206855.96 143705 605100

Figure 6.7; Statistical analysis of the wall clock length of collection cycles in 
nanoseconds

As can be seen above, the programs which ran slower than their non­
partitioned counter parts experienced on average more variable and longer 
lasting collection cycles. Although some of these collection cycles overlap 
between partitions, the overlap is determined by allocation rates and load 
balancing between the active mutation threads in a heap partition.

6.4 Com parisons of Interheap GC to a stop- 

the-w orld collector

As before, results were generated using DTrace and a combination of tools. 
The results presented are drawn from the average of ten runs. The programs 
used are the same as those used for the concurrent collector tests. This set 
of experiments uses a stop-the-world collector to examine the performance 
of Inter heap GC.
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Program Relative run times

blackscholes 1.02

coins 1.38

minmax 0.12

nbody 0.82

partree 0.53

prsa 1.97

ray 1.15

sumeuler 1.58

Minimum 0.12

Maximum 1.97

Geometric mean 0.85

Figure 6.8: Relative run times

The stop-the-world collector runtimes are broadly similar to the concur­

rent collector with the exception of coins, pr sa. ray and sumeuler, all other 

programs run in approximately or less time than the non-partitioned coun- 

terpards. prsa and sum.euler are the major outhers, taking over one and a 

half times to finish their task. Those programs suffer badly as results depend 

on threads in separate sections finishing their ahotted task as other threads 

as waiting for those results.
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Program R elative  co llection  tim e

blackscholes 0.80
coins 1.37
minmax 0.75
nbody 0.31
partree 0.27
prsa 2.00
ray 1.54
sumeuler 4.64

Minimum 0.27
Maximum 4.64
Geometric mean 1.00

Figure 6.9: Relative total garbage collection time

The stop-the-world collector broadly follows the results of the concurrent 
collector and takes less time collecting garbage for half of the runs, sumeuler 
sees a significant increase in time spent collecting garbage, whole prsa and 
ray are high as the concurrent collector results, sumeuler sees a significant 
increase in garbage collection time, while partree sees a significant drop in 
comparison to the concurrent collector.
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P ro g ram R elative  cycle count

blackscholes 2.1
coins 1.22
minmax 2.46
nbody 4.61
partree 3.73
prsa 3.25
ray 4.58
sumeuler 3.87

Minimum 1.22
Maximum 4.61
Geometric mean 2.98

Figure 6.10; Relative number of cycles

As expected the number of collection cycles is greater for all programs 
due to heap partitioning.
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P ro g ram R elative  m em ory  usage

blackscholes 1.0
coins 1.0
minmax 1.11
nbody 0.87
partree 1.01
prsa 1.08
ray 0.94
sumeuler 1.0

Minimum 0.87
Maximum 1.11
Geometric mean 1.00

Figure 6.11: Relative memory usage

Memory usage is broadly comparable to the non-partitioned runs with 
most programs taking the same or within approximately 13% more or less 
space than the non-partitioned runs.
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6.4.1 Stability of stop-the-world results

P r o g r a m R e la t iv e  s t a n d a r d  d e v ia t io n

blackscholes 4.03

coins 1.53

m inm ax 2.99

n b o d y 24.3

p a r tre e 6.55

p rsa 6.95

ray 2.51

sum euler 6.76

F igure 6.12: R elative s tan d a rd  deviation  of wall clock ru n n in g  tim e

A gain , all p rogram s a p a rt from  nbody theses p rogram s experienced  little  vari­

ab ility  in th e ir wall clock run-tim es.

6.4.2 Overview

T h e  follow ch a rts  show norm alized results for b o th  collectors com pared  to  a 

baseline of 1.0 for all m easurem ents.
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Normalized runtime performance
2.5

2 -

1.5 -

1 -

0.5

Baseline 
Concurrent 

Stop-the-world

sumeulerblackscholes coins minmax nbody partree

As can be seen here, Interheap G C’s performance does not Imgely change 

depending on the collector it is working alongside, prsa, ray and sumeuler 

both increase in running time when operating under Interheap GC.
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Normalized to ta l collection tim e
10

9

8

7

6

5

4

3

2

1

0

Baseline
C oncurrent

Stop-the-w orld

j l  k  u I
blackscholes coins minmax nhtody j)artree prsa ray sum euler

ray and sum euler  here again are the outliers, b u t in this case it is collector 

dependent. O ther program s have small increases and blackscholes, nbody and 

m inm ax  all spend less tim e performing garbage collection.
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Normalized garbage collection cycle count

7 h

6 -

5 -

4 -

Baseline 
Concurrent 

Stop-the-world

sumeulerpartree prsablackscholes coins minmax

As expected, the collector type doesn’t make a difference in the number of 

collection cycles as Interheap GC’s heap splitting gives each group of threads 

a smaller heap causing more cycles.
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Normalized m axim um  heap size

 ̂ ' ' ' Basehne
Concurrent

Stop-the-w orld

blackscholes c'oins m inniax nbody partree  p rsa  ray suineuler

Since the collection cycles are more frequent and the  na tu re  of Haskell 

code to produce lots of short lived objects, all program s run in the  sam e 

space as the baseline collectors or in less space. Program s th a t  operate in 

less space are benefitting from the more frequent collection cycles as garbage 

is being collected more eagerly.

6.4.3 D iscussion

Overall, the stop-the-world collector performance does not improve signif­

icantly with Interheap GC. Some programs gain a small of speed-up bu t 

m any program s do not dram atically  improve their overall performance. Fac­

tors which have been highlighted before sucii increased num ber and length
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of collection cycles hamper any performance gains. Furthermore the stop- 

the-world suffers in tha t increased concurrency in collection does not give 

any space benefits unlike the concurrent collector.

Program Configuration Minimum Standard deviation Average Maximum

coins groups 850 2203.22 4886 23900

coins one group 1700 938.71 3323 4200

prsa groups 1400 542711.41 226016 2242950
prsa one group 1550 236279.45 183443 608150

ray groups 150 3499.54 4697 31150

ray one group 1300 1064.61 3909 8000
sumeuer groups 300 2676.31 2808 22950

sumeuer one group 1500 859.68 2049 3900

Figure 6.13: Statistical analysis of the wall clock length of collection cycles 

in nanoseconds

As shown above, the stop-the-world collector also suffers from on average; 

longer, more variable collection times. Compounded with more frequent col­

lection cycles tha t do return space at least as efficient as the non-partitioned 

program due to relative closeness of the memory usage. Interheap GC does 

not appear to offer significant benefits to the stop-the-world collector.

6.5 Conclusions

W'e have seen tha t the gains tha t Inter-heap GC brings are dependent on the 

program and collector used. Programs which have few shared objects tend 

to improve in space used. When using the concurrent collector this extends 

to increased cpu utilization as the the time spend perform garbage collection 

increases while only slightly increasing runtime. For programs th a t decrease
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their runtimes is can be attributed to faster thought more frequent collection 

cycles and the decreased synchronization requirements. The space benefits 

arise from the increased frequency of collection which reduces the amount of 

floating garbage.

The gains mostly occur with programs that share little amounts of data 

such as black-scholes, ray, nbody gain the most. O ther programs sta rt to 

approach their non-partitioned memory usage. Overall the stop-the-world 

collector performs somewhat poorly compared with Inter-heap GC with few 

programs gaining a significant time or space benefit.
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Chapter 7

Conclusions

7.1 C ontributions

The primary contribution of this work in this thesis is the design of a collec­
tor that is capable of partitioning an application's heap as directed by the 
programmer. Inter-heap GC is capable of performing this task; collection of a 
partition only requires inspection of associated thread stacks; tracing within 
the memory assigned to that partition and updating metadata regarding that 
partition’s memory.

The reclamation cross-partition structures requires either the collection 
of the heaps involved or the collection of all heaps. However that degenerate 
case does not require a global collection cycle, but the time taken to reclaim 
that structure is dependent on how often the partitions have a garbage col­
lection cycle. Cychc cross-heap structures are also reclaimed through the use 
of a dedicated cycle detector.

Inter-heap GC has the capability to run multiple collector configurations 
within the same application. This ability can be used to provide an appro­
priate collector to sections of a program that could benefit from the use of a 
different collector than the collector used for the rest of the application.
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Overall, the Inter-heap GC gives programmers greater control over how 
an apphcation’s heap is garbage collected. The gain from Inter-heap GC 
is dependent on ratio of computation and communication and the type of 
collector used. Programs with a large amount of fixed data perform well 
enough under Inter heap GC.

A second issue is that making use of Inter-heap GC requires access to an 
application’s or libraries’ source code. This dependency can compUcate the 
development of an application as it may require the customization of libraries 

depending on how they use threads.
A final issue is that the Interheap GC collector is sensitive to the type of 

collector used for searching for performance gains. The concurrent collector 
managed to perform the same tasks as the non-partitioned collector wdthin 
broadly the same time frames.

The gains shown here by the programs here are dependent on the nature of 
the Haskell programming language since it relies heavily on immutable data 
with mutable data primarily consisting of lluuiks or deferred computations 
objects that reference a function and its arguments. The evaluation of a 
thunk in Haskell has no immediate comparison to common idioms in lan­
guages such as Java and C #. Those languages are likely to see benefits 
with Inter-heap GC but only in the “side computation” case. For cases with 
a high ratio of shared objects to private objects, Inter-heap GC devolves 
into an inefficient reference counting scheme on top of the existing garbage 
collector.

7.2 Future work

Two issues are highlighted for future investigation with Inter-heap GC.
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7.2.1 A utom ation of heap division

The division of an appUcation’s heap could possibly be automated by gath­
ering information during a collection cycle. This entails associating memory 
blocks to threads and determining which blocks are shared among threads. 
Finally, retention lists must be construct that record all objects that are ac­
cessible from others threads in the heap section to be partitioned from the 
main heap.

That system should be able to partition off threads whose work is quite 
different from others such as threads which are responsible for error logging. 
The general case warrants significant investigation to determine the benefits.

7.2.2 Heap joins

Recall that Inter-heap GC causes slowdown when there is a high ratio of com­
munication to computation. If Inter-heap GC could be extended with the 
capability to recognize those situations at runtime, it is theoretically possible 
for Inter-heap GC to join together heaps whose threads are in frequent com­
munication. This would alleviate situations where the overall computation 
is bounded by thread-to-thread communication.
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Chapter 8 

A ppendix

8.1 A pp en d ix  A - Interheap GC A P I

—  GroupIDs are wrapped integers.
data GroupID = GroupID Int deriving (Eq)

—  GC tjrpes
data GCType = STW I Cone I Default deriving(Eq)

—  Create a new thread in another group given the ID of
—  a thread in that group. This can fail if the other thread is
—  not running anymore.
forklntoGroup :: ThreadID -> 10 () -> 10 (Maybe ThreadID)

—  Create a new group with a single thread with a specified GC. 
forkNewGroup :: GCType -> 10 () -> 10 ThreadID

—  Create a new group with a single thread with the default gc.
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forkNewGroupWithDefaults :: 10 () -> 10 ThreadID

—  Non visible calls used in the implementation

—  The current thread joins the specified group. This fiinction
—  has to be called before the thread performs any allocation
—  so that all metadata for that thread is correct with respect
—  to the allocation and collection layer of the runtime system. 
joinGroupBylD :; Int -> 10 ()

—  Creates a new group and returns its ID. 
newGroup :: GCType -> 10 Int

—  Create a new thread in the specified group. This is the lowest
—  level function that creates a new thread as it directly calls runtime
—  fianctions in instantiate a new thread. 
forkGroup :: Int -> 10 () -> 10 ThreadID

—  Get the group ID associated with the current thread. 
getGroupID :: 10 Int

—  Get the group ID associated with the specified thread. 
getGroupIDbyTID :: ThreadID -> 10 Int

8.2 A ppendix B - Term inology

The meaning of technical terms used in this document are described below.
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8.2.1 Basic Terminology

O b je c t A grouping of data values along with functions to manipulate those 

values.

P o in te r  The address of an object in memory.

R eferen ce  An alias for pointer.

F ree  space  Unused memory that can be used to allocate new objects.

G a rb a g e  Objects which are no longer reachable.

S tack  A block of memory used in a last-in first-out manner to record the 

value of local variables (which may contain references to objects on the 

heap) and the return addresses of fimctions being executed.

H eap  A block of memory where programs store data with dynamic lifetimes.

R o o t A pointer (or structure) known to the collector. All reachable data in 

a program exists on at least one j)alh irom the root set.

T h re a d  An execution context that may be interleaved (or run in parallel) 

with other executions.

A to m ic  co m pare-and -sw ap  This is a hardware capability of some CPUs 

tha t can conditional update the contents of a w-ord when supplied the 

current contents of that word without being interrupted by another 

CPU or thread. If the contents are different the update fails.The CPU 

signals success or failure back to the program.

R eg io n  In fe ren c in g  A form of static nieniorv management which consists 

of objects being assigned to regions which are determined by the com­

piler.
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Immutable Object An object that cannot be modified after creation.

M utable Object An object which can be modified after creation.

Stop-the-world collector A type of garbage collector that pauses all mu­
tator threads to perform collection work.

Concurrent collector A type of garbage collector that can perform the 
majority of it’s work without pausing the collector.

8.3 C ollection  T erm inology

Reference counting A system of memory management that stores the cur­
rent number of references to an object and reclaims them when their 
count reaches zero.

M utator A program w itten  in a language that uses garbage collection.^

Collector A routine which is combined with the mutator during compila­
tion. ^

Concurrent collector One whose execution may be interleaved with the 
mutator or which may operate in parallel to the mutator.

Incremental collector Similar to a concurrent collector, but one which 
operates in a co-operative fashion with the mutator.

Collection cycle Progress of a collector through the states of idle, marking 
live data, reclamation of memory and then idling again.

^Or more precisely, a program written for an implementation of a language that uses

garbage collection.
^Or is part of an interpreter for a language.

131



8.3.1 A llocators

Allocators play an important role in garbage collection as they place con­
straints how space can be reclaimed.

B um p allocation  A fast, pointer-arithmetic based allocation scheme. To 
safely reclaim space in a region of the heap that uses bump allocation 
all live data must be evacuated.

F ree-list allocation A data-structure based scheme for tracking free space 
and allocated objects. Free-list type allocators can reclaim space an 
object granularity.

8.3.2 Im portant concepts in th e  field o f garbage col­

lection

H ard  real-tim e A system that has deadlines for responses or periodic ac­
tions; system correctness depends upon deadlines being met.

Soft recil-time A system that makes a "best-efFort” approach to keeping 
deadlines.

S top-the-w orld  Collectors pause the application to perform some or all of 
their work.

W rite  b a rrie r A fragment of code which executes before a mutator updates 
a pointer in an object in tlie heap--generally recording changes to the 

connectivity of the object graph.

R ead b a rrie r A fragment of code which executes before a mutator reads 
a value from an object in the heap—sometimes used to transparently 
redirect mutator access to objects.
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