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Abstract

This thesis proposes new Bayesian m ethods to  jo in tly  analyse m isaligned irregular tim e 

series. Tem poral m isalignm ent occurs wdien m ultiple irregularly spaced tim e series are 

considered together, or when the  tim e periods defining the  d a ta  ])oints are not the 

sam e across different series. O ther issues under consideration include errors in the 

tim e scales, and non-G aussian processes for underlying laten t values.

O ur ])roposed models are hierarchical. This flexible frarnew'ork is m ade concrete 

w ith the  derivation of fast and efficient algorithm s for param eter inference. T he m eth ­

ods are general and can be used for any continuous tim e series processes. In addition, 

they  open the  door to  o ther in teresting possibilities for modelling and inference of 

m ultivariate  tim e series in a spatio-tem poral context.

We  apply our m ethods to  clim ate proxy signals to  derive ancient clim ate histories. 

A m ajor objective is to  create clim ate d a ta  products (i.e. posterior sm innaries of 

clim ate on a regular tim e grid). One of the  advantages of our d a ta  products is th a t 

they can easily be utilised to  answer complex questions th a t are otherw'ise analytically  

in tractab le. We dem onstrate  th is by using case studies of abrup t clim ate change events.
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Chapter 1

Introduction

This thesis is concerned w ith th ree broad topics: niisahgned irregular tim e series, 

Bayesian inference, and palaeochm ate reconstruction. This in troducto ry  chap ter con­

tains an overview of each topic, a succinct account of the  m ain contril)iition of th e  worl< 

done, and an outhne suunnary  of the  rem aining chapters.

1.1 Statistical m otivation

M any real world tim e series d a ta  sets are irregularly sj:>aced in tim e. Furtherm ore, 

the tim e period over which a d a ta  point is collected can be different across series (i.e. 

different tem poral supports) or. in some cases, uncertain . W hen we consider m ultiple 

series together, the series them selves are tem porally  misaligned. Fre^iuently, in terest 

lies in m ultiple series w ith different irregularities. T here is a relatively small body of 

literatiu 'e on the sta tis tica l trea tm en t of such data . T he objective of th is research is 

to  develop new m ethods for a jo in t s ta tis tica l inference of underlying processes which 

give rise to  such data .

The sta tis tica l m ethods in th is thesis are considered in a Bayesian hierarchical 

context. U nder our framework, there  are a large num ber of unknow'u processes and 

l^arameters. This is associated w ith a heavy com putational burden. Therefore, an 

im portan t p a rt of th is thesis is concerned w ith efficient com puta tional algorithm s. We 

propose strategies to  m arginalise out high dim ensional laten t processes, wdiere appropri­

ate. A dditionally, we derive and im plem ent bo th  sim ulation-based and sinnilation-free 

approaches for fast inference of model param eters.
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A motivating application for this work is a quantitative reconstruction of climate 

histories from proxies recorded at multiple locations over thousands of years. Climate 

change is undoubtedly one of the most im portant environmental issues of the present 

day. A crucial basis for predicting future climate is its ]^ast condition. Unfortunately, 

instrum ental weather measurements are only available for the last few hundred years. 

Fortunately, some palaeoclimate proxies can be used as a guide for climate in the past. 

Hereafter we refer to the term  reconstruction as the exercise of using statistical methods 

to draw' inference on ancient climate based on proxy signals. More specifically, ŵ e aim 

to ])rovide methods to reconstruct and analyse aspects of climate from data  preserved 

in ice and fossil sediment cores.

W hen dealing with an ice or fossil sediment core, it is im portant to take into account 

the relationship betw'een the core’s depth and calendar time. This is because the 

accunmlation rate of deposits varies significantly with time, due to the change in climate 

as w'ell as processes other than  climate inside a core. Thus, time is a non-linear function 

of depth, such tha t its tem poral resohition decreases from the top to bottom  of a core. 

In other w'ords, even if cores are regular in depth, the associated ages can be irregular. 

Consequently, multiple cores with different irregularities are necessarily misaligned. 

Formally, oiu’ objective is to derive 'climate data products', i.e. sunnnaries of climate 

information with fully quantified estimates of uncertainty from raw palaeoclimatic data.

An im portant component in all of our proposed models is the Gaussian Markov 

assumption based on the m ultivariate independent increment process which provides 

a natural vehicle for joint statistical inference. A joint approach allows ‘borrowing 

strength’ betw'een different sources of information in order to study the true underlying 

climate processes of interest. It perm its a reliable modelling of the impact of the 

multiple sources of uncertainty in proxies to produce a rich climate output. This is 

in contrast to, for instance, the reconstruction of the notorious ‘hockey stick’ (Mann 

et al. 1998) which utilises only high resolution proxy data. Similarly, the reconstruction 

procedure proposed by Li et al. (2010) uses the so-called ‘pseudo-proxy’ as opposed to 

raw' proxy data. Both examples can be viewed as climate data  products. Moreover, the 

time range of these reconstructed climates goes back to just about a thousand calendar 

years Before Present (k cal yr BP, where Present is 1950), in contrast to more than 

10k cal yr BP as considered in this thesis.
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1.2 Overview of contributions

The thesis focuses on Bayesian inference for three cases of temporal misalignment in the 

analysis of m ultivariate tim e series data. The original contributions to the literature 

are;

1. In chapter 3, we propose a simple hierarchical framework for joint statistical 

inference of misaligned irregular time series. We show tha t our joint approach is 

more efficient than  independent alternatives. We also discuss and dem onstrate 

tha t process histories are a useful (and in some cases, the only) way to study 

non-linear functions of partially observed processes of interest.

2. In chapter 4, each time series has its own measmement procedure, which leads 

to different support for observations across multiple series. We propose a model 

for this. Based on this model, we implement a fast and efficient simulation- 

free algorithm th a t completely bypasses Markov chain Monte Carlo (MCMC) 

methods. We a])ply our methods to jointly analyse nuiltiple ice cores. To the 

best of our knowledge, this work represents the first attem pt to perform Bayesian 

inference for nniltiple ice core time series in their raw and misaligned form.

3. In chapter 5, tem poral misalignment occurs when the times of observations are 

subjected to some uncertainty. We develop a multivariate stochastic volatility 

model and derive a modularised MCMC algorithm for com putation of posterior 

distributions. This model can deal with abrupt changes in underlying process 

of interest. A lthough fonnulation of a stochastic volatility model is not new in 

the statistical literature, we are unaware of any work tha t use a m ultivariate 

long-tailed distributions for stochastic interpolation of climate histories.

1.3 Outline o f  chapters

The rest of this thesis is divided into the following chapters:

C h a p te r  2: P a la e o c lim a te  t im e  se rie s  m o d e llin g  an d  B ay es ian  s ta t is t ic s

In the first j)art of this chapter, we discuss specific features of two ai)j)lications (oxygen 

isotoj)e in ice cores and pollen count in sediment cores) tha t lead to difficulties in

3



using s tan d ard  approaches for tim e series analysis. These include irregularly spaced 

tim ings and errors in the tim e scale corresponding to  different m easurem ent procedures. 

A dditionally, we review and evaluate existing solutions in the  sta tistics literature, witli 

special em phasis on jo in t inference of m ultiple tim e series.

In the  second p a rt, we discuss the basis of th e  s ta tis tica l m ethods th a t will be used 

in subsequent chapters. F irst, we review the  Bayesian hierarchical modelling approach. 

Then, we describe the  independent increm ent process in detail and provide justification 

for th is choice in the  context of palaeoclim ate reconstruction. A fter this, we give a 

general accomit of techniques for inference of param eters using bo th  sinnilation-based 

and sim ulation-free approaches.

C hapter 3: A toy  exam ple

This is a short bu t nonetheless im portan t chapter. In th is chapter we give some basic 

definitions th a t  will help to  establish the  fram ework on which subsequent chapters 

are based. Additionally, we com pare and contrast different techniques for com puting 

and sunnnarisiug d a ta  products. We also discuss the  benefit of joint versus separate 

s ta tis tica l inference alternatives.

C hapter 4: Jo in t in ference o f processes w ith  different tem poral supports

This chap ter is concerned w ith d a ta  sets w ith different supports underlying their m ea­

surem ents. An extension to  the  sim ple model in chapter 3 is proposed. To deal w ith 

different supports, we use change of support theory  from the  geostatistics literature. 

We fu rther derive a fast sim ulation-free algorithm  for param eter inference, and avoid 

the  use of M CM C.

T he proposed m ethods are applied to  analyse two ice cores drilled in neighbouring 

locations in G reenland. Ŵ e show th a t  our approach allow's for a richer analysis th an  

previously possible. A dditionally, we dem onstrate  th a t  our sam pled process histories 

are useful to  s tudy  non-linear functions of underlying processes of interest.

C hapter 5: Jo in t in ference o f p rocesses w ith  tim e uncerta in ty  and stoch astic  

v o la tility

This chap ter presents a m ore general fram ework th an  th a t  discussed in previous chap­

ters. U nder the  Bayesian hierarchical s truc tu re , we incorporate a variety sources of 

inform ation, including trea tm en ts  for tem poral uncertain ty  and stochastic volatility.

4



At the same time, we show how' Bayesian modularisation can be applied to reduce the 

complexity of the overall model.

The main novelty of this chapter lies in the specification of a m ultivariate non- 

Gaussian stochastic volatility prior model for an underlying latent process. This sub­

sequently leads to the derivation of a modularised MCMC framew'ork, and development 

of a stochastic interpolation algorithm w'ith heavy-tailed behaviour. The motivation 

for this chapter is to jointly reconstruct ancient climate histories from three sites in 

Finnmark, conditioning on pollen data.

C hapter 6: C onclusion  and future v^ork

The last chapter gives an overview of the results of the thesis and discusses the contri­

butions W 'ith several remarks for future directions of research.





Chapter 2 

Palaeoclim ate tim e series and 

statistical m ethodology

This chap ter presents a background for problem s th a t will be solved in subsequent 

chapters. We also provide a broad litera tu re  review of relevant s ta tis tica l m ethods.

W'e begin, in Section 2.1, w ith two exam ple applications; oxygen isotopes from 

ice cores and pollen grains from lake sedim ents. In particu lar, we discuss features of 

palaeoclim ate d a ta  which pose a nm uber of challenging s ta tis tica l issues, and announce 

our objective w'hich is to  create easy-to-use clim ate d a ta  products from these raw  da ta  

sets. N ext, in Section 2.2, we discuss difficulties, and review existing solutions to 

varying d a ta  s\ipports. tim e uncertain ties, irregularly-sj^aced tim e series and tem])oral 

m isalignm ent.

Then, in Section 2.3, we provide a general description of Bayesian hierarchical 

models; they  are the  building block for the  m ethodological contribu tion  of th is thesis. 

More specifically, we discuss independent increm ent processes as the  prior model choice 

for the  m ain laten t process, and svnnmarise some techniciues for com puting posterior 

d istributions.

2.1 A pplications

C lim ate proxies are indirect clim ate m easurem ents. They provide a useful soTU'ce of 

inform ation to  clim atic conditions in the  past. This section introduces two examples 

of proxies. It also outlines our objective in perform ing sta tis tica l inference.
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2.1.1 O xygen isotopes from ice cores

Ice cores play an im portan t role in revealing E a r th ’s clim ate h istory via the  analysis of 

their chemical com position. Here, we focus on the ratio  of stable and unstab le  oxygen 

isotopes (expressed as 5*^0) th a t are linked to  past tem pera tu re . The process by w'hicli 

an ice core represents tem pera tu re  is based on the  ease w ith which two p articu la r types 

of isotopes in w ater evaporate from the  ocean and condense as snow. We refer in terested  

readers to  Jouzel e t al. (1997) for a m ore detailed  account of th is connection.

A fu rther step  w'ould be required to  transform  into an aspect of clim ate w'hich 

m ight then  add considerable uncertainties. For clear presentation  of new' s ta tis tica l 

m ethods for m isaligned tim e series, we will work directly  w ith m easurem ents.

Various ice core d a ta  sets are available from the  N ational C lim atic D a ta  C enter 

(h t tp : / /w w w l .n c d c .n o a a .g o v /p u b /d a ta /p a l e o / i c e c o r e / ). In this thesis, we use 

the  d a ta  sets from the  U nited S ta tes ' G reenland Ice Sheet P ro ject II (S tuiver 1999, 

GISP2) and E urope 's  G reenland Ice Core P ro ject (Johnsen 1999, G R IP ). These are 

th e  results from drilling through the G reenland Ice Sheet to  recover ice records over 

3 kilom etres deep. The locations of these two cores are about 30 kilom etres ap a rt, as 

shown in Fig. 2.1.

T he m easurem ents are recorded as a function of depth . W hilst ice core d a ta  

sets are presented in several versions, we use a raw version in which the  cores are cut 

in to  sections of ecjual lengths; 200cm and 55cm for G ISP2 and G R IP  respectively. In 

th is context, the  volume of a section of an ice core provides support for a d a ta  point. 

However, as the  thickness in all sections is identical, com parison of supports  is sim pler 

via physical lengths (e.g. 55cm) ra th e r th an  volumes. A length of a  core section directly  

m aps to  a period of elapsed tim e. Hence, w'e define ‘su p p o rt’ as the  period of tim e over 

which is represented by a single d a ta  point.

T he dating  of these cores is conducted by counting annual layers in chem icals th a t 

show a sum m er/w in te r seasonal cycle (e.g. Rasm ussen et al. 2006). Intuitively, the  

low'er the  sedim ent is, th e  older the  inform ation in the  core is. As poin ted  out, for 

instance, by S tuiver & G rootes (2000), m easurem ents from these cores contain  negligi­

ble da ting  errors, particu larly  for the  period of relatively stable clim ate approxim ately  

betw'een 0 and I l k  cal yr BP. This is the  tim e period we consider in the  applica­

tion in chap ter 4. Ŵ e defer discussion perta in ing  to  dating  uncerta in ty  to  chap ter 5,



-50  -40
Longitude (degrees)

-30

F ig . 2.1: Locations of drill sites on the Greenland Ice Sheet (modified from Andersen 

et al. (2004)). hi particular, we consider site GISP2 (72.58°iV, 38.46°U') and GRIP 

(72.59°A^, 37 .64°ir), marked with red points.

when dealing with non-negligil)le radiocarbon dated errors from fossil pollen at lake 

sediments. A detailed description of pollen data  sets is discussed in Section 2.1.2.

Due to ice compression over time, age and depth are not linearly related. M aterial 

at the top pushes down on material at the bottom  therefore temporal compression 

generally increases with depth. This is most clearly seen in Fig. 2.2 w'here w'e plot 

age versus depth for both cores for the last 100 k cal yr BP. For this reason, a data 

set comprising of sections of equal length does not generally lead to a regularly spaced 

time series. Figure 2.3 shows the measurements of GISP2 and GRIP ice cores for the 

last 100 000 year. Box])lots of the age increments clearly show' different irregularities
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in the ages. In Chapter 4, we consider only data of approximately the last 11 k cal yr 

BP, a period of relatively stable climate conditions.

0 —

500 —

_  1000  -  

E

I 1500 -
Q

2000  -  

2500 -

I I I  ̂  ̂ I

100 80 60 40 20 0

Age (k cal yr BP)

Fig . 2.2: Plot of depth versus age for GISP2 and GRIP approximately the last 100 

k cal yr BP. Slope is more gradual at older ages, implying tha t compression generally 

increases with age. Here, we assume no errors associated with the estimation of time 

from depth. In chapter 4, we consider only data of approximately the last 11 k cal yr 

BP where the age-depth relationship can be approximately linear.

To siun up, a considerable challenge in a statistical analysis of multiple ice core time 

series is associated with the irregular timing of measurements, temporal misalignment 

across series, and different measurement supports.

2.1.2 Pollen  data from sedim ent cores

Although ice provides a rich source of information for palaeochm ate reconstruction, 

ice cores can only be drilled at limited locations. In contrast, fossil pollen samples can 

be found in many more areas on Earth. An example is the European Pollen Database 

(Fyfe et al. 2009, see also h ttp :/ /w w w .e u ro p e a n p o lle n d a ta b a se .n e t). A statistical 

analysis of this type of dataset will face issues similar to tha t with ice cores, namely 

different irregularities in time and tem poral misaligmnent. Additional, and probably 

more challenging, issues are associated with time uncertainty and stochastic volatility 

- details of which are discussed in the rest of this section.
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F ig .  2 .3  : Scatter p lo ts o f <5^*0 m easureiiients and ages o f (a ) G ISP2 and (b )  G R IP , 

(c )  Boxp lo ts  o f the  age increm ents c lea rly  show d iffe rent irregu la ritie s  in  the ages.

We consider a da ta  set com pris ing  three cores from  three lakes in  F in n m a rk , no th - 

ern Norway. The lakes are located at L ite n  C appesjavri, Over G unnarsfjo rden and 

Over K obbkrokva tne t, and the  corresponding sediment cores are know n as M , X K H l
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and PS8. Tlie physical locations form a w est-east transect in the coastal regions of 

F innm ark , as shown in Fig. 2.4. This region is believed to  be sensitive to  past clim ate 

changes th a t w'ere related  to  the d isruptions of ocean circulation variations (Hm itley 

et al. 2013).

At a selection of depths, scientists identify, count and com pute pollen concentrations 

th a t have been accum ulated over thousands of years beneath  lakes or bogs. Therefore, 

each d a ta  point reflects counts of m any pollen types a t a given depth . T he pollen 

percentage diagram  for a sedim ent core from one of the  sites in F innm ark  (site M) is 

represented in Fig. 2.5.

In addition  to  the  type  of d a ta  set described in the  previous paragraph , there  is a 

tra in ing  set of m odern pollen surface sam ples at locations around Europe. T he latest 

E uropean  m odern pollen d a ta  base is described in Davis e t al. (2013). Nevertheless, 

in chap ter 5 w’e use the train ing  set detailed  in H aslett et al. (2006). This is for the  

purpose of direct com parison to  Parnell et al. (2015) who uses the  la tte r  d a ta  set. In 

any case, a tra in ing  d a ta  set consists of a large num ber of known clim ate conditions 

and associated pollen comits. S tatistical connection between pollen and clim ate is 

known as forward inference. Conversely, given fossil pollen inform ation, it is possible 

to  reverse the  inference direction {inverse inference) to  draw  inference about ancient 

clim ate (H aslett et al. 2006, Salter-Tow nshend H aslett 2012). The ou tpu t of inverse 

inference is a layer-by-layer clim ate reconstruction at a selection of depths. A schem atic 

represen tation  of the  forw'ard and inverse inference is show'u in Fig. 2.6.

Sim ilar to  the  situa tion  w ith ice core, depths from sedim ent core can be transform ed 

to  calendar ages, albeit w ith uncertainty. Scientists can d a te  m aterial a t some dejJths 

to  re tu rn  radiocarbon ages. R adiocarbon dating  is a conmion dating  technique in 

palaeoecological research to  determ ine the  age of an object or event (Buck et al. 1996). 

W hilst calendar ages are d irectly  com parable betw een cores, th is is generally not true  

w ith rad iocarbon ages. Thus, it is crucial to  transform  radiocarbon ages to  calendar 

ages. T his calibration  process is often done via a calibration curve derived from a huge 

num ber of rad iocarbon dates of m aterial w'ith known ages (Reim er et al. 2013). The 

im plication is th a t m easurem ents of tim e have inherent error.

F urther uncertain ty  arises from stochastic  in terpo lation  for ages at dep ths where 

no inform ation is present perta in ing  to  rad iocarbon ages. T here has been a growing
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Fig. 2.5 : Pollen percentage within a core at one of the sites in Finnniark (site M). 

For pollen details of cores from other sites, see Huntley et al. (2013). The vertical axis 

shows the depths of the core (sediments in the upper part of the core are the most 

recent ones). The horizontal axis show's the percentage of many pollen types.
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F ig . 2.6: A schem atic plot of oiie-layer-at-a-tim e paleaoclim ate reconstruction. The

upper panel shows exam ple of a functional relationship  between clim ate and pollen,

created  from a tra in ing  set of m odern clim ate and pollen da ta . Given two example 

fossil (ancient) pollen counts, w'e ob tain  posterior estim ates of unknown clim ate in the 

lower panel. This plot is modified from Parnell et al. (2015).

in terest in M onte Carlo age-depth models w ithin a Bayesian fram ework (Parnell et al. 

2011). Figure 2.7 is a schem atic representation  of stochastic  in terpolation  of ages at 

an a rb itra ry  selection of dep ths based on the  calibrated  calendar ages. Each sam ple of 

in terpo la ted  ages for a selection of dep ths is known as a chronology.

Thus, each fossil pollen core is a tim e series of m ultivariate  pollen counts, the  tim es 

them selves being uncertain . This is con trary  to  the  ice core d a ta  as considered in 

chap ter 4, in which tem poral uncertain ty  was assum ed to  be inconsequential because 

the  dating  procedure is considered relatively accurate.
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Fig. 2.7: A schematic plot of three chronology samples (generated from Oxcal Ramsey 

(2008), Bpeat(Blaauw Christen 2005) and Bchron(Haslett <k Parnell 2008)). First, 

radiocarbon ages at ten depths of a core are calibrated to ten distributions of calendar 

ages. Then, chronology models are fitted to stochastically interpolated calendar ages 

associated with a selection of depths. This plot is taken from Parnell et al. (2011).

2.1.3 C lim ate  d ata  products

Palaeoclimate time series data are available in two forms; Taw’ (typically irregular, or 

uncertain in time) and ‘data products’ (typically regularly-spaced in time, i.e. ‘grid- 

ded’); as pointed out, for instance, by Chandler et al. (2012).

Previous methods for creating data products from ice core rely on a variety of 

techniques; from simple running averages (Stuiver k. Grootes 2000, Thomas et al. 

2007) to complex parametric smoothing (Peavoy &; Franzke 2010, Nieto-Barajas & 

Sinha 2015). The statistical literature on creating the type of data products (defined 

in the previous paragraph) from raw pollen data is scarce. As far as we are aware, 

Parnell et al. (2015) is the only existing reference which takes into account of the 

challenges discussed in Section 2.1.2, to create gridded data product from raw pollen 

signals. How'ever, their methods are only applicable to a single core.
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To sum up, existing technicjues - broadly interpolators or smoothers - are apj)lied 

to only one core at a time. Therefore, an im portant objective of this research is to 

develop methods to jo in tly  create easy-to-use climate data  products conditional on all 

raw information, from multiple cores.

2.2 S tatistica l inference for m ultip le m isaligned tim e  

series

From the data sets discussed in the previous sections, we see tha t palaeoclimate data  

from a core typically consists of two main sets of measurements: proxy and dating 

information. Table 2.1 shows a schematic representation of this.

[Depth] Time [Proxy data] Climate

top

bottom

present

past

Table 2.1: A schematic representation of palaeocimate data  from a core. Sc^uare 

brackets are used to distinguish observed measurements from unobserved latent vari­

ables. At some depths of the core, material has been dated to return times; the times 

themselves may be available with errors. Proxy data  (also available at some depths) are 

used to learn about climate. Reconstruction is the process of tm ’ning proxy information 

at some depths into climate at a selection of times.

Palaeoclimate time series data  have many unicjue features. Standard statistical 

time series analysis models such as autoregressive integrated moving average focus on 

discrete tim e processes (Donner 2007, Mudelsee 2010). Hence, they are not generally 

applicable to the types of raw palaeoclimate time series data, particularly those dis­

cussed in the previous sections. Succinctly stated, the outstanding issues which deserve 

immediate attention and effort from statisticians include, but are not limited, to the 

following:

• High level of im certainty in the observed signal due to the sensitivity of proxy to 

various processes other than climate. Moreover, the relationship between proxy
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signals and climate can be non-linear and require complex modelling assumptions.

• Missing or irregularly-spaced data and, in some cases, uncertainty in the data’s 

timings. Under the multivariate setting, these series are temporally misaligned.

Relevant works include Erasto et al. (2012) who propose a Bayesian method to merge 

distinct paleoclimate time series to learn about the common feature of these series. 

However, this method is only applicable to post-processing climate output which have 

previously been reconstructed from raw proxy data. Another related work is Li et al. 

(2010) who attempt to reconstruct historical temperature using nmltiple sources of 

’pseudo‘ proxies. These synthetic proxy datasets are output from other climate models. 

Hence, again, this method does not make use of raw' data. As mentioned in the previous 

section, Parnell et al. (2015) seems to be the only attempt to reconstruct climate from 

raw' pollen data w'hilst taking into account all of the aforementioned challenges. Alas, 

a limitation of this method is that it does not perform joint inference for multiple fossil 

cores.

Whilst om' motivating example stems from climate research, multivariate data with 

different temporal irregularities are a conunon feature in naany contemporary applica­

tions. For example, the ability to combine outputs at different levels of accuracy is 

crucial to the understanding of processes being studied through potentially expensive 

computer experimentation. A useful approach in such applications is to combine re­

sults from many cheap (but low'-accuracy) experiments with those from a few expensive 

(high-accuracy) experiments by linking the data via different layers of modelling (Qian 

\Vu 2008). In medical applications, one reconnnendation to overcome issues with 

misalignment is to align the times into a I'egular template before further modelling 

(Cismondi et al. 2013). For more examples of misaligned time series and associated 

methods, see Cismondi et al. (2011) and Eckner (2012) and the references therein.

Misaligned time series can be view'ed as a special case of spatial misaligrnnent in 

spatial statistics; the so-called ‘change of support problem’ for data that are indexed in 

both space and time (e.g. Gelfand et al. 2001, Wikle k. Berliner 2005). In this context, 

statistical inference involves studying the statistical properties of a stochastic process 

at ‘supports’ that are different to that associated with data. The methodological 

development in this thesis can be seen as a special case of this problem. We focus on 

the case where an observation is defined at an instantaneous point in time and seek
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prediction of the underlying process at arbitrary new time points.

2.3 B ayesian inference for hierarchical m odels

The literature review in the rest of this chapter focuses on Bayesian statistics. It will 

be general and does not directly link to issues in palaeocliniate reconstruction.

2.3.1 Hierarchical m odels

The use of Bayesian inference for palaeocliinate problems has increased in recent years. 

The Bayesian approach considers data  y  =  {yi , . . . ,  y„}, havhig already being observed, 

to be fixed. Suppose an (unobserved) param eter r  is random, to which prior infor­

m ation can be assigned to reflect our knowledge before observing any data. A whole 

range of different j)riors is available, ranging from subjective and informative expert 

o])inion to uninformative. The conditional distribution of data given the process prior 

is the likelihood function. Letting tt denote a probability distril)ution function, Bayes’ 

theorem states that

T T ( y \ T ) l T { T )

oc 7r(y| r)7r( r)  (^- l)

posterior oc likelihood x prior

It is possible to omit the denom inator on the right hand side (RHS) of the above 

ecjuation and replace the ecjuality sign with one indicating proportionality since the 

denom inator is not a function of r . The product of prior and likelihood is proportional 

to the posterior. Intuitively, the more da ta  tha t become available, the less influence 

the prior has on the posterior results.

Further levels of dependency are possible. For instance, suppose data  y  are observed 

from a latent (unobserved) process x  = { x j , . . . , x„}; the la tter process is controlled 

by param eter v. We can impose a conditional independence structure on the data y, 

given X and relevant parameters. Let 6 =  {r,i>}. In a full Bayesian analysis, prior 

distributions for 6 are introduced as another stage of the hierarchy. In fact, the joint 

distribution of all unknow'n processes and param eters given the data can be w^ritten in 

a hierarchical structiue. This is a Bayesian hierarchical model (BHM), see. for instance
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Gelman et al. (2014, Chapter 5). A fairly simple hierarchical structure is

n

7r(a3, 6»|y) a  7r{y{t,)\x{t,), T)7r{x\v)n{G) (2.2)
2 = 1

It can be seen tha t (2.2) is an extended version of (2.1). BHISIs are simple, yet provide 

a powerful and unified framework for data  analysis, and allow us to combine multi])le 

sources of information. The corresponding graphical representation of the hierarchical 

structure in 2.2 is depicted in Fig. 2.8, w'here circles indicate param eters/latent random 

variables and boxes indicate observations.

i = I , ... , 7 1

Fig. 2.8 : A Directed Acyclic Graj)h (DAG) of the hierarchical model specified by Eq. 

(2.2). Circles indicate param eters/latent random variables whilst boxes indicate data. 

Note tha t and x, are defined for i =  1, . . .  , n but 6 is not.

2.3.2 Independent increm ent process prior d istributions and  

Markov property

A widely used prior model for tem poral smoothing assumes independent increments in 

the first or second order of x  (e.g. Haslett et al. 2006, Lindgren k. Rue 2008). The first 

order model assumes smoothness of first differences whilst the second order model is 

concerned with the smoothness of the rate of change of x .  In this thesis, w'e focus on 

the first order independent increment model. This continuous-time stochastic process 

does not make any assumption on the process itself, but only on its increments. In 

the context of palaeoclimate reconstruction, it seems plausible th a t changes in climate 

at different series/cores/sites are similar if the sites are close in geographical location. 

Hence, a multivariate version of the process discussed in (2.3) below will play an im­

portant role in the models ŵ e propose in subsequent chapters.

We illustrate this process with a univariate case. Suppose a: is a continuous t ime 

stochastic process. Hereafter we w'rite x, and y* as x{ti) and y{ti) respectively. We
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em phasise th a t x  is defined at all times. However, to  sim plify the  exam ple we assum e 

th a t tim e is observed on a discrete tim e grid. We m odel an increm ent as a zero-m ean 

G aussian prior w’ith  variance v th a t is d irectly  proportional to  a tim e difference, i.e.

x{U+x) -  x[ii)  ~ (2.3)

where 5̂  =  l^,+l — t \̂, and v  is the  squared volatility, governing the  sm oothness of x.  

N ote th a t  the  param eter v  m ight not be adequate when underlying process of in terest 

is highly oscillating. A rem edy for th is is to  allow v  to  be tim e-varying (Parnell et al.

Here. is the  precision (inverse covariance) m atrix , w ith the  blank entries being ze­

roes. More details on the  construction of precision m atrices for univariate  independent 

increm ent processes applied to  irregularly spaced tim e series are discussed in Rue & 

Held (2005, Section 3.3) and Lindgren Ai Rue (2008).

Formally, a stochastic  process w'ith independent increm ents is a Markov process. 

We see th a t in the  construction of x ,  conditioned on inform ation at the  present,  the 

past gives no new inform ation about the  future. A further look at the  full conditional 

d istribu tion  of x  at each tim e point (given all past and future points) show's th a t  the 

process at the  current tim e is only dependent on the  process at the  j^revious and next 

tim e. The exception is a t the  edge, i.e. the  first and last tim e point. This form of de­

pendency can be seen in the  trid iagonal s tru c tu re  of the precision m atrix  as shown 

in (2.4). It tu rn s out th a t th is precision m atrix  gives inform ation abou t conditional

2015).

T he joint d istribu tion  for x,  conditioning on the  first value x ( /i) , is

7r(®|r)(xt> ~  2^6^^x{t^+l) -  x{t )̂Y'^

where

\

(2.4)

\
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independence properties (Rue & Held 2005, Theorem  2,2). Generally, sparse precision 

m atrices have cheaper storage cost and lower com putational burden th an  dense m atri­

ces. We discuss some com putational aspects associated w ith sparse precision m atrices 

in Section 2.3.3.4.

All models in th is thesis will be set up in w'ays such th a t the  resulting posterior 

d istribu tions for m ain la ten t processes can inherit the  M arkov property  from indepen­

dent increm ent prior d istribu tions. T he em bedded M arkov properties will ensure th a t  

associated precision m atrices are sparse. More specifically, w'e make use of nm ltivari- 

a te  independent increm ent process. In th is case, the  process x  is m ulti-dim ensional. 

The increm ents have m ultivariate  G aussian d istributions; each has, for simplicity, a 

m ean zero and cross-covariance m atrix  E . Thus, the  precision m atrix  for x  is block- 

triadiagonal. We can WTite th is m atrix  as a Kronecker product, denoting A

useful reference for Kronecker products is Harville (1997). O ur discussion in the  rest 

of th is chapter focuses on the  univariate  case, for the  purpose of simplicity.

2.3 .3  C om p u tation  o f p osterior d istr ib u tion s

In the  model specified Iw (2.2), the posterior d istribu tions of interest include the  joint 

posterior d istribu tions 7r(6\y) ,  7r{x\y),  and jnarginalised joint posterior d istribu tions 

7 r(r|y ), 7 r(r|y ), 7 r(x (/,) |y ) or some com bination of i, for all i. These unknown (juantities 

of in terest correspond to  the  integrals:

As a  general difficulty in Bayesian inference, the  above integrals are typically  in­

trac tab le . Furtherm ore, there  is often high correlation w ithin x,  and between x  and 

6. M any solutions are discussed in th e  litera tu re , w'e wall only m ention the  techniques 

used la ter in th is thesis.

(2.5d)

(2.5b)

(2.5a)

(2.5c)

(2.5e)

22



In all modelling setting in this thesis, dini(0) is typically small whilst dini(a;) is 

large. Hence, the overall compntational cost can be alleviated if x  can be marginalised

In what follow we describe two case scenarios that are relevant to this thesis, and 

suitable solutions in a full Bayesian analysis.

C ase 1: G aussian  conjiigacy We make some additional assumptions to further 

simplify the ])roblem. Firstly, we suppose each data point is realisation from a Gaussian 

distribution with connnon variance, i.e. y(/,)|x(/,), r  ~  A^(.c(/,), r). Secondly, we use 

the independent increment process as the prior distribution for x, as discussed in 

Section 2.3.2. For completeness, we rewrite the full model in details as follow's:

w'here is the precision matrix with r “ ' ’s in the main diagonal and zeroes everywhere 

else. The matrix Q .̂ has been discussed in (2.4). In this modelling setting, both (2.7a) 

and (2.7b) are Gaussian distributions. Thus, the full conditional for x  is exactly 

Gaussian, i.e. x \ y ,6  ~  A/'(/x^|y, Q “||^). Here. Q^|y =  Qx + Qy and is the solution
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out of the overall model so that inference can initially be focused on the lower dimen­

sional parameters.

2.3.3.1 M arg in a lisa tio n  o f la te n t processes

We begin by rewTiting the definition of conditional probability:

n{ x , e , y )  =  TT{y\x,e)Tr{x\e)n{e)

7T{x\y,e)TT{y\e)n{e)

Moreover,

Hence:

7r{x,6\y) o c  n{y\x,  6)tt{x\6)tt{6) o c  7r{x\y, 0)7r{y\9)TT{6) ( 2 .6 )

n

(2.7a)

n

(2.7b)

{r, t’} = 0 ~  7t ( 0 ) (2.7c)



to the system Q,x\ŷ J‘-x\y — QyV Thus, the full conditional for x  can be evaluated 

up to a normalising constant and x  can be analytically marginalised out of the joint 

distribution 7r{x,6\y).

C ase  2: n o n -G a u ss ia n  c o m p o n e n ts  If the distribution of y \ x , r  is non-Gaussian 

and x \ v  is Gaussian, approxim ation methods can be used. More specifically, we can 

write the full conditional distribution for x  as 7rG(a:|y,0), where

n 1
^G{ x \ y , e )  oc 'n{y\x,e)TT{x\e)  oc IQI^^exp ( ^  log7r(y(f,)k(^*), r )  -

t = i

( 2 .8 )

The first term  inside the exponential can be written as as a Taylor expansion to the 

second order (Tierney & Kadane 1986). Thereafter (2.8) can be ajjproximated as a 

Gaussian distribution by iteratively matching its mode and curvature at the mode (Rue 

& Held 2005. Section 4.4.1). Once the full conditional for x  has been approxim ated as 

Gaussian, analytical integration is equivalent to case 1 described above.

Another approximation approach tha t we use throughotit this thesis - most explic­

itly in Chapter 5 - follow's the recent wmk of Parnell et al. (2015). They propose to 

replace 7 r(x ,0 ,y ) =  7r(y|x, 0)7r(cc|0)7r(0) in (2.7a) with the so-called 'marginal data 

posteriors'  (MDPs) of the form T^MDpixly) = 11" current model

setting, the com putation of each M DP is:

0̂  n{ij{t^)\x{t,))TT{x{t,)) ^  n{y{t,)\x{t ,))  (2.9)

The last equality in the above equation is possible since x  is an independent increment 

process and 7r[x{ti)) is flat for all i. Although this is what w'e use here, any model 

choice for x  would be as suitable. The com putation of (2.9) also requires evaluation of 

the integral 7r(y,|xi) =  J^7r{yi\xi,T)7r{T\y) dr  hence MDPs are typically non-Gaussian. 

To remedy this, Parnell et al. (2015) propose to approximate the non-Gaussian MDPs 

as Gaussian mixtures. For the sake of simplicity in this introduction of the method, 

W'e assume r  is a know'n constant. Consequently, nMDp{x\y)  is exactly Gaussian and 

marginalisation of x  from the joint posterior distribution is the same as in the conjugate 

Gaussian case described above, i.e.

7T{x,e\y) oc 7rMDp{x\y)7r{x\e)7r{e) oc 7r{x\y,e)7r{G\y)
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where Tr{x\y,0) is available, up to a nornialising constant, as a Gaussian distribution.

The ]\IDP approach can be extended to the case where both y \ x , r  and x \v  are 

non-Gaussian. We refer to a more detailed discussion of this in Parnell et al. (2015) 

and again in C hapter 5.

2 .3 .3 .2  S im u la t io n -fr ee  in ference

From (2.6), we can write dow'u the identity

, X /  i : {y\x,0) 'K{x\6)Tx(0)
7T(0|y) a  Tr[y\6)-n{6) =   ̂  ̂ (2.10)

Ti[x\y,e)

When both  y \ x , 0  and x \0  are Gaussian distributions, conjugacy implies tha t the 

full conditional distribution for x  is exactly Gaussian as discussed in Case 1 in Section 

2.3.3.1. Moreover, Ti{y\x,0)Ti{x\9)  =  'K{x\y,6)'K{y\6) in the num erator on the RHS 

of (2.10). Thus, we can analytically evaluate ■K{y\6) followed by 7r(0|y).

Provided the dimension of 9 is not too high, Ecj. (2.10) can be efficiently evalu­

ated on a param eter grid. Several grid search strategies are proposed in the recently 

developed 'integrated nested Laplace approximation' method (IXLA Rue et al. 2009). 

In what follow w'e review a strategy that we use in Chapter 4. It begins by optimis­

ing log7r(0|y) to locate the mode 6 and the Hessian m atrix H  evaluated at 6. The 

m atrix H  is asymptotically the precision m atrix for 0. Thus S  =  H ” ' is the corre­

spondent covariance matrix. The mode and covariance are used as a guide to search 

for the param eter space of interest. Moreover, INLA reconnnends exploring 6 via the 

standardised variable 2 :

e  =  0 +  V A '/ '^z  (2.11)

Here, S  =  V A V " ' is the eigen-decomposition. The search begins from the mode 

(i.e. 2 =  0) and proceed to all combination of directions according to a stoj)ping rule; 

see M artino (2007, Algorithm 3) for further technical details.

At the end of a grid search, we obtain the discrete param eter space 0 j ;  j  =  1 , . . . ,  J  

where .] is the total nmiiber of grid points. This param eter space will be used as a 

Riemann sum approximation to analytical integrations. For instance, the normalising 

constant can be discretely evaluated when there are few param eters, i.e. ^{y)  ~  

'a{y\6j) 7t(0^) AGj given appropriate w'eights In our work, we choose z  to
O j e &j
have regular steps therefore we always have ecjual weights.
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To obtain the marginal posterior distributions such as those discussed in (2.5e), we 

numerically integrate over the gridded parameters as follow's

^ { x k \ y ) ^  ^  'K{xk\y,Oj)TT{Oj \y)/SOj  ( 2 . 12 )

9 j e @ ,

Evaluation of TT{xk\y,9) is least challenging when x \ y , 0  is Gaussian, to w'hich each 

marginal is itself an exact Gaussian distribution. When x\y,G is not Gaussian, Gaus­

sian approximation techniques can be applied to the denominator of (2.10). This gives 

rise to the approximated distribution Tr{d\y) w'here;

7r{y\x, 6)n{x\6)7r{6
7r{e\y) (2.13)

x=x'{e)^G{x\y,9)

Plere, x*{6) is the mode of the full conditional for x  evaluated at 0, and the approxi­

mated conditional distribution TrG{x\y,6) is the same as that discussed in (2.8). The 

expression (2.13) is the main ingredient of INLA in w'hich the Gaussian distribution is 

used to marginalise out latent j)rocesses of interest. In some settings, it is also possible 

to use the MDP approach as discussed in Case 2 of Section 2.3.3.1.

It is sometimes of interest to evaluate the marginal posterior distribution for the 

parameters, as described in (2.5c) and (2.5d). These approximated marginal posterior 

distributions are:

7r(r|y) J  I { 6 \ y ) d v  (2.14a)

n{v\ y)  ^  I  I { 6 \ y ) d T  (2.14b)

where I  is the interpolated function of Tr{d\y) already computed during the grid explo­

ration stage; see Martins et al. (2013, Section 3) for the technical details. Alternatively,

w'hen the dimension of 6 is not too high, w'e can evaluate its joint posterior distribution

on a regular grid and then use the resulting values in place of I  in Eq. (2.14) above. 

This approach requires the grid to be finer and wider. Hence, the disadvantage is that 

numerical integration is slow'er than that based on the the interpolated function. The 

advantage is a more accurate representation of the marginal posterior distributions.

Simulation-free Bayesian inference has been show'u to w’ork well with a broad class of 

models (Rue et al. 2009, Martins et al. 2013). How’ever, it has many limitations. Most 

notably, the dimension of 6 must be small in order for quadratvu’e integration in (2.14) 

to be feasible. In chapter 4, the maximum mmiber of parameters are 4 hence we  make
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extensive use of siinulatioii-free inference techniques. However, there are hundreds of 

imknow'n parameters in the models in in chapter 5. hi this case, simulation-based 

methods can be a better alternative solution. We review this approach in the following 

subsection.

2 .3 .3 .3  S im ulation -based  inference

The aim of simulation-based inference, or Monte Carlo methods, is to draw' sample 

values from {x,6\y)  and approximate the characteristics of the target distribution 

using the characteristics of the samples.

W hen the posterior distributions are high dimensional, direct simulation techniques 

(e.g. rejection sampling) are not a feasible solution. Markov chain Monte Carlo 

(MCMC) is an approximated sampling technicjue. The objective is to build a Markov 

chain that converges to the desired target distribution. It works by producing a chain of 

samples where each draw is dependent on the previous draw. The two basic algorithms 

used in MCMC are the Gibbs and Metropolis Hastings sampler.

Gibbs sampling is by far the most poj)ular approach, mostly because of its versatil­

ity. The widespread use of the Gil)bs sampler for general Bayesian problems is arguably 

due to Gelfand k: Smith (1990)’s influential paper, see. for example, Robert t  Casella 

(2011) and Tanner & Wong (2010) for a historical persj)ective on this. The algorithm 

makes use of full conditional distributions. The basic concept is simple. First, we di­

vide all unknown processes and parameters into separate components. Next, w’e derive 

the full conditionals for each component given all other components and data. Then, 

we iteratively sample from each full conditional distribution. A generic Gibbs sampler 

in the context of this chapter proceeds as follows:

1. Choose starting values for 6 and x.

2. Sample from TT{0\x,y) := Tr{0\y) or its marginals, 7r(r|y) and Tr{v\y).

3. Sample from Tr{x\6,y) or its marginals, Tr{xk\9,y) for all k.

4. Repeat step 2 and 3 until convergence in all relevant distributions is achieved.

Gibbs is a special case of Metropolis-Hasting (MH) rejection sampling algorithm. The 

MH algorithm is arguably the most general form of Markov chain sampling techni(iue
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(Chib & Greenberg 1995). It is useful when the full conditionals do not belong to any 

standard distribution, and samples from them  are rlifficult to obtain. Therefore, rather 

than sampling directly from the full conditional, a candidate value from an arbitrary 

proposal distribution is drawn and accepted with a certain probability. Like the Gibbs 

sampler, the MH sampler updates the param eters component-by-component. For our 

simple example, to sample from Tr{6\y), we draw new samples 9* from a proposal 

distribution q{6*\0), then decide to  accept/reject them w'ith probability a{9*, 6) w'here

A combined usage of both  the Gibbs and MH sampler is the Metropolis-w'ithin-Gibbs 

sampler. Like in the Gibbs sampler, jmrameters are updated component-by-component. 

However, components with a non-standard full conditional are updated using a MH 

step. This combination is the main ingredient of our MCMC algorithm in chapter 5.

In theory, MCMC can provide nearly exact inference for the target posterior distri­

butions. given perfect convergence. Convergence and mixing of a sampler are heavily 

influenced by model param eterisation. choice of the proposal densities and updating 

schemes. For an in depth review of advanced techniqvies for improving MCMC. see, for 

example. Brooks et al. (2011). Of course, convergence can also be achieved by running 

Markov chains for long periods of time. Unfortmiately, w'e have finite running time in 

practice, and this must be balanced with model complexity.

A special hierarchical framew'ork is the class of state-space models. In this set­

ting, (2.7a) and (2.7b) can be w'ritten as the observation equation and state equation 

respectively. The problems are divided into state inference and param eter inference. 

In oiu' example, after marginalisation of the param eters 0 from 7r(x ,0 |y), the state 

inference problem for ■n{x\y) has a closed form solution known as the Kalman filters 

and /or smoothers (Sarkka 2013, chapter 4.3). Filtering only estimates the current 

state  of X given the history of observations y, smoothing is the reconstruction of x  up 

to and include the current time. If the observation and state  equations are non-linear 

and non Gaussian. Kalman filters/sm oothers are not appropriate. Sequential Monte 

Carlo (SMC) methods or particle filters can often be a better alternative, particularly 

if we w'ant to perform sequential inference. Recently, Bhattacharya &: Wilson (2014) 

shows th a t it is possible to perform simulation-free inference for the i)arameter process 

0 sequentially. We do not consider this problem in this thesis.

a[0*, 0) =  min (1
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2 .3 .3 .4  C om pu tation al a sp ects related  to  in ference w ith  G aussian  M arkov  

processes

As previously stated, sparse precision matrices play a key role for the models in this 

thesis. Many of the fast numerical algorithms for this type of m atrix are associated 

with efhcient Cholesky factorisation (Rue & Held 2005, Chapter 2.3 and 2.4).

Cholesky factorisation refers to the procedure of decomposing a n-by-n symmetric 

positive definite m atrix Q as the product of a unicjue lower triangular m atrix L and 

upper triangular m atrix , i.e. Q =  L L ^ . For instance, one way to sample x  from 

the distribution ^V(0, Q “ ')  is to compute L from Q, generate a vector 2  of n standard 

Normal random variates and solve =  z. The com putational complexity of a full 

Cholesky for a dense m atrix is generally of the order 0 (n^ /3 ). To solve a system of 

linear eciuations, the cost is 0{ri^). Thus, the overall cost for sampling from a Gaussian 

process with a mean zero and dense precision m atrix is of cubic order.

If Q is sparse then the com putation burden is typically lower. The main idea is 

to determine the zero entries in L and do not carry out com putation for them, for 

instance, using Theorem 2.8 in Rue k. Hekl (2005). A special case of sparse matrices 

is band matrix. If Q is a band matrix, the cost to sample from A/’(O .Q “|y) includes 

(){nb‘̂ + 3r)6) for the band-Cholesky decomposition and 0{2nb) for solving the system 

of linear ecjuations. Here, b denotes the bandwidth. Hence, the cost is linear in n. This 

represents a huge speed-up in comj^arison to sampling from the distribution involving 

a dense precision matrix.

In several places of this thesis, we need to compute the marginal variances from 

a precision matrix. Although we can perform m atrix inversion, i.e. S  =  this

is often not necessary. In what follows we provide a summary of the more efficient 

approach discussed in (Rue k. M artino 2007, Section 2). Firstly, we need to perform 

Cholesky deconijjosition to obtain the lower triangular m atrix L from Q. Secondly, we 

use the sequential representation when solving L ’ x  = z. W ithin the second step, the 

starting point is x„ = z„/L„n or equivalently, x„ ~  AA(0, l / L “̂„) where x„ and z„ are 

the element of vectors x  and z  respectively, and L„„ is the row and 7?'̂  colunm 

of m atrix L. Then.



Next, m ultiply bo th  sides of the  above equation by xj  and take expectation yields

Here, S y  is the  row and colunm  of covariance m atrix  S ,  5ij =  1 if i =  j  and 

zero otherwise, and I  are those j  w'here Ljj is non-zero.

2.4 Sum m ary remarks

As a result of th is chapter, it becam e evident th a t new model fornm lations and com pu­

tationa l m ethods w'ere required for s ta tis tica l inference of nuiltiple palaeocliniate d a ta  

sets. We have reviewed some ideas associating w ith the  Bayesian approach to  s ta tis tica l 

inference. M ore specifically, we focused on hierarchical m odelling, w'ith an em phasis 

on G aussian M arkov processes. Some m ethods for param eter inference have also been 

explored, nam ely MDP, INLA and M CM C. In subsequent chapters, we w'ill engage in 

a detailed  study  of some specific m odels and com putational m ethods for m isaligned 

irregular tim e series.
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Chapter 3

Toy exam ple

This chap ter m arks th e  first contribu tion  of the  thesis by laynig essential groundw ork 

for the  research by introflucing term inology upon which later chapters are based. To 

elucidate the  narrative in the chapter, our discussion will be accom panied by a simple 

m odel applied to  a sim ulated d a ta  set.

The rest of the  chapter is organised as follows. Fornuilation of a simple model 

for two irregular spaced tim e series is presented in Section 3.1. Issues w ith regard 

to  stochastic  in terpolation  are discussed in Section 3.2. In particu lar, we focus on the  

usefulness and lim itations of l)oth pointw ise and pathw ise posterior sm nm aries. Section 

3.3 highlights the  benefit of our jo int approach in com parison to  the  one-series-at-a- 

tinie approach, using predictive variance as the  m etric. The chapter concludes w ith a 

discussion in Section 3.4, where we sunm iarise the  proposed fram ework and outline the  

l^ossible extensions to  be developed in subsec}uent chapters.

3.1 A sim ple m odel form ulation

In th is section, a sim ple hierarchical m odelling s truc tu re  is set up. Technical no tation  

will be in troduced to  deal w ith tem poral m isaligm nent in the  tim es of observations 

across different series. We also in troduce posterior d istribu tions of interest.
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3.1.1 A tw o-stage hierarchical statistica l m odel w ith  known  

param eters

A sim ple hierarchical m odel com prised of two m ain layers is adopted to  illustra te  a joint 

m odelling approach for nniltiple irregular tim e series. We suppose y{ts,i)', i = ■ ■ ■,

denote an observation of series s at tim e as a vector, it is w ritten  as There 

are N  = observations in to ta l, and w'e w rite them  as y.  We label the  series

as s =  1 , . . .  , m.  At the  data layer, y{ts,i) are an conditionally independent G aussian 

function of the  laten t variable x{ts,i) w ith  constan t variance r ,  i.e.

y [ t s . i ) ^ f i x { t s . ^ ) , T )  (3.1)

We consider a process layer w ith the  form:

-  x(fi.,_i) ^

, v \ u  -  ^ - i | s

— \ ) j W
where v  is the connnon variance of an increm ent j)er unit tim e, and S  is the  in-hy-ry} 

m atrix  which controls the  s treng th  of the  relationship of d a ta  across the  series. The 

la tte r  is a unit correlation m atrix  w ith ones in the  m ain diagonal and p ’s in the  off- 

diagonals. Hence x  is a tim e-continuous, nm ltivariate, independent increm ents process. 

For sim plification, hereafter we drop the  i subscript when discussing laten t processes 

since they  are defined for all tim es. In vector form, we w rite the  nm ltivaria te  latent 

process for all series a t all tim es as x ,  and x{ts)  represents the process for series s a t 

tim e t only. T he M arkov property  im plied by th is continuous-tim e stochastic  process 

is crucial for com putational reasons. M ost im portantly , x  is a priori  a jo int m odel for 

all series.

To keep the  p resentation  of a toy m odel in th is chap ter sim ple, we assm ne all 

param eters 9 = {v,T,p)  to  be known, and defer issues w ith param eter inference to 

later chapters. Figure 3.1 shows a graphical representation  of the  full model.

T here are m any choices of m odels for (3.1) and (3.2). The hierarchical modelling 

approach is sim ple yet powerful as it explicitly separates the  form er from the  la tte r. In 

Section 3.4 we discuss possible extensions to  th is sim ple s truc tu re  to  deal w ith more 

com plicated situations.
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s = I , . . .  , m  
i = I , ... , ris

F ig . 3.1 : A Directed Acyclic Graph (DAG) for the model described in Section 3.1. 

Circles indicate param eters/latent random variables whilst boxes indicate data.

3.1.2 N otation  tricks associated  w ith tem poral m isalignm ent

Subsequent m athem atical derivations are substantially simplified by defining

1. t o  eis  the sorted set of all observed times at all series, i.e. t o  =  sortj^s.i, • • •} =

{ /l . ^2 ......... /„} where is the to tal number of unique times across all series. In

om' model, the nniltivariate stochastic process x  is considered at these times.

2. Voifs.i) fi-'’ the values which coincide with the y{ts.i) values when series ,s has an 

observation at t, and whose values are missing otherwise. There is typically one 

observation at each 1̂ . and more than one observation if /, is non-uniciue. Let 

yp denote the set of all such vectors. Similarly, we let Xg be the latent nnilti- 

variate process x  defined on to- Hereafter, we write n{y \ x , t o ,  0) =  7r(yo|®o,0), 

-K{x\to, 0) = n{xo\6),  and n{x\y .  to, 6) = Tr{xo\yo, 0).

The re-wTiting of these terms is simply a technical ‘notational trick’; the vectors 

y  (length N)  and yo (length mn)  contain the same information. The objective is 

to use this information, together with the hierarchical model to infer the underlying 

continuous-time m ultivariate stochastic process x  with appropriate prediction intervals.

Using the above definitions, some of the equations discussed in Section 3.1.1 can be 

rew'ritten in their compact m atrix form. For instance w'e can write (3.1) as yo\Xo,0  ~  

J\f{Xo-Q~^)  where Qy^ is a rnn-hy-mn diagonal precision m atrix with entries cor­

responding to series at times with data, and zeros where there are no data. This is
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the notation trick previously introduced to write all vectors and matrices in clear order 

of time and series identity. We emphasise tha t no com putation is ever necessary for 

components tha t do not represent data.

Similarly, (3.2) has the form Xo\9 ~  A^(0,Q^^). Here, =  Qto ^ IS an

inverse of the rmi-hy-mn block diagonal covariance matrix. This covariance m atrix is 

a Kronecker product of the inverse of the 77,-by-r; precision m atrix and the m-by-ni  

cross-covariance m atrix vT,. In particular, Qto is the precision m atrix of an independent 

increment process for an irregularly spaced time series as discussed in Section 2.3.2. 

That is.

/

Q « o  —

h 1 - 1
— 1̂2 —  h 1 - 1 \

+  — to

t„ -  t„_i\  ̂ |/n -  /„_i|  ̂ y
(3.3)

with the blank entries being zeroes.

3.1.3 P osterior  d istr ibu tions

The full posterior distribution for Xo is

n{Xo\yo,9)  oc 7r{yo\Xo,0)TT{Xo\0

«  exp ( - ^ i V o  -  X o f Q y S V o  -  Xo)^ exp

(3.4)

w'here IQ .J  =  i.e. it is a generalized determ inant as a result of the

notational trick introduced in the previous section. Furthermore, |Qxol =

Qxois/o =  Qyo + Qxo, and is the solution to the system of equation Qxo\yot^xo\yo =

QyoVo Note tha t all of these quantities depends on 6. But, for clarity, this dependence 

has been suppressed in the notation.

Ultimately, the main goal is to compute posterior distributions of latent processes of 

interest at new times. In this thesis, we consider new times on grids th a t are regular and 

denoted by tg =  {iA; i = 1 , . . .  We refer to the latent process x  and data process 

y  defined on the time grid tg as Xg and yg respectively. The posterior distribution of
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Xg conditional on all data  and model param eters is:

7T( S g | y o , 0 ) ( x  7t (oc T : [ X o , X g \ y o , 0 ) d X o  

DC ' n { X g \ X o - 0 ) T x { X o \ y o , 0 ) d X o (3.5)

The second quantity inside the integrand in (3.5) is a Gaussian distriVjution, as derived 

in (3.4). Furthermore, the jn'ocess a; is a prion  a m ultivariate independent increment 

process. Thus, the joint prior distribution {Xo^,Xg^}^ is Gaussian. Consequently, 

the conditional distribution tha t is the first quantity in the integrand in (3.5) is also a 

Gaussian distribution. In this setting, this term is generally known as the multivariate 

Brounnan bridge, a tied-down Gaussian process (Glassernian 2003, Chapter 3). The 

idea of ‘bridging' will be useful for the evaluation of the high-dimensional integral 

(5.22) in Chapter 5. Relevant technical detail of Brownian bridge and the extension 

considered in Chapter 5 are given in Appendix C.

For the problem in this chapter (and for a similar problem in Section 4.2.3 in 

Chapter 4), com putation of (3.5) can in fact be simplified via the notational trick 

discussed in Section 3.1.2. We let the star notation denote the processes defined at 

both the miiciue (and sorted) observed times and grid. i.e. y ,  =  [yo^ .yg^)^-  a;, =  

[xo^,Xg^)^ and t ,  =  [to^ , tg^)^. In our notation, these are vectors of length 7n{n +  

r i g ) .  The problem becomes that of calculating

After which the joint posterior distribution of Xg, conditional on all data and known 

param eters, is the subset of the joint conditional distribution given by Eq. (3.6). Com­

putation of (3.6) is straightforward when both components on the RHS are Gaussian 

distributions. It begins with the completion of the quadratic form for the first two 

(juantities to obtain a posterior mean vector and precision matrix. Specifically, the 

diagonal precision m atrix in the conditional distribution of 0 can only have

non-zero values at series and time indices where data are available. The precision 

m atrix for a prion x» is = Q ,, (g) ' with Q/. having the same form as

(3.3) adapted to the new selection of points. By completing the quadratic form we 

again have, up to a normalising constant, a ;* |y ,,0  ~  A/” where

Q,r.|y. =  Qy. + Qx. ^ud is the Solution to =  Qy.y*-

7 r ( a ; * | y , , 0 )  oc 7 r ( y , | a : , ,  0 ) 7 r ( c c . j 0 ) (3.6)
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3.2 Simulation study

In Section 3.2.1 we generate two irregularly-spaced time series based on the model 

described in Section 3.1.1. The jom t  conditional distribution of Xg, conditional on all 

relevant data  and param eters, is the prediction target in Section 3.2.2. hi Section 3.2.3, 

the focus is on marginalised joint conditional distributions. Section 3.3 compares and 

contrasts the properties of the two forms of prediction in the context of data  products 

previously discussed in Section 2.1.3.

3.2.1 A sim ulated data set

First, we generate a bivariate time series, each with 100 data  points based on a dis­

crete bivariate independent increment models with Gaussian noise. We emjjhasise 

that the underlying process is a time-continuous stochastic process. The simulation is 

controlled by three parameters: a variance of a unit increment i' =  1, a two-by-two 

cross-correlation m atrix with one in the main diagonal and a correlation coefficient 

p =  0.8 elsewhere, and variance param eter r  =  0.01 for all Gaussian noise term.

Then, we randomly choose 30 and 20 data points from each series, so tha t they can 

be irregularly spaced in time, and when considered together the times are necessarily 

misaligned. For the toy example in this chapter, m =  2, =  30, ri2 = 20. and N  =  50.

The simulated data set (hereafter denoted as a  and b) is shown in Fig. 3.2.

3.2.2 Joint posterior d istributions and pathw ise sum m aries

As previously indicated, we defer to later chapters issues of uncertainty th a t arise when 

the model param eters 0 are themselves only available through statistical inference. In 

what follows we focus on inference of Xg, which is the process x  defined on the grid 

=  {0 ,2 ,4 ,6 ,8 ,10} .

In Section 3.1.3, we showed tha t (a : , |y ,,0 )  is a Gaussian distribution. Hence it is 

easy to generate many samples of £C, conditioning on all data  and param eters. The 

posterior samples for Xg can then be extracted from those for a;,. We refer to each 

sample as a history. Two process histories on the time grid tg are depicted in Fig. 

3.3. These sample values are also shown in Table 3.1 and discussed in Section 3.2.4. 

A history is a pathwise summary of the process Xg; very many histories allow us to
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F ig .  3 .2  : An artificial da ta  set used as an example throughout this chapter: two irreg­

ularly time series (a  and b) sampled from a bivariate independent increment process 

with a constant Gaussian noise.

compute point,wise sunnnaries. We refer to Section 3.2.4 for further discussion of this.

Sample 1 Sample 2 Mean

Time 0 -0.10 -0.68 -0.39

2 -0.20 -0.40 -0.30

4 0.41 -0.11 0.15

Mininmm -0.20 -0.68

Time of minimum 2 0

T a b le  3.1: Illustration of the  histories representing the  t ru th  process which gives rise 

to series b on a time grid {0, 2, 4}, as shown in Fig. 3.3. An example of a linear 

functional (mean) is shown on the right most column, and some non-linear functionals 

(mininunn and timing of mininuun) are displayed in the  last two rows.
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F ig . 3.3: P lo ts of two histories of x  on a regular tim e grid {0,2,4,6,8,10}. T hey are 

generated  from 7r(a;g |y,0), the  joint posterior d istribu tion  conditional on all d a ta  and 

param eters.

3 .2 .3  M arginal p osterior d istr ib u tio n s and p o in tw ise  sum m aries

We recall th a t  the  joint  posterior d istribu tion  of x^ conditioning on all relevant d a ta  

and param eters is a G aussian d istribu tion . It follow's th a t  the  marginal posterior 

d istribu tion  of the  elem ent at a specific tim e series corresponding to  a tim e point is 

also a G aussian d istribu tion , i.e.

7T{xi^^\y„e) (3.7)

w'here is the  elem ent of ^^e corresponding series. Similarly, each

conditional posterior variance is the  elem ent of a tim e series represented in the  

diagonal of the  covariance m atrix . As discussed in Section 2.3.3.4, m arginal variance 

term s can be com puted efficiently from the  precision m atrix  Qx.|j/. w ithout having to  

perform  m atrix  inversion.

T he predictive d istribu tion  in equation (3.7) is a source of the  d a ta  p roduct dis-
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cussed in Section 2.1.3. Various posterior sunnnaries (means, variances, modes, quan- 

tiles, etc.) can easily be computed based on (3.7). More crucially, all of the matrices 

herein are sparse and can be efhciently stored and quickly computed using fast algo­

rithm s for band matrices (Rue & Held 2005).

Figure 3.4 shows the posterior means and 95% credible intervals for X g  on a regular 

time grid t g  =  {0 ,2 ,4 ,6 ,8 ,10} . The prediction errors, represented by the widths of 

the posterior marginals, are related to data  availability at the corresponding series as 

well as the other series. We return to this in Section 3.3.

3 -1  

2 -  

1 -  

0 -  

-1 -  

-2 -

I • •  I

1
10

I '
.••I I

n
10

Fig. 3.4 : Plots of 95% credible intervals of the marginal posterior distrilnitions of 

process x  on a regular time grid {0,2,4,6,8,10} conditioning on all data  and parameters.

3.2.4 C om parison o f interpolants

One of the advantages of pathwise over pointwise sunnnaries is tha t researchers can 

use sinnilations from a joint posterior distribution to study any functionals of jiartially 

observed j)rocesses. Pointwise summarised statistics such as medians, modes, vari­

ances, (juantiles, etc. are of limited value as a basis for serious statistical research for
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these are ' 'pointwise confidence intervals and are not confidence curves for the  entire 

sample path" (M cShane k. W yner 2011). T h a t is to  say, although the  gridded values 

are jo in tly  based on all the  available observations, the  joint conditional uncertain ty  

of the  unobserved process histories is not available from pointw ise uncertainties. One 

sim ple consequence is th a t uncertain ties for changes between different tim es are not 

available; for these m inim ally require covariances even in a simple case in wdiich pos­

terio r m arginals are them selves G aussian distribu tions. It is w orth noting th a t our 

posterior m arginals in Eq. (3.7) are generally non-G aussian when we take into account 

jia ram eter uncertain ties as considered in later chapters.

A g reater challenge is posed by th e  investigations of non-linear functions of Xg 

such as m inim a and th e ir tim ings. As pointed out, for instance, by Li et al. (2007) 

and Tingley & H uybers (2013), ])robability d istribu tions of such random  variables are 

generally not available from posterior m arginals at each tim e point separately. Instead, 

sinm lations based on th e  joint posterior d istribu tion  (3.7) at all a rb itra ry  tim e points 

provide a sta tistica lly  consistent and easily in terp reted  jjrobabilistic s ta tem en t of any 

functionals of Xg. Each such sim ulation represents an independent h istory of Xg th a t 

is s ta tis tica lly  consistent w ith the  m odel and data . As an exam ple, we focus on the 

d istribu tions of random  variables x^in =  min; x{t)  and = arg^ min :c(/), being 

respectively the  m inim um  value and the  tim e at w’hich this m inim um  w'as achieved. 

In Table 3.1, we illustra te  how to com pute a linear fmiction (m ean) and non-linear 

functions (m inim um  and tim ing of m inim um ) of Xg from two process histories a t series 

b on a tim e grid {0, 2, 4}. These sam pled histories were previously shown in Fig. 3.3). 

A m ore com plete version of th is approach uses 1000 histories, conceivably on a dense 

grid. For generality w'e com pute conditional quantiles at tim e grid tg and use pointw ise 

credible intervals to  quantify  the  uncerta in ty  of our im putations.

Very m any process histories thus provide a flexible posterior sum m ary in their own 

right. T he use above for m ean, m inim a and tim e of m inim a is illustrative; any function 

of the  process may be studied, conditional on the  data . In th is sim ple case, linear 

functions such as conditional m eans and variances are of course already available from 

the  analytical expression in Eq. (3.7).
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3.3 Joint versus separate inference

In this section we dem onstrate the benefit of joint modelling in comparison to separate 

alternatives. Our comparison is evaluated as a function of the correlation coefficient 

p, keeping all other param eters fixed. First, we perform prediction for series b inde­

pendently of a.  Then we carry out joint prediction using information from both a  

and b for a range of vahies of p to vary the strength of the association between the 

two series. Figure 3.3 illustrates th a t joint prediction reduces the predictive variability. 

The benefit of joint modelling is most pronounced in the extrapolation step from tg > 8 

where there is no observation from series b available.
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p=0 (separate inference) 
p=0.3
p=0.8 (the truth) 
p=0.9
p-1

0.2

0.0

0 2 6 8 104

F ig . 3.5: Plot of the ratio of the interpolation errors in term  of the correlation co­

efficient p. The ratio is computed by dividing the interquartile range of the marginal 

posterior distributions of x  on a regular time grid {0, 2, 4, 6, 8, 10} for series b con­

ditioning on data from both of series a  and 6, by th a t conditioning on only da ta  from 

series b (i.e. when p =  0).

This experiment can be repeated for other param eters to learn about their effect 

on the predictive performance of the models under consideration. Even thoTigh our 

experiment is carried out on a restrictive class of model, the result is general. More 

specifically, it dem onstrates that separate inference ignores valuable information by 

treating each series separately.
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3.4 Sum m ary and discussion of outstanding chal­

lenges for later chapters

This chapter has presented a hierarchical framework to perform joint inference of nmlti- 

ple irregular time series. An important component of our model is the Gaussian Markov 

assumption based on multivariate independent increments that provides a natural ve­

hicle for joint modelling. We have shown that process histories, generated from joint 

posterior distributions, are extremely useful for prediction of both linear and non-linear 

fmictionals of partially observed processes of interest. We also demonstrated that joint 

analysis of multiple irregular time series is better than its independent alternative in 

the sense of loŵ er predictive uncertainty.

The adopted framework has been show'n to work w'ell for a simple toy example. 

It forms the basis for extensions wdiich are to be developed in later chapters of the 

thesis. In what follow's, we summarise the model iised in this chapter and annovmce 

the extensions to be considered in the following chapters. To keep the presentation 

simple, w'e leave out the notation trick associated with misalignment (e.g. Xo, Ho, 

etc.). Additionally, we defer the technical discussion of specific tools and techniques in 

the context of their usage to later chapters.

The model used in this chapter can be succinctly formulated as:

7r{x\y, t, 6) (X Ti{y\x, t, 6)n{x\t ,  6) (3.8)

Here, the underlying latent process x  is the only unknown component.

In Chapter 4, the temporal supports for observations are different across different 

series. More generally, w'e treat parameters 9 as unknow'n; these parameters w'ill be 

learnt from information in the model and data. That is,

Tr{x,0\y,t) (X TT{y\x,t)Tr{x\t,0)Tr{0) (3-9)

The model in Chapter 5 will be the most complex. Firstly, 9 is luiknown. Secondly, 

a new set of parameters 'if) is introduced to capture the statistical relationship between 

X and y.  These parameters are to be learnt from a separate set of training data D- .̂ 

Thirdly, times t  are uncertain; to be learnt from another calibrated data set Dt- The 

model for this problem setting is:

7r{x, t ,9, ' i l)\y,Dt,D^)  oc TT{y\x,t,il))7r{D \̂'ip)Tr{x\t,9)7r{Dt\t)Tr{t)7T{9)TT{iJ )̂ (3.10)
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Chapter 4

Joint inference of m ultiple processes 

w ith different tim e supports

C hap ter 3 den ionstra ted  th a t Bayesian hierarchical models are useful to model nm ltiple 

irregular tim e series. Therein, all model param eters were assumoxl to  l)e known.

In m any real-world applications, model param eters are unknown. More crucially, 

d a ta  are often m easured as the average over a certain  support ra the r th an  a precise 

point in tim e or space. For exam ple, the E a r th ’s clim ate conditions as a physical system  

are defined over a continuous spatio-tem poral dom ain but clim ate d a ta  (both  its direct 

instrm nental and inflirect proxy m easm 'em ents) are recorded and reported  over a j^eriod 

of tim e for a region. This chapter proposes a sini[)le extension to  the  model discussed 

in chap ter 3 to  deal w ith issues arising from different tem poral supports for d a ta  in 

different tim e series.

A pair of ice cores drilled in G reenland will l)e used to  illu stra te  our proposed 

framework. This da tase t was i)reviously in troduced in Section 2.1.1. In particu lar, 

we consider the  period of approxim ately the  last I l k  cal y r BP. O ur prim ary goal is 

to  dem onstra te  the  use of Bayesian inference to  efficiently take  into account nm ltiple 

sources of inform ation. O ur secondary goal is to  encourage the  use of M onte Carlo 

samples from joint Bayesian posterior d istribu tions as a rich type  of d a ta  product.

In Section 4.1 we describe oiu’ hierarchical stochastic  process m odel, and discuss 

an efficient procedure for inference of m iderlying latent processes. Section 4,2 gives an

*A m anuscript based on th e  work in th is  chapter is a pu b lication  in th e  journal o f  
A dvances in S ta t is t ica l  Clim atology, M eteoro logy an d  Oceanography  (D oan et al. 2015)
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efficient algorithm  which comprises of two separa te  stages; a sim ulation-free procedure 

for the m odel param eters, and tw^o com putational procedures for laten t process of in­

terest. A pplication to  G reenland ice cores are discussed in Section 4.3. Various aspects 

of our proposed m odel are placed under scrutiny in Section 4.4. A brief discussion in 

Section 4.5 concludes the  chapter.

4.1 A three-layer hierarchical statistica l m odel

4.1.1 D ata  layer

We consider a hierarchical m odel com prised of the  d a ta , process and param eter layer.

At the  d a ta  layer, z{ts,i) are unobserved d a ta  in series s =  I , . . . , ?? ;  at tim e =

1 , . . .  , ris. W hen they  are observed, the  in strum en ta tion  is such th a t

y{ts,i) = ziU.i) + (4.1)

Here, the  term s y{ts.i) denote the  observations. T here are N  = observations in

to tal; we use y  to  denote these, and for observations in series s onlv. T he term s 

iy{ts.i) are i.i.d.,  zero m ean. G aussian random  variables w ith fixed known variance 

corresponding to  the  instrum entation . For sim plification, hereafter we drop the  i 

subscript w hen discussing latent processes since they  are defined for all times.

4.1.2 P rocess layer and tem poral change of support

At the  process layer, w'e express z{ts)  as a function of laten t value x{ts)  via an additive 

G aussian model:

z{ts) = x{ts) + w{ts)  (4.2)

w'here w{tc)  reflects micro-scale, amuial-level variations and is m odelled by a w hite 

noise process, independently  across series, having com m on Var[u,'(<5 )] =

We propose to  model process x{ts)  as a continuous-tim e, independent increm ents 

process w ith increm ent variance such th a t for each series ^Var [x{ts) — x{ts — h)] =  

i.e. having a linear sem ivariogram  w ith no nugget effect. T he nugget param eter 

refers to  the  apparen t d iscontinuity  a t the  begim iing of a sem ivariogram . This effect is 

a ttr ib u ted  to  tw'O sources of variation; the  noise of d a ta  at high tem poral frequency, and
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th a t w h ich is due to  u n ce rta in ty  from  da ta  coUection (Chiles &  D e lfiner 2012, chapter 

2). O f course, an independent increm ent j jr io r  m odel fo r x{ ts)  is one o f m any m ode lling  

choices. M ore specific to  our context to  be discussed in  Section 4.3.1, the  use o f 

linear sem ivariogram  (w ith  nugget) is consistent w ith  the generating process y{ts)  hence 

the choice o f independent increm ent model. M ore  fo rm a lly , our sem ivariogram  is the 

sum of: ( i) an unde rly ing  independent increm ents con tinuous-tim e process w ith  semi- 

variance p ro p o rtio n a l to  lag; and ( ii)  a w 'hite noise process, m anifest in  t lie  in tercept 

or nugget effect w h ich is dom ina ted  by r^. From  (4.1) and (4.2), w'e ob ta in

y{ts)  =  ^ { ts)  +  w{ ts)  +  ■= x{ ts)  +  e{ts) (4.3)

Here e (/,) M { 0 , T s), w ith  Tg =  Ty,,̂  -I- and the series-specific variance com ponent

Tg is the annual-level nugget effect a t series s. A n  e xp lic it assum ption here is th a t 

there exists an m id e rly in g  la ten t process at a com m on level in  bo th  series th a t w’as 

d r iv in g  the observational data. In  p a rticu la r, we consider the  s itu a tio n  where the 

measurement processes d iffe r fo r each series th a t lead to  d iffe rent supports  in  the 

observations. M a them atica lly ,

z{ts) =  \ig\-^ f  x { t ) d t  (4.4)
J t s

where |/s| is an in te rva l o f tim e , i.e. the  support, fo r w hich an observation is defined 

over. We have discussed the concept o f support in  the  context o f ice core da ta  in 

Section 2.1.1. There in , we suppose an ice core s is cu t in to  equal, and non-overlapping 

sections o f length  Ig, i.e. we do not consider the case o f overlapp ing sections. Moreover, 

we assume th a t the  th ickness o f a ll sections are iden tica l, and th a t a section o f length 

Ig maps to  a tim e  in te rva l tg. In  the  present con text, as a measurement is obta ined 

w ith in  th is  tim e  in te rva l, we v iew  the la tte r  as the support o f the  form er.

The ch ief im p lica tio n  o f the  difference in  the  supports  o f observations from  different 

series is the  re la tionsh ip  in  the  nugget effects. We show', in  A p p e n d ix  A , th a t the 

nuggets d iffe r in  p ro p o rtio n  to  the length  o f tim es th a t define the  supports. We can 

reparam eterise so th a t there is on ly  one nugget te rm  for one o f the series (denoted 

as T here), w ith  the o the r having a d iffe rent nugget w'hich is a m u ltip le  o f th is  value, 

i.e., Tg =  kgT fo r a pos itive  knowm series-specific value kg based on the ra tio  o f the 

measurement periods. We denote a vector o f constants associated w ith  the  change in 

the tem pora l support o f the measurements across d iffe ren t series as k  =  {A' l , . . . ,  km}-
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The support transformation takes place in the observations, leaving the latent pro­

cess to be modelled at another stage. In vector form, x  is the multivariate latent 

process for all series at all times, and x{t)  represents all the series at time t. The x 

increments at different series are allowed to be correlated if the series themselves reflect 

a physical process (e.g. climate) at nearby locations; we w'rite

x{t  + h) -  x{t)  ~  A ^(0,f|/;|S ) (4.5)

w'here v is the conunon variance of an increment per unit time, and E  is an m-hy-rn 

matrix which controls the strength of the relationship of data across the series. The 

multivariate process in Eq. (4.5) forms the basic model underlying our joint approach.

4 .1 .3  P aram eter layer

To complete the hierarchical modelling structure, prior distributions are assigned to 

the model parameters. We use reference priors on v  and r  so that t t { v )  oh v ~ ^  and 

7t ( t ) k  . We defer the discussion of the model choice for S  to Section 4.3.2 and 

4.4.1. Hereafter the parameters in our model are written as 0 =  { u ,S ,r , fc}. The 

graph for our complete model can be seen in Fig. 4.1.

s = I , . . .  ,7n 

i  =  l , . . . , n s

Fig. 4.1 : A Directed Acyclic Graph (DAG) for the model described in Section 4.1. 

Circles indicate parameters/latent random variables w'hilst boxes indicate data. The 

solid lines indicate the direction of information flow'.
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4.2 B ayesian inference

This section chscusses a strategy to perform fast inference on our model param eters 

w ithout resorting to MCISIC methods. Predictive posterior distribiitions of interest 

include the param eters 9, and either of the latent process x  or z ,  conditioning on data 

y. Both X and z  are legitimate targets of interest; and their com putations are ecjually 

straightforward. Here we choose the former to dem onstrate the computation.

4.2 .1  P osterior  d istr ib u tion s

M athem atical notation in this chapter closely follows tha t in chapter 3, including the 

notation trick discussed in Section 3.1.2. Notwithstanding, to allow this chapter to 

be self-contained we reintroduce our notation. We suppose to is the sorted set of all 

observed times at all series, i.e. to =  so rtj^ sj, t s 2 , ■ ■ ■} =  2̂ : • • •, ^n} where n is the

total number of unique time points of observations across all series. We shall consider 

a stochastic system at these times. Sunilarly, w'e let yoih.i)'-, s =  1 , . . . .  n? whose values 

coincide with the y{tsj) values when series s has an observation at and whose values 

are missing otherwise; there is typically one such series for each i,. Let yo denote 

the set of all such vectors, the vectors y  (length N  =  and yo (length mn)

contain the same information. We shall refer to y  and x  defined on to as yo and Xo 

resj)ectively. The da ta  model can now be written as

y o \ x o , T , k  ~  A/'(xo,Q"j)

Here. Qy^ is a diagonal precision m atrix with entries and corresponding

to cores at times with data, and zeros where there are no data. Similarly, the process 

model has the form:

X o \ v , l l  ~  A^(0,Q;/)

w'here Qxo = Q t o ^ v  \  Here. is a Kronecker product of the precision m atrix 

and correlation m atrix E. At this stage, it is easy to write dow-n the full condi­

tional distribution of all unknown processes and param eters in our model. We could 

conceivably ht our model using MCMC methods, though the latent process Xo induces 

a large number of param eters and requires a long run. Instead, since the da ta  model 

and prior can both be written as Gaussian distributions (via the notational tricks) it is

47



feasible to analytically integrate out irrespective of the form of prior distributions 

for 6. More specifically,

7r(£Co,0|yo) oc 'n{yo\xo,9)'K{xo\d)T^{0)

oc IQyJ^ exp -  Xo)'^Qy,{yo -  Xo)^ |Qxj2 exp (^-^Xo^Qx.Xo^ vr(0)

oc TT{Xo\yo,0)'K{e\yo)
(4.6)

Here, the full conditional of x„ is a Gaussian distribution defined by the precision 

matrix = Qy„ +  Qx„ and mean vector that is the solution to Qxo|yoMxo|yo =

QyoVo The full conditional of 6 has the form:

7r(01?/o) =  iQxolj/ol” " IQyol^ I Q . r o P  f'xp (^^yo  ̂Qyo{̂ J'ro\yo ~ Vo)^ 7t(0) (4.7)

This result allows analytical marginalisation of the latent process x„ from 7t{xo- 6\yo) 

Therefore the inference procedure can be divided into two separate stages as follows.

4.2.2 Stage 1: sim ulation-free com putation  o f m odel param e­

ters

Initial inference is focused on TT[6\yo), which is the same as Tr{0\y). We use R function 

optim to minimise the negative marginal likelihood (4.7) to locate its mode. We then 

evaluate it on a suitable parameter grid as discussed in Section 2.3.3.2. Recall that this 

approach allow's us to approximate the continuous distribution 'K{9\y)\6 G © by the 

discrete distribution vr © j; j  = 1, . . .  , J . Here, © and ©,/ are, respectively,

continuous and discrete parameter spaces; the latter will be used as a Riemann sum 

approximation to analytical integrations as discussed in the next inference stage.

4.2.3 Stage 2: sum m aries of latent process at an arbitrary 

tim e grid

As previously mentioned, our objective, given y,  is to provide posterior summaries of 

the latent process x  on a regular time grid denoted by tg =  {/A;?’ =  1, . . .  ,% }. W'e 

shall use Xg and yg to refer to x  and y  defined on the grid tg.

We repeat the aforementioned notational trick by letting the star notation de­

note the processes defined at both the uniciue (and sorted) observed times and grid,

48



i.e. y ,  =  {yo^ lyg^)^  Hiid =  [ xo^,Xg^)^. Tlie main task in tliis stage involves 

marginalisation over 9.

7r(x*|y*) =  j  TT{x, \y, ,9)  n{d\y^) d9  (4.8)

0

Derivation of the  first quantity  in the above integrand is, again, by completing the 

cjuadratic form as in Eq. (4.6). The second quantity  in the  integrand is Tr{9\y), the 

joint posterior d istribution of the model param eters  previously derived in Section 4.2.2. 

Importantly , the  discrete ap])roximation of the la tte r  eciuation renders as summations 

the integrals tha t  arise in Ecj. 4.8, i.e.

7r(a;.|y,) «  Tr{9j\y^) A 9 j  (4.9)

0 ,

where Q x . | y .  posterior mean and precision of ( x * |y , ,0 ) .  We write

(^j)  tuifl Qx,|y, i^j)  to  emphasise tha t  they are the  functions of 9j.  Thus, 7r(a;,|y,) 

is a Gaussian m ixture over the posterior samples 0 j  with weights aj  =  7T(9j\y)A9j  

already computed in the  first inference stage. In Section 4.3.3 we obtain pathwise 

sununaries of the full conditional for Xg by sampling for x ,  from (4.9) and extract 

relevant values for Xg.

It m ay be of interest to derive pointwise  posterior summaries for Xg. Since the 

joint  posterior distribution is a hnite  mixtm ’e of Gaussian distributions, the  marginal 

posterior distribution of the  1*̂  element at a specific series corresponding to  a temporal 

grid point of interest may be approxim ated as finite Gaussian mixture:

0 ,

w’here {dj),  conditional on the sample value 9j ,  is the  element of the  cor­

responding series identity from Similarly, each conditional posterior variance

'^x\y element of the  series identity represented in the  diagonal of the

covariance matrix. Note th a t  it is not necessary to invert the precision m atrix  Qi,|y. 

to ex tract  the  marginal variances, as discussed in Section 2.3.3.4.

Pointw'ise posterior sununaries such as the mean and variance corresponding to the
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distribution in Eq. (4.10) can be computed as

0J

V"ar(xl')|y*) =  ^

Calculations of other summarised statistics such as posterior modes, quantiles, etc. are 

similar. For generality, interciuartile ranges (IQR) shall be used to cjuantify the predic­

tion. We re-emphasise tha t although there are many com putations with large matrices, 

such as solving equations, Cholesky decomposition, etc. they are only required J  num­

ber of times. The fact tha t all of the matrices are sparse and can be efficiently stored 

and computed as band matrices presents a further significant com putation saving.

4.3 A pplication  to  two G reenland ice core data  sets

In this section we apply the model framework and inference procedures presented in 

previous sections to analyse the Greenland ice core da ta  sets described in Section 2.1.1. 

As indicated, we work with the process that is related to some aspects of climate, 

rather than climate itself. Moreover, we consider only data  of approximately the last 11 

k cal yr BP as we would like to avoid the non-linearities in the age/depth  relationshijj, 

as well as non-negligible dating uncertainty.

4,3,1 Exploratory data analysis

For the Holocene period (approximately the last I l k  cal yr BP), depth is transformed to 

age by counting annual layers in chemicals tha t show a seasonal cycle (Rasmussen et al. 

2006). This dating method produces minor errors and we do not consider temporal 

uncertainty in this chapter. The and date records for all consecutive sections are 

presented in Fig. 4.2, along w'ith boxplots of the age increments. An age difference 

value of 80.6 yr betw'een roughly 1320 and 1400 cal yr BP has been om itted in this 

figure to focus on other significant features of this plot.

Since the <5̂ *0 observations are irregularly spaced in time and it may be non- 

stationary, it is not feasible to look at autocorrelation plots. Instead, the empirical 

semivariograms will be used to investigate the temporal variability of the measurements
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F ig .  4 .2  : Scatter plots of measurements and ages of (a )  GISP2 and (b )  GRIP, 

(c) Boxplots of the time increments clearly show different irregularities in the ages. 

Note th a t we have omitted an age difference value of 80.6 yr between roughly 1.32 and 

1.4 k cal yr BP in the boxplot for GISP in order to focus on other significant features. 

The intercjuartile ranges (calculation including the om itted value) are (10.0, 12.5, 16.8) 

and (2.8, 3.5, 4.6) year for GISP2 and GRIP respectively.

under a continuous-time setting (Haslett 1997). This involves calculation of half of the 

squared differences of all combinations of values from each core. As with all 

processes defined on continuous su])port, there is necessarily a minimum separation

51



in the da ta  beyond which we have no information on which to infer the empirical 

semivariogram. The usual approach is to assume one of the theoretical models and use 

this to infer the information near the origin corresponding to high-frequency behaviour 

(Chiles & Delfiner 2012, chapter 2).

Figure 4.3 suggests th a t the variability in each series may be adequately modelled 

via a theoretical linear semivariogram, i.e. |V ar(first difference of tlie (5^*0 values) = 

intercept +  slope x (time lag). To recap, the intercept is known as the nugget effect, and 

the slope is twice the variance of the unit increments of a nugget-free, continuous-tinie 

stochastic process. Specifically, the nugget term  refers to the a])parent discontinuity at 

the beginning of a semivariogram. It attribu tes to tw'o sources of variation: the noi,se 

of data  at high temporal frecjuency, and th a t wdiich is due to uncertainty from data 

collection (Chiles Delfiner 2012, chapter 2). Three key features can be seen from 

the empirical semivariograms. First, they are dominated by their respective nugget 

term. Second, the ratio of the nuggets is approximately which is the same as the 

ratio of the lengths of their respective ice core sections. Third, and most importantly, 

the slopes are approximately equal. We discuss further aspects of this in Appendix 

The least sc}uared estim ated intercepts and slopes are respectively 0.19 and 0.03 for 

GISP2, and 0.52 and 0.02 for GRIP. These point estimates should be compared to the 

Bayesian estimation depicted in Fig. 4.5.

Om’ final exploratory analysis focuses on the standardised distribution of the first 

differences of the values. To begin with, w'e use R package geoR (Ribeiro J r &: 

Diggle 2001) to estim ate the param eters of the theoretical linear semivariogram mod­

els. Based on these estimates, w'e com pute the standardised distribution of the (5^*0 

increments. The resulting QQ plots, as shown in Fig. 4.4, indicate the suitability of 

the Gaussian assumption. This, as w'ell as the finding obtained via the empirical semi­

variograms, provides the basis for the independent increment modelling assumption for 

the continuous-time stochastic model proposed in Section 4.1.

4.3.2 M odel-fitting results

In this section the model framework and inference procedures presented in Section 4.1 

are applied to analyse the pair of GISP2 and GRIP. W hen there are tw'o cores, rn = 2,
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Lag (k yr)

F ig . 4.3: The empirical semivariograms of GISP2 and GRIP. They suggest that the 

linear semivariogram is a suitable model for both of the ice core data sets, i.e. |  

Var(first difference in the values) =  intercept +  slope x (first difference in ages). 

See the text for further details.

F ig . 4.4: QQ plots of the standardised increments, i.e. the ratio of the first differences 

in the measurements and estim ated standard errors of increments for (a) GISP2 

and (b) GRIP. The unusual values corresi)ond to very large differences in consecutive 

pairs of values.

we model the cross-correlation m atrix (4.5) as

a b

- 4  -2  0 2 4 - 4  -2  0 2 4

Empirical quantiles Empirical quantiles

(4.12)
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where p  is the  co rre la tion  coeffic ient; see also Section 4.4 fo r more deta ils on th is  

choice. As tem pera tu re  processes at nearby locations always have (s trong ly ) pos itive ly  

corre la ted increm ents, the  same is expected for the  processes. Hence, we set 0.5 

and 1 as the acceptable range fo r p. Furtherm ore , w'e assign a fla t p r io r on its  lo g it

tra n s fo rm a tio n   ̂ so th a t i t  has values on the real axis.

P rev ious ly  we denoted 9  =  {w, S , r ,  fe}. We chose to  m odel S  as a fu n c tio n  o f p.

We also proved th a t a ll values o f k  can be w r it te n  as a func tion  o f r .  Hereafter a ll

unknow'n param eters in  our m odel are 6  =  r } ,  representing the variance per u n it

increm ent o f the  la ten t process, cross co rre la tion  coefficient and nugget effect (fo r the 

G R IP  core) respectively.

Using the inference procedure ou tlin e d  in  Section 4.2, we ob ta in  the  d iscrete ap­

p ro x im a tio n  to  the  m arg ina l poste rio r d is tr ib u tio n s  fo r the  com ponents o f 6. For 

co m pu ta tion a l s ta b ility , we evaluate the  poste rio r d is tr i l iu t io n  for v and r  on a log 

scale, and p on the lo g it scale. For b re v ity  o f presentation, ŵ e trans fo rm  the  results 

to  th e ir  o rig ina l scale, app ly  a sm oother to  the gridded values and present them  as in  

F ig. 4.5. I t  can be seen th a t the  results fo r v  and r  are consistent w ith  Fig. 4.3, i.e. 

the  poste rio r d is tr ib u tio n s  con ta in  the estim ated slopes and intercepts. The poste rio r 

d is tr ib u tio n  o f p  peaks at a h igh value close to  1 w h ich indicates a s trong  spa tia l re­

la tionsh ip  betw'een the  increm ents in  tw'o cores. T h is  is not su rj)ris ing  since the  cores 

were d r ille d  from  nearby locations and bo th  reflect the  h is to rica l changes in  regional 

tem [)e ra tu re  o f G reenland.

20
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Q 105
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6

4

2

0

0,2 0.3 0.4 0.5

V P T

F ig .  4 .5  : P lo ts  o f the  sm oothed poste rio r d is tr ib u tio n s  o f (a ) the  variance o f the  u n it 

increm ent o f la ten t process x ,  (b )  cross co rre la tion  coefficient and (c ) nugget effect fo r 

G R IP ; the  nugget effect fo r G ISP  is d ire c tly  p ro p o rtio n a l (55/200) to  th is.

^log it(/9 ) =  Here, we set I =  0.5 and h =  1. respective ly  as the  lower and upper bound value.
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Under oiu' m odel-based approach we have the  choice of w hat sm nm aries of the 

histories to  use. O ur m ain interest lies in the  true  values on a bidecadal tim e

grifl over the  period of 0 to  11 k cal yr BP. As previously m entioned, w'e targe t X g  

and call th is tru e  The 95% and 50% credible intervals for the  gridded process

X g  are represented in Fig. 4.6. The la tte r  interval is more connnonly known as the 

intercjuartile range (IQ R). We com pare our results (labelled as D PH ) w ith those from 

the  algorithm -based approach of Stuiver & G rootes (2000, see also h t t p : / / d e p t s . 

w a s h i n g to n .e d u / q i l /d a t a s e t s / )  and Mogensen (2001, see also h t tp : / /w w w .g f y . 

k u .d k /~ w w w - g la c /d a ta /g r ip d e l ta .d a t) ,  labelled as SG and M respectively. The 

construction  of SG is “based on averaging the  m easurem ents of sam ples of shorter 

dm 'ation", and M has been sim ilarly sam pled w ith respect to  SG 's tim escale. T he set 

of posterior im puted values from DPH can be seen to  be nmch sm oother th an  bo th  

SG and M because the  nugget is so nmch larger. For bo th  SG and M, the  nugget 

is assum ed to  be the  m easurem ent error which is set very small. As we previously 

discussed in Section 4.1, om' nugget comprises bo th  the  m easurem ent error and m icro­

scale variation. O ur choice removes the  variation d\ie to  bo th  sources of variation, 

resulting in a sm oother latent process.

To gain a b e tte r  understand ing  of the benefit of joint m odelling over separa te  al­

ternatives, we fit an independent increm ents model w ith G aussian noise to  each core 

separately. Note th a t, in contrast to  the  jo int approach, the relationship l)etween two 

nugget param eters is suppressed in the  separa te  approach. Thus, each model has two 

param eters (a process variance and a nugget param eter). We defer to  Section 4.4.1 

for a m ore formal discussion of these separate  models. Figure 4.7 shows th a t  the  IQR 

in the  separa te  m odel is ahvays higher th an  th a t of the  joint model. This reflects the 

difference in the  tem poral resolution, i.e. the  im m ber of available d a ta  points. M ore­

over, it indicates th a t  the  joint approach utilises inform ation from bo th  cores more 

effectively when the  relationship betw'een the  cores (here m easured by p )  is strong. We 

an tic ipate  th a t the  benefit of jo in t inference w'ould be m ore apparent as the  num ber of 

correlated  cores increases.

The ‘spikes' (e.g. 0, 1.36. 3.4, 8.2 k cal B P  in GISP2) in Fig. 4.7 are a direct 

im plication of either the  associated age gaps, or abru}:)t changes in the  measure-
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Fig. 4.6: Plots of quantile-based 50 and 95% credilile intervals of the marginal posterior 

distributions of process Xg on a bidecadal time grid over the period of 0 to I lk  cal 

BP conditional on both GISP2 and GRIP. We also show the bidecadal data  product 

reported in Stuiver Sz Grootes (2000, SG) and Mogensen (2001, M).

ments, or both Specifically at 8.2 k cal yr BP, the spikes are more influenced by 

abrupt changes in the measurements. In general, all of these spikes are higher 

and sharper in the separate models, in comparison to the joint model. The reverse

®Note th a t tlie spikes a t tim es 0 and 11 are the m odelling arte fact known as th e  'boundary  effect’; 
see. for instance (Rue & Held 2005).

G R I P

50% credible band from DPH 
95% credible band from DPH

Data product from M 
raw measurements
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happens aromid 1.4 k cal BP in GRIP. This is a direct consequence of the  (lack of) 

d a ta  points from the o ther core (GISP2) at th a t  period. Finally, we note th a t  the  IQR 

in all cores - in bo th  the separate  and johit settings - slightly increases with time. This 

occurs because tem poral resolution decreases when the cores are sampled over sections 

of identical lengths. Further, it is an indication a possible limitation of the  assumption 

of constant support within a core.

0.20
cn

15

0.10

used only GRIP data 
used both GISP2 and GRIP

0,00

O )
15

0.10

o 0 05 used only GISP2 data 
used both GISP2 and GRIP

0 00

0 2 4 6 8  10 0 2 4 6 8  10

Age (k cal  yr  BP)  Age (k cal  yr BP)

F ig .  4.7: Plots of the  intercjuartile ranges (IQR; corresponding to  the  width of the  50% 

credible hand in Fig. 4.6) of the marginal posterior distributions of Xg  on a bidecadal 

time grid over the  period of 0 to  I l k  cal BP at cores (a)  GISP2 and (b )  GRIP. The 

main features from these plots are th a t  (i) interquartile ranges of the  separate models 

are always higher than  those of the  joint model; (ii) the  gaps of the differences in (a)  

are consistently larger than  those in (b );  (iii) there are several spikes; and (iv) a slight 

tendency for increased IQR further back in time. See the text for a detailed discussion.

Although this is not a full m icertainty comparison of our m ethod with other m ethods 

- for neither s tandard  deviations nor IQR are available - it suggests th a t  these ignore 

valuable information by treating each core separately.

4.3.3 Case study o f the 8.2ka event

A great challenge is posed by ’events’ such as the 8.2ka event, the  sudden reduction 

in North Atlantic tem pera tu re  during a period around 8.2 k cal yr B P (Thomas et al. 

2007). It is believed to be related to  a transient change in the  North Atlantic  over­

turning circulation. Consequently, the  amomit of evaporated w'ater in the  ocean that
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became ice in Greenland is amongst its best sources of evidence.

Like others in the literature, we define the 8.2ka event by an attainm ent of a niin- 

inmm in the tem perature value during a specific time period (Thomas et al. 2007). 

The date corresponding to the local minimum of the averages is not a satisfactory 

estim ator of the time of such event. We propose to use our data  product, the (5^*0 

sampled histories from the joint posterior distribution of X g  as showm in Eq. (4.9), to 

illustrate a satisfactory approach. Formally we focus on the distributions of random 

variables Xmin =  x { t )  and =  arg^minx(^), being respectively the minimum 

value and the time at w'hich this minimum w'as achieved. Fm thermore, we focus on the 

period betw'een 7.90 and 8.50 k cal yr BP tha t is believed to bracket the 8.2ka event, 

to distinguish from the possible long-term climate trend (Morrill k .  Jacobsen 2005).

Using the procedure previously introduced in Section 3.2.4, w'e obtain sununary 

for 1000 minima of the (5̂® histories as represented in Fig. 4.8. We estim ate the 

interquartile ranges of the timing of the event from both cores to be (8.12, 8.16, 8.18) 

k cal yr BP. Our findings are consistent with previous studies reported elsewhere; but 

no quantification of the uncertainty has previously been attem pted; see, for instance, 

Thomas et al. (2007), Kobashi et al. (2007).

GRIP h

GISP2 GRIP 8^05 8.10 8.15 8.20 8.25

Age (k cal yr BP)

Fig. 4.8: (a) Boxplots of the minima and (b) times of the minima from GISP2 and 

GRIP over the range of 7.9 to 8.5 k cal yr BP. The intercjuartile range of the timing of 

the event from both cores is (8.12, 8.16, 8.18) k cal yr BP. All estimates are based on 

1000 process histories.

The histories can be utilised to investigate other interesting climate events
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(W anner et al. 2011). The use above for m inim a and tim ings of m inim a herein is 

ilh istrative; any function of the  process m ay be studied , conditional on tlie da ta .

4.4 M odel validation

In th is section, we perform  two checks. F irst, w'ithin the  context of our apphcation  w'e 

discuss the  m odel choice for E  in Ecj. (4.5) by fitting  and com paring several choices and 

choosing the  best am ong them . Then, we investigate the  identifiability of our model 

using sinuilated d a ta  under various circum stances.

4.4 .1  M od el choice for th e  cross-correlation  function

Let M \  denote the  model w ith covariance function (4.12) for S . This covariance 

s tru c tu re  assum es equal variance of increm ents across the  cores. To form ally m easure 

the  benefit of joint m odelling we com pare model M\  w ith M 2  which has covariance th a t 

ignores cross-correlation betw'een cores. In fact, has been inform ally in troduced 

in Section 4.3.2. It comprises of two separa te  m odels; one for each core. We have 

dem onstra ted , via Fig. 4.7, th a t the  joint model utilises inform ation from bo th  cores 

more effectively th an  the separa te  models.

The previous paragra{)h re-em phasises the  superiority  of model M \  over i'l/2 . Next, 

we fu rther propose model i ' l /3 , to  be com pared w ith M i.  The covariance of th is model 

assum es varying variances for different cores, i.e.

We assign a reference prior for a. so th a t 7r(a) =  a~^. Its mai’ginal posterior d istribu tion  

is shown in Fig. 4.9. Its m ode centres around 1 while the  m arginal posteriors for o ther 

param eters in m odel A/ 3  (not showm here) are practically  th e  same as those in model 

previously show'n in Fig. 4.5. This result suggests th a t model M 3  is ju st a more 

conservative version of Mi.

We com pare model Mi  and M 3  based on their deviance. In our no tation , deviance 

of a model is defined as —2 log(7r(y|a:, 0)). Indeed, th is q uan tity  is a random  variable 

in the  Bayesian fram ework so th a t th e  m ean deviance is often chosen in lieu. F u rther­

more, there  is an apparent pitfall of over-fitting since m odels w ith m ore param eters are

(4.13)
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guaranteed to fit a data  set better. Hence, in additional to the deviance, we would like 

a penalty term  to deal with unnecessary terms in a model, hi the literature, e.g. Gel- 

man et al. (2014, Chapter 7), common measures of model fit and complexity are know'n 

as AIC, BIC, and DIC. For this work, w'e choose the DIC proposed by Spiegelhalter 

et al. (2002). It has the form:

- 2  log n{y \x , e )

Hei’e, po  =  log 7r {y \x,9)  — E 0  ̂ {log [7r(y|x, 0)]}, the process x  is short for the 

posterior mean of x\y ,  9, the param eter 6 is the posterior mode of 9\y,  and the expec­

tation term  is evaluated with respect to the param eter grid 0 j .  All aforementioned 

(luantities are readily available from the inference stages discussed in Section 4.2.2 and 

4.2.3 hence calculation of DIC is straightforw'ard. We obtained DIC values of 82.5 and 

81.9 for model Mi  and A/ 3  respectively. The low'er is this value, the better is the model. 

Although in this case, it could be misleading to choose M 3  over Mi  based on the small 

difference of 0.6 in the DIC values.

We have obtained some evidences tha t the extra param eter a in model M 3  can 

be made redundant, and tha t the connnon variance assmnption in model Mi  is more 

suitable for GISP2 and GRIP. Including param eter a slightly decreases the DIC value; 

but such an extension may not be necessary when we take into accoimt the additional 

com putational cost associated with a more complex configin’ation of param eter grid 

©,/ and more expensive cjuadrature resulting from using more grid points.

4,4.2 Checking for m odel identifiability

As a final model checking step, we determine whether the param eters in our model are 

identifiable or not. We do this by simulating model param eters (t>,p, r )  based on the 

results of the data  analysis of Greenland ice core, thence the latent bivariate process x  

and consequently artificial data  y.  We partially average the sequences so as to match 

the change of support th a t occurs in our ice core example. W'e then fit the model 

as described in Section 4.2, and determine whether the 50 and 90% posterior intervals 

contain the true values. We repeat these steps 1000 times, and count up the proportion 

of occurrences where the intervals contain the true values. A properly calibrated and 

identifiable 50% interval should contain the true value 50% of the time, and similarly
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Fig. 4.9: Plot of the smoothed marginal posterior distribution of the parameter a in 

the covariance matrix of model described in Section 4.4.1. The mode is roughly 1 

which suggests that a is redundant.

with the 90% interval.

The results of our simulations are show^n in Table 4.1. As can be seen, the inter­

vals contain slightly fewer than the desired proportion of true values, so our posterior 

intervals are over-precise. However, this effect appears small, and the model seems 

generally identifiable.

Parameter Proportion inside 50% Cl Proportion inside 90% Cl

X 51% 89%

v'^ 48% 88%

P 49% 90%

48% 90%

Table 4.1: Performance of the model fitting algorithm. All results were ba.sed on 1000 

sinmlation runs.

4.5 D iscussion

This chapter has ])resented a hierarchical model to jointly analyse misaligned irregular 

time series. Our proposed framew’ork is simple but useful to combine multiple time 

series, allowing each series to have a different temporal support. We applied the change 

of support theory from the geostatistical literature to deal with issues with different
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supports. An im portant component of our model is the Gaussian Markov assiunption 

based on m ultivariate independent increments. We derived and implemented a fast 

algorithm for param eter inference and im putation based on this model. We further 

dem onstrated tha t the joint approach utilises information from nmltiple time series 

more efficiently than one-series-at-a-time alternatives.

We applied the method to create climate data  product from a pair of Greenland 

ice cores. Some param eters in our model were fornnilated according to the respective 

lengths of ice core sections. Firstly, this approach is likely to be problematic in the 

study of sections longer than the Holocene. Secondly, we have implicitly assumed 

perfect knowledge of the timing of all observations, w'hich is generally not true in many 

other palaeoclimate records. Hence, a generic extension to our hierarchical structure is 

to incorporate uncertainty in the timescale. Thirdly, the Gaussian assiunption for the 

increments is conceivably too restrictive for capturing of abrupt climate change events. 

We offer solutions to these issues in the next chapter.
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C hapter 5

Joint inference of m ultiple volatile  

processes w ith  tim e uncertainty ^

Cha])ter 4 (leveloj)ed a method based on a three-layer hierarchical model to deal with 

multiple irregular time series data, with each series having a different tem poral support. 

A generic version of this model has the form:

At the highest layer, a vector of data y  oljserved at times t  is linked to a latent process 

X by a simple model with param eters t/?. In the next layer, a vector of param eters 0 

specifies a distribution for the process x.  The lowest level comprises of prior distri­

butions for param eters i/> and d. Linear Gaussian processes are the central focus of 

I he above model. Moreover, uncertainties in the times of observations were neglected. 

W hilst these settings provided a fast and easy method for a joint statistical analysis, 

they are only applicable to a limited set of situations.

This chapter further generalises the problem setting considered in Eq. (5.1). The 

aim is to develop efficient statistical treatm ents for multiple non-Gaussian time se­

ries processes, with the times of the observations themselves being uncertain. More 

specifically, w'e consider the following extensions:

1. Weakening of Gaussian assumptions to allow data  y  and latent process x  to have 

more realistic /  flexible likelihood functions,

'T h e  work in th is chapter is an ex ten sion  to  a publication  in th e  J ou rn a l o f  the R oyal  
S ta tis t ica l  Society: S er ie s  C  (P arnell e t al. 2015).
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2. Allowing uncertain ty  in tim es t  at which d a ta  points are m easured,

3. Incorporating  stochastic  volatility  effect for latent process x.

In Section 5.1, we describe the  relevant palaeoclim ate da ta  sets and form alise the 

problem  se tting  for the  chapter. Section 5.2 presents our four-layer hierarchical model. 

Section 5.3 introduces a m odularised algorithm  w’hich divides the  inference procedure 

to  three different stages and give rises to  a fast M CM C algorithm  for for posterior 

inference. T he chapter continues in Section 5.4 w ith a real d a ta  exam ple; a joint 

analysis of pollen d a ta  ex tracted  from th ree sedim ent cores taken beneath  th ree  lakes 

in F innm ark. We apply our m ethods to  s tudy  a rap id  clim ate change period known as 

the  Younger Dryas. Section 5.5 reports a sim ulation study  for th e  purpose of model 

checking. T he chap ter concludes in Section 5.6 w ith a sum m arised discussion of oiu' 

m odel and its variants.

5.1 Problem  setting

T he sta tis tica l challenges for th is chap ter are m otivated  by the  reconstruction of clim ate 

histories from pollen d a ta  previously in troduced in Section 2.1.2. Therefore, our dis­

cussion th roughout the  chap ter will be associated w ith the  term inology and s ta tis tica l 

issues in palaeocliniatology.

To recap, each fossil sedim ent core comprises tw’o sets of observations: pollen comits 

recorded a t some instan taneous dep ths, and dating  of the  dep th  layers them selves. 

Table 5.1 illustrates a schem atic representation  of the  inform ation available in a single 

sedim ent fossil core (we have m any cores). At some layers of the  core, pollen d a ta  are 

available. At some o ther layers, m aterials are ex tracted  and radiocarbon dated.

In addition  to  the  fossil pollen inform ation, there  is a large set of tra in ing  d a ta  

collected from thousands of locations around the  w'orld. It can be seen from Table 5.2 

th a t each pair of d a ta  points consists of know'n clim ate and associated pollen counts. 

This d a ta  set is used for calibration, i.e., to  build a sta tis tica l relationship  between 

pollen and clim ate. T he science is simple; change in clim ate causes change in vegetation 

which is quantified, in th is case, by counts of pollen grains.

B oth  m odern and fossil pollen d a ta  sets are utilised to  m ake sta tem en ts abou t 

underlying unknown clim ate processes on a calendar tim e scale. T he tim es are unknown

64



Fossil d a ta Point reconstruction

D epth Fossil pollen R adiocarbon age C alendar age C lim ate

[4,i] bjs,i]

5̂,2] [ y s . 2 ] U , 2 -C( ŝ,2)

[̂ 4 .3] [Vs.3] K.2] ts,3 ^ { ^ 8 ,3 )

— 1] [ys.Hs-i] K i s ] ^s.ns-\

[^s.ris] [ys,n] ŝ,ris

T a b le  5.1: A schem atic representation of inform ation from one fossil sedim ent core 

(core ‘s ’). Scjuare brackets are used to distinguish observed m easurem ents from un­

observed laten t variables. At layers corresponding to depths {ds.i,  ■ ■ ■ ,ds,ns}^ pollen 

counts {ys.i: ■ ■ •  ̂ are available. This inform ation is used (in addition to  a tra in ing  

d a ta  set as represented in Table 5.2 below) to  learn about clim ate { x ( /s ,i) ,. . .  , J^(/s,nJ} 

at tim es t  =  {ts.i .  • ■ • , the  tim es them selves are stochastically  in terpo la ted  from

radiocarbon ages { r ^ j , .. . , at 1̂  slices of depth  in the  core.

Training d a ta

M odern pollen M odern clim ate

xT yT

‘̂ K ^'K

T a b le  5.2: M odern (trahiing) d a ta  set of m odern clim ate conditions 

x'^ =  { x j" ,. . .  , and pollen counts =  [ y " \  . . .  , y ’̂ } .

b u t can be derived from radiocarbon dated  m aterial at some depths of the  coi’e. We 

em phasise th a t om’ focus is on jo in t  inference at all tim es, for nuiltiple fossil cores.

Parnell et al. (2015) recently propose a hierarchical m odel to  pool nm ltiple sources 

of uncertain ty  into a unified framew'ork. and stochastically  in terpo la te  clim ate onto an 

a rb itra ry  tim e grid. Tw'o novel ingredients of their m ethods are the  use of the  Norm al 

Inverse G aussian {J\fXQ) process as a prior to  model the  sm oothness of clim ate over 

tim e, and a novel m odularised M CM C algorithm  for posterior inference. This m ethod
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utilises the modern data set, but it works with each fossil sediment core separately- 

The M X Q  process is arguably the heart of the model developed by Parnell et al. 

(2015), and thus the extension in this chapter. We propose to use the multivariate 

version of the M X Q  to model climate from multiple fossil sediment cores jointly. Our 

aim is to allow for appropriate ‘strength borrowing’ for more efficient use of data, as 

opposed to the one-core-at-a-time approach. Increased model complexity is inevitably 

associated with increased computational burden. Simulation-free inference for model 

parameters, as discussed in Chapter 4, is no longer implementable. We will extenrl the 

aforementioned modularised MCMC algorithm to the nmltiple cores context.

5.2 A four-layer hierarchical statistica l m odel

In this section, we introduce main notation, highlight ])osterior distril)utions of interest, 

announce main assumptions, and describe a four-layer hierarchical model. The layers 

are named the data, calibration, process and parameter layer. This chapter as a whole 

is built on the recent work of Parnell et al. (2015). Therefore, whilst discussion of the 

data, calibration and parameter layer is brief, we provide a more detailed discussion of 

the process layer; wherein lies our main contribution.

5.2.1 M ain  n o ta t ion  and posterior  d istr ibu tions

Since this chapter is an extension of the work in preceding chapters, the basic notation 

used therein is employed again. Necessarily, several new pieces of notation are also 

introduced. The joint distribution of all latent processes and unknown parameters is

m  Tis m  Is K

5=1 i = l  s = l  j  =  l k = \
V _     V  ^  ^!■ -  I I I - I  I M  11 'V '

d a ta  layer ca lib ra tio n  layer

n  m  n

process layer

The notation, in order of appearance on the RHS of the above equation, are
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•  y{ts. i ) is ail observed (multivariate) count of pollen grains from core

s; {s =  1,...,???} at an instantaneous time point There are
m

N  =  total number of times across all series, n of which are unique, n <  N .
S

In vector form, y  is the N-by-1 multivariate pollen counts from all cores.

•  x{ts.i) is the (multivariate) latent climate process at time ti on core s, with x  

being the corresponding vector notation. Note tha t in scalar form the latent 

variable is expressed as x{ts) because it is defined for all times.

•  Param eter vector ip describes the clim ate/pollen relationship.

• At the slice of core s,  rgj { j  =  1 , . . . , / }  is a radiocarbon determination of 

material at depth dgj.  This, in turn, carries information about the iniobserved 

calendar age tsj.  As a result, there is imcertainty associated with the times of the 

observation y{ts. i)- In vector notation, we denote the radiocarbon ages, selection 

of dei)ths, and calendar ages respectively as dg and tg for core .s. and r ,  d  

and t  for all cores.

• We write the training data sets in vector form as — {.r'"........x’Ĵ } and y '"  =

{ y " ',.. . , y^}. Here, h  is the total number of locations around the world where 

known climate conditions and pollen counts are available.

• The variance-covariance m atrix of a m ultivariate increment of climate between 

time and has variance I’i and cross-correlation m atrix E. The variance 

process for all increments are denoted v.

•  The variance process v  is the function of j)aranieter vector 9. As can be seen 

from Eq. (5.2), we fix the values for 6 as they carry little information forward. 

T hat is, in the context of the application considered in this chapter, w'e do not 

expect to learn about this set of higher level param eter to any significant degree. 

We return to this in Section 5.2.6.

5.2.2 M ain assum ptions

1. The set of param eter -0 can be fully learnt from the training set {x'^.y"'}.
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2. The dependency between chniate x  and tlie processes which generate either ra­

diocarbon ages r  or t  is assiniied neghgible.

3. Conditional independence: (a) pollen counts y™ and y  at different layers and 

cores are independent given climate £c'" and x  and param eters v  and '0; (b) 

radiocarbon dates r  are independent given calendar ages t  at different layers and 

across all cores.

In comparison to Parnell et al. (2015), assumption 1 is exactly the same, whilst 

assumptions 2 and 3 are herein in the context of nmlti])le cores.

5.2 .3  D a ta  layer

The model for each fossil pollen observation conditioning a true but unknown climate, 

is an independent zero-inflated negative binomial distribution (ZINB). 

A technical review of this model is given in Section 5.3.1.1.

It follows from assumption 2 in Section 5.2.2 that 'K{r\t,x) as •n{r\t). Furthermore, 

each radiocarbon age conditioning on the corresponding unknown calendar age, rsj \ tsj ,  

can be modelled as a Gaussian distribution. Section 5.3.1.2 gives more details on this 

model, as well as prior choice for t.

5.2 .4  C alibration  layer

The sheer amount of the training da ta  makes assumption 1 in Section 5.2.2 feasible. 

That is, the set of param eters ip represents all the information in the calibration layer, 

and n{y'^\x"',x, ip)  »  7r{y”^\x'^,ip). As in the case of fossil pollen data, we apply the 

conditional independence assumption outlined in Section 5.2.2 to the training pollen 

data, given associated climate and param eters. Again, each of these term s is a ZINB 

model.

5.2 .5  P ro cess layer

One of the novel contributions of this chapter is the specification of a joint prior dis­

tribution for x.  Therefore, w'e provide a more detailed discussion of this model layer.
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Before discussing our proposal, we briefly recap the  nm ltivariate G aussian indepen­

dent increm ents m odel used in bo th  C hap ter 3 and 4 via Eq. (3.2) and (4.5) respec­

tively. Let x{ t )  be the  laten t process x  defined at tim e t. A G aussian m ultivariate 

independent increm ent model has the  form:

w here v represents the  variance of a unit increm ent, h is an a rb itra ry  tim e increm ent, 

and  S  is the  cross-correlation m atrix  cap turing  the  relationship between cores. Hence 

the  variance of an increm ent of any unit is d irectly  proportional to  its corresponding 

tim e difference. It is the  sum  of the  variances of m any sm aller increm ental units.

T h a t is, the  variance between tim e tj and tj,. is — t j \v and f  vdt  for the  discrete
*3

and continuous case respectively. T heir calculation is straightforw ard since v  is a 

constan t. However, clim ate variability  is a stochastic system . It is a slowly varying 

background process th a t  changes sm oothly  w ith tim e, occasionally w ith large changes. 

U nfortunately, model (5.3), by design, can not cap tm ’e the stochastic variability.

We pro])ose to  extend (5.3) to  acconnnodate stochastic variability  in th e  underlying 

increm ent as follows:

lag |/)| and param eters 0  =  { Oi - O- z j  controlling scale and shape of the  variances of 

the increm ents. Let /) =  1 for clear presentation , the  XQ process has the  following 

form ulation, as given in B etro & R otondi (1991):

This is is flexible m odel as its d istribu tion  function can have a wide range variety 

of shapes. We believe it is a suitable cand idate  for m odelling variances for several 

reasons. Firstly, it always re tu rns positive values. Secondly, it is infinitely divisible 

so it can be represented as th e  svnn of an a rb itra ry  num ber of i.i.d. random  variates.

a rb itra ry  com ponents is also a XQ d istribu tion . Finally, and m ost im portan tly  for this 

w'ork, the  process x  is nm ltivariate  G aussian conditional on the  stochastic  variances

x { t  +  h) — x{ t )  ~  A/”(0, |/!| E ) (5.3)

x{ t  +  h) — x{ i )  ~  A ^(0,1 'tT.)
(5.4)

v,- x̂g{6,\h\,e2\h\)

where Vt is the  variance random  variable of the  increm ent of x.  depending on tim e

(5.5)

Thirdly, it is closed under convolution in the  sense th a t  the d istribu tion  of the  sum of
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V =  {tJi,. . .  In o ther words, the  process x  is m arginally a m ultivariate  Norm al

Inverse G aussian [M iG )  process.

T he Norm al, inverse G aussian, and indeed the  Norm al Inversion G aussian d istribu ­

tions are not only infinitely divisible but also closed under addition. This m eans th a t 

the shape of the  d istribu tion  does not change if we change the  size of the tim e incre­

m ent. This is a crucial feature for th e  bridging algorithm  th a t  w'e propose in Section 

5.3.1.3.

On the  o ther hand, a d istribu tion  such as the  t d istribu tion  is infinitely divisible bu t 

not closed under addition. To see this, w'e revisit the  case s tudy  of the  t-d istribu tion  

w'ith 8 df as proposed by H aslett et al. (2006) to  model changes in clim ate histories. As 

reviewed in A hsanullah et al. (2014, C hap ter 5), whilst it is possible to  derive the  sum  

of n i.i.d. t-d is tribu ted  random  variables, the  resulting sum  does not guarantee to  have 

a t d istribu tion . Therefore, the  t d istribu tion  is infinitely divisible bu t not generally 

closed under addition; the  la tte r  is tru e  only in the  lim it w'hen the degree of freedom is 

infinity. One of the  novel contribu tion  of Parnell et al. (2015), in extending the  work 

of H aslett et al. (2006), is the  use of the  NIG d istribu tion  to  model clim ate changes 

in the past, in lien of the  t-d istribu tion . In th is chapter, we propose the  nniltivariate 

NIG, thus m aking further contribu tions based on the  aforem entioned works.

From a different view point, model (5.3) can be seen a.s associating w ith a determin­

istic linear variogram , as discussed in Section 4.3.1 in the  context of ice core modelling. 

In con trast, model (5.4) is richer as it is associated w ith stochastic linear variogram s, 

as can be seen in Fig. 5.1.

T he process layer also includes unknown laten t calendar ages t. We use the Com ­

pound Poisson G annna process (H aslett & Parnell 2008) for Tr{t\d), applied to  each 

core separately. Section 5.3.1.2 gives fu rther technical details of th is model.

5.2 .6  P aram eter layer

•  As already indicated, w'e fix values for 6 . More specifically, w'e let =  3 and 

62 = 55, approxim ately  the  m ode of the  prior d istribu tions as used in Parnell 

e t al. (2015). Note th a t  as 02 approaches 00 , m odel (5.4) becomes the  m ultivariate 

independent increm ent m odels discussed in Eq. (5.3). Therefore is a more

general and flexible m odel th an  the  G aussian process.
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D ete rm in is t i c  v a r ia n c e S t o c h a s t i c  v a r i a n c e
16 - r

14 -

<1)
() 12 -
rTO
ffl 10 -

>
■n
(D 8 -
TO
“J
F 6 -
“ j
C)
C)

<

2 -

0  -

y

y
y

linear variogram
1 ---------- r

10 12 14

12  -

10  -

linear variogram
sa m p le s  of s to ch a stic  variation

0 2 6 8 10 12 144

Lag Lag

Fig. 5.1 : A sch em atic  rep re sen ta tio n  of th e  vario g ram  asso c ia ted  w ith  m odel (5.3) 

(left figure) and  (5.4) (righ t figure).

•  In itially , we use th e  exchangeab le  co rre la tio n  s tru c tu re  for m a tr ix  S .  In o th er 

w ords, th is  m a tr ix  has values of ones in th e  m ain  d iagonal an  p's  everyw here else. 

W e  assign a s tro n g  j)rior know ledge for p. Si^ecifically, we allow it to  be betw een  

0.7 and  1 to  tak e  in to  accoun t th e  p o ten tia lly  high co rre la tio n  betw een  c lim ate  

from  n ea rb y  locations. For co m p u ta tio n a l convenience, we first use th e  general 

logit fm iction  to  tran sfo rm  p to  have values on th e  real axis (as done in fo o tn o te  

2 of page 54). T h en  we assign a fiat p rio r on th is  logit fm iction. W e d iscuss o th e r 

m odel choices for S  in Section  5.6.

•  P rio r spec ification  for ip is d iscussed  in Section  5.3.1.1.

5.3 Bayesian inference

In th is  section , we j)erform  p a ra m e te r  in ference on th e  m odel d iscussed  in th e  p rev ious 

section. F irs t, w'e d iv ide  th e  overall process in to  th re e  se p a ra te  stages; a B ayesian  

m o d u la risa tio n  approach . T h en , we u tilise  a n o ta tio n a l trick  for m isaligned  irreg u la r 

tim e  series to  m arg ina lise  o u t a high d im ensional c lim a te  process. N ex t, we derive fast 

M C M C  a lg o rith m s to  sam p le  for th e  left over unknow n p a ram e te rs . F inally , co n d i­

tio n in g  on  th e  M C M C  sam ples, we p ropose  a b ridge sam pling  a lg o rith m  based  on th e  

n n iltiv a r ia te  M X Q  p rocess to  sam ple  for an  in te rp o la ted  c lim ate  process.
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5.3.1 A m odularised Bayes approach

Based on Eq. (5.2), we can w rite down the  full conditional d istribu tions of laten t 

processes and param eters of interest. Once these d istribu tions are determ ined, generic 

Gibbs and /  or M etropolis-H astings can be used to  generate posterior samples. In our 

case, as the  nim iber of j)aram eters involved is high and the  associated full conditional 

d istribu tions are not available in closed form, a plain ‘vanilla’ M CM C is no t feasible. 

We seek an algorithm  th a t  allows a ‘once-off’ calculation of expensive term s even 

under a sam pling-based inference scheme. This is a key underlying princijjle of the 

m odularised M CM C algorithm  developed by Parnell et al. (2015), which we will extend 

to  our framework.

Simply p u t, m odularisation is an act of reducing the  precision in the  estim ation  of 

param eters, or, as described by Parnell et al. (2015), ‘a conservative assumption . In 

practice, th is is done by removing the  underlined term s in the  com plete conditionals 

as follows:

7t(i/j| . . .) oc TT{y\x, ' i p)n{y’̂ \ x " ' ^  7r(y"’ |a;'",-0)7r(i/?) (5.6)

7r(t| . . .) oc Tr{r\t)7r{x\v,t,Ti)TT{v\t, 6 )n{ t \d )  «  n{r\t)TT{t\d) (5-7)

where ‘. . . ’ denotes all o ther d a ta  and param eters. This is essentially assum ptions 1 

and 2 outlined in Section 5.2.2, where we propose to  cut feedback between i/) and y,  

and once m ore betw een t  and {x ,  v} .

A fter m odularisation , we see th a t (5.2) can be w ritten  in a sim pler form:

T T { x , t , v , ' E , ^ \ y , x ^ , y ^ , d , r , 9 )  oc Tri iplx^^y^) Tr{t\r,d) T r{x , v , 'E \y , i l ; , t , e )  (5.8)

Here, the  first and second term  on the  RHS of the  above equation are, resj^ectively, 

Eq. (5.6) and (5.7). The th ird  term  is the  full conditional d istribu tion

7 r (£ c ,t) ,E |.. .)o c 7 r(y |x , ip)'n{x\v,  i ,  S )7 r(v |t, 0)7t(E) (5.9)

From a com putational perspective, the  key achievement of m odularisation  is the 

division of a large complex m odel in (5.2) in to  sm aller m odules. Equations (5.6), (5.7) 

and (5.8) are dubbed  respectively as the  modern analogue, chronology, and reconstruc­

tion m odule. The full hierarchical m odel and the  effect of m odularisation can be seen 

in Fig. 5.2. T he rest of th is section discusses the  m odules in detail. We utilise the
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work of Sw'eeney (2012) and Haslett k, Parnell (2008) for the modern analogue and 

chronology module respectively. Therefore, the discussion on these modules will be 

brief. The focus of out work will be on the reconstruction module.

reconstruction  module

c.hronoloyy module

m odern analogue module

k  =  1 , . . . , A '

Fig. 5.2 : A Directed Acyclic Graph (DAG) of the main model w’ith different modules 

indicated in grey boxes. Circles indicate parameters/latent random variables whilst 

boxes indicate data. The solid lines indicate the direction of information flow, whilst 

the dashed lines indicate relationships w'here modularisation occurs.

73



5.3 .1 .1  M o d e rn  a n a lo g u e  m o d u le

This subsection deals with the training data  set comprising of known chm ate and pollen 

information, as derived in Eq. (5.6):

7r(i/j|a:"*. y"*) oc 7r(y™’|cc’̂ , '0 )7t('0 )

Tlie model used in this chapter is a proposal of Sweeney (2012), in which 7r(y"‘ |s"^, -0) 

is the nested, zero-inflated Negative Binomial (ZINB), and 7t('0 ) is a priori an in­

trinsic Gaussian Markov process in m ultivariate dimensional climate space. Sweeney 

(2012) deploy the Gaussian Markov random field approximation (Rue &: Held 2005, 

Chapter 4.4) to approximate the full conditional distribution of "0 as Gaussian. Higher 

level param eters for -0 (not shown here) are analytically evaluated via the Laj^lace 

approximation (Rue et al. 2009).

5 .3 .1 .2  C h ro n o lo g y  m o d u le

For this module, we choose to use the model developed by Haslett <k Parnell (2008), 

although any of the alternative nrodels reviewed in Parnell et al. (2011) are also suitable. 

We begin by considering Ecj. (5.7):

[t\r,d] oc TT{r\t)7T{t\d)

in which each posterior sample of t  is termed a chronology. The first component on 

the RHS of the above equation is the likelihood of the radiocarbon ages, reported in 

the form of Gaussian distributions, hi the second component, the Compound Poisson- 

Gamma process is assigned as the prior distribution for the increments of calendar 

ages. More specifically,
N (d i - d , ^ i )+ l

U -

j=l

where each random immber N{d^ — d,_i) is modelled as a Poisson distribution, and 

an increment 7 , is modelled as a Gamma distribution which depends on another layer 

of unknown param eters (not shown here). We refer the reader to Haslett & Parnell 

(2008) for further details concerning this module.
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5 .3 .1 .3  M a r g i n a l  d a t a  p o s t e r io r s  a n d  r e c o n s t r u c t i o n  m o d u le

Tlie reconstruction module requires the  evahiation of (5.8). We rewrite this equation 

as

7 r ( a : , ' y ,E , t , ' 0 | . . . )  oc 7r('0|a:’̂ , y"^) 7r{t \ r,d)  x

m  Us  ( 5 . 11)

7 r ( ® | ? ; , f ,  E )  TT{v\t,e) 7 r ( S )

5 = 1 1 = 1

To briefly recap, the  first term  on the RHS of the  above equation is the  modern analogue 

module, the  second term  is the  chronology module, each component of the  th ird  term 

is the ZINB distribution, the fourth term  is the  Gaussian distribution, the fifth term 

the  I Q  d istribution and the last term  is a flat d istribution of the  cross-correlation 

coefficient p on a logit transform ation scale.

Importantly, the  term  x  appears twice on the RHS of (5.11), in the  th ird  and fourth 

term. As mentioned, the  fourth term  has a Gaussian distribution. Hence, it is possible 

to analytically marginalise x  out from the reconstruction module if the  th ird  term can 

also lie written in the  form of a Gaussian distribution. This is the  main purpose for 

the  use of of 'marginal data posterior'  (MDP Parnell et al. 2015), a concept tha t  was 

generically discussed in Section 2.3.3.1.

M a r g i n a l  d a t a  p o s t e r io r s  Recall th a t  the low-dimensional param eter -0 is learnt 

exclusively from a training da ta  set. Thus, we can use Monte Carlo m ethods to  nu­

merically integrate out ip from each conditionally independent term  TT{y{ts.i\x{is.i),ip) 

as follow’s:

7^(y{t s , i ) \ . r: {t s j ) ^  (X J  n(^y { t s , i ) \ x { t , ^ i ) , i p ' ^  T T i - i p l x ^ ^ y ^ )  d ip  (5.12)

Subsequently,

7r(x(/s,t)|y(^s,,)) oc ^T(^y{ts, )̂\x{ts. )̂j^ (̂^x{is, )̂  ̂ ^  T^[y{ts.i)\x{ts,t)'^ (5.13)

for a suitable prior distribution for x{ts,i)- Note tha t  in our framew'ork, prior distribu­

tions are assigned on the  increments of x  such th a t  the  prior for its marginals are flat. 

The LHS of (5.13) is a MDP. It is in fact a reconstruction of climate at a layer (or an 

uncertain point in time) of a core, conditional on pollen da ta  at th a t  layer.
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In full generality the MDP samples considered in this work are non-Gaussian chs- 

tributions. Parnell et al. (2015) propose further treatm ent for non-Gaussian MDPs, by 

considering the following Gaussian m ixture approximation:

where, for time slice from core s, m is a m ixture mean, A is a m ixture variance, g =  

1 , . . . ,  G with G being the to tal number of m ixture components, and k is a weight for 

the associated m ixture component. In practice, this step is performed using R package 

Mclust; estimation of the m ixture components is via an Expectation-M aximisation 

algorithm and does not require MCMC simulations (Fraley et al. 2012). There is 

no problem with regarding to ‘label switching that is often encountered in mixture 

estimation as w'e are content with a point solution. We follow the recommendation 

of Parnell et al. (2015) and fix G with value 10. O ther param eters are functions of 

observation y(fs,i)- However for brevity of presentation this dependency is suppressed 

in the notation.

R e c o n s tru c tio n  m o d u le  After marginalising out i/), deriving and approximating 

the MDPs as Gaussian m ixtm es, (5.11) has the new form:

TT{x,v,Tf,t\ . . . )  oa TTMOp{x\y)TT{x\v, t,Tf)n{v\t,G)7r{t\r,d)TT{'S,) (5.15)

where 7rMDp{x\y) =  I l s l i  n r= i • Following ParneU et al. (2015, Ap­

pendix A), an auxihary vector a  =  {cisasS'S =  l , . . . , m ; i  =  =  1, . . . ,G'}

sample is in mixture component g, and 0 otherwise. The goal here is to retrieve 

7r(a;(fs,j)|y(/:s^i),as,j) as a Gaussian distribution to permit simple analytical marginal­

isation of X from (5.15). This full conditional distribution can now be rew'ritten as

7r{x,v, 'E, t ,a. \  . . . )  (X TTMDpixly, cx)n{x\v, t ,  S)7r(t;|i, 0)7r(t|r, d)7r(S)7r(Q!|K) (5.16)

w'here each of ots.i is a multinomial distribution w’ith param eters Kg,. The vector 

^  s =  1 , . . .  , m; i =  1 , . . .  , n; 3 =  1 , . . .  , G} has already been learnt from the

Gaussian m ixture approximation step discussed in (5.14).

G

(5.14)

is introduced at this stage. The g*̂  component of j has a value of 1 if the MDP
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It is w orth re-einphasisiiig th a t we model tim es as continuous. Therefore, it is not 

possible to  ob tain  the  same tim e point across different cores. Inevitably, tem poral 

m isalignm ent in th e  M DPs occurs if we consider m ultiple cores together. To rem edy 

this, we are going to  use the no tation  trick th a t was introduced in Section 3.1.2 and 

again in Section 4.2.1.

For each chronology sam ple t  =  {/s.i, ^s.2 , ■ • •}, we suppose to =  so rt{ t}  =

{^1 , 2̂  ̂ • ■ •, ^n} is the  sorted  set of all unique tim es at all cores. Correspondingly, yo{ts.i) 

is an observation th a t is precisely y{ts.i) when core s has an observation at t ,̂ otherwise 

missing. In vector form, these are fjo (length mn,  as opposed to  y  which has length 

N).  All vectors in this thesis are stacked in tim e. For instance, yo{f)  is a rn x 1 vector 

of observations at tim e slice t which has typically only one observation and ??? — 1 

missing observations. Analogous to  the  definition of yo are Xo and Consequently, 

Ecj. (5.16) emerges as

n { x o .  V o .  T , , t o . o c \ . .  . ) (X 7 r M a p { x o \ y o , o t ) T T { X o \ V o .  t o ,  T , ) - K { V o \ t o , 6 ) n { t o \ r ,  d)7r(S)7r(a |K )

T he numben' of unknown term s in Ecj. (5.17) is n x m for Xq- n for to- — 1 for Vo, n 

for ot and the  param eter space of E  which is 1. The new no tation  allows us to write 

the  joint d istribu tion  of the  M DPs in vector form as

Here, is the  vector of known m ixture m eans, and is a diagonal m atrix  of known 

m ix ture  precisions, whose values are conditional on the allocation given by a, and 

zeros where there are no data . This no tation  trick also applies to  the  nm ltivariate 

J\fZQ m odel and we can write:

Here, denotes the  precision m atrix  of the random  walk of first order, ® is the 

Kronecker p roduct, and X) is the cross-correlation between cores.

(5.17)

7 ^ M D p { X o \ y o , c t )  ~  A / ' ( m Q , A „ ‘ ) (5.18)

7r(a:o|?;o,to, E ) ~  A/'(0, (g) S ) (5.19)

—  V
- 1 \

- I ’l  '  l.’i  '  +  t ’2   ̂ - 1 ’2 '

V
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T he fact th a t  b o th  (5.18) and (5.19) can be w ritten  as G aussian d istribu tions results 

in a triv ial calculation, up to  a norm alising constan t, of the  full conditional for X o ’-

tt{x o \ . . . )  ~  (5.20)

where =  A „+Q „„(giS“  ̂ and is the  solution to  Qxo|y„Mxo|yo =  Thus,

after deriving to  and from the  chronology and m odern analoque m odule respectively, 

we analytically  m arginalise x „  out from (5.17) and are left with:

n —1

»=i (5.21)

X exp -  m ^ )^  7r{vo\9) 7r(a|K) ^ (S )

We present, in A ppendix B, the full M CM C algorithm  to  sam ple for the unknown 

processes and param eters from (5.21). The key advantage of our algorithm  over th a t 

developed by Parnell et al. (2015) is the  m odelling extension to  the m ultiple core 

setting , and com putational ability  to  deal w ith term s involving Kronecker products. 

T hereafter, realisations of x„  from (5.20) are easily obtained  using the plug-in samples 

of the  param eters from (5.21).

T he final step  involves stochastic  in terpolation  of clim ate and clim ate volatilities 

at an a rb itra ry  tim e grid, based on the  M CM C sam ples discussed above. We suppose 

tg,  Xg and Vg denote the known tim e grid, unknown clim ate and unknown scjuared 

volatility  process of interest. We also let y* =  (y o ^ ,y g ^ )^ , x ,  =  ( ^ Xg ^ , X g ^ ) ^ , t ,  =  

{ t o \ t g ^ y  and t), =  [ v o ^ , V g ^ ) ^ . S tochastic in terpolation  is the  com putation  of

7r(a:g| . . .) =  /  n { x ^ , t ^ , v ^ ,  S ,  0,-01 ■ ■ ■) d x o  d t ^  d i;. dT,  dad'll^

OC j ' n { X g \ X o , V g , .  . .)lT{Vg\Vo,. ■ ■) 'K{Xo\yo, to ,Vo,T. ,OL,e , ' ^ )  (5.22)

■nivo, S ,  a | y ,  i* ,  G, ip)  7 r ( t , |r ,  d )  7r(i/)|a:’̂ ,  y ^ )  dX o d t ^  dVo dT,  d a  dip

T his is a high dim ensional in tegration  problem  and stochastic  sim ulation presents 

the  best solution. In tegration w ith respect to  t ^ , V o , ^ , c y  and ip have been perform ed 

via the  M CM C algorithm  described in A ppendix B. On the  o ther hand, evaluation 

of th e  first quan tity  inside the  in tegrand (5.22) involves, essentially, sam pling from a 

m ultivaria te  Brownian bridge. W hilst evaluation of the  second q uan tity  inside the in te­

grand is sam pling from an TQ  bridge. We present our bridging algorithm  in A ppendix
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C. The objective is to draw eciually probable climate histories that are consistent with 

both data and model assmnptions. These represent climate data products as discussed 

in Section 2.1.3.

5.3.2 Sum m ary o f the m odularised M CM C algorithm

Our modularised approach permits the inference procedure to be carried out in three 

different stages separately. In summary, the basic framework to transform raw’ proxy 

data to climate data products involves three main steps.

1. M odern  analogue m odule  (Section 5.3.1.1). This module focus on building 

a climate-pollen relationship using the training data set comprising of known 

pollen information and associated climate at sites aromid the w'orld. The out­

put of this layer is a ‘response surface' and a selection of parameters controlling 

the relationship between climate and pollen. This is a once-off job; the pro­

cedure is discussed in Sweeney (2012) and the results can be loaded from R 

package Bclim (Parnell et al. 2015, see also h t tp : / /c r a n .r - p r o je c t .o r g /w e b /  

packages/B clim /index .html).

2. Chronology m odule  (Section 5.3.1.2). The purpose of this module is to draw 

inferences about calendar ages based on radiocarbon dating information at some 

depths of the three sediment cores. Radiocarbon determinations and depths are 

used as the input for R package Bchron (Haslett k. Parnell 2008, see also h ttp :  

/ /c r a n  . r - p r o j e c t . org/web/packages/Bchron). The output are chronologies 

samples associated with the depths of the MDPs. In this thesis, we use an 

independent chronology model for each core.

3. R econ stru c tion  m odule  (Section 5.3.1.3). Initially, we use suitable functions 

from R package Bclim to create layer-independent chmate, given the fossil pollen 

counts from the three sites in Finnniark, the response surface and appropriate 

parameters. Subsequently, these layer-by-layer climate are standardised, and 

approximated as mixtures of Gaussian using R package Mclust (Fraley et al. 

2012. see also h ttp :/ /c ra n .r -p ro je c t.o rg /w e b /p a c k a g e s /m c lu s t). At the 

end of this step we have analytical expression for the MDPs (in the form of 

Gaussian mixture distributions) at a selection of depths of the three cores; the
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depths will have been transfonned to calendar ages via the chronology module. 

Note th a t the MDPs are independent across all cores and depths.

The steps hereafter represent the main novelties of this chapter; we propose to use 

all of the results above as the inputs for our algorithms in order to jointly recon­

struct climate at multiple sites. Firstly, we use the MCMC algorithm described 

in Appendix B to sample for all unknown terms in the model, conditional on all 

data. Secondly and as a final step of the overall process, we apply the bridging 

algorithm described in Appendix C to sample for climate and climate volatility 

at a regular time grid across all three cores. For the purpose of presentation, we 

transform the posterior climate samples back to their original scale. It is unclear 

what the scale of volatility is hence we rej)ort it in its standardised climate scale.

Figure 5.3 is a schematic representation of all of the above steps. This plot closely 

follows the DAG shown in Fig. 5.2.

5.4 A pplication to three Finnm ark pollen data sets

This section dem onstrates an application of the methods discussed in the previous 

sections using the Finnm ark data set.

5.4.1 Background

The data set comprises of three fossil sediment cores found at separate lakes in Finn­

mark, Norway. Each core contains pollen grains at several depths, and radiocarbon 

dating determ inations often a t few’er number of depths. The former provides informa­

tion about historical climate over many thousands of years at tha t location, and the 

latter gives information about times. Recently, Huntley et al. (2013) used this da ta  set 

to investigate whether there is a variability in ancient climate betw'een these sites. The 

authors use the so-called ‘direct analogues m ethod’ to obtain point estim ate of climate. 

By design this method does not quantify the uncertainty associated with the climate 

estimate, nor uncertainty in the param eters of their model. Moreover, the analysis w'as 

carried out on data  set from each site separately.

Bayesian statistical inference is thus preferred. Minimally, it allow's easy mixing 

of uncertainty from many different da ta  sources. Most importantly, spatio-tem poral
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Bcliiii

Mclu;

Fossil pollen

MC'MC and bridging

Lav('i'-bv-lav(T M DPs

Modern climate and pollen

Depths and radiocarbon ages

Chronology module' (Bchron

La\'('r-by-lav('r climate posterior:

F ig .  5.3: A schematic representation of the  full algorithm to reconstruct ancient cli­

m ate  based on pollen d a ta  and radiocarbon dates in multiple fossil pollen cores, and a 

modern d a ta  set comprising of known climate and pollen responses. D a ta  are indicated 

in black, latent processes are indicated in blue, and m odels/a lgorithm s are indicated 

in red.

dependency will be taken into account since da ta  from three locations are likely to be 

correlated in both  space and time. Our objective is to  make meaningful probabilistic 

s ta tem ents  about the unknow'n ancient climate conditions by taking into account all 

(or as m any as possible) uncertainties inherent in the  data.

Our approach, being an extension to th a t  developed by Parnell et al. (2015), pro­

duces results for nmlti-diniensional climate. For clear presentation of the  methodology,
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we only discuss the  results for the  m easure of m ean tem pera tu re  of the  coldest m onth 

(M TC O ), a quan tity  indicative of the  harshness of the winter.

5.4.2 M odel-fitting results

For each core, the  chronology m odule generates ten  thousands i^osterior sam ples of 

chronologies representing ten  thousands possible histories of tim es. For each core, 

the  m odern analoque m odule produces a vector of M DPs; each of w'hich is a list of 

m ix ture m eans, precisions and w^eights. Figure 5.4 show's a plot of a chronology and 

the  corresponding M DPs; w'e plot the  la tte r  using the  m ixture  m eans associated w ith 

the highest m ixture w'eights a t a tim e point.

T he o u tp u t from the  m odern analogue and chronology m odule are used as input 

for the reconstruction m odule. Figure 5.5 shows several types of results. T he pointwise 

95% credible intervals of DM Ps at all corresponding chronology sam ples are represented 

in blue ‘blobs’. O ur approach’s pointw ise 50% and 95% credible intervals of in terpo lated  

centennial M TCO  histories over the period 0 to  14 k cal BP are represented in red. 

A clim ate h istory is represented by th e  black lines. The results ob tained  using the  

m ethods of Huntley et al. (2013) (green dots) and Parnell et al. (2015) (blue credible 

bands) are also shown since these are obvious candidates for direct com parison w ith 

our m ethod.

It is easy to  see th a t the  levels of uncertain ty  vary across different ou tpu ts. Firstly, 

the  M D Ps are bo th  tim e-independent and site-independent. Hence their m arginal un­

certain ty  bands are widest. Secondly, the  separa te  inference approach by Parnell et al. 

(2015) produces joint posterior sam ples th a t are tem porally  correlated  b u t spatially  

independent across all sites. Therefore their predictive credible intervals are typically  

sm aller com pared to  those of the  M D Ps, b u t w'ider in com parison to  those of our model 

(see the  next paragraph  for fu rther discussion of this). Thirdly, the  degree of uncer­

ta in ty  also depends upon the  tem poral resolution of the  d a ta  sets. Here, for example, 

site N K H l has the highest resolution bu t the  oldest dep th  is abou t 10.5 k cal yr BP. 

Consequently, the  uncertain ty  estim ates of clim ate from year 0 k to  10.5 k is narrow'er 

th an  those after 10.5 k cal yr BP. Intuitively, th is is m ost visible in the  separate  infer­

ence approach, i.e. in terjjo lation versus ex trapolation . Finally, we note th a t  the  point 

estim ates by H untley et al. (2013) give no m easure of uncertainty.
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Fig. 5.4: A plot of a chronology sample and its corresponding mean tem perature of the 

coldest month (MTCO) for three sites in Finnmark. At each time point, the MTCO 

value is represented by the marginal data i)osteriors' (MDPs) m ixture mean that is 

associated with the highest mixture weight.
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Fig. 5.5 : Plots of MTCO over the period 0 to 14 k cal yr BP at three sites in Finnmark. 

The pointwise 95% credible intervals of DMPs at all corresponding chronology samples 

are represented in blue ‘blobs’. The pointwise 95% credible intervals of climate histories 

from the model of Parnell et al. (2015) are represented in purple. Our pointwise 50% 

and 95% credible intervals are represented in red. A climate history from our approach

is represented by the black lines. Finally, point estimates from Huntley et al. (2013)

are the green dots.
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Absolute differences in the intercinartile range (IQR) of the posterior marginals 

(or pointwise sunnnaries) between our approach and the one-core-a-tinie inference are 

represented in Fig. 5.6. There are broadly two case scenarios. In the first case, the 

joint model yields reduced uncertainties w'here there is betw'een-core correlation in the 

data. Conversely, in the second case, it yields increased uncertainty where information 

sources diverge. The la tter case also dem onstrates the limitation of the joint model, 

arising from sharing of volatility rather than making it flexible to each site. This re­

striction is useful when the volatility across all three sites are approximately equal and 

data  are empirically correlated. Otherwise new' (possibly biased) information can be 

introduced resulting in higher uncertainty levels. Most crucially, the advantage of our 

approach over the one-core-at-a-time alternative is that w'e are able take into account 

both aforementioned case scenarios. This supports our claim that combining informa­

tion from nmltiple spatial data  sources yields more reliable estimates of uncertainty.

5.4 .3  C ase stu d y  o f th e  Y ounger D ryas event

From Fig. 5.5, we can see an extreme cold interval at approximately 9 to 13.5 k cal 

yr BP. This period corresponds to  an extreme climate change event known as the 

Younger Dryas (e.g. Muscheler et al. 2008). This event represents a period of cold 

tha t was rapidly followed by a warming in tem peratures. We propose to use our data  

products to answ'er some qiiestions about YD in a similar manner to tha t for the 8.2ka 

event as discussed in Section 4.3.3. We note tha t the 8.2ka event is not clearly visible in 

Fig. 5.5, most likely due to the substantial amount of uncertainty presented in pollen 

data.

The interesting cjuestions here are concerned with the joeriod of maximum change 

from cold to warm, and from warm to cold. We will use the period between these 

two maxima as our estimation for the duration of YD. Our estimation is based on 

an ensemble of sinuilations of interpolated climate betw’een 8.5 and 14k cal yr BP, 

a conservative period bracketing YD. More specifically, we focus on the distributions 

of random variables ^maxA =  max/ (A.r(^)) and =  arg^ min (A x(^)), being re­

spectively the time of maximum positive change and maxinuun negative change. We 

com pute these estimates for each history and sununarise the results from 1000 simu­

lated climate histories.
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Fig . 5.6: Plots of the interquartile ranges (IQR) of centennial histories of MTCO over 

the period of 0 to 14 k cal yr BP at three sites in Finnmark. The IQR of the one- 

core-at-a-tinie model are generally higher than those of the joint model. However, the 

converse may occurs in certain circumstances. See the text for further details.
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Figure 5.7 shows estim ates of the century  witli the  m axim um  anci m inim um  M TCO  

changes. Tlie IQRs (in units of k cal yr BP) for centuries w ith m axinum i changes are 

[9, 10.3], [8.9, 11.6] and [8.8, 10.1] for site M, N K H l and PS8 respectively. Similarly, 

tim ings of centuries w ith m ininm m  changes are [10.7, 12.6], [9.9, 12.6] and [11.1, 12.8]. 

Additionally, we com pute the  sunm iary  of ^maxA ~  ^niuA to  estim ate  the  tim e interval 

which contain the  largest negative followed by positive changes, as represented in Fig. 

5.8. These are estim ates of the  length of YD: 2.3, 2.5 and 2.6 k cal yr for site  M, N K H l 

and PS8 respectively. O ur estim ates are wider com paring to  clim atologically theory  

(e.g. Fiedel 2011, M uscheler et al. 2008, Gulliksen et al. 1998). This is due to  the fact 

th a t we a ttem p t to  incorporate several sources of uncertain ty  whilst, crucially, there  

are only da ta  from th ree sites. Hence, we feel th a t th is approach can be considered 

as a proof-of-concept m ethod. M ore spatial inform ation are necessary for a more com ­

prehensive investigation into the  spatia l extent of al)rupt clim ate changes in a global 

context.

5.5 Sensit iv ity  analysis

This section checks if the  model param eters are identifiable and if the  inference proce­

dure gives rise to  satisfactory  results. A model is non-identifiable if d istinct values for 

its param eters generate the  sam e probability  d istribu tion  for the  data.

W'e simplify the  relationship between clim ate and proxy, and assum e no error in the  

tim e scale. The model specification from Section 5.2 and its variation are applied to  

generate several versions of d a ta  sets. We then  apply the  inference procedure discussed 

in Section 5.3 to  a ob tain  posterior d istribu tion  of all im known param eters and laten t 

processes. In each sim ulation, we find out if the  true  clim ate he w ith in  a posterior 

sunnnary.

At each sim ulation, we draw  99 trios of clim ate from a tri-varia te  G aussian inde­

pendent increm ents model regularly  spaced, fixed tim e points. The shared variance 

of increm ents are generated from an Inverse G aussian d istribu tion  w ith param eters 6\ 

and 02- The cross-correlation m atrix  S  is a uniform  correlation m atrix  w ith ones in 

the m ain diagonal and the  off-diagonal is filled w ith a correlation coefficient p. We 

use flat priors for clim ate as the  s ta rtin g  tim e points. We th en  create pseudo-proxy y
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Fig. 5.7: Boxplots of estimates of the century with the maximum (a) positive change 

and (b) negative change. The underlying process is the centemiial MTCO, computed 

from process histories between 8.5 - 14 k cal yr BP at three sites in Finnmark.
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largest pos itive  change in  the  centennia l M T C O , com puted from  process h istories be­

tween 8.5 - 14 k cal y r  B P  at three sites in  F innm ark .

by random ly  choosing 33 data  po in ts  fo r each series. Specific de ta ils  o f the  s inu ila tions 

in  each scenario are as follows.

p ~  U [ 0 , 1). S ta rtin g  from  a fla t p r io r fo r c lim a te  at tim e  1, w'e generate 99 trios  

o f c lim a te  using the  tr iv a r ia te  independent increm ent model and create tem pora l 

m isa lignm ent as described above. F ina lly , pseudo p roxy  ~  Tg);

,s =  1 ,2 .3 . Here, w'e use ~  U{i ) .02,2) .  From  j)roxy  in fo rm a tio n , creation  of 

M D P s is t r iv ia l in  th is  case; e.g., 7r {x{ ts i ) \y{ ts i) ~  .V(y{^s.z), t-s). We app ly  the 

rest o f our m odularised M C M C  a lg o rith m  to  derive in fo rm a tio n  on c lim a te  x.

2. Case 2. Squared v o la tilit ie s  and c lim a te  are generated as above. Here, we con­

sider the zero-in fla ted  Poison m odel fo r generation o f p roxy  signals. We suppose

im portance  sam pling to  create M D P s, and use a 5 m ix tu re  com ponents Gaus­

sian app rox im a tion . As before, we derive posterio r samples for c lim a te  using our 

m odularised M C A IC  a lg o rith u i.

3. Case 3. T he  set up for th is  case is the  same as the second case, except th a t the

from  c lim a te  using appi’op ria te  like lihood  models. Tem pora l m isa lignm ent is created

1. Case 1. F rom  9i =  3. 62 =  55, we generate v{ t , )  ~  I G { O \ , 02)', / =  1 , . . .  ,98 and

y{ts. i )  ~  ZXV{ps-, ' i<^sX^{U. i ))  where ps ~  iY (0 ,0 .2) and a*. ~  |A/"(0,1)|. We use



luim ber of m ixture com ponent is 2 (instead of 5).

4. Case 4. T he set up for th is case is the  same as the second case. However, in the

MCjMC algorithm , Q\ and 02 are fixed at values th a t are lower th an  the tru th ,

i.e. G U {0 .0 1 , 2 ) and 02 G [7(0.01,50).

5. Case 5. T he set up for th is case is the sam e as the  second case. How'ever, in the

M CM C algorithm , 6 i and 62 are fixed at values th a t are higher th an  the  tru th ,

i.e. di e  f / ( 4 ,10) and 62 G U {70 ,100).

We repeat each sinuilation and inference procedure 1000 tim es and svunmarise the  

results in Table 5.3. U nder all considered case scenarios the model seems to  perform  

well.

Scenario Proportion  inside 90% Cl P roportion  inside 50% C l

1 89 49

2 91 54

3 91 52

4 90 50

5 91 55

T a b le  5.3: Perform ance of the  model fitting  algorithm . All results w’ere based on 1000 

sim ulation rims.

5.6 D iscussion

This chap ter has extended the  work of Parnell et al. (2015) to  reconstruct ancient 

clim ate from m ultiple fossil pollen cores jointly. T he prim ary  challenges under consid­

eration  are m ultivaria te  tim e series m odelling w ith tem poral uncerta in ty  and stochastic  

volatility. We have provided a full Bayesian trea tm en t to  these problem s. O ur inference 

procedure is reasonably straightforw ard to  im plem ent as a result of m odularisation. 

The m odularisation  approach perm its easy m ixing of several sources of uncertain ty  

and m odelling features. T he adopted  m odel is flexible. Some of its special cases are 

briefly discussed below'.
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C r o s s - c o r r e l a t i o n  s t r u c t u r e .  We used, a priori, the uniform correlation m atrix  

with ones in the  diagonal and a common correlation coefficient p in the  off-diagonal 

entries th a t  can only take values betw'een 0.7 and 1. The resulting posterior distribution 

is largely dependent on the specified prior, which implies th a t  the  likelihood contains 

little information. As a sensitivity analysis, we performed inference using a p r io n  

varying bounds. As expected, the  resulting predictive error from interpolation remains 

largely unchanged wdiile extrapolation intervals get wider with larger boim dary ranges.

A obvious extension to  the  uniform correlation m atrix  wdth one common correlation 

param eter  is th a t  with two correlation parameters. In general, a m atrix  of correlations 

is not necessarily a valid correlation m atrix  because of the  notorious requirement of 

non-negative definiteness. Mathematically, the determ inant of correlation m atrix  nmst 

be strictly  positive (Rousseeuw &: Molenberghs 1994). Thus for a 3-by-3 m atrix  with 

correlation coefhcient p \2 arid p i 3 , the  correlation coefhcients must satisfy the  equation 

1 - I -  2pi3pi2 “  2pi2 “  P i 3  >  O '  which implies tha t  2pj2 — 1 <  p i 3  <  1 or 0 <  p\2 < 

\ / ( l  +  As an application to  the  F innm ark da ta  set, the  posteriors for both

param eters  are flat and equal to  their j)rior forms. Fm'thermore, a combination of joint 

analysis of two cores simultaneously offer no evidence of different correlation across 

the  three sites. On this basis we feel th a t  the  uniform correlation function with one 

param eter  is adecjuate for accurate modelling.

We also took into accovuit of spatial dependency betw'een the sites by using an 

isotropic exponential covariance model of the form exp( —||sj — Si\\/l3). Here s 's are 

coordinates of the sites and 1|,|| is a physical distance, /3 is the  range param eter  control­

ling the  rate  of decay in correlation as a function of distance. We follow' Gelfand et al. 

(2010, C hap ter  7) and assign a discrete uniform prior for /3. The  boimds of the prior 

d istribution are decided by the practical range of the  da ta  set wiiich can be empirically 

estim ated as 3p for an exponential model (Wackernagel 2003, chapter 8). The results 

from this model are similar to those from the case where a uniform correlation m atrix  

is used. W ith  only three series considered in the api)lication, param etrisation of this 

form is less interpretable. Future  work with an additional number of time series da ta  

sets may benefit from using this correlation function.

M a r g i n a l  d a t a  p o s t e r io r s  (AIDP) WV experimented with different values for the 

num ber of m ixture components G  of the Gaussian approximation for the  MDPs. The
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case where G =  1 produces the narrow'est joint posterior intervals of stochastically 

interpolated climate, and less ‘bum py’ interpolated volatility. This effect wears off as 

we increase the value for G. Intuitively, the higher the number of mixtures the more 

accurate the approximation becomes. How'ever, attention must also be paid to the 

trade off betw'een accuracy and com putational burden. For our final model, we follow' 

Parnell et al. (2015) and fix G = 10.

T im e  u n c e r ta in ty  We fitted a m ultivariate MXQ  independent increments model 

with no time vmcertainty, i.e. times of observations are know^n precisely. An even more 

simpler and special case of this model is the multivariate Gaussian independent incre­

ments model discussed in C hapter 4, again w’ith no errors in the time scale. Under both 

model settings, w'e obtained narrow'er im certainty levels for the climate posteriors, in 

comparison to the main model w’ith time imcertainty. Notwithstanding, we believe tha t 

ignoring any available source of uncertainty can result in overconfidence in a statistical 

inference. Additionally, salient features of underlying processes can be overlooked if 

all available sources are not explicitly considered. Therefore we do not reconnnend 

ignoring time uncertainty w'hen deahng with non-negligible dating information.
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Chapter 6

Conclusion

The final chapter summarises the contributions of the thesis. It also discusses the 

outstanding challenges tha t beckon for further exploration.

6.1 Sum m ary

In this thesis, new stati.stical methods have been proposed to directly address the joint 

behavio\u' of multiple time series in their misaligned form. Other major issues imder 

consideration include data  support, temporal uncertainty, and stochastic volatility.

All of oiu' proposed models fall under the hierarchical framework. We began with 

a simj)le two-stage hierarchical structure in chapter 2, api^lied to an irregularly spaced 

time series with all param eters known. Then, in chapter 3, w'e extended this model 

to the case of multiple irregularly spaced series. Next, in chaj)ter 4, we proposed a 

three-stage structure, with all param eters unknown, to deal w’ith da ta  from different 

series having different supports. Finally, chapter 5 further extended the model in all 

previous chapters to a four-stage hierarchical model, allowing for errors in the times of 

the observations, and stochastic volatility in an underlying latent process. This model 

also incorporates external knowledge from a separate set of training da ta  for more 

accurate statistical inference.

Com putation of j)osterior distributions for our models is challenging, particularly 

due to the complex modelling structure and high dimensional jjarameter space. To 

alleviate the com putational burden, we have used a combination of the following as­

sumptions and strategies. Firstly, w'e took advantage of nice properties from the Gaus-

93



sian Markov assumption for efficient storage and fast calculation of sparse matrices. 

Secondly, by combining the Gaussian Markov assumption with the concept of marginal 

data posteriors, we were able to marginalise out a high-dimensional latent process from 

the overall model, leaving it for inference in a separate stage. Thirdly, we exercised the 

concept of Bayesian modularisation to divide a big model into smaller modules.

The methodologies developed in this thesis should improve the quality of climate 

data  products. They have been applied to raw and noisy oxygen isotopes from ice 

cores and pollen counts from sediment cores to create data products in the form of 

histories. The histories are realisations from non-Gaussian posterior predictive distri­

butions, conditioning on all available data. In climate reconstruction, this is precisely 

as proposed by Tingley et al. (2012) and Chandler et al. (2012). We compared our 

results with those from the independent analysis of each core separately, both within 

our modelling framew'ork and from the relevant literature. We concluded that our data 

products are richer than w'hat have been previously available. We dem onstrated the 

usefulness of our data  products with case studies of extreme climate change events and 

found results that are consistent with the physical climate system. More broadly, this 

contribution has uses far beyond those presented in this thesis. We believe tha t our 

data  products will be more useful in the hand of researchers in the held of climatology.

6.2 Future d irections

There are a number of extensions to the methods presented in this thesis. We conclude 

this chapter by listing some ideas th a t could be pursued in the further w'ork.

V arying d ata  su pp orts In chapter 4, we considered the case in which data are al­

lowed to have different definitions of support across different series. But we constrained 

the supports for all da ta  to be the same in each series. A generalisation of this problem 

is to allow' the support of a da ta  point to vary according to the underlying measure­

ment procedure. This allows the value of A,\,, as introduced in Section 4.1 and derived 

in Appendix A, to  vary according to the empirical ratios of the supports of associated 

observations. More specifically, if there are rn immber of time series and each series 

has its ow'n data  support, there are m — 1 known nugget param eters, all of which is a 

fmiction of only one unknown nugget param eter. In the generic case w'here all
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data points from ni series have their own definition of supports, the number of nugget 

parameters will increase by the many different supports. How'ever, as before, there will 

be only one unknown nugget effect parameter.

S pace-tim e in te rp o la tio n  an d  co m p u ta tio n a l ex tensions We believe the re­

search in this thesis is only an initial attempt at joint palaeoclimate inference, upon 

w'hich other work can be built. In this initial presentation, w'e illustrated our framew'ork 

using three sediment cores. We did not take into account the physical locations where 

the time series w'ere recorded. W"e have emphasised throughout that our model can be 

extended to a wide class of spatio-temporal processes, for instance, by modifying the 

cross-covariance function to include physical distances. The European pollen database 

beckons for attention from climate researchers. Hence, the continuation of this project 

is to apply the developed methods to the whole of Europe to produce a pan-European 

spatio-temporal map of climate history. This would allow us to gain insight into the 

spatial extent to which certain climate events happen across Europe.

Increa-sing the numl)er of .series/cores/sites will inevitably be associated with a 

higher computational burden, as the size of matrices increases at the rate of O(.V^) 

w'here N  is total number of data points from all series. The number of parameters also 

increases ciuickly with the number of series. In particular, our proposed ajjproach sep­

arates the inference of smoothed latent climate process from the gridded interpolation 

step, wdiich seems rather inefficient as the number of series increases. Simply j)ut in 

notation used in chapter 3, 4 and 5, the current ai)proach requires the evaluation of 

’̂ i^olyo)  before Tr{xg\Xo)- An alternative approach is to define a latent field on the 

grid in the first place, for instance, by re-w'riting Xo as a linear interpolator oi X g .  For 

example,

y o  =  a^o +  e : =  B x g - h  ^  +  e (6 .1 )

Here, B is the so-called observation matrix that link Xg and x„ (Wikle Berliner 2005). 

In our context, both Xo and Xg are independent increment Gaussian processes. Hence 

B is a strict linear interpolant. Times can be fixed, as considered in chapter 3 and 4, 

or random in 5. Furthermore, this approach necessarily introduces the interpolation 

error terms In our modelling setting, it is easy write down the joint distribution 

for cc* =  [xo^ ,Xg‘ Y  and the derivation of ^ trivially follow's. In other cases, this
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calculation may significantly increase the overall com putational complexity. A remedy 

is to ignore these terms by using a dense rectangular interpolation grid (Paciorek 2013), 

although it is not clear how fine the grid should be. Nonetheless, this is an interesting 

algorithmic aspect worthy of further investigation.

An obvious advantage here is th a t the associated matrices are always the same 

size irrespective of the size of the data  set. At this point, the recently developed 

method by Lindgren et al. (2011) is useful as it permits modelling using the more 

flexible covariance function while performing inference using sparse precision matrices 

discretely defined by some Markov models. The additional benefit of working under the 

SPDE framew'ork is its flexibility for extension. For instance, Bolin (2014) has extended 

the SPDE approach to a acconnnodate a version of the Normal Inverse Gaussian process 

tha t we considered in chapter 5.

J o in t  ch ro n o lo g y  n io d e llin g  In chapter 5, we provided solutions to allow for uncer­

tainty in radiocarbon dated sediment samples. Our framework is conceivably applicable 

to other proxy types that use different dating methods such as tree rings, ice cores, etc. 

A shortcoming of this approach is tha t we dealt with time uncertainty from each se­

ries/cores/sites separately. In extreme cases where the underlying sedimentation rates 

from crossed-correlated series are very different, there is less benefit from joint infer­

ence. However, if there is reason to believe tha t their sedim entation rates are similar, a 

separate model for each series effectively throws away information. Hence, one obvious 

thing to  do is to extend the jointness of our existing model by modifying the prior 

model (5.10) to be a nmltivariate monotone stochastic process.

M u ltip le  c lim a te  p ro x ies  We used point mass prior distributions for the param eter 

values a t the highest hierarchical layer of the model in chapter 5. A more flexible prior 

specification would be to use the information learnt from ice cores in chapter 4 as prior 

information for the highest layer in chapter 5.

More generally, w'e have not considered utilising nmltiple proxies for our recon­

struction. Each proxy has its ow'n advantages and limitations, and combining different 

proxies may yield complementary information on different aspects of climate (Li et al. 

2010). On the other hand, it is im portant to note tha t different proxies are sensitive 

to different climate aspects.
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O th e r  a p p lic a tio n s  Finally, we note tha t interesting challenges arising from quan­

titative palaeoclimate reconstruction motivates the research of this thesis. However, 

many other real w’orkl time series data sets are also temporally misaligned. For ex­

ample, in clinical trials the patien t’s health condition may be observed at irregular 

time intervals, and different patients are usually observed at different points in time 

(Cismondi et al. 2013). In finance, raw' and original trade data  is known as ‘tick d a ta ’ 

(Gengay et al. 2001). They are typically recorded at irregular time intervals and at 

ultra-high frequencies. An ideal method should be able to produce output of not only 

price movements, but also volatility and correlation dynamics at an arbitrary time 

scale, preferably regular.
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A ppendix A

Im plication of different data  

supports in chapter 4

In this appendix we chscuss oiu' treatm ent for the process variance and nugget param ­

eter in the model proposed in Chapter 4. Specifically, we examine the change in the 

theoretical semivariogram when there is a change in the underlying support of the data.

A n exam p le  o f  change o f su pp ort th eory

W ithout loss of generality, we suppose that the data j)rocess y  =  {y{t); t =  1,. . . ,  n} 

can be modelled by a univariate independent increments process with Gaussian noise. 

In other words, it possesses a theoretical linear semivariogram of the form ry(/;) where

Here, the luigget r  is the intercept, the process variance v is twice the slope value, and 

h is an arbitrary tim e lag.

We create the new' process y  on a new support by averaging y  at every non­

overlapping u' ’window'' of time. W'e are interested in the relationship between the 

semivariogram of y  and tha t of y.

To simplify the problem, we break up the underlying process into tw'o separate 

component: a pure nugget {)rocess and a pure independent increment process. If is a 

pure nugget process, it is easy to show' tha t the semivariogram of the averaged j^rocess
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is Ty{h)  where

(A.2)

For the  independent increm ents case on its own, the  sem ivariogram  has the  form

We refer to  Chiles & Delfiner (2012, C hap ter 2.4) for the technical details of the 

aforem entioned results. It is w'orth noting th a t, in practice, tlie only lags available for 

calculation of em pirical sem ivariogram s are |/(| >  w.

Hence, for a i:>rocess th a t  has b o th  the  nugget and independent increm ents, the 

im plication is twofold. F irst, y  and y  share the sam e process variance. Second, their 

nugget param eters are (approxim ately) d irectly  proportional. This aj^proximation af­

fects the  sem ivariogram  near the  origin, w'here we use the  linear function to  account 

for the  tru e  cubic function. M oreover, from the  analytical expression it can be seen 

th a t the  accuracy of the  approxim ation depends on the  value of u', and the  relative 

difference between r  and v.

Im plication of different supports for data set G ISP2  

and G R IP

In the  application discussed in Section 4.3, r  dom inates v in bo th  em pirical sem ivar­

iogram s of G ISP2 and G R IP  - as seen in Fig. 4.3. Furtherm ore, if we assum e th a t 

the  nugget effect is a t an annual level (denoted as Tannuai), tiien the  nuggets for GISP2 

and G R IP  are, respectively, tg isp 2 =  and tg r ip  =  where factors w denote

the tim e support for each series. We can reparam eterise in term s of r  =  tg r ip , such 

th a t  TCISP2 =  T  X =  T  X /e’o is P 2 -  'V^'e set ^  or 0.275 as the  value for fc o isP 2 ,

corresponding to  the  respective leng th  of support of G ISP2 and GRIP. This value is 

also consistent w ith the  descriptive sta tis tics  of the  age increm ents, as represented in 

Fig. 4 .2 (c). Each section, being 200cm and 55cm in length respectively for GISP2 

and G R IP, is negligible com pared to  the  to ta l length of the  com plete ice core w'hich
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is about 3kni (approximately 1.6 km of which covers the Holocene period). Hence we 

feel tha t this is a reasonable approximation.
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A ppendix B 

M CM C for the reconstruction  

m odule in chapter 5

This appendix describes the  M CM C algorithms for fitting the reconstniction module 

represented by E(}. (5.17) as discussed in Section 5.3.1.3. Note th a t  for clearer pre­

sentation, the  subscript notation for time is om itted  in the  notation throughout this 

appendix. For instance, we simple rewrite I't as v.

W here ai)])r()priate, we use fmictions from R package INLA  (M artins et al. 2013) 

and spam (Fm rer <k Sain 2010) which contain oiJtimised fmictions for sparse matrices. 

We also take advantage of efficient com putational strategies for matrices involving Kro- 

necker prodiu 'ts and Shernian-Morrisoii-Woodbury identity as discussed, for example, 

in Harville (1997).

U pdating  Vo

It follows from (5.21) th a t  the  calculation of the  Metropolis-Hastings (MH) ratio 

/3(t’o,t'*) is required to decide whether to  replace Vo w'ith v*. where:

vl'^ iQxiyT '"  exp(|m^’Ag/x;|J ^ ( t ’o | t ’o) 7r(r*|0) 

(■(’*)'^/2 Q *  ̂ e x p ( | m j A a / i ^ | J
(B .l)

Direct com putation of the  expression in (B .l)  is tedious as it involves expensive m atrix  

manipulations of Kronecker products  of matrices. Simi)lification of this term  is possible
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from observing that

q ; i,  =  +

= Q.|, +1{<)"‘ - f;'|((>6̂ ) ® S-'

— Qrly + f  R

Here, R  =  with b being a vector of length n with —1 at time t, 1 at time f+1

and O’s elsewhere, and T is the m-by-3 diagonal matrix with element [(fo)^^ — v~' \̂ 

in the main diagonal. Therefore computation of Q*~|y follow's instantly from Qj|^- 

Consequently,

IQx|j/l  ______ IQj|yl___________
|Q :,J  ^  |T - i + R Q - i R ^ |  |Q .|,| |T |

1
“  |T - i  + RS'I |Y|

where S  is the solution to Q^iyS = R^. Here, we have utilised the Woodbury fornnilae. 

Similarly:

QMi - Qx'ii = Q;,i - + RQ;iiR")-'RQ;i - Q;,i
=

Putting all the terms together yields the siniplihed ratio
,3/2 / ,

= („.)3/2|Y-,"°Rg|-/2 ( - 2 m l A „ S ( T - '  + R S ) - ‘S^A.m .

7r(v* |t)o) 7r{Vo\0)

Computation of the above ratio is fast since all calculations of the determinant and 

inversion are only necessary for matrices of size rn-hy-m. In the application considered 

in Section 5.4, m = 3.

U pd ating  X)

To explore the sensitive posterior region of S  based on Eq. (5.21) using MH, we require 

the calculation of the ratio l3{Ti*, E), w’here;

l ^ l " ^ I Q x | y l ' ^ ^  e x p ( i m ; ^ A a / i ^ l y )  ^ ( S )

Here, |Qx|y| =  I lj  where L is the Gholesky decomposition of Qa:|y. All other 

computational details have been discussed elsewhere in this appendix.
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U pdating  a

We begin with full conditional posterior distribution for oc from (5.21):

7 r ( a | . . . )  oc IQxiyT^'^^ exp -  m „ ) ^  7r(a|K)

Next, we let Q ;  =  A „ + 1 ( (A ;) -1 - (A J - i )1 '^ '  and =  Q , | ,+ 1 ( ( A ; ) - 1 - ( A J - 1 ) ) 1 ^ .  

Here, 1 is a indicator vector with a value 1 corresponding to the series identity and 

time t whence parameter values are being update. The Woodbury identity is useful 

again here. It can be shown that the MH ratio required to update a  is /3(q*, q ) ,  w'here

exp -  m ; ) )  7r(a*)

|AaP/2 IQxi/^^ exp -  m „ ))  ^ ( a )

n  + A - '  -  A -M r^ /^  <
(A ;) i/2 " exp -  me,))

with b is the solution to Qx|yb =  1 . It is re-emphasised that, according to our notational 

trick first introduced in Section 3.1.2, computation is deemed unnecessary where data 

is not available. Here, for instance, |Aa| =

U pdating  X o

R('call that Xo has been marginalised out from the full posterior distribution as dis­

cussed in (5.20) and (5.21). More crucially, the full conditional for Xo is available in 

closed-form. i.e. Xo\ . . . ~  A^(Q~|^AQmo, Q~|y)- Therefore, posterior sampling for this 

component is straightforward:

1. Perform Cholesky decomposition =  LL'

2. Generate rim standard normal distribution values z

3. Solve L ' u  =  AarUa

4. Solve Lxo =  u +  z
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Appendix C 

Bridge sampling

U nivariate Brownian bridge

111 th e  un ivaria te  tem p o ra l  se tt ing , a B row nian  bridge is a G auss ian  process cond itional 

on at least one known value (G lasseriiian 2003. C h a p te r  3). We first consider the  

general case by condition ing  on two values at th e  t im e  of th e  beg inn ing  and  end ing  of 

th e  process of interest.  In ou r  no ta t io n ,  th e  aim  is to  in te rp o la te  x { t 2 ) cond itional on 

the  values of  x{ f i )  and  Equivalently , we eva lua te  th e  conditional dens ity  function

Tr{x{t2 ) \ x { t i ) , x { t 3 )). Let I'l an d  v-z d eno te  th e  variances of th e  increm ents  from x{ f i )  

to  x ( t 2 ) and  from x { t 2 ) to  xi t ^ )  respectively. Using Bayes theorem ,

7r(.c(/i),.r(/2),-c(̂ 3))7T{x{t2)\x{ti),x{t:i)) =
TT{x{t i ) , x{t 3 ))

TT{ x{ t 2)  -  x { t i ) ) T T { x { t 3 )  ~  x ( t 2 ) )

n{x( t s )  -  x(^ i))

oc exp
1 f  { x { t 2 )  -  x ( / i ) ) 2  ^  { x { t 3 )  -  x { t 2 ) f
2  \  1>1 t ’2

F u rth e r  s imple a lgebra gives x ( t 2 ) j x( f i ) ,  x i f s )  ^  A f  ^

The m ultivariate bridge sam pling algorithm  in chap­

ter 5

In C h a p te r  5, th e  challenge is to  num erically  eva lua te  th e  high d im ensional integral 

(5.22). C onditioned  on th e  su i tab le  M C M C  sam ples, th e  leftover ta sks  are sam pling  

from th e  m ultiva r ia te  M T Q  bridge. T h is  involves sam pling  from  th e  XQ b ridge followed
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by sampling from the m ultivariate Gaussian distribution. Therefore, at the climate 

increment our algorithm proceeds as follows:

1. Multiply the crossed-correlated posterior samples of the observed increments 

of X o  by the inverse of the Cholesky decomposition of the correlation m atrix S  

to obtain independent samples of climate; these represent the bridged points tha t 

will be conditioned upon sinmlation of the gridded climate process.

2. Generate gridded variance values conditioned on Vj (the variance of the in­

crement) and its param eters using the X Q  bridge algorithm discussed in Ribeiro 

& Webber (2003).

3. Conditioned on the gridded X Q  available from step 2, the gridded climate pro­

cess at different sites are independent Gaussian random variables. T hat is, the 

conditional process X g  are, marginally, Brow'nian bridges.

4. As the final step, we multiply the independent Brow’nian bridges with the Cholesky 

decomposition of S  to obtain the cross-correlated Brownian bridges which rep­

resent posterior realisations from the full conditionals of Xg.
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