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Abstract

This thesis proposes new Bayesian methods to jointly analyse misaligned irregular time

series. Temporal misalignment occurs when multiple irregularly spaced time series are

considered together, or when the time periods defining the data points are not the

same across different series. Other issues under consideration include errors in the

time scales, and non-Gaussian processes for underlying latent values.

Our proposed models are hierarchical. This flexible framework is made concrete

with the derivation of fast and efficient algorithms for parameter inference. The meth-

ods are general and can be used for any continuous time series processes. In addition,

they open the door to other interesting possibilities for modelling and inference of

multivariate time series in a spatio-temporal context.

We apply our methods to climate proxy signals to derive ancient climate histories.

A major objective is to create climate data products (i.e. posterior summaries of

climate on a regular time grid). One of the advantages of our data products is that

they can easily be utilised to answer complex questions that are otherwise analytically

intractable. We demonstrate this by using case studies of abrupt climate change events.

iii



iv



Acknowledgements

This thesis would not have been possible if it was not for my supervisors, John and

Andrew. I’m deeply indebted to them for their close guidance and advice. I’ve learned

a lot from their effective and exciting way of teaching and explaining. It is not an

exaggeration to say that the choice to do a PhD with them has been one of the best

decisions so far in my life.

I feel lucky to have been in both TCD and UCD during my time as a student. These

world-class statistics departments are full of smart, kind and fun people. I have made

many good friends: Tiep, Angela, Shane, Arnab, Arthur, Brett, James, Chaitanja,

Shuarwei, Susie, Louis, Gernot, Cristina, Niamh, John, Berlinda and Nancy. Special

mention has to go to Donnacha, Sean and Jason, with whom I shared many the whys,

whats and hows in statistics, as well as my wedding preparation.

Outside of TCD and UCD, I’m grateful to Brian and Judy from Durham for pro-

viding an interesting dataset, and Eric from Cambridge for helpful comments on an

incomplete report which subsequently lead to an interesting article.

No words would be sufficient enough to describe my most sincere gratitude to my

parents (Long and Le), brother (Phu) and wife (Van) for their unconditional love and

support. I am going to be a father for the first time in August this year, and this thesis

is dedicated to this new member of our family.

This work is funded by Science Foundation Ireland grant no. 10/RFP/MTH2779.

Thinh K. Doan

Trinity College Dublin

August 2015

v



Publications

Published work (at the time of writing) of relevance to this thesis are listed below.

More specifically, chapter 4 is an edited version of paper 1 and chapter 5 is an

extension of paper 2.

1. Joint Inference of Misaligned Irregular Time Series with Application to

Greenland Ice Core Data, with John Haslett and Andrew Parnell. This paper

was published in Advances in Statistical Climatology, Meteorology and

Oceanography in 2015. The methods were developed in collaboration with the

co-authors. I performed all of the implementation and writing. The co-authors

edited and improved the paper. The data, code and analysis are available at

http://www.scss.tcd.ie/~tdoan/research.html.

2. Bayesian Inference for Paleoclimate with Time Uncertainty and Stochastic

Volatility, with Andrew Parnell, John Haslett, James Sweeney, Michael

Salter-Townshend, Judy Allen and Brian Huntley. This paper was published in

Royal Statistical Society: Series C (Applied Statistics) in 2015. The co-authors

were responsible for the model formulation, data analysis and writing up. I

carried out some practical implementations, and contributed some functions to

the R package Bclim which accompanies this paper.

vi

http://www.adv-stat-clim-meteorol-oceanogr.net/1/15/2015/ascmo-1-15-2015.pdf
http://www.adv-stat-clim-meteorol-oceanogr.net/1/15/2015/ascmo-1-15-2015.pdf
http://www.scss.tcd.ie/~tdoan/research.html
https://www.scss.tcd.ie/~tdoan/files/rssc12065.pdf
https://www.scss.tcd.ie/~tdoan/files/rssc12065.pdf
http://cran.r-project.org/web/packages/Bclim/index.html


Contents

Abstract iii

Acknowledgements v

Publications vi

List of Tables xi

List of Figures xiii

Chapter 1 Introduction 1

1.1 Statistical motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Overview of contributions . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Palaeoclimate time series and statistical methodology 7

2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Oxygen isotopes from ice cores . . . . . . . . . . . . . . . . . . 8

2.1.2 Pollen data from sediment cores . . . . . . . . . . . . . . . . . . 10

2.1.3 Climate data products . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Statistical inference for multiple misaligned time series . . . . . . . . . 17

2.3 Bayesian inference for hierarchical models . . . . . . . . . . . . . . . . 19

2.3.1 Hierarchical models . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.2 Independent increment process prior distributions . . . . . . . . 20

2.3.3 Computation of posterior distributions . . . . . . . . . . . . . . 22

2.3.3.1 Marginalisation of latent processes . . . . . . . . . . . 23

2.3.3.2 Simulation-free inference . . . . . . . . . . . . . . . . . 25

vii



2.3.3.3 Simulation-based inference . . . . . . . . . . . . . . . . 27

2.3.3.4 Some practical computational aspects . . . . . . . . . 29

2.4 Summary remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 3 Toy example 31

3.1 A simple model formulation . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 A two-stage hierarchical statistical model with known parameters 32

3.1.2 Notation tricks associated with temporal misalignment . . . . . 33

3.1.3 Posterior distributions . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 A simulated data set . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.2 Joint posterior distributions and pathwise summaries . . . . . . 36

3.2.3 Marginal posterior distributions and pointwise summaries . . . . 38

3.2.4 Comparison of interpolants . . . . . . . . . . . . . . . . . . . . . 39

3.3 Joint versus separate inference . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Summary and discussion of outstanding challenges for later chapters . . 42

Chapter 4 Joint inference of multiple processes with different time sup-

ports 43

4.1 A three-layer hierarchical statistical model . . . . . . . . . . . . . . . . 44

4.1.1 Data layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 Process layer and temporal change of support . . . . . . . . . . 44

4.1.3 Parameter layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Posterior distributions . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 Stage 1: simulation-free computation of model parameters . . . 48

4.2.3 Stage 2: summaries of latent process at an arbitrary time grid . 48

4.3 Application to two Greenland ice core data sets . . . . . . . . . . . . . 50

4.3.1 Exploratory data analysis . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Model-fitting results . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.3 Case study of the 8.2ka event . . . . . . . . . . . . . . . . . . . 57

4.4 Model validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4.1 Model choice for the cross-correlation function . . . . . . . . . . 59

viii



4.4.2 Checking for model identifiability . . . . . . . . . . . . . . . . . 60

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 5 Joint inference of multiple volatile processes with time un-

certainty 63

5.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 A four-layer hierarchical statistical model . . . . . . . . . . . . . . . . . 66

5.2.1 Main notation and posterior distributions . . . . . . . . . . . . 66

5.2.2 Main assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.3 Data layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.4 Calibration layer . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.5 Process layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.6 Parameter layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.1 A modularised Bayes approach . . . . . . . . . . . . . . . . . . 72

5.3.1.1 Modern analogue module . . . . . . . . . . . . . . . . 74

5.3.1.2 Chronology module . . . . . . . . . . . . . . . . . . . . 74

5.3.1.3 Marginal data posteriors and reconstruction module . 75

5.3.2 Summary of the modularised MCMC algorithm . . . . . . . . . 79

5.4 Application to three Finnmark pollen data sets . . . . . . . . . . . . . 80

5.4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Model-fitting results . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4.3 Case study of the Younger Dryas event . . . . . . . . . . . . . . 85

5.5 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 6 Conclusion 93

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Appendix A Implication of different data supports in chapter 4 99

Appendix B MCMC for the reconstruction module in chapter 5 103

ix



Appendix C Bridge sampling 107

Bibliography 109

x



List of Tables

2.1 A schematic representation of palaeoclimate data from a core . . . . . . 17

3.1 Process histories as a data product . . . . . . . . . . . . . . . . . . . . 37

4.1 Model parameters’s sensitivity check . . . . . . . . . . . . . . . . . . . 61

5.1 Information from a single fossil sediment core . . . . . . . . . . . . . . 65

5.2 Information from a training dataset . . . . . . . . . . . . . . . . . . . . 65

5.3 Model parameters’ sensitivity check . . . . . . . . . . . . . . . . . . . . 90

xi



xii



List of Figures

2.1 Locations of some Greenland ice cores . . . . . . . . . . . . . . . . . . 9

2.2 Age versus depth for GISP2 and GRIP ice cores . . . . . . . . . . . . . 10

2.3 Measurements of GISP2 and GRIP ice cores during the last 100 000 years 11

2.4 Locations of three fossil pollen cores in Finnmark . . . . . . . . . . . . 13

2.5 Pollen percentage for a sediment core in Finnmark . . . . . . . . . . . . 14

2.6 A schematic plot of a one-layer-at-a-time paleaoclimate reconstruction . 15

2.7 A schematic plot of some chronology samples . . . . . . . . . . . . . . . 16

2.8 DAG of a simple hierarchical model . . . . . . . . . . . . . . . . . . . . 20

3.1 DAG of the toy model . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 A simulated data set of two temporally misaligned time series . . . . . 37

3.3 Two sample histories generated from a joint posterior distribution . . . 38

3.4 Pointwise summaries of marginalised joint posterior distributions . . . . 39

3.5 A benefit of joint versus separate inference . . . . . . . . . . . . . . . . 41

4.1 DAG of a three-stage hierarchical model . . . . . . . . . . . . . . . . . 46

4.2 Measurements of GISP2 and GRIP ice cores during the last 11 000 years 51

4.3 Empirical semivariograms of GISP2 and GRIP ice cores . . . . . . . . . 53

4.4 QQ plots of the standardised increments of GISP2 and GRIP ice cores 53

4.5 Smoothed posterior distributions of model parameters . . . . . . . . . . 54

4.6 Quantile-based credible intervals of a gridded process . . . . . . . . . . 56

4.7 Interquartile ranges of a gridded process: joint versus separate inference 57

4.8 Boxplots of mimima and timing of minima for the 8.2ka event . . . . . 58

4.9 Smoothed posterior distribution of a parameter in the covariance matrix 61

5.1 Deterministic versus stochastic linear variogram . . . . . . . . . . . . . 71

xiii



5.2 DAG of the four-stage hierarchical model . . . . . . . . . . . . . . . . . 73

5.3 Schematic representation of the modularised MCMC algorithm . . . . . 81

5.4 A chronology sample and its corresponding MDPs . . . . . . . . . . . . 83

5.5 Reconstructed MTCO values at three sites in Finnmark . . . . . . . . . 84

5.6 Interquartile ranges of gridded processes: joint versus separate inference 86

5.7 Estimates of maximum positive change and negative change in MTCO 88

5.8 Time intervals which contain an extreme climate change event . . . . . 89

xiv



Chapter 1

Introduction

This thesis is concerned with three broad topics: misaligned irregular time series,

Bayesian inference, and palaeoclimate reconstruction. This introductory chapter con-

tains an overview of each topic, a succinct account of the main contribution of the work

done, and an outline summary of the remaining chapters.

1.1 Statistical motivation

Many real world time series data sets are irregularly spaced in time. Furthermore,

the time period over which a data point is collected can be different across series (i.e.

different temporal supports) or, in some cases, uncertain. When we consider multiple

series together, the series themselves are temporally misaligned. Frequently, interest

lies in multiple series with different irregularities. There is a relatively small body of

literature on the statistical treatment of such data. The objective of this research is

to develop new methods for a joint statistical inference of underlying processes which

give rise to such data.

The statistical methods in this thesis are considered in a Bayesian hierarchical

context. Under our framework, there are a large number of unknown processes and

parameters. This is associated with a heavy computational burden. Therefore, an

important part of this thesis is concerned with efficient computational algorithms. We

propose strategies to marginalise out high dimensional latent processes, where appropri-

ate. Additionally, we derive and implement both simulation-based and simulation-free

approaches for fast inference of model parameters.
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A motivating application for this work is a quantitative reconstruction of climate

histories from proxies recorded at multiple locations over thousands of years. Climate

change is undoubtedly one of the most important environmental issues of the present

day. A crucial basis for predicting future climate is its past condition. Unfortunately,

instrumental weather measurements are only available for the last few hundred years.

Fortunately, some palaeoclimate proxies can be used as a guide for climate in the past.

Hereafter we refer to the term reconstruction as the exercise of using statistical methods

to draw inference on ancient climate based on proxy signals. More specifically, we aim

to provide methods to reconstruct and analyse aspects of climate from data preserved

in ice and fossil sediment cores.

When dealing with an ice or fossil sediment core, it is important to take into account

the relationship between the core’s depth and calendar time. This is because the

accumulation rate of deposits varies significantly with time, due to the change in climate

as well as processes other than climate inside a core. Thus, time is a non-linear function

of depth, such that its temporal resolution decreases from the top to bottom of a core.

In other words, even if cores are regular in depth, the associated ages can be irregular.

Consequently, multiple cores with different irregularities are necessarily misaligned.

Formally, our objective is to derive ‘climate data products ’, i.e. summaries of climate

information with fully quantified estimates of uncertainty from raw palaeoclimatic data.

An important component in all of our proposed models is the Gaussian Markov

assumption based on the multivariate independent increment process which provides

a natural vehicle for joint statistical inference. A joint approach allows ‘borrowing

strength’ between different sources of information in order to study the true underlying

climate processes of interest. It permits a reliable modelling of the impact of the

multiple sources of uncertainty in proxies to produce a rich climate output. This is

in contrast to, for instance, the reconstruction of the notorious ‘hockey stick’ (Mann

et al. 1998) which utilises only high resolution proxy data. Similarly, the reconstruction

procedure proposed by Li et al. (2010) uses the so-called ‘pseudo-proxy’ as opposed to

raw proxy data. Both examples can be viewed as climate data products. Moreover, the

time range of these reconstructed climates goes back to just about a thousand calendar

years Before Present (k cal yr BP, where Present is 1950), in contrast to more than

10k cal yr BP as considered in this thesis.
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1.2 Overview of contributions

The thesis focuses on Bayesian inference for three cases of temporal misalignment in the

analysis of multivariate time series data. The original contributions to the literature

are:

1. In chapter 3, we propose a simple hierarchical framework for joint statistical

inference of misaligned irregular time series. We show that our joint approach is

more efficient than independent alternatives. We also discuss and demonstrate

that process histories are a useful (and in some cases, the only) way to study

non-linear functions of partially observed processes of interest.

2. In chapter 4, each time series has its own measurement procedure, which leads

to different support for observations across multiple series. We propose a model

for this. Based on this model, we implement a fast and efficient simulation-

free algorithm that completely bypasses Markov chain Monte Carlo (MCMC)

methods. We apply our methods to jointly analyse multiple ice cores. To the

best of our knowledge, this work represents the first attempt to perform Bayesian

inference for multiple ice core time series in their raw and misaligned form.

3. In chapter 5, temporal misalignment occurs when the times of observations are

subjected to some uncertainty. We develop a multivariate stochastic volatility

model and derive a modularised MCMC algorithm for computation of posterior

distributions. This model can deal with abrupt changes in underlying process

of interest. Although formulation of a stochastic volatility model is not new in

the statistical literature, we are unaware of any work that use a multivariate

long-tailed distributions for stochastic interpolation of climate histories.

1.3 Outline of chapters

The rest of this thesis is divided into the following chapters:

Chapter 2: Palaeoclimate time series modelling and Bayesian statistics

In the first part of this chapter, we discuss specific features of two applications (oxygen

isotope in ice cores and pollen count in sediment cores) that lead to difficulties in
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using standard approaches for time series analysis. These include irregularly spaced

timings and errors in the time scale corresponding to different measurement procedures.

Additionally, we review and evaluate existing solutions in the statistics literature, with

special emphasis on joint inference of multiple time series.

In the second part, we discuss the basis of the statistical methods that will be used

in subsequent chapters. First, we review the Bayesian hierarchical modelling approach.

Then, we describe the independent increment process in detail and provide justification

for this choice in the context of palaeoclimate reconstruction. After this, we give a

general account of techniques for inference of parameters using both simulation-based

and simulation-free approaches.

Chapter 3: A toy example

This is a short but nonetheless important chapter. In this chapter we give some basic

definitions that will help to establish the framework on which subsequent chapters

are based. Additionally, we compare and contrast different techniques for computing

and summarising data products. We also discuss the benefit of joint versus separate

statistical inference alternatives.

Chapter 4: Joint inference of processes with different temporal supports

This chapter is concerned with data sets with different supports underlying their mea-

surements. An extension to the simple model in chapter 3 is proposed. To deal with

different supports, we use change of support theory from the geostatistics literature.

We further derive a fast simulation-free algorithm for parameter inference, and avoid

the use of MCMC.

The proposed methods are applied to analyse two ice cores drilled in neighbouring

locations in Greenland. We show that our approach allows for a richer analysis than

previously possible. Additionally, we demonstrate that our sampled process histories

are useful to study non-linear functions of underlying processes of interest.

Chapter 5: Joint inference of processes with time uncertainty and stochastic

volatility

This chapter presents a more general framework than that discussed in previous chap-

ters. Under the Bayesian hierarchical structure, we incorporate a variety sources of

information, including treatments for temporal uncertainty and stochastic volatility.

4



At the same time, we show how Bayesian modularisation can be applied to reduce the

complexity of the overall model.

The main novelty of this chapter lies in the specification of a multivariate non-

Gaussian stochastic volatility prior model for an underlying latent process. This sub-

sequently leads to the derivation of a modularised MCMC framework, and development

of a stochastic interpolation algorithm with heavy-tailed behaviour. The motivation

for this chapter is to jointly reconstruct ancient climate histories from three sites in

Finnmark, conditioning on pollen data.

Chapter 6: Conclusion and future work

The last chapter gives an overview of the results of the thesis and discusses the contri-

butions with several remarks for future directions of research.
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Chapter 2

Palaeoclimate time series and

statistical methodology

This chapter presents a background for problems that will be solved in subsequent

chapters. We also provide a broad literature review of relevant statistical methods.

We begin, in Section 2.1, with two example applications; oxygen isotopes from

ice cores and pollen grains from lake sediments. In particular, we discuss features of

palaeoclimate data which pose a number of challenging statistical issues, and announce

our objective which is to create easy-to-use climate data products from these raw data

sets. Next, in Section 2.2, we discuss difficulties, and review existing solutions to

varying data supports, time uncertainties, irregularly-spaced time series and temporal

misalignment.

Then, in Section 2.3, we provide a general description of Bayesian hierarchical

models; they are the building block for the methodological contribution of this thesis.

More specifically, we discuss independent increment processes as the prior model choice

for the main latent process, and summarise some techniques for computing posterior

distributions.

2.1 Applications

Climate proxies are indirect climate measurements. They provide a useful source of

information to climatic conditions in the past. This section introduces two examples

of proxies. It also outlines our objective in performing statistical inference.
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2.1.1 Oxygen isotopes from ice cores

Ice cores play an important role in revealing Earth’s climate history via the analysis of

their chemical composition. Here, we focus on the ratio of stable and unstable oxygen

isotopes (expressed as δ18O) that are linked to past temperature. The process by which

an ice core represents temperature is based on the ease with which two particular types

of isotopes in water evaporate from the ocean and condense as snow. We refer interested

readers to Jouzel et al. (1997) for a more detailed account of this connection.

A further step would be required to transform δ18O into an aspect of climate which

might then add considerable uncertainties. For clear presentation of new statistical

methods for misaligned time series, we will work directly with δ18O measurements.

Various ice core data sets are available from the National Climatic Data Center

(http://www1.ncdc.noaa.gov/pub/data/paleo/icecore/). In this thesis, we use

the data sets from the United States’ Greenland Ice Sheet Project II (Stuiver 1999,

GISP2) and Europe’s Greenland Ice Core Project (Johnsen 1999, GRIP). These are

the results from drilling through the Greenland Ice Sheet to recover ice records over

3 kilometres deep. The locations of these two cores are about 30 kilometres apart, as

shown in Fig. 2.1.

The δ18O measurements are recorded as a function of depth. Whilst ice core data

sets are presented in several versions, we use a raw version in which the cores are cut

into sections of equal lengths; 200cm and 55cm for GISP2 and GRIP respectively. In

this context, the volume of a section of an ice core provides support for a data point.

However, as the thickness in all sections is identical, comparison of supports is simpler

via physical lengths (e.g. 55cm) rather than volumes. A length of a core section directly

maps to a period of elapsed time. Hence, we define ‘support’ as the period of time over

which is represented by a single data point.

The dating of these cores is conducted by counting annual layers in chemicals that

show a summer/winter seasonal cycle (e.g. Rasmussen et al. 2006). Intuitively, the

lower the sediment is, the older the information in the core is. As pointed out, for

instance, by Stuiver & Grootes (2000), measurements from these cores contain negligi-

ble dating errors, particularly for the period of relatively stable climate approximately

between 0 and 11 k cal yr BP. This is the time period we consider in the applica-

tion in chapter 4. We defer discussion pertaining to dating uncertainty to chapter 5,

8
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Fig. 2.1: Locations of drill sites on the Greenland Ice Sheet (modified from Andersen

et al. (2004)). In particular, we consider site GISP2 (72.580N , 38.460W ) and GRIP

(72.590N , 37.640W ), marked with red points.

when dealing with non-negligible radiocarbon dated errors from fossil pollen at lake

sediments. A detailed description of pollen data sets is discussed in Section 2.1.2.

Due to ice compression over time, age and depth are not linearly related. Material

at the top pushes down on material at the bottom therefore temporal compression

generally increases with depth. This is most clearly seen in Fig. 2.2 where we plot

age versus depth for both cores for the last 100 k cal yr BP. For this reason, a data

set comprising of sections of equal length does not generally lead to a regularly spaced

time series. Figure 2.3 shows the measurements of GISP2 and GRIP ice cores for the

last 100 000 year. Boxplots of the age increments clearly show different irregularities

9



in the ages. In Chapter 4, we consider only data of approximately the last 11 k cal yr

BP, a period of relatively stable climate conditions.

100 80 60 40 20 0

2500

2000

1500

1000

500

0
GISP2
GRIP

Age (k cal yr BP)

D
ep

th
 (

m
)

Fig. 2.2: Plot of depth versus age for GISP2 and GRIP approximately the last 100

k cal yr BP. Slope is more gradual at older ages, implying that compression generally

increases with age. Here, we assume no errors associated with the estimation of time

from depth. In chapter 4, we consider only data of approximately the last 11 k cal yr

BP where the age-depth relationship can be approximately linear.

To sum up, a considerable challenge in a statistical analysis of multiple ice core time

series is associated with the irregular timing of measurements, temporal misalignment

across series, and different measurement supports.

2.1.2 Pollen data from sediment cores

Although ice provides a rich source of information for palaeoclimate reconstruction,

ice cores can only be drilled at limited locations. In contrast, fossil pollen samples can

be found in many more areas on Earth. An example is the European Pollen Database

(Fyfe et al. 2009, see also http://www.europeanpollendatabase.net). A statistical

analysis of this type of dataset will face issues similar to that with ice cores, namely

different irregularities in time and temporal misalignment. Additional, and probably

more challenging, issues are associated with time uncertainty and stochastic volatility

- details of which are discussed in the rest of this section.
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Fig. 2.3: Scatter plots of δ18O measurements and ages of (a) GISP2 and (b) GRIP.

(c) Boxplots of the age increments clearly show different irregularities in the ages.

We consider a data set comprising three cores from three lakes in Finnmark, noth-

ern Norway. The lakes are located at Liten Cappesjavri, Over Gunnarsfjorden and

Over Kobbkrokvatnet, and the corresponding sediment cores are known as M, NKH1
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and PS8. The physical locations form a west-east transect in the coastal regions of

Finnmark, as shown in Fig. 2.4. This region is believed to be sensitive to past climate

changes that were related to the disruptions of ocean circulation variations (Huntley

et al. 2013).

At a selection of depths, scientists identify, count and compute pollen concentrations

that have been accumulated over thousands of years beneath lakes or bogs. Therefore,

each data point reflects counts of many pollen types at a given depth. The pollen

percentage diagram for a sediment core from one of the sites in Finnmark (site M) is

represented in Fig. 2.5.

In addition to the type of data set described in the previous paragraph, there is a

training set of modern pollen surface samples at locations around Europe. The latest

European modern pollen data base is described in Davis et al. (2013). Nevertheless,

in chapter 5 we use the training set detailed in Haslett et al. (2006). This is for the

purpose of direct comparison to Parnell et al. (2015) who uses the latter data set. In

any case, a training data set consists of a large number of known climate conditions

and associated pollen counts. Statistical connection between pollen and climate is

known as forward inference. Conversely, given fossil pollen information, it is possible

to reverse the inference direction (inverse inference) to draw inference about ancient

climate (Haslett et al. 2006, Salter-Townshend & Haslett 2012). The output of inverse

inference is a layer-by-layer climate reconstruction at a selection of depths. A schematic

representation of the forward and inverse inference is shown in Fig. 2.6.

Similar to the situation with ice core, depths from sediment core can be transformed

to calendar ages, albeit with uncertainty. Scientists can date material at some depths

to return radiocarbon ages. Radiocarbon dating is a common dating technique in

palaeoecological research to determine the age of an object or event (Buck et al. 1996).

Whilst calendar ages are directly comparable between cores, this is generally not true

with radiocarbon ages. Thus, it is crucial to transform radiocarbon ages to calendar

ages. This calibration process is often done via a calibration curve derived from a huge

number of radiocarbon dates of material with known ages (Reimer et al. 2013). The

implication is that measurements of time have inherent error.

Further uncertainty arises from stochastic interpolation for ages at depths where

no information is present pertaining to radiocarbon ages. There has been a growing
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Fig. 2.4: Plots taken from Huntley et al. (2013) showing (a) the region under study in

northern Norway and how it is related to ocean surface currents, and (b) the locations

of the three lakes in Finnmark, which form a west-east transect.

13



Fig. 2.5: Pollen percentage within a core at one of the sites in Finnmark (site M).

For pollen details of cores from other sites, see Huntley et al. (2013). The vertical axis

shows the depths of the core (sediments in the upper part of the core are the most

recent ones). The horizontal axis shows the percentage of many pollen types.
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Fig. 2.6: A schematic plot of one-layer-at-a-time paleaoclimate reconstruction. The

upper panel shows example of a functional relationship between climate and pollen,

created from a training set of modern climate and pollen data. Given two example

fossil (ancient) pollen counts, we obtain posterior estimates of unknown climate in the

lower panel. This plot is modified from Parnell et al. (2015).

interest in Monte Carlo age-depth models within a Bayesian framework (Parnell et al.

2011). Figure 2.7 is a schematic representation of stochastic interpolation of ages at

an arbitrary selection of depths based on the calibrated calendar ages. Each sample of

interpolated ages for a selection of depths is known as a chronology.

Thus, each fossil pollen core is a time series of multivariate pollen counts, the times

themselves being uncertain. This is contrary to the ice core data as considered in

chapter 4, in which temporal uncertainty was assumed to be inconsequential because

the dating procedure is considered relatively accurate.
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Fig. 2.7: A schematic plot of three chronology samples (generated from Oxcal Ramsey

(2008), Bpeat(Blaauw & Christen 2005) and Bchron(Haslett & Parnell 2008)). First,

radiocarbon ages at ten depths of a core are calibrated to ten distributions of calendar

ages. Then, chronology models are fitted to stochastically interpolated calendar ages

associated with a selection of depths. This plot is taken from Parnell et al. (2011).

2.1.3 Climate data products

Palaeoclimate time series data are available in two forms: ‘raw’ (typically irregular, or

uncertain in time) and ‘data products’ (typically regularly-spaced in time, i.e. ‘grid-

ded’); as pointed out, for instance, by Chandler et al. (2012).

Previous methods for creating data products from ice core rely on a variety of

techniques; from simple running averages (Stuiver & Grootes 2000, Thomas et al.

2007) to complex parametric smoothing (Peavoy & Franzke 2010, Nieto-Barajas &

Sinha 2015). The statistical literature on creating the type of data products (defined

in the previous paragraph) from raw pollen data is scarce. As far as we are aware,

Parnell et al. (2015) is the only existing reference which takes into account of the

challenges discussed in Section 2.1.2, to create gridded data product from raw pollen

signals. However, their methods are only applicable to a single core.
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To sum up, existing techniques - broadly interpolators or smoothers - are applied

to only one core at a time. Therefore, an important objective of this research is to

develop methods to jointly create easy-to-use climate data products conditional on all

raw information, from multiple cores.

2.2 Statistical inference for multiple misaligned time

series

From the data sets discussed in the previous sections, we see that palaeoclimate data

from a core typically consists of two main sets of measurements: proxy and dating

information. Table 2.1 shows a schematic representation of this.

[Depth] Time [Proxy data] Climate

top present
...

...
...

...

bottom past

Table 2.1: A schematic representation of palaeocimate data from a core. Square

brackets are used to distinguish observed measurements from unobserved latent vari-

ables. At some depths of the core, material has been dated to return times; the times

themselves may be available with errors. Proxy data (also available at some depths) are

used to learn about climate. Reconstruction is the process of turning proxy information

at some depths into climate at a selection of times.

Palaeoclimate time series data have many unique features. Standard statistical

time series analysis models such as autoregressive integrated moving average focus on

discrete time processes (Donner 2007, Mudelsee 2010). Hence, they are not generally

applicable to the types of raw palaeoclimate time series data, particularly those dis-

cussed in the previous sections. Succinctly stated, the outstanding issues which deserve

immediate attention and effort from statisticians include, but are not limited, to the

following:

• High level of uncertainty in the observed signal due to the sensitivity of proxy to

various processes other than climate. Moreover, the relationship between proxy
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signals and climate can be non-linear and require complex modelling assumptions.

• Missing or irregularly-spaced data and, in some cases, uncertainty in the data’s

timings. Under the multivariate setting, these series are temporally misaligned.

Relevant works include Erästö et al. (2012) who propose a Bayesian method to merge

distinct paleoclimate time series to learn about the common feature of these series.

However, this method is only applicable to post-processing climate output which have

previously been reconstructed from raw proxy data. Another related work is Li et al.

(2010) who attempt to reconstruct historical temperature using multiple sources of

’pseudo‘ proxies. These synthetic proxy datasets are output from other climate models.

Hence, again, this method does not make use of raw data. As mentioned in the previous

section, Parnell et al. (2015) seems to be the only attempt to reconstruct climate from

raw pollen data whilst taking into account all of the aforementioned challenges. Alas,

a limitation of this method is that it does not perform joint inference for multiple fossil

cores.

Whilst our motivating example stems from climate research, multivariate data with

different temporal irregularities are a common feature in many contemporary applica-

tions. For example, the ability to combine outputs at different levels of accuracy is

crucial to the understanding of processes being studied through potentially expensive

computer experimentation. A useful approach in such applications is to combine re-

sults from many cheap (but low-accuracy) experiments with those from a few expensive

(high-accuracy) experiments by linking the data via different layers of modelling (Qian

& Wu 2008). In medical applications, one recommendation to overcome issues with

misalignment is to align the times into a regular template before further modelling

(Cismondi et al. 2013). For more examples of misaligned time series and associated

methods, see Cismondi et al. (2011) and Eckner (2012) and the references therein.

Misaligned time series can be viewed as a special case of spatial misalignment in

spatial statistics; the so-called ‘change of support problem’ for data that are indexed in

both space and time (e.g. Gelfand et al. 2001, Wikle & Berliner 2005). In this context,

statistical inference involves studying the statistical properties of a stochastic process

at ‘supports’ that are different to that associated with data. The methodological

development in this thesis can be seen as a special case of this problem. We focus on

the case where an observation is defined at an instantaneous point in time and seek
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prediction of the underlying process at arbitrary new time points.

2.3 Bayesian inference for hierarchical models

The literature review in the rest of this chapter focuses on Bayesian statistics. It will

be general and does not directly link to issues in palaeoclimate reconstruction.

2.3.1 Hierarchical models

The use of Bayesian inference for palaeoclimate problems has increased in recent years.

The Bayesian approach considers data y = {y1, . . . , yn}, having already being observed,

to be fixed. Suppose an (unobserved) parameter τ is random, to which prior infor-

mation can be assigned to reflect our knowledge before observing any data. A whole

range of different priors is available, ranging from subjective and informative expert

opinion to uninformative. The conditional distribution of data given the process prior

is the likelihood function. Letting π denote a probability distribution function, Bayes’

theorem states that

π(τ |y) =
π(y|τ)π(τ)

π(y)

∝ π(y|τ)π(τ)

posterior ∝ likelihood× prior

(2.1)

It is possible to omit the denominator on the right hand side (RHS) of the above

equation and replace the equality sign with one indicating proportionality since the

denominator is not a function of τ . The product of prior and likelihood is proportional

to the posterior. Intuitively, the more data that become available, the less influence

the prior has on the posterior results.

Further levels of dependency are possible. For instance, suppose data y are observed

from a latent (unobserved) process x = {x1, . . . , xn}; the latter process is controlled

by parameter v. We can impose a conditional independence structure on the data y,

given x and relevant parameters. Let θ = {τ, v}. In a full Bayesian analysis, prior

distributions for θ are introduced as another stage of the hierarchy. In fact, the joint

distribution of all unknown processes and parameters given the data can be written in

a hierarchical structure. This is a Bayesian hierarchical model (BHM), see, for instance
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Gelman et al. (2014, Chapter 5). A fairly simple hierarchical structure is

π(x,θ|y) ∝
n∏
i=1

π(y(ti)|x(ti), τ)π(x|v)π(θ) (2.2)

It can be seen that (2.2) is an extended version of (2.1). BHMs are simple, yet provide

a powerful and unified framework for data analysis, and allow us to combine multiple

sources of information. The corresponding graphical representation of the hierarchical

structure in 2.2 is depicted in Fig. 2.8, where circles indicate parameters/latent random

variables and boxes indicate observations.

yixiθ

i = 1, . . . , n

Fig. 2.8: A Directed Acyclic Graph (DAG) of the hierarchical model specified by Eq.

(2.2). Circles indicate parameters/latent random variables whilst boxes indicate data.

Note that yi and xi are defined for i = 1, . . . , n but θ is not.

2.3.2 Independent increment process prior distributions and

Markov property

A widely used prior model for temporal smoothing assumes independent increments in

the first or second order of x (e.g. Haslett et al. 2006, Lindgren & Rue 2008). The first

order model assumes smoothness of first differences whilst the second order model is

concerned with the smoothness of the rate of change of x. In this thesis, we focus on

the first order independent increment model. This continuous-time stochastic process

does not make any assumption on the process itself, but only on its increments. In

the context of palaeoclimate reconstruction, it seems plausible that changes in climate

at different series/cores/sites are similar if the sites are close in geographical location.

Hence, a multivariate version of the process discussed in (2.3) below will play an im-

portant role in the models we propose in subsequent chapters.

We illustrate this process with a univariate case. Suppose x is a continuous time

stochastic process. Hereafter we write xi and yi as x(ti) and y(ti) respectively. We
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emphasise that x is defined at all times. However, to simplify the example we assume

that time is observed on a discrete time grid. We model an increment as a zero-mean

Gaussian prior with variance v that is directly proportional to a time difference, i.e.

x(ti+1)− x(ti) ∼ N (0, δiv) (2.3)

where δi = |ti+1 − ti|, and v is the squared volatility, governing the smoothness of x.

Note that the parameter v might not be adequate when underlying process of interest

is highly oscillating. A remedy for this is to allow v to be time-varying (Parnell et al.

2015).

The joint distribution for x, conditioning on the first value x(t1), is

π(x|v) ∝ v−(n−1)/2 exp
(
− v−1

2

n−1∑
i=1

δ−1i
(
x(ti+1)− x(ti)

)2)
∝ v−(n−1)/2 exp

(
− 1

2
xTQxx

)
where

Qx = v−1



δ−11 −δ−11

−δ−11 (δ−11 + δ−12 ) −δ−12

. . .

−δ−1n−2 (δ−1n−2 + δ−1n−1) −δ−1n−1
−δ−1n−1 δ−1n−1


(2.4)

Here, Qx is the precision (inverse covariance) matrix, with the blank entries being ze-

roes. More details on the construction of precision matrices for univariate independent

increment processes applied to irregularly spaced time series are discussed in Rue &

Held (2005, Section 3.3) and Lindgren & Rue (2008).

Formally, a stochastic process with independent increments is a Markov process.

We see that in the construction of x, conditioned on information at the present, the

past gives no new information about the future. A further look at the full conditional

distribution of x at each time point (given all past and future points) shows that the

process at the current time is only dependent on the process at the previous and next

time. The exception is at the edge, i.e. the first and last time point. This form of de-

pendency can be seen in the tridiagonal structure of the precision matrix Qx as shown

in (2.4). It turns out that this precision matrix gives information about conditional
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independence properties (Rue & Held 2005, Theorem 2.2). Generally, sparse precision

matrices have cheaper storage cost and lower computational burden than dense matri-

ces. We discuss some computational aspects associated with sparse precision matrices

in Section 2.3.3.4.

All models in this thesis will be set up in ways such that the resulting posterior

distributions for main latent processes can inherit the Markov property from indepen-

dent increment prior distributions. The embedded Markov properties will ensure that

associated precision matrices are sparse. More specifically, we make use of multivari-

ate independent increment process. In this case, the process x is multi-dimensional.

The increments have multivariate Gaussian distributions; each has, for simplicity, a

mean zero and cross-covariance matrix Σ. Thus, the precision matrix for x is block-

triadiagonal. We can write this matrix as a Kronecker product, denoting Qx⊗Σ−1. A

useful reference for Kronecker products is Harville (1997). Our discussion in the rest

of this chapter focuses on the univariate case, for the purpose of simplicity.

2.3.3 Computation of posterior distributions

In the model specified by (2.2), the posterior distributions of interest include the joint

posterior distributions π(θ|y), π(x|y), and marginalised joint posterior distributions

π(v|y), π(τ |y), π
(
x(ti)|y

)
or some combination of i, for all i. These unknown quantities

of interest correspond to the integrals:

π(θ|y) =

∫
π(x,θ|y) dx (2.5a)

π(x|y) =

∫
π(x,θ|y) dθ (2.5b)

π(v|y) =

∫
π(θ|y) dτ (2.5c)

π(τ |y) =

∫
π(θ|y) dv (2.5d)

π
(
x(ti)|y

)
=

∫
π
(
x(ti)|y,θ

)
π(θ|y) dθ (2.5e)

As a general difficulty in Bayesian inference, the above integrals are typically in-

tractable. Furthermore, there is often high correlation within x, and between x and

θ. Many solutions are discussed in the literature, we will only mention the techniques

used later in this thesis.
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In all modelling setting in this thesis, dim(θ) is typically small whilst dim(x) is

large. Hence, the overall computational cost can be alleviated if x can be marginalised

out of the overall model so that inference can initially be focused on the lower dimen-

sional parameters.

2.3.3.1 Marginalisation of latent processes

We begin by rewriting the definition of conditional probability:

π(x,θ,y) = π(y|x,θ)π(x|θ)π(θ)

= π(x|y,θ)π(y|θ)π(θ)

Moreover,

π(x,θ|y) =
π(x,θ,y)

π(y)

Hence:

π(x,θ|y) ∝ π(y|x,θ)π(x|θ)π(θ) ∝ π(x|y,θ)π(y|θ)π(θ) (2.6)

In what follow we describe two case scenarios that are relevant to this thesis, and

suitable solutions in a full Bayesian analysis.

Case 1: Gaussian conjugacy We make some additional assumptions to further

simplify the problem. Firstly, we suppose each data point is realisation from a Gaussian

distribution with common variance, i.e. y(ti)|x(ti), τ ∼ N (x(ti), τ). Secondly, we use

the independent increment process as the prior distribution for x, as discussed in

Section 2.3.2. For completeness, we rewrite the full model in details as follows:

y|x, τ ∼
n∏
i=1

π(yi|xi, τ) = N (x,Q−1y ) (2.7a)

x|v ∼
n∏
i=2

π(xi|xi−1, v) = N (0,Q−1x ) (2.7b)

{τ, v} = θ ∼ π(θ) (2.7c)

where Qy is the precision matrix with τ−1’s in the main diagonal and zeroes everywhere

else. The matrix Qx has been discussed in (2.4). In this modelling setting, both (2.7a)

and (2.7b) are Gaussian distributions. Thus, the full conditional for x is exactly

Gaussian, i.e. x|y,θ ∼ N (µx|y,Q
−1
x|y). Here, Qx|y = Qx + Qy and µx|y is the solution
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to the system Qx|yµx|y = Qyy. Thus, the full conditional for x can be evaluated

up to a normalising constant and x can be analytically marginalised out of the joint

distribution π(x,θ|y).

Case 2: non-Gaussian components If the distribution of y|x, τ is non-Gaussian

and x|v is Gaussian, approximation methods can be used. More specifically, we can

write the full conditional distribution for x as π̃G(x|y,θ), where

π̃G(x|y,θ) ∝ π(y|x,θ)π(x|θ) ∝ |Q|1/2x exp
( n∑
i=1

log π
(
y(ti)|x(ti), τ

)
− 1

2
xTQxx

)
(2.8)

The first term inside the exponential can be written as as a Taylor expansion to the

second order (Tierney & Kadane 1986). Thereafter (2.8) can be approximated as a

Gaussian distribution by iteratively matching its mode and curvature at the mode (Rue

& Held 2005, Section 4.4.1). Once the full conditional for x has been approximated as

Gaussian, analytical integration is equivalent to case 1 described above.

Another approximation approach that we use throughout this thesis - most explic-

itly in Chapter 5 - follows the recent work of Parnell et al. (2015). They propose to

replace π(x,θ,y) = π(y|x,θ)π(x|θ)π(θ) in (2.7a) with the so-called ‘marginal data

posteriors ’ (MDPs) of the form πMDP (x|y) =
∏n

i π
(
x(ti)|y(ti)

)
. In the current model

setting, the computation of each MDP is:

π
(
x(ti)|y(ti)

)
∝ π

(
y(ti)|x(ti)

)
π
(
x(ti)

)
≈ π

(
y(ti)|x(ti)

)
(2.9)

The last equality in the above equation is possible since x is an independent increment

process and π
(
x(ti)

)
is flat for all i. Although this is what we use here, any model

choice for x would be as suitable. The computation of (2.9) also requires evaluation of

the integral π(yi|xi) =
∫
τ
π(yi|xi, τ)π(τ |y) dτ hence MDPs are typically non-Gaussian.

To remedy this, Parnell et al. (2015) propose to approximate the non-Gaussian MDPs

as Gaussian mixtures. For the sake of simplicity in this introduction of the method,

we assume τ is a known constant. Consequently, πMDP (x|y) is exactly Gaussian and

marginalisation of x from the joint posterior distribution is the same as in the conjugate

Gaussian case described above, i.e.

π(x,θ|y) ∝ πMDP (x|y)π(x|θ)π(θ) ∝ π(x|y,θ)π(θ|y)
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where π(x|y,θ) is available, up to a normalising constant, as a Gaussian distribution.

The MDP approach can be extended to the case where both y|x, τ and x|v are

non-Gaussian. We refer to a more detailed discussion of this in Parnell et al. (2015)

and again in Chapter 5.

2.3.3.2 Simulation-free inference

From (2.6), we can write down the identity

π(θ|y) ∝ π(y|θ)π(θ) =
π(y|x,θ)π(x|θ)π(θ)

π(x|y,θ)
(2.10)

When both y|x,θ and x|θ are Gaussian distributions, conjugacy implies that the

full conditional distribution for x is exactly Gaussian as discussed in Case 1 in Section

2.3.3.1. Moreover, π(y|x,θ)π(x|θ) = π(x|y,θ)π(y|θ) in the numerator on the RHS

of (2.10). Thus, we can analytically evaluate π(y|θ) followed by π(θ|y).

Provided the dimension of θ is not too high, Eq. (2.10) can be efficiently evalu-

ated on a parameter grid. Several grid search strategies are proposed in the recently

developed ‘integrated nested Laplace approximation’ method (INLA Rue et al. 2009).

In what follow we review a strategy that we use in Chapter 4. It begins by optimis-

ing log π(θ|y) to locate the mode θ̂ and the Hessian matrix H evaluated at θ̂. The

matrix H is asymptotically the precision matrix for θ̂. Thus Σ = H−1 is the corre-

spondent covariance matrix. The mode and covariance are used as a guide to search

for the parameter space of interest. Moreover, INLA recommends exploring θ via the

standardised variable z:

θ = θ̂ + V∆1/2z (2.11)

Here, Σ = V∆V−1 is the eigen-decomposition. The search begins from the mode

(i.e. z = 0) and proceed to all combination of directions according to a stopping rule;

see Martino (2007, Algorithm 3) for further technical details.

At the end of a grid search, we obtain the discrete parameter space ΘJ ; j = 1, . . . , J

where J is the total number of grid points. This parameter space will be used as a

Riemann sum approximation to analytical integrations. For instance, the normalising

constant can be discretely evaluated when there are few parameters, i.e. π̃(y) ≈∑
θj∈ΘJ

π(y|θj) π(θj)4θj given appropriate weights 4θj. In our work, we choose z to

have regular steps therefore we always have equal weights.
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To obtain the marginal posterior distributions such as those discussed in (2.5e), we

numerically integrate over the gridded parameters as follows

π̃(xk|y) ≈
∑
θj∈ΘJ

π(xk|y,θj)π(θj|y)4θj (2.12)

Evaluation of π(xk|y,θ) is least challenging when x|y,θ is Gaussian, to which each

marginal is itself an exact Gaussian distribution. When x|y,θ is not Gaussian, Gaus-

sian approximation techniques can be applied to the denominator of (2.10). This gives

rise to the approximated distribution π̃(θ|y) where:

π̃(θ|y) ≈ π(y|x,θ)π(x|θ)π(θ)

π̃G(x|y,θ)

∣∣∣∣
x=x∗(θ)

(2.13)

Here, x∗(θ) is the mode of the full conditional for x evaluated at θ, and the approxi-

mated conditional distribution π̃G(x|y,θ) is the same as that discussed in (2.8). The

expression (2.13) is the main ingredient of INLA in which the Gaussian distribution is

used to marginalise out latent processes of interest. In some settings, it is also possible

to use the MDP approach as discussed in Case 2 of Section 2.3.3.1.

It is sometimes of interest to evaluate the marginal posterior distribution for the

parameters, as described in (2.5c) and (2.5d). These approximated marginal posterior

distributions are:

π̃(τ |y) ≈
∫
I(θ|y) dv (2.14a)

π̃(v|y) ≈
∫
I(θ|y) dτ (2.14b)

where I is the interpolated function of π(θ|y) already computed during the grid explo-

ration stage; see Martins et al. (2013, Section 3) for the technical details. Alternatively,

when the dimension of θ is not too high, we can evaluate its joint posterior distribution

on a regular grid and then use the resulting values in place of I in Eq. (2.14) above.

This approach requires the grid to be finer and wider. Hence, the disadvantage is that

numerical integration is slower than that based on the the interpolated function. The

advantage is a more accurate representation of the marginal posterior distributions.

Simulation-free Bayesian inference has been shown to work well with a broad class of

models (Rue et al. 2009, Martins et al. 2013). However, it has many limitations. Most

notably, the dimension of θ must be small in order for quadrature integration in (2.14)

to be feasible. In chapter 4, the maximum number of parameters are 4 hence we make
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extensive use of simulation-free inference techniques. However, there are hundreds of

unknown parameters in the models in in chapter 5. In this case, simulation-based

methods can be a better alternative solution. We review this approach in the following

subsection.

2.3.3.3 Simulation-based inference

The aim of simulation-based inference, or Monte Carlo methods, is to draw sample

values from (x,θ|y) and approximate the characteristics of the target distribution

using the characteristics of the samples.

When the posterior distributions are high dimensional, direct simulation techniques

(e.g. rejection sampling) are not a feasible solution. Markov chain Monte Carlo

(MCMC) is an approximated sampling technique. The objective is to build a Markov

chain that converges to the desired target distribution. It works by producing a chain of

samples where each draw is dependent on the previous draw. The two basic algorithms

used in MCMC are the Gibbs and Metropolis Hastings sampler.

Gibbs sampling is by far the most popular approach, mostly because of its versatil-

ity. The widespread use of the Gibbs sampler for general Bayesian problems is arguably

due to Gelfand & Smith (1990)’s influential paper, see, for example, Robert & Casella

(2011) and Tanner & Wong (2010) for a historical perspective on this. The algorithm

makes use of full conditional distributions. The basic concept is simple. First, we di-

vide all unknown processes and parameters into separate components. Next, we derive

the full conditionals for each component given all other components and data. Then,

we iteratively sample from each full conditional distribution. A generic Gibbs sampler

in the context of this chapter proceeds as follows:

1. Choose starting values for θ and x.

2. Sample from π(θ|x,y) := π(θ|y) or its marginals, π(τ |y) and π(v|y).

3. Sample from π(x|θ,y) or its marginals, π(xk|θ,y) for all k.

4. Repeat step 2 and 3 until convergence in all relevant distributions is achieved.

Gibbs is a special case of Metropolis-Hasting (MH) rejection sampling algorithm. The

MH algorithm is arguably the most general form of Markov chain sampling technique
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(Chib & Greenberg 1995). It is useful when the full conditionals do not belong to any

standard distribution, and samples from them are difficult to obtain. Therefore, rather

than sampling directly from the full conditional, a candidate value from an arbitrary

proposal distribution is drawn and accepted with a certain probability. Like the Gibbs

sampler, the MH sampler updates the parameters component-by-component. For our

simple example, to sample from π(θ|y), we draw new samples θ∗ from a proposal

distribution q(θ∗|θ), then decide to accept/reject them with probability α(θ∗,θ) where

α(θ∗,θ) = min
(

1,
π(θ∗|y)q(θ|θ∗)
π(θ|y)q(θ∗|θ)

)
A combined usage of both the Gibbs and MH sampler is the Metropolis-within-Gibbs

sampler. Like in the Gibbs sampler, parameters are updated component-by-component.

However, components with a non-standard full conditional are updated using a MH

step. This combination is the main ingredient of our MCMC algorithm in chapter 5.

In theory, MCMC can provide nearly exact inference for the target posterior distri-

butions, given perfect convergence. Convergence and mixing of a sampler are heavily

influenced by model parameterisation, choice of the proposal densities and updating

schemes. For an in depth review of advanced techniques for improving MCMC, see, for

example, Brooks et al. (2011). Of course, convergence can also be achieved by running

Markov chains for long periods of time. Unfortunately, we have finite running time in

practice, and this must be balanced with model complexity.

A special hierarchical framework is the class of state-space models. In this set-

ting, (2.7a) and (2.7b) can be written as the observation equation and state equation

respectively. The problems are divided into state inference and parameter inference.

In our example, after marginalisation of the parameters θ from π(x,θ|y), the state

inference problem for π(x|y) has a closed form solution known as the Kalman filters

and/or smoothers (Särkkä 2013, chapter 4.3). Filtering only estimates the current

state of x given the history of observations y, smoothing is the reconstruction of x up

to and include the current time. If the observation and state equations are non-linear

and non Gaussian, Kalman filters/smoothers are not appropriate. Sequential Monte

Carlo (SMC) methods or particle filters can often be a better alternative, particularly

if we want to perform sequential inference. Recently, Bhattacharya & Wilson (2014)

shows that it is possible to perform simulation-free inference for the parameter process

θ sequentially. We do not consider this problem in this thesis.
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2.3.3.4 Computational aspects related to inference with Gaussian Markov

processes

As previously stated, sparse precision matrices play a key role for the models in this

thesis. Many of the fast numerical algorithms for this type of matrix are associated

with efficient Cholesky factorisation (Rue & Held 2005, Chapter 2.3 and 2.4).

Cholesky factorisation refers to the procedure of decomposing a n-by-n symmetric

positive definite matrix Q as the product of a unique lower triangular matrix L and

upper triangular matrix LT , i.e. Q = LLT . For instance, one way to sample x from

the distribution N (0,Q−1) is to compute L from Q, generate a vector z of n standard

Normal random variates and solve LTx = z. The computational complexity of a full

Cholesky for a dense matrix is generally of the order O(n3/3). To solve a system of

linear equations, the cost is O(n2). Thus, the overall cost for sampling from a Gaussian

process with a mean zero and dense precision matrix is of cubic order.

If Q is sparse then the computation burden is typically lower. The main idea is

to determine the zero entries in L and do not carry out computation for them, for

instance, using Theorem 2.8 in Rue & Held (2005). A special case of sparse matrices

is band matrix. If Q is a band matrix, the cost to sample from N (0,Q−1x|y) includes

O(nb2 + 3nb) for the band-Cholesky decomposition and O(2nb) for solving the system

of linear equations. Here, b denotes the bandwidth. Hence, the cost is linear in n. This

represents a huge speed-up in comparison to sampling from the distribution involving

a dense precision matrix.

In several places of this thesis, we need to compute the marginal variances from

a precision matrix. Although we can perform matrix inversion, i.e. Σ = Q−1, this

is often not necessary. In what follows we provide a summary of the more efficient

approach discussed in (Rue & Martino 2007, Section 2). Firstly, we need to perform

Cholesky decomposition to obtain the lower triangular matrix L from Q. Secondly, we

use the sequential representation when solving LTx = z. Within the second step, the

starting point is xn = zn/Lnn or equivalently, xn ∼ N (0, 1/L2
nn) where xn and zn are

the nth element of vectors x and z respectively, and Lnn is the nth row and nth column

of matrix L. Then,

xi =
1

Lnn

(
zi −

n∑
k=i+1

Lkixk

)
, i = n− 1, . . . , 1
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Next, multiply both sides of the above equation by xj and take expectation yields

Σij =
δij
L2
ii

− 1

Lii

n∑
k∈I(i)

LkiΣkj, i = n− 1, . . . , 1

Here, Σij is the ith row and jth column of covariance matrix Σ, δij = 1 if i = j and

zero otherwise, and I are those j where Lji is non-zero.

2.4 Summary remarks

As a result of this chapter, it became evident that new model formulations and compu-

tational methods were required for statistical inference of multiple palaeoclimate data

sets. We have reviewed some ideas associating with the Bayesian approach to statistical

inference. More specifically, we focused on hierarchical modelling, with an emphasis

on Gaussian Markov processes. Some methods for parameter inference have also been

explored, namely MDP, INLA and MCMC. In subsequent chapters, we will engage in

a detailed study of some specific models and computational methods for misaligned

irregular time series.
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Chapter 3

Toy example

This chapter marks the first contribution of the thesis by laying essential groundwork

for the research by introducing terminology upon which later chapters are based. To

elucidate the narrative in the chapter, our discussion will be accompanied by a simple

model applied to a simulated data set.

The rest of the chapter is organised as follows. Formulation of a simple model

for two irregular spaced time series is presented in Section 3.1. Issues with regard

to stochastic interpolation are discussed in Section 3.2. In particular, we focus on the

usefulness and limitations of both pointwise and pathwise posterior summaries. Section

3.3 highlights the benefit of our joint approach in comparison to the one-series-at-a-

time approach, using predictive variance as the metric. The chapter concludes with a

discussion in Section 3.4, where we summarise the proposed framework and outline the

possible extensions to be developed in subsequent chapters.

3.1 A simple model formulation

In this section, a simple hierarchical modelling structure is set up. Technical notation

will be introduced to deal with temporal misalignment in the times of observations

across different series. We also introduce posterior distributions of interest.
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3.1.1 A two-stage hierarchical statistical model with known

parameters

A simple hierarchical model comprised of two main layers is adopted to illustrate a joint

modelling approach for multiple irregular time series. We suppose y(ts,i); i = 1, . . . , ns

denote an observation of series s at time ti; as a vector, it is written as ys. There

are N =
∑

s ns observations in total, and we write them as y. We label the series

as s = 1, . . . ,m. At the data layer, y(ts,i) are an conditionally independent Gaussian

function of the latent variable x(ts,i) with constant variance τ , i.e.

y(ts,i) ∼ N (x(ts,i), τ) (3.1)

We consider a process layer with the form:
x(t1,i)− x(t1,i−1)

...

x(tm,i)− x(tm,i−1)

 ∼ N



0
...

0

 , v|ti − ti−1|Σ

 (3.2)

where v is the common variance of an increment per unit time, and Σ is the m-by-m

matrix which controls the strength of the relationship of data across the series. The

latter is a unit correlation matrix with ones in the main diagonal and ρ’s in the off-

diagonals. Hence x is a time-continuous, multivariate, independent increments process.

For simplification, hereafter we drop the i subscript when discussing latent processes

since they are defined for all times. In vector form, we write the multivariate latent

process for all series at all times as x, and x(ts) represents the process for series s at

time t only. The Markov property implied by this continuous-time stochastic process

is crucial for computational reasons. Most importantly, x is a priori a joint model for

all series.

To keep the presentation of a toy model in this chapter simple, we assume all

parameters θ = (v, τ, ρ) to be known, and defer issues with parameter inference to

later chapters. Figure 3.1 shows a graphical representation of the full model.

There are many choices of models for (3.1) and (3.2). The hierarchical modelling

approach is simple yet powerful as it explicitly separates the former from the latter. In

Section 3.4 we discuss possible extensions to this simple structure to deal with more

complicated situations.
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y(ts,i)x(ts,i)

v

ts,i

τρ

s = 1, . . . ,m

i = 1, . . . , ns

Fig. 3.1: A Directed Acyclic Graph (DAG) for the model described in Section 3.1.

Circles indicate parameters/latent random variables whilst boxes indicate data.

3.1.2 Notation tricks associated with temporal misalignment

Subsequent mathematical derivations are substantially simplified by defining

1. to as the sorted set of all observed times at all series, i.e. to = sort{ts,1, ts,2, . . .} =

{t1, t2, . . . , tn} where n is the total number of unique times across all series. In

our model, the multivariate stochastic process x is considered at these times.

2. yo(ts,i) as the values which coincide with the y(ts,i) values when series s has an

observation at ti and whose values are missing otherwise. There is typically one

observation at each ti, and more than one observation if ti is non-unique. Let

yo denote the set of all such vectors. Similarly, we let xo be the latent multi-

variate process x defined on to. Hereafter, we write π(y|x, to,θ) = π(yo|xo,θ),

π(x|to,θ) = π(xo|θ), and π(x|y, to,θ) = π(xo|yo,θ).

The re-writing of these terms is simply a technical ‘notational trick’; the vectors

y (length N) and yo (length mn) contain the same information. The objective is

to use this information, together with the hierarchical model to infer the underlying

continuous-time multivariate stochastic process x with appropriate prediction intervals.

Using the above definitions, some of the equations discussed in Section 3.1.1 can be

rewritten in their compact matrix form. For instance we can write (3.1) as yo|xo,θ ∼

N (xo,Q
−1
yo ) where Qyo is a mn-by-mn diagonal precision matrix with entries τ−1 cor-

responding to series at times with data, and zeros where there are no data. This is
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the notation trick previously introduced to write all vectors and matrices in clear order

of time and series identity. We emphasise that no computation is ever necessary for

components that do not represent data.

Similarly, (3.2) has the form xo|θ ∼ N (0,Q−1xo ). Here, Qxo = Qto ⊗ v−1Σ
−1

, is an

inverse of the mn-by-mn block diagonal covariance matrix. This covariance matrix is

a Kronecker product of the inverse of the n-by-n precision matrix Qto and the m-by-m

cross-covariance matrix vΣ. In particular, Qto is the precision matrix of an independent

increment process for an irregularly spaced time series as discussed in Section 2.3.2.

That is,

Qto =


|t2 − t1|−1 −|t2 − t1|−1

−|t2 − t1|−1 |t2 − t1|−1 + |t3 − t2|−1 −|t3 − t2|−1
. . .

−|tn − tn−1|−1 |tn − tn−1|−1


(3.3)

with the blank entries being zeroes.

3.1.3 Posterior distributions

The full posterior distribution for xo is

π(xo|yo,θ) ∝ π(yo|xo,θ)π(xo|θ)

∝ |Qyo |
1
2 exp

(
−1

2
(yo − xo)TQyo(yo − xo)

)
|Qxo |

1
2 exp

(
−1

2
xo

TQxoxo

)
∝ N

(
xo;µxo|yo ,Q

−1
xo|yo

)
(3.4)

where |Qyo| =
∏mn

τ 6=0 τ = τN , i.e. it is a generalized determinant as a result of the

notational trick introduced in the previous section. Furthermore, |Qxo | = |vΣ|−(n−1),

Qxo|yo = Qyo + Qxo , and µxo|yo is the solution to the system of equation Qxo|yoµxo|yo =

Qyoyo. Note that all of these quantities depends on θ. But, for clarity, this dependence

has been suppressed in the notation.

Ultimately, the main goal is to compute posterior distributions of latent processes of

interest at new times. In this thesis, we consider new times on grids that are regular and

denoted by tg = {i∆; i = 1, . . . , ng}. We refer to the latent process x and data process

y defined on the time grid tg as xg and yg respectively. The posterior distribution of
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xg conditional on all data and model parameters is:

π(xg|yo,θ) ∝
∫
π(xo,xg|yo,θ) dxo

∝
∫
π(xg|xo,θ)π(xo|yo,θ) dxo (3.5)

The second quantity inside the integrand in (3.5) is a Gaussian distribution, as derived

in (3.4). Furthermore, the process x is a priori a multivariate independent increment

process. Thus, the joint prior distribution {xoT ,xgT}T is Gaussian. Consequently,

the conditional distribution that is the first quantity in the integrand in (3.5) is also a

Gaussian distribution. In this setting, this term is generally known as the multivariate

Brownian bridge, a tied-down Gaussian process (Glasserman 2003, Chapter 3). The

idea of ‘bridging’ will be useful for the evaluation of the high-dimensional integral

(5.22) in Chapter 5. Relevant technical detail of Brownian bridge and the extension

considered in Chapter 5 are given in Appendix C.

For the problem in this chapter (and for a similar problem in Section 4.2.3 in

Chapter 4), computation of (3.5) can in fact be simplified via the notational trick

discussed in Section 3.1.2. We let the star notation denote the processes defined at

both the unique (and sorted) observed times and grid, i.e. y∗ =
(
yo

T ,yg
T
)T

, x∗ =(
xo

T ,xg
T
)T

and t∗ =
(
to
T , tg

T
)T

. In our notation, these are vectors of length m(n+

ng). The problem becomes that of calculating

π(x∗|y∗,θ) ∝ π(y∗|x∗,θ)π(x∗|θ) (3.6)

After which the joint posterior distribution of xg, conditional on all data and known

parameters, is the subset of the joint conditional distribution given by Eq. (3.6). Com-

putation of (3.6) is straightforward when both components on the RHS are Gaussian

distributions. It begins with the completion of the quadratic form for the first two

quantities to obtain a posterior mean vector and precision matrix. Specifically, the

diagonal precision matrix Qy∗ in the conditional distribution of y∗|x∗,θ can only have

non-zero values at series and time indices where data are available. The precision

matrix for a priori x∗ is Qx∗ = Qt∗ ⊗ v−2Σ
−1

with Qt∗ having the same form as

(3.3) adapted to the new selection of points. By completing the quadratic form we

again have, up to a normalising constant, x∗|y∗,θ ∼ N
(
x∗;µx∗|y∗ ,Q

−1
x∗|y∗

)
, where

Qx∗|y∗ = Qy∗ + Qx∗ and µx∗|y∗ is the solution to Qx∗|y∗µx∗|y∗ = Qy∗y∗.
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3.2 Simulation study

In Section 3.2.1 we generate two irregularly-spaced time series based on the model

described in Section 3.1.1. The joint conditional distribution of xg, conditional on all

relevant data and parameters, is the prediction target in Section 3.2.2. In Section 3.2.3,

the focus is on marginalised joint conditional distributions. Section 3.3 compares and

contrasts the properties of the two forms of prediction in the context of data products

previously discussed in Section 2.1.3.

3.2.1 A simulated data set

First, we generate a bivariate time series, each with 100 data points based on a dis-

crete bivariate independent increment models with Gaussian noise. We emphasise

that the underlying process is a time-continuous stochastic process. The simulation is

controlled by three parameters: a variance of a unit increment v = 1, a two-by-two

cross-correlation matrix with one in the main diagonal and a correlation coefficient

ρ = 0.8 elsewhere, and variance parameter τ = 0.01 for all Gaussian noise term.

Then, we randomly choose 30 and 20 data points from each series, so that they can

be irregularly spaced in time, and when considered together the times are necessarily

misaligned. For the toy example in this chapter, m = 2, n1 = 30, n2 = 20, and N = 50.

The simulated data set (hereafter denoted as a and b) is shown in Fig. 3.2.

3.2.2 Joint posterior distributions and pathwise summaries

As previously indicated, we defer to later chapters issues of uncertainty that arise when

the model parameters θ are themselves only available through statistical inference. In

what follows we focus on inference of xg, which is the process x defined on the grid

tg = {0, 2, 4, 6, 8, 10}.

In Section 3.1.3, we showed that (x∗|y∗,θ) is a Gaussian distribution. Hence it is

easy to generate many samples of x∗ conditioning on all data and parameters. The

posterior samples for xg can then be extracted from those for x∗. We refer to each

sample as a history. Two process histories on the time grid tg are depicted in Fig.

3.3. These sample values are also shown in Table 3.1 and discussed in Section 3.2.4.

A history is a pathwise summary of the process xg; very many histories allow us to
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Fig. 3.2: An artificial data set used as an example throughout this chapter: two irreg-

ularly time series (a and b) sampled from a bivariate independent increment process

with a constant Gaussian noise.

compute pointwise summaries. We refer to Section 3.2.4 for further discussion of this.

Sample 1 Sample 2 Mean

Time 0 -0.10 -0.68 -0.39

2 -0.20 -0.40 -0.30

4 0.41 -0.11 0.15

Minimum -0.20 -0.68

Time of minimum 2 0

Table 3.1: Illustration of the histories representing the truth process which gives rise

to series b on a time grid {0, 2, 4}, as shown in Fig. 3.3. An example of a linear

functional (mean) is shown on the right most column, and some non-linear functionals

(minimum and timing of minimum) are displayed in the last two rows.
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Fig. 3.3: Plots of two histories of x on a regular time grid {0,2,4,6,8,10}. They are

generated from π(xg|y,θ), the joint posterior distribution conditional on all data and

parameters.

3.2.3 Marginal posterior distributions and pointwise summaries

We recall that the joint posterior distribution of x∗ conditioning on all relevant data

and parameters is a Gaussian distribution. It follows that the marginal posterior

distribution of the lth element at a specific time series corresponding to a time point is

also a Gaussian distribution, i.e.

π(x(l)∗ |y∗,θ) = N
(
x(l)∗ ;µ

(l)
x∗|y∗ , τ

(l)
x∗|y∗

)
(3.7)

where µ
(l)
x∗|y∗ is the lth element of µx∗|y∗ at the corresponding series. Similarly, each

conditional posterior variance τ
(l)
x∗|y∗ is the lth element of a time series represented in the

diagonal of the covariance matrix. As discussed in Section 2.3.3.4, marginal variance

terms can be computed efficiently from the precision matrix Qx∗|y∗ without having to

perform matrix inversion.

The predictive distribution in equation (3.7) is a source of the data product dis-
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cussed in Section 2.1.3. Various posterior summaries (means, variances, modes, quan-

tiles, etc.) can easily be computed based on (3.7). More crucially, all of the matrices

herein are sparse and can be efficiently stored and quickly computed using fast algo-

rithms for band matrices (Rue & Held 2005).

Figure 3.4 shows the posterior means and 95% credible intervals for xg on a regular

time grid tg = {0, 2, 4, 6, 8, 10}. The prediction errors, represented by the widths of

the posterior marginals, are related to data availability at the corresponding series as

well as the other series. We return to this in Section 3.3.
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Fig. 3.4: Plots of 95% credible intervals of the marginal posterior distributions of

process x on a regular time grid {0,2,4,6,8,10} conditioning on all data and parameters.

3.2.4 Comparison of interpolants

One of the advantages of pathwise over pointwise summaries is that researchers can

use simulations from a joint posterior distribution to study any functionals of partially

observed processes. Pointwise summarised statistics such as medians, modes, vari-

ances, quantiles, etc. are of limited value as a basis for serious statistical research for
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these are “pointwise confidence intervals and are not confidence curves for the entire

sample path” (McShane & Wyner 2011). That is to say, although the gridded values

are jointly based on all the available observations, the joint conditional uncertainty

of the unobserved process histories is not available from pointwise uncertainties. One

simple consequence is that uncertainties for changes between different times are not

available; for these minimally require covariances even in a simple case in which pos-

terior marginals are themselves Gaussian distributions. It is worth noting that our

posterior marginals in Eq. (3.7) are generally non-Gaussian when we take into account

parameter uncertainties as considered in later chapters.

A greater challenge is posed by the investigations of non-linear functions of xg

such as minima and their timings. As pointed out, for instance, by Li et al. (2007)

and Tingley & Huybers (2013), probability distributions of such random variables are

generally not available from posterior marginals at each time point separately. Instead,

simulations based on the joint posterior distribution (3.7) at all arbitrary time points

provide a statistically consistent and easily interpreted probabilistic statement of any

functionals of xg. Each such simulation represents an independent history of xg that

is statistically consistent with the model and data. As an example, we focus on the

distributions of random variables xmin = mint x(t) and tmin = argt minx(t), being

respectively the minimum value and the time at which this minimum was achieved.

In Table 3.1, we illustrate how to compute a linear function (mean) and non-linear

functions (minimum and timing of minimum) of xg from two process histories at series

b on a time grid {0, 2, 4}. These sampled histories were previously shown in Fig. 3.3).

A more complete version of this approach uses 1000 histories, conceivably on a dense

grid. For generality we compute conditional quantiles at time grid tg and use pointwise

credible intervals to quantify the uncertainty of our imputations.

Very many process histories thus provide a flexible posterior summary in their own

right. The use above for mean, minima and time of minima is illustrative; any function

of the process may be studied, conditional on the data. In this simple case, linear

functions such as conditional means and variances are of course already available from

the analytical expression in Eq. (3.7).
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3.3 Joint versus separate inference

In this section we demonstrate the benefit of joint modelling in comparison to separate

alternatives. Our comparison is evaluated as a function of the correlation coefficient

ρ, keeping all other parameters fixed. First, we perform prediction for series b inde-

pendently of a. Then we carry out joint prediction using information from both a

and b for a range of values of ρ to vary the strength of the association between the

two series. Figure 3.3 illustrates that joint prediction reduces the predictive variability.

The benefit of joint modelling is most pronounced in the extrapolation step from tg > 8

where there is no observation from series b available.

● ● ● ● ● ●

0.0

0.2

0.4

0.6

0.8

1.0

t

R
at

io
 o

f i
nt

er
po

la
tio

n 
er

ro
rs

0 2 4 6 8 10

● ● ●
● ● ●

● ●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

ρ=0 (separate inference)
ρ=0.3
ρ=0.8 (the truth)
ρ=0.9
ρ=1

Fig. 3.5: Plot of the ratio of the interpolation errors in term of the correlation co-

efficient ρ. The ratio is computed by dividing the interquartile range of the marginal

posterior distributions of x on a regular time grid {0, 2, 4, 6, 8, 10} for series b con-

ditioning on data from both of series a and b, by that conditioning on only data from

series b (i.e. when ρ = 0).

This experiment can be repeated for other parameters to learn about their effect

on the predictive performance of the models under consideration. Even though our

experiment is carried out on a restrictive class of model, the result is general. More

specifically, it demonstrates that separate inference ignores valuable information by

treating each series separately.
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3.4 Summary and discussion of outstanding chal-

lenges for later chapters

This chapter has presented a hierarchical framework to perform joint inference of multi-

ple irregular time series. An important component of our model is the Gaussian Markov

assumption based on multivariate independent increments that provides a natural ve-

hicle for joint modelling. We have shown that process histories, generated from joint

posterior distributions, are extremely useful for prediction of both linear and non-linear

functionals of partially observed processes of interest. We also demonstrated that joint

analysis of multiple irregular time series is better than its independent alternative in

the sense of lower predictive uncertainty.

The adopted framework has been shown to work well for a simple toy example.

It forms the basis for extensions which are to be developed in later chapters of the

thesis. In what follows, we summarise the model used in this chapter and announce

the extensions to be considered in the following chapters. To keep the presentation

simple, we leave out the notation trick associated with misalignment (e.g. xo, yo,

etc.). Additionally, we defer the technical discussion of specific tools and techniques in

the context of their usage to later chapters.

The model used in this chapter can be succinctly formulated as:

π(x|y, t,θ) ∝ π(y|x, t,θ)π(x|t,θ) (3.8)

Here, the underlying latent process x is the only unknown component.

In Chapter 4, the temporal supports for observations are different across different

series. More generally, we treat parameters θ as unknown; these parameters will be

learnt from information in the model and data. That is,

π(x,θ|y, t) ∝ π(y|x, t)π(x|t,θ)π(θ) (3.9)

The model in Chapter 5 will be the most complex. Firstly, θ is unknown. Secondly,

a new set of parameters ψ is introduced to capture the statistical relationship between

x and y. These parameters are to be learnt from a separate set of training data Dψ.

Thirdly, times t are uncertain; to be learnt from another calibrated data set Dt. The

model for this problem setting is:

π(x, t,θ,ψ|y,Dt,Dψ) ∝ π(y|x, t,ψ)π(Dψ|ψ)π(x|t,θ)π(Dt|t)π(t)π(θ)π(ψ) (3.10)
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Chapter 4

Joint inference of multiple processes

with different time supports1

Chapter 3 demonstrated that Bayesian hierarchical models are useful to model multiple

irregular time series. Therein, all model parameters were assumed to be known.

In many real-world applications, model parameters are unknown. More crucially,

data are often measured as the average over a certain support rather than a precise

point in time or space. For example, the Earth’s climate conditions as a physical system

are defined over a continuous spatio-temporal domain but climate data (both its direct

instrumental and indirect proxy measurements) are recorded and reported over a period

of time for a region. This chapter proposes a simple extension to the model discussed

in chapter 3 to deal with issues arising from different temporal supports for data in

different time series.

A pair of ice cores drilled in Greenland will be used to illustrate our proposed

framework. This dataset was previously introduced in Section 2.1.1. In particular,

we consider the period of approximately the last 11 k cal yr BP. Our primary goal is

to demonstrate the use of Bayesian inference to efficiently take into account multiple

sources of information. Our secondary goal is to encourage the use of Monte Carlo

samples from joint Bayesian posterior distributions as a rich type of data product.

In Section 4.1 we describe our hierarchical stochastic process model, and discuss

an efficient procedure for inference of underlying latent processes. Section 4.2 gives an

1A manuscript based on the work in this chapter is a publication in the journal of
Advances in Statistical Climatology, Meteorology and Oceanography (Doan et al. 2015)
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efficient algorithm which comprises of two separate stages: a simulation-free procedure

for the model parameters, and two computational procedures for latent process of in-

terest. Application to Greenland ice cores are discussed in Section 4.3. Various aspects

of our proposed model are placed under scrutiny in Section 4.4. A brief discussion in

Section 4.5 concludes the chapter.

4.1 A three-layer hierarchical statistical model

4.1.1 Data layer

We consider a hierarchical model comprised of the data, process and parameter layer.

At the data layer, z(ts,i) are unobserved data in series s = 1, . . . ,m at time ti; i =

1, . . . , ns. When they are observed, the instrumentation is such that

y(ts,i) = z(ts,i) + ν(ts,i) (4.1)

Here, the terms y(ts,i) denote the observations. There are N =
∑m

s ns observations in

total; we use y to denote these, and ys for observations in series s only. The terms

ν(ts,i) are i.i.d., zero mean, Gaussian random variables with fixed known variance

τνs corresponding to the instrumentation. For simplification, hereafter we drop the i

subscript when discussing latent processes since they are defined for all times.

4.1.2 Process layer and temporal change of support

At the process layer, we express z(ts) as a function of latent value x(ts) via an additive

Gaussian model:

z(ts) = x(ts) + w(ts) (4.2)

where w(tc) reflects micro-scale, annual-level variations and is modelled by a white

noise process, independently across series, having common Var [w(ts)] = τws .

We propose to model process x(ts) as a continuous-time, independent increments

process with increment variance such that for each series 1
2
Var [x(ts)− x(ts − h)] =

1
2
v|h|, i.e. having a linear semivariogram with no nugget effect. The nugget parameter

refers to the apparent discontinuity at the beginning of a semivariogram. This effect is

attributed to two sources of variation: the noise of data at high temporal frequency, and
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that which is due to uncertainty from data collection (Chiles & Delfiner 2012, chapter

2). Of course, an independent increment prior model for x(ts) is one of many modelling

choices. More specific to our context to be discussed in Section 4.3.1, the use of

linear semivariogram (with nugget) is consistent with the generating process y(ts) hence

the choice of independent increment model. More formally, our semivariogram is the

sum of: (i) an underlying independent increments continuous-time process with semi-

variance proportional to lag; and (ii) a white noise process, manifest in the intercept

or nugget effect which is dominated by τs. From (4.1) and (4.2), we obtain

y(ts) = x(ts) + w(ts) + ν(ts) := x(ts) + ε(ts) (4.3)

Here ε(ts)
ind∼ N (0, τs), with τs = τws + τνs , and the series-specific variance component

τs is the annual-level nugget effect at series s. An explicit assumption here is that

there exists an underlying latent process at a common level in both series that was

driving the observational data. In particular, we consider the situation where the

measurement processes differ for each series that lead to different supports in the

observations. Mathematically,

z(ts) = |ts|−1
∫
ts

x(t) dt (4.4)

where |ts| is an interval of time, i.e. the support, for which an observation is defined

over. We have discussed the concept of support in the context of ice core data in

Section 2.1.1. Therein, we suppose an ice core s is cut into equal, and non-overlapping

sections of length ls, i.e. we do not consider the case of overlapping sections. Moreover,

we assume that the thickness of all sections are identical, and that a section of length

ls maps to a time interval ts. In the present context, as a measurement is obtained

within this time interval, we view the latter as the support of the former.

The chief implication of the difference in the supports of observations from different

series is the relationship in the nugget effects. We show, in Appendix A, that the

nuggets differ in proportion to the length of times that define the supports. We can

reparameterise so that there is only one nugget term for one of the series (denoted

as τ here), with the other having a different nugget which is a multiple of this value,

i.e., τs = ksτ for a positive known series-specific value ks based on the ratio of the

measurement periods. We denote a vector of constants associated with the change in

the temporal support of the measurements across different series as k = {k1, . . . , km}.
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The support transformation takes place in the observations, leaving the latent pro-

cess to be modelled at another stage. In vector form, x is the multivariate latent

process for all series at all times, and x(t) represents all the series at time t. The x

increments at different series are allowed to be correlated if the series themselves reflect

a physical process (e.g. climate) at nearby locations; we write

x(t+ h)− x(t) ∼ N (0, v|h|Σ) (4.5)

where v is the common variance of an increment per unit time, and Σ is an m-by-m

matrix which controls the strength of the relationship of data across the series. The

multivariate process in Eq. (4.5) forms the basic model underlying our joint approach.

4.1.3 Parameter layer

To complete the hierarchical modelling structure, prior distributions are assigned to

the model parameters. We use reference priors on v and τ so that π(v) ∝ v−1 and

π(τ) ∝ τ−1. We defer the discussion of the model choice for Σ to Section 4.3.2 and

4.4.1. Hereafter the parameters in our model are written as θ = {v,Σ, τ,k}. The

graph for our complete model can be seen in Fig. 4.1.

y(ts,i)x(ts,i)

vΣ

ts,i

τ ks

s = 1, . . . ,m

i = 1, . . . , ns

Fig. 4.1: A Directed Acyclic Graph (DAG) for the model described in Section 4.1.

Circles indicate parameters/latent random variables whilst boxes indicate data. The

solid lines indicate the direction of information flow.
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4.2 Bayesian inference

This section discusses a strategy to perform fast inference on our model parameters

without resorting to MCMC methods. Predictive posterior distributions of interest

include the parameters θ, and either of the latent process x or z, conditioning on data

y. Both x and z are legitimate targets of interest; and their computations are equally

straightforward. Here we choose the former to demonstrate the computation.

4.2.1 Posterior distributions

Mathematical notation in this chapter closely follows that in chapter 3, including the

notation trick discussed in Section 3.1.2. Notwithstanding, to allow this chapter to

be self-contained we reintroduce our notation. We suppose to is the sorted set of all

observed times at all series, i.e. to = sort{ts,1, ts,2, . . .} = {t1, t2, . . . , tn} where n is the

total number of unique time points of observations across all series. We shall consider

a stochastic system at these times. Similarly, we let yo(ts,i); s = 1, . . . ,m whose values

coincide with the y(ts,i) values when series s has an observation at ti and whose values

are missing otherwise; there is typically one such series for each ti. Let yo denote

the set of all such vectors. the vectors y (length N =
∑m

s ns) and yo (length mn)

contain the same information. We shall refer to y and x defined on to as yo and xo

respectively. The data model can now be written as

yo|xo, τ,k ∼ N (xo,Q
−1
yo )

Here, Qyo is a diagonal precision matrix with entries τ−1 and k−1s τ−1 corresponding

to cores at times with data, and zeros where there are no data. Similarly, the process

model has the form:

xo|v,Σ ∼ N (0,Q−1xo )

where Qxo = Qto ⊗ v−1Σ
−1

. Here, Qxo is a Kronecker product of the precision matrix

Qto and correlation matrix Σ. At this stage, it is easy to write down the full condi-

tional distribution of all unknown processes and parameters in our model. We could

conceivably fit our model using MCMC methods, though the latent process xo induces

a large number of parameters and requires a long run. Instead, since the data model

and prior can both be written as Gaussian distributions (via the notational tricks) it is
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feasible to analytically integrate out xo, irrespective of the form of prior distributions

for θ. More specifically,

π(xo,θ|yo) ∝ π(yo|xo,θ)π(xo|θ)π(θ)

∝ |Qyo |
1
2 exp

(
−1

2
(yo − xo)TQyo(yo − xo)

)
|Qxo |

1
2 exp

(
−1

2
xo

TQxoxo

)
π(θ)

∝ π(xo|yo,θ)π(θ|yo)
(4.6)

Here, the full conditional of xo is a Gaussian distribution defined by the precision

matrix Qxo|yo = Qyo +Qxo and mean vector µxo|yo that is the solution to Qxo|yoµxo|yo =

Qyoyo. The full conditional of θ has the form:

π(θ|yo) =
∣∣Qxo|yo

∣∣− 1
2 |Qyo|

1
2 |Qxo |

1
2 exp

(
1

2
yo

TQyo(µxo|yo − yo)
)
π(θ) (4.7)

This result allows analytical marginalisation of the latent process xo from π(xo,θ|yo).

Therefore the inference procedure can be divided into two separate stages as follows.

4.2.2 Stage 1: simulation-free computation of model parame-

ters

Initial inference is focused on π(θ|yo), which is the same as π(θ|y). We use R function

optim to minimise the negative marginal likelihood (4.7) to locate its mode. We then

evaluate it on a suitable parameter grid as discussed in Section 2.3.3.2. Recall that this

approach allows us to approximate the continuous distribution π(θ|y);θ ∈ Θ by the

discrete distribution π(θj|y);θj ∈ ΘJ ; j = 1, . . . , J . Here, Θ and ΘJ are, respectively,

continuous and discrete parameter spaces; the latter will be used as a Riemann sum

approximation to analytical integrations as discussed in the next inference stage.

4.2.3 Stage 2: summaries of latent process at an arbitrary

time grid

As previously mentioned, our objective, given y, is to provide posterior summaries of

the latent process x on a regular time grid denoted by tg = {i∆; i = 1, . . . , ng}. We

shall use xg and yg to refer to x and y defined on the grid tg.

We repeat the aforementioned notational trick by letting the star notation de-

note the processes defined at both the unique (and sorted) observed times and grid,
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i.e. y∗ =
(
yo

T ,yg
T
)T

and x∗ =
(
xo

T ,xg
T
)T

. The main task in this stage involves

marginalisation over θ:

π(x∗|y∗) =

∫
Θ

π(x∗|y∗,θ) π(θ|y∗) dθ (4.8)

Derivation of the first quantity in the above integrand is, again, by completing the

quadratic form as in Eq. (4.6). The second quantity in the integrand is π(θ|y), the

joint posterior distribution of the model parameters previously derived in Section 4.2.2.

Importantly, the discrete approximation of the latter equation renders as summations

the integrals that arise in Eq. 4.8, i.e.

π(x∗|y∗) ≈
∑
ΘJ

N
(
x∗;µx∗|y∗(θj),Q

−1
x∗|y∗(θj)

)
π(θj|y∗)4θj (4.9)

where µx∗|y∗ and Qx∗|y∗ are the posterior mean and precision of (x∗|y∗,θ). We write

µx∗|y∗(θj) and Qx∗|y∗(θj) to emphasise that they are the functions of θj. Thus, π(x∗|y∗)

is a Gaussian mixture over the posterior samples Θj with weights αj = π(θj|y)4θj
already computed in the first inference stage. In Section 4.3.3 we obtain pathwise

summaries of the full conditional for xg by sampling for x∗ from (4.9) and extract

relevant values for xg.

It may be of interest to derive pointwise posterior summaries for xg. Since the

joint posterior distribution is a finite mixture of Gaussian distributions, the marginal

posterior distribution of the lth element at a specific series corresponding to a temporal

grid point of interest may be approximated as finite Gaussian mixture:

π(x(l)∗ |y∗) ≈
∑
ΘJ

N
(
x(l)∗ ;µ

(l)
x∗|y∗(θj), τ

(l)
x∗|y∗(θj)

)
αj (4.10)

where µ
(l)
x∗|y∗(θj), conditional on the sample value θj, is the lth element of the cor-

responding series identity from µx∗|y∗ . Similarly, each conditional posterior variance

τ
(l)
x∗|y∗(θj) is the lth element of the series identity represented in the diagonal of the

covariance matrix. Note that it is not necessary to invert the precision matrix Qx∗|y∗

to extract the marginal variances, as discussed in Section 2.3.3.4.

Pointwise posterior summaries such as the mean and variance corresponding to the
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distribution in Eq. (4.10) can be computed as

E(x(l)∗ |y∗) =
∑
ΘJ

µ
(l)
x∗|y∗(θj)αj

V ar(x(l)∗ |y∗) =
∑
ΘJ

[(
µ
(l)
x∗|y∗(θj)

)2
+ τ

(l)
x∗|y∗(θj)

]
αj −

(∑
ΘJ

µ
(l)
x∗|y∗(θj)αj

)2 (4.11)

Calculations of other summarised statistics such as posterior modes, quantiles, etc. are

similar. For generality, interquartile ranges (IQR) shall be used to quantify the predic-

tion. We re-emphasise that although there are many computations with large matrices,

such as solving equations, Cholesky decomposition, etc. they are only required J num-

ber of times. The fact that all of the matrices are sparse and can be efficiently stored

and computed as band matrices presents a further significant computation saving.

4.3 Application to two Greenland ice core data sets

In this section we apply the model framework and inference procedures presented in

previous sections to analyse the Greenland ice core data sets described in Section 2.1.1.

As indicated, we work with the δ18O process that is related to some aspects of climate,

rather than climate itself. Moreover, we consider only data of approximately the last 11

k cal yr BP as we would like to avoid the non-linearities in the age/depth relationship,

as well as non-negligible dating uncertainty.

4.3.1 Exploratory data analysis

For the Holocene period (approximately the last 11 k cal yr BP), depth is transformed to

age by counting annual layers in chemicals that show a seasonal cycle (Rasmussen et al.

2006). This dating method produces minor errors and we do not consider temporal

uncertainty in this chapter. The δ18O and date records for all consecutive sections are

presented in Fig. 4.2, along with boxplots of the age increments. An age difference

value of 80.6 yr between roughly 1320 and 1400 cal yr BP has been omitted in this

figure to focus on other significant features of this plot.

Since the δ18O observations are irregularly spaced in time and it may be non-

stationary, it is not feasible to look at autocorrelation plots. Instead, the empirical

semivariograms will be used to investigate the temporal variability of the measurements
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Fig. 4.2: Scatter plots of δ18O measurements and ages of (a) GISP2 and (b) GRIP.

(c) Boxplots of the time increments clearly show different irregularities in the ages.

Note that we have omitted an age difference value of 80.6 yr between roughly 1.32 and

1.4 k cal yr BP in the boxplot for GISP in order to focus on other significant features.

The interquartile ranges (calculation including the omitted value) are (10.0, 12.5, 16.8)

and (2.8, 3.5, 4.6) year for GISP2 and GRIP respectively.

under a continuous-time setting (Haslett 1997). This involves calculation of half of the

squared differences of all combinations of δ18O values from each core. As with all

processes defined on continuous support, there is necessarily a minimum separation
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in the data beyond which we have no information on which to infer the empirical

semivariogram. The usual approach is to assume one of the theoretical models and use

this to infer the information near the origin corresponding to high-frequency behaviour

(Chiles & Delfiner 2012, chapter 2).

Figure 4.3 suggests that the variability in each series may be adequately modelled

via a theoretical linear semivariogram, i.e. 1
2
Var(first difference of the δ18O values) =

intercept+slope×(time lag). To recap, the intercept is known as the nugget effect, and

the slope is twice the variance of the unit increments of a nugget-free, continuous-time

stochastic process. Specifically, the nugget term refers to the apparent discontinuity at

the beginning of a semivariogram. It attributes to two sources of variation: the noise

of data at high temporal frequency, and that which is due to uncertainty from data

collection (Chiles & Delfiner 2012, chapter 2). Three key features can be seen from

the empirical semivariograms. First, they are dominated by their respective nugget

term. Second, the ratio of the nuggets is approximately 55
200

, which is the same as the

ratio of the lengths of their respective ice core sections. Third, and most importantly,

the slopes are approximately equal. We discuss further aspects of this in Appendix A.

The least squared estimated intercepts and slopes are respectively 0.19 and 0.03 for

GISP2, and 0.52 and 0.02 for GRIP. These point estimates should be compared to the

Bayesian estimation depicted in Fig. 4.5.

Our final exploratory analysis focuses on the standardised distribution of the first

differences of the δ18O values. To begin with, we use R package geoR (Ribeiro Jr &

Diggle 2001) to estimate the parameters of the theoretical linear semivariogram mod-

els. Based on these estimates, we compute the standardised distribution of the δ18O

increments. The resulting QQ plots, as shown in Fig. 4.4, indicate the suitability of

the Gaussian assumption. This, as well as the finding obtained via the empirical semi-

variograms, provides the basis for the independent increment modelling assumption for

the continuous-time stochastic model proposed in Section 4.1.

4.3.2 Model-fitting results

In this section the model framework and inference procedures presented in Section 4.1

are applied to analyse the pair of GISP2 and GRIP. When there are two cores, m = 2,
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Fig. 4.3: The empirical semivariograms of GISP2 and GRIP. They suggest that the

linear semivariogram is a suitable model for both of the ice core data sets, i.e. 1
2

Var(first difference in the δ18O values) = intercept + slope × (first difference in ages).

See the text for further details.
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Fig. 4.4: QQ plots of the standardised increments, i.e. the ratio of the first differences

in the δ18O measurements and estimated standard errors of increments for (a) GISP2

and (b) GRIP. The unusual values correspond to very large differences in consecutive

pairs of δ18O values.

we model the cross-correlation matrix (4.5) as

Σ =

1 ρ

ρ 1

 (4.12)
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where ρ is the correlation coefficient; see also Section 4.4 for more details on this

choice. As temperature processes at nearby locations always have (strongly) positively

correlated increments, the same is expected for the δ18O processes. Hence, we set 0.5

and 1 as the acceptable range for ρ. Furthermore, we assign a flat prior on its logit

transformation 2 so that it has values on the real axis.

Previously we denoted θ = {v,Σ, τ,k}. We chose to model Σ as a function of ρ.

We also proved that all values of k can be written as a function of τ . Hereafter all

unknown parameters in our model are θ = {v, ρ, τ}, representing the variance per unit

increment of the latent process, cross correlation coefficient and nugget effect (for the

GRIP core) respectively.

Using the inference procedure outlined in Section 4.2, we obtain the discrete ap-

proximation to the marginal posterior distributions for the components of θ. For

computational stability, we evaluate the posterior distribution for v and τ on a log

scale, and ρ on the logit scale. For brevity of presentation, we transform the results

to their original scale, apply a smoother to the gridded values and present them as in

Fig. 4.5. It can be seen that the results for v and τ are consistent with Fig. 4.3, i.e.

the posterior distributions contain the estimated slopes and intercepts. The posterior

distribution of ρ peaks at a high value close to 1 which indicates a strong spatial re-

lationship between the increments in two cores. This is not surprising since the cores

were drilled from nearby locations and both reflect the historical changes in regional

temperature of Greenland.
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Fig. 4.5: Plots of the smoothed posterior distributions of (a) the variance of the unit

increment of latent process x, (b) cross correlation coefficient and (c) nugget effect for

GRIP; the nugget effect for GISP is directly proportional (55/200) to this.

2logit(ρ) = ρ−l
h−ρ . Here, we set l = 0.5 and h = 1, respectively as the lower and upper bound value.
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Under our model-based approach we have the choice of what summaries of the δ18O

histories to use. Our main interest lies in the true δ18O values on a bidecadal time

grid over the period of 0 to 11 k cal yr BP. As previously mentioned, we target xg

and call this true δ18O. The 95% and 50% credible intervals for the gridded process

xg are represented in Fig. 4.6. The latter interval is more commonly known as the

interquartile range (IQR). We compare our results (labelled as DPH) with those from

the algorithm-based approach of Stuiver & Grootes (2000, see also http://depts.

washington.edu/qil/datasets/) and Mogensen (2001, see also http://www.gfy.

ku.dk/~www-glac/data/gripdelta.dat), labelled as SG and M respectively. The

construction of SG is “based on averaging the measurements of samples of shorter

duration”, and M has been similarly sampled with respect to SG’s timescale. The set

of posterior imputed values from DPH can be seen to be much smoother than both

SG and M because the nugget is so much larger. For both SG and M, the nugget

is assumed to be the measurement error which is set very small. As we previously

discussed in Section 4.1, our nugget comprises both the measurement error and micro-

scale variation. Our choice removes the variation due to both sources of variation,

resulting in a smoother latent process.

To gain a better understanding of the benefit of joint modelling over separate al-

ternatives, we fit an independent increments model with Gaussian noise to each core

separately. Note that, in contrast to the joint approach, the relationship between two

nugget parameters is suppressed in the separate approach. Thus, each model has two

parameters (a process variance and a nugget parameter). We defer to Section 4.4.1

for a more formal discussion of these separate models. Figure 4.7 shows that the IQR

in the separate model is always higher than that of the joint model. This reflects the

difference in the temporal resolution, i.e. the number of available data points. More-

over, it indicates that the joint approach utilises information from both cores more

effectively when the relationship between the cores (here measured by ρ) is strong. We

anticipate that the benefit of joint inference would be more apparent as the number of

correlated cores increases.

The ‘spikes’ (e.g. 0, 1.36, 3.4, 8.2 k cal BP in GISP2) in Fig. 4.7 are a direct

implication of either the associated age gaps, or abrupt changes in the δ18O measure-
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Fig. 4.6: Plots of quantile-based 50 and 95% credible intervals of the marginal posterior

distributions of process xg on a bidecadal time grid over the period of 0 to 11k cal

BP conditional on both GISP2 and GRIP. We also show the bidecadal data product

reported in Stuiver & Grootes (2000, SG) and Mogensen (2001, M).

ments, or both 3. Specifically at 8.2 k cal yr BP, the spikes are more influenced by

abrupt changes in the δ18O measurements. In general, all of these spikes are higher

and sharper in the separate models, in comparison to the joint model. The reverse

3Note that the spikes at times 0 and 11 are the modelling artefact known as the ‘boundary effect’;
see, for instance (Rue & Held 2005).
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happens around 1.4 k cal BP in GRIP. This is a direct consequence of the (lack of)

data points from the other core (GISP2) at that period. Finally, we note that the IQR

in all cores - in both the separate and joint settings - slightly increases with time. This

occurs because temporal resolution decreases when the cores are sampled over sections

of identical lengths. Further, it is an indication a possible limitation of the assumption

of constant support within a core.
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Fig. 4.7: Plots of the interquartile ranges (IQR; corresponding to the width of the 50%

credible band in Fig. 4.6) of the marginal posterior distributions of xg on a bidecadal

time grid over the period of 0 to 11k cal BP at cores (a) GISP2 and (b) GRIP. The

main features from these plots are that (i) interquartile ranges of the separate models

are always higher than those of the joint model; (ii) the gaps of the differences in (a)

are consistently larger than those in (b); (iii) there are several spikes; and (iv) a slight

tendency for increased IQR further back in time. See the text for a detailed discussion.

Although this is not a full uncertainty comparison of our method with other methods

- for neither standard deviations nor IQR are available - it suggests that these ignore

valuable information by treating each core separately.

4.3.3 Case study of the 8.2ka event

A great challenge is posed by ’events’ such as the 8.2ka event, the sudden reduction

in North Atlantic temperature during a period around 8.2 k cal yr BP (Thomas et al.

2007). It is believed to be related to a transient change in the North Atlantic over-

turning circulation. Consequently, the amount of evaporated water in the ocean that
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became ice in Greenland is amongst its best sources of evidence.

Like others in the literature, we define the 8.2ka event by an attainment of a min-

imum in the temperature value during a specific time period (Thomas et al. 2007).

The date corresponding to the local minimum of the averages is not a satisfactory

estimator of the time of such event. We propose to use our data product, the δ18O

sampled histories from the joint posterior distribution of xg as shown in Eq. (4.9), to

illustrate a satisfactory approach. Formally we focus on the distributions of random

variables xmin = mint x(t) and tmin = argt minx(t), being respectively the minimum

value and the time at which this minimum was achieved. Furthermore, we focus on the

period between 7.90 and 8.50 k cal yr BP that is believed to bracket the 8.2ka event,

to distinguish from the possible long-term climate trend (Morrill & Jacobsen 2005).

Using the procedure previously introduced in Section 3.2.4, we obtain summary

for 1000 minima of the δ18 histories as represented in Fig. 4.8. We estimate the

interquartile ranges of the timing of the event from both cores to be (8.12, 8.16, 8.18)

k cal yr BP. Our findings are consistent with previous studies reported elsewhere; but

no quantification of the uncertainty has previously been attempted; see, for instance,

Thomas et al. (2007), Kobashi et al. (2007).
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Fig. 4.8: (a) Boxplots of the minima and (b) times of the minima from GISP2 and

GRIP over the range of 7.9 to 8.5 k cal yr BP. The interquartile range of the timing of

the event from both cores is (8.12, 8.16, 8.18) k cal yr BP. All estimates are based on

1000 process histories.

The δ18O histories can be utilised to investigate other interesting climate events
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(Wanner et al. 2011). The use above for minima and timings of minima herein is

illustrative; any function of the process may be studied, conditional on the data.

4.4 Model validation

In this section, we perform two checks. First, within the context of our application we

discuss the model choice for Σ in Eq. (4.5) by fitting and comparing several choices and

choosing the best among them. Then, we investigate the identifiability of our model

using simulated data under various circumstances.

4.4.1 Model choice for the cross-correlation function

Let M1 denote the model with covariance function (4.12) for Σ. This covariance

structure assumes equal variance of increments across the cores. To formally measure

the benefit of joint modelling we compare model M1 with M2 which has covariance that

ignores cross-correlation between cores. In fact, M2 has been informally introduced

in Section 4.3.2. It comprises of two separate models; one for each core. We have

demonstrated, via Fig. 4.7, that the joint model utilises information from both cores

more effectively than the separate models.

The previous paragraph re-emphasises the superiority of model M1 over M2. Next,

we further propose model M3, to be compared with M1. The covariance of this model

assumes varying variances for different cores, i.e.

Σa =

 1 ρ
√
a

ρ
√
a a

 (4.13)

We assign a reference prior for a, so that π(a) = a−1. Its marginal posterior distribution

is shown in Fig. 4.9. Its mode centres around 1 while the marginal posteriors for other

parameters in model M3 (not shown here) are practically the same as those in model

M1 previously shown in Fig. 4.5. This result suggests that model M3 is just a more

conservative version of M1.

We compare model M1 and M3 based on their deviance. In our notation, deviance

of a model is defined as −2 log(π(y|x,θ)). Indeed, this quantity is a random variable

in the Bayesian framework so that the mean deviance is often chosen in lieu. Further-

more, there is an apparent pitfall of over-fitting since models with more parameters are
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guaranteed to fit a data set better. Hence, in additional to the deviance, we would like

a penalty term to deal with unnecessary terms in a model. In the literature, e.g. Gel-

man et al. (2014, Chapter 7), common measures of model fit and complexity are known

as AIC, BIC, and DIC. For this work, we choose the DIC proposed by Spiegelhalter

et al. (2002). It has the form:

−2 log
[
π(y|x̄, θ̂)

]
+ 2pD

Here, pD = log
[
π(y|x̄, θ̂)

]
− EΘJ

{log [π(y|x̄,θ)]}, the process x̄ is short for the

posterior mean of x|y,θ, the parameter θ̂ is the posterior mode of θ|y, and the expec-

tation term is evaluated with respect to the parameter grid ΘJ . All aforementioned

quantities are readily available from the inference stages discussed in Section 4.2.2 and

4.2.3 hence calculation of DIC is straightforward. We obtained DIC values of 82.5 and

81.9 for model M1 and M3 respectively. The lower is this value, the better is the model.

Although in this case, it could be misleading to choose M3 over M1 based on the small

difference of 0.6 in the DIC values.

We have obtained some evidences that the extra parameter a in model M3 can

be made redundant, and that the common variance assumption in model M1 is more

suitable for GISP2 and GRIP. Including parameter a slightly decreases the DIC value;

but such an extension may not be necessary when we take into account the additional

computational cost associated with a more complex configuration of parameter grid

ΘJ and more expensive quadrature resulting from using more grid points.

4.4.2 Checking for model identifiability

As a final model checking step, we determine whether the parameters in our model are

identifiable or not. We do this by simulating model parameters (v, ρ, τ) based on the

results of the data analysis of Greenland ice core, thence the latent bivariate process x

and consequently artificial data y. We partially average the sequences so as to match

the change of support that occurs in our ice core example. We then fit the model

as described in Section 4.2, and determine whether the 50 and 90% posterior intervals

contain the true values. We repeat these steps 1000 times, and count up the proportion

of occurrences where the intervals contain the true values. A properly calibrated and

identifiable 50% interval should contain the true value 50% of the time, and similarly
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Fig. 4.9: Plot of the smoothed marginal posterior distribution of the parameter a in

the covariance matrix of model M3 described in Section 4.4.1. The mode is roughly 1

which suggests that a is redundant.

with the 90% interval.

The results of our simulations are shown in Table 4.1. As can be seen, the inter-

vals contain slightly fewer than the desired proportion of true values, so our posterior

intervals are over-precise. However, this effect appears small, and the model seems

generally identifiable.

Parameter Proportion inside 50% CI Proportion inside 90% CI

x 51% 89%

v2 48% 88%

ρ 49% 90%

σ2
ε 48% 90%

Table 4.1: Performance of the model fitting algorithm. All results were based on 1000

simulation runs.

4.5 Discussion

This chapter has presented a hierarchical model to jointly analyse misaligned irregular

time series. Our proposed framework is simple but useful to combine multiple time

series, allowing each series to have a different temporal support. We applied the change

of support theory from the geostatistical literature to deal with issues with different
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supports. An important component of our model is the Gaussian Markov assumption

based on multivariate independent increments. We derived and implemented a fast

algorithm for parameter inference and imputation based on this model. We further

demonstrated that the joint approach utilises information from multiple time series

more efficiently than one-series-at-a-time alternatives.

We applied the method to create climate data product from a pair of Greenland

ice cores. Some parameters in our model were formulated according to the respective

lengths of ice core sections. Firstly, this approach is likely to be problematic in the

study of sections longer than the Holocene. Secondly, we have implicitly assumed

perfect knowledge of the timing of all observations, which is generally not true in many

other palaeoclimate records. Hence, a generic extension to our hierarchical structure is

to incorporate uncertainty in the timescale. Thirdly, the Gaussian assumption for the

increments is conceivably too restrictive for capturing of abrupt climate change events.

We offer solutions to these issues in the next chapter.
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Chapter 5

Joint inference of multiple volatile

processes with time uncertainty 1

Chapter 4 developed a method based on a three-layer hierarchical model to deal with

multiple irregular time series data, with each series having a different temporal support.

A generic version of this model has the form:

π(x,ψ,θ|y, t) ∝ π(y|x, t,ψ)π(x|t,θ)π(ψ,θ) (5.1)

At the highest layer, a vector of data y observed at times t is linked to a latent process

x by a simple model with parameters ψ. In the next layer, a vector of parameters θ

specifies a distribution for the process x. The lowest level comprises of prior distri-

butions for parameters ψ and θ. Linear Gaussian processes are the central focus of

the above model. Moreover, uncertainties in the times of observations were neglected.

Whilst these settings provided a fast and easy method for a joint statistical analysis,

they are only applicable to a limited set of situations.

This chapter further generalises the problem setting considered in Eq. (5.1). The

aim is to develop efficient statistical treatments for multiple non-Gaussian time se-

ries processes, with the times of the observations themselves being uncertain. More

specifically, we consider the following extensions:

1. Weakening of Gaussian assumptions to allow data y and latent process x to have

more realistic / flexible likelihood functions,

1The work in this chapter is an extension to a publication in the Journal of the Royal
Statistical Society: Series C (Parnell et al. 2015).
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2. Allowing uncertainty in times t at which data points are measured,

3. Incorporating stochastic volatility effect for latent process x.

In Section 5.1, we describe the relevant palaeoclimate data sets and formalise the

problem setting for the chapter. Section 5.2 presents our four-layer hierarchical model.

Section 5.3 introduces a modularised algorithm which divides the inference procedure

to three different stages and give rises to a fast MCMC algorithm for for posterior

inference. The chapter continues in Section 5.4 with a real data example; a joint

analysis of pollen data extracted from three sediment cores taken beneath three lakes

in Finnmark. We apply our methods to study a rapid climate change period known as

the Younger Dryas. Section 5.5 reports a simulation study for the purpose of model

checking. The chapter concludes in Section 5.6 with a summarised discussion of our

model and its variants.

5.1 Problem setting

The statistical challenges for this chapter are motivated by the reconstruction of climate

histories from pollen data previously introduced in Section 2.1.2. Therefore, our dis-

cussion throughout the chapter will be associated with the terminology and statistical

issues in palaeoclimatology.

To recap, each fossil sediment core comprises two sets of observations: pollen counts

recorded at some instantaneous depths, and dating of the depth layers themselves.

Table 5.1 illustrates a schematic representation of the information available in a single

sediment fossil core (we have many cores). At some layers of the core, pollen data are

available. At some other layers, materials are extracted and radiocarbon dated.

In addition to the fossil pollen information, there is a large set of training data

collected from thousands of locations around the world. It can be seen from Table 5.2

that each pair of data points consists of known climate and associated pollen counts.

This data set is used for calibration, i.e., to build a statistical relationship between

pollen and climate. The science is simple; change in climate causes change in vegetation

which is quantified, in this case, by counts of pollen grains.

Both modern and fossil pollen data sets are utilised to make statements about

underlying unknown climate processes on a calendar time scale. The times are unknown
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Fossil data Point reconstruction

Depth Fossil pollen Radiocarbon age Calendar age Climate

[ds,1] [ys,1] [rs,1] ts,1 x(ts,1)

[ds,2] [ys,2] ts,2 x(ts,2)

[ds,3] [ys,3] [rs,2] ts,3 x(ts,3)
...

...
...

...
...

[ds,ns−1] [ys,ns−1] [rs,ls ] ts,ns−1 x(ts,ns−1)

[ds,ns ] [ys,n] ts,ns x(ts,ns)

Table 5.1: A schematic representation of information from one fossil sediment core

(core ‘s’). Square brackets are used to distinguish observed measurements from un-

observed latent variables. At layers corresponding to depths {ds,1, . . . , ds,ns}, pollen

counts {ys,1, . . . , ys,ns} are available. This information is used (in addition to a training

data set as represented in Table 5.2 below) to learn about climate {x(ts,1), . . . , x(ts,ns)}

at times t = {ts,1, . . . , ts,ns}; the times themselves are stochastically interpolated from

radiocarbon ages {rs,1, . . . , rs,ls} at ls slices of depth in the core.

Training data

Modern pollen Modern climate

xm1 ym1
...

...

xmK xmK

Table 5.2: Modern (training) data set of modern climate conditions

xm = {xm1 , . . . , xmK} and pollen counts ym = {ym1 , . . . , ymK}.

but can be derived from radiocarbon dated material at some depths of the core. We

emphasise that our focus is on joint inference at all times, for multiple fossil cores.

Parnell et al. (2015) recently propose a hierarchical model to pool multiple sources

of uncertainty into a unified framework, and stochastically interpolate climate onto an

arbitrary time grid. Two novel ingredients of their methods are the use of the Normal

Inverse Gaussian (NIG) process as a prior to model the smoothness of climate over

time, and a novel modularised MCMC algorithm for posterior inference. This method
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utilises the modern data set, but it works with each fossil sediment core separately.

The NIG process is arguably the heart of the model developed by Parnell et al.

(2015), and thus the extension in this chapter. We propose to use the multivariate

version of the NIG to model climate from multiple fossil sediment cores jointly. Our

aim is to allow for appropriate ‘strength borrowing’ for more efficient use of data, as

opposed to the one-core-at-a-time approach. Increased model complexity is inevitably

associated with increased computational burden. Simulation-free inference for model

parameters, as discussed in Chapter 4, is no longer implementable. We will extend the

aforementioned modularised MCMC algorithm to the multiple cores context.

5.2 A four-layer hierarchical statistical model

In this section, we introduce main notation, highlight posterior distributions of interest,

announce main assumptions, and describe a four-layer hierarchical model. The layers

are named the data, calibration, process and parameter layer. This chapter as a whole

is built on the recent work of Parnell et al. (2015). Therefore, whilst discussion of the

data, calibration and parameter layer is brief, we provide a more detailed discussion of

the process layer; wherein lies our main contribution.

5.2.1 Main notation and posterior distributions

Since this chapter is an extension of the work in preceding chapters, the basic notation

used therein is employed again. Necessarily, several new pieces of notation are also

introduced. The joint distribution of all latent processes and unknown parameters is

π(x, t,v,Σ,ψ)|y,xm,ym,d, r,θ) ∝
m∏
s=1

ns∏
i=1

π
(
y(ts,i)|x(ts,i),ψ

) m∏
s=1

ls∏
j=1

π
(
rs,j|ts,j, x(ts,j)

)
︸ ︷︷ ︸

data layer

×
K∏
k=1

π(ymk |xmk ,x,ψ)︸ ︷︷ ︸
calibration layer

×

n∏
u=2

π
(
x(tu)|x(tu−1),vu−1,Σ)

) m∏
s=1

n∏
g=1

π(ts,g|ds,g)π(v|t,θ)︸ ︷︷ ︸
process layer

× π(Σ,ψ)︸ ︷︷ ︸
parameter layer

(5.2)

The notation, in order of appearance on the RHS of the above equation, are
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• y(ts,i) is an observed (multivariate) count of pollen grains from core

s; {s = 1, . . . ,m} at an instantaneous time point ti{i = 1, . . . , ns}. There are

N =
m∑
s

ns total number of times across all series, n of which are unique, n ≤ N .

In vector form, y is the N-by-1 multivariate pollen counts from all cores.

• x(ts,i) is the (multivariate) latent climate process at time ti on core s, with x

being the corresponding vector notation. Note that in scalar form the latent

variable is expressed as x(ts) because it is defined for all times.

• Parameter vector ψ describes the climate/pollen relationship.

• At the jth slice of core s, rs,j{j = 1, . . . , l} is a radiocarbon determination of

material at depth ds,j. This, in turn, carries information about the unobserved

calendar age ts,j. As a result, there is uncertainty associated with the times of the

observation y(ts,i). In vector notation, we denote the radiocarbon ages, selection

of depths, and calendar ages respectively as rs, ds and ts for core s, and r, d

and t for all cores.

• We write the training data sets in vector form as xm = {xm1 , . . . , xmK} and ym =

{ym1 , . . . , ymK}. Here, K is the total number of locations around the world where

known climate conditions and pollen counts are available.

• The variance-covariance matrix of a multivariate increment of climate between

time ti and ti+1 has variance vi and cross-correlation matrix Σ. The variance

process for all increments are denoted v.

• The variance process v is the function of parameter vector θ. As can be seen

from Eq. (5.2), we fix the values for θ as they carry little information forward.

That is, in the context of the application considered in this chapter, we do not

expect to learn about this set of higher level parameter to any significant degree.

We return to this in Section 5.2.6.

5.2.2 Main assumptions

1. The set of parameter ψ can be fully learnt from the training set {xm,ym}.
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2. The dependency between climate x and the processes which generate either ra-

diocarbon ages r or t is assumed negligible.

3. Conditional independence: (a) pollen counts ym and y at different layers and

cores are independent given climate xm and x and parameters v and ψ; (b)

radiocarbon dates r are independent given calendar ages t at different layers and

across all cores.

In comparison to Parnell et al. (2015), assumption 1 is exactly the same, whilst

assumptions 2 and 3 are herein in the context of multiple cores.

5.2.3 Data layer

The model for each fossil pollen observation conditioning a true but unknown climate,

y(ts,i)|x(ts,i),ψ, is an independent zero-inflated negative binomial distribution (ZINB).

A technical review of this model is given in Section 5.3.1.1.

It follows from assumption 2 in Section 5.2.2 that π(r|t,x) ≈ π(r|t). Furthermore,

each radiocarbon age conditioning on the corresponding unknown calendar age, rs,j|ts,j,

can be modelled as a Gaussian distribution. Section 5.3.1.2 gives more details on this

model, as well as prior choice for t.

5.2.4 Calibration layer

The sheer amount of the training data makes assumption 1 in Section 5.2.2 feasible.

That is, the set of parameters ψ represents all the information in the calibration layer,

and π(ym|xm,x,ψ) ≈ π(ym|xm,ψ). As in the case of fossil pollen data, we apply the

conditional independence assumption outlined in Section 5.2.2 to the training pollen

data, given associated climate and parameters. Again, each of these terms is a ZINB

model.

5.2.5 Process layer

One of the novel contributions of this chapter is the specification of a joint prior dis-

tribution for x. Therefore, we provide a more detailed discussion of this model layer.
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Before discussing our proposal, we briefly recap the multivariate Gaussian indepen-

dent increments model used in both Chapter 3 and 4 via Eq. (3.2) and (4.5) respec-

tively. Let x(t) be the latent process x defined at time t. A Gaussian multivariate

independent increment model has the form:

x(t+ h)− x(t) ∼ N (0, v |h| Σ) (5.3)

where v represents the variance of a unit increment, h is an arbitrary time increment,

and Σ is the cross-correlation matrix capturing the relationship between cores. Hence

the variance of an increment of any unit is directly proportional to its corresponding

time difference. It is the sum of the variances of many smaller incremental units.

That is, the variance between time tj and tk is |tk − tj|v and
tk∫
tj

vdt for the discrete

and continuous case respectively. Their calculation is straightforward since v is a

constant. However, climate variability is a stochastic system. It is a slowly varying

background process that changes smoothly with time, occasionally with large changes.

Unfortunately, model (5.3), by design, can not capture the stochastic variability.

We propose to extend (5.3) to accommodate stochastic variability in the underlying

increment as follows:

x(t+ h)− x(t) ∼ N (0, vtΣ)

vt ∼ IG(θ1|h|, θ2|h|)
(5.4)

where vt is the variance random variable of the ith increment of x, depending on time

lag |h| and parameters θ = {θ1, θ2} controlling scale and shape of the variances of

the increments. Let h = 1 for clear presentation, the IG process has the following

formulation, as given in Betro & Rotondi (1991):(
θ1θ2
2π

)1/2

v
−3/2
t exp(θ2) exp

[
−θ2

2

(
vt
θ1

+
θ1
vt

)]
(5.5)

This is is flexible model as its distribution function can have a wide range variety

of shapes. We believe it is a suitable candidate for modelling variances for several

reasons. Firstly, it always returns positive values. Secondly, it is infinitely divisible

so it can be represented as the sum of an arbitrary number of i.i.d. random variates.

Thirdly, it is closed under convolution in the sense that the distribution of the sum of

arbitrary components is also a IG distribution. Finally, and most importantly for this

work, the process x is multivariate Gaussian conditional on the stochastic variances
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v = {v1, . . . , vn−1}. In other words, the process x is marginally a multivariate Normal

Inverse Gaussian (NIG) process.

The Normal, inverse Gaussian, and indeed the Normal Inversion Gaussian distribu-

tions are not only infinitely divisible but also closed under addition. This means that

the shape of the distribution does not change if we change the size of the time incre-

ment. This is a crucial feature for the bridging algorithm that we propose in Section

5.3.1.3.

On the other hand, a distribution such as the t distribution is infinitely divisible but

not closed under addition. To see this, we revisit the case study of the t-distribution

with 8 df as proposed by Haslett et al. (2006) to model changes in climate histories. As

reviewed in Ahsanullah et al. (2014, Chapter 5), whilst it is possible to derive the sum

of n i.i.d. t-distributed random variables, the resulting sum does not guarantee to have

a t distribution. Therefore, the t distribution is infinitely divisible but not generally

closed under addition; the latter is true only in the limit when the degree of freedom is

infinity. One of the novel contribution of Parnell et al. (2015), in extending the work

of Haslett et al. (2006), is the use of the NIG distribution to model climate changes

in the past, in lieu of the t-distribution. In this chapter, we propose the multivariate

NIG, thus making further contributions based on the aforementioned works.

From a different view point, model (5.3) can be seen as associating with a determin-

istic linear variogram, as discussed in Section 4.3.1 in the context of ice core modelling.

In contrast, model (5.4) is richer as it is associated with stochastic linear variograms,

as can be seen in Fig. 5.1.

The process layer also includes unknown latent calendar ages t. We use the Com-

pound Poisson Gamma process (Haslett & Parnell 2008) for π(t|d), applied to each

core separately. Section 5.3.1.2 gives further technical details of this model.

5.2.6 Parameter layer

• As already indicated, we fix values for θ. More specifically, we let θ1 = 3 and

θ2 = 55, approximately the mode of the prior distributions as used in Parnell

et al. (2015). Note that as θ2 approaches∞, model (5.4) becomes the multivariate

independent increment models discussed in Eq. (5.3). Therefore NIG is a more

general and flexible model than the Gaussian process.
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Fig. 5.1: A schematic representation of the variogram associated with model (5.3)

(left figure) and (5.4) (right figure).

• Initially, we use the exchangeable correlation structure for matrix Σ. In other

words, this matrix has values of ones in the main diagonal an ρ’s everywhere else.

We assign a strong prior knowledge for ρ. Specifically, we allow it to be between

0.7 and 1 to take into account the potentially high correlation between climate

from nearby locations. For computational convenience, we first use the general

logit function to transform ρ to have values on the real axis (as done in footnote

2 of page 54). Then we assign a flat prior on this logit function. We discuss other

model choices for Σ in Section 5.6.

• Prior specification for ψ is discussed in Section 5.3.1.1.

5.3 Bayesian inference

In this section, we perform parameter inference on the model discussed in the previous

section. First, we divide the overall process into three separate stages; a Bayesian

modularisation approach. Then, we utilise a notational trick for misaligned irregular

time series to marginalise out a high dimensional climate process. Next, we derive fast

MCMC algorithms to sample for the left over unknown parameters. Finally, condi-

tioning on the MCMC samples, we propose a bridge sampling algorithm based on the

multivariate NIG process to sample for an interpolated climate process.
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5.3.1 A modularised Bayes approach

Based on Eq. (5.2), we can write down the full conditional distributions of latent

processes and parameters of interest. Once these distributions are determined, generic

Gibbs and / or Metropolis-Hastings can be used to generate posterior samples. In our

case, as the number of parameters involved is high and the associated full conditional

distributions are not available in closed form, a plain ‘vanilla’ MCMC is not feasible.

We seek an algorithm that allows a ‘once-off’ calculation of expensive terms even

under a sampling-based inference scheme. This is a key underlying principle of the

modularised MCMC algorithm developed by Parnell et al. (2015), which we will extend

to our framework.

Simply put, modularisation is an act of reducing the precision in the estimation of

parameters, or, as described by Parnell et al. (2015), ‘a conservative assumption’. In

practice, this is done by removing the underlined terms in the complete conditionals

as follows:

π(ψ| . . .) ∝ π(y|x,ψ)π(ym|xm,ψ)π(ψ) ≈ π(ym|xm,ψ)π(ψ) (5.6)

π(t| . . .) ∝ π(r|t)π(x|v, t,Σ)π(v|t,θ)π(t|d) ≈ π(r|t)π(t|d) (5.7)

where ‘. . .’ denotes all other data and parameters. This is essentially assumptions 1

and 2 outlined in Section 5.2.2, where we propose to cut feedback between ψ and y,

and once more between t and {x, v}.

After modularisation, we see that (5.2) can be written in a simpler form:

π(x, t,v,Σ,ψ|y,xm,ym,d, r,θ) ∝ π(ψ|xm,ym)π(t|r,d)π(x,v,Σ|y,ψ, t,θ) (5.8)

Here, the first and second term on the RHS of the above equation are, respectively,

Eq. (5.6) and (5.7). The third term is the full conditional distribution

π(x,v,Σ| . . .) ∝ π(y|x,ψ)π(x|v, t,Σ)π(v|t,θ)π(Σ) (5.9)

From a computational perspective, the key achievement of modularisation is the

division of a large complex model in (5.2) into smaller modules. Equations (5.6), (5.7)

and (5.8) are dubbed respectively as the modern analogue, chronology, and reconstruc-

tion module. The full hierarchical model and the effect of modularisation can be seen

in Fig. 5.2. The rest of this section discusses the modules in detail. We utilise the
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work of Sweeney (2012) and Haslett & Parnell (2008) for the modern analogue and

chronology module respectively. Therefore, the discussion on these modules will be

brief. The focus of out work will be on the reconstruction module.

y(ts,i)x(ts,i)

v Σ

ts,i

θ

ψ ymk

xmk

rs,j

ds,j

modern analoque module

reconstruction module

chronology module

s = 1, . . . ,m

i = 1, . . . , ns

s = 1, . . . ,m

i = 1, . . . , ns

j = 1, . . . , ls

k = 1, . . . ,K

Fig. 5.2: A Directed Acyclic Graph (DAG) of the main model with different modules

indicated in grey boxes. Circles indicate parameters/latent random variables whilst

boxes indicate data. The solid lines indicate the direction of information flow, whilst

the dashed lines indicate relationships where modularisation occurs.
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5.3.1.1 Modern analogue module

This subsection deals with the training data set comprising of known climate and pollen

information, as derived in Eq. (5.6):

π(ψ|xm,ym) ∝ π(ym|xm,ψ)π(ψ)

The model used in this chapter is a proposal of Sweeney (2012), in which π(ym|xm,ψ)

is the nested, zero-inflated Negative Binomial (ZINB), and π(ψ) is a priori an in-

trinsic Gaussian Markov process in multivariate dimensional climate space. Sweeney

(2012) deploy the Gaussian Markov random field approximation (Rue & Held 2005,

Chapter 4.4) to approximate the full conditional distribution of ψ as Gaussian. Higher

level parameters for ψ (not shown here) are analytically evaluated via the Laplace

approximation (Rue et al. 2009).

5.3.1.2 Chronology module

For this module, we choose to use the model developed by Haslett & Parnell (2008),

although any of the alternative models reviewed in Parnell et al. (2011) are also suitable.

We begin by considering Eq. (5.7):

[t|r,d] ∝ π(r|t)π(t|d)

in which each posterior sample of t is termed a chronology. The first component on

the RHS of the above equation is the likelihood of the radiocarbon ages, reported in

the form of Gaussian distributions. In the second component, the Compound Poisson-

Gamma process is assigned as the prior distribution for the increments of calendar

ages. More specifically,

ti − ti−1 =

N(di−di−1)+1∑
j=1

γj (5.10)

where each random number N(di − di−1) is modelled as a Poisson distribution, and

an increment γi is modelled as a Gamma distribution which depends on another layer

of unknown parameters (not shown here). We refer the reader to Haslett & Parnell

(2008) for further details concerning this module.
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5.3.1.3 Marginal data posteriors and reconstruction module

The reconstruction module requires the evaluation of (5.8). We rewrite this equation

as

π(x,v,Σ, t,ψ| . . .) ∝ π(ψ|xm,ym)π(t|r,d)×
m∏
s=1

ns∏
i=1

π
(
y(ts,i)|x(ts,i),ψ

)
π(x|v, t,Σ) π(v|t,θ) π(Σ)

(5.11)

To briefly recap, the first term on the RHS of the above equation is the modern analogue

module, the second term is the chronology module, each component of the third term

is the ZINB distribution, the fourth term is the Gaussian distribution, the fifth term

the IG distribution and the last term is a flat distribution of the cross-correlation

coefficient ρ on a logit transformation scale.

Importantly, the term x appears twice on the RHS of (5.11), in the third and fourth

term. As mentioned, the fourth term has a Gaussian distribution. Hence, it is possible

to analytically marginalise x out from the reconstruction module if the third term can

also be written in the form of a Gaussian distribution. This is the main purpose for

the use of of ‘marginal data posterior ’ (MDP Parnell et al. 2015), a concept that was

generically discussed in Section 2.3.3.1.

Marginal data posteriors Recall that the low-dimensional parameter ψ is learnt

exclusively from a training data set. Thus, we can use Monte Carlo methods to nu-

merically integrate out ψ from each conditionally independent term π(y(ts,i|x(ts,i),ψ)

as follows:

π
(
y(ts,i)|x(ts,i)

)
∝
∫
π
(
y(ts,i)|x(ts,i),ψ

)
π(ψ|xm,ym) dψ (5.12)

Subsequently,

π
(
x(ts,i)|y(ts,i)

)
∝ π

(
y(ts,i)|x(ts,i)

)
π
(
x(ts,i)

)
≈ π

(
y(ts,i)|x(ts,i)

)
(5.13)

for a suitable prior distribution for x(ts,i). Note that in our framework, prior distribu-

tions are assigned on the increments of x such that the prior for its marginals are flat.

The LHS of (5.13) is a MDP. It is in fact a reconstruction of climate at a layer (or an

uncertain point in time) of a core, conditional on pollen data at that layer.
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In full generality the MDP samples considered in this work are non-Gaussian dis-

tributions. Parnell et al. (2015) propose further treatment for non-Gaussian MDPs, by

considering the following Gaussian mixture approximation:

π
(
x(ts,i)|y(ts,i)

)
≈

G∑
g=1

κs,igN
(
x(ts,i);m(ts,ig), λ(ts,ig)

)
(5.14)

where, for time slice ti from core s, m is a mixture mean, λ is a mixture variance, g =

1, . . . , G with G being the total number of mixture components, and κ is a weight for

the associated mixture component. In practice, this step is performed using R package

Mclust; estimation of the mixture components is via an Expectation-Maximisation

algorithm and does not require MCMC simulations (Fraley et al. 2012). There is

no problem with regarding to ‘label switching that is often encountered in mixture

estimation as we are content with a point solution. We follow the recommendation

of Parnell et al. (2015) and fix G with value 10. Other parameters are functions of

observation y(ts,i). However for brevity of presentation this dependency is suppressed

in the notation.

Reconstruction module After marginalising out ψ, deriving and approximating

the MDPs as Gaussian mixtures, (5.11) has the new form:

π(x,v,Σ, t| . . .) ∝ πMDP (x|y)π(x|v, t,Σ)π(v|t,θ)π(t|r,d)π(Σ) (5.15)

where πMDP (x|y) =
∏m

s=1

∏ns
i=1 π

(
x(ts,i)|y(ts,i)

)
. Following Parnell et al. (2015, Ap-

pendix A), an auxiliary vector α = {αs,ig; s = 1, . . . ,m; i = 1, . . . , n; g = 1, . . . , G}

is introduced at this stage. The gth component of αs,i has a value of 1 if the MDP

sample is in mixture component g, and 0 otherwise. The goal here is to retrieve

π(x(ts,i)|y(ts,i),αs,i) as a Gaussian distribution to permit simple analytical marginal-

isation of x from (5.15). This full conditional distribution can now be rewritten as

π(x,v,Σ, t,α| . . .) ∝ πMDP (x|y,α)π(x|v, t,Σ)π(v|t,θ)π(t|r,d)π(Σ)π(α|κ) (5.16)

where each of αs,i is a multinomial distribution with parameters κs,i. The vector

κ = {κs,ig; s = 1, . . . ,m; i = 1, . . . , n; g = 1, . . . , G} has already been learnt from the

Gaussian mixture approximation step discussed in (5.14).
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It is worth re-emphasising that we model times as continuous. Therefore, it is not

possible to obtain the same time point across different cores. Inevitably, temporal

misalignment in the MDPs occurs if we consider multiple cores together. To remedy

this, we are going to use the notation trick that was introduced in Section 3.1.2 and

again in Section 4.2.1.

For each chronology sample t = {ts,1, ts,2, . . .}, we suppose to = sort{t} =

{t1, t2, . . . , tn} is the sorted set of all unique times at all cores. Correspondingly, yo(ts,i)

is an observation that is precisely y(ts,i) when core s has an observation at ti, otherwise

missing. In vector form, these are yo (length mn, as opposed to y which has length

N). All vectors in this thesis are stacked in time. For instance, yo(t) is a m× 1 vector

of observations at time slice t which has typically only one observation and m − 1

missing observations. Analogous to the definition of yo are xo and vo. Consequently,

Eq. (5.16) emerges as

π(xo,vo,Σ, to,α| . . .) ∝ πMDP (xo|yo,α)π(xo|vo, to,Σ)π(vo|to,θ)π(to|r,d)π(Σ)π(α|κ)

(5.17)

The number of unknown terms in Eq. (5.17) is n×m for xo, n for to, n− 1 for vo, n

for α and the parameter space of Σ which is 1. The new notation allows us to write

the joint distribution of the MDPs in vector form as

πMDP (xo|yo,α) ∼ N (mα,Λ
−1
α ) (5.18)

Here, mα is the vector of known mixture means, and Λα is a diagonal matrix of known

mixture precisions, whose values are conditional on the allocation given by α, and

zeros where there are no data. This notation trick also applies to the multivariate

NIG model and we can write:

π(xo|vo, to,Σ) ∼ N (0,Q−1vo ⊗Σ) (5.19)

Here, Qvo denotes the precision matrix of the random walk of first order, ⊗ is the

Kronecker product, and Σ is the cross-correlation between cores.

Qvo =


v−11 −v−11

−v−11 v−11 + v−12 −v−12

. . .

−v−1n−1 v−1n−1


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The fact that both (5.18) and (5.19) can be written as Gaussian distributions results

in a trivial calculation, up to a normalising constant, of the full conditional for xo:

π(xo| . . .) ∼ N (µxo|yo ,Q
−1
xo|yo), (5.20)

where Qxo|yo = Λα+Qvo⊗Σ−1 and µxo|yo is the solution to Qxo|yoµxo|yo = Λαmα. Thus,

after deriving to and ψ from the chronology and modern analoque module respectively,

we analytically marginalise xo out from (5.17) and are left with:

π(vo,Σ,α| . . .) ∝ |Λα|1/2
n−1∏
i=1

|viΣ|−1/2
∣∣Qxo|yo

∣∣−1/2
× exp

(
1

2
mT

αΛα(µxo|yo −mα)

)
π(vo|θ) π(α|κ) π(Σ)

(5.21)

We present, in Appendix B, the full MCMC algorithm to sample for the unknown

processes and parameters from (5.21). The key advantage of our algorithm over that

developed by Parnell et al. (2015) is the modelling extension to the multiple core

setting, and computational ability to deal with terms involving Kronecker products.

Thereafter, realisations of xo from (5.20) are easily obtained using the plug-in samples

of the parameters from (5.21).

The final step involves stochastic interpolation of climate and climate volatilities

at an arbitrary time grid, based on the MCMC samples discussed above. We suppose

tg, xg and vg denote the known time grid, unknown climate and unknown squared

volatility process of interest. We also let y∗ =
(
yo

T ,yg
T
)T

, x∗ =
(
xo

T ,xg
T
)T

, t∗ =(
to
T , tg

T
)T

and v∗ =
(
vo

T ,vg
T
)T

. Stochastic interpolation is the computation of

π(xg| . . .) =

∫
π(x∗, t∗,v∗,Σ,α,ψ| . . .) dxo dt∗ dv∗ dΣ dα dψ

∝
∫
π(xg|xo,vg, . . .)π(vg|vo, . . .) π(xo|yo, to,vo,Σ,α,θ,ψ)

π(vo,Σ,α|y, t∗,θ,ψ) π(t∗|r,d) π(ψ|xm,ym) dxo dt∗ dvo dΣ dα dψ

(5.22)

This is a high dimensional integration problem and stochastic simulation presents

the best solution. Integration with respect to t∗,vo,Σ,α and ψ have been performed

via the MCMC algorithm described in Appendix B. On the other hand, evaluation

of the first quantity inside the integrand (5.22) involves, essentially, sampling from a

multivariate Brownian bridge. Whilst evaluation of the second quantity inside the inte-

grand is sampling from an IG bridge. We present our bridging algorithm in Appendix
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C. The objective is to draw equally probable climate histories that are consistent with

both data and model assumptions. These represent climate data products as discussed

in Section 2.1.3.

5.3.2 Summary of the modularised MCMC algorithm

Our modularised approach permits the inference procedure to be carried out in three

different stages separately. In summary, the basic framework to transform raw proxy

data to climate data products involves three main steps.

1. Modern analogue module (Section 5.3.1.1). This module focus on building

a climate-pollen relationship using the training data set comprising of known

pollen information and associated climate at sites around the world. The out-

put of this layer is a ‘response surface’ and a selection of parameters controlling

the relationship between climate and pollen. This is a once-off job; the pro-

cedure is discussed in Sweeney (2012) and the results can be loaded from R

package Bclim (Parnell et al. 2015, see also http://cran.r-project.org/web/

packages/Bclim/index.html).

2. Chronology module (Section 5.3.1.2). The purpose of this module is to draw

inferences about calendar ages based on radiocarbon dating information at some

depths of the three sediment cores. Radiocarbon determinations and depths are

used as the input for R package Bchron (Haslett & Parnell 2008, see also http:

//cran.r-project.org/web/packages/Bchron). The output are chronologies

samples associated with the depths of the MDPs. In this thesis, we use an

independent chronology model for each core.

3. Reconstruction module (Section 5.3.1.3). Initially, we use suitable functions

from R package Bclim to create layer-independent climate, given the fossil pollen

counts from the three sites in Finnmark, the response surface and appropriate

parameters. Subsequently, these layer-by-layer climate are standardised, and

approximated as mixtures of Gaussian using R package Mclust (Fraley et al.

2012, see also http://cran.r-project.org/web/packages/mclust). At the

end of this step we have analytical expression for the MDPs (in the form of

Gaussian mixture distributions) at a selection of depths of the three cores; the
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depths will have been transformed to calendar ages via the chronology module.

Note that the MDPs are independent across all cores and depths.

The steps hereafter represent the main novelties of this chapter; we propose to use

all of the results above as the inputs for our algorithms in order to jointly recon-

struct climate at multiple sites. Firstly, we use the MCMC algorithm described

in Appendix B to sample for all unknown terms in the model, conditional on all

data. Secondly and as a final step of the overall process, we apply the bridging

algorithm described in Appendix C to sample for climate and climate volatility

at a regular time grid across all three cores. For the purpose of presentation, we

transform the posterior climate samples back to their original scale. It is unclear

what the scale of volatility is hence we report it in its standardised climate scale.

Figure 5.3 is a schematic representation of all of the above steps. This plot closely

follows the DAG shown in Fig. 5.2.

5.4 Application to three Finnmark pollen data sets

This section demonstrates an application of the methods discussed in the previous

sections using the Finnmark data set.

5.4.1 Background

The data set comprises of three fossil sediment cores found at separate lakes in Finn-

mark, Norway. Each core contains pollen grains at several depths, and radiocarbon

dating determinations often at fewer number of depths. The former provides informa-

tion about historical climate over many thousands of years at that location, and the

latter gives information about times. Recently, Huntley et al. (2013) used this data set

to investigate whether there is a variability in ancient climate between these sites. The

authors use the so-called ‘direct analogues method’ to obtain point estimate of climate.

By design this method does not quantify the uncertainty associated with the climate

estimate, nor uncertainty in the parameters of their model. Moreover, the analysis was

carried out on data set from each site separately.

Bayesian statistical inference is thus preferred. Minimally, it allows easy mixing

of uncertainty from many different data sources. Most importantly, spatio-temporal
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Climate/pollen relationship

Modern analoque module

Modern climate and pollen

Chronology module (Bchron)

Depths and radiocarbon ages

MCMC and bridging

Joint climate posteriors on a time grid at all sites

Fig. 5.3: A schematic representation of the full algorithm to reconstruct ancient cli-

mate based on pollen data and radiocarbon dates in multiple fossil pollen cores, and a

modern data set comprising of known climate and pollen responses. Data are indicated

in black, latent processes are indicated in blue, and models/algorithms are indicated

in red.

dependency will be taken into account since data from three locations are likely to be

correlated in both space and time. Our objective is to make meaningful probabilistic

statements about the unknown ancient climate conditions by taking into account all

(or as many as possible) uncertainties inherent in the data.

Our approach, being an extension to that developed by Parnell et al. (2015), pro-

duces results for multi-dimensional climate. For clear presentation of the methodology,
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we only discuss the results for the measure of mean temperature of the coldest month

(MTCO), a quantity indicative of the harshness of the winter.

5.4.2 Model-fitting results

For each core, the chronology module generates ten thousands posterior samples of

chronologies representing ten thousands possible histories of times. For each core,

the modern analoque module produces a vector of MDPs; each of which is a list of

mixture means, precisions and weights. Figure 5.4 shows a plot of a chronology and

the corresponding MDPs; we plot the latter using the mixture means associated with

the highest mixture weights at a time point.

The output from the modern analogue and chronology module are used as input

for the reconstruction module. Figure 5.5 shows several types of results. The pointwise

95% credible intervals of DMPs at all corresponding chronology samples are represented

in blue ‘blobs’. Our approach’s pointwise 50% and 95% credible intervals of interpolated

centennial MTCO histories over the period 0 to 14 k cal BP are represented in red.

A climate history is represented by the black lines. The results obtained using the

methods of Huntley et al. (2013) (green dots) and Parnell et al. (2015) (blue credible

bands) are also shown since these are obvious candidates for direct comparison with

our method.

It is easy to see that the levels of uncertainty vary across different outputs. Firstly,

the MDPs are both time-independent and site-independent. Hence their marginal un-

certainty bands are widest. Secondly, the separate inference approach by Parnell et al.

(2015) produces joint posterior samples that are temporally correlated but spatially

independent across all sites. Therefore their predictive credible intervals are typically

smaller compared to those of the MDPs, but wider in comparison to those of our model

(see the next paragraph for further discussion of this). Thirdly, the degree of uncer-

tainty also depends upon the temporal resolution of the data sets. Here, for example,

site NKH1 has the highest resolution but the oldest depth is about 10.5 k cal yr BP.

Consequently, the uncertainty estimates of climate from year 0 k to 10.5 k is narrower

than those after 10.5 k cal yr BP. Intuitively, this is most visible in the separate infer-

ence approach, i.e. interpolation versus extrapolation. Finally, we note that the point

estimates by Huntley et al. (2013) give no measure of uncertainty.
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Fig. 5.4: A plot of a chronology sample and its corresponding mean temperature of the

coldest month (MTCO) for three sites in Finnmark. At each time point, the MTCO

value is represented by the marginal data posteriors’ (MDPs) mixture mean that is

associated with the highest mixture weight.
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Fig. 5.5: Plots of MTCO over the period 0 to 14 k cal yr BP at three sites in Finnmark.

The pointwise 95% credible intervals of DMPs at all corresponding chronology samples

are represented in blue ‘blobs’. The pointwise 95% credible intervals of climate histories

from the model of Parnell et al. (2015) are represented in purple. Our pointwise 50%

and 95% credible intervals are represented in red. A climate history from our approach

is represented by the black lines. Finally, point estimates from Huntley et al. (2013)

are the green dots.
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Absolute differences in the interquartile range (IQR) of the posterior marginals

(or pointwise summaries) between our approach and the one-core-a-time inference are

represented in Fig. 5.6. There are broadly two case scenarios. In the first case, the

joint model yields reduced uncertainties where there is between-core correlation in the

data. Conversely, in the second case, it yields increased uncertainty where information

sources diverge. The latter case also demonstrates the limitation of the joint model,

arising from sharing of volatility rather than making it flexible to each site. This re-

striction is useful when the volatility across all three sites are approximately equal and

data are empirically correlated. Otherwise new (possibly biased) information can be

introduced resulting in higher uncertainty levels. Most crucially, the advantage of our

approach over the one-core-at-a-time alternative is that we are able take into account

both aforementioned case scenarios. This supports our claim that combining informa-

tion from multiple spatial data sources yields more reliable estimates of uncertainty.

5.4.3 Case study of the Younger Dryas event

From Fig. 5.5, we can see an extreme cold interval at approximately 9 to 13.5 k cal

yr BP. This period corresponds to an extreme climate change event known as the

Younger Dryas (e.g. Muscheler et al. 2008). This event represents a period of cold

that was rapidly followed by a warming in temperatures. We propose to use our data

products to answer some questions about YD in a similar manner to that for the 8.2ka

event as discussed in Section 4.3.3. We note that the 8.2ka event is not clearly visible in

Fig. 5.5, most likely due to the substantial amount of uncertainty presented in pollen

data.

The interesting questions here are concerned with the period of maximum change

from cold to warm, and from warm to cold. We will use the period between these

two maxima as our estimation for the duration of YD. Our estimation is based on

an ensemble of simulations of interpolated climate between 8.5 and 14k cal yr BP,

a conservative period bracketing YD. More specifically, we focus on the distributions

of random variables tmax4 = maxt
(
4x(t)

)
and tmin4 = argt min

(
4x(t)

)
, being re-

spectively the time of maximum positive change and maximum negative change. We

compute these estimates for each history and summarise the results from 1000 simu-

lated climate histories.
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Fig. 5.6: Plots of the interquartile ranges (IQR) of centennial histories of MTCO over

the period of 0 to 14 k cal yr BP at three sites in Finnmark. The IQR of the one-

core-at-a-time model are generally higher than those of the joint model. However, the

converse may occurs in certain circumstances. See the text for further details.
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Figure 5.7 shows estimates of the century with the maximum and minimum MTCO

changes. The IQRs (in units of k cal yr BP) for centuries with maximum changes are

[9, 10.3], [8.9, 11.6] and [8.8, 10.1] for site M, NKH1 and PS8 respectively. Similarly,

timings of centuries with minimum changes are [10.7, 12.6], [9.9, 12.6] and [11.1, 12.8].

Additionally, we compute the summary of tmax4 − tmin4 to estimate the time interval

which contain the largest negative followed by positive changes, as represented in Fig.

5.8. These are estimates of the length of YD: 2.3, 2.5 and 2.6 k cal yr for site M, NKH1

and PS8 respectively. Our estimates are wider comparing to climatologically theory

(e.g. Fiedel 2011, Muscheler et al. 2008, Gulliksen et al. 1998). This is due to the fact

that we attempt to incorporate several sources of uncertainty whilst, crucially, there

are only data from three sites. Hence, we feel that this approach can be considered

as a proof-of-concept method. More spatial information are necessary for a more com-

prehensive investigation into the spatial extent of abrupt climate changes in a global

context.

5.5 Sensitivity analysis

This section checks if the model parameters are identifiable and if the inference proce-

dure gives rise to satisfactory results. A model is non-identifiable if distinct values for

its parameters generate the same probability distribution for the data.

We simplify the relationship between climate and proxy, and assume no error in the

time scale. The model specification from Section 5.2 and its variation are applied to

generate several versions of data sets. We then apply the inference procedure discussed

in Section 5.3 to a obtain posterior distribution of all unknown parameters and latent

processes. In each simulation, we find out if the true climate lie within a posterior

summary.

At each simulation, we draw 99 trios of climate from a tri-variate Gaussian inde-

pendent increments model regularly spaced, fixed time points. The shared variance

of increments are generated from an Inverse Gaussian distribution with parameters θ1

and θ2. The cross-correlation matrix Σ is a uniform correlation matrix with ones in

the main diagonal and the off-diagonal is filled with a correlation coefficient ρ. We

use flat priors for climate as the starting time points. We then create pseudo-proxy y
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Fig. 5.7: Boxplots of estimates of the century with the maximum (a) positive change

and (b) negative change. The underlying process is the centennial MTCO, computed

from process histories between 8.5 - 14 k cal yr BP at three sites in Finnmark.
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Fig. 5.8: Boxplots of time intervals which contain the largest negative followed by

largest positive change in the centennial MTCO, computed from process histories be-

tween 8.5 - 14 k cal yr BP at three sites in Finnmark.

from climate using appropriate likelihood models. Temporal misalignment is created

by randomly choosing 33 data points for each series. Specific details of the simulations

in each scenario are as follows.

1. Case 1. From θ1 = 3, θ2 = 55, we generate v(ti) ∼ IG(θ1, θ2); i = 1, . . . , 98 and

ρ ∼ U(0, 1). Starting from a flat prior for climate at time 1, we generate 99 trios

of climate using the trivariate independent increment model and create temporal

misalignment as described above. Finally, pseudo proxy y(ts,i) ∼ N (x(ts,i), τs);

s = 1, 2, 3. Here, we use τs ∼ U(0.02, 2). From proxy information, creation of

MDPs is trivial in this case; e.g., π(x(ts,i)|y(ts,i) ∼ N (y(ts,i), τs). We apply the

rest of our modularised MCMC algorithm to derive information on climate x.

2. Case 2. Squared volatilities and climate are generated as above. Here, we con-

sider the zero-inflated Poison model for generation of proxy signals. We suppose

y(ts,i) ∼ ZIP(ps, 3asx
2(ts,i)) where ps ∼ U(0, 0.2) and as ∼ |N (0, 1)|. We use

importance sampling to create MDPs, and use a 5 mixture components Gaus-

sian approximation. As before, we derive posterior samples for climate using our

modularised MCMC algorithm.

3. Case 3. The set up for this case is the same as the second case, except that the
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number of mixture component is 2 (instead of 5).

4. Case 4. The set up for this case is the same as the second case. However, in the

MCMC algorithm, θ1 and θ2 are fixed at values that are lower than the truth,

i.e. θ1 ∈ U(0.01, 2) and θ2 ∈ U(0.01, 50).

5. Case 5. The set up for this case is the same as the second case. However, in the

MCMC algorithm, θ1 and θ2 are fixed at values that are higher than the truth,

i.e. θ1 ∈ U(4, 10) and θ2 ∈ U(70, 100).

We repeat each simulation and inference procedure 1000 times and summarise the

results in Table 5.3. Under all considered case scenarios the model seems to perform

well.

Scenario Proportion inside 90% CI Proportion inside 50% CI

1 89 49

2 91 54

3 91 52

4 90 50

5 91 55

Table 5.3: Performance of the model fitting algorithm. All results were based on 1000

simulation runs.

5.6 Discussion

This chapter has extended the work of Parnell et al. (2015) to reconstruct ancient

climate from multiple fossil pollen cores jointly. The primary challenges under consid-

eration are multivariate time series modelling with temporal uncertainty and stochastic

volatility. We have provided a full Bayesian treatment to these problems. Our inference

procedure is reasonably straightforward to implement as a result of modularisation.

The modularisation approach permits easy mixing of several sources of uncertainty

and modelling features. The adopted model is flexible. Some of its special cases are

briefly discussed below.
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Cross-correlation structure. We used, a priori, the uniform correlation matrix

with ones in the diagonal and a common correlation coefficient ρ in the off-diagonal

entries that can only take values between 0.7 and 1. The resulting posterior distribution

is largely dependent on the specified prior, which implies that the likelihood contains

little information. As a sensitivity analysis, we performed inference using a priori

varying bounds. As expected, the resulting predictive error from interpolation remains

largely unchanged while extrapolation intervals get wider with larger boundary ranges.

A obvious extension to the uniform correlation matrix with one common correlation

parameter is that with two correlation parameters. In general, a matrix of correlations

is not necessarily a valid correlation matrix because of the notorious requirement of

non-negative definiteness. Mathematically, the determinant of correlation matrix must

be strictly positive (Rousseeuw & Molenberghs 1994). Thus for a 3-by-3 matrix with

correlation coefficient ρ12 and ρ13, the correlation coefficients must satisfy the equation

1 + 2ρ13ρ
2
12 − 2ρ212 − ρ213 > 0, which implies that 2ρ212 − 1 < ρ13 < 1 or 0 < ρ12 <√

(1 + ρ13)/2. As an application to the Finnmark data set, the posteriors for both

parameters are flat and equal to their prior forms. Furthermore, a combination of joint

analysis of two cores simultaneously offer no evidence of different correlation across

the three sites. On this basis we feel that the uniform correlation function with one

parameter is adequate for accurate modelling.

We also took into account of spatial dependency between the sites by using an

isotropic exponential covariance model of the form exp(−||sj − si||/β). Here s’s are

coordinates of the sites and ||.|| is a physical distance, β is the range parameter control-

ling the rate of decay in correlation as a function of distance. We follow Gelfand et al.

(2010, Chapter 7) and assign a discrete uniform prior for β. The bounds of the prior

distribution are decided by the practical range of the data set which can be empirically

estimated as 3ρ for an exponential model (Wackernagel 2003, chapter 8). The results

from this model are similar to those from the case where a uniform correlation matrix

is used. With only three series considered in the application, parametrisation of this

form is less interpretable. Future work with an additional number of time series data

sets may benefit from using this correlation function.

Marginal data posteriors (MDP) We experimented with different values for the

number of mixture components G of the Gaussian approximation for the MDPs. The
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case where G = 1 produces the narrowest joint posterior intervals of stochastically

interpolated climate, and less ‘bumpy’ interpolated volatility. This effect wears off as

we increase the value for G. Intuitively, the higher the number of mixtures the more

accurate the approximation becomes. However, attention must also be paid to the

trade off between accuracy and computational burden. For our final model, we follow

Parnell et al. (2015) and fix G = 10.

Time uncertainty We fitted a multivariate NIG independent increments model

with no time uncertainty, i.e. times of observations are known precisely. An even more

simpler and special case of this model is the multivariate Gaussian independent incre-

ments model discussed in Chapter 4, again with no errors in the time scale. Under both

model settings, we obtained narrower uncertainty levels for the climate posteriors, in

comparison to the main model with time uncertainty. Notwithstanding, we believe that

ignoring any available source of uncertainty can result in overconfidence in a statistical

inference. Additionally, salient features of underlying processes can be overlooked if

all available sources are not explicitly considered. Therefore we do not recommend

ignoring time uncertainty when dealing with non-negligible dating information.
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Chapter 6

Conclusion

The final chapter summarises the contributions of the thesis. It also discusses the

outstanding challenges that beckon for further exploration.

6.1 Summary

In this thesis, new statistical methods have been proposed to directly address the joint

behaviour of multiple time series in their misaligned form. Other major issues under

consideration include data support, temporal uncertainty, and stochastic volatility.

All of our proposed models fall under the hierarchical framework. We began with

a simple two-stage hierarchical structure in chapter 2, applied to an irregularly spaced

time series with all parameters known. Then, in chapter 3, we extended this model

to the case of multiple irregularly spaced series. Next, in chapter 4, we proposed a

three-stage structure, with all parameters unknown, to deal with data from different

series having different supports. Finally, chapter 5 further extended the model in all

previous chapters to a four-stage hierarchical model, allowing for errors in the times of

the observations, and stochastic volatility in an underlying latent process. This model

also incorporates external knowledge from a separate set of training data for more

accurate statistical inference.

Computation of posterior distributions for our models is challenging, particularly

due to the complex modelling structure and high dimensional parameter space. To

alleviate the computational burden, we have used a combination of the following as-

sumptions and strategies. Firstly, we took advantage of nice properties from the Gaus-
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sian Markov assumption for efficient storage and fast calculation of sparse matrices.

Secondly, by combining the Gaussian Markov assumption with the concept of marginal

data posteriors, we were able to marginalise out a high-dimensional latent process from

the overall model, leaving it for inference in a separate stage. Thirdly, we exercised the

concept of Bayesian modularisation to divide a big model into smaller modules.

The methodologies developed in this thesis should improve the quality of climate

data products. They have been applied to raw and noisy oxygen isotopes from ice

cores and pollen counts from sediment cores to create data products in the form of

histories. The histories are realisations from non-Gaussian posterior predictive distri-

butions, conditioning on all available data. In climate reconstruction, this is precisely

as proposed by Tingley et al. (2012) and Chandler et al. (2012). We compared our

results with those from the independent analysis of each core separately, both within

our modelling framework and from the relevant literature. We concluded that our data

products are richer than what have been previously available. We demonstrated the

usefulness of our data products with case studies of extreme climate change events and

found results that are consistent with the physical climate system. More broadly, this

contribution has uses far beyond those presented in this thesis. We believe that our

data products will be more useful in the hand of researchers in the field of climatology.

6.2 Future directions

There are a number of useful extensions to the methods presented in this thesis. We

conclude this chapter by listing some ideas that could be pursued in the the future.

Varying data supports In chapter 4, we considered the case in which data are al-

lowed to have different definitions of support across different series. But we constrained

the supports for all data to be the same in each series. A generalisation of this problem

is to allow the support of a data point to vary according to the underlying measure-

ment procedure. This allows the value of ks, as introduced in Section 4.1 and derived

in Appendix A, to vary according to the empirical ratios of the supports of associated

observations. More specifically, if there are m number of time series and each series

has its own data support, there are m− 1 known nugget parameters, all of which is a

function of only one unknown nugget parameter. In the generic case where all
∑m

s ns
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data points from m series have their own definition of supports, the number of nugget

parameters will increase by the many different supports. However, as before, there will

be only one unknown nugget effect parameter.

Space-time interpolation and computational extensions We believe the re-

search in this thesis is only an initial attempt at joint palaeoclimate inference, upon

which other work can be built. In this initial presentation, we illustrated our framework

using three sediment cores. We did not take into account the physical locations where

the time series were recorded. We have emphasised throughout that our model can be

extended to a wide class of spatio-temporal processes, for instance, by modifying the

cross-covariance function to include physical distances. The European pollen database

beckons for attention from climate researchers. Hence, the continuation of this project

is to apply the developed methods to the whole of Europe to produce a pan-European

spatio-temporal map of climate history. This would allow us to gain insight into the

spatial extent to which certain climate events happen across Europe.

Increasing the number of series/cores/sites will inevitably be associated with a

higher computational burden, as the size of matrices increases at the rate of O(N2)

where N is total number of data points from all series. The number of parameters also

increases quickly with the number of series. In particular, our proposed approach sep-

arates the inference of smoothed latent climate process from the gridded interpolation

step, which seems rather inefficient as the number of series increases. Simply put in

notation used in chapter 3, 4 and 5, the current approach requires the evaluation of

π(xo|yo) before π(xg|xo). An alternative approach is to define a latent field on the

grid in the first place, for instance, by re-writing xo as a linear interpolator of xg. For

example,

yo = xo + ε := Bxg + ξ + ε (6.1)

Here, B is the so-called observation matrix that link xg and xo (Wikle & Berliner 2005).

In our context, both xo and xg are independent increment Gaussian processes. Hence

B is a strict linear interpolant. Times can be fixed, as considered in chapter 3 and 4,

or random in 5. Furthermore, this approach necessarily introduces the interpolation

error terms ξ. In our modelling setting, it is easy write down the joint distribution

for x∗ =
(
xo

T ,xg
T
)T

and the derivation of ξ trivially follows. In other cases, this

95



calculation may significantly increase the overall computational complexity. A remedy

is to ignore these terms by using a dense rectangular interpolation grid (Paciorek 2013),

although it is not clear how fine the grid should be. Nonetheless, this is an interesting

algorithmic aspect worthy of further investigation.

An obvious advantage here is that the associated matrices are always the same

size irrespective of the size of the data set. At this point, the recently developed

method by Lindgren et al. (2011) is useful as it permits modelling using the more

flexible covariance function while performing inference using sparse precision matrices

discretely defined by some Markov models. The additional benefit of working under the

SPDE framework is its flexibility for extension. For instance, Bolin (2014) has extended

the SPDE approach to a accommodate a version of the Normal Inverse Gaussian process

that we considered in chapter 5.

Joint chronology modelling In chapter 5, we provided solutions to allow for uncer-

tainty in radiocarbon dated sediment samples. Our framework is conceivably applicable

to other proxy types that use different dating methods such as tree rings, ice cores, etc.

A shortcoming of this approach is that we dealt with time uncertainty from each se-

ries/cores/sites separately. In extreme cases where the underlying sedimentation rates

from crossed-correlated series are very different, there is less benefit from joint infer-

ence. However, if there is reason to believe that their sedimentation rates are similar, a

separate model for each series effectively throws away information. Hence, one obvious

thing to do is to extend the jointness of our existing model by modifying the prior

model (5.10) to be a multivariate monotone stochastic process.

Multiple climate proxies We used point mass prior distributions for the parameter

values at the highest hierarchical layer of the model in chapter 5. A more flexible prior

specification would be to use the information learnt from ice cores in chapter 4 as prior

information for the highest layer in chapter 5.

More generally, we have not considered utilising multiple proxies for our recon-

struction. Each proxy has its own advantages and limitations, and combining different

proxies may yield complementary information on different aspects of climate (Li et al.

2010). On the other hand, it is important to note that different proxies are sensitive

to different climate aspects.
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Other applications Finally, we note that interesting challenges arising from quan-

titative palaeoclimate reconstruction motivates the research of this thesis. However,

many other real world time series data sets are also temporally misaligned. For ex-

ample, in clinical trials the patient’s health condition may be observed at irregular

time intervals, and different patients are usually observed at different points in time

(Cismondi et al. 2013). In finance, raw and original trade data is known as ‘tick data’

(Gençay et al. 2001). They are typically recorded at irregular time intervals and at

ultra-high frequencies. An ideal method should be able to produce output of not only

price movements, but also volatility and correlation dynamics at an arbitrary time

scale, preferably regular.

97



98



Appendix A

Implication of different data

supports in chapter 4

In this appendix we discuss our treatment for the process variance and nugget param-

eter in the model proposed in Chapter 4. Specifically, we examine the change in the

theoretical semivariogram when there is a change in the underlying support of the data.

An example of change of support theory

Without loss of generality, we suppose that the data process y = {y(t); t = 1, . . . , n}

can be modelled by a univariate independent increments process with Gaussian noise.

In other words, it possesses a theoretical linear semivariogram of the form Γy(h) where

Γy(h) =
1

2
Var

(
y(t+ h)− y(t)

)
= τ +

1

2
v|h| (A.1)

Here, the nugget τ is the intercept, the process variance v is twice the slope value, and

h is an arbitrary time lag.

We create the new process ỹ on a new support by averaging y at every non-

overlapping w ’window’ of time. We are interested in the relationship between the

semivariogram of y and that of ỹ.

To simplify the problem, we break up the underlying process into two separate

component: a pure nugget process and a pure independent increment process. If y is a

pure nugget process, it is easy to show that the semivariogram of the averaged process
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is Γỹ(h) where

Γỹ(h) =


τ
w
, if |h| ≥ w

τ |h|
w2 , |h| < w

(A.2)

For the independent increments case on its own, the semivariogram has the form

Γỹ(h) =


1
2
v|h| − wv

6
, if |h| ≥ w

v|h|2
2w
− v|h|3

6w2 , |h| < w

(A.3)

We refer to Chiles & Delfiner (2012, Chapter 2.4) for the technical details of the

aforementioned results. It is worth noting that, in practice, the only lags available for

calculation of empirical semivariograms are |h| ≥ w.

Hence, for a process that has both the nugget and independent increments, the

implication is twofold. First, y and ỹ share the same process variance. Second, their

nugget parameters are (approximately) directly proportional. This approximation af-

fects the semivariogram near the origin, where we use the linear function to account

for the true cubic function. Moreover, from the analytical expression it can be seen

that the accuracy of the approximation depends on the value of w, and the relative

difference between τ and v.

Implication of different supports for data set GISP2

and GRIP

In the application discussed in Section 4.3, τ dominates v in both empirical semivar-

iograms of GISP2 and GRIP - as seen in Fig. 4.3. Furthermore, if we assume that

the nugget effect is at an annual level (denoted as τannual), then the nuggets for GISP2

and GRIP are, respectively, τGISP2 = τannual
wGISP2

and τGRIP = τannual
wGRIP

, where factors w denote

the time support for each series. We can reparameterise in terms of τ = τGRIP, such

that τGISP2 = τ × wGRIP

wGISP2
= τ × kGISP2. We set 55

200
or 0.275 as the value for kGISP2,

corresponding to the respective length of support of GISP2 and GRIP. This value is

also consistent with the descriptive statistics of the age increments, as represented in

Fig. 4.2(c). Each section, being 200cm and 55cm in length respectively for GISP2

and GRIP, is negligible compared to the total length of the complete ice core which
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is about 3km (approximately 1.6 km of which covers the Holocene period). Hence we

feel that this is a reasonable approximation.
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Appendix B

MCMC for the reconstruction

module in chapter 5

This appendix describes the MCMC algorithms for fitting the reconstruction module

represented by Eq. (5.17) as discussed in Section 5.3.1.3. Note that for clearer pre-

sentation, the subscript notation for time is omitted in the notation throughout this

appendix. For instance, we simple rewrite vt as v.

Where appropriate, we use functions from R package INLA (Martins et al. 2013)

and spam (Furrer & Sain 2010) which contain optimised functions for sparse matrices.

We also take advantage of efficient computational strategies for matrices involving Kro-

necker products and Sherman-Morrison-Woodbury identity as discussed, for example,

in Harville (1997).

Updating vo

It follows from (5.21) that the calculation of the Metropolis-Hastings (MH) ratio

β(vo, v
∗
o) is required to decide whether to replace vo with v∗o , where:

β(vo, v
∗
o) =

v
3/2
o

∣∣Qx|y
∣∣1/2 exp(1

2
mT

αΛαµ
∗
x|y) π(vo|v∗o) π(v∗o |θ)

(v∗o)
3/2

∣∣∣Q∗x|y∣∣∣1/2 exp(1
2
mT

αΛαµx|y) π(v∗o |vo) π(vo|θ)

(B.1)

Direct computation of the expression in (B.1) is tedious as it involves expensive matrix

manipulations of Kronecker products of matrices. Simplification of this term is possible
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from observing that

Q∗x|y = Qx|y + {[(v∗o)−1 − v−1o ]bbT} ⊗Σ−1

= Qx|y + [(v∗o)
−1 − v−1o ](bbT )⊗Σ−1

= Qx|y + RTΥR

Here, R = bT⊗Σ−1/2, with b being a vector of length n with −1 at time t, 1 at time t+1

and 0’s elsewhere, and Υ is the m-by-3 diagonal matrix with element [(v∗o)
−1 − v−1o ]

in the main diagonal. Therefore computation of Q∗−1x|y follows instantly from Q−1x|y.

Consequently,

|Qx|y|
|Q∗x|y|

=
|Qx|y|

|Υ−1 + RQ−1x|yR
T | |Qx|y| |Υ|

=
1

|Υ−1 + RS| |Υ|
where S is the solution to Qx|yS = RT . Here, we have utilised the Woodbury formulae.

Similarly:

Q∗−1x|y −Q−1x|y = Q−1x|y −Q−1x|yR
T (Υ−1 + RQ−1x|yR

T )−1RQ−1x|y −Q−1x|y

= −S(Υ−1 + RS)−1ST

Putting all the terms together yields the simplified ratio

β(vo, v
∗
o) =

v
3/2
o

(v∗o)
3/2 |Υ−1 + RS|1/2 |Υ|1/2

exp

(
−1

2
mT

αΛαS(Υ−1 + RS)−1STΛαmα

)
×

π(vo|v∗o) π(v∗o |θ)

π(v∗o |vo) π(vo|θ)

Computation of the above ratio is fast since all calculations of the determinant and

inversion are only necessary for matrices of size m-by-m. In the application considered

in Section 5.4, m = 3.

Updating Σ

To explore the sensitive posterior region of Σ based on Eq. (5.21) using MH, we require

the calculation of the ratio β(Σ∗,Σ), where:

β(Σ∗,Σ) =
|Σ|n−1

2 |Qx|y|1/2 exp(1
2
mT

αΛαµ
∗
x|y) π(Σ∗)

|Σ∗|n−1
2 |Q∗x|y|1/2 exp(1

2
mT

αΛαµx|y) π(Σ)

Here, |Qx|y| =
∏

i Lii where L is the Cholesky decomposition of Qx|y. All other

computational details have been discussed elsewhere in this appendix.

104



Updating α

We begin with full conditional posterior distribution for α from (5.21):

π(α| . . .) ∝ |Λα|1/2 |Qx|y|−1/2 exp

(
1

2
mT

αΛα(µx|y −mα)

)
π(α|κ)

Next, we let Q∗α = Λα+1
(
(λ∗α)−1−(λα)−1

)
1T and Q∗x|y = Qx|y+1

(
(λ∗α)−1−(λα)−1)

)
1T .

Here, 1 is a indicator vector with a value 1 corresponding to the series identity and

time t whence parameter values are being update. The Woodbury identity is useful

again here. It can be shown that the MH ratio required to update α is β(α∗,α), where

β(α∗,α) =
|Q∗α|1/2 |Qx|y|1/2 exp

(
1
2
m∗α

TQ∗α(µ∗x|y −m∗α)
)
π(α∗)

|Λα|1/2 |Q∗x|y|1/2 exp
(
1
2
mT

αΛα(µx|y −mα)
)
π(α)

=
(λα)1/2

(λ∗α)1/2
(
1 + 1Tb(λ−1∗α − λ−1α )

)−1/2 exp
(

1
2
m∗α

TQ∗α(µ∗x|y −m∗α)
)

exp
(
1
2
mT

αΛα(µx|y −mα)
) κ∗α
κα

with b is the solution to Qx|yb = 1. It is re-emphasised that, according to our notational

trick first introduced in Section 3.1.2, computation is deemed unnecessary where data

is not available. Here, for instance, |Λα| =
∏
λα 6=0

λ−1/2α .

Updating xo

Recall that xo has been marginalised out from the full posterior distribution as dis-

cussed in (5.20) and (5.21). More crucially, the full conditional for xo is available in

closed-form, i.e. xo| . . . ∼ N (Q−1x|yΛαmα,Q
−1
x|y). Therefore, posterior sampling for this

component is straightforward:

1. Perform Cholesky decomposition Qx|y = LLT

2. Generate nm standard normal distribution values z

3. Solve LTu = Λαmα

4. Solve Lxo = u+ z
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Appendix C

Bridge sampling

Univariate Brownian bridge

In the univariate temporal setting, a Brownian bridge is a Gaussian process conditional

on at least one known value (Glasserman 2003, Chapter 3). We first consider the

general case by conditioning on two values at the time of the beginning and ending of

the process of interest. In our notation, the aim is to interpolate x(t2) conditional on

the values of x(t1) and x(t3). Equivalently, we evaluate the conditional density function

π(x(t2)|x(t1), x(t3)). Let v1 and v2 denote the variances of the increments from x(t1)

to x(t2) and from x(t2) to x(t3) respectively. Using Bayes theorem,

π(x(t2)|x(t1), x(t3)) =
π(x(t1), x(t2), x(t3))

π(x(t1), x(t3))

=
π(x(t2)− x(t1))π(x(t3)− x(t2))

π(x(t3)− x(t1))

∝ exp

[
−1

2

(
(x(t2)− x(t1))

2

v1
+

(x(t3)− x(t2))
2

v2

)]
Further simple algebra gives x(t2)|x(t1), x(t3) ∼ N

(
x(t1)v2+x(t3)v1

v1+v2
, v1v2
v1+v2

)
.

The multivariate bridge sampling algorithm in chap-

ter 5

In Chapter 5, the challenge is to numerically evaluate the high dimensional integral

(5.22). Conditioned on the suitable MCMC samples, the leftover tasks are sampling

from the multivariate NIG bridge. This involves sampling from the IG bridge followed
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by sampling from the multivariate Gaussian distribution. Therefore, at the jth climate

increment our algorithm proceeds as follows:

1. Multiply the crossed-correlated posterior samples of the jth observed increments

of xo by the inverse of the Cholesky decomposition of the correlation matrix Σ

to obtain independent samples of climate; these represent the bridged points that

will be conditioned upon simulation of the gridded climate process.

2. Generate gridded variance values conditioned on vj (the variance of the jth in-

crement) and its parameters using the IG bridge algorithm discussed in Ribeiro

& Webber (2003).

3. Conditioned on the gridded IG available from step 2, the gridded climate pro-

cess at different sites are independent Gaussian random variables. That is, the

conditional process xg are, marginally, Brownian bridges.

4. As the final step, we multiply the independent Brownian bridges with the Cholesky

decomposition of Σ to obtain the cross-correlated Brownian bridges which rep-

resent posterior realisations from the full conditionals of xg.
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Särkkä, S. (2013), Bayesian filtering and smoothing, Vol. 3 of Institute of Mathematical

Statistics Textbooks, Cambridge University Press, Cambridge.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P. & Van Der Linde, A. (2002), ‘Bayesian

measures of model complexity and fit’, Journal of the Royal Statistical Society: Series

B (Statistical Methodology) 64(4), 583–639.

Stuiver, M. (1999), ‘Gisp2 bidecadal oxygen isotope data’.

URL: http://doi.pangaea.de/10.1594/PANGAEA.55531

Stuiver, M. & Grootes, P. M. (2000), ‘Gisp2 oxygen isotope ratios’, Quaternary Re-

search 53(3), 277–284.

Sweeney, J. (2012), Advances in Bayesian model development and inversion in multi-

variate inverse inference problems with application to palaeoclimate reconstruction,

PhD thesis, PhD Thesis.

115



Tanner, M. A. & Wong, W. H. (2010), ‘From EM to data augmentation: the emergence

of MCMC Bayesian computation in the 1980s’, Statist. Sci. 25(4), 506–516.

URL: http://dx.doi.org/10.1214/10-STS341

Thomas, E. R., Wolff, E. W., Mulvaney, R., Steffensen, J. P., Johnsen, S. J., Arrow-

smith, C., White, J. W., Vaughn, B. & Popp, T. (2007), ‘The 8.2 ka event from

greenland ice cores’, Quaternary Science Reviews 26(1), 70–81.

Tierney, L. & Kadane, J. B. (1986), ‘Accurate approximations for posterior moments

and marginal densities’, J. Amer. Statist. Assoc. 81(393), 82–86.

Tingley, M. P., Craigmile, P. F., Haran, M., Li, B., Mannshardt, E. & Rajaratnam, B.

(2012), ‘Piecing together the past: statistical insights into paleoclimatic reconstruc-

tions’, Quaternary Science Reviews 35, 1–22.

Tingley, M. P. & Huybers, P. (2013), ‘Recent temperature extremes at high northern

latitudes unprecedented in the past 600 years’, Nature 496(7444), 201–205.

Wackernagel, H. (2003), Multivariate geostatistics, Springer.

Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P. & Jetel, M. (2011), ‘Structure and

origin of holocene cold events’, Quaternary Science Reviews 30(21), 3109–3123.

Wikle, C. K. & Berliner, L. M. (2005), ‘Combining information across spatial scales’,

Technometrics 47(1), 80–91.

116


	Abstract
	Acknowledgements
	Publications
	List of Tables
	List of Figures
	Chapter Introduction
	Statistical motivation
	Overview of contributions
	Outline of chapters

	Chapter Palaeoclimate time series and statistical methodology
	Applications
	Oxygen isotopes from ice cores
	Pollen data from sediment cores
	Climate data products

	Statistical inference for multiple misaligned time series
	Bayesian inference for hierarchical models
	Hierarchical models
	Independent increment process prior distributions
	Computation of posterior distributions
	Marginalisation of latent processes
	Simulation-free inference
	Simulation-based inference
	Some practical computational aspects


	Summary remarks

	Chapter Toy example
	A simple model formulation
	A two-stage hierarchical statistical model with known parameters
	Notation tricks associated with temporal misalignment
	Posterior distributions

	Simulation study
	A simulated data set
	Joint posterior distributions and pathwise summaries
	Marginal posterior distributions and pointwise summaries
	Comparison of interpolants

	Joint versus separate inference
	Summary and discussion of outstanding challenges for later chapters

	Chapter Joint inference of multiple processes with different time supports
	A three-layer hierarchical statistical model
	Data layer
	Process layer and temporal change of support
	Parameter layer

	Bayesian inference
	Posterior distributions
	Stage 1: simulation-free computation of model parameters
	Stage 2: summaries of latent process at an arbitrary time grid

	Application to two Greenland ice core data sets
	Exploratory data analysis
	Model-fitting results
	Case study of the 8.2ka event

	Model validation
	Model choice for the cross-correlation function
	Checking for model identifiability

	Discussion

	Chapter Joint inference of multiple volatile processes with time uncertainty
	Problem setting
	A four-layer hierarchical statistical model
	Main notation and posterior distributions
	Main assumptions
	Data layer
	Calibration layer
	Process layer
	Parameter layer

	Bayesian inference
	A modularised Bayes approach
	Modern analogue module
	Chronology module
	Marginal data posteriors and reconstruction module

	Summary of the modularised MCMC algorithm

	Application to three Finnmark pollen data sets
	Background
	Model-fitting results
	Case study of the Younger Dryas event

	Sensitivity analysis
	Discussion

	Chapter Conclusion
	Summary
	Future directions

	Appendix Implication of different data supports in chapter 4
	Appendix MCMC for the reconstruction module in chapter 5
	Appendix Bridge sampling
	Bibliography

