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ABSTRACT (148 words) 

The paper proposes a random process traffic volume model based on wavelet analysis 

(WA) and Bayesian Hierarchical methodology (BHM). The model has potential 

applications at junctions where a regular traffic condition data collection system (such 

as a loop-detector) is not established or is malfunctioning  for a considerable period of 

time. Unlike typical short-term forecasting algorithms, large traffic flow datasets 

including information on current traffic scenarios are not required for the proposed 

model. A non-functional daily trend of urban traffic flow observations is established 

incorporating discrete WA where the variations in the traffic flow over the trend are 

modelled using BHM. The time-varying variability (within day) of the urban traffic 

flow observations from an intersection has been established to be an intrinsic 

character of the data – it is not clear what you are trying to say here – if you mean 

what it states, this is nothing new. A case study has been performed at two busy 

junctions in the centre of Dublin to validate the effectiveness of the strategy – which 

strategy?. 



1 INTRODUCTION 

Continuous traffic condition data collection from a large number of junctions in an 

urban transport network is important for use in the Urban Traffic Control (UTC) 

systems of today. Although UTC systems are equipped with sophisticated 

computational and mechanical tools, it is often possible to have several junctions in an 

urban transport network where traffic conditions (e.g. volume, speed or density) data 

is not collected regularly (minor intersections). In addition, there can be cases in a 

network where the data collection system (loop-detector or video imaging system) is 

not working or is out of service for a considerable period of time. A possible solution 

to such problems is the development of a traffic volume model which is not directly 

dependent on recent past and real-time information on traffic flow observations.  

 

This paper develops a random process traffic volume simulation model using wavelet 

analysis (WA) and Bayesian Hierarchical methodology (BHM). The potential 

application of the proposed simulation model depends on a novel and unique concept 

it is not clear to me on the basis of what you have written here that it is unique – can 

you be more explicit about why it is unique and different to the work of others please 

of modelling the daily trend underlying the traffic flow over a day in a non-functional 

manner using discrete WA and subsequently capturing the time-varying variations of 

the traffic flow observations over the trend implementing a BHM.  

 

The proposed discrete WA based non-analytic trend modelling captures the long-term 

change of the mean level of traffic flow observations in an efficient and flexible 

manner. In transport modelling WA was introduced primarily for developing 

automatic incident detection algorithms [Samant and Adeli (2000), Adeli and Samant 



(2000), Adeli and Karim (2000), Karim and Adeli (2002), Teng and Qi (2003) and 

Karim and Adeli (2005)]. It is only recently that researchers in Intelligent Transport 

Systems (ITS) have shown interest in using this technique for extracting useful 

information from the existing archived data related to traffic conditions. The traffic 

flow time-series observations (non-stationary data) are required to be transformed to a 

stationary process for being modelled using conventional time-series techniques 

(Chatfield, 2004). The advantage of the application of wavelet analysis is in the 

inherent capability of accounting for non-stationary time-series. In wavelet analysis 

based traffic flow modelling, the multi-resolution analysis (MRA) technique (Mallat, 

1989) has the potential to be used. This technique, with the advantage of a fast 

computational algorithm, has been used in feature or pattern extraction at different 

scales in data/image analysis and can be used as well for multi-scale forecasting of 

traffic flow.  The technique of de-noising using wavelet pre-processing (Sun et al. 

2004) has been used by a few researchers for increasing the efficiency of existing 

short-term traffic flow forecasting models. Chen et al. (2004) combined a wavelet 

transform with the Markov model to forecast traffic volume. In traffic pattern 

modelling, varied studies on optimized aggregation level (Qiao et al. 2003); data 

reduction (Venkatanarayana et al. 2006) and mesoscopic-wavelet model (Ghosh-

dastidar and Adeli 2003) have been carried out. Due to very limited research on 

wavelet based traffic flow modelling in highly congested metropolitan areas there is 

scope for further exploration in this field.   

 

The use of Bayesian statistics is quite recent in the field of traffic flow modelling and 

forecasting.  Some work has been done in short-term traffic flow forecasting using 

Bayesian networks (Zhang et al., 2004), Hierarchical regression models (Tebaldi et 



al., 2002), Bayesian SARIMA models (Ghosh et al. 2007). No literature is available 

so far on the application of wavelet analysis and subsequent analysis of the 

randomness using BHM to model traffic flow. 

 

2 TRAFFIC FLOW OBSERVATIONS 

The aim of the study in this paper is to develop a random process traffic volume 

model to simulate univariate traffic flow time-series data for urban signalised 

intersections. The proposed model is applied to several intersections in the centre of 

Dublin to describe and evaluate the methodology. The study at two representative 

junctions (TCS 183 and TCS 439) is presented in this paper. The univariate traffic 

flow time-series data used for modelling are obtained from the inductive loop-

detectors embedded in the streets of both junctions as part of the urban traffic control 

(UTC) data collection system used in Dublin. A map of the junctions is given in 

figure 1. Junction TCS 183 is four-armed with one-way traffic on two approaches. 

Tara Street (one-way) has four lanes, with traffic flowing from south to north. The 

traffic volume passing through Tara Street, measured on the loop-detectors numbered 

1, 2, 3, 4 are continuously recorded. The junction TCS 439 is a four-armed junction 

with one-way traffic on both – refers to two – may need to explain why this is not four 

approaches. The traffic volume passing through Townsend Street, measured on the 

loop-detectors numbered 1, 2, 3 is used in describing and evaluating the proposed 

traffic volume model. 

 

The data aggregation interval is unique to the data collection system of the existing 

urban traffic control system of any city. The data interval can vary from a few seconds 

to one hour. In short-term traffic flow forecasting models, data aggregate intervals 



from 3 min. to 30 min. are used based on the forecasting algorithms (Xie et al. 2007). 

In view of the wavelet analysis techniques to be applied on the traffic volume 

observation a short time interval of 5 min. is chosen for this paper.  In the case of an 

urban transport network, the weekend travel dynamics is inherently different from the 

travel dynamics during weekdays. In this study, the modeling is essentially carried out 

on the data observed during weekdays. A plot of the traffic flow data from both  

junctions in vehicles per hour (vph) against time is shown in figure 2.  

 

3 NON-FUNCTIONAL TREND MODEL 

 

3.1 Multi-Resolution Wavelet Analysis (MRWA) 

The wavelet transform provides a time-frequency representation of any signal/time-

series data. The basis of wavelet analysis is decomposing a signal into shifted and 

scaled versions of the original (or mother) wavelet. MRWA uses techniques by which 

different frequencies of a signal are analyzed with different resolutions by using an 

efficient numerical algorithm. 

  

The discrete wavelet transform (DWT) (Mallat, 1989) of a signal X(t) consists of the 

collection of coefficients 
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where < *, * > denotes inner product, t is time, { ( )} jd k are the detail coefficients at 

level j (j = 1,2,…J) and { ( )} Jc k are the approximate coefficients at level J. The signal 

X to be analyzed is integral-transformed using a set of basis functions 



   22 2
j

j

j k t t k 
                       (2) 

which is constructed from the mother-wavelet  t by a time-shift operation (k) and a 

dilation operation (j). The function ( )J k t  is a time shifted version of the mother-

wavelet scaling function ( ): ( ) = ( ). ( )J J k J Jt t t k t     is a low-pass function which 

can separate the low frequency component of the signal. Thus DWT decomposes a 

signal into a large timescale (low frequency) approximation and a collection of details 

at different smaller timescales (higher frequencies).  

The original signal can be reconstructed back from the decomposed approximation 

and the detail components. Thus, the original signal can be represented as, 

     J j

j J

X t A t D t


           (3) 

where,  JA t  is the reconstruction of the approximation coefficients Jc  at level J and 

 jD t is the reconstruction obtained from the detail coefficients jd  at level j. In the 

reconstructed approximation ( JA ) and in the reconstructed details obtained at each 

stage/level (D1, D2, D3 … DJ) the numbers of data points remain the same as the 

original dataset. 

3.2 Trend Model 

The ‘trend’ of a time-series data can loosely be defined as the ‘long-term’ change of 

the mean level of the data (Chatfield, 2001). In the daily trend model of the traffic 

flow observations from an urban signalised intersection, the word ‘long-term’ 

indicates stability over time on a daily basis. In this study, MRWA is used to develop 

a representative daily trend model underlying the traffic flow observations over a day 

(Ghosh et al., 2006).  

 



In this study, DWT associated with the basis Daubechies’ 4 (db4) is used to 

decompose the signal (time-series traffic flow observations) into different time scales. 

Initially, the original signal is decomposed into approximation coefficients c1 (low 

frequency/fluctuations or variability) and detail coefficients d1 (high 

frequency/fluctuations or variability). The approximation coefficients c1 (relative low 

frequency components) are again decomposed to approximation coefficients c2 (low 

fluctuations) and detail coefficients d2 (high fluctuations) at the next level. This 

procedure is repeated for further decomposition. The aim of repeating the 

decomposition procedure is to find an optimum approximation level for extracting the 

trend in the data. The optimum approximation level is the one in which the 

reconstructed approximation coefficients, Am (m is the optimum approximation level), 

are the optimal smoothed estimate of the traffic flow data which can truly represent 

the traffic flow pattern on an average day. This is essentially a de-noising technique in 

signal processing. The local variability in traffic flow observations due to signal 

control in the urban arterials is considered as the noise (for the mathematical 

treatment) in this methodology. The traffic flow pattern at any particular approach at 

any intersection in an urban transport network is similar for weekdays. However, 

there can be some day-to-day variability due to other factors like, the day of the week, 

accidents or recurrent congestion in some other part of the transport network etc. 

These factors are uncontrollable and cannot be modelled as such. So, to obtain a 

‘regular trend over an average day’, the Am values over some regular days 

(approximately 20 days in this study) are to be averaged for a single day. The average 

trend has a non-analytical functional form and has better flexibility in representing the 

mean traffic flow over an average day. 

 



In the case study, this methodology of finding a ‘regular trend over an average day’ is 

applied to univariate traffic flow observations obtained collectively over each 5 

minute interval from the loop detectors at  intersections TCS 183 and TCS 439 in 

Dublin. The date 15th June 2005 is chosen arbitrarily as a regular weekday for the 

modelling. A plot of the traffic flow observations from the chosen sites on that day is 

given in figure 2, where the traffic flow data series shows a non-stationary nature. 

Wavelet analysis can handle non-stationarities unlike other time-series modeling 

techniques where this issue is required to be separately dealt with and transformation 

of the time-series data is required to be performed (Ghosh et al., 2005). The traffic 

flow observations over twenty days i.e. four weeks (as weekends are not included), in 

the month of June-July from the two chosen sites are then decomposed into three 

levels of resolution using MRA with Daubechies’ 4 wavelet basis function. The three 

different levels represent three different time scales. The wavelet coefficients for 

approximations and details are then reconstructed at all three levels. For any 

modelling purpose the reconstructed values of the approximation and detail 

coefficients are always used in this study. At each level, during decomposition the 

high frequency part of the data is separated from the low resolution or the low 

frequency part. The low frequency part at level three is quite smooth and can be used 

as a representative of the overall trend over a day in the traffic data. Hence, the third 

level is considered as the optimum level of decomposition to obtain optimum 

smoothed estimates of the times-series data. As an example, the approximations at 

level three, and the details at level one, two and three of the 5 minute aggregate traffic 

volume from intersection TCS 183 on 15th June 2005 are plotted in figure 3. To model 

a representative trend, level three approximations – do you mean three level 

approximations? If not, why choose level 3 for the approximation?  - explain of the 



traffic flow time-series observations over 20 days are taken. An average over 20 days 

of the level 3 reconstructed approximation coefficients for a single day is used to 

model the representative daily trend for the two chosen approaches from the two 

chosen intersections. Explain why? The selection of the average coefficients helps to 

reduce the effect of certain uncontrollable conditions as described before. In figure 

4(A) and (B), the ‘regular trend over an average day’ is plotted over the traffic flow 

observations on 15th June 2005. From the graphs – which graphs?  You will need to 

be specific as to what the reader should be looking at in the figures because it is not 

clear it can be observed that the simple trend provides a very good approximation of 

the traffic volume on any arbitrary day. 

 

A plot of the residuals from junctions TCS 183 and TCS 439 is given in figure 5. The 

statistical analyses of the residuals are given in Table 1. Mention in the text some of 

the more important relevant statistics from this Table.  The ‘non-functional daily trend 

model’ forms the skeleton of a background model for simulating traffic flow at an 

urban intersection. The modelling of the residual obtained after fitting the trend helps 

to establish a tight simulation interval. 

  

4 RESIDUAL MODEL 

4.1 Crude Residual Model 

In statistical analysis, residuals with random variability are generally modelled as 

Gaussian distribution (Chatfield, 2004). For developing a crude model of the 

residuals, a histogram of the residual data on 15th June 2005 is plotted in figure 6(A). 

From the histogram of the residuals it is evident that the residuals can be 

approximately modelled as a normal distribution. The normal probability density fit of 



the residuals is plotted on the histogram in figure 6(A). The normal density fit 

matches the histogram only crudely. A confidence interval on the ‘regular trend over 

an average day’ can be provided based on this residual model. The following equation 

is used in simulating the confidence limit of this background model based on ‘regular 

trend over an average day’. 

                where,  ~ N 0,sim trnd res res res   y A          (4) 

where, simy  is the simulated traffic volume from the background model; trndA  is the 

average value of level three approximation obtained from the trend model; res is the 

mean of the residual dataset and res is the random part of the residuals. res values 

are randomly generated from a normal distribution with mean zero and standard 

deviation   which is the sample standard deviation of the residuals. A 95% 

confidence interval of the residuals is used to form the confidence limit of the 

background model.  

 

In figure 6(A) and 6(B) the original traffic flow observations on 15th June 2005 are 

plotted along with simulated confidence intervals from the background model. Most 

of the observations fall within the confidence limits. This proves that the simplistic 

background model based on ‘regular trend over an average day’ can be used as an 

approximate traffic volume simulation model for the intersections where continuous 

information on traffic conditions is not available. 

 

It is observed from figure 5 that the spread of the residual data points around the mean 

value is not uniform. The variability of the residual data in off-peak hours of early 

morning and late night is much less than the variability of the same during peak hours 



of the day. The variability is the highest during the evening peak hours. This non-

uniform variability signifies that the variance of the residual should not be estimated 

as a constant parameter for an entire day, but as a variable varying with the time of the 

day. A bayesian hierarchical model is introduced at this point as a standard statistical 

method to model the residues with its time varying variance. 

 

4.2 Bayesian Hierarchical Residual Model 

In simple words, the basic idea behind the Bayesian hierarchical model is to develop a 

parametric statistical model with parameters which are represented by other 

parametric statistical models (i.e. it is doubly stochastic in nature). The essence of 

hierarchical model is that the dependencies among variables in a statistical model can 

be defined more easily with a tree-like structure. In the case of a Bayesian hierarchical 

model, while calculating posterior density (Lee, 199x), priors which themselves 

depend on other parameters not included in the likelihood function can be accounted 

for.  

In this study, the variance of the residual is dependent on time and has to be modelled 

accordingly using another parametric statistical model. Hence, the residual obtained 

from the 5 minute aggregate traffic flow observations on 15-06-2005, after fitting the 

trend model, are further modelled using a Bayesian hierarchical model to account for 

the time-varying nature of the variance of the residual dataset. If the R is the vector of 

the residual, then in a normal hierarchical model, 

 2~ N ,                  1,2....t tm t TR          (5) 

where, m is the sample mean of the residual on 15-06-2005 and t  is the standard 

deviation of the residual for each time instant denoted by a subscript t. As 5 minute 

aggregate traffic volume is modelled, the vectors   and R  are both of dimension 



{Tx1} where T is the number of time intervals or time instants in a day (for 5 minute 

aggregate traffic flow observations, T = 288) . The variance 2 , of the residual dataset 

R changes with the time of the day. To model this time-varying variability of the 

variance, the following parametric distribution is proposed. 

 2log( )~N log( ), y                                         (6a) 

which leads to  2~LN log( ), y                  (6b) 

As  is always positive, a lognormal distribution is taken in equation 6 to ensure that 

all t  lie within  0, . The lognormal distribution for each t  is centred at yt with 

standard deviation of  . The variances of the high resolution components (sum of 

level 1, 2 and 3 reconstructed detail coefficients) from the 20 day traffic flow 

observations calculated over each hour of a day are considered as the initial estimates 

of the standard deviation of the residual (yt) for that hour of the day. The elements of 

the vector y are the same for all time instants within the same hour of the day. The 

values of the vector y of dimension {Tx1} are calculated from the 20 day dataset and 

these values are constant for traffic flow observations on an average day at the 

particular intersection TCS 183 considered in this study. Hence, the Bayesian 

hierarchical model developed in this study can be considered as applicable to any 

arbitrary day of the year. The variance 2 of the lognormal distribution of vector  is 

assumed to follow a uniform distribution, within a range  0,k  

  ~ U 0,              k k            (7) 

where, k is an arbitrary constant signifying the maximum limit of the values of  . The 

exact value of k does not influence the estimation process. In this study the equations 

5, 6b and 7 define the Bayesian hierarchical model for the residuals obtained after 



subtracting the regular average trend from the traffic flow observations on 15th June 

2005. 

In the Bayesian hierarchical model, the unknown parameters to be estimated are 

( 1 2 288, ...........   ) and  . These unknown parameters are represented by a vector 

 1 2 288, , ...
T

   ξ . To estimate the vector  the Bayesian estimation technique 

(Tanner 1996; Lee 1997) is to be used. For the Bayesian inference, the posterior 

density of the normal hierarchical model is 

       , , ,p p L L   R t R t t        (8) 

where,  ,p  R t is the posterior density of  ;  ,L  R t is the likelihood function of 

  and  ,L   t is the likelihood function of  ;  p   is the prior density of 

parameter  . According to equation 5, R is assumed to follow a normal distribution. 

Hence, the likelihood function of given the vector R and the time instant vector t 

(unit time interval = 5 minute) is 
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Similarly according to equation 6b where is assumed to follow a likelihood 

function, the likelihood function of given , y and t, 
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 p   is equal to a constant as the prior density of is assumed as flat on the range 

 0, . Hence, the posterior density from equation 8 is 
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which yields,  
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             (12) 

By integrating out the other unknown parameters except for the one whose 

distribution is to be estimated, the ‘marginal distributions’ of the each of the unknown 

parameters can be found out from the integral in equation 12. The computation of the 

marginal distributions of the unknown parameters in  involves evaluation of a 

complex integral with problems of high dimensionality. In Bayesian estimation, 

numerical integrations are often performed to compute the integrations for which the 

analytical solution is intractable. However, numerical integration may lead to too 

many approximations and may even become intractable for large models. In many 

high dimensional cases of Bayesian analysis, certain refinements of Monte Carlo 

integration methods such as ??? are often used (Carlin1996). There are different non-

iterative and iterative variations of these refinements. Markov Chain Monte Carlo 

(MCMC) is the particular iterative variation of Monte Carlo method in which the 

simulated values are not in iid but are in a Markov chain. In summary, the goal of the 

MCMC is, given a target distribution (x), a Markov chain {xn} is required to be 

constructed whose limiting distribution is (x). There are two popular MCMC 

algorithms, (i) Gibbs sampler (Geman and Geman 1984) and (ii) Metropolis-Hastings 

algorithm (Metropolis et al. 1953, Hastings 1970)  

 



In the MCMC method, to simulate the marginal probability distributions for the 

unknown parameters in the vector  1 2, , ........ T    , given an initial condition 

 (0) (0) (0) (0)
1 2, , ........ T     the following 289 steps are to be iterated (i denotes the 

number of iteration): 

1.       Sample 1i  from  1 ( ) ( ) ( )
1 2, ..... , ,i i i i

T tp    
y t  using Gibbs sampler 

technique        

2.       Sample 1
1
i  using Metropolis Hastings technique   

 . 

. 

289.     Sample 1i
T
 using Metropolis Hastings technique 

       

The initial conditions  (0) (0) (0) (0)
1 2, , ........ T     are as follows,   
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              (13) 

In step 1, the Gibbs sampler technique is used to simulate the distribution of  . From 

the posterior density in equation 12, a full conditional distribution for   is as follows, 
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The full conditional distribution of   can be observed as an inverse gamma 

distribution with parameters 
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where the density function of the inverse gamma distribution is as follows, 
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For simplicity the superscript denoting the number of iterations is not used in 

equations 14 and 15. Steps 2 to 289 are similar in nature and are used to simulate the 

values of  1 2, ........ T    in each iteration. The simulation of  is done using 

Metropolis-Hastings technique. The candidate values of each of the elements of the 

vector  are simulated from the following proposal distribution, 

 
2

~ LN log( ),i i 
  

 y                   (16) 

 

The simulated value of iat each iteration is accepted following the Metropolis 

algorithm. According to this algorithm, each simulated value of the elements of the 

vector iin each iteration is accepted with a probability 
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or 1 whichever is minimum, with the an ?? acceptance criteria (Ghosh et al. 2007). 

The steps 1 to 289 are repeated for 10000 times to simulate 10000 values for all the 

unknown parameters. The simulated values of   for both the junctions are plotted in 

two graphs in figure 7(A). The simulations show high convergence towards a constant 



value of about 0.4 and 23 for junction TCS 183 and TCS 439 respectively.  Comment 

on large difference – why so? In the case of the vector of time varying standard 

deviation , all of the two eighty-eight elements of the vector are simulated 

separately. Instead of showing a plot of 10000 simulated values of each t, the mean 

of the simulated values of each t are shown in figure 8(A) and 8(B). The sample 

standard deviation obtained from the previous Gaussian noise model of the residual is 

shown as a horizontal line in the same figure. What you are presenting in these figures 

is not clear – can you be very explicit about what you are trying the reader to interpret 

from figures 8(a) and 8(b) and explain this in the text.  The estimates of obtained 

from the Bayesian hierarchical model change with the time of the day. The estimates 

during the peak hours are much more than the estimated values t during the rest of 

the day and the estimates during the early hours in the morning are the lowest of all. 

You are presenting very large differences here without sufficient explanation – can 

you expand on what the differences mean please.  The nature of the variability of the 

variance of the residual conforms to the spread of the residual data points in figure 5 – 

it is not clear how they conform? .  

 

5 ANALYSES OF RESULTS 

In this section a discussion of the 5 minute aggregate traffic flow simulations for 

junctions TCS 183 and TCS 439 on 15th June 2005 obtained by using the WA-BHM 

and the WA-Gaussian Noise Models is presented.  

In figures 6(A) and 6(B), a 95% confidence interval for traffic flow data from TCS 

183 and TCS 439 on 15th June 2005 is simulated using the WA-Gaussian Noise 

Model. From the graph, it can be observed that in both cases, the simulated intervals 

follow the nature of the traffic but fail to include all the observed data points during 



evening and morning peak hours. To illustrate the effectiveness of the WA-BHM 

model, a 95% confidence interval similar to the Gaussian noise model is constructed 

on the regular average trend for traffic flow data from intersections TCS 183 and TCS 

439 on 15th June 2005. The original 5 minute traffic flow observations on 15th June 

2005 are plotted along with the simulated 95% confidence limit in figure 9(A) and 

9(B) respectively. Unlike the WA-Gaussian Noise model, all the traffic flow 

observations on 15-06-2005 – use the same date format throughout the paper fall 

within the simulated confidence limits. Being a Bayesian method, the confidence 

limits adapt according to the variability of the residual data. This adaptation proves 

most effective during the evening peak hours where most of the observations fall 

outside the simulated limits from the Gaussian noise model. The number of traffic 

flow observations obtained from TCS 183 and TCS 439 falling outside the simulated 

interval for both the models are given in Table 2.   

The aim of constructing a simulated traffic volume interval lies in including the 

extremes of the original traffic volume observations within the simulated limits. 

Hence, the upper limit of the simulated traffic volume range should consistently 

account for the maxima points in the traffic flow data while the lower limit should 

account for the minima points. The maxima and minima points of the traffic flow 

observations on 15-06-2005 from TCS 439 and TCS 183 are plotted along with the 

simulated traffic volume ranges from WA-Gaussian Noise model in figure 10(A), 

10(B) respectively. The same for the WA-BHM model are plotted in figures 11(A) 

and 11(B). By comparing the plots, it can be seen that the simulated traffic range from 

the WA-BHM model can better match the rapid variability of traffic flow at any busy 

urban signalised intersection. The error estimates of the extreme points over a day and 

during evening and morning peak hours are given in Table 2. The maxima and 



minima point errors over a day are seen to be higher than the same during AM peak 

and PM peak hours. This justifies that the WA-BHM model is more effective in 

simulating traffic volume during busy peak hours.  The justification you have 

provided is insufficient – can you expand more on why this model is more useful than 

using the models of others?  It would strengthen it if you could compare the results of 

this model to that of others and give some examples with numbers of why your model 

is better. 

 

6 CONCLUSIONS 

A novel discrete wavelet analysis and Bayesian hierarchical methodology based 

traffic volume model for signalised urban arterials has been introduced in this paper.  

Why was this done?  What purpose does it serve?  How is it different to the models of 

others?  A non-functional wavelet-based ‘regular average daily trend’ is obtained by 

isolating the low resolution component from the high resolution components of a 

univariate traffic volume time-series dataset. A Bayesian Hierarchical methodology is 

further proposed to model the time-varying variability (within day) of the high 

resolution components. This time-varying variability has been established to be an 

intrinsic property of the traffic flow time-series dataset – is this a new finding – have 

others not found this out before?. The potential application of this random process 

traffic volume model lies in simulating traffic flows at junctions where real-time 

traffic conditions data collection system are not available or out of service for a 

considerable period. This methodology can also be used in developing an automatic 

incident detection algorithm using the concept of variability of variance developed in 

this paper – you have not done any work in this paper on incident detection so it 

should not appear in the conclusions.  Your conclusions should also include the 



benefits in terms of policy – what difference will using your model make in the real 

world? – again this relates back to the justification for the research. 

.  
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In relation to the figures, you will have to present the data so that it can be 

clearly interpreted in black and white – some of your figures are relying on 

colour to differentiate and this is not acceptable for papers submitted to 

journals.   
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Figure1  Diagram of the Junction TCS 183 and TCS 439. 

 

 

 

 

 

 



 

 

 

Figure 2 Traffic Flow Observations on 15-06-2005 at Junction TCS 183 and 

TCS 439 



 

Figure 3 Reconstructed Approximation Coefficients at Level 3 and 

Reconstructed Details Coefficients at Level 1, 2, 3 on 15th June 2005 

 



 

Figure 4(A)   Trend and Original Observations on an Arbitrary Day (15-06-

2005) from TCS 183 
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Figure 4(B)   Trend and Original Observations on an Arbitrary Day (15-06-

2005) from TCS 439 
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Figure 5  Dot Plot of Residual on 15-06-2005 
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Figure 6(A)  Simulated and Original Traffic Volumes on 15-06-2005 from TCS 

439. 

You will need to make the lines on these figures distinguishable if published in 

black and white as colour will not be an option. 

 

 

The legend on the y axis in Fig 7 is not clear. 



 

Figure 6(B)  Simulated and Original Traffic Volumes on 15-06-2005 from TCS 

183. 
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Figure 7(A)  Simulations of Values of from TCS 183(upper) and TCS 439 

(lower). 



 

 

 

Figure 8(A)  Simulations of Values of  for TCS 183. 



 

 

 

 
Figure 8(B)  Simulations of Values of  for TCS 439. 



 
 

 Figure 9(A)  Simulated and Original Traffic Volumes on 15-06-2005 at TCS 

183. 
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Figure 9(B)  Simulated and Original Traffic Volumes on 15-06-2005 at TCS 

439. 
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Figure 10(a) Maxima and Minima points within simulated envelope from Trend    

+ Gaussian Noise model for junction TCS 439. 
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Figure 10(b) Maxima and Minima points within simulated envelope from Trend    

+ BHM model for junction TCS 439. 



 
Figure 11(a) Maxima and Minima points within simulated envelope from Trend    

+ Gaussian Noise model for junction TCS 183. 
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Figure 11(b) Maxima and Minima points within simulated envelope from Trend    

+ BHM model for junction TCS 183. 



 

 Mean of Original 

Observations 

(vph) 

Standard Deviation of 

Residuals 

(vph) 

TCS 183 1301.75 188.28 

TCS 439 379.12 103 

 

Table 1  Statistical Analysis of Residuals from the Chosen Intersections



 

 TCS 183 TCS439 

Maxima Points Error 

(Over a day) 

16.12% 16.9% 

Minima Points Error 

 (Over a day) 

19.5% 18.5% 

Maxima Points Error 

(AM peak    7:30-8:30 am) 

8% 8.5% 

Minima Points Error 

(AM peak    7:30-8:30 am) 

11% 11.9% 

Maxima Points Error 

(PM peak    3:30-4:30 pm) 

12.6% 11% 

Minima Points Error 

(PM peak    3:30-4:30 pm) 

15.8% 11% 

Points outside 

(Trend + BHM model) 

0 0 

Points outside 

(Trend + Gaussian model) 

19 16 

 

Table 2 Error of Extremes 

 

 

 

 

 

 

 

 


