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ABSTRACT: (156 words) 

The existing time series models used for short-term traffic condition forecasting are 

mostly univariate in nature. Generally the extension of the existing univariate time-

series models to a multivariate regime involves huge computational complexities. A 

different class of time-series model called structural time-series model (STM) (in its 

multivariate form) has been introduced in this paper to develop a parsimonious and 

computationally simple multivariate short-term traffic condition forecasting 

algorithm. The different components of a time-series dataset such as the trend, 

seasonal, cyclical and calendar variations can be modelled separately in STM 

methodology. A case study in Dublin city centre with serious congestion is performed 

to test the effectiveness of the forecasting strategy. The results indicate that the 

proposed forecasting algorithm is an effective approach to predict the real-time traffic 

flow at multiple junctions within an urban transport network where the junctions are 

not strictly on the same route or share the same path with the network.  

 

 



INTRODUCTION 

 

Implementation of Intelligent Transportation Systems (ITS) to provide dynamic 

traffic control requires continuous forecasting of traffic conditions in near (short-term 

or less than 1 hour, (Smith et al., 2002)) future. Short-term traffic forecasting is an 

important tool to follow evolution of traffic conditions over time in a transport 

network. This type of advanced forecasting methodologies having a time horizon of 

15 minute or less (Smith et al., 2002) can provide information to support short-range 

operational modifications to improve the efficiency of the network at a finer scale. 

With the increasing need to develop more adaptive (site and time specific) traffic 

management systems, considerable research attention has been focussed on short-term 

traffic forecasting.  

 

The well-known short-term forecasting algorithms can broadly be classified into 

univariate and multivariate approaches. The univariate approach is based on 

modelling traffic condition related variables (such as speed, flow or occupancy etc.) 

utilising observations from any single site, whereas developing a single model 

considering several sites for input and output is termed a multivariate approach. 

Unlike univariate models, these models are capable of capturing the temporal as well 

as the spatial evolution of traffic conditions over time in a transportation network. 

But due to ease of computation, univariate models are more common in short-term 

traffic forecasting literature (Kamarianakis and Prastacos, 2003). 

 

Both multivariate and univariate models can be developed using different empirical 

and theoretical techniques (Van Arem et al., 1997). The empirical approaches (non-



parametric and parametric) employ a fairly standard statistical methodology and/or a 

heuristic method for traffic flow forecasting without referring to the actual traffic 

dynamics. The non-parametric techniques include non-parametric regressions (e.g. 

Davis and Nihan, 1991) and neural networks (e.g. Smith and Demetsky, 1994; 

Vlahogianni et al., 2005). Due to an intrinsic multi-input nature neural network 

models are often favoured in the space-time or multivariate models (Zhang et al., 

1998). The parametric techniques include different time-series models such as, linear 

and non-linear regression, historical average algorithms (e.g. Smith and Demetsky, 

1997), smoothing techniques (e.g. Smith and Demetsky, 1997; Williams et al., 1998) 

and autoregressive linear processes (Ahmed and Cook, 1979; Levin and Tsao, 1980; 

Hamed et al., 1995; Williams et al., 1998; Williams, 2003). Of all autoregressive 

linear processes, seasonal auto regressive integrated moving average (SARIMA) 

models (e.g. Williams et al., 2003 and Ghosh et al., 2005) perform better than other 

time-series techniques (Chung and Rosalion, 2001; Smith et al. 2002).   

 

With a few exceptions (Whittaker et al., 1997; Kamarianakis and Prastacos, 2002; 

Williams, 2003; Kamarianakis and Prastacos, 2003) most of the literature in short-

term traffic forecasting focus on univariate. The available multivariate empirical 

models in the short-term traffic forecasting literature are mainly multivariate 

variations on the existing univariate parametric statistical models, e.g. the multivariate 

ARIMA model (Kamarianakis and Prastacos, 2003), space-time ARIMA model 

(Kamarianakis and Prastacos, 2002). These models can account for the dimension of 

space in a transport network. But the models are computationally demanding as the 

multivariate nature involves estimation of a large number of parameters. Multivariate 



time-series models based on state-space methodology were introduced as a short-term 

traffic forecasting technique by Stathopoulos and Karlaftis (2003).  

 

In this paper, for the first time in traffic flow related studies, multivariate structural 

time-series (MST) models are applied to model traffic flow observations from 

multiple intersections within an urban signalized transport network. In a structural 

time-series model (STM), the evolution of different components of time-series data 

such as the trend, seasonal, cyclical and calendar variations with time can be modelled 

separately. Classical time-series analysis using the ARMA (SARIMA, ARIMAX) 

class of models is based on the theory of stationary stochastic processes. Hence the 

time-series dataset to be modelled using the SARIMA technique is always required to 

be checked for its stationarity. If the dataset is not stationary, then transformations are 

required to be performed to achieve weak stationarity. As STM is not based on this 

theory, no such transformations or checks are required for the application of this 

methodology. The MST models are computationally inexpensive as compared to 

other multivariate time-series models. Missing observations and inclusion of 

exogenous variables like traffic flow observations of other upstream junctions can be 

incorporated comparatively easily in the MST model (Harvey, 1989; West and 

Harrison, 1997; Durbin and Koopman, 2001).  

 

THEORETICAL BACKGROUND 

 

The STM methodology is a particular time-series analysis technique which is set up in 

terms of components which have a direct physical interpretation (Harvey, 1989). The 

different components of STM are the (deterministic and stochastic) trend, seasonal, 



cyclical and calendar variation together with the effect of explanatory variables and 

interventions (outlier and structural breaks). The basic principle behind a STM is 

similar to that of the Holt Winters Exponential Smoothing (HWES) model, but more 

complex. Multivariate STMs are straightforward extension of the univariate STMs 

and involve less computational complexities than the other existing multivariate time-

series techniques. An overview of the univariate and multivariate STM model 

definitions is given in this section. A detailed discussion on this subject is available in 

Harvey (1989) and Durbin and Koopman (2001). A software package called STAMP 

6.0 (Structural Time-Series Analyser, Modeller and Predictor) is used in this study for 

modelling traffic flow observations using STM. 

 

Univariate STM Methodology 

 

A univariate structural time-series model is formulated based on the unobserved 

components which have a direct interpretation in terms of the temporal variability of a 

time series dataset. Consequently the evolution of the components such as trend or 

seasonality over time and their contribution to the final predictions can be observed 

clearly. A univariate STM for a time series dataset y can be described by the 

following general equation involving all possible types of temporal components in its 

form: 
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where, 
t  is the trend, 

t  is the seasonal, 
t  is the cycle, 

t  is the first-order AR 

component and 
t  is the irregular or the random error. For the purpose of traffic flow 

modelling, the univariate and multivariate STM are considered to be comprised of 

three components; stochastic trend, seasonality and irregular. Hence, the equation 1 

reduces to the following form: 
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The stochastic trend component ( t ) represents the long-term movement in a time-

series which can be extrapolated into the future. In the case of traffic flow 

observations over a few weeks from a developed urban transport network, this long-

term movement does not show any significant gradient and should be modelled for 

the local fluctuations. A Markov model of the stochastic trend can be considered in 

this purpose. 
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The irregular disturbance/variance 2

  and the stochastic trend (level) variance
2

  are 

mutually uncorrelated. The t  process collapses to a linear trend if 
2 0  . The 

periodic nature of the time-series dataset is chosen to be modelled using a 



trigonometric specification of the seasonal component as this ensures smooth changes 

in the seasonal as observed in traffic flow time-series data. 
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Where, 
2

j

j
s

  is the frequency, in radians, and the seasonal disturbances 

* and t t  are mutually uncorrelated random normal disturbances with zero mean and 

common variance 2
 . When s is even, the equation 5 at 

2
sj   collapses to 
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Equations 1 to 5 define the STM used in this study. The disturbances of the individual 

components of the STM ( 2

 , 2
  and 2

 ) mentioned in these equations are all 

mutually uncorrelated. The variances 2

 , 2
  and 2

  denote the extent to which the 

individual components, such as the trend or seasonal component will vary with time 

and are called hyperparameters (Lenten and Moosa, 2003) 



The equations 1 to 5 are generally solved in state-space form using Kalman filter 

based algorithms (Kalman, 1960; Harvey, 1989). The hyperparameters and the 

components are estimated using maximum likelihood estimation method.  

 

In some cases, the time series observations to be modelled have dynamic relationships 

with some other independent variables. They are called explanatory or exogenous 

variables and inclusion of these variables in STM, may improve the forecasting 

precision of the models. The inclusions of the explanatory variables change the first 

part of equation 1 to the following form: 
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where, ,i tx   is an exogenous variable, k is the total number of exogenous variables, 

is the time lag and i  is a set of unknown constants. The significance of is that 

in some cases, the lagged value of the dependent variable can be considered as an 

exogenous variable in STM.  

 

Multivariate STM Methodology 

 

Multivariate time-series data can be chiefly classified into two distinct types, Panel 

data and interactive data (Harvey, 1989). In the case of panel data, the time-series 

variables are subjected to the same or similar influences but the individual elements 

do not interact with each other. As the variables follow a similar temporal nature, they 

can be modelled jointly. In contrast, multivariate interactive time-series data consists 



of a set of variables which have some behavioural relationships among themselves 

and interact dynamically with each other. This distinction is important to find out the 

suitable type of multivariate structural time-series analysis technique. The 

multivariate traffic flow observations (i.e. observations from different stations in the 

same transport network) modelled in this paper are considered to be subjected to 

similar influences but not to have any dynamic interaction (detailed explanation in 

next section) and are modelled as panel data.  

 

The panel data can be modelled by a multivariate structural time-series (MST) 

technique where the various components of the different time-series variables are 

allowed to be contemporaneously correlated. Such a type of MST model is referred to 

as, seemingly unrelated time-series equations (SUTSE) (Harvey, 1989). The 

univariate equations described in the previous subsections can easily be extended to 

SUTSE model. 
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where, ty  is a vector of 1N  time-series observations which depends on the 

unobserved trend component , t  seasonal component t  and irregular component t  

which are also vectors.   is the N N  variance matrix of the irregular disturbances. 

In multivariate regime, the equations 3, 4, 5 and 6 change in a similar manner as in the 

case of equation 2. The various unobserved components of the univariate STM now 



become vectors in the MST model and the disturbances of these components become 

N N  variance matrices.  

 

The inclusion of explanatory variables in the MST model is simple and similar to the 

univariate approach described in equation 7. 
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where, tx  is a vector of 1K  explanatory variables. Elements of the unknown 

parameter matrix   can be specified to be zero, thereby excluding certain 

explanatory variables from particular equations. 

 

A vector process ty  is said to be homogenous if all linear combinations of its N 

elements have the same stochastic properties. In a multivariate homogenous system, 

the disturbance matrices are required to satisfy the following equation: 
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where, kq , k = 1,……, g and h  are non-negative scalars and *  is an N N  matrix. 

In these  ?? cases possible assumption of homogeneity in a SUTSE model decreases 

the computational complexity to a great extent. 

 



One of the major advantages of STM methodology is its transparency (Durbin and 

Koopman, 2001). In STM, the different components which make up the time-series 

are modelled separately unlike the SARIMA methodology (e.g. Williams and Hoel, 

2003 and Ghosh et al., 2005) where the trend and seasonal components are eliminated 

by differencing. Hence, in STM it is easy to understand the evolution and contribution 

of each of the components in the final results. In a multivariate regime, MST models 

are straightforward vector extensions of the univariate STM. The SUTSE models do 

not involve estimation of huge co-variance matrices as Vector ARMA (VARMA) 

models.  Due to the recursive nature of the STM models any known structural change 

over time is easy to implement, whereas SARIMA models cannot include such 

structural changes since they are homogenous and stationary in form. Treatment for 

missing values in a time-series is also very simple in STM equations. Explanatory 

variables, outliers, structural breaks etc. can also be easily modelled in a STM 

framework as described before.  Introduction of the same variables in SARIMA 

models require tedious computational efforts. STM is more general, flexible and can 

be easily transferred from a univariate to multivariate regime than the ARIMA class 

of models.  

 

METHODOLOGY 

 

A multi-input multi-output (where the number of input intersections are more than 

number of output intersections) short-term traffic flow simulation and forecasting 

model is proposed in this study for efficient modelling of traffic in a congested urban 

transport network. The proposed model is developed for a set of 15 minute aggregate 



traffic volume observations from different approaches and different intersections of 

the transport network.  

 

Unlike the previous multivariate traffic flow models developed for urban transport 

networks (Stathopoulos and Karlaftis, 2003; Kamarianakis and Prastacos, 2002), the 

locations of the sites of data collection within the transport network are not required to 

be considered in the proposed methodology. The aim of this approach is to develop a 

multivariate traffic flow simulation and forecasting model for multiple intersections 

within a transport network which may not be situated on the same route. As the 

intersections or stations of observations are not situated on the same route it is highly 

unlikely that the same platoon of vehicles will pass through different intersections at 

different time instants. Hence, information about the directions of traffic flow is not 

essential. A SUTSE model is ideal for modelling such multivariate time-series 

observations as the behavioural relationship among the variables are not considered.  

 

As an improvement to the panel data modelling methodology a spatial dimension is 

introduced to the proposed multivariate traffic flow model. The traffic flow 

observations from the nearest available upstream intersection of each of the modelled 

data collection stations are included as explanatory variables to the MST model 

equations. This ensures that the effect of any abrupt change occurring in the upstream 

junction can be accounted for in the model.  

 

APPLICATION OF THE PROPOSED MST MODEL 

Traffic Flow Observations from Urban Transport Network 

 



The proposed multivariate traffic flow forecasting methodology is applied to a 

congested urban transportation network in the city centre of Dublin to test the 

effectiveness of the forecasting strategy. A small network of ten intersections within 

the transport network is chosen for this purpose.  

 

The time interval of traffic flow observation data collection is unique to the data 

collection system of the existing urban traffic control system of any city. The data 

interval can vary from a few seconds to one hour. Short-term forecasting algorithms 

applicable to a traffic management system should have a prediction horizon of 15 

minutes or less (Smith and Demetsky, 1997). The univariate traffic flow observations 

obtained over each 15 minute interval from the inductive loop-detectors situated at 

these ten intersections and their nearest available upstream junctions are modelled 

using the proposed multivariate traffic flow model. There are two important points 

which are required to be checked before applying the proposed methodology. 

 

1. The location and the distance of the sites can be chosen at random. The only 

criteria for the choice is that the average travel time between two sites on the 

same route within the network should not be more than 15 minutes. 

Considering a 30 km/hr free flow speed within a congested urban transport 

network, the radius of the simulation network should not be more than 7.5 

km.  

 

2. The second and the most important point is that the univariate traffic flow 

observations from different data-collection sites should not have behavioural 

or physical relationships among between ?? themselves. If and only if the 



multivariate traffic flow observations behave as a panel data set, the SUTSE 

model can be applied. 

 

In figure 1, a map of the chosen urban transport network at the city-centre of Dublin is 

given. The ten junctions where the multivariate time-series model is applied for short-

term traffic volume simulation and prediction are shown with numbered yellow 

squares in the map. In the figure, the direction of the univariate traffic movement at 

each intersection is shown with a pink arrow. The origin of the pink arrow is marked 

with a numbered dark brown circle which signifies the nearest upstream junction to 

each intersection from which traffic volume data can be obtained. The length of the 

pink arrow signifies the distance between an intersection and its nearest available 

upstream junctions. If this distance is considerably high then it is possible that the 

changes in traffic flow at the upstream junction may not directly influence the traffic 

flow at the downstream intersection.  

 

It is evident from the figure, that the choice of the site locations at which 15 minute 

traffic volume is modelled is random. The chosen intersections are not on the same 

route within the transport network and none of the two stations what are the stations?  

have a distance of more than 7.5 km between them?. Hence, the chosen network of 

ten intersections conforms to the conditions mentioned in point one. The ten 

intersections at which the proposed multivariate short-term traffic flow model is 

applied for simulation and forecasting are termed as output intersections in the rest of 

the text. 

 



The traffic flow observations used for modelling from all the chosen intersections 

were recorded from 3rd November 2003 6:30 a.m. to 26th November 2003 6:30a.m., 

excluding the weekends. A cross-section time-series plot of the traffic flow 

observations from the ten output intersections during 4th and 5th of November in 2003 

is given in figure 2. The plot shows that there is a definite temporal similarity among 

the curves. The output junctions at which the direction of the univariate traffic flow 

fall on the routes towards the city-centre have high traffic volumes during the 

morning peak hours whereas the junctions for which the same fall on the routes away 

from the city-centre have higher traffic volumes during evening peak hours than the 

morning peak. Consequently, the peak hourly volumes from all these ten output 

junctions may not have high positive correlations, but the time of occurrence of the 

maximum traffic volumes passing through the junctions are very similar. Considering 

this contemporaneous correlation among the ten output traffic volume time-series 

datasets, they can be modelled as panel data using SUTSE models. 

 

In table 1 further details about the ten output intersections are given along with the 

name of the nearest upstream intersections at which traffic flow observations are 

available. The 15 minute aggregate univariate traffic volumes from the mentioned 

loop-detectors in the upstream junctions are used as explanatory variables in the 

SUTSE model equations. In equation 5.9, the elements of the matrix  are so chosen 

that the forecasts from each intersection is affected only by the changes at its 

upstream junction and not by the changes at other upstream intersections.  

 

Time-Series Model 

 



All of the ten series of traffic flow observations are modelled using homogenous 

SUTSE models with equation 9 and equations 3, 4, 5 and 6 in their vector forms. The 

estimated values of the trend/level component and the standard deviations of the 

disturbances of the components are provided in table 2. The elegance of the STM lies 

in the meaningful depiction of the components as shown in figure 3. In the figure, 

trend, seasonality and the random error components (obtained from the traffic flow 

observations collected from output station 2, as an example) are shown individually in 

three different subplots. The subplot (A) shows the original traffic flow data series 

along with a ?  trend component as simulated and predicted from the proposed 

multivariate model. The subplots (B) and (C) of the figure individually show the 

seasonal and the irregular components respectively, simulated and predicted from the 

MST model.  The hyperparameter estimates (table 2) and the plot of the seasonal 

component show that the seasonality is deterministic in nature. On the other hand the 

trend component is stochastic and depicts the within-day local fluctuations in the data. 

The trend component varies about a zero mean value validating the assumption that 

there is no slope component latent within the traffic flow dataset.  

 

For all of the ten output junctions, 50 points in the future are forecasted (figure 4). 

The traffic flow data obtained on the 26th November 2003 from 6:30 a.m. to 8:00 

p.m., i.e. the data collected in the next 12.5 hours (50x15 = 750minute = 12.5hours) 

are compared with these forecasts. The forecasting precision (MAPE) from the 

proposed SUTSE model for each of the ten output junctions with and without 

considering the influence of upstream junctions are given in figure 5 in the form of a 

bar diagram. Among the ten output intersections the upstream junction is situated 

directly upstream of  the output station in six cases. These six cases have been 



indicated in the bar diagram by a coupling sign shown on the bars.  It is observed 

from figures 4 and 5 that the MAPE values for the forecasts at these output stations 

improve significantly when the traffic flow observations from the nearest available 

upstream junctions are incorporated in the SUTSE model as explanatory variables. 

The forecasting precision for the remaining four output junctions do not improve 

when the traffic flow observations from the nearest available upstream junction are 

incorporated in the model. These are the junctions not having any upstream junction 

nearby from where the loop-detector observations can be available. In such cases, the 

traffic flow at the nearest upstream junction do not directly influence the traffic at the 

output station due to the presence of excessive merging and diverging manoeuvres in 

between the upstream and the output junction. Hence, the inclusion of the traffic flow 

at far away upstream junctions as exogenous variables in the proposed model 

negatively affects the performance of the model. Thus it is preferable to ignore the 

influence of the traffic volume changes at an upstream junction if it is not located at 

an immediate vicinity of the output station.   I think it would be important to try to 

justify why this is. 

 

The MAPE values from the univariate SARIMA (2,0,1)(0,1,1)96 (Ghosh et al. 2005) 

model for the traffic flow observations at the ten output intersections is shown in table 

3 in comparison to the MAPE values from the proposed MST model for the same 

junction. In most of the cases, the proposed multivariate traffic flow time-series model 

prove to be more accurate than the ordinary univariate SARIMA model for short-term 

simulation and forecasting of traffic volume in a congested urban network.  

 

CONCLUSIONS 



 

In this paper a structural time-series methodology is applied to develop a multivariate 

short-term traffic flow forecasting model for an urban signalized transport network. 

This is the first instance of applying STM to short-term traffic condition related 

studies. I think you would need to include how the results from STM might compare 

with other models here as the reader will be looking for comparisons.  This will help 

justify the use of this technique and its advantages.  The model developed in the paper 

is observed to have achieved some distinct advantages over the existing well-known 

univariate SARIMA time-series model. These are: 

 

 The model is capable of simultaneous simulation and modelling of traffic 

conditions at multiple intersections in an urban signalized transport network 

where it is difficult to model the existing paths and turning movements. 

 

 The multivariate short-term traffic condition forecasting model developed here 

is computationally much simpler and performs more accurately than the most 

of the existing multivariate models.  

 

 In structural time-series model the evolution of each individual component 

(trend, seasonality etc.) of the traffic flow data over time can be traced 

separately. Consequently, the deterministic nature of the seasonal component 

of the traffic volume observations from junctions at urban signalized arterials 

has been established. 

 



 The MST model can include the effect of changes in traffic conditions at one 

or more immediate upstream junctions to improve the predictions at the 

downstream output junction.  

The distance of the nearest available upstream junction from the output 

intersection influences the forecasting precision to a certain extent. Consequently, 

for developing comparatively more efficient and robust multivariate short-term 

traffic flow forecasting algorithms further studies can be performed to incorporate 

the movement of traffic between the upstream junctions and the forecasting sites. 

 

REFERENCES 

Ahmed, M. S. and Cook, A. R. (1979) Analysis of freeway traffic time-series data by 

using Box–Jenkins techniques. Transportation Research Record: Journal of the 

Transportation Research Board, No. 722, pp.1–9. 

 

Chung, E. and Rosalion, N. (2001) Short Term Traffic Flow Prediction. Proceedings 

of the 24th Australian Transportation Research Forum, Hobart, Tasmania. 

 

Davis, G. and Nihan, N. (1991) Nonparametric Regression and Short-Term Freeway 

Traffic Forecasting. Journal of Transportation Engineering, ASCE, Vol. 117, pp. 

178-188. 

 

Durbin, J. and Koopman S. J. (2001) Time Series Analysis by State Space Methods. 

Oxford Statistical Science Series, Oxford University Press. 

 

Ghosh, B., Basu, B. and O’Mahony, M. M. (2005) Time-Series Modelling for 

Forecasting Vehicular Traffic Flow in Dublin. 84th Annual Meeting of Transportation 

Research Board (CD-ROM), TRB, Washington, D. C. 

 



Hamed, M. M., Al-Masaeid, H. R. and Bani Said, Z.M. (1995) Short-Term Prediction 

of Traffic Volume in Urban Arterials. Journal of Transportation Engineering, ASCE, 

Vol. 121(3), pp. 249–254. 

 

Harvey, A. C. (1989) Forecasting, Structural Time Series Models and the Kalman 

Filter. Cambridge: Cambridge University Press. 

 

Kalman, R. E. (1960) A New Approach to Linear Prediction And Filtering Problems. 

Transactions of the ASME - Journal of Basic Engineering, Vol. 82, pp. 35-45. 

 

Kamarianakis, Y. and Prastacos, P. (2002) Space-Time Modelling Of Traffic Flow. 

European Regional Science Association Conference. Available from 

www.ersa2002.org. 

 

Kamarianakis, Y. and Prastakos, P. (2003) Forecasting traffic flow conditions in an 

urban network: comparison of multivariate and univariate approaches. 82nd Annual 

Meeting of Transportation Research Board, (CD-ROM), TRB, Washington, D. C. 

 

Kirby, H. R., Watson, S. M. and Dougherty, M. S. (1997) Should We Use Neural 

Network Or Statistical Models For Short-Term Motorway Traffic Forecasting? 

International Journal of Forecasting, Vol.13, pp. 43-50. 

 

Koopman, S. J., Harvey, A.C., Doornik, J.A. and Shephard, N. (1999a) Structural 

Time Series Analysis, Modelling and Prediction Using STAMP. London: Timberlake 

consultants Press. 

 

Koopman, S. J., Shephard, N. and Doornik, J.A. (1999b) Statistical Algorithms for 

Models in State Spaceusing SsfPack 2.2 (with discussion). Econometrics Journal, 

Vol. 2, pp.113-166. 

 

Lee, D. H., Zheng, W. Z. and Shi, Q. X. (2004) Short-Term Freeway Traffic Flow 

Prediction Using a Combined Neural Network Model. 84th Annual Meeting of 

Transportation Research Board (CD-ROM), TRB, Washington, D. C. 

http://www.ersa2002.org/


 

Lenten, L.J.A. and Moosa, I.A. (2003) An Empirical Investigation into Long-term 

Climate Change in Australia. Environmental Modelling and Software, Vol. 18, pp.59-

70. 

 

Levin, M., Tsao and Y. D., (1980) On Forecasting Freeway Occupancies and 

Volumes. Transportation Research Record: Journal of the Transportation Research 

Board, No. 773, pp. 47–49. 

 

Lingras, P., Mountford, P. (2001) Time Delay Neural Networks Designed Using 

Genetic Algorithms For Short-Term Inter-City Traffic Forecasting. IEA/AIE 2001, 

LNAI 2070, pp. 290–299. 

 

McQueen, B. and McQueen, J. (1999) Intelligent Transportation Systems 

Architecture. Artech House Publishers, Inc., U.S.A. 

 

Smith, B. L., Demetsky, M. J. (1994) Short-Term Traffic Flow Prediction: Neural 

Network Approach. Transportation Research Record: Journal of the Transportation 

Research Board, No. 1453, pp. 98–104. 

 

Smith, B. L. and Demetsky, M. J. (1997) Traffic Flow Forecasting: Comparison of 

Modelling Approaches. Journal of Transportation Engineering, Vol. 123(4), pp. 261–

266. 

 

Smith, B. L., Williams, B. M., and Oswald, R. K. (2002) Comparison of Parametric 

And Nonparametric Models for Traffic Flow Forecasting. Transportation Research, 

Part C: Emerging Technologies, Vol. 10 (4), pp. 257–321. 

 

Stathopoulos, A., Karlaftis, M. G. (2003) A Multivariate State-Space Approach for 

Urban Traffic Flow Modeling and Prediction. Transportation Research Part C: 

Emerging Technologies, Vol. 11(2), pp. 121–135. 

 



Van Arem, B., Kirby, H. R., Van Der Vlist, M. J. M. and Whittaker, J. C. (1997) 

Recent Advances and Applications in the Field of Short-Term Traffic Forecasting. 

International Journal of Forecasting, Vol.13, pp.1-12. 

 

Vlahogianni, E. I., Golias, J. C. and Karlaftis, M. G. (2004) Short-Term Forecasting: 

Overview of Objectives and Methods. Transport Reviews, Vol. 24 (5), pp. 533-557. 

 

Vlahogianni, E. I., Karlaftis, M. G. and Golias, J. C. (2005) Optimized and Meta-

Optimized Neural Networks for Short-Term Traffic Flow Prediction: A Genetic 

Approach, Transportation Research Part C: Emerging Technologies, Vol. 13(2), pp. 

211–234. 

 

Vythoulkas, P. C. (1993) Alternative Approaches to Short-Term Traffic Forecasting 

for Use in Driver Information Systems. Transportation and Traffic Theory, 

Proceedings of the 12th International Symposium on Traffic Flow Theory and 

Transportation. 

 

West, M. and Harrison, P. J. (1997) Bayesian forecasting and dynamic models. 

Srpinger, New York. 

 

Williams, B. M., Durvasula, P. K. and Brown, D. E. (1998) Urban Traffic Flow 

Prediction: Application of Seasonal Autoregressive Integrated Moving Average and 

Exponential Smoothing Models. Transportation Research Record: Journal of the 

Transportation Research Board, No. 1644, pp.132–144. 

 

Williams, B. M. and Hoel, L. A. (2003) Modelling and Forecasting Vehicular Traffic 

Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results. 

Journal of Transportation Engineering, ASCE, Vol. 129(6), pp. 664-672. 

 

Yin, H. B, Wong, S. C., Xu, J. M. and Wong, C. K. (2002) Urban Traffic Flow 

Prediction Using a Fuzzy-Neural Approach. Transportation Research Part C: 

Emerging Technologies, Vol. 10, pp. 85-98. 

 



Zhang, G., Patuwo, B. E., Hu, M. Y. (1998). Forecasting with Artificial Neural 

Networks: the State of Art. International Journal of Forecasting, Vol. 14, pp. 35–62. 

 

 

 



LIST OF FIGURES 

1. Map of the Chosen Transport Network 

2. Plot of Two day Traffic volumes from Ten Output Intersections 

3. Plot of Individual Components of STM Model  

4. Forecasts from Ten Output Intersections from the SUTSE model  

5. Forecasting Errors from Ten Chosen Intersections 

 



 

Figure 1 Map of the chosen Transport Network. 

1 

6 

5 

3 

4 

8 

9 
10 

7 

2 



 

 

Figure 2 Plot of Two day Traffic volumes from Ten Output Intersections. 



 

Figure 3 Plot of Individual Components of STM Model. 



 

 

Figure 4 Forecasts from Ten Output Intersections from the SUTSE model. 

 

 



 

 

Figure 5 Forecasting Errors from Ten Chosen Intersections. 
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2. Estimates of Parameters and Hyperparameters 
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4.  

Station in 

Map 

Intersection 

Name 

Data Collecting Loop-

Detectors 

Upstream Junction & 

Loop-Detectors 

1 TCS 26 4, 5, 6 TCS 182 (1, 2) 

2 TCS 196 10, 11, 12, 13 TCS 193 (5, 6, 7) 

3 TCS 17 5, 6, 7, 8 TCS 183 (5, 6, 7) 

4 TCS 183 1, 2, 3, 4 TCS 26 (4, 5, 6) 

5 TCS 232 1, 2, 3, 4 TCS 146 (1, 2, 3, 4) 

6 TCS 49 1, 2, TCS 48 (1, 2) 

7 TCS 166 1, 2, 3 TCS 188 (3, 4) 

8 TCS 193 1, 2, 3, 4 TCS 232 (6, 7) 

9 TCS 439 1, 2, 3 TCS 196 (6, 7, 8, 9) 

10 TCS 269 1, 2, 3 TCS 196 (10, 11, 12, 13) 

 

Table 1 Details of the Ten Output Sites. 



 

 

 

Table 2 Estimates of Parameters and Hyperparameters. 

Station in Map 

 

t  

 

  

 

  

 

  

1 318.61 33.718 9.9832 0.00 

2 206.92 31.621 9.3628 0.00 

3 144.88 19.336 6.5408 0.00 

4 322.08 28.386 13.090 0.00 

5 312.33 25.763 11.202 0.00 

6 154.74 17.406 13.413 0.00 

7 155.9 12.705 12.241 0.00 

8 224.77 23.216 9.9464 0.00 

9 162.13 17.536 4.8608 0.00 

10 111.05 14.446 2.233 0.00 



 

 

Table 3 Comparison of Univariate SARIMA and MST model. 

 

Station in Map 

MAPE of 

SARIMA (%) 

MAPE of 

MST (%) 

1 11.02 5.89  

2 12.7 10.9  

3 11.24 12.66  

4 7.07 7.4  

5 8.6 6.52  

6 15.56 7.96  

7 8.32 4.94  

8 7.12 6.2  

9 8.45 7.4  

10 10.94 10.1  


