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ABSTRACT: 

 

The paper develops an efficient short-term traffic flow forecasting strategy merging the 

theoretical based and empirical based approaches. The empirical based time-series 

forecasting technique is integrated with the theoretical ‘Cell-Transmission Model’ (CTM) to 

effectively forecast the traffic demand downstream using upstream demand values. Traffic 

flow at the downstream is estimated using CTM, in which the traffic flow demands used are 

the time series forecasts obtained from seasonal ARIMA time-series models trained on 

historical loop-detector observations from the upstream junctions. Two junctions are chosen 

along a congested thoroughfare in the city centre of Dublin, Ireland. The traffic demands 

obtained on two other downstream junctions are compared with the loop-detector counts of 

that junction. Comparison shows that the simulated forecasts at downstream junctions deviate 

around 10% from the original observation. This approach can be utilised where no 

continuous data collection taking place. It can be considered as a real-time prediction and 

traffic signal control strategy which captures traffic dynamics such as queue spillback. 



INTRODUCTION: 

All the major and congested cities of the world are continuously facing the need of 

betterment of existing traffic control scenario. As there are bleak possibilities of major 

changes in capacities of existing transportation networks in developed cities, this betterment 

is only possible through Intelligent Transportation System (ITS). Short-term traffic flow 

forecasting is an important aspect of this technology. 

Short-term forecasting attracted considerable research interest only in the last decade. With 

increases in computational and data collection facilities research in this field is evolving very 

fast. The forecasting methods can be broadly classified into two approaches [Van Arem et 

al., 1997]. One is the ‘empirical based’ approach and the other is the ‘theoretical based’ 

approach. The empirical methods are essentially heuristic approaches of modelling the traffic 

volume or other related parameters without referring to the theory behind the traffic 

movement. The empirical methods include different types of parametric and non-parametric 

regressions, neural networks, time series analysis and many other techniques. In time series 

modelling several techniques like the ‘Box & Jenkins techniques’ [Ahmed & cook, 1982], 

application of subset ARIMA model [Lee& Fambro, 1999], application of seasonal ARIMA 

model, exponential smoothing model [Williams 2003, Ghosh et al. 2005] etc. are applied by 

several researchers.  The theoretical modelling can be physical as well as behavioural. The 

physical modelling can be modelling of the variables related to supply into the network using 

state-space model and Kalman filtering. Behavioural modelling includes different types of 

assignment models, like Dynamic Traffic Assignment (DTA). One of the most promising 

macroscopic modelling approaches in developing the underlying traffic behaviour of DTA is 

the Cell-Transmission Model [Daganzo, 1994 & 1995a]. Recently Lo [2001a & 2001b] 



developed a cell-based dynamic network traffic control formulation called Dynamic 

Intersection Signal Control Optimization (DISCO). DISCO is based on the Cell 

Transmission Model developed by Daganzo [1994, 1995a]. CTM provides a convergent 

numerical approximation (first-order finite difference) of the well-known LWR (Lighthill-

Whitham-Richards) model which is the basis of many existing traffic flow models. 

The aim of this paper is to combine the ‘theoretical based’ and the ‘empirical based’ 

approaches of short-term traffic flow forecasting. This will develop a traffic behavioural 

basis for the empirical predictions and also strengthen the theoretical based approaches by 

making them more application oriented. The CTM traffic flow model is combined with the 

seasonal ARIMA time series forecasting technique. Lo [2001a] developed a real time 

application of the CTM for certain Hong Kong Streets with DISCO. While with DISCO, Lo 

always worked on manually collected traffic demand data. Most of the major cities of today’s 

world have some kind of automated data collection system to maintain an optimized traffic 

management system in conditions of severe congestion to free flow conditions. The traffic in 

the city of Dublin is controlled by a well known adaptive traffic control system called 

SCATS (Sydney Coordinated Adaptive Traffic System). Continuous data collections from 

almost all the major intersections are carried out using embedded inductive loop-detectors. 

The seasonal ARIMA model is used to model the loop-detector observations to obtain future 

predictions to be used for the CTM model as traffic demand input. Using the predictions, 

CTM model will help to find the traffic flows in Junctions where there is no continuous data 

collection taking place (Loop detectors are often not used for non critical Junctions). This 

approach can be used in real-time traffic flow prediction over a transportation network and 

traffic signal control while capturing traffic dynamics such as queue spillback 



 

Overviews of CTM and Seasonal ARIMA models are given in Section 1 and 2 respectively. 

The next section (Section 3) describes the site selected for this modelling in the city centre of 

Dublin, Ireland and also describes the cell representation of the site. The following section 

deals with the observations collected from the site, along with their time series modelling. 

Validity of the predictions from the combined models is qualitatively and quantitatively 

discussed in section 5. Section 6 concludes the paper. 

 

1. CELL TRANSMISSION MODEL: 

The cell transmission model (CTM) is a first order finite difference based numerical 

approximation of the Lighthill-Whitham-Richards (LWR) model. The LWR model [Lighthill 

& Whitham, 1955, Richards, 1956] or the hydrodynamic theory of the traffic flow underlies 

most of the present day macroscopic traffic operation models. 

This model includes- 

1. The quasi-linear hyperbolic conservation equation (Equation of continuity) 

   0
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2. Relationship between flow and density (Equation of state) 
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Here q is the flow, k is the density and S(.) is a function of k, x and t. 

The solution to the quasi-linear hyperbolic differential equations (of LWR model) is 

classically computed using the method of characteristics. This apparently simple and 

continuous solution method becomes very complicated and laborious if a shock wave is 

formed. Newell and Daganzo [Newell, 1993; Daganzo, 1995a] suggested some approaches to 



deal with these problems. Daganzo suggested an alternative way (consistent with the LWR 

theory) for predicting traffic behaviour for a single link as well as a network, by computing 

flows at a finite number of carefully selected intermediate points, including the entrance and 

exit. [ Daganzo, 1994 & 1995b ]. 

Though CTM can be applied to any flow-density relation (figure1a), a particular trapezoidal 

flow-density function is generally used (figure1b). According to the flow-density curve used 

for CTM, there is a constant free-flow speed (higher speed) at low densities and constant 

shockwave speed (always less than the free-flow speed) at high densities. Empirically it can 

be shown that the free-flow speed decreases mainly while the density approaches the flow 

capacity and otherwise it is fairly constant over a wide range of low densities. 

CELL REPRESENTATION FOR A SINGLE LINK [Daganzo, 1994]: For CTM the single 

link is assumed to be divided into a number of cells of equal length. The length of each cell is 

the distance traversed in one tick of clock by a single vehicle travelling at free-flow speed. 

To define the characteristics of a cell, 

 ni(t) : the number of vehicles in any cell i at time instant t 

 Ni(t) : the maximum number of vehicles that can be present (holding capacity) in cell 

i at time instant t 

 Q i(t) : the maximum vehicle flow possible to cell i while clock ticks from t to t+1. 

 Yi(t) : vehicles ready to enter cell I at time step t. 

Ni(t) =  (kj)x nl x L 

where, kj is the jam density [veh/km-lane]; 

nl is the number of lanes in the cell; 

L is the length of the cell [km]; 



The whole CTM for a single link (figure 2) can be expressed by two equations: 

1. The equation of state: 

 

Yi+1(t) = min{ ni(t), Qmax,  [Ni+1(t)- ni+1(t)]}           [3] 

 

where, 

Yi+1(t) is the inflow to cell i+1 at any instant t; 

Qmax is the maximum number of vehicles that can enter cell i+1 at any single tick     

of clock; 

Ni+1(t) – ni+1(t) is the available space in cell i+1; 

is the ratio of shockwave speed to free-flow speed (w/v); 

This equation covers both the congested and uncongested situation. In the case of 

uncongested flow, the situation in the upstream cell i.e. the first term determines the flow; 

whereas in the congested situation downstream conditions i.e. the third term determines the 

flow. The middle term acts as the constraint in the case of bottlenecks. 

2. The conservation equation: 

ni(t+1) = ni(t) + Yi (t) - Yi+1(t)            [4] 

This equation updates the flow in consecutive cells at each time step. According to the 

equation the number of vehicles present in cell i at time instant t+1 is the number of vehicles 

present in the cell before the time step, plus the inflow to the cell minus the outflow from the 

cell during this time step. 

If the cells are signalized (Lo, 1999a & b), then the maximum holding capacity Q i(t) of any 

cell i varies as follows- 
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 where, i is a signalized cell; 



CELL REPRESENTATION FOR A NETWORK: A network consists of an ensemble of 

directed links and nodes. Each of the links can be modelled for CTM using the technique 

described for a single link. The only improvements are required while modelling the nodes 

attached with multiple links. Daganzo [1995b] suggested the allowed topologies (merges and 

diverges) in a network and their representation in CTM. For a signalized network Chang 

[1998] further developed these representations for ‘signalized merges’ and ‘turning lane 

diverges’ case. Here the network topologies used in the paper are discussed. 

Merges are one the most important movements to be modelled while dealing with a network. 

According to Daganzo [1995b], there are three types of merge conditions possible. 

MERGES: 

There can be three possible types of merging scenarios: 

1. Forward: If flows from both the merging approaches (here, cells) depend on the 

conditions upstream (both approaches flowing freely). 

2. Backward: If flows from both the merging approaches/cells depend on the conditions 

downstream (both approaches are congested). 

3. Mixed: If the flow from one merging approach depends on downstream conditions 

while the other on upstream conditions (when the priority crowds out traffic on 

complementary approach) 

Boundary conditions used here to get the CTM form are similar to those for two merging 

pipes carrying a compressible fluid. Figure 3 shows a ‘merge’ manoeuvre. 
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where, SB and SC are maximum possible outflow from the two sending cells B and C 

respectively while RE is the maximum possible inflow to cell E; YB and YC are the emitting 

flows from the cells B and C. 
Bp  and 

Cp  are the proportions of RE coming from the cells 

and C respectively. 

The equations 5(a) to 5(c) are the generalised form of equation 3 used for ‘merges’ in a 

network. Using the equation 4 the flows can be updated. 

Unsignalised and Signalised Merges: From figure 3, both the cells B and C flow into the cell 

E. In case of both signalised and unsignalised junctions, the three equations 5(a) to 5(c) are to 

be used. Only the constants Bp  and Cp  will be different for signalised and unsignalised 

junctions. These constants are to be determined while designing any intersection which 

captures this kind of merging manoeuvre. 

The set of equations 5(a, b & c) will remain in the same form for unsignalised junctions. 

Only it is to remember always that 1B Bp p  . 

In the case of a signalised intersection, cell B and cell C don’t flow in the same time to cell 

E. Under these circumstances, where a maximum of one cell can flow at a time, the constants 

Bp  and Cp  will be either 1 or 0. The set of equations 5(a, b & c) will simplify to, 
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DIVERGES: 

To accurately model a network Daganzo [199x] introduced the idea of modelling diverging 

manoeuvres. In the case of the one way street system modelled here, this diverging applies to 

the through and turning movement of vehicles from any one way street, sharing the same 

green time. In the same way as used by Lo [2001], the time variant turning properties are 



used here. As shown in figure 4, with this option, vehicles from a single cell (here cell B) can 

flow to two different destination cells (here, cell E and cell C) in two different directions. 

Considering that the turning proportions are known from beforehand, the inflow to each cell 

is, 

      and,  C C B E E BY S t Y S t                     [7] 

where,  CY : the inflow to cell C 

EY : the inflow to cell E 

 BS t : the outflow from cell B at time instant t 

and, C & E are the proportions going to cells C and E respectively. As both cells C and E 

are considered as destinations of the outflow from cell B, if any of them is unable to 

accommodate the allocated inflow then the entire outflow is restricted. This is to maintain 

FIFO (first in first out) principle. Hence, 
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2. SEASONAL ARIMA MODEL: 

A simple ARIMA model constitutes three parts, ‘AR’, i.e. autoregressive part; ‘I’, i.e. 

differencing part; ‘MA’, i.e. moving average part; ‘Differencing’ is essentially a tool to 

eliminate trends in time series data.  



The ‘first difference’
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In an ‘auto regressive’ process, each time-series observation ‘yt’ is defined in terms of its 

predecessors, ‘ys’, for s < t, by the equation, 
1
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where, 1, 2,3,p are the coefficients of the auto regressive process of the order p. 

A ‘moving average’ process is simply a finite linear filter applied to a white noise sequence 

{Zt}, of the form 
1
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where, 1, 2,3,q are the coefficients of the moving average process of the order q. 

Combining these three components and using the ‘backshift operator’, B, the equation 

representing an ARIMA (p, d, q) model is, 
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where, Zt is a white noise sequence; 

 is a polynomial of degree p, i.e. 2 3
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In ARIMA (p,d,q), p denotes the order of the AR process, d denotes the order of 

differencing and q denotes the order of MA process. 

Seasonality and ARIMA Process 
[Fuller, 1996] 

 

If the time-series data to be fitted in an ARIMA model has some intrinsic 

periodicity, then instead of a simple ARIMA, a seasonal ARIMA model can be used. 

There are two types of seasonal models, additive and multiplicative. Here the 

multiplicative seasonal ARIMA model (p, d, q)(P, D, Q)s is used. In the multiplicative 



model the non-seasonal part (p, d, q) and the seasonal part (P, D, Q)s part are multiplied 

together. The equation used for the multiplicative seasonal ARIMA model is as follows: 

B)BS)(1-B)d(1-BS)D yt= (B)(BS)Zt                                     [1f] 

where,  have the same significance as described in the earlier section and   are their 

seasonal counterparts, S denotes the seasonality. The centred traffic data is used for ARIMA 

modelling using Box and Jenkins [Box and Jenkins, 1970] methodology. Following the three 

steps of this methodology, Identification, Estimation and Diagnostics checking a few 

seasonal ARIMA models are fitted. 

 

3. TRAFFIC NETWORK USED: 

The traffic network used here for modelling using a combined CTM and time series 

forecasting approach is a part of the busy city centre of Dublin (figure 5). Considerable queue 

formation and congestion can be encountered in this site during the peak hours. The main 

thoroughfares are Tara Street and the Quays, which carry one-way traffic throughout. Two 

crossings of Tara Street with Pool beg Street and the Quays are considered here. Two un-

signalised side streets from the quays are also considered within the network. All of the 

crossroads carry one-way traffic as well as the main streets. Ireland has a left-hand drive 

system with no protected turning movements in this site. Junction TCS183 and TCS184 has 

two phased signals, but the two downstream junctions have multi-phased (>2) signal plans. 

 

3.1 DATA COLLECTION FOR CTM MODELLING: 

The traffic management in the city of Dublin is done using SCATS. The traffic demand data 

are collected using the loop-detectors used by SCATS.  Signal timings (from adaptive signal 



control) are obtained from the SCATS database as well. Other required constants for the 

CTM model are, 

 Free flow speed  [60 dataset] 

 Saturation Flow [40 dataset] 

 Shockwave speed [30 dataset] 

Other than these for the turning movement (which is not obtained from the loop-detectors), 

16sets of data from each lane, used for both through and turning movements, are collected. 

Using this manually counted data and the loop detector volumes, turning ratios and the merge 

ratios are calculated. 

 

3.2 CTM REPRESENTATION AND CALIBRATION OF THE NETWORK:  

The links are divided into equal length cells (whose length is governed by the free flow speed 

and the space discritisation criteria). The possible movement in and out of the cell are 

represented by directional arrows. Figure 6 shows a figurative representation of the network. 

Turing movements along with merges and diverges are modelled as can be seen from figure 

6. The capacity of each approach or more precisely each lane is decided judging the site 

conditions and past traffic demands. 

 

 

 

 

4. TIME-SERIES MODELLING OF LOOP OBSERVATIONS 
 

The traffic demands used in the CTM model are the predicted demands from the time 

series modelling of the existing and past traffic demand data. The traffic demand of the 

four roads (Tara Street,  Poolbeg Street, Butt Bridge and the Quays) used in modelling 



are obtained from the inductive loops of those streets. The data used for modelling were 

recorded from 16th May 2005 early morning to 30th June 2005 early morning, excluding 

the weekends and bank holidays. 96 observations are obtained in each day. The total 

number of observations is 2592 are obtained from each data source. The data show 

definite seasonality in pattern over a period of 24 hours. This leads to the idea of fitting a 

seasonal time-series model. As this site is the same as (or very similar) to that of the 

paper by Ghosh et al.[2005], more or less the same seasonal ARIMA models are used in 

modelling the observations. All the seasonal ARIMA models fitted to each origin traffic 

demand data are given in table 2. 

 

 

 

5. COMPARISON OF CTM RESULTS WITH REAL TIME FLOW: 

 

Although it was expected that there would be manual errors during data collection, most 

of the predictions were within 10% of the actual observations. The mean absolute 

percentage of the 1 hour prediction data set (table 3) is only 4.4% in Junction TCS 17 and 

10.6% in TCS 196. The error has two parts; one is due to CTM simulations and one 

related to using the time-series forecasts as input traffic demand instead of real 

observations.  

The possible reasons of the error or discrepancy seems to lie in the erroneous data used 

for the model. The loop-detector data are often erroneous owing to the fact that some of 

the inductive loops in any big network are regularly faulty.  The signal timing plan (table 

4) used from the SCATS system in Dublin really follows a fixed cycle time approach in 

Junction TCS 184 and TCS 183. But in Junction TCS 17 and TCS 196, the cycle length 



was not exactly fixed and the phase times were varying in the order of ½ seconds 0.5 

seconds??. But as the pedestrian phases are not recorded by the SCATS system, the 

average fixed cycles of 120 second were to be assumed.  Due to this average cycle time 

over 4:00pm to 5:00pm of 30th, June, 2005 are used, instead of an exact signal time plan 

and accurate cycle lengths as used for Junction TCS 183. This error in the order of 2/3 

seconds may be attributed to a considerable percentage to the final error values.  

 

6. CONCLUSION: 

 
The empirical based time-series forecasting technique is integrated with the theoretical 

‘Cell-Transmission Model’ (CTM) to effectively simulate the traffic demand at two 

downstream junctions at the city centre of Dublin using traffic demand of two upstream 

junctions. The simulated traffic demands are actually based on the time-series forecasts at 

the origins. Instead of a single site time-series model, this model can capture the effect of 

neighbouring sites by capturing phenomenon like queue spillback. In the two junctions 

considered here, the simulated traffic demands vary differently. The variation is mainly 

due to lane changing, which cannot be captured by this model. In cases where lane 

changing is not significant, the model performs well. So, this technique can be used very 

effectively for junctions where no data collection is taking place. Again, this model is 

used to simulate traffic demands in the future unlike other CTM based simulation 

technique and hence, can be used for real time online traffic signal control.  
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Table 1 

ROAD NAME 
FREE FLOW 

SPEED 

SHOCKWAVE 

SPEED 

SATURATION 

FLOW 

TARA STREET 

(From Origin till TCS 184) 
9.78m/s 3.7m/s 1783.67vphpl 

TARA STREET 

(TCS 184 to TCS 183)  
9.78m/s 3.7m/s 1783.67vphpl 

BUTT BRIDGE 9.78m/s 3.7m/s 1783.67vphpl 

POOLBEG STREET 9.78m/s 3.7m/s 1783.67vphpl 

BURGH QUAY & 

GEORGE QUAY 
9.78m/s 3.7m/s 1783.67vphpl 

 

 

Table 2 

ORIGIN LOOP-DETECTOR SEASONAL ARIMA MODEL 

OR1 Loop 7, Junction TCS 183 (2,0,1)(0,1,1)96 

OR2 Loop 5 & 6, Junction TCS 183 (2,0,1)(0,1,1)96 

OR3 Loop 6, Junction TCS 184 (2,0,1)(0,1,1)96 

OR4 Loop 5, Junction TCS 184 (1,0,1)(1,1,1)96 

OR5 Loop 1, Junction TCS 184 (2,0,1)(0,1,1)96 

OR6 Loop 2,3 & 4, Junction TCS 184 (2,0,1)(0,1,1)96 

 

Table 3 

 

TIME 
TCS17 

observations 

TCS17 

forecasts 

Abs 

RMSE 

error 

TCS196 

observations 

TCS196 

forecasts 

Abs 

RMSE 

error 

16:15 453 485.1431 0.070956 374 329.3304 0.119437 

16:30 452 424.0489 0.061839 314 342.8294 0.091813 

16:45 451 470.2962 0.042785 367 322.9775 0.119952 

17:00 418 416.9537 0.002503 313 342.8294 0.095302 

 

 

 



 

 

Table 4 

Junction Street Name Phase Offset 
Green 

Effective 

Red 

Effective 

TCS 183 
Tara Street A 0 69sec 51sec 

Burgh Quay & George Quay B 72sec 45sec 75sec 

TCS 184 
Tara Street A 0 93sec 27sec 

Poolbeg Street B 96sec 21sec 99sec 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: The Figurative Diagram of the Junctions 



 

 



 
 

 

 

 

Figure 1a: The Fundamental Flow-density Diagram 
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Figure 1b: The Flow Density Relationship Used in CTM 
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Figure 2: The Basic CTM Model for Single Link with Two Cells 

Ref: Lo & Chan (2001a) 
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Figure 3: A Signalised Merge 

Ref: Lo & Chan (2001a) 
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Figure 4: A Diverge Manoeuvre 

Ref: Lo & Chan (2001a) 
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Figure 6: The Cell Representation of the Network 
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