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Summary

An investigation of the bottomonium spectrum above and below the QCD deconfine-
ment crossover temperature, T, was performed using a non-relativistic treatment
of the heavy quark on anisotropic lattices with Ny = 2 + 1 flavours of Wilson-clover
fermion and a Symanzik-improved gauge action. The spectral functions were recon-
structed from the Euclidean correlators using two Bayesian methods to tackle the
ill-posed inverse problem, known as the Maximum Entropy Method (MEM) and the
Bayesian Reconstruction (BR) method. The survival of the S wave ground-state
well into the deconfined phase up to at least 1.907, was concluded from both meth-
ods. In the less tightly bound P wave channel, a discrepancy was observed in the
interpretation of the effect of the thermal medium. MEM suggested that the P wave
ground-state dissociates immediately in the deconfined phase. However, some rem-
nant of this state was observed at all temperatures up to 1.907, in the spectral
function reconstructed with the BR method. On comparing the spectral function in
this channel with the reconstruction of the free lattice spectral function, the signif-
icance of this remnant is less clear. Finally, the spectral functions of correlators of
Wilson lines were examined at finite temperature from which the medium-modified
heavy-quark potential can be extracted in a systematic way. Above the crossover
temperature, effects that could be interpreted as colour-Debye screening and Lan-
dau damping are visible, but systematic uncertainties of the reconstruction suggest

further investigation is required at the highest temperature.
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1 QCD at finite temperature

The success of the model-independent framework of thermodynamics has hardly
been surpassed as a physical theory. Its power lies in its generality which casts
a system’s bulk properties in terms of the same thermodynamic variables and
potentials which can be used across a wide range of scales from nuclear to cos-
mological in size. Investigating these general properties, which arise from the
statistical treatment of large numbers of particles, or degrees of freedom, has
successfully expanded the remit of classical, quantum and relativistic models.
Macroscopic ensembles are worth examining in their own right due to the vast
array of phenomena, such as new phases and collective dynamics, observed in na-
ture. Furthermore, the study of bulk properties offers an arena to constrain and
test the underlying dynamics of new or established physical models by comparing
predictions of thermodynamic observables with experimental measurements.

In particular, non-Abelian gauge theories have a rich phase structure owing
to their inherently complex interactions and vacuum structure. Quantum chro-
modynamics (QCD) is the prototypical strongly-coupled gauge theory coupled to
fermions which exhibits asymptotic freedom [1, 2] and low-energy confinement [3].
It is understood to describe the interactions between quarks, their binding to form
nucleons, and consequently explain the origin of most of the mass of the everyday
objects around us.

Asymptotic freedom suggests some change in the properties of QCD mat-
ter at temperatures on the order of the hadronic scale ~ 1GeV, when quarks
and gluons become liberated from hadronic degrees of freedom as the running
coupling diminshes. One realization of such temperatures was during the hot
and dense phase of the universe just after the Big Bang, when the expanding
universe passed through temperatures on the order of the hadronic scale as it
cooled and the matter content comprised light quarks and leptons. In order to
correctly model the evolution of the early universe it is neccessary to account for

the relevant dynamics of these degrees of freedom at temperatures above the con-
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tinuous crossover to the quark-gluon plasma (QGP), formed around 150MeV [4].
Additionally, the description of the dense QCD matter found in compact stars
requires the equation of state — a relation between thermodynamic state variables
— at finite quark or baryon chemical potential. QCD thermodynamics is there-
fore relevant in astrophysical and cosmological contexts in order to describe such
systems from first principles.

While these applications motivate the study of quarks and gluons at high tem-
peratures and density, human ingenuity has circumvented the non-observability
of the QGP in the early universe with the possiblity of its direct creation in terres-
trial collider experiments. Generically, these experiments, from the Super Proton
Synchrontron (SPS) at CERN and the Relativistic Heavy Ion Collider (RHIC) at
BNL to the Large Hadron Collider (LHC) at CERN;, collide nuclei with a large
enough number of participants to warrant a thermodynamic treatment, comple-
mentary to collider experiments with hadron or lepton projectiles at the energy
frontier. These experiments provide further opportunities for stringent tests of
QCD as the correct theory of the strong interaction through determination of a
number of thermodynamic quantities and the modification of its spectrum outside
the vacuum phase.

In addition to providing a test-bed for fundamental physics theory, collider
experiments simultaneously require diagnostics such as tools to calibrate the tem-
perature and density achieved in collisions. Another valuable challenge for theo-
rists and phenomenologists is to provide observables which can be used to deduce
the existence of exotic states of matter. In particular, this work is largely mo-
tivated by providing reliable data for such thermometers [5]. In this expository
chapter the established phase structure of QCD is briefly reviewed after which
the dynamics of the heavy-ion collision is outlined with a motivation for using
bound states of a heavy quark and antiquark, or heavy quarkonium, as probes of

the plasma.

1.1 Phase structure of QCD

A simple heuristic argument for a transition to a new state of matter at high den-
sities exists analogous to the one which suggests the phase transition at tempera-
tures on the order of the hadronic scale from renormalization group arguments. If
the density of matter is increased beyond nuclear density, the constituent quarks
necessarily lose the identity of their parent nucleon and are consequently liber-
ated, leading again to a deconfined phase. Furthermore, Hagedorn’s argument

for a limiting temperature for hadronic matter, based on the exponential growth
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of the number of states with temperature, also hints at the emergence of new
degrees of freedom at temperatures of a few hundred MeV [6].

More precisely, the phase structure can be understood through the sponta-
neous breaking of global symmetries of QCD in two limits. First, in the quenched
limit with static quarks, namely in pure gauge theory, QCD possesses an exact
global centre symmetry of the gauge group, Zs. The generators of the centre
symmetry form the Cartan subalgebra of su(3), the algebra of the gauge group.

At high temperatures, this symmetry is spontaneously broken in the decon-
fined phase. An interpretation of the spontaneous breaking of this symmetry can
be made through an order parameter for this symmetry, the Polyakov loop. The
Polyakov loop, P(x), is a Wilson loop with with non-trivial winding around the

compact temporal direction,
P(X) :Pe_fwdl'“A“‘ (1‘1)

where P denotes that the path-ordering of the gauge potential is taken along
the path v : [0,1] — S; x R3, here taken to be a straight line path based at x,
that is v(s) = (s8,x). In the Matsubara formalism, the inverse temperature,
B = 1/T, is the extent of the compact direction and (7, x) are global coordinates
on S; xR? with a Euclidean line element. In the vacuum, this observable vanishes
as a consequence of the action of the symmetry on P(x), namely multiplication
by the complex roots of unity, which cancel in the average. However, if the
symmetry is broken, its vacuum expectation value is not constrained to vanish,
as a good order parameter should behave.

By identifying the Polyakov loop with the static-quark creation operator, the
expectation value of the trace of the Polyakov loop is related to the free energy
of a static quark inserted into the vacuum, after renormalization [7]. Likewise,
the Polyakov-loop correlator can be related to the free energy of the static quark-
antiquark pair, projected into some colour representation.

From the cluster decomposition of the Polyakov loop correlator,

|x| =00
—

(TrP(x)TrP1(0)) = e~#Faalix) (TrP(x))?, (1.2)
(TrP(x)) = e—lﬂ““(;),Q(%)/?7 (1:3)

where (-) denotes the expectation value of the observable in the thermal en-
semble, it is clear that the confinement of quarks in the low-temperature phase
results in an infinite static-quark free energy and the vanishing of the Polyakov
loop[8]. Non-perturbative calculations of the colour-averaged free energy have

been known to exhibit a form which invites the interpretation of a screened Cor-
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Figure 1.1: Schematic depictions of the phase diagram of QCD and the Columbia
plot illustrating the order of the QCD phase transition, adapted from [11]. The
question of the existence of the chiral critical end-point remains unanswered [12].

nell potential at high temperatures, so, just as for electrodynamic plasmas, the
free movement of colour-electric charges results in screening phenomena. Various
correlators of Polyakov loops have been defined in order to probe the interac-
tions between heavy quarks, such as the manifestly non-gauge-invariant operator
Tr{P(x)PT(O)}. which couples to the free energy of two static quarks in a colour
singlet [9].

However, the interpretation of these thermodynamic potentials, and especially
employing them as potentials in models of heavy quarkonium is not satisfactorily
understood [10].

The introduction of dynamical fermions breaks the centre symmetry expliticly
at all temperatures, and the screening of the potential at large distances in the
vacuum can be attributed to pair production or string breaking effects. The
deconfinement phase transition becomes a smooth crossover in the presence of
dynamical fermions, and the crossover temperature is no longer exactly coinci-
dent for every thermodynamic observable, but is usually defined from the peak
of the Polyakov loop susceptibility, namely its first derivative with respect to

temperature, see figure 3.1.

Closely linked with the deconfinement transition is the restoration of chiral
symmetry which is spontaneously broken in the limit of vanishing quark masses
at low temperatures by the chiral condensate, the order parameter for this sym-
metry. The Goldstone modes of the broken symmetry at low temperatures are the
light pseudoscalar mesons. Furthermore, the axial Ua (1) symmetry is anomalous,
broken by fluctuations of the topological charge, which results in the splitting of
the n’ meson from the rest of the pseudoscalar nonet. Just as for the deconfine-

ment transition, chiral symmetry is only approximately realized in nature, broken
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by the finite quark masses, so this transition is a smooth crossover.

The order of the transition and its dependence on the quark masses is sum-
marized in the Columbia plot shown in figure 1.1. Empirically, the deconfinement
and chiral phase transitions coincide in physical QCD and qualitative arguments
based on constituent quark masses can provide some intuition for why this is
the case [13]. Complementary to probing the chiral transition using with the
properties of the light hadron spectrum [14], the deconfinement transition is nat-
urally examined with heavy mesons, whose small size, it is posited, allow them
to survive into the deconfined phase [15].

It is a great challenge to extend the knowledge of the phase structure to
finite density, where numerical simulations, which have provided much of the
quantitative data for QCD phase structure at zero chemical potential, fail due
to the sign problem of the oscillating Gibbs factor. In addition to standard
approaches such as reweighting of the Monte Carlo sum, dual representations or
Taylor expansions, novel approaches based on the complexification of the field
variables show promising avenues to begin to provide accurate predictions [16,
17]. Incidentally, analytic continuations of the path integral offer some hope to

understand asymptotic series in quantum field theories [18].

1.2 Anatomy of a heavy-ion collision

As alluded to in the opening section, the only experimental access to probe QCD
matter in exotic phases is through violent heavy-ion collisions whose products are
short-lived. In this section, the evolution of the heavy-ion collision is surveyed in
order to understand how to relate thermodynamic observables to the measure-
ments of the particle yields and their momentum distributions. Modelling of the
dynamic evolution of the fireball, the hot and dense volume whose characteristics
depend on the centrality and centre-of-mass energy of the reactants, is required
at all stages of the collision to connect these particle spectra with the thermody-
namics of the hot matter. A collision proceeds in more or less four stages [19]. In
the very early initial reaction hard partons are created in perturbative processes
which become valuable probes of the hot medium which they traverse. Soft gluons
in the initial state can possibly be treated in some classical approximation due
to the saturation of these modes for energetic-enough collisions. The approach
to thermalization and local equilibrium of the hot medium happens quickly and
is modelled by some variant of kinetic theory. The expansion of this hot medium
causes it to cool and eventually the quark and gluon degrees of freedom must bind

to form hadrons, called chemical freeze-out which is treated in a statistical way.



Before chemical freeze-out occurs, hydrodynamics is the appropriate effective de-
scription for this strongly-coupled fluid. At this point the particle abundances are
fixed as elastic scatterings dominate the cross-sections. Finally, kinetic freeze-out
fixes the momentum distributions after the last scattering occurs.

One of the most important results of the RHIC experiment was the inference
of the almost-ideal fluid nature of the QGP phase with a small viscosity to entropy
density ratio manifested in the elliptic flow observable [20]. The implication of this
measurement was that the fluid is in fact strongly-coupled and consequently the
thermalization of the initial state happens on very short timescales. The applica-
bility of a hydrodynamic description to the plasma also facilitates the connection
between thermodynamic transport coefficients and experimental results. How-
ever, the strongly-coupled nature of the plasma, unlike familiar electromagnetic
plasmas, immediately calls for the use of non-perturbative theoretical tools to

investigate this phase of matter.

1.2.1 Approaches to strong-coupling

Gravity duals offer a framework to predict thermodynamic observables such as
transport coefficients in a strongly-coupled conformal field theory. Since the
viscosity to entropy density ratio was observed to be encouragingly close to the
universal bound predicted from this framework [21, 22] it may be hoped that other
observables in this approach are closely related to their counterparts in the real
strongly-coupled plasma, such as the heavy-quark potential [23]. Ultimately, the
uncontrolled nature of the approximation of working with only a QCD-like theory
must be confronted, although the differing microscopic nature of the strongly-
coupled theory is apparently less problematic in the deconfined phase [24].
Numerical lattice QCD is a systematically improvable non-perturbative frame-
work which has been successful in elucidating the phase structure of QCD. For ex-
ample, it has corroborated evidence of the strongly-coupled nature of the plasma
through the observations of deviations from non-interacting limits in the equa-
tion of state [25]. However transport properties, being real-time phenomena, are
challenging to extract from the Euclidean theory [26]. Nevertheless, lattice gauge
theory calculations are beginning to make progress on numerous fronts relating
to real-time observables, including, for example, data on the quenching parame-
ter relevant to the fragmentation of hard partons into collimated jets of hadrons
which is strongly affected by the presence of a hot medium [27, 28|. The lat-
tice has also been successful in providing measurements which are suitable for
diagnostics, in particular thermometers and baryometers, through fluctuations of

conserved charges like electric, baryon and strangeness [29, 30]. These observ-
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Figure 1.2: Lowest-order kinematically allowed process contributing to charm
production from gluon radiation from initial reaction.

ables can be used to map out the freeze-out curve, the loci of the threshold for
inelastic scattering in the phase diagram, of heavy-ion collisions [31].

The calibration of the temperature of the hot medium using heavy probes is
another area to which the lattice can contribute [32]. The modification of the
spectrum of heavy hadrons in a thermal medium has had a significant impact on
the interpretation of the phase structure of QCD. These in-medium properties
can be connected with the suppression of yields captured by nuclear modifica-
tion factors or dilepton and photon production rates in heavy-ion phenomenology
described below. In the following section, the motivation for using heavy quarko-

nium is outlined along with the desirable input from the lattice.

1.2.2 Heavy quarkonium probes

The prototypical thermometer of the quark-gluon plasma is the direct thermal
photon, which, as a colour-blind probe, propagates through the plasma without
interacting and allow inferences to be made about the hot medium formed in
the early stages of the reaction. However, they are also produced copiously
throughout the lifetime of the plasma, so the integrated history is required and
the signal may be difficult to extract from a large background from non-direct
decays.

The initial suggestion that quarkonia, in particular charmonium, are senstive
probes of the medium goes back to the famous proposal of Matsui and Satz
that the suppression of the yield of charmonium may be due to the presence of
a deconfined medium [33]. Charm-anticharm pairs are created in initial hard
processes of a reaction, e.g. from allowed processes such as in figure 1.2, which
in the absence of any medium, may form a hidden-charmed bound state when
the pair are relatively displaced on the order of the binding radius of that state,
due to their large transverse momentum. However, in the presence of a decon-
fined medium, with effective screening of the binding potential from the thermal
medium, the distance between the quarks may exceed this binding radius and

the charm quarks may escape each other’s attraction. Upon exiting the plasma
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they hadronize with whatever is in their vicinity, most probably a light quark
to form an open-charmed hadron, thereby the presence of the medium causes a

suppression in the total yield of charmonium.

The criterion for the effective enough screening is when the temperature-
dependent Debye screening length is smaller than, or comparable with, the bind-
ing radius. The argument follows analogously for radially and orbitally excited
charmonium states, where the relevant binding radius is larger and hence the
dissolution of these excitations occurs at lower temperatures [34]. This explana-
tion of suppression was invoked to explain some tantalising results at the SPS
experiment and courted controversy when other conventional suppression mecha-
nisms were invoked to explain the observed suppression [35]. Cold nuclear matter
effects in the initial and final state, such as nuclear absorption, exist even when
a deconfined medium is not created [36]. Therefore, the term anomalous sup-
pression is often applied to refer to the suppression caused by the hot medium
effects. Careful disentangling of suppression mechanisms is necessary in order to

infer the existence of a quark-gluon plasma from quarkonium yields.

Relevant differential observables such as the transverse-momentum and cen-
trality dependence in the nuclear modification factor, which measures the ratio
of the production cross-section in heavy-ion to hadronic collisions, normalized by
the number of binary collisions, help differentiate between the suppression mech-
anisms [37]. As well as inelastic scattering which contributes to the suppression of
charmonium yields, other processes are responsible for the regeneration of char-
monium, including the statistical recombination of uncorrelated charm quarks in
the medium. Such regeneration effects must also be included in the proper mod-
elling of the production of charmonium in a hot medium and these counteract
the suppression arising from the dissolution of direct charmonium. The inclusion
of the contributions of feed-down from excited states is naturally important in
these predictions due to the significant fraction of production due to radiative

decays of higher states [38].

The suppression of bottomonium follows exactly the same argument of Matsui
and Satz for charmonium. At the energies of the LHC it is produced copiously
in heavy-ion collisions. It provides a more experimentally and theoretically clean
probe due to a number of considerations. Cold nuclear matter effects are less
important due to the smaller nuclear absorption cross section of the b-quark,
so anomalous suppression is more easily distinguished [39]. The larger binding
energies in the bottomonium system, and consequently smaller radii mean the
bottomonium states are expected to survive well into the plasma. In addition,

the regeneration effects are smaller than the charm case due to the reduced num-
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Figure 1.3: Dilepton invariant-mass spectra for hadronic (left) and heavy-ion
(right) collisions from CMS [40] which illustrates the suppression of the excited
states corresponding to the second and third peaks in the plasma phase.

bers of heavier quarks produced in the initial collision event due to their higher
mass. The applicability of potential models and effective field theories which
rely on separations of scales is more theoretically sound for the heavier bottom
quark. Finally, whereas B-meson decays contribute to charmonium production,
feed-down from open-heavy states is absent in bottomonium as feed-down can
only occur from excited bottomonium states. The assumption of the lack of ther-
malization of the heavy-quark is more plausible for the heavier bottom quark as

opposed to charm.

The sequential suppression of bottomonium states therefore provides an ideal
diagnostic thermometer for the quark-gluon plasma. In addition to the complex-
ity of modelling all of the aspects of the production, a detailed knowledge of the
equilibrium in-medium properties of these states is required [41, 42]. This is the
primary motivation for the study of the spectral functions of heavy-quarkonium
states which control the abundances and reaction rates through the binding en-

ergies and widths, with non-perturbative tools such as lattice QCD.

The McLerran-Toimela formula connects the spectral function of thermalized
heavy quarks in the vector channel with the dilepton and photon differential cross

sections [43]:

dNg, ¢ 9 pv(w)

EE e , 14

e d3p oo X aemnB<w) i ( )
dN,

wT"' X aemnB(w)pv(w) (1.5)
&P lu=ipl
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The thermalization of the heavy-quark, however, is neither valid for the bot-
tom quark in the experimental context. The LHC’s impressive mass resolution
and high luminosity have allowed it to produce dilepton invariant-mass spectra,
shown in figure 1.3, which directly illustrates the suppression of the excited bot-
tomonium states in the heavy-ion collision versus the hadronic collision [40]. The
PHENIX and STAR collaborations at RHIC have also recently reported suppres-
sion in the bottomonium Y system [44, 45]. The spectral function in the vector
channel is therefore a powerful observable, and the definitions in the following
section relate it to the Euclidean and retarded propagators following the standard

presentation [46, 47].

1.3 Spectral functions and Euclidean correlators

As well as being directly relevant through its connection to the dilepton and
photon production rates, the spectral function is a valuable object to connect
the real and imaginary-time correlation functions. In this section, the definition
of the spectral function is introduced and related to the Euclidean correlators
relevant to the lattice setting. The imaginary time, or Matsubara formalism is
used to obtain the path-integral representation of the QCD canonical partition

function, Z, through the Trotter formula,

Z = Tr,, (e PHacp) (1.6)

_ / e_fod d‘rfd3x£E[E,C.1z7"¢'«‘4u]7 (17)
per.j3

where Tr,(-) = >, (n|-|n) and {|n)} are the eigenstates of the Hamiltonian
and L, is the Euclidean Lagrangian density. The symbol fper' 3 indicates that the
path integral is performed over fields in the action which are defined on Euclidean
space with temporal extent equal to the inverse temperature, 3, corresponding to
the thermal compactification on S; x R3. The appropriate boundary conditions
are periodic ones for bosonic fields and antiperiodic ones for the fermionic fields
owing to the cyclicity of the trace and anticommuting nature of the fermionic
Grassmann fields, with ghosts obeying wrong statistics.

The Minkowskian and Euclidean coordinates are related by t — —i7, so that
integrals over the real temporal domain are Wick rotated in the complex plane.
Due to the finite temporal extent and boundary conditions, the Euclidean fre-
quencies appearing in Fourier representations are quantized Matsubara frequen-
cies, wy, = 2n7/f in the bosonic case, and the corresponding Fourier integrals

are replaced with discrete sums, fdko 3 O] > .- The thermal averages of
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composite operators, (O(7,x)) = Z 1 Tr, (e ?# O(7,x)), can be expressed in the

path integral representation

B 2
{OT,x)) = O, x)e fdrfd=Ls (1.8)
per.j3
In the following, spatial coordinates are omitted for clarity. The spectral function
of a Hermitian bosonic composite operator, O(7), is defined as the difference

between the Fourier transform of the forward and reverse two-point functions

p(K%) = (D> (k) ~ D<(K?)), (1.9)
D) = /OC dt e*°H(O(£)0(0)), (1.10)
D<(&°) = /% dt e*°H(O(0)O(t)), (1.11)

where the insertion of a complete set of states gives the familiar spectral decom-

position using the definition of the operators in the Heisenberg picture

e~ 3E7n

5(K° + Enm)|(n|O(0)|m))?, (1.12)

5(K° — Enp)|(n|O(0)|m)|?, (1.13)

where E,,,, = E,, — E,, is the difference between the n'" and mt™®

eigenenergies
of the Hamiltonian. The relation between the spectral function and the retarded

two-point function,
Dg(k%) = 1/% dt e**1(6(1)[O(t), 0(0))), (1.14)

can be made manifest by substituting the distributional representation of the

f-function

00 dko e—ikot
0(t) =1 ———— 1.15
0=if e @19
in equ. (1.14) and using the definition of the spectral function, eqn. (1.11), to
arrive at
g - p(k)
Dr(k°) = dk ——— 1.16
Ak = [ ak B (1.16)

which demonstrates the analyticity of the retarded propagator in the upper-half
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plane. The Euclidean two-point function, Dg(7) = (O(7)O(0)), is related to the
forward propagator through

Dg(r) = /00 (;I;O e *°T D> (k9). (1.17)

—00

Its Fourier transform, DE(wn) — foﬁ dre™n"Dp(7), has a spectral representa-
tion obtained performing the 7-integral and using the definition of the spectral

function to arrive at

DE(LU"):/OO k%) (1.18)

e k=,

In this way it is clear that the spectral function effectuates the connection between
real and imaginary times and that the retarded propagator can be expressed as

the analytic continuation of the Euclidean one

Dr(k®) = Dg(—i(k° + ie)). (1.19)

Under the assumption of a real spectral function and employing the representation

of the d-function

lim

il
= p.v.— —imé(x), 1.20
e—0+ T + i€ = z iniz) ( )

the spectral function is related to the imaginary part of the retarded two-point
function or the cut discontinuity in the analytic continuation of the Euclidean
two-point function

p(k%) = —SDp(K°) (1.21)
1 =

= m_(DE(—iko + ie) — Dg(—ik? — ig)). (1.22)
The generalization of all of the above to the field theory setting is straightfor-
ward by taking the spatial degrees of freedom into account. When the spectral
function is odd it is easy to verify using eqn. (1.17) a particularly useful mixed

representation of the Euclidean correlator,

cosh(wr — Bw/2)
sinh(fw/2)

Dl / " duldplenp),  Hlsa)=
(1.23)

relevant to the correlation functions investigated in lattice studies which are even

around the midpoint /2. Alternative prescriptions to analytic continuation to
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investigate real-time thermal field theory include the Schwinger-Keldesh contour
or double-field theory [47].

1.3.1 Non-relativistic QCD

The motivation for using an effective field theory in non-perturbative simulations
stems from the fact that the cutoff scale provided by the lattice spacing, a, is
conveniently close to the heavy-quark mass scale, mg. While this fact precludes
the use of a relativistic action on account of inducing large cutoff effects which
scale generically as O(amg), it also enables the effective field theory approach
to be applicable in capturing the relevant dynamics of the heavy-quarkonium
system. In this section and the next the presentation of ref. [48] is followed.

An effective theory relies on a power-counting scheme to order the operators
in the action [49]. The ordering of operators in non-relativistic QCD (NRQCD)
is based on the small parameter p/mg ~ v, namely the heavy quark velocity in
the quarkonium bound state. The binding energy in a colour-Coulombic picture,
mQag ~ 'mQ’z‘Q. can be identified with the first radial splitting in quarkonium,
mgu? ~ 500 MeV, so that the estimation v? ~ 0.1 holds for bottomonium and
demonstrates the suitability of the non-relativistic treatment. Furthermore, it
implies a separation of scales between the rest mass energy, the typical momentum
transfer and the binding energy, mqg > mgv > mQ'vz. This suggests that to cutoff
the theory at, or below, m¢ will provide a meaningful effective description where
the rest mass scale plays no role.

The effective theory is defined by writing down an effective action with all
possible operators up to a desired order in v which are consistent with the con-
straints of the symmetries to be imposed on the theory, such as gauge-invariance,
rotational symmetry or discrete symmetries like parity and charge conjugation.
This effective theory is non-renormalizable, that is the regularizer cannot be re-
moved without the addition of ever higher-order improvement terms. The theory
is therefore to be used to probe scales below the cutoff, which excludes the rel-
ativistic modes of the heavy quark. Matching of the effective theory onto QCD
may be performed non-perturbatively, which has been achieved in rigorous but
costly step-scaling studies, for instance in heavy-quark effective theory [50], or by
matching lattice and experimental observables which reduces the predicitivity of
the theory. . One may hope instead that as the cutoff scale is high, perturba-
tive matching is adequate, however, convergence is only guaranteed asymptoti-
cally [51].

A Foldy-Wouthusyen-Tani (FWT) type transformation of the fields may be

used to determine the operators to a given order in v and their tree-level coeffi-
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cients [52]. Transformations of this type decouple the upper and lower compo-

nents of the Dirac spinor, into two bi-spinor fields 1, x.

The contribution in v of the fields can be deduced as follows [48]. The quark
number operator [ d*z ¥ ought to have expectation value unity in a heavy

quarkonium state, thus ¢ ~ v3/2.

Similarly, the expectation value of the ki-
netic energy operator is defined to be the kinetic energy, which gives the re-
lation D ~ mgu. The field equation (to lowest non-trivial order in v) for ¢
is (D4 — D?/2mg)y = 0, so that Dy ~ mgv?®, and can also be used to trade
time derivatives for spatial derivatives to simplify the integration provided only
on-shell quantities are of interest. The order in v of the chromoelectric and chro-
momagnetic fields can be derived from the field equations for gauge potential,

4 respectively.

and give goFE ~ m2Qv3 and goB ~ mgv
1.3.2 Improved non-relativistic action

The continuum NRQCD action for the heavy-quark field used in this work in-

cludes the following relativistic corrections and spin-dependent terms:

I DQ
Lo=1y"(z) |+D; — 5 (1.24)

mq

D2 2 .
—(8 3? P D B Bl (1.25)

mg, RmQ
~ e DR BxD) - - B ). (1.26)
8mQ 2mg

The first line is the leading order term which gives the physics of the Schroedinger
equation. The terms in second line give the relative v? corrections and include
the leading correction to the kinetic energy, and the Darwin term, respectively.
On the final line are the leading spin-dependent terms, and they are also sup-
pressed by v? relative to the leading term. Experimentally, the hyperfine split-
tings, O(70 MeV), are in accord with this suppression by v? relative to the radial
splittings. To determine the hyperfine splittings to the 10% level one should

include spin-dependent terms of the next order in v*. which is not done here.

The coefficients in the action are the tree level values, and, rather than using
the FWT transformation, can be determined by matching the leading order am-

plitude, for a quark scattering off a static chromoelectric field in Minkowski-space
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QCD:

=~ p2Km
M(p1,p2) = @(p2)7°g0Ar(p2 — p1)u(p) * ST
(Pl e P2)2

To=
2
8m 0

‘ VigoAs (p2 — p1)¥ (1.27)

+ %WU - P2 X P1goA-(p2 — p1)Y,

to the (Minkowski-space) NRQCD action. The scalar part in the first line fixes
the coupling of the Darwin term, while the vector part in the second line fixes
the coupling of the spin-dependent chromoelectric term. The computation of the
amplitude for a quark scattering off a static chromomagnetic field can be used to

fix the coupling of the final term in a similar way.

1.3.3 Continuum spectral functions

The computation of the non-interacting Euclidean correlation functions in the
pseudoscalar, vector, axial vector and scalar channels was performed in [53,
54] which is reviewed in this section. These will be compared with the high-
temperature correlation functions on the lattice. That work demonstrated that
the forward mixed-representation correlators of operators with point-splitting x,
satisfy a Schroedinger-like equation in the heavy-quark limit

(7’0, —2mg - _1_6_2 +.. > D=, %) =10, (1.28)

mg 0x?

where the ellipsis indicates the omission of terms at higher order in m(_gl. Upon
removing the point-splitting, the mixed-representation Euclidean correlators in

the vector and scalar channels are given explicitly

—(2mq+q®/4mq)r
. _ ;. E
D%(T, q) x /d3p€ (E(p)+E(p+a))T o (mQT)3/2 (1.29)
2 —(QmQ+q2/4mQ)T
P _ r €
Dg‘(ﬂ‘l) S /dgp 2. C (BRI B+l o 5/2 150
mg, (mqT)

where E(p) = mq+p?/2mg+. .., from which the spectral functions, with q = 0,

can be calculated using equ. (1.22) as

1/2 S wave
3/2 P wave

Il

p(w) x B(w — 2mg)m% % (w — 2mg)*, ! (1=31)
QMg Q
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Redefining the spectral function around the two-quark threshold, p(w +2mg) —
p(w), and dropping terms in the kernel, K(w,7), which are exponentially sup-
pressed in the heavy-quark limit, mg > T, the power-law decays of egs. (1.29).

(1.30) are obviously recovered

o0
, 1
Dg(7) x / dwe™p(w) x T (1.32)
—2mq o

However, it should be noted that such power-law decays only occurs when the
threshold of the spectral function is at zero. Namely, if the threshold is shifted
by redefining again p(w) — p(w + wp), the decay is screened by an exponential
term

00
Dg(7) ox e707 dwe ™ p(w) x

—wo

()_»UOT

W‘. (1-33)

This exponential decay will be relevant in the analysis of the correlation func-
tions in chapter 3, due to the renormalization of the rest energy in NRQCD when
interactions are turned on [55]. This analysis demonstrates that there must be
a transition between exponential decay of the correlation functions in the vac-
uum where bound states exist to power-law decay at finite temperature. The
computation of the free correlators is useful because the direct comparison of the
Euclidean correlators obviates the need to perform any analytic continuation,
which poses a significant challenge.

In addition to the tree-level result, the spectral functions were investigated
in the resummed perturbative framework by identifying the potential, V= (¢, |x/),
as the part scaling as m% in the differential equation satisfied by the forward
correlator. According to [56] this potential, derived in the static limit from
the Wilson loop, contains a Debye-screened Coulomb part from the screening
of colour-electric charges in the plasma. Furthermore, an imaginary part exists
whose interpretation is due to the Landau damping of the binding gluons in the
plasma, which leads to a decorrelation of the quarkonium state in the medium.

The non-perturbative evaluation of this potential will be discussed in chapter 4.

1.3.4 Screening masses in NRQCD

In addition to the temporal correlations. spatial correlations can provide evi-
dence for the in-medium modification of hadronic bound states [57]. For exam-
ple, the mesonic screening mass for relativistic quarks is known to be My, =

2,/ (72T?% + m2) [58], deduced from the spatial correlation which can be obtained
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by

> d = , Meer
DEg(z) x / = / dp, eP**p(w, (0,0, p,)) x —= e~ Mserz, (1.34)
0 w —00 B"

In contrast, if a bound state exists at M with a corresponding peak in the spectral
function p(w) x §(w? — M?), pure exponential decay will occur Dg(z) oc e™M=,
The appearance of the lowest Matsubara frequency, 77", is a consequence of
the antiperiodic boundary conditions. If periodic boundary conditions in the
temporal direction are imposed instead then the bound state screening mass is
unchanged, however the screening mass in the free case is modified to be m,. The
divergence of the antiperiodic and periodic boundary condition screening mass
correlators has been used as a diagnostic to indicate modification in the spectrum

in charmonium [59].

In the heavy quark theory, the situation is different [60]. The dispersion
relation for a non-relativistic hadronic bound-state is written Ey(p?) = M; +
p?/2M,, where the rest energy, M;, and the kinetic mass, Ms, are distinct due
to the possibility of transforming the rest mass in the quark dispersion relation
arbitrarily. A bound state with corresponding spectral density d(w — Ep(p?)),
has a mixed representation temporal correlator which decays as e EBu(P*)T Qub-
stituting this mixed representation of the temporal correlator in the following

definition of the screening correlator through the inverse transforms

B 00 )
DE(Z):/ dT/ %&ewa(n (0,0,p.)), (1.35)
0 —oo 4T

yields

Dg(z) x e”VM1Mez ['S — erf (\/]\Ilﬁ -4/ ];‘;Qz>] (1.36)

e gV Mo {1 —erf (\/W+ \/ ];[2 z):l (1.37)

In the infinite temporal extent limit, there is pure exponential decay with screen-

ing mass /M;M,. In the non-interacting case, the correlators from eqn. (1.30)
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are substituted into the expression equ. (1.35) to arrive at

. —-E(p?)T
/dT/ dp. 1PZZEW (1.38)
mQT
-sz T
x / dr =—— (1.39)
0 TIIQT

e~mQ22/ﬁ

* g e

in the S wave channel, while the derivative coupling in the P wave channel mod-
ifies this to be

~E(?)r
/dT/ dp, o ")5/2 (1.41)
(moT
—leZ
0 nl,QT
2
e~ MQz /B ranQ
* gy (14 757) )

The infinite temporal extent limits of these non-interacting screening correlators
are pure power-law decay, but at finite 3, the large value of the prefactor in the
exponent relevant to the parameters investigated in the lattice study will render
the power law decay difficult to observe as it is screened by the exponential
decay. In chapter 3 only the temporal correlations are investigated therefore and
the continuum free correlation functions defined in the previous section and their
lattice counterparts will be used to investigate the discretized version of NRQCD

at finite temperature.

1.3.5 Analytical approaches

Heavy quarkonium has played a vital role in the understanding of the strong
interaction much like the hydrogen atom in electrodynamics. Potential models
are valuable tools to gain qualitative insights into the relevant physics at play
and, given their success in describing the spectrum of quarkonium in the vacuum
from early on [61], they have been used extensively to describe the temperature
effects on the binding of heavy-quarks and the survival of heavy quarkonium in
the deconfined phase [5]. Nevertheless, they require phenomenological modelling
of the potential like the use of a screened Cornell potential, which has largely been
disfavoured in preference for potentials derived from non-perturbative methods
such as lattice QCD. The theoretical foundation for using popular thermodynamic

potentials as model potentials at finite temperature is not clear and a variety of
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approaches have been used which employed the colour-singlet free energy, internal
energy or some combination thereof (62, 63]. Nevertheless, the use of potential
models has been very instructive in elucidating the criteria for the unbinding of
heavy quarks through the investigation of the in-medium quarkonium spectral
functions by solving the Schroedinger equation with potentials [64, 65, 66].
Alternatively, effective field theory approaches have solid theoretical founda-
tions at zero temperature [67]. These rely on integrating out either the hard
scale, mq, resulting in NRQCD, see section 1.3.1, or the soft scale, mguv, called
potential NRQCD. Long-distance effects can be incorporated by mapping onto
potentials from non-critical strings [68]. The extension of these effective field the-
ories to finite temperature has been an immensely successful programme (54, 53],
which has allowed the determination of the quarkonium correlation function and
spectral functions, see 1.3.3, in a weakly-coupled medium by employing the re-
summed perturbative potential [56]. The prediction of the imaginary part of the
weak-coupling potential has been incorporated in potential models [69, 70, 71].
The complementary relationship between the heavy-quark potential and the
quarkonium correlators through the effective field theory approach will be ex-
plored in the following chapters of this thesis. Ultimately comparing the effective
field theory approach with non-perturbative data is valuable to understand the
strongly-coupled nature of the deconfined medium. Although new methods on
the market [72] may not suffer from the same issues in confronting real-time ob-
servables, the lattice is well-posed to contribute to this discussion. A compilation
of the dissociation temperature for charmonium and bottomonium can be found
in ref. [44] which demonstrates the competitive nature of predictions of binding
in heavy quarkonium systems in the plasma from first principles of lattice QCD.
In the following chapter the methodology for the non-perturbative evaluation of
the quarkonium spectral functions from lattice QCD is outlined along with the
strategies to extract the spectral function from Euclidean data and results for the

zero-temperature spectral functions.
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2 Lattice QCD

Lattice QCD is a powerful non-perturbative tool which remains the only system-
atically improvable and tractable non-perturbative regularization of the theory.
The subject is now entering a high-precision era thanks both to Moore’s law and
algorithmic developments. Its success is not limited to the low-energy spectrum
of QCD, but encompasses a wealth of static and real-time QCD phenomena and
has elucidated important theoretical and phenomenological aspects of strongly-
coupled field theories. Some basic facts of the lattice regularization are recalled in
the first section following standard presentations [73] along with the discretized
version of the effective theory used throughout this study at zero and finite tem-
perature. The tuning of the heavy-quark mass and the study of the low-lying
bottomonium spectrum at zero temperature is included, followed by a presenta-
tion of the strategies used to extract the spectral functions from the Euclidean

lattice data which will be used in the final two chapters.

2.1 Light fermion and gauge action

Wilson’s prescription [3] begins with the definition of the discrete lattice of finite
extent A = {n = nye, | n, = 1,...,N,}, where {e,},—1,. p is the standard
basis, and |A| = Hp,:l

Euclidean field theory on which the fields are defined. It is necessary to work with

____ p Ny This replaces the D-dimensional spacetime of the
the Euclidean theory so that the Gibbs factor in the partition function is positive
and can be interpreted as probability measure for the importance sampling for
numerical Monte Carlo methods. In the simplest scenario where N, = N the
aspect ratio of A is unity. Then the first consequence of introducing the lattice
formulation is the breaking of the group of isometries of Euclidean spacetime,
E(D), to the cubic point group, Oy,.

QCD is an SU(3) gauge theory, with gauge fields which transform in the ad-

joint representation, and Ny fermions which transform in the fundamental rep-
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resentation. The fermion field, ‘lZ’(??), with spinor and colour indices suppressed,
are the generators of the algebra, with normalization Tr(T9T?) = 6,;,/2. defining
the Killing form on the algebra. The discretization of the Dirac action follows
immediately by replacing the fermion fields in the action with the dimension-
less fields above, the spacetime integral with a finite sum and substituting the

covariant derivative with a covariant finite difference operator:

[ i@ @+ @) — X S+ )i (21)

neA

where # = ~v,x,, and {v,} satisfy {y,,7} = 20,,. The Hermitian gauge-
covariant finite-difference operator is defined through:

St i 5 . ,

D, y(n) = 3 (Uy(n)i/)(n + &) — U;(n — e p(n — ey)) ' (2.2)
where lA]p(n) = ¢19044(") has the transformation Uﬂ(n) = g(n)U,lg(nnLe,,)T under
the action of the gauge group so that ﬁﬂlﬁ(n) L g(n)DNiﬂ(n) is gauge covari-
ant. This can be demonstrated using the corresponding continuum Wilson line,
Ur(n,n + e,) = Pe'9 Jrdzu Au(@) | where T is the shortest path connecting the
neighbouring lattice sites. The group elements, {U/,(’n)}. are referred to as the
links between neighbouring sites because of their relation to the parallel trans-
porter of the continuum gauge connection. It also suggests that in the lattice
formulation, the path integral measure over the gauge fields be replaced with
that over the links.

According to the Feynman rules, the free momentum-space propagator can
be written by inverting the quadratic part of the action

—ifrmo
——, k,=sinp,, € |—m, m). 2.3
k2+7h% ] Pu, Pu [ ) (2.3)

For a discrete lattice the Brillouin zone is finite, and the lattice regularizes
the field theory with a cutoff ~ 7. Crucially, the high momentum modes with
non-zero momentum components p, = 7 contribute continuum-like fermionic
excitations where k — p, as well as the p? ~ 0 mode. This spoils the interpreta-
tion of the action describing a single fermionic excitation. The Nielsen-Ninomiya
no-go theorem [74] explains that it is impossible to construct a hermitian, lo-
cal, massless Dirac operator, D, with exact chiral symmetry {b,’yg,} = 0, where
y5 = Hle Yu, Without the presence of these extra excitations, or doublers. The

simplest solution is to add a term to the action which explicitly breaks chiral
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symmetry in the massless limit. Wilson proposed the action:

Sk =3 U(m)(B+ o - 50)(n) (2.4)
O(n) = Y (Ou)i(n + ) + Uf(n - ei(n - ) - 20(n),  (25)
p=1

where (] is the D-dimensional covariant lattice Laplacian and r is the Wilson
parameter. The identification (L,,(n) = Uﬂ(n)U,,(n + eu)UJ(n + e,,)UJ(n) =
ei90Fiuv (n) jg made, which is known as the elementary plaquette in the p—v plane
based at n, and is related to the holonomy of the continuum gauge connection.
The plaquette action of the discretized theory is arrived at by transcribing the

continuum Euclidean gauge action using the plaquette fields:

1 2
~2—/dD.T T\I‘(Fqu‘pu) S ; Z

0 TLEA
u<v

(3 = %Tr(aw + Uj“,)> . (2.6)

By taking these steps the path integral is finite-dimensional and well defined.
Periodic and anti-periodic boundary conditions are usually imposed for the gauge
and fermion fields respectively, although results ought to be independent of this
choice in the spatial directions for adequately large volumes. Open boundary
conditions in the temporal direction allow the correct sampling of topological
sectors at small lattice spacings which are traditionally difficult to explore with
popular updating algorithms [75]. The quantum mechanical expectation value of
an operator, some gauge-invariant monomials in the fields, denoted with angular

brackets and defined through the path integral:
(O, 9,3) = 27 [140adad] O, §, dle=o-5r, (2.7)

with Z such that (1) = 1. The path integral measure is the product of the Haar

measure for each link and Grassmann measures for fermions

A0dddd] = [T [I d0u(n) dd(n)di(n). (2.8)

The fermion action is quadratic in the fields, so the Grassmann integration can
be evaluated by hand. Each flavour contributes a factor of det D({U}) to the
path integral, which depends on the bare parameters for that flavour. Wick’s

theorem tells us to make all possible contractions of the fields, replacing them

]

with the fermion propagators which depend on {U} e.g. (n)v(m) — D~ Yn,m).
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For meson correlation functions, the operator is a product of source and sink
interpolators which are bilinears in the fields. As all of the spinor indices are
contracted, it is always possible to rewrite the products of propagators resulting
from the contractions as a product of traces over the Dirac indices. In flavour
non-singlet channels, only one possible connected component where each edge in
the graph corresponding to a contraction connects a field in the source and in
the sink, whereas in flavour singlet channels edges of a graph may connect fields
within the source and sink, corresponding to a disconnected graph.

The large dimension of the integral makes it impossible to make a direct nu-
merical evaluation, even with a modest lattice size and coarse sampling of the inte-
grand. Instead Markov Chain Monte Carlo methods are used to estimate the path
integral stochastically. Given a Markov process which satisfies detailed balance
and ergodicity, the sequence of gauge configurations generated {{U};}i—1 _n.
asymptotically obeys the probability density Z~!(det D)Nse~5¢ and expectation
values can be estimated by the sample mean (O) = + Zf\il O{U}4).

In particular, the Metropolis method satisfies that criteria exactly, and, for ex-
ample, single-link updating can be used to propose a configuration {U} — {U’},
which is accepted with probability min{l.e*(‘g[{p}]“g[{[y}])}. However, for non-
local actions such as those for which the Grassmann fields have been integrated
out, local updating schemes are inefficient. A modern approach to efficiently
move through the field space is the hybrid Monte Carlo (HMC): consisting a hy-
brid molecular dynamics step and a final Metropolis acceptance step to make the
algorithm exact. A set of Gaussian-distributed canonical momenta conjugate to
the field coordinates are introduced, effectively bringing the fields in contact with
a heat bath. Then the Hamiltonian evolution of the coordinates is performed,
which is the microcanonical molecular dynamics trajectory. Finally a Metropolis
step is performed so that detailed balance is preserved. This way the good er-
godicity properties of the momenta updating can be combined with the efficient
motion through configuration space of the molecular dynamics algorithm.

The fermionic determinants may be omitted altogether for convenience or cost
resulting in a quenched, or partially quenched theory, which is not unitary. This

is equivalent to neglecting vacuum polarization effects.

2.1.1 The continuum limit

The formulation of lattice field theory presented so far has been in terms of
dimensionless variables. Observables measured from a lattice simulation are di-
mensionless numbers. By replacing the standard basis with a dimensionful co-

ordinate system, e, — aye,, without summation, a scale is reintroduced, the
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lattice spacing ay, for now a, = a. However, the lattice spacing does not appear
explicitly in the dimensionless formulation, it is controlled by all of the couplings
in the theory {go,o,...}. For a pure gauge theory there is only one coupling,
the bare gauge coupling, go. The lattice spacing can only be measured by com-
paring a lattice observable, such as a hadronic mass, the Sommer parameter rg,
or the Wilson flow scale ty, with an experimental value, or value determined from

another lattice simulation.

Any dimensionful quantities may be expressed as
O(a,go,fno,...) — a_d@(go,ﬁlo,...), (29)

where d is the observable’s canonical mass dimension. In particular, the dimen-
sionless mass M must vanish in the continuum limit for the value in physical
units to be finite. The vacuum to vacuum amplitude, Z, is closely related to
the partition function for a statistical mechanics system via the path integral
representation. The dimensionless correlation length { , in such a system, must
diverge as the critical point is approached in the space of couplings, which leads
to universality of critical phenomena, or independence from the physics on the
ultraviolet scale [76]. The correlation length is inversely related to the mass of the
lowest mass in the spectrum, namely the pions in a theory with fermions, or the
lightest glueball in a pure gauge theory. This suggests that the continuum limit of
the lattice field theory is realized at the critical point, where correlation lengths
become large relative to the lattice spacing. However, due to the finite extent of
the lattice, which provides an infrared cutoff, these correlation lengths ought not
to exceed the extent of the lattice. Liischer’s argument [77] for exponential finite
volume corrections leads to the criterion M, x aN 2 4 as satisfactory suppression
of finite volume effects. These criteria give rise to the scaling window, where a

balance between a fine, small lattice and large, coarse lattice is sought.

The dependence of the lattice spacing on the bare couplings of the theory is
described by the renormalization group beta function 8 = —dgp/d(Ina). The
first coefficients in the expansion of the 3 function are independent of the renor-
malization scheme, so the 3 function is universal in the perturbative regime and

can be integrated to give
= AZl(5093)—@1/2638—1/26093’ (2.10)

which demonstrates that the critical coupling is gj = 0 and defines the requisite
scaling behaviour for any lattice observable @ x a? which must be observed

for the correct continuum limit to be approached. The vanishing of the critical
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coupling is due to asymptotic freedom, as the bare coupling, which is relevant
to the cutoff scale, becomes small as the cutoff is removed. The appearance of
a dimensionful scale in a theory with only dimensionless parameters is called
dimensional transmutation, like in the static limit of QCD due to the anomalous

conformal symmetry.

2.1.2 Symanzik improvement

Although the scaling criterion enables a well-defined continuum limit to be taken,
due to critical slowing [78] of simulation algorithms as the critical point is ap-
proached it may not be practically possible to reach the regime of adequately
small lattice spacings. Therefore, one would like to reduce the discretization and
cutoft errors at finite a so that reliable continuum physics can be extracted at
larger lattice spacings. Symanzik’s procedure [79] is to define a continuum local
effective action which includes all irrelevant operators with the required symme-

tries of the lattice theory:

Seff = /dD.I‘ (Co+ali+a®La+...), with Lp= coO¥. (211)
{0}

The inclusion of these irrelevant operators, which do not alter the critical
behaviour of theory, can be used to drive it to a critical surface, or renormalized
trajectory, which is free of discretization effects even for finite a. However, in
practice the mass dimension of the operators is used to truncate the series at
a finite order. O(a*) improvement of the hadronic spectrum can be achieved
through the discretization of this action by including operators with mass dimen-
sion up to D + k [80]with appropriately chosen improvement coefficients. The
improvement of on-shell matrix elements further requires the addition of higher-
order local counterterms and the tuning of their coefficients. The matching of the
couplings in the effective theory to QCD is often performed perturbatively, which
is valid for small enough lattice spacings due to asymptotic freedom. The non-
renormalizability of the improved theory is not pathological in the continuum
limit because the improvement condition requires that the higher dimensional
operators vanish in that limit. This is in contrast to the situation in a non-
renormalizable effective field theory, where ever higher dimensional operators
must be included as the cutoff is removed.

The plaquette gauge action is already O(a)-improved because no five dimen-
sional operators with the relevant symmetries exist. The next operators occur at
dimension six, corresponding to the six-link Wilson loops, and can be included

to make the action O(a?) improved. An important observation is that fermion
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actions whose Dirac operators obey the Ginsparg-Wilson relation {D,’y5} x a,
are automatically O(a)-improved. The Wilson fermion action is not chirally in-
variant and improvement is necessary to eliminate O(a) cutoff effects. There

is only one non-redundant five dimensional operator required, the clover term,

e Zy@ 12)0,“,1—:‘#,,1[3. where 0, = —iy,7,) and the usual choice of the field

strength tensor is the clover-leaf definition:
Fpu = ZQ[N,y]a where Q/,u/ — U,ul/ + U T U,“‘,l, A U—l/‘/la (212)

where all plaquettes are based at the same site, and define the corresponding
fields at that site.

Finally, tadpole improvement [81] is often implemented to improve the conver-
gence of lattice perturbation theory and reduce large renormalizations resulting
from the ultraviolet properties of certain tadpole diagrams. These effects are
empirically known to be as large as the tree-level contributions [82]. Practically,
it can be achieved by replacing links with U# - U# Juo where uq is a suitable
gauge-invariant definition of the average link. Since wug is a global factor, the
couplings may be redefined to implement this improvement, for example in the

hopping-parameter form of the action:

1 - 1/4 K Gl : -
Uy = (3{'I‘rU,W)> , K— —, Csw — b—?, 90~ 8 o (2.13)
up Ug

One can imagine tadpole improvement as the factorization of contributions
from contracted gauge fields in a loop integral which suppresses factors of the
lattice spacing in the expansion of the link, U, = ug(1 + agO/iLR +...), thereby

leaving only the relevant degrees of freedom.

2.1.3 Anisotropic lattices

Certain applications in lattice QCD require a fine resolution in the temporal direc-
tion, while perhaps also requiring that finite-size effects are minimized by having
a large physical spatial volume. In order to satisfy these requirements simultane-
ously it may be advantageous to use a lattice action with different discretizations
in the time and space directions, resulting in anisotropic lattice spacings [83],
a; = as and aq = a,, with the renormalized anisotropy £ = as/a,, usually greater
than unity. These anisotropic lattices can be used to reduce the cost of simula-
tions where finite-a4 errors are believed to be under control.

For example, a fine resolution of the temporal correlators is necessary to

extract the excited-state spectra of hadrons [84], where the signal degenerates
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rapidly in time. Heavy states, such as in the heavy quarkonium spectra suffer
from the same problem [85]. Anisotropic fermion discretizations have been for-
mulated which have leading cutoff effects at O(mga,) which take advantage of
a finer temporal lattice spacing [86]. The glueball spectrum has also been in-
vestigated [87] using anisotropic lattices, due to the notoriously poor signal of
the pure gauge operators used in that calculation. Anisotropic lattices are also
useful in the study of finite-temperature lattice gauge theory where the physical
temporal extent must be varied, either by a fixed-scale or fixed-N, approach.
The evaluation of lattice spectral functions desperately requires precise and high-
resolution temporal correlator data, which for small physical temporal extents

really requires a highly anisotropic lattice.

The ensembles used in the following studies were generated with an anisotropic
Symanzik-improved gauge action and an anisotropic clover Wilson action, includ-
ing tadpole improvement. The improvement coefficients are the tree-level values.

The gauge action is:

£ [ 2 n 5 40 - -
Sell] =5 ) | D RTr(1 - U) (deéw b omtbuda)  (214)
90 neA ;1‘76'1/ s>g s T
ij

A 1 £
E Z §RT‘I‘(1 = R;w) (nggéméw‘ + m(suié,ﬂ;) s

HFV
N

(2.15)

where f?;w is the 2 x 1 Wilson loop in the p—v plane, and §2 is the bare gauge
anisotropy. This action has O(a, a?, g2a?) discretization errors. The 2x 1 rectan-
gle in the 4-7 plane is not included because it violates reflection positivity needed

to construct a positive definite transfer matrix. The fermion action is:

SHU. . 9] =
el AR R o P B (csbi+ Z6,) | ¥
nezf\w(n)_’- ursmo + 4+§; i+§“z>;0;w v (Cs yi"‘g u4> 1L(7"L)7

(2.16)
where W, is the Wilson fermion matrix constructed above, and f? is the bare

30



Ny as (fm) a;! (GeV) ¢ Mi/M, asmg €& (MeV)

First gen. 2 0.162 7.35 6 0.54 4.5 8570
Second gen. 2+1 0.1227(8) 5.63(4) 35 045 2.92  8252(9)

Table 2.1: Comparison between lattice parameters used in earlier work [91, 92,
93, 94. 95, 96] (first generation) and this work (second generation). & is the
difference between the experimental and NRQCD T used to remove the energy
shift of the spectrum.

fermion anisotropy. The tree-level, tadpole-improved clover coefficients are:

1 1 Lo
Cg = ﬁ, Cr = 5. 2.2 g—% = 5 (217)
Ef“‘s 2urug ff §

and £ is the renormalized anisotropy. Finally, this action also includes three-
dimensional stout smearing of the links [88]. Smearing of the gauge fields in
the action reduces the coupling to the high-momentum modes and suppresses
lattice artifacts. Stout smearing’s analytic projection back into the gauge group
means it is suitable for use in HMC algorithms in the calculation of the force in
the molecular dynamics routine. The mean links for tadpole improvement are
thus defined from the stout, rather than thin, links in the fermion action. The
ensemble was generated with Ny = 2 + 1 using the Rational HMC, which is
suitable for odd numbers of flavours [89], which uses a rational approximation to
the fermion determinant. The fermionic determinant is usually implemented via
the pseudofermion method which is only suitable for even numbers of degenerate

quarks.

The inequality of the spatial and temporal lattice spacings ought to be irrele-
vant in the continuum limit, which is independent of the details of the discretiza-
tion. Intuitively, as much of the symmetry of the continuum theory shoud be
restored as possible at finite lattice spacing, so that the correct continuum theory
is approached as the cutoff is removed. For an anisotropic action, this amounts to
tuning the bare anisotropies in each sector (gauge, light quark, heavy quark, etc.)
so that the renormalized anisotropies are consistent, in the hope that the Lorentz
symmetry of the continuum theory is being restored. The tuning of the gauge
anisotropy in the ensembles used in these works was performed using Klassen’s
method [90], or the sideways potential. The fermion anisotropy is tuned through
the pseudoscalar meson dispersion relation, E?(P?) = M3q + PQ/E?. The pa-
rameters of the zero-temperature and finite-temperature ensembles used in this

work are listed in table 2.1.
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2.1.4 Lattice NRQCD

Due to the discretization effects entering relativistic actions generically as asmg
it is not possible to simulate quarks with masses approaching the lattice cutoff
without introducing significant lattice artifacts. Naturally, an ultraviolet cutoff
on the order of the desired heavy quark mass suggests the use an effective field
theory approach motivated in the introduction. Remarkably, this ancient strat-
egy (97, 55] is still relevant today and used to simulate heavy quarks on the lattice
in state-of-the-art dynamical simulations of quarkonium and other b-physics ob-

servables [98, 99], and has consequently been tested stringently.

The transcription of continuum NRQCD into the lattice theory [48] is straight-
forward by substitution of continuum spatial covariant derivatives with the sym-
metric covariant finite differences, V*, and the temporal covariant derivative with
a non-symmetric temporal covariant finite difference, V. With this formulation
the quark propagator can be integrated with an explicit integration scheme. The
clover definition of the field strength tensor is used to define the lattice chromo-
electric and chromomagnetic fields as usual. Due to the decoupling of the heavy
quark and antiquark and the first order nature of the equations of motion the
quark action is written suggestively in terms of the leading order Hamilton and

its corrections which are the corrections outlined in section 1.3.2:

Sy = ala,; Y_vi(n) [VS + Ho + 6H] ¥(n) (2.18)
neA
=a Z vi(n) [Y(n) — Kop(n — are,)] (2.19)
neA

which is recast in terms of the integration kernel defined through:

~Ho\* - Ho\*
Koy = (1 - %) Ul(n) (1 - “%0) (1-a,6H), (2.20)
2A(4) (2))2
SE 5 8K + ag (LT(A ) ‘ where, A(2n) e Z(vj—v:)n

24mg - 16km2Q :

?

(2.21)

The 2n*t-order derivatives are defined in terms of the components of the sym-
metric second order one. In addition to the relativistic corrections, the lattice
improvement terms in the final line eliminate the next-to-leading order corrections
in a? and the next-to-leading order corrections in a, in the evolution equation
from the leading order Hamiltonian. The anisotropic action is obtained by keep-

ing track of the temporal lattice spacing in the dimensionless action as usual.
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The quark propagator is obtained from the equations of motion, which are sim-
ply read off from eq. 2.19. It is the solution of an initial value problem, which, in

the discrete formulation is integrated exactly as follows:
G(n,n,;) = K;:G(n,n, — are;), (2.22)

The antiquark propagator is obtained by using the charge conjugation symmetry,
which results in it being simply related to the quark propagator through complex
conjugation. Lepage’s parameter, k, is introduced to stabilize the integration so
that |1 — a,Hp/2k
propagator for the simplest NRQCD action with only the Hy term, and leads
to the condition g 2 3/&k [100]. In this study, the choice & = 1,...,3 have

been investigated and k = 1 is satisfactory as demonstrated in the investiga-

< 2. This instability can be ascertained from the free quark

tion of the spectrum presented in the following section. Tadpole improvement is

implemented by dividing the links by the mean link as usual.

2.2 Bottomonium spectroscopy

In this section, an unsophisticated study of the low-lying bottomonium spectrum
is presented, principally to tune the heavy-quark mass, a;mg. and to verify the
adequacy of the lattice set-up in obtaining the gross features of the bottomonium
spectrum. Furthermore, it provides a test-bed for the reconstruction of the spec-
tral functions, whose structure in the vacuum is known unambiguously from the
spectrum. The HPQCD collaboration [98, 99] has investigated the bottomonium
spectrum including higher-lying orbital and radial excitations than are included
here. They have accounted for discretization effects, computed radiative cor-
rections to the matching coefficients and estimated the omission of higher-order
relativistic corrections and have demonstrated excellent agreement with the ex-

perimental spectrum of gold-plated bottomonium states [101].

2.2.1 Operators and correlation functions

The extra continuum symmetries of the lowest order effective action suggests the
states be labelled by the unitary representations of spin, orbital and total angular
momentum, and likewise the well-defined interpolating operators which overlap
with them. While total spin remains a good quantum number for the continuum
theory, orbital and spin angular momentum are just approximate categorizations
of the states as these operators do not commute with the full Hamiltonian. For in-

stance, S wave and D wave states in the vector channel may indeed mix, although
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Table 2.2: Subduction of the continuum irreducible representations of the rotation
group with dimension dim; = 2J + 1 into the irreducible representations of the
cubic point group, with dimesions dima, o, = 1, dimg = 2 and dimT, T, = 3.

JPC 25+1LJ APC F(X, X’)

0+ 181 A1_+ I

== 381 T~ (o7

il 1P1 T2_+ A;

0++ 3P0 Ai*-+ Z]-A]'O'j

1++ 3P1 TT+ A[ja';:]
e N -

D 3D2 E—— A,‘A[]-O'k]

Table 2.3: The selection of (non-exotic) channels investigated in this work. There
is no ambiguity in identifying the spin of the ground state in any of these channels.
The multiplets of the L # 0 states use the symmetric finite difference operator
A;(x',x) x Ox/x+i — Ox’ x—i- The average is always taken over components of
the same spin. Local sources, ¢(|x|) = dx.0, and Gaussian smeared sources with
#(|x|) = exp(—x2/2p?) were used.

the identification of the lowest lying state poses no ambiguity.

However, continuous spacetime symmetries are reduced upon discretization
on a finite lattice. The subduction of the continuum irreducible representations
to the lattice ones results in ambiguities in the identification of the continuum
spin, J, of the spectrum. Table 2.2 records the correspondence of the contin-
uum and lattice representations. The quark model or Regge trajectories suggest
the identification of the lowest energy states in each channel with the state with
lowest continuum spin appearing in that channel. In principle, examining the de-
generacies between the lattice irreducible representations in the continuum limit
offers a solution, but practically it is impossible for higher excited states when the
signal becomes poor and where physical degeneracies also exist. Alternatively,
construction of operators which are subduced from operators with a definite con-
tinuum spin have been shown to indicate the spin of excited states on the lattice
through the relative magnitude of the overlaps, as long as one is close enough

to the continuum [102]. In this work, only states with spins up to J = 2 are
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investigated so no such difficulty arises. For bottomonium, states with spins
up to J = 4 have been investigated in ref. [103], however, the highly divergent

correlation functions are strongly afflicted by lattice artifacts.

The NRQCD interpolating operators are bilinears in the two-component Pauli
fields, which generally have some spatial structure due to the derivative couplings

necessary to project onto a state with non-zero orbital angular momentum

O(r,x) = ¢1(7,%) Y _T(x,y)¥(7,y), (2.23)
y

where spin and colour indices are suppressed. The spatial derivatives and spin
structure used to construct the operators are listed in table 2.3. The non-covariant
spatial structure requires the gauge to be fixed. Recently, covariantly-smeared

operators have been investigated and reported to provide good signals [104].

The overlap of these local operators with the ground state in a given channel
may be improved upon by introducing a physical smearing, which is a convolu-
tion of one of the fields in the interpolating operator with a radially symmetric
wavefunction, ¥ (7,x) — Zy o(|x — y|)¥(7,y) motivated by physical intuition.
The smearing function has support at a single Euclidean time and in the following
illustration is introduced both for the source and sink operator in the hadronic
correlation function. Hydrogenic wavefunctions have been used [97], but only
local sources and Gaussian wavefunctions are employed in this work. Due to
the augmented spatial structure when smearing is performed, the fields in the

interpolating operator are contracted with the following coupling
L(x.y) = > T(x.x)o(|x - ). (2:24)
xl

Due to translation invariance, the mixed representation Euclidean correlation

function may be written
Ge(r,p) = <Z e~ P01 (1, %) 0(0, 0)> (2.25)
X

x <Ze—ip'(x—WoT(T,x)O(o,y)> . (2.26)

X,V

Applying Wick’s theorem to the path integral, the contracted quark fields are

replaced by the inverse fermion matrix, D;)l, (0;7), so the translationally-invariant
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Euclidean hadronic correlation function becomes

Ge(T,p) x <'HZ e~ (x-y) Z f(y,y’)D;,le,(T;O)f(x,x/)D;;(T: 0)> g
X,y x'y'
(2.27)

where the trace is performed over the product of matrices by contracting the
suppressed colour and spin indices in the obvious way. The decoupling of the
heavy quarks and antiquarks in the effective action mean there is no discon-
nected contribution, as the quark and antiquark fields can be labelled as different

flavours.

Given the solution vector, G3(7), to the inversion of the fermion matrix on a

stochastic source with zero mean and finite variance, 7x.

Dxy(0 + 1:0)Gy (1) = nxe'®™0-, (2.28)
Dyy (o + T; O’)G;(T) = Z N (%, %")070, (2.29)

x/

it is straightforward to verify that the estimator

T Y o P*S T, %G Fe%), (2.30)

has the expected value of the correlation function in eqn. (2.27) using the uncor-
related noise property E, [nx7y] = 0xy, where E,[-] denotes the expectation value
over the random fields 7. This scheme amounts to dilution in the time, spin and
colour indices with a random wall source. Random wall sources have been investi-
gated in detail in ref. [105] where they were found to be beneficial to obtain good
signals especially for finite momentum states. The advantage of using random
wall sources is to obtain an estimator with reduced variance by utilising trans-
lation variance. For each Monte Carlo sample of the gauge fields the inversion
is performed on a single pseudo-random unitary source, nx € U(1), generated
by Liischer’s RANLUX generator [106], and the contraction is performed according
to eqn. (2.30). Rather than an explicit inversion, due to the decoupling of the
heavy quark and antiquark fields, the solution vectors are determined according
to the evolution equation, eqn. (2.22). In this way, the correlation functions are

calculated for each of the states listed in table 2.3.
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Figure 2.1: Example of the typical behaviour of the gauge fixing violation with
number of overrelation iterations from a thermalized configuration on a V' =
243 x 16 volume.

2.2.2 Gauge fixing

The necessity to fix a gauge is obvious from the non-covariant nature of the
sources. The fixing to Coulomb gauge on the lattice was performed by the op-
timization of the usual transcription of the continuum gauge-fixing functional,

Tr [ de Aﬁ(w). over gauge transformations g(x) [107]:

1
Tr
DV N,

FolU] = > 9@ U +UNgx+ i), (2.31)

;LG?%Q,S}

where D is the spacetime dimension. The functional was optimized by sweeps
of local Cabbibo-Marinari over-relaxation hits on the SU(2) subgroups of each
link. The stopping criterion was the difference of the functional between suc-
cessive sweeps, d = F' — F', which vanishes asymptotically with the number of
sweeps because the algorithm decreases the functional monotonically. The gauge

violation is the positive definite measure, 6,

1

6 = VNCTI“%A(I)AT(I), (2.32)
3

Alz) =) Ai(x) - Ai(z - 1), (2.33)
=1
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which is a proxy for the derivative of the functional along the optimization tra-
jectory and the correlation between 6 and ¢ is visible from figure 2.1. A tolerance
of § <1077, or around machine precision for floats, is reached within about one

thousand sweeps.

2.2.3 Fitting and statistics

Fits of the correlation functions to single exponentials motivated by the spec-
tral decomposition of the correlation function, the zero-temperature analogue of
eqn. (1.13), were performed using the maximum likelihood method [74]. This

model assumes the data, G = (G;);=1... n, estimated by the sample mean,

1
Cl= —= Z Gm’ (234)
|A” GmeM

over the set of observations, M = {G™,G™2, ...}, along the Markov chain, to be
drawn from a normal distribution. The solution of the non-linear least squares
problem is obtained by minimizing the quadratic likelihood over the parameters,

x = (xp)p=1...P, given the hypothesis, f(z) = (fi(x))i=1,.. ~, and the data,

x* = argmin L(z), (2.35)

T

(G- f(x))C7'(G - f(a)), (2.36)

?

L(x)

where the covariance matrix, C, is estimated by Bayes’s unbiased sample covari-

ance

1 1

g
M| 1M - 1

Y (G"-G)®(G™-G). (2.37)
GmeM

Assuming that the global minimum of the likelihood has been successfully de-
termined, the goodness of fit for the optimum parameters is determined by the
standard test of the x?-statistic, x?(z*) = L(z*): if x> > N — P the maximum
likelihood interpretation suggests that the data were unlikely to be drawn from
the hypothesis whereas if x? < N — P then the parameters are highly sensitive to
fluctuations in the data and the resulting parameters may not be trusted. Heuris-
tically, when x? ~ N — P the expected variations from the normal distribution
of the data are sufficient to explain the observed residuals. Alternatively, the
Q-factor, Q(x*(z*), N — P) = p(x* > x*(z*), N — P), related to the cumulative
distribution function of the y?-distribution, gives the probability of finding the

optimum x? or larger given the normal distribution of the data.
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Figure 2.2: Signal-to-noise ratio of the hadronic correlation functions in the
S wave and P wave channels demonstrating the exponential decay in the P wave
channel with exponent commensurate with the fine splitting, in contrast to the
relatively slow decay in the S wave chaunel.

In order to obtain a confidence interval, or an estimate of the standard er-
ror for the parameters, resampling of the observations is employed. Resampling
is a technique based on the observation that any subset of the measurements,
Sy € M, drawn from the original sampling distribution is also a sampling distri-
bution of the given observable. If repetition is allowed and the samples are drawn
randomly from M with |[Sy| = |M| then the procedure is known as a bootstrap.
The calculation of any estimators derived from the original distribution, such as
the best fit parameters, can be repeated on a number of resamplings { Sy }p—1. . B-

In the case of the fit this requires the bootstrap sample means

- 1
Gt = — G 238
P (238)

ZMeSy

to be used in the fit which results in a set of parameters {I*'b}b:1 B, from which

the standard error, o, can be estimated from the diagonal elements of

2

B
o Z(I* — ) ® (z* — z*P). (2.39)

1
B(B 1) &

The distribution of the resampling means is guaranteed to be normal in the limit
of a large number of observations by the central limit theorem. This method is

used to fit a single-exponential, parameterized by x = (A, m), the amplitude and
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Figure 2.3: An illustration of the determination of the optimum width parameter
in the Gaussian smearing. The effective mass at a selection of small Euclidean
times is substantially reduced with a finite smearing, maximally reduced at the
optimum overlap with the state, between p? = 2 and p? = 2.5.

mass, as f;(x) = Aexp(—mi) and estimate the standard error on the parameters.
The Levenberg-Marquardt strategy [108] is a standard heuristic used in in the
minimization of non-linear least-squares methods which suggests an increment,

dx = ' — x, defined implicitly by

2

(H + MiagH )bz = ‘%’ (2.40)
82X2

= (2.41)

The choice of damping, A, adapts the step between gradient descent steps when
the damping is large or an approximation to quadratic convergence in the region
of a minimum. If a step strictly reduces the y? objective function then it is
taken and the damping is reduced assuming the minimum is being approached,
otherwise it is rejected and the damping is increased in order for the next step to
be closer to the gradient descent move. The minimum is saved, z* < z’, when
both a tolerance of x?(2’) — x*(z) < 1073 and A < 1075 are reached, the second
criterion ensuring that a small reduction in the objective function is not due to a
tiny step. The single-exponential fits to the correlation functions were performed

using this algorithm.

In order to make predictions for the spectrum with accurate estimates for the

uncertainties based on the correlators computed in NRQCD, various systematic
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effects need to be accounted for. The principal concern in the fitting of the
hypothesis to the correlator regards the choice of temporal range of correlator
data and the applicability of the model over the temporal domain. On account
of both lattice artifacts and excited-state contamination, the short-Euclidean
distance part of the correlator is not expected to conform to the hypothesis.
Alternatives which account for the overlap of interpolating operators with excited
states range from using more complicated fit functions as in multi-exponential fits
to eliminating the contamination by construction of a suitable basis of operators.
At large distances, due to the deteriorating signal-to-noise ratio, see figures 2.2
and 3.7, the data may not constrain the parameters any further and may only
contribute to the uncertainty in their determination. The deterioration of the
signal which is evident from the correlators suggests an upper window of N, /2
in the axial vector channel, while the largest Euclidean time could be used in the

vector channel.

The effective mass plateaus are the typical representation of the correlator
data which illustrates the region of applicability of a single-exponential fit. Note
that the errors on the observable are obtained by estimating the observable on
each bootstrap sample. Smearing the quark source in the interpolating operator
reduces the coupling to excited states illustrated in figure 2.3. The smearing
parameter which governs the width of the Gaussian wavefunction applied to the
source of p?> = 2.5 was deemed to minimize the effective mass at various early
times, an unsophisticated proxy for the coupling to excited states, without sub-
stantially increasing the variance of the observable. This extent is not unrea-
sonable based on the expected size of the quarkonium wavefunction. Figure 2.4
shows the effective mass plateaus in the vector and axial vector channels and the
best fit from the fit to the shaded region. Note that correlated fits are essential

to performing the fit and obtaining reliable estimates for the statistical error.

The stability of the fit window is judged by examining the 7, plots of fig-
ure 2.5 which depict the stability of the best fit parameters as the minimum
Euclidean time used in the fit is reduced. The smearing greatly reduces the pos-
sible Tiuin as expected. Reducing the largest Euclidean time used in the fit has
a negligible effect on the best fit parameters. In the axial vector channel, the
fit for the unsmeared operator is not stable as there is a clear trend in the data
as Tmin 1S reduced so smearing is essential to obtain a plateau before the signal
degrades completely. In the vector channel, both the smeared and unsmeared
operators exhibit large regions of stability of the fit with the central values in

good agreement within the statistical uncertainties.
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Figure 2.4: The effective mass plateaus in the S wave (red) and P wave (blue)
channels with the best fit parameters determined from the single-exponential
fits shown in solid lines over the fit range. Error intervals are smaller than the
linewidths.

2.2.4 Heavy-quark mass tuning

The heavy quark action contains three free parameters, asmg, asmg and &, which
are required to be fixed before predictions relating to the physical theory can be
made. Both perturbative and non-perturbative prescriptions are commonly used
to fix the bare couplings. Non-perturbative tuning requires physical observables
such as meson masses, decay constants or dispersion relations to be reproduced
in the continuum limit of the lattice calculation, which may or may not be practi-
cable. As the continuum limit is not available to the non-renormalizable effective
theory, the tuning is performed at finite lattice spacing, therefore lattice artifacts
will result in a minor mistuning of the heavy-quark parameters. The leading
heavy quark mass term, agmg, is redundant as this coupling can be removed
through a redefinition of the fields familiar in any non-relativistic field theory.
Consequently it has no effect on the dynamics other than to redefine the absolute
energy of the spectrum and may be set to zero. The anisotropy is set to the
renormalized value. In principle, it could be measured and tuned along with the
heavy quark mass, but the cost of performing a simultaneous tuning would be

prohibitive owing to the relative expense of tuning the heavy-quark mass.

The tuning of the heavy quark mass in the lattice action proceeds through

the matching of a hadronic kinetic mass, Ms, defined implicitly through the
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Figure 2.5: Sliding-window plot in the P wave x3;(°P;) channel, which demon-
strates the stability of the best-fit effective mass parameter (points) and reduced
x-statistic (solid lines) as the lower edge of the range of fit window, 7iin, is
reduced. This clearly demonstrates the necessity of smearing in this channel.

dispersion relation,

. a2 P2
EB(PY)=a.My+—="—+..., 2.42
a,E(P°) = a,M; + 562, M, ( )
. 4 ™
(LEP2 — 4Z;sin2 <N:) 5 n; =0,...,Ng— 1. (2.43)

with the corresponding experimental level. The velocity expansion of the energy
for a free two-particle state in a moving frame [109] demonstrates that resolving
the kinetic mass to leading order requires the single-particle energy to be resolved
to next-to-leading order in v?. Therefore, only the gross structure of the kinetic
mass spectrum can be reproduced as the hyperfine structure encoded in the spin-
dependent terms only appears at next-to-leading order. In fact the ordering
of the pseudoscalar and vector kinetic masses is inverted with respect to the
physical one, as was observed in ref. [109]. The S wave channel, being the lightest
and least noisy channel was used for the tuning of the heavy-quark mass. The
spin-averaged 1S mass, M (1S) = (3M(3S;) + M('S;))/4, is used to reduce the
associated systematic error in matching the kinetic mass because it is independent

of hyperfine structure.

The spin-averaged kinetic mass was calculated for a range of values of the
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Figure 2.6: The linear interpolation used to determine the lattice heavy quark
mass, asmg, by matching with the experimental spin-averaged S wave.

heavy quark mass on a reduced set of statistics of only 30 independent configu-
rations. A remarkably linear relationship between the lattice quark mass and the
kinetic hadronic mass can be observed in figure 2.6. This invited a linear fit, and

an interpolated value of agmg = 2.92 for the tuned heavy quark mass.

On the full ensemble the dispersion relations were calculated in the pseu-
doscalar, n,(1S1), and vector, Y(3S;), channels at this tuned value of the heavy
quark mass, depicted in figure 2.7. Linear and quadratic fits in a,:ffﬂ were per-
formed whose 1o confidence intervals are shown with dark and light bands re-
spectively, motivated by the possibility of observing relativistic corrections to the
dispersion relation. By the goodness of fit, the linear model can be used to fit
the data with n? < 4, while the quadratic fit did not significantly improve the
quality of the fit beyond m? > 5. A conservative estimate for the kinetic mass
for the m,('S;) and Y(3S;) was made from the linear fit with n? < 4 with the
statistical error obtained from a bootstrap analysis of |B| = 500 on N, = 300
measurements. A systematic error is quoted as the difference between the central
values of the kinetic masses determined from the linear fit and a quadratic fit
using data with n? < 5. The central value for the coefficient of quadratic term
was either not statistically significant, or the inferred value of the kinetic mass by
matching with the next order in the relativistic expansion did not generally agree
with the mass determined from the term linear in a?P?. Further improvement of
the action would be required to correctly resolve the coefficient of the quadratic

term. This results in a spin-averaged kinetic mass, Ma(1S) = 9613(84)sys(40)stat
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Figure 2.7: The dispersion relations in the S wave spin singlet and triplet chan-
nels, with best linear and quadratic fits depicted with dark and light bands,
respectively.

MeV, which, while not in exact agreement with the experimental spin-averaged
number Mey, (1S) = 9440 MeV, ought to be sufficient for the investigation of
the spectrum at finite temperature where a mistuning of the order of 1% can be
tolerated.

Multi-exponential fits were used in the S wave channels to extract the first
excited state energies. These were performed using the Bayesian fitting pack-
age [111] for which the likelihood function is updated with Gaussian prior. Bayesian
methods are explained in further detail in the following section. These multi-
exponential fits allow the entire temporal domain of the correlation function to
be included in the fit. Priors of a,M; = 0.2(2) and a,AFE = 0.1(1) were chosen,
with distributions which are suitably wide such that no strong bias is introduced
in the estimation of the best fit parameters. In order to assess the stability of the
fits, the number of exponentials was varied and convergence is seen after five or
six exponentials are included from figure 2.8. The standard error on the second
excited state fit parameter is not constrained by the data so no reliable signal for
higher excited states can be extracted from these fits.

The final spectrum obtained from the correlators computed with the tuned
value of the heavy-quark mass on the full ensemble using the fitting strategies
outline above is shown in figure 2.9. The energies are shifted, a,M = £ + a,M;,
so that the mass of the Y(3S;) state is fixed to its experimental value, that is
Eo = Mexpe(Y(3S1)) — M1(Y(3S1)). This extra fixing criterion is equivalent to

the omitted tuning of leading heavy-quark mass term, agsmy.
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Figure 2.8: Multi-exponential fits with Gaussian priors to the S wave correla-
tion functions stabilize after four or five exponentials are included. The ground
state is commensurate with the single exponential fits using including only larger
Euclidean times whereas multi-exponential fits can utilize all correlator data.

Good qualitative agreement is seen with the experimental energies, but the
splittings are not in agreement within the quoted statistical error. Lattice arti-
facts and the omission of higher-order improvements to the action may account for
the discrepancies, although estimating the systematic uncertainties due to these
omissions is a challenging task. The splitting between the two lattice irreducible
representations which are subduced from the continuum tensor representation
gives an estimate of the systematic error from the finite lattice spacing. The
error on the mean value quoted for the tensor representation combines this sys-
tematic error in quadrature with the statistical error, which is subdominant. The
S wave hyperfine splitting is sensitive to the coefficient of chromomagnetic inter-
action in the heavy quark action [98]. The effect of tuning this away from its
tree-level value is demonstrated by the spectrum in green crosses, in which only
this splitting is significantly affected. Therefore, the lack of radiative corrections
to the improved action, or the matching of the heavy-quark action at one-loop, is
another systematic error. Finally, the analysis of the spectrum was repeated for
other values of Lepage’s parameter, but no discernible effects could be made out
on the spectrum. While this study of the spectrum is relatively unsophisticated
it demonstrates the adequacy of the set-up in capturing the relevant physics for

the subsequent finite-temperature study.
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Figure 2.9: Final spectrum with continuum spins identified (blue crosses). The
effect of increasing the matching coefficients ad hoc is to change only the hyper-
fine structure, as expected (green exes). Increasing the stability parameter in the
action, n, has a negligible effect on the spectrum (red asterisks). The splitting
between the lattice irreducible representations is a lattice artifact, and conse-
quently, a systematic error is added in quadrature with the statistical error for
the mean which is the value quoted for the continuum irreducible representation.
The data are available in table A.3. The experimental levels are taken from the
PDG [110].

2.3 Extracting spectral functions from lattice data

As outlined in the introduction, the spectral function is a valuable object which
facilitates the connection between real and imaginary-time correlation functions
and also provides a straightforward interpretation of the temperature effects
in terms of the in-medium modification of the hadronic spectrum or transport
properties in a given channel. Spectral representations of propagators of non-
asymptotic states of QCD [112] are also of interest as they encode the impor-
tant analytic structure of the propagators, for example, positivity violations in
the gluon spectral function signal the absence of these states from the physical
Hilbert space.

The relationship between the hadronic correlation functions or (quasi-)particle
propagators and their associated spectral function is often through an integral

transform, usually a Fredholm integral of the first kind. In order to access the
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spectral function from the measured data, i.e. correlation function from the
lattice, a linear inverse problem, Kx = y, must be solved where x and y are
elements of some normed spaces X and Y. Recall that in the lattice study, the
inverse problem is the extraction of the spectral function from the Euclidean

correlation function,

De(T,p) = /OQ dw K (w, 7)p(w, p), Klw,z)=¢e ", (2.44)
—o0
where the kernel has been replaced by expanding around m¢ and dropping terms
suppressed in the large mq/T-limit.

The existence, uniqueness and stability —or well-posedness— of inverse prob-
lems such as these are well understood in cases like those encountered in inte-
gral transforms where K is always a compact linear operator between Banach
e.g. Cla,b], or Hilbert spaces, e.g. L?*(R). They are ill-posed, failing because
the stability of the inversion is poor given some deformed data, y°, satisfying
Iy’ —y
not continuous. Therefore, it can be difficult to make robust conclusions about

y < 6, because the inverse operator is generally unbounded and hence

the spectral function in the case of noisy estimators for the data as in the case of
lattice data. In the following section, some basic facts about ill-posed problems

are summarized following the presentation of ref. [113].

2.3.1 Generai regularization strategies

Many approaches have been developed to tackle these instabilities taking inspi-
ration from regularization theory or Bayesian inference. A connection between
standard regularizations and Bayesian inference can be demonstrated and can
lend an intuitive understanding to the Bayesian approach while adding rigour to
the statistical underpinnings of the regularization theory.

Fitting ansaetze with the maximum likelihood method counts among the sim-
plest regularizations of the problem in cases where the number of fit parameters is
small relative to the number of available data. Such an overdetermined problem
is solved by minimizing the likelihood, in this notation L = ||[Kz — y[/}, which
gives rise to the usual least-squares fit with the appropriate norm on Y. This is
in itself ill-posed as can be seen by recasting the minimization as the solution of
the normal equation, K*Kx = K*y where K* : Y — X is the operator adjoint
to K. These approaches are useful when phenomenology strongly constrains or
guides spectral features known to exist in the solution. For example, ansatzes
for the spectral functions have typically been investigated in the light vector

meson channel by fitting with the maximum likelihood method [114]. However,
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this model-dependent approach is not adequate where the spectral features may
change dramatically as a function of temperature. In this case, establishing the
existence of resonances is highly sensitive to the biases introduced by particular
models for the spectral function, which we wish to avoid.

Tikhonov regularization is an example of a less prescriptive regularization
scheme which has been used to extract gluon spectral functions from propagators
estimated in lattice QCD [112]. Loosely, resolving the spectral function in a rel-
atively model-independent way means estimating a large number of parameters,
since it is continuous on the positive real axis, and having only a few correlator
or propagator data renders the problem highly degenerate. The inverse problem
is necessarily ill-conditioned given the low rank of the kernel in this case. The
scheme can be seen to be an improvement to the unstable least-squares fitting in
the following way.

The idea is to augment the functional to include a penalty term so that the
regularization strategy, R, : Y — X, which satisfies lim,_,0 Ro Kz = x, amounts
to the minimization of |Kz — y||3 + af/z||%. With perfect data, knowledge of the
exact y, the solution obtained converges pointwise to the exact one when regu-
larization parameter, «, is removed. However, R, does not necessarily converge
to the identity and there even its operator norm, || R, ||, diverges as the regulator
is removed, as expected due to the ill-posedness of the problem. On the other
hand, the approximation error ||(R, — K~ !)z|| — 0 as a — 0, so the application

of the triangle inequality in Y,
2§ — 2|l < 6|l Rall + [|(Ra — K1)z, (2.45)

suggests that an optimal non-zero choice for a exists given the asymptotic be-
haviour of both terms in order to minimize the error in the presence of imperfect
data. The scheme to estimate such an optimal choice can be made a priori if some
knowledge of the solution is available, for instance bounds on its smoothness, or
as in the case used with the gluon spectral functions, can be chosen such that
the constraint ||Kx® — ¢°|| = & is fulfilled, known as the Morozov discrepancy
principle.

The singular value decomposition (SVD) of the kernel, K, is the generaliza-
tion of finite-dimensional matrix decomposition X = UZVT, where the singular
values, {y;};, are the elements of the positive semi-definite diagonal matrix =,
and {z;}; and {y;}; are the columns and rows of the orthogonal matrices U and
VT, called the left and right-singular vectors respectively. It is easy to see that
the Tikhonov regularization is simply a screening of the singular values, analo-

gous to the eigenvalues of a symmetric operator, some of which are necessarily
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small in the case of the ill-conditioned inverse problem. Writing the solution to

the normal equation for the minimization, ax, + K*Kx, = K*y, as

o0

(ol + K*K) 1K*y = Z

L (v, 95)%5 (2.46)

the regularization parameter is seen to trade between the singular problem and
one which has a finite approximation error.

The maximum likelihood interpretation is naturally extended to give a prob-
abilistic origin for the regularized least-squares problem from a Bayesian perspec-
tive. Rewriting the identities obtained from marginalizing the joint probability
p(EH) over the evidence, E, and the hypothesis, H, leads to an expression for
the posterior probability, Bayes’s theorem p(H|E) x p(E|H)p(H), in terms of the
likelihood p(E|H) and the prior p(H). Then the mazimum a posteriori estimate
for the inverse problem is easily related to the regularized least-squares problem
when the data are normally distributed and the prior probability is chosen to be

a quadratic form:

p(E|H) x exp(—|ly — Kz|}) (2.47)
p(H) o exp(—|z|%) (2.48)

if the regularization parameter is chosen such that the appropriate norms are
used. The covariance of the data, being a symmetric bilinear form on Y, can be
absorbed into the definition of the norm, ||-||y. Since the exponential is monotone,
optimizing the posterior probability is equivalent to minimizing the regularized

least-squares problem.

2.3.2 Bayesian methods and MEM

The Bayesian interpretation of the regularized inverse problem invites further
examination of Bayesian inference to determine the spectral function. Here, the
presentation follows that of Asakawa, Hatsuda and Nakahara [115], who pio-
neered the application to lattice data. The maximum entropy method has also
been applied to recover spectral functions obtained from the Dyson-Schwinger
equations [116]. For clarity in the following, the replacements £ — G and H — p
are made to make contact with the notation used in the inverse problem encoun-
tered for the spectral function. Furthermore, the probabilities are conditioned
over additional prior knowledge known about the solution —such as positivity—
information later encoded in the default model, m.

The introduction of the quadratic prior in the Tikhonov regularization can
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be understood by assuming a Gaussian process underlies the distribution on the
space of solutions. However, this term favours solutions which balance the noise
with the norm of the solution, or the distance from the default model. Weaker
regularizations are possible which can be constructed axiomatically as is demon-
strated for the Shannon-Jaynes entropy. This functional should provide a mea-
sure on the solutions which favour the default model in the absence of data. The
entropy functional can be derived from the Poisson distribution with the applica-
tion of Stirling’s formula. However, it is more useful to derive the functional from
the following axioms, which completely determine it, as they better illustrate the

underlying assumptions on the prior functional.

1. The penalty should depend only locally on the hypothesis, p(w), not on its
global structure. Therefore, the functional cannot contain derivatives of p

and must be and integral of the form:
Slel = [ au(w) sio.e) (2.49)

2. The functional should not depend on the coordinates chosen on the domain
of the hypothesis, known as reparameterization invariance. The hypothesis
p is a density, its area is invariant under reparameterizations w — v(w) so
that it tranforms as p/p’ = Ow/dv. Since the measure du(w) = dwm(w),
is likewise invariant, the quotient p/m is scalar under coordinate transfor-
mations. In order that the functional be scalar under coordinate transfor-

mations it is therefore constrained to be:
Stp) = [ dut) s(o/m) (2.50)

3. Should the hypothesis factorize p(w;,ws) = p1(wy)p2(w2) for independent
variables w; and wo, then the stationary point should be the one which
optimizes the entropy independently for each factor, which is satisfied if

the first variation is additive:

08

m = Ry(w1) + Ra(w2) (2.51)

This property is obviously reminiscent of the additivity of entropy and is

the origin of the familiar Shannon-Jaynes information entropy functional
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form up to a constant:

Stp) = [ autw) [£ 108 (£) - 2] (2.52)

m m

It is clear that the properties of the logarithm fulfil the requirements of
the additivity. Furthermore, the functional is strictly convex, ensuring that
the minimum at p = m is unique, whence the terminology default model.
Without any further constraints, such as those imposed by the evidence,
the optimization of the prior leads to this model which encodes all prior

knowledge such as the domain and positivity of the spectral function.

The mazimum entropy method (MEM) is then the inference of the spectral
function, p,, obtained by the minimization of the posterior probability with the

evidence that is the measured hadronic correlation function, G

argmax p(p|Ga), (2.53)
Pa
log p(p|Gar) = L — aS, (2.54)

where L is the likelihood function and S is the Shannon-Jaynes information en-
tropy. The inverse problem between finite-dimensional spaces follows from the

discretizations of the correlation function, G = (G;);=1... ~,, and the candidate

spectral function (p,),=1.. N,

Gi = G(ari) i€0,....,N, — 1, (2.55)
pr = p(rA —wy) re0,...,N,—1, (2.56)

with integral N, and N, = A~!(wy — wy). The inverse problem of eqn. (2.44) is
written in matrix notation as G = K p, with the kernel, K = (K )i=1... N, r=1....N.
of the form K, = e~ (12)(rar) The likelihood function for data correlated in Eu-
clidean time is written with the unbiased estimator for the covariance matrix, C,

L=—(G-Kp)C (G- Kp), (2.57)
N
C=or— > (G"-G)®(G™-G), (2.58)

where N is the number of independent measurements used in the estimator G =
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1/N Z{V G™ for the central data. Using the same notation for the discretization

of the default model as the spectral function the entropy is written

Ny—-1

S =A Z pr — my — pylog(pr/m;). (2.59)
r=0

The properly normalized measure on the prior probability can be obtained by
comparing with the Poisson distribution which gives [ [dp] = [TY™* ([dyp, Va).
Finally, a prescription for the hyperparameter must be chosen, and one alterna-

tive is to marginalize over it

plus) = / da pa (w)p(]G). (2.60)

Then upen marginalizing over the hypothesis and invoking Bayes’s theorem once
more, the following approximation is obtained by evaluating the multidimesional
integral using the method of steepest descent, not forgetting the factor of \/a in

the measure

p(aG) [ ldg] p(Gloalplpiap(a) (2.61)

< pla) [ ldpl plola) (2.62)
(I_N*'/Z =)

x p(a) (We )p_p . (2.63)

The final spectral function is obtained by numerically averaging over the spectral
functions with the probability, p(a|G), and Laplace’s rule, p(a) = const. The
explicit representation used for the determinant is given below with the Hessian,

Q" at the extremum

o det Q" = exp Tr(log Q" — log all), (2.64)
52Q

"(pa) = ——— 2.65

Q" (pa) BT (2.65)

P=Pa

52L 528
(0.¢ <\/>r\/ﬁsm — a\/'r\/ﬁs > (266)
r0Ps P=Pa

dprips
2

x (ﬁr\/ﬁs = aA6TS> . (2.67)

dpr0ps P=pa

53



2.3.3 Implementation of the optimization with Bryan’s algorithm

The preceding prescription defines a suitable regularization of the inverse problem
derived from a set of reasonable principles which are ideally suited to analyses of
spectral densities. However, the construction of the prior probability is not infal-
lible and its deficiencies will be discussed in the following section. The method
requires a search for the global extremum of @ in the N,-dimensional solution
space, which, given that desired resolution from a domain of a few GeV with a
resolution of at least tens of MeV is high-dimensional problem. With the expo-
nential parameterization of the spectral function, p, = m,e?", the extrema are

the solutions of the following non-linear equation

6Q T oL Pr !
=(K — | —aAlog— =0 2.68
6,07' ( (5Kp> r cas my ' ( )

from which the following condition on the solution is realized for the new param-

eterization of the spectral function

X .7 0L :
alp = I\Tde =8 (2.69)
From the SVD of the kernel-transpose, K7 = USVT, where U : RN — RN,
this representation of solution is an element of the column space of U, which is
only of dimension N,, the maximum rank of the kernel. The searching of this
N,-dimensional space is computationally much less demanding than exploring
the entire N,-dimensional space of spectral functions and is due to Bryan [117].
The Newton algorithm is used to find the roots of the equation in the usual way

by determining the increment between successive guesses:

i
p—p= (aA +p+ i—?) [@Ap + R] (2.70)
where p is the Levenberg-Marquardt parameter, and the matrix inverse is com-
puted by going to a diagonal basis. The Levenberg-Marquardt parameter is
increased tenfold if the increment is deemed too large for the Newton approxima-
tion to hold. Once the stopping criterion is reached by convergence of the norm
of R+ aAp, the spectral function given the hyperparameter « is saved and the
probability p(«|G) is evaluated according to eqn.(2.63). In summary, the method

proceeds according to the following scheme:
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Figure 2.10: A comparison between the SVD basis functions, which are the
columns of the matrix U in the SVD, using quadruple precision (top) and dou-
ble precision (bottom). Note the high precision needed to correctly perform the
singular value decomposition of the kernel which is exponentially damped.

1. The singular value decomposition of the kernel is performed, depending

only on the number of correlator data.

2. Given a default model the Newton method is used to solve the normal
equations for the minimization problem over the singular space for each

value of the hyperparameter in a test interval.

3. If the descent step is too large, then increase the Levenberg-Marquardt

parameter and try again.

4. When convergence of the norm of the system of equations is reached the

probability, p(a|G), is evaluated.

5. The solutions are integrated over the hyperparameter over the domain de-
fined through p(a|G) > 0.1 x p(a*|G).

Due to the exponential damping of the kernel, K = ¢~“7, an implementation
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Figure 2.11: Example of the probability distribution, p(«|G), from the recon-
struction of the spectral function in a P wave channel with N, = 16, sharply
peaked around a* = 0.5 in this case.

with quadruple precision is required. Figures 2.10 depict examples of the basis
over which the solution is reconstructed. For these correlators at low tempera-
tures with N, = 128, the convergence is slow given the relatively high dimen-
sion of the reduced problem, visible in figure 2.13. The probability distribution,
p(a|G), is very peaked, an example is shown in figure 2.11, and the variation of

the solution over the range of a investigated was observed to be small.

2.3.4 Spectral functions from MEM

The implementation of MEM by the authors of ref. [118] was applied to the
zero temperature bottomonium correlation functions computed in NRQCD. Fig-
ure 2.12 shows the resulting spectral functions in the S wave (left) and P wave
(right). In order to cast the frequency domain in physical units, the same shift
in the energies, &, is applied to the frequency axis as for the spectrum obtained
in the previous section.

In the S wave channel good agreement is observed between the lowest peaks
and the corresponding ground and first excited-state energies extracted from
multi-exponential fits directly to the correlators. Recall that energies for higher

excitations could not be reliably extracted from the multi-exponential fits to the
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Figure 2.12: Reconstructed spectral functions in the S wave (left) and P wave
(right) channels using the maximum entropy method. While as many as six peaks
can be located in the S wave channel, just the first two are commensurate with the
experimental energies. The energies also agree with those extracted directly from
the correlation functions with multi-exponential fits. In the P wave channel, the
ground state peak is resolved nicely, while lattice artifacts presumably contribute
to the background structure at higher energies.

correlator. Furthermore, it is obvious that lattice artifacts will contaminate the
spectral function at energies of a few GeV above the threshold.

The ground state peak and corresponding energy from the fits the correlator is
in good agreement in the P wave channel. However, above the ground-state peak a
large continuum is observed in this channel. Due to the derivative coupling in the
P wave channel, the divergences in the non-renormalized channel are worse than
in the S wave channel. The lower statistical precision in this channel reduce the
number of informative correlator data which can be used in the reconstruction.
The challenge of reliably reconstructing the P wave channel spectral function is

already evident from these low temperature reconstructions.

The S wave channel spectral function was also calculated with the publicly
available ExtMEM package [119]. Instead of performing the optimization of the
regularized functional by solving the system of normal equations, the direct op-
timization of the functional is performed using a quasi-Newton algorithm [108].
This is one where an approximation of the Hessian is used to propose an trial
solution and can be more efficient for optimization in high-dimensional spaces.
Good agreement is seen between the positions of the first two peaks, however,
discrepancies between the peaks at higher energies. The displacement of higher
peaks could be attributed to the degeneracy along similar directions in the SVD

basis space for which it is plausible that different frequencies could compete with
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Figure 2.13: The optimization of the objective function, @), with the LBFGS
algorithm in the implementation of ExtMEM. The residual, Q — @', vanishes fre-
quently, marked by the blue crosses beneath the residual line, possibly due to flat
directions in the search space.

one and another.

The convergence in the objective @ functional versus the number of iterations
is shown in the figure 2.13. Note that zeroes in the residual Q' — @, depicted
with crosses below the lines, can arise when long flat valleys are traversed in the
functional space and are evidence of many local extrema which are characteris-
tic of the optimization problem in such a high-dimensional space. The generic
behaviour is illustrated by this figure in which the variance of @ is large before

rapid convergence to the optimum.

2.3.5 Criticisms of Bryan’s algorithm

It has been asserted that the global minimum of @ is not in fact contained within
the singular space [119]. This claim is supported by two observations. Firstly,
by simply shifting the lower boundary of the frequency interval to more negative
values, it appears as though the basis functions do not have adequate support
over the entire frequency interval to sufficiently reconstruct peaked features at
large frequencies. Secondly, it has been observed that by extending the basis
used in the minimization to include basis vectors from a kernel with a larger
N; + Next-dimensional singular space, a better optimum of ) can be found. This
is posited as a direct counterclaim to Bryan’s argument.

Both of these observations are based on numerical mock analyses and have
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Figure 2.14: Reconstructed spectral function in the S wave channel using the
ExtMEM package [119] utilizing a direct quasi-Newton optimization of the regu-
larization functional. The ground state peak and first excited state peak agree
with energies extracted from multi-exponential fits, The features are comparable
with the MEM presented in figure 2.12, but notably the positions of the higher
peaks are not in agreement suggesting they are artifacts of the reconstruction.
While the relative heights of the first peaks are similar, also the absolute heights
deviate significantly.

not been formally realised. Large cancellations can indeed occur as shown in the
reconstruction of mock spectral function in figure 2.15 in order to reproduce peaks
where it may seem unlikely at first glance of the SVD basis. However, it is unde-
niable that the reconstruction fails to capture the width of the peak adequately
if the left-hand edge of the frequency interval is shifted to negative-enough val-
ues. As the minimum frequency is reduced while the frequency and temporal
discretizations are left unchanged the problem becomes more ill-conditioned as
the difference between N, and N, grows. To improve the conditioning of the
inverse problem as much as possible the frequency domain ought to resemble the
support of the unknown spectral function as closely as possible, so that from a
practical perspective the minimum frequency should not be reduced arbitrarily.
Furthermore, given the temporal discretization of the correlator, one should not
expect to resolve the moments of the spectral function at arbitrarily high frequen-
cies above the lower edge of the frequency domain. This is simply the nature of
the cutoff scale provided by the temporal discretization and the inverse Laplace

transform. Consequently, reducing the lower edge of the frequency window with-
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Figure 2.15: Reconstruction of a mock spectral function over a large frequency
domain illustrating the strong cancellations in the basis functions in the low-
frequency part of the spectral functions and the difficulty in extracting accurate
widths if the frequency domain is not chosen with care.

out redefining the threshold of the spectral function appropriately should not be
too concerning it the frequency interval is chosen judiciously.

More worrying is the observation that lower minima of ) are encountered
when exploring the extended SVD space of dimension N, + Neyx¢ compared with
those achieved by exploring only Bryan’s subspace. This certainly reflects the
inherent difficulty in optimizing the functional even when restricted to Bryan's
subspace. However, it may be that the final solution returns to Bryan’s subspace
at the extremum, and that searching orthogonal directions may provide a trick
to tunnel out of local minima in Bryan’s subspace in the search for the global
extremum.

Naturally, these points raise valid concerns with Bryan’s algorithm and mo-
tivate solutions which ameliorate the difficult optimization problem. In the fol-
lowing chapter, the variation of N, in the fixed-scale approach to changing the
temperature also invites us to seek methods whose systematics are minimally
dependent on N.. Obviously, the conclusions of the N,-dependence of the re-
construction should be due to the physical temperature effects and not from the
different dimension of the basis for reconstructions. Nevertheless, the conceptual

difficulties associated with Bryan’s algorithm and the dependence of the opti-
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Figure 2.16: Comparison between the integrand of the regularization functional
for the maximum entropy method (solid line) and the Bayesian reconstruction
method (dashed line). The flat directions in the Shannon-Jaynes entropy at small
pymy are absent in the Bayesian reconstruction. Furthermore, at large p;, m; the
Bayesian reconstruction poses a weaker regularization, allowing peaked structures
to persist where they are encoded in the data through the likelihood.

mization on N, reinforces the difficulty in extracting reliable results from fewer
and fewer correlator data, the perennial issue encountered in lattice studies at
high temperature. To reiterate, the only guarantee that Bryan’s method makes,
if the global extremum is successfully found, is that this extremum corresponds
to the unique spectral function which reproduces the available data with the con-
straints imposed by the regularization. Ultimately, there is no substitute for good

quality data.

2.3.6 Bayesian reconstruction method

In order to decouple the solution of the inverse problem from the dependence on
the singular space a refinement of the regularization for the particular problem
encountered in the lattice data was proposed by Rothkopf and Burnier [120],
referred to as the Bayesian reconstruction (BR) in the following. The principal
idea is to replace the regularization functional with one well-motivated by the
inherent issues of lattice QCD spectra which solves the probelm of the almost-

flat directions in the entropy functional which are visible in figure 2.16. Then,
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the full solution space can be efficiently explored by standard methods.

The derivation of a new regularization proceeds as before by building the

functional axiomatically as follows. These criteria must be scrutinized closely

in case that the regularization puts undue constraints on the solution to the

optimization.

62

1. The first criteria is the locality of the functional, identical to that posed in

for the entropy, so the functional takes the form of an integral as before.

Slpl = [ dute) s(p (2.71)

. Scaling of the spectral density. The integrand should not depend on the

choice of units for the spectral function, leaving only quotients, p,/m;,
available as dimensionless arguments for the integrand. This axiom already
deviates from the entropy’s claim for the scaling of the spectral density
like a distribution. Cited as counterexample is the spectral functions’ per-
turbative behaviour which is polynomial. This brings the complication of
a dimensional hyperparameter, &, to ensure the functional itself remains

dimensionless.

Slp] = d/dw s(p/m) (2.72)

. The functional form is really introduced by this axiom which demands the

curvature of the integrand to be s”(r) = —1/r? and results in the logarithm.
The integration of this differential equation yields

gy

s(p/m) = log (E) e + const (2.73)
From a regularization perspective this can be viewed as a penalty on rel-
ative scaling the spectral function parametrically with the default model.
Therefore, if, say at adjacent frequencies the spectral function changes by
a relative amount (1 + €) then there is guaranteed to be a fixed increase
in the penalty functional in that region. This damps large relative vari-
ations in the spectral function, caused by peaks. Recall that this ought
not to affect peaks encoded in the data which are strongly favoured by the
likelihood function, only those which appear in the absence of data. Note
that penalizing absolute changes in the spectral function would result in a

quadratic regularization. This criterion suppresses large variations in the



spectral density in the absence of data which particularly afflict the spectral
analysis of lattice correlators where false peaks, which are also observed in

mock analyses, can complicate the interpretation of the data.

4. The final functional form is fixed by requiring the relevant critical behaviour

at the minimum prescribed by the adherence to the default model.

s(p/m) = log (-Tpr—l) - % +1 (2.74)

As can be seen in figure 2.16, the new functional form behaves noticeably
differently at small values of the reduced spectral function, where the asymptot-
ically flat directions are removed. Furthermore, at large values of the reduced
spectral function, the functional form imposes a weaker regularization than that
of the MEM. This penalty serves to inflate the spectral function in regions where
the density is not constrained by the data, in essence washing out regions of low
spectral density.

The search of the full NV -dimensional solution space is possible with the new
regularization of the likelihood using a quasi-Newton algorithm. The optimization
used in the implementation of the BR method developed by A. Rothkopf and Y.
Burnier, the authors of ref. [120], uses the ALGLIB [121] implementation of the
LBFGS algorithm. Note that the optimization problem is no longer recast as
the solution of the multidimensional system of equations because the SVD of the
kernel no longer plays a prominent role.

The LBFGS algorithm proceeds just as for the Newton method search for the
iterate, dxy, by solving the normal equation Hpdxr = VQ(xri1) — VQ(xp).
Instead, an approximation for H,_ +11 is made in terms of tensor products of dxg,
H,:I(VQ(:I:;\,H) — VQ(x)) which is much more cost effective than performing
the matrix inversion, especially in a high-dimensional space. Alternatively, the
implementation can use the quasi-Newton method as a preconditioner for ordi-
nary Levenberg-Marquardt optimization which utilize the exact inverse of the

Hessian.

2.3.7 Spectral functions from Bayesian reconstruction

The implementation of BR method by Rothkopf and Burnier was used to ob-
tain the spectral functions presented in this section. The results are shown in
figure 2.17 in the S wave (left) and P wave (right) channels. The S wave spec-

tral functions displays some notable features to be contrasted with the result
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Figure 2.17: Resulting spectra in the S wave (left) and P wave (right) channels.
Similar to MEM, the ground and first excited state peak positions agree with the
energies extracted from exponential fits to the correlation functions in the S wave
channel. However, the discrepancy between the peak heights is much larger, and
no more than two peaks are discernible, presumably due to the effect of the new
regularization suppressing artificial peaks in the data. The spectral function in
the P wave channel is remarkably similar to MEM, dominated by lattice artifacts
above the ground state peak.

from the MEM. The position of the ground state and first excited state peaks
are in agreement with those from the MEM, however, the BR method does not
find narrow peaks in the high-frequency part of the spectral function. This is
in accordance with the understanding of the new regularization which washes
out artificial peaks which are not encoded in the data, by favouring the default
model. The features of the P wave reconstruction are remarkably similar to the
MEM with a ground-peak coincident with the single-exponential fit and a large

continuum feature at higher frequencies.

Similar conclusions can be drawn from both the MEM and the BR method
for this low-temperature data which agree with the energies which were extracted
directly from the correlation functions. However, the new BR method performs
better in the sense that it does not produce false positives in the form of peaked
structures where none exist in the data which is a valuable attribute for interpre-

tation of lattice data.

Further discussion of the systematic dependence of the reconstruction on the
frequency and temporal domain is postponed until the next chapter, although
figure 2.18 demonstrates the stability of the lowest peaks in the S wave (left) and
P wave (right) channels under variations of the lower frequency domain and under

variations of the upper and lower window of the correlator. The variation of the
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Figure 2.18: Systematic dependence of the reconstruction on the bottom cor-
relator window, 71, in the S wave (left) and P wave (right) panels. Different
linewidths denote the variation of the upper window, 75, which are not visibly
different. Dashed lines denote a lower frequency interval w; = —0.4 while solid
lines denote wy; = —0.2.

spectral function within the statistical error bands in the noisier P wave channel,
shown figure 2.19, does not suggest that the statistical error is the dominant
uncertainty.

Finally, the momentum-dependence of the S wave spectral function is in-
cluded in figure 2.20 which demonstrates the agreement of the peak position at
finite momentum with the dispersion relation of the S wave state extracted from
exponential fits depicted with the solid lines at the top edge of the figure. No
significant dependence of the peak width on the momentum is visible. Small
discrepancies in the peak heights at different momenta may arise from the differ-
ent degeneracies of lattice momenta which alter the variance of the estimators at
different momenta. The possibility to extract the in-medium dispersion relation
is another advantage of the reconstruction of the spectral function which would
otherwise be a difficult observable to reconstruct directly from the Euclidean

correlation functions when the peaks attain a finite width.
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Figure 2.19: The statistical error bands on the reconstructed spectral function in
the P wave channel estimated using 50 jackknife blocks.
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Figure 2.20: Momentum-dependence of the spectral function in the S wave chan-
nel with peak positions in agreement with the dispersion relation extracted from
fits to the correlation functions, denoted by the coloured lines at the figure’s top
edge.
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3 Bottomonium at finite temperature

In this chapter the modification of the bottomonium spectrum at finite tem-
perature is presented. The results indicate significant differences between the
qualitative behaviour in the S wave and P wave channels in bottomonium above
the deconfinement crossover temperature. The comparison of the behaviour of
the correlation functions to those of non-interacting quarks in NRQCD suggests
the unbinding of the quarks in the P wave channel. Further interpretation is
provided by the reconstructed spectral functions. The reconstructed spectral
functions are presented from the maximum entropy method and the Bayesian
reconstruction method. The qualitative features of the spectral function in the
S wave channel are the same in both methods but substantial differences are ob-
served in the P wave channel. The systematic dependence of the reconstruction
on the available correlator data is discussed. First, a brief exposition of lattice

QCD at finite temperature is made.

3.1 Finite temperature lattice QCD

As outlined in the introduction, the Matsubara formalism enables the QCD par-
tition to be evaluated as a path integral in Euclidean space with finite temporal
extent corresponding to the inverse temperature, 3, and appropriate temporal
boundary conditions for the dynamical fields [122, 46]. Therefore, it is straight-
forward to estimate thermal correlation functions in lattice QCD as the Euclidean
formulation is the one used in numerical simulations. Only the physical temporal
extent is required to be adjusted in order to change the temperature.

There are two ways to vary the temperature commonly employed by prac-
titioners which are the fized-scale and fized-N, approaches, namely when the
number of sites in the temporal direction or the lattice spacing are changed,
respectively. Shifted boundary conditions have been recently proposed through

which the temperature in a fixed-scale simulation can be varied more finely by in-
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voking the Poincaré symmetry of the partition sum [123]. The fixed-N; approach
is perhaps more common in lattice calculations of the equation of state or the de-
confinement transition temperature due to the fine control of the temperature af-
forded by the continuous adjustment of the lattice spacing [25, 124]. In principle,
however, the fixed- N, approach requires auxiliary zero-temperature calculations
at each temperature in order to non-perturbatively tune the parameters of the
action, such as quark masses and renormalization constants. In practice this may
not be necessary if it is possible to interpolate between simulations at a reduced
set of lattice spacings. The accompanying small lattice-spacing zero-temperature
simulations which must be performed soon become unfeasible due to the large
spatial volumes required. Furthermore, the cost of these simulations increases
greatly as the temperature is increased due to the critical slowing of the HMC
with the lattice spacing [78]. This greatly restricts the accessible temperatures
in dynamical simulations. Additionally, discretization effects become manifestly
temperature-dependent and can complicate the physical temperature-dependence

of observables.

The ensembles used in this work were generated in the fixed-scale approach
by the FASTSUM collaboration using European PRACE and British DiRAC re-
sources [125, 126]. The same parameters were used as those in the zero-temperature
ensembles from the Hadron Spectrum Collaboration [127], see table 2.1. The
principal advantage is that the cost of the simulations do not increase with in-
creasing temperature. Ouly a single zero-temperature ensemble is required for
tuning so only one simulation is required for each temperature investigated. In
order to achieve adequately high temperatures without losing sufficient tempo-
ral resolution of correlation functions the benefit of using anisotropic lattices at
finite temperature is obvious. As described in chapter 2, this introduces two
additional couplings which complicates the tuning of the lattice parameters at

zero-temperature. However this task needs to be performed only once.

In the simulations employed in this work the number of sites in the temporal
direction at the highest temperature available is comparable to that in a fixed-
N, approach. Therefore long Markov chains can be accessed without the cost
of a study performed with a fixed-N, scheme [128]. Additionally, in the fixed-
scale approach the spatial volume is unchanging with temperature so that finite-
volume effects are not temperature-dependent. However, in this work just a
single volume was used so finite volume effects cannot be quantified. For the
quantities of interest these effects ought not to be very troubling due to the large
box size, L/a = 24, compared with the small physical size of the bottomonium

ground state, ry/a ~ 1/(ampv) ~ 3. Finite-volume effects in the free spectral
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Ng 16 24 24 24 24 24 24 24
N 128 40 36 32 28 24 20 16

T/T. ~0 0.76 084 095 109 127 152 1.90
T (MeV) ~0 141 156 176 201 235 281 352
Negg 499 502 503 998 1001 1002 1000 1042

Table 3.1: Summary of the ensembles used in this work. The crossover tempera-
ture is determined from the renormalized Polyakov loop [126]. The zero temper-
ature tuning of the lattice parameters was completed by the Hadron Spectrum
Collaboration [127].

function are further discussed in section 3.2. With the advent of relatively cheap
observables to tune the gauge anisotropy, such as the energy density in the Wilson
flow [129], it may be advantageous to work with variable temporal couplings only,
in order to combine the advantages of both approaches. The simulations proceed
exactly as for the zero-temperature ones described in chapter 2. The available

temperatures and number of independent configurations are shown in table 3.1.

In order to make contact with QCD with physical quark masses it is most
instructive to cast the temperature in terms of the deconfinement crossover tem-
perature, 1., which naturally depends on the flavour content and quark masses
of the theory. Note that the interaction measure depends strongly on the num-
ber of active flavours and while the quark masses are unphysically large with
M; /M, =~ 0.45, this is expected to be a less significant systematic effect at tem-

peratures above the deconfinement crossover temperature.

A renormalization scheme for the Polyakov loop was chesen by normalizing

it to unity at a temperature corresponding to an inverse temperature 3y = 16a,,

Lo(B)
Lo(Bo)’

Lien(B) = with Lo(8) = (TrP(x)). (3.1)
This scheme amounts to fixing the static-quark free energy of equ. 1.3 to vanish at
the given temperature. The peak of the derivative of the renormalized Polyakov
loop, shown in figure 3.1, was used to determine the crossover temperature of
T. ~ 187(4) MeV [126]. The spread of T, under variation of the scheme defined
by By gives the systematic error, while the statistical error is negligible. The non-
vanishing of the Polyakov loop illustrates the lack of a true order parameter in the
presence of moderate quark masses which explicitly break the centre symmetry

even at zero temperature.
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Figure 3.1: A cubic spline interpolation of the renormalized Polyakov loop, Lien,
(dashed line) and its derivative (solid line) which is used to determine the tran-
sition temperature, T, ~ 187 MeV, determined by the FASTSUM collaboration.

3.1.1 QCD spectrum at finite temperature on the lattice

Numerical studies have significant value for the experimental heavy-ion physics
community and great investment has been expended in producing reliable simu-
lations suitable for the study of QCD at high temperatures. It is worth noting
the work by both the Wuppertal-Budapest collaboration [25] and the HotQCD
collaboration [124] in the calculation of the equation of state. These groups have
also achieved agreement on the transition temperature at the physical point,
T. ~ 154(MeV), after a long-standing discrepancy [130, 4]. Alongside these static
observables there have been advances made in providing lattice input for non-
perturbative quantities such as the jet-quenching parameter [27] and transport
coefficients [125, 131]. The provision of accurate predictions especially for the
heavy-ion physics community is a great motivation and challenge for the lattice
community in the era of high-precision numerical simulations.

A variety of lattice studies of the spectrum of QCD at finite temperature have
been performed which have probed both the deconfinement and chiral crossover
transitions. The light meson screening masses are sensitive to the restoration
of chiral symmetry through the degeneracy of the vector and axial vector chiral

partners. While the Ux (1) axial symmetry is always anomalous at the operator
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level, the degeneracy of the pseudoscalar and scalar isovector meson masses may
signal the effective restoration of anomalous axial symmetry [132, 14], defined
by the equivalence of correlation functions related by the symmetry. Examining
such degeneracies of the spectrum is complemented by analysis of the generalized
susceptibilities and, in the case of the axial anomaly, the low-lying modes of a
chiral Dirac operator [11]. Some contention still remains regarding the fate of the
axial anomaly between calculations using chiral regularizations [133]. Studies of
the light meson spectrum also enable the investigation of transport coefficients
such as the conductivity of the plasma [125]. Furthermore, the fluctuations of
the conserved charges have been used to probe the deconfinement of strangeness
and charm where it was observed that charm may become deconfined already
above the chiral crossover from cumulants of net-charm or baryon charge even
though charmonium states may survive above the deconfinement crossover tem-
perature [29, 134]. Incidentally, discrepancies between the hadron resonance gas
and the partial pressures in these studies have provided evidence for highly ex-
cited states in the charm sectors predicted by relativistic quark models or lattice

QCD which have not yet been experimentally observed [102].

Various studies have probed the deconfined medium using quarkonium, mostly
for charmonium, or bottomonium on quenched ensembles, using relativistic quark
actions [135, 136, 137, 138]. Most recently, the Bielefeld group has conducted
extensive studies of charmonium on quenched ensembles with a systematic dis-
cussion of the lattice artifacts, in order to estimate the charm diffusion coefficient
and investigate the survival of these states above the crossover temperature [139].
While they observed thermal modifications to the correlators in the deconfined
phase, distinguishing the effects due to the change in the spectrum is complicated
due to the presence of a zero mode in the associated spectral function. Their anal-
ysis of the spectral function using MEM leads them to conclude that no bound
states persist above 1.5T,. As the method for reconstruction of the spectral func-
tion cannot resolve the widths of arbitrarily narrow peaks, they emphasise the
criteria for dissociation must be a temperature-dependence of the peak position
and relative broadening of the peak. Furthermore, Ohno et al. [140] have also
specifically investigated the heavy-quark mass dependence of the quarkonium
correlation functions on quenched ensembles above the deconfinement crossover
with a relativistic action. Quark masses ranging from charm to bottom were ex-
amined and they noted that there is significant mass dependence of the thermal

alterations in all but the pseudoscalar channel.

The FASTSUM collaboration have used MEM on dynamical ensembles to inves-

tigate the survival and momentum-dependence of the spectral functions for char-
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monium [138]. No significant momentum-dependence was observed [95]. The
Budapest-Wuppertal collaboration have computed charmonium spectral func-
tions from MEM on fine lattices with Ny = 2 + 1 in the Wilson formulation,
where no temperature dependence in the pseudoscalar channel at temperatures
below approximately 1.3, was discerned [141]. The modification in the vector
channel above the crossover temperature was consistent with the temperature-
dependence of the zero-mode and no change in the bound states. These studies
have demonstrated how detailed investigations of the spectrum of QCD can pro-

vide insights into the phases and symmetry of QCD.

3.1.2 Bottomonium in lattice studies

Early pioneering analyses of heavy quarkonium [142] used a non-relativistic for-
mulation for the heavy-quark on quenched ensembles. The quenching of quarks
in the Euclidean theory breaks reflection positivity, and unitarity of the analytic
continuation of that theory is lost. Nevertheless, quenched lattice calculations
have been used extensively in zero-temperature and finite-temperature studies
despite the uncontrolled approximation it introduces. The interpretation of the
quenching at finite temperature is the omission of the relevant fermionic degrees
of freedom from the thermal heat bath. At the temperatures relevant to lat-
tice studies around the deconfinement crossover, the light fermionic degrees of
freedom are thermally active and play an important role in the nature of the
transition itself.

The quenching of the charm and bottom quark, however, is justified in the
thermal context as there is a reasonable scale separation between the tempera-
ture and the heavy-quark mass. In particular, the heavy quark is not in thermal
equilibrium with the medium of light degrees of freedom at the accessible tem-
peratures. Essentially, then, what is included in the simulation is the thermal
dynamics of the medium which affects the binding of the heavy quarks, whose
own dynamics are not thermalized. Furthermore, it may be worth reiterating
that essentially the modification of the heavy-quarkonium spectrum in a bath of
thermal light gluons and quarks is being investigated. This set-up provides the
correct equilibrium input for modelling the non-thermalized heavy quark in a de-
confined plasma [143]. The fact that the heavy quark is not thermalized in fact
is advantageous both in the interpretation of the modification of the hadronic
correlation functions at finite temperature and in the inversion of the spectral
function representation of the hadronic correlation function.

Previous studies of the spectrum using this set-up have been employed by
the FASTSUM collaboration with Ny = 2 flavours of light dynamical quark [95,
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93, 96, 144]. However, it is desirable to include the strange quark dynamically
at temperatures of the order of the deconfinement temperature to make contact
with physical QCD. Furthermore, these exploratory studies were completed on
rather coarse lattices without an improved fermion discretization in the tempo-
ral direction. Although these comprise significant changes to the physics and
implementation, the analysis of the correlation functions does not indicate any
significant changes in the interpretation from the earlier studies due to the inclu-
sion of extra light degrees of freedom.

The analysis of the quarkonium correlation functions in the Ny = 2 study sug-
gested the survival of the S wave ground-state above the crossover temperature up
to the highest accessible temperature of ~ 2T, as little temperature dependence
was observed [145]. However, significant modification of the correlation function
directly above the crossover temperature was observed in the P-wave channel
and the behaviour of the effective mass and exponent, defined in eqn. (3.9), were
consistent with the signature of unbound quarks. The subsequent computation
of the spectral functions in both channels with MEM gave further evidence for
the survival of the S wave in the deconfined phase and for the dissolution of the
P wave states almost directly above T;. [94, 96]. More recently studies have also
been initiated with Ny = 2 + 1 flavours of dynamical HISQ fermions and a com-
parable set-up for the heavy quark action [128]. A systematic comparison of the
results will be useful to ascertain the discretization effects which is the leading
source of unquantified systematic uncertainty present in these calculations owing

to the lack of any continuum extrapolation.

3.2 Free quarks on the lattice

Once the binding of the heavy quarks is effectively screened by the medium, there
is no possibility of the survival of the bound state regardless of the appropriateness
of the effective description. The goal of lattice studies is to uncover evidence for
free behaviour should it exist. In order to compare the correlation functions with
the case of free heavy quarks, the spectral functions, which were given for the
continuum case in chapter 1, are presented here for a discrete lattice.

Obviously, lattice artifacts play a significant role in the short-distance part of
the correlator, or high-energy part of the spectral function, and must be taken
into account when comparing interacting and non-interacting spectral functions
and correlation functions. Free lattice spectral functions have been investigated
for relativistic quark actions extensively [146, 147]. The free lattice correlation

function can be computed either by constructing the free lattice spectral function
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Figure 3.2: Free lattice spectral functions in the S wave (left) and P wave (right)
channels computed using equation eqn. (3.3). The spectral functions are com-
puted with the relevant parameters for the Ny = 2 (red) and Ny = 2 + 1 study,
which demonstrates the effect of the reduction of the lattice spacing in increasing
the support of the spectral function.

explicitly as outlined below, and composing with the kernel, equn.(2.44), or can be
calculated directly using the same evolution equation used in the interacting case
and simply omitting the interaction terms. The free lattice spectral function is
calculated according to the following sum over all allowed lattice momenta which
are in the first Brillouin zone (1BZ) [147]:

47N,
aZps(w) = i > b(arw — 2a,E(n)), (3.2)
S nelBZ
47N, -
alpp(w) = % Z k%*5(a;w — 2a,E(n)). (3.3)
S nelBZ

where the lattice dispersion relation corresponding to the improved NRQCD ac-

tion is given by

~2
a,E(n) = —2log <1 lp_)

- 22a,mg
P asmq\ _ (p°)°
~ton(1- gl (1452 ) S
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Figure 3.3: Comparison between free lattice correlator in the S wave (red)
and P wave (blue) channels, computed using the momentum sum (solid lines),
eqn. 3.3, and the NRQCD evolution equation (points) with interactions omitted
by omitting the gauge fields.

and the lattice momenta are defined by

3 3

2 g { TN 4 4 [Ty

p —423sm <Ns>’ o =16 E sin Ns)~ (3.5)
1=

3

4 o [ 27N N, N,

k2 — g sinz <—1> , My = — = v 5 —2 . 1 (36)
i=1 g .

Note that the momentum insertion in the P wave channel spectral function, due
to the derivative coupling in the associated operator, is chosen to correspond to

the symmetric derivative used in the lattice operator, see table 2.3.

The free lattice spectral function is shown in figure 3.2 in the S wave (left)
and P wave (right) channels in the large volume limit, together with the free
continuum spectral functions which are ignorant of the cutoff. In the limit of large
spatial volume the sum of Dirac distributions converges to a piecewise smooth
function with compact support on the frequency domain. The cutoff provided
by the lattice spacing determines this finite interval according to the free lattice
dispersion relation of eqn. 3.4. Deviations between the lattice and continuum free

spectral functions must occur at least at energies corresponding to momenta at
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Figure 3.4: Illustration of the value of k2 (left) and p? (right) over the reduced
Brillouin zone denoted by the shading. The contours depict the level sets of
E(p) whose volume changes discontinuously around the value E(p) = 1 and
gives rise to the cusps in figure 3.2 in the S wave channel. In the P wave channel,
derivative coupling in the lattice operator corresponds to the weight k2 (left)
which suppresses these cusps. If the operator instead coupled with the ordinary
lattice momentum, p? (right), these cusps would not be suppressed.

the corners of the finite Brillouin zone. The cusps in the S wave spectral function
are a consequence of the geometry of the Brillouin zone as the volume of the
level surface, w = FE(n), changes discontinuously around energies corresponding
to momenta at the corners of the Brillouin zone. Figure 3.4 illustrates a two-
dimensional model which can explain the puzzling absence of cusps in the P wave
channel as follows. The contours in figure 3.4 correspond to level surfaces of the

energy,
w = E(p) = sin®(p;/2) + sin*(p,/2), with p; € [0,7) (3.7)

which is analogous to the leading term quadratic in the lattice momentum in
the lattice dispersion relation. The spectral function is the volume of this level
surface, with constant weight in the S wave channel or with weight sin? p, +sin? Dy
in the P wave channel. The smoothing effect of the P wave momentum insertion
of k% in the sum can be understood from the left-hand panel of figure 3.4 which
illustrates the weight of the momentum over the Brillouin zone with shading. The
weight in the P wave channel suppresses the contribution to the volume of the level
surface from the corners of the Brillouin zone in the light regions of figure 3.4
(left). If the momentum insertion in the P wave channel spectral function is
replaced with the usual definition of the lattice momentum, p?, figure 3.4 (right),
sharp cusps would also be observed in that channel.

Examining the large volume limit of the free lattice spectral function is satis-
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factory for the purposes of comparing with the reconstructed spectra. The finite
lattice spacing is more pertinent to constrain the gross features of the spectral
function such as its support on the frequency domain. In any case, the regular-
izations favour smooth reconstructions of the envelope of the free lattice spectral
function. The correlation functions obtained by taking the integral, eqn. 2.44, of
the free lattice spectral functions given in eqn. (3.3), are depicted in figure 3.3,
along with the correlation functions obtained from the free evolution equation
by omitting the gauge fields. Both correlation functions agree even though the
evolution equation is computed using a comparatively small volume of the usual
lattice size to the momentum sum which is calculated with Ny = 2000.

Some difficulty is introduced by the energy shift in the simulated interacting
theory which appears after the renormalization of the rest energy in NRQCD.
The NRQCD energy then contains a contribution from the heavy-quark self-
energy. This was removed in the zero-temperature study by comparing with the
experimental Y(3S;) energy. This a priori unknown shift hinders the compari-
son between the interacting correlation functions at finite temperature and the
free lattice correlation functions whose threshold corresponds to the two-quark
threshold.

Ideally, this effect of this energy shift would be removed exactly by shift-
ing the interacting spectral function accordingly, or correspondingly multiplying
the correlation function by the exponential factor of eqn. (1.33). This energy
shift may be studied perturbatively due to the high scale of the lattice cutoff.
The relevant perturbative calculation of the heavy-quark self-energy for leading-
order NRQCD was performed in ref. [55]. An estimate for the additive shift can
be obtained from these results for the unimproved NRQCD action which gives
arwp ~ 0.16 using the closest available parameters to those used in this study of
an anisotropy of £ = 4 and bare quark mass of agm¢g = 2.5. In principle, the
self-energy contribution could also be estimated for the improved action used in

this work using the tools of automated perturbation theory ref. [148].

3.3 Thermal modification of the correlation functions

Results from the Y(3S1) and x3; (*P1) channels at finite temperature are presented
in this section. These channels are representative of the qualitative behaviour of
the other S wave and P wave channels due to the fact that the gross structure
is characterized by the multiplets of orbital angular momentum. The hyperfine
structure, being suppressed in the effective theory, does not alter the most signif-

icant qualitative behaviour, so reference is made only to the S wave and P wave
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Figure 3.5: Ratio of correlation functions at finite temperature to those at zero
temperature in the S wave (left) and P wave (right) channels at temperatures
ranging from 0.767, to 1.907.

channels in the following.

In this part of the study only local unsmeared operators are used. Care must
be taken not to use operators which have stronger overlap with thermal states
than their counterparts in the vacuum. This could introduce an enhancement of
the spectral weight with increasing temperature and confuse the interpretation
of the thermal modification of the spectrum. The variational method has been
applied to operators used in the analysis of the spectral functions, but the founda-
tion for applying the method at finite temperature is not well understood [149].
It is not clear at which temperature the optimization of the operators should
be performed. Furthermore, the relation between the dilepton production rate
and the spectral function in the vector channel, eqn. (1.5), holds only for a local

operator.

Figure 3.5 shows the ratio of the correlation functions at finite temperature
to those at zero temperature in the S wave (left) and P wave (right) channels.
The hadronic correlation functions in NRQCD receive no contributions from zero
mode spectral features which would give rise to a 7-independent contribution to
the correlation function [150]. These features which pertain to transport coeffi-
cients through the Kubo formulae are obviously absent from the effective theory
around the two-quark threshold. Furthermore, because the b-quark is not in
equilibrium with the medium, all temperature modifications of the correlation
functions are related to the temperature-dependence of the spectral function be-

cause the integral kernel in eqn. (2.44) is temperature-independent.

An enhancement is clearly observed in both channels at comparable Euclidean
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Figure 3.6: Ratio of correlation functions at finite temperature to free lattice cor-
relation functions in the S wave (left) and P wave (right) channels at temperatures
ranging from 0.767, to 1.907..

temporal separations as the temperature is increased. Note that the relevant
comparison is between the ratios at the same Euclidean distance in physical
units rather than, say, scaled by the temperature because of the temperature-
independence of the kernel. The correlation functions at the highest temperature
are enhanced by a few percent relative to the zero temperature ones in the S wave
channel and on the order of ten per cent in the P wave channel. This already
suggests a qualitative difference between the two cases. In terms of the redis-
tribution of the spectral weight at finite temperature, an enhancement could be
effected by a broadening of the ground state peak or a reduction in the threshold
of the spectral function in the absence of bound states. Similar enhancements
were observed in the Ny = 2 study of the FASTSUM collaboration [93] and in

relativistic charmonium studies [138].

The comparison of the correlation functions with the free lattice correlation
functions including the shift a,wy =~ 0.16 is shown in figure 3.6 in the S wave (left)
and P wave (right) channels. In the S wave channel, large deviations from the
free correlator are observed at all temperatures. While some slight temperature
dependence at intermediate temperatures, the dependence is not as significant as
in the P wave channel. The correlator in the P wave channel displays a trend to-
wards the free lattice correlator as the temperature is increased, just overshooting

it at the highest accessible temperature, indicating quasi-free behaviour.

However, it must be noted that the resulting dependence on the energy shift
of the ratios between the interacting and free lattice correlation functions is not

mild and the results must be considered suggestive at best. This systematic issue
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Figure 3.7: Temperature-dependence of the effective mass, meg, in the S wave
(left) and P wave (right) channels from 0.767, to 1.907.,.

highlights the problematic nature of accounting for the threshold in the compar-
ison between interacting and free observables and motivates the investigation of
the spectral function as the observable of choice to interpret the medium modi-

fication.

It is useful to examine two other observables in order to probe the temperature
dependence. Given the free continuum form of the hadronic correlation function
of eqn. (1.32) the effective mass no longer displays a plateau in the absence of a
threshold but instead decays with a power-law at asymptotically large Euclidean
distance. The presence of a finite threshold, eqn. (1.33), modifies this behaviour

to a power-law decay to a finite constant value,

]' dG(T) G:Gfrco (080 ]
= Wwo+ :

G(r) dr (2.8}

Mef () = —
Nevertheless, the transition from a plateau in the presence of a bound state to
a power-law decay to a lower plateau at the energy shift may still be visible if
the free behaviour begins to set in within the temperatures investigated and the
energy shift is sufficiently separated from the bound state energy. In figure 3.7
the qualitative difference between the S wave (left) and P wave (right) channels is
again illustrated by the effective mass. Little temperature dependence is visible in
S wave channel which approaches a plateau at all temperatures while the P wave

channel shows some deviation from the low-temperature behaviour.

Based on the algebraic decay of the hadronic correlation function for free

quarks in the continuum, eqn. (1.33), it is useful to introduce a new observable,
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the effective exponent

. i dG(T) G:gfrco
= G(r) dr <

woT + a+ 1. (3.9)

In the absence of interactions this observable is equal to the exponent of the
algebraic decay of the correlation function, a + 1, if the threshold vanishes. If
the threshold is removed from zero then it also contains a linear piece with slope
equal to the threshold, while if there is no algebraic part then the constant piece
vanishes and its intercept is at zero.

The temperature-dependence of the effective exponent is shown in figure 3.8
in the S wave (left) and P wave (right) channels with the perturbative estimate
for the contribution from the energy shift subtracted away. At low temperatures
the effective exponent at large Euclidean time is linear with a small intercept
and positive slope which encodes the bound state energies in each channel. Little
temperature-dependence is observed in the S wave channel as expected from the
correlator and effective mass, and the observable does not coincide with the free
effective exponent except at the earliest temporal separations. In the P wave
channel at the highest accessible temperatures there is some clear deviation from
the low-temperature behaviour and there is a tendency toward the free lattice
effective exponent as the temperature is increased. If the threshold effect is not
removed then this linear rise persists at all temperatures and it is difficult to com-
pare with the free lattice effective exponent. A similar behaviour was observed in
the P wave channel in the Ny = 2 study [93] without subtracting the threshold,
due to the smaller value of the energy shift. The different renormalization pattern
results from the different discretization in the earlier study.

The quality of fits to the free continuum form of the correlator, eqn. (1.33),

are poor even at high temperatures in the P wave channel when the qualitative

T/T. m1/ar To/ar « wo x?/d.o.f.
0.76 26 38 0.030(55) 0.2806(19) 12
084 25 34 0.317(57) 0.2694(21) 0.4
0.95 20 30 0.354(23) 0.2648(10) 1.2
1.09 18 26 0.540(17) 0.2517(09) 0.6
127 16 22 0.703(14) 0.2384(08) 2.7
152 13 18  0.850(09) 0.2221(07) 19
1.90 10 14 0.909(05) 0.2071(05) 158

Table 3.2: Best fit parameters for the linear fit to the effective exponent, 7.g, in
the P wave channel. The quality of the fit is poor at high temperatures where
the asymptotic linear form only begins to set in.
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Figure 3.8: Temperature-dependence of the effective exponent, 7.g, in the S wave
(left) and P wave (right) channels from 0.767, to 1.907,.

change in the effective mass and exponent suggests that quasi-free behaviour may
set in. This could be due to the difficulty of performing such a delicate non-linear
fit with the mixed exponential and power-law decay, as well as the inadequacy of

the continuum form to model the correlator.

Instead, linear fits directly to the effective exponent were attempted. In the
P wave channel the fits were stable under variations of the bottom window of the
temporal range, 71 /a,, within a few units, at all but the two highest temperatures.
At these high temperatures the asymptotic linear form of the exponent only just
sets in at the latest accessible times. The best fit parameters in the P wave
channel, shown in table 3.2, indicate that the effective exponent increases with
temperature towards the free continuum value, @ = 1.5 but does not attain
it within the temperatures investigated. Also, the slope corresponding to the
threshold decreases toward the perturbative estimate of the energy shift, a,wy ~
0.16, with increasing temperature. The higher statistical precision of the effective
exponent in the S wave channel spoils the goodness of fit and suggests that the

continuum algebraic form is not an adequate model at any temperature.

The tentative conclusion from the analysis of the correlation functions and
derived observables is the greater temperature-dependence in the P wave chan-
nel with qualitative behaviour which is consistent with quasi-free heavy quarks
above the crossover temperature. This establishes qualitative agreement of the
modification of the spectrum with earlier Ny = 2 studies [93, 94]. However, for
consistency, the effect of a larger energy shift in this study must be taken into
account. Although the spatial lattice spacing is reduced in this study compared

with the Ny = 2 study, the temporal lattice spacing is larger and the change in the
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Figure 3.9: Mass-dependence of the ratio of the correlation functions in the S wave
(left) and P wave (right) channels at the highest temperature, 1.907T,, to zero-
temperature. The quark masses range from above the charm quark mass through
the bottom quark mass to superheavy.

renormalization of the energy shift is not easily understood. As analytic expres-
sions are not available for the free lattice observables, and as comparisons with
the interacting lattice quantities suffers from the ambiguity in the energy shift,

the direct evaluation of the spectral functions at finite temperature is desirable.

3.3.1 Mass dependence

There is obviously no technical restriction on deforming the theory under in-
vestigation away from QCD. On the lattice for example, quark masses may be
tuned away from their values corresponding to the physical quark masses. It is
useful to compare the mass-dependence of the quarkonium spectrum above the
deconfinement transition to make contact with the expected thermal modification
of the spectrum from a simple potential model picture, as has been performed
in quenched studies [140]. The binding radius is related to the typical inverse
momentum transfer, ry ~ (mgv)~!, and effective colour Debye screening occurs
when the screening length, rp, is comparable with or smaller than the binding ra-
dius, rp < ry. At a given temperature, therefore, such a mechanism is expected
to become less effective for heavier, more tightly bound states.

Figure 3.9 shows the modification of correlators for various lattice heavy-quark
masses ranging from above the charm quark mass through the bottom quark mass
to superheavy quarks in the S wave (left) and P wave (right) channels at the
highest temperature 1.907,. Correlators in the P wave channel exhibit greater

thermal modification than in the S wave channel at each of the lattice heavy-quark
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Figure 3.10: Temperature-dependence of the reconstructed spectral function in
the S wave channel. The dashed black lines in the first panel indicate the ground
state and first excited state energies determined from multi-exponential fits at
zero temperature. Note the different ordinate scale between the upper and lower
panels.

masses investigated. At smaller values of the heavy-quark mass, approaching the
charm-quark mass, on the edge of the validity of the effective theory, a large
enhancement is seen even in the S wave channel correlation function, while for
large values of the heavy-quark mass some enhancements are still seen in the
P wave channel. The mass-dependence has also been investigated in the Ny = 2
case [151] where analogous dependence on the heavy-quark mass parameter was

observed.

3.4 Spectral functions from MEM

As motivated in the previous section, the spectral functions provide a straightfor-
ward interpretation of the modification of the spectrum at finite temperature. In
this section, the spectral functions from MEM are presented using the method-
ology outlined in the previous chapter. Systematic effects are discussed in the
following subsection, of which the stability of the reconstruction with the varia-
tion of the time domain of the correlator data used is the most important.

Figures 3.10 and 3.11 depict the spectral functions in the S wave and P wave
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Figure 3.11: Temperature-dependence of the reconstructed spectral function in
the P wave channel with the zero temperature ground state energy shown in the
first panel with a dashed black line. Recall that no excited states were able to be
extracted in the P wave channel using multi-exponential fits.

channels respectively at temperatures from 0.767,. up to 1.907,. For clarity each
panel displays just two neighbouring temperatures. In the S wave channel the
ground state peak is clearly visible and coincides with the energy extracted from
the exponential fit to the correlation function at zero temperature, see figure 2.12.
The ground state peak persists at all accessible temperatures demonstrating the
survival of the ground state to at least 1.907,.. The ground state peak is observed
to broaden and decrease in height above the crossover temperature. Below the
deconfinement transition the second peak may be identified with the first excited
state. Its interpretation above T is less clear, which may be due to dissociation
in the plasma as well as the possible dominance of lattice artifacts in the high
frequency part of the spectral function.

In the P wave channel, shown in figure 3.11, the ground state peak can be
discerned at temperatures below 7, and agrees with the energy from the expo-
nential fit at zero temperature. It is noted that below the crossover temperature
the ground-state peak is relatively suppressed to the continuum feature at higher
frequencies, which suggests the difficulty in distinguishing this state even at low
temperatures due to the admixture of lattice artifacts in the correlation function,
compared with the S wave channel. This peak is observed to disappear immedi-

ately in the deconfined phase which indicates the dissociation of this state almost
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as soon as the deconfined phase is reached.

The conclusions from the MEM of the survival of the S wave state in the
plasma up to 1.907,. and the immediate dissociation of the P wave state above
T, are effectively unchanged, then, from the Ny = 2 studies [94, 96]. A greater
range of temperatures below 7T, in the current study allows the P wave ground
state to be discerned below T,.. No significant effect is then attributed to the

inclusion of the strange quark in the thermal medium.

3.4.1 Systematic tests of MEM

A detailed examination of the reconstruction of the spectral functions is essential
to have confidence in the interpretation of effects due to the variation of the
temperature. Here, some pertinent issues relating the selection of the temporal
range of the correlator and the frequency domain of the spectral function are
discussed. Other effects such as the dependence on the default model and the
statistical uncertainty have been investigated for similar data from the N; = 2
ensembles [94, 96] where they were noted to have only a mild influence on the
qualitative behaviour.

The stability of the spectral function with the variation of the temporal range
of the correlation functions used in the reconstruction is shown in figure 3.12 in
the S wave (top) and P wave (bottom) panels for two temperatures corresponding
to N, = 28 (left) and N, = 20 (right). The spectral functions are observed to
be stable as long as data at temporal separations close to N, are excluded. At
the higher temperature with N, = 20 in the P wave channel (bottom right), a
peaked structure appears when the correlator data at N, — 1 is included in the
reconstruction. It is difficult to understand the resurgence of a peak structure
on any physical grounds considering the absence of such a structure in this re-
gion of the spectral function at the lower temperature (bottom right). It has
been suggested that the periodicity of gauge fields induces a lattice artifact at
temporal separations near N, which motivates the exclusion of correlator data
at separations near the boundary [96].

Alternatively, the peak structure observed in this reconstruction is an artifact
due to a ringing effect, like the Gibbs phenomenon in Fourier analysis, when re-
constructing rapid thresholds from a finite basis of functions. The instability of
the reconstruction under variations of 75 /a, may be a symptom of the fact that
the relatively small SVD basis is inadequate to perform large cancellations over
the entire support of the spectral function [119]. Regardless, the reconstruction is
stable once the last correlator datum is omitted from the reconstruction. There-

fore the reconstructed spectral function converges in all cases when the range of
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Figure 3.12: Stability of the reconstructed spectral function with respect to se-
lection of temporal correlator data [y /a;, 72/a,| shown in the key for the T
(top) and yp (bottom) channels, for two temperatures corresponding to N, = 28
(left) and N, = 20 (right). The results when the largest temporal separation
(t/ar = N, — 1) is included are shown with dashed lines.

correlator data, [11/a,, T2/a,], is chosen such that 7 /a, > 1 and 2 /a, < N; —1.

More evidence of the stability of the reconstruction is shown in figure 3.13,
where only a subset of the available correlator is used to perform the reconstruc-
tion in the S wave channel at the lowest temperature with N, = 40. In the
left-hand panel, the reconstruction is performed using all of the usable correla-
tor data (solid line) and also using only the even correlator data (dashed line),
roughly half of the available data. Only a small variation in the ground state
peak height is observed. This figure demonstrates that successful reconstructions
of narrow peaks may be obtained even with a relatively small number of available
basis functions. In the right-hand panel, the reconstruction at the temperature
corresponding to N, = 24 (dashed line) is compared with the reconstruction at
the lower temperature corresponding to N, = 40 using the same extent of the
correlator data (solid line). This demonstrates the explicit physical effect of the

temperature on the spectral function as the conditions of the reconstruction are

87



12 T(‘Sl) N, =40 . 5 L T(:‘Sl)
2,3,4,...,38} — N, =40,{2,...,22} —
10 |- 2,4,6,...,38} -- 4l N, =24,{2,...,22} --
T st 1 ¥
he = B
3 6 i 3
T i By
4 - i
2 1

arw

Figure 3.13: Stability of the reconstructed spectral function using all (solid line)
and half (dashed line) of the available correlator data in the S wave channel at
N; = 40 (left). Comparison between reconstructions at N, = 24 (dashed line)
and N, = 40 (solid line) using the same extent of correlator data in both cases
(right).

identical in this case. This supports the claim that inferences about the temper-
ature dependence of the spectral function obtained from MEM are physical and
not artifacts of the changing SVD basis during the reconstruction.

The frequency domain chosen for each reconstruction of spectral function is
given in table A.1. This interval must be chosen judiciously and may extend to
negative frequencies due to the fact that the effective theory is defined around
the two-quark threshold, so negative frequencies are not excluded a priori. Fur-
thermore, this range must be sufficiently large to avoid forcing spectral weight to
redistribute to satisfy the sum rule which conserves its area. Very little variation
with the spectral function is observed as long as the frequency range is extended
adequately.

The stability of the reconstructed spectral function from the maximum en-
tropy method would lend support that the effects seen both channels are not
dominated by artifacts due to the reconstruction and that the results can sensi-
bly provide useful interpretation on the existence and modification of the bound

states in the plasma.

3.5 Spectral functions from Bayesian reconstruction

In order to test the robustness of the spectral function reconstructed using MEM
it is highly desirable to use the alternative regularization of the BR method out-

lined in section 2.3.6, especially due to the concerns regarding the reconstruction
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Figure 3.14: Temperature-dependence of the reconstructed spectral function in
the S wave channel. The dashed black lines in the first panel indicate the ground
state and first excited state energies determined from multi-exponential fits at
zero temperature. Note the different ordinate scale between the upper and lower
panels.

when there are few correlator data available at high temperatures. Like the
MEM. the reconstruction on the finite temperature Euclidean correlator data
proceeds identically to the zero-temperature reconstructions. The spectral func-
tions are depicted for the S wave channel in figure 3.14 and the P wave channel

in figure 3.15 in the same format as the previous section.

In the S wave channel, at low temperatures, the two lowest peak positions
are coincident with the ground and first excited-state energies as before and
therefore agree with the peak positions from MEM. At the lowest temperature,
the ground-state peak is visibly narrower with a greater amplitude than the MEM
spectral function. However, the temperature dependence is very similar with the
ground state peak shrinking and broadening with increasing temperature. At low
temperatures, the amplitude of the first excited-state peak is relatively reduced
and the continuum background feature is much less prominent than in the MEM.
As the temperature is increased, the feature of the first excited state shifts and
broadens, just as for the MEM, and it is no longer discernible above 1.277..
Qualitatively, therefore, the conclusions of the temperature-dependence in the

S wave channel are very similar to those from the MEM although the resolution
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Figure 3.15: Temperature-dependence of the reconstructed spectral function in
the P wave channel. The dashed black lines in the first panel indicate the ground
state and first excited state energies determined from multi-exponential fits at
zero temperature. Note the different ordinate scale between the upper and lower
panels.

of the ground state peak at low temperatures seems clearer with the BR method.

In the P wave channel, the situation is markedly different. At low temper-
atures, the lowest-energy peak agrees well with the ground-state energy, just as
for the MEM. The support of the spectral function in this channel is also com-
parable with the support of the reconstruction from the MEM. However, the
background spectral features above the ground-state peak, which are attributed
to lattice artifacts, exhibit more peaked structures. In contrast with the MEM
the ground-state peak persists at all temperatures up to 1.907,. and exhibits a
smaller relative suppression in the peak height as the temperature is increased.
This would suggest the survival of the P wave state well into the plasma phase up
to at least the highest temperature investigated in this study. In the BR method,
the separation between the optimization task and N, facilitates the investigation
of the dependence of the reconstruction on the number of correlator data. In this
context the dependence on the number of correlator data included should demon-
strate the physical content of the correlators and not be susceptible to systematic
variations of the reconstruction. In the MEM, the dependence of the reconstruc-

tion on the number of correlator data is conflated with the N, -dependence of the

90



plw) /md

10!

100 |
1072 L

1072 i

1()73 /
9.2 9. .6 . 94 9.6

£ +w (GeV)

Figure 3.16: Temperature-dependence of the reconstructed spectral functions
computed at finite momentum in the S wave channel at temperatures above
and below the crossover temperature. No significant change in the momentum-
dependence is observed with temperature. Namely, the momentum dependence
is characterized only by shift of the peak position according the the dispersion
relation (3.4), just as in the vacuum.

SVD basis and consequently it is a more subtle issue to determine the stability
of the reconstruction. At finite temperature it is especially important to account

for this systematic effect when the number of correlator data is small.

3.5.1 Momentum dependence of the ground-state S wave

In the S wave channel, the spectral function was also reconstructed at finite
momentum at temperatures above the transition temperature. A selection of the
reconstructions are shown in figure 3.16, where the peak position is observed to
scale with the quadratic momentum. No significant variation of the peak width
or height is observed as the momentum is increased at any temperature. Only
momenta with the same degeneracies are shown for a fair comparison between

the the statistical uncertainties, which are however expected to be mild.

3.5.2 Systematics of BR method

In this section, the dependence of the reconstruction on the extent of the correla-
tor data used in the reconstruction is investigated. Specifically, the upper window
of the correlator, 79, is varied as the primary concern is how the reconstruction
depends on the inclusion of the most important correlator data for reconstruction

the low-energy behaviour of the spectral functions, namely that at large Euclidean
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Figure 3.17: Examples of fits of a Lorentzian and Gaussian lineshape to the
lowest peak in the spectral function in the S wave (left) and P wave (right) at
the highest temperature corresponding to N, = 16. The Lorentzian lineshape
generally provides a better parameterization judging by the goodness of fit.

distances. In order to quantify the dependence of the ground-state peak on 79,
the peak feature is fitted with a Lorentzian and Gaussian lineshape, examples of
which are depicted in figure 3.17. The fit was performed over only the left-hand
lineshape due to the contamination of the ground-state peak with contributions
from the background, especially at higher temperatures. Additionally, the peak
was fitted only over the region of the spectral function above the half-height of
the ground-state peak. The Lorentzian lineshape generally provided a better
parameterization of the lineshape motivated on physical grounds, although the
Gaussian lineshape was satisfactory for most cases, judging by the goodness of fit.
The reconstructions were repeated by varying the latest correlator datum used
in the reconstruction, 75, and the dependence of the best fit parameters on 7o
were examined. Although the statistical errors from the jackknife method were
estimated in the noisier P wave channel, their magnitude is so much smaller than
the systematic variations in the reconstruction that they can be safely ignored in
the present analysis.

The dependence of the ground-state width on 75 is depicted in the S wave
channel (left) and P wave channel (right) in figure 3.18. The abscissa is the
inverse, a, /72, so that an indication of the behaviour of the parameters if more
Euclidean data were available could be ascertained. In the S wave channel, at low
temperatures the width decreases rapidly as 7» is increased, indicating that the
physical width is smaller than the reconstruction with finite data is able to probe.
As the temperature is increased above the transition temperature, a plateau is

visible at the highest temperatures in the S wave channel. In the P wave channel
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Figure 3.18: Illustration of the best-fit parameter of the width of the ground-
state peak, I', versus the inverse of the latest correlator datum included in the
reconstruction, a,/7o. Each temperature is depicted in the S wave (left) and
P wave (right) channels with linespoints to guide the eye.

similar behaviour is visible except that at all temperatures some stabilizing of the
width is visible with the available data is observed. An estimate for the width
is then taken to be the width of the spectral feature with 75 /a, = N, — 1 fore
each given temperature. A systematic error is obtained from the variation of the
width over the plateau observed as 75 /a, becomes large. For the noisier P wave
channel, a statistical error bar is included on these best fit parameters which was
estimated from a blocked jackknife analysis. Even this noisier channel, the errors
are smaller than the thickness of the points which illustrates that the systematic
errors of the reconstruction are much greater than the statistical uncertainty.

The temperature dependence of this estimate for the width from the BR
method is shown in figure 3.19. Given the asymptotic behaviour of the width in
the S wave channel at low temperatures, a non-zero width is only reported above
the transition temperature where some stabilization of the width is observed with
T9/a,. The estimates of the width from MEM in the S wave channel are included,
where they are drawn suggestively as upper bounds due to the poorer resolution
on the peaked features from this method with the finite SVD basis discussed in
the previous chapter. The temperature-dependence of the P wave ground-state
width is consistent with a linear rise, although the large systematic error cannot
discriminate between a linear or quadratic model.

An analogous plot for the inverse maximum height of the ground-state spec-
tral feature is the S wave (left) and P wave (right) channel is shown in figure 3.20.

The ordinate is chosen to be the estimate for the inverse height in order to demon-
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Figure 3.19: Temperature dependence of the ground-state best-fit width from the
BR method in the S wave channel (blue crosses) and the P wave channel (red
exes). The best-fit width from the MEM reconstruction in the S wave channel is
also included with the black arrows which are interpreted as upper bounds due
to the difficulty of the method in reconstructing the widths.

strate the extrapolation of the peak height to large values at low temperatures,
visible in the S wave channel. As in the case of the width, figure 3.18, a jackknife
error is included on the best fit parameters in the P wave channel. Above the
transition temperature the heights no longer tend towards very large values sug-
gesting the method is accurately capturing the peak height which is suppressed
in the deconfined phase. In the P wave channel some puzzling behaviour can be
observed which clearly distinguishes between the behaviour above and below the
transition temperature. At low temperatures there appears to be some stability
in the peak height as 75 is increased while above the deconfinement temperature
the reconstructed peak height seems to decrease smoothly as more correlator
data are included in the reconstruction. This may suggest that the dominance of
lattice artifacts in this channel above the deconfinement transition temperature
mean that an adequate reconstruction is poorly constrained by the data where
they are not dominated by contributions from physical states, such as in the free

case.

The difficulty of reconstructing spectral densities of continuum structures such
as the free lattice spectral function is demonstrated in figure 3.21. Here, mock

correlator data with N, = 40 were created by composing the free lattice spectral
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Figure 3.20: Illustration of the best-fit inverse peak height of the ground-state
peak, p.l., versus the inverse of the latest correlator datum included in the
reconstruction, a/,/m. Each temperature is depicted in the S wave (left) and
P wave (right) channels with linespoints to guide the eye.

function, in the S wave channel (left) and the P wave channel (right), with the
kernel eqn. (2.44). Gaussian noise was added to the data with a strength cor-
responding to the signal-to-noise ratio of the available data in the lattice study
for a fair comparison. As can be observed in the figure, the method struggles to
reproduce the continuum faithfully without the appearance of peaked structures.
However, the support of the reconstructed spectral function and the position of
the features agrees quite well with the mock data. The area under both densities
is scaled to unity for comparison. Ringing phenomena like this is a familiar effect,
such the Gibbs effect in Fourier analysis.

In figure 3.22, the reconstructed free lattice spectral function is compared
with the reconstructed spectral function from the S wave (left) and P wave (right)
channels at the highest temperature. The free reconstruction has been shifted
with the energy shift so that its threshold corresponds to the two-particle thresh-
old of the zero-temperature theory. Furthermore it has been scaled with to the
area of the high-temperature reconstructed spectral function for comparison.

The comparison of the reconstructed free lattice spectral function with the
interacting case is one possible criteria for the survival of the bottomonium states.
These criteria are not necessarily ideal and the comparison with the free lattice
spectral function which has been suggested in ref. [152] proposes different criteria
for matching. There, it is suggested that the free reconstruction be shifted so that
the thresholds of interacting and free match and furthermore that the free lattice

spectral function is scaled so that the free and interacting thresholds match in
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Figure 3.21: Reconstructions of the free lattice spectral function in the S wave
(left) and P wave (right) channels from the BR method are shown in solid lines.
This demonstrates the difficulty in reproducing features associated with the sharp
cusps of the free lattice spectral function (dashed lines). The amplitudes of the
spectral functions are normalized by fixing the area underneath them to unity.

the ultraviolet, where only lattice artifacts are present. The ground-state peak
in the S wave channel is clearly visible with a large amplitude compared with the
scaled free lattice spectral function, unambiguously confirming a signal in this
channel. In the P wave channel, right, the relative amplitude of the remnant
lowest peak is quite comparable with the amplitude of the free lattice spectral
function in that region. Coupled with the curious behaviour of the P wave peak
height with 75, and the conflict with the MEM results the systematic variation

of the reconstruction remains to be resolved.

While the new method offers some advantages in decoupling the SVD basis
from the minimization, further investigation of the effects of the different regular-
ization functional will be required to support such discrepancies with existing and
tested methods from the MEM. In particular, the information-theoretic grounds
for the use of the MEM regularization are not as well understood for the looser
ad hoc construction of the Bayesian reconstruction. In practical terms, the new
regularization, while suppressing the appearance of unphysical peaks of small
amplitude has the opposite effect of a weaker regularization of peaks of large
amplitude compared with the prior. It is possible that the instability of the peak
height with the number of correlator data is a manifestation of this property of
allowing peaked structures to exist unless strongly constrained by the data. The

survival of the P wave state in the plasma is not yet settled. The application of
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Figure 3.22: Comparison between the reconstructed free spectral function
(dashed lines) and the interacting spectral function (solid lines) at the highest

available temperature, 1.907,, in the S wave (left) and P wave (right) channels.
The area of the reconstructed free lattice spectral function is scaled to the area
of the interacting counterpart, and the perturbative estimate of the energy shift
is used to shift the threshold of the free lattice spectral functions.

the novel reconstruction method for which it was specifically tailored is outlined

in the next chapter in the study of the quarkonium potential from Wilson line

correlator data.
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4 Heavy-quark potential

In this section another application of the spectral analysis of Euclidean correlators
is presented. The determination of the heavy-quark potential at finite tempera-
ture can be cast in terms of the inference of the spectral function of a Euclidean
Wilson loop. The motivation to understand the binding of heavy quarks in a
QCD plasma from the medium-modified potential is closely related to the phe-
nomenology of the in-medium modification of the quarkonium spectral functions
presented in the previous chapter. The extraction of the heavy-quark potential
suitable for potential models is highly desirable as outlined in the introductory
chapter. However, the non-perturbative definition of the heavy-quark potential
at finite temperature has been deliberated over for some time and the relevant
potential has been identified variously with both the colour-singlet free or internal
energies [153, 62]. The following definition of the heavy-quark potential follows
from the spectral decomposition of the Wilson loop, or related, the gauge-fixed
Wilson line correlators, as outlined in ref. [154]. The two potentials are known to
agree only to leading order in resummed perturbation theory — whether they co-
incide non-pertubatively is not well understood and lattice studies aim to deepen

such understanding.

4.1 Heavy-quark potential at finite temperature
The Euclidean Wilson loop is Wo(r,7) = Pexp(— fv dat A#(x)), where 7 is the

rectangular path with dimension, r x 7, and can be shown to have a spectral

representation

Wo(r,7) = /dwe“”pg(w), (4.1)
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whose analytic continuation satisfies a Schrodinger-like equation [155],
i0:Wo(r,t) = ¢(t,r)Wa(rt). (4.2)

Intuitively, this can be understood through the mapping of this operator to the
world-line amplitude of a heavy-quark anti-quark pair. The late-time behaviour
of this equation defines the heavy-quark potential, V(r) = limy_ ¢(r,t). If
a separation of scales exists such that the late-time behaviour dominates the
low-energy spectral function, a Lorentzian lineshape encodes the heavy-quark
potential through

po(w) = (w_@rwa (4.3)
with the identification I'(r) = SV (r) and @(r) = RV (r) [156]. The existence of an
imaginary part of the heavy-quark potential can be attributed to Landau damping
and was first highlighted in the weak-coupling analyses [53, 56, 157]. The rela-
tion of the real and imaginary parts of heavy-quark potential to the Wilson loop
spectral function and consequently the Euclidean correlation function invites the
non-perturbative estimation of these quantities from the lattice. Pragmatically,
the existence of an imaginary part of the potential at finite temperature pre-
cludes the accurate extraction of heavy-quark potential from an ansaetz of pure
exponential decay of the Euclidean correlator at asymptotically large times [158].
Furthermore, a general analysis of the possible alterations to such a lineshape in
the presence of the characteristic timescale, tgg, which captures the time after

which p(r,t) becomes constant reveals that a spectral lineshape

a(w —w) + BT
(w—@)2+TI?

po(w) =7~ +co + aitgow —@) + ..., (4.4)
is possible as an expansion in tgg, where a,3,7,¢o and ¢; are functions of the
distance, r. The effect of adding short-distance effects to the Wilson loop natu-
rally skews the Lorentzian lineshape. Improved ansaetz inspired by the skewed
Lorentzian form of eqn. (4.4), have been used to estimate the real and imaginary
parts of the heavy-quark potential from dynamical lattice simulations [159]. In
the following section, the results of the weak-coupling analyses are summarized
which suggest a gauge-fixed Wilson-line correlator may provide a more useful

observable to extract the potential from numerical simulations.
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4.1.1 Heavy-quark potential from Wilson line correlators

The resummed framework of hard-thermal loop effective theory ameliorates the
poor convergence in perturbative calculations in thermal field theory [160]. In
a physically intuitive picture, this reorganization of perturbation theory shifts
the expansion to one around gas of quasiparticles with the Debye mass. The
heavy-quark potential was calculated in this formalism in the series of formative
works which demonstrated the existence of an imaginary part of the potential as
well as the familiar Debye-screened Coulomb part [53, 54, 56]. The imaginary
component serves to decorrelate the heavy-quark anti-quark pair in a medium
and whose interpretation is due to Landau damping of the binding gluons in
the thermal medium. This potential can be derived from the static limit of the
heavy quarkonium correlation function, and consequently can be used to deter-
mine the resummed quarkonium correlation and spectral functions by solving the
Schroedinger equation which is obeyed by the correlation functions, eqn. (1.28),
with the potential included.

The analysis of the spectral function in the resummed framework yields ex-
actly the ansaetz of the skewed Lorentzian lineshape of eqn. (4.3) in the low-
frequency region around the lowest peak. Furthermore, the numerical evaluation
of the spectral function, which cannot be expressed in closed form, demonstrates
the necessity of including skewing as well as polynomial terms in order to obtain
a good fit and extract the correct potential.

In addition to the dimensionally regularized observable, a momentum regu-
larization of the Wilson loop was imposed in ref. [154]. The non-renormalized
Wilson loop, such as the lattice observable in the following study, is heavily sup-
pressed at intermediate Euclidean times partially due to the cusp divergences
present. This naturally has practical consequences for a numerical estimation of
the Wilson loop if the signal is highly suppressed. The omission of the spatial
links is known to produce a significantly improved signal-to-noise ratio in the
context of zero-temperature simulations. Consequently, the investigation of the
Wilson line correlators in the resummed framework revealed that the identical
potential is encoded in the gauge-dependent Wilson line correlators to the same
order in the perturbative calculation. Assuming that the same relationship holds
non-perturbatively this suggests using the gauge-fixed Wilson-line correlator to
extract the potential from numerical simulations.

In the work of ref. [161], MEM was employed to reconstruct the spectral
functions from the corresponding perturbative Euclidean correlators in order to
demonstrate the feasibility of the reconstruction from Euclidean data. Using

the fit form inspired by the skewing of the lowest peak observed in the hard-
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Figure 4.1: A comparison of the Wilson loop, Wg(r, 7), (solid lines) and gauge-
fixed Wilson line correlators W (r,7), (dashed lines) at T/T. = 1.90, which
demonstrates the large suppression of the Wilson loop signal compared with the
gauge-fixed Wilson line at comparable separations, r.

thermal loop approach, it was observed that the real part of the potential was
in good agreement with the direct calculation in the perturbative framework.
However, the imaginary parts, namely the widths of the reconstructed spectral
functions were overestimated. This observation provided the impetus for the
Bayesian reconstruction method outlined in the previous chapter. In the following
section, the potential from the Wilson line correlators is presented as work done in
collaboration with the authors of ref. [120] as part of the FASTSUM+ collaboration.

4.1.2 Wilson line correlators from anisotropic lattices

The advantages of the anisotropic formulation in the performance of the recon-
struction ought to provide a valuable opportunity to investigate both the com-
plementary physical content of the Wilson line correlators and to compare the
dominant systematic effects of the finite lattice spacing between studies of the
heavy-quark potential. The cheap nature of the measurements of the pure gauge
observable is somewhat spoiled by the relatively expensive gauge-fixing. The
gauge was fixed to Coulomb gauge with a stronger criterion on the gauge-fixing

violation of § < 107! due to the gauge-dependence of the unclosed Wilson line
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Figure 4.2: The Wilson line correlators with increasing temperature from left to
right, which already suggests the salient temperature-dependence of the real part
of the potential.

correlator. A typical trajectory of the gauge-fixing violation is visible in the
appendix.

The correlators were then computed on four of the available temperatures,
T/T.=0.76, 0.95, 1.52 and T'/T. = 1.90, which span the accessible temperature
range. Separations of up to r/as = 8 were computed, which amounts to 54
distinct displacements upon including both on and off-axis measurements. A
comparison between the Wilson loop and Wilson line correlators at 7'/T,. = 1.90
with the same number of measurements is shown in figure 4.1 for a selection
of spatial separations. It is evident that the Wilson line correlator is much less
suppressed than the Wilson loop and is less susceptible to lattice artifacts in the
short-distance part of the correlator which hamper the extraction of the signal.

The Wilson line correlators are depicted for the other temperatures in fig-
ure 4.2 where the qualitative features of the rising potential are visible as the
correlator decays faster as the distance is increased. Furthermore, the temper-
ature dependence already signals that the potential becomes suppressed as is

visible from the weakening of the decay with increasing temperature.

4.1.3 Spectral reconstructions and potential from the Bayesian re-
construction

Due to the deficiencies observed in reconstructing the hard-thermal loop spectral
functions with MEM, the Bayesian reconstruction is the preferred implementa-
tion for the extraction of the potential from lattice data. The reconstruction

proceeds exactly as for the heavy quarkonium correlators of the previous chap-
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Figure 4.3: The reconstructed spectral function of the Wilson line correlators
using the BR method (section 2.3.6) at T//T, = 1.50, which illustrates the typical
dependence of the lowest peak height and width on the separation, 7.

ter. Parameters used in the reconstruction are listed in table A.4. A sample of
the reconstructed spectral function is shown in figure 4.3 at the highest available
temperature, 7/7T, = 1.90. With increasing separation, three effects are noted
on the lowest peak, namely the suppression of the peak height, the shift in the
peak position and the growth in the width, which signals the increasing real and
imaginary parts of the potential. The spectral reconstructions and their fits used
to obtain the potentials in figures 4.4 and 4.5 were performed by A. Rothkopf.
The potential obtained from the fits of the Lorentzian lineshape and skewed
Lorentzian background with constant background are compared for the highest
temperature, T/T, = 1.90 in figure 4.4. The systematic difference between the
functional fit form, which is not accountable within the statistical errors, are
reminiscent of the discrepancy observed between the fits for the Wilson loop data
in ref. [154] which was caused by the failure of the reconstruction, MEM in that
case. It can be guessed already from figure 4.3 that the spectral lineshape does
not adhere to a Lorentzian or some small deformation of one at large separations.
Obviously, at higher temperatures the possibility of the dominance of discretiza-
tion effects ought to become troubling. Evidence that the features of the spectral
function are not well separated from the continuum at high frequencies should

raise questions of the systematic effects of the reconstruction. The qualitative
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Figure 4.4: Comparison betweeen the real part of the potential obtained at the
highest available temperature, 1.907,, using the naive Lorentzian parameteri-
zations of the lineshape (red points) and the skewing Lorentzian with constant
background term (orange points). The free energy is also depicted for comparison
(green points), showing a very different qualitative behaviour at this temperature.
Figure provided courtesy of A. Rothkopf.

behaviour of the colour-singlet free energy is remarkably different and reiterates
the importance of identifying the correct potential.

The temperature-dependence of the extracted potential is shown in figure 4.5.
At separations of r < 0.6fm, the ordering of the real part of the potential adheres
to the expectation of screening of the potential in the deconfined phase. However,
beyond these separations the persistent linear rise of the real part at the highest
temperature must be treated with skepticism.

Although increased measurements may alleviate some of the difficulties of the
reconstruction at high temperatures where there are few correlator data which
encode the physical potential, the suggestion that reconstructions of the spectral
functions at the highest available temperature are strongly afflicted by lattice ar-
tifacts cannot be escaped. In that light, the strong rise in the imaginary part of
the potential, which considerably overshoots the hard-thermal loop result [154].
The successful reconstruction of the heavy-quark potential allows for the extrac-
tion of the Debye mass and further work but further work is required to pin down
the discretization effects in the lattice observable before such quantitative tests

make sense. Nevertheless, this type of study demonstrates the feasibility of using
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the reconstruction to extract valuable information on the heavy-quark potential
from lattice QCD from relatively inexpensive obervables at finite temperature,
whose development will continue to enrich the study of heavy-quark probes at

finite temperature.
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Figure 4.5: Temperature-dependence of the real (top) and imaginary (bottom)
parts of the potential. Although a comparison with the hard-thermal loop poten-
tial [56, 154] is not explicitly shown, the imaginary part (right) of the potential
overshoots this value considerably at the higher temperatures, 7'/T, = 1.52 (or-
ange) and T/7. = 1.90 (red). Figure reproduced with kind permission of A.
Rothkopf.
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5 Conclusions

This work began with a review of the phenomenology of QCD at finite tempera-
ture which motivated the non-perturbative investigation of quarkonium correla-
tors and spectral functions from first principles. Reliable data from lattice QCD
could aid the interpretation of signals for the formation of a new phase of matter
at high temperatures, such as the suppression of quarkonium yields, through the
examination of the binding properties of heavy quarks in a thermal medium. A
discretized version of NRQCD was used to perform a numerical study of bot-
tomonium in an S wave and P wave channel above and below the deconfinement
transition temperature using ensembles generated by the FASTSUM collaboration.
Such a numerical approach is complementary to existing weak-coupling analyses.

The details of the lattice discretization were presented in the chapter 2 in
which a cursory investigation of the zero-temperature bottomonium spectrum
demonstrated the satisfactory performance of the effective theory. Two strate-
gies, MEM and the BR method, were reviewed which address the challenges of
extracting real-time observables from the Euclidean theory. The application of
these methods to the Euclidean correlator data demonstrated the viability of both
regularizations to solve the inverse problem at zero temperature. The systematic
differences of the reconstructions using both methods were discussed, and the
deficiencies of the MEM in certain cases were highlighted.

In chapter 3, an examination of the bottomonium correlation functions at
finite temperature suggested different qualitative behaviour in the S wave and
P wave channels above the deconfinement crossover temperature. Comparing
with the behaviour of free heavy quarks, the ground-state S wave appeared un-
altered but indications of unbinding of the heavy quarks in the P wave channel
were observed in the deconfined phase. However, some difficulties were encoun-
tered in interpreting these results. This motivated the extraction of the spectral
functions using both methods outlined in chapter 2. The MEM appeared to give

results consistent with the analysis of the correlators regarding the survival of the
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ground-state S wave up to 1.907, and the dissociation of the P wave state im-
mediately in the deconfined phase. The conclusions from the BR method yielded
incompatible results in the P wave channel, which suggested that this state may
surive well into the plasma phase. However, the systematic dependence of the
reconstruction on the available data reiterated the difficulty of performing the
reconstruction on small temporal extents where lattice artifacts may dominate
most of the signal. Further comparison with other discretizations should prove
fruitful.

Finally, in the last chapter, preliminary results on the heavy-quark potential
were obtained by employing the BR method to reconstruct the spectral func-
tion of a Wilson line correlator. Above the crossover temperature a screened
potential with a finite imaginary part was observed. In a weakly-coupled plasma
such effects may be interpreted as due to Debye screening and Landau damping
respectively. At the highest temperature, the reconstruction was afflicted by sys-
tematic effects which require further investigation. Hopefully, the continuation of
the work initiated in this study should help to clarify the performance of recon-
struction of the closely related observables of the quarkonium spectral functions
and the heavy-quark potential. The complementary nature of their systematic
uncertainties should allow robust conclusions to be drawn from lattice studies on

the fate of heavy quarkonium in the quark-gluon plasma.
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A  Auxiliary tables and figures

T(3S)) xs1(°P1)
N: a,wi, a,we 71/ar,72/ar arwi, arwe T1/0r,T2/ar
128 0.12, 2.12 1, 127 0.18, 2.18 2, 110
40 0.08, 2.08 2, 38 0.16, 2.16 2, 38
36 0.08, 2.08 2, 34 0.16, 2.16 2, 34
32 0.08, 2.08 2, 30 0.16, 2.16 2, 30
28 0.08, 2.08 2, 26 0.10, 2.10 2, 26
24 0.08, 2.08 2. 22 0.08, 2.08 2, 22
20 0.00, 2.00 2,18 0.00, 2.00 2,18
16  -0.04, 1.96 2,14 -0.04. 1.96 2,14

Table A.1: Frequency and Euclidean time ranges used in MEM reconstruction
of the spectral functions. The frequency interval is discretized into N, = 1000
points for each N,.

T(3S1) b1 (*P1)
N: a,wi, a;ws T1/ar,T2/ar arwi, arws T1/Gr,T2/a:
128 -0.2,24 2, 127 -04, 2.4 20 127
40 -0.2,24 2,39 -0.2,24 2, 39
36 -0.2, 2.4 2,35 -0.2,24 2, 35
32 -0.2, 2.4 2, 31 -0.2,24 2.6
28 =0.2, 24 2, 27 -0.2,24 25,20
24 -0.2, 2.4 2,28 -0.2,24 2,23
20 -04, 24 2,19 -04,24 2,19
16 -0.4,24 3,15 -0.4, 2.4 2, 15

Table A.2: Frequency and Euclidean time ranges used in BR reconstruction of the
spectral functions. The frequency interval is discretized into N, = 4000 points
for each N;.

125



JE% LRV e L G=lk=1 gi=1,0k=73 gy=18 k=1
a, My E+ M, (GeV)  a, My  E+M; (GeV)  a. M, & + M (GeV)

0—t 11S;  0.20549(4) 9409.7(2) 0.20521(5) 9407.1(3) 0.19694(4) 9388.2(2)
R 13S;  0.21460(5) 9460* 0.21437(6) 9460* 0.20969(5) 9460*
1—+ 1'P, 0.2963(4) 9920(2) 0.2969(4) 9923(2) 0.2911(2) 9918(1)
ot+ 13P, 0.2920(3) 9896(2) 0.2924(4) 9898(2) 0.2864(2) 9891(1)
I PPy 0.2964(4) 9920(2) 0.2969(4) 9923(2) 0.2914(2) 9920(1)
2+t 13P, 0.297(2) 9928(8) 0.298(2) 9932(9) 0.292(1) 9928(8)
(Et) 13P, 0.2990(3) 9935(1)
R 13P, 0.2975(3) 9927(2)
0t 2'9, 0.311(3) 10003(14)
f— 235, 0.318(3) 10042(15)

Table A.3: Estimates for the energies obtained by single and multi-exponential fits [111] to the NRQCD correlators used in figure 2.9.
The experimental Y(3S;) has been used to fix the NRQCD scale, & = Mexpt (Y (3S1)) — Mi(Y(3S1)). The spectrum was recalcu-
lated with Lepage’s parameter set to & = 3 and no systematic differences were obtained. Setting the matching coefficient of the
chromomagnetic operator, ¢4, away from unity only affects the hyperfine splitting.
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N,

Nconf arWi, ArW?2 N

]Vjack m(w)

{16,20,32,40} {890,996,987,527} —10,11.25 4600

10 1

Table A.4: Parameters used in the Bayesian reconstruction of the Wilson line
spectral function, where Non¢ is the number of measurements used and Njqck is

the number of jackknife blocks used to estimate the statistical uncertainties.
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Figure A.1: Example of the behaviour of the typical behaviour of the gauge fixing
violation with number of overrelation sweeps from a thermalized configuration on

a V = 243 x 16 volume with increased tolerance of § < 10714,
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