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Summary

An investigation of the bottonionium  spectrum  above and below the QCD deconfine- 

rnent crossover tem perature, Tc, was perform ed using a non-relativistic treatm ent 

of the heavy quark on anisotropic lattices w ith Nf =  2 + I flavours of Wilson-clover 
fermion and a Symanzik-improved gauge action. The spectral functions were recon­

structed  from the Euclidean correlators using two Bayesian m ethods to tackle the 

ill-posed inverse problem, know'n as the M aximinn Entropy M ethod (MEIvI) and the 
Bayesian Reconstruction (BR) m ethod. The survival of the S wave ground-state 

well into the deconfined phase up to at least 1.90Tc was concluded from bo th  m eth­
ods. In the less tightly bound P wave channel, a discrepancy was observed in the 

in terpretation  of the effect of the therm al medivun. MEM suggested th a t the P wave 
ground-state dissociates innnediately in the deconftned phase. However, some rem ­
nant of this s ta te  was observed at all tem peratures up to 1.90Tc in the spectral 
fimction reconstructed w ith the BR m ethod. On com paring the spectral function in 
this channel w ith the reconstruction of the free lattice spectral function, the signif­

icance of this rem nant is less clear. Finally, the spectral functions of correlators of 
W ilson lines were examined at finite tem peratu re from which the medium-modified 

heavy-quark potential can be ex tracted  in a system atic way. Above the crossover 

tem perature, effects th a t could be in terpreted  as colour-Debye screening and Lan­

dau dam ping are visible, bu t system atic uncertainties of the reconstruction suggest 

further investigation is required at the highest tem perature.
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1 QCD at finite temperature

The success of the model-independent framework of therm odynam ics has hardly 
been surpassed as a physical theory. Its power lies in its generality which casts 

a system ’s bulk properties in term s of the same therm odynam ic variables and 

potentials which can be used across a wide range of scales from nuclear to cos­
mological in size. Investigating these general properties, which arise from the 

statistical trea tm ent of large num bers of particles, or degrees of freedom, has 
successfully expanded the remit of classical, quantum  and relativistic models. 
Macroscopic ensembles are w orth examining in their own right due to  the vast 

array of phenom ena, such as new phases and collective dynamics, observed in na- 
tm-e. Fm therm ore, the study of bulk properties offers an arena to constrain and 
test the underlying dynam ics of new or established physical models by com paring 
predictions of therm odynam ic observables w ith experim ental m easurem ents.

In particular, non-Abelian gauge theories have a rich phase s tructu re  owing 

to their iuhereiitly complex interactions and vacmmi structure. Quantum chro­
modynamics (QCD) is the prototypical strongly-coupled gauge theory coupled to 
fermions which exhibits asym ptotic freedom [1, 2] and low-energy confinement [3]. 

It is understood to  describe the interactions between quarks, their binding to  form 

nucleons, and consequently explain the origin of most of the mass of the everyday 

objects around us.

A sym ptotic freedom suggests some change in the properties of QCD m at­
ter at tem peratures on the order of the hadronic scale w IGeV, when quarks 

and gluons become liberated from hadronic degrees of freedom as the running 

coupling diminshes. One realization of such tem peratures was during the hot 

and dense phase of the universe ju st after the Big Bang, when the expanding 

universe passed through tem peratures on the order of the hadronic scale as it 

cooled and the m atter content comprised light quarks and leptons. In order to 

correctly model the evolution of the early universe it is neccessary to  account for 

the relevant dynam ics of these degrees of freedom at tem peratures above the con-
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tinuovis crossover to the quark-gluon plasma (QGP). formecl around iSOlMeV [4]. 
Additionally, the description of the dense QCD m atter found in compact stars 
requires the equation of state -  a relation between thermodynamic state variables 
-  at finite quark or baryon chemical potential. QCD thermodynamics is there­
fore relevant in astrophysical and cosmological contexts in order to describe such 
systems from first principles.

While these applications motivate the study of quarks and gluons at high tem­
peratures and density, human ingenuity has circumvented the non-observability 
of the QGP in the early universe with the possiblity of its direct creation in terres­
trial collider experiments. Generically, these experiments, from the Super Proton 
Synchrontron (SPS) at CERN and the Relativistic Heavy Ion Colhder (RHIC) at 
BNL to the Large Hadron Collider (LHC) at CERN, collide nuclei with a large 
enough number of participants to warrant a thermodynamic treatm ent, comple­
mentary to collider experiments with hadron or lepton projectiles at the energy 
frontier. These experiments provide further opportunities for stringent tests of 
QCD as the correct theory of the strong interaction through determination of a 
number of thermodynamic quantities and the modification of its spectnnn outside 
the vacuum phase.

In addition to providing a test-bed for fundamental physics theory, collider 
experiments sinmltaneously require diagnostics such as tools to calibrate the tem­
perature and density achieved in collisions. Another valuable challenge for theo­
rists and phenomenologists is to provide observables which can be used to deduce 
the existence of exotic states of m atter. In particular, this work is largely mo­
tivated by providing reliable data for such thermometers [5]. In this expository 
chapter the established phase structure of QCD is briefly reviewed after which 
the dynamics of the heavy-ion collision is outlined with a motivation for using 
bound states of a heavy quark and antiquark, or heavy quarkonium, as probes of 
the plasma.

1.1 Phase structure of QCD

A simple heuristic argument for a transition to a new state of m atter at high den­
sities exists analogous to the one which suggests the phase transition at tempera­
tures on the order of the hadronic scale from renormalization group arguments. If 
the density of m atter is increased beyond nuclear density, the constituent quarks 
necessarily lose the identity of their parent nucleon and are consequently liber­
ated, leading again to a deconfined phase. Furthermore, Hagedorn’s argument 
for a limiting tem perature for hadronic m atter, based on the exponential growth
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of the number of states w ith tem perature, also hints at the emergence of new  

degrees of freedom at tem peratures of a few hundred M eV [6 ].

More precisely, the phase structure can be understood through the sponta­

neous breaking of global sym m etries of QCD in two lim its. First, in the quenched  

limit w ith static quarks, nam ely in pure gauge theory, QCD possesses an exact 

global centre sym m etry  of the gauge group, Z 3 . The generators of the centre 

sym m etry form the Cartan subalgebra of su (3), the algebra of the gauge group.

At high tem peratures, this sym m etry is spontaneously broken in the decon­

fined phase. An interpretation of the spontaneous breaking of this sym m etry can 

be made through an order parameter for this sym m etry, the Polyakov loop. The  

Polyakov loop. P (x ) , is a W ilson loop w ith w ith  non-trivial winding around the  

com pact tem poral direction,

P (x )  =  (1.1)

where V  denotes that the path-ordering of the gauge potential is taken along  

the path 7 : [0,1] S\  x here taken to be a straight line path based at x . 

that is 7 (,s’) =  ( s 0 . x ) .  In the M atsubara formalism, the inverse tem perat\ire. 

13 — l / T .  is the extent of the com pact direction and (r, x )  are global coordinates 

on S\  xM^ with a Euclidean line elem ent. In the vacuum , this observable vanishes 

as a consequence of the action of the synnnetry on P (x ) , namely nm ltiplication  

by the com plex roots of unity, which cancel in the average. However, if the 

sym m etry is broken, its vacumn expectation value is not constrained to vanish, 

as a good order parameter should behave.

By identifying the Polyakov loop with the static-quark creation operator, the  

expectation value of the trace of the Polyakov loop is related to the free energy  

of a static quark inserted into the vacuum, after renormalization [7]. Likewise, 

the Polyakov-loop correlator can be related to the free energy of the static quark- 

anticjuark pair, projected into som e colour representation.

From the cluster decom position of the Polyakov loop correlator.

{T rP (x )T rP t(o )) =  j(TrP(x)>|2, (1.2)

(T rP (x)) =  (1.3)

where (•) denotes the expectation value of the observable in the thermal en­

semble, it is clear that the confinement of quarks in the low-tem perature phase 

results in an infinite static-quark free energy and the vanishing of the Polyakov 

loop[8 ]. Non-perturbative calculations of the colour-averaged free energy have 

been known to exhibit a form which invites the interpretation of a screened Cor-
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Figure 1.1: Schematic depictions of the phase diagram  of QCD and the  Cohnnbia 
plot illustrating the order of the QCD phase transition , adap ted  from [11], The 
question of the existence of the chiral critical end-point rem ains unanswered [12].

nell po ten tial at high tem peratures, so, ju st as for electrodynam ic plasm as, the 

free movement of colour-electric charges results in screening phenom ena. Various 
correlators of Polyakov loops have been defined in order to  probe the in terac­
tions between heavy quarks, such as the manifestly non-gauge-invariant operator 
T r{ P (x )P ^ (0 )} , which couples to  the free energy of two static  quarks in a colour 
singlet [9],

However, the in terpretation  of these therm odynam ic potentials, and especially 
employing them  as potentials in models of heavy quarkonium  is not satisfactorily 
understood [10].

The introduction of dynam ical ferniions breaks the centre sym m etry expliticly 

a t all tem peratvnes, and the screening of the po ten tial a t large distances in the 
vacimm can be a ttrib u ted  to pair production or string  breaking effects. The 
deconfinement phase transition  becomes a sm ooth crossover in the  presence of 

dynam ical fermions, and the crossover tem peratu re  is no longer exactly coinci­

dent for every therm odynam ic observable, but is usually defined from the peak 
of the  Polyakov loop susceptibility, nam ely its first derivative w ith  respect to 

tem perature, see figure 3.1.

Closely linked w ith the deconfinement transition  is the resto ration  of chiral 
sym m etry which is spontaneously broken in the limit of vanishing quark  masses 

at low tem peratures by the chiral condensate, the order param eter for this sym ­

metry. The Goldstone modes of the broken sym m etry a t low tem peratu res are the 

light pseudoscalar mesons. Furtherm ore, the axial U a ( 1 )  sym m etry is anomalous, 

broken by fluctuations of the topological charge, which results in the sp litting  of 
the r]' meson from the rest of the pseudoscalar nonet. Ju s t as for the deconfine­

m ent transition , chiral sym m etry is only approxim ately realized in nature , broken
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by the finite quark masses, so this transition is a smooth crossover.

The order of the transition and its dependence on the quark masses is sum­
marized in the Cohimbia plot shown in figure 1.1. Empirically, the deconfinement 
and chiral phase transitions coincide in physical QCD and qualitative arguments 
based on constituent quark masses can provide some intuition for why this is 
the case [13]. Complementary to probing the chiral transition using with the 
properties of the light hadron spectnnn [14], the deconfinement transition is nat­
urally examined with heavy mesons, whose small size, it is posited, allow them 
to survive into the deconfined phase [15].

It is a great challenge to extend the knowledge of the phase structure to 
finite density, where numerical simulations, w'hich have provided much of the 
quantitative data for QCD phase structure at zero chemical potential, fail due 
to the sign problem of the oscillating Gibbs factor. In addition to standard 
approaches such as reweigliting of the Monte Carlo sum, dual representations or 
Taylor expansions, novel approaches based on the complexification of the field 
variables show promising avenues to begin to provide accurate predictions [16, 
17]. Incidentally, analytic continuations of the path integral offer some hope to 
undei’stand asymptotic .series in quantinn field theories [18].

1.2 A natom y of a heavy-ion collision

As alluded to in the opening section, the only experimental access to probe QCD 
m atter in exotic phases is through violent heavy-ion collisions wdiose products are 
short-lived. In this section, the evolution of the heavy-ion collision is surveyed in 
order to understand how to relate thermodynamic observables to the measure­
ments of the particle yields and their momentum distributions. Modelling of the 
dynamic evolution of the fireball, the hot and dense volume whose characteristics 
depend on the centrality and centre-of-mass energy of the reactants, is required 
at all stages of the collision to connect these particle spectra with the thermody­
namics of the hot m atter. A collision proceeds in more or less four stages [19]. In 
the very early initial reaction hard partons are created in perturbative processes 
which become valuable probes of the hot medium which they traverse. Soft gluons 
in the initial state can possibly be treated in some classical approximation due 
to the saturation of these modes for energetic-enough collisions. The approach 
to thermalization and local equilibrimn of the hot medium happens quickly and 
is modelled by some variant of kinetic theory. The expansion of this hot medium 
causes it to cool and eventually the quark and gluon degrees of freedom must bind 
to form hadrons, called chemical freeze-out which is treated in a statistical way.
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Before chemical freeze-out occurs, hydrodynamics is the appropriate effective de­
scription for this strongly-coupled fluid. At this point the particle abundances are 
fixed as elastic scatterings dominate the cross-sections. Finally, kinetic freeze-out 
fixes the momentum distributions after the last scattering occurs.

One of the most important results of the RHIC experiment was the inference 
of the almost-ideal fluid nature of the QGP phase with a small viscosity to entropy 
density ratio manifested in the elliptic flow observable [20]. The implication of this 
measurement was that the fluid is in fact strongly-coupled and consequently the 
thermalization of the initial state happens on very short timescales. The applica­
bility of a hydrodynamic description to the plasma also facilitates the connection 
between thermodynamic transport coefficients and experimental results. How­
ever, the strongly-coupled nature of the plasma, imlike familiar electromagnetic 
plasmas, innnediately calls for the use of non-perturbative theoretical tools to 
investigate this phase of matter.

1.2.1 Approaches to strong-coupling

Gravity duals offer a framework to predict thermodynamic observables such as 
transport coefficients in a strongly-coupled conformal field theory. Since the 
viscosity to entropy density ratio was observed to be encouragingly close to the 
universal bound predicted from this framework [21, 22] it may be hoped that other 
observables in this approach are closely related to their counterparts in the real 
strongly-coupled plasma, such as the heavy-quark potential [23]. Ultimately, the 
uncontrolled nature of the approximation of working with only a QCD-like theory 
must be confronted, although the differing microscopic nature of the strongly- 
coupled theory is apparently less problematic in the deconfined phase [24].

Numerical lattice QCD is a systematically improvable non-perturbative frame­
work which has been successful in elucidating the phase structure of QCD. For ex­
ample, it has corroborated evidence of the strongly-coupled nature of the plasma 
through the observations of deviations from non-interacting limits in the equa­
tion of state [25]. However transport properties, being real-time phenomena, are 
challenging to extract from the Euclidean theory [26], Nevertheless, lattice gauge 
theory calculations are beginning to make progress on numerous fronts relating 
to real-time observables, including, for example, data  on the quenching parame­
ter relevant to the fragmentation of hard partons into collimated jets of hadrons 
which is strongly affected by the presence of a hot mediinn [27, 28]. The lat­
tice has also been successful in providing measurements which are suitable for 
diagnostics, in particular thermometers and baryometers, through fluctuations of 
conserved charges like electric, baryon and strangeness [29, 30]. These observ-
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Figure 1.2: Lowest-order kinem atically allowed process contributing to  charm  
production from gluon radiation from initial reaction.

ables can be used to  m ap out the freeze-out curve, the loci of the threshold for 

inelastic scattering in the phase diagram , of heavy-ion collisions [31].

T he calibration of the tem peratu re of the hot medium using heavy probes is 

another area to  which the lattice can contribute [32]. The modification of the 

spectrum  of heavy hadrons in a therm al medium has had a significant im pact on 
the in terpre tation  of the phase s tructu re  of QCD. These in-m edium  properties 

can be connected w ith the suppression of yields captiired by nuclear modifica­

tion factors or dilepton and photon production rates in heavy-ion phenomenology 
described below. In the following section, the m otivation for using heavy quarko- 
nium is outlined along w ith the desirable input from the lattice.

1.2.2 Heavy quarkonium probes

The prototypical therm om eter of the quark-gluon plasm a is the direct therm al 
photon, which, as a colour-blind probe, propagates through the plasm a withoiit 

in teracting and allow inferences to  be m ade about the hot medium  formed in 
the early stages of the reaction. However, they are also produced copiously 
throughout the lifetime of the plasm a, so the integrated history is required and 

the signal may be difficult to  ex tract from a large backgromid from non-direct 
decays.

T he initial suggestion th a t quarkonia, in particular charm onium , are senstive 

probes of the medium goes back to the  famous proposal of M atsui and Satz 

th a t the suppression of the yield of charm onium  may be due to the presence of 

a deconfined medium [33]. C harm -anticharm  pairs are created in initial hard 

processes of a reaction, e.g. from allowed processes such as in figure 1.2, which 

in the absence of any medium, may form a hidden-charm ed bound sta te  when 

the pair are relatively displaced on the order of the binding radius of th a t state, 

due to  their large transverse m om entum . However, in the presence of a decon­

fined medium, w ith effective screening of the binding potential from the therm al 

medium, the distance between the quarks may exceed this binding radius and 

the charm  quarks may escape each other's attraction . Upon exiting the plasm a
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they hadronize w ith whatever is in their vicinity, most probably a light quark 

to form an open-charmed hadron, thereby the presence of the medium  causes a 
suppression in the to ta l yield of charmonium.

The criterion for the effective enough screening is when the tem perature- 

dependent Debye screening length is smaller than , or com parable with, the bind­

ing radius. The argum ent follows analogously for radially and orbitally excited 

charm onium  states, where the  relevant binding radius is larger and hence the 

dissolution of these excitations occurs a t lower tem peratures [34]. This explana­
tion of suppression was invoked to  explain some tantalising results a t the SPS 

experim ent and courted controversy when other conventional suppression mecha­

nisms were invoked to  explain the observed suppression [35]. Cold nuclear m atter 
effects in the initial and final sta te , such as nuclear absorption, exist even when 

a deconfined medium is not created [36]. Therefore, the term  anomalous sup­

pression is often applied to refer to  the suppression caused by the hot medium 
effects. Careful disentangling of suppression mechanisms is necessary in order to 

infer the existence of a quark-gluon plasm a from quarkonium  yields.

Relevant differential observables such as the transverse-niom entum  and cen­
trality  dependence in the miclear modification factor, which measures the ratio  

of the production cross-section in heavy-ion to  hadronic collisions, normalized by 
the num ber of binary collisions, help differentiate between the suppression mech­
anisms [37]. As well as inelastic scattering  which contributes to  the suppression of 
charm onimn yields, other processes are responsible for the regeneration of char­
monium, including the statis tica l recom bination of uncorrelated charm  quarks in 

the medium. Such regeneration effects nmst also be included in the proper mod­
elling of the production of charm onium  in a hot medium and these counteract 
the suppression arising from the dissolution of direct charm onium. T he inclusion 

of the contributions of feed-down from excited states is naturally  im portant in 
these predictions due to  the significant fraction of production due to  radiative 

decays of higher s tates [38].

The suppression of bottom onium  follows exactly the same argum ent of M atsui 
and Satz for charm onium . A t the energies of the LHC it is produced copiously 

in heavy-ion collisions. It provides a more experim entally and theoretically clean 

probe due to  a num ber of considerations. Cold nuclear m atter effects are less 

im portant due to  the sm aller nuclear absorption cross section of the 6-quark, 

so anomalous suppression is more easily distinguished [39]. The larger binding 

energies in the bottom onium  system , and consequently sm aller radii mean the 

bottom onium  states are expected to survive well into the plasma. In addition, 

the regeneration effects are sm aller th an  the charm  case due to  the reduced num-
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Figure 1.3: Dilepton invariant-mass spectra for hadronic (left) and heavy-ion 
(right) collisions from CMS [40] which illustrates the suppression of the excited 
s tates corresponding to  the second and th ird  peaks in the plasm a phase.

bers of heavier quarks produced in the initial collision event due to their higher 

mass. The applicability of po tential models and effective field theories which 

rely on separations of scales is more theoretically sound for the heavier bottom  
quark. Finally, whereas B-meson decays contribute to  charnionium  production, 

feed-down from open-heavy sta tes is absent in bottom ouium  as feed-down can 
only occur from excited bottom onium  states. The assum ption of the lack of ther- 
m alization of the heavy-quark is more plausible for the heavier bo ttom  quark as 

opposed to charm.

T he sequential suppression of bottom onium  states therefore provides an ideal 
diagnostic therm om eter for the quark-gluon plasm a. In addition to the complex­

ity of modelling all of the aspects of the production, a detailed knowledge of the 
equilibrium  in-medium properties of these states is required [41. 42]. This is the 

prim ary m otivation for the study of the spectral functions of heavy-quarkonium 

states which control the abundances and reaction rates through the binding en­

ergies and w idths, w ith non-perturbative tools such as lattice QCD.

T he M cLerran-Toimela formula connects the spectral fmiction of therm alized 

heavy quarks in the  vector channel w ith the dilepton and photon differential cross 

sections [43]:

dN(,
(hjj d^p

,2
e m

p = 0

dN-,
OC aem'nB(t^)pv(t^) (1-5)

w = |p |
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The therm ahzatioii of the heavy-quark. however, is neither vahd for the b o t­

tom  quark in the experim ental context. T he LH C ’s impressive mass resolution 
and high luminosity have allowed it to  produce dilepton invariant-mass spectra, 

shown in figure 1.3. which directly illustrates the suppression of the excited bot- 

tom oniuni s tates in the heavy-ion colhsion versus the hadronic colhsion [40], The 

PH ENIX  and STAR collaborations at RHIC have also recently reported  suppres­

sion in the bottom onium  T  system  [44, 45]. The spectral function in the vector 

channel is therefore a powerful observable, and the definitions in the following 
section relate it to the Euclidean and re tarded  propagators following the standard  

presentation [46, 47],

1.3 Spectral functions and Euclidean correlators

As well as being directly relevant through its connection to the dilepton and 
photon production rates, the spectral function is a valuable cjbject to connect 

the  real and im aginary-tim e correlation functions. In this section, the definition 
of the spectral function is introduced and related to  the Euclidean correlators 

relevant to the lattice setting. The im aginary time, or M atsubara formalism is 
used to  obtain  the path-in tegral representation of the QCD canonical partition  
function, Z.  through the T ro tter formula,

where Tr„(-) =  • jn) and {|n)} are the eigenstates of the H am iltonian

and £e is the Euclidean Lagrangian density. The symbol  ̂ indicates th a t the 
p a th  integral is perform ed over fields in the action which are defined on Euclidean 
space with tem poral extent equal to the inverse tem perature, /3, corresponding to 

the  therm al com pactification on Si x T he appropriate boundary conditions 

are periodic ones for bosonic fields and antiperiodic ones for the fermionic fields 

owing to the cyclicity of the  trace and anticom m uting nature of the fermionic 

G rassm ann fields, w ith ghosts obeying wrong statistics.

The Minkowskian and Euclidean coordinates are related by t —>■ —ir ,  so th a t 
integrals over the real tem poral dom ain are Wick ro tated  in the complex plane. 

Due to  the finite tem poral extent and boundary conditions, the Euclidean fre­

quencies appearing in Fourier representations are quantized Matsubara frequen­
cies, uj„ — 2mrfl3 in the bosonic case, and the corresponding Fourier integrals 

are replaced with discrete sums, f  dk^ 27t/3“  ̂ J2n- therm al averages of

( 1.6 )

(1.7)
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composite operators. (0 (r , x)) =  Z  'Trn(e x)), can be expressed in the
path integral representation

{0 ( t , x ) ) =  [  0 ( T , x ) e - - ^ o ' ’ d r / d 3 x £ £ ^

J  per.(3

In the following, spatial coordinates are omitted for clarity. The spectral fimction 
of a Hermitian bosonic composite operator, 0 {t ) ,  is defined as the difference 
between the Fourier transform of the forward and reverse two-point functions

p(k^)  = ^ ( D > [ k ° ) - D < { k ^ ) ) ,  (1.9)

/OC

d t e ^ ^ ° \ 0 i t ) 0 { 0 ) ) ,  ( 1. 10)

-OO
/ oo

d t e^^  * { 0 ( 0 ) 0 { t ) ) ,  ( 1 . 1 1 )

-OO

where the insertion of a complete set of states gives the familiar spectral decom­
position using tlie definition of the operators in the Heisenberg picture

  p~d^m
D ^ { k ^ )  =  ^  +  E n m ) \ { n \ 0 { Q ) \ m ) t  ( 1 . 1 2 )

n.rr?

  p~/3Ern
D ^ { k ° )  =  ^  - ^ < 5 ( ? c °  -  E n , n ) \ { n \ O m m ) \ \  (1.13)n.m

where — E„ — Em is the difference between the and ni*'*' eigenenergies 
of the Hamiltonian. The relation between the spectral fimction and the retarded 
two-point function,

/OO

dte^^°<{0{t)[0{t),0{Q)]), (1.14)
•OO

can be made manifest by substituting the distributional representation of the 
0-function

/ oo ,i/,0  p - ih ° t

in ecjn. (1.14) and using the definition of the spectral function, eqn. (1.11), to 
arrive at

- L

which demonstrates the analyticity of the retarded propagator in the upper-half
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plane. The Euclidean two-point function, D e {t ) = (O(r)O (O)), is related to the 

forward propagator through

/
oo 1 ;,0

—  (1.17)

Its Fourier transform , .C>£;(cj„) =  d r  D e {t ), has a spectral representa­

tion obtained perform ing the r-in tegral and using the definition of the spectral 

function to arrive at

D e {uj„) = r  (1.18)
J —oc ^  liOfi

In this way it is clear th a t the spectral function effectuates the connection between 
real and im aginary times and th a t the re tarded  propagator can be expressed as 

the analytic continuation of the Euclidean one

DR{k^) = b E { - i { k ^  + ie)). (1.19)

Under the assvnnption of a real spectral function and employing the representation 
of the 5-function

lim --------  =  p .v. 7'7T(5(.t), (1-20)
£-^0+ x  + ie X  ̂ ^

the spectral fmiction is related to the im aginary p art of the re tarded  two-point 
function or the cut discontinuity in the analytic continuation of the Euclidean 
two-point function

p{k̂ ) = -SDfl(fc°) (1.21)
7T

=  - { D E { - i k ' ^  + ie) -  D E [ - i k °  -  ie)). (1.22)
ni

The generalization of all of the above to  the  field theory setting is straightfor­

ward by taking the spatial degrees of freedom into accoimt. W hen the spectral 
function is odd it is easy to  verify using eqn. (1.17) a particularly  useful mixed 

representation of the Euclidean correlator.

/OO

d u j K { u i , T ) p { u i , p ) ,  K { lo, t ) =

-OO

cosh(wT -  Pui/2)  

sinh(^oj/2)

(1.23)

relevant to the correlation functions investigated in lattice studies which are even 

around the m idpoint /3/2. A lternative prescriptions to analytic continuation to
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investigate real-tim e therm al field theory include the Schwinger-Keldesh contour 

or double-field theory [47],

1.3.1 Non-relativistic QCD

The m otivation for using an effective field theory in non-perturbative sim ulations 

stem s from the fact th a t the cutoff scale provided by the lattice spacing, a, is 

conveniently close to  the heavy-quark mass scale, t t i q . W hile th is fact precludes 

the use of a relativistic action on account of inducing large cutoff effects which 

scale generically as O(amQ),  it also enables the effective field theory approach 
to  be applicable in capturing the relevant dynam ics of the heavy-quarkonium  

system. In this section and the next the presentation of ref. [48] is followed.

An effective theory relies on a power-counting scheme to  order the operators 

in the action [49], The ordering of operators in non-relativistic QCD (NRQCD)  
is based on the small param eter p /n iQ  ~  v. nam ely the heavy quark velocity in 

the quarkonim n bound state. T he binding energy in a colour-Coulombic picture, 
niQal  ~  tnQV .̂ can be identified w ith the first radial sp litting  in quarkonium , 

niQV^ K. 500 MeV. so th a t the estim ation w 0.1 holds for bottom onium  and 
dem onstrates the suitability of the non-relativistic trea tm ent. Furtherm ore, it 
implies a separation of scales between the rest mass energy, the typical m om entum  

transfer and the binding energy, rng > rnqv  >  rnqir .  This suggests th a t to  cutoff 
the theory at. or below, m q  will provide a m eaningful effective description where 
the rest mass scale plays no role.

The effective theory is defined by writing down an effective action w ith all 
possible operators up to a desired order in v which are consistent w ith the con­
stra in ts of the sym m etries to  be imposed on the theory, such as gauge-invariance. 

ro tational synnnetry or discrete sym m etries like parity  and charge conjugation. 

This effective theory is non-renormalizable. th a t is the regularizer cannot be re­
moved w ithout the addition of ever higher-order improvement term s. T he theory 

is therefore to be used to  probe scales below the cutoff, which excludes the rel­
ativistic modes of the heavy quark. M atching of the effective theory onto QCD 

may be performed non-perturbatively, which has been achieved in rigorous bu t 

costly step-scaling studies, for instance in heavy-quark effective theory [50], or by 

m atching lattice and experim ental observables which reduces the predicitivity of 

the theory. . One may hope instead th a t as the cutoff scale is high, pertu rba- 

tive m atching is adequate, however, convergence is only guaranteed asym pto ti­

cally [51].

A Foldy-W outhusyen-Tani (FW T) type transform ation of the fields may be 

used to  determ ine the operators to  a given order in v and their tree-level coeffi-
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cients [52]. Transfonnations of this type decouple the upper and lower compo­
nents of the Dirac spinor, into two bi-spinor fields X-

The contribution in v of the fields can be deduced as follows [48]. The quark 
number operator /  d^xi/'^V' ought to have expectation value unity in a heavy 
quarkonium state, thus t/; ~  Similarly, the expectation value of the ki­
netic energy operator is defined to be the kinetic energy, which gives the re­
lation D  ~  m .Q V .  The field equation (to lowest non-trivial order in v) for xp 
is (Z? 4  — /2m,Q)ip =  0 , so that D 4  ~  niQV~, and can also be used to trade
time derivatives for spatial derivatives to simplify the integration provided only 
on-shell quantities are of interest. The order in v of the chromoelectric and chro- 
momagnetic fields can be derived from the field equations for gauge potential, 
and give qqE  ~  rn'qV̂  and goJ3 ~  . respectively.

1.3.2 Improved non-relativistic action

The contimnnn NRQCD action for the heavy-cjuark fiekl used in this work in­
cludes the following relativistic corrections and spin-dependent terms:

£0  =

- I D x E -  E x D )  -  - ^ ( T  ■ B8m  ̂ 2ruQ
V'(x). (1.26)

The first line is the leading order term which gives the physics of the Schroedinger 
equation. The terms in second line give the relative corrections and include 
the leading correction to the kinetic energy, and the Darwin term, respectively. 
On the final line are the leading spin-dependent terms, and they are also sup­
pressed by v'̂  relative to the leading terra. Experimentally, the hyperfine split­
tings, 0(70  MeV), are in accord with this suppression by relative to  the radial 
splittings. To determine the hyperfine splittings to the 10% level one should 
include spin-dependent terms of the next order in ir . which is not done here.

The coefficients in the action are the tree level values, and. rather than using 
the FW T transformation, can be determined by matching the leading order am­
plitude, for a quark scattering off a static chromoelectric held in Minkowski-space
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QCD:

M { P U P 2 ) =  u[P2)1^9oAt{P2 -  p \ ) u { p i )  

( P l  -  P 2 ?

P l , p - 2 < m Q

1
8 m l

1 p ^ g o A r { p 2  -  Pi)->p (1.27)

4rni
■ p 2  X p i g o A r { p 2  ~  Pi)->P,

to  th e  (M iiikow ski-space) N R Q C D  action . T h e  sca lar p a r t in th e  first hne fixes 

th e  coupling of th e  D arw in  te rm , w hile th e  vector p a r t in th e  second line fixes 

th e  coupling of th e  sp in -dependen t ch rom oelectric  te rm . T h e  co m p u ta tio n  of th e  

am p litu d e  for a  quark  sca tte rin g  off a  s ta tic  ch rom oniagnetic  field can  be used to  

fix th e  coupling of the  final te rm  in a s im ilar way.

1.3.3 Continuum spectral functions

T he c o m p u ta tio n  of th e  n o n -in te rac tin g  E uclidean  corre la tion  functions in th e  

pseudoscalar, vector, axial vector an d  sca lar channels was perform ed in [53. 

54] w hich is review ed in th is  section . T hese  will be com pared  w ith  the  high- 

te n ip e ra tu re  co rre la tion  functions on th e  la ttice . T h a t work d em o n stra ted  th a t  

th e  forw ard m ix ed -rep resen ta tio n  co rre la to rs  of o p era to rs  w ith  p o in t-sp littin g  x, 
satisfy  a  Schroedinger-like eq u a tio n  in th e  heavy-quark  lim it

(^idt -  2 m g  -  +  .. .^ D > (^ ,0 ;x )  =  0, (1.28)

w here th e  ellipsis ind icates th e  om ission of te rm s a t  higher o rder in thq ' .  U pon  

rem oving th e  p o in t-sp littin g , th e  m ix ed -rep resen ta tio n  E uclidean  co rre la to rs in 

th e  vecto r an d  sca lar channels are  given explic itly

/ „ - ( 2 m Q + q ^ / - l ' T i Q ) T

d3pg-(ii;(p) + iJ(p+q))r ^  ’ (1-29)

r  r < 2  — ( 2 m Q + q ^ / 4 m Q ) T

D ^ ( T , q )  oc I  o c ------- ^^^^^2------ ’

w here £^(p) =  rnq +  p^ /2rnQ + . . ., from  w hich th e  sp ec tra l functions, w ith  q =  0, 

can be ca lcu la ted  using eqn. (1.22) as

„ f  1 /2  S wave
p{uj) oc 0{lu -  27tiq)v }q  °‘{ui -  2m Q )“ , a  =  < (1-31)

3 /2  P  wave
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Redefining the spectral function around the two-quark threshold. +  2r7)Q) 

p{ uj ) ,  and dropping term s in the kernel. K { uj, t ),  which are exponentially sup­

pressed in the heavy-quark limit, m g ^  T,  the power-law decays of eqs. (1.29), 

(1.30) are obviously recovered

^oo  ^
D e ( t ) (X / d u j e  p{uj )  (X (1.32)

J - 2 m q

However, it should be noted th a t such power-law decays only occurs when the 

threshold of the spectral function is a t zero. Namely, if the threshold is shifted 

by redefining again p{uj )  — >• p(uj  -l-wo), the decay is screened by an exponential 
term

/
O C p - - J O T

dw e“ “ ’’p(o;) X (1.33)

-UJQ

T his exponential decay will be relevant in the analysis of the correlation func­
tions in chapter 3, due to the renormalizatiou of the rest energy in NRQCD when 

interactions are tu rned  on [55]. This analysis dem onstrates th a t there must be 
a transition  between exponential decay of the correlation functions in the vac­
uum  where bound states exist to  power-law decay at finite tem perature. The 
com putation of the free correlators is useful because the direct com parison of the 

Euclidean correlators obviates the need to perform any analytic continuation, 
which poses a significant challenge.

In addition to  the tree-level result, the spectral functions were investigated 
in the resumm ed perturbative framework by identifying the potential, V^{ t ,  |x |), 

as the p art scahng as rn.Q in the differential equation satisfied by the forward 
correlator. According to [56] this potential, derived in the sta tic  limit from 
the  W ilson loop, contains a Debye-screened Coulomb part from the screening 

of colour-electric charges in the plasma. Furthermore, an im aginary part exists 
whose in terpre tation  is due to the Landau damping of the binding gluons in the 

plasm a, which leads to  a decorrelation of the quarkonium sta te  in the medium. 

T he non-perturbative evaluation of this potential will be discussed in chapter 4.

1.3.4 Screening masses in NRQCD

In addition to  the tem poral correlations, spatial correlations can provide evi­

dence for the in-medium modification of hadronic bound states [57]. For exam ­

ple, the mesonic screening m ass for relativistic quarks is known to  be Mscr  =  
2 J + r??2) [58], deduced from the spatial correlation which can be obtained
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by

f O O  roo J\f
D e { z )  o(. /  —  /  ( 0 ,0,p^))  o c (1.34)

J o  7-00 /52

In co n tra s t, if a b o und  s ta te  ex ists a t M  w ith  a co rrespond ing  peak  in th e  sp ec tra l 

function  p{ijj) (x 5{u>‘̂ — A P ) .  p u re  exponen tia l decay w ill occur D e { z )  cx 

T h e  ap p earan ce  of th e  lowest M a tsu b a ra  frequency, ttT , is a consequence of 

th e  an tip erio d ic  b o u n d ary  conditions. If period ic  b o u n d a ry  conditions in the  

tem p o ra l d irection  are  im posed in stead  th en  th e  b o u n d  s ta te  screening m ass is 

unchanged , however th e  screening m ass in  th e  free case is m odified to  be n i q .  T he 

divergence of th e  an tip erio d ic  an d  period ic  b o in id a ry  cond itio n  screening m ass 

co rre la to rs  has been used as a d iagnostic  to  ind ica te  m odification  in th e  spectrvm i 

in charm onium  [59].

In th e  heavy quark  theory , th e  s itu a tio n  is different [60]. T he d ispersion 

re la tion  for a non-re la tiv istic  hadron ic  b o u n d -s ta te  is w ritte n  £ '//(p ^ ) =  AI\ +  

p ^ / 2 il /2 , w here the  rest energy, M \ ,  and  th e  k inetic  m ass. M 2 , are d is tin c t due 

to  th e  possib ility  of transfo rm ing  th e  rest m ass in th e  q u ark  d ispersion  rela tion  

a rb itra rily . A b ound  s ta te  w ith  co rrespond ing  sp ec tra l d en sity  5{uj — £^//(p^)), 

has a m ixed rep resen ta tio n  tem p o ra l co rre la to r w hich decays as . Sub­

s titu tin g  th is  m ixed rep resen ta tio n  of th e  tem p o ra l co rre la to r in th e  following 

defin ition  of th e  screening co rre la to r th ro u g h  th e  inverse transfo rm s

D e {z )
f 0  re

-  /  d r  /
Jo  J - (

( 0 ,0 ,p ,) ) , (1.35)

yields

D e ( z ) 3 -  erf

1 -  e rf ( \ / M i P  -I- i j

(1.36)

(1.37)

In th e  infinite tem p o ra l ex ten t lim it, th ere  is pu re  expo n en tia l decay w ith  screen­

ing m ass \ J M \ M 2 - In th e  no n -in te rac tin g  case, th e  co rre la to rs  from  eqn, (1.30)
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are substituted into the expression eqn. (1.35) to arrive at

r0 roc j

- r n Q Z ^ / jf  6
oc /  d r — — (1. 39) 

Jo niQT'^
- m Q Z ^ / 0

(X  ------^  (1.40)[mQzy

in the S wave channel, while the derivative coupling in the P wave channel mod­
ifies this to be

r 0  p - r n Q Z ^ j r

(X /  d r  ^ ^  (1-42)
Jo

The infinite temporal extent limits of these non-interacting screening correlators 
are pure power-law decay, but at finite /3, the large value of the prefactor in the 
exponent relevant to the parameters investigated in the lattice study will render 
the power law’ decay difficult to observe as it is screened by the exponential 
decay. In chapter 3 only the temporal correlations are investigated therefore and 
the continuum free correlation fimctions defined in the previous section and their 
lattice counterparts will be used to investigate the discretized version of NRQCD 
at finite temperature.

1.3.5 Analytical approaches

Heavy quarkonium has played a vital role in the imderstanding of the strong 
interaction much like the hydrogen atom in electrodynamics. Potential models 
are valuable tools to gain qualitative insights into the relevant physics at play 
and, given their success in describing the spectrum of quarkonium in the vacuum 
from early on [61], they have been used extensively to describe the temperature 
effects on the binding of heavy-quarks and the survival of heavy quarkonium in 
the deconfined phase [5], Nevertheless, they require phenomenological modelling 
of the potential like the use of a screened Cornell potential, which has largely been 
disfavoured in preference for potentials derived from non-perturbative methods 
such as lattice QCD. The theoretical foundation for using popular thermodynamic 
potentials as model potentials at finite tem perature is not clear and a variety of
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approaches have been used which employed the colour-singlet free energy, internal 

energy or some com bination thereof [62, 63]. Nevertheless, the use of potential 

models has been very instructive in elucidating the criteria for the inibinding of 

heavy quarks through the investigation of the in-m edium  quarkoniuni spectral 

functions by solving the Schroedinger equation w ith potentials [64, 65, 66].

A lternatively, effective field theory approaches have solid theoretical foimda- 

tions at zero tem perature [67]. These rely on integrating out either the hard 

scale, rriQ, resulting in NRQCD, see section 1.3.1, or the soft scale, rnqv, called 
potential NRQCD. Long-distance effects can be incorporated by m apping onto 

potentials from non-critical strings [68]. T he extension of these effective field the­
ories to  finite tem peratu re has been an immensely successful progranm ie [54, 53], 

which has allowed the determ ination of the  quarkoniuni correlation function and 

spectral functions, see 1.3.3, in a w'eakly-coupled medium  by employing the re- 

sunmied perturbative potential [56]. The prediction of the im aginary part of the 
weak-coupling potential has been incorporated in potential models [69, 70, 71].

The com plem entary relationship between the heavy-quark potential and the 
quarkoniuni correlators through the effective field theory approach will be ex­

plored in the following chapters of this thesis. U ltim ately com paring the effective 
field theory approach w ith non-perturbative d a ta  is valuable to understand the 
strongly-coupled nature of the deconfined medium. A lthough new m ethods on 
the market [72] may not suffer from the same issues in confronting real-tim e ob­
servables. the lattice is well-posed to contribute to  this discussion. A com pilation 
of the dissociation tem peratu re for charm onium  and bottom onium  can be found 

in ref. [44] which dem onstrates the com petitive natm ’e of predictions of binding 
in heavy quarkoniuni system s in the plasm a from first principles of lattice QCD. 
In the following chapter the methodology for the non-perturbative evaluation of 

the quarkoniuni spectral fimctions from lattice QCD is outlined along w ith the 

strategies to  extract the spectral function from Euclidean d a ta  and results for the 

zero-tem perature spectral functions.
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2 Lattice QCD

Lattice QCD is a powerful non-perturbative tool which remains the only system ­

atically improvable and trac tab le  non-perturbative regularization of the theory. 

The subject is now entering a high-precision era thanks both  to M oore’s law and 

algorithm ic developments. Its success is not lim ited to the low-energy spectrum  

of QCD, bxit encompasses a wealth of static  and real-tim e QCD phenom ena and 
has elucidated im portant theoretical and phenomenological aspects of strongly- 

coupled held theories. Some basic facts of the lattice regularization are recalled in 
the first section following standard  presentations [73] along with the discretized 
version of the effective theory used throughout this study at zero and finite tem ­

perature. T he tim ing of the heavy-quark mass and the study of the low-lying 
bottom onim n spec tnnn  at zero tem perature is included, followed by a presenta­
tion of the strategies used to  extract the spectral functions from the Euclidean 

lattice d a ta  which will be used in the final two chapters.

2.1 Light fermion and gauge action

W ilson's prescription [3] begins w ith the definition of the discrete lattice of finite

extent A =  {n =  \ where  D is the standard

basis, and |A| =  H ^ = i  d  This replaces the  Z?-dimensional spacetim e of the 
Euclidean field theory on which the fields are defined. It is necessary to  work with 

the Euclidean theory so th a t the Gibbs factor in the partition  function is positive 

and can be in terpreted  as probability m easure for the im portance sam pling for 

num erical M onte Carlo m ethods. In the simplest scenario where = N  the 

aspect ratio of A is unity. T hen the first consequence of introducing the lattice 

formulation is the breaking of the group of isometries of Euclidean spacetime, 

E(Z?), to  the cubic point group. Oh-

QCD is an SU(3) gauge theory, w ith gauge fields which transform  in the ad­

joint representation, and N f  fermions which transform  in the fundam ental rep-
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resentation. The fermion field. 'i/’(n), with spinor and coloin' indices suppressed, 
and Hermitian gauge field Afj{n) = A°T°  are defined on A, where {T“}a=i,..,,8 

are the generators of the algebra, with normalization Tr(T“T*’) = (5a(,/2, defining 
the Killing form on the algebra. The discretization of the Dirac action follows 
immediately by replacing the fermion fields in the action with the dimension- 
less fields above, the spacetime integral with a finite sum and substituting the 
covariant derivative with a covariant finite difference operator:

/ d^x ' ip{x){0 + nio)^p{x) — > ^  +  m o ) t^ (n ) ,  (2.1)
n€A

wliere /  =  and {7^} satisfy {7^ ,71/} =  25^^. The Hermitian gauge-
covariant finite-difference operator is defined through:

D ^ ^ { n )  =  ^  (U^{n)il){77 +  e^) -  ?7^(n -  e^)i^(n  -  , (2.2)

where Ufj{n) = has the transformation U^{ri) A  g{n)U^g{n + e^,)^ under
the action of the gauge group so that D^'tp{n) A  g{n)D^,ip{n) is gauge covari­
ant. This can be demonstrated using the corresponding contimunn Wilson line, 
Ur{7i,n + e^) =  -pgigo Af {̂x)  ̂ where F is the shortest path connecting the 
neighbouring lattice sites. The group elements. {t/^(n)}, are referred to as the 
links between neighbouring sites because of their relation to the parallel trans­
porter of the continuum gauge connection. It also suggests that in the lattice 
formulation, the path integral measure over tlie gauge fields be replaced with 
that over the links.

According to the Feynman rules, the free momentum-space propagator can 
be written by inverting the quadratic part of the action

- 4  +  mo I ■ ~ ^   ̂ /okf, = smp^. pfj e [ - 7r ,7r). (2.3)
m.n

For a discrete lattice the Brillouin zone is finite, and the lattice regularizes 
the field theory with a cutoff' ~  tt. Crucially, the high momentum modes with 
non-zero momentum components = t t  contribute contimumi-like fennionic 
excitations where fc —>• p, as well as the % 0 mode. This spoils the interpreta­
tion of the action describing a single fermionic excitation. The Nielsen-Ninomiya 
no-go theorem [74] explains that it is impossible to construct a hermitian, lo­
cal, massless Dirac operator. D. with exact chiral symmetry {D,^^}  = 0, where 
75 =  j 7y,, without the presence of these extra excitations, or doublers. The 
simplest solution is to arid a term to the action which explicitly breaks chiral
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syinm etry in the massless hniit. W ilson proposed the action:

Sp’ =  +  mo -  (2.4)
n £ A

D

□i/;(n) =  ^ (C /^(? i)i/)(n  +  e^) +  [>^(n -  e^)'ij:{n -  e^) -  2t^(n)), (2.5)
/i=i

where □  is the D-diniensional covariant lattice Laplacian and r is the Wilson 

param eter. The identification U^y{n) =  II^{n)Ui,{n +  e^)Uli{n +  e,^)Ul{n) =  

is made, which is known as the elem entary plaquette in the plane 

based at n, and is related to  the holonomy of the continuum  gauge connection. 

The plaquette action of the discretized theory is arrived at by transcribing the 

continuvun Euclidean gauge action using the p laquette fields:

^  f  d^xTr{F^,F^,)  4  Z  (3 -  . (2.6)
^0 neA  ^  '

By taking these steps the pa th  integral is finite-dimensional and well defined. 

Periodic and anti-periodic boim dary conditions are usually imposed for the gauge 
and fermion fields respectively, although results ought to  be independent of this 
choice in the spatial directions for adequately large volumes. Open boiuidary 
conditions in the tem poral direction allow the correct sam pling of topological 
sectors at small lattice spacings which are traditionally  difficult to  explore with 
popular updating  algorithm s [75]. T he quantum  mechanical expectation value of 

an operator, some gauge-invariant monomials in the fields, denoted w ith angular 

brackets and defined through the pa th  integral:

J[dUdipd^]0[U,ip,^p]e-^^°-^>=', (2.7)

w ith Z  such th a t (1) =  1. The pa th  integral m easure is the product of the Haar 

m easure for each link and G rassinann measures for fermions

[dU dtpd'ip] — n n dUf,{n) dip{n)d^(n).  ( 2 .8 )

n ^ A  1̂ 1=1 D

The fermion action is quadratic in the fields, so the G rassm ann integration can 

be evaluated by hand. Each flavour contributes a factor of d e t£ )({ t/} ) to the 
p a th  integral, which depends on the bare param eters for th a t flavour. W ick’s 

theorem  tells us to  make all possible contractions of the fields, replacing them  

w ith the fermion propagators which depend on {U ]  e.g. —> D~^{n,  m).
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For meson correlation functions, the operator is a product of source and sink 

interpolators which are bilinears in the fields. As all of the spinor indices are 

contracted, it is always possible to rewrite the products of propagators resulting 

from the contractions as a product of traces over the Dirac indices. In flavour 

non-singlet channels, only one possible connected com ponent where each edge in 

the  graph corresponding to a contraction connects a field in the source and in 

the sink, whereas in flavour singlet channels edges of a graph may connect fields 

w ithin the source and sink, corresponding to  a disconnected graph.

The large dimension of the integral makes it impossible to  make a direct nu­
merical evaluation, even w ith a modest lattice size and coarse sampling of the inte­

grand. Instead Markov Chain Monte Carlo m ethods are used to  estim ate the path  
integral stochastically. Given a Markov process which satisfies detailed balance 

and ergodicity, the sequence of gauge configurations generated {{f7}i}2=i,...,7v, 
asym ptotically obeys the probability density Z~^ {det D ) ^ f  and expectation 

values can be estim ated by the sample mean (O) = j j  0[{U}i].
In particular, the M etropolis method satisfies th a t criteria exactly, and. for ex­

ample, single-link updating can be used to  propose a configuration {U}  - >  {U'}, 
which is accepted w ith probability m i n { l , H o w e v e r ,  for non­
local actions such as those for which the G rassniann fields have been integrated 
out, local updating schemes are inefficient. A m odern approach to efficiently 

move through the field space is the hybrid Monte Carlo (HMC): consisting a hy­
brid molecular dynam ics step and a final M etropolis acceptance step to make the 

algorithm  exact. A set of G aussian-distributed canonical m om enta conjugate to 
the field coordinates are introduced, effectively bringing the fields in contact with 
a heat bath . T hen the Ham iltonian evolution of the coordinates is performed, 

which is the microcanonical molecular dynamics trajectory. Finally a M etropolis 

step is perform ed so th a t detailed balance is preserved. This way the good er­
godicity properties of the m om enta updating can be combined with the efficient 

m otion through configuration space of the molecular dynam ics algorithm.

The fermionic determ inants may be om itted altogether for convenience or cost 

resulting in a quenched, or partially quenched theory, which is not unitary. This 

is equivalent to  neglecting vacmnn polarization effects.

2.1 .1  The continuum limit

T he formulation of lattice field theory presented so far has been in term s of 

dimensionless variables. Observables measured from a lattice sim ulation are di- 

mensionless numbers. By replacing the standard  basis w ith a dimensionful co­

ord inate  system, —>■ w ithout sununation. a scale is reintroduced, the
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lattice spacing a^, for now = a. However, the lattice spacing does not appear 
explicitly in the dimensionless formulation, it is controlled by all of the couplings 
in the theory {go,  m o , . . For a pure gauge theory there is only one coupling, 
the bare gauge coupling, ^o- The lattice spacing can only be measured by com­
paring a lattice observable, such as a hadronic mass, the Sommer parameter ro, 
or the Wilson flow scale to,  with an experimental value, or value determined from 
another lattice simulation.

Any dimensionful quantities may be expressed as

C9(a, go, mo , . . . ) =  a~'^6{go, mo, • • •)> (2-9)

where d  is the observable’s canonical mass dimension. In particular, the dimen­
sionless mass M  must vanish in the continuum limit for the value in physical 
units to be finite. The vacuum to vacuum amplitude, Z, is closely related to 
the partition function for a statistical mechanics system via the path integral 
representation. The dimensionless correlation length in such a system, must 
diverge as the critical point is approached in the space of couplings, which leads 
to universality of critical phenomena, or independence from the physics on the 
ultraviolet scale [76], The correlation length is inversely related to the mass of the 
lowest mass in the spectrum, namely the pions in a theory with ferniions, or the 
lightest glueball in a piu'e gauge theory. This suggests that the continmun limit of 
the lattice field theory is realized at the critical point, where correlation lengths 
become large relative to the lattice spacing. However, due to the finite extent of 
the lattice, which provides an infrared cutoff, these correlation lengths ought not 
to exceed the extent of the lattice. Liischer’s argument [77] for exponential finite 
volume corrections leads to the criterion M-„ x a N  > 4 as satisfactory suppression 
of finite volume effects. These criteria give rise to the scaling window, where a 
balance between a fine, small lattice and large, coarse lattice is sought.

The dependence of the lattice spacing on the bare couplings of the theory is 
described by the renormalization group beta function /3 =  - d g o / d { \ n a ) .  The 
first coefficients in the expansion of the 0  function are independent of the renor­
malization scheme, so the /3 function is imiversal in the perturbative regime and 
can be integrated to give

a  =  (2 . 10 )

which demonstrates that the critical coupling is c/q = 0 and defines the requisite 
scaling behaviour for any lattice observable O oc which must be observed 
for the correct contimnun limit to be approached. The vanishing of the critical
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coupling is due to  asym ptotic freedom, as the bare coupUng, wliich is relevant 

to  the cutoff scale, becomes small as the cutoff is removed. The appearance of 

a dimensionful scale in a theory with only dimensionless param eters is called 
dimensional transm utation , like in the static limit of QCD due to  the anomalous 

conformal symmetry.

2.1 .2  Symanzik improvement

Although the scaling criterion enables a well-defined continuum  limit to  be taken, 

due to  critical slowing [78] of sim ulation algorithm s as the critical point is ap­

proached it may not be practically possible to  reach the regime of adequately 

small lattice spacings. Therefore, one would like to  reduce the discretization and 
cutoff errors a t finite a so th a t reliable continuum  physics can be extracted  at 

larger lattice spacings. Sym anzik’s procedure [79] is to  define a continuum  local 

effective action which includes all irrelevant operators w ith the required symme­
tries of the lattice theory:

SeH = f  d ^ x  {Co + a C ^ + a ^ C 2 + . . . )  , w ith A - =  ^  (2.11)
{ O }

The inclusion of these irrelevant operators, which do not alter the critical 
behaviour of theory, can be used to  drive it to  a critical surface, or renormalized 
trajectory, which is free of discretization effects even for finite a. However, in 
practice the mass dimension of the operators is used to  trunca te  the series at 

a finite order. O(a^) improvement of the hadronic spectrum  can be achieved 
through the discretization of this action by including operators w ith mass dimen­

sion up to D + k [SOjwith appropriately chosen improvement coefficients. The 
improvement of on-shell m atrix  elements further requires the addition of higher- 

order local counterterm s and the tuning of their coefficients. The m atching of the 
couplings in the effective theory to  QCD is often perform ed perturbatively, which 

is valid for small enough lattice spacings due to  asym ptotic freedom. The non- 

renorm alizability of the improved theory is not pathological in the continmnn 
limit because the improvement condition requires th a t the higher dimensional 

operators vanish in th a t limit. This is in contrast to  the situation  in a non- 

renorm alizable effective field theory, where ever higher dimensional operators 

m ust be included as the cutoff is removed.

The plaquette gauge action is already 0(o)-im proved because no five dim en­

sional operators w ith  the relevant sym m etries exist. T he next operators occur at 
dimension six, corresponding to  the six-link W ilson loops, and can be included 

to  make the action O(a^) improved. An im portant observation is th a t fermion
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actions w hose D irac o p e ra to rs  obey th e  G insparg -W ilson  re la tio n  { D ,7 5 } oc a, 

a re  au to m atica lly  0 (a )-im p ro v ed . T h e  W ilson ferm ion ac tio n  is not chirally  in ­

v arian t an d  im provem ent is necessary  to  e lim ina te  0 ( a )  cutoff effects. T h ere  

is only one non -red u n d an t five d im ensional o p e ra to r  requ ired , th e  clover te rm , 

w here (T,,  ̂ =  —J7 [^7 i/] an d  th e  u su a l choice of th e  field 

s tre n g th  ten so r is th e  clover-leaf definition:

w here (2 .1 2 )

w here all p laq u e tte s  are based  a t th e  sam e site , an d  define th e  correspond ing  

fields a t  th a t  site.

F inally , tad p o le  im provem ent [81] is often  im plem ented  to  im prove th e  conver­

gence of la ttic e  p e r tu rb a tio n  th eo ry  and  reduce large reno rm alizations resu lting  

from  th e  u ltrav io le t p roperties of ce rta in  tad p o le  d iag ram s. T hese effects are  

em pirically  know n to  be as large as th e  tree-level co n trib u tio n s  [82]. P rac tica lly , 

it can  be achieved by replacing links w ith  —>• I J w here uq is a su itab le

gauge-invarian t defin ition  of th e  average link. Since uq is a global factor, th e  

couplings m ay be redefined to  im plem ent th is im provem ent, for exam ple in th e  

h o p p in g -p aram eter form  of th e  action:

/ I  ~ \  k '  c ' ,  ■
'* ^ 0  =  I  ■ ; 7 ( T r [ / ^ i i ^ )  |  ,  k  — >• — ,  c s w  9o . 9 o “ o -  ( 2 - l > ^ )

\  o  j  U q  U q

O ne can  im agine tad p o le  im provem ent as th e  fac to riza tio n  of con trib u tio n s 

from  co n trac ted  gauge fields in a loop in teg ra l w hich suppresses factors of the  

la ttic e  spacing  in th e  expansion of th e  link, [/fj = uq(1 + agoAjf^ + . . . ) ,  th ereb y  

leaving only th e  relevant degrees of freedom .

2.1 .3  Anisotropic lattices

C erta in  app lica tio n s in la ttice  Q C D  require  a fine re so lu tion  in th e  tem p o ra l d irec­

tion , while p e rh ap s also requ iring  th a t  finite-size effects are  m inim ized by having 

a  large physical sp a tia l volum e. In  o rder to  sa tisfy  these  requ irem en ts s im u ltan e­

ously it m ay be advantageous to  use a la ttic e  ac tio n  w ith  different d iscre tiza tions 

in th e  tim e  an d  space d irections, resu lting  in an iso trop ic  la ttice  spacings [83], 

a,, =  tts an d  0 4  =  Cr, w ith  th e  renorm alized  an iso tro p y  ^ = ag/ar ,  usually  g rea te r 

th a n  unity. T hese an iso trop ic  la ttices  can  be used  to  reduce th e  cost of sim ula­

tions w here finite-a^ errors are believed to  be u n d er contro l.

For exam ple, a fine reso lu tion  of th e  te m p o ra l co rre la to rs  is necessary  to  

ex trac t th e  ex c ited -s ta te  sp e c tra  of hadrons [84], w here th e  signal degenera tes
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rapidly in time. Heavy states, such as in the heavy quarkonium  spectra suffer 

from the same problem  [85], Anisotropic fermion discretizations have been for- 

nm lated which have leading cutoff effects at 0{rnQar)  which take advantage of 
a finer tem poral lattice spacing [86], T he glueball spectrum  has also been in­

vestigated [87] using anisotropic lattices, due to the notoriously poor signal of 
the  pure gauge operators used in th a t calculation. Anisotropic lattices are also 

useful in the  study  of finite-tem perature lattice gauge theory where the physical 
tem poral extent nmst be varied, either by a fixed-scale or fixed-A^r approach. 

T he evaluation of lattice spectral functions desperately requires precise and high- 

resolution tem poral correlator data , which for small physical tem poral extents 

really requires a highly anisotropic lattice.

The ensembles used in the following studies were generated w ith an anisotropic 
Symanzik-improved gauge action and an anisotropic clover Wilson action, includ­

ing tadpole improvement. The improvement coefficients are the tree-level values. 
The gauge action is:

4 lf 'l  = 3  Z
•’ O neA

5RTr(l -  LV) ' '  ̂ ^ ‘
 s ' ^ 3

(2.15)

where is the 2 x 1  W ilson loop in the  plane, and is the bare gauge 

anisotropy. This action has , g^al)  d iscretization errors. The 2 x 1  rectan­
gle in the 4-i  plane is not included because it violates reflection positivity needed 

to  construct a positive definite transfer m atrix . T he fermion action is:

n€A

(2.16)

k'here is the  W ilson fermion m atrix  constructed  above, and is the bare
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N f as  (fm) a~i (GeV) M j M p £ (MeV)

First gen. 2 0.162 7.35 6 0.54 4.5 8570
Second gen. 2 +  1 0.1227(8) 5.63(4) 3.5 0.45 2.92 8252(9)

Table 2.1: Comparison between lattice parameters used in earlier work [91, 92, 
93, 94, 95, 96] (first generation) and this work (second generation). £ is the 
difference between the experimental and NRQCD T used to remove the energy 
shift of the spectnun.

fermion anisotropy. The tree-level, tadpole-improved clover coefficients are:

=  +  (2-17)
*  "  2 U r U l

and ^ is the renormalized anisotropy. Finally, this action also includes three- 
dimensional stout smearing of the links [88]. Smearing of the gauge fields in 
the action reduces the coupling to the high-monientum modes and suppresses 
lattice artifacts. Stout smearing’s analytic projection back into the gauge gro\ip 
means it is suitable for use in HMC algorithms in the calculation of the force in 
the molecular dynamics routine. The mean links for tadpole improvement are 
thus defined from the stout, rather than  thin, links in the fermion action. The 
ensemble w'as generated with N f  =  2 + I using the Rational HMC. which is 
suitable for odd innnbers of flavours [89], which uses a rational approximation to 
the fermion determinant. The fermionic determinant is usually implemented via 
the pseudoferniion method which is only suitable for even numbers of degenerate 
quarks.

The inequality of the spatial and temporal lattice spacings ought to be irrele­
vant in the continuum limit, which is independent of the details of the discretiza­
tion. Intuitively, as much of the symmetry of the continuum theory shoud be 
restored as possible at finite lattice spacing, so that the correct contiiuuun theory 
is approached as the cutoff is removed. For an anisotropic action, this amounts to 
tuning the bare anisotropies in each sector (gauge, light quark, heavy quark, etc.) 
so that the renormalized anisotropies are consistent, in the hope that the Lorentz 
symmetry of the continuum theory is being restored. The tuning of the gauge 
anisotropy in the ensembles used in these works was performed using Klassen’s 
method [90], or the sideways potential. The fermion anisotropy is tuned through 
the pseudoscalar meson dispersion relation. £ ’̂ (P^) =  A/pg -f The pa­
rameters of the zero-temperature and finite-temperature ensembles used in this 
work are listed in table 2.1.
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2.1.4 Lattice NRQCD

Due to the discretization effects entering relativistic actions generically as UsniQ 
it is not possible to  sim ulate quarks with masses approaching the lattice cutoff 

w ithout introducing significant lattice artifacts. Naturally, an ultraviolet cutoff 
on the order of the desired heavy quark mass suggests the use an effective field 

theory approach m otivated in the introduction. Remarkably, this ancient s tra t­

egy [97, 55] is still relevant today  and used to  sim ulate heavy quarks on the lattice 
in state-of-the-art dynam ical sim ulations of quarkonim n and other 6-physics ob­

servables [98, 99], and has consequently been tested stringently.

The transcrip tion of contim uun NRQCD into the lattice theory [48] is s traigh t­

forward by substitu tion  of continuum  spatial covariant derivatives w ith the sym­
m etric covariant finite differences, V * , and the tem poral covariant derivative w ith 
a non-sym m etric tem poral covariant finite difference, V;^. W ith  this fornnilation 

the  quark propagator can be integrated w ith an explicit integration scheme. The 
clover definition of the field streng th  tensor is used to  define the lattice chi'omo- 
electric and chromom agnetic fields as usual. Due to  the decouphng of the heavy 
quark and antiquark and the  first order nature of the equations of m otion the 
quark action is w ritten  suggestively in term s of the leading order Ham ilton and 

its corrections w'hich are the corrections outlined in section 1.3.2;

m etric second order one. In addition to  the relativistic corrections, the lattice 

im provem ent term s in the final line elim inate the next-to-leading order corrections

from the leading order H am iltonian. The anisotropic action is obtained by keep­

ing track of the tem poral lattice spacing in the dimensionless action as usual.

5^  =  alcir ^  [V+ + H q + SH] tp{n) (2.18)
n€A

(2.19)
n^A

which is recast in term s of the integration kernel defined through:

where, =  J]^(V + V ,")

( 2 .2 1 )

The 2n'^^-order derivatives are defined in term s of the com ponents of the sym-

in o-l and the next-to-leading order corrections in a.r in the evolution equation
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The quark propagator is obtained from the equations of motion, which are sim­

ply read off from eq. 2,19. It is the solution of an initial value problem, which, in 

the discrete formulation is integrated exactly as follows:

G { n , n r )  =  K r G { n , n . r  — ( 2 .2 2 )

The antiquark propagator is obtained by using the  charge conjugation symmetry, 

which results in it being simply related to  the quark propagator through complex 

conjugation. Lepage’s param eter, k, is introduced to stabilize the integration so 

th a t |1 — aTHo/2k\ < 2. This instability  can be ascertained from the free quark 

propagator for the simplest NRQCD action w ith only the Hq term , and leads 

to  the condition m.Q > 3/^k  [100]. In this study, the choice k — have

been investigated and A: =  1 is satisfactory as dem onstrated in the investiga­
tion of the spectrum  presented in the following section. Tadpole improvement is 

im plemented by dividing the links by the mean link as usual.

2.2 Bottomonium spectroscopy

In this section, an m isophisticated study of the low-lying bottom onium  spectrum  
is presented, principally to tune the heavy-quark mass. agmQ. and to verify the 

adequacy of the lattice set-up in obtaining the gross features of the bottom onium  
spectrum . Furtherm ore, it provides a test-bed for the reconstruction of the spec­
tra l functions, whose structu re  in the vaciuim is known unambiguously from the 

spectrum . The HPQCD collaboration [98, 99] has investigated the bottom onium  
spectrum  including higher-lying orbital and radial excitations th an  are included 

here. They have accounted for discretization effects, com puted radiative cor­
rections to  the m atching coefhcients and estim ated the omission of higher-order 

relativistic corrections and have dem onstrated excellent agreem ent w ith the ex­

perim ental spectrum  of gold-plated bottom oniim i states [101].

2.2.1 Operators and correlation functions

The ex tra  contiimum  sym m etries of the lowest order effective action suggests the 

states be labelled by the unitary  representations of spin, orbital and to ta l angular 

m om entum , and likewise the well-defined interpolating operators which overlap 

w ith them . W hile to ta l spin remains a good quantum  num ber for the continum n 

theory, orbital and spin angular m om entum  are just approxim ate categorizations 

of the sta tes as these operators do not connnute w ith the full H am iltonian. For in­

stance, S wave and D wave states in the vector channel may indeed mix, although
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J  A

0 Ai
1 T i
2 T 2 ©  E

3 A 2 ©  T i  ©  T 2

Table 2.2: Subduction of the continuum  irreducible representations of the rotation  
group with dim ension d im j =  2J  +  1 into the irreducible representations of the  
cubic point group, w ith dim esions dimAi,A2 =  dinig =  2 and diniTi,T2 =  3.

JPC 2 5 + 1 ^ ^ A P C r ( x , x ' )

0 - + 'S i A r^ I
1— 'S i T f - Ox
1 - + ' P i A.
0 + + ' P o A++ E j
1++ ' P i  ̂1 ^\jOk\  I
2+-h ' P 2

J E + +

2 — 3D2 E —

Table 2.3: The selection of (non-exotic) channels investigated in this work. There 
is no ambiguity in identifying the spin of the ground state in any of these channels. 
The m ultiplets of the L ^  0 states use the sym m etric finite difference operator 
A j(x ',x )  (X ^x'.x+i “  <5x',x-t- The average is always taken over com ponents of 
the same spin. Local sources. c!>(|x|) =  ^x.o- and Gaussian smeared sources with  
0 ( |x |)  =  ex p (-x ^ /2 p ^ ) were used.

the identification of the lowest lying state poses no ambiguity.

However, continuous spacetim e sym m etries are reduced upon discretization  

on a finite lattice. The subduction of the continuum  irreducible representations 

to the lattice ones results in am biguities in the identification of the continuum  

spin, J , of the spectrum . Table 2.2 records the correspondence of the contin­

uum and lattice representations. The quark model or Regge trajectories suggest 

the identification of the lowest energy states in each channel w ith the state  w ith  

lowest continuum  spin appearing in that channel. In principle, exam ining the de­

generacies between the lattice irreducible representations in the continuum  limit 

offers a solution, but practically it is im possible for higher excited states when the  

signal becom es poor and where physical degeneracies also exist. A lternatively, 

construction of operators whicli are subduced from operators w ith a definite con­

tinuum  spin have been shown to indicate the spin of excited states on the lattice  

through the relative m agnitude of the overlaps, as long as one is close enough  

to the continuum  [102]. In this work, only states w ith spins up to J  =  2 are
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investiga ted  so no such difficulty arises. For b o tto n io n iu m , s ta te s  w ith  spins 

up  to  J  =  4 have been investiga ted  in ref. [103], however, th e  highly divergent 

co rre la tion  functions are  strong ly  afflicted by la ttic e  a rtifac ts .

T h e  N R Q C D  in te rp o la tin g  o p era to rs  are  b ilinears in th e  tw o-com ponent Pau li 

fields, w'hich generally  have som e sp a tia l s tru c tu re  due to  th e  derivative couplings 

necessary  to  p ro jec t on to  a  s ta te  w ith  non-zero o rb ita l an g u la r m om entum

w here sp in  an d  colour indices are suppressed . T h e  sp a tia l derivatives an d  sp in  

s tru c tu re  used to  co n stru c t th e  o p era to rs  are listed  in tab le  2.3. T h e  non-covariant 

sp a tia l s tru c tu re  requires th e  gauge to  be fixed. R ecently, covarian tly-sm eared  

o p era to rs  have been investiga ted  and  rep o rted  to  provide good signals [104].

T h e  overlap  of these  local o p era to rs  w ith  th e  g round  s ta te  in a  given channel 

m ay be im proved upon  by in troduc ing  a physical smearing, wdiich is a convolu­

tion  of one of th e  fields in th e  in te rp o la tin g  o p e ra to r  w ith  a rad ia lly  sym m etric  

w avefunction , ^ { t , x ) —> “  y \ )4’{T, y)  m o tiva ted  by physical in tu ition .

T he sm earing  function  has su p p o rt a t a single E uclidean  tim e  and  in th e  following 

illu s tra tio n  is in troduced  b o th  for th e  source an d  sink o p e ra to r in th e  hadronic  

co rre la tion  function . H ydrogenic w avefim ctions have been  used [97], b u t only 

local sources and  G aussian  w avefunctions are  em ployed in th is  work. Due to  

the  aug m en ted  sp a tia l s tru c tu re  w hen sm earing  is perform ed, th e  fields in th e  

in te rp o la tin g  o p e ra to r are  co n trac ted  w ith  th e  following coupling

D ue to  tra n s la tio n  invariance, th e  m ixed rep resen ta tio n  E uclidean  corre la tion  

function  m ay be  w ritten

A pplying W ick 's theo rem  to  th e  p a th  in tegra l, th e  co n trac ted  q u ark  fields are  

replaced by th e  inverse ferm ion m a trix , D~y {a; t ) ,  so th e  tran sla tio n a lly -in v arian t

(2.23)
y

(2.24)

(2.25)

(2.26)
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Euclidean liadronic correlation function becomes

G£;(r,p) (X / T r ^ e  ^  f (y ,  y')£>y/J,(r; 0 )f(x , x')£>^y (r; 0)
x .y  x ' . y '

(2.27)

where the trace is perform ed over the product of m atrices by contracting the 

suppressed colour and spin indices in the obvious way. The decoupling of the 

heavy quarks and antiquarks in the effective action mean there is no discon­

nected contribution, as the quark and antiquark fields can be labelled as different 

flavours.

Given the solution vector, G y (r), to  the inversion of the fermion m atrix  on a 

stochastic source w ith zero mean and finite variance, r/x,

has the expected value of the correlation function in eqn. (2.27) using the uncor­
related noise property  E,Jr/xT/y] =  (5xy, where E,,[-] denotes the expectation value 

over the random  fields r j .  This scheme am ounts to  dilution in the time, spin and 
colour indices w ith a random  wall source. Random  wall sources have been investi­

gated in detail in ref. [105] where they were found to  be beneficial to  ob tain  good 

signals especially for finite m om entum  states. The advantage of using random  

wall sources is to  obtain  an estim ator w ith reduced variance by utilising tran s­
lation variance. For each M onte Carlo sam ple of the gauge fields the inversion 

is perform ed on a single pseudo-random  unitary  source, r̂ x £ U (l) , generated 
by Liischer’s RANLUX generator [106]. and the contraction is perform ed according 

to  eqn. (2.30). R ather th an  an explicit inversion, due to  the decoupling of the 

heavy cjuark and antiquark  fields, the solution vectors are determ ined according 

to the  evolution equation, eqn. (2.22). In th is way, the correlation functions are 

calculated for each of the states listed in table 2.3.

D x y ( c r  -h  r ;  c r ) G y ( r )  =  r / x e ’P ’’‘ (5r.o ,

Dxy((7-hr;(j)G"(r) = ^  r/x'f (x. x')<5r,o,

(2.28)

(2.29)

it is straightforw ard to  verify th a t the estim ator

(2.30)
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Figure 2.1: Exam ple of the typical behaviour of the gauge fixing violation w ith 
num ber of overrelation iterations from a therm alized configuration on a V’ = 
24^ X 16 volume.

2.2.2 Gauge fixing

The necessity to  fix a gauge is obvious from the non-covariant natu re  of the 
sources. The fixing to Coulomb gauge on the lattice was perform ed by the op­
tim ization of the usual transcrip tion of the continuum  gauge-fixing functional, 
Tr /  d^^xAl ix) ,  over gauge transform ations g{x)  [107]:

where D  is the spacetim e dimension. The functional was optimized by sweeps 
of local Cabbibo-M arinari over-relaxation hits on the SU(2) subgroups of each 

link. The stopping criterion was the difference of the functional between suc­

cessive sweeps. 6 = F'  — F', which vanishes asym ptotically w ith the  num ber of 

sweeps because the algorithm  decreases the functional monotonically. The gauge 
violation is the positive definite measure, 0,

xeA
(2.31)

;te{i,2,3}

(2.32)

3

(2.33)
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which is a proxy for the derivative of the functional along the optim ization tra­

jectory and the correlation between 9 and 6 is visible from figure 2.1. A tolerance 

of 5 <  10“ ,̂ or around machine precision for floats, is reached within about one 

thousand sweeps.

2 .2 .3  Fitting and statistics

Fits of the correlation fm ictions to single exponentials m otivated by the spec­

tral decom position of the correlation function, the zero-temperature analogue of 

eqn. (1.13), were performed using the maxim um  likelihood m ethod [74]. This 

m odel assum es the data, G =  (G j)j= i tv- estim ated by the sam.ple mean.

^ = \ I T l  E  (2.34)
' ' G”>6A/

over the set of observations, M  =  . . . } ,  along the Markov chain, to be

drawn from a normal distribution. The solution of the non-linear least squares 

problem is obtained by m inim izing the quadratic likelihood over the parameters, 

^ =  (a"p)p=i p,  given the hypothesis, / ( x )  =  (/i(a ')) i= i n , and the data.

X* — argm in L (x), (2.35)
X

L{x)  -  (G -  / ( . t ) ) C - ' ( G  -  f i x ) ) ,  (2.36)

where the covariance m atrix, C, is estim ated by Bayes’s unbiased sam ple covari­

ance

^  =  W i ^  E  -  G) ® (G-” -oy  (2.37)
I I I  I

Assum ing that the global minimum of the likelihood has been successfully de­

term ined, the goodness of fit for the optim um  parameters is determ ined by the 

standard test of the s t a t i s t i c ,  x^{^*) =  L{x*): i i  ^  ^  ~  P  Hie maximum  

likelihood interpretation suggests that the data were unlikely to be drawn from 

the hypothesis whereas if -C — P  then the parameters are highly sensitive to 

fluctuations in the data and the resulting parameters m ay not be trusted. Heuris- 

tically, when ^  ^  ~  P  expected variations from the normal distribution  

of the data are sufficient to explain the observed residuals. Alternatively, the 

Q-factor,  Q [ x ^ { x * ) , N  -  P)  =  p[x^ >  x^(a"*), A'' -  F ) , related to the cum ulative 

distribution function of the x^-flistribution, gives the probability of finding the 

optinnm i x^ or larger given the normal distribution of the data.

38



10000

1000

T(3Si)

Xf-iePi)

100

o
< 1 10

o

0.1

0.01
0 20 40 60 80 100 120 

t / O t

Figure 2.2: Signal-to-noise ratio  of the hadronic correlation functions in the 
S wave and P wave channels dem onstrating the exponential decay in the P wave 
channel w ith exponent connnensurate w ith the fine splitting, in contrast to  the 
relatively slow decay in the  S wave channel.

In order to  obtain a confidence interval, or an estim ate of the standard  er­

ror for the param eters, resampling of the observations is employed. Resampling 
is a technique based on the observation th a t any subset of the m easurem ents, 
Sb C M , draw'u from the original sam pling distribution is also a sam pling distri­
bution of the given observable. If repetition  is allowed and the samples are drawn 
random ly from M  w ith j5(,| =  \M\ then the procedure is known as a bootstrap. 

The calculation of any estim ators derived from the original d istribution , such as 

the best fit param eters, can be repeated on a num ber of resamplings {Sf,}b=\,....B- 
In the case of the fit this requires the boo tstrap  sample means

The d istribu tion  of the resam pling means is guaranteed to  be norm al in the limit 

of a large num ber of observations by the central limit theorem . This m ethod is 

used to fit a single-exponential, param eterized by j  =  {A, m) .  the am plitude and

(2.38)

to  be used in the fit which results in a set of param eters  B -  from which

the standard  error, a,  can be estim ated from the diagonal elements of
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Figure 2.3: An illustration of the determ ination  of the optim um  w idth param eter 
in the Gaussian smearing. The effective mass at a selection of small Euclidean 
tim es is substantially  reduced w ith a finite smearing, maxim ally reduced at the 
optim um  overlap w ith the state , between =  2 and = 2.5.

mass, as f i {x)  = ^ e x p ( —mz) and estim ate the standard  error on the param eters. 
T he Levenberg-Marquardt strategy  [108] is a standard  heuristic used in in the 
m inim ization of non-linear least-squares m ethods which suggests an increm ent, 
5x = x ' — X ,  defined im plicitly by

( / / +  A diag//)5x = ( 2 . 4 0 )
O X

T he choice of dam ping. A, adapts the step  between gradient descent steps when 
the  dam ping is large or an approxim ation to  quadratic convergence in the region 

of a minimum. If a step strictly  reduces the objective function then  it is 

taken and the dam ping is reduced assum ing the minimum is being approached, 

otherw ise it is rejected and the dam ping is increased in order for the next step to 

be closer to  the gradient descent move. The m inimum is saved, x* •<— x ' , when 

bo th  a tolerance of ~  and A < 10^^ are reached, the  second
criterion ensuring th a t a small reduction in the objective function is not due to  a 

tiny step. The single-exponential fits to  the correlation fimctions were perform ed 
using this algorithm.

In order to  make predictions for the  spectrum  w ith accurate estim ates for the 

uncertainties based on the correlators com puted in NRQCD, various system atic
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effects need to  be accoun ted  for. T h e  p rinc ipa l concern  in th e  fitting  of the  

hypo thesis  to  th e  co rre la to r regards th e  choice of te m p o ra l range of co rre la to r 

d a ta  and  th e  app licab ility  of th e  m odel over th e  tem p o ra l dom ain . O n account 

of b o th  la ttice  a rtifac ts  and  ex c ited -s ta te  co n tam in a tio n , th e  sho rt-E uclidean  

d is tan ce  p a r t of th e  co rre la to r is not expected  to  conform  to  th e  hypothesis. 

A lte rn a tiv es  w hich account for th e  overlap of in te rp o la tin g  o p era to rs  w ith  excited 

s ta te s  range from  using m ore com plicated  fit functions as in m u lti-exponen tia l fits 

to  e lim ina ting  th e  co n tam in a tio n  by co n stru c tio n  of a  su itab le  basis of opera to rs. 

At large d istances, due to  th e  d e te rio ra tin g  signal-to-noise ra tio , see figures 2.2 

an d  3.7, th e  d a ta  m ay no t co n stra in  th e  p a ram e te rs  any fu rth e r and  m ay only 

co n tr ib u te  to  th e  u n certa in ty  in th e ir  d e te rm in a tio n . T h e  d e te rio ra tio n  of the  

signal w hich is evident from  th e  co rre la to rs suggests an  u p p er w indow of N t / 2  

in th e  axial vector channel, w hile th e  largest E uclidean  tim e  could be used in the  

vecto r channel.

T h e  effective m ass p la teau s are  th e  typ ical rep resen ta tio n  of th e  co rre la to r 

d a ta  w hich illu stra te s  th e  region of app licab ility  of a sing le-exponentia l fit. N ote 

th a t  th e  erro rs on th e  observable are  o b ta in ed  by es tim a tin g  th e  observable on 

each b o o ts tra p  sam ple. Sm earing th e  q u ark  source in th e  in te rp o la tin g  o p era to r 

reduces th e  coupling to  excited  s ta te s  illu s tra ted  in figure 2.3. T he sm earing 

p a ra m e te r  w hich governs th e  w id th  of th e  G aussian  w 'avefunction app lied  to  the  

source of =  2.5 was deem ed to  m inim ize th e  effective m ass a t  various early  

tim es, an  u n so p h is tica ted  proxy for th e  coupling to  excited  s ta te s , w ith o u t sub ­

s ta n tia lly  increasing th e  variance of th e  observable. T h is ex ten t is no t m irea- 

sonab le  based  on th e  expected  size of th e  quarkon ium  w avefunction. F igure  2.4 

show s th e  effective m ass p la teau s  in th e  vector and  ax ial vector channels and  the  

b est fit from  th e  fit to  th e  shaded  region. N ote  th a t  coi’re la ted  fits are essential 

to  perfo rm ing  th e  fit and  o b ta in in g  reliab le e s tim a tes  for th e  s ta tis tic a l error.

T h e  s tab ility  of th e  fit w indow  is judged  by exam ining  th e  Tmin p lo ts of fig­

ure 2.5 w hich depict th e  s tab ility  of th e  b est fit p a ram e te rs  as th e  m inim um  

E uclidean  tim e  used in th e  fit is reduced. T h e  sm earing  g rea tly  reduces the  pos­

sible r„,i„ as expected . R educing  th e  largest E uclidean  tim e used in th e  fit has 

a  negligible effect on th e  b est fit pa ram ete rs . In  th e  axial vector channel, th e  

fit for th e  unsm eared  o p e ra to r  is not s tab le  as th e re  is a  c lear tre n d  in th e  d a ta  

fis is reduced  so sm earing  is essential to  o b ta in  a p la teau  before th e  signal 

degrades com pletely. In th e  vector channel, b o th  th e  sm eared  and  unsm eared  

o p era to rs  exh ib it large regions of s tab ility  of th e  fit w ith  th e  cen tra l values in 

good agreem ent w ith in  th e  s ta tis tic a l u n certa in ties.
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Figure 2.4: T he effective mass plateaus in the S wave (red) and P wave (blue) 
channels w ith the best fit param eters determ ined from the single-exponential 
fits shown in solid lines over the fit range. E rror intervals are sm aller th an  the 
linewidths.

2.2.4 Heavy-quark mass tuning

The heavy quark  action contains three free param eters, agnio, agniQ and which 
are required to  be fixed before predictions relating to  the physical theory can be 
m ade. Both pertu rbative  and non-perturbative prescriptions are commonly used 
to  fix the bare couplings. N on-perturbative tuning requires physical observables 
such as meson masses, decay constants or dispersion relations to be reproduced 

in the continuum  limit of the  lattice calculation, which may or may not be p racti­
cable. As the continuum  limit is not available to  the non-renorm alizable effective 

theory, the  tun ing  is perform ed a t finite lattice spacing, therefore lattice artifacts 

will result in a minor m istuning of the heavy-quark param eters. The leading 
heavy quark mass term , agjiio, is redundant as this coupling can be removed 

through a redefinition of the fields familiar in any non-relativistic field theory. 

Consequently it has no effect on the dynam ics o ther th an  to redefine the  absolute 

energy of the spectrum  and may be set to  zero. The anisotropy is set to  the 

renorm alized value. In principle, it could be m easured and tuned  along w ith the 

heavy quark mass, bu t the  cost of perform ing a sim ultaneous tuning would be 

prohibitive owing to  the relative expense of tuning the  heavy-quark mass.

T he tun ing  of the heavy quark mass in the lattice action proceeds through 

the m atching of a hadronic kinetic mass, M 2 , defined implicitly through the

T(^Si) ^  

Xm ( ' P i ) ^
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F igure 2.5: Sliding-w iiidow  p lo t in  the  P  wave ;^bi(^Pi) channel, w hich dem on­
s tra te s  th e  stab ility  of th e  best-fit effective m ass p a ram e te r (po in ts) an d  reduced  
X ^-statistic  (solid lines) as th e  lower edge of th e  range of fit w indow , Tmin, is 
reduced. T his clearly  d em o n stra te s  th e  necessity of sm earing  in th is  channel.

d ispersion  re lation ,

U r Ei P^ )  =  ( i rMi  +  +  . .  •, (2.42)

a2/>2 ^  4 ^ s i i i 2   ̂ n , =  0 , . . . , A^s  -  1. (2.43)

w ith  th e  corresponding  experim en ta l level. T h e  velocity  expansion  of th e  energy 

for a free tw o-partic le  s ta te  in  a m oving fram e [109] d em o n stra te s  th a t  resolving 

th e  k inetic  m ass to  leading o rder requires th e  sing le-partic le  energy to  be resolved 

to  n ex t-to -lead ing  o rder in v'^. T herefore, only th e  gross s tru c tu re  of th e  k inetic  

m ass sp ec tru m  can  be rep roduced  as th e  hyperfine s tru c tu re  encoded  in  th e  spin- 

dependen t te rm s only ap p ea rs  a t n ex t-to -lead ing  order. In fact th e  ordering  

of th e  pseudoscalar an d  vecto r k inetic  m asses is inverted  w ith  respect to  th e  

physical one, as was observed in  ref. [109]. T he S wave channel, being th e  ligh test 

and  least noisy channel w as used for th e  tu n in g  of th e  heavy-quark  m ass. T he 

spin-averaged IS  m ass, M{ 1 S )  =  -I- A /(^ S i)) /4 , is used to  reduce th e

associa ted  system atic  e rro r in  m atch ing  th e  k inetic  m ass because it is independen t 

of hyperfine s tru c tu re .

T h e  spin-averaged k inetic  m ass was ca lcu la ted  for a  range of values of th e
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Figure 2.6: The Unear interpolation used to determine the lattice heavy quark 
mass, asTTiQ, by matching with the experimental spin-averaged S wave.

heavy quark mass on a reduced set of statistics of only 30 independent configu­
rations. A remarkably linear relationship between the lattice quark mass and the 
kinetic hadronic mass can be observed in figure 2.6. This invited a linear fit, and 
an interpolated value of OsniQ = 2.92 for the tuned heavy quark mass.

On the full ensemble the dispersion relations were calculated in the pseu­
doscalar, T]b{^S\), and vector, T(^Si), channels at this tmied value of the heavy 
quark mass, depicted in figure 2.7. Linear and quadratic fits in were per­
formed whose la  confidence intervals are shown with dark and light bands re­
spectively, motivated by the possibility of observing relativistic corrections to the 
dispersion relation. By the goodness of fit, the linear model can be used to fit 
the data with n? < 4. while the quadratic fit did not significantly improve the 
quality of the fit beyond > 5. A conservative estimate for the kinetic mass 
for the %(^Si) and T(^Si) was made from the linear fit with < 4 with the 
statistical error obtained from a bootstrap analysis of \B\ = 500 on Nc = 300 

measurements. A systematic error is quoted as the difference between the central 
values of the kinetic masses determined from the linear fit and a quadratic fit 
using data with < 5. The central value for the coefficient of quadratic term 
was either not statistically significant, or the inferred value of the kinetic mass by 
matching with the next order in the relativistic expansion did not generally agree 
with the mass determined from the term linear in a^P^. Further improvement of 
the action would be required to correctly resolve the coefficient of the quadratic 
term. This results in a spin-averaged kinetic mass, 71/2(18) = 9613(84)syg(40)stat
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Figure 2.7: Tlie dispersion relations in the S wave spin singlet and trip let chan­
nels. w ith best linear and quadratic fits depicted w ith dark and light bands, 
respectively.

MeV. which, while not in exact agreem ent w ith the experim ental spin-averaged 
num ber j'l/expt(lS) =  9440 MeV. ought to be sufficient for the investigation of 
the spectrum  at finite tem peratu re where a niistuning of the order of 1% can be 

tolerated .

M ulti-exponential fits were used in the S wave channels to  ex tract the first 

excited sta te  energies. These were perform ed using the Bayesian fitting pack­
age [111] for which the likelihood function is updated  w ith Gaussian prior. Bayesian 

m ethods are explained in further detail in the following section. These m ulti­

exponential fits allow the entire tem poral dom ain of the correlation function to 
be included in the fit. Priors of UrMi  =  0.2(2) and O r A E  = 0.1(1) were chosen, 
w ith d istributions which are suitably wide such th a t no strong bias is introduced 

in the estim ation of the best fit param eters. In order to  assess the stability  of the 

fits, the num ber of exponentials was varied and convergence is seen after five or 

six exponentials are included from figure 2.8. The standard  error on the second 
excited s ta te  fit param eter is not constrained by the d a ta  so no reliable signal for 

higher excited states can be ex tracted  from these fits.

The final spectrum  obtained from the correlators com puted w ith  the tuned 
value of the heavy-quark mass on the full ensemble using the fitting strategies 

outline above is shown in figure 2.9. The energies are shifted, a-j-M = S  + a.rMi, 

so th a t the mass of the T (^S i) s ta te  is fixed to  its experim ental value, th a t is 

Eo = il/expt(T(^Si)) -  A /i(T (^S i)). This ex tra  fixing criterion is eqiuvalent to  

the om itted  tuning of leading heavy-quark mass term , a.gnio.

VbÔ i)
T ( - % )

*

o
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Figure 2.8: Multi-exponential fits with Gaussian priors to the S wave correla­
tion functions stabilize after four or five exponentials are included. The ground 
state is commensurate with the single exponential fits using including only larger 
Euclidean times whereas multi-exponential fits can utilize all correlator data.

Good qualitative agreement is seen with the experimental energies, but the 
splittings are not in agreement within the quoted statistical error. Lattice arti­
facts and the omission of higher-order improvements to the action may account for 
the discrepancies, although estimating the systematic uncertainties due to these 
omissions is a challenging task. The splitting between the two lattice irreducible 
representations which are subduced from the continuum tensor representation 
gives an estimate of the systematic error from the finite lattice spacing. The 
error on the mean value quoted for the tensor representation combines this sys­
tematic error in quadrature with the statistical error, which is subdominant. The 
S wave hyperfine splitting is sensitive to the coefficient of chromomagnetic inter­
action in the heavy quark action [98]. The effect of tuning this away from its 
tree-level value is demonstrated by the spectrum in green crosses, in which only 
this splitting is significantly affected. Therefore, the lack of radiative corrections 
to the improved action, or the matching of the heavy-quark action at one-loop, is 
another systematic error. Finally, the analysis of the spectrum was repeated for 
other values of Lepage’s param eter, but no discernible effects could be made out 
on the spectrum. While this study of the spectrum is relatively unsophisticated 
it demonstrates the adequacy of the set-up in capturing the relevant physics for 
the subsequent finite-temperature study.
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Figure 2.9: F inal spectrum  with continuum  spins identified (bhie crosses). The 
effect of increasing the m atching coefficients ad lioc is to  change only the hyper- 
fine structure , as expected (green exes). Increasing the stab ih ty  param eter in the 
action, n, has a aeghgible effect on the spectrum  (red asterisks). The splitting 
between the lattice irreducible representations is a lattice artifact, and conse­
quently. a system atic error is added in quadrature w ith the statistica l error for 
the m ean which is the value quoted for the continuum  irreducible representation. 
The d a ta  are available in table A.3. The experim ental levels are taken from the 
PD G [110].

2.3 Extracting spectral functions from lattice data

As outlined in the introduction, the spectral function is a valuable object which 

facilitates the connection between real and im aginary-tim e correlation functions 

and also provides a straightforw ard in terpre tation  of the tem peratu re effects 

in term s of the in-medium modification of the hadronic spectrum  or transport 

properties in a given channel. Spectral representations of propagators of non- 

asym ptotic states of QCD [112] are also of interest as they encode the im por­

tan t analytic s tructu re  of the propagators, for example, positivity violations in 

the gluon spectral function signal the absence of these states from the physical 
H ilbert space.

The relationship between the hadronic correlation functions or (quasi-)particle 

propagators and their associated spectral function is often through an integral 

transform , usually a Fredholm integral of the first kind. In order to access the
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spectral function from the measured data, i.e. correlation function from the 
lattice, a linear inverse problem, K x  — y, must be solved where x  and y are 
elements of some normed spaces X  and Y . Recall that in the lattice study, the 
inverse problem is the extraction of the spectral function from the Euclidean 
correlation function.

where the kernel has been replaced by expanding aromid t t i q  and dropping terms 
suppressed in the large m g/T-lim it.

The existence, uniqueness and stability -o r well-posedness- of inverse prob­
lems such as these are well understood in cases like those encountered in inte­
gral transforms where K  is always a compact linear operator between Banach 
e.g. C[a, 6], or Hilbert spaces, e.g. L^(K). They are ill-posed, failing because 
the stability of the inversion is poor given some deformed data, y^, satisfying 
lly'̂  “  v Wy  < because the inverse operator is generally unbounded and hence 
not continuous. Therefore, it can be difficult to make robust conclusions about 
the spectral fvmction in the case of noisy estimators for the data as in the case of 
lattice data. In the following section, some basic facts about ill-posed problems 
are smimiarized following the presentation of ref. [113].

2.3 .1  General regularization strategies

Many approaches have been developed to tackle these instabilities taking inspi­
ration from regularization theory or Bayesian inference. A connection between 
standard regularizations and Bayesian inference can be demonstrated and can 
lend an intuitive understanding to the Bayesian approach while adding rigour to 
the statistical underpinnings of the regularization theory.

Fitting ansaetze with the maximum likelihood method counts among the sim­
plest regularizations of the problem in cases where the number of fit parameters is 
small relative to the number of available data. Such an overdetermined problem 
is solved by minimizing the likelihood, in this notation L — \\Kx — yWy, which 
gives rise to the usual least-squares fit with the appropriate norm on Y . This is 
in itself ill-posed as can be seen by recasting the minimization as the solution of 
the normal equation, K * K x  = K*y  where K* : Y  — X  is the operator adjoint 
to A'. These approaches are useful when phenomenology strongly constrains or 
guides spectral features known to exist in the solution. For example, ansatzes 
for the spectral functions have typically been investigated in the light vector 
meson channel by fitting with the maxiirmm likelihood method [114]. However,

■OC

dio K { uj, t ) p {uj, p ), K { u j , T ) = e (2.44)
— OO
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th is  m odel-dependent approach is not adequate where the spectral features may 

change d ra m a tica lly  as a func tion  o f tem perature . In  th is  case, establish ing the 

existence o f resonances is h igh ly  sensitive to  the biases in troduced by p a rticu la r 

models fo r the spectra l fm ic tion , w hich we w ish to  avoid.

T ikhonov regu la riza tion  is an example o f a less prescrip tive  regu la riza tion  

scheme w hich has been used to  ex trac t gluon spectral fim ctions  from  propagators 

estim ated in  la ttice  Q C D  [112]. Loosely, resolving the spectra l func tion  in  a re l­

a tive ly  m odel-independent way means estim ating  a large number o f parameters, 

since i t  is continuous on the positive  real axis, and having on ly  a few corre la tor 

or p ropagator data  renders the problem  h igh ly  degenerate. The inverse problem  

is necessarily ill-cond itioned  given the low rank o f the kernel in  th is  case. The 

scheme can be seen to  be an im provem ent to  the im stab le  least-squares f it t in g  in  

the fo llow ing  way.

The idea is to  augment the func tiona l to  include a pena lty  te rm  so th a t the 

regularization strategy, : y  —> X .  w hich satisfies liniQ-^.o i?aA 'x  == x, amounts 

to  the m in im iza tion  o f \ \K x  — y | | y  -I- W ith  perfect data , knowledge o f the

exact y. the so lu tion  obta ined converges pointwise  to  the  exact one when regu­

la riza tion  param eter, a,  is removed. However. does no t necessarily converge 

to  the id e n tity  and there even its  opera tor norm , j|i?Q||, diverges as the  regu la tor 

is removed, as expected due to  the ill-posedness o f the problem . On the other 

hand, the app rox im a tion  e rro r ||(/?o — > 0 as q  “ >• 0, so the app lica tion

o f the  triang le  inequa lity  in  Y',

||x? -  x|| <  6 \ \ B J  +  !!(/?„ -  K - ^ ) x \ \ ,  (2.45)

suggests th a t an o p tim a l non-zero choice for a  exists given the asym pto tic  be­

haviour o f bo th  term s in  order to  m in im ize  the error in  the presence o f im perfect 

data. The scheme to  estim ate such an o p tim a l choice can be made a p r io r i i f  some 

knowledge o f the so lu tion  is available, fo r instance bounds on its  smoothness, or 

as in  the case used w ith  the g luon spectra l functions, can be chosen such th a t 

the constra in t \ \K x ^  — y^\\ =  ^ is fu lfille d , know n as the M orozov discrepancy 

princ ip le.

The singular value decomposition (SVD )  o f the kernel, A ', is the generahza- 

tio n  of fin ite -d im ensiona l m a tr ix  decom position K  =  U 'E V ^ ,  where the singular 

values, are the elements o f the positive  sem i-defin ite  d iagonal m a tr ix  H,

and and { y j } j  are the columns and rows o f the orthogonal m atrices U  and

, called the left and r igh t-s ingu la r vectors respectively. I t  is easy to  see th a t 

the T ikhonov regu la riza tion  is s im p ly  a screening o f the s ingular values, analo­

gous to  the eigenvalues o f a sym m etric  opera to r, some o f w hich are necessarily
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snitill in the case of the ill-conditioned inverse problem. Writing the solution to 

the normal equation for the minimization, axa  +  K * K x a  =  Ĥ *y, as

OO

(2.46)

the regularization parameter is seen to trade between the singular problem and 

one which has a finite approximation error.

The maximum likelihood interpretation is naturally extended to give a prob­

abilistic origin for the regularized least-squares problem from a Bayesian perspec­
tive. Rewriting the identities obtained from marginalizing the joint probability 

p{ EH)  over the evidence, E,  and the hypothesis, H , leads to an expression for 

the posterior probability, Bayes’s theorem p{H\E)  oc p{E\ H)p(H) ,  in terms of the 
likelihood p[E\ H)  and the prior p(H).  Then the maxim.um a posteriori estimate 

for the inverse problem is easily related to the regularized least-squares problem 

when the data are normally distributed and the prior probability is chosen to be 
a quadratic form:

if the regularization parameter is chosen such that the appropriate norms are 
used. The covariance of the data, being a symmetric bilinear form on Y ,  can be 
absorbed into the definition of the norm, ||-||y. Since the exponential is monotone, 
optimizing the posterior probability is equivalent to minimizing the regularized 
least-squares problem.

2.3.2 Bayesian methods and MEM

The Bayesian interpretation of the regularized inverse problem invites further 

examination of Bayesian inference to determine the spectral function. Here, the 

presentation follows that of Asakawa, Hatsuda and Nakahara [115], who pio­
neered the application to lattice data. The maximum entropy method has also 

been applied to recover spectral functions obtained from the Dyson-Schwinger 
equations [116]. For clarity in the following, the replacements E  G  and H  p 

are made to make contact with the notation used in the inverse problem encoun­

tered for the spectral function. Furthermore, the probabilities are conditioned 
over additional prior kn.owled.ge known about the solution -such as positivity- 

information later encoded in the default m.odel, m.
The introduction of the quadratic prior in the Tikhonov regularization can

p{E\H)  ex e x p ( - ||2/ -  Kx\\l^) 

p{H)  (X exp(-||x||2Y)

(2.47)

(2.48)
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be understood by assuming a Gaussian process underlies the d istribution on the 

space of solutions. However, this term  favours solutions which balance the noise 

w ith the norm  of the solution, or the distance from the default model. Weaker 

regularizations are possible which can be constructed axiom atically as is dem on­

stra ted  for the Shannon-Jaynes entropy. This functional should provide a m ea­

sure on the solutions which favom' the default model in the absence of data . The 

entropy functional can be derived from the Poisson d istribu tion  w ith the applica­

tion of S tirling’s formula. However, it is more useful to derive the fim ctional from 

the following axioms, which completely determ ine it, as they be tte r illustrate the 

miderlying assum ptions on the prior fimctional.

1. The penalty  should depend only locally on the hypothesis, p{uj), not on its 
global structure . Therefore, the functional cannot contain derivatives of p 

and m ust be and integral of the form:

2. The functional should not depend on the coordinates chosen on the dom ain 

of the hypothesis, known as reparameterization invariance. T he hypothesis 
/9 is a density, its area is invariant under reparam eterizations uj —̂ so 
th a t it tranform s as p/p ' = duj/dv.  Since the m easure d/i(a;) =  dcjm (a;), 
is likewise invariant, the quotient p/m. is scalar under coordinate transfor­

m ations. In order th a t the functional be scalar under coordinate transfor­
m ations it is therefore constrained to  be:

3. Should the hypothesis factorize p{ui\,u)2 ) = Pi{ijJ\)P2 {<̂2 ) for independent 
variables and 0J2 , then  the stationary  point should be the one which 
optimizes the entropy independently for each factor, which is satisfied if 

the first variation is additive:

This property  is obviously reminiscent of the additiv ity  of entropy and is 

the origin of the familiar Shannon-Jaynes information entropy functional

(2.49)

(2.50)

■Ri(‘̂ i )  +  -^ 2 (^ 2 ) (2.51)
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form up to  a constant;

S[p] f  [—log f — )  -  —J i m \ mJ  m
(2.52)

It is clear that the properties of the logarithm  fulfil the requirements of 

the additivity. Furthermore, the functional is strictly convex, ensuring that 

the minimum at p =  m  is unique, whence the term inology default model. 

W ithout any further constraints, such as those im posed by the evidence, 

the optim ization of the prior leads to this m odel which encodes all prior 

knowledge such as the dom ain and positivity of the spectral function.

The maximum, entropy method (MEM)  is then the inference of the spectral 

function, obtained by the m inim ization of the posterior probability w ith the 

evidence that is the measvu’ed hadronic correlation function, G

argm axp(/o|G a), (2.53)
Pa

logp(pjG'a) =  L — a S ,  (2-54)

where L  is the likelihood function and S  is the Shannon-Jaynes information en­

tropy. The inverse problem between finite-dim ensional spaces follows from the

discretizations of the correlation finiction, G  =  (G j)j= i yVri candidate

spectral function (pr)r=i....

G, =  G(ar i )  i e O , . . . , N r - l ,  (2.55)

P r = p { r A - u j i )  r  e  0 , . . . ,  -  I, (2.56)

w ith integral Nr  and =  A “ '(oj2 — t^i). The inverse problem of eqn. (2.44) is

written in m atrix notation as G =  K p ,  w ith the kernel. K  =  (A'ir)i=i Nr,r=\  iVwi

of the form AV =  The likelihood function for data correlated in Eu­

clidean tim e is written w ith  the unbiased estim ator for the covariance m atrix, C,

as

L = ^ - { G - K f i ) C - ' { G - K p ) .

 ̂  ̂ m=l

where N  is the number of independent measurem ents used in the estim ator G  =

(2.57)

(2.58)
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1 /jV ^ ^  G '”  fo r the centra l data. Using the same no ta tion  for the d iscre tiza tion  

o f the default m odel as the spectral func tion  the entropy is w ritte n

S =  A  ^  pr — m-r — Pr \og{pr/ r r i r ) .  (2.59)
r= 0

The p rope rly  norm alized measure on the p rio r p ro b a b ility  can be obta ined by 

com paring w ith  the Poisson d is tr ib u tio n  w hich gives f  [dp] =  ( I  ^ ' / P r  •

F ina lly , a p rescrip tion  fo r the hyperparam eter must be chosen, and one a lte rna­

tive  is to  m arginalize over it

p(oj) =  j  d a  pa{o j )p{a \G) . (2.60)

Then upon m arg ina liz ing  over the hypothesis and invoking  Bayes’s theorem  once 

more, the fo llow ing  app rox im a tion  is obta ined by evaluating the m ultid im esiona l 

in tegra l using the m ethod o f steepest descent, not fo rge tting  the fac to r o f \ / a  in  

the measure

p {a \G )  oc I  [dp] p {G \p a )p {p \a )p (a )  (2.61)

-X p{a )  J [dp\ p {p\a)  (2.62)

'  /  P = P a

The fina l spectra l func tion  is obta ined by m unerica lly  averaging over the spectral 

functions w ith  the p ro ba b ility , p (q |G ), and Laplace's ru le, p{a )  =  const. The 

e xp lic it representation used for the de te rm inant is given below w ith  the Hessian, 

Q " . at the extrennm i

det Q ”  =  e x p T r( lo g Q " — lo g a l) ,  (2.64)

6'^Q
Q ” {Pa) =

^ V P r ^ y / P s  c =

(2.65)
P = P Q

6‘̂ L _ _ 6^S
'SprSps  ̂ ""SprSp,

P —Pot

S'^L \
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2.3.3 Im plem entation of the  optimization with Bryan’s algorithm

The preceding prescription defines a suitable regularization of the inverse problem

spectral densities. However, the construction of the prior probability is not infal­

lible and its deficiencies will be discussed in the following section. T he m ethod 

requires a search for the global extrem um  of Q in the A^^^-dimensional solution 

space, which, given th a t desired resolution from a dom ain of a few GeV w ith a 

resolution of at least tens of MeV is high-dimensional problem. W ith  the expo­
nential param eterization of the spectral function, pr = , the extrem a are

the solutions of the following non-linear equation

from which the following condition on the solution is realized for the new param ­
eterization of the spectral function

From the SVD of the  kernel-transpose, =  UT.V'^. where U : 
th is representation of solution is an element of the column space of U,  which is 
only of dimension Nr,  the m axinnun rank of the kernel. The searching of this 
A^T--dimensional space is com putationally  much less dem anding th an  exploring 
the entire A'^^-dimensional space of spectral functions and is due to  Bryan [117]. 
The Newton algorithm  is used to  find the roots of the equation in the usual way 
by determ ining the increm ent between successive guesses:

where // is the Levenberg-M arquardt param eter, and the  m atrix  inverse is com­
puted  by going to  a diagonal basis. The Levenberg-M arquardt param eter is 

increased tenfold if the increm ent is deemed too large for the Newton approxim a­

tion to  hold. Once the  stopping criterion is reached by convergence of the norm 

of i? +  oA p, the spectral fmiction given the hyperparam eter a  is saved and the 

probability p{a\G)  is evaluated according to  eqn.(2.63). In summary, the m ethod 

proceeds according to  the  following scheme:

derived from a set of reasonable principles which are ideally suited to  analyses of

( 2 .68 )

(2.69)

(2.70)
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Figure 2.10: A comparison between the SVD basis functions, which are the 
cohunns of the matrix U in the SVD. using quadruple precision (top) and dou­
ble precision (bottom). Note the high precision needed to correctly perform the 
singular value decomposition of the kernel which is exponentially damped.

Quadruple precision

Double precision

1. The singular value decomposition of the kernel is performed, depending 
only on the number of correlator data.

2. Given a default model the Newton method is used to solve the normal 
equations for the minimization problem over the singular space for each 
value of the hyperparameter in a test interval.

3. If the descent step is too large, then increase the Levenberg-Marquardt 
parameter and try again.

4. When convergence of the norm of the system of equations is reached the 
probability, p{a\G), is evaluated.

5. The solutions are integrated over the hyperparameter over the domain de­
fined through p{a\G) >  0.1 x p(a*|G).

Due to the exponential damping of the kernel, K  — e an implementation

55



0.7

0.6

0.5

e5 0.4

a. 0.3

0.2

0.1

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Q

Figure 2.11: Example of the probability distribution, p{a\G), from the recon­
struction of the spectral function in a P wave channel with Nr  =  16, sharply 
peaked around a* = 0.5 in this case.

with quadruple precision is required. Figures 2.10 depict examples of the basis 
over which the solution is reconstructed. For these correlators at low tempera­
tures with Nr  =  128, the convergence is slow given the relatively high dimen­
sion of the reduced problem, visible in figure 2.13. The probability distribution, 
p{a\G), is very peaked, an example is shown in figure 2.11, and the variation of 
the solution over the range of a  investigated was observed to be small.

2.3.4 Spectral functions from MEM

The implementation of MEM by the authors of ref. [118] was applied to the 
zero tem perature bottomonium correlation functions computed in NRQCD. Fig­
ure 2.12 shows the resulting spectral functions in the S wave (left) and P wave 
(right). In order to cast the frequency domain in physical units, the same shift 
in the energies, S, is applied to the frequency axis as for the spectrum obtained 
in the previous section.

In the S wave channel good agreement is observed between the lowest peaks 
and the corresponding ground and first excited-state energies extracted from 
multi-exponential fits directly to the correlators. Recall th a t energies for higher 
excitations could not be reliably extracted from the multi-exponential fits to the
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Figure 2.12: R econstructed spectral functions in the S wave (left) and P wave 
(right) channels using the m axim um  entropy m ethod. W hile as many as six peaks 
can be located in the S wave channel, ju s t the first two are com m ensurate w ith the 
experim ental energies. The energies also agree w ith those extracted  directly from 
the correlation functions w ith m ulti-exponential fits. In the  P wave channel, the 
ground s ta te  peak is resolved nicely, while lattice artifacts presum ably contribute 
to  the backgroim d structu re  at higher energies.

correlator. Furtherm ore, it is obvious th a t lattice artifacts will contam inate the 
spectral function at energies of a few GeV above the threshold.

The ground s ta te  peak and corresjjonding energy from the fits the correlator is 
in good agreem ent in the P wave channel. However, above the ground-state peak a 
large continuum  is observed in this channel. Due to the derivative coupling in the 
P wave channel, the divergences in the non-renorm alized channel are worse than  

in the S wave channel. The lower statistica l precision in this channel reduce the 

num ber of inform ative correlator d a ta  which can be used in the reconstruction. 

T he challenge of reliably reconstructing the P  wave channel spectral function is 
already evident from these low tem peratu re  reconstructions.

The S wave channel spectral function was also calculated w ith the publicly 

available ExtMEM package [119]. Instead of perform ing the optim ization of the 

regularized functional by solving the system  of norm al equations, the direct op­
tim ization of the  fmictional is perform ed using a quasi-Newton algorithm  [108]. 

This is one where an approxim ation of the Hessian is used to  propose an trial 

solution and can be more efficient for optim ization in high-dimensional spaces. 

Good agreem ent is seen between the positions of the first two peaks, however, 

discrepancies between the peaks at higher energies. The displacement of higher 

peaks could be a ttrib u ted  to the degeneracy along similar directions in the SVD 

basis space for which it is plausible th a t different frequencies could com pete with

T('Si)
M E M  -

E x p o n en t ia l  fits m

XbiePi)
M E M  -  

E x p o n en t ia l  fits m
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Figure 2.13: T he optim ization of the objective function. Q, w ith the LBFGS 
algorithm  in the im plem entation of ExtMEM. The residual. Q — Q \  vanishes fre­
quently. m arked by the blue crosses beneath  the residual line, possibly due to  flat 
directions in the search space.

one and another.

The convergence in the objective Q  fvuictional versus the num ber of iterations 
is shown in the figure 2.13. Note th a t zeroes in the residual Q' -  Q, depicted 

w ith crosses below the lines, can arise when long fiat valleys are traversed in the 
functional space and are evidence of many local extrem a which are characteris­

tic of the optim ization problem  in such a high-dimensional space. T he generic 
behaviom- is illustrated  by this figure in which the variance of Q is large before 
rapid convergence to  the optimum .

2 .3 .5  Criticisms of Bryan’s algorithm

It has been asserted th a t the global minimum of Q  is not in fact contained w ithin 

the singular space [119]. This claim is supported  by two observations. Firstly, 

by sim ply shifting the lower boundary  of the frequency interval to  more negative 

values, it appears as though the basis functions do not have adequate support 
over the entire frequency interval to  sufficiently reconstruct peaked features at 

large frequencies. Secondly, it has been observed th a t by extending the basis 
used in the m inim ization to  include basis vectors from a kernel w ith a larger 

Nr + A^exfcliniensional singular space, a b e tte r optim um  of Q can be found. This 

is posited as a direct counterclaim  to B ryan’s argum ent.

B oth of these observations are based on numerical mock analyses and have

R esidual
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Figure 2.14: R eco n stru c ted  sp ec tra l function  in th e  S wave channel using th e  
ExtMEM package [119] u tiliz ing  a  d irect quasi-N ew ton  o p tim iza tio n  of th e  regu­
lariza tion  functional. T h e  ground  s ta te  peak  an d  first excited  s ta te  peak  agree 
w ith  energies e x trac ted  from  m ulti-exponen tia l fits. T h e  fea tu res are  com parab le  
w ith  th e  M EM  presen ted  in figure 2.12. b u t n o tab ly  th e  positions of th e  higher 
peaks are  not in agreem ent suggesting  th ey  are  a rtifac ts  of th e  recon stru c tio n . 
W hile th e  re la tive  heigh ts of th e  first peaks are sim ilar, also th e  abso lu te  heights 
dev ia te  significantly.

not been form ally  realised. Large cancellations can  indeed  occur as show n in the  

reco n stru c tio n  of m ock sp ec tra l function  in figure 2.15 in o rder to  rep roduce  peaks 

w here it m ay seem  unlikely a t first glance of th e  SVD basis. However, it is u nde­

niable th a t  th e  reco n stru c tio n  fails to  cap tu re  th e  w id tli of th e  peak  adequate ly  

if th e  left-hand  edge of th e  frequency in terval is sh ifted  to  negative-enough val­

ues. As th e  m in inuun  frequency is reduced  while th e  freq\iency an d  tem p o ra l 

d iscre tiza tions are  left im changed th e  p roblem  becom es m ore ill-conditioned  as 

th e  difference betw een an d  N r  grows. To im prove th e  cond ition ing  of th e  

inverse problem  as nnich as possible th e  frequency dom ain  ough t to  resem ble th e  

su p p o rt of th e  unknow n sp ec tra l function  as closely as possible, so th a t  from  a 

p rac tica l p erspective  th e  m in im um  frequency should  n o t be reduced  arb itrarily . 

F u rtherm ore , given th e  tem p o ra l d isc re tiza tio n  of th e  co rre la to r, one should  not 

expect to  resolve th e  m om ents of th e  sp ec tra l function  a t a rb itra rily  h igh frequen­

cies above th e  lower edge of th e  frequency dom ain . T h is is sim ply  th e  n a tu re  of 

th e  cutoff scale pi’ovided by th e  tem p o ra l d isc re tiza tion  an d  th e  inverse L aplace 

transfo rm . C onsequently , reducing  th e  lower edge of th e  frequency w indow  w ith-
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Figure 2.15: Reconstruction of a mock spectral function over a large frequency 
domain illustrating the strong cancellations in the basis finictions in the low- 
frequency part of the spectral functions and the difficulty in extracting accurate 
widths if the frequency domain is not chosen with care.

out redefining the threshold of the spectral function appropriately should not be 
too concerning if the frequency interval is chosen judiciously.

More worrying is the observation that lower minima of Q are encountered 
when exploring the extended SVD space of dimension Nj- +  Â ext compared with 
those achieved by exploring only Bryan’s subspace. This certainly reflects the 
inherent difficulty in optimizing the functional even when restricted to Bryan’s 
subspace. However, it may be that the final solution returns to Bryan’s subspace 
at the extrenmm. and that searching orthogonal directions may provide a trick 
to tunnel out of local minima in Bryan’s subspace in the search for the global 
extrenmm.

Naturally, these points raise valid concerns with Bryan’s algorithm and mo­
tivate solutions which ameliorate the difficult optimization problem. In the fol­
lowing chapter, the variation of Nr  in the fixed-scale approach to changing the 
tem perature also invites us to seek methods whose systematics are minimally 
dependent on 7V̂ . Obviously, the conclusions of the A^T--dependence of the re­
construction should be due to the physical tem perature effects and not from the 
different dimension of the basis for reconstructions. Nevertheless, the conceptual 
difficulties associated with Bryan’s algorithm and the dependence of the opti-
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Figure 2.16: Com parison between the integrand of the regularization functional 
for the m axim um  entropy m ethod (solid line) and the Bayesian reconstruction 
m ethod (dashed line). The fiat directions in the Shannon-Jaynes entropy at small 
Pitrii are absent in the Bayesian reconstruction. Furtherm ore, at large pi, mi the 
Bayesian reconstruction poses a weaker regularization, allowing peaked structures 
to  persist where they are encoded in the d a ta  through the  likelihood.

m ization on Nr  reinforces the difficulty in extracting reliable results from fewer 
and fewer correlator data , the perennial issue encountered in lattice studies at 

high tem perature. To reiterate, the only guarantee th a t B ryan’s m ethod makes, 
if the global extrennnn is successfTilly found, is th a t this extrenm m  corresponds 

to  the unique spectral function which reproduces the available d ata  w ith the con­
strain ts imposed by the regularization. Ultimately, there is no substitu te  for good 

quality data.

2.3.6 Bayesian reconstruction method

In order to  decouple the solution of the inverse problem from the dependence on 

the singular space a refinement of the regularization for the particu lar problem  

encountered in the lattice da ta  was proposed by R othkopf and B urnier [120], 

referred to as the Bayesian reconstruction (BR)  in the following. T he principal 

idea is to  replace the regularization functional w ith one well-motivated by the 

inherent issues of lattice QCD spectra  which solves the probelm  of the ahnost- 

fiat directions in the entropy fmictional which are visible in figure 2.16. Then.
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the full solution space can be efficientl}  ̂ explored by standard methods.
The derivation of a new regularization proceeds as before by building the 

functional axiomatically as follows. These criteria must be scrutinized closely 
in case that the regularization puts undue constraints on the solution to the 
optimization.

1. The first criteria is the locality of the functional, identical to that posed in 
for the entropy, so the functional takes the form of an integral as before.

2. Scaling of the spectral density. The integrand should not depend on the 
choice of units for the spectral function, leaving only quotients, Pr/nir, 
available as dimensionless arguments for the integrand. This axiom already 
deviates from the entropy’s claim for the scaling of the spectral density 
like a distribution. Cited as counterexample is the spectral functions’ per- 
turbative behaviour which is polynomial. This brings the complication of 
a dimensional hyperparameter, q, to ensure the functional itself remains 
dimensionless.

3. The functional form is really introduced by this axiom which demands the

From a regularization perspective this can be viewed as a penalty on rel­
ative scaling the spectral function parametrically with the default model. 
Therefore, if, say at adjacent frequencies the spectral function changes by 
a relative amount (1 +  e) then there is guaranteed to be a fixed increase 
in the penalty functional in that region. This damps large relative vari­
ations in the spectral function, caused by peaks. Recall that this ought 
not to affect peaks encoded in the data which are strongly favoured by the 
hkehhood function, only those which appear in the absence of data. Note 
that penalizing absolute changes in the spectral function would result in a 
quadratic regularization. This criterion suppresses large variations in the

(2.71)

(2.72)

curvature of the integrand to be s"{r) = —Ijr^  and results in the logarithm. 
The integration of this differential equation yields

s{p/m) = log ) — — + const (2.73)\ m J  m
(2.73)
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spectral density in the absence of data which particularly afflict the spectral 
analysis of lattice correlators where false peaks, which are also observed in 
mock analyses, can complicate the interpretation of the data.

4. The final functional form is fixed by requiring the relevant critical behaviour 
at the minimum prescribed by the adherence to the default model.

As can be seen in figure 2.16, the new functional form behaves noticeably 
differently at small values of the reduced spectral function, where the asymptot­
ically fiat directions arc removed. Furthermore, at large values of the reduced 
spectral function, the functional form imposes a weaker regularization than that 
of the MEM. This penalty serves to inflate the spectral function in regions where 
the density is not constrained by the data, in essence washing out regions of low 
spectral density.

The search of the full A'^-dimensional solution space is possible with the new 
regularization of the likelihood using a quasi-New'ton algorithm. The optimization 
used in the implementation of the BR method developed by A. Rothkopf and Y. 
Burnier. the authors of ref. [120], uses the ALGLIB [121] implementation of the 
LBFGS algorithm. Note that the optimization problem is no longer recast as 
the solution of the multidimensional system of equations because the SVD of the 
kernel no longer plays a prominent role.

The LBFGS algorithm proceeds just as for the Newton method search for the 
iterate, Sx̂ -. by solving the normal equation — VQ(a;/,.).
Instead, an approximation for is made in terms of tensor products of Sx^,

-  VQ(x^.)) which is nmch more cost effective than performing 
the matrix inversion, especially in a high-dimensional space. Alternatively, the 
implementation can use the quasi-Newton method as a preconditioner for ordi­
nary Levenberg-Marquardt optimization which utilize the exact inverse of the 
Hessian.

2.3.7 Spectral functions from Bayesian reconstruction

The implementation of BR method by Rothkopf and Burnier was used to ob­
tain the spectral functions presented in this section. The results are shown in 
figure 2.17 in the S wave (left) and P wave (right) channels. The S wave spec­
tral functions displays some notable features to be contrasted with the result

(2.74)
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Figure 2.17; Resulting spectra in the S wave (left) and P wave (right) channels. 
Similar to MEM, the ground and first excited state peak positions agree with the 
energies extracted from exponential fits to the correlation functions in the S wave 
channel. However, the discrepancy between the peak heights is much larger, and 
no more than two peaks are discernible, presumably due to the effect of the new 
regularization suppressing artificial peaks in the data. The spectral function in 
the P wave channel is remarkably similar to MEM, dominated by lattice artifacts 
above the ground state peak.

from the MEM. The position of the ground state and first excited state peaks 
are in agreement with those from the MEM, however, the BR method does not 
find narrow peaks in the high-frequency part of the spectral function. This is 
in accordance with the understanding of the new regularization which washes 
out artificial peaks which are not encoded in the data, by favouring the default 
model. The features of the P wave reconstruction are remarkably similar to the 
MEM with a ground-peak coincident with the single-exponential fit and a large 
continuum feature at higher frequencies.

Similar conclusions can be drawn from both the MEM and the BR method 
for this low-temperature data which agree with the energies which were extracted 
directly from the correlation functions. However, the new BR method performs 
better in the sense that it does not produce false positives in the form of peaked 
structures where none exist in the data which is a valuable attribute for interpre­
tation of lattice data.

Further discussion of the systematic dependence of the reconstruction on the 
frequency and temporal domain is postponed until the next chapter, although 
figure 2.18 demonstrates the stability of the lowest peaks in the S wave (left) and 
P wave (right) channels under variations of the lower frequency domain and under 
variations of the upper and lower window of the correlator. The variation of the
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Figure 2.18; S ystem atic  d ep en dence of th e  recon stru ction  on th e  b o tto m  cor­
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sp ectra l function  w ith in  the sta tis tica l error bands in th e noisier P  w ave channel, 

show n figure 2.19, d oes not su ggest that th e sta tis tica l error is th e  dom inant 

im certainty.

F inally, th e m om en tu in -d ep en d en ce of th e  S w ave sp ectra l fm iction  is in­

cluded  in figure 2.20 w hich  d em on strates th e agreem ent of th e peak  p osition  at 

fin ite m om entum  w ith  th e d ispersion  relation  o f the S wave s ta te  ex tracted  from  

exp on en tia l fits d ep icted  w ith  th e solid  lines at th e top  edge of th e  figure. N o  

significant d ep en dence o f th e  peak w id th  on  th e  m om entum  is v isib le . Sm all 

discrepancies in th e  peak  heights at different m om enta  m ay arise from  th e  differ­

ent degeneracies of la ttice  m om enta  w hich  alter th e  variance of th e  estim ators at 

different m om enta. T h e p o ssib ility  to  ex tract th e  in-m edium  dispersion  relation  

is another advantage of th e  recon stru ction  of th e sp ectra l fun ction  w hich  w ould  

otherw ise be a difficult observable to  reconstruct d irectly  from  th e E uclidean  

correlation  fun ction s w hen  th e peaks a tta in  a finite w idth .
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Figure 2.19: The statistica l error bands on the reconstructed spectral function in 
the P wave channel estim ated using 50 jackknife blocks.

m O*

100

10

1

0.1

0.01

0.001
10.2 10.49.2 9.4 9.6 9.8 10

uj (GeV)

Figure 2.20: M om entum -dependence of the spectral function in the S wave chan­
nel w ith peak positions in agreem ent w ith the dispersion relation ex tracted  from 
fits to  the correlation functions, denoted by the coloured lines a t the figure’s top 
edge.
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3 Bottomonium at finite temperature

In  th is  chapter the m od ifica tion  o f the bo ttom on ium  spectrum  at fin ite  tem ­

perature  is presented. The resuhs ind icate  sign ificant differences between the 

quahta tive  behaviour in  tfie  S wave and P wave channels in  b o ttom on ium  above 

the deconfinem eiit crossover tem perature . The comparison o f the behaviour of 

the co rre la tion  functions to  those o f non-in te racting  q iia rks in  N R Q C D  suggests 

the unb ind ing  o f the quarks in  the  P wave channel. F urther in te rp re ta tio n  is 

provided by the reconstructed spectra l functions. The reconstructed spectra l 

functions are presented from  the m axinnm i entropy m ethod and the Bayesian 

reconstruction  m ethod. The qua lita tive  features o f the spectra l func tion  in  the 

S wave channel are the same in  bo th  m ethods b u t substantia l differences are oV̂ - 

served in  the P wave cliannel. The system atic dependence o f the reconstruction  

on the available co rre la tor data is discussed. F irs t, a b rie f exposition  o f la ttice  

Q C D  at fin ite  tem pera ture  is made.

3.1 Finite temperature lattice QCD

As outlined  in  the in tro du c tion , the M atsubara  fo rm alism  enables the Q C D  par­

t i t io n  to  be evaluated as a pa th  in teg ra l in  Euclidean space w ith  fin ite  tem pora l 

extent corresponding to  the inverse tem pera ture . 0 , and appropria te  tem pora l 

boundary cond itions for the dynam ica l fields [122, 46]. Therefore, it  is s tra ig h t­

fo rw ard  to  estim ate the rm a l co rre la tion  functions in  la ttice  Q C D  as the Euclidean 

fo rm u la tion  is the one used in  num erical s im ulations. O n ly  the physical tem pora l 

exten t is required to  be adjusted in  order to  change the tem perature .

There are tw o ways to  vary the tem pera ture  com m only employed by prac­

titio ne rs  w hich are the fixed-sca le  and f ix e d -N r  approaches, nam ely when the 

num ber o f sites in  the tem pora l d irec tion  or the la ttice  spacing are changed, 

respectively. Shifted boundary cond itions have been recently proposed th rough 

w hich the tem pera ture  in  a fixed-scale s im u la tion  can be varied more fine ly  by in-
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voking the Poincare symmetry of the partition sum []23]. The fixed-A ,̂- approach 
is perhaps more common in lattice calculations of the equation of state or the de­
confinement transition tem perature due to the fine control of the tem perature af­
forded by the continuous adjustment of the lattice spacing [25, 124]. In principle, 
however, the f i x e d - a p p r o a c h  requires auxiliary zero-teniperature calculations 
at each tem perature in order to non-perturbatively tune the parameters of the 
action, such as quark masses and renormalization constants. In practice this may 
not be necessary if it is possible to interpolate between simulations at a reduced 
set of lattice spacings. The accompanying small lattice-spacing zero-temperature 
simulations which must be performed soon become unfeasible due to the large 
spatial volumes required. Furthermore, the cost of these simulations increases 
greatly as the tem perature is increased due to the critical slowing of the HMC 
with the lattice spacing [78]. This greatly restricts the accessible tem peratures 
in dynamical simulations. Additionally, discretization effects become manifestly 
temperature-dependent and can complicate the physical temperature-dependence 
of observables.

The ensembles used in this work were generated in the fixed-scale approach 
by the FASTSUM collaboration using Evnopean PRACE and British DiRAC re­
sources [125, 126]. The same parameters were used as those in the zero-temperature 
ensembles from the Hadron Spectrum Collaboration [127], see table 2.1. The 
principal advantage is that the cost of the simulations do not increase with in­
creasing temperature. Only a single zero-teniperature ensemble is required for 
timing so only one simulation is required for each temperatiu’e investigated. In 
order to achieve adequately high tem peratures without losing sufficient tempo­
ral resolution of correlation functions the benefit of using anisotropic lattices at 
finite tem perature is obvious. As described in chapter 2, this introduces two 
additional couplings which complicates the tuning of the lattice parameters at 
zero-temperature. However this task needs to be performed only once.

In the simulations employed in this work the number of sites in the temporal 
direction at the highest tem perature available is comparable to that in a fixed- 
Nr  approach. Therefore long Markov chains can be accessed without the cost 
of a study performed with a fixed-A^r scheme [128]. Additionally, in the fixed- 
scale approach the spatial volume is unchanging with tem perature so tha t finite- 
volume effects are not temperature-dependent. However, in this work just a 
single volume was used so finite volume effects cannot be quantified. For the 
quantities of interest these effects ought not to be very troubling due to the large 
box size, L/a  =  24, compared with the small physical size of the bottomonium 
ground state, r y / o  ~  \/(arn},v) w 3. Finite-volume effects in the free spectral
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Ns 16 24 24 24 24 24 24 24
Nr 128 40 36 32 28 24 20 16

T IT c ~  0 0.76 0.84 0.95 1.09 1.27 1.52 1.90
T  (MeV) ~  0 141 156 176 201 235 281 352

•^cfg 499 502 503 998 1001 1002 1000 1042

Table 3.1: Sum m ary of the ensembles used in this work. The crossover tem pera­
tu re  is determ ined from the renormalized Polyakov loop [126]. The zero tem per­
atu re tuning of the lattice param eters was com pleted by the Hadron Spectrum  
C ollaboration [127].

function are further discussed in section 3.2. W ith  the advent of relatively cheap 
observables to  tim e the gauge anisotropy, such as the energy density in the Wilson 

flow [129], it may be advantageous to  work w ith variable tem poral couplings only, 

in order to  combine the advantages of bo th  approaclies. The sim ulations proceed 

exactly as for the zero-tem perature ones described in chapter 2. The available 

tem peratures and num ber of independent configurations are shown in table 3.1.

In order to  make contact w ith QCD w ith physical quark masses it is most 
instructive to  cast the tem perature in term s of the deconfinement crossover tem ­
perature. Tc, which naturally  depends on the flavour content and quark masses 
of the theory. Note th a t the interaction m easure depends strongly on the num ­
ber of active flavours and while the quark masses are unphysically large with 

M tj/ M p ~  0.45, this is expected to  be a less significant system atic effect a t tem ­
peratures above the deconfinement crossover tem perature.

A renorm alization scheme for the Polyakov loop was chosen by normalizing 

it to  unity at a tem peratu re corresponding to  an inverse tem perature /3q =  16a,-,

=  w ith Lq(/?) =  (T rP (x )). (3.1)
i^o(Po)

This scheme am ounts to  fixing the static-quark  free energy of eqn. 1.3 to  vanish at 

the given tem perature. The peak of the derivative of the renormalized Polyakov 

loop, shown in figure 3.1, was used to determ ine the crossover tem perature of 

Tc w 187(4) MeV [126]. The spread of Tc under variation of the scheme defined 

by 3o gives the system atic error, while the statistica l error is negligible. The non­

vanishing of the Polyakov loop illustrates the lack of a true order param eter in the 

presence of m oderate quark masses which explicitly break the centre sym m etry 

even at zero tem perature.
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Figure 3.1: A cubic spline interpolation of the renorniahzccl Polyakov loop, Lren, 
(dashed line) and its derivative (solid line) which is used to determ ine the  tran ­
sition tem perature, Tc ~  187 MeV. determ ined by the FASTSUM collaboration.

3.1.1 QCD spectrum at finite temperature on the lattice

Num erical studies have significant value for the experim ental heavy-ion physics 
com m unity and great investment has been expended in producing reliable simu­
lations suitable for the study of QCD at high tem peratures. It is w orth noting 

the  work by bo th  the W uppertal-B udapest collaboration [25] and the HotQCD 
collaboration [124] in the calculation of the  equation of state. These groups have 
also achieved agreement on the transition  tem peratu re at the physical point, 

Tc ss 154(MeV), after a long-standing discrepancy [130, 4]. Alongside these static 

observables there have been advances m ade in providing lattice input for non- 
pertu rbative  quantities such as the jet-cjuenching param eter [27] and transport 

coefficients [125, 131], The provision of accurate predictions especially for the 

heavy-ion physics com m unity is a great m otivation and challenge for the  lattice 

com nm nity in the era of high-precision num erical simulations.

A variety of lattice studies of the spectrum  of QCD a t finite tem peratu re  have 
been performed which have probed both  the deconfinement and chiral crossover 

transitions. The light meson screening masses are sensitive to  the restoration 
of chiral sym m etry through the degeneracy of the vector and axial vector chiral 

partners. W hile the f/A (l) axial sym m etry is always anom alous at the operator
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level, the degeneracy of the pseiidoscalar and scalar isovector meson masses may 

signal the effective restoration  of anomalous axial sym m etry [132, 14], defined 

by the equivalence of correlation functions related by the symmetry. Examining 
such degeneracies of the spectrum  is com plem ented by analysis of the generalized 

susceptibilities and, in the case of the axial anomaly, the low-lying modes of a 

chiral Dirac operator [11], Some contention still remains regarding the fate of the 

axial anom aly between calculations using chiral regularizations [133], Studies of 

the light meson spectrum  also enable the investigation of transport coefficients 

such as the  conductivity of the plasm a [125]. Furtherm ore, the fluctuations of 

the conserved charges have been used to  probe the deconfinement of strangeness 

and charm  where it was observed th a t charm  may become deconfined already 
above the chiral crossover from cuniulants of net-charm  or baryon charge even 

though charm onium  states may survive above the  deconfinement crossover tem ­

peratu re [29, 134], Incidentally, discrepancies between the hadron resonance gas 

and the partia l pressures in these studies have provided evidence for highly ex­

cited states in the charm  sectors predicted by relativistic quark models or lattice 

QCD which have not yet been experim entally observed [102],

Various studies have probed the deconfined medium using ciuarkonium. mostly 
for charm onium. or bottonionium  on cjuenched ensembles, using relativistic quark 
actions [135. 136. 137, 138]. Most recently, the Bielefekl group has conducted 

extensive studies of charm onium  on quenched ensembles w ith a system atic dis­
cussion of the lattice artifacts, in order to  estim ate the charm  diffusion coefficient 
and investigate the survival of these states above the crossover tem peratu re [139]. 
While they observed therm al modifications to  the correlators in the deconfined 

phase, distinguishing the effects due to the change in the spectrum  is complicated 
due to  the presence of a zero mode in the associated spectral function. Their anal­

ysis of the spectral function using MEM leads them  to conclude th a t no bound 
states persist above 1.5Tc. As the m ethod for reconstruction of the spectral func­

tion cannot resolve the w idths of arbitrarily  narrow peaks, they emphasise the 

criteria for dissociation must be a tem peratm 'e-dependence of the  peak position 

and relative broadening of the peak. Furtherm ore, Ohno et al. [140] have also 

specifically investigated the heavy-quark mass dependence of the  quarkonium  

correlation functions on quenched ensembles above the deconfinement crossover 
w ith a relativistic action. Q uark masses ranging from charm  to bo ttom  were ex­

am ined and they noted th a t there is significant mass dependence of the therm al 

alterations in all bu t the pseudoscalar channel.

The FASTSUM collaboration have used MEM on dynam ical ensembles to  inves­

tigate the survival and m om entum -dependence of the spectral functions for char-
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inoiiiuin [138], No significant momentum-dependence was observed [95]. The 
Budapest-W uppertal collaboration have computed charmonium spectral func­
tions from MEM on fine lattices with N j  = 2 +  1 in the Wilson formulation, 
where no tem perature dependence in the pseudoscalar channel at tem peratures 
below approximately l.STc was discerned [141], The modification in the vector 
channel above the crossover temperature was consistent with the temperature- 
dependence of the zero-mode and no change in the bo\md states. These studies 
have demonstrated how detailed investigations of the spectrum of QCD can pro­
vide insights into the phases and symmetry of QCD.

3.1.2 Bottomonium in lattice studies

Early pioneering analyses of heavy quarkonium [142] used a non-relativistic for­
mulation for the heavy-quark on quenched ensembles. The quenching of quarks 
in the Euclidean theory breaks reflection positivity. and unitarity of the analytic 
continuation of that theory is lost. Nevertheless, quenched lattice calculations 
have been used extensively in zero-temperature and finite-temperature studies 
despite the uncontrolled approximation it introduces. The interpretation of the 
quenching at finite tem perature is the omission of the relevant ferniionic degrees 
of freedom from the thermal heat bath. At the tem peratures relevant to lat­
tice studies around the deconfinement crossover, the light ferniionic degrees of 
freedom are thermally active and play an important role in the nature of the 
transition itself.

The quenching of the charm and bottom  quark, however, is justified in the 
thermal context as there is a reasonable scale separation between the tem pera­
ture and the heavy-quark mass. In particular, the heavy quark is not in thermal 
equilibrium with the medium of light degrees of freedom at the accessible tem­
peratures. Essentially, then, what is included in the simulation is the thermal 
dynamics of the medium which affects the binding of the heavy quarks, whose 
own dynamics are not thermalized. Furthermore, it may be worth reiterating 
that essentially the modification of the heavy-quarkonium spectrum in a bath of 
thermal light gluons and quarks is being investigated. This set-up provides the 
correct equilibrium input for modelling the non-thermalized heavy quark in a de- 
conhned plasma [143]. The fact that the heavy quark is not thermalized in fact 
is advantageous both in the interpretation of the modification of the hadronic 
correlation functions at finite tem perature and in the inversion of the spectral 
function representation of the hadronic correlation function.

Previous studies of the spectrum  using this set-up have been employed by 

the FASTSUM collaboration with N j  — 2 flavours of hght dynam ical quark [95,
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93, 96. 144], However, it is desirab le  to  include th e  s trau g e  q u ark  dynam ically  

a t  tem p era tu res  of th e  o rder of th e  deconfinem ent te m p e ra tu re  to  m ake co n tac t 

w ith  physical QCD . F u rtherm ore , these ex p lo ra to ry  stud ies were com pleted  on 

ra th e r  coarse la ttices w ith o u t an  im proved ferm ion d isc re tiza tion  in th e  tem p o ­

ra l d irection . A lthough  these  com prise significant changes to  th e  physics and  

im plem enta tion , th e  analysis of th e  co rre la tion  functions does no t ind ica te  any 

significant changes in th e  in te rp re ta tio n  from  th e  earlier stud ies due to  th e  inclu­

sion of e x tra  light degrees of freedom .

T he analysis of th e  quarkon ium  co rre la tion  functions in th e  N f  — 2 s tu d y  sug­

gested  th e  survival of th e  S wave g ro u n d -s ta te  above th e  crossover te m p e ra tu re  up 

to  th e  highest accessible te m p e ra tu re  of ~  2Tc, as little  te m p e ra tu re  dependence 

w as observed [145]. However, significant m odification  of th e  corre la tion  function  

d irectly  above th e  crossover te m p e ra tu re  was observed in th e  P-w ave channel 

and  th e  behav iour of th e  effective m ass and  exponen t, defined in eqn. (3.9), were 

consisten t w ith  th e  s ig n a tu re  of u n b o u n d  quarks. T h e  subsequent co m p u ta tio n  

of th e  sp ec tra l functions in b o th  channels w ith  M EM  gave fu rth e r evidence for 

th e  surv ival of th e  S wave in th e  deconfined phase and  for th e  d isso lu tion  of th e  

P  wave s ta te s  alm ost d irec tly  above Tc [94. 96]. M ore recently  stud ies have also 

been in itia ted  w ith  N f  = 2 + 1  flavours of dynam ical HISQ ferm ions and  a com ­

p arab le  se t-up  for th e  heavy q u ark  ac tion  [128]. A system atic  com parison  of th e  

resu lts  will be  useful to  ascerta in  th e  d isc re tiza tion  effects w hich is th e  leading 

soiu’ce of unquantified  system atic  u n ce rta in ty  p resen t in these  calcu la tions owing 

to  the  lack of any con tinuum  ex trap o la tio n .

3.2 Free quarks on the lattice

O nce th e  b ind ing  of th e  heavy quarks is effectively screened by th e  m edium , th ere  

is no possib ility  of th e  survival of th e  bom id  s ta te  regardless of th e  ap p ro p ria ten ess  

of th e  effective descrip tion . T h e  goal of la ttice  stud ies is to  uncover evidence for 

free behav iour should  it exist. In o rder to  com pare th e  co rre la tion  functions w ith  

th e  case of free heavy quarks, th e  sp ec tra l functions, w hich were given for th e  

con tim unn  case in ch ap te r 1, are p resen ted  here for a d iscrete  la ttice .

Obviously, la ttice  a rtifac ts  p lay  a  significant role in th e  sh o rt-d is tan ce  p a r t  of 

th e  co rre la to r, or high-energy p a r t  of th e  sp ec tra l fim ction, and  m ust be taken  

in to  account w hen com paring  in te rac tin g  and  n o n -in te rac tin g  sp ec tra l functions 

an d  corre la tion  fim ctions. Free la ttic e  sp ec tra l functions have been  investigated  

for re la tiv istic  quark  ac tions extensively  [146, 147]. T h e  free la ttice  co rre la tion  

function  can be com pu ted  e ith e r by co n stru c tin g  th e  free la ttice  sp ec tra l function
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Figure 3.2: Free lattice spectral functions in the S wave (left) and P wave (right) 
channels com puted using equation eqn. (3.3). The spectral functions are com­
puted w ith the relevant param eters for the N f  = 2 (red) and N f  — 2 + I study, 
which dem onstrates the effect of the reduction of the lattice spacing in increasing 
the support of the spectral fvuiction.

explicitly as outlined below, and composing w ith the kernel, eqn.(2.44), or can be 

calculated directly using the same evolution equation used in the in teracting  case 
and simply om itting the interaction term s. The free lattice spectral function is 
calculated according to  the following sum over all allowed lattice m om enta which 

are in the first Brillouin zone (IBZ) [147]:

asP s(t^ ) =  S{arUi - 2 a r E { n ) ) ,  (3.2)
^ « n e l B Z

a^pp(w) =  k ‘̂ 6{aruj -  2 a r E { n ) ) .  (3.3)
n^Z

where the lattice dispersion relation corresponding to  the improved NRQCD ac­

tion is given by
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eqn. 3.3. and the NRQCD evolution equation (points) w ith interactions om itted 
by om itting the gauge fields.

and the lattice m om enta are defined by

(3.5)

(3.6)
1=1 s  ̂ .

Note th a t the m om entm n insertion in the P wave channel spectral function, due 

to  the derivative coupling in the associated operator, is chosen to  correspond to 

the sym m etric derivative used in the  lattice operator, see table 2.3.

The free lattice spectral function is shown in figure 3.2 in the S wave (left) 

and P wave (right) channels in the large volume limit, together with the free 

contiinmm  spectral functions which are ignorant of the cutoff. In the limit of large 

spatial volume the sum of Dirac distributions converges to a piecewise sm ooth 

fimction w ith com pact support on the frequency domain. The cutoff provided 

by the lattice spacing determ ines this finite interval according to the free lattice 

dispersion relation of eqn. 3.4. Deviations between the lattice and continuum  free 

spectral functions nuist occur at least at energies corresponding to m om enta at

1=3

P  =  SiS i n
27rn,

1 ^

1=3
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Figure 3.4; Illustration of the value of P  (left) and (right) over the reduced 
Brillouin zone denoted by the shading. The contours depict the level sets of 
^ (p )  whose volume changes discontinuously around the value £^(p) =  1 and 
gives rise to the cusps in figure 3.2 in the S wave channel. In the P wave channel, 
derivative coupling in the lattice operator corresponds to the weight k'̂  (left) 
which suppresses these cusps. If the operator instead coiipled with the ordinary 
lattice momentum, (right), these cusps would not be suppressed.

the corners of the finite Brillouin zone. The cusps in the S wave spectral function 
are a consequence of the geometry of the Brillouin zone as the volume of the 
level svnface, uj — E{i\), changes discontinuously around energies corresponding 
to momenta at the corners of the Brillouin zone. Figure 3.4 illustrates a two- 
dimensional model which can explain the puzzling absence of cusps in the P w'ave 
channel as follows. The contours in figure 3.4 correspond to level surfaces of the 
energy,

UJ =  E{p)  =  sin'^{px/2) +  sin^(p.y/2), with G [0 ,7 t ) (3.7)

which is analogous to the leading term quadratic in the lattice momentum in 
the lattice dispersion relation. The spectral function is the volume of this level 
surface, with constant weight in the S wave channel or with weight sin^ pa;+sin^ py 
in the P wave channel. The smoothing effect of the P wave momentum insertion 
of in the sum can be understood from the left-hand panel of figure 3.4 which 
illustrates the weight of the momentum over the Brillouin zone with shading. The 
weight in the P wave channel suppresses the contribution to the volume of the level 
surface from the corners of the Brillouin zone in the light regions of figure 3.4 
(left). If the momentmn insertion in the P wave channel spectral function is 
replaced with the usual definition of the lattice momentum, p ,̂ figure 3.4 (right), 
sharp cusps would also be observed in tha t channel.

Examining the large volume limit of the free lattice spectral function is satis-
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fac to ry  for th e  purposes of com paring  w ith  th e  reco n stru c ted  sp ec tra . T h e  finite 

la ttice  spacing  is m ore p e rtin e n t to  co n stra in  th e  gross fea tu res of th e  sp ec tra l 

fm iction such as its su p p o rt on th e  frequency dom ain. In any case, th e  regu lar­

izations favour sm oo th  reconstruc tions of th e  envelope of th e  free la ttic e  sp ec tra l 

function. T h e  corre la tion  functions ob ta in ed  by tak ing  th e  in tegral, ecjn. 2.44, of 

th e  free la ttic e  sp ec tra l functions given in eqn. (3.3), are  dep ic ted  in  figure 3.3, 

along w ith  th e  co rre la tion  functions o b ta ined  from  th e  free evolu tion  equation  

by o m ittin g  th e  gauge fields. B o th  corre la tion  functions agree even th o u g h  th e  

evolution eq u a tio n  is com p u ted  using a com paratively  sm all volum e of th e  usual 

la ttic e  size to  th e  m om en tum  sum  w hich is calcu la ted  w ith  Ng = 2000.

Some difficulty is in tro d u ced  by th e  energy shift in th e  sim u la ted  in te rac tin g  

th eo ry  w hich ap p ea rs  a fte r th e  reno rm alization  of th e  re st energy in N R Q C D . 

T h e  N R Q C D  energy th e n  con ta ins a co n trib u tio n  from  th e  heavy-cjuark self­

energy. T h is was rem oved in th e  zero -tem p era tu re  s tu d y  by com paring  w ith  th e  

experim en ta l T (^ S i)  energy. T h is a  p riori unknow n shift h inders th e  com pari­

son betw een th e  in te rac tin g  co rre la tion  functions a t fin ite  te m p e ra tu re  and  the  

free la ttice  co rre la tion  functions whose th resho ld  corresponds to  th e  tw o-quark  

th reshold .

Ideally, th is  effect of th is  energy shift w ould be rem oved exac tly  by sh ift­

ing th e  in te rac tin g  sp ec tra l function  accordingly, or correspond ing ly  nm ltip ly ing  

th e  co rre la tion  function  by  th e  exponen tia l factor of eqn. (1.33). T h is  energy 

shift m ay be s tu d ied  p e rtm b a tiv e ly  due to  th e  high scale of th e  la ttic e  cutoff. 

T he relevant p e rtu rb a tiv e  ca lcu la tion  of th e  heavy-quark  self-energy for leading- 

o rder N R Q C D  was perfo rm ed  in ref. [55]. A n estim a te  for th e  add itiv e  shift can  

be o b ta ined  from  these  resu lts  for th e  m iim proved N R Q C D  ac tio n  w hich gives 

a.rUJo ~  0-16 using th e  closest available p a ram e te rs  to  those  used in th is  s tu d y  of 

an  an iso tropy  of ^ =  4 and  bare  quark  m ass of agrriQ = 2.5. In p rincip le , th e  

self-energy co n trib u tio n  could also be e s tim a ted  for th e  im proved ac tio n  used in 

th is  work using th e  tools of a u to m a te d  p e r tu rb a tio n  th eo ry  ref. [148].

3.3 Thermal modification o f the correlation functions

R esults from  th e  T (^ S i)  an d  X bi(^P i) f'hannels a t finite te m p e ra tu re  a re  p resen ted  

in th is section. T hese channels are  rep resen ta tiv e  of th e  q u a h ta tiv e  b ehav iou r of 

th e  o th e r S wave and  P  wave channels due to  th e  fact th a t  th e  gross s tru c tu re  

is charac terized  by th e  n m ltip le ts  of o rb ita l an g u lar m om entum . T h e  hyperfine 

s tru c tu re , being  suppressed  in th e  effective theory , does no t a lte r  th e  m ost signif­

ican t q u a lita tiv e  behav iour, so reference is m ade only to  th e  S wave an d  P  wave
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Figure 3.5: Ratio of correlation functions at finite tem perature to those at zero 
tem perature in the S wave (left) and P wave (right) channels at temperatures 
ranging from 0.76Tc to 1.90Tc.

channels in the following.

In this part of the study only local unsmeared operators are used. Care must 
be taken not to use operators which have stronger overlap with thermal states 
than their counterparts in the vacuum. This could introduce an enhancement of 
the spectral weight with increasing tem perature and confuse the interpretation 
of the thermal modification of the spectrum. The variational method has been 
applied to operators used in the analysis of the spectral functions, but the founda­
tion for applying the method at finite tem perature is not well understood [149]. 
It is not clear at which tem perature the optimization of the operators should 
be performed. Furthermore, the relation between the dilepton production rate 
and the spectral function in the vector channel, eqn. (1.5), holds only for a local 
operator.

Figure 3.5 shows the ratio of the correlation functions at finite tem perature 
to those at zero tem perature in the S wave (left) and P wave (right) channels. 
The hadronic correlation functions in NRQCD receive no contributions from zero 
mode spectral features which would give rise to a r-independent contribution to 
the correlation function [150]. These features which pertain to transport coeffi­
cients through the Kubo fornmlae are obviously absent from the effective theory 
around the two-quark threshold. Furthermore, because the 6-quark is not in 
equilibrium with the medium, all tem perature modifications of the correlation 
functions are related to the temperature-dependcnce of the spectral function be­
cause the integral kernel in eqn. (2.44) is temperature-independent.

An enhancement is clearly observed in both channels at comparable Euclidean
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ranging from 0.7GTc to 1.90Tc.

tem poral separations as the tem peratu re is increased. Note th a t the relevant 
com parison is between the ratios at the same Euclidean distance in physical 

units ra ther than. say. scaled by the tem peratu re because of tlie tem perature- 
independence of the kernel. The correlation functions at the highest tem perature 
are enhanced by a few percent relative to  the zero tem perature ones in the S wave 
channel and on the order of ten  per cent in the P wave channel. This already 
suggests a qualitative difference between the two cases. In term s of the redis­
tribu tion  of the spectral weight at finite tem perature, an enhancem ent could be 

effected by a broadening of the grovmd sta te  peak or a reduction in the threshold 
of the spectral function in the absence of bound states. Similar enhancem ents 
were observed in the N j — 2 study of the FASTSUM collaboration [93] and in 

relativistic charm onium  studies [138].

The comparison of the correlation functions with tlie free lattice correlation 

functions including the shift ~  0.16 is shown in figure 3.6 in the S wave (left) 

and P wave (right) channels. In the S wave channel, large deviations from the 

free correlator are observed at all tem peratures. W hile some slight tem perature 

dependence at interm ediate tem peratures, the dependence is not as significant as 

in the P wave channel. The correlator in the P wave channel displays a trend  to ­

wards the free lattice correlator as the tem peratu re  is increased, ju st overshooting 

it at the highest accessible tem perature, indicating quasi-free behaviour.

However, it must be noted th a t the resulting dependence on the energy shift 

of the ratios between the interacting and free lattice correlation functions is not 

mild and the results must be considered suggestive at best. This system atic issue
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Figure 3.7: Teniperature-dependence of the effective mass, rneff, in the S wave 
(left) and P wave (right) channels from 0.76Tc to 1.90Tc.

highlights the problematic nature of accounting for the threshold in the compar­
ison between interacting and free observables and motivates the investigation of 
the spectral function as the observable of choice to interpret the medium modi­
fication.

It is useful to examine two other observables in order to probe the temperatin'e 
dependence. Given the free continuum form of the hadronic correlation finiction 
of eqn. (1.32) the effective mass no longer displays a plateau in the absence of a 
threshold but instead decays with a power-law at asymptotically large Euclidean 
distance. The presence of a finite threshold, ecpi. (1.33), modifies this behaviour 
to a power-law decay to a finite constant value,

1 dG(r)  G=G,,ee a + 1
meff(r) =  - - — ^ ----- =  u}Q+--------- . (3.8)

G(r)  dr  r

Nevertheless, the transition from a plateau in the presence of a bound state to 
a power-law decay to a lower plateau at the energy shift may still be visible if 
the free behaviour begins to set in within the temperatures investigated and the 
energy shift is sufficiently separated from the bound state energy. In figure 3.7 

the quaUtative difference between the S wave (left) and P wave (right) channels is 
again illustrated by the effective mass. Little tem perature dependence is visible in 
S wave channel which approaches a plateau at all temperatures while the P wave 
channel shows some deviation from the low-temperature behaviour.

Based on the algebraic decay of the hadronic correlation function for free 
quarks in the continuum, eqn. (1.33), it is useful to introduce a new observable,
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the effective exponent

T dG (r) G=Gfroo ^ , 1 n\
7eff = - 7 7̂- ^ — -̂----- =  oJoT + a + 1 .  ( 3 . 9 )G(r) cI t

In the absence of interactions this observable is equal to the exponent of the 
algebraic decay of the correlation function, a  + 1. if the threshold vanishes. If 
the threshold is removed from zero then it also contains a linear piece with slope 
equal to the threshold, while if there is no algebraic part then the constant piece 
vanishes and its intercept is at zero.

The temperature-dependence of the effective exponent is shown in figure 3.8
in the S wave (left) and P wave (right) channels with the perturbative estimate
for the contribution from the energy shift subtracted away. At low temperatures 
the effective exponent at large Euclidean time is linear with a small intercept 
and positive slope which encodes the bound state energies in each channel. Little 
temperature-dependence is observed in the S wave channel as expected from the 
correlator and effective mass, and the observable does not coincide with the free 
effective exponent except at the earliest temporal separations. In the P wave 
channel at the highest accessible temperatures there is some clear deviation from 
the low-temperature behaviour and there is a tendency toward the free lattice 
effective exponent as the temperature is inci’eased. If the threshold effect is not 
removed then this linear rise persists at all temperatures and it is difficult to com­
pare with the free lattice effective exponent. A similar behaviour was observed in 
the P wave channel in the N f = 2 study [93] without subtracting the threshold, 
due to the smaller value of the energy shift. The different renormalization pattern 
results from the different discretization in the earlier study.

The quality of fits to the free continuum form of the correlator, eqn. (1.33), 
are poor even at high temperatures in the P wave channel when the qualitative

T/n Ti la r T2/0T a Wo X'^/d.o.f.

0.76 26 38 0.030(55) 0.2806(19) 1.2
0.84 25 34 0.317(57) 0.2694(21) 0.4
0.95 20 30 0.354(23) 0.2648(10) 1.2
1.09 18 26 0.540(17) 0.2517(09) 0.6
1.27 16 22 0.703(14) 0.2384(08) 2.7
1.52 13 18 0.850(09) 0.2221(07) 19
1.90 10 14 0.909(05) 0.2071(05) 158

Table 3.2: Best fit parameters for the linear fit to the effective exponent, %ff, in 
the P wave channel. The quality of the fit is poor at high temperatures where 
the asymptotic linear form only begins to set in.
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Figure 3.8: Temperature-depeiidence of the effective exponent, 7eff, in the S wave 
(left) and P wave (right) channels from 0.76Tc to 1.90Tc.

change in the effective mass and exponent suggests that quasi-free behaviour may 
set in. This could be due to the difficulty of performing such a delicate non-linear 

fit with the mixed exponential and power-law' decay, as well as the inadequacy of 
the continuum form to model the correlator.

Instead, linear fits directly to the effective exponent were attempted. In the 
P wave channel the fits were stable under variations of the bottom window of the 
temporal range, r i/o r , within a few units, at all but the two highest temperatures. 
At these high temperatures the asymptotic linear form of the exponent only just 
sets in at the latest accessible times. The best fit parameters in the P wave 
channel, shown in table 3.2, indicate that the effective exponent increases with 

temperature towards tfie free continuum value, a  =  1.5 but does not attain 
it within the temperatures investigated. Also, the slope corresponding to the 

threshold decreases toward the perturbative estimate of the energy shift, ~  
0.16, with increasing temperature. The liigher statistical precision of the effective 

exponent in the S wave chaimel spoils the goodness of fit and suggests that the 

continuum algebraic form is not an adequate model at any temperature.

The tentative conclusion from the analysis of the correlation functions and 
derived observables is the greater temperature-dependence in the P wave chan­

nel with qualitative behaviour which is consistent with quasi-free heavy quarks 

above the crossover temperature. This establishes qualitative agreement of the 
modification of the spectrum with earlier N j  =  2 studies [93, 94]. However, for 

consistency, the effect of a larger energy shift in this study nmst be taken into 
account. Although the spatial lattice spacing is reduced in this study compared 

with the Nf  =  2 study, the temporal lattice spacing is larger and the change in the
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F igure  3.9: M ass-dependence of th e  ra tio  of th e  corre la tion  functions in th e  S wave 
(left) and  P  wave (righ t) channels a t th e  h ighest te m p e ra tu re , l.QOTc, to  zero- 
tem p era tu re . T h e  qu ark  m asses range from  above th e  charm  qu ark  m ass th ro u g h  
th e  b o tto m  q u ark  m ass to  superheavy.

reno rm alization  of th e  energj^ shift is not easily u n d erstood . As ana ly tic  expres­

sions are  not available for th e  free la ttice  observables, and  as com parisons w ith  

th e  in te rac tin g  la ttice  cjuantities suffers from  th e  am bigu ity  in th e  energy shift, 

th e  d irect evaluation  of th e  sp ec tra l functions a t finite tem j)e ra tu re  is desirable.

3.3.1 Mass dependence

T here  is obviously no technical re s tric tio n  on deform ing th e  th eo ry  under in­

vestiga tion  aw ay from  Q C D . O n th e  la ttice  for exam ple, q u ark  m asses m ay be 

tim ed  away from  th e ir values correspond ing  to  th e  physical q u ark  m asses. It is 

useful to  com pare th e  m ass-dependence of th e  quarkou ium  sp ec tru m  above the  

deconfinem ent tra n s itio n  to  m ake con tac t w ith  th e  expected  th e rm a l m odification 

of th e  sp ec tru m  from  a sim ple p o ten tia l m odel p ic tu re , as has been  perform ed 

in quenched stud ies [140]. T h e  b ind ing  rad ius is re la ted  to  th e  typ ica l inverse 

m om entum  tran sfe r, r / /  ~  (m Q t’)“ \  and  effective colour Debye screening occurs 

w hen th e  screening leng th , r p ,  is com parab le  w ith  or sm aller th a n  th e  b inding  ra ­

dius, I 'D  ^  Tf { .  A t a  given te m p e ra tu re , therefo re , svich a m echanism  is expected  

to  becom e less effective for heavier, m ore tig h tly  b ound  sta tes .

F igure 3.9 shows th e  m odification  of co rre la to rs  for various la ttice  heavy-quark  

m asses rang ing  from  above th e  charm  qu ark  m ass th ro u g h  the  b o tto m  quark  m ass 

to  superheavy  quarks in th e  S wave (left) and  P  wave (right) channels a t the  

highest te m p e ra tu re  1.90Tc. C orre la to rs  in th e  P  wave channel exh ib it g rea te r 

th e rm al m odification th a n  in th e  S wave channel a t each of th e  la ttice  heavy-quark
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Figure 3.10: Teiiiperature-dependence of the reconstructed spectral function in 
the S wave channel. The dashed black lines in the first panel indicate the ground 
s ta te  and first excited s ta te  energies determ ined from m ulti-exponential fits at 
zero tem perature. Note the different ordinate scale between the upper and lower 
panels.

masses investigated. At sm aller values of the heavy-quark mass, approaching the 
charm -quark mass, on the edge of the validity of the effective theory, a large 
enhancem ent is seen even in the S wave channel correlation function, while for 
large values of the heavy-quark mass some enhancem ents are still seen in the 

P  wave channel. T he mass-dependence has also been investigated in the N f  =  2 
case [151] where analogous dependence on the heavy-quark mass param eter was 

observed.

3.4 Spectral functions from MEM

As m otivated in the previous section, the spectral fimctions provide a straightfor­
ward in terpretation  of the  m odification of the spectrum  a t finite tem perature. In 

th is section, the spectral functions from MEM are presented using the m ethod­

ology outlined in the previous chapter. System atic effects are discussed in the 
following subsection, of which the stability  of the reconstruction w ith the  varia­

tion of the tim e dom ain of the correlator d a ta  used is the  most im portant.

Figures 3.10 and 3.11 depict the spectral functions in the S wave and P  wave
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Figure 3.11: Temperature-dependence of the reconstructed spectral function in 
the P wave channel with the zero tem perature ground state energy shown in the 
first panel with a dashed black line. Recall that no excited states were able to be 
extracted in the P wave channel using multi-exponential fits.

channels respectively at temperatures from 0.76Tc up to 1.90Tc. For clarity each 
panel displays just two neighbouring temperatures. In the S wave channel the 
ground state peak is clearly visible and coincides with the energy extracted from 
the exponential fit to the correlation function at zero temperature, see figure 2.12. 
The ground state peak persists at all accessible temperatures demonstrating the 
sm’vival of the ground state to at least 1.90Tc. The ground state peak is observed 
to broaden and decrease in height above the crossover temperature. Below the 
deconfinement transition the second peak may be identified with the first excited 
state. Its interpretation above T̂ . is less clear, which may be due to dissociation 
in the plasma as well as the possible dominance of lattice artifacts in the high 
frequency part of the spectral function.

In the P wave channel, shown in figure 3.11, the ground state peak can be 
discerned at temperatures below Tc and agrees with the energy from the expo­
nential fit at zero temperature. It is noted that below the crossover tem perature 
the ground-state peak is relatively suppressed to the continuum feature at higher 
frecjuencies, which suggests the difficulty in distinguishing this state even at low 
tem peratures due to the admixtiu'e of lattice artifacts in the correlation function, 
compared with the S wave channel. This peak is observed to disappear immedi­
ately in the deconfined phase which indicates the dissociation of this state almost

85



as soon as the deconfined phase is reached.

The conchisions from the MEM of the survival of the S wave state in the 

plasm a up to 1.90Tc and the im m ediate dissociation of the P wave state  above 

Tc are effectively unchanged, then, from the N j  — 2 studies [94, 96]. A greater 

range of tem peratures below Tc in the current study allows the P wave ground 

state to be discerned below Tc- No significant effect is then attributed to the 

inclusion of the strange quark in the thermal medium.

3.4.1 Systematic tests of MEM

A detailed exam ination of the reconstruction of the spectral functions is essential 

to have confidence in the interpretation of effects due to the variation of the 

tem perature. Here, som e pertinent issues relating the selection of the tem poral 

range of the correlator and the frequency domain of the spectral function are 

discussed. Other effects such as the dependence on the default m odel and the 

statistical uncertainty have been investigated for similar data from the N f  =  2 

ensembles [94, 96] where they were noted to have only a mild influence on the 

qualitative behaviour.

The stability of the spectral function w ith the variation of the tem poral range 

of the correlation functions used in the reconstruction is shown in figure 3.12 in 

the S wave (top) and P wave (bottom ) panels for two tem peratures corresponding 

to  N r — 28 (left) and N r  =  20 (right). The spectral functions are observed to 

be stable as long as data at tem poral separations close to AV are excluded. At 

the higher tem perature w ith N r =  20 in the P wave channel (bottom  right), a 

peaked structure appears when the correlator data at N r  — 1 is included in the 

reconstruction. It is difficult to understand the resurgence of a peak structure 

on any physical grounds considering the absence of such a structure in this re­

gion of the spectral function at the lower tem perature (bottom  right). It has 

been suggested that the periodicity of gauge fields induces a lattice artifact at 

tem poral separations near N r  which m otivates the exclusion of correlator data  

at separations near the boundary [96].

Alternatively, the peak structure observed in this reconstruction is an artifact 

due to a ringing effect, like the Gibbs phenom enon in Fourier analysis, when re­

constructing rapid thresholds from a finite basis of functions. The instability of 

the reconstruction under variations of r2 /a,- may be a sym ptom  of the fact that 

the relatively sm all SVD basis is inadequate to perform large cancellations over 

the entire support of the spectral function [119]. Regardless, the reconstruction is 

stable once the last correlator datum  is om itted from the reconstruction. There­

fore the reconstructed spectral function converges in all cases when the range of
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(left) and  N r  =  20 (righ t). T h e  resu lts  w hen th e  largest tem p o ra l sep ara tio n  
(r/fl,- =  N r  — \ )  is included are show'n w ith  dashed  lines.

co rre la to r d a ta . [ r i/a ,- . t'2 /o-t], is chosen such th a t  T \ / a r  >  1 and  T2 l a r  <  N r ~ \ .

M ore evidence of th e  s tab ility  of th e  reco n stru c tio n  is show n in figure 3.13. 

w here only a subset of th e  available co rre la to r is used to  perform  th e  reconstruc­

tio n  in th e  S wave channel a t th e  lowest te m p e ra tu re  w ith  N r  =  40. In the  

left-hand  panel, th e  reco n stru c tio n  is perform ed using all of th e  usab le  co rrela­

to r d a ta  (solid line) and  also using only th e  even co rre la to r d a ta  (dashed  line), 

roughly  half of th e  available d a ta . O nly a sm all varia tion  in th e  g round  s ta te  

peak  height is observed. T h is figure d em o n stra te s  th a t  successful reconstructions 

of narrow  peaks m ay be o b ta in ed  even w ith  a re la tively  sm all num ber of available 

basis functions. In th e  r ig h t-h an d  panel, th e  reco n stru c tio n  a t th e  te m p e ra tu re  

correspond ing  to  N r  =  24 (dashed  line) is com pared  w ith  th e  reco n stru c tio n  at 

th e  lower te m p e ra tu re  corresponding  to  N r  — 40 using th e  sam e ex ten t of the  

co rre la to r d a ta  (solid line). T h is d em o n stra te s  th e  explicit physical effect of the  

te m p e ra tu re  on th e  sp ec tra l function  as th e  cond itions of th e  reco n stru c tio n  are
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Figure 3.13: S tability of the reconstructed spectral function using all (solid line) 
and half (dashed line) of the available correlator d a ta  in the S wave channel at 
N-r =  40 (left). Comparison between reconstructions at N r = 24 (dashed line) 
and Nj- =  40 (solid line) using the same extent of correlator d a ta  in bo th  cases 
(right).

identical in this case. This supports the claim th a t inferences about the  tem per­
a tu re dependence of the spectral function obtained from MEM are physical and 
not artifacts of the changing SVD basis during the reconstruction.

The frequency dom ain cliosen for each reconstruction of spectral function is 
given in table A .I. This interval must be chosen judiciously and may extend to 
negative frequencies due to  the fact th a t the effective theory is defined around 
the two-quark threshold, so negative frequencies are not excluded a priori. Fur­
therm ore, this range must be sufficiently large to  avoid forcing spectral weiglit to 
red istribu te to satisfy the sum rule which conserves its area. Very little  variation 

w ith the spectral function is observed as long as the frequency range is extended 
adequately.

The stability  of the reconstructed spectral function from the m aximum en­

tropy m ethod would lend support th a t the effects seen bo th  channels are not 

dom inated by artifacts due to  the reconstruction and th a t the results can sensi­
bly provide useful in terpre tation  on the existence and m odification of the bound 

states in the plasma.

3.5 Spectral functions from Bayesian reconstruction

In order to  test the robustness of the spectral function reconstructed using MEM 

it is highly desirable to  use the alternative regularization of the BR m ethod ou t­

lined in section 2.3.6, especially due to  the concerns regarding the reconstruction
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Figure 3.14: Tem perature-depeiideiice of the reconstructed spectral function in 
the S wave channel. The dashed black lines in the first panel indicate the ground 
s ta te  and first excited sta te  enei’gies determ ined from nm lti-exponential fits at 
zero tem perature. Note the different ordinate scale between the upper and lower 
panels.

when there are few correlator d a ta  available at high tem peratures. Like the 

MEM. the reconstruction on the finite tem peratm ’e Euclidean correlator d ata  
proceeds identically to the zero-ternperature reconstructions. The spectral func­

tions are depicted for the S wave channel in figure 3.14 and the P wave channel 
in figure 3.15 in the same format as the previous section.

In the S wave channel, a t low tem peratures, the two lowest peak positions 
are coincident w ith the ground and first excited-state energies as before and 

therefore agree w ith the peak positions from MEM. At the lowest tem perature, 

the  ground-state peak is visibly narrower w ith a greater am plitude th an  the MEM 

spectral function. However, the tem peratu re dependence is very sim ilar w ith the 

ground sta te  peak shrinking and broadening w ith increasing tem perature. At low 

tem peratures, the am plitude of the first excited-state peak is relatively reduced 

and the contim unn backgroimd feature is much less prom inent th an  in the MEM. 

As the tem peratu re  is increased, the feature of the first excited s ta te  shifts and 

broadens, ju st as for the MEM, and it is no longer discernible above 1.27TC. 

Qualitatively, therefore, the conclusions of the tem perature-dependence in the 

S wave channel are very sim ilar to  those from the MEM although the resolution
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Figure 3.15: Tem perature-depeiidence of the reconstructed spectral function in 
the P wave channel. The dashed black lines in the first panel indicate the ground 
s ta te  and first excited sta te  energies determ ined from m ulti-exponential fits at 
zero tem perature. Note the different ordinate scale between the upper and lower 
panels.

of the ground s ta te  peak at low tem peratures seems clearer w ith the BR method.

In the P wave channel, the situation is m arkedly different. At low tem per­
atures. the lowest-energy peak agrees well w ith the ground-state energy, ju st as 

for the MEM. The support of the spectral fmiction in this channel is also com­
parable w ith the support of the reconstruction from the MEM. However, the 

backgroimd spectral features above the ground-state peak, which are a ttrib u ted  
to  lattice artifacts, exhibit more peaked structures. In contrast w ith the  MEM 

the ground-state peak persists at all tem peratures up to  1.90Tc and exhibits a 

smaller relative suppression in the peak height as the tem peratu re  is increased. 

This would suggest the survival of the  P wave s ta te  well into the plasm a phase up 

to  at least the  highest tem peratu re investigated in this study. In the BR m ethod, 

the separation between the optim ization task  and N r  facilitates the investigation 

of the dependence of the reconstruction on the num ber of correlator data . In this 

context the dependence on the  num ber of correlator d a ta  included should dem on­

stra te  the physical content of the correlators and not be susceptible to  system atic 
variations of the  reconstruction. In the MEM, the dependence of the reconstruc­

tion on the num ber of correlator d a ta  is conflated w ith the A^T--clependence of the
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SVD basis and  consequently  it is a  m ore su b tle  issue to  d e te rm in e  th e  s tab ility  

of th e  reconstruc tion . A t finite te m p e ra tu re  it is especially  im p o rtan t to  accoim t 

for th is  sy stem atic  eifect w hen th e  num ber of co rre la to r d a ta  is sm all.

3.5.1 Momentum dependence of the ground-state S wave

h i th e  S wave channel, th e  sp ec tra l function  was also reco n stru c ted  a t ftnite 

m om en tum  a t te m p e ra tu re s  above th e  tra n s itio n  tem p era tu re . A selection of th e  

reco n stru c tio n s are show n in figure 3.16, w here th e  peak  position  is observed to  

scale w ith  th e  q u ad ra tic  m om entum . No significant varia tion  of th e  peak  w id th  

or height is observed as th e  m om en tum  is increased a t any tem p era tu re . O nly  

m om en ta  w ith  th e  sam e degeneracies are  show n for a fair com parison  betw een 

th e  th e  s ta tis tic a l u n certa in ties , w hich are  however expected  to  be m ild.

3.5.2 Systematics of BR method

In th is  section, th e  dependence of th e  reco n stru c tio n  on th e  ex ten t of th e  co rre la­

to r  d a ta  used in th e  reco n stru c tio n  is investiga ted . Specifically, th e  tipper w indow  

of th e  co rre la to r, T2 , is varied  as th e  p rim ary  concern  is how th e  reco n stru c tio n  

depends on th e  inclusion of th e  m ost im p o rta n t co rre la to r d a ta  for reco n stru c tio n  

th e  low -energy behav iour of th e  sp ec tra l functions, nam ely  th a t  a t large E uclidean
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Figure 3.17: Exam ples of fits of a Lorentzian and Gaussian linesliape to  the 
lowest peak in the spectral function in the S wave (left) and P wave (right) at 
the highest tem perature corresponding to  N r  =  16. The Lorentzian linesliape 
generally provides a be tte r param eterization judging by the goodness of fit.

distances. In order to  quantify the dependence of the ground-state peak on T2 , 
the peak feature is fitted w ith a Loi'entzian and Gaussian linesliape. examples of 
which are depicted in ftgure 3.17. T he fit was perform ed over only the  left-hand 
linesliape due to  the contam ination of the ground-state peak with contributions 
from the background, especially at higher tem peratures. Additionally, the peak 
was fitted only over the region of the spectral function above the half-height of 
the ground-state peak. The Lorentzian linesliape generally provided a b etter 
param eterization of the liiieshape m otivated on physical grounds, although the 
Gaussian linesliape was satisfactory for m ost cases, judging by the goodness of fit. 
The reconstructions were repeated by varying the latest correlator da tum  used 

in the reconstruction, t j .  and the dependence of the best fit param eters on T2 

were examined. A lthough the statistica l errors from the jackknife m ethod were 

estim ated in the noisier P wave channel, their m agnitude is so much sm aller th an  
the system atic variations in the reconstruction th a t they can be safely ignored in 

the present analysis.

The dependence of the ground-state w idth on T2  is depicted in the S wave 

channel (left) and P wave channel (right) in figure 3.18. The abscissa is the 

inverse, a r / r 2 , so th a t an indication of the behaviour of the param eters if more 

Euclidean d a ta  were available could be ascertained. In the S wave channel, at low 

tem peratures the w idth decreases rapidly as T2  is increased, indicating th a t the 

physical w idth is sm aller th an  the reconstruction w ith finite d a ta  is able to  probe. 

As the tem perature is increased above the transition  tem perature, a p lateau  is 

visible at the highest tem peratures in the  S wave channel. In the P wave channel
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F igure  3.18; Illu s tra tio n  of th e  best-fit p a ram e te r  of th e  w id th  of th e  ground- 
s ta te  peak , r ,  versus th e  inverse of th e  la tes t co rre la to r d a tu m  included in tlie 
recon stru c tio n , a r / '^ 2 - E ach te m p e ra tu re  is dep ic ted  in th e  S wave (left) and  
P  wave (righ t) channels w ith  linespoin ts to  guide th e  eye.

sim ilar behav iou r is visible except th a t  a t all te m p e ra tu re s  som e stab iliz ing  of the  

w id th  is visible w ith  th e  available d a ta  is observed. A n e s tim a te  for th e  w id th  

is th en  tak en  to  be th e  w id th  of th e  sp ec tra l fea tu re  w ith  T2 j a r  =  — 1 fore

each given tem p era tu re . A system atic  erro r is ob ta in ed  from  th e  varia tio n  of the  

w id th  over th e  p la teau  observed as T2 /o r  becom es large. For th e  noisier P  wave 

channel, a s ta tis tic a l e rro r b a r is inchided on these  b est fit p a ram ete rs  w hich was 

e s tim a ted  from  a blocked jackknife analysis. Even th is noisier channel, th e  errors 

are  sm aller th a n  th e  th ickness of th e  po in ts  w hich illu stra tes  th a t  th e  system atic  

errors of th e  reco n stru c tio n  are m uch g rea te r th a n  th e  s ta tis tic a l uncerta in ty .

T h e  te m p e ra tu re  dependence of th is  e s tim a te  for th e  w id th  from  the  BR 

m eth o d  is show n in figure 3.19. G iven th e  asym p to tic  behav iou r of th e  w id th  in 

th e  S wave channel a t low tem p era tu res , a non-zero w id th  is only rep o rted  above 

th e  tran s itio n  te m p e ra tu re  w here som e s tab iliza tio n  of th e  w id th  is observed w ith  

T2 I c i t -  T h e  estim ates  of th e  w id th  from  M EM  in th e  S wave channel are included, 

w here th ey  are d raw n suggestively as u p p er bounds due  to  th e  poo rer reso lu tion  

on th e  peaked  fea tu res from  th is  m eth o d  w ith  th e  finite SVD basis discussed in 

th e  previous chap ter. T he tem p era tu re -d ep en d en ce  of the  P  wave g ro u n d -s ta te  

w id th  is consisten t w ith  a linear rise, a lthough  th e  large sy stem atic  erro r cannot 

d iscrim inate  betw een a  linear or q u a d ra tic  m odel.

An analogous p lo t for th e  inverse m ax im um  height of th e  g ro u n d -s ta te  spec­

tra l  fea tu re  is th e  S wave (left) an d  P  wave (righ t) channel is show n in figure 3.20. 

T h e  o rd in a te  is chosen to  be th e  e s tim a te  for th e  inverse height in o rder to  dem on-
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Figure 3.19: Tem perature dependence of the ground-state best-fit w idth from the 
BR m ethod in the S wave channel (blue crosses) and the P wave channel (red 
exes). The best-fit w idth from the MEM reconstruction in the S wave channel is 
also included w ith the black arrows which are in terpreted  as upper boimds due 
to  the difficulty of the m ethod in reconstructing the widths.

s tra te  the extrapolation  of the peak height to  large values at low tem peratures, 
visible in the S wave channel. As in the case of the w idth, figure 3.18, a jackknife 
error is included on the best fit param eters in the P wave channel. Above the 
transition  tem perature the heights no longer tend towards very large values sug­

gesting the m ethod is accurately capturing the peak height which is suppressed 
in the deconfined phase. In the P wave channel some puzzling behaviour can be 
observed which clearly distinguishes between the behaviour above and below the 

transition  tem perature. At low tem peratures there appears to  be some stability  
in the peak height as T2 is increased while above the deconfinement tem peratu re 

the reconstructed peak height seems to  decrease sm oothly as more correlator 

d a ta  are included in the reconstruction. This may suggest th a t the dom inance of 

lattice artifacts in this channel above the deconfinement transition  tem peratu re 

m ean th a t an adequate reconstruction is poorly constrained by the d a ta  where 

they are not dom inated by contributions from physical states, such as in the free 

case.

The difficulty of reconstructing spectral densities of continuum  structu res such 
as the free lattice spectral function is dem onstrated in figure 3.21. Here, mock 

correlator d a ta  w ith Nr — 40 were created by composing the free lattice spectral
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F igure 3.20: Illustration  o f th e b est-fit inverse peak height of th e  gro in id -sta te  
peak. p “ axi versus th e  inverse of th e la test correlator datiu n  included  in th e  
recon stru ction , o / t / t 2 . Each tem perature is d ep icted  in th e S w ave (left) and  
P w ave (right) channels w ith  lin espoin ts to  gu ide th e eye.

function , in th e  S w ave channel (left) and th e P wave channel (right), w ith  th e  

kernel eqn. (2 .44). G au ssian  noise was added to  th e data  w ith  a stren gth  cor­

responding to  th e  s ign a l-to -n o ise  ratio  of th e  availab le data  in th e  la ttice  stu d y  

for a fair com parison . A s can  be observed  in th e figure, th e m eth od  stru ggles to  

reproduce th e con tinu um  faith fu lly  w ith ou t th e appearance of peaked structures. 

However, th e support of th e  recon stru cted  sp ectra l function  and th e  p osition  of 

th e featm-es agrees q u ite well w ith  th e  m ock d ata . T h e area under b o th  den sities  

is scaled  to  u n ity  for com parison . R in ging phenom en a like th is is a fam iliar effect, 

such th e G ibbs effect in Fourier analysis.

In figure 3 .22. th e  recon stru cted  free la ttice  sp ectra l fun ction  is com pared  

w ith  th e recon stru cted  sp ectra l fun ction  from  th e S w ave (left) and P  w ave (right) 

channels at th e  h ighest tem perature. T h e free reconstruction  has b een  sh ifted  

w ith  th e energy shift so th a t its  threshold  corresponds to  th e tw o-p article thresh ­

old o f the zero-tem perature theory. Furtherm ore it has been  scaled  w ith  to  the  

area of th e h igh -tem p eratu re recon stru cted  sp ectra l function  for com parison.

T h e com parison  of th e recon stru cted  free la ttice  sp ectral function  w ith  the  

in teracting  case is one p ossib le criteria  for th e survival o f the b o ttom on iu m  states. 

T h ese criteria are n ot n ecessarily  ideal and th e com parison  w ith  th e  free la ttice  

sp ectra l function  w hich  has b een  su ggested  in ref. [152] proposes different criteria  

for m atching. T here, it is sviggested th a t th e free recon stru ction  be sh ifted  so that 

th e thresholds o f in teracting  and free m atch  and furtherm ore th a t th e free la ttice  

sp ectral fvmction is scaled  so  th a t th e  free and in teracting thresholds m atch  in
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F igure 3.21: R econstruc tions of th e  free la ttic e  sp ec tra l function  in th e  S wave 
(left) and  P  wave (right) channels from  th e  BR m eth o d  are show n in solid lines. 
T h is d em o n stra te s  th e  difficulty in rep roducing  featu res associa ted  w ith  th e  sharp  
cusps of th e  free la ttice  sp ec tra l function  (dashed  lines). T he am p litu d es of th e  
sp ec tra l functions are norm alized  by fixing th e  a rea  u n d e rn ea th  th em  to  unity.

th e  u ltrav io le t, w here only la ttic e  a rtifac ts  are presen t. T h e  g ro u n d -s ta te  peak  

in th e  S wave channel is clearly  visible w ith  a  large am p litu d e  com pared  w ith  th e  

scaled free la ttice  sp ec tra l function , unam biguously  confirm ing a  signal in th is 

channel. In th e  P  wave channel, righ t, th e  re la tive am p litu d e  of th e  rem n an t 

lowest peak  is q u ite  com parab le  w ith  th e  am p litu d e  of th e  free la ttic e  sp ec tra l 

function  in th a t  region. C oupled w ith  th e  curious behav iou r of th e  P  wave peak 

height w ith  T2 . and  th e  conflict w ith  th e  M EM  resu lts  th e  sy stem atic  varia tio n  

of th e  reco n stru c tio n  rem ains to  be resolved.

W hile th e  new m eth o d  offers som e advan tages in decoupling th e  SVD basis 

from  th e  m in im ization , fu rth e r investiga tion  of th e  effects of th e  different reg u lar­

iza tion  functional will be required  to  su p p o rt such discrepancies w ith  ex isting  and  

te s ted  m ethods from  th e  M EM . In  p a rticu la r, th e  in fo rm atio n -th eo re tic  g rounds 

for th e  use of th e  M EM  reg u lariza tion  are  no t as well u n d ers to o d  for th e  looser 

ad  hoc co n stru c tio n  of th e  B ayesian  reconstruc tion . In  p rac tica l te rm s, th e  new 

regu larization , w hile suppressing  th e  ap p earan ce  of unphysical peaks of sm all 

am p litu d e  has th e  opposite  effect of a w eaker reg u lariza tion  of peaks of large 

am p litu d e  com pared  w ith  th e  prior. It is possible th a t  th e  in stab ility  of th e  peak 

height w ith  th e  num ber of co rre la to r d a ta  is a m an ifesta tio n  of th is  p ro p erty  of 

allowing peaked s tru c tu re s  to  exist unless strong ly  co n stra ined  by th e  d a ta . T he 

survival of th e  P  wave s ta te  in  th e  p lasm a  is no t yet se ttled . T h e  ap p lica tio n  of
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Figure 3.22: Com parison between the reconstructed free spectral function 
(dashed lines) and the interacting spectral function (solid hnes) at the highest 
available tem perature, 1.90Tc, in the S wave (left) and P wave (right) channels. 
The area of the reconstructed free lattice spectral function is scaled to  the area 
of the interacting counterpart, and the pertm 'bative estim ate of the energy shift 
is used to  shift the threshold of the free lattice spectral functions.

the novel reconstruction m ethod for which it was specifically tailored is outlined 
in the next chapter in the study of the ciuarkoniuin potential from W ilson line 
correlator data.
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4 Heavy-quark potential

In this section another apphcation of the spectral analysis of Eiiclidean correlators 
is presented. The determination of the heavy-quark potential at finite tempera- 
tiue  can be cast in terms of the inference of the spectral function of a Euclidean 
Wilson loop. The motivation to understand the binding of heavy quarks in a 
QCD plasma from the medium-modified potential is closely related to the phe­
nomenology of the in-medium modification of the quarkonium spectral functions 
presented in the previous chapter. The extraction of the heavy-quark potential 
suitable for potential models is highly desirable as outlined in the introductory 
chapter. However, the non-perturbative definition of the heavy-quark potential 
at finite temperatvu'e has been deliberated over for some time and the relevant 
potential has been identified variously with both the colour-singlet free or internal 
energies [153. 62]. The following definition of the heavy-quark potential follows 
from the spectral decomposition of the Wilson loop, or related, the gauge-fixed 
Wilson line correlators, as outlined in ref, [154], The two potentials are known to 
agree only to leading order in resummed perturbation theory — whether they co­
incide non-pertubatively is not well understood and lattice studies aim to deepen 
such understanding.

4.1 Heavy-quark potential at finite temperature

The Euclidean Wilson loop is U 'b(r, r )  =  'Pexp(— dx^ A^ {x)), where 7 is the 
rectangular path with dimension, r x and can be shown to have a spectral 
representation

(4,1)
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whose analytic continuation satisfies a Schrodinger-like equation [155],

idtWa{r, t )  = ip{t,r)Wa{r,t).  (4.2)

Intuitively, this can be understood through the mapping of this operator to the 
world-line amplitude of a heavy-quark anti-quark pair. The late-time behaviour 
of this equation defines the heavy-quark potential, V{r)  =  lim(_>oo ¥’(»’) 0- If 
a separation of scales exists such that the late-time behaviour dominates the 
low-energy spectral function, a Lorentzian lineshape encodes the heavy-quark 
potential through

Pai^^) = 7------------ ' ^ 2  , r 2  ’(w -  UJ)^ +  I ^

with the identification r(?’) =  (r) and oj{r) =  (r) [156]. The existence of an
imaginary part of the heavy-quark potential can be attributed to Landau damping 
and was first highhghted in the weak-coupling analyses [53, 56, 157]. The rela­
tion of the real and imaginary parts of heavy-quark potential to the Wilson loop 
spectral function and consequently the Eiiclidean correlation function invites the 
non-perturbative estimation of these quantities from the lattice. Pragmatically, 
the existence of an imaginary part of the potential at finite tem perature pre­
cludes the accurate extraction of heavy-q\iark potential from an ansaetz of pure
exponential decay of the Euclidean correlator at asymptotically large times [158]. 
Furthermore, a general analysis of the possible alterations to such a lineshape in 
the presence of the characteristic timescale. I q q , which captures the time after 
which if{r, t) becomes constant reveals that a spectral lineshape

, , a{uj -  Co) ( i \ T \   ̂ ,A ,\
pn(w) =  7 —---------------- 2 +  Co cxtQQ{u) -Lo) + (4.4)

is possible as an expansion in igq,  where q,/3,7,co and ci are functions of the 
distance, r. The effect of adding short-distance effects to the Wilson loop natu­
rally skews the Lorentzian lineshape. Improved ansaetz inspired by the skewed 
Lorentzian form of eqn. (4.4), have been used to estimate the real and imaginary 
parts of the heavy-quark potential from dynamical lattice simulations [159]. In 
the following section, the results of the weak-coupling analyses are sunmiarized 
which suggest a gauge-fixed Wilson-line correlator may provide a more useful 
observable to extract the potential from numerical simulations.
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4.1 .1  Heavy-quark potential from Wilson line correlators

The resumm ed framework of hard-therm al loop effective theory am eliorates the 

poor convergence in perturbative calculations in therm al field theory [160]. In 

a physically intuitive picture, this reorganization of pertu rbation  theory shifts 

the expansion to  one around gas of quasiparticles w ith the Debye mass. The 

heavy-quark potential was calculated in this formalism in the series of formative 

works which dem onstrated  the existence of an im aginary part of the potential as 

well as the familiar Debye-screened Coulomb p art [53, 54, 56]. The im aginary 
com ponent serves to  decorrelate the heavy-quark anti-quark pair in a medium 

and whose in terpretation  is due to  Landau dam ping of the binding gluons in 

the therm al medium. This po tential can be derived from the static limit of the 
heavy quarkonium  correlation function, and consequently can be used to deter­

mine the resTunmed quarkonium  correlation and spectral functions by solving the 

Schroedinger equation which is obeyed by the correlation functions, eqn. (1.28), 

w ith the poten tial included.

The analysis of the spectral function in the resum m ed framework yields ex­
actly the ansaetz of the skewed Lorentzian lineshape of eqn. (4.3) in the low- 

frequency region around the lowest peak. Furtherm ore, the  numerical evaluation 
of the spectral function, wdiich cannot be expressed in closed form, dem onstrates 
the necessity of including skewing as well as polynomial term s in order to obtain 

a good fit and extract the correct potential.

In addition to  the dimensionally regularized observable, a m om entum  regu­
larization of the  W ilson loop was imposed in ref. [154]. The non-renorm alized 
W ilson loop, such as the lattice observable in the following study, is heavily sup­
pressed at interm ediate Euchdean times partia lly  due to  the cusp divergences 

present. This naturally  has practical consequences for a numerical estim ation of 

the Wilson loop if the signal is highly suppressed. The omission of the  spatial 

links is known to produce a significantly improved signal-to-noise ratio  in the 

context of zero-tem perature simulations. Consequently, the investigation of the 

Wilson line correlators in the resumm ed framework revealed th a t the identical 

potential is encoded in the gauge-dependent W ilson line correlators to  the same 

order in the pertu rbative  calculation. Assuming th a t the same relationship holds 

non-perturbatively this suggests using the gauge-fixed W ilson-line correlator to 

ex tract the po ten tial from numerical simulations.

In the w'ork of ref. [161], MEM was employed to  reconstruct the  spectral 

functions from the corresponding perturbative Euclidean correlators in order to 

dem onstrate the feasibility of the reconstruction from Euclidean data . Using 

the fit form inspired by the skewing of the lowest peak observed in the hard-
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Figure 4.1: A comparison of the Wilson loop, W'"n(r, r ) , (solid lines) and gauge- 
fixed Wilson line correlators H'||(r, r ) , (dashed hnes) at T/Tc ~  1.90, which 
demonstrates the large suppression of the Wilson loop signal compared with the 
gauge-fixed Wilson line at comparable separations, r.

thermal loop approach, it was observed that the real part of the potential was 
in good agreement with the direct calculation in the perturbative framework. 
However, the imaginary parts, namely the widths of the reconstructed spectral 
functions were overestimated. This observation provided the impetus for the 
Bayesian reconstruction method outlined in the previous chapter. In the following 
section, the potential from the W^ilson line correlators is presented as work done in 
collaboration with the authors of ref. [120] as part of the FASTSUM+ collaboration.

4 .1 .2  W ilson line correlators from anisotropic lattices

The advantages of the anisotropic formulation in the performance of the recon­
struction ought to provide a valuable opportunity to investigate both the com­
plementary physical content of the Wilson line correlators and to compare the 
dominant systematic effects of the finite lattice spacing between studies of the 
heavy-qiiark potential. The cheap nature of the measurements of the pure gauge 
observable is somewhat spoiled by the relatively expensive gauge-fixing. The 
gauge was fixed to Coulomb gauge with a stronger criterion on the gauge-fixing 
violation oi 6 < 10“ '^ due to the gauge-dependence of the unclosed Wilson line

r /as  = 1
r / a s  =  2

r as = 3
r / a s  =  4:

r as = 5

U'b U','r
r  as = I
r /as  =  2
r  as = 3
r / a s  =  4

r/Us = 5
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Figure 4.2; T he W ilson line correlators w ith increasing tem peratu re  from left to  
right, which already suggests the salient tem perature-dependence of the real part 
of the potential.
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correlator. A typical tra jecto ry  of the gauge-fixing violation is visible in the 
appendix.

The correlators were then  com puted on four of the available tem peratures, 
T/Tc  =  0.76, 0.95, 1.52 and T/Tc =  1.90, which span the accessible tem peratu re 

range. Separations of up to  r /a ^  =  8 were com puted, which am ounts to  54 
distinct displacements upon including both  on and off-axis m easurem ents. A 

comparison between the W ilson loop and Wilson line correlators at T/Tc — 1.90 
w ith the same mmiber of m easurem ents is shown in figure 4.1 for a  selection 
of spatial separations. It is evident th a t the W'ilson line correlator is much less 

suppressed th an  the W ilson loop and is less susceptible to  lattice artifacts in the 
short-distance part of the correlator which ham per the extraction of the signal.

The W ilson line correlators are depicted for the o ther tem peratures in fig­
ure 4.2 where the qualitative features of the rising potential are visible as the 

correlator decays faster as the distance is increased. Fm-thermore, the tem per­

atu re dependence already signals th a t the potential becomes suppressed as is 

visible from the weakening of the decay w ith increasing tem perature.

4.1.3 Spectral reconstructions and potential from the Bayesian re­
construction

Due to the deficiencies observed in reconstructing the  hard-therm al loop spectral 

functions w ith MEM, the Bayesian reconstruction is the preferred im plem enta­

tion for the extraction of the potential from lattice data . T he reconstruction 

proceeds exactly as for the heavy quarkonium  correlators of the previous chap-
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Figure 4.3: The reconstructed spectral function of the W ilson line correlators 
using the BR m ethod (section 2.3.6) at T /T c  = 1.50. which illustrates the typical 
dependence of the lowest peak height and w idth on the separation, r.

ter. Param eters used in the reconstruction are listed in table A.4. A sample of 

the reconstructed spectral function is shown in figure 4.3 at the highest available 
tem perature. T/T c  =  1.90. W ith  increasing separation, three effects are noted 
on the lowest peak, namely the suppression of the peak height, the shift in the 
peak position and the growth in the  w idth, which signals the increasing real and 

im aginary parts of the potential. T he spectral reconstructions and their fits used 
to  obtain the potentials in figures 4.4 and 4.5 were perform ed by A. Rothkopf.

The potential obtained from the  fits of the Lorentzian lineshape and skewed 
Lorentzian background w ith constant background are com pared for the highest 

tem perature, T /T c  =  1.90 in figure 4.4. The system atic difference between the 

functional fit form, which is not accountable w ithin the statistica l errors, are 
reminiscent of the discrepancy observed between the fits for the W ilson loop data  

in ref. [154] which was caused by the failure of the reconstruction, MEM in th a t 

case. It can be guessed already from figure 4.3 th a t the  spectral lineshape does 

not adhere to  a Lorentzian or some small deform ation of one a t large separations. 

Obviously, a t higher tem peratures the possibility of the dom inance of discretiza­

tion effects ought to  become troubling. Evidence th a t the features of the spectral 

function are not well separated from the continuum  at high frequencies should 

raise questions of the system atic effects of the reconstruction. The qualitative
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Figure 4.4: Com parison betweeen the real part of the  potential obtained at the 
highest available tem perature. 1.90rc, using the naive Lorentzian param eteri- 
zatioiis of the lineshape (red points) and the skewing Lorentzian w ith constant 
background term  (orange points). The free energy is also depicted for comparison 
(green points), showing a very different qualitative behaviour at this tem perature. 
Figure provided courtesy of A. Rothkopf.

behaviour of the colour-singlet free energy is rem arkably different and reiterates 

the im portance of identifying the correct potential.

The tem perature-dependence of the ex tracted  poten tial is shown in figure 4.5. 
At separations of r  <  0.6fm, the ordering of the real p art of the potential adheres 
to  the expectation of screening of the potential in the  deconfined phase. However, 

beyond these separations the persistent linear rise of the real part at the highest 

tem peratiu 'e m ust be trea ted  w ith skepticism.

Although increased m easurem ents may alleviate some of the difficulties of the 

reconstruction at high tem peratures where there are few correlator da ta  which 

encode the physical potential, the suggestion th a t reconstructions of the spectral 

functions at the highest available tem peratu re are strongly afflicted by lattice ar­

tifacts cannot be escaped. In th a t light, the strong rise in the im aginary p art of 

the potential, which considerably overshoots the hard-therm al loop result [154], 

T he successful reconstruction of the heavy-quark potential allows for the extrac­

tion of the Debye mass and fin ther work bu t further work is required to  pin down 

the discretization effects in the lattice observable before such quantita tive tests 

make sense. Nevertheless, this type of study dem onstrates the feasibility of using
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the reconstruction to ex tract valuable inform ation on the heavy-quark potential 

from lattice QCD from relatively inexpensive obervables at finite tem perature, 
whose development will continue to  enrich the study of heavy-quark probes at 

finite tem perature.

106



2.6

2.4

2.2

T/Tc=1.90  ̂
T/Tc=1.52 
T/Tc=0.95 
T/Tc=0.76

0 1.20.2 0.4 0.6 0.8 1
r[fm]

0)
O

1.4

1.2

1

0.8

0.6

0.4

0.2

0

T/Tc=1.90
T/Tc=1.52
T/Tc=0.95
T/Tc=0.76

1 1
1 1

0.2 0.4 0.6 0.8 
r[fm]

1 1.2 1.4 1.6

Figure 4.5: Teiiiperature-dependence of the real (top) and imaginary (bottom) 
parts of the potential. Although a comparison with the hard-thennal loop poten­
tial [56, 154] is not explicitly shown, the imaginary part (right) of the potential 
overshoots this value considerably at the higher temperatures, T/Tc = 1.52 (or­
ange) and T/Tc  = 1-90 (red). Figure reproduced w’ith kind permission of A. 
Rothkopf.
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5 Conclusions

This work began w ith a review of the phenomenology of QCD at finite tem pera­

tu re  which m otivated the non-perturbative investigation of quarkonium  correla­

tors and spectral fimctions from first principles. Reliable d a ta  from lattice QCD 

could aid the  in terpretation  of signals for the form ation of a new phase of m atter 
a t high tem peratures, such as the suppression of quarkonium  yields, through the 

exam ination of the binding properties of heavy quarks in a therm al medium. A 
discretized version of NRQCD was used to  perform  a numerical study of bot- 
tom onium  in an S wave and P wave channel above and below the deconfinement 

transition  tem perature using ensembles generated by the FASTSUM collaboration. 
Such a num erical approach is com plem entary to  existing weak-coupling analyses.

T he details of the la ttice discretization were presented in the chapter 2 in 
which a cursory investigation of the zero-temperatm-e bottom onium  spectrum  
dem onstrated  the satisfactory perform ance of the effective theory. Two s tra te ­

gies. MEM and the BR m ethod, were reviewed which address the challenges of 
ex tracting  real-tim e observables from the Euclidean theory. The application of 
these m ethods to  the Euclidean correlator da ta  dem onstrated the viability of both  

regularizations to  solve the inverse problem  at zero tem perature. The system atic 

differences of the reconstructions using bo th  m ethods were discussed, and the 

deficiencies of the MEM in certain  cases were highlighted.

In chapter 3, an exam ination of the bottom onium  correlation functions at 

finite tem peratu re suggested different qualitative behaviour in the S wave and 

P wave channels above the deconfinement crossover tem perature. Comparing 

w ith the behaviour of free heavy quarks, the ground-state S wave appeared un­

altered but indications of im binding of the heavy quarks in the P  wave channel 

were observed in the deconfined phase. However, some difficulties were encovm- 

tered in interpreting these results. This m otivated the extraction of the spectral 

functions using both  m ethods outlined in chapter 2. The MEM appeared to give 

results consistent w ith the analysis of the correlators regarding the survival of the
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ground-state S wave up to 1.90Tc and the dissociation of the P wave s ta te  im­

m ediately in the deconfined phase. The conclusions from the BR m ethod yielded 

incom patible results in the P wave channel, which suggested th a t this s ta te  may 

surive well into the plasm a phase. However, the system atic dependence of the 

reconstruction on the available d a ta  reiterated  the difficulty of perform ing the 

reconstruction on small tem poral extents where lattice artifacts may dom inate 

most of the signal. F urther comparison w ith other discretizations should prove 

fruitful.

Finally, in the last chapter, prelim inary results on the heavy-quark potential 

were obtained by employing the BR m ethod to  reconstruct the spectral func­

tion of a W ilson line correlator. Above the crossover tem perature a screened 
potential w ith a finite im aginary part was observed. In a weakly-coupled plasm a 

such effects may be in terpre ted  as due to  Debye screening and Landau dam ping 
respectively. At the highest tem perature, the reconstruction was afflicted by sys­
tem atic effects which require further investigation. Hopefully, the continuation of 

the work initiated in this study should help to  clarify the perform ance of recon­
struction of the closely related observables of the quarkonium  spectral functions 

and the heavy-quark potential. The com plem entary natu re  of their system atic 
uncertainties should allow robust conclusions to  be drawn from lattice studies on 
the fate of heavy quarkonium  in the quark-gluon plasma.
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A Auxiliary tab les  and  figures

N r
T (^S i) 

a.riOi,arUJ2 Ti/ar,T2la.T
Xbii 

OtUJi , arUJ2
('Pi)

Tlla.r ,T2lar

128 0.12, 2.12 1, 127 0.18, 2.18 2, 110
40 0.08, 2.08 2. 38 0.16, 2.16 2, 38
36 0.08, 2.08 2, 34 0.16, 2.16 2, 34
32 0.08, 2.08 2, 30 0.16. 2.16 2. 30
28 0.08, 2.08 2, 26 0.10. 2.10 2. 26
24 0.08, 2.08 2, 22 0.08, 2.08 2. 22
20 0.00, 2.00 2, 18 0.00. 2.00 2. 18
16 -0.04, 1.96 2, 14 -0.04. 1.96 2. 14

T able A .l:  F requeiicy and  E uclidean  tim e ranges used in M EM  reco nstruc tion  
of th e  sp ec tra l functions. T h e  frequency in terval is d iscretized  in to  N j j  — 1000 
po in ts for each Nj--

T(^Si) X6i('Pi)
N r (IrOJl. OrU)2 T l l ( l r , T 2 l a r arOJl, (lrUJ2 r i l a r , T 2 l ( l r

128 -0.2, 2.4 2, 127 -0.4, 2.4 2. 127
40 -0.2, 2.4 2, 39 -0.2, 2.4 2. 39
36 -0.2, 2.4 2, 35 -0.2, 2.4 2. 35
32 -0.2, 2.4 2, 31 -0.2, 2.4 2. 31
28 -0.2, 2.4 2, 27 -0.2, 2.4 2, 27
24 -0.2, 2.4 2. 23 -0.2, 2.4 2, 23
20 -0.4, 2.4 2, 19 -0.4, 2.4 2, 19
16 -0.4, 2.4 3, 15 -0.4, 2.4 2, 15

T able A .2; F requency an d  E uclidean  tim e ranges used in BR reco n stru c tio n  of the  
sp ec tra l functions. T h e  frequency in terval is d iscretized  in to  =  4000 po in ts 
for each N r -
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(A ^^) C4 = 1, /.• = 1 C4 = 1, k  =  3 C4 = 1.2 , k  = 1
( l r M \ £  ^  Ml  (GeV) UrM\ <f -h M l  (GeV) UtM i £  + M l  (GeV)

0-+ I'Si 0.20549(4) 9409.7(2) 0.20521(5) 9407.1(3) 0,19694(4) 9388.2(2)
1— l"Si 0.21460(5) 9460* 0.21437(6) 9460* 0.20969(5) 9460*
1-+ l iP i 0.2963(4) 9920(2) 0.2969(4) 9923(2) 0.2911(2) 9918(1)
0+ + l^Po 0.2920(3) 9896(2) 0.2924(4) 9898(2) 0.2864(2) 9891(1)
1++ l^P i 0.2964(4) 9920(2) 0.2969(4) 9923(2) 0.2914(2) 9920(1)
2++ 13?2 0.297(2) 9928(8) 0.298(2) 9932(9) 0.292(1) 9928(8)

(E++) 1 P̂2 0.2990(3) 9935(1)

(T.r) l^Pa 0.2975(3) 9927(2)
0-+ 2IS1 0.311(3) 10003(14)
1 — 2'̂  Si 0.318(3) 10042(15)

Table A .3: Estim ates for the energies obtained by single and multi-exponential fits [111] to  the NRQCD correlators used in figure 2.9. 
The experim ental T (^S i) has been used to  fix the NRQCD scale, E — -  A /i(T (^S i)). The spectrum  was recalcu­
lated w ith Lepage’s param eter set to  k = 3 and no system atic differences were obtained. Setting the m atching coefficient of the 
chroniom agnetic operator, C4, away from unity only affects the hyperfine splitting.
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5 -^jack

{16,20,32,40} {890,996,987,527} -10,11.25 4600 10 1

Table A,4: Parameters used in the Bayesian reconstruction of the Wilson line 
spectral function, where Â conf is the number of measurements used and Â jack is 
the number of jackknife blocks used to estimate the statistical uncertainties.
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Figure A.l: Example of the behaviour of the typical behavioiu' of the gauge fixing 
violation with number of overrelation sweeps from a thermalized configuration on 
a. V  = 24^ X 16 volume with increased tolerance of d < 10“ '^.
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