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Have not I  commanded thee? Be strong and of a good courage; be not 
afraid, neither he thou dismayed: fo r  the Lord thy God is with thee whith­
ersoever thou goest.

Joshua 1:9. (The Bible, King James Version)



Abstract

This thesis deals with the application and the development of com putational tools for 
the study of ground state and electronic transport properties of molecular junctions. The 
calculations can be divided in two main categories, depending on whether they are based 
on first-principles or model Hamiltonians, respectively. From the point of view of first- 
principles calculations, the ground state properties are studied within density functional 
theory (DFT) and the electronic transport within the non-equilibrium Green’s functions 
(NEGF) formalism. From the point of view of model Hamiltonians, the electronic trans­
port is calculated by means of the density m atrix formalism by solving master equations 
(ME), where all the param eters can be obtained from first-principles calcTilations. These 
approaches allow us to study the electronic transport in different regimes: for strong 
electrode-molecule coupling, where tunneling is the doming mechanism, as well as for 
weak electronic couj)ling, where Coulomb blockade dominates.

For a quantitative description of the electronic transport across molecular junctions 
it is key to account for renormalization of the energy levels when the organic/inorganic 
interfaces are formed. We show how DFT within local and semi-local exchange correlation 
functionals does not capture this effect. We apply a constrained-DFT approach to study 
the energy level alignment of a benzene/Lithimn(100) interface, and we find th a t the 
quasi-particle energy gap of the molecule is reduced by ~2.5 eV due to image charge 
effect.

We present a thorough study of A u/benzene-dithiol/A u molecular junctions. Firstly, 
we perform ground state DFT calculations in order to study the stability of this system 
with respect to the adsorption of the molecule on surfaces as well as when the molecule is 
in a junction, and we find tha t the thiol junctions are energetically more stable than  their 
thiolate counterparts. We present a detailed discussion on the energy level alignment of 
these junctions, and present different methods to account for the energy level renormal­
ization. By means of DFT-NEGF we perform quantum  transport calculations for these 
junctions under stretching and compare the results for both thiol and thiolate term ina­
tions. We find th a t the conductance of the thiol junctions is reduced as the electrodes 
separation increases, whereas the thiolate junctions the conductance increases. Finally, 
we perform calculations by using a combined approach of molecular dynamics and Monte 
Carlo simulations in order to account for effects of tem perature and the statistical as-



pects of the experiments, namely the possibility of having many different geometries and 
therefore different conductance values.

We use the computationally efficient master equation approach to study the transport 
properties of molecular junctions, where all the parameters for the model Hamiltonian 

can be obtained from first-principles calculations. We show that the master equation 
approach can describe the transport properties of molecular junctions in the Coulomb 
blockade regime, where the NEGF within DFT-LDA fails due to the lack of the derivative 
discontinuity in the local density approximation (LDA). We have applied this method to 
reproduce experimental data for porphyrin-Zn-gold molecular junctions in the weak cou­
pling limit. W ithin the model, we include tem perature effects by considering an effective 
single vibron-mode, and dem onstrate th a t vibration excitations can be responsible for the 
linear-like current increase observed in the experiments.

Finally, we study light-induced charge transfer and conductance enhancement due to 
the interaction of charge carriers with light. We show how the transport properties of 
molecular junctions with donor-acceptor structures change depending on the charge state 
of the molecule. This is accomplished by combining CDFT with the NEGF formalism. 
Furthermore, within the ME api)roach, we study the effect of light in simple models of 
one and two levels and show the results when one considers higher-order contributions, 
such as cotunneling. We then discuss the interi)lay between vibrons and light-induced 
effects and show how light can be used to control the conductance of molecular jimctions 
in the strong electron-vibron coupling limit.

In summary, we jjresent two main sets of approaches to electronic quantum  transport 
in molecular junctions: DFT-NEGF, and model Hamiltonians and M E’s. By api)ly- 
ing these methods to molecular junctions of current interest, we address key aspects of 
(quantum transport. These are the problem of energy level renormalization due to im­
age charge effect, different transport regimes (tunneling, Coulomb blockade and Franck- 
Condon blockade), tem perature effects, light induced tunneling as well as the statistical 
asj)ect of conductance measurements.
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Chapter 1 

General Introduction

1.1 M olecular E lectronics

Molecular electronics consists of using single molecules as active components of elec­
tronic devices, such as in molecular diodes, transistors and integrated circuits [1]. Single 
molecules can offer several unique properties to electronics. The size of simple molecules is 
within several nanometers and hence the electronic spectrum is cjuantized with the typical 
energy scale of ~eV. They also allow self-assembly, i.e. the spontaneous and reversible 
organization of molecular units into ordered structures by non-covalent interactions. This 
is very useful in fabricating electronic devices at such a small length scale. The large 
number of chemicals and their different chemical and electrical functions can open up 
many new possibilities to engineering a molecule to perform different tasks in different 
conditions.

Molecules were first proposed as an active electronic unit by Aviram and Ratner in 
the 1970s [2]. They proposed th a t certain types of molecules can yield current rectifying 
behavior. These are D — a — A  molecules, where D  is an electron-donor moiety and A  is an 
electron-acceptor moiety. Then, a is called the “bridge” and it is a conducting molecule 
th a t connects the donor to the acceptor. In these molecules, the state  D~ — a — A~̂  is 
expected to be energetically more accessible than  the — a — A~ state, therefore, leading 
to an asymmetric current versus bias voltage curve, i.e. to rectification.

Due to recent advancements in experimental techniques, electronic transport mea­
surements through a single molecule are now realized routinely. In general, the possible 
experimental setups can be divided into two main categories, namely, scanning tunneling 
microscopy (STM) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and mechanically controlled break- 
junctions (MCBJs) experiments [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. In the first, the 
target molecules are deposited onto a metallic surface, forming a self-assembly monolayer 
(SAM), and a STM tip  is brought into contact to form the molecular junction. Then a bias 
is apphed between the tip and the metallic substrate and the electrical current through

1
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the molecule is measured. In the second, a metallic nanocontact is created by stretching a 
metal wire and, just before rupture, a solution containing the target molecules is added to 
the system. Subsequently, the metallic contact is further stretched until rupture. In some 
cases a molecule gets trapped between the metallic tips forming the molecular junctions 
(MJ). Likewise, a bias is applied between the two electrodes and the electrical current 
through the molecule is measured. Both experimental setups are schematically shown in 
Fig. 1.1.

( a )

bi  ase

STM t i p

T u n n e l i n g  C u r r e n t

Metallic substrate

(b) b i a s

 ■© ® ...
T u n n e l i n g  C u r r e n t

Insulat ing layer

Gate electrode I

Figure 1.1: Cartoon showing at the atomic scale the formation of molecular junctions, 
(a) A STM tip is put in contact with a benzene-1,4-dithiol (BDT) molecule previously 
adsorbed onto the metallic surface. A voltage is applied between the tij) and the substrate 
and a tunneling current is established, (b) MCBJ setuj) after the metallic nanowire has 
l)een broken and a molecule has been tra])ped in the nanogap. A voltage is applied 
between the two electrodes and an electrical current is established. A gate voltage can be 
applied by means of a third electrode, which shifts the energy levels of the molecule.

1.2 Statistical aspect of molecular junction  m easure­
m ents

A long-standing problem in the area of molecular electronics is the difficulty of finding 
cjuantitative agreement between theory and experiments in some cases. This makes it dif­
ficult to design and build functioning devices based on molecules. More than  a decade has 
passed since the pioneering experiment by Reed et al. [14], and yet the well-known proto­
type molecular junction th a t consists of a benzene-1,4-dithiol molecule inserted between 
two gold electrodes (Ati-BDT-Au) is still not fully understood. Numerous experimen­
tal [22, 21, 20, 12, 18, 5, 15, 5, 17] and theoretical [24, 25, 26, 27, 28, 29, 30] works have 
been reported, with both  experimental and theoretical results varying over a large range. 

Due to the nature of the experiments, several different geometrical contacts can be ac­
cessed during the stretching process of the junction, which leads to a statistical character 
of the experimental analysis. In fact, in a single experiment, a broad range of values for 
the conductance, G, is observed, and in some cases even very different average G values
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between experiments [22, 17, 26]. Yet, recent independent measurements [12, 4, 7, 23] 
agree on an average value of G of about O.OlGo for Au-BDT-Au, where Go = 2e^//? is the 
quantum conductance (e is the electron charge and h is the Planck’s constant).

1.3 M olecular junctions: strong and weak coupling  
lim its

In all these junctions, the understanding of the details of the organic/inorganic in­
terface is crucial to interpret the experimental data [31, 29, 30]. For instance, depending 
on how the molecule connects to the electrodes, two main regimes of transport can take 
place. First, for strong coupling, where the dominant energy scale is the bonding energy, 
fractional charge transfer can occur through the device. This regime manifests, for in­
stance, in the Au-BDT-Au junction where the tunneling of electrons through the MJ is 
the dominant mechanism of charge transfer. In contrast, if the molecule is weakly cou­
pled to the electrodes, when an electron has been transferred to the molecule, due to the 
Coulomb repulsion, a second electron is blocked to hop in until its energy overcomes the 
single-electron charging energy, U. In this case, the system is in the Coulomb blockade 
(CB) regime (see Chapter 2 of Ref. [32] for a detailed description of CB), characterized 
by tunneling of integer nvmiber of electrons. Fig. 1.2(a) shows schematically the typical 
current versus voltage for the two regimes and how the electronic coupling strength affects 
the shape of the curve. Fig. 1.2(b) shows a stability diagram or Coulomb diamond for a 
two level model system where the transfer of integer number of electrons takes place. The 
charge state of the molecule is easily identified for different blockaded regions. The value 
of U can also be easily extracted from such plots.

1.4 Energy level alignm ent at the interface

In addition to the possibility of different transport regimes, another important issue in 
molecular electronics is the energy level alignment at the interface and the renormalization 
of the molecular energy levels when the interface is formed. It has been demonstrated 
experimentally [33, 34, 35, 36] that the quasi-particle energy gap, E^p,  of a molecule, 
defined as the difference between its ionization potential, /^ , and its electron affinity, 

is reduced with respect to that of the gas phase by adsorbing the molecule on a 
polarizable substrate. In a non-interacting quasi-particle picture, the is the negative of 
the highest occupied molecular orbital (HOMO) energy, while the corresponds to the 
energy of the lowest unoccupied molecular orbital (LUMO). The reduction of the and 
E^  of a molecule adsorbed on a metallic surface is mainly due to the Coulomb interaction 
between the added/subtracted charge on the molecule and the screening electrons in
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( a ) ( b )  C o u l o mb  d i a m o n d
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/ T u n n e l i  ng
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- -N+1

b i a s  ( a . u . ) Vg ( a . u . )

Figure 1.2: (a) Schem atic representation of a typical current versus voltage curve for a 
two-level system  and how the  shape of the current changes w ith respect to  the electronic 
coupling strength . For weak coupling, integer num ber of electrons is transferred  and the 
current shows a step-like behavior. For strong coupling, fractional charge transfer can 
take place and  the current is sm oothed out due to  electron tunneling, (b) An exam ple of 
a Coulomb diam ond or stab ility  diagram  for a two level system  in the  Coulomb blockage 
regime. T he charge s ta te  of the molecule for different blockaded region is shown. Also 
the single-electron charging energy, U ,  can be identified.

the substra te . This in teraction leads to  a polarization of the  surface, so th a t a surface 

charge w ith opposite sign w ith respect to  the  charge s ta te  of the molecule is form ed, as 

schem atically shown in Fig. 1.3(a-b). This non-local feature, called im age-charge effect, 

becomes m ore relevant as the  molecule api)roaches the m etallic surface. As a consequence, 

the reduction of the  and the hence of the  E q p , becom es more prom inent w ith  the 

molecule api)roaching the  surface, as illustrated  in Fig. 1.4.

A lthough this effect is known to  be present in all the  tran sp o rt m easurem ents of 

molecular junctions, it was only recently th a t it could be quantified. Perrin  e t  al.  [37] 

using a M C B J were able to  observe the energy level renorm alization of a zinc-porphyrin 

molecule [Zn(5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrin)], abbreviated  Z n T P P d T , 

where the molecule is weakly coupled to two gold electrodes. In C hap ter 5 we discuss 

in detail th is problem  and we show our approach to  quantify  the  molecular energy level 

renorm alization. We then  apply th is m ethod in C hapter 6 and C hap ter 7.

1.5 Interaction of light w ith  molecular junctions

The underlying processes of the  in teraction of light w ith molecular junctions are a t­

trac ting  great a tten tion  as a challenging theoretical and experim ental problem  and because 

of the ir po ten tia l application as a characterization and control tool [38, 39, 40, 41, 42]. 

This area of research is a t the  interface between tw^o o ther im portan t areas, namely, 

m olecular electronics and molecular plasm onics and it is seen as having im portan t tech­

nological im plications. Advances in optical microscoi)y techniques have m ade of optical
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molecule

metallic surface

huj

molecule

metallic surface

Figure 1.3: Illustration of the  surface polarization effect due to  a charged molecule in the  
vicinity of th e  m etallic surface a t a distance 2. (a) Photo-em ission spectroscopy (PES) 
used to  m easure the where one electron is taken from the molecule after absorbing a 
photon  of energy hu. (b) Inverse photo-em ission spectroscopy (IPES) used to  m easure 
the  E^. One electron is added to  the molecule and the energy of the  em itted  photon is 
m easured.

u
(U
C!

WF

Metal

Vacuum

=  1 ^  - E ^

at interface gas-phase

Figure 1.4: (a) Schem atic energy level diagram  of the  frontier orbitals of a molecule 
approaching a m etallic surface. D ue to  the  in teraction w ith the  screening charge formed 
at the  surface, the  system  is fu rther stabilized and the  E qp is reduced w ith respect to  its 
gas phase value as z is reduced. Wp is the work function of the metal.
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spectroscopy an im portan t observation and diagnostic tool for molecular junctions.

Historically, the first experim ents of ac-bias driven tunneling are due to  Dayem and 

M artin  [43] who studied photon-assisted tvmneling (PAT) in superconductor-insulator- 

superconductor hybrid structures. T ien and G ordon were the first ones to  propose a 

simple model to  explain PAT in term s of ac- induced sidebands [44]. The well-known 

T ien-G ordon model has shown to  account for the  m ain (jualitative physics of PAT through 

different nanostructure and mesoscopic devices.

An exam ple of the  im portance of studying light induced effects in m olecular junctions 

is the one applied to  photovoltaic devices. Organic solar cells (OSCs), which lie w ithin the 

class of th ird  generation solar cells, are considered as one of the m ost prom ising system s to 

enhance efficiency and to  reduce the cost of power-to-energy conversion, when com pared 

to  silicon based devices. OSCs m aterials can be organized in different categories ranging 

from the  crystalline small molecules [45], dye-sensitized solar cells (DSSCs) [46, 47] to 

am orphous polym ers (plastics). More recently, another class of solar cells have shown 

great potential, the jjerovskites solar cells th a t consist of an organic molecule inside an 

inorganic crystalline s truc tu re  [48].

The theoretical approaches to PAT in m olecular jim ctions can be divided into two 

main categories: (i) m ethods based on the framework of scattering  theory, sometimes 

w ithin the non-equilibrium  G reen’s function (N EG F) formalism, extended to  account for 

the presence of an external electrom agnetic field and (ii) those based on m aster equa­

tion (ME) approach or sim ilar kinetic descriptions of transpo rt, again generalized to 

take into account external oscillating field. For instance, Foden and W hittaker [49] ex­

tended the  Tien-G ordon model by given a ciuantum electrodynam ics trea tm en t to  the 

photon held. Later, Park  et al. [50] by m eans of the Keldysh formalism, equivalent to 

the  N EG F formalism, generalized this model for adiabatic PAT in order to  account for 

non-adiabatic processes, i.e. for interference between the  different tran sp o rt channels. 

G alperim  et al. [51, 52, 53], w'ithin the  Keldysh formalism, studied light-induced charge 

tran sp o rt in molecular junctions presenting strong charge-transfer transition  into their 

excited states. T heir model consists of a two-level (HOM O and LUMO levels) for the 

molecule strongly coupled to  the  electrodes. The molecules studied present dipole mo­

m ents th a t changes considerably upon excitation leading to  a strong shift of the electronic 

charge distribution. In o ther words, one of the  energy levels, either the  HOMO or the 

LUMO, is stronger coupled to  one contact th a n  to  the  other. W hen an optical excita­

tion from the HOMO level to  the LUMO occur, due to  the  asym m etry in the  contact 

couplings, a current is established even w ithout applied bias. W 'ithin the  same approach, 

they could also study current-induced light emission, where by applying bias, electrolu­

minescence can be observed [54], T ian et al. have also studied electroluminescence in 

m olecular junctions w'ithin the  density m atrix  formalism (M E approach) [55]. Fainberg 

et al. [56] generalized the  approach of G alperim  et al. [51, 52, 53] in order to  accomit for
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different laser pulse shapes. By means of the  density m atrix  formalism, they  could derive 

a set of closed MEs to  com pute the observables.

1.6 Theoretical point of view  on molecular junctions

From the  theoretical point of view, th e  study  of charge tran sp o rt in m olecular junc­

tions in general is very challenging for several reasons; (i) an electronic s truc tu re  theory  

able to  give a correct description of the excited states and the energy level position of the 

molecules is needed. Moreover, this can not be so com putationally  dem anding due to  the  

necessity of, very often, describing very large systems, (ii) T he energy levels alignm ent 

of organic/inorganic interfaces has to  be well described, i.e. the  position of the  frontier 

m olecular orbitals of the  organic light-harvesting m aterial w ith respect to  the electrode 

bands need to  be com puted correctly, since it determ ines the ra tes  at which charges are 

injected or recombined. Moreover, th is is a key design quan tity  for engineering m ate­

rials com binations w ith enhanced light-to-current conversion, (iii) Different electronic 

tran sp o rt regimes can take place. For instance. Coulomb blockade, secjuential tvmneling, 

inelastic cotunneling, light-induced vibration, current-induced light emission could take 

place in a molecular junction; (iv) Effects of tem peratu re on th e  tran sp o rt properties of 

M Js, even w ithout light effects, have been studied and shown to  play an im portan t role 

when com paring to  experim ental d a ta  both , in the strong coupling lim it [29, 30] and in 

the  weak one [57, 58]. Furtherm ore, as far as illum ination of th e  junction  is concerned, 

th e  issue of heating can not be avoided [59, 60, 61, 62].

In regards to  electronic tran sp o rt calculations, there are two m ain approaches, namely, 

th e  ones based on the non-ecjuilibrium G reen’s functions (N EG F) formalism [63] and 

th e  ones based on the density m atrix  formalism th a t leads to  solving m aster equations 

(M E) [64]. The former is often combined w ith density functional theory  (D FT ) [65, 66] 

in order to  describe the  electronic structu re  of the  system. T he la ter is usually associated 

w ith  a model H am iltonian th a t captures the physics of interest. In the  present work 

we intend to  explore bo th  m ethodologies applied to  the  study  of m olecular junctions. 

We address the lim itations of these approaches and discuss in which case one is more 

appropria ted  th a n  the other.

1.7 D issertation  Layout

In C hap ter 2 we present an in troduction to  D FT, the electronic s tru c tu re  m ethod 

used throughout the present work. We discuss its advantages and m ost im portan tly  its 

lim itations when a quan tita tive  description of electronic tran sp o rt properties of molecular 

junctions is required. For instance, in Sec. 2.5.2 we discuss th e  problem  of the  lack of
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the derivative discontinuity  in local and semi-local ai^proximations of the D FT  exchange- 

correlation functional and in Sec. 2.5.3 the problem  of the  self-interaction error in D FT.

In C hapter 3 we present a general overview of quantum  tran sp o rt th rough nanoscale 

system s and we discuss the Landauer-B iittiker approach in Sec. 3.1. In Sec. 3.3 we present 

the  formalism to  first-principles based cjuantum tran sp o rt used in this dissertation, nam ely 

the  N EGF. This approach is com bined throughout w ith D FT  as the m ethod of choice 

to  describe the electronic s truc tu re  of nanoscale systems. In Sec. 3.5 we discuss some 

particu larities of th is com bination.

In C hapter 4 we present the  density m atrix  formalism by which we can derive MBs 

combined w ith m odel Ham iltonians. T he ME is a different approach to  the  quan tum  

transpo rt, where the  key quan tity  is the reduced density m atrix . T he transition  rates 

are trea ted  w ithin tim e-dependent p ertu rba tion  theory and the  full derivation of these 

(juantities are presented in A ppendix B and A ppendix C. By solving a simple set of linear 

e(iuations, one can evaluate the electrical current through m olecular system s including 

different effects, such as, tem peratu re  and light-induced tm meling.

In C hapter 5 we s ta rt by presenting a discussion on the energy level alignm ent of or­

ganic/inorganic interfaces and our ai)i)roach to  its calculation, namely, a constrained-D FT  

(C D FT) m ethod by which one can evaluate the  molecular energy levels renorm alization 

when an interface is formed. The theoretical backgroTind of th is m ethod is given in Sec. 2.6 

and the details of its im plem entation are given in A])pendix E.

In C hapter 6 w'e present a thorough study of the A u-BD T-A u molecular junction. 

In Sec. 6.1.1 we discuss the stability  of this system  w ith respect to  the adsorption of the 

molecule on surfaces as well as when the molecule is in a junction. In Sec. 6.1.2 we discuss 

the energy level alignm ent of these junctions and present different m ethods to  account for 

energy level renornialization. In Sec. 6.1.4 we present our results of the quan tum  tran sp o rt 

of these m olecular junctions under stretching and com pare the  results for b o th  thiol and 

th io late jim ctions. Finally, in Sec. 6.1.6 we present a combined m olecular dynam ics and 

M onte Carlo approach in order to  account for effects of tem pera tu re  and the s ta tis tica l 

aspect of the experim ents, namely, the  possibility of having m any different geom etries 

and, therefore, different conductance values.

In C hapter 7 we apply the  ME formalism presented in C hap ter 4 to  the electron 

transpo rt in the weak coupling lim it, i .e.  in the  CB regime. We apply this approach 

and com pare our results to  available experim ental d a ta  of energy level renorm alization in 

m olecular junctions as a  function of the  electrodes separation. We show how the  energy 

level alignm ent of th e  junction  plays a crucial role in determ ining the electronic transpo rt. 

Moreover, by including vibronic degrees of freedom we show th a t our theoretical results 

are in good agreem ent w ith the experim ental data.

Finally, in C hapter 8 we disciiss light-induced charge transfer and conductance en­

hancem ent due to  th e  in teraction of charge carries w ith light. W ith in  the  ME approach.
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in Sec. 8.1.1, we study the effect of light in simple models of one and two levels and show 
the results when one considers higher-order contributions, such as cotunneling. In Sec. 8.2 
we discuss the interplay between phonons and light-induced effects and show how light can 
be used to control the conductance of molecular junctions in the strong electron-vibron 
coupling limit. In Sec. 8.3.1 we show how the transport properties of molecular junctions 
with donor-acceptor structure change depending on the charge state of the molecule. This 
is accomplished by combining CDFT with the NEGF method.



Chapter 2 

D ensity Functional Theory

2.1 Introduction

In (luantuin mechanics, aU the information concerning the system is contained in 
the so-called total wave function, 'I '(R ,r) , where R  and r represent a set of nuclei and 
electrons coordinates, respectively. We omit the spin degrees of freedom for the sake 
of simplicity Our aim is to understand how density fimctional theory (DFT) can be 
ajjplied to the study of the electronic structure of atoms, molecules and solids. Since we 
are concerned exclusively on the electronic structure, the nuclear degrees of freedom (e.g. 
the crystal lattic'e in a solid) aj)pear only in the form of a potential i;(r) acting on the 
electrons. This is the Born-Oppeiiheimer approximation, so that the w'ave function can be 
rewritten as ^  =  4>(R)'I'(r; R ), i.e. as a product of the electronic and nuclear degrees of 
freedom and with the electronic part ['I'(r;R )] parameterized by the nuclear coordinates. 
For non-relativistic electrons, this wave function is calculated by solving the Schrodinger’s 
equation, which for a single electron moving under the effect of an external potential t'(r) 
reads  ̂ „r 1

+  w(r) ^ ( r )  =  e^'(r). (2-1.1]
2m

For a multi-electron system, i.e. for a many-body problem, the Schrodinger’s equation 
becomes

-hf(rj) + y^?7(r;,rj)
2m.

K j

' I ' ( r i , r 2 . . . , rA r )  =  E ^ ' (r i ,  rs . . . ,  rAr), (2.1.2)

where N  is the number of electrons in the system and U{Yi,Vj) describes the electron- 
electron interaction term. For a Coulomb system, the interaction term  is given by the

nVe omit the coordinate R  in order to simplify the notation.

10
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following operator

=  =  (2 . 1.3)

i < j  i < j  '

which is the  same for any system  of particles in teracting via Coulomb interaction. In the 

sam e way, th e  kinetic energy operato r given by

f  =  (2 .1,4 )
^  2m

i

is the  sam e for any non-relativistic electron. Note th a t for m aterials containing atom s 

w ith  large atom ic num bers (Z ), the  electrons are accelerated to  relativistic velocities,

therefore, one m ust include relativ istic efTects by solving D irac’s equation and the kinetic

operato r takes a different form. In the  absence of external pertu rbations, e.g. and electric 

field, f ( r )  is given by the  electron-rmclei in teraction

Kxt =  ^ y ( r i )  =  (2.1.5)
^  47reo ^  Tj -  Rfc

I t k

where the sum  extends over all nuclei, each w ith charge Qk =  Z^e  and coordinates R^. 

N ote th a t it is only the spatial arrangem ent of the atom s (apart from the corresponding 

boundary  conditions) th a t distinguishes a molecule from a solid. For th is reason, the oper­

ators U and T  are often called “universal” w hereas Vext is system -dependent. Similarly, it 

is only through the term  U th a t the  single-body quantum  mechanics of Eq. (2.1.1) differs 

from the  com plex m any-body problem  posed by Eq. (2.1.2). The n a tu ra l way to solve 

the  problem  is by specifying the ex ternal po ten tial Vext, so th a t the system  of interest is 

defined, and  introducing it into the  Schrodinger’s equation in order to  ob ta in  the wave 

function All the properties of the  system  are then  calculated by evaluating the ex­

pecta tion  values of the operators th a t represent the properties of in terest, i.e. ( 'I ' | . . .

One im portan t observable is th e  electronic density given by

p{r) = N  J  Sr2 J  d^r 3 . . . J  d^rN^*{r ,V 2  ... , rN) '^{r,V 2  ... , vn ) . ( 2 .1 .6 )

D FT  recognizes th a t non-relativistic Coulomb systems differ only by the ir potential 

v{r),  and gives a prescription for dealing w ith  the  universal operators U and T.  Fur­

therm ore, D FT  provides a way to  system atically m ap the m any-body problem , with the 

in teraction  te rm  U onto a  single-body problem , w ithout U. All th is is done by prom oting 

the  particle density p (r) from ju s t one among m any observables to  th e  key variable, on 

which the  calculation of all o ther observables can be based.



12 Chapter 2

2.2 H ohenberg-K ohn theorem s

This insight is due to Hohenberg and Kohn [65], who in 1964 set the foundation of 
DFT by treating the electron charge density as the fundamental variable in the A'^-body 
problem. By doing so, the scheme to solve the electronic system can be sunmiarized as

p ( r )  'p (r ,  r.2 . . . ,  r^v) = >  v(r)  ( 2 . 2 . 1 )

i.e. knowledge of p(r) implies knowledge of the wave function and the potential, and 
hence of all other observables. The DFT is based on two theorems, the Hohenberg-Kohn 
theorems (HKTs). Here we present the derivation of the HKTs as given originally by 
Hohenberg-Kohn in Ref. [65]. Other demonstrations can be found in Ref. [67]. The first 
theorem presents the relation of uniqueness between the ground state electronic charge 
density, i.e. po(r), and the external potential t>(r):

Theorem  I: The ground state charge density Po(r) of a system of interact­
ing electrons under the influence of the external potential I4j.((r) determines 
uniquely that potential.

In (jther words, for every i)otential (or arrangement of atoms) there is only one repre­
sentation of the ground state electronic charge density and vice-versa. Moreover, if the 
ground state is degenerate, Theorem I refers to the density of any of those states. As a 
consequence of Theorem I:

Corollary: If the external potential V"ext(r) is determined, then also the Hamil­
tonian is so. Consequently, the wave functions of each electron for the ground 
state, are also determined. Therefore, once the ground state charge density 
/9o(r) is known, all the ground state properties of the system are determined.

P r o o f  o f  Theorem I: The demonstration is as follows. Assmning that the ground state 
of a system can be characterized by the Hamiltonian H  containing the potential t’(r), the 
Schrodinger’s equation is given by:

{ f  +  U +  Vext)'  ̂ =  E<H, (2.2.2)

where T  , U and represent the kinetic, electron-electron interaction and external 
potential operators, respectively. If we assume the existence of another potential V'eit we 
can write the corresponding Hamiltonian H . The Schrodinger’s equation solution can be 
written in a simplified form as which yields the same electronic charge
density p(r). By applying the variational principle, we obtain

+ Vext + u\^)< (^ '|T  + K ,, + u m ,
E' =  { ^ ' \ f  +  V'e,t +  um < ('I'lt +  V'ext +  U\'^).

(2.2.3)

(2.2.4)
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Therefore,

E < E' + f  p(r)[w'(r) — v{r)]d^r.

(2 .2 .5 )

( 2 .2 .6 )

This leads to the following equations

(2 .2 .7 )

(2 .2 .8 )

and finally we obtain the inconsistency

E  + E' < E' + E. (2 .2 .9 )

Thus, we verify that there is only one electronic charge density that corresponds to the 
ground state charge density for the specified potential. In other words, for a certain 
atomic arrangement, the ground state charge density can be vniiquely defined.

Theorem II is stated as

T h eo rem  II: There exist an universal functional o f the electronic density for 
the total energy, ^^[^(r)]. The functional is minimized at the ground state 
charge density The value of the functional at the minimum is the ground 
state total energy.

P r o o f  o f  Theorem II: Theorem II establishes that E[p] is a functional of p{v) and that

where po is the ground state density. As a consequence, any ground state observable of 
the system is an unique functional of the electronic density. The total energy for a given 
density p(r) is given by

E[pq] < E[p] (2 .2 . 10 )

E[p] = mp]\f+ump]) + {̂ [p]\vmp],) 
E[p] = F[p] + mp]\vmp]),

(2 .2 . 1 1 )

(2 .2 .12 )

and for the ground state.

( 2 .2 . 13)

The functional F[p] is universal and it is valid for any A'’-electrons system. The total
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energy of the ground state is given by

E[po] = F[po]+ {<^011^1^0), (2.2.14)

where |'I'o) is the ground state wave function. By applying the variational principle we 
obtain

E['to] < £ [̂'1'], (2.2.15)

{ ^ o \ f  + U\'^o) +  ('I'ol^l^'o) < ('^ |T  +  f>|'&) +  (2.2.16)

F[po] +  {^o\V\^o) < F[p] + (2.2.17)

E[po] < E[p]. (2.2.18)

Both the HKTs show that it is possible, from the electronic density, to obtain all the 
ground state  i^roperties of interest of the system. However, they do not discuss how to 
perform this task, namely they do not i)rovide an expression for the functional. This is 
w'hat we will look at in the next sections.

2.3 Thom as-Ferm i approxim ation

An im portant prol^lem in solid-state theory and ciuantum chemistry is to understand 
how a many-electron system behaves due to Coulomb interaction. The Thomas-Fermi 
approximation [68, 69] assumes tha t the functional for the electron-electron interaction 
energy is ai){)roximately equal to the Coulomb term, or Hartree, and can be stated as

,2.3.1)

where e is the electron charge. Another approximation is to assume th a t the kinetic 
energy of a system of interacting electrons is the same as th a t of a system of interacting 
electrons of constant electronic charge density,

T[p] ^  T^^^Ip] = I d h  & " \p { r ) ) ,  (2.3.2)

where t^°^{p) is the kinetic-energy density of a homogeneous interacting system with 
(constant) density p. Since it refers to interacting electrons, t ^ ^ { p )  is not known explicitly 
and further approximations are needed. As it stands, Eq. (2.3.2) is already a first example 
of a local-density approximation (LDA). In this approximation, it is assumed that the 
real inhomogeneous system with density p(r) in potential w(r) can be divided into smaller 
systems. In each of these subsystems p(r) are v(r) approximately constant. In each 
cell {i.e. locally) one can then use the per-volume energy of a homogeneous system to
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approximate the contribution of the cell to the real inhomogeneous one. By making these 
cells infinitesimally small and summing over all of them, one obtain Eq. (2.3.2). For a 
homogeneous non-interacting system, however, the density functional form of the kinetic 
energy term  is known and it is given by

where Ep is the Fermi energy. The kinetic energy is T  =  3pE^/5.  Thus, the kinetic 
energy density, T / N ,  is

where the subscript “s” specifies tha t we are dealing with a non-interacting system or a 
system of “single-particles” . Thus, the approximations can then be summarized as

interacting electrons of density p. One can further improve the Thomas-Fermi approxima-

In the LDA, the functional for the exchange energy is known for an electron gas system 
and it is given by

This approximation is known as Thonias-Fernii-Dirac [70]. The functional for the total 
energy can then be w ritten as

Moreover, terms th a t account for variations in the charge density for the kinetic energy 
can be added to the Thomas-Fermi-Dirac approximation, e.g. the von Weizdcker term. 
Yet, the Thomas-Fermi-Dirac approximation does not give satisfactory results. A major 
deficiency is th a t when applied to molecular systems, the molecules are unstable, i.e. the 
energy of a set of isolated atoms is lower than th a t of the boimd molecule [71]. This is 
direcdy related to the fact th a t correlation effects are neglected in the electron-electron 
interaction energy and also because of the local approximation for the kinetic energy.

3

(2.3.3)

(2.3.4)

T[p] «  K =  I  d h  (^ " (p (r) ) ,  (2.3.(2.3.5)

where Tg*"̂ [̂/9] is the local-density approximation to Ts[p], the kinetic energy of non

tion by including the cjuantum mechanics effects due exchange, i.e. the Pauli’s principle.

(2.3.6)

where the exchange energy density is

(2.3.7)

Ervvip] =  + Un[p] + \/[p] + (2.3.8)
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2.4 K ohn-Sham  equations

DFT can be implemented in many ways and usually the minimization of an explicit 
energy functional is normally not the most efficient one. Kohn and Sham [66] proposed 
a new root to circumvent the problem. Their insight consists in replacing the real and 
complicated many-body problem of interacting electrons by an equivalent problem of 

non-interacting particles. It is assumed th a t the ground state density of the many-body 
problem is the same of an auxiliary system of non-interacting electrons. This leads to a 

set of single-particle equations.
The approximation presented in Ecj. (2.3.5) for the kinetic energy is not enough. A 

more accurate way to treat the kinetic energy of interacting particles, T[p], is based on de­
composing this term  into two contributions. The first part, Tg[p] (again the “s” subscript 
stands for single-particle), corresponds to the kinetic energy of the non-interacting par­
ticles and the second part contains the correlation effects Tc[p] (the “c” subscript stands 
for correlation).

Unfortunately, the term  Tg[/;] does not have a known functional form and we need to use 
approximations to treat this contribution. In contrast, the kinetic energy functional for 
non-interacting particles is known

where the sum is over all the individual contributions of the non-interacting wave fvmction 
ipi. Since all ipi are functionals of the density (Theorem I), Tg[p] is explicitly a functional of 
the orbitals but implicitly a functional of the electronic charge density, Ts[p] = Ts[{'ipi[p]}]. 

In other words, Tg depends on the full set of occupied orbitals each of which is a 
fmictional of [p].

The potential energy is given by the sum of three contributions: the first is the Hartree 
energy, Ua[p], the second is the exchange term  due to the Pauli’s principle, Uŷ [p]. The last 
term  is the contribution due to correlation, Uc[p]- The to tal energy can then be w ritten

as

T[ p ] = T ^  + T M (2.4.1)

(2.4.2)

E[p] =  n [ p ]  + Uh Ip ] + V[p] + (2.4.3)

(2.4.4)

E,,  = U [ p ] - U n [ p ] + T [ p ] - T M (2.4.5)

All the contributions due to exchange and correlation from both the kinetic and the 
potential energy term s {Tc[p\, Ux[p] and Uc[p\) are put together in a single term called
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the  exchange-correlation (XC) term , Exc- This way, D FT  looks formally like a single­

particle theory, where m any-body effects are still included via the XC fimctional. In 

order to  calculate the  to ta l energy of the system , the functional E[p] has to  be minimized 

following the variational principle where the  constrain t is the to ta l num ber of electrons. 

W ith  the Lagrange m ultipliers technique one define a new function F(A, r) =  / ( r )  — A^(r), 

where A is identified as the  chemical potential. We need to  com pute

J  p { v ) d h  -  N =  0 (2.4.6)

so th a t

ST,[p] ^  SUu[p] ^  s y ^  ^  S E M  _  ^  Q
Sp

STs[p]
Sp

Sp Sp Sp 

+  ^H[p](r) +  v[p](r) +  Uxc[p](r) -  A =  0. (2.4.7)

Considering an auxiliary system  of non-interacting particles subject to  the  poten tial fs (r), 

then  applying the  variational principle one has

- 0 -  + 'ys[p](r) -  A =  0. (2.4.8)

Since for the  non-in teracting particles system  there is neither exchange, nor correlation 

nor electrostatic  in teraction, the charge density th a t minimizes Eq. (2.4.8) is Ps(r)- By 

com paring Eq. (2.4.8) w ith  Eq. (2.4.7), we see th a t in order to  have b o th  equations 

satisfied [ps(r) =  p(r)] we need

Vs [ p ] { r )  =  i'H[p](r) +  ^^[p](r) +  'yxc[p](i (2.4.9)

This shows th a t it is possible to  calculate the electronic density of the in teracting particles 

system  subject to  the  po ten tial f ( r ) ,  by solving single-particle equations of th e  non­

in teracting system  subject to  the po ten tial Vs{r) =  fefF(r)- In particular, the  single-particle 

Schrodinger’s equation of the  auxiliary system  is given by

- h ^

2m,
(2.4.10)

where the  solutions are the  so-called K ohn-Sham  (KS) orbitals th a t reproduce the charge 

density p (r) of the  original system .

p (r) = (2.4.11)
occup

In o ther words, the  KS procedure assumes th a t there is a H am iltonian th a t describes a
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system of non-interacting particles subject to an effective potential tha t generates the 
same charge density of the interacting system. Since the potential feff(r) depends on p{r) 
and vice-versa, the solution can be obtained through a self-consistent procedure. It starts 
with a “guess” density. From this density one calculates vs{v). Eq. (2.4.10) is then solved 
and the fimctions 0* are determined. Finally from Eq. (2.4.11) a new charge density is 
computed. The procedure is repeated self-consistently until the criterion of convergence 
is satisfied, i.e. until the input charge density is the same as the output one within a 
specified tolerance.

The set of Eq. (2.4.9), Eq. (2.4.10) and Eq. (2.4.11) is known as the KS equations. 
From the solution of these equations, a final expression for the ground state total energy 
can be obtained

Eo = ' Y ^ e i -  J   ̂ -  J  (firvpoir) + E^dPo]- (2.4.12)
i

One major advantage of the KS scheme is tha t the term  for the kinetic energy is solved 
exactly (for the non-interacting electron system), nevertheless, it recjuires solving N single­
particle equations instead of minimizing the functional of the to tal energy with respect 
to the charge density.

2.5 Local density  approxim ation

Eci- (2.4.12) allows us to calculate the ground state to tal energy of a system of in­
teracting electrons. However, there is still an im portant part missing, i.e. the functional 
form of the E^c is unknown! Therefore, approximations have to be made for a practical 
use of the KS scheme. There are three main sets of approximations to the XC functional, 
namely, local [72], semi-local [73] and hybrids [74, 75]. In the present work, we widely 
use the LDA [66, 72, 76]. Therefore, we focus our attention on this approximation and 
discuss its lim itations and problems. In the LDA, the XC energy can be written as

^xc°^[p] =  J  £ x c ^ i p { ^ ) ) p i ^ ) d r .  (2.5.1)

where is XC energy density of an homogeneous electron gas with density /9(r).
The exact fvmctional form for the exchange part of E'xc is known from Eq. (2.3.7). The 
correlation contribution, instead can be obtained with accuracy through quantum
monte carlo simulations (QMC) [72]. From these, an analytic expression for is
determined as a function of the density, which is a requirement since the energy is a 
continuous function of the density. By construction, a LDA fmictional is purely local, 
therefore it is expected to lead to very good results for systems where the charge density 
varies slowly in space. T hat is the primarily reason why DFT-LDA describes with good
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success the properties of metallic solids but it does not perform well for non-homogeneous 
systems, such as molecules and atoms.

2.5.1 Interpreting th e  K ohn-Sham  eigenvalues

Tlie ground state to tal energy given in Eq. (2.4.12) shows th a t E q is not simply 
the sum of all the i.e. of the KS eigenvalues. The KS eigenvalues simply represent 
the eigenvalues of an auxiliary single-particle equation of which the eigenvectors give the 
correct charge density. In this framework, the charge density is the quantity with physical 
meaning. Since the KS eigenvalues do not represent the true energy spectrum, they are 
not to be trusted quantitatively. An im portant exception to this is the highest occupied 
KS eigenvalue. Denoting by 6n(M) the Â ’th  eigenvalue of a system with M electrons 
one can show th a t =  —eN(N), where is the ionization potential of the A^-body 
system. Likewise, =  —£n_|_i(N +  1) where E ^  is the electron affinity of the A^-particle 
system [77, 78]. Nevertheless, these relations are valid only when dealing with the exact 
fimctional for the total energy. W hen calculated with an apjiroximated functional such as 
LDA, the highest occuj)ied and the lowest imoccupied orbitals do not offer good results 
when compared to experimental data for 7*̂  and respectively.

2.5.2 T he lack o f th e  derivative d iscontinuity

All im portant property of the exact DFT functional is the derivative discontinuity of 
the XC functional with respect to the particle number [79, 77, 80]. This is given by

5p{r)
SE^Jn]

N + S
6p{r)

—  —  I) ^  /\
^ X C  ^ X C  ^ X C l (2.5.2)

N - S

where 5 is an infinitesimal electron number and Axe is a shift of the ?V(r) when the system 
passes from electron-poor, N —S, to electron-rich, N+S.  It is a system-dependent quantity. 
Likewise, the non-interacting kinetic energy fimctional has a similar discontinuity th a t can 
be represented by

() 'T s[n ]

(5p(r)
STJn]

N + 6
6p{r)

—  ^ N + l  ~  —  A KS) (2.5.3)
N - 6

I.e. the difference between the highest occupied and lowest unoccupied KS single-particle 
eigenvalues. The discontinuity in the non-interacting kinetic energy is therefore the KS 

single-particle gap, Aksi whereas the discontinuity in the XC correlation energy (Axe) is 
a many-body eff'ect. The true fundamental gap given by

A  = -  E ^  = E { N  +  1) +  E { N  -  1) -  2E{N) ,  (2.5.4)
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Figure 2.1: Energy level diagram  of the KS eigenvalues and  their relationship to  the 
ionization po ten tia l ( /^ )  and electron affinity {E^) .  is the  KS electron affinity, Axe 
is the derivative discontinuity  in the  XC energy, A ks and A  are the KS gap and  the 
fundam ental gap, respectively. Finally, Ag^'' is the  shift of th e  occui)ied orbitals due to  
the self-interaction error in D FT.

is the  discontinuity  of the  to ta l groinid-state energy finictional [79, 77, 80], i.e.

S E[ 7 i]

Sp{r)

S E [ r

N + 6
Sp{r)

— A ks +  Axe — A. (2.5.5)

Since all the  term s o ther than  Ê ĉ ai^d Ts in the  to ta l energy functional, Eq. (2.4.12), are 

continuous functionals of the  charge density, the  fundam ental gap is the  sum of the KS gap 

and the  XC discontinuity. As discussed in Sec. 2.5, the LDA functional is a continuous 

function of the  charge density [Eq. (2.5.1)], therefore it predicts Axe =  0 leading to  a 

im derestim ated fundam ental gap. All these quantities along w ith the KS eigenvalues and 

their relation to  observables are schem atically shown in the  energy diagram  of Fig. 2.1. 

For molecules, HOMO(A^) is the  highest occupied m olecular orbital of the A^-electron 

system , HOMO(A^ +  1) the  sam e for the  [ N  +  l)-electron system , and LUMO(A^) the 

lowest unoccupied o rb ita l of the  A^-electron system. In solids presenting an energy gap, 

e.g. sem iconductors, th e  HOMO and LUMO are referred as th e  top  of the valence band 

and  the bo ttom  of th e  conduction band, respectively. In m etals, where there is no energy 

gap, HOM O and LUM O coincide and equal to  the E^  of th e  m aterial. The vertical 

arrows in Fig. 2.1 show the  fundam ental gap w ithin D FT  (w ith the  exact functional), 

A, the  KS single partic le  gap, A ks, and  th e  derivative discontinuity in the exchange 

correlation potential. Axe; also the  ionization potential of th e  A^-interacting system, 7*̂ , 

which is equal to  th e  ionization po ten tia l of the  KS system, /^g; the  electron affinity of the  

A -in teracting  electron system , E ^ , and the KS electron affinity =  —̂ n+ ^N ). Note 

th a t A ks is reduced com pared to  the  fundam ental gaj) due to  the lack of the derivative
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discontinuity in the exchange correlation potential within the KS scheme.
Despite all the interpretative problems with the KS eigenvalues, it is a fortunate sur­

prise tha t in many situations they do empirically provide a very good first approximation 
to the real spectrum of extended systems. For example, usually band-structure calcula­
tions in solid-state physics show good agreement with experimental photo-emission data 
and inverse photo-emission spectroscopy. Nonetheless, in molecular systems, the HOMO- 
LUMO gap is hugely underestim ated, typically by about 50%, when compared to — E^. 
This is also related to another problem, namely, the self-interaction (SI) problem in DFT 
th a t we shall discuss in the next section.

2.5.3 The self-interaction problem: ASIC m ethod

In Sec. 2.3 we presented the Thomas-Fermi approximation, which consists of replacing 
the expectation value of the electron-electron interaction (given by the Coulomb’s law) 
by a functional of the electronic density, Eq. (2.3.1). However, already in 1934, Fermi 
and Amaldi observed a failure of this approximation in the limit of one electron system, 
i.e. there is a non-vanishing contribution from the interaction of the electron w ith itself 
known as the self-interaction (SI) error [81]. This is not the case of the well-known wave 
fvmction based mean-field Hartree-Fock (HF) method. In HF, the total electronic energy 
is given by the sum of the Hartree and the exchange contributions. The exchange energy 
is given by

a a,a'

Here the ipa{rys are the Slater determ inants for spin a with occupation numbers faa- 
W hen the a  =  a', this term  constitutes a self-exchange energy that exactly cancels out 
the self-Hartree energy of Eq. (2.3.1) on an orbital-by-orbital basis so th a t HF is free of 
SI errors. Although HF does not contain SI errors, it totally neglects correlation effects, 
which limits its application to many systems. W ithin DFT, however, when using local 
or semi-local functionals, the spurious SI error is only partially canceled. In other words, 
the condition for KS-DFT

t / |p a  +  £ '„ K , 0 ] = 0 ,  (2.5.7)

for the orbital density =  IV'qP of the fully occupied KS orbital is not satisfied. As a 
consequence, the KS potential becomes too repulsive and this leads to a series of failures 
in describing fundamental properties. For instance, negatively charged ions (H~, 0 “ , F “ ) 
are predicted to be unstable w ithin LDA [82], the energy gap of transition metal oxides 
(MnO, NiO) are predicted too small [83] when compared to experimental data. Moreover, 
the KS HOMO that is rigorously associated to the as discussed in Fig. 2.1, is very 
often found to be several eV higher in energy, specially for molecules, when compared to
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experim ental data .

T he m odern theory  of self-interaction correction (SIC) was proposed in the  80’s by 

Perdew  and Zunger [76] (PZ). The idea consists of rem oving directly the self-H artree and 

self-XC energy of all th e  occupied KS orbitals from the  approxim ated XC functional. For 

instance, for the  LDA one has

occup.

Saa, (2.5.8)
aa

where

■5a. =  t ' | p a  +  £ " “ K ,0 ]  (2.5-9)

is the self-interaction of orb ital qct. In other words, one sub tracts, orbital by orb ital, the 

contribution th a t th e  H artree and XC fvmctionals would make if there  was only one elec­

tron  in the system. This correction can be ajjplied to  any approxim ate density fvmctional, 

and it ensures th a t th e  resulting corrected functional satisfies

E S f[p(i),0 ] =  -[/[p O ),0 ], (2.5.10)

I.e. for a single electron, the self-interaction conies only from the H artree term . T he PZ- 

SIC approach can be applied to  any si)in-density functional for the E^c t^iid when applied 

to  the  exact functional, the correction vanishes.

For a com pletely uniform system, the LDA approxim ation is exact. Therefore, in 

th is lim it, it is self-interaction free. However, for m any realistic system s of interest, they 

show very strong localized states, such as d sta tes in transition-n ietal oxides, and  the 

SI becomes really im portan t. U nfortunately the  PZ-SIC, which minimizes the  corrected 

energy functional w ith respect to  the  orbitals, does not lead to  usual KS equations since 

the  effective po ten tia l is different for each orbital. In order words, the XC functional 

w ithin the PZ-SIC is orb ital dependent, therefore, one cannot define a kinetic energy 

functional independently  from the  choice of th e  XC functional [76]. As a consecjuence, 

the  KS orbitals are not orthogonal and the KS equation is not invariant when m aking a 

un itary  transform ation  of the  occupied orbitals. Therefore, the effect of SIC will depend 

on the  difference in occupied orbitals before and after the  un itary  transform ation. To 

circum vent this, elaborated  schemes of m inim ization and several developm ents have been 

m ade [81, 84].

In th e  present w'ork we explore an approxim ated m ethod by considering only the  

atom ic contributions to  SIC, the ASIC m ethod [85, 86, 87, 88]. The m ethod is applied 

to  the LDA which has the benefit of preserving the  local aspect of the LDA potential. A 

first step  of the  ASIC m ethod is to  incorporate part of the  SIC into the  definition of the 

pseudopotentials [89]. The idea consists in sub tracting  the  atom ic SI from the free atom .
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and then  transferring  the  resulting electronic s tructu re to  the definition of a s tandard  

norm-conserving pseiidopotential. By doing so, the SIC contribution to  the  to ta l energy 

can be separated  into the contributions from  the core electrons and the valence electrons. 

A further approxim ation is to  assume th a t the  SIC contributions for the  valence electrons 

are also atomic-like. A lthough th is approxim ation sounds drastic, the orbitals th a t present 

more SI are those more localized, e.g. d orbitals, therefore the  atomic-like approxim ation 

looks appropriate. In C hap ter 6 we will show how the lack of derivative discontinuity and 

the problem  of self-interaction can lead to  wrong predictions of tran sp o rt properties of 

molecular junctions.

2.6 Constrained density functional theory

Among the  various possibilities used to  obtain  improved results w ithin D FT, con­

strained D PT  (C D FT) represents a conceptually different approach to  the  problem . T he 

idea behind C D FT  is th a t one can always define an appropria te density functional, im­

plem enting a  given desired constrain t on the  charge density [90] [e.g.  one can dem and 

th a t an electron is localized on a particu lar group of atom s in a molecule). This is 

obtained by introducing an appropria te  ex ternal potential in the KS equations. The 

crucial point is th a t the approach is fully variational, meaning th a t the energy mini- 

nnun of the  constrained functional represents the ground s ta te  of the system  under th a t 

particu lar constrain t [91, 92, 93]. The m ethod allows, for example, to  access energies 

and electron density d istribu tions of charge transfer sta tes of a given system , and has 

been successfully applied to  th e  study  of long-range charge transfer excitations between 

molecules [91, 94, 95]. In C hap ter 5 we apply C D FT to the  investigation of the en­

ergy level alignm ent of m etal/m olecule interfaces. In relation to  this problem  C D FT  has 

two m ain advantages. Firstly, since C D FT  is based on to ta l energy differences it does 

not present the conceptual problem s of in terpreting  the KS eigenvalues as a true  cjuasi- 

particle spectrum . Secondly, one has to  note th a t the to ta l energy, even in th e  case of 

local functionals, is a ra th e r accurate  quantity, in contrast to  the charge density th a t local 

functionals usually tend  to  over-delocalize. This m eans th a t a theory th a t improves the 

charge density bu t th a t relies on th e  to ta l energy is expected to  be accurate.

In the KS framework [66] the  to ta l energy (in atom ic units) is given by

a , / 3  N a  ,  ^
=  X I S  ^  (2.6.1)

a i

where U^  is the H artree energy, E'xc is the exchange-correlation energy, ?;(r) is th e  external 

potential, p‘̂ (r) is the  electronic density for spin a  = t ,  of electrons {p =  +  p^)

and the  set {{(f^ia)} contains th e  KS wavefunctions th a t minimize the energy. A generic
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constraint on the charge density is tha t there is a specified immber of electrons for each 
spin, , within a certain region of space. This can be written as

J  = K  > ( 2 -6 .2 )

where (r) is a weighting function tha t describes the spatial extension of the constraining 
region. In the simplest case w^{r) can be chosen to be equal to 1 within a certain volume 
and 0 elsewhere. In order to minimize the KS to tal energy of Eq. (2.6.1) subject to the 
constraint of Eq. (2.6.2), an additional spin-dependent term, proportional to the Lagrange 
multiplier, , is added to the energy. A new functional is thus defined to be

U'Ip, vy =  E[A + v :  ( ^ j   ̂ (2.6.3)

When p satisfies the constraint in Eq. (2.6.2) then E[p] =  W[p, Vc] by construction. Up 

to the p independent term , U"[p, V"c] is the grovmd state  energy of a system
with an additional sj^in-dependent external i)otential V/w^(r) .  The KS equations with 
this additional potential are then given by

■^V" + !,(r) + <C(r) / P(r') 
r  — r'l

-dr' <(r) = fi0r(r) , (2.6.4)

where is the exchange and correlation j)otential. As in standard KS DFT the electron 
density is constructed from the occujjied KS eigenvectors, {0"(r)}, until self-consistency 
is achieved. In this particular case, the self-consistency has also to guarantee th a t the 
constraint set by Eĉ . (2.6.2) is satisfied. The minimization then proceeds as follows. 
Firstly, as in the standard KS scheme, an initial charge density is defined and then updated 
until the KS equations are satisfied self-consistently. Secondly, at every self-consistent step 
in this update of the charge density a second self-consistent loop is performed, where for 
a given input density, p(r), the value of V /  is updated until the output charge density 
obtained via solution of Eci. (2.6.4) satisfies the constraint of Ecj. (2.6.2). This second 
step is performed following an optimization scheme suggested in Ref. [92]. Updating 
in this way ensures th a t at each self-consistent step and therefore also at convergence the 
constraint is fulfilled.

This methodology was implemented in the DFT package SIESTA [96]. SIESTA uses a 
linear combination of atonnc orbitals (LCAO) basis set, so tha t, instead of defining the 
constraining region in real space via the function w^(r),  we define it over the LCAO space. 
This requires th a t the total charge projected onto a given set of basis orbitals is equal to 
N^.  For this aim we have implemented both the Lowdin [97, 93] and the Miilliken [98] 
projection schemes. A detailed description of the implementation is given in Appendix E.



Chapter 3 

Quantum Transport at the  
Nanoscale

In the past decades, im portant advances in the area of semiconductors have led 
to the m iniaturization of electronic devices to the nanoscale. In this limit, quantum  
effects such as conductance quantization and quantum  Hall effect can be observed by- 
electron transport measurements. However, these bring other challenges tha t have to be 
tackled. For instance, the density increase of the active components of the devices leads to 
problems such as power dissipation and undesirable quantiun tunneling, w'hich reduces the 
efficiency of logical devices. Therefore, understanding the influence of these effects over 
the device performance is key for the develoi)ment of novel and more efficient electronics. 
In particular, understanding the electronic transport properties of such systems is crucial 
and challenging.

Electronic transport in nanostructures is essentially a many-body non-equilibrium 
statistical problem, where the conducting electrons and the background ionic structure are 
in a state of non-equilibrium, whose properties can be known only statistically. Therefore, 
im portant approximations and assumptions are usually at hand in order to transform 
the many-body problem into a tractable one tha t still captures most of the relevant 
physics. The first steps towards the development of a quantum  transport theory are due 
to Landauer [99, 100]. Other im portant contributions are due to Biittiker [101, 102] who 
extended the Landauer’s ideas to systems consisting of many contacts. This is nowadays 
known as the Landauer-Biittiker approach to quantum  transport.

In this chapter we present the basic ideas behind the Landauer-Biittiker approach 
and the well known non-equilibrium Greens’ function formalism (NEGF) used to  study 
coherent electronic quantum  transport in nanostructures. We end the chapter with a 
discussion on the limitations of the NEGF approach as well as when combined with DFT.

25
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3.1 Landauer-Biittiker approach

In this section we present the Landauer-Biittiker approach [103] to quantum  transport 
and how the quantization of conductance appears in nanoscale systems. There are several 
importance approximations, which we will present when needed. The basic idea behind 
this approach is th a t the electrical current flowing through a quantum  system is expressed 

in terms of the probability of electrons to be transm itted across the device. For instance, 
when an external potential is applied between the two electrodes connected to a ballistic 
nanostructure the probability of transm itting the incoming electrons through the device 
is ecjual to unity, i.e. for a ballistic conductor \  the electrical current obtained is finite 
indicating that there is still an observable resistance in the system.

Let us consider a quantum  system or nanostructure connected to the two electrodes 
with a cross section W  and length /. If the dimensions of the nanostructure are of the 
order of the dimensions of the electrodes, i.e. micrometers, the conductance is given by 
G =  a W / l  (Ohm ’s law), where the conductivity a is an intrinsic property of the material. 
Ohm ’s law predicts tha t if one reduces the length of the nanostructure, the conductance 
should increase towards infinite values. However, this is not observed in experiments, and 
the conductance eventually tends to reach a limiting value when the device is much smaller 
than the electronic mean free i)ath. This resistance a])pears at the interface between the 
nanostructure and the electrodes. A very sim])listic exj)lanation is that, while in the 
electrodes there are infinite sub-bands or normal modes that contribute to the current, 
in the nanostructure they are very few, so that the current has to be redistributed at the 
interface and this leads to the finite resistance observed.

Approximation 1: The first assumption in the Landauer-Biittiker approach is to re­
place the closed system (composed of the electrodes, nanostructure and an external b a t­
tery) by an open quantum  system, where the battery is removed since it is a too com­
plicated object to  be treated quantum  mechanically. Therefore, we assume th a t the 
electrodes are metallic and infinite so tha t they are unperturbed due to the addition or 
the removal of electrons, i.e. the electrodes are considered as electron reservoirs and they 

can be characterized by their chemical potentials, î i. The battery  then is just an external 
potential difference applied between the two electrodes shifting their chemical potentials.

Approximation 2: The next step is to assume the mean-field approximation where the 
electrons move under the influence of a mean-field created by the other electrons, i.e. we 
transform the complicated many-body problem into a single-particle picture much easier 

to deal with. Any mean-field Hamiltonian is appropriate for this task and so is the DFT 
KS Hamiltonian, as presented in Sec. 2.4. W ithout this approximation, one should in 
principle, determine the full many-body statistical operator, from which one can compute

ballistic conductor is defined as a conductor in which the electronic mean free path is much larger 
than the dimensions of the conductor itself so that no scattering events occur.
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the expectation value of the current. The problem is, if we ŵ ere dealing with interacting 
electrons, also for the electrons on the electrodes far away from the nanostructure attached 
to them, we would need to describe how they evolve in time even before being scattered 
at the nanostructure. This leads to a nested infinite number of equations, which prevents 
us to obtain a closed set of equations to compute the current [63]. Within the mean-field 
approximation, one can describe the electronic structure of the full system in terms of 
independent single-particle bands or channels. The assumption here, besides the mean- 
field approximation, is that the off-diagonal elements of the density matrix that describe 
the coherences between the state vectors are exactly zero. In other words, we assume 
that the system has somehow evolved to a totally incoherent (independent) set of (single­
particle) channels rapidly after interacting with an environment. Having said that, for 
each sub-band of the quantum system we can associate a dispersion relation as given 
by E{N, k) ,  where N  is the sub-band index and k is the wave-vector. Moreover, = 
^(A^, k =  0) is the cutoff energy for the sub-band N,  i.e. electrons with energy lower 
than are not able to tunnel through the device since there is no available states in this 
range of energy. The total number of sub-bands for a given energy E  can be obtained by 
adding up the number of sub-bands with cutoff energy smaller than E  as

M{E)  = J 2 ^ i E - ^ N ) -  (3.1.1)
N

In order to simplify the arguments to come, we adopt for the moment zero temperature, 
so that there is current flow just for the range of energy > E  > /iR, where ^l(R) is the 
chemical potential of the left (right) electrodes, is the Heaviside step function given by

wr-. N f l , i f £ ’ — Ci v>0 , ^
( a i ,2 )

1 0 ,  if E  — < 0

Let us consider one single sub-band, where all the state vectors k are occupied following 
the Fermi-Dirac distribution function,

f {E,  Hl,k) = — e i -  ^----- , (3.1.3)
e  - I - 1

where 0  is the temperature and is the Boltzmann constant. For a uniform electron 
gas with electronic density n, moving with velocity v, the electrical current is given by 
I  = env. Therefore, the current through all the states k is given by

^ =  =  (3.1.4)
k k
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By transform ing the  sum  into an integral over th e  wave vectors

> 2{spin)  X  —  f  rfk, (3 .1 .5)
k ^

we can rew rite the  electrical current as

2e /■“
/  =  - /  (3 .1 .6 )

J  —OC

T he to ta l current is then  given by the sum of all th e  sub-bands as,

2e
I  =  Y  M { E ) f { E ) d E .  (3 .1 .7)

J  — OC

T his fornmla does not tell us anything about a (juantum  s ta te  of the system. In fact, 

the current is a s ta tis tica l quan tity  averaged out in tim e and im plicitly assumed to  be 

stationary. The ideally s ta tionary  current is obta ined  because we assum ed th a t the  elec­

trodes are sim ply reservoirs of electrons, i.e. they continually feed electrons in the d is tan t 

past, and far away from the  nanoscale junction, in to  wave-packets which move tow ards 

or away from the  junction , w ithout changing th e  current in tim e. Therefore, one can 

replace the  open boundary  condition problem to a periodic boundary  condition problem. 

In o ther words, th e  electrons come from a d is tan t i)ast and far away from the jTuiction 

tow ards the  jiu iction where they are scattered  due to  the  broken periodicity caused by the 

device region, and subseciuently move far away from it and keep propagating as different 

wave-packets to  a d is tan t ftiture.

If we assum e th a t the  num ber of sub-bands M  is energy independent for the  range 

> E  > the  Ferm i-Dirac function becomes a step  function [ f {E)  =  1 for 0  =  0 K]  

and  we obtain

1 (3 .1 .8)
h e

^ _ i  _ ( / ^ L  - / i R ) / e  _  12.8A:Q i n^
C-c = - j ~  (3.1̂ 9)

where is the  electrical resistance between the  electrodes and the quantum  system  

(contact resistance) and (/xl ~  /^ r)/c  is the bias applied to  the  electrodes. We assume 

th a t the  applied bias, V,  modify the electrodes chemical po ten tial sym m etrically as

(3 .1 .10)

and
eV

=  1^0------------------------------------------------------------- (3 .1 .11)

respectively, where //q is the  connnon equilibrium chemical potential.
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The discussion so far has been based on the assumption th a t we are dealing with a 
ballistic quantum  system with probability of transm itting the incoming electron equal 
to unity. For a ballistic system with probability less than unity, we include a factor in 
Eq. (3.1.9), which gives the average probability, T,  to transm it one electron through the 
quantum  device. The transmission coefficients, T, will be formally defined in Sec. 3.3. 

Then, Eq. (3.1.9) can be rewritten as ^

which is known as the Fisher-Lee formula [104]. Note tha t conductance quantization is 
given in steps of the quantum  conductance, Go =  2e^/h.  In summary, while systems at 
the macroscopic scale obey the Ohm’s law, at the nanoscale, im portant differences can be 
observed: (i) the contact resistance at the interface between the electrodes and the device 
is independent on the length of the device, (ii) The conductance do not decrease linearly 
with the cross section of the device, in fact, it changes discretely with the number of 
sub-bands available for conductance in the range of energy given by the external applied 
bias, (iii) The conductance depends linearly on the transmission probability of the device.

At 0  =  0, incoming electrons from the left electrode with energy fii  ̂ > E  > /xr can 
tiuinel through the device and occupy empty states on the right electrode. However, 
electrons from the right electrode can not be transm itted to the left electrode since all the 
states are already occupied at 0 K.  Nevertheless, for temperatTires different from 0 A', 
we need to take into account the Fermi-Dirac distribution functions of each electrode so 
th a t Eq. (3.1.7) becomes

(3.1.12)

/ + 00

f { E ) { h { E )  -  M E ) ) d E ,
■ o o

(3.1.13)

where T{E)  = M{ E) T{ E) .

3.1.1 C onductance linear regim e

In equilibrium, i.e. for no external applied bias, /  =  0 for

/^L /^R for 0  =  0
k { E )  M E )  , for 0  > 0.

^In this simple derivation, we assume that T  is the same for all the sub-bands, which can be easily 
generalized if we consider that A/T = YliLi
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If we consider small fluctuations around the equilibrium, the current is proportional to 
the applied bias

d l ^ j  I  |[f(B)]„<i[(/L(£) -  /r(E))1 + . (3 114)

where the second term  vanishes since the two electrodes have the same Fermi-Dirac func­
tion at equilibrium. Expanding the first term  of Eq. (3.1.14), we obtain

dfn, ~  > with dî Li = -  hq

d [ h  -  / r ] ~  -  //-r ] =  -  A<r] (3.1.15)

where /o  is the Fermi-Dirac function at equilibrium (/i =  Ej ) .  Therefore,

For low temi)eratures, we have the following

f o ^ t ) [ E f - E )  - ^ ^ S { E f - E )  (3.1.17)

and

i ) { E f - E )  = [ ^ '  if £ ; / - £ > 0  5 { E } - E )  = [ ^ '  (3.1.18)
^  [ { ) ,  if E f  -  E  < 0 ^  [ 0 , li E f  ^  E

where i^iEf — E)  and S{Ef  — E)  are the Heaviside and Delta-Dirac functions, respectively. 
Finally, by inserting this result into Ec[. (3.1.16), we have the conductance in the linear 
regime given by

G J  f { E ) 5 { E f  -  E ) dE  G = ‘̂ f { E f ) .  (3.1.19)

Note tha t this formula is valid for applied bias { i ^ l  — l̂ r ) much smaller than  A :b 0 ,  s o  that 
the first order expansion used in Eq. (3.1.15) can be justified.

3.2 L ippm ann-Schw inger equation

Let us consider a single-particle Hamiltonian for our entire system, such as

H = Ĥ  + V{r), (3.2.1)
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where the first term  corresponds to the free unperturbed electrons and the second contains 
the scattering potential due to the nanoscale junction. This is assumed to be time- 
independent. We can solve the Schrodinger equation for the full Hamiltonian and as well 
as only for Hq, i.e. in absence of the scattering potential, so that

i h -  IV-(i)) =  H(t)  ll(>(()> (3.2.2)

and
= Ho{t)\i)Q{t)), (3.2.3)

where \ipit)) and \'ipo{t)) are the perturbed and the unperturbed state vector, respectively. 
These equations can be w ritten in a more compact form as

C m ) ) = 0 ,  (3.2.4)

where C = i h ^  — H  or C = ih-^ — H q, is a linear differential operator. From the general
theory of differential ecjuations, one can rewrite Eq. (3.2.4) in terms of Green’s functions
or propagator, Q{t), as

CG{t) = lS{r  — 7'')S{t — t'). (3.2.5)

In fact, Eq. (3.2.2) can be solved with two types of Green’s functions

g^{t)  = Il5(i). (3.2.6)

Eq. (3.2.6) represents two equations of motion for the Green’s functions and Q~ with 
the boundary conditions

Q^{t) =  0 for t < 0, retarded 
and
Q~{t) =  0 for t > 0, advanced.

These boundary conditions lead to  the two formal solutions of Eq. (3.2.6) as

 ̂ ^ > 0  , . f 0 ^ > 0G {t) = { and G (t) = I . (3.2.7)
' 0 t  <  n  I   ̂ <  0

The propagator G~^{t) (for i > 0) is proportional to the time-evolution operator given by

(3.2.8)
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for a tim e-independent Ham iltonian. Similarly, one can describe the  tim e-evolution of a 

s ta te  vector using th e  G reen’s function as

\'ip{t)) = -  to)\'ip{to)), f o r t y  to, (3.2.9)

I.e. p ropagates th e  sta te  vector and contains the  history of its tim e evolution. For 

th is reason, is called retarded Green’s function.  Similarly, can be used to  define

th e  tim e-evolution of a s ta te  vector to  past tim es as

\ijj{t)) = - ih Q ~ { t  -  to)\ i^{to)) , f o v t < t o ,  (3.2.10)

in o ther words, Q~ carries inform ation about the  history of the  tim e evolution from the 

present to  a past tim e. Therefore, Q~ is called the  advanced Green’s function.  If instead of

dealing w ith the  full H am iltonian H  we use the  unpertu rbed  H am iltonian, H q, we obtain

 ̂ f t > 0  f 0 t > 0
= \  Goi i )  = { 3.2.11\  0 t < ( )  0 V / I   ̂ <  0,

to  which we shall refer as “free” retarded  and advanced G reen’s functions, respectively.

We now want to  relate the G reen’s fiuictions for the  full H am iltonian, H , w ith the 

G reen’s functions of th e  unpertu rbed  H am iltonian, H q . For instance, we can write

=  l^(^) , (3.2.12)

which can be inserted into Eq. (3.2.6) to  yield

u{t)g^{t)  =  u{t)g^{t) + g^{t)vg^{t).  (3.2. 13)

If we in tegrate  th is equation for g ^  from to to  t > to we finally obtain  the Lippmann-  

Schwinger equation which relates the full re ta rded  G reen’s function to  the free retarded  

G reen’s function

g + ( t - t o )  = g ^ { t - t o ) +  [  d t ' g ^ { t - t ' ) v g + { t ’ - t o ) .  (3.2. 14)
Jto

Likewise, if we perform  the in tegration for g~  from t < to to to we ob ta in  similar relation 

for the  advanced G reen’s function as

g~ { t  -  to) = g o i t  -  ^0 ) + [  dt’g~{t  -  t ' ) V g o { t ' -  to). (3.2.15)
J t o

Eq. (3.2.14) and Eq. (3.2.15) can be rew ritten  in a different way where one can iteratively 

rei)lace th e  full G reen’s function inside the integral by its own value, which leads to  an
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infinite series expansion. This is the basis for a perturbative expansion, and one obtains

g+{ t - t o)=g${ t - t o)+ [  -to)
J t o

f t  r t '

+
'to ''to
f  d t ' [  d f g ^ { t - t ' ) v g + { t ' - f ) v g + { t ' ' - t o )  +  . . .  (3 .2 .16)

J t n  J t n

and

g- [t -  to) =g^ {t -  to) +  f  dt'g {t -  t ' )vgQ{t '  -  to)
Jto

+  [  d t ' [  d t " g - { t - t ' ) v g o { t ’ - t " ) v g o { t " - t o )  +  . . .  ( 3 .2 . 17)
J t o  J t o

If the series expansion converges, one can write the effect of all the scattering events into 
a single quantity called self-energy, E*, and Eq. (3.2.16) and Eq. (3.2.17) can be rewritten 
as

g ^ { t  -  to)  =g o { t  - t o ) +  (  dt' f  dt"g^{t  -  t')E^{t' -  t")g^{t" -  t o) ,  for t > to
J t o  J t o

(3.2.18)

and

nto rto
dt' /

' t  J t
g  [t  -  to)  = ^ 0  -  ^o) +  J dt' j  dt"gQ {t  -  t ' )T ,  {t' -  t")g {t "  -  t o) ,  for t < to,

(3.2.19)

known as Dyson’s equation for the retarded and advanced Green’s functions, respectively. 
W ithin the mean-field approximation, the self-energy is simply

i : ^ { t ' - t " )  =  V 5 { t ' - t " ) .  (3.2.20)

Up to this point, the Lippmann-Schwinger equation and Dyson’s equation present no 
difference when solving the problem. However, when interactions among particles are 
present, the self-energy might be more complicated than the one of Eq. (3.2.20). In this 

case, the Dyson’s equation presents a more compact way to represent these interactions.

3.2.1 T im e-independent Lippm ann-Schwinger equation

One can rewrite the Lippmann-Schwinger equations via Fourier transforming the time- 
dependent retarded and advanced Green’s functions. Therefore,

/oo poo

d t e i E t / t , e - 6 t / r , g + ^ t ) =  d t e ^ ^ ^ ! ^ ' { t )  (3.2.21)

OO J 0
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and

/O poo

(3.2.22)

■oo J  0

for the full Hamiltonian and

noc

g+(E)  = /  (3.2.23)
Jo

and
/»00

o { E ) =  /  (3.2.24)
Jo

for the unperturbed Hamiltonian. The infinitesimal quantity > 0 in the exponential 
term  guarantees tha t the integral converges. If we insert the results of Eq. (3.2.7) into 
Eq. (3.2.21) and Ec[. (3.2.22) we have

g^ { E)  = -------^ (3. 2. 25)
E  + i S - H

for the retarded Green’s function and

g - { E )  = ----- 5 ^ (3.2.26)
E - i S - H

for the advanced Green’s function. Similarly, if we insert the results of Eq. (3.2.11) into 
Eq. (3.2.23) and Eq. (3.2.24), we have

G o i E ) =  ^  (3.2.27)
E  id — Hq

for the free retarded Green’s function and

g ^ i E )  = ------^ ^  (3.2.28)
E - i S -  Ho

for the free advanced Green’s function.
All the Green’s functions have poles th a t corresponds to the eigenvalues of the respec­

tive Hamiltonian. Moreover, by simple insj)ection, they are related via

[ g ^ { E) y  = g- { E) ,  (3.2.29)

and the same relation holds for the free Green’s functions. After Fourier transforming the 
self-energies, we can rewrite the Dyson’s equation as a function of energy

g^{E) = g^{E)  - f  g^{E)^^{E)g^{E), (3.2.30)
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which can be presented also as

g^{ E)  = ---------------1--------------- . (3.2.31)
E ± i S  -  H o - E ^ { E )

3.2.2 Spectral representation o f the G reen’s function

Let us assume the single-particle Hamiltonian of Eq. (3.2.1) and rewrite the Schrodinger 

equation as

=  EnS\ iPn),  (3.2.32)

where the A^u-dimensional vectors \-ipn) are the single-particle wave functions with eigen­

values En, and S  is the overlap matrix that accounts for the non-orthogonal basis set. 

One can always normalize the state vectors so that the orthogonality relation becomes 

{'ipn \ S  I'lprn) =  ^mn- The Corresponding completeness relation for the set of eigenvectors is 

(V'’n| S  =  where is the Nu x Nu identity matrix. The Hamiltonian in its 

spectral representation is given by

Nu
H =  ' ^  EnS I'lpn) {'ipnl , (3.2.33)

7 1 = 1

so that the retarded Green’s function of Ecj. (3.2.25) can be written as

=  (3-2-34)
7 1 = 1

The spectral function is defined as

A{ E)  =  i [ g + { E ) - g - { E ) ] ,  (3.2.35)

and it can be seen as a generalized density of states. From the spectral representation of 

we can write

S  E  +  i 6 - E n  "  E - i S - E ,
n = l

N u

71

= 2 E 7 1 T “ F F - 7 5 l« < ^ » l '  (3-2 36)^  { E - E n )  + s ^  

and if we take the limit 5 —> O'*" we have

N u

A{ E)  =  27T S{E -  E„) |^„) (^ „ |. (3.2.37)
7 1 = 1
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Therefore, the density of states (DOS) is written as

iy{E) = ^ T r [ A { E ) S ] .  (3.2.38)
ZTT

In many situations, it is useful to count the contributions due to a single orbital, so tha t 

one defines the projected density of states (PDOS) as

 ̂ N u

u{E) = — Y , A p { E ) S i p ,  (3.2.39)
I

where the indeces I an d p  are single-particle basis set orbitals. Eq. (3.2.37) and Eq. (3.2.38) 
show th a t the spectral function, and therefore the Green’s function, contains all the 
information about the states of the system. Moreover, the density matrix

N u

p =- Pn I'ipn) {tl’nl , (3.2.40)
n = l

can be equally expressed as a function of the spectral function. If it is assmned tha t 
the system is in therm al equilibrium with the environment, for a system of Fermions the 
weight function, p„, becomes the Fermi-Dirac distribution fmiction, f {E) ,  as given by 
E(j. (3.1.3). From Eq. (3.2.37), the density matrix can be w ritten as

P = ^ J  d E f [ E) A{ E) ,  (3.2.41)

where the energy integral is over the entire real energy axis (from —oo to oo). At equi- 
librimn the knowledge of the spectral fimction therefore uniquely determines the density 
m atrix and consequently all the ground state properties of the system. We note that due 
to the assinnption of thermal equilibrium with a reference system, p is implicitly a time 
averaged quantity. For a system out of equilibrium the same argument can be applied, 
the only difference being th a t the state vectors, |'0„), are split up into separate sets, in 
local equilibrium with only one of the reservoirs, with different local chemical potential.

3.3 Non-equilibrium  G reen’s function formalism

3.3.1 G reen’s function for th e scattering region

In this Chapter we present the so-called non-equilibrium Green’s function formalism  
(NEGF) also known as the Keldysh formalism  [63]. This is done by solving the equations 
of motion for specific time-dei)endent single-particle Green’s functions, from which we 
can compute i)hysical properties, such as charge density and electrical currents. This 
formalism is exact only when dealing with a closed (luantum system, but not necessarily
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isolated. E xternal pertu rba tions m ay drive the system away from its therm odynam ic 

equilibrium . T he N EG F formalism allows us to  describe the  out of equilibrium  s ta te  of 

a  ciuantum system, which consists of a scattering  region (SR) attached  to  semi-infinite 

electron reservoirs or electrodes.

( a ) Hi Hi S c a t t e r i n g  R e g i o n J^ d l H i H i

•  • • i/.0

Le ft E l e c t r o d e

•  • •

R i g h t  E l e c t r o d e

( b )  S c a t t e r i n g  R e g i o n

Figure 3.1: Schem atic representation  of the  general transj)ort setup using N EGF. (a) The 
different p arts  of the  system  are identified by their H am iltonian. The scattering  region 
or the  device is highlighted in the dashed s(juare. (b) the electrodes are replaced by their 
self-energies.

In the  present work we are in terested  in studying the electronic transpo rt properties 

of nanoscale devices, which consist of a nanoscale object connected to  two electrodes, as 

schem atically shown in Fig. 1.1. In such systems, the SR is a nanoscale s truc tu re  and 

the  full system  is a quantum  system  w ith  open boundary conditions, i.e. it is an infinite 

non-periodic system, as schem atically shown in Fig. 3.1(a).

The quantum  tran sp o rt problem  can be discussed from three d istinct view points, 

namely, therm odynam ics, electrostatic  and quantum  mechanics. From the therm ody­

nam ic point of view, as discussed in Sec. 3.1.1, the electrodes are considered as electrons 

reservoirs in their therm odynam ic equilibrium  and therefore characterized by their chemi­

cal potentials. W hen the system  is in equilibrium , i.e. no ex ternal bias is applied, electrons 

will flow between the p arts  of the  system  until a common chemical po ten tial is reached. 

However, if a bias is applied to  the  system , e.g. a b a tte ry  keep a chemical difference be­

tween electrodes, according to  Eq. (3.1.10) and Eq. (3.1.11), an electrical current can be 

established. The current is the  result of the  a ttem p t to  restore the  equilibrium  condition. 

Thus, by keeping the external bias, the  system  can reach a s ta tionary  s ta te  current.

W hen the  system  is under an ex ternal bias, a red istribution  of charge will occur. Since 

the  electrodes are assum ed to  be good conductors, they screen any p ertu rba tion  caused 

by the  presence of the SR. Then, from a electrostatic point of view, the poten tial drop
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due to  the  apphed bias is assumed to occur only in th e  SR.

From the  quan tum  mechanics point of view, th e  system  can be divided into three 

regions: the  left and  right electrodes and the SR, as shown in Fig. 3.1(a). We define the 

SR as a quan tum  struc tu re  th a t breaks the transla tion  sym m etry of the  electrodes, e.g. 

a molecule, a defect and so on. The electrodes are semi-infinite in size and they  hold 

periodicity along the  transport direction. Each electrode unit cell can be described by 

a H am iltonian -^o(l.r)- This operator can be represented by a m atrix  w ith dim ensions 

depending on the  basis set used to describe the  atom s of each unit cell. In term s of 

localized basis set, one can define the size of the  unit cell to  assure th a t each un it cell 

in teracts only w ith  its first-nearest-neighbor cells. T hen, the  dim ensions of the m atrix  

th a t represents the  operator i^o(L,R) will be N  x N ,  where N  = Natoms x Norbitais
is the  to ta l num ber of degrees of freedom in each electrode un it cell. Moreover, the 

operator H\  describes th e  coupling between each un it cell and its neighbors and H\y is 

the  H am iltonian of the SR where “D ” stands for “device” . Finally, the coupling between 

the device region and the  left (right) electrode is given by / / l d  ( ^ d r ) -

T he H am iltonian of the entire system can be w ritten  in m atrix  form as

/

n  =

\
0 H-x 

0

H, 0
H-x Ho ^LD 0

0 H ld Hv H uh 0
0 H dr Ho H

0 H - i

\

(3.3.1)

/

where H ^ i  =  H \ ,  / / d l  =  ^ l u  -^dr =  ^ r d -  principle, one solve the problem  by
diagonalizing th is m atrix , however, it is infinite.

The N EG F offers another way to trea t th e  prol)lem. In th is framework, we s ta r t by 

rew riting th e  Schrodinger equation in term s of G reen’s functions as:

(3.3.2)

where =  lim^^o±(-E’ ±^5) is the energy and S  is the  overlap m atrix  th a t appears when 

one is dealing w ith  non-orthogonal basis set. In term s of m atrices, Eq. (3.3.2) is given by

(  6 ± 5 l - W l  e^^LD-'^LD 0 \
f^'S’oL -  'H'd 'l — 'Hrd

0 f"*'5'RD -  'Hkd  e"*"5'R -  "Hr J

(  Q\. Q\A) ^ l r  \  
Qnh Qd ^ d r

V  ^ R L  ^ R D  ^ R  /

/  X 0 0 \
0 2  0

V 0 0 X )
(3.3.3)

where all th e  elem ents of the G reen’s function m atrix  are energy dependent (we om it the 

explicit energy dependence to  simplify the nota tion). Moreover, the  m atrices ^ r ,
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"Hld and 'Hdr are semi-infinite and are w ritten  as

'Wl =

I ■
: \

0 H - i II: Hi 0
0 / / - I  Ho Hi

V .............. 0 H - i Ho j

( Ho Hi  0 . . .  \

/ / - I  Ho Hi 0
0 1 Ho Hi 0

V ^ '  /

( ■■ ]
T-Lld 0

V ^ l d  j

(3.3.4)

(3.3.5)

(3.3.6)

and

H dr =  ( / / rd 0 ■ ■ ■ ) . (3.3.7)

Eq. 3.3.3 can be solved by conventional m atrices m ultiplication, which leads to  nine

equations. However, by considering m etallic electrodes, the coupling between the device 

and the electrodes will not affect their electronic structu re . This allows us to  focus on 

the device region and solve exi)licitly only three eqiiations. Therefore, from Eq. 3.3.2, the 

G reen’s function of the  device region is given by solving the following equations

+  (e^^LD -  'H,^d )Qd {E)  = 0 , (3.3.8)

(e±5oL -  n x , i . ) G i A E )  +  (£^5d -  H^)Qx ,{E) +  (e±5oR -  'H d r)^^ rd (^ ) =X,  (3.3.9)

and

(f^'S'RD — 'H rd)^ ld(-£ ') +  (c^'S'r — 'Hk )Qk d {E)  =0 . (3.3.10)

The th ird  line of the  first m atrix  was m ultiplied by the second column of the second

m atrix . Solving Eq. (3.3.8) and  Eq. (3.3.10) for ^ld(-E') and Gk d {E),  respectively, we 

obtain

0 l d ( ^ )  -  ' H l ) - ' ( ' H l d  -  e ^ 5 L D ) ^ D ( £ ^ ) ,

^ r d ( -E ')  = ( e ^ S ' R  — " H r ) ^ ( " H r d  — c ' * ' 5 r d ) ^ d ( -E ') -

(3.3.11)

(3.3.12)

By defining the  G reen’s functions for the isolated electrodes as

gi^{E) = ( e ± 5 L - ^ L ) - \  

^ r ( ^ ) = ( 6 ± 5 r - H r ) - \

(3.3.13)

(3.3.14)
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we can w rite Eq. (3.3.11) and Eq. (3.3.12) as

^ l d ( ^ )  = 5 l ( ^ )  [K ld  -  e^^LD] Qb {E),  (3.3.15)

Qk d{E)  = ( / r (£ ’) ["Hrd — e^S'rd] Qv){E).  (3.3.16)

By inserting Eq. (3.3.15) and Eq. (3.3.16) into E(i. (3.3.9) and  solving it for ^ d (£ '), we 

have:

g ^ { E )  = [(e±5o -  / /d )  -  S l ( ^ )  -  S r ( £ ; ) ] “ ' , (3.3.17)

which corresponds to  the  re ta rded  and advanced G reen’s functions for the SR in the 

presence of th e  electrodes. Moreover, S l (£ ')  and E r ( £ ' )  are given by,

^xXE) = (H ld  -  e^5LD).9L(^)('^DL -  e*5DL), (3.3.18)

S r (£') =('H rd — €'*'‘S'rd)^r (£')('Hdr — e^'S’oR). (3.3.19)

These are the  electrodes self-energies. Unlike the  self-energy shown in Eq. (3.2.20), the  

self-energies S l ( £ ' )  and E r ( £ ' )  are non-H erm itian, i.e. S [ j ^ ( £ ’) ^  S l ,r ( £ ' ) .  In fact, from 

the general p roperty  of the  G reen’s fiuictions presented in Ecj. (3.2.29) we ob ta in  from 

Ecj. (3.3.18) and Eq. (3.3.19) th a t

[ E + J , ( E ) ] '= 2 [ „ ( £ : ) ,  (:i3^2U)

I.e. the  advanced self-energy is the H erm itian  conjugate of the  retarded  self-energy and 

vice-versa. This is a consequence of partition ing  the  system  into electrodes and SR so 

th a t the  interface potentials act on the  s ta tes  of the central region, as if the central region 

H am iltonian is i)erturbed  by the  i)resence of the electrodes through their self-energies, as 

schem atically shown in Fig. 3.1(b).

3.3.2 E nergy renorm alization and lifetim e

From Eq. (3.3.17), one can see th a t in absence of the self-energies (E =  0), the  

G reen’s functions have poles in correspondence to  th e  eigenvalues of T-Lx̂ . Therefore, the  

self-energies make the  G reen’s functions analytic by renorm alizing the eigenenergies of 

the device H am iltonian. If we w rite the  self-energies as

E,.r (E) =  R 6{E lr (^ )}  +  Im {ELR (^)}, (3.3.21)

I.e. in term s of the ir real and im aginary parts , we can rew rite Eq. (3.3.17) as

"  (€±5d -  //d )  -  Re{EL(i?) +  E r(E )}  -  Im{EL(£:) +  T.^{E))'
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Thus the real part of the self-energies shift the energies of the Hamiltonian of the device. 
By using explicitly the retarded and advanced Green’s functions of Eq. (3.3.22), we define

where one can define the electronic coupling between the scattering region and the elec­
trodes by

W ithout the imaginary part of the self-energies, the eigenenergies associated with the

free device Hamiltonian. The imaginary parts, however, move these solutions away from 
the real energy axis, inside the complex plane. This imaginary part is associated with 
the decay of the solutions, therefore, they can be interpreted as the rate at which the 
electrons are scattered out from the states of the isolated device Hamiltonian. Thus the 
states of the device region accpiire a broadening due to the interaction with the electrodes.

3.3.3 D en s ity  m atrix

As discussed at the end of Sec. 3.2.2, for a system out of ecjuilibrium, we can split 
up the contributions to the density m atrix attribu ted  to states in local equilibrium with 
only one of the reservoirs, namely

j3{l/r| „(£ ') lies between 0 and 1 and determines the occupation of each state. We now 
assume th a t the left and the right leads are in local therm al equilibrium, and therefore 

have a local Fermi energy, £ 'f ,{l / r }- Thus each of the states | '0 { l / r }) (E)  has a probability 
of being occupied given by the Fermi distribution /{ l/r} (£ ') of the lead it originates from. 
The describe states originating from the left lead, we have pi^^n{E) = fh{E) ,  and
analogously we have pYi,n[E)  =  / r (£ ') .  This is one of the central approximations in the

[ 6 + ( B ) ] -  [S-(E) ] = (S+(B) -  Ee(E)) + (e ; (B )  -  E|;(B))

= ![ri,(£:) + r„(B)l =ir(£) (3.3.23)

F l , r ( ^ )  =  z  El^{E)  -  E Z ^ E )  = -2 lm{Et^{E) } . (3.3.24)

solution of the Green’s function would be shifted with respect to the eigenenergies of the

Pd  =  PvL +  P d r - (3.3.25)

The individual parts are

7 1 = 1

(3.3.26)

(3.3.27)

where |'0[l/ r} n) sta te  vector extending over the SR. The occupation number
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NEGF formahsm. A bias voltage which is defined as the difference between the Fermi 

energies of the two leads divided by the electron charge, e ,  so th a t eV̂ d =  £ ' f ,l — -£'f ,r , 

now be specified. Note th a t the energy eigenvalue spectrum  of the entire system is only 
defined up to a constant, so th a t one can choose the reference of energy. A convenient way 

is to consider the Fermi level of the system at equilibrium, E^,  as reference and setting 

Ep.L =  Ep +  el4d/2 and Epji = Ep — eV^d/2. This is the convention used throughout this 
work. We can therefore write

Note that we have introduced the spectral functions for the parts of the system, Aql and 
-4dr- We now define the lesser Green’s function for the SR, as [105]

where the couplings, F ^ r , are given by Eq. (3.3.24). By using this definition, and 
Eq. (3.3.25), Eq. (3.3.28) and Ecj,. (3.3.29), the density m atrix of the SR becomes

the same Fermi energy, then we recover the equilibrium result of Eq. (3.2.41).

The same procedure can be repeated for an arbitrary number of electrodes, Neiectrodes- 
In tha t case the to tal lesser Green’s function becomes

(3.3.28)

and in the same way

(3.3.29)

G^= tGD [fL{E)Ti  ̂+ h { E ) r n ] G l (3.3.30)

(3.3.31)

This is the central equation of the NEGF formalism [63], and allows one to obtain the 
charge density of the SR attached to leads also out of equilibrium. If all the leads have

■ ^electrod '

(3.3.32)

3.4 Transm ission and current

3.4.1 W ave function

The Schrodinger equation for the partitioned system can be WTitten in a m atrix form

as
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I H l 'Hld 0 
y-DL H d  H d R 

\  0 'Hrb 'Hr

(
\ r )

V
=  E

 ̂ S l 5’l d  0
5 'd l  ‘S'd  5 'd r

\  0 5rd Sr

(3.4.1]

We have divided the state  vector into its parts corresponding to the individual parts of 

the system as

/  \
IV>) =  |V>°) , (3.4.2)

V I'/’'*) /

where \xp )̂ (|'0^)) is the part of the wave function (WF) extending over the left (right) 
lead, and |'0^) is the part extending over the SR. Moreover,

I^l) = 1^1^), (3.4.3)

V /
where is the state  vector for the isolated left electrode so tha t

Hl \ -̂l) =  E S  |(/?l) • (3.4.4)

When the isolated electrodes join the SR, the state  vectors will be different due to their 
interaction with the SR and indirectly with the other electrodes. Therefore, has the 
dimension of the entire system, i.e. the SR plus the electrodes, and it corresponds to the 
change in W F due to the presence of the SR. In an analogous way is given by

I^r ) =

/  0 
0

V  Iv̂ r )
+  1^^) (3.4.5)

The then satisfy the equation

{H -  ES)  K J  =

0

—-^D L  |v^L,n) 

0

(3.4.6)

where we have defined
K  = n -  {E ± iS ) S .  (3.4.7)

From this definition it follows th a t and A 'd { l / r } =  -^{l/rid- (3-4.6) has
two sets of solutions [105]. One is obtained by multiplying Eq. (3.4.6) with the retarded
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G reen’s function from the left

(  ° ^
\'^L,n) =  ^Dh\'~Ph,n)

\ 0 y
(3.4.8)

and the other is obtained by m ultiplying it w ith  the  advanced G reen’s function

/  0 \
IV̂L.n) = ^ i^DhWh.n)

\ 0 y
(3.4.9)

T he first describes electrons flowing from the  left electrode into the  SR and the second

electrode attached  to  th e  SR these solutions are identical. O ur aim is to  distinguish the 

solutions arising from a given electrode. Therefore, we focus on the first set of solutions, 

I.e. those described by the  re ta rded  G reen’s function. If we use the m atrix  form of 

the G reen’s function given in E(j. (3.3.3), the to ta l wave function originated in the  left 

electrode can be w ritten  as

where Ul is a unity  m atrix  w ith the dim ensions of the  left electrode. For the wave 

functions originated in the right electrode we obtain,

3.4.2 Current per channel

In th is section the current associated to  a single s ta te  vector is calculated. Since the 

s ta te  vectors, \'ipn)i are norm alized in such a way th a t {ipn \ S  It/'n), the  electron charge in 

the  SR, qv), is

describes electrons propagating  from the  SR into the left lead [105]. If there is no right

(3.4.10)

(3.4.11)

(3.4.12)

If the overlap term s proportional to  S'ld and 5 rd axe neglected this becomes

(3.4.13)
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In order to obtain the current we need to define the time-dependent state vector given by 
the time-dependent Schrodinger-hke equation

where the index t in indicates that this is the exphcit time-dependent state vector. 
The solution for the time-dependent state vector is |'0). The time derivative
of the occupation of the SR for such an eigenstate is given by

( 3 .4 . 15)
ot at

This means that the change in charge is zero, because the inflowing current from one 
lead is equal to the outflowing current through the other lead. These two currents can be 
obtained by explicitly taking the time-derivative of go- The time derivative of is

^^Ei / n (3.4.16)
at n

=  (A'dl +  Adr . (3.4.17)

The time derivative of the occupation of the SR then is

dq  ̂ _  d{^^\ Dv I / - . D |  o

+ ^ { { iP ^ \ K r d  IV'̂ ) - (V^°|A'dr I^^)) • (3.4.18)

This shows that the change in charge is equal to the sum of the total current flowing in 
from the left lead, /^, and the total current flowing in from the right lead, /^ , so that

, t R

dt

and =  —/^ . The two currents of the single state vectors are

/" =  (3.4.20)

(3.4.21)

3.4.3 Transm ission coefficients and to ta l current

The total current from the left lead into the SR, is equal to the sum of all the
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contributions from the single state vectors

n = l  

-Vr

( I E Y ^ M E )  lyR.niE) / L ,  (3.4.22)
71=  1

where, by using Eq. (3.4.20) the current (hie to a single state vector coming from the 

left lead I^L.n) is

=  I  ( ( ^ L . n l  ^ L D  \ ^ t „ )  ~  (V’l . „ I ^ ' d L  |V ^ l ,„ ) )   ̂ (3.4.23)

and the current due to a wave function originating in the right lead |'J/’r ,„) is

^R.n — ((V̂ R.nl •̂ '̂ LD l'0R,n) “  ('V^R.nJDL IV'r.h)) • (3.4.24)

By inserting the explicit expressions for ipL,n and ^r,„  [see Eq. (3.4.10) and Eq. (3.4.11)], 
and after some algebraic manipulations, we obtain

^L,n — (V̂ L.nl ArjiJ(y?L,n) , (3.4.25)

^ R . n  —  (v^R.nl R D ^ d  ^  DR |<y?R,n) ■ (3.4.26)

We have used the definitions of [E(j. (3.3.17)], F l,r  [Eq. (3.3.24)], and also the fact tha t 
A’m = A'Ij and A'm{l/r} =  Since F r  is positive-semidefinite, and considering
th a t for any semidefinite matrix A/ also the m atrix UMU^  is semidefinite for an arbitrary 
m atrix U, it can be seen tha t / l „  >  0. This is consistent with the fact tha t states 

{|V^L,n)} describe electrons flowing from the left electrode into the SR (and then into the 
right electrode). By choosing [Eq. (3.4.9)], obtained by using the advanced Green’s 
function, then the electron fiow would be from the SR into the left electrode, so th a t 

such states would not originate in the left electrode. Thus, <  0, so tha t the {|'0R,n}} 
describe electrons flowing from the SR into the left electrode.

The total currents due to the states originating in the left ( /l ) and right (/^) electrodes
are

N l

dEY, fUEME)I l„ ,  ( 3.4 .27)

71 =  1

N r

dEY, fR{E)uK.n{E) lk .n^  (3.4.28)
71 =  1
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so th a t /^  =  / l +  / r . By using the result of Eq. (3.4.25) we obtain for / l

Nl

I t =  T /  d E f i ^ { E )  y h , n { E )  ((y^L.nl A pL W h . n ) )  ■

n = l

The current for each wave function is larger than or at least eciual to zero, therefore, 
/ l >  0. The quantity in brackets is a scalar, so th a t it can be rewritten as a trace. We 
then rearrange the matrices to

•̂ L “  ^  y  Tr AdL f^L.n('E') \‘-ph.n) (¥^L,n|^ A ld ^ d ^ r ^ d (3.4.29)

By using Eq. (3.2.35) with the definition of the spectral function and Eq. (3.3.13) for the 
isolated electrode Green’s finiction, we can write the spectral function for the isolated left 
electrode as

Nl

A i ^ { E )  =  2 T T Y ^ U L , n { E )  | ( ^L ,n)  ■ (3.4.30)
n = l

Finally, by using the definition of F l given by Eq. (3.3.24) with Eq. (3.4.30) and inserting 
both into Eq. (3.4.29), we obtain

= j J dE ME)Tr

Likewise, the to tal current from the left electrode into the SR, carried by the states 
originating from the right electrode, is given by

/L _ I  dE  / r ( E ) T t ( F l^ ; -F r 6^+) . (3.4.31)

We can now define the transmission coefficient T  [103, 63] as

r  =  Tr (FL0pFRa5) , (3.4.32)

with T  >  0. The to tal probability current then is

I'- =  j J d E  T(E)  \h(E)  -  M E ) \ . (3 4̂.33)

We note th a t depends only on the difference between the Fermi energies of the elec­

trodes, which by definition is equal to the bias voltage eVgd- Eq. (3.4.33) shows tha t only 
the states within the bias window, i.e. those lying in the energy range between Ep î  and 
£^f,r, contribute to the current with an amplitude proportional to T[E) .  We note th a t if 
the density of states in any of the electrodes vanishes at a given energy, the corresponding 
F-m atrix will be zero, and therefore also the current will vanish. For a two-terminal device
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then we can define the two-terminal current through the SR /  as being equal 
to so that

I  = I  J  dE T{E)  [ / l ( ^ )  -  h m  . (3.4.34)

We point out that Eq. (3.4.34) describes the probability current. Therefore, in order to 
obtain the electrical current, /e, one needs to multiply it w'ith the electron charge, e, so 
that

h  = j J d E  T{E)  [fUE) -  M E ) ] , (3.4.35)

where the factor of 2 is due to the spin degree of freedom. This is the well-known Landauer- 
Biittiker result for the current through a two-terminal device [103, 63]. In the spin- 
polarized case the transmission for majority spins [T^(£')] and the one for minority spins 
[T^{E)] are independent, and have to be evaluated separately for each spin. The total 
transmission then is T{E) = T^{E) +T^(E) .  The total current is le = I j  + 1^, where 
is the current carried by the majority spins, and /j- is the one carried by minority spins. 
The total current taking into account spin is given by

=  f  /  E Tr [ r j e D " r ;e ,r ]  [ M B )  -  ME ) ] d E ,  (3.4,30

where all quantities depend on the energy. From now on, we refer to the electrical current 
as just I  by omitting the subscript “e” .

This fornmla was already presented in Eq. (3.1.13) where it was derived for non­
interacting electrons, i.e. where all the coherences between the states w'ere neglected. In 
other words, the Landauer-Biittiker approach presented in Sec. 3.1 is a particular case of 
the NEGF. In the former, interactions in the SR are taken into account via a self-energy 
fimction, which, in principle, contains all possible scattering events that a single-particle 
experiences in the presence of all other jjarticles, i.e. in a mean-field approximation.

3.5 DFT and NEGF

Throughout the present work, we use DFT as the electronic structure theory in 
conjunction w'ith the NEGF. Although this combination works satisfactorily for many 
systems, it presents important limitations that lead to erroneous predictions. Thus, we 
conclude this Chapter by discussing some of these limitations.

In principle, one would like to establish how accurate is a ground-state DFT calcula­
tion of current with respect to the true many-body current evaluated for a well-defined 
nanojunction. In fact, this is a fundamental problem associated with DFT itself. Even 
if one could evaluate the current using ground-state DFT (even with the exact ground- 
state functional in hands) within the Landauer-Biittiker approach, we do not know' how'
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it would differ from the current obtained with the true many-body system developing in 
time. The reason is not to be found in the lack of the exact ground-state functional but 
rather because we are employing a ground-state theory to treat a non-equilibrium prob­
lem. Therefore, the use of ground-state DFT in combination with the Landauer-Biittiker 
approach must be understood as a sort of mean-field approximation, even if we know the 
exact ground-state functional [63].

In addition, it is assumed that the single-particle KS-eigenvalues correspond to the 
energy levels for the real interacting-electron system (an assumption which is usually made 
also in ground-state DFT calculations). It is also assumed that the KS Hamiltonian is 
also valid out of equilibrium. Moreover, as we will see in the next chapters, the problem 
of the correct position of the KS-eigenenergies (see Sec. 2.5.1) can lead to major errors 
in the prediction of the transport properties of molecular systems, as we shall discuss in 
Chapter 6. This is closely related to the problems of DFT presented in Sec. 2.5.2 and 
Sec. 2.5.3, namely the lack of the derivative discontinuity and the self-interaction error, 
respectively.

Due to the fact th a t the NEGF uses a single-particle picture to describe the electrons, 
it can not correctly describe transport through very weakly coupled states. This is the 
situation of quantum  dots in the Coulomb blockade regime. In this cases many-body 
effects, tha t are not included in the NEGF formalism described here, may play an impor­
tan t role. The transport j)roperties of these systems are usually calculated using master 
equation approaches, as we will see in Chapter 7.



Chapter 4 

D ensity M atrix Formalism

O pen or dissipative quan tiun  system s have been the  subject of intensive research 

since m any decades [106, 107]. Such system s are conventionally described in term s of the 

reduced density-m atrix  formalism, where the  corresponding equation of m otion, i.e. the 

m aster equation, can be obtained by a num ber of teclmicjues [108]. Among them , the 

Nakajim a-Zwanzig projection technic[ue [109] and the  real-tim e d iagram m atic technique 

developed by Konig et al. [110, 111, 112].

T he pioneering Rcdfield theory for dissipation [106, 107], commonly described in te x t­

books [113] has more recently been api)lied, by several groups, to  study  tunneling through 

molecules [114, 115, 116, 117, 118, 119, 120, 121]. The ME w ithin this formalism, called the 

Wangsness-Bloch-Redfield  m aster equation (W BR-M E), is based on the  reduced density- 

m atrix  approach and implies the Born and Markov approxim ations in the relaxation 

description, this allows one to  explicitly trace out the  b a th  variables from the relaxation 

operato r and  to  ob ta in  a local-in-tim e equation of m otion for the reduced density m atrix .

The m aster equation approach is a com putationally  efhcient way to  describe quantum  

tran sp o rt in molecular systems. Moreover, it is relatively simple to  account for im portan t 

effects, such as. Coulomb blockade (see C hap ter 7), tem peratu re  and light-induced charge 

tran sp o rt (see C hapter 8), where th e  param eters can be obtained  by m eans of first- 

principles. In this chapter, we s ta r t by j)resenting a brief overview of quan tum  mechanics 

concepts needed for the discussion. Then, in Sec. 4.3, we present a full derivation of 

the  W B R -M E used throughout the  m anuscript and all the  approxim ations rela ted  to  the 

practical applicability to  quan tum  tran sp o rt. A nother im portan t approach constructed  

on top  of the  W BR-M E, namely, the  T -m atrix  approach, is also presented in Sec. 4.5.

4.1 Tim e evolution

T he dynam ics of a quantum  system  can be discussed using three different represen­

ta tions  or “pictures” , namely, the  Schrodinger picture, the  Heisenberg picture and the 

in teraction  picture. In this section we w'ill present the different representations and dis-

50
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cuss how they  are related. T he interaction p icture is of particu lar interest when dealing 

w ith tim e-dependent pertu rba tion  theory, which will be used to  derive the equation of 

m otion for the density m atrix  operator, the  ME.

4.1.1 T he Schrodinger picture

This representation  is useful when dealing w ith tim e-independent Ham iltonians so th a t 

^  =  0. Any o ther operator. A,  may be tim e-dependent. T he sta te  vectors, |^ (^)), do 

depend on tim e and the ir evolution is given by

(4-1.1)

where U(t,  0) is th e  tim e evolution operator. T he Schrodinger equation is w ritten as

, (4-1.2)

which implies the  equation for the evolution operator

2h^^U(t ,0)  = f f ( t )U(t ,G) .  (4.1.3)

If the H am iltonian is tim e-independent, then  we see th a t the  evolution oi)erator is simply 

given by

U(t ,0)  = e - i ^ \  (4.1.4)

In summary,

states: IV'(^)) =  |'0(O))
The Schrodinger p icture  ̂ I "4, may or may not be tim e-dependent

operators: <(
H  is tim e-independent.

(4.1.5)

4.1.2 The H eisenberg picture

Sometimes, it is preferable to  incorporate all the  tim e dependencies in the operators, 

A{t),  and work w ith tim e-independent s ta te  vectors, \'ip). The H am iltonian of the  system, 

H,  rem ains tim e-independent. Note th a t if the m atrix  elem ents of any operator between 

any two s ta te  vectors are identical in the  Schrodinger and  Heisenberg representations, 

then  bo th  representations are fully equivalent since

(^'(i)| A \ m )  = (̂ '1 It/,) = (̂ '1 A{t) \^) (4.1.6)
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where the  un itary  transform ation  of Ecj. (4.1.4) was used. This representation can be 

sum m arized as

( states: li’it)) =  1^(0))
T he Heisenberg picture < f A{t )  =  e ^ ^ M (0 )e“ ^ ^ ‘ (4-1-7)

operators; <
I // is tim e-independent.

4.1.3 The interaction picture

T he Schrodinger and Heisenberg pictures bo th  require a tim e-independent H am ilto­

nian. However, very often, we have to  deal w ith tim e-dependent H am iltonians. This is 

more conveniently trea ted  w'ithin the interaction picture. In th is representation, the full 

H am iltonian is w ritten  as H  = Hq + V{t) .  Here, Hq is the tim e-independent part of the 

H am iltonian so th a t Hq |nn) =  fno l'*o)- The sta tes |no) are p ertu rb ed  by some, possibly 

tim e-dependent, in teraction V{t).  T he task  in the in teraction  picture is to  separate the 

fast tim e evolution due to  the unpertu rbed  H am iltonian from the more com plicated in­

teraction  V{t).  This can be achieved by replacing the full H am iltonian, / / ,  in Eq. (4.1.4) 

by its unpertu rbed  part, H q .  A s a result, bo th  the s ta te  vectors and the oj)erators will 

depend on time.

{ states: \ipj{t)) = 1"0(O)
f Aj { t )  =  (4.1.8)

operators: <
I H q is tim e-independent

The Schrodinger equation for a s ta te  \'ipi{t)) given in Eq. (4.1.8) is

= (-H o + h) \m)

=  |^;(t))

= Vj{t)\ ' ipj{t)). (4.1.9)

T he resulting Schrodinger equation is explicitly w ritten  in term s of only the  in teraction 

p a rt of the  full Ham iltonian. If Vj{t) =  0 then  ih-^ \fpi{t)) =  0, th a t is, the tim e de­

pendence of \'ipi{t)) originates entirely from the  pertu rba tion  term . If th is  term  is small,

\'ipi{t)) will vary slowly w ith tim e and Eq. (4.1.9) can be solved w ithin the  tim e-dependent 

p e rtu rb a tio n  theory framework, a task  easier th an  solving directly  Eq. (4.1.2). The tim e
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evolution of a state  \ipiit)) from a time to a time t is given by an unitary transform ation

(4.1.10)

where

Ui{t , to)  = (4.1.11)

depends only on V[t ]  and U{t,  ^o) is given by Eq. (4.1.4) in the Schrodinger representation.

4.2 Perturbative expansion

In principle, all cases where the interaction picture is used, a perturbative expansion 
in the interaction, Vj, is carried out and this is implicit in the evolution operator. The 
task now is to find a useftil formula for the time evolution operator. By evaluating the 
time derivative of Eq. (4.1.11), we have

e ft +  ih

U{U to) +  to)
d

=  efi H o t

(4.2.1)

where we used the results of Eq. (4.1.3). By integration of this differential equation we 
obtain the integral equation

Ui{t , to) =  l  +  ^  f  dt %{ t ' )Ul i t ' ,  to),
J t o

(4.2.2)

where the initial condition is Ui{to, to) = I, th a t is, when Vj =  0. For Vj{t) sufficiently 
small, Uj{t,  to) will only diff'er shghtly from I. The operator Uj{to,  to) can then be replaced 
by the identity operator and we obtain the first-order term  given by

(4.2.3)
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If we itera te  th is equation we derive the following pertuba tive  expansion

U , { t , t o ) = l  + ^  f d h V , { U )  r dt2V,{t2) + ... (4.2.4)
J t o  ^  J t o  J t o

This equation describes the tim e evolution from tim e to  tim e t of the  system  due to 

consecutive scattering events caused by the pertu rb a tio n  Vj a t tim es t2 , and so on. In 

other words, it gives additional phase factors to  the  s ta te  vectors due to  the pertu rba tion  

on top  of the triv ial phase factors arising from Hq.

4.3 M aster equation  I: th e W angsness-B loch-R edfield  

m aster equation

T he ME approach involves two stej)s. Firstly, one derives the  ME from the von 

N eum ann equation for the full system. This shows how the  reduced density operator 

changes based on its present and often its past values. Secondly, one solves the ME to 

determ ine the tim e evolution of the system  or its s ta tionary  s ta te  solution. It is generally 

more com plicated to  find the tim e evolution when the  M E contains memory, or history 

of th e  past times. Therefore, approxim ations are called to  circum vent this, usually to  

ob ta in  a ME th a t is local in time. In the present C hap ter we follow closely the derivation 

presented in Ref. [64].

4.3,1 Liouville equation in the interaction picture

Let us now w rite the  density operator, p, in the  in teraction ])icture. By evaluating the 

tim e derivative of this o])erator, we derive the  Liouville eci^iation

= i h —  (Uj{t ,  tQ)p{t)^ IJ\{t, to) +  ih (Ui i t ,  to)p{t)^ {t, to)

= V , { t ) U , { t , t o ) m u j { t , t o )  -  U i { t , t o ) m u j { t , t o ) M t )

= Vi{t)pi{t) -  Pi{t)Vi{t)

= Vi{t),Pi{t)] ■ (4.3.1)

This is a ra ther im portan t result, since the density operator depends only on the in terac­

tion  H am iltonian. This equation can be w ritten  in an in tegral form:
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which can also be solved iteratively

pf \ i )  = P/(0)
.(0)

ih ' t o

p f \ t )  = p \ ' \0 )( 1) / dU

(4.3.3)

(4.3.4)

(4.3.5)

and so on. By using the iterative procedure we compute the small changes in the density 
operator caused by a perturbation in the state  of the system due to consecutive scattering 
events.

We are interested in studying the transport properties of physical systems comprising 
of a small sub-system (for instance, a molecule) connected to two fermionic electrodes. 
The small sub-system is not in equilibrium because of its interaction with the environment 
(the reservoirs or electrodes). The Hamiltonian of the entire system can be written as

H k V Hs V

Figure 4.1: Schematic representation of an open quantum  system. The sub-system S,  
described by the Hamiltonian Hs,  interacts via V  with the environment IZ, described by 
the Hamiltonian H-ji.

H  = Hs + Hn + V (4.3.6)

where S  and TZ denote the small sub-system and the reservoirs, respectively, and V  is 
the interaction between them. From this point on, we assume the interaction between 
the reservoirs and the small sub-system to be weak, so tha t we may treat V  within 
perturbation theory. We use the interaction picture so tha t the time evolution of any op­
erator, Aj ,  is given by Eq. (4.1.8), where the unperturbed time-independent Hamiltonian 

is Hq = Hs  +  H tz- The Liouville equation for the density operator of the entire system, 
X/, can be written as

(4.3.7)
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4.3.2 Sim plification: separability

If we assum e the  in teraction between the system s S  and TZ gets swiched on at to =  0,^ 

we separate  the dynam ics of S  by tracing out the  contribu tion  of the  reservoirs from the

full density  m atrix  in order to  ob ta in  the reduced density  m atrix  [113], pi =  T r 7̂ (x/)- By

doing so, the  initial full density m atrix  can be w ritten  as a product:

X(0) =  X7(0) =  X5(0) 0  Atc(O), (4.3.8)

where X5(0) =  P(0)- In other words, the initial s ta te  between the systems S  and 71 is

uncorrelated for tim es prior to  to =  0, t < to.

4.3.3 Born approxim ation

One can always write the full density operator a t any tim e as

Xl { t )  =  Pl { t )  ®  Xn { t )  +  X c o r re la t io n (^ ) ,  ( 4 . 3 . 9 )

where Eq. (4.3.9) provides the definition of x correlation(0- If interaction s ta rts  at to =  0, 

for any tim e in the  i^ast, Eq. (4.3.8) holds. If we assmne th a t the coupling between the

two sub-system s is weak, E(j. (4.3.9) will approxim ate to

Xi { t )  ^  Pi{t )  ^  X n i t )  (4.3.10)

for tim escales over which ])ertiubation  theory is valid. In addition, we assume th a t the 

correlation tim e of the  reservoirs , tji, and consequently th e  relaxation time, is small so 

th a t

X7^(0 ~  X7e(0),if  ̂ >  ttj (4.3.11)

and

Xi{t )  =  P i m T z { 0 ) .  (4.3.12)

In o ther words, the  reservoirs are assumed to  com prise so m any degrees of freedom th a t 

they  are not affected by the in teraction w ith S,  independently  on the  am ount of energy

transferred  to  them  from S.  Hence, they will rem ain a t therm al equilibrium , i.e. the

density m atrix  will be simply given by

=  (4.3.13)

where Z  is the  partition  function, Z  =  Tr This is the fundam ental condition

for irreversibility. We can then  w rite the  equation of m otion for the  reduced density

^Note tha t this can always he obtained by choosing Aq = 0 appropriately.
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operator as

r -  1 1  /■*V/(t),p/(0)xTC(0) - ^ J  dt'Tr-jz
° (4.3.14)

According to this equation, the behavior of S  depends on the past events in the time 
interval [0,t] because the integrals contain i.e. this ME is non-local in time.

4.3.4 M arkov approxim ation

If we assume th a t the time scale for the reservoirs to keep their correlation is much 
faster than  tha t in which the small sub-system S  is modified, then the system loses its 
memory and the influence of past times do not affect the evolution of the system. This is 
also a consequence of the weak-coupling limit between the quantum  sub-system and the 
reservoirs.^ This is equivalent to say th a t ~  piit) . This approximation is called the 
Markov-approximation. Then, Eq. (4.3.14) can be rewritten as

Pi{t )  =  - ^ T r ^ j y t ' T v n  [Vi{t'), [v 7 (0 ,P /(^)X7^(0)]] , (4.3.15)

I.e. it becomes local in time. In Eq. (4.3.15), the rate of change of p/ at time t is determined 
by Pi at the same time t only. In order to solve this equation, we nf^ed to specify a form 
for the interaction Vj. A generic form for the interaction operator is a i)roduct between 
the small sub-system operators, Sj, and the reservoirs operators, r;. In the interaction 
picture, we have

= (4.3.16)

where

and

S i { t )  =  eft ^  S i 6

fi{t) =

By inserting Eq. (4.3.16) into Eq. (4.3.15) we obtain

(4.3.17)

(4.3.18)

Pi { i )  =  - ^ T r 7 ^ ^  [ s ; ( f ) f i ( i ) , p / ( 0 )x 7? (0 )]  +
i

~  ^  lo  • (4.3.19)

discussion on the validity of this approximation in terms of temperature can be found in refer­
ence [108].
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The operators Si act only on the subspace of the system S  whereas the operators rj act 
only on the subspace of the reservoirs TZ. In other words they commute and therefore 
we can interchange their position. Also, by considering the cyclic property of the trace, 
Tr{ADCD)  =  Tr{DABC)  =  T t{CDAB) ,  the first term  of Eq. (4.3.19) can be w ritten as

-  ^ T r ^ ^  [5,(i)fi(t),p/(0)xTC(0)] =
i

=  -^TrTC^{s^(t)7M0P/(0)XK(0) -  p/(0)xTC(0)sj(07MO} =
i

= -^Trn'^{s^{t)pI{0)f,{t)xn{^^) ~ n(OX7?(0)p/(0)s,(t)} =
i

= X^{sz(^)/5/(0) -  pi{0)s^{t)}Trn (r^(t)x7^(0)) =
i

= ^ { s , ( t ) p / ( 0 )  -  pi{0)si{t)}{f^{t)),  (4.3.20)
i

where the definition for the expectation value given by T r^  (fj(^)xTC(O)) =  {fi{t)) was 
used. If wo use the same reasoning for the second term, we can rewrite Eq. (4.3.19) as

{>Si(0/5/(0) -  />/(0)s^(f)|(r,(^)) +
I

+ [pi{t)sj{t')s^{t) -  s^{t)p[{t)sJ{t ' )YrJ{t ' )f^{t))y  (4.3.21)

The task now is to calculate the expectation values and the correlation functions. If we 
assume th a t the reservoirs are in ecjuilibrium and that the states \TZ) are the eigenstates of 
Hti, the operator given in Eq. (4.3.13) is diagonal. Therefore, all the elements {7l\ fi{t) \R) 
must be non-diagonal. This means th a t there is no average energy shifts on the reservoirs, 
then {fi{t)) = 0, and the first term  of Eq. (4.3.21) vanishes. The time correlation functions, 

describe the average correlation between interactions th a t occur at times t 
and t ' . The reservoirs dissipates (juickly the effects of its interaction with the system S  
so that

^ 0 ,  i i t - t '  < Tn- (4.3.22)

On the contrary, for t — t' ^  r^ , the interaction becomes less correlated and the correlation
functions satisfy the condition

(4.3.23)

The integral in the second term  of Ecj. (4.3.21) is non-zero only for times in the time
interval [t — Outside this interval, the values of p{t') have little influence on p{t).
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4.3.5 R elaxation  tim e approxim ation

Because the correlation functions depend only on the time difference t” = t — t', it is 
more convenient to write them as

(4.3.24)

so tha t we can rewrite the equation of motion for the reduced density operator [Eq. (4.3.21)] 

as

Pi{ t )  =  -  ~  t " ) P i W ]  i n i O f j )  -  [si(f), Pi { t ) s j { t  -  f ) ]  (fjn(i"))},

(4.3.25)

where the limit of integration extended to infinity is justified by the discussions of Eq. (4.3.22) 
and Eq. (4.3.23), tha t is, for times t longer than  t-ji.

4.3.6 Equation o f m otion

Let us consider the following set of state vectors {|»S)} =  {..., \m) , ..., |n) ,...} to be the 
eigenstates of Hs- If we write the system Hamiltonian over the basis of its eigenstates, 
we can extract the time dependence from the system operators,

(ml Si{t) | n )  =  (m| I??) =

=  (m| Si |n) , (4.3.26)

where (ml Hs  |m) — (n| Hs  |^) =  fm ~  We can then write the m atrix elements
of the commutators of Eq. (4.3.25) as

(m,'| [sj(i), Sj{t -  t")pj{t)] \m) =

= {m'\ {si{t)sj{t  -  t”)pi[t) -  Sj{t -  \m) =

= 5 1  (m'l s, |A:) {k\ s, \k') {k'\ pj{t) |m) +
kk'

-  1 ^ (4.3.27)
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and

(m'l [s^{t ) ,p[{t )sj{t  -  f ) ]  \m) =

=  {m'\ {si{ t )p,{ t )sj{ t  -  t") -  pi i t )sj { t  -  t'')s,{t)} \m) =

=  V  ( „ / | \k') (A-'l pi{t )  \k) {k\Sj  \m)  +
kk'

_  (^ '1  1̂ .) 1̂ .') (̂ .'1 5̂  y  (4.3.28)

By inserting the results of Eq. (4.3.27) and Eq. (4.3.28) into Eq. (4.3.25), the  m atrix  

elem ents of the density operator w rite

1 /■“
{m' \ p i { t )  |m) = -

ijkk' ' °
PO O

V  (m'l s , |a )  (a | 5, |A;') /  {f {̂t")fj) +
•^0

poo

J o
poo

J o

+  ^  (^’1 S j  |a) (q| s ,  \ m )  J  di"e~*‘̂ “̂‘" ( f j7 \( t" ) ) |,

(4.3.29)

We have also m ultiplied the first and fourth  term s by and >■'*', respectively,

which is allowed because of the  presence of the  6 ^^  and Sj^'k' functions.

By defining, for simplicity

1
Kikin = W2 Y I  { f , { f ) f j ) ,  (4.3.30)h? I]

and
1 /’°°

Knkin = ^  51  (” l̂ 1̂’) (̂ 1 I” ) /  {f j f^{t ' ' )),  (4.3.31)

we ob ta in  the so-called Redfield relaxation coefficients  given by

F^in'mk'k ^mk ^   ̂^m'aak' ^kmm'k' ^kmm'k' ^m'k' ^   ̂^kaam' (4.3.32)
a
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The coefficients given in Eq. (4.3.30) and Eq. (4.3.31) obey the following conditions:

^mnkl ~  ^tknm (4.3.33)

^mmln =  ^Inmm =  (4.3.34)

where the condition of Eq. (4.3.34) is related to the fact th a t (m| s j  \m) = {m\ Si \m) =  0,
th a t is, no energy shift is allowed in the system due to the interaction term Vj{t). We can
now rewrite Eq. (4.3.29) in the form

(m'l pi{t) |m) = pi{t) |/c) (4.3.35)
kk'

In order to simplify further Eq. (4.3.35), we assume th a t the typical time-scale to observe 
any change in the system, is much shorter than the time for the integration step. 
Note th a t the integration time must be also long enough to satisfy the conditions discussed 
in Eq. (4.3.22) and Eq. (4.3.23), th a t is, the Markov approximation. If this is the case, 
only the terms th a t satisfy the condition

^m'k' ^km — ^m' ^k' f/c (rn 0 (4.3.36)

are kept. The other terms contribute to only fast oscillations and they can be neglected. 
If we assume th a t the states of the system S  are non-degenerate with a non-regular energy 
separation between them, we can write three different conditions tha t satisfy Eq. (4.3.36)

• The first condition is
rn =  k \  m. = k, m' ^  m. (4.3.37)

This applied to Eq. (4.3.35) gives

(m'l pi{t) \m) =  (1 -  Smm') {m'\pi{t) \m) Rm'mm'm, (4.3.38)

which will contribute to off-diagonal elements of the reduced density matrix operator.

• The second condition is
m! = m, k' = k, m' k ' , (4.3.39)

where we have

(m'l pi{t) |m) =  5^rn' {k\ Pi{t) \k) Rmmkk, (4.3.40)
k^m

and the delta function assures th a t this term  is diagonal.

• The third condition is
m  = m = k' = k, (4.3.41)
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yielding

(m'l pi{t) |r77.) =  6mm' {rn'\pi{t) \rri) R,n'm'm'm'- (4.3.42)

By adding uj) these three contributions we finally can rew rite a tim e-independent version 

of Eq. (4.3.35) as

7̂71 I P/(^) [777) (1 I P /(0  1̂ )̂ ^m'mm'm ^mm' E  (A: I pi{t)  I A;) Rmmkk
k^m

6mm' I 1^' ) f^m'm'm'm'- (4.3.43)

If we remove the  constrain t m  7  ̂ m '  from the  first condition, the  Redfield coefficients 

of the  first condition can be grouped w ith the one from the the  th ird  condition since 

Rm'min'm =  Rm'm'm'm'- F iutlierm ore, we caii use the  condition given in Ecj. (4.3.34) to 

write

Rm'mm'm ~  ~~ ^   ̂ ^m'aam' ~  ^  ^maam ~  ~^m 'm  (4.3.44)
a^m' a^m

and

Rmnjkk = ^kmmk ^kmrnk ~  “̂^^K m ink  =  . (4.3.45)

This allows us to  rew rite Eq. (4.3.43) as

{rii\ p ,{t)  |m) =  8mm' 'Y l  (^’1 1̂ ’) (4.3.46)
k ^ m

W hen we consider the  diagonal term s, i.e. rn = m ',  the  second term  of Eq. (4.3.46) 

becomes

A„,„ = 5] (A+„„„ -  = Y. r ’”  (4-3 4̂7)
a^m a^m

and we finally can w rite the so-called rate equation for the reduced density m atrix  operator 

(777,| ^j{t )  \m) = ( {k\ pj { t ) \ k)  -  (m | Pj{t) \m)  (4.3.48)
k ^ m

This equation will be extensively applied in the  present work in C hapter 7 and Chaj^ter 8. 

The first te rm  describes the increase in the population of a given s ta te  |m ), while the 

second term  describes the de-population of th a t state. For th is reason, Eq. (4.3.48) is 

often called gain and loss equation. The coefficients can be in terpreted  as transition  

rates from the  s ta te  |A') to  the  s ta te  I777).

T he off-diagonal elements, i.e. rn 7  ̂ rr?/, describe coherence between the  sta tes of the 

system. In th is case, the  first te rm  of Eq. (4.3.46) vanishes and we have

{m' \pi{t )  |77i) =  -  (7-71.'| pi{t) \ni) Am'm- (4.3.49)
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The real part of the A^'m can be related to the transition rates, By applying the
condition given bj  ̂ Eq. (4.3.33) to Eq. (4.3.44) and by using the result of Eq. (4.3.45) we 
see tha t

Rc (A-TTi'm) Re^ 'y  ̂ ^m'aam' ^   ̂ ^maam^ 
a^m' a^m

Rs ̂  'y  ̂^ m 'aam '  ̂> ̂ m a a m ^  
a ^ m '  a ^ m

“ +  Y 1  • (4.3.50)
a ^ m ' a ^ m

The imaginary part is responsible for a small shift in the energies and can be disre­
garded. Finally, the m atrix elements for the reduced density matrix can be written (in 
the Schrodinger picture where pi{t) = e^^^^p{t)e ̂ ^ - )  as

(m| p{t) \m) =   ̂ (A:| p{t) |A:) F^”* — (m| p{t) \rn) F"**̂ j for rn = m'
k^m

{m'\p{t) \m) = {m'\ [Hs,p{t)] \m) - \ { Y 1  ^
Oi^Tn' a ^ m

(4.3.51)

4.3 .7  Transition rates

The probability, Vf{t ) ,  to find a quantum  system in a final state | / )  at a time t, 
starting from the system in the initial state  |i), is given by |(/|'0 P - The time derivative 
of the probability, dtV{t),  is therefore the change in probability per unit of time. This is 
what we define as transition rate, namely

v'l = d,nt) = a,\{m\\ (0 .52)

In this Section we derive explicitly the equations for the transition rates defined in 
Eq. (4.3.45). In order to do that, we need to solve the correlation functions inside the 
integrals in Eq. (4.3.30) and Eq. (4.3.31). By writing them explicitly, we have

TZTZ'
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where we have considered the fact that the density matrix of the reservoir is diagonal, the 
definition given in Eq. (4.3.18) and {TZ\ H-ji I'R.) =  En- Similarly, we can write

m {t" ) )  = (̂ 1 1̂ ') (̂ '1 1̂") (̂ "1 1̂") =
7̂ 7̂ '7̂ "

= ^  (7^1 |7 /̂) \n) {n\ xn{0) \n) . (4.3.54)
rm'

We can now rewrite Eq. (4.3.45) as

pfcrn _ \ +  _ 9 R „ \ +  _
^  “  '^ k m m k  '^ k m m k  ~  ‘̂ ^ ^ ^ ^ k m m k  ~

=  ^  ^  ( 7 ^ |  X7?(0) \n) (  (A :7 l | sf \mTl!) {mil'] sf \kn) )  f  dt”
Tin'

(4.3.55)

where we have made the variable change t” —> —t" in the second term. We can now use 
the definition of Dirac delta function given by =  2n5{x — a) and finally
we obtain

^krn = X7?(0 ) |7 )̂ I  {mn'\ V  |A•7̂ ) \^6{Ef -  E,). (4.3.56)
mz'

Note that w'e have defined Ei =  =  Eji +  and E j = E„in' = Eji' +  fm- This is the
well-know Fermi’s Golden rule for the first order time dependent perturbation theory.

4.4 M aster equation  II

4.4.1 E quation o f m otion: AC potentials

We want to study the effect of an oscillating (AC) external potential applied to the
system S  through, for instance, a gate voltage. The energy levels of the system will
oscillate as Cj —>■ fjcos ut. With the AC potential applied, the Hamiltonian given in 
Eq. (4.3.6) becomes

H{t) = Hs{t) + Hn + V, (4.4.1)

where Hs{t) =  Hs -H Hp,c{t) describes the time dependence of the system S.  By applying 
the miitary transformation

f/(f) =  (4.4.2)
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to  Eq. (4.4.1), the  explicit tim e dependence of H s i t )  can be removed 

H{t) = U^ t )  -  ihdt'^ U{t) =

= eUdt'MAcit' ) +  + v  =

=  H s  +  H-JI +  e H ^ ‘' ' '^ A c ( t ') y g - n '^ ‘'-'^Ac(«') =

= H s  + H^^ +  P{ t ) ,  (4.4.3)

where we have used the  fact th a t [.^5 , .^ac(^)] =  ■^Ac(^)] =  [-^Ac(^)>-^Ac(^)] =  0.
By employing the definition of Eq. (4.3.16), the  in teraction H am iltonian can be w ritten  

in the  in teraction picture as

i

i

= ^ S i { t ) f i { t ) .  (4.4.4)
i

After considering the  same approxim ations as in Sec. 4.3, namely, the separability, the 

Born and the  Markov approxim ation, one can insert Eq. (4.4.4) into Eci. (4.3.15) and follow 

the  same procedure. Again, the following set of s ta te  vectors {|*S)} =  {..., |rn) ,..., |n ) ,...}  

are assum ed to  be the eigenstates of Hs{i ) -  However, the eigenvalues are now given as

(m | Si{t) \n) =  (m | |n) =
^  ^ l f d t ( r , 0J m n H m n C O S  ^ t )   ̂ ( 4  4  5 ^

where (m | Hs { t )  \m)  =  +  e^cos u t ,  hw ^n = ~  and Cmn = ~  e„. We can then

rew rite the  m atrix  elem ents of the com m utators of Eq. (4.3.25) as

(m'l [ s i { t ) , s j { t  -  t ' ' )pi{t)] \m) =  (m'l { s i { t ) s j { t  -  t")pi { t )  =  - S j { t  -  t ")pi { t ) s i { t ) ]  |m) +  

k k '

_  +  sin u:t) ^ ^4 _ 4_ g ^



66 C hap ter 4

and

(m'l [si{t) ,pi{t )sj{t  -  t”)] |m.) =  (m'l {si{t )pj{t )s j{t  -  t”) =  -  t”)si{t)] \m)  +

kk'
_ p 'K fc ' (< - ‘") +  ̂ s i n  L ^ ( t- t" ) l  i K / „ (  + % ^ s i n  o;t) -(m, 1 /5/(^) \k) (fc| Sj |A:) {k' \Si  \rn) . (4.4.7)

By using the identity
îQsin(wt) (4.4.8)

where Ju{<y) is the  j/-th order Bessel function of the  first kind and a  — C tm /^ ;  we can 

define th e  coefficients

Akmit )  = (4.4.9)
U

T hen Eq. (4.4.6) and Eq. (4.4.7) can be rew ritten  in a more simplified way as 

(m'l -  t ' ')pi{t)] |ni) =

=  X ]  (^An'kWAkk ' i t  -  t”) (r/i'l s, |A-) (A:| Sj\k' )  (A’'| pj{t)  |m)
kk'

-  A u ' k ' { t  -  i ' ' ) Akm{ t )  (77)'| Sj |A-') { k ' \ p i { t )  |A;) { k \ S i  |m )  j

+

(4.4.10)

and

(m'l [s^{t),p^{t)sJ{t -  t ”)] \m) =

= Y  (An'k'{t)Akm{t -  t") (m 'l s, I A:') (A:'| pi{t)  |A:) (A:| Sj \m) +
kk'

-  Akk' i i  -  t " ) Ak ' m{ t )  (m.'l Pj { t )  |A:) (A:| Sj \k') {k ' \ s ,  |m) ^  (4.4.11)

By inserting the  results of Eq. (4.4.10) and Eq. (4.4.11) into Eq. (4.3.25), the m atrix  

elem ents of the density operator are
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CXi
f t

1   /*c
( m ' l  p i { t )  | m )  =  -  /

i jkk’

k m (fj) ̂ "̂'1
/ 1/

Qm'k' A  V  '  T /  Cfc:
h o j  J ^  V h b J

'  v '  ^

1/  \  /  y !  \  /

+ ( ^ )  51 ( fe )  1"̂’̂  i^Mn)
I  U ^  '  u '  ^  ^

X  g * [ ‘^ / c ( + '^ ‘* ^ ( « - t " ) ] g * ( ‘^ ( m + < ^ ' ‘* '« )  j ,  ( 4  4  2 2 )

As we d id  fo r Eq. (4.3.30) and Eq. (4.3.31), we can define, fo r s im p lic ity , th a t

=  ( ^ )  ( " ' I  \ '̂) (̂ 1 1̂ 0 ^  (it"e -*(‘" '"+ '^ '" ')* "(r ,( f")r ,)

(4.4.13)

and

Kun,..' = ^ E  •'■" ( ^ )  ■’ - (fe) ('"I I*') ('I »• l"> j " d f e - ‘<“- ‘ *‘̂ >'"{f,f.(n).
(4.4.14)

and we can now w rite  the Redfield re laxation  coefficients w ith  the presence o f an AC  

po te n tia l as

Rm'mk'k,vu' =  —^mk ^m'llk'  +  Kn'k'km  +  ^m'k'km ~  ^rn'k' ^kllm-  (4.4.15)
I I

The m a tr ix  elements o f the reduced density opera tor are given by

{ m ' \ p j { t ) \ m )  =  ^  (A :'|p /( i)  |A:) (4.4.16)
kk'uu'

W hen the frequency o f the A C  p o te n tia l does not m atch the energy difference between 

every tw o states o f the sub-system S  p a rtic ip a tin g  in  the tra n s itio n , on ly  the secular term s 

can be kept by considering u'  =  —i/, i.e. the same reasoning applied from  Eq. (4.3.36)
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to Eq. (4.3.43). Similarly to Eq. (4.3.44) and Eq. (4.3.45), we can define the following 
quantities

^m'm ^   ̂ (4.4.17)

and

r'--'" =  (4.4.18)
u y

Finally, after following the steps from Eq. (4.3.46) to Eq. (4.3.51), we obtain (after going 
back to the Schoedinger picture) an equation of motion formally identical to the case 
without AC potential [see Eq. (4.3.51)].

4 .4 .2  T ra n s itio n  ra te s :  A C  p o te n tia ls

In order to derive the transition rates for the case with of an AC potential, we need 
first to calculate the correlation functions inside the integrals of the coefficients defined 
in Eq. (4.4.13) and Eq. (4.4.14). In fact, they were already calculated in Eq. (4.3.53) and 
Ecj. (4.3.54). By inserting these results into E(i. (4.4.18), we have

r  — K - m m k , u - u  +  ^ k m m k . u - v  ^
y y  V

=  ^  ^  (7 |̂ X7?(0 ) |7^) (  {kn\sf \rnn') {mn’\sf \kn) )  f
uTZTZ'

(4.4.19)

where we have used the property of the Bessel functions { — and made
the variable change t” —> —t" in the integration limits of the second term. We can now 
use the definition of Dirac delta fimction and finally write

P*™ = ^  ^  ( ^ )  (R| Xk(0) I (mR'l V'\ m )  -  E,),
y-RTZ' ^  '

(4.4.20)

where Ei = Ekn = E-ji +  +  uHlj and E j = Emn' =  E-ji' +  e„. Moreover, v  is the number
of photons. This is again the Fermi’s Golden rule for the first order time dependent 
perturbation theory in the presence of an AC potential acting on the quantum  sub-system

4.5 T -m atrix  expansion  and th e  generalized  Ferm i’s 

golden rule

The T -m atrix  approach [122] and its leading-order approximation, namely, the Fermi’s 
golden rule [108, 116, 115, 118, 123, 124] are used by several groups to describe tunnehng
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processes, since they provide a simpler way to treat the problem. Bruus and Flensberg 
employ this technique in relation to the tunneling problem. The derivation starts by 
writing the Hamiltonian of the system as

H  = H s J r J ^ + V £ l,
Ho V(t)

( 4 .5 . 1)

where r/ is small and positive, so th a t the interaction between the quantum  system and the 

electrodes is switched on very slowly. The basic idea of the T -m atrix  approach is to apply 
many-body scattering theory where one calculates the time evolution of the occupation 
probabilities of a state of the system from the transition amplitudes.

Considering an initial state  |z), its time evolution is given by Eq. (4.1.5) or in the 
interaction picture by

|*(i)) =  |z ), (4.5.2)

where the time-evolution operator is given by Eci. (4.2.4). The transition amplitudes 
between the initial and a final state, | / ) ,  is given by

=  { f

e dtiVj{ti) -  ~  dtiVriti) dt2 Vi{t2 ) + eft z > =

dt2Vi{t2) +  . . .  )

(4.5.3)

where the zeroth-order term  vanishes since the two states are orthogonal before the inter­
action starts. It is then assumed tha t at time to, when the interaction is switched on, the 
state of the to tal system can be w ritten as a product of the sub-systems |i(to)) =  1^) 
i.e. as the product of the quantum  system state  \m) and the leads state  \k). This means 
tha t, the system is in an eigenstate of Hq at time with initial to tal energy E(. In order 
to make sure th a t the “turning on” time given by 1 /r; is well separated from the duration 

t — to of  the interaction, i.e. t — to~^ l/rj, we take to —>■ —oo (stationary state limit).

i f W ) )  =
1 /  / ’* r^n-i

 ̂ \  J —oo J —oo J —oo
d t r y j { t , ) V j { t 2 ) . . . V l { t n ) e ^ ^ - (4.5.4)

By inserting V\{t) = e'n^°V{t)e into Eq. (4.5.4) we finally obtain, after performing 
the integrations,

evt
i f m )  =

n = l
-  E f  + ir)

(4.5.5)
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where Ei and E j  are the initial and final to ta l energies and

T{E) = V  + V  \ y  +  l> 5---------\>--------- 5---------y  +  ... (4.5.6)
E , - H q  +  zr; E , -  Ho +  i7] E  ̂ -  H q +  ir]

is th e  definition of the so-called T -inatrix . By tak ing  the tim e-derivative of \{f\i{t))\'  ̂ as 

given in Eq. (4.3.52) one write

O 'jr

r , f  = - \ { f \ r \ t ) \H{Ej  -  E,), (4.5.7)

which is the generalized F erm i’s golden rule.

4.5.1 C onnection betw een the W B R  m aster equation and the  

T -m atrix

For many problems, it is assum ed th a t the  off-diagonal com ponents of the reduced 

density m atrix  operator ra])idly decay and, therefore, they  can be neglected. Thus, only 

the  diagonal term s of Ec[. (4.3.51) are calculated. For exanii^le, if two sta tes \m) and 

\n) differ in an observable th a t strongly cou]^les to  the  environm ent, the  STiperj)ositions 

between these states will rapidly decay due to  the  interaction. T his is im portan t because 

in the  derivation of the T -m atrix , there is no inform ation about coherences, whereas in 

the  derivation of the W BR-M E, th is is natu ra lly  included in Eq. (4.3.51). If we consider 

th a t the  initial s ta te  |i) and final s ta te  | / )  can be w ritten  as p roducts of the m any-body 

s ta tes  of the molecule [A:) and of the leads \TZ), sm m ning over the  leads sta tes leads to  

the  transition  rates w ith the exact form of Ecj. (4.3.56)

p fc m  =  ^  ^  ( 7 ^ |  X 7 ? ( 0 )  | 7 ^ )  I  { m n ' \ r \ k n )  \"s{Ef -  E,),  ( 4 . 5 . 8 )

nn '

where the pertu rba tion  V  is replaced by the T -m atrix . In the  same way as done in the 

derivation of the  W BR-M E, it is considered here th a t the  probability  to  find the leads in 

the  initial s ta te , (7^| X t ? ( 0 )  I^ ) i tim e - >  —oo to  be independent of s ta te  of S.
Eq. (4.5.8) is the ra te  of change of the  probability  of the  s ta te  |rn) im der the condition 

th a t S  was in sta te  \k) at tim e to —oo. In o ther words, w ithin the  T -m atrix  approach we 

are considering the sta tionary  s ta te  limit. However, w ithin  the density m atrix  approach, 

[derivation of Eq. (4.3.56)], one calculates the  ra te  of change of the  probability  of the s ta te  

|m) under the condition th a t S  is in a s ta te  |A:) a t the sam e tim e t, im m ediately before 

a possible transition . This m eans th a t, the T -m atrix  approach considers the s tationary  

occupations of the states, whereas in the W BR-M E this is done a t a particu lar tim e, bu t 

it is yet local in time. Moreover, the M arkov approxim ation is also im plicitly included in 

the  T -m atrix  approach because the  occupations do not change between the tim es to and
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t.
To leading order terms, T  = V , the two transition rates given by Eq. (4.3.56) and 

Eq. (4.5.8) are identical, since the latter reduces to the Fermi’s golden rule. However, 
to higher order processes the two equations describe different quantities [108, 123]. In 
particular, the T -m atrix  approach misses higher order contributions when compared to 
the WBR-ME and these terms are responsible for canceling out the divergent terms in 
Eq. (4.5.8) [108, 123]. The divergent terms appear already when considering fourth-order 
in the tunneling Hamiltonian due to the second-order poles from the energy denominators. 
Therefore, Eq. (4.5.8) can not be directly evaluated. This is because within a purely 
perturbative approach, the energy of the virtual states are considered to be well defined, 
I.e. with infinite lifetime [121]. In order to circumvent this problem, a regularization 
scheme has been developed by Koch et al. [116, 115, 114, 120, 121], and in Appendix C.4 
we show in detail how to obtain the regularized transition rates th a t we will use in 
Chapter 7 and Chapter 8 in order to describe cotunneling processes.



Chapter 5

Organic/Inorganic Interfaces

5.1 T he energy level alignm ent problem

5.1.1 D FT -L D A  and energy level alignm ent

In general, conventional electronic structure theory struggles when i)redicting the levels 
alignment at a metal/molecule interface, since only rarely non-local correlation effects are 
explicitly included. This is for instance the case of DFT , as discussed in Sec. 2.5.1, 
Sec. 2.5.2 and Sec. 2.5.3. Moreover, in static DFT the standard a])proximations to the 
exchange and correlation functional, including the LDA [72], hybrid functionals [74, 75] 
or explicitly SIC ones [85, 125], do not include or they do but just poorly, non-local 
correlation effects. This means that, although even when some of the functionals can 
predict with satisfactory accuracy the energy levels of the molecule in the gas phase, 
they all fail in describing properly the level renormalization as the molecule approaches 
the surface. For instance in the LDA there is no change in the HOMO-LUMO gap as a 
molecule gets closer to a metallic surface [126].

A conceptually straightforward way to include such non-local correlation effects in the 
descrii>tion is th a t of using many-body perturbation theory, namely the GW approxima­
tion constructed on top of DFT [127, 128, 129]. This approach has been used in the last 

few years for predicting levels alignment [126, 130, 131, 132, 133, 134], in general with a 
good success. The drawback of the GW scheme stays with its com putational overheads, 
which limit the system size th a t can be tackled. This is particularly critical for the prob­
lem at hand since the typical simulation cells for a molecule on a surface are in general 
rather large. Furthermore, as the image charge may spread well beyond the size of the 
molecule investigated, one may even require cells significantly larger than  those needed 
to physically contain the molecule.

Alternatives to the GW approach, which to some degree also go beyond taking the 
simple DFT Kohn-Sham spectrum, include scissor operators (the D F T + E  approach) [135, 
136, 137, 138, 139, 140], where the HOMO and LUMO eigenvalues are shifted to match

72
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values obtained either from experim ental d a ta  or from separate  to ta l energy difference cal­

culations (A SCF) plus classical image charge models, and modified A SC F schemes [141, 

142],

5.1.2 C harge-transfer energies: C D FT  m ethod

Using the  C D FT  approach presented in Sec. 2.6 we can evaluate the  charge transfer 

energy between the  molecules and the m etal surface, and hence the position of the  fron­

tier energy levels w ith respect to  the Ep  of the  m etal. For a given substra te  size and 

perpendicular distance, d, between the molecule and the  surface atom s, first a s tan d ard  

D FT  calculation w ithout constrain ts is perform ed. This determ ines th e  to ta l ground sta te  

energy of the  com bined m olecule-|-substrate system, £ '(m ol/sub ; <i), and the am ount of 

charge present on each fragm ent, one fragm ent being the  molecule and the o ther the 

substrate . The molecule is only weakly coupled to  the  substra te , so th a t th e  am ount 

of charge on each fragm ent is a well defined quantity. A lthough C D FT  is designed for 

a rb itra ry  geom etries and constraints, in the  case of overlapping fragm ents the  am ount of 

charge localized on each fragm ent becomes ill defined and the  results have to  be taken 

w ith care [91]. The next step  consists in perform ing a new D FT  calculation, where the 

constrain t is set in such a way th a t one electron is removed from the  molecule and one 

electron is added to  the  substrate. T he to ta l energy of such charge transfer s ta te  is 

£'(mol''‘/sub~ ; (i). Hence the  charge transfer energy needed to  transfer one electron from 

the  molecule to  the  substra te , is given by

E^j.[d) = £ '(m o l^ /su b “ ; (i) — £ '(m ol/sub ; d) . (5.1.1)

In an analogous way we obtain  the  charge transfer energy gained by moving one electron 

from the surface to  the  molecule, E^rj., as

EQj~{d) = E{mo\/ suh]d)  — £^(m oP/sub '^; d) , (5.1.2)

where £ '(m ol“ /s u b ’*'; d) is the  C D FT  ground s ta te  energy of the configuration where one 

electron is moved from the  m etal surface to  the  molecule. Note th a t such procedure always 

deals w ith  globally charge neu tra l sim ulation cells, so th a t no monopole energy corrections 

are necessary under periodic boundary  conditions. Moreover, for practical calculations 

the  charge-transfer approach can be expected to  be more accurate  th an  a calculation 

using non-neutral cells, where the  m etal is kept neu tra l bu t the  molecule is charged. 

For such non-neutral calculations the  image charge is formed on the  m etal surface in an 

analogous way to  the charge-transfer setup. However, in order for the  m etal cluster to  be 

charge neu tra l a charge w ith opposite sign will also form on the surface of the  m etallic 

cluster. Given the  finite size of the  cluster th is will lead to  additional inaccuracies due to



74 C hapter 5

the  in teraction between the image charge and such spuriously-confined additional surface 

charge.

W ithin  the  charge transfer procedure we can directly  determ ine the  energy level align­

m ent at the interface, since corresponds to  the  energy of the  HOMO (LUMO)

w ith  respect to  the  substra te  E y - In a similar constrained-D FT  api)roach [142] San and 

co-workers calculated the charging energy associated to  transferring small am ounts of 

charge from the  substra te  to  a specific molecular orbital. The charge transfer energy was 

then  obtained by extrapolation  to  integer charge. In order to  avoid the use of such ex trap ­

olation here we always transfer an entire electron betw'een the molecule and the  substrate . 

Since a C D FT calculation has a com putational cost only m arginally more expensive th an  

th a t of a s tan d ard  D FT  ground-state one (the CPU  tim e increases by about a factor two 

over the  entire self-consistent cycle), C D FT allows us the  study of large organic molecules 

on surfaces. T his is a prohibitive task  for m any-body-corrected cjuasi-particle schemes, 

such as the G W  m ethod.

5.1.3 Case o f study: b en zen e/L i interface

We apply th is approach to  a benzene/L i interface, as shown in Fig. 5.1, for w'hich we 

can com pare w ith  results from the  literature. In om’ calculations we consider d ranging 

from 4 A to  14 A. We apply the C D FT  m ethod to  com pute the energy level alignm ent of a 

benzene molecule as a function of its distance, d, from a Li(l()0) surface. T he calculations 

are perform ed using norm-conserving relativistic pseudopotentials [143], and the LDA [72] 

for the  exchange-correlation potential. The real space grid is set by an equivalent mesh- 

cutoff of 300 Ry and the charge density and all the  operators are expanded over a double-^ 

polarized basis set w ith an energy-shift of 0.03 eV [96]. The Li m etallic surface is m odeled 

by a 6 atom ic layer thick slab. The bcc prim itive unit cell la ttice  constan t is set to  3.51 A. 

We consider two types of boim dary conditions in the  plane of the Li substra te  surface, 

nam ely periodic boundary  conditions (PBC) and non-periodic boundary  conditions (non- 

PB C ). Furtherm ore, in order to  investigate the  finite size effects originating from the  size 

of the  Li surface, we consider three different cell sizes (for bo th  PBC and non-PB C ), 

nam ely small (3 x 3  atom s per layer), in term ediate (6x6) and large (12x12) (see Fig. 5.1). 

In the  case of non-PB C  the  real-space box containing the Li slab supercell has dim ensions 

5 5 x 5 5 x 5 5  A^. This is chosen in such a way th a t even for the  12x12 slab there is at least 

15 A of vacuum  between the  Li slab and the  boundaries of the  sim ulation box. By using 

a cubic box one can apply M adelung corrections in s i e s t a , i.e. by adding a com pensating 

background charge in order to avoid the divergence of the electrostatic  potential. These 

are necessary since the  electrostatic potential is calculated by using periodic boim dary 

conditions [144]. In the case of PBC the in-plane dim ensions are set by the Li supercell 

size and thus are 10.56x10.56 A^, 21.09x21.09 A^ and 42.12x42.12 A^, respectively for
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Figure 5.1; Top-view ball-stick representation of a benzene molecule at a Li(OOl) surface 
for a Li(OOl) 12x12 supercell. The dashed rectangles show the 3 x 3  (purple) and  6 x 6  
(green) supercells. T he inset in panel is the side view of the  benzene lying flat a t a 
d istance d from the  surface.

the  3 x 3 , 6 x 6  and 12x12 cell. T he cell dim ension in the  direction perpendicular to  the 

surface plane is the  sam e as for the  case of non-PBC, nam ely 55 A.
We use two different boundary  conditions for the  Li surface in order to  investigate 

the  effects arising from the  spurious dipole-dipole in teraction between image supercells. 

T he size of th is spurious in teractions can be reduced by increasing the size of the  unit 

cell. For the PB C  setup  the  dim ensions in the  plane are set by the Li cluster size, 

while for non-PB C  calculations we use a large sim ulation cell which minimizes the dipole- 

dipole in teraction between periodic images. In th is way we can disentangle the effects of 

changing the extension of the Li surface in plane from those associated w ith the size of 

the  sim ulation box. Furtherm ore, in the case of non-PB C , edge effects may arise and our 

aim  is to  find the  required cluster and cell size th a t gives quan tita tively  accurate charge 

transfer energies.

In order to  determ ine the energy level alignm ent between the  molecule and the surface, 

we first need to  determ ine the  Li w orkfunction (14^f)- This is calculated by perform ing a 

sim ulation for the  Li slab w ith PB C  and no benzene adsorbed and by taking the  difference 

between the vacuum  po ten tial and the  slab E y - The so obtained value for the Li(OOl) W y 

is 2.91 eV. This is in fair agreem ent w ith previous calculations (3.03 eV) [145], which have 

also shown th a t the  Li W y can vary by about 0.5 eV depending on the crystallographic 

orien tation  of the  surface. T he experim ental values reported  for polycrystalline Li vary 

considerably (2.3-3.1 eV), as discussed in Ref. [146] and references therein.

In the case of non-PB C  the  Li substra te  is essentially a giant molecule and we can 

calculate the and the  by m eans of the  A SC F m ethod, where — E^^^>
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Table 5.1: Ionization poten tial ( /^ ) ,  electron affinity {E^)  and quasi particle gap {E^p) ,  
in eV, for th e  th ree Li substrates considered and for the  benzene molecule in the  gas phase 
com pared w ith experim ental d a ta  and GW  calculations.

Li substrates 

3x3 6x6 12x12 benzene gas phase

ASCF ASCF GW  Exp.

/P 3.46 3.44 3.55 9.56 9.23“/9.05^/7.9^ 9.24^

1.57 2.18 2.63 -1.45 -0.80“/-1.51^/-2.7« -1.14̂ *

1.89 1.26 0.92 11.01 IO.51V 10.55^/10.6® 10.38

“Ref. [150]; '̂Ref. [126]; ^Ref. [147]; ‘̂ Ref. [148]; ®Ref. [131]; ^Ref. [151]

and E ^  = E^^'^ — (Â  is the  num ber of electrons in the  neu tra l system ). The results

are listed in Tab. 5.1 for the  different Li cluster sizes. We note th a t there is a substan tial 

difference between and the E ^ ,  resulting in a quasi-i)article energy gap of the order of 

1 eV for th e  Li clusters. Such a gap arises because of the charge confinement in the  finite 

cluster. In this case electron-electron repulsion energy leads to  a decrease of the E ^  and 

an increase of the as com pared to  the  liV calculated w ith PBC. If instead of adding a 

full electron we add/rem ove a small fractional charge (0.1 of an electron), electron-electron 

repulsion energy becomes negligible, the gap disappears, and we ob ta in  /^"=3.1 eV and 

£ ''^=3.0 eV. Likewise, the  gap is reduced for larger clusters, in which the electron density 

of th e  additional e lectron/hole can delocalize more. Before investigating the combined 

m olecule/Li system  we calculate also the and the E ^  for the isolated benzene molecule, 

and our results are shown in Tab. 5.1. We find the  energy gap for the  molecule in the gas 

phase, E qp =  /^  — E ^ ,  to  be in good agreem ent w ith experim ents [147, 148], w ith other 

works using the  A SC F [149] approach and w ith GW  calculations [126, 150].

The benzene/L i interface [see Fig. 5.1] consists of a benzene molecule, in its gas phase 

geometry, positioned parallel to  the  Li surface a t a distance d. We now evaluate the 

dependence of the  various charge transfer energies (positions of the  HOM O and LUMO) 

on d for all the different Li supercells as well as for bo th  non-PB C  and PBC.

Supercell size dep end en ce

We s ta rt by investigating how the  charge transfer energies depend on the size of the 

supercell, therefore, for calculations perform ed w ith non-PBC. In Fig. 5.2(a) we plot —£ 'c t  

and — i?cT ^ function of d for all the  three Li clusters considered. As expected, due to  the 

electron-hole a ttrac tion , the absolute value of the  charge transfer energy decreases as d gets 

smaller. This in itself shows th a t C D FT  can cap ture non-local Coulomb contributions to  

the  energy. W hile for small d the  energies of the  three different clusters are approxim ately
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Figure 5.2: Negative of the charge transfer energy, E^r^, and removal energy, 
a function of the molecule-surface distance, d, for the three clusters considered. Panels 
(a) and (b) are for non-PBC and PBC calculations, respectively. The green dashed-lines 
represent the negative of the and of the isolated molecule (ASCF calculations) 
shifted by the calculated Li Wp of 2.91 eV.

equal to each other, for large distances they differ significantly. In order to determine the 
origin of such deviations we evaluate the same energies in the limit of very large distances 
{d oo), where they become

E ^ t ( o o ) =  /L ,  -  Et, (5.1.3)

and
E c t ( o o )  =  ^ 1 ,  -  ll, , (5.1.4)

since the interaction energy between the charge on the Li slab and tha t on the molecule 
vanishes for d ^  oo. The charge transfer energy gap is then given by

Ef^{oc) =  £ ’c t ( cxd)  —  E(^j.{oo) =

= l mol
rA , /  t P  £/,̂mol Li E

(5.1.6)
u)

While and E^^^ are independent of the cluster size, this is not the case for and 
E t  (see Table 5.1). This reflects in the fact th a t the charge transfer energies at large 
molecule-surface separation varies with the cluster size (see Table 5.2).

At large distances the variation of E^r^ with the Li cluster sizes is mainly caused 

by significant changes in Interestingly this is not the case for E^r^, since / l j  is
approximately the same for all the Li clusters considered. As d gets smaller the extension 
of the image charge on the Li slab is reduced, so th a t even small clusters are large enough 
to contain most of the image charge. Therefore the energy differences depend less on the 
cluster size. For d up to about 6 A, Fig. 5.2(a) shows th a t E^r^ and E^j. are converged 
even for the small 3x3  supercell. Since in organic-based devices the first molecular layer 
deposited on top of the metalhc substrate is typically rather close to the surface, we



78 C hapter 5

Table 5.2: Charge transfer energies (in eV) in the  limit of large distances {d —> oo) 
for the three m olecule/Li cluster cells investigated. Values are obtained  by evaluating 
Eqs. (5.1.3-5.1.6) w ith the  / ^ ’s and the taken from Tab. 5.1.

Li substrates
3x3 6 x 6 12x12

£̂ c t (o o ) 7.99 7.38 6.93
E l (oc) 4.91 4.89 5.0

12.9 12.27 11.93

expect th a t in these situations a ra ther small cluster size will be already sufficient for 

our C D FT scheme to  yield accurately converged levels alignm ent. This m eans th a t the 

C D FT  approach is a valuable tool for an accurate evaluation of the  electronic s truc tu re  

of molecules on surfaces in reahstic conditions. Finally, when one looks a t larger d, it is 

im m ediately clear th a t larger cluster sizes m ust be considered. The green dashed lines 

in Fig. 5.2 correspond to  the infinite cluster size lim it, for which we have =

U p «  2.9 eV. It can then  be seen th a t even up to  the largest considered d  of 14 A results 

obtained for the  12x12 cluster are w ithin the infinite cluster lim it (set in the  figm’e by 

the  two green dashed lines), so th a t they can be considered converged.

S u b strate  size dependen ce

W'̂ e now move to  th e  case of PBC, in which there are no edge effects due to  the 

finite size of the cell. Results for the charge transfer energies are presented in Fig. 5.2(b). 

A lthough the  general trends are analogous to  the  ones found for the  case of non-PBC, we 

note th a t for the 3 x 3  supercell the changes in the charge transfer energy as a function of d  

are largely overestim ated. This is due to  the use of PBC, in which the  la teral dimensions 

of the supercell box coincide to  those of the Li slab [i.e. , there  is no vacuum ). Because of 

the  PBC one effectively sinnilates a layer of charged molecules and not a single molecule 

on the  surface. Thus, when the molecules are closely spaced, the  charge transfer energy 

is th a t of two opposite charged surfaces facing each other (the m olecular layer and the 

Li slab). This is significantly larger th an  th a t of a single molecule (note th a t we always 

com pare th e  charge transfer energy per cell, ^.e., per molecule). W hen one increases the 

size of the supercell and arrives to  12x12, bo th  PBC and non-PB C  calculations produce 

the  same results. This confirms the  observation th a t the  12x12 supercell is large enough 

to  contain a substan tial p a rt of the  image charge as well as to  minimize the Coulomb 

in teraction between repeated  supercell images up to  c? =  14 A.

From the  charge transfer energies we can now obtain  an approxim ate value of the 

energies of the HOM O and LUMO orbitals, by offsetting them  w ith the  m etal 11 Vi so 

th a t £ ' h o m o  —  “ ( - E ’c t  +  •E 'l u m o  —  ~(jE 'ct +  ^ ^ ' f ) -  N ote th a t if the m etal
substra te  is semi-infinite in size, then  these relations become exact, since by definition the
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Figure 5.3: Image charge analysis, (a) Isosurface of the difference between the charge 
densities calculated with D FT (ground state) and CDFT (charge transfer state), Ap{v).  
Note the formation and the spatial distribution of the image charge. Different i)anels cor­
respond to different molecule/surface distances, d. The isosurfaces are taken at 10“^e/A^. 
Red isosurfaces denote negative A p(r) (electrons depletion), while blue are for positive 
A/9(r) (electrons excess), (b) position of the charge image plane taken from the surface 
atoms [see Eq. (5.1.9)] , respectively when one electron, , or one hole, d ^ , is transferred 
from the molecule to the Li substrate for the 12x12 PBC calculations as a function of 
d. (c), (d) and (e) are E^r^, £ ’h o m o  and £ ’l u m o i  respectively, as a function of d and 
compared with the classical model of Eq. (5.1.7). The dashed-green lines are -/^oi and 

calculated with ASCF.
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energy required to remove an electron from the metal and tha t gained by adding it are 
equal to the workfunction. However, in a practical calculation a finite size slab is used, 
and therefore the relations are only approximately valid due to the inaccuracies in the 
calculated ITp for finite systems. As shown above, the li-V becomes more accurate as the 
cluster size is increased.

In Fig. 5.3(d) and Fig. 5.3(e) are shown the calculated values for the 12x12 supercell 
and PBC obtained by using the Li VIV of the infinite slab of 2.91 eV, and in Fig. 5.3(c) we 
present E^^{d)  = E^r^{d) — E^rj.(d). In order to quantify how the image charge changes 
the charge transfer energies as a fvmction of d, we can write i?^^(d) =  £'^^(oo) +  V{d),  
where the new (juantity V{d) corresponds to the energy lowering due to the distance de­
pendent electron-hole attraction. It was dem onstrated a long time ago [152], by using 
self-consistent DFT calculations, that for flat surfaces V{d)  can be accurately approxi­
mated by the classical image charge energy gain

V{d) =  , (5.1.7)
4(rf -  do)

for a single surface and for a point charge interacting with two infinite flat surfaces [138, 
137] by

U(d) = -  f  \n2- (5.1.8)
2{d -  do)

The later will be useful in Chapter 6 when we discuss the transport through molecular 
junctions. On both eciuations, q is the charge on the molecule, and do is the height of the 
image charge plane with respect to the topmost surface atomic layer

/ ; ; A p . , ( z ; d ) d .

In other words do can be interpreted as the center of gravity of the screening charge 
density localized on the metal surface, and in general it depends on d.. Here Apxy{z\d)
I dxdyAp(r;  d) and A p(r; d) is the difference between the charge densities of the DFT 
(ground state) and the CDFT (charge transfer state) solutions for a fixed d. Note th a t the 
charge transfer between the surface and the molecule leads to the formation of a spurious 

charge layer on the back side of the Li slab {i.e. opposite to the surface where the molecule 
is placed), which is due to the finite number of atomic layers used to simulate the metal 
surface. In order not to consider such spurious charge while evaluating the integral in 
Eq. (5.1.9), the two integration hniits, dA and ds,  are chosen in the following way; 1) dj\ 
is taken after the first two Ap{d)  charge oscillations on the back of the cluster, and 2) de 
is the distance at which Ap{d)  changes sign between the top Li layer and the molecule 
{i.e. it is in the vacuum).

Fig. 5.3(a) provides a visual representation of the image charge formation as the
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molecule approaches the  surface and shows isosurface plots of A /;(r; d) for different dis­

tances d. Here we present the  case in which one electron is removed from the molecule 

and added to  the  Li surface. As one would expect, the further away the  molecule is from 

the  surface the  more delocalized the image charge becomes [152]. Note th a t the isosurface 

value is kept constant for all d (A p(r;ri) =  10“ ‘̂ e/A^), so th a t the  apparent shrinking of 

the image charge for c? =  11 A simply reflects th e  fact th a t m ost of the  image charge is 

now spread a t an average density smaller th a n  10“ ‘̂ e/A^. Likewise, no isosurface contour 

appears on the Li slab for d =  14 A, since now the  image charge is ra th e r uniform ly spread 

a t low density. In contrast at small d the  oscillations of the charge density between the 

atom ic layers of the m etallic surface can also be seen. It can also be seen th a t a t 4 A the 

charges on the  molecule and the image charge on the  Li surface s ta r t to  overlap. Note 

th a t for even shorter distances, when the  overlap becomes very large, the  C D FT approach 

presented here becomes ill defined, since the  charge on each fragm ent is not well defined 

anymore.

By evaluating Eq. (5.1.9) we now determ ine do{d) and the results obtained for the 

12x12 PB C  calculations are shown in Fig. 5.3(b) for b o th  electron (rfg) and hole (o?o) 

transfer from the  molecule to  the surface. T he average do values are 1.81 A and 1.72 A 

for d^ and d ^ , respectively. A lthough the  two values are similar, they  are not identical. 

This is consistent w ith the small band-gap of the Li slab, which indicates th a t holes and 

electrons behave differently. The average values of d^ and d^  can now be used to  evaluate 

Eq. (5.1.7) for the classical model. T he results are shown in Fig. 5.3(c) to  Fig. 5.3(e) and 

dem onstrate  th a t the classical model works rem arkably well for th is system  (the calculated 

slope of b o th  Eu o u o id )  and E u o u o id )  m atches alm ost perfectly th a t obtained by C D FT). 

It also shows once again th a t the results for our 12x12 PB C  cell are indeed well converged 

w ith respect to  the  slab and cell size.

Finally we make a com parison between our results and those available in the  litera tu re  

for m any-body based calculations. We find an overall reduction of of 2.5 eV, when 

the  benzene moves from infinity to  d =  4.5 A. G arci'a-Lastra et al. [131] studied the 

dependence of the frontier cjuasi-particle energy levels of a benzene molecule as a function 

of the  distance to  a Li substrate  by m eans of GW  calculations. T hey found an overall 

reduction in E ^ ^  of ~ 3 .2  eV as com pared to  the  benzene HOM O-LUM O gap in the gas 

phase, as one can ex tract from Fig. 1(c) of Ref. [131]. The au thors also fit their GW  

results to  the  classical model, finding the  best m atch fitting for c?o =  1.72 A, in very 

good agreem ent w ith our calculated value. There is a small discrepancy in the  results of 

Ref. [131], since if one uses the  classical model of Eq. (5.1.7) w ith c?o =  1-72 A, then  the 

HOM O-LUM O gap reduction should be smaller th an  3.2 eV, nam ely 2.6 eV at d =  4.5 A. 
Note th a t the  GW  results are obtained  for cells much sm aller th a n  the  converged 12x12 

used here. If we now force the classical model to  fit our results for the  3 x 3  and 6 x 6  

supercells, we will ob ta in  respectively c?o =  2.3 A and d^ =  2.1 A, for a corresponding
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gaj) reduction of 3.27 eV and 3.0 eV. In these two cases however the fit is good at ah 
d only for the 6xG supercell, while it breakes down for the 3x3  one for d beyond 8 A. 
This is somehow expected since for large molecular coverage (the 3x3 cell) the point-like 
classical approximation is no longer valid.

5.2 Conclusion

In summary, we have applied the CDFT discussed in Sec. 2.6 to determine the energy 
levels alignment of m etal/organic interfaces in the weak electron coupling regime, i.e. 
for molecules physisorbed on surfaces [153]. In particular we have dem onstrated how 
the frontier energy levels of a benzene molecule change, leading to a HOMO-LUMO gap 
reduction, when the molecule is brought close to a Li(lOO) surface. This effect is due to 
the screening charge formed on the metal surface. We have then shown that, in order 
to obtain quantitatively converged results, rather large metal cluster sizes are needed 
for large distances, whereas at small molecule-metal separations smaller clusters can also 
give quantitatively accurate results. Our calculated value for the image charge plane 
is 1.72 A and 1.80 A for and /^ , respectively, in good agreement with the values 
fitted from GW calculations. Using these distances for the image charge plane height 
we have compared our ah imtio results with a classical electrostatic model and found 
good agreement. The approach presented here offers several advantages over many-body 
quasi-particles schemes, namely: (i) rather large systems can be calculated, since the 
com putational costs are similar to those of standard DFT calculations; (ii) surfaces with 
arbitrary shapes and reconstruction can be studied, including defective and contam inated 
surfaces; (iii) it gives a direct way of determining the position of the image charge for such 
interfaces. Overall CDFT applied to the levels alignment problem appears as a promising 
tool for characterizing theoretically organic/inorganic interfaces, so tha t it has a broad 
appeal in fields such as organic electronics, solar energy devices and spintronics.



Chapter 6

Ab initio Approach to Quantum 
Transport

6.1 Case of study: A u-benzenedithiol molecular junc­
tions

As discussed in C hapter 1, th e  well-known pro to type m olecular junction th a t consists 

of a benzene-1,4-dithiol molecule between two gold electrodes is still not fully understood. 

This is ])artially due to  the natu re  of the experim ents, where several different geom etrical 

contacts can be accessed during the  stretching process of the  junction. This leads to  a 

s ta tis tica l character of the  experim ental analysis. From the theoretical point of view, the 

quan tita tive  description of such m olecular junctions is challenging for two m ain reasons. 

Firstly, realistic electrode configurations and m any arrangem ents should be considered 

in the  calculations, which becomes prohibitive w ithin a fully ab initio approach. More 

recently, we have [29, 30] applied a sophisticated m ethod th a t combines M onte Carlo (MC) 

sim ulations and classical m olecular dynam ics (MD) to  sim ulate the  junction  stretching 

process, allowing the  sam phng of hundreds of contact geometries between the molecule 

and th e  electrodes. In addition, it is generally assum ed in the  litera tu re  [154, 155, 156, 

157, 29, 30, 158, 25, 26, 159, 28, 27, 160] th a t when the  molecule attaches to  the gold 

electrodes, the  hydrogen atom s linked to  the  thiol groups are dissociated to  form a thiolate- 

Au bond. However, recent D FT  calculations exploring the  details of the adsorption of the 

benzene-1,4-dithiol on gold have been reported  [161, 162]. T hey find th a t the  thiol-A u 

stru c tu re  is energetically more stab le th an  its th io late-A u counterparts. This is true  b o th  

when the  molecule binds to  a perfect flat surface [161] or to  an adatom  [162]. In fact, 

we dem onstrate  by m eans of s tab ility  and tran sp o rt properties calculations th a t the thiol 

junctions can not be disregarded [31].

Usually tran sp o rt calculations rely on the  Kohn-Sham  (KS) eigenvalues to  evaluate G,  

even though these eigenvalues can not be rigorously in terp reted  as quasi-particle energy

83
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levels. The only exception is for the HOMO energy, which is equal to the negative of the 
ionization potential [77, 79, 78], as discussed in Sec. 2.5.1. As discussed in Chapter 5, the 
quasi-particle energy gaj), Eqp,  of a molecule shrinks with respect to that of the gas phase 
by adsorbing the molecule on a polarizable substrate. Nevertheless, electronic structure 
theories usually used for such calculations can only partly account for this renormalization 
of the molecular energy levels when the junction is formed. DFT, within the standard 
local and semi-local approximations to the exchange-correlation (XC) energy does not 
include non-local correlation effects, such as the dynamical response of the electron system 
to adding electrons or holes to the molecule. This limits its ability to predict the energy 
level alignment, when compared to experiments, which often leads to overestimated values 
for G [163]. Moreover, the lack of the derivative discontinuity and the self-interaction 
error in DFT-LDA, as discussed in Sec. 2.5.2 and Sec. 2.5.3, respectively, contributes to 
aggravate the problem. Therefore, different alternative approaches and corrections have 
been proposed to improve the description of the energy level alignment. These include, 
for instance, ASIC [27, 85], CDFT [153] and scissor operator (SCO) schemes [138, 159, 
126, 163, 137].

In this Chapter we investigate, by means of total energy DFT and cjuantmn transport 
calculations, the stability and conductivity of thiol and thiolate molecular junctions. We 
com])are the results for the two systems and we relate them to experimental data. In 
Sec. 6.1.1 we present a systematic study of the adsori)tion process of two thiol-terminated 
molecules, namely, methanethiol and benzene-1,4-dithiol on A u (lll)  flat surface. For the 
latter, we also compare the stability of the thiol and thiolate systems when the jimction 
is formed for several contact geometries [25, 26, 27, 29, 30]. In Sec. 6.1.2 we discuss the 
energy level alignment, and present three methods used to correct the DFT-LDA molec­
ular energy levels, namely CDFT, ASIC and SCO. Based on these results in Sec. 6.1.4 
we discuss the transport properties and present the dependence of G on the electrodes 
separation (L) for flat-flat contact geometries, for both the thiol and thiolate junctions. 
Finally, in Sec. 6.1.6 we present a combination of classical molecular dynamics and Monte 
Carlo to simulate more realistic configurations for the thiolate molecular junctions. Then, 
transport calculations are performed for representative molecular junctions and we com­
pare with available experimental data.

6.1.1 Stability study of thiol-term inated m olecules on a A u ( l l l )  
flat surface and junctions

In this section we present a systematic study, by means of total energy DFT calcu­
lations, of the stability of thiol-terminated molecules on Au( l l l )  fiat surfaces, as well as 
when the molecule is attached to two Au electrodes forming a molecular junction. For 
the systems presented in this section, the gold surface is modeled by considering a 3x3
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surface unit cell five-layer thick. This corresponds to a surface coverage of 1/3 [26, 161]. 
The three bottom  layers of gold are kept fixed during the relaxation. For the junctions 
shown in Fig. 6.3 we use a slightly larger 4x 4  surface unit cell, in order to be able to 
model the tip-tip-like contact as well.

We first discuss the adsorption process of benzene-1-4-dithiol (C6 HfiS2 ) on the A u ( l l l )  
flat surface, and compare it to adsorption properties of m ethanethiol (CH3SH). These 
molecules represent two distinct classes, namely, aromatic and linear hydrocarbon com­
pounds, respectively. From this point on, we refer to benzene-l-4-dithiol as BDT2H in 
order to distinguish it from the benzene-l-thiolate-4-thiol C6 H5 S2 (BDTIH), and from 
benzene-1-4-dithiolate C6 H4 S2 (BDT). The calculations are performed as follows; (i) a 
system with the molecule term inated by a thiol group (i?SH/Au), where R =  CH3 for 
the methanethiol and R  =  CeHsS for the BDT2H, is placed close to the A u ( l l l )  surface 
and the geometry is relaxed, (ii) Then a second system is built where the molecule is now 
term inated by a thiolate group and a H atom is attached to the surface (i?S/Au -t- H), and 
again the geometry is relaxed. Fig. 6.1(a-c) shows the relaxed structures for the dissocia­
tive adsorption of the m ethanethiol molecule, and the analogous structures are shown for 
the BDT2H in Fig. 6.1(d-f). For the /?SH/Au system, the molecule is tilted with respect 
to its vertical axis perj)endicular to the surface, whereas for the i?S/(A u -H H) system the 
molecule is upright sitting on a hollow-site. Our relaxed geometries are in good agreement 
with literature [160, 161]. We have also calculated the binding energies, as given by

Eb =  J5t ( /? SH /A u ) -  ^ t (A u ) -  E t{R S E ) ,  (6.1.1)

for the methanethiol and m ethanethiolate molecules on the A u ( l l l )  surface, and we 
find 0.63 eV and 1.42 eV, respectively. For the BDT2H we find 0.12 eV whereas for the 
BDTIH, Eh is equal to 1.53 eV. Finally, we consider a third structure for which the H atom 
attached to the surface is released from the surface to form a H2 molecule {RS + H2 )/Au. 
The formation energy of the thiolate structure with a H atom attached to the surface is 
given by

E{ =  E t ( /?SH /A u ) -  E t { R S / { A u  +  H)). (6.1.2)

Similarly, the formation energy for the dissociative adsorption followed by the formation 
of a H2 molecule is calculated as

Ef =  E t { R S U / A vl) + ^ E t {U2) -  E t { {RS  + H2)/Au). (6.1.3)

Fig. 6.1(g) and Fig. 6.1(h) schematically show the total energy differences between each 
step of the dissociative adsorption of the methanethiol and BDT2H molecules. For the 
methanethiol molecule, if the dissociative reaction is accompanied by the chemisorption 
of a H atom on the surface, as in Fig. 6.1(b), the thiolate structure is energetically
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Figure 6.1: Ball-stick representation of the adsorption process of m ethanethiol (a-c) and 
BDT2H (d-f) on a Hat A u ( l l l )  surface, (a) and (d) the thiol molecules (/?SH /A u) are 
adsorbed on the surface; (b) and (e) the hydrogen atom  is dissociated to  form thiolates 
(7?S/(A u+H )). Finally, in (c) and (f) the hydrogen atom s attached  to  the  An surface 
desorbs to  form a H -2 molecule, ( R S + H 2 ) /A n .  (g) and  (h) schem atically show the to ta l 
energy differences between each step  of the reaction.

m ifavorable by 1.09 eV, a result consistent w ith previous calculations by Zhou et al. [164] 

and tem perature-progranm ied desorption (T PD ) experim ents [165, 166]. W hen the H 

atom s adsorbed on the surface are detached to  form H2 molecules as in Fig. 6.1(c), the 

th io late  system  becomes more stab le by 0.33 eV com pared to  the th io late  one w ith the H 

atom  attached  to  the surface. Overall, the dissociative reaction followed by the form ation 

of a H 2 molecule is imfavorable by 0.76 eV. For the BD T2H  molecule, the  th io late w ith 

one H atom  attached  to  the  surface is unfavorable by 0.60 eV com pared to  the  thiol 

structu re , in good agreem ent w ith the  value of 0.4 eV reported  in recent studies by Ning 

et al. [162]. W hen the dissociative reaction is accom panied by the  form ation of a H 2 

from th e  H atom  attached  to  the  surface, this reaction is exotherm ic by 0.39 eV. As a 

result, th e  dissociative absorption of BDT2H molecules on A u ( l l l )  surface followed by 

the  desorption of H2 is unfavorable by 0.21 eV. This partially  contradicts the results 

obtained  by N ara et al. [161], who found the  dissociative reaction accom panied by the  H 

atom  on th e  surface to  be indeed unfavorable by 0.22 eV. However, for the  case where the 

reaction is followed by the form ation of H 2 , the  system  is fu rther stabilized by 0.42 eV 

so th a t th e  th io late system  is more stable by ~0 .20  eV. Overall our results show th a t for 

b o th  classes of molecules the  dissociative reaction is always unfavorable when considering 

either th e  form ation of i?S /(A u +  H) or {RS  +  H2 )/A u  structures. We point out th a t our 

calculations are based only on ground s ta ted  D FT  to ta l energy differences and th a t we
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neglect zero-point energy and entropic contributions to  the to ta l energies. For an isolated 

gas-phase hydrogen molecule, we estim ate the  zero-point energy and entropy contributions 

(disregarding electronic contributions) to  be equal to  0.27 eV and 1.3 m eV /K , res])ectively. 

By considering these corrections the  system  (f?,S +  H2 ) /A u  could also become energetically 

stable com pared to  the  non-dissociated /?SH /A u system , in agreem ent w ith the  results of 

Strange et al. [159].

15

 I I  I  I I _ _ _ _ _

Reaction Path

Figure 6.2: A ctivation barrier for the dissociative adsorption of BDT2H on a A u ( l l l )  
surface as shown in Fig. 6.1(d)-(e).

In addition  to  the  to ta l energy differences between the dissociated and non-dissociated 

structu res of BDT2H, we evaluate the barrier height between those sta tes [Fig. 6.1(d) and 

Fig. 6.1(e)], by m eans of the Nudged Elastic B and (NEB) m ethod [167, 168, 169], as shown 

in Fig. 6.2. T his allows us to  estim ate the transition  probability  between the states. O ur 

results show th a t the  activation barrier is abou t 1 eV. The fact th a t the  barrier is large 

provides evidence for possible existence of the  thiol structu res on the surface, since a high 

tem peratu re  is required to  overcome such a barrier. We note th a t defects on the surface, 

such as adatom , or the  presence of a solvent, can change the energy barrier and eventually 

dissociation m ight take place a t lower energies.

For BDT2H we also com pare the  stability  of the  thiol and th io late structu res when 

the  molecule is connected to  two Au electrodes. We consider three types of junctions, 

as illustrated  in Fig. 6.3. For the  configuration shown in Fig. 6.3(a), ten  gold atom s are 

added on each side of the junction  forming a tip-like sym m etric contact w ith the  molecule. 

For the configuration shown in Fig. 6.3(b) an adatom  is added sym m etrically a t each side 

of the junction , and for the  one shown in Fig. 6.3(c) an adatom  is added to  one side of the 

junction  and the  molecule is connected to  a flat surface a t the  o ther side. These junctions 

constitu te  typical models for tran sp o rt calculations found in th e  litera tu re  [27, 28, 131]. 

In this case, the  form ation energy difference between the thiol and the th io late  structures
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Thiolate Thiol

Figure 6.3; Ball-stick representation of three molecule-electrode contact geometries, (a), 
(b) and (c) shows the tip-tip, adatom-adatom and surface-adatom configurations, respec­
tively. Left (right) panel shows the thiolate (thiol) junctions.

with resj)ect to the formation of H2 molecule is given by

and the results are shown in Tab. 6.1. Note that for the adatom-flat configuration the 
binding energy is evaluated considering |H 2 . For all the three jmictions, the thiol config­
urations are energetically more stable than their thiolate counterparts.

Table 6.1: Formation energy difference between the thiol and the thiolate structures with 
respect to the formation of H2 molecule, in eV, for the three molecular junctions shown 
in Fig. 6.3.

One possibility that has been considered in order to determine whether there are thiols 
or thiolates in the junction is a simultaneous measurement of G and the force in a STM 
and atomic force microscopy (AFM) setup [170, 171, 172, 173]. Since the binding energy 
for thiol and thiolate can differ considerably, one might expect that the forces involved 
when stretching the junction should be different. Therefore, we investigate the energetics 
of A u(lll)-B D T -A u(lll)  and A u(lll)-B D T 2H -A u(lll) jvmctions as a function of L. 
For the A u(lll)-B D T -A u(lll) junctions, similar calculations have been reported in the

Ef =  £;t ( B D T 2 H / A u ) -  £'t ( B D T / A u ) -  £:t (H2), (6.1.4)

System VASP s ie s t a

surface-adatom -0.36 -0.42
adatom-adatom -0.64 -0.40

tip-tip -0.77 -0.88
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hterature in an attem pt to  simulate a MCBJ experiment within DFT [26, 29, 30, 174, 
175, 176, 177]. Details on how the stretching is performed can be found in Ref. [26]. 
Figs. 6.4(a)-(i) and Figs. 6.5(a)-(i) show the relaxed structures for the A u (lll)-B D T - 
A u ( l l l )  and A u (lll)-B D T 2 H -A u (lll)  junctions undergoing stretching.
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Figure 6.4: (a)-(i) Ball-stick representation of the stretching process of BDT between two 
flat A u ( l l l )  surfaces.

In Fig. 6.6 we show the energy and the forces as a function of L, for both A u (lll)-B D T - 
A u ( l l l )  and A u (lll)-B D T 2 H -A u (lll)  junctions. Our results show th a t the breaking 
force for the S-Au bond is about 1 nN, in good agreement with the independent DFT 
results by Romaner et al. [175] of 1.25 nN obtained using the same contact geometry. The 
authors also considered the scenario when the BDT molecule is attached to an adatom 
contact geometry, and they found th a t the breaking force can be as large as 1.9 nN [175]. 
In fact, it is possible th a t during the elongation process the molecule is bonded to a single 
Au atom rather than  a flat surface [29]. For A u (lll)-B D T 2 H -A u (lll)  our calculated 
breaking force is 0.3 nN, as shown in Fig. 6.6(b). Thus the breaking forces for the 
BDT2H junctions are smaller than  those for BDT when the flat electrode geometry is 

considered. We note tha t this is much smaller than  the calculated value of 1.1-1.6 nN for 
the BDT2H molecule attached to a tip-hke contact geometry [162]. Our small breaking 
force value of 0.3 nN for the thiol junctions is consistent with the rather small calculated 
Eij of 0.12 eV, and indicates weak coupling between the molecule and the flat electrodes. 
A similar study for a octanedithiol-Au junction has also been reported [177], and for an
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Figure 6.5: (a)-(i) Ball-stick representation of the stretching process of BDT2H between 
two flat A u ( l l l )  surfaces.

asymmetric junction it was found the breaking force of the Au-thiol bond to be 0.4-0.8 
nN. Other experiments using the same molecule [172, 173] reported a breaking force of 
1.5 nN, which is very similar to the breaking force of a Au-Au bond, therefore, leading to 
the conclusion that the junction might break at the Au-Au bond and also indicating the 
presence of Au-thiolate instead of Au-thiol junctions.
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0.30.5

L{k)

Figure 6.6: Total energy and pulling force as a function of L for the Au-BDT-Au and 
Au-BDT2H-Au molecular junctions shown in Fig. 6.4 and Fig. 6.5, respectively.

In simunary, we find that the dissociative reaction of methanethiol and BDT2H on 
A u ( l l l )  is energetically unfavorable. Especially for BDT2H, the activation barrier of ~1
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eV strongly suggests the presence of thiol strtictures when the molecules a ttach  to  the 

m etallic surface. Moreover, for all the  contact geom etries of molecular junctions presented 

in Figs. 6.3-6.5, the thiol bonding is also energetically more stable. These results indicate 

th a t the non-dissociated structu res are likely to  exist in experim ents, and therefore should 

be considered when m odeling tran sp o rt properties of such systems.

6.1.2 Energy level alignm ent o f A u-B D T  interface

One of the  possible reasons for the  discrepancies between theory and experim ents 

regarding the  conductance of m olecular junctions is the difficulty, from a theoretical point 

of view, to  obtain  the  correct energy level alignm ent of such systems. Tab. 6.2 shows the 

LDA eigenvalues for the  frontier m olecular sta tes of BDT and BDT2H in the  gas phase. 

^LDA i*’ l^i'gsly underestim ated  when com pared to  E qp =  /^  — calculated by the  delta  

self-consistent field (A SCF) m ethod. For the  BD T molecule, our results show th a t the 

HOMO is higher in energy by 2.73 eV w ith respect to  —/^  whereas the  LUMO is lower in 

energy by 2.66 eV com pared to  —E^.  For BDT2H, the HOMO is higher in energy by 2.49 

eV w ith respect to  — and th e  LUMO is lower in energy by 2.51 eV when com pared 

to  —E^.  T he results clearly indicate th a t the  G G A /LD A  KS eigenvalues offer a poor 

description of the  molecule quasi-particle levels even in the gas phase.

Fig. 6.7(a) shows schem atically th e  energies of these states for the gas phase molecules. 

In the case of BDT2H molecule, the  wavefunctions 'I'o (blue), 'I'l (red) and 'I' 2  (green) 

correspond to  the HOMO-1, HOM O and LUMO of the  isolated molecule, respectively. 

For the BD T the  removal of 2 H atom s from BDT2H leads to  a reduction of the  mm iber 

of electrons by 2 as well, so th a t to  a  first approxim ation the BDT2H HOMO becomes the 

LUMO for the  BDT molecule [see Fig. 6.8(b) and Fig. 6.8(e)]. Therefore, for BD T, 'I'o 

corresponds to  the HOMO, 'I'l to  the  LUMO, and to  the LUMO-l-1. Fig. 6.8 shows the 

real space representation of 'I'o, 'I'l and ^ 2  for BD T (left) and BDT2H (right) molecules 

in the gas phase.

Table 6.2: C alculated LDA eigenvalues (e), £ ’ldA’ •^qp' (calculated w ith
A SC F) for the  gas phase BD T and BDT2H molecules.

LDA A SCF

System f H OM O fLUMO -/P

BDT -5.74 -5.19 0.55 -8.47 -2.53 5.94

BDT2H -5.09 -1.82 3.27 -7.58 0.69 8.27
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CDFT method for Au-BDT interfaces

Fig. 6.7(b) shows the CDFT resuhs for -Eh o m o  and -E'l u m o  a s  a function of d for 
B D T /A u (ll l)  (see Chapter 5). In the CDFT calculations the metal is modeled by a 
9x9  A u ( l l l )  surface five-atomic-layers thick and the molecule is placed upright at a 
distance, d, from the center of the molecule to the Au surface. We also introduce a 
20 A vacuum region in the direction perpendicular to the surface plane. We note that, 
although CDFT is in principle applicable at all d, when d becomes less than about 5.9 A, 
for which the Au-S bond distance, ^au-Sj is less than  2.5 A, the amount of charge on each 
fragment becomes ill defined due to the hybridization between the molecular orbitals 
and the electrode continuous spectrum. Therefore, at those small distances, the CDFT 
charge-transfer energies are not well defined. At d =  5.9 A, the CDFT calculations give 
an overall reduction of E^p  of 2.09 eV with respect to the value obtained for isolated 
BDT. Fig. 6.7(b) also shows the results of the classical model for the image charge
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Figure 6.7: Energy level alignment of the frontier molecular orbitals for the BDT molecule 
from the gas phase to the formation of the Au-BDT-Au junction, (a) LDA eigenvalues 
(6lda) and ASCF calculations in the gas phase BDT. For comparison, we also show results 
for the gas phase of BDT2H. All the values are given with respect to the vacuum level, (b) 
CDFT calculations for the charge-transfer energies between BDT molecule adsorbed and 
a single flat surface: EQ^{d) (blue squares) and EQr^{d) (red squares). The classical image 
charge contribution for two surfaces (dashed-line) and for a single surface (dashed-dotted 
line) are plotted for comparison where Ep =  — 5.1 eV and do =  1 A. (c) LDA and ASIC 
energy levels for the HOMO ('I'o) and LUMO ('I'l) obtained from the PDOS peaks for 
the molecule at the junction as a function of d = Lj2.

calculated for one [Eq. (5.1.7), dashed line] and for two [Eq. (5.1.8), dash-dotted line] 
surfaces. The CDFT do ranges from 0.79 A to 1.13 A, depending on the distance, and we 
therefore take do =  1 A as average value. Coincidentally, this is the same value used in 
literature [137, 136, 37], although there it was not formally justified, but rather used as a



Ah initio A pproach to  Q uantum  Transport 93

BDT

(a)

BDT2H

(d)

•Im I
(bl (e) ^

«=> o A
ts 8 ^ 9

Figure 6.8: P lots of wavefunctions: (a), (b) and (c) show 'I'o (20th sta te), 'I'l (21st sta te) 
and ^*2 (22sd sta te), respectively, for the gas phase BD T molecule; (d), (e) and (f) show 
the  same for the  the  BDT2H molecule. Isosurfaces are taken a t a density of 0.06 e/A^.
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Figure 6.9: Charge density differences for (a) EQr^(d) and (b) for d = 6.9 A.
Isosurfaces are taken a t 10“ '̂  e/A^.

free param eter. The corrections to  and from the  classical model when considering 

two surfaces are larger th an  the corrections for a single surface, since U{d) > V{d)  for 

all d, where V{d)  and U{d)  are given by Eq. (5.1.7) and Eq. (5.1.8), respectively. We 

evaluate the  charge density differences between the  constrained and the non-constrained 

calculations for £ ' ^ ( 0?) and E^j^^d) (Fig. 6.9). It can be seen th a t the hole (electron) 

left on the  molecule has the same character as the  corresponding ^ 0  ( ^ 1 ) wavefunction 

[compare to  Figs. 6.8(a)-(b)].

Fig. 6.7(c) shows the  energies of th e  eigenvalues of the  ^ 0  and sta tes  for the BDT 

molecule as a function of d = L /2 , calculated w ith LDA (solid lines) and ASIC (dashed 

lines), for the  stretching configurations shown in Fig. 6.4(c-h). T he energies of these 

levels are set to  be a t the  peaks of the  corresponding PDOS. In the  limit of weak coupling 

between the  BD T molecule and the  electrodes, which is the  case for L  =  12.35 A, at which
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o?A u-s is the largest before rupture of the junction, LDA gives the LUMO of the isolated 
BDT molecule ('I'l) slightly above Ep. However, as shown in Fig. 6.7(a) and Tab. 6.2,

E-p. In other words, for L > 11.36A, the molecule is weakly bonded to the electrodes, 
therefore, charge transfer from the electrodes to the molecule due to the hybridization of 
the molecular and electrodes states is small. These results show that for the Au-BDT-Au 
junctions in the weak couphng regime the LDA BDT HOMO (corresponding to ^o) is in 
fact too high in energy whereas the LDA BDT LUMO (corresponding to ^ i )  is too low.

6.1.3 Scissor operator m ethod for energy level alignm ent

Since we obtain the energies of the HOMO and LUMO of the jmiction from the CDFT 
total energies, we can shift the DFT eigenvalues to lie at these energies by means of a 
SCO [135, 136, 137, 138, 139, 140]. This has been shown to ini])rove G when compared 
to ex])erimental data [138]. For the particular case of a single molecule attached to the 
electrodes, first a projection of the full KS-Hamiltonian matrix and of the overlap matrix 
is carried out onto the atomic orbitals associated with the molecule subspace, which we 
denote as and (the remaining part of H  describes the electrodes). By solving 
the corresponding eigenvalue problem, for this subblock we ol^tain the
eigenvalues, and eigenvectors, {ipn}n=i,...,M, where M  is the number of atomic
orbitals on the molecule. Subsequently, the corrections are applied to the eigenvalues, 
where all the occupied levels are shifted rigidly by the constant E q (S q < 0) while the 
unoccupied levels are shifted rigidly by the constant Eu (Eu > 0). We note th a t in 
principle each state can be shifted by a different amount. Using the shifted eigenvalues 
we can construct a transformed molecular Hamiltonian matrix, given by

where the first sum runs over the Uo occupied orbitals, and the second one runs over 
the empty states. In the full Hamiltonian m atrix we then replace the subblock 
with [136, 137, 138, 139, 140]. The SCO procedure can be applied self-consistently, 
although in this work we apply it non-selfconsistently to the converged DFT Hamiltonian.

The correction applied to the frontier energy levels of a molecule in a junction has two 
contributions. Firstly we need to correct for the fact th a t the gas-phase LDA HOMO- 

LUMO gap (£ 'l^a) small when compared to the difference between and E^,
where 1^ = E^^  — E^^^ and E ^  = E^’̂ ^ — (£'(^) is the ground state  total energy
for a system with N  electrons). Secondly, the renormalization of the energy levels, when

the corrected energy of (which is given by —E^ )  is 2.66 eV above the LDA eigenvalue. 
Similarly, the LDA energy of 'Pq is too high by 2.73 eV when compared to The
same analysis can be done for L =  11.86 A and L = 11.36 A, for which 'Î i is still above

(6.1.5)
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the molecule is brought close to m etal surfaces needs to be added to the gas-phase HOMO  

and LUMO levels. A lthough C D FT  in principle allows us to assess the renormalization  

of the energy levels in the junction, to reduce the com putational costs we calculate the  

charge-transfer energies w ith one single surface. Since in transport calculations there 

are two surfaces, we then use the corresponding classical m odel [Eq. (5.1.8)], w ith do

obtained from C D FT  for the single surface. Hence, for the m olecule attached to  two

m etallic surfaces forming a molecular junction, we approxim ate the overall corrections for 

the molecular levels below by

E o ( d )  =  - [ / P  +  e H O M o ( c ^ ) ]  +  U{d)  ( 6 . 1 . 6 )

and similarly for the levels above Ep  as

Eu(d) =  - [ E ^  +  e L U M o ( f ^ ) ]  -  U{d);  (6.1.7)

where £ h o m o / l u m o ( c ? )  is obtained from the position of the peaks of the PD O S and U{d)  

is the classical potential given by Ecj. (5.1.8). Here we assume that the character of the  

molecular states is preserved when the junction is formed, i.e. that the hybridization is 

not too strong.

Tab. 6.3 shows, for the A u-B D T2H -A u and A u-B D T -A u junctions, U  [Eq. (5.1.8)], 

Eo [Eq. (6.1.6)] and E„ [Eq. (6.1.7)] as functions of L. As pointed out by Garcia-Suarez 

et al. [137], the shift of the energy level is unam biguous when there is no resonance at 

Ey  [138, 136], so that the occupied levels are shifted downwards and the em pty levels are 

shifted upwards in energy. This is the case for the BD T2H  m olecule, where the isolated  

m olecule has 42 electrons, therefore the 21st m olecular level is the HOMO of the isolated  

m olecule ('I'l in this case). Since it is already filled w ith two electrons, it lies below Ep 

when the m olecule is in the junction, and the LUMO ('P2 ) is always em pty and well above 

Er.

Table 6.3: Contribution due to the classical image charge for two surfaces model, U , and 
the final corrections E q/Su as a function of L for the BDT2H  and B D T  m olecules in the  
junction. The first colum n correspond to the labels of a subset of the structures shown 
in Fig. 6.4 and Fig. 6.5. The Au-S bond distance, c?au-S) is also shown for com pleteness.

BDT2H BDT
L (A) dA„_s (A) U (eV) Eo(eV) (eV) £o(eV) (eV)

(c) 7.86 2.11 1.70 0.18 1.63 - -

(d) 9.89 2.08 1.26 -0.50 1.72 - -

(e) 10.87 2.47 1.12 -0.80 1.78 - -

(f) 11.36 2.67 1.06 -1.04 1.77 -1.13 1.45
(g) 11-84 2.90 1.01 -0.62 2.22 -1.63 1.53
(h) 12.35 3.18 0.96 -0.83 2.17 -1.84 1.55
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For closer distances, due to the stronger coupling between the molecule and the elec­
trodes, hybridization takes place leading to a fractional charge transfer from the electrodes 
to the molecule. For small d also for the BDT molecule the state becomes partially 
occupied, and positioned slightly below Ep. This means tha t, for the structures consid­
ered in Fig. 6.4, the correction defined by Eq. (6.1.7) can not be applied for L < 10.87, 
since this is the distance where the level moves slightly below E^. We note that when the 
level is pinned at Ep, many-body effects become im portant, and the GW m ethod might 
be the most appropriate m ethod [159] to resolve the energy level alignment. Once the 
coupling is strong enough and is almost fully filled, it becomes effectively the HOMO 
of the BDT. In this case we expect its energy to be too high within LDA, and therefore 
application of ASIC is expected to improve its position w ith respect to Ep. In fact, ASIC 
corrects by ~1 eV as d decreases, as shown in Fig. 6.7(c).

For the weak coupling limit the calculated corrections show th a t 'I'l (the LUMO of 
the isolated BDT molecule) is empty and its LDA eigenvalue is too low in energy. In 
contrast, for the strong coupling limit the energy of 'I'l moves below Ep, so th a t the state 
becomes occupied, and its LDA eigenvalue is now too high in energy. In this regime we 
apply the ASIC method to give a better description of the energy level alignment.

6.1.4 E lectronic transport properties: th iol versus th io late junc­
tions

We start the discussion of the electronic transport properties by presenting results for 
the molecular junctions at fixed distance and different molecule-surface bonding. Subse- 
(juently we discuss the conductivity of the thiol and thiolate bonding structure to fiat An 
electrodes under stretching.

Fig. 6.10 shows T{E)  for thiolate (left column) and thiol (right cohmm) bonding, for 
the tip-tip, adatom-adatom and surface-adatom structures (see Fig. 6.3 for the structure 
geometries). W'ithin the LDA, the transmission curves of all the thiolate jimctions present 
a peak pinned at Ep. These results have been found in several works reported in the 
literature for Au-BDT-Au (thiolate) junctions [27, 26, 159, 17, 29, 30]. The resonant states 
at Ep yield high values of conductance with G of 1.35Gq, 0.45Gq and 0.22Go for tip-tip, 
surface-adatom and adatom-adatom, respectively. The observed peaks at Ep correspond 
to the hybridized 'I'l state of the BDT molecule. Note th a t the exact position of the peaks 
and so the exact G values depend on the atomistic details of the junctions, as well as on the 
DFT functional used. We point out th a t such high values of G have never been observed 
experimentally, indicating tha t LDA does not give the correct energy level alignment 
between the molecule and the electrodes, as already discussed in Sec. 6.1.2. In contrast, 
for the thiol junctions, no resonant states are found around Ep. The zero-bias conductance 
is in the range of 0.035-0.004Gq, which is in good agreement with experimental values of
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Figure 6.10: (a) lYansmission coefficients as a function of energy for thiolate (left column) 
and thiol (right column) for the structures shown in Fig. 6.3. For each case we report, in 
the insets, the transmission at Ep for both LDA (black full-line) and ASIC (red dashed- 
line).

O.OllGo [12, 4, 7, 23].
When ASIC is used, for the BDT structures the molecular energy level remains pinned 

at Ep, and it is just slightly shifted to lower energies. This slight shift is however enough 
to decrease G by one order of magnitude. For the hydrogenated junctions (BDTIH and 
BDT2H) there are no molecular states at Ep for the LDA electronic structure, and in 
this case ASIC shifts downwards the energy levels of the occupied states. We note tha t 
also the empty states are shifted down in energy, which is an artifact of the ASIC m ethod 
presented in Sec. 2.5.3. The correction applied by ASIC depends on the atomic orbital 
occupation, not the molecular orbital occupation. Therefore, if different molecular orbitals 
are composed of a linear combination of a similar set of atomic orbitals, ASIC will shift 
their energy eigenvalues by a similar amount. For example, if empty states share the
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same character as the occupied states, as it is usually the case for small molecules, the 
energy of these states will be spuriously shifted to lower energies. In order to apply ASIC, 
a scaling parameter, a, to the atomic-like occupations needs to be specified, where for 
a  =  1 the full correction is applied, while for a  =  0 no correction is applied. The value 
of a  is related to the screening provided by the chemical environment [85]. For metals, 
where the SI is negligible, we therefore use a  =  0, whereas for molecules, where SI is 
more {)ronounced, we use a  = 1. This shows that, while the ASIC method improves the 
position of the levels below Ef ,  it can lead to down-shifts for the empty states, resulting 
in a spurious enhanced G due to the LUMO. Further corrections are therefore needed in 
order to give a cjuantitatively sound value of G in such systems.

6.1.5 C onductance change under stretching

Hereafter we present results for the transport properties as a function stretching of 
molecules attached to flat An electrodes. Fig. 6.11 shows the transmission coefficients 
for the Au-BDT-Au junctions corresponding to Figs. 6.4(c)-(h), while Fig. 6.12 shows 
the same for the Au-BDT2H-Au junctions of Figs. 6.5(c)-(li). We start by discussing the 
results for the Au-BDT-Au junctions. In this case the HOMO moves from lower energies 
at small L towards Ep at larger L. This results in an increase of G imder stretching 
[Fig. 6.13(a)], in agreement with previous theoretical works [26, 27, 175, 176] for BDT 
attached to fiat Au electrodes.
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Figure 6.11: Transmission coefficients as a function of energy for different electrode sepa­
ration for the Au-BDT-Au junctions. Comparison between LDA, ASIC and LDA-I-SCO.

By applying the ASIC the absolute value of G decreases by up to one order of magni­
tude when compared to the LDA value, since the HOMO level is shifted to lower energies 
(Fig. 6.11). For small L the ASIC G{L)  curve is approximately constant, while for large
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Figure 6.12: Transmission coefficients as a fimction of energy for different electrode separa­
tion for the Au-BDT2H-Au jmictions. Comparison between LDA, ASIC and LDA+SCO.
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Figure 6.13: Conductance as a function of L for (a) Au-BDT-Au and (b) Au-BDT2H-Au 
molecular junctions. Comparison between LDA, ASIC and scissor operator (SCO) results.

L  the value of G is found to increase for large L [Fig. 6.13(a)], which is also due to 
the fact th a t the HOMO level, ^ i ,  is approaching Ep as the junction is stretched. Our 
CDFT results presented in the previous section show that for L > 11.36 A the state 
is expected to be located at least ~1.5 eV above Ep. Thus we apply the SCO to shift 
the eigenvalue of 'I'l to this energy and calculate the transmission (green-dashed lines) 
and G  (for L > 11.36 A ) by using the calculated corrections presented in Tab. 6.3. The 
corrected G is smaller than  the LDA results by up to two orders of magnitude and smaller 
than  the ASIC by about a factor of 10.

In contrast, for the Au-BDT2H-Au structures, G decreases with increasing L  for all 

used XC functionals (Fig. 6.12). For LDA G monotonically decreases from O . l G o  to 
0.026Goi while ASIC gives us values of G further reduced by up to one order of magnitude. 
By applying the SCO correction £ ’ld a  increases, and consequently G decreases by more
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than one order of magnitude when compared to the LDA results, except for the shortest
distance considered. We note tha t although G is similar for ASIC and SCO, T { E y ) is
dominated by the LUMO tail for ASIC (see Fig. 6.12), while it is HOMO dominated for 
SCO. The agreement between ASIC and SCO is mainly due to the fact that both place Ep 
in the gap, and the change of G w'ith stretching is mainly due to the change of the electronic 
coupling to the electrodes. Such decreasing trend of G{L) was observed by Ning et al. [162] 
where considering Au-BDT2H-Au junctions and molecules symmetrically connected to an 
adatom structure. This is qualitatively in good agreement with the experiments of Kim 
et al. [17], where by means of low-temperature MCBJ, they reported values of G ranging 
from 6.6 x 10““̂ to O.SGq. Furthermore, high-conductance values were obtained when the 
molecular junction was compressed, i.e. for L decreasing. These are the key results of 
the present work since when combined with the results for the formation energy of the 
hydrogenated junctions, they indicate tha t the possibility of having thiol junctions can 
not be ruled out In fact, the thiol structures might be the ones present in junctions where
G decreases with elongation [172, 17].

An im portant difference between the Au-BDT-Au and the Au-BDT2H-Au junctions is 
the character of the charge carriers, i.e. whether the transport is hole-like or electron-like. 
For Au-BDT-Au, in the strong coupling limit where L < 10.87 A, the charges tunnel 
through the tail of the HOMO-like level leading to a hole-like transport (see top panel 
of Fig. 6.11). In the weak coupling limit, after considering the SCO, the charge carriers 
tunnel through the tail of the LUMO-like level leading to an electron-like transport, as 
shown in the bottom  i)anel of Fig. 6.11. For Au-BDT2H-Au jmictions, the tunneling is 
always performed through the tail of the HOMO-like level (see Fig. 6.12) and therefore 
the charge carriers are holes. This is an im portant information since, experimentally, by 
means of thermoelectric transport measurements, it is possible to address which frontier 
molecular level is the conducting level. It has been shown [8] th a t for the systems dis­
cussed, this level is the HOMO, which agrees with our findings for the Au-BDT2H-Au 
junctions and also for the Au-BDT-Au junctions in the strong coupling limit.

6.1.6 H ybrid M D -M C  for M C BJ sim ulations

As pointed out in Sec. 6.1, due to the nature of MCBJ experiments, several different 
geometrical contacts can be accessed during the stretching process of a junction. This 
leads to a statistical character of the experimental analysis. Moreover, tem perature effects 
contribute to increase the number of possibilities to form the molecular junction. There­
fore, it is im portant to incorporate these factors in the simulations in order to compare 
with experimental data. In this regard, balancing accuracy and com putational efficiency 
can be challenging while attem pting to simulate MCBJs. Sinuilations need to be accurate 
enough to capture the preferred bonding geometries and at the same time to incorporate
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environmental factors. In the previous sections of the present Chapter, all the structures 
used for quantum  transport were obtained using DFT, which is capable of describing 
accurately atomistic bonding, however, due to the high com putational cost, the number 
of geometries one can deal with is limited. Moreover, D FT does not take into account 

tem perature effects th a t may lead to structural changes.
Experimentally, the spontaneous formation of molecular junctions at fixed electrodes 

separation occurs of a time scale of ~0.1 s [178], which accounts for the time required 
for the bond formation and for the molecule to explore many different possible binding 
sites when forming the junction. In this section we present a hybrid classical molecular 
dynamics (MD) and Monte Carlo (MC) approach th a t allows us to mechanically and /o r 
thermally evolve the Au-BDT-Au molecular junctions. We can then obtain more realistic 
molecular junction geometries th a t incorporate im portant aspects found in experiment, 
such as tem perature effects, elongations rate effects, and non-ideal tip  geometry. These 
geometries are then used as an input for the quantum  transport calculations. This part 
of the work was done in collaboration with William French et al. (see Ref. [179]) who 
performed the MD-MC simulations.

The typical experimental time scales are inaccessible within MD simulations, since 
the time steps for integrating the ecjuations of motions are on the order of femtoseconds 
(10“ ®̂ s). Usually, a MC approach, where conhgurational space is sampled randomly, can 
be used to overcome the slow kinetics of chemisorption. One of the limitations of these 
combined method is tha t classical MD can not describe the reactive nature of the SAM 
formation on top of the gold substrate. However, since the path to an equilibrium state 
has no meaning in MC, unphysical move types such as molecule identity swaps may be 
used to treat these reactions.

The MC sampling for the molecule to bind on the gold nanowire is performed within 
the semigrand canonical ensemble (SGCMC), i.e. constant-//V T, where ^  is the chemical 
potential, V  is the volume and T  is the tem perature and where the gold nanowire surface 
is in equilibrium with a bulk solution of the target molecules (see Sec. 3.2.2 of Ref. [179]). 
The SGCMC simulations begin with BDT molecules surrounding the gold nanowire and 
the probability of chemisorption increases as the molecules approach the nanowire. A 
cutoff distance for the S-Au bond is specified for the appropriate bonding site, e.g. on-top 
or on-bridge sites. Once the molecule has bonded, the hydrogen atoms attached to the 

sulfur atoms are dissociated and removed from the simulation box, so th a t the S atoms 
bind covalently to the gold site. Note th a t within MC, we do not obtain information 

about the dynamics of the bond formation. In fact, the MC m ethod is used to produce 
thermodynamically favored equilibrium configurations. The moves within constant-/iV^T 
are performed until the density of BDT is relatively constant in the simulation box. 
Moreover, this is followed by MC moves within constan t-N F T  {N  is the number of 
molecules), which allows the packing of BDT SAM to relax eventually leading to more
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molecules attached  to  the surface.

During the MD sim ulations, the  SGCM C sam pling is applied to  sami)le the  preferred 

bonding geometries, where the  results are passed back to  the MD sim ulations. W ith  this 

com bined procedure, one can cap ture the  dynam ics of the packing and the  bonding of 

the BD T SAM on the stretched  nanowire. The SGCM C sam pling is perform ed after 

some interval of MD stretching, e.g. between 0.1-1.0 A, and the num ber of SGCM C 

sam pling steps is determ ined by the  MD interval. A large interval requires a larger 

mm iber of SGCMC moves in order to  fully sam ple the  sites of the  deformed nanowire. 

Fig. 6.14 shows representative molecular junctions for the MD-MC approach. Fig. 6.14(a) 

shows a gold nanowire coated w ith BD T SAM obtained  w ith the  MC SGCMC approach. 

Then MD sim ulations are perform ed where the nanowire is stretched  in intervals A x, 

Fig. 6.14(a)-(e), at hnite tem pera tu re  (77 K). W hen the  molecule is trapped  between the 

electrodes, Fig. 6.14(c), the  SAM is removed from th e  sinm lation box in order to  sim ulate 

the evaporation procedure carried out in experim ents. The com bined MD-M C moves are 

perform ed im til the junction  breaks down, as shown in Fig. 6.14(e). This procedure closely 

models the  M C B J’s experim ent and thus should produce representative experim ental 

conftgurations. Moreover, it allows us to  obtain  a larger num ber of molecular junction  

geom etries when com pared to  D FT, allowing for the  assessm ent of b e tte r  statistics, in the 

present case, ~100 different junctions.

C om pu tation al details

T he gold nanowire for the  MD-MC sinnilations consists of eight atom s in length 

and it is th ree-atom  thick. It is connected between two rigid [100] leads four-atom  long 

and six-atom  thick. T he BD T SAM consists of 30-36 molecules chem isorbed and it is 

placed onto the gold nanowire by perform ing SGCM C MC moves. T he non-adsorbed 

molecules are then  removed from the sim ulation box and 20 m ilhon constant-A ^l/T  are 

realized to  equilibrate the  monolayer. T he stretching process of the  full system  (nanowire 

plus molecules) is carried out by displacing the  right lead in steps of 0.1 A in the  [100] 

direction. T he tim e interval for the  MD sim ulations is 20 ps and we perform  100,000 MC 

moves a t c o n s t a n t - b e t w e e n  MD intervals. T he molecule may or may not connect 

between the  two electrodes. In our sim ulations, a BD T molecule attaches between the 

two ru p tu red  electrodes in ~30%  of the  runs (31 out of 104), which is in good agreem ent 

w ith experim ental observation of 30-40% [180]. Moreover, in those in which it does form 

a m olecular junction, th e  junction  is stretched  further allowing the  molecule to  sample 

different geometries. D uring the elongation, between intervals of 0.5-1.0 A, geometries 

are ex tracted  to  be used in the quan tum  tran sp o rt calculations in order to  obtain  the 

conductance.
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Figure 6.14: Representative snapshots of the elongation ])rocess from formation to rupture 
of a Au-BDT-Au molecular junction. From top to bottom , A x =0.0, 4.0, 8.0, 12.0 and 
16 A. Once a molecule is trapped between the electrodes, the monolayer of molecules is 
removed in order to isolate electrode geometry effects.

T herm al evo lu tion  o f G old -B D T  ju n ction s

One can also investigate the therm al evolution of the Au-BDT-Au molecular junction. 
For representative electrodes separation during the stretching process, we fix the distance 
and we perform the MD-MC simulations where again geometries are extracted to be used 
as input for conductance calculations. 200 cycles of MD-MC are performed, where a cycle 
consists of 0.2 ns of MD with 200,000 MC moves. W ith this approach, one can study how 
the dynamics of the individual parts of the system affects the final geometries and therefore 
the calculated conductance. For instance, we can fix the electrodes and allow only the 
molecule to evolve during the MD-MC procedure or we can fix the molecule and allow 
just the electrodes to move. By doing so, we can identify the independent contributions 
of changes in the conductance due to the gold and BDT geometries fluctuations. Details 
of this study can be found in Ref. [29].
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C ond uctance traces

Recently, using low-temperature MCBJs Bruot et al. [4] observed some conductance 
traces where G changed from O.OlGo to O.lGo by increasing L. Although, the experiments 
are performed in low tem perature (4 K) and room tem perature, only in low tem perature 
the conductance enhancement was observed. The authors a ttributed  this to the HOMO 
level moving up in energy towards the of the electrodes, which is in agreement with 
our findings for the strong coupling limit, as shown in Fig. 6.13(a). However, most ex­

perimental results [15, 16, 17, 18, 19, 20, 22, 23, 181, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13] 
show conductance traces with either approximately constant G under stretching, or with 
decreasing G with increasing L [172, 17].
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Figme 6.15: (a) Four gradually increasing conductance traces where the formation of 
MACs can be observed. The corresponding molecular junctions prior to rupture are 
shown in (b-e). The traces are offset along the x-axis for clarity, (f) Representative 
conductance traces without formation of MACs where the corresponding junctions prior 
to rupture are shown in (g-j).

In our MCBJs simulations [30], two types of conductance traces are found; (i) in 
Fig. 6.15(a), the conductance gradually increases with elongation. The increase of G is 
found only for junctions th a t form monoatomic chains (MACs) of gold atoms connected 
to the BDT molecules, (ii) Fig. 6.15(f) shows conductance traces where the curves are 
relatively flat with elongation. In Fig. 6.15(b-e) and Fig. 6.15(g-j) are shown the cor­
responding geometries prior to rupture. From the geometries th a t show conductance 
increase, the breaking geometries [Fig. 6.15(b-e)] show the formation of MACs of gold 
atoms connected to the BDT molecule. Approximately 13% of the formed molecular 
junctions show MACs formation during the elongation process. In order to further un­
derstand our findings, we build idealized molecular junctions where MAC are present and 
we perform the transport calculations. As shown in the inset of Fig. 6.16, a MAC is first 
inserted at the left tij), then at the left and right tips and the adatom -adatom  geometry 
is shown for completeness. Indeed MACs formation leads to a broadly enhancement of 
the PDOS around Ey (not shown) due to contributions of gold s and states, which
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induce a stronger couphng between the m olecular energy levels and the electrodes. This 

leads to  higher transm ission coefficients, Fig. 6.16, therefore higher conductance values. 

Such a trend  adds to  the  increase of G  due to  the  HOMO shifting closer to  Ep  under 

stretching. The m agnitude and shape of the  enhancem ent depends m ainly on the  length 

of the  MAC, bu t also on the  S-Au bonding and the rem aining details of the  junction  

structu re . Note th a t adatom s or tip-like electrodes do not result in this enhancem ent, as 

discussed in Fig. 6.10.

Unlike MACs, o ther structu res th a t present low-coordination electrodes such as Au- 

A u2-Au units, as shown in Fig. 6.15(g-h), do not increase gradually the  conductance. 

A lthough they  present higher conductance, they  have very short lifetimes, of th e  order 

of 1.0 ns, i.e. they are too short-living to  be m easured in experim ent. On the contrary, 

MACs rem ain stable for the com plete duration  of a 1.0 /is sim ulation w ithout stretching, 

which indicates th a t they  show to  be stable enough to  be m easured, a fact corroborated  in 

experim ents [182] and in sim ulations [183]. Thus, our results show how significant these 

MAC form ation can have on the  conductance.

1.5

0 .5

^ 4  3 2 1 0 1 2 3 4
e-£p (eV)

Figure 6.16: Transm ission coefficients for th ree idealized A u-BDT-A u junctions where 
MACs are included. The PDO S a t Ep  is enhanced due to  gold atom s and the conductance 
increases (values between brackets).

We fu rther validate our findings by therm ally  evolving (at 77 K, w ithout stretching) 

th ree structu ra lly  d istinct A u-BD T-A u junctions. Fig. 6.17 shows the d istribu tion  of con­

ductance for the th ree structu res shown as insets. For the geom etry th a t shows the  MAC, 

the  conductance d istribu tion  has alm ost no overlap w ith the histogram s of the  o ther de­

formed geom etries studied. This indicates th a t the enhancem ent of conductance observed 

is rela ted  to  their particu lar s tru c tu re  and not simply due to  a short-lived configuration. 

Moreover, the  conductance fluctuations (standard  deviation) is approxim ately twice as 

large com pared to  the  o ther d istributions. W hen the sim ulations are repeated  a t room 

tem peratu re  (w ithout stretching) for the junctions shown in Fig. 6.15(b-e), all of tliem

100 Tip (0.083)
Add MAC left (0.188)
Add MAC left & right (0.387)
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breakdow n in less th an  1.0 ns, indicating th a t MACs are not stable at high tem pera­

ture. This explains why a t room tem peratu re  B ruot et al. do not observe conductance 

enhancem ent w ith  stretching.

G (2e  ̂ /h)

Figure 6.17: C onductance histogram s of three therm ally  evolving A u-BD T-A u junctions. 
T he structu re  containing M A C’s show higher conductiv ity  and negligible overlap with 
the other junctions th a t do not show MACs form ation. T he stan d ard  deviations of the 
histogram s (from left to  right) are 0.014Go, O.OISGq and 0.034G'o.

6.2 Conclusion

We have perform ed D FT  calculations to  study the  adsorption process of m ethanethiol 

and BDT2H molecules on the A u ( l l l )  surface. For all the  structu res studied we find th a t 

thiols are energetically more stab le th an  their th io late  com iterparts. Moreover, we find a 

large activation barrier of abou t 1 eV for the the  dissociation of the  H atom  from the thiol 

groups adsorbed on A u ( l l l ) .  These results indicate th a t the  non-dissociated structures 

are likely to  exist in experim ents and therefore can not be ruled out.

T he energy level alignm ent between molecule and electrodes is one of the m ain factors 

th a t determ ine the  conductance. To overcome the lim itations of using the  LDA-DFT 

eigenvalues we apply a C D FT  m ethod, which is based on to ta l energy differences in the 

sam e way as A SC F calculations, w ith the difference th a t it allows also the  inclusion of 

the  non-local Coulomb in teraction th a t leads to  the renorm alization of the energy levels 

as th e  molecule is brought close to  a m etal surface. We find a reduction of the  BDT E q^ 

of 2.09 eV w ith respect to  its gas phase gap, when th e  molecule is brought closer to  a 

single A u ( l l l )  surface. C D FT  also allows us to  ob ta in  th e  height of the  image charge 

plane on A u ( l l l ) ,  w'hich we find to  be a t abou t 1 A above the  gold surface. W hile for 

the  BDT2H molecules th e  coupling to  the  surface rem ains small a t all distances, for small
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molecule-surface separation the electronic coupling between BDT and Au becomes very 
strong; and in this limit the use of the CDFT approach is not applicable. The strong 
coupling leads to a significant electron transfer from the surface to the molecule, so tha t 
the molecular LUMO of the isolated BDT becomes increasingly occupied as the molecule- 
surface distance decreases. For the A u(lll)-B D T 2H , the filhng of the molecular orbitals 
does not depend on the distance to Au. W hen we correct for the self-interaction error in 
the LDA XC functional the electron transfer is enhanced and at the equilibrium bonding 

distance, the molecular LUMO of the isolated BDT becomes fully filled at the junction.
By means of N EG F+D FT we have then calculated the transport properties of the 

junctions with different contact geometries and compare the results obtained with LDA, 
ASIC and LDA-l-SCO functionals. For the thiol structures, the LDA values for G are 
about one order of magnitude smaller than  their thiolate counterparts. ASIC leads to 
values of G in better agreement with experiments for the thiolate systems. However, 
ASIC also leads to a spurious increase of G  for the thiol junctions due to the down­
shift of the empty states towards Ep, an artifact avoided in the SCO approach. We 
find th a t Au-BDT-Au and Au-BDT2H-Au junctions show opposite trends concerning the 
dependence of G on the separation between fiat Au electrodes; G decreases with L for the 
thiol junctions, whereas the thiolates show the opijosite trend. Since for Au-BDT2H-Au 
there is no significant charge transfer between the electrodes and the molecule, we can 
apply the SCO api)roach to set the HOMO-LUMO gap to the one obtained from CDFT 
calculations. In this way G decreases by up to two orders of magnitude when compared 
to the LDA values, and this brings the results in good quantitative agreement with the 
experimental data.

We finally presented a hybrid classical molecular dynamics and Monte Carlo approach 
to mechanically and/or thermally evolve the Au-BDT-Au molecular junctions. This ap­
proach allowed us to obtain more realistic molecular junction geometries. Moreover, 
im portant aspects found in experiment, such as tem perature effects, elongations rate ef­

fects were assessed. By performing transport calculations of representative geometries 
extracted from the MD-MC approach, we found th a t the conductance enhancement ob­
served by Bruot et al. can well be explained by the formation of MACs during the 
elongation process. Our results therefore suggest th a t thiol junctions must be present in 
experiments where G decreases with L. In contrast, thiolates structures are likely to be 
present in experiments showing a increase of the conductance upon stretching.



Chapter 7

Electronic Transport and Level 
Alignm ent in the Coulomb Blockade

Perrin  et al. [37] using a M CBJ were able to  observe th e  energy level renorm aliza­

tion of a zinc-porphyrin molecule [Zn(5,15-di(p-thiolphenyl)-10,20-tli(p-tolyl)porphyrin)], 

abbreviated  Z nT P P dT , where the  molecule is connected to  two gold electrodes. In their 

experim ent, besides the  two electrodes connected to  the molecule, a th ird  electrode was 

used as gate electrode in order to  uniformly shift the  m olecular energy levels. As the 

electrodes separation was reduced, i.e. the junction was compressed w ith respect to  the 

initial ecjuilibriiun configuration, the authors could m easure the dc current. By varying 

the gate  voltage, they could observe th a t as the  jim ction was compressed, the dc bias 

needed to  reach the conducting energy level (onset of cvurent) was reduced, indicating 

th a t th is  level was approaching Ep.  Furtherm ore, this effect was reversible, which led to 

the conclusion th a t the  molecular energy gap was renorm alized by the  image charge effect 

due to  the  change on the  electrodes separation. One im portan t aspect of these m easure­

m ents is th a t the molecule was weakly coupled to  the electrodes so th a t the tran sp o rt is 

in the  CB regime.

From a theoretical point of view, in order to  sinm late the  experim ent we need some 

ingredients. Firstly, we need to  determ ine the  atom ic geom etries of the  junction  as a 

function of the electrodes separation and this task  is realized w ith ground s ta te  D FT  [65, 

66] calculations. Secondly, the  energy level alignm ent as a fim ction of the stretching [153, 

31], which is achieved by evaluating the param eter-free classical image charge model, as 

we have discussed in C hap ter 5 and in C hapter 6. Thirdly, we w ant to  s tudy  the  electronic 

tran sp o rt properties of these m olecular junctions and com pare to  the  experim ental data .

T he study  of the tran sp o rt properties of m olecular junctions have m ostly employed 

the  N EG F formalism [184, 185] and often com bined w ith D FT  as the  chosen electronic 

stru c tu re  theory. D espite of the  great success of th is com bination, the  m ethod presents 

some im portan t lim itations, as discussed in C hap ter 5 and C hap ter 6. In fact, due to 

the  lack of the derivative discontinuity of the XC potential in D FT-LD A  (see Sec. 2.5.2),

108
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CB type of transport can not be captured since the energy levels position depend linearly 
with their occupation. Thus, the transfer of integer number of electrons (fingerprint of CB 
processes) is not observed, although corrections for self-interaction have shown to recover 
part of this feature [186].

In the present chapter we present an inexpensive approach based on master equations 
(ME) [117, 118, 120, 121, 114] including cotunneling effects to molecular conduction in 
the CB regime. The parameters for the ME are obtained by performing DFT-NEGF. By 
employing this combined approach, we compare our results to experimental data.

7.1 Com putational details

7.1.1 Ab initio  approach: D F T + N E G F

All the ab imtio calculations presented are based on DFT as implemented in the 
SIESTA package [96]. The XC energy is treated  within the LDA approximation. We use 
norm-conserving pseudopotentials according to the Troulher-Martins procedure [143] and 
the basis set is double-^ polarized for carbon, sulfur and hydrogen and single-C for gold 
atoms [29, 30]. The mesh cutoff is 300 Ry and four Appoints are used for the Brillouin 
zone sampling in the perpendicular direction to the transj)ort. For the ab-initio quantum 
transport calculations, we use the NEGF formalism as implemented in the SMEAGOL  

code [187, 188]. W ithin this approach, the retarded Green’s function of the scattering 
region, is given by [see Eq. (3.3.17)]

g o (^ )  =  hm [(E5d +  iv) -  -  ^ l {E) -  E r (E ) ] - ' , (7.1.1)
77-^0

where E  is the energy, E l,r(£ ')  are the self-energies of the left and right electrodes, S d 
is the overlap and Hd is the Hamiltonian m atrix of the scattering region obtained from 
DFT calculation, see Chapter 3, Sec. 3.3. The coupling to the electrodes are given by 

=  i ( s l , r  -  s I , r )  , i.e. the imaginary part of the self-energy defined as [see 
Eq. (3.3.18)]

E l(E) =  (E 5 ld -  ^ !d)5l(£^)(^5ld -  Vld), (7.1.2)

where ghiE)  is the surface Green’s function of the isolated electrode L and Vld is the 
interaction between the scattering region and the electrode. All these quantities are ma­
trices. The same can be defined for the right electrode. Finally the density of states 

(DOS) of the isolated electrode L can be written in terms of its Green’s function as 

[gi^{E) — pl(-E’) ]̂ •S'ld- From the Green’s function and couplings, the 
non-equilibrium charge density can be computed and by following a self-consistent pro­
cedure, for a specific applied bias, the transmission coefficients are given by Eq. (3.4.32) 
and the electrical current given by Ecp (3.4.36).
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7.1.2 M odel H am iltonian and m aster equation approach

We define the H am iltonian of the system  by

H  =  ^mol +  -^L +  +  H i ,  (7.1.3)

where the molecular H am iltonian is given by the  Anderson-H olstein model as

M M  ,  , M

H,„o\ =  ^  ejn +  ^  —n (n -  1) +  huip (h^b + 1 / 2 ^  +  ^  Xhwp (h^ +  h  (7.1.4)
i i i

w ith i single-particle sta tes of energy and charging energy U. Moreover, the o])erator 

h  =  '^rr ^lie iium ber operator and c|^(cjo-) creates (annihilates) an electron in the

molecular s ta te  i w ith  spin a. The isolated H am iltonian for the  electrode a  is given by

Ha ^   ̂  ̂ (7.1.5)
a k f T

where a  =  L, R. The th ird  and fourth term s of Eq. (7.1.4) describe the vibronic degrees 

of freedom for one vibron-m ode of energy hijjp, h is the  P lanck’s constant, and A is the 

electron-vibron coupling, b ^ b )  is the creation (aim ihilation) bosonic oj)erator for the 

vibrons. The operator d l ^ ^ ^ ^ { d a y ^ r ^ )  creates (annihilates) an electron w ith m om entum  k in 

the electrode n  w ith spin a. Finally the in teraction between the leads and the  molecule 

is given by the so-called tunneling H am iltonian

= + J*aCzdlk > (7.1.6)
Q i k

which is trea ted  as a pertu rba tion . The electron-vibron coupling term  can be elim inated 

by a canonical transform ation  [189, 190, 116] (see A ppendix C.2), leading to  a renorm al­

ization of —>• e, =  — X^hujp and U lA = U — 2X^hu)p and it introduces a  translation

operator into the tunneling m atrix  elements 7 ^ —>■ 7 aexp[—A(6  ̂ — 6 )] [116].
W ithin  the  =^-m atrix [108, 119, 123, 114] approach presented in Sec. 4.5, we evaluate 

the  diagonal term s of the reduced density m atrix , which are given by [114, 115]

A(()= E  (rr^ 'v;'- C"*'a ) + E  (r™’'v;'- (7̂17)

(7.1.8)

where is the occupation of the  s ta te  |m , q); the first index rn refers to  electronic sta tes 

whereas the index q runs over vibronic states. To lowest order in H r,  one describes 

the sequential-tmmeling  processes where one electron is transferred  from one electrode
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to the molecule and vice-versa, as schematically shown in Fig. 7.1(a). The trcnsition

( a ) S e q u e n t i a l  Tunnel i ng

\n,q) |n -  l,q')\n,q) - 4  \n +  l,q')

a

( b ) E l a s t i c  Cotunne l i ng  

\n,q) \n,q)

( c ) I n e l a s t i c  Cot unre l i ng  

\n,q) \n,q']

Figure 7.1: Schematic representation of different transport regimes, (a) Sequential tun ­
neling from the electrode to the molecule (left) and from the molecule to the electrode 
(right), (b) Elastic cotunneling, where the molecule is left in the same charge state, (c) 
Inelastic cotunneling where the final charge state is different from the initial one. This 
can happen when vibrons and photon-assisted processes are considered.

rates,  ̂ for electrons to timnel between the molecule and the electrode a  when the
molecule makes a transition from the state |m; q) w ith total energy Emq to the state |n; q') 
of energy Enq> are given by [114, 117]

f’” " =  T  S  {/(£™ , -  Bn,. -  + [1 -  /(£„,■ -  B„, -  |/1”  P |F „ f },
icr

(7.1.9)

where m —)■ n  and q ^  q' represent changes on the number of electrons and excited 
vibrons, respectively. A complete derivation of this equation is given in Appendix C. 
Fq =  27T7^ '̂q are the bare electronic couplings to the electrodes, is the density of 
states and 7^̂ is the momentum independent hopping param eter. Moreover, =
(n'l Cia |n") =  5n',n"+i IS the m atrix element of the annihilation operator for the single­
particle state I with spin a and =  {q'\ |g) are the Franck-Condon matrix

elements [115, 116]. These processes are dominant as long as the conducting energy level 
is within the bias window. However, if the level is outside the bias window, the sequential 
tunneling decreases exponentially and higher order processes will dominate.

The next-to leading-order in the .^-m atrix  expansion is determined by cotunneUng 
processes [second term  of Eq. (7.1.8)] and the transition rates are given by (see Ap­
pendix C) [118, 119, 114, 120, 121]

pTin
aa'

i"(r" i'a '

d E E -4“
2-nh

X f { E  -  Ha) [1 -  f [ E  -t- E n q

A i  a  * A I  a  P *  p  
n " n ' n " n  q"q' Q Q

E  -|- E^q Eji/fqii -|- ifj E  Eyi/qf Ejiftqtt -|- ivj 

~  Mo')] •

(7.1.10)

^n'q'
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describes the transition  rates to  transfer coherently (tunneling) one electron from 

the electrode a  while the molecule is in the  s ta te  |n; q) to  the  electrode a ' , leaving the 

molecule in the sta te  \n'-,q'). T he occupation of th e  molecule changes ju s t v irtually  in 

the in term ediate sta te , i.e. the num ber of electrons in the molecule is the  same dur­

ing cotunneling processes. Fig. 7.1(b-c) shows schem atically the  elastic and inelastic 

cotunneling processes. We disregard tunneling processes changing the  num ber of elec­

trons in the molecule by ±2. This is achieved by constructing a general final s ta te  as 

|j)  \n'), w ith a  ^  a ' . Note th a t Eq. (7.1.10) diverges due to  the sec­

ond order i)oles. To circum vent th is num erical problem , we apply a regularization [115] 

procedure th a t removes the  singularities. T he details are presented in A ppendix C.
By solving Eq. (7.1.8) w ith the tim e derivatives set to  zero and the  norm alization 

condition pi =  1 one obtains the s teady-sta te  curren t through the  left electrode as [114, 
115]

i ' -  =  - e  x ;  (W,, -  N , „ ) -  e -  r ™ " '" )  ( 7 - l . i 1 )
nm \qq ' n in \q 'q

where Nn is the num ber of electrons in s ta te  \n\q). In our model, we m ap the problem 

onto an orthogonal basis set and we consider only the two single-particle sta tes  relevant 

to  the problem , i.e. the  frontier m olecular orbital HOM O and LUMO. T he sta tes are 

considered spin-degenerated so th a t the  contributions of each s])in are cast out into a spin 

factor constant [115]. For simplicity, we do not allow a second electron in the  molecule, 

i . e .U  —> oo. Therefore, the  sta tes used to  construct the  basis set for the reduced density 

m atrix  are |0;f/), |1, ();(/) and |0 ,1 ;(7), i.e. em pty molecule, an electron in the HOMO 

and an electron in the LUMO, respectively, for q num ber of vibrons. The last term  of 

Ecj. (7.1.8) is added on a phenom enological basis and describes relaxation of the  vibrations 

tow ards the  equilibrim n d istribu tion  on a tim e scale r .

For T ^  oo the  system  is unrelaxed w hereas r  —>■ 0 the system  is relaxed to  the  vibronic 

ground state.

7.2 Case of study: gold-Z nT PPdT  molecular junc­
tions

We s ta r t by discussing the results for the  ab-imtio tran sp o rt calculations. For the 

M Js calculations, the electrode is m odeled by considering a five-layer-thick 8 x 8  A u ( l l l )  

supercell. T he molecule is connected to  the  electrodes via a hollow site of the  equilibrium  

distance [37] of d =  f^Au-Au =  23.2 A , as show'n in Fig. 7.2(a). In order to  model the 

effect of th e  image charge as a function of d, th ree new configurations are built (w ithout 

s truc tu ra l relaxation) where th e  molecule is tilted  forming an angle 6 relative to  the 

straight equilibrium  configuration, as shown in Fig. 7.2(b-d).
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Figure 7.2: Ball-stick representation of Au-ZnTPPdT-Au molecular junctions when the 
junction is compressed to simulate a MCBJ experiment, (a)-(d) Two flat surfaces are 
considered and the molecule tilts making an angle 6 between its plane and the transport 
direction, (e)-(f) Two tip  electrodes are considered and the molecule slides on top of the 
two gold tips.

Fig. 7.3 shows the transmission coefficients (a-b) and the I  x  V  characteristics (c-d) 
for different values of 6 computed with DFT-NEGF for thiol and thiolate junctions, re­
spectively. The thiolate junctions are obtained by removing the hydrogen atoms attached 
to the sulfur atoms in the SH group. In both cases, the transport is dominated by the 
HOMO level. The tunneling current for the thiolate junction is one order of magnitude 
larger than its thiol counterpart due to the stronger coupling to the electrodes, as shown 
in Tab. 7.1, and due to the fact th a t the HOMO enters the bias window for the range 
of applied bias. Moreover, the resonances position are essentially unchanged for different 
values of 6. This confirms the fact th a t LDA is not able to capture the renormalization 
of the energy levels due to the image charge effect.

In Chapter 6 we show th a t thiol and thiolate junctions may coexist in MCBJs experi­
ments [31]. Since the thiolate junctions seems to lead to  a systematic larger current than 
the thiol ones, we focus our attention on the thiol junctions. We first study the properties 

of the gas phase ZnTPPdT(thiol) molecule, ^ 'lda  l^-rgely underestim ated when com­
pared to E qp =  calculated by using the ASCF method. Our results show tha t
the HOMO is higher in energy by ~1.4 eV when compared to —Ip = —6.39 eV On the
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Figure 7.3; N EG F results: top panels show the  transm ission coefficients as a function 
of energy for different values of the stretching param eter 6 for (a) thiol and (b) th io late 
junctions. Bottom  {panels, the same for current as a hm ction of bias voltage.

contrary, the LUMO is lower in energy by ~1 .45  eV when com pared to  —E ^  =  —1.74 eV. 

Sim ilar differences are also found for the Z nT P P dT (th io la te) molecule. These results 

show th a t the KS eigenvalues offer a poor descrii)tion of the m olecular ciuasi-i)article 

energy levels w ithin LDA, in the  gas phase, as also discussed in C hapter 5.

7.2.1 E nergy level a lign m en t

In order to  accomit for the  image charge effects (see Sec. 6.1.2) [31], when the molecule 

is in the  junction, we calculate the  corrections to  the  molecular energy levels as a function 

of d. Fig. 7.4 shows the  corrected frontier energy levels as a function of d (the corre­

sponding 0 is also shown) for the  Z nP P T dT (th io l) molecule in the  junction. The energy 

levels are offset by the m etal workfunction (IVV =  5.5 eV). HV is calculated by taking the 

difference between the  vacuum  potential and the  slab Fermi energy {Ey)  of the  gold sub­

stra te . T he green-dashed lines correspond to  the  gas-phase lim it for the  Z nP P T dT (th io l) 

molecule. Since the tran sp o rt properties of M Js depends strongly on the  energy level 

alignm ent between the molecular energy levels w ith respect to  the  electrodes chemical 

potentials, corrections to  the frontier energy levels should be applied in order to  com pare 

our calciilations w ith experim ental data.
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Figure 7.4: Corrected position for the frontier energy levels of the thiol junctions (with 
respect to Wp =  0) as a function of the electrodes separation. Dashed-green lines are the 
— E^ and offset by showing the gas-phase molecule limit. The calculations have 
been performed by means of Eq. (5.1.8) where the image charge plane height is obtained 
from CDFT.

7,2.2 M aster equation approach: charge transport in Coulom b  
blockade regim e

In order to describe the Coulomb blockade regime (weak coupling limit) observed in 
experiments, we apply the ME approach. Firstly, we validate the ME m ethod by bench­
marking it with the DFT-NEGF. Fig. 7.5(left) shows the LDA transmission coefhcients as 
a function of energy for the thiol {6 =  0) junction calculated with NEGF at equilibrium 
(0 V). Since LDA underestim ates the position of the LUMO, we apply SCO [31] approach 
(Sec. 6.1.3) to correct its energy position to the one given in Fig. 7.4.

E xtractin g  electron ic  couplings from  D F T -N E G F  calcu lation s

We then perform the transport calculations within the NEGF framework and obtain the 
transmission coefhcients for the corrected energy levels positions. The electronic couplings 
are extracted by fitting a Lorentzian curve to the transmission coefficients as

T( E)  =  Y ,
r.iPLi A Ri

{E-E,y + \{r,y (7.2.1)

where Fj =  FLi +  rRj for i =  HOMO, LUMO levels. The results for the electronic couplings 
are shown in Tab. 7.1.

C on n ection  b etw een  th e  param eters obta ined  w ith  N E G F  and M E

In order to make the connection between the electronic couplings obtained with NEGF, 
Fl |^^(£^), and the ones defined within ME, Fq, we first assume th a t the scattering
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Figure 7.5: Thiol junction with 9 = 0°. (left panel) Transmission coefficients as a function 
of energy obtained with NEGF at 0 V and 2 V. The transmission coefficient when the 
LUMO level is corrected to the (NEGF+SCO) and best fit for the Lorentzian model 
(at eciuilibrium) to extract the couplings, (right panel) I  x V  comparison between the 
NEGF and ME. For the NEGF, the self-consistent (scf) current is compared to the non- 
self-consistent (non-scf). For the ME results, we also show for completeness the separated 
contril)utions for the seciuential tunneling and cotunneling. Inset show's the low bias limit 
to which cotunneling dominates, therefore, the ME cotunneling current is very similar to 
the NEGF-scf. The bias window' is highlighted with the vertical green-dotted lines shown 
on the left j)anel.

Table 7.1: Electronic couplings of the HOMO and LUMO to the left and right electrodes, 
obtained from DFT-NEGF, for the different values of 9 for the thiol and thiolate junctions. 
All the values of F are in meV.

Thiol Thiolate
HOMO LUMO HOMO LUMO

Angle (°) C^Au—Au(-^) Tl Tn T l T r Tl Ll L/}
0 23.2 6.0 5.5 6.5 6.5 19.0 16.0 8.0 8.0
30 19.9 5.7 5.0 8.0 5.0 25.0 8.0 9.0 8.0
45 16.40 6.5 3.5 6.0 3.5 15.0 10.0 7.0 6.0
60 12.9 5.0 3.6 7.0 5.0 12.0 10.0 7.0 7.0

region (within ME) is given just by the molecule and th a t its energy levels are non­

degenerated and well separated in energy. Therefore, the interaction Vl.r between the 
scattering region and the electrode is given, for a single-particle level, by the momentum 
independent hopping param eter 7 l , r - Then, the self-energy given in Eq. (7.1.2) becomes 

Sl.r(-E’) =  ' ^ 7 l I f  further assume the wide-band approximation, i.e. the 
density of states is energy independent, which is a good approximation for gold electrodes, 
we obtain

p N E G F  _  , ,NEGF ^  2 , ,
 ̂ L.R “  2 7 T 7 l Rt'L.R ~  /l.r^^L .R  — f  L,R (7.2.2)
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We note tha t, for a metallic surface, DFT-LDA generally yields satisfactory results for

Fig. 7.5(right) shows the I  x V  curve calculated with the NEGF m ethod compared 
to the total current (sequential tunneling plus cotunneling) obtained with the ME. W hen 
the energy level enters the bias window (±0.9 V), the ME curve shows a step-like increase 
in the current. In contrast, when the calculation is self-consistent (NEGF:scf) the NEGF 
yields to a smoothed curve. The lack of a step-like increase in the NEGFiscf curve is 
directly related to the lack of the derivative discontinuity in continuous XC functionals, 
such as LDA [76, 191, 79], for which the position of the energy levels change linearly with 
the occupation. Therefore, during the self-consistency under bias, the energy levels shift 
to lower energies as the bias increases due to charging effect [186]. When the calculation 
is performed non-self-consistently, namely when the current is calculated by integrating 
the zero-bias transmission coefficient in the bias window, the results approximates the 
ME solution (ME:total). In this case, the step in the current for ME and NEGF-non-scf 
coincides because the transport is HOMO dominated. For 6 = 0°, the LDA-HOMO is 0.5 
eV below Wp [see Fig. 7.3)(a)] whereas the gas-phase —/^  is 1 eV bellow W^.  However, 
the correction due to image charge is 0.53 eV, which brings the in the junction to 
0.47 eV. Therefore, due to error cancellation, LDA yields the corrected energy position for 
the HOMO. Nevertheless, this is not the case for smaller d for which U{d) is larger. For 
a bias of 2 V, the self-consistent calculated current obtained with the NEGF approach is 
approximately twice the one obtained with ME. Due to charging effects, the levels shift 
considerably to lower energies and now the LUMO enters the bias window contributing 
to the current, as shown in the transmission of 2 V in Fig. 7.5(left). We also show for 
completeness the individual contributions of sequential tunneling and cotunneling. Note 
that for low bias, only cotunneling contributions are observed, as shown in the inset of 
Fig. 7.5(right). When the energy level enters the bias window, the cotunneling changes 
sign in order to reduce the sequential tunneling current [116]. For a single level, up to 
second order in Hx,  it has been dem onstrated [116] tha t current calculated with ME (with 
the regularized transition rates) yields identical results to the Lorentzian model.

The corrected energy level positions [Fig. 7.4] are used in the ME approach to calculate 
the I  X V  and the d l / d V  curves. Fig. 7.6(a-b), show the results when the electronic 
couplings are the ones extracted from the NEGF calculations, as shown in Tab. 7.1. Since 
the HOMO level is responsible for the transport (the LUMO is too high in energy and 
does not contribute), its position w ith respect to the Fermi energy determines the gap 
of conductance whereas its couplings to the electrodes determine the current saturation. 
Furthermore, the renormahzation of the HOMO level as a function of distance observed 
in the experiment agrees well with our simulations if we consider going from 6 = 40° 
to 6 = 55°, which suggests tha t the molecule might be tilted from the start. Note tha t 
cotunneling contributions only broadens the current at the resonances and do not change
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the current saturation for the set of i)arameters used.
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Figure 7.6: ME calculations for the thiol junctions, (a) Total current (solid lines) and 
seciuential tinnieling current (dashed-dotted lines) as a fmiction of bias for different values 
of 0 with 0  =  4 K and A =  0 (no vibrons). (b) d l / d V  for sequential tunneling contri­
butions. (c) I  X  V  for 0 = 55° where vibrons are included and different values of A and 
0  are considered. The vil)ron energy is hwp =  10 meV, qmax =  120, r  =  1 ps. (d) The 
corresponding d l / d V  curves for (c). The energy level positions are the corrected ones, 
I.e. after taking into account image charge effect, as shown in Fig. 7.4, and F^ and F r  are 
from Tab. 7.1

7.2.3 Effects o f vibrations in th e charge transport

The experimental results show an approximately linear current increase with bias 
once the resonance is reached. It has been shown for molecular junctions th a t this is due 
to vibron excitations [57, 58]. By including vibronic degrees of freedom in our model, we 
can capture most of the linearity observed experimentally. Moreover, vibron relaxation 
is taken into account on a phenomenological ground by the param eter r . Fig. 7.6(c) and 

Fig. 7.6(d) shows the I  x V  and d l / d V  curves, respectively, for the thiol {9 = 55°) where 
vibrons are included in the simulation. We estimate the vibron energy of the isolated 
molecule by performing DFT calculations within a simple harmonic approximation. Sev­
eral low-energy vibron modes are obtained in the range of 10-17 nieV and they are related 
to the breathing modes of the porphyrin ring. Therefore, we consider an effective single 
vibron mode of energy hujp = 10 meV. Although we do not calculate the electron-vibron
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coupling, A, our calculations show that an intermediate value of A =  2 leads to very good 
qualitative agreement with the experiment (solid line). Indeed, for weak electron-vibron 
coupling (A =  1) vibration excitations th a t lead to the linear current increase do not 
occur (dashed line). On the contrary, strong electron-vibron coupling (A =  4) leads the 

so-called Franck-Condon blockade (dashed-dotted line) [192, 116, 57], which is not ob­
served by Perrin et al. [37]. We point out th a t the electron-vibron coupling might be 
dependent on the electrode separation, however, this is beyond the scope of the present 
work. In order to understand the effect of tem perature, we perform the calculation with 
A =  2 for 0  =  4 K, which is the tem perature used in the experiments. Our results for the 
d l / d V  [Fig. 7.6(d)] at 0  =  4 K show sharp peaks corresponding to vibration excitations. 
However, experimentally these peaks are broadened which suggests tha t local heating is 
taking place also in the electrodes.

Our results shown in Fig. 7.6 for the thiol junctions are by a factor four larger than  
the experimental data, see Fig. 1(c) of Ref. [37]. In order to understand the origin of 
this discrepancy, we have performed two other sets of calculations where the molecule is 
attached to  a tip-like electrode, as shown in Fig. 7.2(c-d). In the first configuration, the 
molecule is between the two tips whereas in the second the molecule is positioned flat on 
top of the two tips in order to sinmlate a possible compressed geometry where the molecule 
slides on top of the electrodes. In both cases, a small reduction of the electronic coupling is 
observed, ~  20%, which would reduced the saturation current by the same amount, since 
the sequential tunneling transmission is proportional to the electronic couplings. Recently, 
it has been shown th a t effects of tem perature [29, 30, 193] can reduce the couplings to 
the electrodes. Moreover, many-body calculations based on the GW approximation have 
also shown th a t LDA might overestimate the electronic couplings up to a factor of 3 [194], 
which would bring our results in quantitative agreement with experiment.

7.3 Conclusion

In summary, we have presented a combination of DFT-NEGF formalism and master 
equation approach to study the transport properties of molecular junctions, where all 
the param eters for the model can be obtained from first-principles calculation. We show 
tha t the inexpensive master equation approach can describe the transport properties of 
molecular junctions in the Coulomb blockade regime for which the NEGF within DFT- 
LDA fails due to the lack of the derivative discontinuity. We have applied this combined 
approach to reproduce experimental data for molecular junctions in the Coulomb blockade 
and dem onstrate the importance of the energy level alignment as a function of electrodes 
separation, since this controls the conductance gap observed in the experiment. Moreover, 
the renormalization of the energy levels due to the image charge effect is well reproduced by 
a parameter-free classical image charge model. We dem onstrate th a t vibration excitations
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can be responsible for the linear-like current increase once the resonance is reached and 
we estim ate an intermediate electron-vibron coupling of A =  2.



Chapter 8 

Light-induced Charge Transport

In th e  optical response of molecular junctions several physical processes and  mecha­

nisms can take place under suitable conditions. M any of these can be broadly categorized 

as adiabatic and non-adiabatic. In the former, the driving frequency is small relative to  

the  characteristic level spacing of the  system , so th a t light-induced mixing between energy 

levels can be disregarded. This is not the  case for the  m etallic electrode where the char­

acteristic level spacing can be of the same order of the driving frequency. However, for 

low frequencies the  rad ia tion  held does not penetra te  into the  m etal. N on-adiabatic pro­

cesses are those processes dom inated by electronic excitations of the m olecular jm iction 

and those associated w ith electronic excitations of the  electrodes.

From a theoretical point of view the  description of the oi)tical response of a molecular 

junction  constitu tes a complex problem. T he m olecular response to  the  local radiation 

field, while being a s tandard  problem  in spectroscopy, becomes much more complex when 

the  molecule is in a junction. This is because now electrons can flow through the  molecular 

system  since it is in contact w ith electron reservoirs w ith possibly different chemical 

potentials. Therefore, the molecular subsystem  is in a non-equilibrium  s ta te  caused by 

the  interplay between the electrons flux induced by an external bias and a photon flux 

associated w ith an incident rad ia tion  field. Thus, one can observe phenom ena where the 

electronic current appears in response to  the  incidence of light or light-em ission occurs 

due to  electrical current passing through the  system.

For ad iabatic  processes, i.e. when the light frequency is sm aller th an  the  energy levels 

spacing and  interference between the  charge sta tes of the molecule can be disregarded, 

Cuevas et al. extended the well-known L andauer-B iittiker formalism based on G reen’s 

functions to  incorporate a m onochrom atic electrom agnetic radiation. They derived an 

expression for the  linear-response conductance when the  junction  is illum inated [195]. 

For junctions where the Ep  of th e  m etal lies in the  gap between the  HOM O and the 

LUMO levels, depending on the  rad ia tion  frequency, PAT can lead to  an  enhancem ent or 

a  reduction of the  dc conductance [196, 197]. Following the class of ad iabatic approaches, 

in this chap ter we apply a ME approach th a t takes into account light and  vibrational

121
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effects and we consider liigher-order i)rocesses, such as cotunneling contributions, where 

the param eters can be obtained from first-principles calculations or experim ental data . 

We end the chapter by showing how the linear conductance of a donor-acceptor structu re  

depends on th e  charge s ta te  of the  molecule, where th e  desired charge s ta te  is obtained 

via CD FT.

8.1 M aster equation  for light-induced  charge trans­

port

In this section, we apply the formalism presented in C hapter 4 to  study electronic 

transpo rt across a m olecular system  connected to  two reservoirs when light-induced charge 

tran sp o rt is considered. O ur ME takes into accomit light-induced effects up to  the fourth 

order in the  tunneling H am iltonian, i.e. cotunneling contributions. We argue th a t this 

approach is valid for jm ictions where the molecule is weakly coupled to  the electrodes, 

the energy levels are well separated  and the rad ia tion  frequency is smaller th an  E q ^.  

This approach can be contrasted  to  the light-induced currents studied in Refs. [51, 52, 53] 

where internal transitions were taken into account.

8.1 .1  S ing le  quantum  dot - sequ en tia l tu n n e lin g

We s ta rt by presenting some models of a single (juantim i dot (SQD), e.g. a molecule 

or any other nanostructu re  th a t show discrete energy levels. Ŵ e follow the  Tien-G ordon 

approach and we discuss the effect of an ex ternal oscillating po ten tial to  the  tran sp o rt 

across the SQD system. T he H am iltonian of a generic SQD can be w ritten  as

^  + /Tl + /Tr +  ^ T ,  (8.1.1)

where and / / r  are the H am iltonians of the individual electrodes as in Eq. (7.1.5) for 

a  =  L, R. T he operator d^^y {̂dak) creates (annihilates) an electron w ith  m om entum  k in 

the  electrode a ,  see A ppendix A. The in teraction between the  leads and the  molecule is 

given by th e  tunneling H am iltonian , H'f, as in Eq. (7.1.6).

T he m olecular H am iltonian is given by

(8 . 1.2)

w ith M  single-i)article levels, a  is the  spin and Ui is th e  single electron charging energy 

and it is trea ted  as a free param eter. The operato r c\{ci )  creates (annihilates) an electron 

in the m olecular s ta te  i and is the  im inber operato r for spin t  hi the  site i.

M  /  

i=l \a = tl
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The simplest system one can think of is a SQD consisting of just one internal level 
coupled to two electrodes and we assume spinless electrons. In reality, quantum  dots have 
many internal energy levels and the spacing between them is a im portant indicator of the 
energy scale of the problem. In contrast, in molecules, these energy levels are much more 
spaced thus th a t the single-energy level treatm ent is more suitable to model a molecular 
energy level instead. The energetics of the electrodes in this model are described by 
their thermodynamic properties such as chemical potentials and occupations given by the 
Fermi-distribution functions. The quantum  aspect of the problem comes from the SQD 
Hamiltonian. In this section, we present the SQD for one and two internal energy levels 

and for the former for one and two electrons. In this simple case, there are no coherence

fate electrode

Kd
H i-

H k

Figure 8.1: Schematic representation of a SQD connected to two electrodes. The gate elec­
trode is used to shift the energy levels of the SQD. The contributions to the Hamiltonian 
are shown for clarity.

terms for the density matrix operator and the dynamics of the system can be described 
just by the diagonal contributions of Eq. (4.3.51), i.e.

(m\ m  |m) =  Y ,  ( (*l m l*̂> r ‘"’ -  (ml p(t) |m) F’" ' ' ) .
k^m

As discussed in Sec. 4.4, the effect of a time-dependent potential, such as the interac­
tion with a external source of light, is to create a time-dependence of the energy levels of 
the quantum  dot. By applying a unitary transform ation to the Hamiltonian of the entire 
system, this time-dependence can be transferred to the interacting Hamiltonians, and 
consequently, the transition rates between states of the electrodes and the states of the 
dot will carry the time-dependency [64]. For a external time-dependent potential applied 
through the gate voltage of a three-term inal device as shown in Fig. 8.1 , one can show 
th a t the transition rates are given by

Cn'n

hu)
{n‘ f {E„ -  uhuj -  fia) (ah3)
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and

^  (n ' l ^C i ln )  [1 -  f  {En' -  En + lyhw -  fia)] ■ (8.1.4)
l y ^  ^  i

The full derivation of Eq. (8.1.3) and Eq. (8.1.4) is given in A ppendix B, Sec. B.2. F+ 

describes the transition  rates for tunneling from the  electrode a  to  the SQD, whereas F “ 

describes the transition  ra tes for tunneling from the  SQD to  the  electrode, while m aking 

a transition  from the  initial charge s ta te  |n) to  the  final charge s ta te  \n'). 7 ,̂ is the 

hopping param eter between the  SQD and the  electrode a,  Pa is the  density of sta tes of 

the  electrode a  for which we assum e the wide band lim it, i.e. the density of sta tes is energy 

independent. f { E )  is the Fernii-distribution function and fia is the  chemical poten tial of 

the electrode a. Jy (^) is the  z/th order Bessel fvmction of the  first kind and ^ is

a dimensionless (juantity th a t controls the ac-field intensity. Hereafter, we trea t as a 

free param eter. Agam, by setting  the tim e-derivative of the  reduced density m atrix  to  

zero, I.e. {rn\p{t) [m) =  0 , and using the norm ahzation condition YliPi  ~   ̂ obtains 

the  steady-sta te  current th rough the electrodes [114, 115]. The electrical current due to 

sequential t\um eling through the contacts, for instance th e  left (L) contact, is then  given

pnm i-ej)iesents either or Fj depending on w hether the  electron is tum ieling to  or from 

th e  molecule, respectively.

Sidebands

T he square modules of the Bessel’s functions has an im portan t meaning. It gives the 

probability  for the tunneling electrons to  absorb {u > 0) or to  em it {u < 0) u photons 

of energy hw. For ly = Q one recovers the case of no-PAT tran sp o rt. This can be further 

understood  by considering the  spectral decom position of the  wave function for the different 

sidebands. By considering an electron confined in an infinite well in teracting w ith a time- 

dependent external potential, Kcos u>t, the  Schrodinger equation can be w ritten  as

by
(8.1.5)

z/i—  =  t) = {e +  Vcos ujt)ip{y, t). (8 .1.6)

T he solution of this equation is
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which indicates tha t the electron has a probability proportional to ( ^ )  to have an 
energy equal to e ±  hw [44, 198, 199]. Sidebands can be detected by varying the gate 
voltage, which shifts up and down the energy levels of the quantum system. W hen 
the sideband enters the bias window, i.e. for /iR > e ±  uhuj > the current versus 
gate voltage { I —Vg) curve shows a resonant peak added to the undriven resonance. The 
height of this peak is proportional to For other sidebands corresponding to
the absorption or emition of u photons, the current will have contributions with height 
proportional to

Single energy level m odel

We first show how PAT changes the current through the tunneling barriers for the case 
of a single level, ei, in a SQD. Fig. 8.2 shows the current and the differential conductance 
as a function of gate voltage (V̂ d —> 0) for different values of W ithout light irradiation
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Figure 8.2: PAT for a single level model. Current (left) and differential conductance 
(right) as a function of gate voltage (Kd 0) for different light intensities. Parameters 
used are A:b0  =  15 meV, Fl =  Fr =  1 meV and Ci =  0 eV. From top to bottom , 
decreasing the photon energy.

(^ =  0), the I  — Vg curve shows just one peak, which occurs when Ci is aligned with the 
chemical potentials of the electrodes [200]. However, when light is on, the electron that 
in absence of photons would be confined inside the SQD, can absorb energy from the 
photons to jump out of the SQD and be absorbed by the electrodes in such way th a t the
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condition // < ei +  uhuo is satisfied. In other words, the effect of the  in teraction of a single 

energy level w ith  a classical oscillating field is th a t the  energy levels splits into several 

energy levels (sidebands) located a t ei ±  uhuo, as shown in Fig. 8.3. Likewise, electrons on

T l T r

Figure 8.3: Energy diagram  for a single level model where PAT is present.

the electrodes can absorb photons to jum p into the  SQD. W ith  this process, occupation 

probabilities th a t were essentially forbidden can become available w ith PAT.

Tw o energy levels m odel

Single electron allowed

F irst we consider the case of two discrete single ])article energy levels, and f 2 , 

where ju s t one electron is allowed in the  SQD. In o ther words, U ^  oo so th a t only the 

charge s ta tes  |0), |1 ,0) and |0 ,1) are considered. W hen PAT is taken into account, two 

transm ission m echanism s can be observed. The first was already discussed in Fig. 8.2 

where ex tra  peaks arise a t energies equal to  e\ ±iyhw. The second m echanism  gives rise to 

peaks where an excited s ta te  (in th is case ^2 ) is aligned w ith /Xq. For ^ =  0, the  tunneling 

th rough  6 2  is forbidden due to Coulomb blockade, since ei is already occupied. Thus, as 

shown in Fig. 8.4, we observe ju s t one peak a t V"g =  0.1 eV, which is the energy needed 

to  align £i w ith f̂ ia- However, for ^ 7  ̂ 0, an electron in ei can absorb photons to  jvunp out 

of the SQD, while another electron can then  tunnel thought €2 following the  sequence of 

transitions [1,0) —> |0) —> |0 ,1). T he tunneling though 6 2  is now visible for ^ =  1 since ej 

can be em ptied  due to  photon absorption [201]. O ther transitions can also be identified 

where b o th  levels can absorb and em it photons.

Two electrons allowed

In the case of tw'o electrons in the  SQD, we need to  take into account the  charging 

energy U  due to  electron-electron interaction. As show'u in Fig. 8.5, for ^ =  0, two m ain 

peaks are observed instead of ju s t one and the  spacing between these two peaks is given 

by (ej — £2 ) +  The first peak a t Vg = 0.4 V corresponds to  one electron entering the
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Figure 8.4: PAT for a two-level and one electron model in the SQD. C urrent (left) and 
differential conductance (right) as a  function of gate vohage (l/sd —> 0) for different hght 
intensities. The param eters used are A'b0 =  15 meV, F l  =  F r  =  1 meV, ei =  —0.1 eV 
and £2 =  0 eV. From top  to  bottom , decreasing the  energy of the  photon.

SQD and tunneling th rough  ej, ie .  the |0) |1 ,0) transition . Once the Cj level is occu­

pied, the next transition  is |1, 0) —>■ |1 ,1), w ith final energy C2 +  ^ -  As a consequence, for 

=  0, the two peaks corresponding to  £2 and ei +  are hidden. However, they can be 

observed for ^ =  1,2. As for the case of one electron in the  SQD, the same analysis for 

the  sidebands can be m ade and some of the peaks can be easily identified. As the  num ber 

of internal sta tes increases and the  intensity  of the  light increases more transitions can 

occur and several peaks will be observed in the  /  — Vg plot, which can be seen as ex tra  

steps in the  current versus bias voltage, /  — plot. Similar results have been reported  

in the  litera tu re  in good agreem ent w ith our sim ulations [202, 203].

8.1.2 C otunneling w ith light effects

We then  extend our model in order to  include light effects in the  cotunneling contri­

butions to  the  current. To the best of our knowledge th is has not been done yet w ith  a
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Figure 8.5: Current as a function of (a) gate voltage (l^d —> 0)[left] and as a function of 
bias vohage (V̂ g =  0)[right]. The parameters used are =  15 nieV, F l  =  F r  =  1 meV, 
U  =  0.5 eV, huj =  0.2 eV, ei =  —0.4 eV and 62 =  0 eV.

M E approach. The cotunneling rates take the form

FryF̂ /  ̂  ̂ ,0  / Yiprjrr _
“  2Txh

X
/ * 5 ( r

+
Ai * Ai'

n"7i' n " n

X / ( f  -  / t a )  X

H“ Ejf — Ejj" “h uhu) +  T7] —f "h Eyi> — Ej /̂f -h ii]

1 f  -\- Eji Ej t̂ “H uhid /^a')

where the m atrix  elements of the annih ilation operators are

(n'l |n") ((n| In"))^ =  ^

(8.1.8)

(8.1.9)

and

^ ( ( n " |  Ci>„ |n ))^ (n"| Ci. \n) =  ^  AC'*„,A^^,,„. (8 .1.10)

Again, f { E )  is the Ferm i-d istribution function and Ha is the chemical potentia l of the 

electrode. (^) is the i/th  order Bessel function of the firs t kind, ^ is a dimension-

less quantity  that controls the ac-field in tensity and En is the to ta l energy of the charge 

state \n). Only elastic cotunneling contributions are considered since v̂ ê do not include 

interference between molecular charge states, as schematically shown in Fig. 7.1(b). A 

fu ll derivation of Ecj. (8.1.8) is given in Sec. B.3.

Fig. 8.6 shows our results for a two-level model for spinless electrons, where the pa­

rameters could represent, for instance, the molecular junction  discussed in Chapter 7, 

Sec. 7.2.2. As discussed in the previous sections, the photon creates side-bands and extra 

steps in the secjuential tunneling current (left panels of Fig. 8.6). These extra steps occur
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where the total energy difference between two charging states matches the apphed bias. 
The low bias cotvmneling contributions (right panels of Fig. 8.6), where the transition 
rates are calculated with Eq. (8.1.8) and the current by Eq. (7.1.11), are shown for dif­
ferent values of ^ and photon energies. The cotunneling contributions increase with the 
light intensity, since the transition rates are proportional to the module squared of the 
Bessel functions, which also increases with the intensity. It is interesting to note that for 
hu! =  0.2 eV, the cotunneling current is larger than, for instance, for hw = 0.8 eV. This 
is due to the fact that for low photon energy, a higher number of sidebands, ei_2 ±  
is available within the range of applied bias as compared to the case of high photon en­
ergy. In other words, there are more channels available for electrons to tunnel for smaller 
photon energies. The corresponding occupation probabilities for different light intensities 
and photon energies are shown in Fig. 8.7. Note that they correspond to the sequential 
tunneling contributions since elastic cotunneling does not modifies the occupations.

Seq. Tunneling Cotunneling

<
zl.

<

<zS.

2.5 0.08noPATho=0.2 eV

0.06i

0.04

0.020.5

2.5 0.08

0.06

0.04

0.020.5

0.08

0.06

0.04

0.02

0.2 
bias (V)

0.3

Figure 8.6: /  — V"sd for sequential tunneling (left) and cotunneling (right) with PAT 
for different photon energy and light intensity. The parameters are: c l u m o  = 1-3 eV, 
ehomo =  —0.5 eV, F l =  F r  =  7 meV, /cb© =  15 meV. The charge state energies are: 
|0) =  0 eV, |1,0) =  —0.5 eV; |0 ,1) =  1.3 eV and |1 ,1) =  0.8 eV. We considered U = Q 
eV.
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Figure 8.7: ()ccui)ation probabilities for different i)hoton energy and light intensity (c-i) 
compared to no-PAT (a). The corresponding I  — V"sd ciuves are those in Fig. 8.6.

8.2 Interplay of phonon and photon-induced  charge 

transport

Ftanck-C ondon blockade

The Franck-Condon blockade (FKB) is the suppression of the linear conductance 
of a nanostructure th a t shows strong electron-vibron coiij)ling, A. This dimensionless 
param eter measures the extent to which the geometrical structure of the molecule changes 
due to the change in its electronic structure, for instance, when an extra electron is added 
to it. When A 1, the displacements of the potential surfaces are large compared to the 
ciuantum fluctuations of the nuclear configuration in the vibronic ground state. This leads 
to a strong suppression of the overlap between the low-lying vibronic states. Therefore, 
the Franck-Condon m atrix elements [see Eq. (C.2.20)] are strongly suppressed, leading 
to the suppression of the sequential tunneling current at low bias. This is schematically 
shown in Fig. 8.8(a) where only transitions tha t involve low-lying vibronic states, such as 
lA'̂ , q), to high-vibronic states, |Â  -I- 1, q'), are allowed. |Â , q) is the electronic ground state 
N  electrons and q is the vibronic state of the molecule. This effect was first observed in 
quantum  dots [204] and then in suspended carbon nanotubes [205]. Only recently Burzuri 
et al. could observe this effect in a very small single magnetic molecule [192]. A detailed
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theoretical description of this effect has been already published some tim e ago by Koch 

et al. [116, 57],

( a )  S e q u e n t i a l  T u n n e l i n g (b)  C o t u n n e l i n g

A > >  1

.q>

LU
U
a l

A > >  1

LU

ZD

A2

Figure 8.8: Schem atic energy diagram  for Franck-Condon blockade, A ^  1. (a) Sequential 
tunneling where only transitions from the  charging s ta te  \N,q)  to  a high-vibron excited 
charging s ta te  |Â  +  1,^'') is allowed. G round-state  transitions are suppressed, (b) The 
suppression of the conductance is partially  lifted due to  cotunneling involving contri­
butions from highly excited virtual vibronic states. The curved arrow shows th a t, in 
cotunneling, the  charge s ta te  of the molecule changes ju s t v irtually  in the  in term ediate 
state.

An interesting fact about the FKB is th a t it can not be lifted by applying a gate 

voltage, as it can be done for the Coulomb blockade. Fig. 8.9 shows for a one-level model 

the  stab ility  diagram s as the electron-vibron coupling increases. As expected, the  gate 

voltage does not lift the  conductance gap, i.e. the  system  is in the  FKB. Note th a t the 

center of the  stab ility  diagram  is shifted to  the  right since the energy of the  single particle 

level is renorm alized, as shown in Sec. C.2.

T he transition  rates for sequential tunneling w ith vibrons are given by

r r ' ' = Y (8.2. 1)

for electrons entering the  molecule through electrode a  and changing th e  vibronic s ta te  

of the  molecule from q to  q'. Likewise, for electrons leaving the molecule, the  transition  

ra te  is

[1 “  f { E n ' q '  —  E n q  ~  f J ^ a ) ]  ■ ( 8 .2 . 2 )

A detailed derivation of these expressions is found in Sec. C.2. T he transition  ra tes for
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Figure 8.9: S tability  diagrani for sequential tunneling  contributions for a one-level model 
for different electron-vibron coupling strength . Param eters: F l  =  F r  =  10 meV, = 
1.7 meV, e =  0 eV, =  2.6 meV and (/max =  15.

cotuiineliiig including vibrons are derived in Sec. C.3. Moreover, the electrical current is 

given by Eq. (7.1.11).

Ill the FK B regime, Koch et al. [116, 57] have shown, for the low tem peratu re  limit 

F < <  A:b0 < <  ^ 'q ,  th a t the  sequential tunneling contribu tions to  the linear conduc­

tance is proportional to  i.e. it is exponentially sujipressed by the electron-vibron

coui)ling. This is the  case even for the conductance i)eak position. Fig. 8.10(a) shows the 

sequential tunneling current for different values of A. For A =  3 the current up to  ~  0.5 

V is essentially (quenched. The authors also have shown th a t the  cotunneling transition  

rates are algebraically suppressed by the electron-vibron coupling, i.e. ~  A""**, and

therefore cotunneling dom inates the conductance for low-bias when the  system  is in the 

FKB, as shown in the  inset of Fig. 8.8(b). This is re la ted  to  the  fact th a t for transitions 

originating in the vibronic ground sta te  q =  0, th e  optim al overlap is obtained for v irtual 

s ta tes  q" of the  order of q" ^  Â  (see A ppendix C of Ref. [116]). Fig. 8.10(b) shows the 

individual contributions of the various processes to  the  to ta l current.

P h oton -in d u ced  rem oval o f Franck-C ondom  blockade in m olecular ju n ction s

An interesting effect occurring when optical excitations are also considered in the 

model for a m olecular junction  w ith strong electron-vibron coupling [192] is the  removal 

of the  FKB. This represents an efficient way of switching optically the  current th rough a 

single molecule. T he sequential tunneling rates when b o th  effects are included, namely, 

vibrons and photons, are given by (see Sec. C.2 for details)

2

X  E j i q  u h u j  1 (8.2.3)
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Figure 8.10: (a) Sequential tunneling current as a function of bias for different values of 
the electron-vibron coupling, A. (b) For A =  3, the current suppression up to 0.5 V is 
due to Franck-Condom blockade. The individual sequential tunneling and cotunneling 
contributions to the total current are shown for completeness in panel (b). The inset 
shows tha t the cotunneling contributions dominate at low bias. The param eters used are 
ksQ  =  1.7 meV, F l =  F r  =  6 meV, ei =  0 eV, ^max =  5 and hujq = 25 meV.

to transfer one electron from the electrode a  to the molecule and

27T

h ^  \ h u i  
1/  ^

X [ l  E jiq  u tlW  /^a)] (8.2.4)

to transfer an electron from the molecule to the electrode a.
Fig. 8.11(a) shows the sequential tunneling current in the FKB regime, for A =  3, 

withoTit light-assisted tunnehng. Fig. 8.11(b) and Fig. 8.11(c) show the corresponding oc­
cupation probabilities for the neutral molecule (|0;g) state) and for the charged molecule 
( |l;g )  state), respectively. For bias up to ~  0.5 V, the system is in the ll;0) state, i.e. 
the molecule has one extra electron and it is in the vibronic ground state. W hen light is 
switched on, photons can assist electrons to excite vibronic states. As the light intensity 
increases, vibronic excited states of the charged molecule starts  being poj)ulated. Further­
more, also excited vibronic states of the neutral molecule become accessible. Although 
the population of the neutral state  is still one order of m agnitude smaller than  tha t of 
the charged molecule, an optical excitation creates a non-equilibrium therm al distribution. 
This provides the background for the removal of the FKB, as shown in Fig. 8.11(d-i). The 
action of the light is also shown in the stability diagrams of Fig. 8.11(j) when compared 
to Fig. 8.11(1). In the latter, one can also observe the many extra hnes corresponding to 
side bands associated with the vibronic states.

Our results are in very good agreement with the results obtained by May et al. [206, 60, 
62, 61], a generalized ME approach was used to study photo-induced charge transport in a 
two-level model molecular junction. In their model they included effects of intra-molecular 
photo-excitations (HOMO-LUMO transitions) and intra-m olecular vibronic energy reor-
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ganization. A lthough we do not include intra-m oleciilar excitations, which would require 

to  consider the  off-diagonal elem ents of the reduced density m atrix  operator in our ME 

[see Eq. (4.3.51)], the agreem ent w ith the published results is not accidental, since the 

contribution from the intra-m olecular excitations is a t least an order of m agnitude smaller 

than  the m ain sequential tunneling contribution.
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Figure 8.11: (a) Sequential tunneling current as a function of bias for A =  3. T he current 
suppression up to  0.5 V is due to  Franck-Condon blockade. Panels (b) and (c) show the  
occupation of the  vibronic sta tes for charging s ta te  zero and one, respectively. Panels 
(d-f) and (g-i) are the  same for ^ =  2 and (̂  =  4, respectively, (j) T he corresponding 
stab ility  diagram  for (a); (k) is the corresponding stab ility  diagram  for (g) where the 
light-induced FK B removal is dem onstrated. The param eters used are =  1.7 nieV, 
F l  =  F r  =  6 meV, h u  =  50 meV, ei =  0 eV, =  5 and /icjq =  25 meV.
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In order to  verify the  role of vibronic relaxation, we apply the  M E presented in 

Eq. (7.1.8), i.e. taking into account the relaxation of vibrons w ith relaxation tim e r ,  where 

for T —>■ 0, all the  vibronic sta tes collapse back to  the ground state. Fig. 8.12(a) shows the 

same sequential tunneling current versus bias presented in Fig. 8.11(g) (unrelaxed) as well 

as when considering vibronic relaxations. As shown in Fig. 8.12(b) and Fig. 8.12(c), the 

occupation probabilities of the  ground sta te  vibronic sta tes increase leading to  a partial 

recover of the  FKB, i.e. Fig. 8.12(b-c) should be com pared w ith Fig. 8.11(h-i). This was 

also observed by May et al. [206, 60, 62, 61].
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Figure 8.12: (a) Sequential tuim eling current w ith PAT in the  FK B regime w ithout 
v ibrational relaxation and including relaxation, w ith relaxation tim e r  =  10 fs. (b) and 
(c) relaxed occupation i)robabilities for the  neu tra l and charged molecule, respectively. 
T he param eters used are the same as those used in Fig. 8.11.

8.3 L ight-induced linear conductance enhancem ent 

in m olecular junction s

E xperim ental observation  o f ligh t-in duced  condu ctance enhancem ent in m olec­
ular ju nctions

S. B attacharyya et al. [38] have perform ed STM  electronic tran sp o rt measurem ents. In 

their experim ents, a SAM of the ta rge t molecule, a fullerene-porphyrin structu re , as shown 

in Fig. 8.13(a) is deposited on a indiuni-tin  oxide (ITO ) sem iconducting surface and the 

gold STM tip  closes the circuit. W hile m easuring the  tunnehng current, simultaneously, a 

m onochrom atic laser pulse could pass through the transparen t sem iconductor and photo- 

excite the  molecules trapped  in the  junction. T he au thors accomplished to  m easure 

the  conductance of the molecule in two different electronic configurations, namely, the 

ground-state and the  excited s tate . By breaking and forming the  junction, a histogram  of 

conductances can be p lotted . W ithou t light (dark), they  observed a conductance average 

of ~ 2 .5  nS [see Fig. 8.13(b)], w hereas for the  illum inated junction, a higher conductance 

peak is observed. T hey estim ated  th a t during th e  m easurem ents, about 50% of the 

molecules are in a higher conducting state. Moreover, the enhancem ent of conductance
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is not due to photocurrent since the maximum photocurrent tha t could be achieved with 
the intensity of the laser used is orders of magnitude smaller than the one measured.

The complex porphyrin-C60 molecule is a donor-acceptor structure giving rise to a 
charge-separated state when ilhuninated with visible light. However, the lifetime of the 
charge-separated state is of the order of nanoseconds in solution. This time scale is much 
shorter than  the time scale to measured the conductance (~nis). Therefore, the fraction 
of molecules in the excited state at the time of a measurement should be vanishingly 
small. It has been shown tha t the conductance enhancement can be associated to the 
charging of the molecule [207], leading to an enhancement of the lifetime of the charge- 

separated state. The authors concluded th a t the light absorption creates an excitonic 
charge-separated state, in which an electron is transferred from the porphyrin to the 
fullerene moiety. The resulting charges migrate away from the site of initial electron 
transfer, via hopping to adjacent molecules and/or migration into the ITO substrate. 
This i)rocesses make the recombination of these separated charges slow, which allows the 
observation of the conductance enhancement.

Figure 8.13: (a) Ball-and-stick representation of the expected bonding geometry of a 
porphyrin-C60 dyad molecule sandwiched in the gold-ITO junction. A carboxylate group 
interacts with the transparent semiconductor, while a pyridyl moiety binds to the gold 
probe. The hght is represented by the vertical arrows, (b) Schematic representation of 
the experimental results of Ref. [38] where the average conductance is enhanced when the 
junction is under illumination.
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8.3.1 Ab initio  approach: constrained-D FT+N EG F for trans­
port in charged molecular junctions

C om p u tation al deta ils

In this section we want to investigate the transport properties of a donor-acceptor 
molecule when the molecule is charged. We combine CDFT described in Chapter 5 (details 

on the implementation of the m ethod are described in Appendix E) with the NEGF 
formalism, as described in Chapter 3 and implemented in the SMEAGOL code [187, 188]. 

The XC energy is treated at the LDA level. We use norm-conserving pseudopotentials 
according to the Troullier-Martins procedure [143] and the basis set is double-( polarized 
for carbon, sulfur and hydrogen and single-^ for gold [29, 30]. The mesh cutoff is 300 Ry 
and four /c-points are used for sampling the Brillouin zone in the perpendicular direction 
to the transport.

Iso lated  m olecu le properties

The molecule used in the experiments of S. Battacharyya et al. [38] is shown in 
Fig. 8.13(a) and it consists of a porphyrin-fullerene complex term inated by carboxylate 
group th a t binds to the transparent semiconductor and a pyridyl moiety th a t binds to 
the gold probe. We abbreviate the molecule with PFC (porphyrin-fullerene-carboxylate). 
We modify this molecule in order to study the transport across a gold-molecule-gold 
jimction. We replace the carboxylate group by a pyridyl moiety (abbreviated PFN), as 
shown in Fig. 8.14(c). Fig. 8.14(a) shows the PDOS for the molecule compared to the 
PDOS of the individual moieties, namely, the porphyrin and the fullerene. Our results 
show th a t the HOMO is localized on the porphyrin whereas the LUMO and LUMO-)-l 
are localized on the fullerene, as shown in the plot of the electronic density of Fig. 8.14(c). 
This confirms the donor-acceptor structure. The and calculated, by means of the 

A-SCF approach, are equal to 6.23 eV and 3.10 eV, respectively. The LDA gap, -E'lda> 
underestim ated by ~2.5 eV, when compared to ^'q^. By performing the calculations with 

the ASIC m ethod [see Fig. 8.14(b)], the ^ 'lda  modestly opened by 0.5 eV for a  =  1. 
We point out th a t the ordering of the levels are unchanged when ASIC is applied. When 
the molecule is incorporated in the junction, in order to have a quantitative description 
of the conductance, corrections to  the energy levels should be applied, as we have shown 
in Chapter 6 and Chapter 7.

C ase o f study: g o ld -P F N -go ld  m olecular ju n ction s

Fig. 8.15(a-d) show four different geometrical couplings between the molecule and 
the electrodes and Fig. 8.15(e) their respective transmission coefficients. In (a) the PFN 
molecule is connected to a tip-like electrode at both sides; in (b) the NH2-Au(tip) bond
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( a )  LDA ( b )
m olecule
porph
fullerene

LUMO+1

Figure 8.14; (a) and (b) PDOS for the individual units, namely, the fullerene and por­
phyrin, calculated with LDA and LDA-j-ASIC, respectively, (c) Isosurface plots of the 
electronic density of the frontier molecular orbitals.

to the right is replaced by a N-Au(tip) l)ond; in (c) the NH2-Au(tip) bond is replaced by 
a N-Au(tip) bond at both sides. Lastly, for the geometry-4 shown in (d), a N-Au(fiat) 
bond is considered at both sides of the junction. As seen in Fig. 8.15(e) the Landauer 
elastic transmission [given by Ecj. (3.4.32)] at Ep increases by several orders of magnitude 
when going from the tip-like electrodes to the flat surface due to the stronger coupling to 
the electrodes. For geometry-4, the conductance is the same order of magnitude of the 
typical values found in the experiment of Ref. [38], thus we focus on this junction.

M olecular conductance enhancem ent

We are interested in calculating the conductance of the molecular junctions when 
the molecule is charged. This is one of the possible mechanism proposed to explain 
the enhancement of the conductance under illumination observed in experiments. Our 
approach consists of applying CDFT to constrain the molecule in different charge states, 
while performing the transport calculations. We perform two sets of calculations, namely, 
when the molecule is negatively charged and when it is positively charged. The former 
is achieved by removing one electron from the electrodes and adding it to the fullerene
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(a)  geometry-1 (b) geomet ry-2

(c)  geomet ry-3 (d) geomet ry-4
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Figure 8.15: (a-d) Ball-and-stick representation  of different contact geom etries for the 
A u-PFN -A u m olecular junction, (a) NH 2 -A u(tip) bond on bo th  sides; (b) NH 2 -A u(tip) 
bond to  the left and N -A u(tip) bond to  the  right; (c) N -A u(tip) bond on bo th  sides and 
(d) N-Au(flat) bond on bo th  sides of the junction, (e) Transm ission coefficients as a 
function of energy for the  different contact geom etries obtained w ith D FT-LD A -N EG F.

moiety [see Fig. 8.16(a)] whereas for the  later, an electron is removed from the  porphyrin  

moiety and added to  the electrodes, as shown in Fig. 8.16(b). Fig. 8.16(c) shows the

CDFT+NEGF f o r  C h a r g e  T r a n s p o r t

neutra l 
-1 e
+ 1 e

(b) Taking e l e c t r o n  from HOMO

Figure 8.16: (a-b) Ball-and-stick representation  of geometry-4 shown in Fig. 8.15 where 
we schem atically show the charge transfer perform ed w ith CD FT. (c) Transm ission co­
efficients for the  non-constrained solution (neutral) com pared to  the  results obta ined  by 
adding one electron to  the fullerene (+ le )  and removing one electron from the  porphyrin  
moiety (-le).

transm ission coefficients of the two different charging sta tes of th e  molecule com pared 

to  the  calculation w ithout any constrain t (neutral molecule). As one would expect, the 

removal of one electron lowers th e  energy levels and the conductance a t is reduced. 

In contrast, when an electron is added to  the molecule, due to  the  repulsion needed to
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screen the extra charge, the energy levels are shifted upwards and the energy level close 
to Ey approaches even more E-p leading to an enhanced conductance. This shows tha t a 
negatively charged molecule is expected to provide an enhanced conductance. We point 
out th a t we assume th a t the time scale for electron tunneling is shorter than the lifetime 

of the charging state  of the molecule. This is also consistent with the enhanced long- 
lived charge-transfer state observed experimentally. In order to verify if the molecule

rr; Light

LUMO p L U M O

p H O M O

(b) (c)

pL U M O  pL U M O

^  ^  pH O M O  pHOTvTO

M o l e c u l e  N e g a t i v e l y  C h a r g e d

I I /'R
■ jjjjjj jf l pLU M O  ^  p IlO M OT

Figure 8.17: Energy level diagram for the model where the molecule becomes negatively 
charged, (a) The light hits the device and a charge-transfer state occurs with the formation 
of an exciton (curl arrow), (b) The HOMO state located in the porj)hyrin moiety is coupled 
to the right electrode stronger than to the left whereas, the LUMO located in the fullerene 
moiety is coupled to the left electrode than to the right. Therefore, the hole escapes to 
the right while the electron escapes to the left electrodes, (c) Moreover, since the coupling 
between the LUMO and the left electrode is smaller than  the coupling between the HOMO 
and the right electrode, the molecule can become negatively charged. =  3.0 x  10“®
eV, ^  2.8 X 10-3 pHOMO ^  2.3 X 10-^ eV and =  4.0 x  10-^ eV.

can become negatively charged, we calculate the electronic couplings between the HOMO 
and LUMO to the left and right electrodes (see Chapter 7 for details on how to extract 
the electronic couplings). The calculated couplings show that is four orders of
m agnitude larger than  and is two orders of magnitude larger than
This means tha t when the light excites the molecule, as schematically shown in Fig. 8.17(a) 
the electron excited to the LUMO level escapes faster to the left electrode than to the 
right electrode. Likewise, the hole left in the HOMO escapes faster to the right electrode 
than to the left electrode, as shown in Fig. 8.17(b). Moreover, since Fp°^^° is larger than 
pLUM O  order of magnitude, the molecule can become negatively charged by the

injection of the electron from the right electrode into the HOMO level [Fig. 8.17(c)].

8.4 Conclusion

In the present Chapter we have studied light-induced charge transfer in molecular 
junctions. We have i)resented a ME approach th a t takes into account both sequential 
tunneling and cotunneling contributions. This methodology can be applied in combination
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w ith first-principles calculations in order to  ex tract the  param eters. We have shown th a t 

the  cotunneling current increases (for a sym m etric junction) w ith the light intensity, 

bu t the increase depends on th e  photon energy. For low photon energies, the num ber of 

sidebands or channels created for the  given bias applied is larger th a n  th a t for high photon 

energy. We have shown how light can be used to  remove the FKB in molecular junctions 

th a t in presence of strong electron-vibron coupling. This dem onstrates th a t light may be 

an efficient tool to  optically switching the current th rough a single molecule. We have 

simplified the problem  as we do not consider in ternal excitations, i.e. the HOMO-LUMO 

gap is larger th a n  the  photon energy, so th a t the off-diagonal elem ents of the  reduced 

density m atrix  can be neglected. In A ppendix D we give an exam ple of a double quantum  

dot where coherent term s m ust be taken into account.

We have dem onstrated  by m eans of our com bined approach of constrained-D FT  and 

N EG F th a t the  conductance enhancem ent observed in experim ents can be achieved by 

negatively charging the  molecule. An im portan t assum ption is th a t the tim e scale for 

tunneling is nmch shorter th an  the  lifetime of the charging state. This is justified by the 

experim ental evidence for a long-living charge separated state.
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Conclusion and Future Work

We have developed and apphed com putational tools to  the study  of electronic tran s­

port properties of m olecular junctions. C hapter 2 was dedicated to  presenting the  elec­

tronic s truc tu re  theory used throughout th is thesis, namely, density functional theory. 

We have discussed the  lim itations of th is approach, for instance, the  lack of the  deriva­

tive discontinuity in local and semi-local approxim ations of the  XC potential and the 

self-interaction error. We have shown how corrected functionals, such as the  LDA-I-ASIC 

m ethod and the LDA-|-SC() m ethod can be used to  improve on the  results. In C hap ter 3, 

we have presented the general concepts of quantum  transpo rt a t nanoscale and the non­

equilibrium  G reen’s function m ethod, widely used to  describe the electronic tran sp o rt 

in nanojunctions. Moreover, in Chai)ter 4, we have also presented and applied a differ­

ent framework to  (juantm n transpo rt, namely, the density m atrix  approach from which 

a set of m aster eciuations are solved. This is com bined w ith model H am iltonians so th a t 

it allows us to  straightforw ardly take into account im portan t effects, such as, light and 

tem perature.

M otivated by the lim itations of DFT-LD A  to account for non-local correlation effects, 

im portan t for the energy level alignm ent of m etal/o rgan ic  interfaces, in C hap ter 5, we 

have applied the  CD F T  discussed in Sec. 2.6 to  determ ine the energy levels alignm ent of 

these interfaces in the  weak electron coupling regime [153]. We have dem onstrated  how the 

frontier energy levels of a  benzene molecule change due to  the  image charge effect, leading 

to  a  HOM O-LUM O gap reduction when the molecule is brought close to  a Li(lOO) surface. 

We have then  studied the  size-dependence of the  substra te  as well as of the supercell used 

in the  sim ulations in order to  ob ta in  quan tita tively  converged results. We have shown 

th a t a ra th e r large m etal cluster size is needed for long distances between the  molecule 

and the surface, although a t small molecule-m etal separations sm aller clusters can also 

give quantitatively  accurate results. O ur approach also allowed us to  calculate the image 

charge plane, i.e. the center of gravity of the  screening charge density and we have found 

1.72 A and 1.80 A for adding and removing one electron, respectively. Moreover, when 

the  calculated image charge plane is used in an effectively param eter-free electrostatic
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classical model for the  image charge, our C D FT  results show very good agreem ent. This 

approach offers several advantages when calculating the energy level alignment: (i) ra th e r 

large systems can be calculated, since the  com putational costs are similar to  those of 

s tandard  D FT; (ii) surfaces w ith a rb itra ry  shapes and reconstruction can be studied, 

including defective and contam inated surfaces; (iii) it gives a direct way of determ ining 

the  position of the  image charge for such interfaces; (iv) there is a system atic way to 

establish convergence.

C hapter 6 has been dedicated to the  s tudy  of the gold-BDT molecular junctions. 

A long-standing problem  in the  area of m olecular electronics has been the difficult to  

establish a quan tita tive  agreem ent between experim ents and theory  for this system . We 

have studied three m ain aspects of this system . Firstly, we perform ed D FT  calculations 

to  study  the adsorption process of thiol te rm inated  molecules on the  gold surface in order 

to  address the  stab ility  of the  m etal-m olecule interface. For all the structures studied  we 

have found th a t the  th io l-term inated  junctions are energetically more stable th a n  their 

th io late  coim terparts. Moreover, we have found a large activation barrier of abou t 1 

eV for the dissociation of the  H atom  from the  thiol groups adsorbed on gold. These 

results indicate th a t the  non-dissociated structu res are likely to exist in experim ents, and 

therefore they  can not be ruled out.

Secondly, from the  electronic tran sp o rt point of view we have shown th a t the  energy 

level alignm ent between the molecule and the electrodes is one of the main factors th a t 

determ ine the linear conductance of the  system. We have applied the C D FT m ethod 

presented in C hapter 5 com bined w ith an electrostatic classical image charge m odel to  

ob ta in  an accurate description of the  energy level alignment of these junctions. T he image 

charge plane calculated w ith C D FT  is 1 A above the gold surface. W hile for the benzene- 

1,4-dithiol (BDT2H) molecules the  coupling to  the surface rem ains small at all distances, 

for small molecule-surface separation the electronic coupling between the benzene-1,4- 

d ith io late (BD T) and gold siuface becomes very strong, and in th is limit the use of the 

C D FT  approach is not applicable. We have shown th a t in the lim it of strong coupling, 

electron transfer from the  surface to  the molecule occur, so th a t the  molecular LUMO 

of the isolated BD T becomes increasingly occupied as the molecule-surface distance de­

creases and the ASIC m ethod is more appropria te to correct the  molecular energy levels. 

Furtherm ore, by m eans of NEGF-I-DFT we have calculated the tran sp o rt properties of the 

junctions w ith  different contact geom etries and com pared the  results obtained w ith LDA, 

ASIC and LDA-I-SCO functionals. We have found th a t A u-BD T-A u and A u-BD T2H-A u 

junctions show opposite trends concerning the  dependence of the  conductance on the  sep­

aration  between the  flat gold electrodes, i .e.  while the conductance decreases w ith the 

elongation for the  thiol junctions, it shows the opposite trend  for the  th io late junctions.

Thirdly, we have presented a hybrid classical molecular dynam ics and M onte Carlo 

approach to  m echanically a n d /o r therm ally evolve the A u-BDT-A u molecular junctions.
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This have allowed us to incorporate im portant aspects found in experiments, such as 
tem perature effects, elongations rate effects, and non-ideal tip contact geometries. By 
performing transport calculations of several geometries extracted from the MD-MC ap­
proach, we have found tha t conductance enhancement with the electrode separation can 

be explained by the formation of mono-atomic chains during the elongation process. Our 
results therefore suggest th a t thiol junctions must be present in experiments where the 
conductance decreases with the elongation of the junction. In contrast, the thiolates junc­
tions are likely to be present in experiments showing an increase of the conductance upon 
stretching.

In Chapter 7 we have combined the DFT-NEGF formalism with the computationally 
efficient master equation approach to study the transport properties of molecular junc­
tions, where all the param eters for the model Hamiltonian can be obtained from first- 
principles calculations. In particular, we have shown th a t the master ecjuation approach 
can describe the transport properties of molecular junctions in the Coulomb blockade 
regime, in which the NEGF within DFT-LDA fails due to the lack of the derivative 
discontinuity in the LDA functional. We have applied this m ethod to reproduce experi­
m ental data for a porphyrin-Zn-gold molecular junction in the weak coupling limit. The 
energy level renormalization due to the image charge is taken into account by means 
of a j)arameter-free classical image charge model. Moreover, within the model, we have 
included teni])erature effects by considering an effective single vibron-mode and have 
dem onstrated that vibration excitations can be responsible for the linear-like current in­
crease observed in the ex])eriments and the current onset.

Chapter 8 was dedicated to the study of light-induced charge transfer in molecular 
jvmctions. All the calculations have been performed within the master equation approach 
where sequential tunneling and cotunneling contributions were taken into account. We 
have discussed the general aspects of light-assisted tunneling within the Tien-Gordon 
model and applied the method to sim{)le models. We have then derived and implemented 
the transition rates for cotunneling contributions and we have shown th a t the cotunneling 
current increases (for a symmetric junction) with the light intensity, however, the increase 
depends also on the photon energy. Moreover, by considering vibrons and photons in 
our model, we have studied the interplay between these two excitations on the transport 
properties of the molecular junctions. We have shown how light can be used to remove the 
Franck-Condon blockade in molecular junctions th a t show strong electron-vibron coupling. 
Finally, motivated by experimental observations [38], we have studied by the combined 
approach of constrained-DFT and NEGF the conductance enhancement due to changes 
in the charge state of the molecule. We have shown that the conductance enhancement 
observed in the experiment can be achieved by negatively charging the molecule. An 
im portant assumption is tha t the time scale of tmmehng electrons is much shorter than 
the time scale of the charging state. This is justified based on experimental evidences for
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a long-lived charge separated  s ta te  [38].

Concerning future work, it would be interesting to  tackle the following. Firstly, by 

using the hybrid M D -M C /N E G F approach, one could perform  similar calculations for the 

A u-BDT2H-A u junctions under stretching. This would allow one to  com pare one to  one 

w ith our results for the  A u-BD T-A u also when tem pera tu re  effects and several contact 

geometries are considered. In term s of fu ture developm ent, the N EG F approach could 

be merged w ith a m olecular dynam ics package so th a t the  tran sp o rt properties would be 

calculated self-consistently w ith the  m olecular dynam ics. This way, one could study  the 

effect of electrical current onto the  geom etry of the system  as well the effect of the  change 

in the geom etries on the  electrical current.

W ithin  the  C D FT  approach, one could extend the  m ethod to  allow geom etry relaxation 

under different constrained charge states. For instance, th is could be used to  calculate the 

electron-phonon coupling of isolated molecules as well as when they are in the junctions. 

This task  would be accom plished by evaluating differences in the atom ic structu re  of the 

system  when, e.g.  an electron is added to  it or removed from it.

For the m aster equation approach, the off-diagonal elem ents of the reduced density 

m atrix  operato r could be added, so th a t coherence between m olecular charge sta tes could 

be taken in to  account. This would allow us to  calculate internal transitions between, 

for instance, HOMO and LUMO levels, and to  calculate the  photocurrent up to  fourth 

order in the  tunneling H am iltonian. An interesting project would be to include in the 

SMEAGOL code electron-photon in teraction by m eans of self-energies [208, 209, 210, 211]. 

This has been done w ithin m odel H am iltonians where ju s t a few energy levels [51] were 

considered or coherence between in ternal energy levels were disregarded [195]. Therefore, 

a full first-principles tran sp o rt calculation where light-induced tunneling is included, for 

the  best of our knowledge, is still to  be done.
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Second Quantization Operators

A .l  Ferm ionic O perators

We first choose a complete set of single-particle states given by | | 1 ) , | 2) , |A/)}, 
where the ordering is key when dealing with fermionic j)articles such as electrons. In 
term s of the occui)ation number rei)resentation {second quantization), w'e write a niany- 
body state by simi)ly listing the occupation numbers of each basis state,

yV-particle basis states : , |7).2) , •••, | « A / ) } -  (A.1.1)

We can now define the molecular many-body charge-state in terms of the single-particle 
occupation numbers as

\'^n ) =  \ni,7i2,n^, = |. ..,n ^ ,...). (A .1.2)

This can be written as

|ni,n2,n3,  = c |  |0,T?.2,n3, . . . ^nu)  =

c\c\ 10,0,713, =
c l 4 . . . 4 l 0 , 0 , . . . , 0 )  =

n 4 | 0 ) .  (A.1.3)

The operator c| is called creation operator because it creates a fermionic particle in the 
single-particle state li). The operator Cj is called annihilation operator since it destroys a 
fermionic particle in the single-particle state |j). For ferniions, a single-particle state can 
be occupied by just one particle at a time, then

{ 1, if I'i) is occupied
' ‘  ̂ (A.1.4)

0, if Iz) is empty
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and consequently

c] | n i , n 2 , I j ,  =  0 ( A . 1.5)

Cj \ r i i , n2 , ...,r?A/) =  0. ( A . 1.6)

By ensuring the P a u li’s principle, i.e. by enforcing the anti-sym m etry, the wave func­

tions need to  be w ritten  as

| n i , n 2 , n 3 ,  . . . , h m ) = c | 4 - - - c 1 / | 0 >  0 - • • • - 0 )  =

- c l c \ . . . c { j  |0 , 0 , . . . , 0) =

-  \n2,ni , r i3 ,  . ( A . 1.7)

As a consequence of the  anti-sym m etric p roperty  of the  wave function for fermions, the 

fermionic operators follow the an ti-com m utation w ritten  as

{cj, c]}  =  cic] +  c]ci =  Sij, (A. 1.8)

{ci,Cj} = { c l c ] }  = 0. ( A . 1.9)

We can now define how the fermionic operators act on the m any-body states. Here Ij

m eans th a t one particle has beeen added to  (removed from) single particle s ta te  j .  The

fermionic operators rules are the  following;

c] =  c] | n i , n 2 , n 3 , . . . , r i j , . . . , 7 t A / )

=  y / n ~ + l  |n i, U2 , 713, •••, rij +  1,..., tim) = v ^ n T + T \n -f- 1^)

Cj I'I'at) =  Cj \ n i , r i 2 , n 3 , . . . , r i j , . . . , n M)  =

y / n ] \ n i , n 2 , n 3 ,  . . . , r i j  -  1,...,71m) =  y / r T j \ n  -  I j )  

cjc] =  c j c ]  \ n i , n 2 , r i 3 , . . . , n j , . . . , n M )  =  { r i j  +  1) (A .1.10)

c]cj\'i>N) =  c ] c j \ nur i 2 , n3 , - - - , n j , . . . , nM)  =  (A .1.11)

and

1^^) =  c]c, 1̂ ^) =  n , 1̂ ^) ( A . I . 12)
M

|n) =  (A .1.13)
i i

N  =  rii —> num ber of electrons in the molecule (A. 1.14)
i

where is the  so-called occupation num ber operator and the  superscript ’m ol’ stands for 

’molecule’. The eigenstates of the num ber operato r are \uj) and the  eigenvalues correspond
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to the number of particles occupying the single-particle state  \j).
In the same way, we can define a many-body wave function as a convolution of two 

H ilbert’s space in order to describe, for example, the many body wave function of two 
fermionic electrodes. For example, the many-body state for the two electrodes in their 
equilibrium state can be written in the form

\j ) =  \j l , j r ) ( A . i . 15)

IJo) ~  I jaki ) Jak2 I •••5 JakS •••) Jokmax) ~  | ••• i Jak'i • • •) ( A . 1.16)

where a  =  L, R, and L and R correspond to the left and right electrodes, respectively, k 
is the momentum quantum  number.

Likewise, for the operators tha t act on the electrodes states, we have the following 
definitions

^ ok '  ~  j a k ' i  ■■■)

=  \ / j n k '  +  1 l i a l ,  J q 2 )  J ak '  +  l ,  •■•) =  \ / j a k '  +  1 1.7 +  I k ' )  ( A . 1 . 1 7 )

(^ak' \ j )  ^^ok' l.7c»l) J q 2  5 ■■■ijak' j  ••■)

x / j a l V  I  J q I  5 J a 2 i  •• • j J ak '  i •••) \ / J a k '  | j ~ l k ' )  ( A . 1 . 1 8 )

clf ik'^ok'  l j )  | j a l )  Ja25 ■■■ijak'i  ■••) { j a k '  “I" 1 )  | j )  ( A . 1 . 1 9 )

ak'*^< l̂<' | j )  | j n l )  J q 2 )  ■■■ijak' i  ■■■) Ja k '  | j )  ( A . 1 . 2 0 )

and

{^ak> } ^ak^Q'lt' “1“ ^Q'k'̂ âk ^a'k'ak (A .1.21)

i ^ a k ^ ^ a ' k ' }  ^  { d a k i ( i a ' k ' }  =  0 (A .1.22)

^ ak '  I  J a l ) J a 2 ) • • •; ^^ak' ) •••)  0 (A .1.23)

d a k '  \ j a h j a 2 i  ■ ■ ■ i  lok', ■•■) =  0. (A .1.24)

Similarly,

n t k '  |j) =  d l k ' d a k '  |j)  =  J a k '  |j)  (A .I.25)
^elec |j) =  |j) =  ^  Jak |j) (A. 1.26)

a k  a k

N  — Jak number of electrons on both electrodes (A.1.27)
Qk

' elecwhere is the occupation number operator for the electrodes.
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Transition R ates for External 
Oscillating Potential

B .l  M odel Hamiltonian

In this Appendix we exphcitly derive the eqTiations for the transition rates nsed in
the master equation to calculate the electrical current across a molecular junction. The
system of interest consists of a molecule connected to two metallic electrodes so tha t the 
Hamiltonian is given by

^  +  i/L +  / / r +  />T, (B.1.1)

where the molecular Hamiltonian with M  single-particle levels is

M

H„,o\ = y  e,c]cj. (B.1.2)
i=l

Note th a t this Hamiltonian will change its form depending on the physics we want to 
describe. For the moment we use this simple model in order to simplify the derivation of 
the transition rates. The individual electrodes Hamiltonian is given by

Ha = (B.1.3)
k

For this example we disregard the spin degrees of freedom and we assume that the single­
particle energies Cj already contain all the many-body effects, such as, charging energy, 
image charge effect etc. Moreover, the operators and d^k are defined in Ap­
pendix A and they commute.

The interaction between the leads and the molecule is given by the so-called tunneling
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H am iltonian , / / t , where

H-i =  X  \locc\dav. +  ■ (B.1.4)
Q ik

Here 7^ is the  hopping param eter. We are in terested  in calculating the  electrical current 

across the system, w'here one electron is transferred  from one electrode to  the other 

by crossing the molecule a ttached  to  them . For th is task, we use the density m atrix  

formalism. The m aster equation for the diagonal term s of the  reduced density m atrix  is 

given by

p( <) ™™= Y. ( r r p . ™  -  r r p ™ . . . )  +  E  ( r r - p » » - r r - p ™ )  (B^i^5)
ckM^m aa',n.m

where Pmm is the occupation of the molecular charge s ta te  |m) and F"*" is the transition  

rates for electrons tunneling between the  molecule and the  electrodes when the molecule 

makes a transition  from the charging sta te  \r)) to  the  charging s ta te  \rn). The first term  

of E(p (B.1.5) corres])onds to the sequential-tunneling and the second term  corresponds 

to  cohinnelmg. For the later, if ni =  ii, we have elastic-cotunneling  whereas m  ^  n gives 

the  inelastic-cotunneling. The current th rough the  left electrode is given by

-  n„,) r r p n u n  ~ e  (F”™ -  F ”™) (B.1.6)
mn

Seq. tunneling Cotunneling

T he m ain task  now is to  calculate the transition  rates

r r '  =  y  E I  7 )

derived in Sec. 4.4.2 of C hap ter 4. Here, u is the  num ber of photons, kuj is the  energy of 

th e  incident photon, Cn'n =  fn' — as defined in Eq. (4.4.5) of Sec. 4.4 in C hapter 4, and 

V is a generic pertu rba tion . Enj and En'f are the  in itial and final to ta l energies of the 

system , respectively. Xa is given by Eq. (4.3.13) and Xa =  ( j|X a(0 ) \j) is the  probability 

of finding the  electrode a  on s ta te  \j) for which the condition Xq =  1 holds. If =  0, 

we recover the non-driven equation derived in Sec. 4.3.7.

If we consider th a t the  interaction between the molecule and electrodes is weak, the 

tuim eling H am iltonian [Eq. (B.1.4)] can be trea ted  as a pertu rba tion . Then, an expansion 

of the  ^ - m a t r ix  is carried out

,^  =  H t  +  H t  +  (B.1.8)
{E, + t v) -Ho

where Ho =  Hmo\ +  -^ l +  and i is the index of the initial state. Ei is the  energy of the
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initial state, which is an eigenstate of Hq. From now on r; is always assumed to be a small 
positive number, ry —> 0+. By replacing the perturbation operator V  by the appropriate 
terms of Eq. (B.1.8), we can describe different electronic transport regimes.

B.2 Sequential tunneling

To the lowest order in Ht , one describes the sequential-tunneling processes where a single 
electron is transferred from one electrode to the molecule and vice versa. Eq. (B.1.7) 
becomes.

y n n '  _  ^
h

2 I Cn'n 

hjjj X c {n j \  \nj) 5{Eynf — Ejn — uhuj). (B.2.1)

Inserting H'l given in Eq. (B.1.4) into Eq. (B.2.1) we have

Xa I (lac\da\, +  Wj) \ ~ Ejn ~
Jf

(B.2.2)
We want to describe processes th a t transfer one electron from the electrode a  to the 
molecule. If we assume th a t a generic initial many-body state for the entire system can 
be defined as

...) |...,jLk, ■••) I - - - ,  jRk,---) =  •••) I - - - ,  Jok, •••) =  | n )  \j) = \nj) , (B.2.3)

we then define a generic final state as

\ f )  W )  =  c\dak \ -- ,rh,  ...) \ . . . , jak,  •■•)

=  \/n , +  1 1..., n, +  1,...) dak\j)

= dak \ri) \j) (B.2.4)

consequently,

(I./) =  [ L k  \n') | j ) y

=  ("1 01 dlk
=  ( n ' j | i -  (B.2.5)

T ransition rates from  e lec trod es to  th e  m olecule

Once we have defined the initial [Eq. (B.2.3)] and final [Eq. (B.2.5)] many-body states, 
we can define how the unperturbed Hamiltonian acts on these states. First, for the initial
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state we have

(occup. OCLUp. \

^  Cz +  Cak I \nj)

i=\ k:a= L ,R  /

— (■£'n “1“ \nj)

= Enj \ n j ) . (B.2.6)

For the final state,

^ 0  \ j  )  ^ ^ i n o l  “ 1“  “ t”  • • • )  | " - i  J o k i  • • • )

^  ^ok j  \j ^ )

=  { E n '  +  E j ^ a )  \ f n )

-  \ fn ' )

= Ey„, I jV ) , (B.2.7)

where we have assumed for the sake of this example tha t rii = j^k  = 1- Now we can 
rewrite Eq. (B.2.2) as

2 t1'  j 2 (  Cn'n

I' j azk

+  ( ”  J l  dlk^'i('^lk \"-j) I  I + î + Eja -  6 a k  ~ E„ -  Ej^ ~  ^huj),  (B.2.8)
'---------- V------------ '  ̂ I

= 0 , | n j ) ^ | n - 2 ) | j + 2 )

where the second term inside the curl braket is zero since we do not consider the hopping 
of two electrons at the same time, where \nj) —>■ \n — 2) \j +  2) means tha t two electrons 
are removed from the molecule and added to the electrode. Note th a t we have changed the 
notation F"" -> F+ in order to make clear tha t the number of particles in the molecule 
is increasing. Eq. (B.2.8) is finally written as

F+ =  y  |7q|^ Y 1  ( ^ )  i k d a k \ j )  {n\  c| |n) S{En' ~  En -  e^k -
y azk j

(B.2.9)

The term (j| d̂ ^̂ ^dak I,/) gives the occupation of the state \j) and is therefore either one or 
zero, then the modulus square can be omitted. We can then define the Fermi distribution 
function of the electrode a  by

/(fak  -  /^q) =  ^  Xq 01 \j) =  ^(eck-^a)/kBT _|_ l '  (B.2.10)
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and write

27T

h f  i^ak En ^ak uHuJ .̂

(B.2.11)

By assuming th a t we have a continuous number of states in the electrodes, we can replace 

the sum by an integral and introduce the density of states of the electrode a, Pa,

2 i t
r+ = y  bal'^ Pa

2 I  Cn'n
^  ' huj

deak (n'l |n) /(^ok  Eĵ  Cdk uhuj .̂

(B.2.12)

We considered th a t the density of states is energy independent {wide band approximation), 
which is a good approximation for metallic electrodes. We solve the integral of Eq. (B.2.12) 
by using the property of the delta function

+00

/ def{e)S{e -  T)  = f {T) , (B.2.13)

to w'e finally obtain 

27T
r +  -  —

h
I 12 t 2  f  Cn'n
|7a| P a } ^ J u

1/ ^

n f  {En> -  En -  lyhw -  Ha). (B.2.14)

T ransition rates from  th e  m olecu le to  th e  e lectrod es

For electrons hopping from the molecule to the electrodes, we just need to redefine the 
final state given in Eq. (B.2.5) accordingly

\j') \n)  = ...) \...,jak, ••■)

=  Vrii -  1 -  1,...) dl^^\j)

= d[ i , \ n) \ j )  (B.2.15)

consequently,

( I /)  |j))^

=  (n'l {j\ dak

= {n'j\dak- (B.2.16)
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Therefore, after inserting this definition into Eq. (B.2.2), we have

h \ h w
3

Cn'n
X c -̂ 1 dakc\dak \nj)

^ 1  - V  I  ,  I  -  r » \

+

= 0 , |n j ) ^ |n + 2 ) | j - 2 )

{nj\dakCid[^^ \nj) |  6{E„ -  e, +  +  £cvk -  En -  Ej^ -  uhu:), (B.2.17)

where we disregard the first term  inside the curl bracket since, by construction, the  transfer 

of two electrons a t the same tim e is forbidden, i.e. \nj) —> \n +  2) \j — 2) m eans th a t two 

electrons are added to  the molecule and removed from the electrode. T hen we obtain

2tt
Ci n)

m k  j
ak“ Q*<

X S i^Ej i  E^>  “1“ (B.2.18)

where we have used Eq. (A .1.21). The term  01 |j)  again gives the occupation of

the s ta te  \j) and is therefore either one or zero, then  the square m odulus can be om itted. 

After using Ecj. (B.2.10) and Eq. (B.2.13), we w rite

B.3 C otunneling

In) [1 -  f {En'  -  E„ +  uhw -  fia)] ■ (B.2.19)

By considering the next-order term , we describe cotunneling processes. The transition  

ra tes become

V j

1

Ejn +  I'hbj — Hq -\- ir]

X S { E „ i j '  — E j i j  — u h u j ) .

- H t \n) \j)

(B.3.1)

We are in terested  in cotunneling processes th a t effectively transfer one electron from one 

electrode to  the other. Therefore, follow'ing the  definition for a generic in itial sta te , as 

s ta ted  in Eq. (B.2.3), one can define a generic final m any-body s ta te  as

\ f )  W )  =  d l , ^ , , d a k c l c i  | . . . , 7 1 p ,  . . . )  \ . . . , J a k ,  - - M j a ' k ' ,  • • • )

d ^ i ^ i d o i l ^  I..., H p  + l,...,?lj 1) |..., j a k - :  ■■•I j a ' k '  j •••)

=  {^/ni^/n^^~+l) dl,^^,dak\j) \n)  (B.3.2)

consequently,

( I / )  I”  ))^ =  [dl 'k'dok\j)  |n ') )  =  (j| {n’\ 4 'k '^ k -  (B.3.3)
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We note tha t a generic molecular many-body state |n) has the same number of particles 
as a final state \n'). The difference between them  is the way the particles are distributed 
among the single-particle states {[1), |2) , |A/)}.  Likewise, for the electrodes, the num­
ber of particles (for the two electrodes) is the same for the initial \j) and final \j') states. 
The difference is tha t, since one electron is transferred from one electrode to the other, one 
electrode will have one less electron and the other one additional electron. For example, 
a final state \j') could be

I /)  =  I---, jLk -  1, •••, jRk' +  1, •••) • (B.3.4)

This state represents a many-body state for the two electrodes where one electron from 
the left electrode with momentum k is annihilated and a electron with momentum k' is 
created on the right electrode.

Once we have defined the initial [Eq. (B.2.3)] and final [Eq. (B.3.3)] many-body states, 
we can define how the unperturbed Hamiltonian acts on these states. First, for the initial 
state we have

(occup. occup. \

2=1 k;Q =L,R  /

= (E„ + E j a )  \ n j )

= Enj \ n j ) . (B.3.5)

For the final state we write

^ 0  | j  ^  | . . . ,  Hp,  . . . ,  Tli,  . . . )  | . . . ,  J q | c ,  . . . ,  J a ' k ' i  • • • )

( fp  “1“ ^ j a  ^ a k  “I" ) \ j  )

—  +  E j i g  - t -  E f a ^  I f ' I T - ' )

= {En' + E f )  \j'n')

= Efn'  \ j 'n)  , (B.3.6)

where we have assumed for the sake of this example th a t nj =  jak =  1 and Up =  ja'k' =  0. 
We now insert Eq. (B.1.4) and Eq. (B.3.3) into Eq. (B.3.1) and multiply all terms by
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the identity operator Yin" W )

Cn'n

V 3 ^  ^  Q Q ' k k '  Q ' " k " ' i " '  Q " k " i "

1
X !  I O'I (̂ ''1
n” V

+  01 {n\ dc'V’d^aA"k" '^

Ci'f
Ej„  +  uhw — Hq +  ir]

-d [ "k "  k'") (̂ "̂1 Ci" |«) \j)

1
da"k"a" \n”) {n”\ 4 '  \n) \j)

Ejn +  I'huj — Hq +  irj

+  01 (n'l fia 'k '4 k 4 "^ '
1

Q " ' k "

Ejn +  vhuj — Hq +  ir]
- < " k ” W )  {n'\c," | n ) \j)

+ 01 (̂ '1 d a 'k 'd li^c l„ ,d a ‘
1

Ejn +  I'huj ~  Ho +  ij]
—da"k" \n') (n"| 4 '  I") |j)

\

X () I E n  £i “h fj' H" E j^  fa k  “I” ^ j a '  ^a'k' E n  Ej^^ Ejo^' I'Huj

^j'a' /
(B.3.8)

We tlien ap])ly the operator Hq in the denominator by using the results of Eq. (B.3.5). 
Formally, we first carry out a Taylor expansion l / (£ ’j„ — Hq) =  (l/£ 'j„) Yl^oi^o/^jnY  so 
that,

HQdl„y,„ In") \j) =

■^O^a''k" k*' ) \ ■■■) ~

^ 0 \/ja "k "  +  1 W )  I--M jQ"k" +  •••) =
^occup. occup. \

^  ^  ^Qk I +  (-a"v"
j = l  k ;a = L ,R  /

{En" +  E j  +  e„"k") V j a ”k” + 1 I” ") l----ia"k" +  •••) ~

{En" + E j +  ^a"k")dl 'k" W )  \j) ■ (B.3.9)
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Eq. (B.3.8) is then given by

'e
1/ i  ^  ^  Q Q 'k k ' Q " k " i "

X (  01 (n-l ^  ^   ̂ — d* In") {n"\i,,. |n)

= 0 .  | n ) | j ) ^ | n - 2 ) | j  +  2)

+ 01 ("'I

+ 01 ("'I + -(e -: \  g , +• V ,. . ) l"> 1̂'

+ 01 ("1 + uh. - -(i^ ..+ +1^*̂“"̂ "
=0, | n ) | j ) - > |n - 2 ) | j + 2 )

\
En H” “I” Ejô  6qî  +  Ej(y/ H" Eji Ejf^ Ej^yf v'fioj , (B.3.10)

J Ct

rr;. = |EE'^.^(l7) E E E
If j  ^  a a ' k k '  a " 'W " i ' "  a " U ." i"

E
X 01 b ) <"'! " ■ " ' = '

+ 01 \J) E,„ + . h u , - { E „ \ E , < " ' ! < " " 1 i">

X (5 {̂ Eji< Efi (̂xU. ^a'u.' ., (B.3.11)

Here, we do not consider tunneling events th a t transfer two particles at a time, therefore,
the first and fourth terms of Eq. (B.3.10) are set to zero. We can now define the matrix
elements of the annihilation operators as

{n\ |n") {n”\c\„ |n) =  ^  (n'| Cj/» \n") (n| q// \n")^ = (B.3.12)
n "  n "  n "

and

{n\ c],,, |n") (n"| q» |n) =  ^  (n"| Cj'» |n')^ (n"| c,// |n) =  ^  (B.3.13)
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and Eq. (B.3.11) becomes

C n'n

X

h ^ \ h u j ,
u j  ^  ^  a o 'k k ' a " 'V ' i " '  Q"k"i"

4 i"' \i''*^n'n"^nn"
En +  uhu! -  En" +

+  01 da'k'dli,da'"k"'dl»i,n \j)
Ai”I  *  A i

n " n ' n " n

En + I'huj — E„" -  ^a"k” +  

X S {Ejj' Eji Cfik fo'k' .. (B.3.14)

aa' a"a"' j

By looking at the operators in the first term and recalling that Xa =  Ylj 01 Xa(0) |i), 
we have

X] X! U\da'k'dlkdl'>.k>Jc."k'' \j)

~  'y   ̂ ' y   ̂ ' y  \ X a  Ol d a 'k 'd a " H i '" d ^ k d a " k "  | j )
an' n"a"' j

= ^  ^  ^ ^ X c ,  01 {^^a'a"'^k'k"' — d^^„n^,„da'k'^ dakda"k" |j) 
a a ' a " a '"  j

(B.3.15)

where we have used Eci- (A.1.21) and Eq. (B.2.10). Note that by construction we want 
to transfer one electron from one electrode to the other, therefore, the conditions a' ^  a 
and a'" ^  a ” holds. Moreover, ~  since by construction, they belong to
different sub-spaces, so that we can swap their position. In other words, this term is 
non-zero only if q 7  ̂ a'". Similarly, for the second term, the condition that a' ^  a  and 
a'" ^  a" is enforced. This means that the operators with these indices act on different 
sub-spaces and we can swap their position without changing the results. Then, the only 
non-zero contribution is obtained when a = a"' and we can group the operator da'"\i"'
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w ith w ithout changing the  results. Therefore,

— ^  ̂ ^  ̂ ^  ̂Xa {j\ d^if^da'"k'"da'k'<ia"k" I - ? )

aa' a"a'” j

aa' n”a"' j

d^^da"'k'' \ j )

aa' a"a"' j

= E E
aa' a"a"'

* â'a"̂ k'k" ^ f i ^ ^ a k  l - ^ a ) ^ a a " ' ^ k k " '  ■ (B.3.16)

Now, Eq. (B.3.14) can be rew ritten  as

E EEt̂ -î h=i
Q Q ' k k '  i ' "  i "

X E
A i " '  A t " *  

^n 'n "^n n " +
A i ' " *  A i "  

■^n"n'^n"n
E n  +  Uhu) -  E n "  +  eak  +  iV  E n  +  uhbJ -  E ^ "  -  fQ'k' +  irj

1  /  (Ca'k' / ^ q ' ) ^  f  (^ak Ma) ^  ^  { , E j i '  E f i  Cok "I" ^ a ' k '  .

(B.3.17)

Note th a t the indices of the  eigenvalues changed e^»k" ^ak and when we

apply the  delta  functions to  remove the  sums. If we consider a continuous of energy levels 

in the electrodes, the sums th a t run  over the  electrodes energy w'ill become integrals and 

by inserting the  density of states, —>• PaPa' f de^ J dea>, we w rite

27T,
K l '  =  ^ \ l a ' \  17aI PaPa

,/ \ /  -•/// -■// ^
dCf\f

X

X

E 4 * *^n 'n"^nn"
—  +

A i ' " *  A i ”  
^n "n '^ n "n

E n  +  Uhuj — E n "  +  6a +  IT] E n  +  vflbJ — E n "  ~  +  if]

1 f  i ^ a '  P a ' ) X /  ( fa  -  Pa) X ^ {En' ~  En ~  ta  +  ^a' -  ■ (B.3.18)
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T hen the cotunnehng rates become

rr; = I E  (^ )  E  E  /  *<. /  *«■
A i ’"  A i " *  
^n'n"^nn"

—  +
A i ' ” *  A i "  

^ n ”n'^n"n
\ En +  vh jj -  En" +  Cq +  11] En +  I'huo — E„i> -  e^' + ir]

X ^ f  (^a Mq) ^  ^ I ^a' £ q  —  E j i '  ” h  i ^ h u )

(B.3.19)

where we define the electronic couplings as Fq =  2tt\'^o\'^pa- We solve one of the  integrals
+ 00

of Eq. (B.3.19) by using the jjroperty of the delta  function J  def{e)S{€ — T)  = f { T )  and
—  C »

after m aking the variable change e we finally have

X

2nh

rf. A i ' "  A i " *  
n ' n "  n n ' ‘ +

Ai'"* Ai"Al * Al 
^ n " n '  n " n

+  E„ — En" +  +  ITj — e +  En' — En" +  ??/

X / ( f  -  f>n) X 1 -  f  {e + En -  En' +  -  fLa') [B.3.20)

Again, we can recover the non-driven case by considering =  0.

B .4 E xact solvable m odel

In this section we show, for a non-interacting single-level model, th a t the  two contributions 

of sequential tunneling and cotunneling can be obtained exactly. W ith in  scattering  theory 

formalism, the electrical current for this m odel can be w ritten  as

where A { E )  is the spectral fim ction of the molecule, given by

nE)
[E -  e , f  + [ n E ) l 2 X

A { E )  =  - 2  Im g t { E )  = — ------- .  (B.4.2)

w ith the broadening of the energy level given by T{E)  = rL (£ ') +  rR(-E') arid rL /R (£') =  

27T/9l/r(£')7l/j^. w'ide band approxim ation, i.e. the electrode density of sta tes P l / r

is considered energy independent so th a t r L / R ( £ ^ )  ^  T l / r , we have for a sym m etric bias
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voltage drop, by perform ing the  integration we have the  following solution [116],

e TlFr r r
I I  = "  I d E ,

[ E - e , Y [ T l 2 ]

e F lF r

f ^ { E)  -  M E )

h r ,  + r„ + "‘■0 -  ^  ^ "'‘O }
(B.4.3)

where xp is the  digam m a function defined as th e  first logarithm ic derivative of the gam m a 

function (J")

d "  7(zY

and (3 = l / k s Q -  Eq. (B.4.3) can be expanded in powers of T to  obtain  [116] 

e rL P a
I  =

hTi^ + T^  
e £ _  
h 2tt

[ / l ( E )  -  U { E )

rLrRim{v'' Q + h + w,A +  h -  /‘r]) } + 0(r’)- (b .4 6̂)

If we consider the weak-coupling limit, the M E approach can be used and  in the case of 

sta tionary  current ( / l  =  — / r ) ,  we can write

/l = e|r;p„ -  r^pi] + e|(r”  -  r “ ) + (rt‘„ -  rl,',) p.], (b.4.6)

where F+, F~ are given by Eq. (B.2.14) and Eq. (B.2.19), i.e. they are the sequential 

tum ieling ra tes to  increase and decrease the nm nber of electrons in the molecule, respec­

tively. F"” is given by Eq. (B.3.20) and represents the  cotunneling rates for an electron 

to  tunnel coherently through the  molecule. Note th a t for a single level model, only elastic 

cotunneling is possible. Therefore, the  initial and the final s ta te  are the  same and the 

occupations are not affected. The s ta tionary  occupations are obtained by considering the 

sta tionary  limit

0 =  ^  =  F -p i  -  F+po (B.4.7)
at

and the norm alization condition po + pi  =  1. W hen no light is considered {u =  0), 

Eq. (B.2.14) and Eq. (B.2.19) are ju s t given by

r :  =  y / . t e ) .  r ;  =  y  [1 -  /.(£,)]■ (B .4 .8 )
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By inserting this into Eq. (B.4.7) we have

E a T a [ l  -  fai^i
Po Pi (B.4.9)

T l +  T r ’ T l +  T r

and after substituting into Eq. (B.4.6), we have the sequential tunneling contribution

j s e q    ^  T l F r

T l +  r R
f U E )  -  / r ( E ) (B.4.10)

which coincides with the leading-order term of Eq. (B.4.5).
For the cotunneling contributions we use Eq. (B.3.20) in order to calculate the tran­

sition rate. For the single level model and for u =  0, we have

r™ =  I (IE
2nh

1
E  — e, / l ( q ) [1 -  / R ( e j ) ]  • (B.4.11)

After following the regularization procedure th a t will be presented in Sec. C.4, we obtain

■ ""> ’" 'I  t"" ^ v-' ( i + i ~  w  -  ^ . i )

(B.4.12)

By inserting this result along with Ecp (B.4.9) into the second term  of Ecj. (B.4.6), we 
finally get

+' I  I'*+"J) - ( h I ' *  - "»i) }■

which again is identical to the next-to-leading order term  obtained in Eq. (B.4.5).



A ppendix C 

Transition R ates Including 
vibrations

C .l M odel H am iltonian: A nderson-H olstein  m odel

In this Appendix we exphcitly derive the equations for the transition rates inchiding 
electron-vibron couphng. Again the system is the same represented by the Haniihonian 
given by Eq. (8.1.1). However, the molecular Hamiltonian with M  single-particle levels 
is given by the Anderson-Holstein model

A /  A /  ^  M

Hmo\ =  ^  +  X /  ~2^ “  1) +  +  1/2^ +  ^  (h^ + l?j h, (C.1.1)
i i i

with h = c\^cia The first two terms correspond to the on-site and interaction energies 
for the electronic degrees of freedom. The third terms describes the vibron energy and 
the last term  describes the electron-vibron interaction where the electron-vibron coupling 
is given by the param eter A. The operators b and are the bosonic operators th a t 
destroys and creates, respectively, a vibron with energy hup. The operators 
and daka , now including the spin cr, are defined in Appendix A. The individual electrodes 
Hamiltonian is given by Eq. (7.1.5) and the interaction Hamiltonian is given by Eq. (7.1.6). 
W ithin this model we assume th a t the transport occurs by tunneling through one spin- 
degenerate orbital of the molecule and th a t only one mode of molecular vibrations is taken 
into account within the harmonic approximation.

C.2 Lang-Firsov canonical transform ation

Electron-vibron couphng can be treated exactly by means of the Lang-Firsov canonical 
transformation [189]. This is a unitary transformation tha t preserves the Hermiticity of 
the Hamiltonian operator. It implies th a t the transform ation’s generator S  must be anti-

163
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Hermitian, i.e. =  —5, so th a t  H  =  H e ^ where H  is the  transformed Hamiltonian. 

The appropriate choice for S  to eliminate explicitly the  electron-vibron coupling term  is

S  = x{b ^  - h y i c , , .  (C.2.1)

By using the following relation

' ^ 1  1 1
e ^ B e - ^  = Y — \ A , B U  = B  +  [A, B] +  -[A , [A, B]] +  - [A , [A, [A, B]]] +  (C.2.2)

^ '  777 ! n
m =0

the operators used in the Hamiltonian can be transformed as

oo \ r - b ^

TV.

J t  _  Jt  - A ( i - f e t )
“ o k f f  “  “ Q k < T ^  ’

\mst p,

b = e^he-^^J2 n\
-  b, b

p  = _  Xc]

^i(T —

.t(T la

Here we have used ak^T -  b, b

=  (C.2.3)

(C.2.4) 

(C.2.5)

(C.2.6) 

(C.2.7) 

(C.2.8)

=  —1. Based on these

relations, the transformed molecular Hamiltonian takes the form

A / M u
Hmol =  ^  m  +  ' ^ ^ h { h  -  I) +  hiOp [ b^b + (C.2.9)

where e, =  e, — X^huj„ and U = U — 2X^huj„- The transform ed interaction Hamiltonian

takes the form

(C.2.10)
Qzk(J

T he electrodes Hamiltonian are not transformed since we do not consider any coupling 

te rm  between the electrodes and the vibrons degrees of freedom located in the molecule.

T ransition  rates from  th e  electrod es to  th e  m olecule

We assmne th a t  a generic initial many-body sta te  for the entire system can be defined as

l . . . ,  n j ,  . . . ; a ; ( / )  \..., jak, ■■■) =  \na,q) \j) =  \naqj) , (C.2.11)
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where the spin com ponent a  = t ,  i  is only relevant for the singly-occupied molecule, q is 

the  vibron cjuantum number. Since we consider spin-degenerate single-particle states, we 

can simplify the  no ta tion  by introducing spin factors into the transition  rates, as we will 

show bellow. For the  m om ent, we drop the  spin variable. A generic final s ta te  can be 

defined as

Here we assum ed th a t the  a vibron excitation can occur and therefore the vibron index, 

g', in the final s ta te  is different from th a t of the initial state, q. Then

We can now calculate the  to ta l energies of the  initial and final m any-body states. Firstly, 

for the initial s ta te  we have

=  ^ n 7 + T  |..., rij +  1,...) d a k \ j )  

=  dak \n’q') \j) , (C.2.12)

consequently.

(C.2.13)

jj'
(C.2.14)

occup. occup.

(C.2.15)

(Enq E ja ) I n q j ) ,

Engj \nqj) . (C.2.16)
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For the  final state,

Ho \ i 'n q ^ m o ]  +  / / r  J  C j  d a k  | ■ • ■) 5 ■ • • i ̂  )  | • • • )  j a k i  •••)

E nq ' “1“ C; “h Ejoi C ok^ | j  ^  9 )

{En'q' + Ef a )  \ f n q ' )

{En'q' + E y)  \ j n q )

E y n ' q '  \ j n q )  , (C.2.17)

where we have assum ed for the  sake of this exam ple th a t n, =  j ^k  =  1- Following the 

same reasoning applied in A ppendix B, Sec. B.2, to  derive Eq. (B.2.14) and Eq. (B.2.19), 

we obtain

r : ” ' =  y  l7cl’ p„ f{En'q' -  Enq ~  l-la), (C.2.18)

for electrons entering the  molecule through electrode a  and changing the vibronic s ta te  

of the  molecule from q —)■ q'. Likew'ise, for electrons leaving the molecule, the  transition  

ra te  is

(n'l |n) {q'\e '’) \q) [ I -  f { E „ y  -  E n q -  ^ l a ) ] -  (C.2.19)

The coefficients {q'\ e |g) =  Fgiq are given by [115]

F q ' q = { ' ^ ]  X
92!

1 /2

<?1
( - l ) 9 '- 9  for q' > q  

for q' < q,
(C.2.20)

where qi =  m in lq jg '}  and q2 =  max{(?,g'} and L] are the  generalized Laguerre’s poly­

nomial. In order to  include light effects we consider th e  substitu tion  €j fjcos u)t in 

Eq. (C.1.1) and we have

1” ) '"ho) Ejiq uhjjj l-̂ Oi)

(C.2.21)
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and

27Tp-,99' =  j:2 I Sn 'n

hw IT'qI Pa [l f { E n ' q '  E j i q  ~|- uhbJ

(C.2.22)

C.3 C otunneling

In order to include vibrons in the cotunneling transition rates, we follow the same 
reasoning used to derived Eq. (B.3.20) with the following definition of a final state

IJ ) 1̂  ) 9 ) d ,̂ îda\iC^pCi I. ,  Up, Tli, , q) I. . jak-i •••) Ja'k' > • • •) i

consequently,

( I /)  \n',q'))'' = ((^a'k'^ak\j) \n ',q ') y  = 01 (C.3.2)

where we assume th a t the number of vibrons, q, can change during the electronic tuimel- 
ing. This leads to the following expression for the transition rates for cotunnliug including 
a single-vibron mode

pnn';??' _  ^0:^0,' f
2nh

X
Ai'" Ai”* T? TP* Ai"'* Ai" 17* ZT

^ n ' n " - ^ n n " ^ q ' q "  ^ q q "  ^ n " n ' ^ n " n ^ q " q ' Q ” q

n .q
'  I  e  +  E j i q  —  E n ' i q i i  +  i ? ]  —  6  +

X / ( e  -  Ha)  X 1 y  ( f  E n q  E ji'q !  /^q ' ) (C.3.3)

In order to include light effects we consider the substitution e^cos u t  in Eq. (C.1.1) 
and we have

pW;gg' _  ^  2 ( ^n'n \  ^  ^  f  ,
27Th ^  \h u j  )  ^  ^  JI, \  /  ,///

E

t/ " ' i'" i"
■/// . •//

^n'n" ̂ nn" ̂ q'q” ̂ qq" Ai'"* Ai" Lp* ip ^n"n'-^n"n^q"q'^q"q
-  +

e +  Ejiq — En"q" +  vhuj ivj — C +  Eji'q' — En"q" +  ifj

X / ( e  -  X 1 y Ejiq Ejifq! “1“ uhw /^a )̂ (C.3.4)
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This can be w ritten  in a generic form as,

Bk

n n f  .qq'  r Q , r a '  ^2 (  C n■pnn
oca' 2nh

E
huj

Ak +
e — EAk +  ?r —e — E sk  + l - / ( f

E
k

E

Cn'
huj
2

X
,/// ,//

Bk

Integral type .1

-e -  Eek  +

2 « ^ E E 7 3
q fc<g

-> Integral type J

Aq_____

e -  +  i r  e -  E ao -  iT

+ 2 ^ = E E -
B ,

q k<q
e  -  E s k  +  - e  -  E e q  -  i r

Integral type I

Integral type

+ 2«^EE
Br,

q k
f -  EAk +  ?T - 6  -  Esq -  '/T

Integral type I

where we have redefined the  variables as following:

E 2)

(C.3.5)

(C.3.6)

A  =  A\,,A^^CFq'kF;k 

B k  =  K : ^ K n F : , F k q

^nq l^hoJ 

E s k  Ef^ Eji'q/

E l l^a

E 2  E ji 'q f  Ef f q  u h w . (C.3.7)

C.4 Regularization scheme for the cotunneling tran­
sition rates

Eq. (C.3.6) can not be directly evaluated because it diverges due to  the  second- 

order poles from the  energy denom inators. This is because w ithin a purely pertu rba tive  

approach, the energy of the v irtual sta tes are considered to  be well defined, i.e. w ith 

infinite lifetime [121]. In order to  remove the  singularities, we a{)ply a regularization 

scheme [116, 115, 114, 120, 121], which is m otivated  by two observations, (i) Second-order
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perturbation theory misses the fact that the virtual states obtains a finite width ~  T due 
to the tunneling events, (ii) For a specific cotunneling transition at finite tem perature, the 
final state can also be reached from the same initial state by two sequential processes. The 
regularization is as follows. In the weak tunneling regime, this width is of second order 
in the tunneling amplitudes 7  so tha t it is introduced in the denominator by replacing 77 

in order to shift the poles away from the real axis. The integrals are then expanded in 
powers of T. The leading order term  is proportional to 1/F, which turns out to be of the 
same order of sequential tunneling contributions and this term has to be subtracted based 
on point (ii) in order to avoid double counting in the sequential tunneling processes. The 
next term  of the expansion in powers of T is proportional to the zeroth-order, therefore, 
it gives the regularized expression for cotunneling rates [116]. By solving the integrals of 
type J  after subtracting the sequential tunneling contributions [C9(l/r)], we have

J { E i , E 2 ,ei) = lim 
r->o

j  dcJU -  E i) |I  -  / ( j  -  Ej)]
1

0 { l / T )

= — n s (£^2 -  E i ) I mZ7T

( e - e i ) 2  +  P

and of type I

/ (Ei ,£;2 ,ei ,e2)  =  l imi?e /  ( k f { e - E , ) [ l - f { e ~ E2 ) ] - -------^
r-+o J  (e -  ei -  ^

1

nB[E2 -  £̂ 1) 
Cl ~  £2

Re

n  ( e - e 2  +  T̂)

(C.4.2)

The functions xp and -0' are the digamma and trigam m a functions, respectively. Ub {E — 

Â) ~  is the Bose-Einstein distribution function where is the chemical po­
tential, k s  is the Boltzmann constant, T  is the tem perature and (3 =  I/Ub T.  Finally, the 
regularized transition rates can be written as

r rT^nn'\qq'

2nĥ  E (I7) E E E
u ^  i'"  i" \  k

^ ^ E E  [-4fcAg/(£'i, £ 2 , Ê k, E^q) + BkBgl{Ei, E2, Esk, EBq)]
q k<q

+ 2 E E  AkBqI{E\, E2, EAk, (C.4.3)



A ppendix D

Including off-diagonal Terms of the  
M aster Equation

D .l  Exam ple o f a double quantum  dot

In this Appendix we present PAT for a double quantm n dot system (DQD) [212], The 
system consists of two ciuantTun dots weakly connected in series with each other (for any 
coupling strength see Ref. [213]) and with two reservoirs by timnel barriers, as shown in 
Fig. D .l. For weak inter-dot coupling, the electron is localized on the individual dots

pn
H l

fa te  electrode gate electrode

Ht!

H l

R

Figure D .l: Schematic representation of a DQD device connected in series with each other 
and to the two electrodes. Two independent gate electrodes are used to shift the energy 
levels of the individual quantum  dots. Each term of the full Hamiltonian is shown for 
clarity.

and mixing of states can be disregarded. This way, the master equation can be written in 
term s of the isolated quantum  dot charging states. We reduce the problem by considering 
only one single particle state  on each quantum  dot. Moreover, each level can accommodate 
up to one electron at a time due to Coulomb blockade. We further simplify the problem 
by considering spinless electrons. For spin-dependent calculations, see Ref. [64, 214]. The

170
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H am iltonian of the  whole system  is given by

H  =  Hi^ + -l- Ht-HfR +  Ha -|- H t , (D.1.1)

where

^{L,R} =  ^  +Ui^Rhi^hR (D.1.2)

represents the  left (L) and the  right (M) isolated quan tum  dots w ith in tra  and in ter-dot 

Coulomb interaction Ui and Ui m , respectively. The term  +  H.c.)

describes the  coupling between the two dots. T he isolated electrodes are given by Ha =  

X^Qk(7 ^akadai^^daka ^nd finally the  coupling between the  electrodes and the  quan tum  dots 

is given by H t  =  Ylaka"^<^^aadaka- W hen an AC potential is applied to  the system  by 

m eans of the gate electrodes, the  term

HAc{t) =  ^ C O S  ujt (claCha ~  (D.1.3)
( J

has to  be added to  the  H am iltonian so th a t Eq. D.1.1 becomes exi)licitly tim e-dependent

H{t )  = Hhit)  +  Huit)  +  +  Ha -I- Hi'{t). (D.1.4)

A difference of phase of tt between the  oscillations of the two gate voltages on each dot is 

required in order to  observe in ternal changes in the  dynam ics of the DQD. By applying 

an un itary  transform ation

U{t)  =  e*- ^ 4 ( « ' ) / / ■ '  ^  g ^ s i n  o;f(riL-%)  ̂ (D.1.5)

the  explicit tim e-dependence is transferred  to  the  coupling term s since // l ,k  and Ha  b o th  

com nm te w ith U{t).  Therefore, the  to ta l H am iltonian can be w ritten  as

H{t )  = H^  + H ^  + H '^^mi t )  + Ha + H '^ i t )  (D.1.6)

where

=  f ;  i-iyj.  +  H.C.) (D .1 .7)
i ' =—oo ^ ' a

and

H 't  =  Y1 (M) ̂  +  H .c.) , (D.1.8)
u = —oo '  ' aka
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where we used the  following rules:

[Ck<jCL(t, ^ ’Ir ] =  ~ C ^(j^L cri

(D.1.9)

(D.1.10)

(D.1.11)

T he effect of the AC potential is to  produce coherent delocalization between the two 

quan tum  dots by means of the in teraction w ith u photons, if the condition c l — cr ~  I'huj 

is satisfied. Eci. (D.1.7) can be simplified by applying the  ro ta ting  wave approxim ation 

(RWA) [215, 216], I.e. by keeping just the term s th a t contribu tes to  the  coherence,

One can also define the Rabi frequency for an electron oscillating back an forth between 

the  tw'o quan tum  dots [217] as

In order to  study the electron dynam ics of the DQD system , the non-diagonal elements 

of the  reduced density m atrix  has to  be considered so th a t bo th  term s of Eq. (4.3.51) are 

used, i.e.

where uJm'm is th e  energy difference between the  eigenstates (|m ) and \m')) of the  isolated 

DQD. The first two term s of Eĉ . (D.1.14) describe th e  reversible or coherent dynam ics 

between the  two quantum  dots. The th ird  term  describes the  irreversible dynam ics due

between the  quantum  dots and the electrodes when m aking a transition  from the charging

Eq. (8.1.4). Finally, the last te rm  describes the decoherence due to  the  in teraction w ith 

the electrodes following the relation RejTm'm} =  |  We define

the  basis set to  constructing the reduced density operator. If we consider up to  two 

electrons in the  DQD system  (up to  one electron on each cjuantum dot), the charging 

sta tes  are: |0) for no electron in the  DQD, |L) for one electron in the  left dot, |1R) for one 

electron in the right dot and |2) for one electron in each dot.

( ^ )  E  (*L .e '”“ 'aLcR„ +  H .c.) . (D^L12)
'  ^  rr

(D.1.13)

I I
i n  ^ ^ r n ' m P m ' m  ( 0  ^  [ - ^  L < - > I R ( ^ )  i P ( ^ ) ] m ' r i

=  m ' )
(D.1.14)

to  the  coupling w ith the electrodes. is the  transition  ra tes for electrons tunneling

s ta te  I A:) to  the  charging s ta te  |rn). These transition  ra tes  are given by Eq. (8.1.3) and
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In the case of no-PAT, the current through the  DQD is strongly suppressed when the 

detuning param eter, e, is large, i.e. the energy levels do not have sim ilar energies. In 

contrast, w ith  PAT there are two m ain regimes considered when studying DQD system s, 

namely, the  high-bias [218] and pum ping regimes [219, 217, 220]. In the  high-bias regime, 

the single energy levels of the DQD lay inside the  bias window. In this case, as schem at­

ically shown in Fig. D .2(a), PAT between the  dots and the  electrodes can be disregarded 

because an electron in the left dot would need to  absorb a large num ber of photons to 

jum p to  the left electrode. Similarly, for an electron in the right electrode to  enter the 

right quantum  dot. However, if the frequency of the  AC potential m atches the energy dif­

ference between the two quantum  dots, — ~  huj, the electron can absorb [Fig. D.2(a)] 

or em it [Fig. D.2(b)] photons to  jum p between th e  two dots w ith  Rabi oscillations w ith 

frequency equal to  =  2Ji ( ^ )  ^lk-

(a) High-bias regime (b)

(c) PumpingPumping r e g i m e

6 < 0

(d)

ie > 0

Figure D.2: Energy level diagram  of absorbtion (a) and emission (b) of photons for the 
high-bias regime, respectively, (c) and (d) show the two possible pum ping configurations 
in which ju s t absorption of photons is possible.

In the  pum ping regime 0), the electrodes chemical potentials lay between the

two energy levels, as shown in Fig. D.2(c-d). For no-PAT, there is no current following 

through the  device^ since the electron does not have energy to  jum p out of the  dot to 

the  electrodes or to  perform  in terdo t transitions. In order to  observe electrical current, 

PAT is needed and also a spatial asym m etry between the  energy levels, i. e. the  detuning  

param eter has to  be e ^  0. W ith  PAT, if c l “  e® ~  an electron in the  left do t 

[Fig. D.2(c)] can absorb one photon  to  make a transition  to  the right do t and eventually 

be ex tracted  to  the right electrode. Therefore, in case of up to  one electron in the  DQD

^Strictly speaking there is a residual current even for I4d —> 0 and we leave the discussion to the end 
of the section.
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system  {U^, Uim c x d ) ,  the electrical current flowing from left to  right can be expressed 

as |L) |M) —)■ |0) —>• |L). Similarly, an electron in the right electrode can absorb

photon and jum p  to  the  right dot and subsequently em it a photon and jum p to  the 

left dot. Then, the  contribution to  the current from right to  left can be represented by 

|R) |L) —> |0) —>• |R). The same reasoning can be applied for the case of e >  0

[Fig. D.2(d)]. If we allow up to  two electrons in the  DQD {Ui —)• cx), Uim 0), one 

can have other transition  possibilities. For instance, if an excitation |R) |L) has taken

place, an electron jum ps from the right electrode to  the right dot and then  the excited 

electron on the  left dot leaves through the  left barrier following the  sequence of transitions 

|R) |L) —>• |2) —>• |R). These sequences will depend on the  energy of the  interm ediate

sta tes  |0) and |2) th a t can be controlled by the gate voltage applied to  the dots.

From Eq. (D.1.14), the m aster equation can be w ritten  in a more explicit way as

Pm +  TolPll — (Tlo +  riKo)pi

PLL — T loP oO +  T l 2P22 ~  ( T oL +  r 2 L )p L L  +

+ ^m P‘22 “  ( T or  + r 2R

'00

P 22 —  T 2L P lL  +  r 2KPRK — ( F l 2 +  F k 2 ) P 22 

P lk  =  ~  ~  P l l )  ~  o I T o l  +  F 2 l  +  Fqir +  F 2m )p lir

P k l  = — P l l ) — - ( F ol +  F 2 l  +  F qm +  F 2

(D.1.15)

(D .l.lC )

(D.1.17)

(D.1.18)

(D.1.19)

(D.1.20)

where we used the  ansatz Plk(0  =  to  remove the  tinie-dependence from

th e  differential equations coefficients. Along w ith the norm alization condition for the 

occupations, poo +  P l l  +  P r r  +  P 22 =  1, one can w rite these equation as a product of 

m atrices and solve the linear i)robleni to  determ ine the occupations for the steady s ta te  

case, pij =  0,

/  P o o \
Phh

P22
RK

\/klL/

/-(rL o  + rRo) Tol
Tlo -(roL + r2L)
Teo

0
0
0

0
T2L

A

Tor 0
0 Tl2

-(roR + r2R) FR2
T 2 H  - ( r L 2  +  r R 2 )

0
.•n . \

—I
0

0 —i(e  — h u )  — T  0
0 0 +i{e — hbj) — T /

/  Poo \
Phiu

X Prr 
P22  

1 P lk  
V P r l

w ith T  =  |(F o l  +  T2l  +  Tom +  F 2m)- T he current through the  right barrier is given by 

/ r  =  e(FoEPRR — FkoPoo)- Fig. D.3 shows the  I  x V"sd characteristics for no-PAT and w ith
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0.04
— noPAT
— PAT

0.02

- 0.02

-0.04

bias (eV)

(b)

Resi dual current

4e-06

2e-06

0

-2e-06

-4e-06

-1 0  1 
bias (V)

Figure D.3: (a) C urrent as a function of the dc bias w ith and w ithout PAT. (b) Residual 
current as a function of bias for no-PAT. P aram eters used are =  1, fee© =  0.025 eV, 
P l.r =  0.005 eV, Tint =  0.001 eV, =  0 eV.

PAT on the  DQD. The energy of the left dot is 0.25 eV above E-p whereas for th e  right 

dot the energy is a t -0.25 eV. T he energy of the  photons is chosen in such a way to  m atch 

the  difference between the  energy of the dots, i.e. huj =  0.5 eV. Now, for Fgd —> 0 we 

can already observe a dc current flowing in the system  when PAT is allowed, as shown in 

Fig. D.3(a).
An im portan t lim itation of th is form ulation when considering the localized basis set 

to  derive the m aster equations is th a t it may lead to  results th a t aj)parently violate 

therm odynam ic properties of equilibrium  [221]. For instance, Fig. D.3(b) shows a resid­

ual curren t even when there is no applied bias in the  system. This is alw'ays observed 

when Cl ^  cr. This apparent violation of therm odynam ics properties was discussed by 

Novotny [221] and its roots are in the  fact th a t ju st first-order tunneling events were con­

sidered in the  derivation of the  transition  rates. In fact, higher order processes, such as 

coherent tran sp o rt or cotunneling would cancel th is spurious current a t zero bias. Indeed, 

in Sec. 7.2.2 we have shown th a t second order term s in the tunneling H am iltonian reduces 

the sequential tunneling current.



A ppendix E 

Constrained-DFT

E .l  Im plem entation  details

Our im plem entation of the constrained D FT  approach w ithin SIESTA follows the 

prescription of W\i et al. described in Ref. [222], Accordingly, we begin by defining a set 

of constrain ts on the  electronic si)in density of the form

Y^jwl {r) , f {r)dv=N^,  (E.l.i:

wherein a = t ,  i  re])resents the spin index, u '^(r) is a weight function corresponding to  

the  constraint k, defining the property  being constrained and N\  ̂ is the constrain t value. 

The to ta l electron density is given by

N a

,Xr) =  (E.1.2)
a a  i

where is the  num ber of occupied K ohn-Sham  (KS) orbitals 0 f ( r ) .  A Lagrange nm lti- 

plier, Vk, is associated to  each constrain t specified in Eĉ . (E.1.1). This allows the  following 

modified energy functional to  be defined

\V[p, {H}] =  E[p] + I < ( r ) p " ( r ) d r  -  A^J , (E.1.3)

w ith  E[p] being the  s tandard  K ohn-Sham  energy functional given by

N

= j  Vext{r)p{r)+ (E.1.4)
a  i

+  J[p] + E^c[p^, P'*'] •

176
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In Eq. (E.1.4) the first term is the kinetic energy, fext(r) is the external potential, J[p] 
is the classical Coulomb energy and /?xc[p ,̂ P"*"] is the exchange-correlation energy. The 
variational principle yields the stationary condition for the functional W  with respect to 
the normalized orbitals 0", which leads to the following modified Kohn-Sham equations

^ ^ ^  +  V e x t { r )  +  j  +  < J r ) +  (E.1.5)

Thus, the constraints enter the effective KS Hamiltonian in the form of an additional 
external potential (*')■ The ground-state of the constrained KS system is obtained
by solving Eq. (E.1.5) in conjunction with Eq. (E.1.1). Wu et al. have shown [222] that 
the functional W  is concave with respect to the parameters 14 and that by optimizing W  
through varying {14}, one can find the constraint potential that yields the ground-state of 
the constrained system. In order to optimize W,  we utilize its first derivate with respect 
to {Vk} given by

dW ^ ^ f 6 W d < P ' ^  \  dW
dV̂  7 dV̂

CT Z * '

= E  y<(rK(rMr-Wk,

where the stationary condition =  0 implied by Eq. (E.1.5) is used. Thus we see that 
the derivative ^  vanishes automatically when Eq. (E.1.1) is satisfied. We now outline 
the implementation of this formalism for the simulation of the electron transfer processes 
within SIESTA. In a typical electron transfer problem one has to partition the system into 
a donor region (D) and an acceptor region (A). Within SIESTA, this is done by specifying 
a certain group of atoms as belonging to D and a second group of atoms as belonging to 
A. The constrained calculation then involves the transfer of a specified amount of charge 
from D to A. In order to partition the continuous electron density in real space between 
the A and D regions, we choose an appropriate population analysis scheme, which in turn 
determines the form of the weight function in Eq. (E.1.1). The localized numerical 
orbital basis set within s i e s t a  is particularly suitable for atomic orbital based population 
analysis schemes such as the ones due to Lowdin [97] and Miilliken [98]. We have imple­
mented weight functions corresponding to both the Lowdin and Miilliken schemes within 
s i e s t a . For Lowdin populations, the number of electrons on a group of atoms C is given
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by

7Vc =  ^ ( S ^ D S ^ ) , ^ =  (E.1.7)
t i € C

= E E 4  s i  =
u \  fx&C

= Tr(Dw^) ,

j, 1
where D  and S are the density and overlap matrices respectively and 'Wqxv ~
defines the Lowdin weight matrix. Similarly, with a Miilliken population analysis, the
rnimber of electrons on a group of atoms C is

TVc =  ^ ( D S ) , ^  =  Tr(D S) (E.1.8)

with the corresponding weight m atrix given by

Sfiu if /i e  C and u ^  C

= \  if /i e  C or 6 C

(J if ft. 3 C  and v 3 C

For charge transfer prol)lems, Wu et al. reconuuend a partitioning of the charge density 
based on the Lowdin scheme.

The self consistent field (SCF) procedure for obtaining the constrained DPT ground- 
state wdthin the current implementation consists of an inner and outer loop. The outer 
loop is similar to a conventional SCF cycle wherein the orbitals obtained by solving the KS 
equations and the associated self-consistent density are ui)dated. The inner loop consists 
of optimizing the multipliers to ensure th a t the constraint condition given in Ecj. (E.1.1) 
is satisfied at each step of the outer loop. By Eq. (E.1.6), this is equivalent to find the 
extremes of W .  Since the derivative of W  with respect to the 14 is readily available from 
Eq. (E.1.6), we employ a conjugate gradients (CG) optimization procedure to ensure 
th a t Eq. (E.1.1) is satisfied. Subsequently, the KS equations are solved and the resulting 
orbitals are used to update the KS density and Hamiltonian in the outer loop. We note 
th a t Wu et al. also calculate the second derivative (Hessian matrix) of W  with respect 
to the Vk parameters and employ the Newton’s method to optimize {V^}. However, the 

expression for the second derivatives q̂ qy  ̂ depends explicitly on the KS orbitals, whereas 
the first derivative [Eq. (E.1.6)] involves only the density [222]. We therefore prefer to 
work w ith the gradient alone and employ a CG optimization scheme for the {V^}. Thus 
the overall SCF procedure consists of the following secjuence of steps: (i) Construct the 
standard  KS Hamiltonian H  for the current guess density, (ii) Obtain the constrained KS 

Hamiltonian H e  =  H -h VkW’k{r) by adding the constraint potential Vk^'kl^’) from
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the previous iteration, (iii) Using the Pulay scheme, mix with Hamiltonians from 

previous iterations to obtain (iv) By keeping fixed, optimize {14} so tha t tae 
constraints in Eq. (E.1.1) are satisfied, (v) Solve the KS equations for the Hamiltonian 
combining and the optimized {Vk}. The new density m atrix D thus obtained and 
the optimized {H } are used in the next iteration, (vi) Repeat steps (i) through (v) until 
self-consistency is achieved.
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