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Have not I commanded thee? Be strong and of a good courage; be not
afraid, neither be thou dismayed: for the Lord thy God is with thee whith-
ersoever thou goest.

Joshua 1:9. (The Bible, King James Version)



Abstract

This thesis deals with the application and the development of computational tools for
the study of ground state and electronic transport properties of molecular junctions. The
calculations can be divided in two main categories, depending on whether they are based
on first-principles or model Hamiltonians, respectively. From the point of view of first-
principles calculations, the ground state properties are studied within density functional
theory (DFT) and the electronic transport within the non-equilibrium Green’s functions
(NEGF) formalism. From the point of view of model Hamiltonians, the electronic trans-
port is calculated by means of the density matrix formalism by solving master equations
(ME), where all the parameters can be obtained from first-principles calculations. These
approaches allow us to study the electronic transport in different regimes: for strong
electrode-molecule coupling, where tunneling is the doming mechanism, as well as for
weak electronic coupling, where Coulomb blockade dominates.

For a quantitative description of the electronic transport across molecular junctions
it is key to account for renormalization of the energy levels when the organic/inorganic
interfaces are formed. We show how DFT within local and semi-local exchange correlation
functionals does not capture this effect. We apply a constrained-DFT approach to study
the energy level alignment of a benzene/Lithium(100) interface, and we find that the
quasi-particle energy gap of the molecule is reduced by ~2.5 eV due to image charge
effect.

We present a thorough study of Au/benzene-dithiol/Au molecular junctions. Firstly,
we perform ground state DFT calculations in order to study the stability of this system
with respect to the adsorption of the molecule on surfaces as well as when the molecule is
in a junction, and we find that the thiol junctions are energetically more stable than their
thiolate counterparts. We present a detailed discussion on the energy level alignment of
these junctions, and present different methods to account for the energy level renormal-
ization. By means of DFT-NEGF we perform quantum transport calculations for these
junctions under stretching and compare the results for both thiol and thiolate termina-
tions. We find that the conductance of the thiol junctions is reduced as the electrodes
separation increases, whereas the thiolate junctions the conductance increases. Finally,
we perform calculations by using a combined approach of molecular dynamics and Monte

Carlo simulations in order to account for effects of temperature and the statistical as-



pects of the experiments, namely the possibility of having many different geometries and
therefore different conductance values.

We use the computationally efficient master equation approach to study the transport
properties of molecular junctions, where all the parameters for the model Hamiltonian
can be obtained from first-principles calculations. We show that the master equation
approach can describe the transport properties of molecular junctions in the Coulomb
blockade regime, where the NEGF within DFT-LDA fails due to the lack of the derivative
discontinuity in the local density approximation (LDA). We have applied this method to
reproduce experimental data for porphyrin-Zn-gold molecular junctions in the weak cou-
pling limit. Within the model, we include temperature effects by considering an effective
single vibron-mode, and demonstrate that vibration excitations can be responsible for the
linear-like current increase observed in the experiments.

Finally, we study light-induced charge transfer and conductance enhancement due to
the interaction of charge carriers with light. We show how the transport properties of
molecular junctions with donor-acceptor structures change depending on the charge state
of the molecule. This is accomplished by combining CDFT with the NEGF formalism.
Furthermore, within the ME approach, we study the effect of light in simple models of
one and two levels and show the results when one considers higher-order contributions,
such as cotunneling. We then discuss the interplay between vibrons and light-induced
effects and show how light can be used to control the conductance of molecular junctions
in the strong electron-vibron coupling limit.

In summary, we present two main sets of approaches to electronic quantum transport
in molecular junctions: DFT-NEGF, and model Hamiltonians and ME’s. By apply-
ing these methods to molecular junctions of current interest, we address key aspects of
quantum transport. These are the problem of energy level renormalization due to im-
age charge effect, different transport regimes (tunneling, Coulomb blockade and Franck-
Condon blockade), temperature effects, light induced tunneling as well as the statistical

aspect of conductance measurements.
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Constants and Nomenclature

Constants

Symbol Value/Units Description

e L6022 » 107 Elementary electron charge
€0 8.8541 x 104 Fmr Electric permittivity
Go It [l = 77480 % 107> 8 Quantum of conductance
h 6.6260 x 1073 J s Planck‘s constant
=N 2n 1.0546 x 10734 J s Planck’s constant
kg 1.3806 x 102 m? kg g 2 K} Boltzmann constant
m 9.1093 x 10> kg Electron mass
Nomenclature

Chapter 1

Symbol Description

) Electron affinity

EEP Quasi-particle energy gap

Er Fermi energy

G Conductance

hw Photon energy

1o lonization potential

N Number of particles in the system

U Charging energy parameter

Wg Work function

Chapter 2

Symbol Description

A Fundamental energy gap

7.0 Derivative discontinuity in the exchange-correlation energy
Axs Kohn-Sham single-particle energy gap

E Total energy

Ey Ground-state total energy for the Kohn-Sham system

y Exchange-correlation energy

ErR Exchange-correlation energy within the LDA approximation

xiii



€N N’th Kohn-Sham eigenvalue

£5 Exchange energy density
0 Total wave-function
oO; Kohn-Sham orbitals
) Nuclear wave-function
) Electronic wave-function
(7 Single-particle wave-function
p Electronic charge density
Po Ground-state electronic charge density
g — il Index of spin
g Kinetic energy density of a homogeneous system
t Time
Un Hartree energy
U Electron-electron Coulomb interaction operator
A;xt Electron-nuclei interaction operator
Vew? Constrained-DFT auxiliary potential for spin o
Chapter 3
Symbol Description
A Spectral function
§ i Fermi-Dirac distribution function
g Total Green‘s function
G- Advanced Green's function
gt Retarded Green‘s function
Go Unperturbed advanced Green‘s function
o Unperturbed retarded Green's function
JLR Green's function for the isolated left /right electrodes
Iy Electronic coupling to the left electrode
I'r Electronic coupling to the right electrode
R Lesser Green'‘s function
H Hamiltonian operator
H, Unperturbed Hamiltonian operator
H Hamiltonian matrix for the whole system
el Electrical current through the left /right contacts
k Wave-vector
v Density of states
0 Electrochemical potential
qp Charge in the device region
Y Self-energy operator

S Overlap Matrix



O

i

U

Chapter 4
Symbol

€m

rf

Tlan = €5y~ €n

P

IR)

PI

B

|S)

T

U

Xr

4
Chapter 5
Symbol
Eér
Eor
E¢y

do

dg

dy

Ap

q
U

%4

Chapter 6
Symbol

Q@

B8,

€LDA

L

X

Temperature
Transmission function

Time evolution operator

Description

Eigenvalue for the charge state |m)

Transition rates from the initial state 7 to the final state f

Total energy differences between the two charge states |m) and |n)
Interaction operator acting in the reservoirs subspace

State vector for the reservoirs subspace

Reduced-density matrix operator in the interaction picture
Interaction operator acting in the small quantum system subspace
State vector for the small quantum system subspace

Transfer Matrix operator

Time evolution operator in the interaction picture

Full density matrix operator in the interaction picture

Parameter for the light intensity

Description

Charge-transfer energy to add one electron

Charge-transfer energy to remove one electron

Charge-transfer energy gap

Image charge plane height

Image charge plane height for adding one electron to the molecule
Image charge plane height for removing one electron from the
molecule

Charge-density differences

Point charge

Classical image charge for a point charge interacting with two flat
surfaces

Classical image charge for a point charge interacting with one flat

surface

Description

Scaling parameter for atomic-self interaction correction
LDA HOMO-LUMO energy gap

Kohn-Sham eigenvalue within the LDA approximation
Electrodes separation

Shift to the occupied Kohn-Sham levels



2y
Chapter 7
Symbol

b

bt

¢

Kl

dak

nm q'q
«

™ m;q’q
aa’

hwq

A

n
L

=

Chapter 8
Symbol

L

vhw

Shift to the unoccupied Kohn-Sham levels

Description

Single-particle annihilation bosonic operator for the vibrons
Single-particle creation bosonic operator for the vibrons
Single-particle annihilation fermionic operator acting on the molecule
Single-particle creation fermionic operator acting on the molecule
Single-particle annihilation fermionic operator acting on the electrode
!

Single-particle creation fermionic operator acting on the electrode «
Single-particle energy of electrons in the molecule

Single-particle energy for electrons in the electrode «

Hopping parameter

Electronic coupling to the electrode o

Sequential tunneling transition rates from state |n,q¢’) — |m,q)
through electrode

Cotunneling transition rates from state |n,q’) — |m, q)

Phonon energy

Electron-vibron coupling strength

Number operator

Occupation of charge state n and vibronic state ¢

Phonon relaxation time

Description

Sequential tunneling transition rates for adding one electron to the
molecule through electrode «

Sequential tunneling transition rates for removing one electron from
the molecule through electrode

Sequential tunneling transition rates for adding one electron to the
molecule through electrode o and changing the vibron state ¢ — ¢’
Sequential tunneling transition rates for removing one electron from

the molecule through electrode o and changing the vibron state ¢ —

/

q
Bessel’s function of first kind for order v

Energy of v photons
Photon energy



Chapter 1

General Introduction

1.1 Molecular Electronics

Molecular electronics consists of using single molecules as active components of elec-
tronic devices, such as in molecular diodes, transistors and integrated circuits [1]. Single
molecules can offer several unique properties to electronics. The size of simple molecules is
within several nanometers and hence the electronic spectrum is quantized with the typical
energy scale of ~eV. They also allow self-assembly, i.e. the spontaneous and reversible
organization of molecular units into ordered structures by non-covalent interactions. This
is very useful in fabricating electronic devices at such a small length scale. The large
number of chemicals and their different chemical and electrical functions can open up
many new possibilities to engineering a molecule to perform different tasks in different
conditions.

Molecules were first proposed as an active electronic unit by Aviram and Ratner in
the 1970s [2]. They proposed that certain types of molecules can yield current rectifying
behavior. These are D — o — A molecules, where D is an electron-donor moiety and A is an
electron-acceptor moiety. Then, ¢ is called the “bridge” and it is a conducting molecule
that connects the donor to the acceptor. In these molecules, the state D~ — o — A™ is
expected to be energetically more accessible than the D™ —o — A~ state, therefore, leading
to an asymmetric current versus bias voltage curve, i.e. to rectification.

Due to recent advancements in experimental techniques, electronic transport mea-
surements through a single molecule are now realized routinely. In general, the possible
experimental setups can be divided into two main categories, namely, scanning tunneling
microscopy (STM) [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and mechanically controlled break-
junctions (MCBJs) experiments [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. In the first, the
target molecules are deposited onto a metallic surface, forming a self-assembly monolayer
(SAM), and a STM tip is brought into contact to form the molecular junction. Then a bias

is applied between the tip and the metallic substrate and the electrical current through
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the molecule is measured. In the second, a metallic nanocontact is created by stretching a
metal wire and, just before rupture, a solution containing the target molecules is added to
the system. Subsequently, the metallic contact is further stretched until rupture. In some
cases a molecule gets trapped between the metallic tips forming the molecular junctions
(MJ). Likewise, a bias is applied between the two electrodes and the electrical current
through the molecule is measured. Both experimental setups are schematically shown in
Fig. 1.1.

* S R N s Insulating layer
Metallic substrate Gate electrode '

Figure 1.1: Cartoon showing at the atomic scale the formation of molecular junctions.
(a) A STM tip is put in contact with a benzene-1,4-dithiol (BDT) molecule previously
adsorbed onto the metallic surface. A voltage is applied between the tip and the substrate
and a tunneling current is established. (b) MCBJ setup after the metallic nanowire has
been broken and a molecule has been trapped in the nanogap. A voltage is applied
between the two electrodes and an electrical current is established. A gate voltage can be
applied by means of a third electrode, which shifts the energy levels of the molecule.

1.2 Statistical aspect of molecular junction measure-

ments

A long-standing problem in the area of molecular electronics is the difficulty of finding
quantitative agreement between theory and experiments in some cases. This makes it dif-
ficult to design and build functioning devices based on molecules. More than a decade has
passed since the pioneering experiment by Reed et al. [14], and yet the well-known proto-
type molecular junction that consists of a benzene-1,4-dithiol molecule inserted between
two gold electrodes (Au-BDT-Au) is still not fully understood. Numerous experimen-
tal [22, 21, 20, 12, 18, 5, 15, 5, 17] and theoretical [24, 25, 26, 27, 28, 29, 30] works have
been reported, with both experimental and theoretical results varying over a large range.
Due to the nature of the experiments, several different geometrical contacts can be ac-
cessed during the stretching process of the junction, which leads to a statistical character
of the experimental analysis. In fact, in a single experiment, a broad range of values for

the conductance, GG, is observed, and in some cases even very different average G values
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between experiments [22, 17, 26]. Yet, recent independent measurements [12, 4, 7, 23]
agree on an average value of G of about 0.01G, for Au-BDT-Au, where Gy = 2¢?/h is the

quantum conductance (e is the electron charge and h is the Planck’s constant).

1.3 Molecular junctions: strong and weak coupling
limits

In all these junctions, the understanding of the details of the organic/inorganic in-
terface is crucial to interpret the experimental data [31, 29, 30]. For instance, depending
on how the molecule connects to the electrodes, two main regimes of transport can take
place. First, for strong coupling, where the dominant energy scale is the bonding energy,
fractional charge transfer can occur through the device. This regime manifests, for in-
stance, in the Au-BDT-Au junction where the tunneling of electrons through the MJ is
the dominant mechanism of charge transfer. In contrast, if the molecule is weakly cou-
pled to the electrodes, when an electron has been transferred to the molecule, due to the
Coulomb repulsion, a second electron is blocked to hop in until its energy overcomes the
single-electron charging energy, A. In this case, the system is in the Coulomb blockade
(CB) regime (see Chapter 2 of Ref. [32] for a detailed description of CB), characterized
by tunneling of integer number of electrons. Fig. 1.2(a) shows schematically the typical
current versus voltage for the two regimes and how the electronic coupling strength affects
the shape of the curve. Fig. 1.2(b) shows a stability diagram or Coulomb diamond for a
two level model system where the transfer of integer number of electrons takes place. The
charge state of the molecule is easily identified for different blockaded regions. The value

of U can also be easily extracted from such plots.

1.4 Energy level alignment at the interface

In addition to the possibility of different transport regimes, another important issue in
molecular electronics is the energy level alignment at the interface and the renormalization
of the molecular energy levels when the interface is formed. It has been demonstrated
experimentally [33, 34, 35, 36] that the quasi-particle energy gap, Eéapp, of a molecule,
defined as the difference between its ionization potential, I¥, and its electron affinity,
E?, is reduced with respect to that of the gas phase by adsorbing the molecule on a
polarizable substrate. In a non-interacting quasi-particle picture, the I¥ is the negative of
the highest occupied molecular orbital (HOMO) energy, while the E” corresponds to the
energy of the lowest unoccupied molecular orbital (LUMO). The reduction of the I¥ and
EA of a molecule adsorbed on a metallic surface is mainly due to the Coulomb interaction

between the added/subtracted charge on the molecule and the screening electrons in
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(a) b Coulomb diamond
S dI/dV (a.u.)
— Increasing coupling strength
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Figure 1.2: (a) Schematic representation of a typical current versus voltage curve for a
two-level system and how the shape of the current changes with respect to the electronic
coupling strength. For weak coupling, integer number of electrons is transferred and the
current shows a step-like behavior. For strong coupling, fractional charge transfer can
take place and the current is smoothed out due to electron tunneling. (b) An example of
a Coulomb diamond or stability diagram for a two level system in the Coulomb blockage
regime. The charge state of the molecule for different blockaded region is shown. Also
the single-electron charging energy, U, can be identified.

the substrate. This interaction leads to a polarization of the surface, so that a surface
charge with opposite sign with respect to the charge state of the molecule is formed, as
schematically shown in Fig. 1.3(a-b). This non-local feature, called image-charge effect,
becomes more relevant as the molecule approaches the metallic surface. As a consequence,
the reduction of the I¥ and the E?, hence of the Eg‘}'," becomes more prominent with the
molecule approaching the surface, as illustrated in Fig. 1.4.

Although this effect is known to be present in all the transport measurements of
molecular junctions, it was only recently that it could be quantified. Perrin et al. [37]
using a MCBJ were able to observe the energy level renormalization of a zinc-porphyrin
molecule [Zn(5,15-di(p-thiolphenyl)-10,20-di(p-tolyl)porphyrin)|, abbreviated ZnTPPdT,
where the molecule is weakly coupled to two gold electrodes. In Chapter 5 we discuss
in detail this problem and we show our approach to quantify the molecular energy level

renormalization. We then apply this method in Chapter 6 and Chapter 7.

1.5 Interaction of light with molecular junctions

The underlying processes of the interaction of light with molecular junctions are at-
tracting great attention as a challenging theoretical and experimental problem and because
of their potential application as a characterization and control tool [38, 39, 40, 41, 42].
This area of research is at the interface between two other important areas, namely,
molecular electronics and molecular plasmonics and it is seen as having important tech-

nological implications. Advances in optical microscopy techniques have made of optical
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a) 6 RS b) er EBS(IPES)
fiw hw
molecule molecule
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metallic surface metallic surface

Figure 1.3: Illustration of the surface polarization effect due to a charged molecule in the
vicinity of the metallic surface at a distance z. (a) Photo-emission spectroscopy (PES)
used to measure the I¥ where one electron is taken from the molecule after absorbing a
photon of energy hw. (b) Inverse photo-emission spectroscopy (IPES) used to measure
the E”. One electron is added to the molecule and the energy of the emitted photon is
measured.
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Figure 1.4: (a) Schematic energy level diagram of the frontier orbitals of a molecule
approaching a metallic surface. Due to the interaction with the screening charge formed
at the surface, the system is further stabilized and the Egﬁf is reduced with respect to its
gas phase value as z is reduced. Wk is the work function of the metal.
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spectroscopy an important observation and diagnostic tool for molecular junctions.

Historically, the first experiments of ac-bias driven tunneling are due to Dayem and
Martin [43] who studied photon-assisted tunneling (PAT) in superconductor-insulator-
superconductor hybrid structures. Tien and Gordon were the first ones to propose a
simple model to explain PAT in terms of ac- induced sidebands [44]. The well-known
Tien-Gordon model has shown to account for the main qualitative physics of PAT through
different nanostructure and mesoscopic devices.

An example of the importance of studying light induced effects in molecular junctions
is the one applied to photovoltaic devices. Organic solar cells (OSCs), which lie within the
class of third generation solar cells, are considered as one of the most promising systems to
enhance efficiency and to reduce the cost of power-to-energy conversion, when compared
to silicon based devices. OSCs materials can be organized in different categories ranging
from the crystalline small molecules [45], dye-sensitized solar cells (DSSCs) [46, 47] to
amorphous polymers (plastics). More recently, another class of solar cells have shown
great potential, the perovskites solar cells that consist of an organic molecule inside an
inorganic crystalline structure [48].

The theoretical approaches to PAT in molecular junctions can be divided into two
main categories: (i) methods based on the framework of scattering theory, sometimes
within the non-equilibrium Green’s function (NEGF) formalism, extended to account for
the presence of an external electromagnetic field and (ii) those based on master equa-
tion (ME) approach or similar kinetic descriptions of transport, again generalized to
take into account external oscillating field. For instance, Foden and Whittaker [49] ex-
tended the Tien-Gordon model by given a quantum electrodynamics treatment to the
photon field. Later, Park et al. [50] by means of the Keldysh formalism, equivalent to
the NEGF formalism, generalized this model for adiabatic PAT in order to account for
non-adiabatic processes, i.e. for interference between the different transport channels.
Galperim et al. [51, 52, 53], within the Keldysh formalism, studied light-induced charge
transport in molecular junctions presenting strong charge-transfer transition into their
excited states. Their model consists of a two-level (HOMO and LUMO levels) for the
molecule strongly coupled to the electrodes. The molecules studied present dipole mo-
ments that changes considerably upon excitation leading to a strong shift of the electronic
charge distribution. In other words, one of the energy levels, either the HOMO or the
LUMO, is stronger coupled to one contact than to the other. When an optical excita-
tion from the HOMO level to the LUMO occur, due to the asymmetry in the contact
couplings, a current is established even without applied bias. Within the same approach,
they could also study current-induced light emission, where by applying bias, electrolu-
minescence can be observed [54]. Tian et al. have also studied electroluminescence in
molecular junctions within the density matrix formalism (ME approach) [55]. Fainberg

et al. [56] generalized the approach of Galperim et al. [51, 52, 53] in order to account for



General Introduction 7

different laser pulse shapes. By means of the density matrix formalism, they could derive

a set of closed MEs to compute the observables.

1.6 Theoretical point of view on molecular junctions

From the theoretical point of view, the study of charge transport in molecular junc-
tions in general is very challenging for several reasons: (i) an electronic structure theory
able to give a correct description of the excited states and the energy level position of the
molecules is needed. Moreover, this can not be so computationally demanding due to the
necessity of, very often, describing very large systems. (ii) The energy levels alignment
of organic/inorganic interfaces has to be well described, i.e. the position of the frontier
molecular orbitals of the organic light-harvesting material with respect to the electrode
bands need to be computed correctly, since it determines the rates at which charges are
injected or recombined. Moreover, this is a key design quantity for engineering mate-
rials combinations with enhanced light-to-current conversion. (iii) Different electronic
transport regimes can take place. For instance, Coulomb blockade, sequential tunneling,
inelastic cotunneling, light-induced vibration, current-induced light emission could take
place in a molecular junction; (iv) Effects of temperature on the transport properties of
MJs, even without light effects, have been studied and shown to play an important role
when comparing to experimental data both, in the strong coupling limit [29, 30] and in
the weak one [57, 58]. Furthermore, as far as illumination of the junction is concerned,
the issue of heating can not be avoided [59, 60, 61, 62].

In regards to electronic transport calculations, there are two main approaches, namely,
the ones based on the non-equilibrium Green’s functions (NEGF) formalism [63] and
the ones based on the density matrix formalism that leads to solving master equations
(ME) [64]. The former is often combined with density functional theory (DFT) [65, 66]
in order to describe the electronic structure of the system. The later is usually associated
with a model Hamiltonian that captures the physics of interest. In the present work
we intend to explore both methodologies applied to the study of molecular junctions.
We address the limitations of these approaches and discuss in which case one is more

appropriated than the other.

1.7 Dissertation Layout

In Chapter 2 we present an introduction to DFT, the electronic structure method
used throughout the present work. We discuss its advantages and most importantly its
limitations when a quantitative description of electronic transport properties of molecular

junctions is required. For instance, in Sec. 2.5.2 we discuss the problem of the lack of
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the derivative discontinuity in local and semi-local approximations of the DF'T exchange-
correlation functional and in Sec. 2.5.3 the problem of the self-interaction error in DFT.

In Chapter 3 we present a general overview of quantum transport through nanoscale
systems and we discuss the Landauer-Biittiker approach in Sec. 3.1. In Sec. 3.3 we present
the formalism to first-principles based quantum transport used in this dissertation, namely
the NEGF. This approach is combined throughout with DFT as the method of choice
to describe the electronic structure of nanoscale systems. In Sec. 3.5 we discuss some
particularities of this combination.

In Chapter 4 we present the density matrix formalism by which we can derive MEs
combined with model Hamiltonians. The ME is a different approach to the quantum
transport, where the key quantity is the reduced density matrix. The transition rates
are treated within time-dependent perturbation theory and the full derivation of these
quantities are presented in Appendix B and Appendix C. By solving a simple set of linear
equations, one can evaluate the electrical current through molecular systems including
different effects, such as, temperature and light-induced tunneling.

In Chapter 5 we start by presenting a discussion on the energy level alignment of or-
ganic/inorganic interfaces and our approach to its calculation, namely, a constrained-DFT
(CDFT) method by which one can evaluate the molecular energy levels renormalization
when an interface is formed. The theoretical background of this method is given in Sec. 2.6
and the details of its implementation are given in Appendix E.

In Chapter 6 we present a thorough study of the Au-BDT-Au molecular junction.
In Sec. 6.1.1 we discuss the stability of this system with respect to the adsorption of the
molecule on surfaces as well as when the molecule is in a junction. In Sec. 6.1.2 we discuss
the energy level alignment of these junctions and present different methods to account for
energy level renormalization. In Sec. 6.1.4 we present our results of the quantum transport
of these molecular junctions under stretching and compare the results for both thiol and
thiolate junctions. Finally, in Sec. 6.1.6 we present a combined molecular dynamics and
Monte Carlo approach in order to account for effects of temperature and the statistical
aspect of the experiments, namely, the possibility of having many different geometries
and, therefore, different conductance values.

In Chapter 7 we apply the ME formalism presented in Chapter 4 to the electron
transport in the weak coupling limit, 7.e. in the CB regime. We apply this approach
and compare our results to available experimental data of energy level renormalization in
molecular junctions as a function of the electrodes separation. We show how the energy
level alignment of the junction plays a crucial role in determining the electronic transport.
Moreover, by including vibronic degrees of freedom we show that our theoretical results
are in good agreement with the experimental data.

Finally, in Chapter 8 we discuss light-induced charge transfer and conductance en-

hancement due to the interaction of charge carries with light. Within the ME approach,
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in Sec. 8.1.1, we study the effect of light in simple models of one and two levels and show
the results when one considers higher-order contributions, such as cotunneling. In Sec. 8.2
we discuss the interplay between phonons and light-induced effects and show how light can
be used to control the conductance of molecular junctions in the strong electron-vibron
coupling limit. In Sec. 8.3.1 we show how the transport properties of molecular junctions
with donor-acceptor structure change depending on the charge state of the molecule. This
is accomplished by combining CDFT with the NEGF method.



Chapter 2

Density Functional Theory

2.1 Introduction

In quantum mechanics, all the information concerning the system is contained in
the so-called total wave function, \i/(R r), where R and r represent a set of nuclei and
electrons coordinates, respectively. We omit the spin degrees of freedom for the sake
of simplicity. Our aim is to understand how density functional theory (DFT) can be
applied to the study of the electronic structure of atoms, molecules and solids. Since we
are concerned exclusively on the electronic structure, the nuclear degrees of freedom (e.g.
the crystal lattice in a solid) appear only in the form of a potential v(r) acting on the
electrons. This is the Born-Oppenheimer approzimation, so that the wave function can be
rewritten as ¥ = ®(R)¥(r; R), i.e. as a product of the electronic and nuclear degrees of
freedom and with the electronic part [¥(r; R)] parameterized by the nuclear coordinates.
For non-relativistic electrons, this wave function is calculated by solving the Schrodinger’s

equation, which for a single electron moving under the effect of an external potential v(r)

reads !
N~
[— +v(r)}\ll(r) = e¥(r). (201
2m
For a multi-electron system, i.e. for a many-body problem, the Schrodinger’s equation
becomes
hQVQ+ (r)—i—ZU( r;)|¥(ry,r ry) = E¥(r;,r ry) (2.1.2)
= v\, r;,L; 3 Sonie = 3 ey y b
T j 1,T2 N 15 E2 N

i<j

where N is the number of electrons in the system and U(r;,r;) describes the electron-

electron interaction term. For a Coulomb system, the interaction term is given by the

'We omit the coordinate R in order to simplify the notation.

10
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following operator

e e ey (2.1.3)

which is the same for any system of particles interacting via Coulomb interaction. In the

same way, the kinetic energy operator given by
. h2V2

T= - -

; 2m

is the same for any non-relativistic electron. Note that for materials containing atoms

(2.1.4)

with large atomic numbers (Z), the electrons are accelerated to relativistic velocities,
therefore, one must include relativistic effects by solving Dirac’s equation and the kinetic
operator takes a different form. In the absence of external perturbations, e.g. and electric

field, v(r) is given by the electron-nuclei interaction

A 1l Zk(f?
Vour — E = E ' 21055

where the sum extends over all nuclei, each with charge QQr = Zie and coordinates Ry.

Note that it is only the spatial arrangement of the atoms (apart from the corresponding
boundary conditions) that distinguishes a molecule from a solid. For this reason, the oper-
ators U and T are often called “universal” whereas \A/ert is system-dependent. Similarly, it
is only through the term U that the single-body quantum mechanics of Eq. (2.1.1) differs
from the complex many-body problem posed by Eq. (2.1.2). The natural way to solve
the problem is by specifying the external potential V,,,, so that the system of interest is
defined, and introducing it into the Schrodinger’s equation in order to obtain the wave
function W. All the properties of the system are then calculated by evaluating the ex-
pectation values of the operators that represent the properties of interest, i.e. (U|...|).

One important observable is the electronic density given by

p(r) = N/dBTQ/d3r3.../dng\If*(r,rg...,rN)\Il(r,rg...,rN). (216)

DFT recognizes that non-relativistic Coulomb systems differ only by their potential
v(r), and gives a prescription for dealing with the universal operators U and T. Fur-
thermore, DFT provides a way to systematically map the many-body problem, with the
interaction term U onto a single-body problem, without U. All this is done by promoting
the particle density p(r) from just one among many observables to the key variable, on

which the calculation of all other observables can be based.
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2.2 Hohenberg-Kohn theorems

This insight is due to Hohenberg and Kohn [65], who in 1964 set the foundation of
DFT by treating the electron charge density as the fundamental variable in the N-body

problem. By doing so, the scheme to solve the electronic system can be summarized as
plr =N (¥, 1y . s ) =2"9(1] (2.2.1)

i.e. knowledge of p(r) implies knowledge of the wave function and the potential, and
hence of all other observables. The DFT is based on two theorems, the Hohenberg-Kohn
theorems (HKTs). Here we present the derivation of the HKTs as given originally by
Hohenberg-Kohn in Ref. [65]. Other demonstrations can be found in Ref. [67]. The first
theorem presents the relation of uniqueness between the ground state electronic charge

density, i.e. po(r), and the external potential v(r):

Theorem 1I: The ground state charge density p,(r) of a system of interact-
ing electrons under the influence of the external potential V.,,(r) determines

uniquely that potential.

In other words, for every potential (or arrangement of atoms) there is only one repre-
sentation of the ground state electronic charge density and vice-versa. Moreover, if the
ground state is degenerate, Theorem I refers to the density of any of those states. As a

consequence of Theorem I:

Corollary: If the external potential V., (r) is determined, then also the Hamil-
tonian is so. Consequently, the wave functions of each electron for the ground
state, are also determined. Therefore, once the ground state charge density

po(r) is known, all the ground state properties of the system are determined.

ProoF oF Theorem I: The demonstration is as follows. Assuming that the ground state
of a system can be characterized by the Hamiltonian H containing the potential v(r), the

Schrodinger’s equation is given by:
(T+ U+ Vo)V = EV, 229

where T . U and \A/m represent the kinetic, electron-electron interaction and external
potential operators, respectively. If we assume the existence of another potential v ext W
can write the corresponding Hamiltonian H'. The Schrodinger’s equation solution can be
written in a simplified form as ' (H'’' = E'U’), which yields the same electronic charge

density p(r). By applying the variational principle, we obtain

E = (U|T + Viy + U|V) < (W'|T + Vipy + U, (2.9.3)
E' = (VT + Ve + UW) < (U|T + V'py + U|T). (2.2.4)
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Therefore,

E < (U|H|U) =(V|H'|¥') 4 (V|Vigy — V| ") (2.2.5)

E < E'+ /p(r)[v'(r) — v(r)]d*r. (2:2.6)

This leads to the following equations

E<E+ [ plo)lotr) - ol (227
E' < E+ /p(r)[v’(r) — v(r)]d®r, (2.2.8)

and finally we obtain the inconsistency
E+E <FE +E. (2.2.9)

Thus, we verify that there is only one electronic charge density that corresponds to the
ground state charge density for the specified potential. In other words, for a certain
atomic arrangement, the ground state charge density can be uniquely defined.

Theorem 11 is stated as

Theorem II: There exist an universal functional of the electronic density for
the total energy, E[p(r)]. The functional is minimized at the ground state
charge density. The value of the functional at the minimum is the ground

state total energy.

Proor ofF Theorem II: Theorem II establishes that E[p] is a functional of p(r) and that
Elpo] < Elp], (2.2.10)

where pg is the ground state density. As a consequence, any ground state observable of
the system is an unique functional of the electronic density. The total energy for a given

density p(r) is given by

Elp] = (¥[p]| T + U|¥[p]) + (¥[p]|V|T[g],) (2.2.11)
E[p] = Flp] + (¥[o]|V|¥]p]), (22.12)

and for the ground state,

Elpo] = Flpo] + (¥[po]|V [¥[po]) - (2.2.13)

The functional F[p] is universal and it is valid for any N-electrons system. The total
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energy of the ground state is given by
E[po) = Flpo] + (Yo|V'[Wo), (2.2.14)

where |Wg) is the ground state wave function. By applying the variational principle we

obtain

E[Yo] < E[V], (2.2.15)

(Uo|T + U|Wo) + (Wo|V|Wo) < (U|T + U|¥) + (¥|V|), (2.2.16)
Flpo] + (o|V|[Wo) < Flg] + (¥|V|T), (2017
E[po] < Elp]. (2.2.18)

Both the HKTs show that it is possible, from the electronic density, to obtain all the
ground state properties of interest of the system. However, they do not discuss how to
perform this task, namely they do not provide an expression for the functional. This is

what we will look at in the next sections.

2.3 Thomas-Fermi approximation

An important problem in solid-state theory and quantum chemistry is to understand
how a many-electron system behaves due to Coulomb interaction. The Thomas-Ferm:
approzimation [68, 69] assumes that the functional for the electron-electron interaction

energy is approximately equal to the Coulomb term, or Hartree, and can be stated as

Ulp] = Unlp) = 4;60 /dr/dr’%p(:;;), (2:8,1)

where e is the electron charge. Another approximation is to assume that the kinetic

energy of a system of interacting electrons is the same as that of a system of interacting

electrons of constant electronic charge density,

Tlp) ~ TAp) = [ d'r (o), (232)

where t"“™(p) is the kinetic-energy density of a homogeneous interacting system with
(constant) density p. Since it refers to interacting electrons, t"°™(p) is not known explicitly
and further approximations are needed. As it stands, Eq. (2.3.2) is already a first example
of a local-density approximation (LDA). In this approximation, it is assumed that the
real inhomogeneous system with density p(r) in potential v(r) can be divided into smaller
systems. In each of these subsystems p(r) are v(r) approximately constant. In each

cell (z.e. locally) one can then use the per-volume energy of a homogeneous system to
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approximate the contribution of the cell to the real inhomogeneous one. By making these
cells infinitesimally small and summing over all of them, one obtain Eq. (2.3.2). For a
homogeneous non-interacting system, however, the density functional form of the kinetic

energy term is known and it is given by

3
1 2m\ 2 3/2
where Ef is the Fermi energy. The kinetic energy is T = 3pEr/5. Thus, the kinetic
energy density, T//N, is

om 3 h2 2/3
t,""p] = Eom B2 e, (2.3.4)

where the subscript “s” specifies that we are dealing with a non-interacting system or a

system of “single-particles”. Thus, the approximations can then be summarized as
Tlp] = TN = TE4(p) = [ dPr om(o(o)) (2.3.5)

where T'PA[p] is the local-density approximation to Ti[p], the kinetic energy of non-
interacting electrons of density p. One can further improve the Thomas-Fermi approxima-
tion by including the quantum mechanics effects due exchange, i.e. the Pauli’s principle.
In the LDA, the functional for the exchange energy is known for an electron gas system

and it is given by
B8 p] = [ plr)ecp(e)dr (2.3.6)

where the exchange energy density is

ex(p) = —ZeQ <§> : p3. (237)

This approximation is known as Thomas-Fermi-Dirac [70]. The functional for the total

energy can then be written as
ETFD [,0] = TSLDA[[)] = UH[,D] AF V[p] r E)L('DA [p] (238)

Moreover, terms that account for variations in the charge density for the kinetic energy
can be added to the Thomas-Fermi-Dirac approximation, e.g. the von Weizacker term.
Yet, the Thomas-Fermi-Dirac approximation does not give satisfactory results. A major
deficiency is that when applied to molecular systems, the molecules are unstable, i.e. the
energy of a set of isolated atoms is lower than that of the bound molecule [71]. This is
directly related to the fact that correlation effects are neglected in the electron-electron

interaction energy and also because of the local approximation for the kinetic energy.
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2.4 Kohn-Sham equations

DFT can be implemented in many ways and usually the minimization of an explicit
energy functional is normally not the most efficient one. Kohn and Sham [66] proposed
a new root to circumvent the problem. Their insight consists in replacing the real and
complicated many-body problem of interacting electrons by an equivalent problem of
non-interacting particles. It is assumed that the ground state density of the many-body
problem is the same of an auxiliary system of non-interacting electrons. This leads to a
set of single-particle equations.

The approximation presented in Eq. (2.3.5) for the kinetic energy is not enough. A
more accurate way to treat the kinetic energy of interacting particles, T[p], is based on de-
composing this term into two contributions. The first part, Ty[p] (again the “s” subscript
stands for single-particle), corresponds to the kinetic energy of the non-interacting par-
ticles and the second part contains the correlation effects T¢[p] (the “c” subscript stands
for correlation),

T(p] = Ts[p] + Te[p)- (2.4.1)

Unfortunately, the term Ty[p] does not have a known functional form and we need to use
approximations to treat this contribution. In contrast, the kinetic energy functional for

non-interacting particles is known
T[] fiE:/d%)VW(w (24.2)
slol = — r; (r)Vy;(r), 4.
it 2m ; .

where the sum is over all the individual contributions of the non-interacting wave function
;. Since all 1); are functionals of the density (Theorem I), Ti[p] is explicitly a functional of
the orbitals but implicitly a functional of the electronic charge density, T[p] = Ts[{¢:[p]}]-
In other words, Ty depends on the full set of occupied orbitals ;, each of which is a
functional of [p].

The potential energy is given by the sum of three contributions: the first is the Hartree
energy, Uy[p], the second is the exchange term due to the Pauli’s principle, Uy[p]. The last
term is the contribution due to correlation, U.[p]. The total energy can then be written

as

Elp] = Tslp] + Unlp] + Vp] + Ex, (2.4.3)
Vol = /p(r)v(r)d?’r, (2.44)
Bee = Ulgl - Usle] +Tle] - Tilgl (2.45)

All the contributions due to exchange and correlation from both the kinetic and the

potential energy terms (7.[p], Uy[p] and U.[p]) are put together in a single term called
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the exchange-correlation (XC) term, E,.. This way, DFT looks formally like a single-
particle theory, where many-body effects are still included via the XC functional. In
order to calculate the total energy of the system, the functional E[p] has to be minimized
following the variational principle where the constraint is the total number of electrons.
With the Lagrange multipliers technique one define a new function F'(A,r) = f(r)—Ag(r),

where A is identified as the chemical potential. We need to compute

55'; <E[p] i [ / Bl ND s (2.4.6)

so that
e e e
e i —A=0
T4 aulpl(e) + lpl06) + )~ X = 0. (2.47)

Considering an auxiliary system of non-interacting particles subject to the potential vg(r),
then applying the variational principle one has

5_7}_[p_] + vg[p](r) = A= 0. (2.4.8)
0p

Since for the non-interacting particles system there is neither exchange, nor correlation
nor electrostatic interaction, the charge density that minimizes Eq. (2.4.8) is ps(r). By
comparing Eq. (2.4.8) with Eq. (2.4.7), we see that in order to have both equations
satisfied [ps(r) = p(r)] we need

vs[p](r) = vap](r) + v[p](r) + vxc[p](r). (2.4.9)

This shows that it is possible to calculate the electronic density of the interacting particles
system subject to the potential v(r), by solving single-particle equations of the non-
interacting system subject to the potential vg(r) = veg(r). In particular, the single-particle

Schrodinger’s equation of the auxiliary system is given by

—h?
[—VQ Al veﬁ(r)} i = €0, (2.4.10)

2m

where the solutions are the so-called Kohn-Sham (KS) orbitals that reproduce the charge
density p(r) of the original system,

p)i= "> oidy. (2.4.11)

occup

In other words, the KS procedure assumes that there is a Hamiltonian that describes a
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system of non-interacting particles subject to an effective potential that generates the
same charge density of the interacting system. Since the potential veg(r) depends on p(r)
and vice-versa, the solution can be obtained through a self-consistent procedure. It starts
with a “guess” density. From this density one calculates vs(r). Eq. (2.4.10) is then solved
and the functions ¢; are determined. Finally from Eq. (2.4.11) a new charge density is
computed. The procedure is repeated self-consistently until the criterion of convergence
is satisfied, 7.e. until the input charge density is the same as the output one within a
specified tolerance.

The set of Eq. (2.4.9), Eq. (2.4.10) and Eq. (2.4.11) is known as the KS equations.
From the solution of these equations, a final expression for the ground state total energy

can be obtained

N 2 /
i = Zei _ 4 /d%'/d%'m = /d3rvp0(r) + Eyc[po)- (2.4.12)

47e, Ir — r/|

One major advantage of the KS scheme is that the term for the kinetic energy is solved
exactly (for the non-interacting electron system), nevertheless, it requires solving N single-
particle equations instead of minimizing the functional of the total energy with respect

to the charge density.

2.5 Local density approximation

Eq. (2.4.12) allows us to calculate the ground state total energy of a system of in-
teracting electrons. However, there is still an important part missing, z.e. the functional
form of the F,. is unknown! Therefore, approximations have to be made for a practical
use of the KS scheme. There are three main sets of approximations to the XC functional,
namely, local [72], semi-local [73] and hybrids [74, 75]. In the present work, we widely
use the LDA [66, 72, 76]. Therefore, we focus our attention on this approximation and

discuss its limitations and problems. In the LDA, the XC energy can be written as

B ) = [ PN p)p(r)ar. (25.1)

where eLPA s XC energy density of an homogeneous electron gas with density p(r).

The exact functional form for the exchange part of FE,. is known from Eq. (2.3.7). The

correlation contribution, P4, instead can be obtained with accuracy through quantum
monte carlo simulations (QMC) [72]. From these, an analytic expression for /P4 is

determined as a function of the density, which is a requirement since the energy is a
continuous function of the density. By construction, a LDA functional is purely local,
therefore it is expected to lead to very good results for systems where the charge density

varies slowly in space. That is the primarily reason why DFT-LDA describes with good
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success the properties of metallic solids but it does not perform well for non-homogeneous

systems, such as molecules and atoms.

2.5.1 Interpreting the Kohn-Sham eigenvalues

The ground state total energy given in Eq. (2.4.12) shows that FEjy is not simply
the sum of all the ¢;, i.e. of the KS eigenvalues. The KS eigenvalues simply represent
the eigenvalues of an auxiliary single-particle equation of which the eigenvectors give the
correct charge density. In this framework, the charge density is the quantity with physical
meaning. Since the KS eigenvalues do not represent the true energy spectrum, they are
not to be trusted quantitatively. An important exception to this is the highest occupied
KS eigenvalue. Denoting by ex(M) the N’th eigenvalue of a system with M electrons
one can show that I" = —ex(N), where I' is the ionization potential of the N-body
system. Likewise, EA = —en;1(N + 1) where E? is the electron affinity of the N-particle
system [77, 78]. Nevertheless, these relations are valid only when dealing with the exact
functional for the total energy. When calculated with an approximated functional such as
LDA, the highest occupied and the lowest unoccupied orbitals do not offer good results

when compared to experimental data for I¥ and E*, respectively.

2.5.2 The lack of the derivative discontinuity

An important property of the exact DFT functional is the derivative discontinuity of

the XC functional with respect to the particle number [79, 77, 80]. This is given by

dEyc[n]
op(r)

i (SEXC [n]
op(r)

= e RO (2:5:2)

N+46 N-6

where 0 is an infinitesimal electron number and Ay, is a shift of the vy () when the system
passes from electron-poor, N —4, to electron-rich, N+44. It is a system-dependent quantity.
Likewise, the non-interacting kinetic energy functional has a similar discontinuity that can

be represented by

0T
dp(r)

— EN-+1 i ENL—= AKS» (253)
N-é

i.e. the difference between the highest occupied and lowest unoccupied KS single-particle
eigenvalues. The discontinuity in the non-interacting kinetic energy is therefore the KS
single-particle gap, Aks, whereas the discontinuity in the XC correlation energy (A.) is

a many-body effect. The true fundamental gap given by

A=IF -F*=FN+1)+ E(N -1)-2E(N), (2.5.4)
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Figure 2.1: Emergy level diagram of the KS eigenvalues and their relationship to the
ionization potential (I”) and electron affinity (E?*). Efg is the KS electron affinity, A,.
is the derivative discontinuity in the XC energy, Akgs and A are the KS gap and the
fundamental gap, respectively. Finally, Ag[" is the shift of the occupied orbitals due to
the self-interaction error in DFT.

is the discontinuity of the total ground-state energy functional [79, 77, 80], i.e.

Since all the terms other than Ey. and T} in the total energy functional, Eq. (2.4.12), are
continuous functionals of the charge density, the fundamental gap is the sum of the KS gap
and the XC discontinuity. As discussed in Sec. 2.5, the LDA functional is a continuous
function of the charge density [Eq. (2.5.1)], therefore it predicts A,. = 0 leading to a
underestimated fundamental gap. All these quantities along with the KS eigenvalues and
their relation to observables are schematically shown in the energy diagram of Fig. 2.1.
For molecules, HOMO(N) is the highest occupied molecular orbital of the N-electron
system, HOMO(N + 1) the same for the (N + 1)-electron system, and LUMO(N) the
lowest unoccupied orbital of the N-electron system. In solids presenting an energy gap,
e.g. semiconductors, the HOMO and LUMO are referred as the top of the valence band
and the bottom of the conduction band, respectively. In metals, where there is no energy
gap, HOMO and LUMO coincide and equal to the Ef of the material. The vertical
arrows in Fig. 2.1 show the fundamental gap within DFT (with the exact functional),
A, the KS single particle gap, Aks, and the derivative discontinuity in the exchange
correlation potential, A,.; also the ionization potential of the N-interacting system, I*,
which is equal to the ionization potential of the KS system, Ifq; the electron affinity of the
N-interacting electron system, E*, and the KS electron affinity Efg = —eny1(N). Note

that Aks is reduced compared to the fundamental gap due to the lack of the derivative
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discontinuity in the exchange correlation potential within the KS scheme.

Despite all the interpretative problems with the KS eigenvalues, it is a fortunate sur-
prise that in many situations they do empirically provide a very good first approximation
to the real spectrum of extended systems. For example, usually band-structure calcula-
tions in solid-state physics show good agreement with experimental photo-emission data
and inverse photo-emission spectroscopy. Nonetheless, in molecular systems, the HOMO-
LUMO gap is hugely underestimated, typically by about 50%, when compared to I¥ — EA.
This is also related to another problem, namely, the self-interaction (SI) problem in DET

that we shall discuss in the next section.

2.5.3 The self-interaction problem: ASIC method

In Sec. 2.3 we presented the Thomas-Fermi approximation, which consists of replacing
the expectation value of the electron-electron interaction (given by the Coulomb’s law)
by a functional of the electronic density, Eq. (2.3.1). However, already in 1934, Fermi
and Amaldi observed a failure of this approximation in the limit of one electron system,
i.e. there is a non-vanishing contribution from the interaction of the electron with itself
known as the self-interaction (SI) error [81]. This is not the case of the well-known wave
function based mean-field Hartree-Fock (HF) method. In HF, the total electronic energy
is given by the sum of the Hartree and the exchange contributions. The exchange energy

is given by

E)}(JF = -47:::6 ZZfUafoa’/d37~/d37'l1/};a(r)w;a"(:IIL/E/T’(I‘)I/)UG(I‘,). (256)

Here the 9,(r)’s are the Slater determinants for spin o with occupation numbers f,,.
When the a = o/, this term constitutes a self-exchange energy that exactly cancels out
the self-Hartree energy of Eq. (2.3.1) on an orbital-by-orbital basis so that HF is free of
SI errors. Although HF does not contain SI errors, it totally neglects correlation effects,
which limits its application to many systems. Within DFT, however, when using local
or semi-local functionals, the spurious SI error is only partially canceled. In other words,
the condition for KS-DFT

Ulp3] + Exc[0%,0] = 0, (2.5.7)

for the orbital density p2 = [¢9]? of the fully occupied KS orbital ¢ is not satisfied. As a
consequence, the KS potential becomes too repulsive and this leads to a series of failures
in describing fundamental properties. For instance, negatively charged ions (H=, O™, F™)
are predicted to be unstable within LDA [82], the energy gap of transition metal oxides
(MnO, NiO) are predicted too small [83] when compared to experimental data. Moreover,
the KS HOMO that is rigorously associated to the —I¥, as discussed in Fig. 2.1, is very

often found to be several eV higher in energy, specially for molecules, when compared to
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experimental data.

The modern theory of self-interaction correction (SIC) was proposed in the 80’s by
Perdew and Zunger [76] (PZ). The idea consists of removing directly the self-Hartree and
self-XC energy of all the occupied KS orbitals from the approximated XC functional. For

instance, for the LDA one has

occup.
B p =B N (255.8)
where
bac = Ulpg] + E)I(‘CDA[pg, 0] (2.5.9)

is the self-interaction of orbital ao. In other words, one subtracts, orbital by orbital, the
contribution that the Hartree and XC functionals would make if there was only one elec-
tron in the system. This correction can be applied to any approximate density functional,

and it ensures that the resulting corrected functional satisfies
EZClpM, 0] = U™V, 0], (2.5.10)

i.e. for a single electron, the self-interaction comes only from the Hartree term. The PZ-
SIC approach can be applied to any spin-density functional for the F,. and when applied
to the exact functional, the correction vanishes.

For a completely uniform system, the LDA approximation is exact. Therefore, in
this limit, it is self-interaction free. However, for many realistic systems of interest, they
show very strong localized states, such as d states in transition-metal oxides, and the
SI becomes really important. Unfortunately the PZ-SIC, which minimizes the corrected
energy functional with respect to the orbitals, does not lead to usual KS equations since
the effective potential is different for each orbital. In order words, the XC functional
within the PZ-SIC is orbital dependent, therefore, one cannot define a kinetic energy
functional independently from the choice of the XC functional [76]. As a consequence,
the KS orbitals are not orthogonal and the KS equation is not invariant when making a
unitary transformation of the occupied orbitals. Therefore, the effect of SIC will depend
on the difference in occupied orbitals before and after the unitary transformation. To
circumvent this, elaborated schemes of minimization and several developments have been
made [81, 84].

In the present work we explore an approximated method by considering only the
atomic contributions to SIC, the ASIC method [85, 86, 87, 88]. The method is applied
to the LDA which has the benefit of preserving the local aspect of the LDA potential. A
first step of the ASIC method is to incorporate part of the SIC into the definition of the

pseudopotentials [89]. The idea consists in subtracting the atomic SI from the free atom,
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and then transferring the resulting electronic structure to the definition of a standard
norm-conserving pseudopotential. By doing so, the SIC contribution to the total energy
can be separated into the contributions from the core electrons and the valence electrons.
A further approximation is to assume that the SIC contributions for the valence electrons
are also atomic-like. Although this approximation sounds drastic, the orbitals that present
more SI are those more localized, e.g. d orbitals, therefore the atomic-like approximation
looks appropriate. In Chapter 6 we will show how the lack of derivative discontinuity and
the problem of self-interaction can lead to wrong predictions of transport properties of

molecular junctions.

2.6 Constrained density functional theory

Among the various possibilities used to obtain improved results within DFT, con-
strained DFT (CDFT) represents a conceptually different approach to the problem. The
idea behind CDFT is that one can always define an appropriate density functional, im-
plementing a given desired constraint on the charge density [90] (e.g. one can demand
that an electron is localized on a particular group of atoms in a molecule). This is
obtained by introducing an appropriate external potential in the KS equations. The
crucial point is that the approach is fully variational, meaning that the energy mini-
mum of the constrained functional represents the ground state of the system under that
particular constraint [91, 92, 93]. The method allows, for example, to access energies
and electron density distributions of charge transfer states of a given system, and has
been successfully applied to the study of long-range charge transfer excitations between
molecules [91, 94, 95]. In Chapter 5 we apply CDFT to the investigation of the en-
ergy level alignment of metal/molecule interfaces. In relation to this problem CDFT has
two main advantages. Firstly, since CDFT is based on total energy differences it does
not present the conceptual problems of interpreting the KS eigenvalues as a true quasi-
particle spectrum. Secondly, one has to note that the total energy, even in the case of
local functionals, is a rather accurate quantity, in contrast to the charge density that local
functionals usually tend to over-delocalize. This means that a theory that improves the
charge density but that relies on the total energy is expected to be accurate.

In the KS framework [66] the total energy (in atomic units) is given by

o, No

Elp] = ZZ (Dia| — %VQ |pio) + /dr v(r)p(r) + Unlp] + Exc[p®, 0°], (2.6.1)

where Uy is the Hartree energy, F,. is the exchange-correlation energy, v(r) is the external
potential, p?(r) is the electronic density for spin ¢ =1, ] of N, electrons (p = p' + p*)

and the set {|¢i,)} contains the KS wavefunctions that minimize the energy. A generic
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constraint on the charge density is that there is a specified number of electrons for each

spin, N7, within a certain region of space. This can be written as

/uzg(r)p”(r)dr = (2.6.2)

where w?(r) is a weighting function that describes the spatial extension of the constraining
region. In the simplest case w?(r) can be chosen to be equal to 1 within a certain volume
and 0 elsewhere. In order to minimize the KS total energy of Eq. (2.6.1) subject to the
constraint of Eq. (2.6.2), an additional spin-dependent term, proportional to the Lagrange

multiplier, V.7, is added to the energy. A new functional is thus defined to be

Wi vl = £+ Ve ( [ uetwpr e - a) (2.6.3)

When p satisfies the constraint in Eq. (2.6.2) then E[p] = W{p, V.| by construction. Up
to the p independent term Y VN7, Wip, V] is the ground state energy of a system
with an additional spin-dependent external potential V.?w?(r). The KS equations with

this additional potential are then given by

—%VQ + o(r) + 2. (r) + VZul(r) + / %dr'] (T = gi(r) (2.6.4)
where of, is the exchange and correlation potential. As in standard KS DFT the electron
density is constructed from the occupied KS eigenvectors, {¢7(r)}, until self-consistency
is achieved. In this particular case, the self-consistency has also to guarantee that the
constraint set by Eq. (2.6.2) is satisfied. The minimization then proceeds as follows.
Firstly, as in the standard KS scheme, an initial charge density is defined and then updated
until the KS equations are satisfied self-consistently. Secondly, at every self-consistent step
in this update of the charge density a second self-consistent loop is performed, where for
a given input density, p(r), the value of V.7 is updated until the output charge density
obtained via solution of Eq. (2.6.4) satisfies the constraint of Eq. (2.6.2). This second
step is performed following an optimization scheme suggested in Ref. [92]. Updating V.7
in this way ensures that at each self-consistent step and therefore also at convergence the
constraint is fulfilled.

This methodology was implemented in the DFT package SIESTA [96]. SIESTA uses a
linear combination of atomic orbitals (LCAQ) basis set, so that, instead of defining the
constraining region in real space via the function w?(r), we define it over the LCAO space.
This requires that the total charge projected onto a given set of basis orbitals is equal to
N¢Z. For this aim we have implemented both the Lowdin [97, 93] and the Miilliken [98]

projection schemes. A detailed description of the implementation is given in Appendix E.
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Quantum Transport at the

Nanoscale

In the past decades, important advances in the area of semiconductors have led
to the miniaturization of electronic devices to the nanoscale. In this limit, quantum
effects such as conductance quantization and quantum Hall effect can be observed by
electron transport measurements. However, these bring other challenges that have to be
tackled. For instance, the density increase of the active components of the devices leads to
problems such as power dissipation and undesirable quantum tunneling, which reduces the
efficiency of logical devices. Therefore, understanding the influence of these effects over
the device performance is key for the development of novel and more efficient electronics.
In particular, understanding the electronic transport properties of such systems is crucial
and challenging.

Electronic transport in nanostructures is essentially a many-body non-equilibrium
statistical problem, where the conducting electrons and the background ionic structure are
in a state of non-equilibrium, whose properties can be known only statistically. Therefore,
important approximations and assumptions are usually at hand in order to transform
the many-body problem into a tractable one that still captures most of the relevant
physics. The first steps towards the development of a quantum transport theory are due
to Landauer [99, 100]. Other important contributions are due to Biittiker [101, 102] who
extended the Landauer’s ideas to systems consisting of many contacts. This is nowadays
known as the Landauer-Biittiker approach to quantum transport.

In this chapter we present the basic ideas behind the Landauer-Biittiker approach
and the well known non-equilibrium Greens’ function formalism (NEGF) used to study
coherent electronic quantum transport in nanostructures. We end the chapter with a

discussion on the limitations of the NEGF approach as well as when combined with DFT.

25
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3.1 Landauer-Biuttiker approach

In this section we present the Landauer-Biittiker approach [103] to quantum transport
and how the quantization of conductance appears in nanoscale systems. There are several
importance approximations, which we will present when needed. The basic idea behind
this approach is that the electrical current flowing through a quantum system is expressed
in terms of the probability of electrons to be transmitted across the device. For instance,
when an external potential is applied between the two electrodes connected to a ballistic
nanostructure the probability of transmitting the incoming electrons through the device
is equal to unity, 7.e. for a ballistic conductor !, the electrical current obtained is finite
indicating that there is still an observable resistance in the system.

Let us consider a quantum system or nanostructure connected to the two electrodes
with a cross section W and length [. If the dimensions of the nanostructure are of the
order of the dimensions of the electrodes, i.e. micrometers, the conductance is given by
G = oW/l (Ohm’s law), where the conductivity o is an intrinsic property of the material.
Ohm’s law predicts that if one reduces the length of the nanostructure, the conductance
should increase towards infinite values. However, this is not observed in experiments, and
the conductance eventually tends to reach a limiting value when the device is much smaller
than the electronic mean free path. This resistance appears at the interface between the
nanostructure and the electrodes. A very simplistic explanation is that, while in the
electrodes there are infinite sub-bands or normal modes that contribute to the current,
in the nanostructure they are very few, so that the current has to be redistributed at the
interface and this leads to the finite resistance observed.

Approzimation 1: The first assumption in the Landauer-Biittiker approach is to re-
place the closed system (composed of the electrodes, nanostructure and an external bat-
tery) by an open quantum system, where the battery is removed since it is a too com-
plicated object to be treated quantum mechanically. Therefore, we assume that the
electrodes are metallic and infinite so that they are unperturbed due to the addition or
the removal of electrons, i.e. the electrodes are considered as electron reservoirs and they
can be characterized by their chemical potentials, p. The battery then is just an external
potential difference applied between the two electrodes shifting their chemical potentials.

Approzimation 2: The next step is to assume the mean-field approximation where the
electrons move under the influence of a mean-field created by the other electrons, i.e. we
transform the complicated many-body problem into a single-particle picture much easier
to deal with. Any mean-field Hamiltonian is appropriate for this task and so is the DFT
KS Hamiltonian, as presented in Sec. 2.4. Without this approximation, one should in

principle, determine the full many-body statistical operator, from which one can compute

LA ballistic conductor is defined as a conductor in which the electronic mean free path is much larger
than the dimensions of the conductor itself so that no scattering events occur.
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the expectation value of the current. The problem is, if we were dealing with interacting
electrons, also for the electrons on the electrodes far away from the nanostructure attached
to them, we would need to describe how they evolve in time even before being scattered
at the nanostructure. This leads to a nested infinite number of equations, which prevents
us to obtain a closed set of equations to compute the current [63]. Within the mean-field
approximation, one can describe the electronic structure of the full system in terms of
independent single-particle bands or channels. The assumption here, besides the mean-
field approximation, is that the off-diagonal elements of the density matrix that describe
the coherences between the state vectors are exactly zero. In other words, we assume
that the system has somehow evolved to a totally incoherent (independent) set of (single-
particle) channels rapidly after interacting with an environment. Having said that, for
each sub-band of the quantum system we can associate a dispersion relation as given
by E(N,k), where N is the sub-band index and k is the wave-vector. Moreover, ey =
E(N,k = 0) is the cutoff energy for the sub-band N, i.e. electrons with energy lower
than ey are not able to tunnel through the device since there is no available states in this
range of energy. The total number of sub-bands for a given energy E can be obtained by

adding up the number of sub-bands with cutoff energy smaller than E as

M(E) =) 9(E - en). (3.1.1)

N
In order to simplify the arguments to come, we adopt for the moment zero temperature,
so that there is current flow just for the range of energy py, > E > pugr, where upg) is the

chemical potential of the left (right) electrodes. ¥ is the Heaviside step function given by

1, if E— =10
GE s ? ot i (3.1.2)
0, if E—ey<0
Let us consider one single sub-band, where all the state vectors k are occupied following

the Fermi-Dirac distribution function,

1
J(E,pLRr) = e (3vLa

e k% 41

where © is the temperature and kg is the Boltzmann constant. For a uniform electron
gas with electronic density n, moving with velocity v, the electrical current is given by

I = env. Therefore, the current through all the states k is given by

lva l ;gﬁ (E). (3.1.4)
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By transforming the sum into an integral over the wave vectors

Z — 2(spin) x 2{7 /dk. (3810
k

we can rewrite the electrical current as
e [
li— ?/ f(E)dE. (3.1.6)

The total current is then given by the sum of all the sub-bands as,

I= Qh—e h M(E)f(E)dE. (3.1.7)

— 00

This formula does not tell us anything about a quantum state of the system. In fact,
the current is a statistical quantity averaged out in time and implicitly assumed to be
stationary. The ideally stationary current is obtained because we assumed that the elec-
trodes are simply reservoirs of electrons, i.e. they continually feed electrons in the distant
past, and far away from the nanoscale junction, into wave-packets which move towards
or away from the junction, without changing the current in time. Therefore, one can
replace the open boundary condition problem to a periodic boundary condition problem.
In other words, the electrons come from a distant past and far away from the junction
towards the junction where they are scattered due to the broken periodicity caused by the
device region, and subsequently move far away from it and keep propagating as different
wave-packets to a distant future.

If we assume that the number of sub-bands M is energy independent for the range
pr, > E > pg, the Fermi-Dirac function becomes a step function [f(E) =1 for © = 0 K]

and we obtain

i =%iM(“L“_R)’

h e
o1 _(p —pR)fe  12.8kQ
: I iy A

(3.1.8)

G

(3.1.9)

where G_! is the electrical resistance between the electrodes and the quantum system
(contact resistance) and (1, — pugr)/e is the bias applied to the electrodes. We assume

that the applied bias, V', modify the electrodes chemical potential symmetrically as

eV
and "
€
[LR:,LI,U—?, (3111)

respectively, where p is the common equilibrium chemical potential.
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The discussion so far has been based on the assumption that we are dealing with a
ballistic quantum system with probability of transmitting the incoming electron equal
to unity. For a ballistic system with probability less than unity, we include a factor in
Eq. (3.1.9), which gives the average probability, 7', to transmit one electron through the
quantum device. The transmission coefficients, T', will be formally defined in Sec. 3.3.
Then, Eq. (3.1.9) can be rewritten as 2

2¢?

Ge = =-MT, (3.1.12)

which is known as the Fisher-Lee formula [104]. Note that conductance quantization is
given in steps of the quantum conductance, Gy = 2¢%/h. In summary, while systems at
the macroscopic scale obey the Ohm’s law, at the nanoscale, important differences can be
observed: (i) the contact resistance at the interface between the electrodes and the device
is independent on the length of the device. (ii) The conductance do not decrease linearly
with the cross section of the device, in fact, it changes discretely with the number of
sub-bands available for conductance in the range of energy given by the external applied
bias. (iii) The conductance depends linearly on the transmission probability of the device.

At © = 0, incoming electrons from the left electrode with energy pu;, > E > ugr can
tunnel through the device and occupy empty states on the right electrode. However,
electrons from the right electrode can not be transmitted to the left electrode since all the
states are already occupied at 0 K. Nevertheless, for temperatures different from 0 K,
we need to take into account the Fermi-Dirac distribution functions of each electrode so
that Eq. (3.1.7) becomes

9¢ [+

Feon T(E)(fu(E) — fa(E))dE, @.1.15)

=00

where T(E) = M(E)T(E).

3.1.1 Conductance linear regime

In equilibrium, 7.e. for no external applied bias, I = 0 for

B —F BR s for © =0
fu(E) = fr(E), for ©® > 0.

2In this simple derivation, we assume that T is the same for all the sub-bands, which can be easily
generalized if we consider that MT = Zf\il T
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If we consider small fluctuations around the equilibrium, the current is proportional to
the applied bias

) 0
ar=7% | {[T<E>]eqd[<fL<E> — FalED] + (Al BV 5 E)]eqde))qu}, (3.1.14)

where the second term vanishes since the two electrodes have the same Fermi-Dirac func-
tion at equilibrium. Expanding the first term of Eq. (3.1.14), we obtain

O, :
dfy; = (a_lj)#z:lmd:ui , with du; = pi — po

(_%)#HM[NL — pR) (3.1.15)

dlfy - fa] ~ %—) e

where fj is the Fermi-Dirac function at equilibrium (4 = Ey). Therefore,

dl o d fo
G=——+=— | T(E)(—==)dE. 3.1.16
(1, — pr)/e h (E) BE)( ( )
For low temperatures, we have the following
J .
Jor=V(E; — E) = -0—f£z0(Ef—E) (3. 1.47)
and
1, if E;—E>0 La -y =E
10 T ) R 6 S IS Boend R e (3.1.18)
0, if Ef—E<0 )% if Ef?éE

where Y(E; — E) and 0(E; — E) are the Heaviside and Delta-Dirac functions, respectively.

Finally, by inserting this result into Eq. (3.1.16), we have the conductance in the linear
regime given by

262 ~ 2@2 =
G=" [ T(EW(E -E}ME =  G="T(E) (3.1.19)

Note that this formula is valid for applied bias (y; — pr) much smaller than kg©, so that
the first order expansion used in Eq. (3.1.15) can be justified.

3.2 Lippmann-Schwinger equation
Let us consider a single-particle Hamiltonian for our entire system, such as

H=Hy+V(r), (3.2.1)
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where the first term corresponds to the free unperturbed electrons and the second contains
the scattering potential due to the nanoscale junction. This is assumed to be time-
independent. We can solve the Schrodinger equation for the full Hamiltonian and as well

as only for I:IO, i.e. in absence of the scattering potential, so that

i s Bl .
ih [0(2)) = H(0) (1) (3.2.2)

and

e - :
lha [Yo(t)) = Ho(t) |o(t)) , (3.2.3)

where [¢)(t)) and [1)o(t)) are the perturbed and the unperturbed state vector, respectively.

These equations can be written in a more compact form as
Ly(@) =0, (3.2.4)

where £ = ih% —Hor L= ih% — Hy, is a linear differential operator. From the general
theory of differential equations, one can rewrite Eq. (3.2.4) in terms of Green’s functions
or propagator, G(t), as

LG(t) = 16(r — r)o(t —t'). (3.2.5)

In fact, Eq. (3.2.2) can be solved with two types of Green’s functions

R Ry e
(ma_y)g (t) = 14(t). (3.2.6)

Eq. (3.2.6) represents two equations of motion for the Green’s functions G* and G~ with

the boundary conditions

Gt(t) =0 fort < 0, retarded
and
G (t) =0 fort >0, advanced.

These boundary conditions lead to the two formal solutions of Eq. (3.2.6) as

iR ey ()
Gt(t) = A e IS A e . y 3.0.7
(®) {0 t<0 (®) S ( )

The propagator G*(t) (for t > 0) is proportional to the time-evolution operator given by

U(t,0) = e 38 (3.2.8)
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for a time-independent Hamiltonian. Similarly, one can describe the time-evolution of a

state vector using the Green’s function as

(1)) = ihG* (t — to) [ (to)), for t > to, (3.2.9)

i.e. G propagates the state vector and contains the history of its time evolution. For
this reason, G is called retarded Green’s function. Similarly, G~ can be used to define

the time-evolution of a state vector to past times as

1W(t)) = —ihG~(t — to) [¥(to)), for t < to, (3.2.10)

in other words, G~ carries information about the history of the time evolution from the
present to a past time. Therefore, G~ is called the advanced Green’s function. If instead of

dealing with the full Hamiltonian H we use the unperturbed Hamiltonian, I:IO, we obtain

_ie—iHot ¢ 0 1=
gt(t) = B and G (t) = b =1k 3.2.110
o (t) i o o (t) T T ( )

to which we shall refer as “free” retarded and advanced Green’s functions, respectively.
We now want to relate the Green’s functions for the full Hamiltonian, H, with the

Green’s functions of the unperturbed Hamiltonian, H,. For instance, we can write

(m% e FI()) = 16(t) [GE(1)] ", @82.12)

which can be inserted into Eq. (3.2.6) to yield
16(t)GE(t) = 16(t)GE(t) + GE()VGE(L). (3.2.13)

If we integrate this equation for G from ty to t > to we finally obtain the Lippmann-
Schwinger equation which relates the full retarded Green'’s function to the free retarded

Green’s function
t
g+(t—t0)=go+(t—to)+/ dt'Gt(t —t)VGs (¢ — to). (3.2.14)
to

Likewise, if we perform the integration for G~ from ¢ < t; to ty we obtain similar relation

for the advanced Green’s function as
t A
G (t—to) =Gy (t —to) + / dt'G(t — t" VG, (t' —to). (3.2.15)
to

Eq. (3.2.14) and Eq. (3.2.15) can be rewritten in a different way where one can iteratively

replace the full Green’s function inside the integral by its own value, which leads to an
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infinite series expansion. This is the basis for a perturbative expansion, and one obtains
t A
G (t —to) =Gg (t —to) + / dt'gt(t —t")\VGs (t' — to)
t
t ik . . N
+/ dt’/ dt"GT(t —t)WWGF (' —t")VVGs(t" —to) + ... (3.2.16)
to to
and
t A
G~ (t —to) =Gg (t —to) + / dt'G=(t —t\VGy (t' — to)
t
¢ t ’ 5 g
+/ dt’/ dt"G=(t — WGy (t' —t")VGy (t" —to) + . .. (32.17)
to to

If the series expansion converges, one can write the effect of all the scattering events into
a single quantity called self-energy, £*, and Eq. (3.2.16) and Eq. (3.2.17) can be rewritten

as

t 1
G (t—to) :g;(t—t0)+/ dt’/ dt"Gs (t —t)ZT (' —t")GT (" —tp), for t > tg
to to
(3.2.18)

and

to to
G (t —to) =go‘(t—t0)+/ dt’/ dt"Gy (t —t")Z(t' —t")G~(t" — to), for t < t,
t t!
(3.2:19)

known as Dyson’s equation for the retarded and advanced Green’s functions, respectively.

Within the mean-field approximation, the self-energy is simply
S =Te —). (3.2.20)

Up to this point, the Lippmann-Schwinger equation and Dyson’s equation present no
difference when solving the problem. However, when interactions among particles are
present, the self-energy might be more complicated than the one of Eq. (3.2.20). In this

case, the Dyson’s equation presents a more compact way to represent these interactions.

3.2.1 Time-independent Lippmann-Schwinger equation

One can rewrite the Lippmann-Schwinger equations via Fourier transforming the time-

dependent retarded and advanced Green’s functions. Therefore,

g+(E) L / dteiEt/he—ét/hg+(t) £54 / dteiEt/he-ét/hg+(t) (3221)

0o 0
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and
0 [e%s)
g*(F,)z/ dteiE‘/"eW”g*(t):/ die™ e ¥ G (i) (3.2.22)
—00 0
for the full Hamiltonian and
G (E) = / dteiBe=0t/nG (1) (3.2.23)
0
and "
QO‘(E):/ dte'Bt/he=0thG= (1) (3.2.24)
0

for the unperturbed Hamiltonian. The infinitesimal quantity 6 > 0 in the exponential
term guarantees that the integral converges. If we insert the results of Eq. (3.2.7) into
Eq. (3.2.21) and Eq. (3.2.22) we have

) 1
G =, (3.2.25)
EFE+i6—H
for the retarded Green’s function and
Gl = (3.2.26)
E—i6—H o

for the advanced Green’s function. Similarly, if we insert the results of Eq. (3.2.11) into
Eq. (3.2.23) and Eq. (3.2.24), we have

1
Gf(E) = ———, 3.9.97
0 (B) o e ( )
for the free retarded Green’s function and
o . (3.2.28)
0 ol e ¢ =

for the free advanced Green’s function.
All the Green’s functions have poles that corresponds to the eigenvalues of the respec-

tive Hamiltonian. Moreover, by simple inspection, they are related via
[6*(B)]" = 6-(B), (3.2.29)

and the same relation holds for the free Green’s functions. After Fourier transforming the

self-energies, we can rewrite the Dyson’s equation as a function of energy

G*(E) = Gy (E) + G5 (E)2*(E)G*(E), (3.2.30)
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which can be presented also as

1
Tl R Sy

G*(E) (@230

3.2.2 Spectral representation of the Green’s function

Let us assume the single-particle Hamiltonian of Eq. (3.2.1) and rewrite the Schrodinger

equation as

H |1/)n> = EnS Iwn>7 (3232)

where the N,-dimensional vectors |1¢),,) are the single-particle wave functions with eigen-
values F,, and S is the overlap matrix that accounts for the non-orthogonal basis set.
One can always normalize the state vectors so that the orthogonality relation becomes
(Yn| S |tm) = Omn. The corresponding completeness relation for the set of eigenvectors is
Y n [¥n) (¥n| S = 1y, where 1y, is the N, x N, identity matrix. The Hamiltonian in its

spectral representation is given by

Ny

n=1

so that the retarded Green’s function of Eq. (3.2.25) can be written as

N, 1
+ g
G (B) =D pra— g, ) . (3:2.34)
The spectral function is defined as
A(E) =i [g*(E) - §~(B)], (3.2.35)

and it can be seen as a generalized density of states. From the spectral representation of

G* we can write

1 1

= ZZ:; b |thn) (Y] = jopie T g |thn) (¥n]
N. 5
—2) S (3.2.36)

and if we take the limit & — 0™ we have

AE) = 2m Y (B — By ) (. (3237

n=1
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Therefore, the density of states (DOS) is written as

_1
T O

In many situations, it is useful to count the contributions due to a single orbital, so that

v(E) Tr[A(E)S]. (3.2:38)

one defines the projected density of states (PDOS) as

Ny
v(E) = %ZAI,,(E)S,,,. (3.2.39)
l

where the indeces [ and p are single-particle basis set orbitals. Eq. (3.2.37) and Eq. (3.2.38)
show that the spectral function, and therefore the Green’s function, contains all the

information about the states of the system. Moreover, the density matrix

Nu

p—= | vl ; (3.2.40)
n=1

can be equally expressed as a function of the spectral function. If it is assumed that
the system is in thermal equilibrium with the environment, for a system of Fermions the
weight function, p,, becomes the Fermi-Dirac distribution function, f(FE), as given by

Eq. (3.1.3). From Eq. (3.2.37), the density matrix can be written as

1 : ,
p= %/dEj(E)A(E), (3.2.41)

where the energy integral is over the entire real energy axis (from —oo to 00). At equi-
librium the knowledge of the spectral function therefore uniquely determines the density
matrix and consequently all the ground state properties of the system. We note that due
to the assumption of thermal equilibrium with a reference system, p is implicitly a time
averaged quantity. For a system out of equilibrium the same argument can be applied,
the only difference being that the state vectors, [¢,), are split up into separate sets, in

local equilibrium with only one of the reservoirs, with different local chemical potential.

3.3 Non-equilibrium Green’s function formalism

3.3.1 Green’s function for the scattering region

In this Chapter we present the so-called non-equilibrium Green’s function formalism
(NEGF) also known as the Keldysh formalism [63]. This is done by solving the equations
of motion for specific time-dependent single-particle Green’s functions, from which we
can compute physical properties, such as charge density and electrical currents. This

formalism is exact only when dealing with a closed quantum system, but not necessarily
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isolated. External perturbations may drive the system away from its thermodynamic
equilibrium. The NEGF formalism allows us to describe the out of equilibrium state of
a quantum system, which consists of a scattering region (SR) attached to semi-infinite

electron reservoirs or electrodes.

o o e Lo g
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Figure 3.1: Schematic representation of the general transport setup using NEGF. (a) The
different parts of the system are identified by their Hamiltonian. The scattering region
or the device is highlighted in the dashed square. (b) the electrodes are replaced by their
self-energies.

In the present work we are interested in studying the electronic transport properties
of nanoscale devices, which consist of a nanoscale object connected to two electrodes, as
schematically shown in Fig. 1.1. In such systems, the SR is a nanoscale structure and
the full system is a quantum system with open boundary conditions, i.e. it is an infinite
non-periodic system, as schematically shown in Fig. 3.1(a).

The quantum transport problem can be discussed from three distinct view points,
namely, thermodynamics, electrostatic and quantum mechanics. From the thermody-
namic point of view, as discussed in Sec. 3.1.1, the electrodes are considered as electrons
reservoirs in their thermodynamic equilibrium and therefore characterized by their chemi-
cal potentials. When the system is in equilibrium, i.e. no external bias is applied, electrons
will flow between the parts of the system until a common chemical potential is reached.
However, if a bias is applied to the system, e.g. a battery keep a chemical difference be-
tween electrodes, according to Eq. (3.1.10) and Eq. (3.1.11), an electrical current can be
established. The current is the result of the attempt to restore the equilibrium condition.
Thus, by keeping the external bias, the system can reach a stationary state current.

When the system is under an external bias, a redistribution of charge will occur. Since
the electrodes are assumed to be good conductors, they screen any perturbation caused

by the presence of the SR. Then, from a electrostatic point of view, the potential drop
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due to the applied bias is assumed to occur only in the SR.

From the quantum mechanics point of view, the system can be divided into three
regions: the left and right electrodes and the SR, as shown in Fig. 3.1(a). We define the
SR as a quantum structure that breaks the translation symmetry of the electrodes, e.g.
a molecule, a defect and so on. The electrodes are semi-infinite in size and they hold
periodicity along the transport direction. Each electrode unit cell can be described by
a Hamiltonian I:IO(L,R). This operator can be represented by a matrix with dimensions
depending on the basis set used to describe the atoms of each unit cell. In terms of
localized basis set, one can define the size of the unit cell to assure that each unit cell
interacts only with its first-nearest-neighbor cells. Then, the dimensions of the matrix
that represents the operator I:IO(L.R) will be N x N, where N = va’“ ors N et
is the total number of degrees of freedom in each electrode unit cell. Moreover, the
operator H; describes the coupling between each unit cell and its neighbors and Hp is
the Hamiltonian of the SR where “D” stands for “device”. Finally, the coupling between
the device region and the left (right) electrode is given by Hip (ﬁDR).

The Hamiltonian of the entire system can be written in matrix form as

0 H, Hy H 0
o SOV W Rl
Ml 0 R 0 Hwp Hp Hpr 0 (3.3.1)
0 Hpg Hy H
0 Hqy Hy o Hy

where H_; = HI, Hpy = HED and Hpgr = H;{D. In principle, one solve the problem by

diagonalizing this matrix, however, it is infinite.
The NEGF offers another way to treat the problem. In this framework, we start by
rewriting the Schrodinger equation in terms of Green’s functions as:
[ES —H|G(E)=1T (9.3.2)

where €* = lim;_,g+ (F £ 40) is the energy and S is the overlap matrix that appears when

one is dealing with non-orthogonal basis set. In terms of matrices, Eq. (3.3.2) is given by

€S, —H € Sup — Hip 0 g, Gup Gir R

e*Sp, — HpL € Sp— Hp € Srp — Hrp gpr, Gp Ypr |=1 0 1 0

0 €etSpp — Hrp €Sk — Hr Or.. Urp Or 0 0 7
(3.3.3)

where all the elements of the Green’s function matrix are energy dependent (we omit the

explicit energy dependence to simplify the notation). Moreover, the matrices Hy,, Hg,
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Hip and Hpgr are semi-infinite and are written as

(O by R T b ST ol o )

L (3.3.4)
0 Hy Ha B
OS5 L5 [
Hyg' o Hyy 0
H R ET e T I () s
HR = e i (3:3.4]
Hip = 0 (3:3:6)
Hip
and
Hip = ( B O ) (3.3.7)

Eq. 3.3.3 can be solved by conventional matrices multiplication, which leads to nine
equations. However, by considering metallic electrodes, the coupling between the device
and the electrodes will not affect their electronic structure. This allows us to focus on
the device region and solve explicitly only three equations. Therefore, from Eq. 3.3.2, the

Green’s function of the device region is given by solving the following equations

(GiSL — HL)QLD(E) =+ (FiSLD = HLD)QD(E) =0}, (338)
(EiSDL — HDL)QLD(E) + (EiSD — HD)QD(E) ar (EiSDR — HDR)QRD(E) =75 (3.3.9)
and

(e*Srp — Hrp)GLp(E) + (€5Sr — Hr)Grp(E) =0.  (3.3.10)

The third line of the first matrix was multiplied by the second column of the second
matrix. Solving Eq. (3.3.8) and Eq. (3.3.10) for Gy p(F) and Grp(FE), respectively, we

obtain

Gup(E) =(e*SL — Ho) ™ (Hip — € SLp)Gp(E), (3.3.11)
Gro(E) =(¢*Sr — Hr) ' (Hrp — € Srp)Gp(E). (3.3.12)

By defining the Green’s functions for the isolated electrodes as

gL(E) =(e*S, — Hi) ™, (3.3.13)
gr(E) =(¢*Sg — Hr) ™, (3.3.14)
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we can write Eq. (3.3.11) and Eq. (3.3.12) as

Gup(E) =gL(E) [HLD i fiSLD:I Gn(E), (3.3.15)
Gro(E) =gr(E) [Mrp — €*Srp] Gp(E). (3.3.16)

By inserting Eq. (3.3.15) and Eq. (3.3.16) into Eq. (3.3.9) and solving it for Gp(FE), we
have:

Go(E) = [(€*Sp — Hp) — ZL(E) —ER(E)]—l. (3.3.17)

which corresponds to the retarded and advanced Green’s functions for the SR in the

presence of the electrodes. Moreover, ¥ (F) and Xg(FE) are given by,

SL(E) =(Hip — € Sup)gu(E)(HpL — € SpL), (3.3.18)
Yr(E) =(Hrp — € Srp)gr(E)(Hpr — € Spr). (3.3.19)

These are the electrodes self-energies. Unlike the self-energy shown in Eq. (3.2.20), the
self-energies Y1 (F) and Yg(F) are non-Hermitian, i.e. ZLR(E) # XL r(E). In fact, from
the general property of the Green’s functions presented in Eq. (3.2.29) we obtain from
Eq. (3.3.18) and Eq. (3.3.19) that

e e IUES 6 (3.3.20)

i.e. the advanced self-energy is the Hermitian conjugate of the retarded self-energy and
vice-versa. This is a consequence of partitioning the system into electrodes and SR so
that the interface potentials act on the states of the central region, as if the central region
Hamiltonian is perturbed by the presence of the electrodes through their self-energies, as

schematically shown in Fig. 3.1(b).

3.3.2 Energy renormalization and lifetime

From Eq. (3.3.17), one can see that in absence of the self-energies (¥ = 0), the
Green’s functions have poles in correspondence to the eigenvalues of Hp. Therefore, the
self-energies make the Green’s functions analytic by renormalizing the eigenenergies of

the device Hamiltonian. If we write the self-energies as
ZLR(E) = RE‘{ELR(E)} + Im{ZLR(E)}, (3321)

i.e. in terms of their real and imaginary parts, we can rewrite Eq. (3.3.17) as

1

S (e£Sp — Hp) — Re{XL(E) + Zr(E)} — Im{ZL(E) + Zr(E)}

(3.3.22)
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Thus the real part of the self-energies shift the energies of the Hamiltonian of the device.

By using explicitly the retarded and advanced Green’s functions of Eq. (3.3.22), we define

[g*E)] ™ - [67(®)] ™ = (ZH(B) - ZL(®)) + (SH(E) - ZR(B))
= z[rL(E) + FR(E)] = i[(E) (3.3.23)

where one can define the electronic coupling between the scattering region and the elec-
trodes by
Tr(E) = i [ o(E) - Z[_R(E)] = —2Im{Z{ x(E)}. (3.3.24)

Without the imaginary part of the self-energies, the eigenenergies associated with the
solution of the Green’s function would be shifted with respect to the eigenenergies of the
free device Hamiltonian. The imaginary parts, however, move these solutions away from
the real energy axis, inside the complex plane. This imaginary part is associated with
the decay of the solutions, therefore, they can be interpreted as the rate at which the
electrons are scattered out from the states of the isolated device Hamiltonian. Thus the

states of the device region acquire a broadening due to the interaction with the electrodes.

3.3.3 Density matrix

As discussed at the end of Sec. 3.2.2, for a system out of equilibrium, we can split
up the contributions to the density matrix attributed to states in local equilibrium with

only one of the reservoirs, namely

D = PDL + PDR- (3.3.25)

The individual parts are

oo = [ B punlB) ma(E) ha) (WD (3.3.26)

n=1

pon = [ dEY pra(B) va(B) [0R.) (R, (3.3.27)

n=1

where W’?L /R},n> is part of the state vector extending over the SR. The occupation number
piL/R}n(E) lies between 0 and 1 and determines the occupation of each state. We now
assume that the left and the right leads are in local thermal equilibrium, and therefore
have a local Fermi energy, Ep (1,/ry. Thus each of the states [¢1/r}) () has a probability
of being occupied given by the Fermi distribution fi/ry(£) of the lead it originates from.
The {|t)Ln)} describe states originating from the left lead, we have py ,(E) = fu(E), and

analogously we have pg ,(E) = fr(£). This is one of the central approximations in the
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NEGF formalism. A bias voltage V4, which is defined as the difference between the Fermi
energies of the two leads divided by the electron charge, e, so that eViqy = Er 1, — Ep g, can
now be specified. Note that the energy eigenvalue spectrum of the entire system is only
defined up to a constant, so that one can choose the reference of energy. A convenient way
is to consider the Fermi level of the system at equilibrium, Ef, as reference and setting
FEr1 = Er+€Vy/2 and Er g = Er — eVq/2. This is the convention used throughout this

work. We can therefore write

Ny
ppL, = /dE fu(E) (Z vn(E) [¥Ln) W’EJ)
n—=1
1
= 2—7;/dE fu(E) Apy, (3.3.28)
and in the same way
1
pon = 5= [ 4E Fu(E) Avr. (3.3.29)

Note that we have introduced the spectral functions for the parts of the system, Apy, and

Apr. We now define the lesser Green’s function for the SR, G, as [105]
G5 =i o [fL(E)y + fu(E)Tr] G, (3.3.30)

where the couplings, I'y g, are given by Eq. (3.3.24). By using this definition, and
Eq. (3.3.25), Eq. (3.3.28) and Eq. (3.3.29), the density matrix of the SR becomes

i
= %/dE G5 (E). (3.3.31)

This is the central equation of the NEGF formalism [63], and allows one to obtain the
charge density of the SR attached to leads also out of equilibrium. If all the leads have
the same Fermi energy, then we recover the equilibrium result of Eq. (3.2.41).

The same procedure can be repeated for an arbitrary number of electrodes, Nejeetrodes-

In that case the total lesser Green’s function becomes

Nelectrodes

n

g5 =10p < fn(E)Fn> 5, (3.3.32)

3.4 Transmission and current

3.4.1 Wave function

The Schrodinger equation for the partitioned system can be written in a matrix form

as
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4 H1 Hip 0 WJL) St . SLp 0 |Q’)L>
o Hp Hor #°) | =E| So.. Sp Sor [wP) | . (3.4.1)
0 Hrp Hr |(/)R> 0 SrRD SR |wR>

We have divided the state vector into its parts corresponding to the individual parts of
the system as
%)
vy = 1¥°) |, (3.4.2)
™)

where [%) (|YR)) is the part of the wave function (WF) extending over the left (right)
lead, and [)P) is the part extending over the SR. Moreover,

|'~PL>
[RTE R A (3.4.3)
0

where |p1) is the state vector for the isolated left electrode so that
Hy |pL) = ES|eL) - (3.4.4)

When the isolated electrodes join the SR, the state vectors will be different due to their
interaction with the SR and indirectly with the other electrodes. Therefore, |¢)f) has the
dimension of the entire system, u.e. the SR plus the electrodes, and it corresponds to the

change in WF due to the presence of the SR. In an analogous way |¢r) is given by

0
lwr) =] 0 |+UR). (3.4.5)
|S‘9R>
The [¢{,) then satisfy the equation
0
0
where we have defined

K=%H~(E+id)s. (3.4.7)

From this definition it follows that Kp = KIT) and Kp{L/ry = KEL/R}D. Eq. (3.4.6) has
two sets of solutions [105]. One is obtained by multiplying Eq. (3.4.6) with the retarded
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Green’s function from the left

0
|¢ﬁ:>:g+ KoL |oLn) | (3.4.8)
0

and the other is obtained by multiplying it with the advanced Green’s function

0
Wen) =6 | Kovlevs) |- (3.4.9)
0

The first describes electrons flowing from the left electrode into the SR and the second
describes electrons propagating from the SR into the left lead [105]. If there is no right
electrode attached to the SR these solutions are identical. Our aim is to distinguish the
solutions arising from a given electrode. Therefore, we focus on the first set of solutions,
i.e. those described by the retarded Green’s function. If we use the matrix form of
the Green’s function given in Eq. (3.3.3), the total wave function originated in the left

electrode can be written as

1y, + gL KipYp Kpr,
|’I/)L.71> = gDI(DL ’SOLJI) 3 (3410)
grKrpGp Kpr,

where 1;, is a unity matrix with the dimensions of the left electrode. For the wave

functions originated in the right electrode we obtain,

9LK1pGp Kpr
lrn) = GpKpr |oR,n) - (3.4.11)
Ig + gr KrpGp Kpr

3.4.2 Current per channel

In this section the current associated to a single state vector is calculated. Since the
state vectors, [1,,), are normalized in such a way that (¢,,| S'|¢y,), the electron charge in
the SR, gp, is

gp = (¥*|Sip |¥®) + (¥°|Sp |[¥°) + (¥*|Sro [¥°) . (3.4.12)

If the overlap terms proportional to Syp and Sgp are neglected this becomes

go = (¥°|Sp [¥°) . (3.4.13)
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In order to obtain the current we need to define the time-dependent state vector given by
the time-dependent Schrodinger-like equation
0 W’)t

where the index ¢ in [1)), indicates that this is the explicit time-dependent state vector.
The solution for the time-dependent state vector is [1), = e "¢/ |)). The time derivative
of the occupation of the SR for such an eigenstate is given by

dap _ OwPlSp [9°), _

ot ot

0. (3.4.15)

This means that the change in charge is zero, because the inflowing current from one
lead is equal to the outflowing current through the other lead. These two currents can be

obtained by explicitly taking the time-derivative of gp. The time derivative of [¢)P), is

D :
i Bt/h SDa |gt )t £ —%ESD |4P) (3.4.16)
— —% (KDL ”l/)L> = HD |1[)D> e KDR I'Q//'R>) U (3417)

The time derivative of the occupation of the SR then is

o - .<8t 5o 0P, + (01,50 Ié‘)t .
= = (WM K [¥P) — (P Ko [¥4))
+,% ((W®|Krp |9°) — (¥°|Kpr [¢%)) . (3.4.18)

This shows that the change in charge is equal to the sum of the total current flowing in

from the left lead, I™, and the total current flowing in from the right lead, I®, so that

dqp

— =I"+I*=0, 4.1
5% 7+ o (3.4.19)
and I¥ = —I®. The two currents of the single state vectors are
i
r = = (" Kwp [9°) — (0P| KoL [9")) , (3.4.20)
i
I} = - ((¥®|Krp [¢¥°) — (@°|Kpr [¢¥7)) . (3.4.21)

3.4.3 Transmission coefficients and total current

The total current from the left lead into the SR, I, is equal to the sum of all the
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contributions from the single state vectors
Ik = /dEZ fu(E) wa(E) IE
+ / dE " fr(E) vra(E) If (3.4.22)

where, by using Eq. (3.4.20) the current I, due to a single state vector coming from the
left lead |ty ,) is

7 >
]IE,n o _ﬁ ((wknl I{LD W’En) K <Z/JII?.n|ADL |wIIjn>) ’ (3423)

and the current I§ , due to a wave function originating in the right lead |y ,) is
T B i -
[1131‘71 = E (<w]ﬁn‘ Kip lwgn> oy <ll/‘)g.n‘ADL lelin>) ; (3424)

By inserting the explicit expressions for ¢y, and ¢g, [see Eq. (3.4.10) and Eq. (3.4.11)],

and after some algebraic manipulations, we obtain

1 ¢ ) ‘

It, = 7 (¢Ln| KLpGp TRGS KoL [0Ln) » (3.4.25)
1

Ty = i (prn| KroGp LGS KR |PR8) - (3.4.26)

We have used the definitions of G} [Eq. (3.3.17)], T'L g [Eq. (3.3.24)], and also the fact that
Ky = KIIA and KvL/ry = KEL/R}M. Since I'g is positive-semidefinite, and considering
that for any semidefinite matrix M also the matrix UMUT is semidefinite for an arbitrary
matrix U, it can be seen that IF', > 0. This is consistent with the fact that states
{Itr,n)} describe electrons flowing from the left electrode into the SR (and then into the
right electrode). By choosing ¢, [Eq. (3.4.9)], obtained by using the advanced Green’s
function, then the electron flow would be from the SR into the left electrode, so that
such states would not originate in the left electrode. Thus, If, < 0, so that the {|¢r )}
describe electrons flowing from the SR into the left electrode.

The total currents due to the states originating in the left (Il) and right (I) electrodes

are
NL
I = /dEZfL(E)uL,n(E)JLL,n, (3.4.27)
n=1
Nr
Ik = / dE " fr(E)vaa(E)IE,. (3.4.28)

n=1
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so that IV = IT + I%. By using the result of Eq. (3.4.25) we obtain for I

Np
1
1t =5 [ABA(E)Y malB) (6l KinGTnG Ko lovn).
n=1

The current for each wave function is larger than or at least equal to zero, therefore,
IF > 0. The quantity in brackets is a scalar, so that it can be rewritten as a trace. We

then rearrange the matrices to

it=3 [dERE) T

NL
Kpr, (Z .ol E) lonn) <’¢L,n|> KLDQBFRQS} - (3.4.29)

n=1

By using Eq. (3.2.35) with the definition of the spectral function and Eq. (3.3.13) for the
isolated electrode Green’s function, we can write the spectral function for the isolated left

electrode as

= 2m Z VL, n IVL n <‘7‘9L.n| . (3430)

Finally, by using the definition of I'y, given by Eq. (3.3.24) with Eq. (3.4.30) and inserting
both into Eq. (3.4.29), we obtain

1
e E/dE fu(E)Tr (TLG5TRGE) -

Likewise, the total current from the left electrode into the SR, carried by the states
originating from the right electrode, is given by
1

= —E/dE fr(E)Tx (TLG5TRGY) - (3.4.31)

We can now define the transmission coefficient 7' [103, 63] as
& =l (FLQBFRQS) , (3.4 32)

with 7" > 0. The total probability current then is
i:
1= [ dET(EB)AE) - B (3.4.33)

We note that I™ depends only on the difference between the Fermi energies of the elec-
trodes, which by definition is equal to the bias voltage eVy. Eq. (3.4.33) shows that only
the states within the bias window, 7.e. those lying in the energy range between Efp |, and
E¥ g, contribute to the current with an amplitude proportional to T'(E). We note that if
the density of states in any of the electrodes vanishes at a given energy, the corresponding

['-matrix will be zero, and therefore also the current will vanish. For a two-terminal device
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I = —I® then we can define the two-terminal current through the SR I as being equal
to I, so that
1
1= [dBT(E) (1(E) - R(B). (3.4.3)

We point out that Eq. (3.4.34) describes the probability current. Therefore, in order to
obtain the electrical current, I., one needs to multiply it with the electron charge, e, so
that

_ 2

I.= % [ dE T(B) [fu(B) - fa(E)], (3.4.35)

where the factor of 2 is due to the spin degree of freedom. This is the well-known Landauer-
Biittiker result for the current through a two-terminal device [103, 63]. In the spin-
polarized case the transmission for majority spins [T7(E)] and the one for minority spins
[T¥(E)] are independent, and have to be evaluated separately for each spin. The total
transmission then is T(E) = TT(E) + T*(E). The total current is I, = I + I}, where I}
is the current carried by the majority spins, and I¥ is the one carried by minority spins.

The total current taking into account spin is given by

L= [ 3 T (0165 RG] LAu(E) - SulENE, (3.4.36)
o=T,{

where all quantities depend on the energy. From now on, we refer to the electrical current
as just [ by omitting the subscript “e”.

This formula was already presented in Eq. (3.1.13) where it was derived for non-
interacting electrons, i.e. where all the coherences between the states were neglected. In
other words, the Landauer-Biittiker approach presented in Sec. 3.1 is a particular case of
the NEGF. In the former, interactions in the SR are taken into account via a self-energy
function, which, in principle, contains all possible scattering events that a single-particle

experiences in the presence of all other particles, i.e. in a mean-field approximation.

3.5 DFT and NEGF

Throughout the present work, we use DFT as the electronic structure theory in
conjunction with the NEGF. Although this combination works satisfactorily for many
systems, it presents important limitations that lead to erroneous predictions. Thus, we
conclude this Chapter by discussing some of these limitations.

In principle, one would like to establish how accurate is a ground-state DFT calcula-
tion of current with respect to the true many-body current evaluated for a well-defined
nanojunction. In fact, this is a fundamental problem associated with DFT itself. Even
if one could evaluate the current using ground-state DFT (even with the exact ground-

state functional in hands) within the Landauer-Biittiker approach, we do not know how
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it would differ from the current obtained with the true many-body system developing in
time. The reason is not to be found in the lack of the exact ground-state functional but
rather because we are employing a ground-state theory to treat a non-equilibrium prob-
lem. Therefore, the use of ground-state DFT in combination with the Landauer-Buttiker
approach must be understood as a sort of mean-field approximation, even if we know the
exact ground-state functional [63].

In addition, it is assumed that the single-particle KS-eigenvalues correspond to the
energy levels for the real interacting-electron system (an assumption which is usually made
also in ground-state DFT calculations). It is also assumed that the KS Hamiltonian is
also valid out of equilibrium. Moreover, as we will see in the next chapters, the problem
of the correct position of the KS-eigenenergies (see Sec. 2.5.1) can lead to major errors
in the prediction of the transport properties of molecular systems, as we shall discuss in
Chapter 6. This is closely related to the problems of DFT presented in Sec. 2.5.2 and
Sec. 2.5.3, namely the lack of the derivative discontinuity and the self-interaction error,
respectively.

Due to the fact that the NEGF uses a single-particle picture to describe the electrons,
it can not correctly describe transport through very weakly coupled states. This is the
situation of quantum dots in the Coulomb blockade regime. In this cases many-body
effects, that are not included in the NEGF formalism described here, may play an impor-
tant role. The transport properties of these systems are usually calculated using master

equation approaches, as we will see in Chapter 7.



Chapter 4
Density Matrix Formalism

Open or dissipative quantum systems have been the subject of intensive research
since many decades [106, 107]. Such systems are conventionally described in terms of the
reduced density-matrix formalism, where the corresponding equation of motion, 7.e. the
master equation, can be obtained by a number of techniques [108]. Among them, the
Nakajima-Zwanzig projection technique [109] and the real-time diagrammatic technique
developed by Konig et al. [110, 111, 112].

The pioneering Redfield theory for dissipation [106, 107], commonly described in text-
books [113] has more recently been applied, by several groups, to study tunneling through
molecules [114, 115, 116, 117, 118, 119, 120, 121]. The ME within this formalism, called the
Wangsness-Bloch-Redfield master equation (WBR-ME), is based on the reduced density-
matrix approach and implies the Born and Markov approximations in the relaxation
description, this allows one to explicitly trace out the bath variables from the relaxation
operator and to obtain a local-in-time equation of motion for the reduced density matrix.

The master equation approach is a computationally efficient way to describe quantum
transport in molecular systems. Moreover, it is relatively simple to account for important
effects, such as, Coulomb blockade (see Chapter 7), temperature and light-induced charge
transport (see Chapter 8), where the parameters can be obtained by means of first-
principles. In this chapter, we start by presenting a brief overview of quantum mechanics
concepts needed for the discussion. Then, in Sec. 4.3, we present a full derivation of
the WBR-ME used throughout the manuscript and all the approximations related to the
practical applicability to quantum transport. Another important approach constructed

on top of the WBR-ME, namely, the 7-matrix approach, is also presented in Sec. 4.5.

4.1 Time evolution

The dynamics of a quantum system can be discussed using three different represen-
tations or “pictures”, namely, the Schrodinger picture, the Heisenberg picture and the

interaction picture. In this section we will present the different representations and dis-
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cuss how they are related. The interaction picture is of particular interest when dealing
with time-dependent perturbation theory, which will be used to derive the equation of

motion for the density matrix operator, the ME.

4.1.1 The Schrodinger picture

This representation is useful when dealing with time-independent Hamiltonians so that

% = 0. Any other operator, A, may be time-dependent. The state vectors, [(t)), do

depend on time and their evolution is given by

|[9(t)) = U(t,0) [4(0)), (4.1.1)

where U (t,0) is the time evolution operator. The Schrodinger equation is written as

iR (1)) = H(E) b(0). (4.1.2)

which implies the equation for the evolution operator

Gh .\ A
ih,aL{(t,O) = H{AE.0), 4.1.3)
If the Hamiltonian is time-independent, then we see that the evolution operator is simply
given by
U(t,0) = e 71, (4.1.4)

In summary,

St (t)) = e~ #H [4(0))

A~

The Schrodinger picture A, may or may not be time-dependent

operators: it .
H is time-independent.

(4.1.5)

4.1.2 The Heisenberg picture

Sometimes, it is preferable to incorporate all the time dependencies in she operators,
A(t), and work with time-independent state vectors, |1)). The Hamiltonian of the system,
H, remains time-independent. Note that if the matrix elements of any operator between
any two state vectors are identical in the Schrodinger and Heisenberg representations,

then both representations are fully equivalent since

W' ()| Alp(t)) = ('] exftAe k8 |y = (' A(t) |[v) (4.1.6)
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where the unitary transformation of Eq. (4.1.4) was used. This representation can be

summarized as

states: {1/}( =8 th [1)(0))
The Heisenberg picture Alt) = ™ A (0} 7™ (4.1.7)
operators:
H is time- independent.

4.1.3 The interaction picture

The Schrodinger and Heisenberg pictures both require a time-independent Hamilto-
nian. However, very often, we have to deal with time-dependent Hamiltonians. This is
more conveniently treated within the interaction picture. In this representation, the full
Hamiltonian is written as H = Hy + V(f) Here, Hy is the time-independent part of the
Hamiltonian so that Hy |ng) = €, |no). The states |ng) are perturbed by some, possibly
time-dependent, interaction V(f) The task in the interaction picture is to separate the
fast time evolution due to the unperturbed Hamiltonian from the more complicated in-
teraction V(t). This can be achieved by replacing the full Hamiltonian, H, in Eq. (4.1.4)
by its unperturbed part, Hy. As a result, both the state vectors and the operators will

depend on time.

states: [r(t)) = entlot |g)(t))
The interaction picture Ar(t) = enHot A(t)e—nHot (4.1.8)
operators: g g )
Hy is time-independent

The Schrodinger equation for a state |¢;(t)) given in Eq. (4.1.8) is

) (0 + e (i 10(e))

= e%ﬁot (—I:Io ar H) |w(t)>
- e%{fotf/(t) [o(®))
= enHoty/ (¢)e T Hot |y (¢))

i 1 (8) = Vi (0) (1) (4.19)

Hentot

@i
Zha [¥1(t)) = ih (

The resulting Schrodinger equation is explicitly written in terms of only the interaction
part of the full Hamiltonian. If V;(¢) = 0 then ihZ |r(t)) = 0, that is, the time de-
pendence of [;(t)) originates entirely from the perturbation term. If this term is small,
|1 (t)) will vary slowly with time and Eq. (4.1.9) can be solved within the time-dependent

perturbation theory framework, a task easier than solving directly Eq. (4.1.2). The time
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evolution of a state [1;(t)) from a time ¢y to a time ¢ is given by an unitary transformation

[Wr(t)) = Us(t, to) [¥r(to)) , (4.1.10)

where
Uy (t, to) = et (¢, tg)e ™ Hoto (4111

depends only on V (t) and U(t, to) is given by Eq. (4.1.4) in the Schrédinger representation.

4.2 Perturbative expansion

In principle, all cases where the interaction picture is used, a perturbative expansion
in the interaction, V;, is carried out and this is implicit in the evolution operator. The
task now is to find a useful formula for the time evolution operator. By evaluating the
time derivative of Eq. (4.1.11), we have

poUitt) _ .0 (e%”‘)‘f/(t, to)e%’”m)

ot ot
0 . 5 0
— Zh'a—t (e%HOfU(t’ to)) e_TIHOtO _+_ ?h (P%Iﬂ)t(](f,to)) ‘_/ "l oto
a % T A~ T 8 —i f
= [Lha (()EHOi) U(t, t()) + Zh(JE}lnta—tU(t. fo) gTHOtO
— e%l:lot (_I:IO i I:I) U(t, to)e%ﬁoto
— e%ﬁOIV(t)e%iﬁote%HotU(t7to)e_Tlll:IotO
oU;(t,t .y
S — 00t o

where we used the results of Eq. (4.1.3). By integration of this differential equation we

obtain the integral equation

i N -
UI(t7 tO) =0+ E / dtl‘/](tl)UI(tlv t0)7 (422)
to

where the initial condition is Ul(to,to) = I, that is, when V; = 0. For V,(f) sufficiently
small, U 1(t,to) will only differ slightly from I. The operator U 1(to, to) can then be replaced
by the identity operator and we obtain the first-order term given by

2 1 t .
U@ t0) = 1+ — [ dt'Vi(t). (4.2.3)
th Jy,
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If we iterate this equation we derive the following pertubative expansion

A~

1 t » 1 t ¥ t1 g
U[(t,to) =1+ —h/ dt]V](tl) — ﬁ/ dt1V1(t1)/ dtQV](tg) e (424)
? to to to
This equation describes the time evolution from time ¢y to time t of the system due to
consecutive scattering events caused by the perturbation V, at times tq, t9, t3 and so on. In
other words, it gives additional phase factors to the state vectors due to the perturbation

on top of the trivial phase factors arising from H,.

4.3 Master equation I: the Wangsness-Bloch-Redfield

master equation

The ME approach involves two steps. Firstly, one derives the ME from the von
Neumann equation for the full system. This shows how the reduced density operator
changes based on its present and often its past values. Secondly, one solves the ME to
determine the time evolution of the system or its stationary state solution. It is generally
more complicated to find the time evolution when the ME contains memory, or history
of the past times. Therefore, approximations are called to circumvent this, usually to
obtain a ME that is local in time. In the present Chapter we follow closely the derivation
presented in Ref. [64].

4.3.1 Liouville equation in the interaction picture

Let us now write the density operator, p, in the interaction picture. By evaluating the

time derivative of this operator, we derive the Liouville equation
9pi(t) _ ; d
ot ot
= i (Uit t0)p()) U} (¢ to) + ih (Un(t, to)(t))
i
I

th

o
8— IT(t’ tO)
I

~

t
(t)
= [V, (1)) (4.3.1)

This is a rather important result, since the density operator depends only on the interac-

tion Hamiltonian. This equation can be written in an integral form:

prlt) = i)+ 5 [ s [Viten) ). (43.2)
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which can also be solved iteratively

A (t) = pi1(0) (4.3.3)

A0t = 52(0) + 1,1 / i [Vi(). 5 (0)] (4.3.4)

A = i / i, / dts [Vi(t). [Vi(ta). pr(0)]]. (4.3.5)

and so on. By using the iterative procedure we compute the small changes in the density
operator caused by a perturbation in the state of the system due to consecutive scattering
events.

We are interested in studying the transport properties of physical systems comprising
of a small sub-system (for instance, a molecule) connected to two fermionic electrodes.
The small sub-system is not in equilibrium because of its interaction with the environment

(the reservoirs or electrodes). The Hamiltonian of the entire system can be written as

Figure 4.1: Schematic representation of an open quantum system. The sub-system S,
described by the Hamiltonian Hg, interacts via V with the environment R, described by
the Hamiltonian HR.

H= I:IS =1 I:]R == V, (436)

where S and R denote the small sub-system and the reservoirs, respectively, and V is
the interaction between them. From this point on, we assume the interaction between
the reservoirs and the small sub-system to be weak, so that we may treat V within
perturbation theory. We use the interaction picture so that the time evolution of any op-
erator, A;, is given by Eq. (4.1.8), where the unperturbed time-independent Hamiltonian
is ﬁo — ff.g + ﬁR. The Liouville equation for the density operator of the entire system,

X1, can be written as

=1 [0.00)] - 3 [ a [50), [ )] @sn
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4.3.2 Simplification: separability

If we assume the interaction between the systems & and R gets swiched on at ¢ty = 0,!
we separate the dynamics of § by tracing out the contribution of the reservoirs from the
full density matrix in order to obtain the reduced density matrix [113], p; = Trr(xs). By

doing so, the initial full density matrix can be written as a product:

x(0) = x1(0) = xs(0) ® X=(0), (4.3.8)

where xs(0) = p(0). In other words, the initial state between the systems S and R is

uncorrelated for times prior to tg = 0, t < tp.

4.3.3 Born approximation

One can always write the full density operator at any time as

il(t) = f)l(t) & XA’R(f) == i(‘()l'l‘(’lati()ll(t)' (439)

where Eq. (4.3.9) provides the definition of Xcorrelation(t). If the interaction starts at ty = 0,
for any time in the past, Eq. (4.3.8) holds. If we assume that the coupling between the

two sub-systems is weak, Eq. (4.3.9) will approximate to

Xi(t) = pr(t) @ Xwr(t) (4.3.10)

for timescales over which perturbation theory is valid. In addition, we assume that the
correlation time of the reservoirs , 7z, and consequently the relaxation time, is small so
that

Xr(t) = Xr(0),if t > 7R (4.3.11)

and
Xr(t) = pr(t)x=(0). (4.3.12)

In other words, the reservoirs are assumed to comprise so many degrees of freedom that
they are not affected by the interaction with S, independently on the amount of energy
transferred to them from S. Hence, they will remain at thermal equilibrium, .e. the

density matrix will be simply given by

1 a
X (0) = =e PHR, (4.3.13)
Z
where Z is the partition function, Z = Tr (e_FBI—F’HR). This is the fundamental condition

for irreversibility. We can then write the equation of motion for the reduced density

INote that this can always be obtained by choosing to = 0 appropriately.
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operator as

A l 3 A - s ! i f . g
pr(t) = =+ Ter [Vi(t), 51(0)%=(0)] - / at'Trr [V (t), [Vi(t'), 51 (¢) xR 0)] ]
0
(4.3.14)
According to this equation, the behavior of S depends on the past events in the time

interval [0, t] because the integrals contain p;(t'), 7.e. this ME is non-local in time.

4.3.4 Markov approximation

If we assume that the time scale for the reservoirs to keep their correlation is much
faster than that in which the small sub-system S is modified, then the system loses its
memory and the influence of past times do not affect the evolution of the system. This is
also a consequence of the weak-coupling limit between the quantum sub-system and the
reservoirs.? This is equivalent to say that p;(t') &~ p;(t). This approximation is called the
Markov-approzimation. Then, Eq. (4.3.14) can be rewritten as

pilt) = —%Trn [Vi(t), p1(0) = (0)] —% / dt'Ter Vi), [Vi(t). 1 ()%= (0)] ], (43.15)

i.e. it becomes local in time. In Eq. (4.3.15), the rate of change of p; at time ¢ is determined
by p; at the same time t only. In order to solve this equation, we need to specify a form
for the interaction V;. A generic form for the interaction operator is a product between
the small sub-system operators, s;, and the reservoirs operators, 7;. In the interaction

picture, we have

Vilt) = ) _ si(t)n(e), (4.3.16)
where

§i(t) = enflsts e Hst (4.3.17)
and

7i(t) = enfRtp e ® HRE, (4.3.18)

By inserting Eq. (4.3.16) into Eq. (4.3.15) we obtain
5 l £l " y
pi(t) = —3Trr Z [$:()7:(2). 1 (0) X (0)] +

-5/ i 3 o (RO [50)50). 0 O] (4319

2A discussion on the validity of this approximation in terms of temperature can be found in refer-
ence [108].
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The operators s; act only on the subspace of the system S whereas the operators r; act
only on the subspace of the reservoirs R. In other words they commute and therefore
we can interchange their position. Also, by considering the cyclic property of the trace,
Tr(ABCD) = Tr(DABC) = Tr(CDAB), the first term of Eq. (4.3.19) can be written as

a %TYR Z [$:(t)7:(t), pr(0)x=(0)] =

1

= —ﬁTrRZ{sfi(t>fi<t>m<0)xn(0> — p1(0)X=(0)s;(t)7

~
—
~
7
>
~.
=
~
2
N/
Il

= 2T (P10 ()XR(0) — 7K (0)A1(0)5,(0)) =
= _% Z{gi(t)[)](()) — p1(0)8:(t)} Trr (7:(t)X= (0)) =

— *% Z{§i(t);51(0) — p1(0)8:(8) }(ri(¢)), (4.3.20)

where the definition for the expectation value given by Trz (v;(t)x=(0)) = (r:i(t)) was
used. If we use the same reasoning for the second term, we can rewrite Eq. (4.3.19) as

[

pr(t) = — ﬁ

{5:0)1(0) = pr(0)s:() () +
o D / at{ ()5, ()pr(t) = 55(#)pr(1)5i(0) ) ()75 () +

+ (A5, ()5(8) = 500 (#)) (75 ()7 |- (43.21)

The task now is to calculate the expectation values and the correlation functions. If we
assume that the reservoirs are in equilibrium and that the states |R) are the eigenstates of
Hp, the operator given in Eq. (4.3.13) is diagonal. Therefore, all the elements (R|7;(t) |R)
must be non-diagonal. This means that there is no average energy shifts on the reservoirs,
then (7;(t)) = 0, and the first term of Eq. (4.3.21) vanishes. The time correlation functions,
(7:i(t)r;(t")), describe the average correlation between interactions that occur at times ¢
and t'. The reservoirs dissipates quickly the effects of its interaction with the system S
so that

(Fi(t)r5(t)) #0, if t —t' < 7g. (4.3.22)

On the contrary, for t—t' > 75, the interaction becomes less correlated and the correlation

functions satisfy the condition

The integral in the second term of Eq. (4.3.21) is non-zero only for times in the time

interval [t — 7r,t']. Outside this interval, the values of (') have little influence on p(t).
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4.3.5 Relaxation time approximation

Because the correlation functions depend only on the time difference t” =t —t', it is

more convenient to write them as
(Fi(t)r5(t) = (At — )ry), (4.3.24)

so that we can rewrite the equation of motion for the reduced density operator [Eq. (4.3.21)]

as

0= 2 [ e {[50.5 0~ m@) G — [0, 05— ) e}

where the limit of integration extended to infinity is justified by the discussions of Eq. (4.3.22)
and Eq. (4.3.23), that is, for times ¢ longer than 75.

4.3.6 Equation of motion

Let us consider the following set of state vectors {|S)} = {...,|m),...,|n), ...} to be the
eigenstates of Hs. If we write the system Hamiltonian over the basis of its eigenstates,

we can extract the time dependence from the system operators,

m| s; n)=m 6" b (& w n
o ¢ Hsf

= en“mnt (m| 5 |n) (4.3.26)

where (m| Hs |m) — (n| Hs |n) = €, — €, = hw. We can then write the matrix elements
of the commutators of Eq. (4.3.25) as

(m/|[$:(¢), $5(t — t")p1(t)] Im) =

= (m'| {8i(t)$;(t — t")pr(t) — $;(t — t")pr(t)é:(8) } Im) =
= 37 (e ) 5, 1K) (65 1K) <k'1 pul) m) +
kk!

ezwm/k/ (t—t") lwkm <m/| 5,]_ |k,) <k/| ﬁ](t) lk) <k| éi lm>> (4.3.27)
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and

(m'| [5:(1), pr(t)s;(t — t")] Im) =
(m| {8:(t)pa(t)s;(t —t") — pr()$;(t — t")5i(t) } Im) =

- Z (ctmwtetannt=t (a3, ) (K (8) K} Gk 35 1m) +

kk'
— e Rt (| oy (1) [K) (k]

K'Y (k'] 3 Im) ) (4.3.28)

By inserting the results of Eq. (4.3.27) and Eq. (4.3.28) into Eq. (4.3.25), the matrix

elements of the density operator write

(m'| pr(t) |m) :——Z (k') pr(t) / dt”{
0

i7kk’

(e o]
s umi5, 3 (] o) a3 1) [ dtremtout" i)+
0
— e Wmrw FWkm)t (| §; |k') (k| 8 |m) / dt" e m K U E (E)F) +
0

o0
— elmtwem)t (| 5 |K'Y (k| 55 |m) / dt" e “rmt” (7.7 (£7)) +

0

oo
+ ¢ilmip twemlts Z (k| 55 |a) (a| 8; |m) / dt"e*i“’*"t”<7fjfl-(t")>},
0

(8

(4.3.29)

We have also multiplied the first and fourth terms by e“*n! and e™“='»! respectively,
which is allowed because of the presence of the d,,, and 6,/ functions.

By defining, for simplicity
il o S
Akt = ﬁZ(myléiIM (1] 55 In) /0 dle 0 U (H0F), (4.3.30)
ij

and

e %Z (m| 8

ij

) (1] 5 |n) /0 dt" e~ wmkt” (7.7 (1)), (4.3.31)

we obtain the so-called Redfield relaxation coefficients given by

Ryymir = = —Omk Z /\m tscik? T )‘kmm’k/ ¥ )‘kmm’k’ = Um'k z /\kaam (4332)
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The coefficients given in Eq. (4.3.30) and Eq. (4.3.31) obey the following conditions:

/\;lmln ey )\l—nmm =0, (4334)
where the condition of Eq. (4.3.34) is related to the fact that (m|s; |m) = (m|8;|m) =0,

that is, no energy shift is allowed in the system due to the interaction term Vl(f) We can

now rewrite Eq. (4.3.29) in the form

(| pr(t) [m) = 3 (K| pr(t) |K) Repsmsge’ i +okm)t, (4.3.35)
kk’

In order to simplify further Eq. (4.3.35), we assume that the typical time-scale to observe

i
mn?

any change in the system, w_ . is much shorter than the time for the integration step.

Note that the integration time must be also long enough to satisty the conditions discussed
in Eq. (4.3.22) and Eq. (4.3.23), that is, the Markov approximation. If this is the case,

only the terms that satisfy the condition
Wm'k! + Wkm = €y — €t + € — €y = 0 (4336)

are kept. The other terms contribute to only fast oscillations and they can be neglected.
If we assume that the states of the system S are non-degenerate with a non-regular energy

separation between them, we can write three different conditions that satisfy Eq. (4.3.36)

e The first condition is
m =k =k an o (4 an)

This applied to Eq. (4.3.35) gives
(m/| pr(t) [m) = (1 = pmr) (M| p1(2) [M) Renrmmrm, (4.3.38)

which will contribute to off-diagonal elements of the reduced density matrix operator.

e The second condition is
=k =kl £k, (4.3.39)

where we have

(m'| él(t) Im) = mm Z (k

k#m

P1(t) 1k) R, (4.3.40)

and the delta function assures that this term is diagonal.

e The third condition is
m=m=k=5%, (d.8.41)
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yielding
(M| p1(t) [m) = S (W] p1(2) [M') Rynrimrmr (4.3.42)

By adding up these three contributions we finally can rewrite a time-independent version
of Eq. (4.3.35) as

(m/| pr(t) Im) = (1 = Smme) (] p1(t) IM) R + O >, (K
k#m

o 5mm’ (Tn’/| ﬁ](f) 'm,> Rm’m’m’m’- (4343)

ﬁ](t) ‘k> Rmmkk

If we remove the constraint m # m’ from the first condition, the Redfield coefficients
of the first condition can be grouped with the one from the the third condition since

Rovmm'm = Rm'm/mmy. Furthermore, we can use the condition given in Eq. (4.3.34) to

write
Bttty = D At = e (4.3.44)
a#m' a#m
and
Rtk = Nt + Mommp = 2ReXf 0 = T, (4.3.45)

This allows us to rewrite Eq. (4.3.43) as

(m| pi(£) [m) = Gme Y (K| pr(t) k) T¥™ = (0| i (£) [m) Asprm. (4.3.46)
k*=m
When we consider the diagonal terms, i.e. m = m/, the second term of Eq. (4.3.46)

becomes

Amm =i Z ()‘;l;)aam N /\r_naam) o= Z [ (4347)

aF#Em a#m

and we finally can write the so-called rate equation for the reduced density matrix operator

i 51(t) Im) = 37 ((kl o) KT = {ml () m) ™). (4.3.48)
k#m

This equation will be extensively applied in the present work in Chapter 7 and Chapter 8.
The first term describes the increase in the population of a given state |m), while the
second term describes the de-population of that state. For this reason, Eq. (4.3.48) is
often called gain and loss equation. The coefficients I'*™ can be interpreted as transition
rates from the state |k) to the state |m).

The off-diagonal elements, i.e. m # m/, describe coherence between the states of the

system. In this case, the first term of Eq. (4.3.46) vanishes and we have

(m'| pr(8) [m) = — (| pr(2) |m) Apurn: (4.3.49)



Density Matrix Formalism 63

The real part of the A,.,, can be related to the transition rates, ['*. By applying the
condition given by Eq. (4.3.33) to Eq. (4.3.44) and by using the result of Eq. (4.3.45) we

see that

il SR B T e B

a#m/’ aFm

=Re(( X Mo + O Mo =

a#m/’ aFm

1 %( e S B (4.3.50)

a#m/’ a#m

The imaginary part is responsible for a small shift in the energies and can be disre-
garded. Finally, the matrix elements for the reduced density matrix can be written (in

the Schrodinger picture where p;(t) = e%ﬁsﬁ(t)e_?iﬁs) as

(mlp(t) Im) = ((kl p(t) |k) T*™ — (m] p(t) [m) F"’*) for m = m’
k#m
(m'| p(t) |m) = —% (m'| [Hs, p(t)] |m) — %( N, B0 3 rmﬂ) (m’| p(t) |m) for m # m'.

a#m’ a#m

(4.3.51)

4.3.7 Transition rates

The probability, Py(t), to find a quantum system in a final state |f) at a time ¢,
starting from the system in the initial state [¢), is given by |(f|i)|>. The time derivative
of the probability, 9,P(t), is therefore the change in probability per unit of time. This is

what we define as transition rate, namely
I = 9,P(t) = &:|(fID)|%. (4.3.52)

In this Section we derive explicitly the equations for the transition rates defined in
Eq. (4.3.45). In order to do that, we need to solve the correlation functions inside the

integrals in Eq. (4.3.30) and Eq. (4.3.31). By writing them explicitly, we have

() = Y (RIGE)IR) (R [R") (R'| %= (0) IR") =
RRIRY
= D ehE BRI (R |R) (RY) 75 |R) (RI %= (0) IR) (4.3.53)

RR!
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where we have considered the fact that the density matrix of the reservoir is diagonal, the

definition given in Eq. (4.3.18) and (R| Hz |R) = Fx. Similarly, we can write

() = Y (RIF IR (R #(E") IR") (R”] X= (0) |R") =

RR/R//
= enFr=ER (R ¢ |R) (R'] 7 |R) (R| X= (0) [R) . (4.3.54)
RR’
We can now rewrite Eq. (4.3.45) as
ka = /\Ij—mmk + Al:1717nk == 2Re/\2—mmk =5
1 ~ an / I an g 1+ (Erpi—ERr+wmi)t”
= =2 3 (RIXr(0)[R) ({(kRI 37 [mR) (mR| 57 kR) ) [ dieh (Br—Prtomn)t”
RR/ e
(4.3.55)

where we have made the variable change t” — —t” in the second term. We can now use
the definition of Dirac delta function given by [ dke**(*=%) = 27§(x — a) and finally
we obtain :
2% (R| %= (0) |R) [ <nz,7z'mm>‘ S — (4.3.56)

RR'

ka .

Note that we have defined E; = Eyr = Eg + ¢ and Ey = E,,g» = Egr/ + €5, This is the

well-know Fermi’s Golden rule for the first order time dependent perturbation theory.

4.4 Master equation II

4.4.1 Equation of motion: AC potentials

We want to study the effect of an oscillating (AC) external potential applied to the
system S through, for instance, a gate voltage. The energy levels of the system will
oscillate as €¢; — €;cos wt. With the AC potential applied, the Hamiltonian given in
Eq. (4.3.6) becomes

H(t)= Hs(t) + Hr + V, (4.4.1)

where Hg(t) = Hs + Hac(t) describes the time dependence of the system S. By applying

the unitary transformation

U(t) = e~/ dt'Hact) (4.4.2)
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to Eq. (4.4.1), the explicit time dependence of Hs(t) can be removed

H(t) = U'(t) (H (1)~ h,) U(0) =
= R #ie®) (g 4 faolt) + Hn +V — ih) e H @inct®) =
- I:]S L }AI'R al e%fdt/HAC(t/)‘A/e'%fdt/HAC(tl) ==
= Hs+ Hr + V(2), (4.4.3)
where we have used the fact that [Hs, Hac(t)] = [Hr, Hac(t)] = [Hac(t), Hac(t)] = 0.

By employing the definition of Eq. (4.3.16), the interaction Hamiltonian can be written

in the interaction picture as

‘:/I(t) ity Z (e%fdtﬂAC ) Hsts e hfdtHAc(t)e—%]:fst> < Han e hHRt) AS

= Z (e%fdtﬁs(t)éie—%fdtﬁs(i)) ( H'Rt,r’: e—EHRt) e
=D _&(b)it). (4.4.4)

After considering the same approximations as in Sec. 4.3, namely, the separability, the

Born and the Markov approximation, one can insert Eq. (4.4.4) into Eq. (4.3.15) and follow

Dy Y, )

are assumed to be the eigenstates of Hs(t). However, the eigenvalues are now given as

the same procedure. Again, the following set of state vectors {|S)} = {...,

(m] 8:(t) [n) = (m| e ] #HsO5,e=7 S dHst) |5y =

= gh f dtwmntGmneos wt) () 3 |y, (4.4.5)

where (m]| I:]S(t) |m) = €m + Encos wt, Awmn = €m — €, and (un = €, — €,. We can then

rewrite the matrix elements of the commutators of Eq. (4.3.25) as

(m| [$i(2), 8;(t — t")p1(2)] Im) = (m'| {8:()8;(t — ¢")pr(t) = —$;(t — t")pr(t)Si(2)} Im) +

. G b ; S e ”
Ao Z (ez(wm/kt+—lr7l-';hsm wt)ez[wkkl(t—t )+ =R sin w(t—t")] <m/| 3 |k‘> <k‘| éj |k/> <k)l| [)I(t) |m>
kk!

. " (e " g .
— el =+ S gm0 ) | 5 (K (K] (1) [RGB & m) ) (4.4.6)



66 Chapter 4

and

m'| [si(t 5] (t— t")] Im) = (m/[ {8:(t)pr(t)s;(t — ") = —pr(8)s;(t — t")s:(t) } [m) +
Z ( (w /k/t+ h "sin wt) 1[wkm (t—t")= +%§sin w(t—t")] <m/| éi lk,> <k1| ﬁ](t) Ik> <k| éj |m> s
kk

n el[“’kk’ t-t”)+—é—£—sm w(tft")]ei(wk/mt{»%ﬂlsin wt) (m'l ﬁ](t) |k> <k‘ ~

K'Y (K| & |m) ) (4.4.7)

By using the identity
zasm (wt) Z J quUt (448)

where J,(«) is the v-th order Bessel function of the first kind and o = (yp/hw, we can

define the coefficients

-Akm(ﬂ — gt (wWrm +asinwt) Z ] 1(wkm+uwt (4‘4'9)

Then Eq. (4.4.6) and Eq. (4.4.7) can be rewritten in a more simplified way as

(m'| [8i(2), $;(t — t")ps(t)] Im) =
Z (A (8w (= £) (| 3 ) (k1 85 1K) GK'| () ) +
kk

— A (t = ") A (£) (0] 35 |K) (') pr ( )|A><k|§l—|m>) (4.4.10)

and

(| [30(0). pr(1)s(t — )] ) =
= D (s (O) At = £) | 5, 1K) (K pr(8) k) (k] 5 m) +

kk!

— A (t — ") A (t) (0| pr(t) k) (KIS

" (K| 8 |[m) ) (4.4.11)

By inserting the results of Eq. (4.4.10) and Eq. (4.4.11) into Eq. (4.3.25), the matrix

elements of the density operator are
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(m'| pr(8) Im) = —% (K| pr(t) k) /OOo dt"{

ijkk!

b S5 20 (Gt ) S () 13010 015,60 )

X ei(wm;l-{—uwt) ei[wlk’ +/w(t—t"))

-5 (%) > (%) 15 1) Gt ) )5

z[w 1t Frw(t— t”)]ez Whm V' wt)

Xee

- (S e

YWt ot +uwt)ei[wkm +v/w(t—t")]

K') (k| 85 [m) (757:(t"))

)

XUE,
o ST (C) > (C—) 55 10) {118 [m) (757:(¢"))
4 ei[”’“”“’“’("_t”)]ei(‘“”"+”/‘“t)}. (4.4.12)

As we did for Eq. (4.3.30) and Eq. (4.3.31), we can define, for simplicity, that

1 Gk Gin A A s 1 —i(Win VW) [ (41 2
Nt = 75 0% (S22) o (52 (ml 110 W13y [ et sy
ij

(4.4.13)
and
mkln o = = Z J <<mk) (Cl_n) (ml §j 'k) <l| 3‘1 ITI> /oc dt,le—i(mmk+um)t//<7:]_7:i(t//)>7
h hw .
(4.4.14)

and we can now write the Redfield relaxation coefficients with the presence of an AC

potential as
Rtk = —Omk Z /\rtﬂuk' i /\r+n'k/km + Avkikm = Omik Z Aktim- (4.4.15)
l

The matrix elements of the reduced density operator are given by

Malidiilog = D R R R el e TSN (4.4.16)

kk'vv’!

When the frequency of the AC potential does not match the energy difference between
every two states of the sub-system S participating in the transition, only the secular terms

can be kept by considering v’ = —v, i.e. the same reasoning applied from Eq. (4.3.36)
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to Eq. (4.3.43). Similarly to Eq. (4.3.44) and Eq. (4.3.45), we can define the following
quantities
m liy Z Rm mm/m,v—v (4417)

and

r*m — Z Rk = zReZ S (4.4.18)

Finally, after following the steps from Eq. (4.3.46) to Eq. (4.3.51), we obtain (after going
back to the Schoedinger picture) an equation of motion formally identical to the case
without AC potential [see Eq. (4.3.51)].

4.4.2 Transition rates: AC potentials

In order to derive the transition rates for the case with of an AC potential, we need
first to calculate the correlation functions inside the integrals of the coefficients defined
in Eq. (4.4.13) and Eq. (4.4.14). In fact, they were already calculated in Eq. (4.3.53) and
Eq. (4.3.54). By inserting these results into Eq. (4.4.18), we have

ka Z /\kmml\ i + Z /\Ln)ml\ = = 2Re Z ’\I\mmk v—v
1 i i s i &
2 Z (R| x=(0) IR) (<AR| 81 mR') (mR'| 57 IAR>) / dilen\ SRt isa it

T R o)
VRR'
(4.4.19)

where we have used the property of the Bessel functions J_,(«) = (—1)"J,(a) and made
the variable change t” — —t” in the integration limits of the second term. We can now

use the definition of Dirac delta function and finally write

SR m "
rem = T Ty (%J) (R|x=
YRR

where F; = Eyg = Er + ¢ +vhw and By = Ep,g' = Ex/ + €. Moreover, v is the number

O [R)| mR|VIkR) [ 8B, - E),  (44.20)

of photons. This is again the Fermi’s Go