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SUMMARY

The monitoring o f underwater structures is often beset by limited access, exorbitant costs 

and inherent safety issues. This thesis focuses on developing and implementing automated 

image processing based Non-Destructive Testing (NDT) techniques to facilitate 

inspections. Adopting such techniques can vastly improve the condition o f monitoring, 

reduce the operational complexities and partially offset the financial burden o f regular 

inspections. To date, there has been very little work carried out on image based techniques 

for the purposes o f  detecting and quantifying the extent o f structural damage particularly 

affecting the submerged part o f m arine stmctures. This research endeavours to bridge that 

knowledge-gap through development and performance evaluation o f a series o f  advanced 

techniques and strategies. Underwater imaging is exposed to numerous challenges such as 

luminous complexities, poor visibility, light attenuation and backscatter which diminish the 

ability o f the camera, and subsequent image processing algorithms, to effectively identify 

and quantify instances o f  damage. This research addresses the deleterious effects o f these 

environmental conditions and phenomena, and through a repository driven approach, maps 

the impact that lighting, turbidity, and surface type have on the performance o f  developed 

techniques.

The developed techniques include a crack detection algorithm, colour and texture based 

damage detection algorithms, and a 3D shape recovery algorithm. The crack detection 

algorithm adopts a percolation based approach to automatically locate and quantify cracks 

in an efficient manner, removing the need for inspectors to manually undertake this tedious 

task. The damage detection algorithms employ advanced image segmentation methods to 

identify and quantify the severity o f damage on the surface o f  infrastructural elements, 

based on textural information or colour information. Each algorithm is naturally suited to



different applications, depending largely on whether the damage form under consideration 

is more separable from the background based on colour or on texture. Both o f these 

algorithms are validated on real world instances o f  infrastructural damage acquired from 

diving expeditions, as well as on above-water instances o f damages. A stereoscopic based 

approach is employed for recovering 3D shape, which utilises a dual camera set-up to 

simultaneously photograph a specimen o f interest from slightly different viewpoints. As 

part o f this approach, an efficient pyramidal loopy Belief Propagation (BP) Markov 

Random Field (MRF) stereo correspondence algorithm is developed. This algorithm is 

applied to a submerged pile covered with artificial marine growth in a large-scale testing 

facility in Boulogne, France, and is subsequently validated on a real word structure in Cork 

Harbour, Ireland. Having accurate 3D shape infonnation o f  submerged structural members 

is o f great practical importance when analysing the forces exercised by the waves, winds 

and currents.

A protocol for the implementation o f image processing techniques is established, which 

specifies the technical requirements for capturing imagery and outlines a set o f best 

practice guidelines to ensure the acquired imagery is suited for quantitative analysis.
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Chapter 1

Introduction

1.1 Background

The deteriorating condition o f infrastructure worldwide and the excessive costs required 

tor reparatory work necessitate the invention of smart inspection strategies. Recent 

estimates suggest that $1.6 trillion dollars will be needed for the rehabilitation, replacement 

and mamtenance o f  current infrastructure networks within the next 20 years for the United 

States alone (Adeli and Jiang, 2009). Structures in marine environment make up an 

important part o f the infrastructure network. The harsh and corrosive conditions make 

these structures especially susceptible to rapid ageing and deterioration compared to inland 

structures, and as such, the need for efficient inspections is greatly felt. The optimal 

inspection strategy would be to inspect at the right location, right time, with the right tool, 

and at the lowest cost (Rouhan and Schoefs, 2003). In today's economic climate, cost is 

becoming an unavoidably compelling factor. An increasingly popular low-cost strategy 

involves the use o f image processing based techniques as a means to strengthen 

conventional visual inspections by introducing a source o f quantitative information.

Visual inspection are affected by the ability o f inspectors to observe and objectively 

record details o f  defects, and are prone to considerations such as operator boredom, lapses 

in concentration, subjectivity, and fatigue, all o f  which contribute to increased variability 

and reduced accuracy (Agin, 1980; Estes and Frangopol, 2003; Komorowski and Forsyth,



2000). Furthermore, visual inspections almost always capture photographs to include in the 

inspection report to corroborate the inspector’s comments; however, these photographs are 

rarely exploited to their fullest potential in either a qualitative or a quantitative fashion. 

Adopting effective image based techniques can provide accurate quantitative information 

with minimal human supervision to supplement visual inspection techniques and increase 

reliability.

Image processing methods have applications in many o f areas o f Structural Health 

M onitoring (SHM). Rytter's (1994) four level damage detection hierarchy is often referred 

to when discussing SHM objectives. The four levels are: (i) detection o f the presence of 

damage, (ii) detection o f  the location o f damage (iii) quantification o f  the severity o f 

damage, and (iv) prediction o f  the remaining service life o f the structure. The success at 

any given level usually depends on having previously achieved success at lower levels. 

Image based methods developed for crack detection and surface damage detection are 

usually concerned with the second and third levels, i.e. detecting the location o f  damage 

and quantifying shape infonnation such as width or area. Having accurate knowledge o f 

the location o f  damage is particularly useful when image processing methods are used in 

conjunction with other specialised NDT tools such as ultra-sonic (US) measurements, 

where the aim would be to identify appropriate zones on the structure for further in-depth 

scrutiny. 3D Shape recovery algorithms are restricted to the third level, i.e. quantification 

o f the severity o f damage. The fourth level (prediction o f service life) is beyond the scope 

o f  this thesis, however, the quantitative nature o f the data obtained from image analysis is 

important and naturally lends itself to numerous applications, including for developing new 

damage models, or strengthening existing ones, which are used to forecast the rate o f 

propagation o f damage as the structure continues to operate.
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This research is worth tackling as there are considerable advantages o f  using image based 

methods as part o f the inspection process. The extensive effort and expense associated with 

undertaking inspections warrants the development o f sophisticated image based techniques 

that can fully exploit the available scene infonnation. This should be accompanied by a 

thorough exploration o f their on-site perfonnance levels so that inspectors are equipped 

with tried and tested NDT methods. Finally, there is no agreed protocol o f image collection 

and subsequent interpretation within the inspection framework (Phares et al., 2004). This 

research aims to till that void by detailing a full and comprehensive set o f best practice 

guidelines.

1.2 Thesis Outline

The thesis is organised in 6 chapters following this chapter. The majority o f  the work 

focuses on image based techniques applied in an underwater setting, but cases o f above­

water applications are also considered

Chapter 2 provides a literature overview summarising NDT techniques that are employed 

as part o f the inspection process, with a focus on the inspection o f  marine structures. 

Particular attention is paid to image based methods such as crack detection techniques, 

surface damage detection techniques, and 3D shape recovery techniques. Gaps in the 

literature are highlighted, which this thesis endeavours to fill. The novel contributions o f 

this thesis are outlined and it is shown how they constitute an improvement over current 

methods.

Chapter 3 presents a semi-automatic, enhanced texture segmentation approach to detect 

and classify surface damage on infrastructural elements and successfully applies them  to a
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range o f images o f  surface damage. The approach involves statistical analysis o f  spatially 

neighbouring pixels in various colour spaces by defining a feature vector that includes 

measures related to pixel intensity values over a specified colour range and statistics 

derived from the Grey Level Co-occurrence Matrix. Parameter optimised non-linear 

Support Vector M achines are used to classify the feature vector. A Custom-W eighted 

Iterative model and a 4-Dimensional Feature Space model are introduced.

Chapter 4 presents techniques relating to: 1) crack detection, 2) surface damage 

detection, 3) 3D shape recovery using stereo-vision, and 4) video tracking. All o f these 

techniques are based on colour infonnation as opposed to textural infonnation. The crack 

detection technique adopts a percolation based approach that offers greater efficiency over 

other percolation based methods, whilst still achieving good detection results, as the search 

space for cracks is confined to places where there is a sharp image intensity gradient as 

found by the Sobel operator. Furthermore, additional criteria are proposed for classifying 

potential cracks. A new surface damage detection technique, tenned REMPS (Regionally 

Enhanced M ulti-Phase Segmentation), is developed that integrates spatial and pixel 

relationships to identify, classify, and quantify the area o f damaged regions to a high 

degree o f  accuracy. REMPS consists o f identification, classification and enhancement 

phases. Combining each o f these constituent phases in an effective manner creates a 

powerful and robust detection algorithm. To further improve the detection accuracy o f 

REMPS, High Dynamic Range (HDR) imagery is examined. For the purpose o f recovering 

3D shape, an efficient pyramidal loopy B elief Propagation (BP) Markov Random Field 

(MRF) stereo correspondence algorithm, termed PaLPaBEL for short, is described. This 

algorithm is evaluated on synthetic and real world specimens. Finally, a video tracking 

technique is outlined, and is demonstrated on a vibrating suspension bridge spanning a 

river in Cork, Ireland, for the purpose o f identifying the natural frequency.
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Chapter 5 describes an open-source Underwater Lighting and Turbidity Image 

Repository (ULTIR) that features images o f various damage forms, material types and 

shapes, which are photographed under controlled lighting and turbidity levels. This rich 

resource is intended to give inspectors and researchers a platform to efficiently gauge the 

perfonnance o f image based methods under realistic operating conditions and on relevant 

specimens. It is o f  great practical importance for inspectors to have access to this 

infonnation so that they can, first and foremost, rationalise the use o f image based methods 

as part o f the inspection regime; secondly, create conditions that are conducive to good 

performance; and finally, choose an appropriate image analysis algorithm that maximises 

detection accuracy.

Chapter 6 introduces a protocol that describes a set o f best practice guidelines. This 

protocol addresses each stage o f the imaging pipeline from equipment set-up right through 

to post-processing and quality assurance (performance measurement). Such a protocol is 

needed to maintain the long-term integrity o f  an Infrastructure M anagement System (IMS), 

which is dependent on the quality and consistency o f  the input information. The protocol 

forms the basis for a set o f tests where image techniques are applied within the context o f a 

large scale experiment and to a real world structure. As part o f a large scale m ulti­

disciplinary experiment to track the extent o f marine growth, the stereo based 3D shape 

recovery technique, PaLPaBEL, is applied to a cylinder covered with artificial marine 

growth. PaLPaBEL is then perfonned in a real world setting on the submerged part o f  a 

pier located in Cork harbour.

Chapter 7 provides a summary o f  the research work carried out in the thesis and 

identifies the prim ary contributions. The m ajor findings and their impacts are appropriately
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discussed. Future research paths leading on from this thesis are suggested and the 

feasibilities o f undertaking such work are discussed.

The structure and flow o f this thesis can be summarised as follows: Chapter 2 reviews 

existing image processing techniques and practices in the domain o f  SHM, Chapter 3 and 

Chapter 4 develop image algorithms that improve upon the current state, Chapter 5 collects 

data for the purpose o f calibrating and evaluating these developed algorithms, Chapter 6 

completes the validation o f all algorithms on real world structures in adherence with a 

proposed protocol that sets out best practice guidelines for underwater image acquisition. 

Chapter 7 reflects on the results o f this thesis, draw's conclusions, and discusses future 

work.
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Chapter 2

Literature Review

This chapter provides an overview o f the literature related to the detection and 

assessment o f damage in underwater marine structures using image processing based 

techniques. The following sections are concerned with: (i) the inspection process, (ii) the 

main fonns o f  NDT techniques recently developed for topside applications (i.e. NDT 

techniques intended to be used in dry conditions), (iii) underwater NDT techniques, (iv) 

image processing techniques with a focus on techniques that have been applied in the 

domain o f NDT, and finally, (v) attempts at characterising the performance o f image based 

methods.

2.1 Inspection of Marine Structures

The deteriorating condition o f  marine structures worldwide and the excessive costs 

required for reparatory work places an emphasis on devising comprehensive strategies for 

the periodic inspection and monitoring o f these structures (Gangone et al., 2011; Schoefs et 

al., 2011). Having a comprehensive strategy is especially relevant nowadays given the 

increased loads and ever challenging environments that these structures are being installed 

in (Cusson et al., 2011; Xia et al., 2011).

The information obtained from inspections is useful when analysed in the context o f  an 

Infrastructure M anagement System (IM S), which allows for improved estimates o f  the 

remaining service life (Rong-Yau et al., 2010). A reliable IMS can help the decision
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makers to optimise intervention plans and enable them to make informed decisions 

regarding the future course o f action that would maximise the potential o f their 

investments. This aspect has attracted a growing interest in recent years as the importance 

o f  life cycle optimisation and the related financial benefits continue to be recognised 

(Sarma and Adeli, 1998; Sirca Jr and Adeli, 2005). For a well calibrated IMS, it is 

important that the input information from an NDT technique is accurate, which is often 

hard to achieve when the inspection is being perfom ied in a difficult environment.

2.2 Underwater Inspections

Underwater inspections introduce new challenges for inspectors, which are thoroughly 

summarised by Busby (1979) and Ramos (1992). These authors detail the legal 

requirements o f undertaking underwater inspections, the modes o f inspection, and the 

available damage diagnostic tools.

The different modes o f carrying out inspections include using divers, remotely operated 

vehicles (ROVs), manned submersibles, and Atmospheric Diving Suits (ADS) (Goldberg, 

1996). Diver and ROV based inspections are the dommant approaches. Divers offer 

significant dexterity, are capable o f  covering a wide area, descend to depths o f up to 50 m, 

and can facilitate inspecting at a number o f scales, from a detailed close-up assessments 

with the help o f specialised equipment if  necessary, to broader-scale visual assessments. 

The use o f  any specialised equipment will require additional training in its operation.

ROVs may be equipped with numerous sensors. Typically, they carry at least one or 

more camera/video systems. They can be deployed to much greater depths and for longer 

periods than divers. They are however considerably more expensive, inflexible, and



vulnerable to failure in comparison to a diver based approach. Consequently, their safe 

operation requires great attention to detail. Operators must be trained in piloting the ROV, 

which may require formal qualifications. This research embraces a diver based approach as 

the emphasis lies in creating an economical and easily deployable system, which only 

utilises readily available equipment and requires minimal training.

2.3 NDT Techniques

There exists a broad range o f  NDT techniques available to inspectors capable o f 

detecting various forms o f  damage. In many situations, NDT techniques offer the only 

practical way o f detecting damage. Before listing available techniques, it may be useful to 

specify what damage is as the definition varies somewhat in the literature. This thesis 

adopts the definition o f damage as given by Doebling and Farrar (1998), which states that 

damage is defined as "changes, either intentional or unintentional, to the material and/or 

geometric properties o f  structural systems, including changes to the boundary conditions 

and system connectivity, which adversely affect the current or future performance o f  that 

system". A highly attractive feature o f  NDT techniques is that they can evaluate a material 

without introducing further damage.

NDT techniques can be partitioned into two categories: non-visual and visual based 

techniques. There is a wealth o f examples from each category in the literature related to 

topside inspections, i.e. inspections carried out in dry conditions. Amongst the non-visual 

NDT techniques are ultrasonic scanning (Iyer et al., 2005), surface wave simulation (Kim 

and Kwak, 2008), acoustic emission techniques (Li et al., 2011; Sohn et al., 2008), ground 

penetrating radar (Belli et al., 2008), eddy current testing (Yusa et al., 2006), as well as a 

lot o f  recent interest in vibration based techniques (Adewuyi and Wu, 2011; Cruz and
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Salgado, 2009; Jafarkhani and Masri, 2011; Li et al., 2011; Talebinejad et al., 2011). 

Visual based techniques offer a good way o f detecting anomalies such as corrosion, impact 

damage and surface-breaking defects. Visual based techniques include image processing 

techniques, which are outlined in greater detail in Section 2.6. There are several specialist 

visual techniques such as remote visual inspection (Nugent and Pellegrino, 1991), yet the 

most common visual based approach is standard visual inspections carried out by trained 

engineers.

2.4 Underwater NDT techniques

Underwater NDT techniques are adapted from topside NDT techniques. The 

modifications usually entail waterproofing and tuning the instruments to suit the 

underwater environment. The most common underwater NDT techniques are: (i) Visual, 

(ii) Electromagnetic, (iii) Ultrasonic (US), (iv) Radiography, (v) Acoustic Emission (AE), 

and (vi) Vibration Analysis based methods (Berger et al., 1983). The capabilities and the 

drawbacks o f each o f these techniques are explained in this section.

2.4.1 Visual Inspections

Visual inspections are the most popular underwater inspection approach (W atson, 1992). 

They are the most basic and straight-forward inspection method. The main drawbacks 

associated with visual inspections are the requirement o f good visibility, and the lack of 

penetration below the surface. Additionally, the presence o f  bio-fouling can inhibit visual 

inspections by masking the underlying structure, and must be cleaned beforehand.
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The shortcomings o f  visual inspections when carried out by trained engineers/divers in 

isolation - without any supplementary tools - have been well observed in the literature. 

Agin (1980) and Komorowski and Forsyth (2000) found that the quality o f the assessment 

largely depends on the ability o f the inspectors to observe and objectively record details o f 

defects. Factors such as operator boredom, lapses in concentration, subjectivity, and 

fatigue contribute to the variability and reduced accuracy o f visual inspections. Gallwey 

and Drury (1986) found that incorporating image processing techniques into the visual 

inspection regime offered far greater reproducible and measurable performance over 

conventional visual inspection techniques.

2.4.2 Electromagnetic M ethods

Electromagnetic m ethods are the second most popular method after visual inspections 

(Rizzo, 2013). Electromagnetic methods include M agnetic Particle Inspection (MPI) 

(Groves and Connell, 1985), eddy currents (Goldberg, 1998; Yusa et al., 2006), electrical 

potential techniques (Dover and Bond, 1986), Alternating Current Field M easurement 

(ACFM) (Wei et al., 2013) and magnetic flux leakage techniques (Butcher et al., 2013). 

These techniques provide infonnation about surface and near-surface defects, and about 

the effectiveness o f cathodic protection systems for metallic structures. MPI methods are 

commonly used underwater to detect surface and near-surface flaws in ferromagnetic 

materials. They are capable o f  defining the true length o f discontinuities. MPI m ethods can 

only be applied to bare metal surfaces and, since the process is time-consuming, they are 

generally only applied in small areas that have been identified as being susceptible to 

cracking (Lindgren et al., 2002). ACFM techniques are non-contact electromagnetic 

techniques that offer the capability to detect and size surface-breaking cracks in a range o f 

different materials and through coatings o f  varying thickness. ACFM m ethods can also be



used for the purpose o f evaluating marine growth thickness. This task requires a diver to 

push a probe against the marine growth for a few seconds. The distance between the probe 

and the face o f  the underlying metal structure is then determined. W hile this approach is 

accurate and straightforward, the output is a series o f  spot measurements which is not as 

intuitive to interpret and visualise as image based approaches.

2.4.3 Ultrasonic Methods

Ultrasonic methods can be applied to a wide range o f  materials and offer the capability to 

detect both external and internal defects, thickness measurements, and weld examinations 

(Rose et al., 1983). US methods are based on the propagation o f ultrasonic waves 

generated by one or more probes through the structure. They are essentially local methods, 

and therefore, would require a lot o f time if  applied to large structures.

2.4.4 Radiographic Methods

Radiographic methods can detect internal flaws in any material (Correa et al., 2009). 

Radiographic methods have the advantage o f being accurate, the output is easy to interpret 

and visualise, and they have good resolution. However, the major drawback o f 

radiographic methods is that there are inherent safety concerns when deployed in an 

underwater environment due to the emitted radiation.

2.4.5 Acoustic Emission

Acoustic Emission tools can be used to monitor the progression o f  damage, estimate the 

extent o f corrosion in reinforced concrete structures and detect cracks (Blitz and Simpson,
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1996; Thaulow and Berge, 1984). Acoustic emission methods are attractive for m onitoring 

large structures such as offshore platforms. The continuous wave and current loads that act 

on these structures provide an eternal stimulus that causes stress waves to propagate 

throughout the structure. Detection and analysis o f the acoustic emission signals can reveal 

the location o f any defects, as well as offering a qualitative assessment o f their severity. 

However, the defect may remain undetected if  there is not sufficient loading to produce an 

acoustic event.

2.4.6 Vibration Analysis

Finally, there has been some recent interest in vibration based techniques such as (Hillis 

and Courtney, 2011). Vibration analysis techniques rely on the natural vibration modes, 

which in a marine environment are typically excited by wind and waves, and are dependent 

on the characteristics o f the structure. Like acoustic emission methods, vibration analysis 

techniques and are well suited for m onitoring large structures, however, a crucial drawback 

is that they cannot determine the presence o f  damage until it becomes large enough to 

affect the natural vibration frequency o f the structure. M oreover, environmental factors 

such as temperature must be accounted for and the precise location o f  a broken member 

cannot be determined.

2.5 Image processing based techniques

A convenient way o f  categorising damage is by dimensionality. Cracks, for instance, are 

characterised by their fine-structured, almost linear, shape so are therefore considered as a 

one-dimensional dam age form. Visible damages such as corrosion or spalling, which 

typically appear in larger areas on the surface o f  infrastructural elements, are treated as a
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two-dimensional damage form, while damages such as marine growth, where the objective 

is to retrieve shape information, is categorised as a three-dimensional problem. This thesis 

lightly considers the fourth dimension (i.e. three o f dimensions o f space, and one o f time) 

through the use o f video analysis.

Image processing techniques in each dimensionality category are naturally very different, 

but even techniques within the same category follow vastly different methodologies. The 

subsequent sub-sections provide an overview o f the literature related to image processing 

techniques in each category.

2.5.1 Cracks

Given the pervasive nature o f cracks, attempts to automate the crack detection process 

have received a lot o f attention. This has led to the development o f a num ber o f techniques 

such as wavelets (Khanfar et al., 2003), neural network approaches (Choudhary and Dey, 

2012), statistical filters (Sinha and Fieguth, 2006) and percolation based methods 

(Yamaguchi and Hashimoto, 2008). Zou et al. (2012) have addressed the issue o f  

challenging scene conditions by creating a robust three step algorithm involving shadow 

removal, tensor voting to create a crack probability map, followed by graph modelling. 

W ang and Huang (2010) conducted a comparison o f  crack detection methods and 

identified percolation-based methods as being particularly suited to detecting ambiguous 

cracks. However, they also recognised that conventional percolation based methods are 

computationally expensive given that they operate on a local basis at each pixel location in 

the image. The crack detection method developed in this thesis is a percolation based 

m ethod that offers improved efficiency.
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2.5.2 Surface Damage

Image processing based damage detection algorithms use either colour information, 

texture information, or a combination o f both, to isolate similar regions in an image. The 

effectiveness o f colour based segmentation algorithms and texture based segmentation 

algorithms will vary according to the surface and damage type under consideration as 

certain damages are more separable from the undamaged surface based on either their 

colour or texture attributes. Texture is an innate property o f surfaces (Haralick et al., 1973). 

There are numerous image processing based techniques which attempt to characterise 

texture; wavelet analysis (Lu et al., 1997), Laws’ texture energy (Choi et al., 2011), First 

Order Statistics (FOS) (Gill, 1999), GLCM (Gadelmawla, 2004) or hybrid methods 

(O 'Byme et al., 2013). The main forms o f surface damage encountered on ageing 

mfrastructural elements (corrosion, leaching, etc.) are often characterised to a greater 

extent by the change in colour from the undamaged surface than a change in texture. With 

this in mind, texture based segmentation methods for isolating damaged surfaces in the 

field o f  NDT can be classified as suitable for specific applications where the damaged 

regions have a noticeably different texture than the surroundings.

Colour based segmentation algorithms may be grouped into four m ajor categories; 

thresholding, edge detection using gradient information, region growing, and hybrid 

methods (Abdel-Qader et al., 2008). Existing literature contains a variety o f  these 

segmentation methods applied in the domain o f  NDT. M any o f  these methods are designed 

for a particular application such as the detection o f  weld defects (Anand and Kumar, 2009; 

Kasban et al., 2011; Vilar et al., 2009; Yazid et al., 2011) or pipe deterioration (Zheng et 

al., 2012), and/or for particular image sources such as optical (Yazid et al., 2011), thermal 

(Abdel-Qader et al., 2008; Heriansyah and Abu-Bakar, 2009; Huang and W u, 2010),
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ultrasonic (D'Orazio et al., 2008; Molero et al., 2012) and radiography (Anand and Kumar, 

2009; Kasban et al., 2011; Vilar et al., 2009; Yazid et al., 2011). As such, while these 

techniques may be effective for their designated purposes, they are understandably unlikely 

to perform well when applied to richly detailed, high-resolution optical images o f  a broad 

range o f surface types and damage forms in complex natural scenes. There exist very few 

studies that have developed powerful image processing techniques to cater for the 

detection o f damage in challenging circumstances. Thus, the emphasis lies in the 

development o f a new technique that can characterise features o f  interest in natural scenes 

with credibility (Lu et al., 1997; Naccari et al., 2005).

2.5.3 3D Shape Recovery Algorithms

In recent decades, considerable advances have been made in developing underwater 3D 

shape recovery techniques involving coded structured light (Bruno et al., 2011; Roman et 

al., 2010), photogrammetry (Cocito et al., 2003) and stereo photography (van Rooij and 

Videler, 1996). These techniques originate mainly from the fields o f marine biology and 

archaeology. No literature has been found o f a shape recovery technique being utilised as 

an underwater NDT technique. Coded structured light approaches use a light projector to 

project a light pattern onto an object. A camera then captures how the pattern interacts with 

the shape. Given the reliance on a light source to encode depth information, the success o f 

this approach is more susceptible to the effects o f  absorption and scattering that occur in an 

underwater environment. Additionally, the projected light interferes with the scene and 

may mask an object's natural colour, which could be an important factor when analysing 

the imagery for other purposes (e.g. for identifying marine growth species).
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Photogrammetry techniques are easily implemented and have the potential to achieve 

good results; however they are prone to breakdown if  the tracked feature points are lost, 

which can cause the camera to lose its bearing with respect to the subject. Stereo 

photography, which is also known as stereo vision, is principally based on finding 

matching pixels in two given input images taken from slightly horizontally separated 

points. There are a variety o f  stereo matching algorithms in existing literature. An 

extensive review o f m odem  stereo con'espondence is provided by Olofsson (2010). A 

stereo based approach is developed in this thesis as it is felt that the importance of 

inspections, coupled with the time and effort involved, should warrant a more dependable 

system, which lowers the risk o f false matches by enforcing certain constraints and allows 

useful depth information to be extracted from a single stereo image pair independent of 

other imagery. Additionally, the stereo vision can be integrated into a photogrammetry 

framework in order to recover the full 3D profile o f the subject.

2.5.4 Video Analysis

The use o f  video cameras in conjunction with image processing techniques makes it 

possible to access spatial and temporal dimensions. Video cameras are an attractive and 

user-friendly option compared to other ways o f recording spatial and temporal dimensions 

such as through a complicated network o f  accelerometers or sim ilar instruments. One 

application in SHM where this is o f relevance concerns vibrating structures. W ahbah used 

a video camera and two LEDs to measure displacements o f a particular area o f a cable- 

suspension bridge. Gehle and M asri (1998) used video analysis to track the m otion o f  a 

cable as part o f the control and monitoring o f smart structures. Olaszek used m ultiple 

cameras to measure displacements o f  a particular location in a highway bridge with the
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span length o f  33 m, and achieved measured displacements with an accuracy o f 0 .1-1 .0  

mm for bridges with a fundamental frequency up to 5 Hz.

2.6 Performance Characterisation

For a well calibrated IMS, it is important that the input information from an NDT 

technique is accurate and comprehensive. The measure o f the onsite performance o f  a NDT 

tool remains a pertinent question in the majority o f cases (Schoefs et al., 2012). The most 

suitable NDT for a given application will not only depend on the damage to be detected, 

but will also depend on the operating environment. Applying NDT techniques in an 

underwater environment typically results in a decline in performance compared to topside 

application in ideal conditions. This is similarly true for image based techniques.

W hile there has been a relatively great deal o f attention devoted to developing image 

based techniques, very little follow-up work has been done to map their perfonnances 

under varying operating conditions. The limited work includes that done by Bianco et al. 

(2013), who considered the effects o f lighting and total suspended solids (TSS) on a single 

stereo vision technique, and by O 'Byme et al. (2013), who investigated the effects o f 

turbidity and lighting on a surface damage detection technique. There is thus scope to 

develop a unified framework that offers the capability to assess the performance o f  any 

image processing technique in an underwater setting. This would enable inspectors to 

decide on the feasibility o f  adopting an image processing based approach prior to 

inspection and to isolate conditions that are conducive to good performance.

2.7 Scope for Integrating Image based Techniques into Inspections
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Image processing techniques are a mainstay in many other fields such as in bio-medical 

engineering or traffic engineering. However, there exists significant scope for further 

development in the domain o f SHM, as currently, the full potential o f  cameras is not being 

fully exploited. Cameras are a convenient and versatile tool capable o f m aking visual data 

a part o f  quantitative assessment for a wide array o f  applications in SHM. In order for 

inspectors to properly capitalise on the power o f  cameras and integrate them into the 

inspection framework, they must be aware o f each camera's limits, know how to acquire 

photographs effectively, and have access to efficient image processing techniques.

This thesis aims to address each o f these issues in a number o f ways. Firstly, new 

techniques are developed to address the unique problems encountered in an underwater 

infrastructural setting, and existing image processing techniques are customised to suit 

SHM applications. Secondly, a comprehensive image repository is created and an image 

acquisition protocol is established so that inspectors are equipped with the necessary 

knowledge to carry out camera based inspections.

19



Chapter 3

Texture Analysis based Damage 
Detection of Ageing Infrastructural 
Elements

3.1 Introduction

There are a wide range o f  dam age form s on the surface o f  infrastructural elem ents that 

are similar in colour to the non-dam aged surface yet are still easily identifiable by human 

observers as they are m arkedly different in tenns o f their textural com position. Such 

exam ples include spalling, honeycombing, erosion etc. D etecting these dam age forms 

using com putational m ethods presents new challenges. Conventional image based 

methods that rely on colour information will not produce good detection results. Instead, 

texture analysis based m ethods provide a more appropriate solution. This chapter 

presents a novel, semi-automatic texture segmentation approach to detect and classify 

surface damage on infrastructure elements. Physical properties o f  the identified damage, 

such as area, may be extracted with knowledge o f  a real world scale. Possible ways o f 

determining the scale factor include practical approaches such as placing an object o f 

known dimensions alongside the damaged region or by using a stereo system to obtain 3D 

information. A calibrated stereo-rig, which consists o f two cameras viewing the scene from 

two slightly different vantage points, is capable o f providing a fully scaled metric scene 

reconstruction at the expense o f  greater algorithmic complexity and the requirement o f an 

additional camera. Placing an object o f  known dimensions in the scene and reading the 

corresponding pixel dimensions in the acquired imagery is a straightforward solution.
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T he texture analysis approach involves generating feature vectors at each point in the 

im age, w hich are populated  w ith statistics derived directly  from  the im age as w ell as from  

a G rey Level C o-occurrence M atrix (G LCM ). Param eter optim ised non-linear Support 

V ector M achines (SV M s) are used to classify  these feature vectors. This chap ter in troduces 

tw o new  SVM  classification m odels; a C ustom -W eighted  Iterative (C W I) m odel and a 4- 

D im ensional Input Space (4D IS) m odel in w hich the feature vectors are m apped to a four 

dim ensional input space. These m odels d iffer in tenns o f  perfom iance accuracy and 

com putational time. Param eter optim isation is based on a R eceiver O perating 

C haracteristic (R O C ) fram ew ork. The proposed technique is evaluated in various colour 

spaces (R ed-G reen-B lue (R G B ), H ue-Saturation-V alue (H SV ) and L*a*h*)  in order to 

determ ine the best segm entation space. The technique is successfully  app lied  to  a range o f  

im ages that feature a variety o f  dam age fonns.

3.2 Methodology

T he texture analysis based dam age detection algorithm  that has been proposed  in this 

chapter involves tw o m ain stages. The first stage com putes a texture characteristics m ap 

from  an input co lour im age, and the second stage subsequently  classifies p ixels as being 

either dam aged or undam aged using SVM s. T hese stages are explained in Section 3.2.1 

and Section 3.2.2 respectively. T he overall m ethodology for the proposed  technique is 

illustrated  in the flow chart in F igure 3.1.
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3.2.1 Texture Characteristics Map

A texture characteristics feature vector \ vf)a,h,c has to be generated for each pixel within 

the original image, /, for each colour channel, c, w here/indicates the index o f the vector 

element and {a,b) indicates the spatial coordinates of the pixel. The first four elements of 

{v’/-}a,i,c-are obtained by computing statistics derived from a GLCM. These statistics are: 1) 

Angular Second Moment (ASM), 2) homogeneity, 3) contrast, and 4) coixelation. The 

GLCM is primarily calculated for grey images yet may be readily extended to individual 

colour channels. The remaining six first order texture features are based on measures 

calculated from the original pixel values mapped over a range of [0,255], This range 

corresponds to 8-bit greyscale images, which are capable of representing 256 (2^) different 

intensity levels (or shades of grey). A value of 0 represents black, while a value of 255 

represents white. These features are Shannon entropy, mean, variance, range, skewness and 

kurtosis.

The feature vector for each pixel is calculated separately for each colour channel and can 

be combined together to form a 4 dimensional array. The feature vector is generated for 

each pixel using a sliding window, SfV, that moves throughout the image and provides the 

basis for the GLCM statistics and the distributions used for calculating descriptive statistics 

and Shannon entropy. The window starts at the top left-hand comer of the image and 

moves horizontally in steps o f one pixel until it reaches the end o f a row, at which point it 

progresses onto the leftmost point in the next row. The centre is indicated as (a,f>) and the 

size o f the window (A^-pixel x A^-pixel) is optimised for best performance. A trial and error 

approach is used to determine the optimal size. This optimisation step may be worthwhile 

if large batches o f images featuring similar damaged surfaces are being processed, 

however, it was experimentally found that the classification accuracy of the technique was
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not overly sensitive to the w indow  size. An increase in the size o f  S f V  is accom panied by a 

m arginal increase in the overall com putational tim e. In this chapter, a nom inal w indow  size 

o f  10 X 10 square p ixels was used.

3.2.1.1 GLCM Features

The process in w hich the G LCM  is created is illustrated in Figure 3.2.

C cnlrc pomt 
o l's l id ing  
w indow  
p os i t io n cd v ^  
at ((/.^)

Kclcrcncc
p i \c l

Direction o f  motion  
tor slidini* w indow

The pair

1, 2, 3, N
1, 6 4 6 4 4 b b

2, 4 5 6 4 4 5 6

3, 6 6 4 6 6 5 6

7 7 6 5 6 6 7

: 6 4 6 4 4 5 6

6 4 5 6 6 4 6

N 5 7 6 5 6 6 7

Sliding W indow

4 5 appears 5 tim es. 
As a result, the (4.5) elem ent in the 
corresponding GLCM  is 5. In this 
case, the interpixel distance, c/. is 1 
and the angle o f  offset.W, is 0.

(JL C M  (j? )
^ / /  1.0

Figure 3.2 Overview of the GLCM process.

The GLCM  is a m atrix o f  frequency values o f  paired com binations o f  pixel intensities as 

they appear in certain specific spatial arrangem ents w ithin an im age or sub-im age. T he 

GLCM  for each pixel is generated through a sub-im age that is a sliding w indow , SfV,  

centred on the pixel. C om binations o f  various pixel pairs w ithin S f V  w ere counted and the
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resulting total was assigned to the gij, in the GLCM which corresponds to the spatial 

arrangement o f the pixel pairs being summated. The spatial indices i and / of the GLCM 

match the grey level in the reference pixel and the destination pixel respectively. The 

spatial arrangement of the reference pixel and destination pixel in relation to each other in 

SW  are governed by two parameters; the interpixel distance, d, and the angle o f offset, 0. 

The grey levels are defined using integer values between 1 and G. In this chapter, the grey 

levels are defined on a scale o f 1 -  8 (G =8) instead of a larger scale such as [0,255]. 

Quantising in this manner increases computational parsimony at the expense of making the 

GLCM less sensitive to minute fluctuations in pixel intensity values within the sliding 

window. Despite this reduced sensitivity, the discriminatory capabilities of the GLCM 

remain largely unperturbed as perceivable changes in intensity values between 

neighbouring pixels continue to be taken into account, thus creating condensed yet 

descriptive matrices.

An illustrated example o f the creation process for a GLCM is presented in Figure 3.2. In 

this example, the number of occurrences o f pixels with a quantised grey level o f 4 and 5 

appearing horizontally alongside each other in the sliding window {d = 1 and 0 = 0°) are 

computed. The number o f occurrences of this pair is then assigned to the (4,5) element in 

the GLCM corresponding to the chosen value o f d  and 6. It was experimentally found that 

paired combinations of intensity values o f pixels that are spatially neighbouring tend to be 

more relevant than combinations that involve spatially distant pixels. With this in mind, a 

value of 1 was chosen for d  to ensure a certain level o f spatial proximity. The angle along 

which the interpixel distance is counted is defined as the angles of offset. Four angles for 

the offset were chosen: 9 = 0°, 6 = 45°, 0 = 90°, 9 = 135°. So, this generated a set o f 4 

GLCMs {d = \ \ 9  = 0°, 45°, 90°, 135°) for each colour channel at each pixel location.
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The GLCM for each pixel is populated as:

= where
H=1 2=1

1 if  = i and s ^ f  = j (3.1)
0 otherwise

where is the pixel intensity expressed in quantised grey levels for the reference pixel

expressed in quantised grey levels for the destination pixel located at an interpixel distance 

d  along an angle d from the reference pixel. The GLCMs are normalised as per:

Each texture feature determined fonn the GLCM loosely relates back to some physical 

textural property of the photographed surface (Baraldi and Parmiggian, 1995). This can be 

seen in Figure 3.3 and Figure 3.4 which show how the GLCM texture features vary as the 

textural properties of the illustrated surface also vary. The four texture features, and their 

physical meaning, as described as follows:

Angular Second Moment (ASM) represents the unifonnity o f distribution o f grey level in 

the image.

of a smooth painted surface that lacks tonal variation A low ASM value, on the other hand.

located at row u and column z within the sliding window; 5,''/, is the pixel intensity

(3.2)

G a
(3.3)

2
V/ ranges from MG to 1. A high value o f 1 indicates a unifonn image, as may be expected
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may be expected o f natural surfaces, which typically have a higher degree o f  tonal

variation.

Homogeneity  gives a measure o f the similarity o f grey levels in the image.

G G
where (3.4)

i= \ j= \

V2 ranges from 0 to G-1. A value o f 0 indicates a strong similarity o f grey levels in the 

image, as may be expected o f a surface that has a constant or periodic form.

Contrast is a measure o f the local variations present in an image. The contrast will be high 

if  there is a high amount o f  variation.

Vi ranges from 0 to (G-1) . A value o f  0 indicates a uniform image, as may be expected o f 

a smooth man-made material or a painted surface.

Correlation is a measure o f the grey level linear-dependencies in an image. Correlation 

will be high if  an image contains a considerable amount o f linear structure, which is often 

the case with man-made objects.
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where fU\ , / / 2  , cT] and cj-̂  are the m eans and standard deviations o f  the marginal 

probability m atrices, P\ and P 2 , obtained by sum m ing the row s and colum ns o f  p(i,j)j,o  

respectively . V4 ranges from -1 to 1. A  value o f  1 indicates a perfectly p ositive ly  correlated  

im age. The denom inator in Equation 3 .6  w ill be equal to zero in the case o f  a perfectly  

uniform  im age. This w ill result in the value o f  correlation being undefined, how ever, these  

undefined values are ignored by the SV M  classifier  and their in fluence on the classification  

accuracy is neg lig ib le  as these cases tend to appear infrequently, in particular, w hen  

w orking with im ages o f  natural scenes.

3.2.1.2 Descriptive Statistics and Shannon Entropy

The feature vector w as further populated by considering five  descriptive statistics o f  the 

pixel intensity values, along with Shannon entropy. These six features w ere derived for 

each p ixel using the sam e slid ing  w indow  approach em ployed  to calculate the GLCM  

features. U nlike the GLCM  approach, the intensity va lues used in the distribution adopted  

the scale [0 ,255] for several reasons. Firstly, the nature o f  these First Order Statistics 

(FO S) generated directly from the intensity values differed from that o f  the GLCM  

statistics as it was the m agnitude o f  the intensity values that w as considered and not their 

frequency o f  occurrence. A s such, it w as m ore important for the intensity values to contain  

as m uch inform ation as p ossib le  w hich required them  to be accurately and precisely  

defined. H aving a bigger sam ple space provided m ore sen sitive inform ation for 

characterising texture. C onversely, the G LCM  statistics produced m ore m eaningful results 

by having sim ilar intensity values grouped together as separately counting perceptually  

clo se  values m ay understate their prom inence in the slid ing  w indow . S econ d ly , the num ber 

o f  grey-levels em ployed  in the GLCM  generation stage d irectly affected  the s ize  o f  the 

G LCM , w hich in turn affected the com putational tim e o f  the algorithm . The interm ediate
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GLCM generation stage already accounted for a significant portion of the algorithm time 

so for this reason it was desirable to keep the size o f  the GLCM to a minimum. Employing 

quantised intensity values for the descriptive statistics and Shannon entropy on the other 

hand resulted in no perceivable benefits in tenns o f increased computational efficiency.

A key point to note is that the range o f intensity values differed for various colour 

channels. To ensure equality and compatibility, a standardisation procedure was employed 

which linearly scaled the original pixel intensity value Ia,b.c in each plane to a new pixel 

intensity, I'a.b.ĉ  such that it is always in the range [0, 255] as per:

Cl h c max(/^^,_^)-min(4y, J

This standardisation procedure is necessary as the customary range o f values in some 

colour channels would be less conducive to statistical analysis. For instance, the typical 

range for the a*  and h* channels in the L*a*h* colour space is [-128, 128]. Proceeding 

with this range would lead to the Shannon entropy to produce meaningless and undefined 

results for all distributions that have values in the bottom half o f the range, [-128,0], Using

scaled pixel intensity values in the sliding window, denoted by Û2 , avoids this problem.

As with the GLCM based statistics, each o f the FOS in the feature vector describe some 

aspect o f  the textural composition in a sliding window. The meaning and contribution o f  

each statistic is discussed. Shannon entropy, v,5, is a statistical measure o f the uncertainty 

associated with a random variable.
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N  N

(V=5) = -ZZvl0g2 5,c
(3.8)

V.5 ranges from -(7V' .̂max( ).log2 (max( ))) to infinite, which for a pixel intensity range 

o f [0,255] becomes [-2039.//^,co].

Mean gives the arithmetic average of the intensity values in a window.

1 N  N

N  „=iz=i (3 9)

VfiCan range from the minimum value of , 0, to maximum value o f 255.

Variance is a measure o f how far a set of numbers is spread out from the mean.

1 N  N

(v̂ =7) = -7tZZ(V-V6)'
N „=|-=i (3 JO)

fmax(5,„) -  ,
vy ranges from 0 to ^ w h i c h  equates to 1.625x10 for the [0,255]

range.

Range gives the difference between the maximum and minimum intensity values in the 

distribution;

(v/-=s) = m a x ( 5 „ , ) - m i n ( v )  V(m, z)
(3.11)
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Skewness is a measure of the asymmetry o f the data around the sample mean. 

An estimate for the skewness is:

1 N  N

(V/=9) = ̂ ZZ(V-V6)^
, / 2  » = l  z = l  
' 7 (3 . 12)

vg ranges from -co to <x).

Kurtosis is a measure of the peakedness o f a distribution. A positive value for kurtosis 

indicates that the distribution has a greater peakedness than that predicted by a nonnal 

distribution, while a negative value indicates that the distribution is less peaked than 

predicted by a normal distribution. An estimate for the kurtosis is given by:

v/o ranges from —2 to c».

As with the GLCM statistics, undefined values, or infinite values, can result for certain 

descriptive statistics such as skewness and kurtosis when the intensity values in the 

window are perfectly uniform, i.e. when the standard deviation is equal to zero. The value 

o f entropy may also be undefined in the case of pixel intensities having a value of zero in a 

given distribution. These undefined values are ignored by the SVM classifier. Their 

influence on the classification accuracy is negligible however as not only do the undefined 

values tend to appear infrequently, but by having a large feature vector containing a greater 

number of correctly defined texture measures, their effect is vastly diminished. Moreover,

I N N  

( V / = , o )  =  —

(3 . 13)
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since the sensitivity o f each texture measure varies according to the surface type and 

damage form, having a large feature vector is useful as it ensures that the influence o f  any 

texture measure that is ineffective at differentiating between damaged and undamaged 

regions is offset by other texture features that have a higher sensitivity to regions o f 

contrasting texture. Figure 3.4 plots the GLCM and descriptive statistics along the profile 

line shown in Figure 3.3, which passes over damaged and undamaged regions.

Figure 3.3 Profile line through a corroded region.
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Figure 3.4 Variation of G LCM  and descriptive statistics along profile in Figure 3.3
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3.2.2 Non-Linear SVM Classification

SVM  are used to classify p ixels as being either dam aged or undam aged, based on the 

tex ture feature vector assigned to each pixel. SVM  is a supervised learning classifier based 

on statistical learning theory (V apnik, 1995). The linear SVM  is used for linearly  separable 

data using a {k- l )  d im ensional hyperplane in k  d im ensional feature space (V apnik, 1996). 

This hyperplane is called a m axim um -m argin  hyperplane w hich ensures m axim ised 

distance from  the hyper-plane to the nearest data points on either side in a transform ed 

space. For linearly  non-separable data a non-linear SVM  is used w hich relies on kernel 

function and maxim um-m .argin hyperplane. The proposed technique adopts a Radial Basis 

Function (RBF) kernel function for non-linear classification instead o f  the dot product 

betw een the data points and the norm al vector to the hyper-plane as used for the linear 

classification. The kernel function concept is used to sim plify the identification  o f  the 

hyperplane by transform ing the feature space into a high dim ensional space (B oser et al., 

1992; C ortes and V apnik, 1995; C ristianini and Shaw e-Taylor, 2000). T he hyperplane 

found in the high dim ensional feature space corresponds to a non-linear decision boundary 

in the input space.

In SVM  the classifier hyperplane is generated based on train ing datasets. G iven a train ing 

dataset o f  / points in the fonn  |(.y*,vj}^ | w here h denotes the h'^ vector in the dataset, Xh is a

/:-dim ensional input vector(.r,, e i?") and >■/, is an instance label vector(v^ e { l ,- l} ') ;  for this

study, a value o f  + 1 indicates presence o f  dam age and -1 indicated absence o f  dam age. To 

identify  the m axim um -m argin hyperplane in the feature space, the SVM  requires the 

solution o f  the follow ing optim isation problem :
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/ \ (3 .14)

subj ect to yp, (y J  <p{xi, ) + e ) > \ - ^ ^ \  ^  > 0

The function ip m aps the training vectors into a higher d im ensional space. The vector  

w is the w eight vector w hich is nonnal to the hyperplane, e  is the b ias, ^  is the

with constraints: 

l.cchyh=̂
h=\
0 < «;, < C, h = 1,...,/

w here K  is the kernel function, a  is the Lagrange m ultiplier, q  is the index o f  the input 

point The Radial B asis Function (R B F) kernel has been used here,

w here y is a kernel parameter. There are tw o preselected  parameter values for the SV M ; C  

and 7. To estim ate the optim um  parameter values, a novel RO C curve based optim isation  

fram ework w as em ployed . In this chapter, the training dataset w as obtained using  texture  

features from both dam aged and undam aged regions in an analysed im age.

m isclassification  error and C is the cost or penalty parameter related to .The solution to

the problem  is g iven  by:

(3 .15)

= exp|D:|x^ n x J l 'j ,o >  0 (3 .17 )
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3.2.3 SVM Models

Tw o m odels w ere explored in order to de tenn ine  the m ost accurate and efficient 

approach. T he first stage was com m on to both m odels and involved train ing o f  the SVM  

with a training set o f  data. H ow ever, the dim ensions o f  the input vectors in the train ing 

datasets w ere different for each m odel. A lso, d ifferent im plem entation m ethods w ere 

carried out in the SVM  classification stage. The perform ance and com putational tim e o f  

each approach was noted.

3.2.3.1 Custom-W eighted Iterative (CWI) Model

The input vector o f  each pixel com prises o f  30 elem ents: the ten features stacked together 

for 3 colour channels. A single b inary  output was achieved by introducing a w eighting 

system  w hich gave a greater prom inence to texture m easures re lating to greater d ifference 

betw een dam aged and undam aged regions. The dam aged and undam aged zones w ere 

identified from the training data. The equation for the w eight, PV, is as follow s:

  ^/. diima^ccl ^ f . undam aged 18)

^  f .  hual

w here v, and are the averages for the f "  texture descrip tor in the feature

vector for the dam aged and undam aged regions in the train ing  data respectively. The 

average o f  the overall training data is ^ f jo ta i -  The norm alised w eight, co^p is then assigned 

to each texture feature, Vf.
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A fundamental issue with the CWI model is that it required 30 separate applications o f 

SVM classifier, one for each o f the 10 texture features in each o f the three colour channels. 

This does not represent the most effective approach in terms o f  computational time. 

However, the weighting system was found to be quite successful in terms o f classification 

accuracy.

3.2.3.2 Four-Dimensional Input Space (4DIS) Model

The other model considered a 4D input space where the feature vector and the colour 

channels create two dimensions along with image coordinates for the remaining two 

dimensions. It is arranged as (a, h, c, f),  where a  and b are the pixel coordinates, denoting 

the image row and the image column respectively, c denotes the colour channel, which, for 

an RGB image, indicates either the red, green or blue channel. Finally, the fourth 

dimension, / ,  identifies the texture related statistic (e.g. mean, contrast, skewness, etc.). 

The SVM is applied once to separate the 4D input space into damaged and undamaged 

segments using a cubical space. It was found that this approach offered the fastest 

classification time with comparable classification accuracy to the CWI model.

3.2.4 Performance M easure

The perfom iance o f the texture analysis based detection in conjunction with each o f the 

SVM models is evaluated by plotting performance points as a coordinate in the Receiver 

Operating Characteristic (ROC) space where the Detection Rate, DR, and the 

M isclassification Rate, MCR, are the vertical and horizontal coordinates respectively



(Rouhan and Schoefs, 2003; Schoefs, 2009). The DR and MCR are represented as a 

percentage between 0% and 100%. The DR and MCR are defined as:

d r  «  Card(Q) g  = {g e 3 ; yj, = l} (3.20)

MCR « with a = {g g 3 ; JV -  -1} (3.21)
n

where Card(.) indicates the cardinality of a particular set,3  = }, ttc denotes the

number of corroded pixels, and d  gathers situations o f incon'ectly detected pixels and 

undetected corroded pixels while Q gathers the correctly detected ones. The ROC space 

provides a common and convenient tool for graphically characterising the perfonnance of 

NDT techniques and its usage has been extended to image detection (Pakrashi et al., 2010). 

A box counting approach (O'Byme et al., 2011) was employed to calculate ric for each 

image in each colour space. The DR and the MCR values formed the basis o f selecting the 

performance point in the ROC space employing the a-d method (Baroth et al., 2011; 

Schoefs et al., 2012). This method relies on calculating the angle, a, and the Euclidean 

distance, 8, between the best performance point, defined as an ideal NDT technique with 

100% detection and 0% misclassification rates and represented in the ROC space with 

coordinates (0,1) and the considered point to give a measure of the perfonnance o f the 

considered point. As this chapter does not deal with risk analysis where the shape to the 

ROC acts as a key factor, only the delta, 8, parameter is required as a measure of 

perfonnance. A low value for S is indicative of a strong performing technique.
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Another common m ethod for interpreting the performance o f  a technique using ROC 

analysis is by calculating the area under the ROC curve corresponding to that technique. In 

order for this method to be accurate, there should be a lot o f perfonnance points that 

should be relatively evenly distributed along the ROC curve. Acquiring a lot o f 

performance points is not always feasible or possible. For instance, in the case o f  mapping 

the effect that an environmental condition has on a particular technique, and where there 

are only a lim ited number o f levels available (e.g. low, medium, high), the resulting ROC 

curve would be restricted to that same number o f performance points (plus the two end 

points (0,0) and (1,1)). This is not sufficient to reliably construct a curve.

In cases where a lot o f performance points can be generated that would allow a good 

curve to be constructed, there is often an issue with inefficiencies. For instance, to 

investigate the effect that a controllable parameter has on a technique (e.g. an adjustable 

detection threshold), a number o f values for the parameter can be selected and the resulting 

ROC curve is created from the plotted performance points. However, in practice, we often 

have a good idea o f what the value should be within some reasonable range. Selecting 

values outside this relevant range is time consuming and does not have any practical 

significance besides getting performance points near the extremities o f the ROC curve (i.e. 

near the points (DR = 0, M CR = 0) and (DR = 1, MCR = 1)).

Image processing based detection techniques feature a trade-off between the DR and the 

MCR. A low alarm threshold setting o f  the technique, which favours high damage 

detection rates, will result in a higher DR but will also produce a higher MCR. Conversely, 

a high alarm threshold will result in a low DR and a low MCR. The best DR and MCR 

balance corresponds to performance point in the ROC space with the lowest value o f  <5.
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3.3 Evaluation of the Technique

The proposed damage detection technique was appHed on six images o f various forms o f 

damage on the surface o f infrastructural elements. In order to assess the robustness o f the 

technique, the six images were chosen to reflect a broad range o f  surfaces, damage fornis, 

viewing angles, lighting conditions and image resolutions as shown in Figure 3.5. The 

sample images in the figure depict, (a) pitting corrosion on metal sheet piling in marine 

conditions, (b) corroded metal sheeting in coastal regions, (c) corrosion at a ha lf joint on 

bridge span, (d) staining through bridge deck shown from underneath, (e) marine growth 

on the surface o f underwater steel pile w harf and (f) exposed concrete bridge deck through 

wear o f pavement surfacing; all in RGB colour space. The sample images are shown in 

HSV and L*a*b*'\n Figure 3,6 and Figure 3.7 respectively. The technique was performed 

on the images in all three colour spaces (RGB, HSV and L*a*b*) so as to determine 

whether a particular colour space offered a superior level o f  performance.
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(d) ( f)  (D

Figure 3.5 Sam ple images in the  RGB colour space: (a) pitting corrosion on metal 

sheet piling, (b) corroded  metal, (c) corrosion at a ha lf  jo in t, (d) staining th rough  

bridge  deck, (e) m arine grow th on steel surface, (f) exposed bridge deck.

(d) («■)

Figure 3.6 Sam ple images in the  HSV colour space.

F igure  3.7 Sam ple images in the L * a * b *  colour space.
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3.3.1 Results

The following subsections present the results obtained from the CWI and 4DIS models 

for each colour space. The final subsection details the procedure for selecting the SVM 

parameters: the penalty parameter o f the error term, C, and the kernel parameter, y  so as to 

optimise the classification accuracy.

3.3.1.1 The C ustom -W eighted Iterative  (C W I) M odel

The detected regions using the CWI model are shown for each colour space in Figures 

3.8-3.10. The detection and misclassification rates are summarised in Table 3.1. The CWI 

model performed well in tenns o f identifying the locations o f the damaged regions in the 

sample images. However, these regions were often poorly defined in many instances, 

resulting in reduced DR. An example o f  this is Figure 3.8(c), where the damaged regions in 

the RGB space have been located, but the identified damage is not homogeneous and the 

outer boundaries o f the damaged areas are inadequately identified. This problem is also 

observed in the other colour spaces.

The classification accuracy was found to be dependent on colour space. The 5 values in 

Table 3.1 provide a quantitative measure o f the variation in classification accuracy among 

colour spaces. HSV colour space achieved a high level o f performance on a consistent 

basis while the RGB and L*a*b* colour spaces were prone to more varied performance 

levels. The DR values for the sample images in L*a*h* space were generally high but were 

accompanied with a high MCR as well. The images in RGB colour space on the other hand 

showed moderate DR and high MCR values.
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While the HSV colour space generally outperformed the RGB and L*a*b* colour spaces, 

a notable exception to this was in the case of the image in Figure 3.5(f), which produced 

the best results in the L*a*b* colour space. The L*, or lightness, plane in L*a*b* is 

essentially the original image with the colour data reduced to shades o f grey only. The L* 

plane typically responded well to feature extraction by means of statistical analysis. 

Conversely, extracting textural features through statistical analysis in the a* and h* planes 

in L*a*b* generally yielded quite poor results as it was found that these planes were 

relatively non-descript and offered little distinction between damaged and undamaged 

regions in terms of texture. As a consequence, the CWI mode! had to rely 

disproportionately on the texture descriptors in the L* plane in order to obtain a reasonable 

result. However, this issue was not a major factor in the case of Figure 3.5(f) as the 

dominant colours in the image were varying shades o f grey resulting in the L* plane 

containing a high proportion of the original image data. As a result, this image was largely 

unaffected by the poor performances of the statistical analysis in the a* and b* planes.

The explanation for the poor performance in the RGB colour space may be attributed to 

the high correlation between its Red, Green, and Blue components (Cheng et al., 2001). 

The pixel intensities from the Red, Green, and Blue colour channels are all correlated as 

they contain the same light and contrast infonnation as received by the scene. Hence, the 

image descriptions in terms o f these components make discriminating damaged and 

undamaged regions difficult. Descriptions in terms of hue-saturation-brightness are often 

more distinct and therefore more relevant for detection purposes, a point reinforced by the 

good results attained from the six sample images in the HSV colour space.
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(a) (c)

Figure 3.8 Detected regions using the C W I m odel fo r the RGB colour space.

#

(a) (c)

(f)

Figure 3.9 D etected regions using the C W I m odel fo r the HSV colour space.

F igure  3.10 D etected regions using the  C W I m odel fo r the  L * a * b *  colour space.
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Table 3-1 Performance for the six images in each colour space using the CWI model

Sample Image

Colour Space

RGB HSV L*a*b*

DR MCR d DR MCR DR MCR 5

(a) Pitting 

Corrosion

84.0% 30.9% 0.35 84.3% 7.2% 0.17 85.5% 34.6% 0.38

(b) Corroded Metal 96.3% 19.7% 0.2 98.0% 20.1% 0.2 94.1% 26.0% 0.27

(c) Half-Joint 

Damage

70.8% 10.8% 0.31 94.7% 12.0% 0.13 100.0% 23.2% 0.23

(d) Stained Deck 83.6% 36.4% 0.4 79.5% 23.5% 0.31 80.6% 26.1% 0.33

(e) Marine Growth 70.2% 40.5% 0.5 43.8% 20.9% 0.6 43.3% 20.1% 0.6

(f) Exposed Deck 66.6% 29.1% 0.44 54.4% 6.1% 0.46 73.9% 9.1% 0.28

3.3.1.2 The Four Dimensional Input Space (4DIS) Models

The detected regions for the 4DIS are shown for each colour space in Figures 3.11-3.13. 

The detection and misclassification rates are summarised in Table 3.2. The 4DIS model 

succeeded at defining the damaged regions to a better extent than the CWI model. In the 

majority o f the cases, there were only a few spurious regions that were misclassifled as 

being damaged. However there were occasional cases where comparatively large portions 

of undamaged regions in the images were misclassified such as in Figure 3.12(f) and 

Figure 3.13(a). As with the CWI model, the performance levels varied significantly 

between the colour spaces. The HSV colour space was deemed as the best option. The 

slightly worse performances in the RGB and colour spaces may be attributed to the

same reasons as outlined for the CWI model.
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Figure 3.11 Detected regions using the 4D IS m odel for the RGB colour space.

•  *%

(«) (b) (c)

Figure 3.12 D etected regions using the 4D IS m odel for the H SV colour space.

(») (b) (c)

(0

Figure 3.13 D etected regions using the 4D IS m odel for the L * a * b *  co lour space.



Table 3-2 Performance for the six images in each colour space using the 4DIS model.

Sample Image

Colour Space

RGB HSV L*a*b*

DR MCR 5 DR MCR 8 DR MCR d

(a) Pitting 

Corrosion

77.8% 32.0% 0.39 88.7% 10.5% 0.15 89.9% 30.2% 0.32

(b) Corroded 

Metal

95.9% 24.1% 0.24 80.3% 10.0% 0.22 86.1% 14.7% 0.2

(c) Half Joint 

Damage

94.7% 25.9% 0.26 92.5% 8.0% 0.11 83.2% 11.0% 0.2

(d) Stained Deck 71.4% 19.4% 0.35 67.2% 23.0% 0.4 53.3% 16.1% 0.49

(e) Marine 

Growth

64.1% 29.0% 0.46 67.9% 22.5% 0.39 43.5% 16.0% 0.59

(f) Exposed Deck 52.1% 10.1% 0.49 86.5% 23.7% 0.27 96.7% 36.2% 0.36

3.3.2 Comparison of Model Performances

A graphical comparison of the models for each image and colour space is provided in 

Figure 3.14, in which the performance points corresponding to each model and colour 

space are plotted in the ROC space. Performance points that are near the Best Performance 

Point represent cases that produced high detection and low misclassification. The Line of 

Chance is the 45° diagonal line that connects the point (0,0) with the point (1,1) in the 

ROC space. It corresponds to random chance.
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Figure 3.14 Performance points in the ROC space showing the performance of the 

classification models in each colour space for images in Figure 3.9.

To ensure comparability between the CWI and 4DIS model, the same training data were 

used for each model and colour space. O f the six images tested in each colour space, the 

4DIS model outperformed the CWI model in 61% o f  cases. However, the performance o f 

the models varied from image to image, with some images responding better to 

classification via CWI while the other images attained comparatively better results with 

4DIS model (Figure 3.14).

Both the models perfonned consistently in different colour spaces and the HSV colour 

space typically provided the best results. It is evident in Figure 3.14, where the 

performance points corresponding to the HSV colour space for both the CWI and 4DIS

models are far closer to the best performance point as compared to the other points in the
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ROC space. The RGB colour space used in conjunction with the 4DIS model and the 

L*a*b*  colour space used with both the CWI and 4DIS models achieved similar 

performance levels, reflected by the S values for a given image in these colour space -  

model combinations. The images in the RGB colour space analysed using the CWI model 

showed the poorest performance accuracy while the images in the HSV colour space 

analysed using 4DIS model achieved the best performance accuracy.

3.3.3 Computation Times of Models

W hilst both models produced apparently comparable classification accuracy, their 

respective computational times provide a conclusive source o f  differentiation, with the 

4DIS model being the superior option. The computation times for all sample images in 

RGB space for both models are presented in Table 3.3 for illustrative purposes. The other 

colour spaces demonstrate similar results. The different computation times for the sample 

images can be attributed to the image size.

A significant portion o f  the time in the CWI model may be attributed to its weighting 

system, which is required to calculate the dissimilarity between texture features in the 

damaged and undamaged zones, along with the inefficient application o f  the SVM 

classifier which is required to be iteratively performed for 30 times.
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Table 3-3 Classification times for the 4DIS and CWI models.

Image

Time Taken (seconds)

Image Size 

(sq pixels)

4DIS

Model CWI Model

(a) Pitting Corrosion 1056x1408 46.5 893.6

(b) CoiToded Metal 635x846 12.6 322.3

(c) Half Joint Damage 436x648 6.5 130.6

(d) Stained Deck 441x427 3.0 97.6

(e) Marine Growth 1056x1408 51.5 875.2

(f) Exposed Bridge Deck 255x391 2.5 47.0

3.3.4 Parameters of the SVM classifier

SVM classification requires a penalty parameter of the error term, C, and the kernel 

parameter, y  , which define the decision boundary. The parameters should be chosen 

carefully in order to produce an effective classifier. An ROC based optimisation 

framework was adopted through which the two components were independently optimised 

(Schoefs et al., 2012). Whilst theoretically it would be preferable to search for the optimum 

(C,y)  pairing, it was found experimentally that this exhaustive and computationally 

intensive approach was largely unnecessary as the C and y  values were largely 

independent of each other. For illustrative purposes, the performances of various C and y  

values for Figure 3.5(a), analysed through the 4DIS model, are presented in Tables 3.4 and 

3.5 respectively. The corresponding ROC curves are displayed in Figures 3.15 and 3.16 

respectively.
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Table 3-4 Performance of SVM for various C values (y kept constant at 1).

C-value DR M CR d

0.001 57.00% 11.88% 0.45

0.25 67.90% 17.65% 0.37

0.5 70.20% 20.20% 0.36

0.75 74.90% 26.92% 0.37

1 77.80% 31.90% 0.39

10000 77.61% 33.13% 0.40

Table 3-5 Performance of SVM for various y values (C kept constant at 0.5)

y-value DR MCR S

0.25 39.72% 6.24% 0.61

0.5 57.24% 10.65% 0.44

0.66 62.45% 13.72% 0.40

0.75 64.44% 15.44% 0.39

0.8 66.14% 16.74% 0.38

1 70.28% 20.22% 0.36

1.33 31.45% 0.39

2 86.79% 53.83% 0.55
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Figure 3.15 ROC curve for varying values of C  (y  kept constant at 1).
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Figure 3.16 ROC curve for varying values of Gam m a (C kept constant at 0.5).

The S  values attained for the set of parameter values trialled indicate that the optimum

values for C and y were 0.5 and 1 respectively. It was found that combining these

independently optimised parameters provided satisfactory results; with negligible
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differences from that o f the jointly optimised (C, y  ) pair. Moreover, the classifier 

demonstrated a low sensitivity to deviations from the optimal pairing suggesting that a 

highly optimised pairing was not integral to the classifier performance. This was especially 

true for the penalty parameter, C, which returned similar performance levels across a range 

spanning multiple orders of magnitude.

3.4 Conclusion

This chapter presents a semi-automatic texture analysis based technique for the detection 

and classification of damaged regions on the surface of infrastructural elements. The 

technique involves generating a texture feature vector for each pixel in the image including 

infonnation derived from GLCM matrix based on a quantised grey-level scale along with 

statistical and energy information from the pixel intensity values. The pixels are 

consequently classified through non-linear Support Vector Machines (SVM) models.

The proposed technique has a number o f favourable aspects:

• Each pixel is qualified through a large feature vector containing ten texture 

related measures representing both grey-levels and pixel intensities in appropriate 

scales providing a well-rounded description o f the image in ternis of the textural 

characterising. This aspect also increases the robustness of the technique as some 

measures may be good at differentiating regions in one image and may not 

necessarily be particularly useful in another image. This robustness is showcased 

by the ability o f the technique to perform effectively when applied to images 

featuring a broad range o f surfaces and damage forms, exposed to various lighting

conditions, viewing angles and resolutions.
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• The technique is more immune to variations in lighting conditions than 

colour based techniques, where only the pixel intensity values are considered as 

opposed to texture based segmentation techniques in which the relationship 

between adjacent pixel intensity values are considered. This relationship is often 

maintained to a significant extent even when inherent chromatic and luminous 

complexities are introduced to the scene.

• The technique requires only three parameters to be optimised: the size o f the 

sliding window and two SVM parameters. A ROC curve based optimisation 

framework has been presented which shows a simple means o f  attaining suitable 

values for the SVM parameters. The size o f window can be independently chosen 

through trial-and-error.

Two SVM classification models have been explored; a CWI model and a 4DIS model. 

The CWI model employed a weighting scheme based on the relative differences o f textural 

descriptors in the damaged and undamaged training data. The SVM was applied iteratively 

to each texture measure in each colour channel. The 4DIS model offered a more efficient 

approach, requiring only one application o f the SVM. The 4DIS model had the fastest 

computational time and, overall, achieved slightly better classification accuracy over the 

CWI model.

The proposed technique was performed in RGB, HSV and L*a*b*co\oux spaces. The 

HSV colour space, in conjunction with the 4DIS model, offered a consistently high level o f 

perfonnance in a time efficient manner, and is thus concluded to be the best combination. 

These positive aspects underline the potential o f this technique in other very critical fields 

as marine growth classification from picture collection from Remote Operated underwater 

Vehicle (Boukinda Mbadinga et al., 2007).
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Chapter 4

Colour Based Image Analysis 
Techniques

4.1 Introduction

In chapter 3, the use o f texture analysis was explored for detecting damage on the surface 

o f  infrastructural elements. Texture analysis approaches are especially useful for detecting 

damaged regions that can be distinguished from the non-damaged surface mainly based on 

their textural composition, however, common damage fonns found in marine environment 

(e.g. con'osion, cracks, leaching, etc.) are often accompanied by a perceivable change in 

colour. In such cases, colour analysis techniques can be effectively employed for detecting 

damage. Additionally, image based m ethods for recovering the 3D shape o f damage rely 

heavily on colour information. This chapter presents three colour infonnation based 

techniques relating to; 1) crack detection, 2) surface damage detection, and 3) 3D shape 

recovery using stereo-vision. These techniques have been specifically designed to handle 

the challenging conditions that are encountered during inspections o f marine structures, in 

particular, for the underwater portion o f  the inspection which suffers from reduced 

visibility. A video tracking technique is also presented for the purpose o f  analysing bridge 

vibrations. Each o f the techniques are introduced and discussed in the following sections.
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4.2 Crack Detection

The development o f an image based crack detection algorithm is motivated by the 

widespread occurrence o f cracks, which affect a range o f civil structures such as bridges, 

pavements, pipes, columns, etc. The presence o f cracks in a structure can be unsightly, 

may cause a loss in serviceability, or can lead to structural failure in more serious cases. 

Visible cracks provide an indication o f the structural degradation and are an important 

factor when diagnosing the condition o f  a concrete structure. However, the identification 

and quantification o f cracks is often a costly, tedious, subjective, and error prone task for 

visual inspectors, yet is a crucial task for establishing a safe infrastructure network. 

Traditional monitoring methods often rely on regular visual inspections which require 

inspectors to travel to the location o f a structure in order to determine its current state. As 

part o f the inspection, observed cracks are often mapped, counted, quantitatively measured 

and photographed. Even with great diligence, measuring the true extent o f cracks remains a 

difficult task for inspectors as their assessment is often subjective in nature and prone to 

error.

Adopting an image processing based approach to automatically count and quantify the 

length and width o f  cracks can enhance inspections, and in turn, lead to significant 

monetary savings or more frequent inspection cycles. This chapter presents an image 

processing approach to efficiently and objectively detect cracks. The approach employs a 

percolation based method which is applied to locations in the image where there is a large 

colour change, or pixel intensity gradient, suggestive o f  edges or surface irregularities such 

as cracks. A new classification criterion is introduced which considers the pixel intensity 

values on either side o f  a crack. Detected regions that match the expected shape o f a crack
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yet have disparate sides are rejected based on the assumption that they represent non­

harmful edge boundaries.

The study has also been extended to consider above surface cracks in scenes suffering 

from a variety o f  challenges, such as bright spots, difficult viewing angles, road markings/ 

tyre marks, and low-contrast monochromatic scenes, all o f  which may mislead the crack 

detection algorithm. The Receiver Operating Characteristic (ROC) analysis, as described in 

Section 3.2.4, is used to assess the performance o f the technique in the presence o f such 

variability. The m ethodology o f the proposed technique is discussed in the following 

section.

4.2.1 Percolation based Crack Detection Method

Cracks are generally characterised by their narrow shape and their lower brightness in 

comparison to the surroundings. Percolation based methods take both o f  these 

characteristics into account. The percolation method is based on tracing out dark pixels in a 

sliding window, or sub-image, starting at the centre point o f the window, and spreading out 

until the boundary o f  the window. The resulting pattern o f dark pixels is then analysed. 

Cases where a narrow or linear pattern is traced out is indicative o f a crack, while irregular 

or radial diffusion patterns typically correspond to the non-cracked background. The 

m ethodology o f the proposed percolation based technique is illustrated in Figure 4.1.
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Figure 4.1 C rack detection flowchart.

The proposed method is described as follows with reference to Figure 4.1:

Step 1: The input is a colour or greyscale image, A. The Sobel operator is applied to this

image which gives an approximation o f the image gradient. The output from this operation

is a binary image, where white pixels represent locations that have a large gradient. In the
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case o f  colour images, the average gradient magnitude from the three colour channels is 

used.

Step 2: This binary image identifies points in the image where perfonning percolation 

would be relevant whilst overlooking points in the image where cracks are unlikely to be 

present. This cuts down on the computation time considerably. It is not essential that the 

entire crack is detected with the Sobel operator. Partial detection should be sufficient as the 

window will likely overlap with non-detected portions o f the crack. The detected pixels 

from this step are considered for percolation.

Step 3: A window o f  size a> by co is centred on each detected pixel from the binary edge 

image. The pixel at the centre o f  the window, pc, is the seed point o f the percolated region, 

Rp. It has an intensity value o f A{pc). Neighbouring pixels are added to the percolated 

region if  they are equal to, or below, the Threshold, T, which is defined as:

r  = max(mean(./?^), min( ./?„)) (4.1)

where R„ denotes pixels neighbouring the percolated region Rp. Essentially, T  assumes the 

maximum value between either the mean intensity value o f pixels already in the percolated 

region, or the minimum intensity value o f  the pixels neighbouring the percolated region. 

This ensures that there will always be at least one pixel added to the region following each 

iteration. Taking the mean intensity o f  the pixels in the percolated region is a meaningful 

action as it reduces the effect o f  outliers which could set the threshold to be unreasonably 

high, and it also allows the seed points obtained from the Sobel operator stage to be only 

loosely located near the dark crack for percolation to succeed. If the seed point is located
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just outside tiie crack, the percolated region should gravitate towards the interior o f the 

crack and continue to proceed along the crack line.

Step 4: The process outlined in step 3 is repeated until the percolated region, Rp, reaches 

the boundary o f the window. Percolation ceases and the resulting percolated shape is fed 

into the classification stage.

Step 5: The first stage o f the classification phase involves evaluating the shape o f the 

percolated region. This is done by calculating the circularity parameter iV. The circularity 

is defined as:

A.P^ = (4 2 )

where Pcoum is the total number o f pixels in the percolated region and Pwijrh is the 

maximum width o f the percolated region. jS‘ can take values in the range 0 to 1. A value 

close to 1 corresponds to a circular shape, while a value close to 0 corresponds to a line 

segment that could represent a crack. With this in mind, percolated regions having 

circularity lower than an arbitrary threshold are retained.

The second part o f the classification phase involves checking the pixel intensity values 

on either side o f the percolated region in order to discount cases where the perceived crack 

has an increased likelihood o f being a false alarm, perhaps arising from some innocuous 

line boundary in the scene. This is achieved by dilating the percolated region in a 

perpendicular direction on both sides by a distance, cr, and comparing the mean o f the 

intensity values from the original image. A, on both sides, Z\ and Zi respectively. A value
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of 20 pixels was taken as m throughout this chapter. If the difference between the mean of 

the pixel values from both side, denoted as /, is greater than a preselected threshold than 

the percolated region is rejected, i is expressed as:

(4.3)

where is the total number of pixels on one side of the crack while is the number 

of pixel on the other side.

Step 6: Retained percolated regions from the classification stage are added to the binary 

output image.

4.2.2 E rro r Analysis

The perfonnance of the proposed crack detection technique is evaluated through the use 

o f performance points in the ROC space, as described in Section 3.2.4. The Detection Rate, 

DR, and the corresponding Misclassification Rate, MCR, are detennined by comparing the 

detected cracks with a visually segmented image. The visually segmented image is created 

by a human operator who must manually identify the cracks in an image. This visually 

segmented image acts as the control as it is assumed it shows the true extent o f cracking. 

The visually segmented image only needs to be created when it is wished to gauge the 

performance levels of the technique under scrutiny.
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4.2.3 Data Analysis

The proposed crack detection technique is demonstrated on a real cracked concrete 

specimen in an underwater setting (Figure 4.2) for varying controlled levels o f  turbidity 

and lighting. The quality o f  these photographs is assumed to be chiefly affected by 

luminosity, sharpness (focus accuracy), contrast and noise. These quality factors are 

directly related to the on-site operating conditions, o f which lighting and turbidity are the 

most influential.

Turbidity is defined as the cloudiness in a liquid caused by the presence o f suspended 

solids (Kirk, 1985). These suspended solids scatter and absorb light and therefore reduce 

visibility. The level o f  turbidity may be exacerbated by interference during the inspection 

process, such as from a mechanical source like a boat or human contact with the river bed, 

which may aggravate and disturb sediment.

Lighting also plays a pivotal role for achieving good visibility. Ambient light may be 

sufficient for near-surface inspections; however, it is unlikely to be sufficient at greater 

depths at which point artificial light sources become necessary. These artificial light 

sources may introduce luminous complexities such as ‘bright-spots’, whereby areas o f high 

light intensity may be focused at a spot which may fool the crack detection algorithm. In 

this section, three levels for turbidity were chosen (0 NTU (clear water), 6 NTU, and 12 

NTU) and three lighting levels were used (100 Lux, 1000 Lux, 10000 Lux).
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Figure 4.2 Cracked concrete specimen under vary lighing and turbidity conditions. 

Columns; Low, Medium, High Light. Rows: Low, Medium, High Turbidity.

Figure 4.3 Cracks in a conventional above-water setting.
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Although underwater scenes generally provide some o f  the poorest visibility levels, 

interpreting images from above-water scenes can also be severely affected by some 

adverse conditions. It is thus important that the influence o f  some o f  the more common 

challenges for crack detection should be investigated. Figure 4.3 shows three image o f 

cracks, each presenting one or more challenges, namely, (1) Road markings, (2) 

illumination complexities (i.e. bright-spots), (3) monochromatic scene with vague cracks.

4.2.4 Results

This section presents and discusses the results obtained following application o f the crack 

detection technique on the underwater and above water images. The results for the 

underwater concrete specimen for changing lighting and turbidity levels are shown in 

Figure 4.4.

64



7 8 9
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Figure 4.4 Detected cracks corresponding to the images in Figure 4.2.

The results in the case o f  the above-water images are shown in Figure 4.5.

1 2 3
Q  tioie positive B  true negative |  false negative |  false positive 

Figure 4.5 Detected cracks for the above-water images in Figure 4.3.
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The perfonnance of the crack detection technique is quantified in Table 4.1 and the 

associated perfonnance points are plotted in the ROC space in Figure 4.6.

Table 4-1 Performance of the crack detection technique.

Image Condition (DR) (MCR) S

Underwater

cracks

1 Low Light, Low Turbidity 89.8% 1.7% 0.10

2 Medium Light. Low Turbidity 87.4% 2.5% 0.13

3 High Light, Low Turbidity 62.6% 1.5% 0.37

4 Low Light, Medium Turbidity 76.3% 2.5% 0.24

5 Medium Light, Medium Turbidity 86.6% 3.7% 0.14

6 High Light, Medium Turbidity 68.6% 4.2% 0.32

7 Low Light, High Turbidity 80.0% 21.3% 0.29

8 Medium Light, High Turbidity 94.0% 26.8% 0.27

9 High Light, High Turbidity 78.1% 4.2% 0.22

Above­

water cracks

1 Road markings 73.0% 0.4% 0.27

2 Illumination complexities 69.2% 0.9% 0.31

3 Monochromatic scene 78.1% 0.6% 0.22
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Figure 4.6 Evaluation of crack detection technique through the use o f performance 

points in the ROC space.

It may be observed from the detected regions in Figure 4.4 that the ability o f the 

detection technique is strongly related to the degree o f  clarity in the original images 

(Figure 4.2). Unsurprisingly, images that feature poor visibility conditions produced poor 

performance levels; while on the other hand, images featuring clear and sufficiently lit 

scenes produced quite good detection results.

At the same time however, the results suggest that an overly bright light source can be 

harmful to the detection accuracy. The nature o f  underwater lighting means that an overly

bright light source will induce a bright-spot at the centre o f the light beam which will
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gradually fall-off, resulting in a non-uniform scene. It is this non-uniform ity in lighting 

which the camera cannot effectively compensate for. An example o f this can be seen in 

Figure 4.4(3) where the strong lighting creates a bright area on the surface o f  the specimen. 

This washes out some o f the detail, thereby preventing a portion o f  the crack from being 

detected.

A clear trend that emerges from analysis o f Table 4.1 is that the misclassification rate 

increases with increasing turbidity. However, the relationship does not appear to be linear. 

Instead, there is a gradual increase in MCR values from the low to the medium turbidity 

levels, while there is a pronounced increase between the medium and high turbidity levels. 

This suggests that as the turbidity approaches the operating limits there is a rapid 

deterioration in perfonnance. This is especially evident for the high turbidity images in 

Figure 4.7 (7 and 8) where there is a high degree o f false positives contributing to high 

MCR values in comparison to the lower turbidity levels.

An exception to the decline in performance associated with increasing turbidity and 

excessive lighting is in Figure 4.4(9). In this case, the high turbidity partially mitigates the 

high lighting through absorption and diffusion which limits the formation o f  a bright spot. 

Overall, the best results are obtained for the low and medium light levels at the lowest 

turbidity, and the medium lighting level at the medium turbidity level (Figure 4.4, images 

1, 2, and 5).

Analysis o f the results in Table 4.1 and the corresponding performance points in the 

ROC space (Figure 4.6) reveal that each image performs quite consistently in spite o f  the 

varying challenges faced in each image. The first image (Figure 4.3(1)) demonstrates the 

usefulness o f employing the classification criteria which rejects 'cracks' having dissimilar
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sides. It may be observed from the image of the detected cracks (Figure 4.5(1)) that there 

are very few false positives, even though the boundary between some road markings bears 

a resemblance to a crack (fine structured and darker than the surroundings).

The bright spot in Figure 4.3(2) has a deleterious effect on the detection accuracy as the 

crack remains partially undetected coinciding with this spot. This suggests that attempts to 

minimise the glare through careful choice of camera viewing angle/position during the on­

site image acquisition stage would be worthwhile.

The cracks in Figure 4.3(3) appear quite vague at certain places. There are also numerous 

instances of staining on the floor which may mislead the crack detection algorithm. As 

such, it may be expected that the DR would suffer and there would be a high MCR, 

however the DR remains reasonably high and the MCR remains low. This may be 

attributed to percolation based methods which have been recognised as being well suited 

for detecting ambiguous cracks (Wang and Huang, 2010).

4.2.5 Crack Detection Method Discussion

A percolation based method for detecting cracks is proposed in this section and applied 

to series of images under a host of varying conditions. The proposed method offers greater 

efficiency than other percolation based methods, whilst still achieving good results, as the 

search space for cracks is confined to places where there is a sharp image intensity gradient 

as found by the Sobel operator. Furthermore, a new set of criteria is developed for the 

percolation stage and for the subsequent classification o f the percolated regions.
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Understanding how the operating conditions affect the performance o f  an image based 

crack detection technique is o f great practical importance. This section examines the effect 

o f  two parameters; turbidity and lighting, for an image processing based NDT tool for 

underwater structural health monitoring purposes. These parameters affect the underwater 

visibility, which is crucial for any image based NDT to succeed. The influence and relative 

importance o f these two environmental conditions are investigated in greater detail in 

Chapter 5.

Although environmental conditions such as turbidity are generally uncontrollable in 

practice, lighting can be easily adjusted. Even in conventional above-water settings, 

consideration should be given to the lighting conditions in order to avoid bright spots. It is 

readily attainable to have appropriate lighting conditions which are conducive to structural 

health monitoring and damage detection. The results from this study may facilitate an 

inspector when deciding on the appropriateness and implementation o f an image 

processing based crack detection technique, under a given set o f environmental 

circumstances.

4.3 Surface Damage Detection

The motivation behind the development an improved image based damage detection 

technique is to provide owners/operators o f  infrastructure with an efficient source o f 

quantitative infonnation. The aim o f  the image analysis stage is to locate and quantify the 

area occupied by visible mechanical damage (typically larger than 10'^ m^) on the surface 

o f  infrastructural elements with minimal human supervision. There exists scope for 

significant development o f  damage detection algorithms that can characterise features o f 

interest in challenging scenes with credibility. This section presents a new Regionally
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Enhanced M ulti-Phase Segmentation (REMPS) technique that is designed to detect a broad 

range o f  damage forms on the surface o f civil infrastructure. The technique is successfully 

applied to a corroding infrastructure component in a harbour facility. REMPS integrates 

spatial and pixel relationships to identify, classify, and quantify the area o f  damaged 

regions to a high degree o f accuracy. The image o f interest is pre-processed through a 

contrast enhancement and colour reduction scheme. Features in the image are then 

identified using a Sobel edge detector, followed by subsequent classification using a 

clustering based filtering technique. Finally, Support Vector M achines (SVM) are used to 

classify pixels which are locally supplemented onto damaged regions to improve their size 

and shape characteristics. Combining each o f these constituent phases in an effective 

manner creates a powerful and robust detection algorithm. To further improve the 

detection accuracy o f REMPS, High Dynamic Range (HDR) imagery is examined.

The superiority o f REMPS over existing segmentation approaches is demonstrated, in 

particular when considering High Dynamic Range (HDR) imagery. It is shown that 

REMPS easily extends beyond the application presented and may be considered an 

effective and versatile standalone segmentation technique. Situations where adopting a 

colour analysis based approach over a texture analysis based approach are highlighted.

4.3.1 High Dynamic Range (HDR)

HDR imagery is a set o f  techniques that are used to allow a greater dynamic range o f 

luminance values between the brightest and darkest regions o f  an image than standard 

digital images. SDR images can typically only accommodate a very limited range bracket 

o f  the full tonal spectrum in a real world scene. Therefore, a dynamic range bracket would 

have to be chosen in the knowledge that all luminance values outside the range would not
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be represented correctly. The broad principle behind HDR imagery is that multiple SDR 

images o f the same scene, each taken at a different exposure, and thus capturing a different 

range bracket o f the tonal spectrum, may be merged to form one HDR image that has a 

wider dynamic range (Reinhard et al., 2008). Combining SDR images can be done using 

various merging algorithms (Debevec and Malik, 2008; Naccari et al., 2005).

The benefits o f adopting HDR imagery as an imaging protocol may be observed in 

Figure 4.7 which shows three SDR images (an underexposed, a normally exposed and an 

overexposed image) and the corresponding HDR image. These images depict a 30-year old 

corroded steel pile in the tidal area in a w harf situated o ff the French Atlantic Ocean. The 

pixel dimensions o f the images are 2816 pixels by 2112 pixels and the dimensions o f  the 

corroding metallic surface are approximately 0.3 m by 0.3 m. It may be observed that HDR 

imagery is particularly useful here since the shiny metallic surface gives rise to naturally 

high dynamic ranges. Generally, scenes which have a wide dynamic range due are likely to 

especially benefit from the adoption o f HDR as a protocol.
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Figure 4.7 A High Dynamic Range (HDR) image of corroding steel formed by 

merging the normally, over and under exposed images together.

4.3.2 Regionally Enhanced M ulti-Phase Segmentation (REM PS) M ethodology

The REMPS technique integrates three feature detection methods. A flowchart 

illustrating the order o f the feature detection methods is presented in Figure 4.8. The first 

method involves the application o f the Sobel edge detector on a modified image in order to 

form closed geometries corresponding to objects in a scene. Statistical properties are 

calculated for each o f the closed geometries. Statistical based approaches are popular 

owing to their computationally inexpensive nature and their robustness (Giralt et al., 2013; 

Li et al., 2013). These statistical properties serve as input to a clustering based filtering 

phase which retains closed geometries that have statistical properties characteristic o f

damaged regions whilst discarding closed geometries that have statistical properties
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characteristic o f  non-damaged regions. SVMs are then used to identify potentially 

damaged pixels adjacent to these filtered closed geometries in order to improve the 

definition o f the damaged regions.

REMPS attempts to utilise the advantages o f  these three techniques most effectively. 

The low complexity o f the Sobel edge detector and the clustering based filtering 

techniques are complimented by the strategic application o f the high complexity SVMs. 

For instance, the robustness and generality o f  the Sobel edge detector serves as a natural 

precursor to the closed geometry clustering stage. This clustering stage performs well at 

classifying the presence o f  damage, however, it is only after the pixel supplementation 

stage that the shape and size characteristics o f  the retained closed geometries are 

sufficiently realised. Finally, a Receiver Operating Characteristic (ROC) based 

optimisation framework may be employed to detem iine the best input parameters. Each 

stage is discussed in the following sub-sections.
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Figure 4.8 REMPS Flowchart applied to a zoomed-in portion o f the normally exposed 

image from Figure 4.7.
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4.3.2.1 Identification

The first stage of the damage identification process involves the creation o f a temporary 

image which undergoes contrast enhancement and colour reduction operations. These 

operations help make the boundaries of features o f interest in a scene more apparent and to 

focus the following analysis on key regions. This is an important step before the 

application of the Sobel operator, as often in natural scenes, the transition from damaged to 

undamaged zones is ambiguous, resulting in an increased likelihood that an edge boundary 

may be undetected. Contrast is amplified through a process known as Histogram 

Equalisation (HE) (O'Gorman et al., 2008; Pizer et al., 1987) whereby the intensity values 

are uniformly spread over the full range o f each colour channel in the image [0, 255]. Let A 

denote an image represented as an Mx x M, x CC matrix of pixel intensity values, where 

and My are the row and column lengths and CC is the number o f colour channels. For 

colour images, there are three colour channels (e.g. RGB images are comprised of a Red, 

Green, and Blue plane). For HE, each colour channel is operated on separately. The 

discrete frequency and the fraction Pc(v) of a pixel having intensity v in the c"’ colour 

channel are assimilated and the fraction is defined as

n^r
P(.{y) = —^  for 0 < v < L ;  <n  (4.4)

n

where n is the total number o f pixels in the image and ny,c is the number o f occurrences of 

pixels with intensity value v  in the colour channel; L is the total number o f intensity 

levels in the image A (for images defined on a scale o f [0, 255], L = 256). L assumes the 

same value for all colour channels. The Cumulative Distribufion Function (CDF), P^,
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which provides the accumulated normalised histogram for the colour plane can be 

computed as:

With knowledge o f the CDF, the general equation for generating the HE image may be 

written as:

(  P ( v ) - P i v  = (i) \
heq^v) = round \ /  .  ( « *  “  0 | ^  (4-b)

where heq^{v) is the histogram equalised intensity value in the c* colour plane. This 

equation incorporates colour reduction which quantises the intensity values in each colour 

channel into discrete bins. Finally for this preliminary m odification stage, a 2D 

greyscale image, B, o f  size x My, is formed by averaging the intensity values from each

255
colour channel as per Equation 4. This equation also includes a scaling term, -------  , for

restoring the image's range from [0, /7*-l] to the original range o f  [0, 255].

b{v)  = round ^ 2 5 5  1 S '

n^ - 1  CC c=
Z heq,{v) (4.7)

where 6(f) is the corrected intensity value in image B. The function o f the rounding 

operator is to ensure that the intensity values in image B  remain discrete integers. A value 

o f  14 was used for nt for each application o f  REMPS on the sample images shown 

throughout this section. This value was chosen as it was experimentally found to offer a
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sufficient number o f distinct bins and provide suitable grouping o f  perceptually similar 

pixels within each bin. The param eter can be optimised methodically through a Receiver 

Operating Characteristic (ROC) based optimisation framework as discussed in Section 

3.2.4, or simply using a trial and error approach, which involves trying various /?* values 

until satisfactory segmentation results are obtained. Initial detection o f features o f interest 

may now be carried by applying an edge detector to the m odified image.

The Sobel operator edge detector works by calculating approximations o f  the first 

derivatives o f  an image in horizontal and vertical directions respectively (Abdou and Pratt, 

1979). Denoting Ghorz and Gven as the tw'o masks which give the horizontal and vertical 

derivative approximations at each point as

“-1 0 + r ■-1 -2 - f

-2  0 +2 and = 0 0 0

-1 0 +1 + 1 +2 +1

(4.8)

where the asterisk denotes the 2-dimensional convolution operation. A padding with a 

thickness o f one pixel may be applied around the border o f  image B  during the convolution 

process thereby enabling the computation to be performed at the image extremities. The 

intensity values in the padding assume the value o f the neighbouring pixel in the original 

image. At each point in the image, the resulting gradient approximations can be combined 

to give the gradient magnitude, using

(4.9)
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A large value o f  G,omi represents a sharp change in im age intensity  w hich in turn is 

indicative o f  an edge boundary. S ince the prelim inary histogram  equalisation and colour 

reduction steps prevent the occurrence o f  weak edges, all non-zero values o f  G,otai m ay be 

taken as being represen tative o f  an edge. The detected boundaries for the H D R im age are 

show n in Figure 4.9. T he region enclosed by the boundary is denoted by R j w here j  is the 

index o f  the region

Figure 4.9 Detected closed geometries following pre-processing and application of the 

Sobel operator.

It m ay be observed from  Figure 4.9 that m any closed geom etries detected by the Sobel 

operator are o f  a neglig ib le size w hich tend to  represent spurious regions ra ther than 

dam aged regions. For com putational parsim ony and classification accuracy  purposes, 

closed geom etries below  a certain size are not considered for future analysis. The chosen 

threshold  area can be view ed as the m inim um  defect size, below  w hich regions are
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considered to present an insignificant degree o f  damage. It may be convenient to represent 

the threshold area as a function o f the overall image size. For instance, it could be specified 

that closed geometries less than 1% of the total image area should be discarded. A priori 

knowledge o f the damage type and its relationship to the decision process (repair, detailed 

inspection etc.) may be used as a factor in choosing the threshold area. The remaining 

closed geometries are classified by means o f a clustering technique.

4.3.2,2 Clustering based Filtering

Given a set o f closed geometries (R„ = Rj , Rj), the clustering algorithm aim.s to 

partition the J  observations into two sets S  = {Si, such that the Euclidean distance 

between the centroid o f  R„ and the centroid o f the set which it is assigned to is minimised. 

St corresponds to the cluster representing damaged regions while S2 represents the 

undamaged cluster.

The centroid o f each closed geometry is given by the point (jii],fj2,iJ3,k\,k2,ki)o where 

is the mean, and ^1.3 is the kurtosis, o f  the pixel distribution for each o f  the three colour 

channels within the closed geometry. The mean o f  each colour channel for each region 

is computed by:

f r .

t= \
(4 . 10)

while the kurtosis is given by:
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w here v',c,o denotes the in tensity  value for the pixel with index t  w ithin the o"’ region for

the c ’’ co lour channel, w hile denotes the total num ber o f  pixels in the o '”’ region.

K urtosis provides a m easure o f  the peakedness o f  a probability  distribution. It is helpful for 

assessing the hom ogeneity  in a set o f  d istributed values by  com puting the shape o f  the 

probabilistic  mode. W hile kurtosis gives a m easure o f  shape, it fails to provide inform ation 

about the centre o f  a distribution. W ith this in m ind, using kurtosis in conjunction w ith the 

m ean is an effective w ay to describe the pixel distribution w ithin each closed geom etry. 

R epresenting a closed geom etry  solely based on the m ean is susceptible to  error as closed 

geom etries w ith d isparate pixel distributions m ay yield sim ilar values. Introducing kurtosis 

offsets this issue and creates a m ore w ell-rounded description o f  each closed geom etry. Its 

am plitude independent nature m eans that it is less affected by variations in contrast levels 

betw een im ages w ithin a batch, ensuring that training data selected in one (or m ore) 

im age(s) rem ains relevant to o ther im ages in the batch. Furtherm ore, it was experim entally  

found to provide a good description o f  dam aged regions. A scatter plot o f  the m ean and 

kurtosis values for the num bered  regions in F igure 4 .10 is illustrated in F igure 4.10(b). The 

centroid  o f  the o* closed geom etry, /?„, is given by { jj\,iU 2 , ^ s , k \ , k 2 , k i ) o .  The centroids o f  the 

dam aged and undam aged clusters are obtained from  the training data. T he train ing  data is 

com prised  o f  tw o closed geom etries w hich are representative o f  a dam aged and 

undam aged zone. These regions m ust be m anually  selected. In the illustrated  exam ple, the



region labelled "^ i"  in Figure 4.9 was used as the dam aged train ing data w hile the 

background w as chosen as the undam aged region (labelled " ^ 7"). The cluster centroid for 

the dam aged cluster, S /, is thus given by  the vector w hile the centroid o f

the undam aged cluster, S2 , is given by

SDR Im age HDR Im age
200 TOO

Background
175 175

1M) 160

125 125

100 I X

I

25 3.5 55 25 35 55
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^  Green Colour C hanne l  
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•  Red Colour Channe l  

^  Green C o lo u rC h a rn e l  
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Backaroiind

k
(a)
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Figure 4.10 Scatter plot of mean and kurtosis values for each closed geometry in the 

(a) SDR and (b) HDR images.

Figure 4 .10 illustrates the difference betw een the range o f  // and k  values in the SD R and 

HDR im ages. It m ay be observed from the H D R im age scatter plot (F igure 4.10(b)) that 

there is a greater degree o f  separation, according to //, betw een the background and the 

o ther closed geom etries in com parison to the SDR im age scatter plot (F igure 4.10(a)). 

A dditionally , the scatter points for the HDR im age are m ore dispersed, according to k, 

w hich should, in theory, facilitate clustering by reducing the likelihood o f  am biguous 

closed geom etries that lie on the decision boundary.
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Ro is assigned to the set which minimises the Euclidean distance between the observation 

centroid and cluster centroid as:

II l|2  II ||2
•S'], ^damaged,k \ ^undamaged,k \

/? eo
S2 , otherwise

(4.12)

where k = 1,2,. ..,6 denotes the index o f  the elements in Rg.

Once the closed geometries have been grouped into their respective clusters, it is 

necessary to enhance their size and shape characteristics.

43.2.3 Enhancement

Follow ing the region based clustering stage, there still exists many damaged pixels 

around the periphery o f  the region that remain undetected Performing SVM  in the 

neighbourhood o f  these regions and then locally supplementing the closed geom etries with 

the SVM  pixels produces better defined features o f  interest. This is conveyed by 

comparing the closed geometry ^1 before and after the local application o f  SVM  classified  

pixels (Figure 4.11 (a) and 4.11 (b) respectively).
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F ig u re  4.11 C lose-up  o f R l ,  (a) B efore  local en h a n c e m e n t, a n d  (b) D e tec ted  pixels 

fro m  SV M  classification .

SV M s are used to classify  pixels as being either dam aged or undam aged based on the 

intensity  values for each colour channel. SVM  is a supervised learning classifier based  on 

statistical learning theory. The linear SVM  is used for linearly  separable data using a (^ -1 )  

dim ensional hyperplane in ^ dim ensional feature space (B oser et al.; C ortes and V apnik, 

1995; Cristianini and Shaw e-Taylor, 2000; V apnik, 1995). This hyperplane is called  a 

m axim um -m argin hyperplane w hich ensures m axim ised distance from  the hyperplane to 

the nearest data points on either side in a transfonned  space. T he linear kernel function is 

the dot product betw een the data points and the norm al vector to the hyper-plane. The 

kernel function concept is used to sim plify the identification o f  the hyperp lane by 

transform ing the feature space into a high dim ensional space. The hyperplane found in the 

high dim ensional feature space corresponds to a decision boundary in the input space.

In SVM  the classifier hyperplane is generated based on train ing datasets. The sam e 

dam aged and undam aged regions used in the clustering  stage are used as the train ing data.

G iven a training dataset o f  / points in the form w here h  denotes the vector in

the dataset, Uh is a real ^ -d im ensional input vector contain ing the m ean and kurtosis values
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associated with each region e 'lH ^and Vh is an instance label v ec to r (v^ e { l , - l } ' ) ;  for this 

study, a value o f  + 1 indicates presence o f  dam age and -1 indicated absence o f  dam age. To 

identify  the m axim um -m argin  hyperplane in the feature space, the SVM  requires the 

solution o f  the fo llow ing optim isation problem :

i M’, e} = arg min I — + C  X  I; C > 0
w,b,4 v2  h=\ )  (4.13)

subject to V/, {w^(piu^ ) + e ) > ] - ^ f , ;

The function cp m aps the train ing vectors W/, into a h igher dim ensional space. The vector 

w  is the w eight vector w hich is norm al to the hyperplane, e is the bias, ^  is the 

m isclassification error and C  is the cost or penalty  param eter related to <̂. The solution to 

this constrained problem  is obtained by in troducing Lagrange m ultipliers as expressed in 

the follow ing Q uadratic Program m ing (Q P) optim isation problem :

m m  m ax
w.b,^ v2

with >0

h=l h=\ h=\ (4.14)

w here a  and f i  are the L agrange m ultip liers. By substitu ting  *=' , it can show

that the dual fonn  o f  this problem  reduces to the follow ing optim ization problem  w here the 

aim  is to m axim ise the Lagrange m ultip liers (V apnik, 1996):

L { a )
^ I 

V//=l
h

1 I I 
-  Z Z
I  h=\ q=\

( 4 .15)

This can be fram ed as a m inim isation  problem :
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min
h = \q = \ ' ' h= \ )

(4.16)

With Constraints:

(4.17)h= \

0< a/j <C,h = 1,...,/

where K  is the kernel function «/, and are the Lagrange multipliers, is a label vector 

( '’r.v ^ fo>' the input point z.'v v.c. This formulation has the advantage of not having to

problem may be solved using QP techniques. The linear kernel has been used here, which 

is given by:

There is one preselected parameter value for the SVM, namely the cost parameter C, which 

may be optimised in a similar fashion to the tih parameter from the colour reduction stage 

using an ROC based optimisation framework/trial and error approach.

The enhancement process firstly examines pixels that are immediately adjacent to each 

retained region, /?/. A pixel is considered to be adjacent to a region if it shares an edge or 

comer with any pixel on the periphery o f that region. SVM classification is applied to these 

adjacent pixels utilising their original intensity values (ax.v.c) to classify each o f these pixels 

as representing damaged surface or not. Pixels which are classified using SVMs as 

representing damage become a member of the region, R j .  Pixels in immediate vicinity of

use w, or the mapping function ^ , as well as having a unique optimal solution. This

(4.18)
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the newly identified member pixels o f Rj are further subjected to classification using 

SVMs. This process is repeated until there are no more adjacent damaged pixels that can 

be added to a region. For computational parsimony, no individual pixel is subjected to 

classification using SVMs more than once in the entire region enhancement step.

4.3.3 Evaluation of REMPS

This section presents the results obtained by REMPS when applied to the SDR 

(normally-exposed) and HDR images of pitting corrosion (Figure 4.7). The performance is 

investigated for several colour spaces. These colour spaces are introduced in the first 

subsection. A comparison of the results for each colour space is provided in the second 

subsection, followed by a subsection which compares the perfonnance of REMPS against 

established segmentation techniques. The final subsection presents the performance of 

REMPS alongside a texture analysis based damage detection technique when applied to a 

variety o f damage forms.

4.3.3.1 HSV and Colour Spaces

Two additional colour spaces were considered in order to determine whether this could 

improve the accuracy o f detection, namely the HSV and L*a*b* spaces. HSV (Hue, 

Saturation, and Value) is one of several variations o f colour spaces characterised by the 

factors in the parenthesis. It is often used in computer vision and image analysis for feature 

detection or image segmentation as the hue component is believed to be especially useful 

for separating objects with different colours (Vapnik, 1995). Often, detection algorithms 

applied to colour images are extensions to algorithms designed for greyscale images 

whereby each of the three colour channels is separately passed through the same algorithm.
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It is important, therefore, that the features o f  interest can be distinguished by the colour 

dimensions used. Because the red, green and blue components in an RGB image are all 

correlated with the same amount o f  light hitting the object, and therefore with each other, 

image descriptions in terms o f  these components can make object discrimination difficult. 

Descriptions in terms o f hue-saturation-brightness are often more relevant due to this 

separation o f  chromatic and achromatic information. The HDR image o f  pitting corrosion 

is shown in the HSV colour space in Figure 4.12(b).

The L*a*b*  colour space also offers som e interesting benefits over the RGB space, 

especially in cases where the colour o f  damaged zones is perceptually close to the colour 

o f  the undamaged surface. The L*a*b*  space consists o f  a luminosity layer L*, and 

chromaticity layers a*  and b*. The L*  component is similar to the V component HSV  

space. It closely matches the human perception o f  lightness. Being able to isolate the 

lightness layer is helpful for making accurate colour balance corrections which is useful 

when lighting levels cannot be controlled (O'Byrne et al., 2013). The colour information is 

stored in the a*  and b*  layers. The a*  component indicates where the colour lies on the 

red-green axis, while the b* component indicates where the colour lies on the blue-yellow  

axis. The L*a*b*  space attempts to reflect a unifonn change in perceived colour with a 

corresponding uniform change in the L*, a*, and b*  components. The HDR image in the 

Z, *0 *6 * colour space is shown in Figure 4 .12(c).

4J.3.2 Comparison of Colour Spaces

Different colour spaces encode and numerically represent colour in various ways. 

Consequently, som e colour spaces are more receptive to certain segmentation techniques 

than others. REMPS is applied to the SDR and HDR images in the RGB, H SV and L*a*b*



colour spaces to explore whether a particular colour space responds well to the proposed 

technique. The detected regions for the HDR image in each colour space are shown in 

Figure 4.12. The perfonnance o f REMPS for the SDR and HDR images in each colour 

space are quantified in Table 4.2 and the associated perfonnance points are plotted in the 

ROC space in Figure 4.13.

(a)

f
IT

%
(d)

f f

Figure 4.12 HDR Image of Pitting Corrosion, (a) Image in RGB space, (b) Image in 

HSV space, (c) Image in L*a*b* space, (d) Detected Regions in RGB, (e) Detected 

Regions in HSV, (f) Detected Regions in L*a*b*.
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Table 4-2 Detection accuracy for the SDR and HDR image of pitting corrosion for 

each colour space.

Colour Space SDR Image HDR Image

DR MCR d DR MCR 8

RGB 84% 8% 0.18 85% 7% 0.17

HSV 85% 7% 0.17 84% 5% 0.17

L*a*h* 76% 5% 0.24 85% 5% 0.16

Best Performance Point Colour Space Com parison
100

Colour Spaces: 

■ RGB

•  HSV80

Line of Chance

Zoomed View  of Performance Pointsoc.
100

.2  S?50

min 540

90

n
_ i _
90

j

50 to too7040
Misclassification Rate

(%)

Figure 4.13 ROC curves depicting the performance of REMPS algorithm in various 

colour spaces.
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It may be observed from the relatively compact nature o f perfonnance points in Figure 

4.13 that the accuracy o f REMPS is not heavily reliant on the colour space. Despite this, 

some interesting findings emerged. Analysis o f the lv a lu e s  in Table 4.2, which represent 

the best balance between DR and MCR for each image, reveals that HDR imagery 

typically offers a superior performance over the SDR image. Overall, it was the HDR 

image in the L*a*h*  space that achieved the best perfonnance while, conversely, the SDR 

image in L*a*b*  was the worst performer by noticeable margin. This suggests that 

adopting a HDR protocol is especially relevant when operating on images in the L*a*b* 

space.

The performance order o f the colour spaces might be somewhat expected given the visual 

appearance o f the HDR image in each colour space (Figure 4.12(a)-4.12(c)). It may be 

noted that damaged regions in L*a*h*  appear relatively homogenous and are readily 

discernible against the background. The damaged regions in the HSV colour space on the 

other hand are composed o f several colours making object detection more difficult. The 

RGB space is slightly more effective than the other spaces at locating the presence o f 

damage while the HSV and L*a*h*  spaces perform well at defining the shape and size o f 

damaged regions.

The success o f  REMPS is influenced to varying extents by the performance o f  each 

phase in a given colour space. W hile there is a heavy reliance on the ability o f the Sobel 

edge detection phase to isolate damaged regions, it is the clustering stage which has the 

greatest influence. This stage determines whether clusters should be retained or discarded 

so it can have a significant impact on both the misclassification and detection rate. 

Conversely, the SVM stage has a relatively m inor effect on the detection accuracy as it is 

largely confined to a role as a supplementary tool to enhance already detected regions.
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Thus, colour spaces that do not respond well to the edge detection stage and particularly 

the clustering stage are greatly handicapped.

4.3.4 Comparison with Traditional Colour based Techniques

In this section, REMPS is compared with established detection techniques, such as 

Otsu’s Method (Otsu, 1979), Chan-Vese Method (Chan and Vese, 2001), Delaunay 

Triangulation (Cheddad et al., 2008), Region Growing (Adams and Bischof, 1994), and 

Graph-Based Segmentation (Felzenszwalb and Huttenlocher, 2004). The comparison 

serves to highlight the effectiveness o f REMPS in relation to the other segmentation 

techniques. The regions detected using these techniques on the HDR image are shown in 

Figure 4.14, and their respective perfonnances are quantified in Table 4.3 for both the SDR 

and HDR images, as well as being graphically illustrated by means of perfonnance points 

in the ROC space in Figure 4.15.

The performance o f colour based segmentation techniques is affected by whether the 

technique is contextual or non-contextual. Non-contextual techniques (e.g. thresholding) 

do not take into account any spatial relationships between pixels in an image, but rather 

segment pixels at a global level on the basis o f some attribute, e.g. colour intensity. 

Contextual techniques (e.g. REMPS or region growing techniques) on the other hand do 

consider spatial relationships. If a contextual relationship is an important factor for 

segmenting a particular image, than non-contextual techniques will have limited success 

compared to techniques which exploit the contextual relationship. Adopting the a-S 

method allowed for a clear comparison between various (DRMCR) pairs. Analysis o f the 5 

parameter in Table 4.3 reveals that all o f the established techniques performed noticeably 

better when applied to the SDR image rather than the HDR image. In some cases, such as
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for the Region Growing technique (Figure 4.14(d)), the SDR image offered an appreciably 

improved performance suggesting that the increased local contrast associated with HDR 

has an adverse effect. This may be observed from the ROC space in Figure 4.15 which 

illustrates the relatively separate nature o f the two performance points associated with the 

technique. However, an exception to this trend emerged in the case o f REMPS, whereby 

the performance was slightly enhanced when HDR imagery was considered as an imaging 

protocol.

The performance levels obtained from each technique varied markedly. The Chan-Vese 

method (Figure 4 .14(b)) and Delaunay Triangulation (Figure 4 .14(c)) perfonned quite well 

when applied to the SDR image, whilst Otsu's M ethod (Figure 4.14(e)) performed 

reasonably well on both the SDR and HDR images despite its simple and non-contextual 

nature. The Graph Cutting technique (Figure 4.14(f)) on the other hand produced poor 

results, as demonstrated by the performance points in the ROC space lying closer to the 

line o f chance than the best performance point (Figure 4.15). Overall, the REMPS achieved 

the best detection results, especially when performed on the HDR image.
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Figure 4.14 Detected regions from: (a) REMPS, (b) Chan-Vese Method, (c) Delaunay 

Triangulation, (d) Region Growing, (e) Otsu's Method, (f) Graph-Based 

Segmentation.
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Table 4-3 Comparison of techniques.

Segmentation

Technique

Normally Exposed 

Image

HDR Image

DR MCR 6 DR MCR d

REMPS 84% 8% 0.18 85% 7% 0.17

Chen-Vese 93% 18% 0.19 95% 22% 0.23

Delaunay Triangulation 86% 14% 0.20 85% 14% 0.20

Region Growing 89% 17% 0.21 95% 35% 0.36

Otsu's M ethod 86% 14% 0.20 90% 20% 0.22

Graph Cutting 78% 39% 0.45 76% 41% 0.47

Best Performance Point Com parison o f T echn iques
100
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Figure 4.15 Comparison o f detection techniques in the ROC space.
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REMPS was also applied to a standard image in a non-structural scene, significantly 

disparate from the corroded example presented in this section, to showcase its credentials 

as a standalone segmentation technique. A visual comparison with some o f  the detection 

techniques previously mentioned is presented in Figure 4.16, which further illustrates the 

potential o f REMPS and underlines its credentials as a high performing standalone 

technique beyond damage identification applications.

(C)

( t )

Figure 4.16 (a) Original Image, Detected Regions from: (b) REM PS, (c) Chan-Vese 

Method, (d) Delaunay Triangulation, (e) Region Growing, and (f) Otsu's Method.

It may be observed from Figure 4.14 and Figure 4.16 that the detected regions from 

REMPS produce a much ‘cleaner’ image o f  detected regions that is not contaminated by 

speckles o f spurious regions which is a feature o f all the other techniques. Having a 

‘cleaner’ image is important for many post-processing applications such as calculating the 

propagation rate for damaged regions. For such an application, labelling and numbering o f 

damaged regions may be a necessary prerequisite which would be inhibited by the 

presence o f the many small and insignificant spurious regions.
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4.3.5 Comparison with a Texture Analysis based Technique for Damage Detection

Image processing based techniques include colour intensity based methods and texture 

analysis based methods. Naturally, the techniques in each group are suited to different 

applications, depending largely on whether the damaged regions are more separable from 

the background based on colour or on texture. This section assesses the perfonnance o f 

REMPS alongside a texture analysis based technique (O ’Byme et al., 2012) previously 

proposed in the domain o f NDT, in order to give an indication o f the performance levels 

that can be expected when a range o f damage forms and surfaces are under consideration. 

This should enable the end user to better decide on which approach is most appropriate to 

their needs.

Both methods are applied to four different images shown which feature various damage 

forms, lighting conditions, viewing angles, resolutions etc. These images are shown in 

Figure 4.17, along with the regions detected using REMPS and texture analysis approach.
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Fi gure 4.17 Top row: original images featuring damage: (1) pitting corrosion, (2) 

marine growth, (2) metal sheet with various corrosion damage, and (4) road 

delamination. Middle row: regions detected using REMPS. Bottom row: regions 

detected using texture analysis.

The performances for each damage detection technique are presented in Table 4.4.
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Table 4-4 Comparison of REM PS technique and a texture analysis technique.

Sample Image REMPS Texture Analysis

DR MCR 6 DR M CR d

(1) Pitting Corrosion 84% 8% 0.18 78% 32% 0.39

(2) M arine Growth 64% 8% 0.37 64% 29% 0.46

(3) Metal Sheet with 

various Corrosion Damage

90% 3% 0.11 96% 24% 0.24

(4) Road Delamination 93% 10% 0.12 52% 10% 0.49

It may be noted from these results that REMPS was quite successful for the majority o f 

cases with the exception o f the marine growth image. The poorer detection results for this 

image may be explained by the fact that the damaged regions throughout the image were 

not characterised by one single colour. Instead they took on numerous contrasting shades 

which often overlapped with the non-damaged background. Generally however, REMPS 

proved effective at locating the presence o f damage as well as accurately defining the 

shape and size o f damaged regions.

The texture based method was effective at locating the presence o f  damage as may be 

observed from Figure 4.17, however it did not perfonn as well as REMPS at defining the 

extent o f damage which resulted in poor DR, MCR  and d values in Table 4.4. M any small 

spurious regions were detected unlike REMPS which produced a ‘cleaner’ and more 

homogenous detection.
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These results demonstrate the applicability o f REMPS for a wide range o f damage fonns, 

and show that it offers an improvement over the texture analysis based damage detection 

approach for the presented scenarios.

4.3.6 REM PS Discussion and Conclusion

Various fonns o f NDT techniques have been employed to assess civil infrastructure since 

the advent o f SUM, however it is only with the relatively recent introduction o f computer 

based systems that quantitative information on the health status o f structural components 

can be obtained on-site. There is thus an emphasis on devising sophisticated damage 

detection techniques that can effectively capitalise on the ever increasing level o f 

computational efficiency. This section has presented an image analysis based damage 

detection technique, REMPS, which is intended to supplement and strengthen existing 

visual inspection methods by providing a quick and convenient source o f  quantitative 

information. The development o f REMPS was necessitated by a lack o f  sophisticated 

image based damage detection techniques that can be applied to a broad range o f surface 

types, damage forms, and lighting conditions that are typically encountered in 

infrastructures. The specific application presented in this section demonstrates the 

immediate success o f the method as an NDT tool to assist visual inspections where an 

improved detection directly influences the owner o f  infrastructure systems during a 

decision-making process.

REMPS adopts a multi-phase segmentation m ethodology which incorporates features 

from three standard image processing and data analysis techniques. Since these techniques 

are well-known and described in the literature, REMPS may be easily replicated and 

implemented. A key benefit o f  REMPS is its ability to produce better defined and more
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hom ogenous regions o f  interest w ithout being affected by isolated extraneous pixels. 

REM PS achieves this cleaner segm entation by efficiently  integrating pixel and spatial 

relationships. The presented  results indicate that im provem ents can be m ade to the 

detection accuracy by  segm enting in the L * a * b *  co lour space and adopting a H DR 

protocol. Furtherm ore, the credentials o f  R EM PS as a standalone segm entation technique 

are underlined as it is show n that REM PS outperfom is several established detection 

techniques for various scenes.

4.4 Stereo Matching Algorithm for 3D Shape Recovery

R ecovering shape inform ation is a challenging but useful task, and has w ide applicability  

in m any areas o f  S tructural H ealth M onitoring (SH M ). For underw ater inspections, one 

such exam ple concerns the tracking o f  m arine grow th thickness on offshore structures, 

w hich is undesirable as it increases the hydrodynam ic forces acting on the host structure 

(B oukinda M badinga et al., 2007). The shape recovery technique discussed in this section 

is based on stereo-vision, o r stereo for short, w hich em ploys a dual cam era set-up to 

sim ultaneously  photograph a specim en o f  interest from  slightly  different view points. 3D 

inform ation can then be extracted by exam ining o f  the relative positions o f  objects 

captured by  each cam era. A n overview  o f  the stereo process is show n in F igure 4.18.
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Figure 4.18 Shape recovery using stereo imaging flowchart.

A key part o f the stereo based shape recovery process is the matching phase, which seeks

to locate the same object in the left and right camera images. Although a wide range o f

stereo matching algorithms have been proposed to solve this problem, these are often

designed with specific applications and operating requirements in mind such as real time

102



processing. The development o f a new stereo matching algorithm is motivated by the need 

for a technique that can effectively deal with the poor visibility conditions encountered in 

an underwater setting and efficiently exploit the high resolution o f images to provide good 

depth sensitivity.

The challenging underwater conditions attenuate the contrast o f  the subject and can 

introduce artefacts such as tloating particulate, both o f which increase the likelihood of 

unreliable or false matches. To combat this, the PaLPaBEL (Pyramidal Loopy Propagated 

BELief) stereo correspondence algorithm technique was developed. PaLPaBEL is based on 

a Markov Random Field (MRF). The M RF provides smoothness - an important factor in a 

noisy underwater environment, where matching exclusively based on colour information 

cannot be relied upon. Adopting a pyramidal scheme is not only efficient, but it also 

enables M RFs to be used that can consider a wide disparity range without having to 

downsize the image dimensions so as to avoid exceeding the computer's memory 

limitations. This in turn enables accurate and precise depth infonnation that can fully 

utilise the original image resolution.

A brief overview o f the relevant terminology is provided in the section. The m ethodology 

o f the proposed stereo approach is outlined in Section 4.4.2. The technique is demonstrated 

on a synthetic scene as well as a real world specimen photographed underwater.

4.4.1 Stereo Terminology

This section summarises the main terminology used in the context o f  stereo imaging.
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Disparity - The distance in pixels between two corresponding points in the left and right 

image o f a stereo pair.

Depth Map/Disparity Map - By matching every pixel in the left image with its 

corresponding pixel in the right image and computing the relative distances between 

matched pixels (i.e. the disparity), we end up with an image, or map, which shows the 

disparity at every point in the image.

Rectification - Rectification of a stereo pair involves applying a transformation (warping) 

to each image such that corresponding points are separated by a horizontal offset only and 

not by a vertical one. Rectification makes the process of matching pixels in the left and 

right image considerably faster as the search will be confined to the horizontal direction 

only.

Occlusion - Occlusion occurs if a 3D point in the real world space is only depicted in one 

image and is hidden in the other image.

Fundamental Matrix - The fundamental matrix is a 3x3 matrix which relates 

corresponding points in stereo images. It may be estimated from at least seven point 

correspondences. Its seven parameters represent the only geometric information about 

cameras that can be obtained through point correspondences alone.

Baseline - The real world distance between the two camera centres (measured in 

millimetres).
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4.4.2 M ethodology

The methodology is outlined in five steps. These are: I) Image pre-processing using 

histogram stretching, 2) rectification, 3) matching, 4) occlusion handling and false match 

elimination, and 5) Reconstruction. The synthetic stereo pair shown in Figure 4.19, 

which depicts a marine growth affected pile, is used to illustrate each of these steps. 

Synthetic data was used to imitate the textures and irregular shapes typical of marine 

growth.

Left Image Right Image

Figure 4.19 O riginal input im ages featuring synthetic m arine grow th.

4.4.2.1 Im age Pre-processing: H istogram  Stretch ing in the L * a * b *  C olour Space

This step is intended to improve the matching accuracy. The images are converted from 

the RGB colour space to the L*a*b* colour space in order to isolate the 'Lightness' 

component, L*. Adjusting the L* component re-maps the brightness producing greater 

contrast in a way that does not significantly affect the colour balance. This procedure is
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done by stretching the values in the L* channel at each pixel location so that they occupy 

the full range - from 0 to 1, as per:

Stretched  / r ^ \ * / r ^ \  ^ 'max(L%,„)-mm(L%,„)

where L*s„-e,ched is the output lightness component, which replaces the original input 

lightness component, L*i„pu,, in the updated contrast enhanced image. The updated L*a*b* 

image is converted back into the RGB colour space once again. Histogram stretching is 

highly applicable to undei'water images so as to restore some o f the lost contrast. The 

resulting enhanced images are shown in Figure 4.20.

Left Image Right Image

Figure 4.20 Histogram Stretched Images.

106



4.4.2.2 Rectification using SIFT (Scale Invariant Feature Transform ) Features

Rectification is the process o f  transfonning the images in a stereo pair, such that 

corresponding points in each image are separated by a horizontal distance and not a 

vertical distance.

Rectification is achieved by locating and matching distinctive points in the left and 

right images. SIFT features are invariant to scaling and rotation o f  the image, and are 

resilient to illumination changes, the presence o f  noise, as well as m inor changes in 

perspective. Additionally, the features are efficiently described, which leads to a low 

probability o f false matches. The process o f rectifying two images based on SIFT 

Features is described by Lowe (1999):

All points in the rectified images should satisfy the epipolar geometry o f  a rectified 

image pair (i.e. that the images are aligned horizontally). This may be expressed as; if  a 

point PI ,  in the left image, corresponds to P2,  a point in the right image, then:

> 2 ' > r
F

1 1

where F  is the fundamental matrix. Figure 4.21 (a and b) show the unrectified and rectified 

images respectively,
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Figure 4.21 (a) Unrectified Images (blue = left image, red = right image), (b) Rectified 

image where the keypoints are now horizontally aligned.

4.4.2.3 Matching

This section details the PaLPaBEL technique. Using an approach such as loopy Belief 

Propagation (BP) applied to Markov Random Fields, as described by Ho (2012), typically 

offers an improvement over naive block matching as it promotes a smooth and continuous 

depth map, which is often more reflective o f the scene under consideration. Attempting to 

recover the depth map through basic block matching, which selects the best match based 

only on colour information whilst ignoring context/spatial information, is prone to 

producing inconsistent and inaccurate depth maps. In reality, it is typically the case that 

pixels in close proximity to each other share similar disparity values, unless the pixels 

represent an edge boundary in the scene.

The first step is to measure the similarity o f points in the lefl and right images o f  the

stereo pair. There are numerous ways o f  calculating a measure o f  similarity, such as Sum

o f  Absolute Differences (SAD), Sum o f Squared Differences (SSD), Normalised Cross
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Correlation (NCC) and Zero-mean Normalised Cross Correlation (ZNCC). The described 

technique employs ZNCC as a measure o f  similarity as it provides better robustness than 

NCC since it tolerates unifomi brightness variations thanks to the subtraction o f  the local 

mean, albeit at the expense o f increased computation time. Calculating the ZNCC 

involves a sliding window, which moves horizontally over the right image within the 

predefined disparity range. The contents o f the window at every disparity value are 

compared with the reference window in the left image. The zero mean normal cross 

correlation coefficient, q, has a high value when there is a high degree o f similarity 

between two sets. It is defined as:

where CG(w,z) denotes the intensity value in the reference window (left image), DS{u,z) 

denotes the intensity value in the sliding window, SW, in the right image, u and z are the

within the area o f the template, and in the mean value in the reference window 

respectively.

(a) M RF Formulation

X  {DS{u, z ) ^ - D S a ){CG {ll + ^ , z ) - C G  )
u,veSPV (4.20)

u,veSfV

horizontal and vertical spatial indices o f the o f  SM ,̂ A is the disparity distance at which the

template has been shifted, and and denote the mean value o f the destination image

MRFs are undirected graphical models that have application in many image processing 

tasks (Kinderman and Snell, 1980). For stereo matching purposes, M RFs enable spatial 

dependencies between nearby pixels to be encoded. M RFs are comprised o f  nodes and



links and may be cyclic, meaning there is no guarantee o f convergence regardless o f  the 

num ber o f  iterations. An example o f  how MRFs can be used to model the stereo problem is 

shown in Figure 4.22 for a 3><3 image.

Observable nodes:
matching cost

Hidden nodes:
disparity values

Figure 4.22 MRF for a 3 x 3 image.

A dark node represents an observed variable, which is the matching cost associated with 

a particular disparity value. A light node represents a hidden variable, which directly refers 

to the disparity value. Disparity values are widely referred to as 'labels' in this context.

The links between each node in Figure 4.22 denote a dependency. The value o f  a hidden 

node will depend on the four immediately adjacent hidden nodes, along with the 

observable node. The traditional fonnulation for the stereo problem in term s o f an M RF is 

given by the following energy function:
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E{Y, X)  = Y, MC{v^,Xj )+  X SC{Xj,x,)
f  y=neighbours o f /

(4.19)

where the variables Y and X  are the observed and hidden node respectively, E  is the energy 

or total cost, /  is the pixel index, T  are the neighbouring nodes o f nodex/; MC  is the

matching cost associated with assigning a label value o f x /  to data yj ,  and SC  is the

smoothness cost, which promotes good agreement between neighbouring pixels. The 

energy function essentially sums up the cost at each point given a matching cost Y and 

some labelling X  The objective is to find a labelling for X that produces the lowest energy.

The smoothness cost promotes consistent and steady labelling across neighbouring 

hidden nodes. It penalises cases where adjacent labels are markedly different from each 

other. The smoothness cost increases as the label difference increases, as per:

5 C  = m i n ( / 7 - | / - T | , | / - r | )  (4.21)

where l~> is the number o f  labels, i.e. the num ber o f possible integer disparity values that

can be assigned to a node. This function means that the smoothness cost increases as the

difference between adjacent labels also increases, up to a point where the difference

between adjacent nodes becomes half the entire label range, at which point the smoothness

cost begins to decrease once again. This decrease may seem counter-intuitive at first, but it

is necessary for the pyramidal stage in order to facilitate transitioning from nodes that have

the same absolute disparity value. This issue arises when the course disparities computed at

a previous pyramid level are refined in the subsequent level. The finer disparities in the

new level begin with a disparity value based on the coarser disparity value computed at the

previous pyramid level. This smoothness cost function allows seamless interaction and
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smooth overlapping o f  disparity values for neighbouring pixels, even if  these pixels were

represented by different disparities at lower pyramid levels. This is illustrated on a small 

sample stereo image pair in Figure 4.23.

Right ImageLeft Image
Best match: disparity = 0

1” P y ra m id  
Level

Image size 
2 x 3

disparity = +1

Pyramid Lrwef

=+l
P t e l  lnd«s

The best match has the low est cost.

Cost -  M atch ing  Score  4 S m o o th n ess  Cost

Zero-m ean N orm alised 
Cross Correlation

Penalty  incurred  w hen 
ad jacen t pixels have 
d ifferen t d ispartles
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Figure 4.23 Example of smoothness cost formulation.

Loopy B elie f Propagation (BP)

The loopy BP algorithm is a message-passing algorithm that operates on graphical 

models such as MRFs. The algorithm passes a message from one node to an adjacent node 

after it has received messages from all o f  the other connected adjacent nodes. It is worth 

pointing out that there is no return message from the receiving nodes back to the message 

dispensing nodes. Formally, this message passing is defined as:

z  M C(v^,» + 5C(A/.') + m g ,
k=neighbours o f  /  except T

(4.22)
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Essentially, this states that a node /  sends a message to node T about what it believes the 

most suitable label should be. It is node /^s belief about node /"regarding label />. The

messages are stored in a matrix o f size x  My x  5 x  No. o f  labels, where and My are 

the image dimensions and 5 corresponds to the 4 directions from which the message is 

incoming plus the outgoing message (from x\ to X2). For high resolution imagery and 

large disparities, the size of this matrix would become prohibitively large for most 

computers to handle. For example, an image of size 2250 x 2250, and having a 

representative disparity range of 400 pixels, would create an array o f 2250 x 2250 x 5 x 

400, which would require more than 10 billion elements. This demonstrates just why it 

would be infeasible to employ the traditional MRF approach without adopting a 

pyramiding scheme.

(c) Incorporation into a pyramidal scheme

The primary challenge of using MRFs as part of a pyramidal scheme is accommodating 

high disparity values alongside small disparity values with access to only a limited 

number o f labels. This proposed approach achieves this by disregarding the absolute 

disparity values, and only concentrating on the disparity relative to the depth computed at 

the preceding pyramid level. The pyramidal structure is illustrated in Figure 4.24, which 

shows the image dimensions at each level, starting at a coarse, poor resolution, and 

finishing at the top with a fine, large resolution.
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/Pyramid Level 1 
(282 X 282 pixels)

Figure 4.24 Pyramid levels.

The process is described as follows:

1) The process starts at the first pyramid level (i.e. the most down-sampled image, in the 

case o f illustrated image it is o f size 282 x 282 pixels). The disparity range at this level is 

determined by scaling down the disparity range for the fu ll size image by the appropriate 

factor, in this case, by a factor o f 8 (= 2^“ Jhe loopy BP algorithm is

applied to this downsized image, which results in the output smooth depth map image as 

shown in Figure 4.25.
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Figure 4.25 Depth map output from the first pyramid level.

It may be observed that this depth map is quite coarse and could significantly benefit 

from further refinement. W orking towards this objective, the depth map is resized to the 

size o f  the image at the next pyramid level (pyramid level 2, image size = 563 x 563 

pixels). This depth map is then used as input for next level.

2) Pyi’amid level 2: The disparity search commences at the second pyramid level. The 

starting point for the refined disparity search begins at the depth computed from the 

previous pyramid level at each pixel location. So for example, if  a given pixel in the 

image was assigned a disparity o f -4 from the 1 st pyramid level than the correspondence 

search at the 2nd level is centred at -8 (bearing in mind that when the increase in the size 

o f the image is taken into account, the disparity values scale accordingly, so -4 at the first 

pyramid level translates to -4*2 = -8 at the 2nd pyramid level). A search then takes place 

over the range -8 ± (No. o f labels)/2. The progressive refinement o f the depth map is
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shown with the aid of a diagram in Figure 4.26, where it may be noted that more depth 

detail is captured in later levels.

Updated disparity at 
current pyramid level

Disparity = 8 
(obtained from 
previous pyramid

Need to  ensure that 
updated disparity 
can transition  
sm ootly  b e tw e en  
base levels

“T -

Dlsparity = 6
(obtained from previous
pyramid

Figure 4.26 Ensuring continuity in the updated depth map.

Continuous overlapping is achieved using a modulus based indexing structure. The array 

that stores the messages is updated at each iteration of the belief propagation as follows;

mm
m s g . J p )  =

e  all labels
MC{y.,p) + SC{p,p') + msg^_^Ap')

f»=nei^bours o f /  except T

(4.23)

In this chapter, a value of 20 iterations was chosen. It was found that going beyond this 

value was unnecessary as there is no further significant change in energy or cost. After 20 

iterations, the final cost is available, which is calculated from:

Cost{ Xf =p) = MC{yf , /j) + ^  (/?)
o=neighbours o f

(4.24)
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The disparity associated with the lowest cost is assigned to the pixel under 

consideration. The BP procedure is repeated at each pyramid level. The output at each 

pyramid level is shown in Figure 4.27.

Level 1 Level 2 Level 3 Level 4

Figure 4.27 Depth map output from PaLPaBEL at each pyramid level.

It m ay be noted that the depth map gets progressively refined at each successive level. 

This is also conveyed in Figure 4.28 which plots the disparities along a profile line for 

each pyram id level.
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Disparity V alues Along Profile a t each  Pyramid Level
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Figure 4.28 Disparity profile for varying pyramid levels.

It may be observed that the first pyramidal level produces a coarse profile in which the 

disparity values can assume only one o f five discrete values. At each successive level, the 

disparities are refined, so that by the 4'^ pyramidal level, the disparity can assume integer 

values in the whole range; from the minimum disparity to the maximum disparity.

4.4.2.4 Occlusion Handling and False Match Elimination

A notable feature o f  the resulting depth maps is that occluded/poorly matched regions are 

characterised by high fluctuating disparity values, i.e. there are a high frequency o f small 

and large (black and white) values in close proximity. For this reason, a standard deviation 

filter is applied to the depth map to identify and discard these regions. This involves 

convoluting the depth map image with a window o f the same size as the window used at 

the final pyramid level during the correspondence stage and then calculating the standard 

deviation o f  all values within that window for each pixel location. The standard deviation 

computed from each window is then assigned to the pixel at which the window was



centred upon. Areas o f high standard deviation, represented as white in Figure 4.29, are 

regarded as the background or poorly matched areas and are discarded.

Figure 4.29 Standard Deviation Filter (Threshold = 1).

4.4.2.5 Reconstruction

W ith knowledge o f  the camera intrinsic parameters and the fundamental matrix we 

could reconstruct the scene points up to a scale factor (a Euclidean reconstruction). For 

this, the cameras must be calibrated. The calibration must be done under the same 

conditions as that o f  the image acquisition stage. Self-calibration, which is also referred 

to as auto-calibration, is an attractive way o f  detennining the intrinsic and extrinsic 

camera parameters. Self-calibration refers to the process o f  obtaining a calibrated camera 

matrix using the constraints in the scene. The stereo based shape recovery technique in 

this section adopts a self-calibration procedure as outlined in the work o f Zhang et al. 

(1994). Views o f  the reconstructed synthetic specimen are shown in Figure 4.30.
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Figure 4.30 Projective reconstruction.

One o f the primary motivations behind adopting image processing techniques is to 

provide a high degree o f automation. The process o f  image based 3D shape recovery 

should strive towards being a 'click-and-go' operation with minimal human supervision. 

W ith this in mind, there should be as few input parameters as possible and these should not 

require significant attention or drastically affect perfonnance. The input parameters for the 

proposed technique are: the number o f pyramid levels, the number o f iterations for the 

loopy belief propagation algorithm, the disparity search range and the window size for 

matching. The default number o f pyramid levels is taken as 3. This provides a good 

balance between accuracy and memory m anagement/computational efficiency.

The number o f iterations for the loopy belief propagation is taken as 20. Although there 

are no guarantees that 20 iterations is enough for the algorithm to converge, this value was 

experimentally found to be adequate. M oreover, this part o f  the algorithm is quite fast so 

there is not much computational expense incurred by extending beyond 20 iterations.
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The size o f the window used for matching should be carefully chosen. A balance must be 

struck between being large enough to include enough intensity variation to be sufficiently 

distinctive - crucial for reliable matching, but small enough to remain unique to the point in 

the image at which the window is centred upon. Generally, a window size o f  7 pixels 

provides good results.

Finally, the stereo matching algorithm requires a disparity range to be specified. This 

range is generally over-estimated so the search considers a wider range o f  candidate 

disparities than what is really needed. This has the effect o f using more computation and 

memory; however, there is little adverse effect on the matching accuracy.

4.4.3 Demonstration on Real W orld Specimen

The technique is applied to a real world specimen in an underwater environment. The 

specimen is a rubber mat wrapped around a cylinder, which has intricate depth variations - 

a feature that is reflective o f what would be encountered in real-world scenes. This 

specimen is illustrated in Figure 4.31.

(a) (b)
Figure 4.31 (a) Left, and (b) right, rectified stereo images o f a real world specimen in 

an underwater setting.
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The depth map produced from PaLPaBEL is shown in Figure 4.32.

Figure 4.32 Depth map produced from the PaLPaBEL stereo correspondence 

algorithm.

Two views o f the resulting reconstructed shape are shown in Figure 4.32.

Figure 4.33 Two views of the reconstructed shape.
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The results indicate that stereo can be a useful approach for capturing depth infonnation 

from only a single stereo pair, and this acquired depth information can be easily visualised 

in the reconstructions.

4.4.4 Stereo Method Discussion

The development o f a new stereo matching algorithm is motivated by the need for a 

technique that can effectively deal with the poor visibility conditions encountered in an 

underwater setting. To address this issue, a pyramidal Belief Propagation (BP) Markov 

Random Field (MRF) stereo correspondence algorithm, tenned PaLPaBEL, has been 

described in this section. Adopting a pyramidal scheme is not only efficient, but it also 

enables MRFs to be used without exceeding the computer's memory limitations. 

Pyramiding also has an inherent smoothing effect as well as the smoothing derived from 

the MRF. Such smoothing is useful in noisy underwater conditions. This approach also 

enables accurate and precise depth infonnation that can fully utilise the original image 

resolution.

4.5 Video Based Analysis of Vibration Measurements for a Suspension 

Bridge

4.5.1 Introduction

Image processing techniques can be extended for video analysis, m aking it possible to 

access spatial and temporal dimensions. This section describes a video tracking technique, 

which is demonstrated on a vibrating suspension bridge spanning a river in Cork, Ireland, 

for the purpose o f  identifying the natural frequency. The only equipment required is a
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conventional digital video camera. The following sub-sections discuss: the capabilities and 

challenges o f  video tracking, the suspension bridge under consideration and the test set-up, 

and the methodology o f the adopted video tracking technique. The results are presented 

and interpreted in the final sub-section.

4.5.2 Capabilities and Challenges

Video based tracking is capable o f  analysing bridge vibrations that are characterised by 

large amplitudes and low frequencies (i.e. typically below 20 Hz). The maximum 

frequency is controlled by the sampling rate, or the video frame rate. The digital video 

camera used in this case study was a Canon 600D, which records video at a rate o f  60 

Frames per Second (FPS) at a resolution o f 1280 pixels x 720 pixels, or at 35 FPS at a 

resolution o f 1920 pixels x 1080 pixels. The 35 FPS option was chosen as the need for the 

highest resolution was greatly felt in order to compensate for the extensive distance 

between the video device and the mid-span o f the bridge. This extensive distance was due 

to the fact that the video camera had to be positioned relatively far away on the bank o f the 

river as shown in Figure 4.34. By Nyquist's criterion, the highest frequency that can be 

coded is half o f  the sampling rate, which for a frame rate o f  35 FPS is 17.5 Hz.
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Figure 4.34 Daly's Suspension Bridge in Cork, Ireland, and the location of a mounted 

video camera on the river bank.

There are a number o f challenges associated with tracking a moving point in a video 

sequence. M ost notably, the tracked point may drift or become completely lost as a result 

o f  temporary occlusion or luminous complexities in the scene such as shadows or light 

reflections. For best results, a prominent and distinct point (i.e. a patch in the image with 

high local contrast) should be selected for tracking. If needed, multiple trials can be carried 

out by selecting various high-contrast regions near the mid-span o f the bridge and 

assessing how well they are tracked over the duration o f the video.

Another challenge relates to locating the position o f the tracked region as precisely as 

possible. Even at the highest video resolution, the motion o f  the bridge translates to minute 

changes o f  only a few pixels in the video frames. In order to address this, a quadratic is 

fitted to surrounding values for sub-pixel and sub-scale interpolation as described by 

Brown and Lowe (2002).
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4.5.3 Data acquisition

The bridge used as a case study is Daly's Bridge, known locally as T h e  Shaky bridge'. 

Vibrations were induced in the bridge by a male and female pedestrian, along with a 

cyclist, all travelling at a typical pace. Their crossings were captured by the video camera, 

which was focused at the mid-span o f the bridge. In the video, three points were chosen to 

be tracked as these represented distinct points (e.g. a coiToded spot that was easily 

discernible from the background, region o f discolouration etc.) as shown in Figure 4.35. 

This allowed for more robust and effective tracking from frame to frame.

Tracked 
Points i

Figure 4.35 Tracked points at mid-span o f the bridge.

Pixels units are related to metric units by a scale factor which was computed by 

measuring the length o f  an object in a video frame in pixels and then comparing it with the 

known real world length o f the corresponding object in the scene. In this case study, the 

hanger length at the mid-span was used as the object. This approach is valid as long as the
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bridge movement is roughly in the same plane as the measured object and the length of the 

object in the image in pixels is linearly related to its real length (i.e. there is negligible 

distortion such as perspective change between the top and bottom of the object). This study 

only considers bridge deformations in the more prominent vertical plane.

4.5.4 Video Tracking Technique

The video analysis operates by tracking the movement of points on the bridge whilst in 

an excited state. Tracking is done by picking a small patch, or window, SW, containing 

the chosen point in the first frame o f a video sequence and following it throughout the 

duration of the video clip. For every successive frame, the point is located by finding the 

patch which best correlates with the patch in the previous frame. The best correlation was 

determined using the Zero-mean Nonnalised Cross Correlation (ZNCC) metric, which 

was introduced in Section 4.4 for the purpose of matching corresponding points in the 

left and right images of a stereo pair. For video tracking, the window centred on the 

tracked point in a frame F„, is matched to the corresponding window in the next frame, 

r„+/. The search space for locating the corresponding window is confined to a stationary 

region in the video, SS, which encloses the tracked point throughout the entire video. 

Confining the search space to the local neighbourhood allows for greater computational 

parsimony and minimises the risk o f false matches. For this task, the ZNCC is defined as:

U ,Z € S W a , b e S S (4.25)

127



where f„{u,z) and /,+y(i/,z) denote the intensity values in the window, SfV, centred on the 

point being tracked in the w*’’ and frame respectively , u and z are the horizontal and 

vertical spatial indices of the of SfV, a and h are the horizontal and vertical indices of the

stationary region SS, and r„ and r„^, are the mean pixel intensity values within the area of 

the SW  for the frame, and within SS for the w+l'*’ frame. The zero mean normal cross 

correlation coefficient, y/, has a high value when there is a high degree of similarity 

between two patches in each frame. The new location o f the tracked point in frame n+\ is 

taken as the one which con'esponds to the highest value of q. This procedure is repeated 

until the final frame in the video sequence. The pixel locations for the tracked point are 

recorded at each frame, which are then plotted as displacement versus time. Spectral 

analysis on the signal is then perfonned in order to identify the major frequency 

components.

4.5.5 Results

This section presents a representative sample o f the results obtained from video tracking. 

Three excitation sources are considered for the case study: i) pedestrian induced vibration - 

male, ii) pedestrian induced vibration - female (less weight than male), and iii) cyclist 

induced vibrations. Displacement versus time and Power Spectral Density (PSD) graphs 

corresponding to each scenario are shown in Figures 3.36-3.38. Each o f the graphs relate to 

a time period o f -22  seconds, the centre point o f the displacement versus time graph (i.e. 

11 seconds) represents the point at which the pedestrian/cyclist is adjudged to be crossing 

the mid-span o f the bridge.
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Recorded Induced Vibrations Measured at Mid-Span of Daly's Bridge
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Figure 4.36 Pedestrian induced vibrations - male.

Recorded Induced Vibrations Measured at Mid-Span of Daly's Bridge
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Figure 4.37 Pedestrian induced vibrations - female.
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Recorded Induced Vibrations Measured at Mid-Span of Daly's Bridge
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Figure 4.38 Cyclist induced vibrations.

It may be observed from each o f the PSD plots that there is a peak at around 2 Hz, which 

corresponds to the natural frequency o f the bridge. Accelerometers placed at the mid-span 

o f  the bridge indicate sim ilar values for the bridge's natural frequency. A summary o f the 

results for both sensor types is presented in Table 4.5.

Table 4-5 Natural Frequency Results from Image Analysis Method and from  

Accelerometers on the Bridge.

Mean Natural 

Frequency

Standard Deviation from 

Mean, %

Accelerometers 2.265 Hz 4.41

Video Analysis 2.11 Hz 1.56
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From these results, it may be concluded that video tracking offers a convenient and 

accurate way o f identifying the natural frequency o f  bridges characterised by large 

amplitudes and low frequencies.

4.6 Conclusion

This chapter draws together a range o f colour analysis based techniques for detecting and 

evaluating the extent o f various damage forms, as well as for identifying the modal 

parameters such as natural frequency for a bridge. The image analysis techniques have 

been specifically designed to cope with the challenging underwater conditions and to 

provide an efficient source o f quantitative infomiation for inspectors. The developed image 

analysis techniques relate to; 1) crack detection, 2) surface damage detection, and 3) 3D 

shape recovery using stereo-vision.

The crack detection method proposed in this chapter adopts a percolation based 

approach. It is demonstrated on a series o f  images, which present a variety o f  challenges 

such as bright spots, reduced clarity due to a turbid medium, the presence o f  potential false 

detections arising from line m arkings or other artefacts. The proposed m ethod offers 

greater efficiency over other percolation based methods, whilst still achieving good results, 

as the search space for cracks is confined to places only where there is a sharp image 

intensity gradient as determined from an edge detector, namely, the Sobel operator. 

Furthemiore, a new criterion was introduced for classifying potential cracks, which sought 

to exclude the false detection o f lines that separated two dissimilarly coloured regions.

This chapter also presents an image analysis based damage detection technique,

REMPS, which is intended to supplement and strengthen existing visual inspection

methods by providing a quick and convenient source o f  quantitative information. The
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development o f REMPS was necessitated by a lack o f sophisticated image based damage 

detection techniques that can be applied to a broad range o f surface types, damage forms, 

and lighting conditions that are typically encountered in infrastructures. REMPS adopts a 

multi-phase segmentation m ethodology which incorporates features from three standard 

image processing and data analysis techniques. Since these techniques are well-known and 

described in the literature, REMPS may be easily replicated and implemented. A key 

benefit o f  REMPS is its ability to produce better defined and more homogenous regions o f 

interest without being affected by isolated extraneous pixels. REMPS achieves this cleaner 

segmentation by efficiently integrating pixel and spatial relationships. The presented 

results indicate that improvements can be made to the detection accuracy by adopting a 

HDR protocol.

A stereo based 3D shape recovery technique is also presented in this chapter. Having an 

accurate 3D shape reconstruction o f underwater infrastructural elements is o f great 

practical importance when analysing the forces exercised by the waves, winds and 

currents. The development a pyramidal Belief Propagation (BP) M arkov Random Field 

(MRF) stereo correspondence algorithm in this chapter is motivated by the need for a 

technique that can effectively deal with the poor visibility conditions encountered in an 

underwater setting and efficiently exploit the high resolution o f images to provide good 

depth sensitivity.

Finally, this section implements a video tracking technique, which is demonstrated on a 

pedestrian suspension bridge spanning a river in Cork, Ireland, for the purpose o f 

identifying the natural frequency. Video analysis is an attractive option as the only 

equipment required is a conventional digital video camera and the output is easy to 

interpret in comparison to other methods for identifying the natural frequency such as a
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network o f  accelerometers. Furthermore, the results indicate that video tracking can be an 

accurate solution.
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Chapter 5

An Online Repository for Evaluating the 
Effects of Onsite Conditions on Image 
Processing based NDT techniques

5.1 Introduction

In chapters 3 and 4, a range o f  image based techniques were developed for detecting and 

quantifying numerous damage fonns on marine structures such as cracks and corrosion, as 

well as for recovering 3D shape information. The next step is to assess the perfonnance o f 

these techniques when applied in an underwater setting, which is generally characterised 

by reduced visibility. There are three important and practical aspects for inspectors to have 

an understanding o f how the onsite conditions affect the performance o f image based 

methods. Firstly, a better understanding o f underwater conditions for image based 

inspection can be used by inspectors to rationalise the use o f  image based methods as part 

o f the inspection regime. Secondly, such understanding creates conditions conducive to 

good performance during inspection. Finally, it also allows choosing an appropriate image 

analysis algorithm that maximises detection accuracy. This chapter addresses these issues 

by developing an open-source Underwater Lighting and Turbidity Image Repository 

(ULTIR) that contains images o f  various damage forms, material types and shapes, which 

are photographed under controlled lighting and turbidity levels.

The need for this repository is warranted by the extensive effort and expense associated 

with undertaking underwater inspections, where inspectors can ill-afford to rely on
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untested NDT methods. For the most part, algorithms intended for underwater application 

are developed and presented without assessing their performance levels for various 

conditions. This may be partly attributed to the lack o f good quality imagery or controlled 

imagery available when evaluating image based methods. Researchers working on damage 

detection and 3D shape recovery algorithms would benefit from having large and diverse 

datasets o f images for developing and refining their algorithms, as well as for training and 

validation puiposes. Thus, there are clear benefits o f having a large, standardised, well- 

annotated and freely-available database o f images and associated metadata.

ULTIR is the first repository o f this kind and may be accessed through a user-friendly 

web-interface (available at: http://www.ultir.net). which allows users to browse and 

download images o f controlled and partially controlled specimens in an underwater setting 

along with the associated ground-truth data. ULTIR consists o f  three categories relating to; 

1) ID crack detection, 2) 2D surface damage detection, and 3) 3D shape recovery using 

stereo-vision. The imagery contained within each category was captured under three 

lighting levels and three turbidity levels, resulting in nine images for each specimen. The 

specimens thus cover a wide range o f geometric and photometric properties. This resource 

affords researchers the opportunity to efficiently gauge the performance o f damage 

detection methods under realistic operating conditions and on relevant specimens. 

Furthermore, researchers can compare their methods against existing methods and an 

upload facility allows users to contribute their own imagery. This chapter develops the 

comparison facet by applying some common image methods, as well as newly established 

techniques in the domain o f  NDT, to the images in the repository. Results show that the 

choice o f  image processing m ethod and the environmental conditions are important factors 

and these should be given careful consideration to establish the domain o f  operation and 

efficiency o f  different methods and sites.

135



5.2 Design and Content

ULTIR consists o f images generated from experiments conducted in an underwater 

setting that are accessible via the internet. This section describes the contents o f the 

repository, the experimental set-up used to generate the imagery, and the web-interface. A 

schematic o f the design and contents o f the repository is illustrated in Figure 5.1.
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Figure 5.1 Contents of the repository.

5.2.1 Contents o f the Repository

ULTIR contains a large and diverse array o f images which cover a wide range of 

conditions and situations encountered underwater. This diversity is necessary for proper

137



and comprehensive validation o f algorithms. A full breakdown o f the contents o f  the 

repository are summarised in Table 5.1 and the imagery is shown in Appendix I. The 

images in the repository are characterised by several attributes - most notably the turbidity 

and lighting conditions under which the image was captured and the type o f damage under 

consideration - but also by other attributes such as the object curvature and surface type. 

The significance o f each o f these attributes is discussed below.

T able  5-1 B reakdow n of the contents of the repository .

Section
No. of 

Specim ens

Level of 

C ontro l

Surface

Type

Shape/

C u rv a tu re

L ight

Levels

T u rb id ity

Levels

No. of 

im ages

Cracks 9

7

controlled, 

2 real 

cracks

8 concrete, 

1 textured 

concrete

Surface 

curvature: 

4 flat,

5 curved

3 levels: 

100 lux, 

1000 lux, 

10000 lux

3 levels: 

ONTU, 

6N T U , 

12NTU

81

Surface

damage
10

9

controlled, 

1 real 

damage

4 concrete, 

3 textured 

concrete, 

3 metallic

Surface 

curvature: 

4 flat, 3 

cylindrical, 

3 spherical

3 levels: 

100 lux, 

1000 lux, 

10000 lux

3 levels: 

ONTU, 

6N T U , 

12NTU

90

3D

shapes
12

9

controlled, 

3 irregular 

shapes

4 concrete, 

4 metallic, 

3 plastic,

1 rubber

3 cubes,

3 cylinders, 

3 spheres, 

3 irregular 

shapes

3 levels: 

100 lux, 

1000 lux, 

10000 lux

3 levels: 

ONTU, 

6N T U , 

12NTU

[108 x 8) 

864
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5.2.2 Controlled and Partially Controlled Images

The image specimens are classified as either controlled or partially controlled. For the 

controlled specimens, the 'damage' is artificially created such that the true dimensions o f 

the specimen and the damage are precisely known. The partially controlled specimens 

feature real world instances o f  damage or are irregular shaped objects. In this case, precise 

knowledge o f  the size o f  the damage is not known beforehand and must be visually 

identified by a human observer from the images. The visually segmented image is created 

by a human operator who manually identifies damage in an image. It acts as the control as 

it is assumed it shows the true extent o f damage. The visually segmented images then act 

as the control. Approximately 80% o f  the repository is made up o f  controlled specimens 

while the remainder are partially controlled specimens. The controlled specimens have the 

primary purpose o f  algorithm validation, while the partially controlled are intended for 

testing.

5.2.3 Damage Type

The repository is partitioned according to the type o f damage. There are three general 

damage forms considered: ID cracks, 2D surface damage, and damages quantified by 3D 

shape. Although the primary purpose o f ULTIR is to benefit inspectors and researchers 

directly working with damage detection techniques, it is also well suited for testing other 

image algorithms such as image de-noising and contrast enhancement. However, these 

additional applications are beyond the scope o f this chapter. The background and nature o f 

each o f  the aforementioned damage fonns are discussed below;

139



5.2.3.1 Cracks

Cracks provide an indication o f the structural degradation and are an important factor 

when diagnosing the condition o f  concrete structures. M arine structures are especially 

susceptible to cracks due to the high dynamic loading and the presence o f corrosive salts 

which are absorbed into the concrete and corrode the reinforcing steel, causing volume 

expansion and consequent cracking. Traditional visual monitoring methods typically 

require an inspector to be at on-site in order to map, count, quantitatively m easure and 

photograph the observed cracks. This tedious process can be significantly improved 

through image processing based methods which can automatically count, classify and 

quantify the length and width o f cracks, thereby enhancing inspections, and in turn, leading 

to significant monetary savings or leading to more efficient inspection cycles.

Image based crack detection algorithms work by identifying features o f  cracks such as 

their narrow shape and their lower brightness in comparison to the surroundings. For the 

controlled part o f  the repository, cracks were simulated by offsetting two halves o f  a split 

concrete specimen by a fixed distance. The controlled cracks range in width from 1 mm to 

5 mm. These simulated cracks share all the features o f real cracks such as the fine structure 

and lower brightness. Each o f the cracked specimens in the repository is shown in Figure 

5.2. The images shown were captured under medium lighting (1,000 lux) and in clear 

water (0 Nephelometric Turbidity Units (NTU)) conditions. Full details o f  illuminance and 

turbidity values are discussed in Section 5.2.3.4. ULTIR contains two cases o f  real-world 

cracks on different surfaces (Figure 5.2(h-i)).
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(a) 1 mm Curved Surface (b) 1 mm Linear Crack (c) 3 mm Curved Crack

(d) 3 mm Linear Crack

(g) 3 mm Curved Crack

(e) 5 mm Curved Crack

(h) Real Crack I

(f) 5 mm Linear Crack

rV ■

m .

* '

(i) Real Crack II

Figure 5.2 Specimens in the crack section of the repository. These illustrated Images 

were captured under medium light (1,000 lux) and low turbidity (0 NTU) conditions.

S.2.3.2 Surface Damage

The aim o f the image based 2D surface damage algorithms is to locate and quantify the

area occupied by visible damage (typically larger than 10'^ m^) on the surface of

infrastructural elements with minimal human supervision. Marine structures are affected

by a wide range of visible damage forms such as corrosion, scour, erosion, leaching,

141



spalling, impact damage etc. These damages come in an array o f shapes, sizes and pose 

varying levels o f significance to the health o f  a structure. W hile some damage fonns such 

as pitting corrosion are generally detected using colour information, other damages such as 

spalling and erosion may be more differentiable based on their textural properties in 

comparison to the undamaged surface. The contents o f the repository reflect this variety by 

including specimens with different surface textures, as shown in Figure 5.3. For the 

controlled part o f the repository, damage is simulated by applying a typically rust-coloured 

paint to standard geometric shapes such as squares and rectangles o f known dimensions on 

different surfaces and surface curvatures. The repository also contains a real-world case o f 

nist spotting (Figure 5.3(j)).
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(a) Flat Concrete Surface (b) Flat Textured Concrete (c) Flat Metallic Surface

(d) Cylindrical Metallic Surface (e) Spherical Metallic Surface (f) Cylindrical Concrete Surface

(g) Spherical Concrete Surface (h) Spherical Textured 
Concrete Surface

(i) Cylindrical Textured 
Concrete Surface

(j) Real Rust Spotting

Figure 5.3 Specimens in the surface damage section of the repository. These images 

were captured under medium light (1,000 lux) and low turbidity (0 NTU) conditions.
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S.2.3.3 Shape Information

Recovering shape information is a challenging but useful task, and has wide applicability 

in many areas o f Structural Health M onitoring (SHM) such as defect detection (LiMei et 

al., 2005) and accurate crack reconstruction (Yatchev et al., 2012) in topside inspections. 

For underwater inspections, one such application concerns the tracking o f marine growth 

thickness on offshore structures. M arine growth is undesirable as it increases the 

hydrodynamic forces acting on the host structure by increasing the diam eter o f structural 

members and the roughness coefficients (Boukinda M badinga et al., 2007). For fixed 

offshore structures such as Jacket platforms, the hydrodynamic loading caused by marine 

growth is considerable in terms o f the percentage on each component, and consequently on 

the total load acting on the entire structure.

There are a number o f practical image based approaches capable o f recovering 3D shape. 

These include structured lighting. Structure from M otion (SfM), and stereo photography. 

Other techniques such as Structure from Shading (SfS) (Shaomin and Negahdaripour, 

1997), depth from defocus (Nayar et al., 1995) and the use monocular cues (Barrois and 

Wohler, 2007) are not discussed further as they are not well suited for accurate quantitative 

shape recovery as part o f underwater inspections. Structured lighting techniques utilise a 

light projector and a camera to project a light pattern onto an object and capture how it 

interacts with the shape (Bruno et al., 2011). Given the reliance on a light source to encode 

depth information, the success o f this approach is particularly susceptible to absorption and 

scattering.

Structure from M otion relies on an image sequence/video acquired from a single moving 

camera to obtain 3D shape infomiation. Features in the scene are tracked across successive
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images. The trajectories o f each feature over time provide information on the camera 

motion as well as the 3D position o f  the feature in space. SfM algorithms require a scene to 

remain relatively rigid which is not always possible in an underwater setting as deforming 

surfaces, floating particulate, and illumination changes are all sources o f  non-rigidity. 

Additionally, SfM has been shown to be less reliable than stereo vision based methods 

when applied underwater (O 'Bym e et al., 2014).

A stereo system consists o f  two synchronised cameras viewing the scene from two 

slightly different vantage points. The captured images from both cameras are collectively 

known as a stereo pair. By examining the relative positions o f objects in each image, 3D 

information can be extracted. Stereo systems are capable o f providing a fully scaled metric 

scene reconstruction once the system is calibrated, using either standard techniques 

(Zhang, 2000) or by auto-calibration (Faugeras et al., 1992). A fully scaled metric 

reconstruction is an accurate representation o f the scene; true angles are preserved and 

object dimensions are in real world units. ULTIR is populated by stereo pairs o f numerous 

specimens. The controlled specimens are standard geometric shapes in the form o f  spheres, 

cubes and cylinders, as shown in Figure 5.4. The controlled specimens were chosen as 

these primitive shapes are the building blocks for more complex shapes. Therefore, it is 

important to get a fundamental understanding o f how stereo-matching algorithms handle 

the various curvatures. The uncontrolled specimens are irregular shapes with more intricate 

depth variations which is more reflective o f  what would be encountered during real-world 

inspections.
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(a) Cracked Concrete Cube (b) Concrete Cube
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(c) Concrete Cylinder

%
(d) Concrete Sphere

m-
(g) Metal Sphere

(e) Metal Case (f) Metal Cube

(h) Plastic Sphere (i) Rubber Mat

'-*1 ’ V  \

(j) Metal Cylinder (k) Plastic Cube
, \  

(1) Plastic Cylinder

Figure 5.4 Specimens in the surface damage section of the repository. These images 

were captured under medium light (1,000 lux) and low turbidity (0 NTU) conditions.

S.2.3.4 Turbidity and lighting

Image quality is assumed to be chiefly affected by luminosity, sharpness (focus

accuracy), contrast and noise. These quality factors are directly related to the on-site

operating conditions, for which turbidity and lighting are the most influential (Mahiddine
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et al., 2012). Lighting is crucial for all photographing applications, while turbidity may be 

regarded as an integrative parameter, which takes into account other parameters that affect 

visibility such as water colour, total suspended solids and dissolved solids. The other 

notable factors that affect image quality are the quality o f the camera sensor, the choice o f 

appropriate camera settings, and the adherence to good photographing practices. These 

issues are discussed in greater detail in Chapter 6.

Turbidity is defined as the cloudiness in a liquid caused by the presence o f suspended 

solids (Kirk, 1985). These suspended solids scatter and absorb light and therefore reduce 

visibility. As can be expected, underwater imaging is severely hampered by turbidity, 

which results in reduced contrast, loss o f details and colour alteration. Turbidity can be 

caused by organic particles, such as decomposed plant and animal matter, and algae; or by 

inorganic particles such as silt and clay. In rivers and lakes, the level o f  turbidity can 

fluctuate due to a number o f factors such as; heavy rains, flooding and spring runoff, 

landslides and bank erosion, algae blooms, interference during the inspection process (e.g. 

a boat may aggravate and disturb sediment on the river bed), human activities such as 

construction, and storm water pollution from urban areas. Given these factors, significant 

variations in turbidity can be expected. For exam.ple, the measured turbidity in the lower 

W aitaki river. New Zealand, ranges from between 1.2 and 23 NTU (Graham, 1990). In the 

M innesota river basin. United States, it was found that high levels o f  turbidity occurred 

during periods o f excessive stream flow as a result o f  increased suspended inorganic 

sediment from watershed runoff, stream banks, and channel contributions (Lenhart et al., 

2010). In the open ocean, turbidity is affected mostly by seasonal phytoplankton blooms, 

however it is generally low.
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For ULTIR, three levels for turbidity were chosen; 0 NTU, 6 NTU, and 12 NTU. Clear 

water has a turbidity o f  0 NTU, water that is visibly cloudy has a turbidity o f  6 NTU, while 

water that is murky has a turbidity o f 25 NTU. A cut-off point o f 12 NTU was chosen 

based on observations that it becomes increasingly difficult to interpret and extract useful 

information from images captured in more turbid water. Turbidity can be measured on site 

using a digital nephelometer or by using a Secchi disk which is a black and white disk 

lowered into the water until it is no longer visible. The depth o f  the disk is a measure o f the 

transparency o f the water which is inversely related to the turbidity. This has the advantage 

o f  being a quick, inexpensive and simple approach for measuring turbidity. Additionally, 

many water bodies, such as the River Lee in Ireland, are increasingly being monitored by 

arrays o f  sensor networks, which provide near real-time data on water quality parameters 

including turbidity (Lawlor et al., 2012).

The effects o f turbidity can be overcome by moving the camera closer to the subject, 

however, it must be noted that if the camera is too close to the subject then the resulting 

imagery loses context and can only depict small areas. The imagery in ULTIR is generated 

with a camera(s) and specimens kept at a fixed distance o f  80 cm apart. This distance is 

regarded as being a practical balance between capturing enough o f the scene whilst 

m itigating the effects o f  turbidity.

Lighting also plays a pivotal role for achieving good visibility. Ambient light may be 

sufficient for near-surface inspections; however, it is unlikely to be sufficient at greater 

depths at which point artificial light sources become necessary. Three light levels were 

used: 100 lux, 1000 lux, 10000 lux. To put this in perspective; the approximate level o f 

light, or illuminance, on a very dark overcast day is 100 lux, a moderately overcast day is 

1000 lux, and full daylight (not in direct sunlight) is 10,000 - 25,000 lux (Schlyter, 2009).
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A specimen from each section o f the repository is shown under the varying levels o f 

lighting and turbidity in Figures 5.5 - 5.7.

100 lux 1000 lux 10000 lux

g h i

Figure 5.5 Controlled crack specimen from ULTIR shown under varying lighting and 

turbidity conditions. Columns: Low (100 lux), M edium (1000 lux), High (10000 lux) 

Light. Rows: Low (0 NTU), M edium (6 NTU), High (12 NTU) Turbidity.
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100 lux 1000 lux 10000 lux

g h i

Figure 5.6 Controlled surface damage specimen from ULTIR shown under varying 

lighting and turbidity conditions. Columns: Low (100 lux), Medium (1000 lux), High 

(10000 lux) Light. Rows: Low (0 NTU), Medium (6 NTU), High (12 NTU) Turbidity.
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ONTU 

6NTU  

12 NTU

Figure 5.7 Stereo pairs featuring a concrete cube from ULTIR shown under varying 

lighting and turbidity levels. Columns: Low (100 lux), Medium (1000 lux), High 

(10000 lux) Light. Rows: Low (0 NTU), Medium (6 NTU), High (12 NTU) Turbidity.

5.2.3.S Surface type

The main construction materials for marine structures are concrete and metal. These 

materials have different photometric properties. Metallic surfaces often appear shiny to the 

eye due to a large amount o f light being reflected in a specular fashion whilst concrete 

surfaces reflect very little specular light, instead reflecting light in a scattered fashion 

which produces a dull appearance (Dana et al., 1997). High specular reflections can present 

some problems from an image analysis perspective as the shine hides details and creates 

artefacts that could mislead algorithms. This is especially problematic when strong light 

sources are being used.

The texture o f a surface is another important property that has an effect on image 

analysis. Texture may be qualified by terms such as fine, coarse, smooth, rippled, moiled,
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irregular, or lineated (Haralick et al., 1973). The influence o f  texture can be seen during the 

stereo-matching process in which corresponding points in two images must be matched. 

M atching points on smooth or uniform surfaces is more ambiguous than matching points 

on coarsely textured surfaces. Additionally, the surface texture may be a consideration 

when deciding on what type o f surface damage detection algorithm to use. If damage is 

characterised more so by textural composition than by colour from the undamaged surface 

then it may be worthwhile segmenting based on texture. Finally, crack detection algorithms 

applied to surfaces with a rippled texture can produce a lot o f  false alarms. To cater for 

these issues, ULTIR contains metallic surfaces with high specular reflectivity as well as 

diffuse concrete surfaces with various textural finishes.

5.2.4 Experimental Set-up

The images in ULTIR were generated from experiments that were conducted in a water 

basin. These experiments were run in two phases. The set-up for the first phase entailed 

having a single underwater camera focused on damaged specimens. This phase produced 

the imagery for the crack and surface damage sections o f the repository. The second phase 

em.ployed on a dual-camera set-up as shown in Figure 5.8. This phase produced the stereo 

imagery for the 3D shape information section o f  the repository.
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Figure 5.8 Plan view of experim ent set-up.

5.2.4.1 Controlling the turbidity and light levels

Both phases o f the experiment followed the same methodology in tenns o f controlling 

turbidity and light levels. Turbidity was measured using a digital turbidim eter (model: 

Hach 21 OOP), which operates by measuring the loss o f intensity o f 

transmitted light through a water sample. Initially, the basin was filled with clear water. 

After all the photographs were captured at this turbidity level, finely sieved kaolin was to 

added in order to bring the turbidity up to 6 NTU, and later, to 12 NTU. Kaolin is a soft 

white clay consisting principally o f  the mineral kaolinite which goes into suspension when 

m ixed with water. Regular stirring was carried out to ensure kaolin rem ained in suspension 

and was distributed uniformly in the basin.
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The hght level was measured using a lux meter. Ambient lighting and a configuration o f 

light sources were used to produce light levels o f 100, 1,000, and 10,000 lux. Light was 

measured at the same position just above the specimen. W hile the illumination over the 

surface o f a specimen will vary somewhat as a result o f  the slightly different distances 

from the light sources, the lux values span m ultiple orders o f magnitude so slight variations 

within a given light level are negligible compared to the differences between levels.

5.2.4.2 Camera parameters

The imagery was captured using two DSLR (Digital Single Lens Reflex) cameras, 

namely the Canon EOS 600D (Canon Rebel T3i), with standard kit lens (Canon EF-S 18- 

55mm lens f/3.5-5.6), which were enclosed in underwater housings. There are a number o f 

camera settmgs which must be configured in order to get the desired quality o f imagery. 

These settings include the shutter speed (exposure time), aperture, and ISO. The aperture, 

along with focal length, detem iine the depth o f  field and the shutter speed determines the 

amount o f  motion blur. Together, the shutter speed and aperture control how much light 

arrives at the camera sensor. In low light conditions such as an underwater environment, a 

slow shutter coupled with a large aperture is necessary to ensure sufficient light exposure.

The other important setting is the ISO which is the degree o f sensitivity o f a camera to 

the available light. The lower the ISO number, the less sensitive the camera sensor is to 

incoming light, while a higher ISO num ber increases the sensitivity. Higher ISO settings 

are generally used in darker situations to allow for faster shutter speeds, however, raising 

the ISO means a similar decrease in quality, with an increase in noise. W hile early digital 

cameras had objectionable levels o f  noise at ISOs as low as 800, most modem DSLRs 

produce good quality images at ISOs up to 1600 and above. A balance must be struck
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between all o f  these camera settings. The shutter speed was chosen as the critical 

param eter as diver-held cameras employed in underwater inspections are prone to shaking 

which leads to unacceptable levels o f  motion blur if  long shutter speeds are being used. For 

this reason, shutter priority mode was used, which is a semi-automatic shooting mode that 

allows the user to specify the shutter speed. The camera then automatically decides the best 

aperture and ISO sensitivity for the specified shutter speed to get the correct exposure. For 

ULTIR, the shutter speed was set to be faster than 1/15 seconds.

The second phase o f the experiment that involved collecting stereo pairs for the purpose 

o f 3D shape recovery uses the two cameras at once. This phase required both cameras to 

operate simultaneously and to each have the same camera param eter configuration. In 

order to synchronise the cameras, a remote control that was linked to both cameras was 

used to initially trigger the photographing and from then on, successive images were 

captured at a pre-set time interval.

The cameras were configured to save images in RAW and JPEG format with pixel 

dimensions o f  5184 x 3456. The JPEG fonnat is significantly smaller in terms o f file size 

compared to the RAW format with little perceptible loss in image quality. For this reason, 

the JPEG format is used to disseminate the images via the web-interface for ease o f 

transmission.

5.2.5 Web-Interface

Users o f  the repository will first encounter the web-interface, which facilitates navigation 

through the repository. There are a range o f links on the homepage that direct users to the 

three sections o f the repository , along with links to supplementary material such as a user
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guide and a description o f the repository. Some o f the key web pages are shown in Figure 

5.9.

O ocbm entdtion

Cracks

(C )  ( d )

Figure 5.9 (a) ULTIR home page, (b) ULTIR documentation and user guide, (c)

Crack page which lists the specimens and nature of the crack, (d) sample image from  

the crack part of the repository captured in low light and high turbidity.

The home page, as shown in Figure 5.9(a), allows quick access to the three sections o f 

the repository pertaining to crack detection, surface damage detection, and the recovery o f 

3D shape information. For example, clicking on the 'Cracks' section will bring up a list o f  

all the specimens and details about the nature o f the crack such as the crack width, as
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shown in Figure 5.9(c). Clicking on any thumbnail in this list will bring up the full 

assortment o f  associated images for each turbidity and lighting level, along with a binary 

control image which shows the damaged region in white and the undamaged in black, as 

shown in Figure 5.9(d). Metadata such as the aperture, focal length and ISO remain 

embedded in the images.

A menu bar on the home page provides links to several relevant pages. These pages 

outline the need and puipose o f the repository, describe the contents, present a user guide, 

and showcase the performance o f various techniques. The user guide, shown in Figure 

5.9(b), explains the naming convention and advices how to navigate through the 

repository. The naming convention was adopted to efficiently convey important 

infomiation such as the specimen description, turbidity level and lighting level.

5.3 Application of Image based Techniques

This section discusses some o f the main algorithmic approaches related to each category 

o f  ULTIR, namely crack detection, surface damage detection, and 3D shape recovery. A 

number o f algorithms are applied to the representative datasets as shown in Figure 5.5-5.7, 

the results from which are illustrated and the performance levels are quantified for ranking 

purposes. The performance o f  submitted techniques are evaluated and ranked with the help 

o f  performance points in the Receiver Operating Characteristic (ROC) space.

157



5.3.1 Crack Detection

5.3.1.1 Crack Detection Algorithms

The pervasive nature o f  cracks and the tedious task o f manually counting and measuring 

them has led to a growing interest in utilising image processing based techniques to 

automate the detection process. A number o f techniques have been devised which are 

capable o f identifying crack-like features which are characterised by their narrow shape 

and lower brightness in comparison to the surroundings. These include the percolation 

based method proposed in Chapter 4 (O 'Byme et a l ,  2014), eigenvalue analysis o f the 

Hessian (Frangi et al., 1998), Kirsch templates (Kirsch, 1971), neural networks 

(Choudhary and Dey, 2012) and statistical filters (Sinha and Fieguth, 2006). This chapter 

applies the first three o f  these methods to the 1 mm controlled crack data set (as shown in 

Figure 5.5) from the repository to investigate the effects o f  changing turbidity and lighting 

levels on the detection accuracy for each technique. Other lesser factors that could be 

investigated include the orientation o f the crack. The orientation matters as square filters 

will give a slightly different response when considering diagonal cracks versus horizontal 

or vertical cracks.

The percolation method is based on tracing out dark pixels in a sliding window, or sub- 

image, starting at the centre point o f  the window, and spreading out until the boundary o f 

the window. The resulting pattern o f dark pixels is analysed. Cases where a narrow or 

linear pattern is traced out is indicative o f a crack, while irregular or radial diffusion 

patterns typically correspond to the non-cracked background. The eigenvalue analysis o f 

the Hessian method detects narrow crack-like paths by calculating the direction o f smallest 

curvature where there is minimum change in intensity, which is usually along the crack
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path. The Kirsch templates method detects line-like objects using spatial filtering involving 

templates orientated in eight different directions followed by thresholding.

The results for each o f these techniques are shown in Figure 5.10, the performance levels 

are summarised in Table 5.2 and the associated perfonnance points are plotted in the ROC 

space in Figure 5.11.
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Figure 5.10 Detected cracks corresponding to the images in Figure 5.5.
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T able 5-2 Perform ance o f the crack detection techniques.

Image Condition Percolation Hessian Eigenvalues
Kirsch

Templates

(DR) (MCR) S (DR) (MCR) S (DR) (MCR) d

a Low Light, Low Turbidity 94.9% 0.7% 0.05 96.7% 2.3% 0.04 92.3% 5.3% 0.09

b Medium Light, Low Turbidity 9L5% 0.8% 0.09 91.6% 1.2% 0.09 94.1% 4.0% 0.07

c High Light, Low Turbidity 8L7% 0.7% 0.18 90.7% 3.9% 0.10 96.8% 5.3% 0.06

d Low Light, Medium Turbidity 75.0% 3.9% 0.25 58.6% 50.2% 0.65 67.9% 13.2% 0.35

e Medium Light, Medium Turbidity 88.0% 1.0% 0.12 54.6% 34.1% 0.57 79.4% 4.5% 0.21

f High Light, Medium Turbidity 94.1% 1.2% 0.06 95.4% 7.7% 0.09 92.7% 4.8% 0.09

g Low Light, High Turbidity 21.5% 8.4% 0,79 44.6% 48.7% 0.74 56.4% 54.2% 0.70

h Medium Light, High Turbidity 54.8% 21.7% 0.50 25.2% 29.8% 0.81 55.3% 36,1% 0.57

i High Light, High Turbidity 91.7% 1.7% 0.08 83.7% 24.6% 0.30 92.5% 11.7% 0.14
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Figure 5.11 Evaluation of crack detection techniques through the use of performance 

points in the ROC space.

It may be observed from the detected cracks in Figure 5.10 that each technique performs

quite well for images that feature clear and sufficiently lit scenes. Unsurprisingly, the

performance deteriorates when the turbidity levels increase. In the worst visibility

conditions - low light and high turbidity (Figure 5.5(g)) - all o f  the techniques produce

poor results suggesting the adoption o f image based crack detection approaches under

these conditions is not practical. However, the results show that having high lighting can

mitigate the effects o f high turbidity. In these situations, the increased absorption and
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diffusion in turbid water limits the formation o f  a bright spot which would otherwise 

impair detection.

Adopting the a-S method allowed for a clear comparison between various detection rate 

and misclassification rate pairs, i.e. (DR, MCR). Analysis o f the S param eter in Table 5.2 

reveals that the percolation based method performs the best for the medium turbidity level. 

The cracks are well delineated and there are relatively few m isclassified pixels. The 

eigenvalue analysis o f the Hessian method produces a high misclassification rate at the 

lower light levels, while the Kirsch templates method also produces a lot o f small spurious 

regions.

The shape o f the specimen and the crack width had a minor effect on the success o f the 

crack detection techniques. Cracks with a larger width could be more easily detected at 

higher turbidities, and on curved surfaces, slightly more o f  the crack could be observed. 

For the real crack on the textured concrete surface, the textural pattern gave rise to a lot o f 

false detections, indicating that the surface type is a key factor that controls the detection 

performance.

Overall, there is relatively little difference in terms o f detection accuracy for the 

techniques considered when applied to the same samples, indicating that the cho:ce o f 

technique is not the most crucial factor. Instead, the visibility conditions have by far the 

greatest influence on the output.

5.3.2 Surface Damage
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Most image processing based damage detection algorithms consist o f segmentation 

followed by subsequent classification o f the segmented regions. Ideally, the segmentation 

methodology should identify and accurately define all regions o f interest in an image 

whilst m inimising the inclusion o f  extraneous regions. In reality, perfect segmentation is 

difficult to achieve given the inherent chromatic and luminous complexities encountered in 

natural scenes. Image processing based techniques include colour intensity based methods 

and texture analysis based methods. Naturally, the techniques in each group are suited to 

different applications. The effectiveness o f colour based segmentation algorithms and 

texture based segmentation algorithms will vary according to the surface and damage type 

under consideration as certain damages are more separable from the undamaged surface 

based on either their colour or texture attributes. This section assesses the performance o f 

two colour based methods, the REMPS technique proposed in Chapter 4 (O 'Byme et al., 

2014) and Otsu's thresholding (Otsu, 1979); along with the texture analysis based 

technique proposed in Chapter 3 (O 'Bym e et al., 2013).

The performance o f  colour based segmentation techniques is affected by whether the 

technique is contextual or non-contextual. Non-contextual techniques such as Otsu's 

method do not take into account any spatial relationships between pixels in an image. 

REMPS, which operates by classifying whole regions, is an example o f a contextual 

technique which does consider spatial relationships. If a contextual relationship is an 

important factor for segmenting a particular image, than non-contextual techniques will 

have limited success compared to techniques which exploit the contextual relationship.

These techniques are applied to the imagery in Figure 5.6 and the results are shown in 

Figure 5.12, the performance levels are quantified in Table 5.3 and the associated 

performance points are plotted in the ROC space in Figure 5.13.
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Figure 5.12 Detected damage corresponding to the images in Figure 5.6.
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T a b le  5-3  P erfo rm a n ce  o f  th e  d a m a g e  d etection  tech n iq u es.

Image

Condition REMPS Texture Analysis Otsu's M ethod

(DR) (MCR) (DR) (M CR) S (DR) (MCR) S

a Low Light, Low Turbidity 99.5% 2.1% 0.02 97.2% 49.3% 0.49 98.1% 14.8% 0.15

b M edium Light, Low Turbidity 97.5% 1.2% 0.03 89.9% 33.1% 0.35 97.5% 1.2% 0.03

c High Light, Low Turbidity 60.3% 14.2% 0.42 75.5% 15.8% 0.29 76.5% 39.8% 0.46

d Low Light, M edium Turbidity 98.1% 2.5% 0.03 98.0% 51.3% 0.51 95.7% 22.2% 0.23

e M edium Light, M edium Turbidity 91.9% 5.7% 0.10 82.6% 20.6% 0.27 92.6% 18.9% 0.20

f High Light, M edium Turbidity 93.3% 16.7% 0.18 98.8% 61.5% 0.61 94.1% 24.6% 0.25

g Low Light, High Turbidity 99.2% 7.0% 0.07 90.1% 61.8% 0.63 83.5% 37.5% 0.41

h M edium Light, High Turbidity 93.4% 6.9% 0.10 83.8% 58.0% 0.60 93.9% 20.9% 0.22

i H igh Light, High Turbidity 85.4% 24.0% 0.28 76.8% 34.0% 0.41 82.9% 30.7% 0.35
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Figure 5.13 Evaluation of damage detection techniques through the use of 

performance points in the ROC space.

It may be noted from these results that REMPS was quite successful for the majority o f  

cases with the exception o f  the overly bright image (Figure 5.6c). It proved effective at 

locating the presence o f  damage as well as accurately defining the shape and size o f 

damaged regions. The success o f  Otsu's method may be explained by the fact that the 

damaged region for the specimen is characterised by one single colour which is sufficiently 

distinct from the background. The relatively apparent distinction between damaged and
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non-damaged regions in this case diminishes the importance o f exploiting any spatial 

relationships as part of the image segmentation technique, meaning that Otsu's method is 

not adversely affected. As such, the limitations of Otsu's method are not fully exposed. 

Both Otsu's method and texture analysis had many small spurious regions unlike REMPS 

which produced a ‘cleaner’ and more homogenous detection.

The texture based method was effective at locating the presence o f damage as may be 

observed from Figure 5.12, however it did not perfonn as well as the colour based methods 

at defining the extent of damage which resulted in poor DR, MCR and 5 values in Table 

5.3. The exception to this was for the low turbidity and high light image (Figure 5.6c) 

where the texture analysis outperformed the colour based methods. While the high light 

and the shiny metallic surface created luminous complexities that misled the colour based 

methods, the high light illuminated and brought out some of textural properties of the 

surface which benefitted the texture analysis technique.

The performance of the damage detection techniques were affected by the shape and 

surface type of the specimens. Specimens with a flat surface performed quite well in 

comparison to the cylindrical and spherical surfaces as there v/as less severe luminous 

complexities such as bright-spots and light fall-off. Light fall-off occurs when less light 

reaches parts of the curved surface, which are noticeably darker as a result. The underside 

of the spherical specimens were particularly dark due to self-shadowing. These effects 

misled and hampered the detection algorithms. The textured concrete surface (e.g. Figure 

5.6(i)) had a lot of false detections as the coarse aggregate was similar in colour to the 

damaged area. However, the texture analysis algorithm performed well for this case.
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W hile the visibihty conditions had a major impact on the detection o f cracks, the 

performance o f surface damage techniques do not rapidly decline with deteriorating 

visibility condition. Instead, the results indicate that choice o f  technique is more critical.
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5.3.3 3D Shape Recovery using Stereo Vision

Stereo vision is the process o f  recovering depth from images, typically taken by two 

parallel cameras that are separated by a horizontal distance. The recovery o f  3D structure 

using stereo vision requires two sub problems to be solved: the correspondence problem, in 

which image points corresponding to the same real world object are matched, and the 

reconstruction problem, in which the matched image points are reconstructed into 3D 

information.

The correspondence problem is often difficult because o f  ambiguous correspondences 

between points in the two images. This is especially problematic for uniform surface types 

where the lack o f distinct features causes a high number o f false matches. In other 

instances, correspondence cannot be established because a region is occluded in one o f the 

images. The correspondence problem has been extensively researched and a wide range o f 

stereo matching algorithms have been proposed. Scharstein and Szeliski (2002) provide a 

thorough taxonomy o f the most notable stereo correspondence algorithms.

It is during this correspondence phase where the effects o f lighting and turbidity will be 

noticed. For this reason, this section focuses on the output from the correspondence stage 

which is a disparity map (translatable to a range image) that tells how far each point in the 

physical scene is from the camera.

This section compares the performance o f three types o f stereo correspondence 

algorithms. The first is PaLPaBEL (a Pyramidal Loopy Propagated BELief method using a 

Markov Random Field (MRF)), which is introduced in Section 4.4 o f  this thesis. It is a 

hierarchical (coarse-to-fine) algorithm that operates on an image pyram id, where results
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from coarser levels are used to obtain increasing finer results as successive levels. The 

MRF model takes into account the differences between pixel intensity values between 

corresponding points and the spatial relationship between the horizontal disparities. The 

goal is to find a piecewise smooth horizontal disparity map consistent with the observed 

data which minimises the total energy. The second method is based on the well-known 

(Birchfield and Tomasi, 1998) matching cost that is insensitive to image sampling. Rather 

than just comparing pixel values shifted by integral amounts (which may miss a valid 

match), this method compares each pixel in the reference image against a linearly 

interpolated function o f the other image. It does not rely on any smoothness constraints, 

but rather, the disparity is computed by selecting the minimal (winning) aggregated value 

at each pixel. The final method is a global optimisation technique called scanline 

optimisation (Scharstein and Szeliski, 2002) that operates on individual horizontal slices 

and optimises one scanline at a time. The overall matching cost along the scanline is 

minimised.

These techniques are applied to the stereo imagery featuring a concrete cube in Figure 

5.7 and the resulting disparity maps, or depth maps, are shown in Figure 5.14. The 

performance levels are quantified in Table 5.4. The performance is based on comparing the 

disparity maps with a ground truth, which is build by visually m atching corresponding 

vertices o f  the cube. The performance for each algorithm is measured by the extent o f  the 

deviations from the resulting ground truth disparity map. Deviations greater than 5 pixels 

are regarded as a badly detected pixel while pixels within 5 pixels o f the ground truth 

disparity are counted as good pixels. The percentage o f  good pixels and the percentage o f 

bad pixels will always add up to 100%.
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Figure 5.14 Disparity maps for the stereo imagery in Figure 5.7.
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Table 5-4 Performance of the stereo correspondence algorithms.

Image

Condition PaLPaBEL Birchfleld and Tom asi Scanline Optim isation

Good Pixels Bad Pixels Good Pixels Bad Pixels Good Pixels Bad Pixels

a Low Light, Low Turbidity 91.0% 9.0% 46.1% 53.9% 52.9% 47.1%

b Medium Light, Low Turbidity 89.4% 10.6% 26.7% 73.3% 49.1% 50.9%

c High Light, Low Turbidity 91.2% 8.8% 45.2% 54.8% 66.4% 33.6%

d Low Light, Medium Turbidity 78.7% 21.3% 60.4% 39.6% 69.9% 30.1%

e Medium Light, Medium Turbidity 91.7% 8.3% 65.2% 34.8% 62.1% 37.9%

f High Light, Medium Turbidity 90.5% 9.5% 67.3% 32.7% 68.6% 31.4%

g Low Light, High Turbidity 44.0% 56.0% 66.6% 33.4% 72.1% 27.9%

h Medium Light, High Turbidity 41.6% 58.4% 59.4% 40.6% 62.6% 37.4%

i High Light, High Turbidity 44.9% 55.1% 75.5% 24.5% 70.9% 29.1%
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It is apparent from the disparity maps in Figure 5.14 and analysis o f the results in Table 

5.4 that PaLPaBEL is far superior to the other techniques in this case. This may be 

attributed to a number o f factors. Firstly, the concrete surface is quite uniform which 

creates ambiguous matches. This issue is compounded at higher turbidity and light levels 

when some o f the surface detail is masked or washed out. In these cases, the inclusion o f  a 

smoothness term in the algorithm is particularly valued. Unlike the PaLPaBEL algorithm, 

the Birchfield and Tomasi approach does not take any smoothness term into account, while 

the scanline optimisation method only considers horizontal smoothness without 

considering vertical inter-scanline smoothness, which produces a streaky appearance in the 

depth maps. PaLPaBEL performs quite well up until the highest turbidity level at which 

point it breaks down due to the complete lack o f contrast in much o f  the scene. This 

indicates that the operating limit has been reached.

The performance o f the stereo matching techniques had varying degrees o f  success when 

applied to the other shapes and surface types in the repository. For the cylindrical shapes, 

only the centre-front regions o f  the specimens could be properly matched as the 

perspective difference between the left and right cameras became more pronounced for 

points on the cylinder that were further away from the centre. The spherical shaped objects 

also had this problem, as well as suffering from poor lighting on the underside o f  the 

sphere due to self-shadowing. Like the concrete surface, the relatively unifonn plastic and 

metallic surfaces benefitted greatly from algorithms that incorporated a smoothness tenn. 

The uncontrolled specimens in the repository are all richly textured, which explains why 

they were successfully matched in most cases.

For SHM applications, the ultimate objective is generally to obtain a fully metric 

reconstruction. The disparity map found from the correspondence phase can be converted
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to a 3D shape once the stereo geometry and camera parameters are known. The stereo 

system can be pre-calibrated using a well-known checkerboard procedure (Zhang, 2000) or 

through self-calibration using the static scene as a constraint on the camera parameters 

(Zhang et al., 1994). Reconstruction is demonstrated in Figure 5.15 which shows what can 

be achieved under good conditions, i.e. acceptable turbidity levels and adequate lighting, 

and using an efficient technique, such as PaLPaBEL.

Figure 5.15 Reconstructed shape using PaLPaBEL.

In this example, the known dimensions o f the cube - 10 cm for each side, correspond 

quite well with the dimensions from that o f  the reconstructed cube which had a side length 

measured at 9.6 cm. This example demonstrates that a good understanding o f the operating 

conditions and an informed choice o f  stereo correspondence algorithm are important for 

obtaining good results.
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5.4 Conclusions

W hile image based methods are beneficial in terms o f efficiency and convenience, 

knowledge o f  their perfonnance levels for a host o f  operating conditions is crucial. The 

need for an online image repository that provides inspectors and researchers with a 

platform  to efficiently gauge the performance o f image processing based damage detection 

methods under realistic underwater operating conditions and on relevant specimens is thus 

greatly felt. ULTIR allows inspectors to make infonned decisions when assessing the 

feasibility o f adopting image based approaches under a given set o f environmental 

conditions and the knowledge acquired from using the repository can be used in real world 

inspections to by creating conditions that are conducive to good performance. Although the 

turbidity levels are generally uncontrollable in practice, appropriate lighting can be easily 

obtained. The resource also assists researchers when developing and evaluating new or 

existing image algorithms intended for application underwater.

Image processing methods have applications in many o f areas o f SHM including crack 

detection, surface damage detection, and 3D shape recovery using stereo-vision; where a 

wide and diverse array o f  algorithms have been devised for each category. However, there 

exists no standardised approach for choosing a technique that can best deal with 

unfavourable environmental conditions. ULTIR helps inspectors to identify techniques that 

are likely to perform well in the more challenging conditions. Various algorithms are 

compared in this chapter and specific features that favour good detection are singled out 

and discussed.

The results show that the choice o f  image processing method is an important factor for 

some categories, especially for 3D shape reconstruction, while environmental conditions
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are the most critical factor for detecting cracks. Specific attributes o f strong performing 

image algorithms are identified such as the incorporation o f  smoothness constraints which 

are helpful when handling the noise-contaminated and fuzzy appearance o f images in high 

turbidity conditions. The results reveal that in many cases high turbidity can be partially 

mitigated by having bright light source. It is expected that ULTIR will continue to evolve 

as new imagery is added and more techniques are evaluated in the near future.

The creation o f this resource serves as one step towards improving the quality o f 

inspections by characterising the on-site conditions. Building upon this, the quality and 

consistency o f  image based inspections can be further improved through the development 

o f a protocol that deals with the technical aspects o f image acquisition in an underwater 

infrastructural setting.
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Chapter 6

Protocol Establishment and Full Scale 
Testing

6.1 Introduction

In the previous chapter, an image repository was created that addresses how the on-site 

operating conditions affect the performance o f image algorithms. The other notable aspect 

that affects the performance o f image algorithms is the ability o f the inspector or diver to 

effectively and consistently acquire good quality imagery. This chapter introduces a 

protocol that describes a set o f best practice guidelines for obtaining imagery suited for 

quantitative image processing applications. Such a protocol is needed to maintain the long­

term integrity o f an Infrastructure M anagement System (IM S), which is dependent on the 

quality and consistency o f the input information.

The protocol is put into practice as part o f multi-disciplinary experiment that is 

conducted in a large scale testing facility in Boulogne, France, for the purpose o f 

recovering the shape o f  a submerged cylinder covered with artificial marine growth using 

the PaLPaBEL technique. Following this, PaLPaBEL is validated by applying it to the 

submerged part o f a real world structure located in Cork harbour.
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6.2 Underwater Stereo Imaging Protocol

This protocol aims to describe the procedural method for acquiring underwater images 

that are to be used for quantitative analysis. The following protocols are established:

• Image storage

• Imaging protocol

• Diving protocol

• Combined protocol for underwater inspections.

Special attention is given to stereo based 3D shape recovery systems. Stereo systems 

involve increased operational complexity due to the fact that two cameras m ust be 

configured and also synchronised.

6.2.1 Image Storage

The creation o f an image library for image storage requires a set o f predefined guidelines 

to ensure that all contributions are consistent. This, in turn, ensures an organised and 

manageable library. The proposed image storage protocol addresses the following aspects:

• File format

• M etadata and information to be recorded

• File naming convention and cataloguing.
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There are a wide variety o f image formats available, each offering different advantages 

and drawbacks. Typically there is a trade-off between the image file size and the amount of 

information retained in it. As storage space is inexpensive nowadays, this protocol 

recommends capturing images in both JPEG and RAW format, if applicable.

JPEG images, which have a ".jpg" extension are one of the most popular image formats. 

JPEG is naturally suited for image analysis and processing tasks as the compacted file size 

allows images to be accessed quickly and put little strain on the computer's memory 

reserves during processing tasks. JPEG uses a method of lossy compression which means 

that the image quality degrades slightly after the image has been saved. The degree of 

compression can be controlled; enabling the user to choose how much detail should be 

sacrificed for an associated reduction in file size. Minimal loss o f image quality can 

generally be achieved with a compression ratio of 10:1 from RAW to JPEG.

The RAW image format should be retained for archival purposes. RAW images contain 

minimally processed data from the image sensor. They are capable of storing a greater 

level o f infomiation from a scene (i.e. wider dynamic range and colour gamut) than other 

image fonnats. The RAW fonnat differs depending on the camera model and camera 

manufacturer, although each format contains essentially the same data and metadata. For 

example, the RAW format for Canon cameras have file extensions .crw or .cr2, while 

Nikon cameras have file extensions .nef or .nnv. An additional step, if  desired, would be to 

convert the original RAW fonnats to an open standard and well supported fonnat, namely 

the Digital Negative (DNG) format, which is a popular and freely available fonnat 

developed by Adobe Systems™. The DNG format has some notable benefits. Its 

popularity ensures that it well be well supported in the future which is important as some 

o f the images captured today may be of interest over the course o f a structures lifespan,
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possibly several decades. Since there is a wide range o f  proprietary RAW formats, it is 

hard for applications and programs to guarantee future compatibility with them all, 

especially for some o f  the lesser known and lesser used RAW fonnats. Thus, the additional 

step o f  converting to the DNG format from the original RAW format would be o f 

particular value to users that have, or expect to have, imagery acquired from a num ber o f 

devices, and would like to unify the RAW formats into a common format that retains all o f  

the original infonnation. However, RAW images have quite a limited role overall as they 

are intended only for archival/back-up purposes and for use in rare cases where the extra 

detail offered by RAW images over JPEG images is needed. Everyday tasks, such as image 

processing and analysis are perfonned on the more manageable and light-weight JPEG 

images.

A comparison between JPEG and RAW images is shown in Figure 6.1. It may be 

observed that the RAW image exhibits greater tonal definition, however, the difference is 

barely perceivable.

J PEG  RAW

Figure 6.1 JPEG image vs. RAW  image.

As there m ay be a variety o f  camera/video recording models contributing to the database, 

some devices may not support outputting to the RAW  format. In this case, the native
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format should be stored for archival purposes and a JPEG duplicate should be created for 

processing purposes. In the case o f video, still frames should be extracted at relevant 

intervals and saved as JPEG files as analysing ever frame is unnecessary. The intervals will 

be prim arily determined by the speed o f the camera relative to the subject. If  a recording 

device is moving quite quickly then more frames should be extracted. Generally, extracting 

three frames per second should be sufficient for most cases. As before, the original video 

should be stored in its native format. Both imagery and video have accompanying metadata 

which contains useful information about the content and context o f the file.

M etadata is automatically em.bedded into each digital photo file. It provides infonnation 

such as the time and date o f capture, camera model, exposure information etc. To ensure 

that the integrity o f  the database is maintained, it is vital that the time and date o f all 

contributing cameras are precisely set as this is provides a convenient way for identifying 

the synchronised stereo image pairs.

Some metadata must be manually added such as the baseline distance for stereo imaging, 

or the camera calibration data in a separate text file that is clearly linked to associated 

imagery. The specific nature o f this metadata will vary according to the task. In the case o f 

stereo imaging, the imagery should be clearly identified as coming from the left or right 

cameras, or simply be placed in separate folders.
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6.2.2 Imaging Protocol

The first objective o f  establishing imaging protocols will involve specifying the technical 

requirements o f  capturing images o f  underwater marine structures. These technical 

requirements deal with the following aspects;

• Overcoming challenging environmental effects

• Underwater housings

• Choice o f camera settings; exposure, aperture, ISO etc.

Underwater imaging must try to overcome the challenging environmental conditions 

(Kay, 2003). Firstly, there are optical issues with regards using cameras enclosed an 

underwater housing. There will be refraction as the light rays change mediums from water 

to the glass port o f the underwater housing, and from the glass port to the air within the 

housing. As a result o f  this, the images will be slightly distorted. This issue can be 

accounted for in the case o f stereo imaging by calibrating the cameras as the calibration 

stage takes any distortion into account.

Secondly, there is a loss o f  colour and contrast when the subject is separated from the 

camera by any significant distance, even in perfectly clear water. W ater absorbs the red 

component o f  light to a greater extent which results in underwater subjects having a blue- 

green tinge. Colour diminishes with distance so subjects further away will appear indistinct 

and devoid o f  colour detail. This issue may be addressed by using artificial lighting in the 

form o f  strobes to restore some lost colour, or by photographing the damaged region from 

as close up as possible. An added complication o f  using artificial lights is the phenomenon 

o f backscatter, where the light reflects o ff particles in the water. The best method for
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limiting backscatter is positioning the lights away from the axis o f  the camera lens. This 

avoids the situation whereby the water immediately in front o f the camera is exposed to a 

high intensity light source, while still allowing the subject to be suitably illuminated. 

Photographing the subject from relatively a close distance minimises any loss o f  colour.

The minimum distance between the camera(s) and the subject is constraint by the 

minimum focusing distance o f  the lens. A camera will not be able to focus on the subject 

properly if  it is closer than this minimum focusing distance. The minimum focusing 

distance is typically specified on the lens; however in practice, good camera-subject 

distances typically exceed the minimum focusing distances. A recommended choice o f 

working distance is in the region o f  1 m -  1.5 m from the subject as this enables close-up, 

detailed imagery to be obtained. It is worth noting at this point that image stitching 

algorithms are widely available that can combine individual images with other partially 

overlapping images to create a high resolution photo mosaics that provide both a high level 

o f infonnation and greater context.

The distance between the camera and the subject will have an effect on the depth o f field. 

A large camera-subject distance will lead to a greater depth o f  field, while closer distances 

will result in a shallower depth o f  field. Additionally, lenses with shorter focal lengths will 

produce greater depths o f field. It is recommended that normal lenses are used (typically 

lenses having focal lengths o f around 50 mm, although this varies slightly based on factors 

such as the crop factor and the camera's sensor size), as the resulting imagery does not 

suffer from significant distortion. This is in contrast to wide angle and telephoto lens, 

which have shorter and longer focal lengths than normal lenses respectively, both o f which 

introduce perspective distortion in the imagery. For a wide angle lens, objects that are near 

to the lens appear abnormally large, while distant objects appear abnormally small.
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Conversely, telephoto lens compress the relative distances between objects in the scene as 

distant objects appear abnormally large in comparison to closer objects. Extracting 

quantitative information from photographs in light o f these aberrations is thus problematic. 

Although post-processing software exists that can fix these distortions, it is best avoided at 

source by choosing a normal lens.

There are cases where a wide angle lens or a telephoto lens (long lens) may be more 

appropriate. A wide angle lens provides a wide field o f view which is useful in reduced 

visibility conditions where a short distance must be kept between camera and subject as it 

allows a sufficient portion o f the scene to be captured and with a large depth o f field, while 

a telephoto lens is useful when limited accessibility means that inspectors cannot get close 

to a structure but still wish to capture detailed, zoomed-in imagery (Stroebel and Zakia, 

1993).

Lenses may also be partitioned into two general categories: zoom lenses and prime (fixed 

focal length) lenses. Zoom lenses have variable focal lengths (e.g. 18 mm - 70 mm). They 

offer greater versatility than prime lenses which have fixed focal lengths (e.g. 50 mm), 

however, comparably priced prime lenses generally have better optical quality and faster 

lens speeds. The lens speed refers to the maximum aperture o f a lens which controls how 

much light reaches the sensor. Fast lenses have a large aperture which allows more light to 

reach the sensor at the expense o f  a shallower depth o f field, meaning only objects within a 

confined range will be in focus and will appear acceptably sharp. A small aperture will 

produce a greater depth o f  field, however the resulting image will be dark/under-exposed 

unless the shutter stays open for an extended period o f  time enabling enough light to reach 

the sensor. The length o f  time that the shutter remains open for light to impinge on the 

cam era’s sensor is known as the shutter speed. A high degree o f blur will likely result if  the
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shutter is allowed to remain open for too long a period (i.e. a slow shutter speed), 

especially for handheld cameras. As a rule o f  thumb, the minimum shutter speed should be 

no slower than the inverse o f the focal length (i.e 1/50 second for a 50 mm lens).

One other important camera setting is the ISO, which measures the sensitivity o f the 

image sensor, with common settings being: 100, 200, 400, 800, 1600, 3200. Higher ISO 

settings tend to be used in darker situations to amplify the available light; however this 

comes at a cost o f increased noise in the imagery. This protocol recommends the user to 

use the ISO that is the native sensitivity o f  the sensor, which is usually indicated by the 

camera manufacturer or can be found experimentally by comparing photographs from a 

certain camera captured at different ISOs. Choosing an ISO that is much higher than the 

recommended ISO will result in too much grain in the imagery. As an example, for the 

main camera model used throughout this thesis - the Canon 600D, it is recommended to 

keep the ISO below 400, although ISOs up to 800 produce images that are useable.

Many modem cameras have simplified the process o f  choosing good combinations o f the 

aperture, ISO, and shutter speed for a given scene through various automatic exposure 

modes and the use o f  through-the-lens (TTL) metering. However, it is important to impose 

certain limits on these settings in order to achieve a sharp image and to avoid adverse 

effects such as motion blur and excessive noise. The best combination o f  camera settings 

will depend on the task at hand. For the purpose o f  photographing cracks and 2D surface 

damages, where the damage is typically is on a single plane, the emphasis lies on ensuring 

the image is properly exposed and there is no motion blur. As there is there is little depth 

variation in the scene, the depth o f  field does not need to be that large and therefore does 

not need to be prioritised. The damaged region o f interest should remain in sharp focus as 

long as the focal plane approximately coincides with the plane o f  the damaged surface.
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With this in mind, the largest available aperture should be used in order to allow for a 

faster shutter speed that reduces the risk o f  motion blur.

For stereo photography o f  3D damages, it is necessary that the depth o f field encompass 

the full range o f points on the 3D shape o f interest. As a result, the cameras must be 

configured to provide a larger depth o f field than in the case o f  the crack and 2D damage 

fonns. This will involve selecting a smaller aperture, and balancing it against a slower 

shutter speed to maintain proper exposure. Recommendations o f  the limits are summarised 

in Table 1. Figures 6.2-6.3 show images with varying values o f  aperture and shutter speed. 

These figures showcase the deleterious effects on image quality by exceeding the stated 

limits. If it is found that these limits are insufficient, increasing the scene illumination, 

having a smaller focal length and/or increasing the distance between cameras and subject 

are measures that can be undertaken to increase the depth o f t'leld.
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^  Aperture: f/10 
SS: 1/30 
ISO: 3200 ™

Apertnre: f/3! 
SS: 1/3-a m ^  
ISO: 3200

Figure 6.2 Varying aperture captured with a 55 mm lens; large apertures (e.g. f/5.6) 

result in blurry background objects whilst small apertures (e.g. f/32) have a greater 

depth of field.

Figure 6.3 Varying shutter speed whilst undergoing gentle shaking with a 55 mm lens 

y75.6; images having slower shutter speeds are more affected by motion blur.
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Table 6-1 Recommended ranges of camera settings for image analysis purposes.

Camera

Setting
Recommended Range

Aperture

The largest available aperture should be used that keeps the region o f 

interest in focus. This could be a large aperture for 1D cracks and 2D 

planar damages (e.g. f/1.8). For stereo photography, a smaller 

aperture will be required (e.g. f/8 or smaller)

Shutter

Speed

As a rule o f thumb, the minimum shutter speed for handheld cameras 

is the inverse o f the focal length, i.e. minimum Shutter Speed (secs)

= 1/Focal Length (mm).

So for a 50mm lens it is 1/50 sec.

The imagery obtained from the cameras should be reviewed at 

regular intervals. If  it is apparent there is too much motion blur 

present in the images, the shutter speed should be adjusted to a faster 

setting.

ISO

The recommended ISO setting is the native sensitivity o f the sensor 

as specified by the camera manufacturer. An ISO value o f 400 is a 

good compromise for photographing in dimly-lit conditions whilst 

still controlling noise/graininess. In the case o f  stereo imaging, the 

ISO should be fixed at the same value in both cameras.

Focal

Length

It is recommended that a nonnal lens is used as the resulting imagery 

does not suffer significant distortion.
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For all damage types, a good strategy would be to first fix the ISO to the cam era’s native 

sensitivity, followed by choosing a shutter speed that is the inverse o f the focal length 

(aforementioned rule o f thumb), and finally, choosing an aperture that provides the correct 

exposure. If the depth o f field is too shallow or the images are still too dark, it is a sign that 

additional artificial light sources are required.

6.2.3 Diving Protocol

It is vital that any unnecessary time spent underwater by the diver is kept to a minimum. 

W ith this in mind, the diver should be presented with a clear and concise brief outlining the 

task at hand and specifying the target sites and certain things to look out for. The proposed 

protocol addresses the following aspects which should be included in the brief:

• Lighting and turbidity considerations.

• Choosing the appropriate distance between cameras and subject

• Logistical considerations (testing equipment prior to usage, route planning 

etc).

Both lighting and turbidity are crucial factors which affect the underwater visibility and 

consequently the image quality (Mahiddine et al., 2012). Artificial lighting in the form o f 

underwater strobe lights are required in dim lighting conditions, especially if  the subject is 

bumpy/rugged in which case the lights would assist with revealing regions that would 

otherwise remain in shadow.
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Water is seldom optimally clear, and the dissolved and suspended matter can reduce 

visibility by both absorption and scattering o f light. W hile turbidity may not be easily 

reduced, there are some precautions which can be taken to offset the deleterious effect m 

relatively high turbid waters. Firstly, caution should be taken in shallow waters to avoid 

disturbance with the sea/river bed which may unsettle fine sediments through either direct 

contact or from turbulence created from the ship. Anchoring the vessel downstream away 

from the inspection site can also prevent additional sediments that would reduce the water 

clarity. Secondly, the distance between the cameras and the subject under consideration 

should be reduced. In seas and oceans, the water is generally clear so measures to 

counteract poor visibility need not be considered.

Choosing the distance between the subject and the diver is a trade-off between a number 

o f factors. The ideal distance should be kept in the range 50 - 150 cm; however this will 

vary depending on the following circumstances:

• Visibility

• The size o f the subject in the scene

• Acceptable error tolerance

• Baseline shift between the cameras in the case o f  stereo imagery

When the underwater visibility is poor, the diver can photograph in close proxim ity to 

the subject (up to 30cm). Going any closer than 30cm leads to large perspective differences 

between the stereo image pairs which can hamper the matching process and result in a 

myriad o f  occluded regions (Matthies and Shafer, 1987). In clear underwater conditions, 

the diver can photograph from a distance up to 2.5m before the stereoscopy breaks down 

and the error tolerance becomes unacceptably high (Olofsson, 2010).
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If the object under inspection is quite large (e.g. a wide diameter pile) and it is wished to 

include the whole structure within an image than photographing from further back will 

provide better context bearing in mind that the 2.5m limit should not be exceeded. If, 

however, a greater accuracy o f the structure's macro geometry is required than the diver 

should keep within 1.2 metres of the subject.

Finally, the baseline distance for stereo imagery will influence the choice of subject- 

camera distance. While the baseline shift will normally be fixed at a certain width 

according the constraints of the available equipment, it is important to note the effect it has 

on the accuracy. Theoretically, a wider separation between the cameras results in a lower 

percentage error in the depth estimation. However, the advantages of having a wide 

separation are mitigated by the creation of large perspective differences as previously 

eluded to. The baseline shift should be in the range 10cm to 30cm. Additionally, the 

cameras should be aimed inwards at an angle 6 (known as the vergence angle) such that 

their centrelines intersect approximately at the face of the subject as shown in Figure 6.4. 

This is to ensure that the cameras capture as many o f the same points in both images as 

possible. The vergence angle has previously been used to model the error in depth by 

(Sahabi and Basu, 1996). For real world scenes, they found that vergence angles in the 

range 5° - 10° provided the lowest errors.
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Figure 6.4 Stereo rig set-up.

All the equipment should be checked above water prior to each inspection. The

underwater housings should be checked for any signs o f leakage by firstly submerging

them without their contents. If  necessary, the o-rings should be relubed/replaced as per

manual instructions. Care should be given to ensure that the tim e and date o f the cameras

are precisely set, that there is enough storage capacity in the SD cards and the battery is

sufficiently charged. The cameras, ideally, should be focused at a point on the subject as

illustrated in Figure 6.4. Appropriate settings should be configured for each camera/video

recorder ensuring that the shooting modes in both are identical. It is advised to initiate

filming immediately before the diver submerges as it is easier to control the simultaneous

triggering o f  both cameras when above water. The captured imagery should be reviewed at

regular intervals during the inspection and any adjustments should be made accordingly.

Dives that produce sub-standard imagery should be repeated. Necessary props should be
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prepared such as lighting equipment, an object o f known dimensions to attach onto the 

structure or a checkerboard for calibration if  applicable. M oreover, this would be a good 

opportunity to record the baseline distance and the dimensions o f  the object o f  known size 

such as a checkerboard/wand. Finally, the diver should familiarise him self/herself with the 

blueprint o f  the structure and identify any components that are o f particular interest. A 

suitable route should then be planned based on this groundwork. In cases where the diver 

cannot photograph a particular component from all sides due to restricted access, blockage 

by other obstacles etc., he/she should endeavour to photograph as much o f it as possible.

6.2.4 Combined Underwater Protocol

Greater care and attention is required for stereo imaging as two cameras must act in 

unison. A flowchart showing the summarised methodology for the combined underwater 

protocol for stereo imaging is shown in Figure 6.5.
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Figure 6.5 Key steps involved in the stereo imaging pipeline.
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6.2.5 Conclusion

Problems in the acquired imagery, such as blurring or under/over exposure, are hard to 

fully appraise on-site as, in a lot o f  cases, the only way o f  reviewing imagery is by looking 

at small screens on the imaging devices. The true quality o f the imagery can only be fully 

appreciated back at the office. Having to repeat inspections due to the sub-par performance 

o f any NDT technique is a daunting and frustrating prospect. In particular, the effort and 

expense associated with undertaking underwater inspections warrants significant 

forethought and planning to ensure the every technical aspect o f  data acquisition is 

covered. To address this issue, a comprehensive protocol is developed for the first time that 

sets out best practices for underwater image acquisition. The protocol is developed based 

on personal experience, logical rationale and information from the literature. This 

developed protocol is used as a guide for the large scale experiment and the real world 

testing, which are discussed in the following sections.
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6.3 Large Scale Experiment: Testing of 3D Shape Recovery Method in 

Water Basin

The developed protocol was utilised as part o f  multi-disciplinary experiment that was 

conducted in a large scale testing facility in Boulogne, France. The protocol was provided 

to a diver who was charged with capturing stereo imagery o f a submerged cylinder covered 

with artificial marine growth. The protocol served as an important tool for providing 

guidance and for conveying the intricacies o f stereo imaging to a diver who may not have 

been unfamiliar with the technique. PaLPaBEL was evaluated by applying it to the 

obtained stereo imagery in order to recover the shape o f the roughened cylinder. The 

following sub-sections present the background o f the experiment, the experimental 

procedure, and the results and conclusions.

6.3.1 Background of the experiment

Marine growth quickly forms on offshore structures soon after they have been installed. 

The thickness o f  marine growth increases at a rate o f about 1 cm every year, although this 

varies depending on a num ber o f  factors such as the location o f  the structure and how 

much sunlight reaches the marine growth. For structures like jacket platforms, the 

increased thickness o f  structural members due to marine growth colonisation is 

considerable relative to the member's original diameter. Increasing the diameter o f 

structural members, as well as the roughness coefficients, leads to increased hydrodynamic 

forces acting on the structure (Boukinda M badinga et al., 2007), as given by M orison's 

Equation:

197



2

= \pCÂ ^̂  + * z \ ) * C „ ^ X ( 6 . 1 )

w here FMorison is the force per unit length o f  the m em ber, C j  is the drag  coefficient, C „ is 

the inertia coefficient, p  is the fluid density , 0 is the m em ber diam eter, x  's  the w ave 

velocity, and Uc is the velocity  o f  current. A s such, the shape in fonnation  is essential for 

determ ining the forces acting on a structure.

The aim  o f  this experim ent is to analyse the forces acting on a cylinder that is covered 

w ith artificial m arine grow th in a flow ing w ater basin. T his roughened cylinder has known 

dim ensions: the inner cylinder is 200 m m  in diam eter, w hich is surrounded by  row s o f  six 

120 m m  diam eter spheres that are staggered and inserted to 1/3 o f  their d iam eter in the 

cylinder. The spheres therefore protrude beyond the face o f  the cylinder by 80 m m , giving 

a m axim um  outside diam eter o f  360 mm . The roughened cy linder is shown in Figure 6.6In 

the context o f  this thesis, the experim ent will serve as an opportunity  to test and evaluate 

the proposed protocol and gauge the level o f  attainable accuracy  o f  the 3D shape recovery  

algorithm s against the know n geom etry o f  the roughened cylinder. The roughened cylinder 

and the testing facility are show n in Figure 6.6.

198



Figure 6,6 The roughened cylinder before submersion at facility in Boulogne, France.

6.3.2 Experiment procedure

The stereo imagery is acquired by a diver in accordance with the protocol outlined 

in Section 6.2.

6.3.2.1 Equipment

The stereo system is shown in Figure 6.7. This system consists o f  two GoPro H E R 03+ 

Black Edition cameras, enclosed in underwater cases. These cameras are capable o f 

capturing 12 MP photos at up to 30 frames per second. Two underwater flashlights provide 

additional light, which was necessary as the water basin is situated indoors. Finally, a stick, 

or a wand as it is commonly referred to as, is attached to the stereo system, which is always 

visible in both cameras. The wand length should be recorded. This is needed for calibration 

purposes using standard procedures such as (Mitchelson and Hilton, 2003; Pribanic et al, 

2009), and for getting a scale factor that relates pixel dimensions to real world units.

199



Figure 6.7 GoPro underwater stereo system.

6.3.2.2 Data Acquisition

The cameras were configured to capture 12 MP still-frame images and were carefully 

synchronised above water. The cameras were set to automatically capture images at a 

predefined time interval. Some o f the acquired imagery is shown in Figure 6.8.

(a) (b)

Figure 6.8 Artificial marine growth pile in the (a) left, and (b) right camera.
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6.3.2.3 Shape Recovery

There are a num ber o f stages in the shape recovery process. The first stage involves 

correcting the images. Unprocessed images directly fi-om the GoPro cameras have a 

distinctive fisheye effect. This is beneficial in some respects as it gives a large field o f 

view (FOV), allowing more o f the scene to be captured. However, this distortion impedes 

the stereo matching stage. The fisheye effect can be removed by applying a “ lens 

adjustment”, which is a non-destructive process that uses the lens profile to correct the 

imagery. There are many lens profiles available online, especially for popular makes o f 

cameras and lenses. The result o f  distortion is best illustrated by using an image with a lot 

o f structure, such as in Figure 6.9(a), where it is immediately apparent that the lines which 

should be straight are curved. It can be seen that the undistorted version o f the image in 

Figure 6.9(b) fixes this problem.
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(a) (b)

Figure 6.9 Undistortion process: (a) Original input image, (b) undistorted image.

The next stage is to rectify the images from the left and right cameras so that points in the 

left image lie on the same horizontal row as the same point in the right image. This is 

followed by the application o f the PaLPaBEL stereo matching technique. These processes 

are discussed in Chapter 4. The rectified images are shown in Figure 6.10.

Figure 6.10 The left (cyan) and right (red) input images are automatically aligned 

onto a common image plane to simplify the problem of finding matching points.
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6.3.3 Results and Discussion

The depth map obtained from applying PaLPaBEL to the stereo image pair in Figure 

6.10 is shown in Figure 6.11. This depth map relates to a segment o f the artificial marine 

growth pile, above the bright spot, where matching was successful.

Figure 6.11 Depth Map (Segmented Foreground).

The associated reconstruction is shown in Figure 6.12, which is based on calibration 

procedure outlined by M itchelson and Hilton (2003).

Figure 6.12 Two views of the reconstructed surface.
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With reference to Figure 6.12, the reconstructed surface reveals that the general shape is 

represented quite well near the top o f  the surface, although, the spheres do appear 

somewhat deformed. Reconstruction is unsuccessful towards the bottom o f  the surface as a 

consequence o f the bright spot. The bright spot washes out details on the surface o f the 

roughened cylinder making the task o f  stereo matching more challenging.

This problem is compounded by the relatively textureless surface o f the roughened 

cylinder, which is conveyed in Figure 6.13(a). The surface does not have any prominent or 

distinctive points, which makes it hard to find the correct correspondence during the 

m atching process and means that the matching algorithm must rely heavily on smoothness 

assumptions. It would help matching accuracy and reliability if  there were more features 

on the surface o f the spheres. By comparison, the region shown in Figure 6.13(b), which is 

slightly dirtier and has some distinctive markings perfonned significantly better at 

matching.

(a) (b)

Figure 6.13 Close-up view of the (a) textureless surface, and (b) the surface which

gave better matches.
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A complete 3D profile was created by rotating and applying the reconstructed surface 

displayed in Figure 6.12 in six positions around the cylinder to create a closed form shape 

as shown in Figure 6.14. In practice, the subject would have to be photographed from all 

sides to develop a full 3D shape profile, however, that was not possible in the case o f  this 

experiment due to accessibility issues. The volume o f the reconstructed shape was 

compared with that o f  the known volume o f  the roughened pile for the same length o f  pile, 

which covered three rows o f  spheres.

Surface profile recovered 
using stereo imaging

ftsiiiiiii
• r . a a s f f J  '

Control Shape

Figure 6.14 Reconstructed 3D shape of the roughened cylinder and actual shape.

The volume o f the roughened cylinder for 3 rows o f spheres is 25,899 cm^ (control 

volume), while the volume o f  the reconstructed object is 21,072 cm^. There are a few 

things that affected this accuracy.
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6.3.4 Conclusion

This experiment provided an opportunity to test the performance o f the developed stereo 

m atching algorithm PaLPaBEL on a large scale object under realistic conditions, as well as 

implementing the protocol devised in Section 6.2. The purpose o f the experiment was to 

analyse the hydrodynamic forces acting on a cylindrical structural component affected by 

marine growth. A stereo system comprised o f  two lights and two GoPro cameras was 

employed to characterise the shape o f the roughened cylinder, with a view to evaluating its 

performance before being used on part o f  real world structures. The GoPro cameras offered 

great convenience given that they are a low-cost, pre-built system.. The lights created some 

challenges as bright spots were a feature o f the acquired imagery. However, this may be 

partially attributed to the relatively glossy surface o f the roughened cylinder, which also 

suffered from being poorly textured. Both o f these aspects had a deleterious effect on the 

performance o f PaLPaBEL. Natural instances o f marine growth are typically richly 

textured so this is not envisaged as being a problem for real world structures. In future, 

steps will be taken to diffuse the light so that it spreads more evenly throughout the scene 

and is not focused on a small area. Overall, the performance o f  the shape recovery method 

was good at identifying the general shape o f the roughened cylinder excluding areas o f 

high light intensity.
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6.4 Real World Structure: Shape Recovery of Marine Growth

Testing PaLPaBEL in a laboratory setting allowed for significant control, however, this 

control came at the expense o f  sacrificing realism in certain ways. The poorly textured 

surface o f the artificial marine growth pile and the clear water conditions are generally not 

reflective o f  reality. Increased validity is achieved by conducting a field experiment where 

turbidity is a factor and the surfaces are natural. This section applies the PaLPaBEL 

technique to a marine growth affected pier located in Cork Harbour, Ireland. This study is 

conducted in order to validate the developed stereo based shape recovery technique under 

real word conditions and on a real world structure. The following sub-sections i) provide 

an overview o f  the structure under consideration and the underwater conditions at the 

testing site, ii) outline the image acquisition procedure, and iii) present and discuss the 

results.

6.4.1 Structure and Conditions at the Test Site.

Cork harbour is a natural harbour at the mouth o f the River Lee. The structure under 

consideration is a long-serving pier that is primarily used for recreational and leisure 

purposes. An aerial view o f  the testing site is shown in Figure 6.15, and view from the 

shore is shown in Figure 6.16.
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Figure 6.15 Aerial view of testing zone in Currabinny, Cork Harbour. Source: Google 

Maps (retrieved 15/09/2014).

Figure 6.16 View o f the structure at ground level.
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It was a clear and sunny day when the testing was carried out, with the luxmeter 

recording measurements in excess o f  10,000 lux above the water. Thus, there was no 

requirement for additional artificial light sources as ambient light was sufficient in the 

shallow waters. The turbidity varied somewhat around the structure. The turbidity was 

higher in the shallower water near the shoreline as a lot o f particles were being kept in 

suspension thanks to the breaking action o f  the waves. The water was a bit clearer at the 

main testing location on the structure which was at a depth o f about 1 m; however, it was 

still above 12 NTU. As a result, the imagery had to be acquired at a close range from the 

subject, which was not ideal as less o f the scene could be captured.

6.4.2 Experiment Procedure

The stereo imagery was obtained by photographing the submerged part o f a pile from a 

number o f perspectives. The equipment and the process are detailed in this section.

6.4.2.1 Equipment

The stereo system is shown in Figure 6.17. This system consist o f two Canon 600D

DSLR cameras, enclosed in underwater cases, which are securely attached to a graduated

stereo bar. The graduated stereo bar allows the baseline distance to be easily recorded. In

this case, the centres o f  the cameras were separated by 15 cm. Knowledge o f the baseline is

necessary for obtaining the scale factor that converts the dimensions o f  the reconstructed

3D shape to real world units. The Canon 600D cameras were both configured to

simultaneously capture high resolution 18 MP images in RAW and JPEG format at a time

interval o f two seconds. The high resolution enables good depth sensitivity as each pixel in

the image may be viewed as representing a 3D point in space. Any resulting 3D
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reconstruction will therefore be able to offer more precise depth information. The cameras 

were in shutter priority mode in accordance with the protocol and had a shutter speed o f 

1/20 seconds. The minimum focal length was selected, which was 18 mm, so that as much 

o f the scene could be captured as possible.

Stereo System:
2 Canon 600D  
DSLR Cameras-in 
Underwater Housings

Figure 6.17 The stereo system used to capture the imagery.

6.4.2.2 Data analysis

Marine growth can be classified as either hard or soft. Hard fouling types include 

barnacles, mussels, corals etc. Soft types include seaweed, algae, hydroids etc. The pile 

under consideration is predominantly affected by soft fouling organisms as shown in 

Figure 6.18.
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(a) (b)

Figure 6.18 Marine growth affected pile from the (a) Left, and (b) Right cameras.

It may be observed that the high turbidity creates a fuzzy image lacking in contrast. In 

this case, the imagery greatly benefits from the image enhancement stage o f  the PaLPaBEL 

technique. The image enhancement stage employs histogram stretching to restore some of 

the lost contrast. The resulting enhanced images are shown in Figure 6.19 for the left and 

right images.

(a) (b)

Figure 6.19 Stereo images following enhancement.
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6.4.Z.3 Shape Recovery

The resulting depth map following application o f PaLPaBEL on this stereo pair is shown 

in Figure 6.20. The successfully matched area is quite small relative to the size o f the 

original images. This stems from the fact that the images had to be acquired at a close 

distance from the subject, which means that a smaller area o f the pile is overlapped in both 

the left and right images.

Figure 6.20 Depth Map (Segmented Foreground).

The associated reconstruction is shown in Figure 6.21, which is based on the auto­

calibration technique described by Faugeras et al. (1992). Auto-calibration is a convenient 

way o f  obtaining the intrinsic camera parameters o f  a stereo system as it does not require 

the use o f  any props, which can be awkward and cumbersome for a diver to carry out. 

,\uto-calibration relies on static scene to act as a constraint for the five degree-of-freedom 

pinhole camera model. The five intrinsic parameters are the focal length in pixel 

dimensions, aspect ratio, skew, and the two principle points. A minimum o f  three views are 

reeded for complete calibration assuming fixed intrinsic parameters between views (i.e.
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the focal length, or any other parameter, does not change between views). However, in 

reality, the principle points can usually be estimated to be at the image centre and quality 

modem imaging sensors and optics also provide further prior constraints such as zero skew 

and unity aspect ratio. Integrating these priors will reduce the minimum number o f  views 

required to two. The only additional information needed is the baseline distance which 

enables a properly scaled reconstruction. The accuracy o f the camera parameters obtained 

through auto-calibration is usually lower than that o f the conventional checkerboard based 

pre-calibration procedures; however, the practical advantages often outweigh this reduction 

in accuracy. Moreover, errant camera parameters do not always translate to an appreciably 

errant reconstruction.

(a) (b)

Figure 6.21. Two views of the reconstructed surface, with (b) showing the dimensions.

The reconstructed surface is a good reflection the true pile shape and the shape o f the

protruding marine growth. As the testing was done on an uncontrolled surface (i.e. where

the shape was not known), a quantitative measure o f  the performance could not be

determined, however, the recovered dimensions showed good visual agreement with
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reality. Closer examination o f the reconstructed surface shows that it is quite 'bumpy' in 

places which should be quite flat, however this effect is mild. PaLPaBEL performed 

decently overall despite the high turbidity. It benefitted from the richly textures surface o f  

the pile and the natural marine growth.

6.5 Conclusions

Selecting appropriate camera settings can be an overwhelming task for inspectors given 

the wide array o f options. Selecting the most suitable combination o f these settings for a 

given environment involves a trade-off between minimising negative image quality factors 

such as blur and noise, whilst retaining good brightness and ensuring enough o f the subject 

is in focus. Ineffective image acquisition practices directly affect the perfonnance o f image 

algorithms. The protocol introduced in this chapter provides guidance for obtaining 

imagery suited for quantitative image processing applications. Such a protocol is needed 

for maintaining the quality and consistency o f the input information from inspections.

The protocol is put into practice as part o f multi-disciplinary experiment that is 

conducted in a large scale testing facility in Boulogne, France, for the purpose o f 

recovering the shape o f a submerged cylinder covered with artificial marine growth using 

the PaLPaBEL technique. The results demonstrate that an image based approach is suitable 

for recovering 3D shape as long as the lighting is not excessive and the surface is 

sufficiently textured to facilitate good stereo matching. Following this large scale 

experiment in a laboratory setting, PaLPaBEL was applied to a real world marine structure. 

The underwater conditions here differed from the laboratory setting as turbidity became a 

critical factor. Despite the high turbidity however, a reasonable shape reconstruction was 

nevertheless obtained.
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Chapter 7

Conclusions

7.1 Summary of Research

This research aims to enhance the quality o f  image processing based techniques for 

inspection o f infrastructure assets. The thesis, to a significant extent, addresses underwater 

inspection using image processing, which is a very important but not very developed field 

o f study as o f yet. This research advances the field in three ways. Firstly, new robust 

damage detection and assessment algorithms are developed that take into account the 

challenging conditions o f  an underwater environment. Secondly, the challenging 

underwater conditions are characterised through a repository driven approach, which maps 

the effect o f lighting, turbidity, and surface type on the performance o f techniques. Finally, 

a protocol has been developed, which outlines a set o f best practice guidelines for 

obtaining imagery suitable for quantitative analysis in relation to underwater inspections. 

The work carried out in this thesis can be expected to be used by inspectors, owners and 

managers o f  marine engineering structures looking to rationalise and optimise the use o f 

image methods as part o f  their inspection regimes. Although the developed techniques are 

focussed on underwater application, they are quite general and can be readily used in a 

much broader context.
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7.2 Detailed Results

The contributions o f  the thesis and are listed in detail in this section.

The first part o f the research deals with devising sophisticated m ethods for inspecting 

and assessing infrastructure elements. The developed image based techniques include a 

crack detection algorithm, colour and texture based damage detection algorithms, and a 3D 

shape recovery algorithm. The crack detection algorithm adopts a percolation based 

approach to automatically locate and quantify cracks in an efficient manner, removing the 

need for inspectors to manually undertake this tedious task. The developed algorithm 

offers improved efficiency over traditional percolation based crack detection methods by 

searching in a concise space, whilst still obtaining good results thanks to novel 

classification criteria. The perfonnance o f the technique is investigated in the presence o f 

challenges such as luminous complexities, ambiguous cracks, spurious markings and poor 

visibility. High turbidity is particularly harmful to detection accuracy. In low light and low 

turbidity conditions (100 lux, 0 NTU), a detection rate o f 89.8% can be achieved for a 

cracked concrete specimen, however this drops to a detection rate o f  62.6% in low light 

and high turbidity conditions (100 lux, 12 NTU), for similar values o f the misclassification 

rate.

Two algorithms were developed for locating and identifying damaged regions based on 

colour and texture respectively. The texture analysis method involves generating a texture 

feature vector for each pixel in the image based on information derived from a Gray Level 

Co-occurrence Matrix (GLCM) matrix as well as directly from the pixel intensity values. 

The pixels are consequently classified through non-linear Support Vector M achines (SVM) 

models. The colour based method, known as REMPS (Regionally Enhanced M ulti-Phase
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Segmentation) relies on a multi-phase segmentation methodology that incorporates 

features from three standard image processing and data analysis techniques. REMPS and 

the texture analysis technique were both validated on images featuring a variety o f damage 

forms obtained from inspection campaigns. Each image presented a challenge o f some sort, 

such as difficult viewing angles or shinny metallic surfaces, which created luminous 

complexities. It was found that REMPS consistently achieved good performance and was 

capable of producing better defined and more homogenous regions of interest. Slight 

improvements can be made to the detection accuracy of REMPS by segmenting in the 

L*a*b* colour space and by adopting High Dynamic Range (HDR) imaging. A S  value of 

0.16 was obtained for L*a*h* colour space applied to HDR image of pitting corrosion, 

versus the slightly worse value of 0.18 for a Standard Dynamic Range (SDR) version of 

the image. Texture analysis fared a lot worse for the same image, recording a S  value of 

0.39. Visually, it was apparent that the output from the texture analysis method was often 

affected by isolated extraneous pixels. Texture analysis only performed well in specific 

cases where the damage was distinguishable from the undamaged background based on 

colour or texture characteristics.

A stereo matching algorithm with a novel pyramidal formulation was developed for the 

purpose o f recovering 3D shape. The developed technique, PaLPaBEL, is a pyramidal 

loopy Belief Propagation (BP) method that operates on a Markov Random Field (MRF). 

Moreover, the pyramidal scheme allowed full image resolution to be used efficiently, 

which enabled accurate and precise depth information that can fully utilise the original 

image resolution. PaLPaBEL was evaluated as part o f a large scale experiment that was 

conducted in a testing facility in Boulogne, France, for the purpose o f recovering the shape 

o f a poorly textured submerged cylinder covered with artificial marine growth. The volume 

of a reconstructed section of the artificial marine growth cylinder was calculated to be
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21,072 cm^, which compared against a value o f  25,899 cm^ the control volume over same 

length o f  cylinder. There are a few things that affected this accuracy. In particular, the high 

brightness, which induced bright spots that masked details on the surface o f the cylinder, as 

well as a poor texture. Following this, PaLPaBEL was validated on a real word structure in 

Cork Harbour, Ireland, where there was high levels o f turbidity. Nevertheless, it was found 

that a shape reconstruction that showed good visual agreement could be obtained.

A video tracking method was customised and demonstrated on a vibrating suspension 

bridge spanning a river in Cork, Ireland, for the purpose o f identifying the natural 

frequency. The video tracking method found that the natural frequency v/as ~2 Hz, which 

was corroborated by accelerometers placed at the mid-span o f the bridge. From these 

results, it may be concluded that video tracking offers a convenient and accurate way o f 

identifying the natural frequency o f bridges characterised by large amplitudes and low 

frequencies.

A large Underwater Lighting and Turbidity Image Repository (ULTIR) was generated 

from a set o f controlled experiments conducted in a water tank. This is the first repository 

o f its kind for underwater inspection. ULTIR provides a means o f characterising the effects 

o f turbidity and lighting on an image analysis method. ULTIR was populated with images 

relating to three categories: 1) ID crack detection, 2) 2D surface damage detection, and 3) 

3D shape recovery using stereo-vision. The imagery contained within each category was 

captured under three lighting levels and three turbidity levels, resulting in nine images for 

each specimen. The controlled specimens were specifically chosen to cover a wide range 

o f  geometric and photometric properties. Specimens featuring real instances o f  damage 

were also included. The performance o f various algorithms in each category were 

examined under the different lighting and turbidity levels and specific features that

218



favoured good detection were singled out and discussed. Algorithms that incorporited a 

smoothness term were found to benefit greatly. Additionally, the results show thit the 

choice o f image analysis method is an important factor, especially for 3D shape 

reconstruction where it is reaffirmed that the incorporation o f smoothness constrants is 

helpful when handling the noise-contaminated and fuzzy appearance o f images ir high 

turbidity conditions. For example, PaLPaBEL achieved 91.7% rate o f accurate Dixels 

compared to 62.1% for Scanline Optimisation for the same turbidity and lighting levels. It 

is also found that high turbidity can be partially mitigated by having a bright light S)urce. 

For instance, PaLPaBEL produced a 90.5% rate o f accurate pixels at high light (10,000 

lux) and medium turbidity (6 NTU) compared to 78.7% at low light (100 lux) and the same 

turbidity.

Finally, a protocol was developed that promotes effective image acquisition practices. 

Special attention was given to stereo imagery as this requires two cameras to be confgured 

and synchronised as oppose to just one. The protocol was put into practice as part of the 

large scale experiment in Boulogne and the real word experiment in Cork Harbou'. The 

protocol also served an instrumental role during the laboratory testing as it conveyed 

important details and the intricacies o f stereo imaging to the diver who may have been 

unfamiliar with the technique.
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7.3 Critical Assessment of the Developed Work

The role o f light is seen to play a crucial role in the success o f image processing 

algorithms. The repository considers light o f three different magnitudes: 100, 1000, and 

10,000 lux, however, in reality the magnitude o f  the light is only one aspect. Another issue 

is the shape o f the light beam. A diffuse light will affect the perfomiance o f image 

algorithms differently than a light beam that is focussed on a spot. Given this, a possible 

recommendation would be to also assess the effect that the uniformity o f light has on.

Accurate detection o f damage poses many practical problems from an imaging 

perspective. A variety o f reasons can cause a technique to perform badly, including the 

poor environmental conditions, the nature o f the damage itself, poor image acquisition 

practices etc. This is especially problematic for methods like 3D stereo imaging which 

solve a number o f  sub-problems like rectification, matching, and calibration. If failure 

occurs at any o f these stages, then the entire technique is jeopardised. However, taking 

steps during the image acquisition phase to recognise potential problems can help alleviate 

this problem.
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7.4 Future Work

The research work carried out in this thesis could be extended in a number o f ways.

First, there is scope to expand ULTIR to include more specimens, especially specimens 

that feature real instances o f damage. Adding more damaged specimens in this m anner 

would serve to make the repository more relevant and comprehensive. Additionally, 

assessing the effect that the uniformity o f light has on performance may be a worthwhile 

endeavour.

Secondly, an avenue o f  future research that offers significant potential involves 

extending texture analysis to the critical field o f marine growth classification. The two key 

parameters associated with marine growth colonization o f offshore structures are the 

thickness and the roughness, which are both needed for structural reliability computation. 

These parameters vary around and among structural components. Currently, stereo imaging 

is a validated means o f  obtaining the thickness. It may be worth exploring whether image 

analysis could be used to find a correlation between the perceived texture o f  the marine 

growth and the actual roughness coefficients. This would create a powerful tool that could 

improve marine growth time variant probabilistic models and allow for more accurate 

hydrodynamic loading assessments.

As for applications, a third potential avenue o f  research relates to the continued growth 

o f the offshore renewable energy sector. In response this trend, it would be relevant to 

consider the role that imaging systems could play for the close observation and m onitoring 

o f  these structures. As these structures often operate in large offshore farms, where the
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water is comparatively clear, it would appear that image m ethods can prove an attractive 

way for monitoring the multiple targets efficiently and economically.
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APPENDIX

Contents o f the Underwater Lighting and Turbidity Images Repository

Naming Convention

1. The first part o f  the image name reveals the dimensions if  the damage (if 

applicable), e.g. the crack width.

2. The second part o f the name describes the nature o f  the specimen, such as the 

surface type or shape.

3. The third part indicates the lighting level. The lighting levels L I, L2, and L3 

correspond to low (100 lux), medium (1,000 lux), and high (10,000 lux) 

respectively.

4. The fmal part o f  the name indicates the turbidity level. The turbidity levels T l, T2, 

and T3 correspond to low (0 NTU), medium (6 NTU), and high (12 NTU) 

respectively.

5. For the stereo images, the specimens are photographed from 8 sides. Each time the 

specimen is rotated by 45° from the previous position in order to enable users 

obtain a full 3D reconstruction o f  the specimen (excluding the underside). The 

number at the end o f the file name indicates how many times it has been rotated. 

This number ranges from 1 to 8.
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Cracks
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MatlabT '̂ Code

Contents;

• Crack Detection

• Texture Analysis

• REMPS

• PaLPaBEL Stereo Matching
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Crack Detection

function (DetectedCracks] = CrackDetection(Image,WindowHalfSize)

%Detection of cracks in images.
% CrackDetection applies an edge detector to an input colour or gray
% image. Image. A percolation process is then applied to the detected
% edges. Image can be of any class and dimension. The result,
% DetectedCracks, has the same size and class as Image.
%
% Notes
% ----
%
%
% See also Section 4.2, Detection and Assessment of Damage in
% Underwater Marine Structures using Image Processing Based Techniques 
%
% Example
% --------------
% [DetectedCracks] = CrackDetection(Image, 35) ;
% figure, imshow(DetectedCracks)
%
% $Revision: 1.0.0.0 $ $Date: 2015/02/09 04:16:39 $
%
% Image; Colour or grayscale image. Required.
%
% VVindowHalfSize: Integer. Required. Specifies the max window size of the
% percolated region. Window size = 2*WindowHalfSize+l

%Convert to grayscale and detect edges 
gray = rgb2gray(Image); 
edges = edge(gray,'sobel');

% % Optional: Can sample fewer edge detected points for improved computation i/ 
efficiency

% se = strel('disk’,2);
% edges = imdilate(edges,se);
% se = strel('disk',3);
% edges = imerode(edges,se);

[M N e) = size(Image); %Get image dimensions

%Initiate variables 
DetectedCracks = zeros(M,N); 
se = strel('square',3);

[x y] = find(edges == 1); %Gather all edge points

for i = 1:2:length (x)
cp(l:2,i) = (x(i),y(i)];

end

for i = 1:2:length(x) %Visit every detected edge point 

%Start percolating on each detected each point
if cp(l,i) > WindowHalfSize+1 && cp(l,i) < M - WindowHalfSize && cp(2,i) > 

WindowHalfSize+1 cp(2,i) < N - WindowHalfSize
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ptx = cp(l,i); pty = cp(2,i);

Block = (gray(ptx-WindowHalfSize:ptx+WindowHalfSize,pty-WindowHalfSize: 
pty+WindowHalfSize));

squarel = zeros(WindowHalfSize*2+l);
Rjected = zeros(WindowHalfSize*2+l);
squarel(WindowHalfSize+1,WindowHalfSize+1) = 1;

for s = 1iWindowHalfSize*2+1

New_square = imdilate(squarel,se)-squarel; %Grow the percolated region 
outwardly by one pixel

CurrentPixels = squarel.* Block; 
newPixels = New_square.* Block;

Tresh = max ([ (mean (CurrentPixels (CurrentPixels~=0) ) ) , min (newPixels
(newPixels~=0))]);

if isempty(Tresh) == 1 
break

end

%Update Square
New_square = ~im2bw(Block,Tresh).*New_square; 
Rjected = Rjected+ im2bw(Block,Tresh).*New_square; 
squarel = New_square + squarel;

end

%Classification
cc = bwconncomp(squarel);
stats = regionprops(cc, 'EccentricityOrientation'); %Compute the 

Eccentricity which is related to circularity

ang = stats.Orientation;

if stats.Eccentricity > 0.9

C=l;
if sum(sum(squarel)) > 0

SELl = strel('line', 20, anq+90); %Extend 20 pixels in both directions 
SEL2 = strel('line', 2, ang+90);
TwoSides = imdilate(squarel,SELl)-imdilate(squarel,SEL2);
ccCor = bwconncomp(TwoSides,4);
stats = regionprops(ccCor, 'PixelldxList');

try
Sir = BlockOrigR(stats(1).PixelIdxList);
Slg = BlockOrigG(stats(1).PixelldxList);
Sib = BlockOrigB(stats(1).PixelldxList);
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S2r = BlockOrigR(stats(2).PixelldxList); 
S2g = BlockOrigG(stats(2).PixelldxList); 
S2b = BlockOrigB(stats(2).PixelldxList);

C=mean (abs ( [mean (SI r) - mean (S2r), mean (Slg) - mean (S2g) , mean (Sib)
mean(S2b) J));

catch err 
C = 1;

end

if C < 0.9

DetectedCracl<s (ptx-WindowHa If Size: ptx+WindowHalf Size, pty- ̂  
WindowHalfSize:pty+WindowHalfSize) =DetectedCracks(ptx-WindowHalfSize: ^  
ptx+WindowHalfSize,pty-WindowHalfSize:pty+WindowHalfSize)+ squarel;

end

end

end
end

end

figure,imshow(DetectedCracks) 
figure,imshow(DetectedCracks,[])

end

267



Texture Analysis

function [FeatureArrayl “ StatisticsComputation(Gray,WindowSize)

%Computation of GLCM and descriptove statistics.
% StatisticsComputation computes a texture characteristics map. The texture
% characteristics map comprises 4 Gray Level Co-Occurance Matrix and 6
% Descriptive statistics.
%
% Notes 
% ----
% Each channel of a colour image may be analysed seperately 
%
%
% Convert to HSV or Lab colour spaces 
%
% %HSV
% hsv = rgb2hsv(Originallmage);
% Gray = hsv(:,:,l); clear hsv;
%
%
% %Lab
% cform = makecform('srgb21ab');
% lab  ̂ applycform(Originallmage,cform);
% Gray = lab(:,:,1);
%
% The output, FeatureArray, is subsequently classified as being either 

damaged or undamaged using SVMs
%
% See also Section 3.2, Detection and Assessment of Damage in 
% Underwater Marine Structures using Image Processing Based Techniques 
%
% Example
\ --------------
% (FeatureArray) ■= StatisticsComputation (Gray, WindowSize) ;
%
%
% $Revision: 1.0.0.0 $ SDate: 2015/02/09 04:16:39 $
%
% Gray: Grayscale image or single channel of a colour image. Required.
%
% WindowSize: Integer. Required. Specifies the window size for GLCM

[M NJ = (size (Gray));
FeatureArray = zeros(M,N,10);

%Calculate half the window size 
hbs = (round(WindowSize./2)-1);

%Comput GLCM Statistics 
for i = hbs+1:step:M-hbs

for j = 1+hbs:step:N-hbs
GLCM2 = graycomatrix (Gray (i-hbs : i + hbs, j-hbs : j+hbs) ,'Of f set', [0 1; -1 1; -1 0; 

-1 -1],'GrayLimits',1J,'NumLevels',12); % -1 1; -1 0; -1 -1 
stats = graycoprops(GLCM2); 
c = cell2mat(struct2cell(stats));

AvContrast = mean(c(1,:),2);
AvCorrelation = mean(c(2, :),2);
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AvEnergy = mean(c(3,:),2);
AvHomogeneity = mean(c(4,:),2);

FeatureArray ( ( (i - hbs - l)/step +1), ((j - hbs
[AvContrast, AvCorrelation, AvEnergy, AvHomogeneity];

end

end

[B Q e] = size(FeatureArray);

E = im2double(imresize(entropyfilt (Gray), [B Q]));

S ■= im2double(imresize(stdfilt(Gray,ones(7)),[B 0)>);
R = im2double(imresize(rangefilt(Gray,ones(7)),(B Ql)); 
[M Sk] = meanfilt(imresize(Gray, [B Q]), 6);
K = kurtosisfilt(imresize(Gray, [B Q)), 5);

FeatureArray(:,:,5) = E; 
FeatureArray(:,:,6) = S;

• FeatureArray(;,:, 7) = R;
FeatureArray(:,:,8) = M; 
FeatureArray(:,:,9) = Sk; 
FeatureArray(;,:,10) = K; 
[FeatureArray] = FeatureArray;

end

%% Compute the Kurtosis Statistic

function K = kurtosisfilt (Gray, WindowSize)

Gray = im2double(Gray);

hbs = (round(WindowSize./2)-1);

step = hbs;
[M N] = size(Gray);
K = zeros(M,N);

for i = 1+step:M-step
for j = l+step:N-step

I = (Gray(i-step:i+step,j-step:j+step));

B * reshape(I,1,[]);

K(i,j) = kurtosis(B);

end
end

1) /step + ]) , 1: 4)
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end

%% Compute the Mean and Skewness Statistics

function (M Sk) = meanfilt(Gray, WindowSize)

Gray = im2double(Gray);

hbs = (round(WindowSize./2)-1);

step = hbs;
[H V) = size(Gray);

Sk = zeros (H, V) ; 
for i = 1+step:H-step

for j = 1+step:V-step
I = (Gray(i-step:i+step,j-step:j+step));

B = reshape (1,1,[]) ;

M (i, j ) = mean (B) ,•

Sk(i,j) = skewness(B);

end
end

end
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function (DetectedRegions, a) = SVM_Classifier(FeatureArray, Gamma, C, WindowSize,Dx, 
Dy,NDx,NDy)

%SVM classification of FeatureArray.
% SVM_Classifier performs SVM classification on the output frora the FeatureArray
% function which is a texture characteristics map.
%
% Notes
% ----
% Training Data 
%
% The output, FeatureArray, is subsequently classified as being either 
% damaged or undamaged using SVMs 
%
% See also Section 3.2, Detection and Assessment of Damage in 
% Underwater Marine Structures using Image Processing Based Techniques

Example
%
% [FeatureArray] = StatisticsComputation(Gray,WindowSize) ;
% [DetectedRegions, a) = SVM_Classifier (FeatureArray, Gamma, C, WindowSize, Dx, Dy,
NDx,NDy) ; 
i 
%
% $Revision: 1.0.0.0 $ $Date: 2015/02/09 04:16:39 S 
%
% FeatureArray: Output from StatisticsComputation function. Required.
% Gamma: SVM Parameter. Required.
% C: SVM Cost Parameter.
% WindowSize: Integer. Required. Specifies the window size for GLCM.
% Same as for the StatisticsComputation function.
% Dx,Dy,NDx,NDy Specify the locations of the damaged and nondamaged
% regions for SVM training

% Dx = x(l); Dy = y(l); NDx = x(2); NDy = y(2); %For selecting the damaged 
% and no-damaged training regions

% Dx = 241.4211; Dy = 364.1333; NDx = 610.6834; NDy = 344 . 6194; %For script purposes li' 
only

Input = FeatureArray;
halfBlocksize = round(WindowSize./2)-1;

%% Custom-Weighted Iterative Classification 

% Training damaged regions
dAvContrast ” mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize,Dx-halfBlocksize: 
Dx+halfBlocksize,1) );
dAvCorrelation = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize,Dx- 
halfBlocksize:Dx+halfBlocksize, 2) );
dAvEnergy = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize, Dx-halfBlocksize: 
Dx+halfBlocksize,3) );
dAvHomogeneity = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize, Dx-
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halfBlocksize:Dx+halfBlocksize, 4) ) ;
dE = mean2( FeatureArray(Dy-halfBlocksize:Dy + halfBlocksize,Dx-halfBlocksize: 
Dx+halfBlocksize,5) );
dS = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize,Dx-halfBlocksize: 
Dx+halfBlocksize,6) );
dR = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize,Dx-halfBlocksize: 
Dx+halfBlocksize,7) );
dM = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize, Dx-halfBlocksize: 
Dx + halfBlocksize, 8) );
dSk = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize, Dx-halfBlocksize: 
Dx+halfBlocksize,9) );
dK = mean2( FeatureArray(Dy-halfBlocksize:Dy+halfBlocksize, Dx-halfBlocksize: 
Dx+halfBlocksize,10) );

% Non-damaged region
ndAvContrast = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize, NDx-i/ 
halfBlocksize:NDx+haIfBlocksize,1) );
ndAvCorrelatxon = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx- 
halfBlocksize:NDx+halfBlocksize,2) );
ndAvEnergy = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx- 
ha 1fBlocksize:NDx+haIfBlocksize,3) );
ndAvHomogeneity = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx- 
halfBlocksize:NDx + ha1fBlocksize,4) ) ;
ndE = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx-halfBIocksize: 
NDx + halfBlocksize, 5) ) ;
ndS = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx-halfBlocksize: 
NDx + halfBlocksize, 6) );
ndR = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx-halfBlocksize; 
NDx + halfBlocksize,7) ) ;
ndM = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx-halfBlocksize: 
NDx+halfBlocksize,8) );
ndSk = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx-halfBlocksize: 
NDx+halfBlocksize,9) );
ndK = mean2( FeatureArray(NDy-halfBlocksize:NDy+halfBlocksize,NDx-halfBlocksize: 
NDx+halfBlocksize,10) );

% Overall Image
AvContrast = mean2( FeatureArray(:,:,1) ) ; 
AvCorrelation = mean2( F e a t u r e A r r a y 2) ); 
AvEnergy = mean2( FeatureArray(:,:,3) ); 
AvHomogeneity “ mean2( F e a t u r e A r r a y 4) ); 
E = mean2( FeatureArray(:,:,5) ) ;
S = mean2( FeatureArray(:,:,6) );
R = mean2( FeatureArray(:,:,7) ) ;
M “ mean2( F e a t u r e A r r a y 8) ) ;
Sk = mean2( FeatureArray(:,:,9) );
K = mean2( FeatureArray(:,:, 10) ) ;

% Calculate Weights 

w = ones(1,10);
%%Get rid of abs and put them on the matrixw later
w(l)  ̂ (dAvContrast-ndAvContrast)/AvContrast
w{2) = (dAvCorrelation-ndAvCorrelation)/AvCorrelation
w(3) = (dAvEnergy- ndAvEnergy)/AvEnergy
w(4) = (dAvHomogeneity-ndAvHomogeneity)/AvHomogeneity
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w(5) = (dE-ndE)/E 
w(6) = (dS-ndS)/S 
w(7) = (dR-ndR)/R 
w(8) = <dM-ndM)/M 
w{9) = (dSk-ndSk)/Sk 
w(10) = (dK-ndK)/abs(K)

for ii = 1:10
if isnan(w(ii)) == 1 

w (i i ) = 0 ;
end

end 
sum(w)
a = w (isnan(w)==0)./sum (w)

% createBarPlotfigurel(a)

% Automate Procedure 
(M N e] = size(Input);
Input(isnan(Input) == 1) = 0;

Array = zeros(M,N);

for t = l:e

% Trainig Set
group = ([ones(1, (2*halfBlocksize +1)) zeros(1, (2*halfBlocksizet1))))';

Block = (Input(Dy-halfBlocksize:Dy+halfBlocksize,Dx-halfBlocksize:Dx+halfBlocksize, 
t); Input(NDy-halfBlocksize:NDy+haIfBlocksize,NDx-haIfBlocksize:NDx+halfBlocksize,t)]; 

%Block(isnan(Block)) = 0;
svmStruct = svmtrain(Block,group, 'kernel_function' , 'rbf‘, 'rbf_sigma'. Gamma, 

'boxconstraint', C);

(B Q f) = size(Block);

%Add an additional Q columns onto input

Paddedlnput = zeros(M, N+Q, e);
Paddedlnput(:,1:N,:) = Input;

for i ■= 1;N%-Q+1
DamagedPixels = svmclassify(svmStruct,Paddedlnput(:,i:i+Q-1,t)); 
%size(species)
Array(:,i) = Array(:,i)+DamagedPixels.*a(t);

end

end

DetectedRegions = double(Array); 

figure, imshow(DetectedRegions)
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REMPS
%Regionally Enhanced Multi-Phase Segmentation.
% The image of interest is pre-processed through a contrast enhancement
% and colour reduction scheme. Features in the image are then identified
% using a Sobel edge detector, followed by subsequent classification using
% a clustering based filtering technique. Finally, Support Vector Machines
% (SVM) are used to classify pixels which are locally supplemented onto
% damaged regions to improve their size and shape characteristics.
%
% Notes
% ----
%
% Convert to HSV or Lab colour spaces 
%
% %HSV
% hsv = rgb2hsv(Originallmage);
% Gray = hsv(:,:,l); clear hsv;
%
%
% %Lab
% cform “ makecform('srgb21ab');
% lab = applycform(Originallmage,cform);
% Gray = lab(:, :,1) ;
%
%
%
% See also Section 4.3, Detection and Assessment of Damage in
% Underwater Marine Structures using Image Processing Based Techniques
%
% Example
% -------------
%
%
% $Revision: 1.0.0.0 $ $Date: 2015/02/09 04:16:39 $
%
4 Image: Input colour image. Standard Dynamic Range or High Dynamic Rangel^
Image. Required.

[bw] = ImagePreprocessingAndEdgeDetect(Image); %Involves contrast enhancement procedure 
bw='bw; %Invert image 
[labeled,numObjects] = bwlabel(bw,8);
Corrosiondata = regionprops(labeled,'all');

%% GUI for selecting the training data for SVM
I (:, :, 1) = bw.*im2double(Image(:, ;, 1)) ;
!(:, :,2) = bw.*im2double(Image(:, :,2));
I <:, :,3) = bw.*im2double(Image(:, :,3));
imshow(I);impixelinfo;
set(handles.text 42, 'Visible','on');
(x, y] = ginput(1 );
Dx = X (1) ; Dy = y (1) ; 
set(handles.text42, 'Visible','off');

set(handles.text4 3, 'Visible','on'); 
[x,y] - ginput(1);
NDx = x(l) ; NDy = y (1) ; 
set(handles.text43, 'Visible','oft');
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function (outputll, Dam_Trainlng, NonDam_Training] = RegionClustering(Image,numObjects, 
Corrosiondata,Dx, Dy,NDx,NDy)

%RegionClustering of FeatureArray.
% RegionClustering computers the mean and kurtosis for regions 

%
% Notes
i -----
%
% See also Section 4.2, Detection and Assessment of Damage in
% Underwater Marine Structures using Image Processing Based Techniques 
%
%
% $Revision: 1.0.0.0 $ 5Date: 2015/02/09 04:16:39 $
%

Image = im2double(Image);

(M,N,e) = size(Image);

MinArea = 0.01*(M*N) %Minimum defect size. Optional. Can be set to 0 if not to be useu

% Iniate Values 
SmallestDamDist = Inf;
SmallestNonDamDist = Inf;
DamTrainingData - -1;
NonDamTrainingData = -1;

for i = l:numObjects
if Corrosiondata(i).Area > MinArea

t_a = Corrosiondata(i).Pixel List; 
t_b = 1 round(Dx) round(Dy)]; 
t_Nb = I round(NDx) round(NDy)]; 
if ismember(t_b,t_a,'rows') == 1 

DamTrainingData = i;
end
if ismember(t_Nb,t_a, 'rows') == 1 

NonDamTrainingData = i;
end

end
end

if DamTrainingData == -1 
for i = IrnumObjects

if Corrosiondata(i).Area > MinArea
DamDist = sqrt ( (Corrosiondata (i ) .Centroid (1) - Dx).^2 + (Corrosiondata (i) . 

Centroid(2) - Dy)."2);
if DamDist < SmallestDamDist 

SmallestDamDist = DamDist;
DamTrainingData = i; % DamTrainingData is the index of the training 

data for the damagd region 
end

end
end
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end

if NonDamTrainingData == -1 
for i = 1:numObjects

if Corrosiondata(1).Area > MinArea
NonDamDist = sqrt ( (Corrosiondata (i) .Centroid (1) - NDx).''2 + (Corrosiondata 

(i) .Centroid (2) - NDy).''2);
if NonDamDist < SmallestNonDamDist 

SmaliestNonDamDist = NonDamDist;
NonDamTrainingData = i;

end
end

end
end

outputll = ones(numObjects,6) ;

for i = l:numObjects
if Corrosiondata(i).Area > MinArea

Bin = Corrosiondata(i).Image;

(ul_corner) - round(Corrosiondata(i).BoundingBox);

Im (:, :, 1) = Image (ul_corner (2) : (ul_corner (4) +ul_corner (2) -1) , ul_corner (1) : 
(ul_corner(3)+ul_corner(l)-l),l).*Bin;

Im (:, : , 2) - Image (ul_corner (2) : (ul_corner {A) +ul_corner (2) -1) , ul_corner (1) : i/ 
(ulcorner(3)+ul_corner(1)-1),2).*Bin;

Im (:, : , 3) = Image (ul_corner (2) ; (ul_corner (4 ) +ul_corner (2) -1) , ul_corner (1) : 
(ul_corner(3)+ul_corner(l)-l),3).*Bin;

kur1 = reshape(Im(:, : , 1) , [ ],1) ; 
kur2 « reshape (Im 2) ,[ 1 ,1) ;
kur3 = reshape(Im(:,:,3), [ 1, 1) ;

if i == DamTrainingData 
Dam_Training = Im; 

elseif i == NonDamTrainingData 
NonDam_Training = Ira;

end

% Computation of the mean and kurtosis 
output 11 (i,1) = kurtosis(kurl(kurl'=0)) 
outputll(i,2) = kurtosis(kur2(kurl~=0)) 
outputl 1 ( i , 3) " kurtosis (kur3 (kurl'-'O) ) 
output 11 (i,4) = mean(kurl (kurl'=0)); 
outputll(i,5) = mean(kur2(kurl'=0)); 
outputll(i,6) = mean(kur3 (kurl~ = 0));

%Display statistics overlayed on image
CentroidX = round(Corrosiondata(i).BoundingBox(1) + 0.5.‘Corrosiondata(i). 

BoundingBox(3)) -1;
CentroidY = round(Corrosiondata(i).BoundingBox(2) + 0.5.‘Corrosiondata(i). 

BoundingBox(4)) ;
text (CentroidX, (CentroidY + 33) ,1'Kred = round (num2str (output 11 (i , 1), 2) ) , ’

Kred = ', round (num2str (output 11 (i, 2) , 2) ) , ‘ Kblue = round (num2str (output 11 (i, 3) ,
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2))], 'HorizontalAlignment', 'center', ‘BackgroundColor', 1 rand(1) rand (1) rand(1)1);
text(CentroidX, (CentroidY + 3) ,['Ured = ',round(nura2str{outputl1(i,4),2)), '

Ured = round (numZstr (output 11 (i, 5) , 2)) , ‘ Ublue = round (num2str (output 11 (i, 6) ,
2))], 'HorizontalAlignment', 'center', 'BackgroundColor', [rand(1) rand (1) rand(1)1); 

clear kur Im p
end

end

%% Add histogrammed clusters to image 
[M N e] = size(Image);
Blank = zeros(M,N,3);

for i ■ l:numObjects
if Corrosiondata(i).Area > MinArea

sum ( ( (outputl 1 (i, :) - output 11 (DamTrainingData, :) ) . / (output 1 l(i,:))>.''2) 
sum (( (output 11 (i, : ) - output 11 (NonDamTrainingData, ;)) ./(outputll (i, :))) .''2);

DD = sum (( (output 11 (i,:) - outputll (DamTrainingData, :))./(outputll (i, :))). "'2) ; 
NDD “ sum( ( (outputll (i, ;) - outputll (NonDamTrainingData, :))./(outputll (i, :))).

'-2) ;
if DD < NDD

p = Corrosiondata(i).PixelList;
(v hi « size(p); 
for k = 1 : V

Blank(p(k,2),p(k,l),:) = Blank(p(k,2),p(k,l),:) + Image(p(k,2),p(k,
1) , :) ;

end

end

end
end

outputll = Blank;

end

function (Output model TimeTakenForAlgorithm] = SVM_RegionGrowth(RGB_Image,outputl 1, 
Dam_Training, NonDam_Training,p)

%Enhancement stage of REMPS: SVM classification of pixels adjacent to identified 
% damaged regions.
%
% Notes
% -----
%
% See also Section 4.2, Detection and Assessment of Damage in 
% Underwater Marine Structures using Image Processing Based Techniques 
%
%
% $Revision: 1.0.0.0 S $Date: 2015/02/09 04:16:39 $
%
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%Seperate Colour Channels 
OutputR= RGB_Image(:,:,1) 
OutputG= RGB_Image(:,:,2) 
OutputB= RGB_Image(:,:,3)

[B Q f] = size(OutputR);

%Prepare SVM Training Data for Damaged Regions 
DTR = Dam_Training(:,:,1);
DTG = Dam_Training(:,2);
DTE = Dam_Training(:,:,3);
A = DTR + DTG + DTB;
DTR = DTR(A '=0 );
DTG = DTG(A ~=0 );
DTB - DTB(A ~-0 );

clear A

DTR = DTR(1:<2*halfBlocksize+l));
DTG = DTR(1:(2*halfBlocksize+l));
DTB = DTR(1:<2*halfBlocksize+l));

DTR = reshape(DTR,1,[]);
DTG = reshape{DTG,1,[]);
DTB = reshape(DTB,1,[]);

%NonDamaged
nDTR = NonDam_Training(:, :,1) ; 
nDTG = NonDam_Training(:,:,2); 
nDTB = NonDam_Training(:,:,3);
AA=nDTR + nDTG + nDTB; 
nDTR - nDTR(AA ~“0 ); 
nDTG = nDTG(AA ~=0 ); 
nDTB = nDTB(AA ~=0 ); 
clear AA

nDTR = nDTR(l:(2*halfBlocksize+l)); 
nDTG = nDTGd : (2*halfBlocksize + l) ) ; 
nDTB = nDTB(1:(2*halfBlocksize+l));

nDTR = reshape(nDTR,1,[]); 
nDTG = reshape(nDTG,1,[]); 
nDTB = reshape(nDTB,1,II);

BlockR = [DTR; nDTR];

BlockG = [DTG; nDTG);

BlockB = [DTB; nDTB);
(HH,GG) = size(BlockR);
Block = zeros(HH,GG,3);

Block(:,:,l) = BlockR;
Block(:,:,2) = BlockG; 
Block(:,:,3) = BlockB;
1 = (halfBlocksize*2+l)./1;
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%Initiate array
FourDimArray = zeros(B,Q+2*halfBlocksize,3);

%Populate the array
FourDimArray(:,1+halfBlocksize:Q+halfBlocksize,1) = OutputR;
FourDimArrayl+halfBlocksize:Q+halfBlocksize,2) = OutputG;
FourDimArray(:,l+halfBlocksize:Q+halfBlocksize,3) = OutputB;

FourDimArray(:,Q+halfBlocksize:Q+2*halfBlocksize, :) = FourDimArray(:,Q+halfBlccksize: 
-1:Q,:);
FourDimArray(:,1:halfBlocksize+1,:) = FourDimArray(:,2*halfBlocksize:-l: ^  
halfBlocksize, :);

%Trainig Set

BlockN = reshape(Block, [1,1,3) ; 
size(BlockN)

group “ ([ones(1, ld*l) zeros(1,lnd*l)])’;
size(group)
tic

LibSVM_inputs = ['-s 0 -t 2 -c num2str(p)];

LibSVM_inputs = ['-s 0 -t 2 -c 1 -h 0 -g num2str(p)]; 
model = svmtrain2(group, BlockN, LibSVM_inputs);%SVM training

bwoutput = im2bw(outputll,0.0001); 
bwoutputNew = ones(size(bwoutput)); 
predicted_label = bwoutput; 
counterr = 1 ;

SE = strel('square', 3);
Bounderies = bwoutput;

sum(sum(bwoutputNew-bwoutput))
[Me Ne) = size(bwoutput);
Vis = zeros(Me, Ne,3);
OldPredlabel - ones(size(bwoutput)); NewPredlabel - zeros(size(bwoutput)) ; 

while isequal(OldPredlabel,NewPredlabel) == 0 && counterr <20

[B Q f] = size(bwoutput);

Bounderies = imdilate((predicted_label), SE)- (bwoutput + predicted_label); %Growi^ 
the damaged region outwardly by 1 pixel 

[indx]=find(Bounderies == 1);

OldPredlabel = predicted_label;
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%SVM Classification
[predicted label (indx) , decision values] = svinpredict2 (ones (length (indx) , 1) , 

[OutputR(indx),OutputG(indx),OutputB(indx)], model);

NewPredlabel = predicted_label;

bwoutputNew = im2bw(bwoutput + predicted_label); 

counterr = counterr+1;
end

Output = bwoutputNew; 

end
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PaLPaBel Stereo M atching
%PaLPaBel Pyramidal Stereo Correspondance Problem Script

%Read in Left and Right images of the stereo pair 
Left = imread('C :\Users\Desktop\Left.jpg');
Right = imread('C:\Users\Desktop\Right.jpg');

base_name = 'ImageOOOl';

%%Light Equalisation and Rectification

(LeftCorr, RightCorr] = EqualizeLight(Left,Right); %See funtion EqualizeLight 

%Computes the fundamental matrix, See funcion Rectifier below
[LeftRectifiedl, RightRectifiedl, tl,t2, inlierPoints1, inlierPoints2,fMatrix] 
Rectifier(imresize(LeftCorr,0.5), imresize(RightCorr,0.5));

inlierPoints_lr2_l = inlierPointsl; 
inlierPoints_lr2_2 - inlierPoints2; 
LeftRectified lr2 = LeftRectifiedl; 
F lr2 = fMatrix;

[Y, X] = size(inlierPointsl);

%% Uncomment to display Left and Right Images Overlapping 
% figure(1), clf;
% imshow(cat(3,rgb2gray(RightRectifiedl),rgb2gray(LeftRectifiedl),rgb2gray 
(LeftRectifiedl)>) , axis image;
title(‘Color composite (right=red, left=cyan)');

l_min = -150;% lowest disparity value 

l_max = 150; % highest disparity value 

label = l_max - l_min; %numbr of labels

Pyramid = 3; %No of pyramidal levels

label = ceil(label. / ( 2 (Pyramid-1))); %Nuraber of labels at the coursest pyramidal*^ 
level

l_min = cei1(l_min. / ( 2 (Pyramid-1))); %Lowest disparity value at the coursesti^ 
pyramidal level

[depthMap Cost] - P_LBP_MRF(LeftRectifiedl, RightRectifiedl, label, l_min);

MinValue = min(min(depthMap))
MaxValue = max(max(depthMap))

%%Write Information To Text File

% open a file for writing
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fid = fopen (1 'C:\Users\Desktop\' base_name '.txt']/ ’W);
% print values in column order 
% two values appear on each row of the file
texxt = ('Stereo Matching Details \n\n Minimum Disparity = %f \n Maximum Disparity = %
f \n No. of pyramids » %f \n Labels « %f \n Lower Disparity Limit - %f \n'];
values = IMinValue, MaxValue, Pyramid, label, MaxValue ); 
fprintfffid, texxt,values); 
fclose(fid);

’Save the depth map
imwrite((depthMap-min(min(depthMap))) ./(max(max(depthMap))-min(min(depthMap))), [ 'C:
\Users\Des)ctop\ ' base_name ‘ . jpg ' 1 , ' jpg' )
imwri te ( (Cost-min (min (Cost) ) ) . / (max (max (Cost) ) -min (min (Cost) ) ) , [ ' C : \ Users\Des)<top\ '
base name ' .jpg'1i'jpg')

function [depthMap Cost) = P_LBP_MRF(LeftRectifiedl, RightRectifiedl, label, l_min, 
PyrmaidLevels)
%Pyraniidal Loopy Belief Propagation based on a Markov Ranodm Field .
% Accepts the Left and Right image as input, along with the minimum disparity value, 
l_min, the
% number of labels, labels, and the number of Pyramid Levels, PyrmaidLevels.
%
% Notes
% -----
%
% See also Section 4.3, Detection and Assessment of Damage in 
% Underwater Marine Structures using Image Processing Based Techniques 
%
%
%
% SRevision: 1.0.0.0 S SDate: 2015/02/09 04:16:39 $

% LeftRectifiedl: Left rectified image. Required.
%
% RightRectifiedl: Right rectified image. Required.
%
% label: Integer. No of disparity levels.
%
% l_min: Integer. Required. Specifies the minimum disparity level

tic % Start timer

lambda = l;S.Belief propagation parameter

BP_iterations =15; ?iNo of iterations of the belief propagation algorithm 
Direction = (1,2,3,4,51; % 1 = Data,2=Left,3=Right,4=Up,6=Down

^Initiate depth map
depthMap = zeros(size( imresize(RightRectifiedl(:,:,1),0.5.^(PyrmaidLevels)))); 

%Cost map - pixels matched with high confidence have low cost
CostMap = zeros(size( imresize(RightRectifiedl1),0.5.^ (PyrmaidLevels))));

? window_radius = 2.~(PyrmaidLevels-pyr);

282



for pyr = PyrmaidLevels:-1:1

if pyr ~= PyrmaidLevels
l_min = -floor(label/2);
%modval= 4;

end

%label2 = ceil(label/(PyrmaidLevels-pyr+1));%% 

l_max = l_min + label-1;

% window_radius = 2.^(PyrmaidLevels-pyr+1)+3; ?window size can increase 
% with each pyramidal level

window_radius = (3);

hwait = waitbar(0,'Please wait...');

Left = imresize (Lef tRecti f iedl, 0 . 5 . (pyr-1) ) ;

Right = imresize(RightRectifiedl, 0 . 5 (pyr-1));

depthMap - round(imfilter(imresize(depthMap,size(Right(:,:,1))).*2,hav));

CostMap = imresize(CostMap,size(Right(:,:,1)));

pmax - max(abs(l_max),abs(l_min))+max(max(abs(depthMap)));

tmpLeft = im2double(padarray(Left, [window_radius window_radius+pmax1)); %Pad thei^ 
image

tmpRight = im2double(padarray(Right,(window_radius window_radius+pmax])); 
depthMap = im2double(padarray(depthMap,[window_radius window_radius+pmax)));

(M,N,el = size(tmpLeft);

%CAche data costs to avoid recomputation

mrf - double(zeros(M,N,length(Direction),label));

%% SAD
% for y = l+window_radius:M-window_radius;
% for x = l+l_max+window_radius:N-window_radius+l_min;
% for 1 = l_min:l_max
% mrf (y, x, 1, l-l_min + l) = sum (sum (sum (abs (tmpLef t (y-window_radius :

y+window_radius,x-window_radius:x+window_radius,:)-tmpRight(y-window_radius: 
y+window_radius, x-window_radius-l:x+window_radius-l,:)))))./((double(window_radius). 
*2 + 1) .-'2) ./3;

% end
% end
%
% end

%% Normalised Cross Correlation
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-Check if a patch has a standard deviation = 0;
J = stdfilt(trapLeft, ones(window_radius.*2-1)); 
bad = find(J == 0);

■ bb “ (window_radius.*2+1).^2;
%
while isempty(bad) == 0;

%
% tmpLeft(bad) = tmpLeft(bad) + rand(l)./100; 
i J = stdfi1t {tmpLeft, ones((window radius-1).*2-1));
% [bad] = find(J == 0);
% 'hi'
% end

if pyr < -4 % In case we wish to use different descriptors for different pyramids 
bb = (window_radius . *2 + 1) . "'2; 
for y = 1+window_radius:M-window_radius;

for X = l+pmax+window_radius;N-window_radius-pmax;

for ii = l_min:l_max

mrf (y, X, 1,mod (ii-l_min+depthMap (y, x), label) +1) = sum (sum (sum (abs 
(tmpLeft(y-window_radius:y+window_radius,x-window_radius:x+window_radius,:)-tmpRight(y- 
window_radius:y+window_radius,x-window_radius + ii+depthMap(y, x): 
x+window radius+ii+depthMap(y,x),:)))))./bb ;

end
end
waitbar(y / (M-window_radius))

end

else

•-min(min(depthMap))

for y = 1+window_radius:M-window_radius;
for X = 1+pmax+window radius:N-window_radius-pmax;

Descriptors: Can use Sum of Squared Distances or Sum of 
Absolute Distance as a measure of siimilarity. Default: Zero-mean Normalised cross 
correlation

% % for ii = l_min:l_max
% •k

% % %?.SSD
% * mrf (y, X, 1, ii-l_min+1) = sum (sum (sum ( (tmpLeft (y-

window_radius:y+window_radius,x-window_radius:x+window_radius,:)-tmpRight(y- 
window_radius;y+window_radius,x-window_radius+ii+depthMap(y,x): 
x + window_radius + ii + depthMap (y, x) , :) ) .''2) ) ) ./bb ;%+ ...

% V. % sum (sum (sum (abs (di ff (tmpLeft (y-window_radius:
y+window_radius,x-window_radius:x+window_radius,:))-diff(tmpRight(y-window_radius; 
y+window_radius,x-window_radius + ii + depthMap(y,x) :x + window_radius + ii+depthMap(y, 
x), :))))))./bb;

% '«

% %
% i %SAD
% % mrf (y, X, 1, mod (ii-l_min+depthMap (y, X) , label)+1) = sum>^

(sum(sum(abs(tmpLeft(y-window_radius:y+window_radius,x-window_radius:x+window_radius, :) 
-tmpRight(y-window_radius:y+window_radius,x-window_radius + ii + depthMap(y,x): ^ 
x+window_radius+ii+depthMap(y,x),:)))))./bb ;'+ ...

% *
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% %
% % 
% % end

%%Norm Corr 

try

L = t m p L e l t (y-window_radius:y+window radius,x-window radius;
x + window_radius,;);

R = tmpRight(y-window_radius:y+window_radius,X- 
window_radius+l_min+depthMap(y,x ) :x+window_radius+l_max+depthMap(y,x),:);

Br = normxcorr2 m e x ( L (;, ,1) , R C , : , D ) ;
Bg = normxcorr2 mex(L (:, ,2), R(:, :,2));
Bb ” normxcorr2 m e x ( L (:, ,3), R(;, :,3));

Bm = (Br+Bg+Bb)./3;

mrf (y, X, 1,mod ( (1: label)-1+depthMap (y, X) , label)+1) = Bm 
(window radius.*2+1, window radius*2+l: end - window r a d i u s .*2).*-1+1;

catch exception 

end

end

waitbarCy / (M-window_radius))
end

end

close(hwait) 

size(mrf)

% ^.Optional: Considering edge boundaries as a prior to belief propagation.
% %--> No smoothness assumption at edge boundary 
% h = f s p e c i a l ('s o b e l ');
% %edges“Conv2(im2double(edges),h ');
% H ” f s p e c i a l ('g a u s s i a n ',[7 7],3);
%
% edgesH = i m a d j u s t ( a b s (i m f i l t e r (r g b 2 g r a y (i mfiIter(tmpLeft(l + w i n d o w _ r a d i u s : M - 1/  

window_radius, l+window_radius+pmax;N-window_radius-pmax,:),H ) ),h ) ));
% edgesV = imadjust(abs(imfilter(rgb2gray(imfilter(tmpLeft(l + window_radius:M- 

window_radius, 1+ window_radius+pmax:N-window_radius-pmax,:),H ) ),h ')));
%
% edges = (edgesV + edgesH).^2;

mrf = mrf(l + window_radius:M-window_radius, l + window_r a d i u s + p m a x :N - w i n d o w _ r a d i u s - 1̂  
p m a x , :, :);

mrf = m i n ( m r f ,1.0);
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size(mrf)

%View naive disparity by block matching 
% (MM,NN,ee] = size(mrf);
% for ii = 1 :MM 
% for jj = 1:NN
% Arr = m r f (ii,jj,1,:);
% disp_min = mean(find(Arr == min(Arr)));
% depth_map(ii,jj) = disp_min;
% end
% end

clear ii jj Arr disp_min Lambdas mv_av
% imshow(depth_map,[)), colormap gray, title(’naive block matching')

%mrf = min(mrf,1);

mrfl = mrf; %store a copy of mrf

clear mrf
mrf (:, ,1, ) - imresize(mrfl( r ,1, ) , 1)
mrf (:, ,2, ) = imresize(mrf1( t ,2, ),1)
mrf (:, , 3, ) = imresize(mrf1( t ,3, ),1)
mrf (:, ,4, ) = imresize(mrf1( t ,4, ),1)
mrf (:, ,5, ) = imresize(mrfl( r ,5, ),1)

[MM,NN,ee] = size(mrf);

%% mrf ” mrfl;

msg = zeros(MM,NN,5,label);

IBW = edge(rgb2gray(tmpLeft),'s o b e l v e r t i c a l ');

clear tmpLeft tmpRight Tmp new_msg

hwait = waitbar(0,'Please wait...');

Tmp = zeros(MM,NN,label,label); %Initiate MRF

for tt = 1:BP_iterations 
y = 2:MM-1;
X = 2:NN-1;

for Di r = 1:5
m s g (;,:,Dir,:) = sum(mrf(:,:,Direction(Direction~=Dir),:),3);

end

for Di r = 1:5

for i = 1:label

for j = 1: label

%Matching cost + smoothness cost
Tmp ( :, :, i , j ) = msg ( :, :, Dir, j ) + lambda . *min ((label - abs (i-j ) , abs

(i-j) 1) ;

end
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new msg(:,:,Dir,i)=min(Tmp(:, :, i, :), [] , 4),
end

end

for Dir = 2:5
for i=l:label

if Dir == 2
mrf (y,x-l, 3, i) = new_msg (y, x, Dir, i),-%.*( 1-edgesV(y, x)) ;

eiseif Dir == 3
mrf(y,x+1,2,i) = new_msg(y,x,Dir,i);%.*(1-edgesV(y,x));

eiseif Dir == 4
mrf(y-1,X,5,i) = new_msg(y,x,Dir,i);%.*(1-edgesH(y,x));

eiseif Dir == 5
mrf(y+1,x,4,i) = new_msg(y,x,Dir,i);% . * (1-edgesH {y, x)) ;

end
end

end

waitbar(tt/BP_iterations)

end

depthMap = depthMap(l+window_radius:M-window_radius, l+window_radius+pmax:N-li' 
window_radius-pmax,:);

[depthMapNew CostMap Energy] = MaxAP_Pyr_mod(mrf,label,depthMap);
CostMap = (CostMap - min(min(CostMap)))./(max(max(CostMap))-min(min(CostMap)));

depthMap = depthMap + depthMapNew + l_min-l;

figure,imshow(depthMap,[]), colormap gray, title(('Level ', num2str(pyr)]) 

label =floor(label/2)-mod(label,2) + 1; %reset and update label 

close(hwait)

end

figure, imshow(depthMap(:,:),[]), colormap gray, title(['LBP MRF’]) 

toe

end

%lmage preprocessing: Equalize light

287



function [LeftCorr, RightCorr] = EqualizeLight(LI, Rl)
%Take rgb image and convert to L*a*b* space and then normalize the light component, L, 
and re-convert to rgb

%Leftimage
C = makecform('srgb21ab');

lab = applycform(LI,C); 
d = stretchlim(lab(:, :,1)) ; 
lab(:,;,l) =» imadjust (lab (:, :, 1) , d, 1)) ;

C “ makecform('lab2srgb');
LeftCorr = applycform(lab,C); 
figure,imshow(LeftCorr)

%RightImage
C = makecform('srgb21ab') ;

labR = applycform(Rl,C);
%d = stretchlim(lab(:,:,1));
labR(:, :,1) = imadj ust(labR(:,:, I) , d, []) ;
hgram = imhist(lab(:,:,1));

labR(:,:,l) = histeq(labR(:, :, 1) , hgram);

C = makecform('lab2srgb'); 
RightCorr = applycform(labR,C); 
figure,imshow(RightCorr)
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Michael O'Byrne Trinity C ollege  Dublin

Detection and Assessment of Damage in Underwater Marine 

Structures using Image Processing Based Techniques

Abstract: The monitoring of underwater structures is often beset by limited access, 

exorbitant costs and inherent safety issues. This thesis focuses on developing and 

implementing automated image processing based Non-Destructive Testing (NDT) techniques 

to facilitate inspections. Adopting such techniques can vastly improve the condition of 

monitoring, reduce the operational complexities and partially offset the financial burden of
I

regular inspections. To date, there has been very little work carried out on image based 

techniques for the purposes of detecting and quantifying the extent of structural damage, 

particularly affecting the submerged part of marine structures. This research endeavours to 

bridge that knowledge-gap through development and performance evaluation of a series of 

advanced techniques and strategies. Underwater imaging is exposed to numerous challenges 

such as luminous complexities, poor visibility, light attenuation and backscatter which 

diminish the ability of the camera, and subsequent image processing algorithms, to 

effectively identify and quantify instances of damage. This research addresses the deleterious 

effects of these environmental conditions and phenomena, and through a repository driven 

approach, maps the impact that lighting, turbidity, and surface type have on the performance 

of developed techniques.

The developed techniques include a crack detection algorithm, colour and texture based 

damage detection algorithms, and a 3D shape recovery algorithm. The crack detection 

algorithm adopts a percolation based approach to automatically locate and quantify cracks in 

an efficient manner, removing the need for inspectors to manually undertake this tedious task.
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The damage detection algorithms employ advanced image segmentation methods to identify 

and quantify the severity of damage on the surface of infrastructural elements, based on 

textural information or colour information. Each algorithm is naturally suited to different 

applications, depending largely on whether the damage form under consideration is more 

separable from the background based on colour or on texture. Both of these algorithms are 

validated on real world instances of infi^tructural damage acquired from diving expeditions, 

as well as on above-water instances of damages. A stereoscopic based approach is employed 

for recovering 3D shape, which utilises a dual camera set-up to simultaneously photograph a 

specimen of interest from slightly different viewpoints. As part of this approach, an efficient 

pyramidal loopy Belief Propagation (BP) Markov Random Field (MRF) stereo 

correspondence algorithm is developed. This algorithm is applied to a submerged pile 

covered with artificial marine growth in a large-scale testing facility in Boulogne, France, and 

is subsequently validated on a real word structure in Cork Harbour, Ireland. Having accurate 

3D shape information of submerged structural members is of great practical importance when 

analysing the forces exercised by the waves, winds and currents.

A protocol for the implementation of image processing techniques is established, which 

specifies the technical requirements for capturing imagery and outlines a set of best practice 

guidelines to ensure the acquired imagery is suited for quantitative analysis.


