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Summary
This thesis concerns the  s truc tu re  and flow properties of wet foams. We 

prim arily use com puter sim ulations of soft particles to  model the  behaviour 

of disordered wet foams. We investigate the  properties of 2D and 3D polydis- 

perse packings of soft particles and the flow of 2D soft discs as model systems 

for wet foams.

We study how the  polydispersity of packings affect the s truc tu re  of dis­

ordered packings. We exam ine the  correlations betw'een size and contact 

num ber of particles in jam m ed packings at the random  closed packing den­

sity 0c ill two and three dim ensions for a wide range of size distributions. 

Oiir key flnding is the existence of universal correlations between size and 

contact number th a t is independent of the polydispersity. This em pirical re­

sult allows us to fornm late a m ean field approach based on the granocentric 

model th a t yields excellent agreem ent w ith our data.

We pose the question: how locally random  are disordered {packings of 

particles? M any models proposed to describe the ])roperties of packings 

im plicitly th a t the packings are spatially uncorrelated. O ur m easurem ents 

show correlations in b o th  size and contact num ber of nearest neighbours. In 

general, the average contact num ber and the average size of neighbouring 

particles do not correspond to  the global mean of contact num ber and size. 

In 3D packings larger particles are surrounded by smaller particles and vice 

versa. Moreover, in bo th  2D & 3D, particles w ith few contacts neighbour 

particles w ith m any contacts. Nevertheless, these correlations are sufficiently 

weak th a t the predictions obtained from the granocentric model agree w’ell 

w ith our data.

The effect of increasing packing fraction above 0c in our sim ulations is 

investigated. We find th a t for a given size d istribution, the  contact num ber 

can be rescaled onto a m aster curve for any packing fraction in 2D and 

3D. At higher densities the  correlation between size and contact num ber 

rem ains independent of polydispersity. O ur model to  predict the contact



number distribution from the size distribution is shown to be vahd for denser 
packings. The spatial correlations found at 0c persist at higher packing 
fraction.

The empirical Herschel-Bulkley equation is commonly used to described 
foam rheology. This empirical description demands a unique rheological re­
lation independent of geometry. Recent experimental results have shown the 
inadequacy of this description in confined geometries where the typical size 
of confinement is 10-100 particle diameters.

We reproduce these experimental results in 2D simulations and similarly 
find a non-unique position-dependent rheology, referred to as a non-local 
rheology. Furthermore, we apply a fluidity model proposed for 3D emulsion 
flows th a t captures the rheology of our simulations. We investigate how this 
model is affected by packing fraction.

Frictionless particles have been show’ to have an emergent macroscopic 
friction in both simulation and exi)eriment. Granular materials form piles 
with a characteristic angle of repose, w'hich is attributed to the static friction 
tha t exists between grains. We show' that a static angle of repose is also 
found in frictionless m atter, such as wet foam. This result is found in 2D 
simulations and compared with 2D experiments for a variety of parameters. 
This angle in the limit of infinite system size tends to ~  5°. We also observe 
dilatancy when shear stress is applied to the system.



vi

List of Publications
1. C .B . O ’D o n o v an , E. I. Corwin, M. E. Mobius. Mean-field granocen- 

tric approach in 2D k  3D polydisperse, frictionless packings, Phil. 

Mag., 93(4030) (2013).

2. C .B . O ’D o n o v an , M. E. Mobius. Spatial correlations in polydisperse, 

frictionless, two-dimensional packings, Phys. Rev. E, 84(020302) (2011)



Contents

1 In trod u ction  1
1.1 F o a m s .....................................................................................................  2

1.2 Structure of T h e s i s ............................................................................  7
1.2.1 P ack in g s .....................................................................................  8
1.2.2 Rheology .................................................................................  8
1.2.3 S ty le ...........................................................................................  9

1 Structure 10

2 Introdu ction  to  Jam m ed Packings 11
2.1 Jam m in g .................................................................................................  13

2.1.1 Isostatic C r i t e r i a ....................................................................  15
2.1.2 P olydispersity ........................................................................... 17

2.2 Simulation P ro ced u re ........................................................................... 18
2.2.1 Bubble Model C o d e ................................................................. 18
2.2.2 Conjugate Gradient M in im isation ......................................  22

2.3 Bulk Properties of Polydisperse P a c k in g s .......................................  24
2.3.1 Contact V a r ia n c e ....................................................................  27

3 Local C ontact P rop erties o f  D isordered Packings 29
3.1 The Granocentric A p p ro a c h .............................................................  30
3.2 Contact Number of a Particle of a Given Size ...............................  32

vii



CONTENTS Vll l

3.2.1 Three Dimensions.................................................................  32
3.2.2 Two Dimensions .................................................................  37

3.3 Mean Field Granocentric M o d e l..................................................... 41
3.3.1 Mean Field Granocentric Model in 3D ........................... 41
3.3.2 Comparison with Original Granocentric M odel.............. 51
3.3.3 Mean Field Granocentric Model in 2D ........................... 52
3.3.4 Conclusions <k O utlook........................................................ 57

3.4 Particle Size with Contact Number z ............................................ 58
3.4.1 Three Dimensions.................................................................  58
3.4.2 Two Dimensions .................................................................  61
3.4.3 C onclusions........................................................................... 64

3.5 The Force Network in Disordered Packings...................................  65
3.5.1 Introduction to Force D istribu tions.................................  66
3.5.2 Effect of Polydispersity on the Force Distribution . . .  67
3.5.3 Local Correlations in the Force N e tw o rk .......................  70
3.5.4 Conclusions k  O u tlook .......................................................  71

4 N earest N eighbour C orre la tions 72
4.1 Contact Ninnber C o rre la tio n s ........................................................  73

4.1.1 Dry Foam s..............................................................................  73
4.1.2 Aboav-Weaire l a w ..............................................................  73
4.1.3 Weaire Sum Rule in Disc Packings .................................  77
4.1.4 Correlations in the Contact Network of Disc Packings . 79
4.1.5 Aboav-Weaire in Disc P ack ings .......................................  79
4.1.6 Correlations in the Contact Network of Sphere Packings 81
4.1.7 Aboav-Weaire Correlations in Sphere Packings . . . .  81

4.2 Size-Size Correlations........................................................................  85
4.2.1 Size-Size Correlations in 3 D ..............................................  85
4.2.2 Relationship of Size-Size Correlations in 3 D ..................... 86
4.2.3 Relationship of Size-Size Correlations in 2 D ................. 89
4.2.4 Uncorrelated Prediction ....................................................  90



CONTENTS  ix

4.3 Conclusions &: O u tlo o k ....................................................................  92

5 Effect o f Packing Fraction 93
5.1 Contact Number D istributions.......................................................  95
5.2 Relationship Between Contact Number and S iz e ..........................100
5.3 Granocentric Approach with Increasing (f)...................................... 106

5.3.1 Three Dimensions................................................................... 106
5.3.2 Two Dimensions ...................................................................108

5.4 Correlations in Nearest Neighbour Contacts ................................ I l l
5.4.1 Contact Number Correlations in 2 D ...................................I l l
5.4.2 Contact Number Correlations in 3 D ...................................114

5.5 Correlations in Nearest Neighbour S iz e ..........................................116
5.5.1 Size Correlations in 2 D ..........................................................116
5.5.2 Size Correlations in 3 D ..........................................................116

5.6 Conclusions <k O utlook .......................................................................119

II R heology 121

6 Introduction  to  R heology 122
6.1 Foam R heology ....................................................................................123
6.2 Herschel- Bulkley Rheology................................................................125
6.3 Macroscopic F r ic tio n .......................................................................... 131

6.3.1 Static Angle of R ep o se ..........................................................131

7 C ou ette  G eom etry R heology 133
7.1 Couette Cell Sim ulations....................................................................134

7.1.1 Simulation S e tu p ....................................................................134
7.1.2 Simulation R e s u l ts ................................................................ 136
7.1.3 Comparison w'ith H erschel-Bulkley................................... 139
7.1.4 Fluidity Model .......................................................................141

7.2 Conclusions & O u tlo o k .......................................................................147



CONTENTS X

8 R o ta tin g  D rum  149
8.1 Introduction to Rotating D r u m ......................................................150
8.2 Comparison with E x p e rim e n t.........................................................151

8.2.1 Experimental S e tu p ................................................................. 151
8.2.2 Experimental Method ...........................................................154
8.2.3 Simulation Setup and Methods ...........................................158
8.2.4 Comparison between Simulation and Experiment . . . 159

8.3 Static Angle of R ep o se ...................................................................... 162
8.3.1 Effect of Boundary Roughness.............................................. 162
8.3.2 Effect of Polydispersity...........................................................164
8.3.3 Effect of B uoyancy ................................................................. 166
8.3.4 Effect of System S iz e .............................................................. 167
8.3.5 Comparison with Couette Simulations ..............................171
8.3.6 Discussion of Angie of R ep o se .............................................. 172

8.4 Shear D ilatancy...................................................................................173
8.4.1 Concept of D ilatancy .............................................................. 173
8.4.2 M ethods.....................................................................................174
8.4.3 R esults........................................................................................177
8.4.4 Discussion of D ilatancy........................................................... 179

8.5 Angle When Flow Begins................................................................... 180
8.6 Conclusions k  O u tlook ......................................................................181

A S tatistica l cutoff 182

B Ordering in 3D M onodisperse Packings 184

C Stress and Strain R ate in Polar C oordinates 187
C.l Shear S tre s s ......................................................................................... 187
C.2 Strain R a t e .......................................................................................... 190



List of Figures

1.1.1 Experimental image of bubbles in a Guinness f o a m ................. 2
1.1.2 Structure of 2D foams with changing liquid f r a c t io n ................. 3
1.1.3 Force balance for a deformed bubble ...........................................  4
1.1.4 Exi)erimental image of an emulsion packing ..............................  5
1.2.1 Phase diagram of foams ................................................................... 7

2.0.1 Visualisation of a soft sphere packing sinuilation at 0 c .............  H
2.2.1 Deformation in soft sphere sinmlations versus in experiment . 19
2.3.1 Continuous size distributions used in soft sphere packings . . .  24
2.3.2 Relationship between polydispersity and (pc in 2D & 3D . . . . 25
2.3.3 Percentage of rattlers for different polydispersity at (pc in 3D . 26
2.3.4 Visualisation of a packing with low (7̂  at 0c hi 2 D ........................ 27
2.3.5 Relationship between and o z .....................................................  28

3.1.1 Granocentric view of a random p a ck in g ........................................  31
3.2.1 Average contact number for particles of a given size at 0c in 3D 33
3.2.2 Average contact number for particles of a given a at 0c in 3D . 34
3.2.3 P{z\a) for a number of polydispersities at 0c in 3D......................... 36
3.2.4 Average contact number for particles of a given size at 0c in 2D 38
3.2.5 Average contact number for particles of a given r at 0c in 2D . 39
3.2.6 Contact number distribution for discs of a given r at 0c in 2D 40

3.3.1 The ratio of the variance to the average of the contact number
distribution for particles of a given a at 0c in 3 D .......................  45

xi



L I S T  O F F IG U RES Xll

3.3.2 Average of the contact num ber d istribu tion  for particles of a 

given a at (j)c in 3D w ith model prediction ...................................

3.3.3 Variance of the contact num ber distribu tion  for particles of a 

given a at 0c in 3D w ith model prediction ...................................

3.3.4 P{z\a)  at 4>c in 3D w ith model p re d ic tio n .......................................

3.3.5 C ontact num ber d istribution  for a num ber of polydispersities 

a t 0c ill 3D ...............................................................................................

3.3.6 Com parison w ith the original granocentric model .....................

3.3.7 Model prediction of {z\r), (c r ||r)  and ^ l̂''V(o-||r) a t 0c in 2D . .

3.3.8 P ( 2 |r)  at 0c in 2D w ith model p re d ic t io n .......................................

3.3.9 C ontact num ber d istribution  for a num ber of polydispersities 

at 0c in 2D ...............................................................................................

3.4.1 Average area of particles w ith a given z a t 0c in 3 D .................

3.4.2 Average radius of particles w ith a given 2  at 0c in 2 D ..............

3.4.3 Relationship between variance of size d istribution  and cr| . . .

3.5.1 Force network of a 2D soft disc packing sim ulation at 0c . . .

3.5.2 Force distributions at 0c for a range of polydispersities in 3D .

3.5.3 Force distributions at 0c for a range of polydispersities in 2D .

3.5.4 In teraction force on a particles of a given v at 0c in 3D . . . .

3.5.5 Energy density of packings a t 0c in 3 D ..........................................

4.1.1 Aboav-W eaire correlations in cellular s t r u c t u r e s .........................

4.1.2 C ontact num ber correlations for discs in contact at 0 c ..............

4.1.3 C ontact num ber correlations for discs in contact a t 0 c ..............

4.1.4 C ontact num ber correlations for spheres in contact a t 0c . . .

4.1.5 C ontact num ber correlations for spheres in contact a t 0c . . .

4.2.1 Correlations between size of particles in 2D & 3 D .....................

4.2.2 U ncorrelated prediction of neighbour size for different polydis­

persities ......................................................................................................

5.0.1 Exam ples of discs in contact in a packing at different 0  . . . .

46

47

49

50

51

54

55

56

59

61

63

65

67

68
70

71

74

78

80

82

83

87

90

93



LIST  OF FIGURES  xiii

5.1.1 Contact number distributions for increasing (j) in 2 D .............  96
5.1.2 Contact number distributions for increasing 4> in 3 D .............  98

5.1.3 Percentage of rattlers for increasing 4>...........................................  99
5.2.1 Average of the contact number distribution for a given size for

increasing 0 in 3D ..........................................................................100

5.2.2 Average of the contact number distribution for a given radius 
(z|r) for increasing 0 in 2 D ................................................................102

5.2.3 Average of the radius distribution for particles with a given 
contact number for increasing 0 in 2D................................................ 103

5.2.4 Average of the area distribution for particles with a given con­
tact number for increasing 0 in 3D..................................................104

5.2.5 Variance of the contact ninnber distribution for increasing 0
in 3D and 2D with prediction...............................................................105

5.3.1 Collapse of variance and ratio of variance to mean for {z) = 8
in 3 D ..........................................................................................................106

5.3.2 Model prediction of packings at {z) =  8.0 in 3 D ............................107
5.3.3 Collapse of variance and ratio of variance to mean for {z) =  5.2

in 2 D ..........................................................................................................108
5.3.4 Model prediction of packings at {z) =  5.2 in 2 D ............................109
5.4.1 Anti-correlation of neighboining i)articles contact number for 

increasing packing fraction 0 in 2 D .................................................. I l l
5.4.2 Anti-correlation of neighbouring particles contact number for 

increasing 0 in 2D ............................................................................... 112
5.4.3 Anti-correlation of neighbouring particles contact number for 

increasing packing fraction 0 in 3 D ..................................................115
5.5.1 Correlations between size of discs in contact for increasing 0

in 2 D .......................................................................................................... 117
5.5.2 Correlations between size of spheres in contact for increasing

0 in 3D ................................................................................................... 118

6.2.1 Sketch of the Couette setup 126



LIST  OF FIGURES  xiv

6.2.2 Scaled stress vs. strain rate produced with experimental setup 129
6.3.1 (a) Sand pile with an indication of the static angle of repose.

(b) Vector diagram of the forces acting on a grain......................... 131

7.0.1 Image of Simulation C e l l ..................................................................... 133
7.1.1 Normalised angular velocity profiles u g .......................................... 136

7.1.2 Stress versus strain rate curve for soft disc simulations.................137
7.1.3 Four snapshots of a simulation of a soft disc packing under 

shear highlighting plastic rearrangem en ts....................................... 140
7.1.4 Comparison with fluidity model velocity p ro f ile s ..........................141
7.1.5 Fluidity P r o f i l e ......................................................................................142
7.1.6 Non-local rheological c u r v e s .............................................................. 144
7.1.7 Flow properties at 0 =  0 . 9 0 .............................................................. 145
7.1.8 Variation of the cooperativity length ^ with driving velocity

and 0  146

8.0.1 Image of Simulation C e l l ..................................................................... 149
8.2.1 Side view sketch of the rotating drum apparatus............................151
8.2.2 Drawing of the teeth on the rim of the drum ...................................152
8.2.3 Example of crystallisation in a monodisperse foam......................... 153
8.2.4 Vector diagram of force components on bubble p i l e ................... 154
8.2.5 Change of the angle of the foam/liquid interface during the 

experiment.................................................................................................155
8.2.6 Diagram of experiment rotation p ro c e d u re ....................................156
8.2.7 Diagram of rotating drum simulation geom etry............................. 157
8.3.1 Angle of repose versus surface roughness of the boundary . . . 162
8.3.2 The effect on the static angle of repose due to polydispersity . 164

8.3.3 The effect on the static angle of repose due to buoyancy . . . 166
8.3.4 Angle of repose versus the fraction of the drum f i l l e d ................167
8.3.5 Angle of repose versus the number of particles in the system . 168



L IST  OF FIGURES XV

8.3.6 Angle of repose with increasing system size when buoyancy is 
matched between simulation and e x p e rim en t................................ 170

8.3.7 Macroscopic friction versus viscous n u m b e r....................................171
8.4.1 Typical stick-shp scenario in fo a m .................................................173
8.4.2 Example of a dilatancy e x p e r im e n t..............................................174

8.4.3 Example of a dilatancy sim u la tion .................................................175
8.4.4 Dilatancy effect for shear rate for simulation and experiment . 177

8.4.5 Dilatancy effect for system size and viscosity in simulation . . 178
8.5.1 Angle at which the flow s t a r t s ........................................................... 180

A.0.1 Average contact number for particles of a given a at 4>c in 3D . 183

B.O.lBond Orientation Order P a ra m e te r ................................................. 185

C .l.llnfinitesim al element in polar coord inates....................................... 188



Chapter 1 

Introduction

Foams are found in every facet of our daily life, from the soap we wash with 
and the coffee we drink in the morning, to the bike helmet that protects the 
author as he travels to work, perhaps the chair you are sitting on right now. 
You may find foam in the cushioning of your shoes as you play sport, and 
hopefully find it in the delicious pint of beer with which the foam physicist 
typically relaxes. Foams are undoubtedly ubiquitous.

In addition to their omnipresence in everyday life, foams have a wide 
range of industrial applications. They are used in applications as diverse 
as ore separation by flotation in mines, oil recovery, fire fighting, and dozens 
others, including the preparation of solid foams for the construction for stable 
but lightweight technologies.

If nothing else foams are beautihil, see Figure 1.1.1. This appreciation 
of the aesthetic structures foams form has been the inspiration for the ar­

chitecture of iconic buildings like Beijing National Aquatics Center and the 
Olympiastadion in Munich.

Most relevant to this work, foams have been described as an ideal model 
for the study of disordered complex systems [1].

1
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Figure 1.1.1: Experimental image of bubbles in a Guinness foam. Average 
bubble diameter is 53fim. Image courtesy of G. Ryan.

1.1 Foams

The typical foam is a two phase material that consists of gas bubbles dis­
persed in a continuous liciuid phase with a surfactant that stabilises the 
foam [2]. Foams are characterised by the fraction of gas enclosed in the total 
volume of the foam, this is called the packing fraction (p. There are two limits 
to the packing fraction of foams. If the packing fraction is high, {cp ~  1), 
the foam is dry. If the packing fraction is low, but not less than a critical 

packing fraction (pc, the foam is wet. This 4>c is the random close packing 
density, the point at which all the bubbles are just in contact and is related 
to the jamming phase transition point J, which will be discussed in detail 
later on. The value of 0c depends on dimension, in 3D, 0^ ^  0.64 and in 2D, 

(j>c ~  0.84. A range of packing fractions in 2D are shown in Figure 1.1.2.
The two limits of wet and dry foam have qualitatively different structures. 

Bubbles in a dry foam are forced by their surface tension to minimise their 
surface areas, resulting in polyhedral structures that follow the well defined
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rules known as P lateau’s laws [4], which specify the angle at which film meet
and the number of films that can meet at a vertex. The ideal structure is 

one tha t possesses the lowest surface energy while obeying P lateau’s laws. 
In this conftguration, the bubbles in the foam are separated by a thin film of 
liquid, the edges of which are called Plateau borders. As the foam becomes 

w'etter, and 0 decreases, the Plateau borders swell until the bubbles become 
spherical. In the wet limit bubbles can be well approximated as spheres with 
harmonic repulsion.

Foam may be studied on several length scales. The smallest length scale is 
of the size of surfactant molecules, at this scale the chemistry of the particles 
are most important. An intermediate, or mesoscopic length scale is on the 
order of the individual bubble size. This scale is the basis of our investigations 
in this thesis. At the mesoscopic scale where each bubble is discernible from 
one another, individual bubbles interact and deform on contact. Finally at 
the macro-scale, where bubbles form as an ensemble that is considered a foam 
and forms a contimumi. On this length scale the complex interactions at the 
particle level produce the emergent behaviour of foams. In such a picture ŵe 
can consider macroscopic quantities like the rheology and the bulk modulus. 
The focus of this thesis is the employment of simulations on the bubble scale 
to study macroscopic properties.

(j> = 1.0 (j) = 0.95 (|) = 0.90 4> = 0.85

Figure 1.1.2: Structure of 2D foam simulations for different packing fractions 
0, taken from Bolton and Weaire [3]. The figures range from dry foam on 
the left to wet foam near <pc on the right.
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Figure 1.1.3: Force balance on a deformed bubble. The dimensionless com­
pression of the bubble is

The dominant interaction of a static wet foam is the repulsive interac­
tion between bubbles. This interaction is governed by the Young-Laplace 
law, which describes the balance of pressure difference P  across a gas-liquid 
interface [2] as

where R  is the radius of the bubble and 7  ̂ is the surface tension. W hen a 
small force is applied to a bubble, it is balanced by the pressure across the 
th in  film, giving

where irrj is the area of the facet flattened by the force. To get an expression 
for the force on a bubble being deformed we define the deformation S^c, where 

is a dimensionless measure of the compression [5]. The radius of 

the flattened facet, by Pythagorus’s theorem, can be expressed as

( 1. 1. 1)

F  = TirjP,

( 1 . 1.3 )
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then rewriting Equation (1.1.3) in terms of gives

r j  ^  -  ( /?2  + /?2^2 _  2 ^ 2 ^ ^ )  _ ( 1 1 4 )

In the limit of small compression when ~  gives an approximation of
the flattened facet as

r ) ^ 2 R ^ 6 i c .  (1-1-5)

ignoring terms of 0{6^ l ) .  Substituting the previous expression and the 
Young-Laplace law into Equation (1.1.2) gives

F  = An-fsRd^c- (1.1.6)

Thus for small deformations, the interaction between bubbles is harmonic 
with a spring constant k =  AtiJ s-

Figure 1.1.4: Experimental image of an emulsion packing. The average par­
ticle diameter is Image courtesy of G. Ryan.
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Foams have a tendency to be disordered with no long range structure. In 
this regard foams resemble other amorphous materials like emulsions (Figure 
1.1.4), soft pastes and particulate gels [6]. Like foams these materials have 
a finite interaction range, the interaction energy is much greater than  k T  
and therefore athermal. The behaviour of these materials along with that 
of therm al materials like glasses have been encapsulated in a famous phase 
diagram by Liu and Nagel [7].
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Fluid

Shear
Stress

S o l id

Packing Density ^
Figure 1.2.1; Schematic of the phase diagram for foams.

1.2 Structure of Thesis

In Figure 1.2.1, we show an ecjuivalent phase diagram for athermal materials 
like foams, removing the tem perature axis from the diagram of Liu and Xagel 
[7]. This elucidates the phase space of foams. Above the critical packing 
fraction of the jamming point 0^, with no applied stress, a foam has a rigidity 
tha t is characteristic of a solid. Should the density decrease below this critical 
point the foam behaviour would transition to that of a fluid. Similarly, 
if sufficient external shear stress a was applied to a foam above 0c> the 
foam would start to flow. In this thesis we investigate this phase space, 
with particular emphasis on the transition between the two states, through 
simulation of soft particles.



1.2. STR U C T U R E  OF THESIS 8

1.2.1 Packings

In Part I of this thesis we explore the first case of static foam at the critical 
density, by treating foams as packings of disordered soft frictionless parti­
cles. Inspection of measures like the radial distribution function in foam 
experiments [8] and soft particle simulations [9] have shown that this is an 
appropriate model for foams at the critical density. We investigate the con­
tact properties of polydisperse packings, polydisperse meaning particles with 
a range of sizes. This is with the view of providing a path to the understand­
ing of the structure of amorphous materials like foams. In Chapter 2, we 
introduce the field of packings and present some results on bulk polydisperse 
packings. In Chapter 3, we look at disordered packings from the point of 
view of a particle in the packing. We investigate the relationship between 
contact number and particle size, which we use to form a mean-field model 
to predict the distribution of contacts. In Chapter 4, we look for spatial cor­
relations in the contact number and in particle size in disordered packings. 
In Chapter 5, we look how the correlations between size and contact number 
change as the packing fraction is increased.

1.2.2 R heology

In Part 2 of this thesis we focus on how foams are affected when a shear 
stress is applied to a foam above <pc in Figure 1.2.1, and the foam starts to 
flow. This study of the deformation and flow of m atter is called rheology [10]. 
We introduce aspects of rheology in Chapter 6, before moving on to look at 
the models of foam flow in 2D simulations in Chapter 7. In Chapter 8, we 
investigate the macroscopic friction as an emergent property of foams and 
simulations of frictionless particles.
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1.2.3 Style

I have chosen to use ‘‘we” to refer to work presented in the thesis with 
consideration of the fact th a t research is often a collaborative effort, with 
contributions made to the research from supervisors, project students and 

collaborators. My personal preference tha t a writing style using the personal 
voice makes for a more engaging description of research than the passive 
voice. I have acknowledged when work that forms a significant part of the 
thesis undertaken in collaboration with my own research but has been pri­
marily conducted by others. Finally, the layout of this thesis is broken into 
two parts, focussing on packings and rheology. The intention is that either 
part can be read independently of the other.



Part I 

Structure

10



Chapter 2 

Introduction to Jammed  
Packings

Figure 2.0.1: V isualisation of a soft sphere packing sim ulation a t (j)c w ith  a 
lognorm al d istribu tion  of radii. The spheres are coloured by size w ith blue 
for the  smallest th rough a spectrum  to  red for the  largest.

11
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The question of how spheres pack together has been of interest to scien­
tists for centuries [11], with references to the packing of ordered structures 

going back to a Sanskrit text written around 499 CE [12]. One of the oldest 
posited problems is the Kepler conjecture. Johannes Kepler asked in De Nive 
Sexangula (1611): what is the densest packing of hard spheres in three di­

mensions? Kepler conjectured tha t this structure would form a face-centered 
cubic crystal with a packing fraction of 0 =  7 r/\/l8  =  0.74048.... The proof 
of this conjecture was H ilbert’s eighteenth problem and the focus of much 
attention for the last century until a rigorous proof was provided by Hales 
[13] in 1998. The equivalent problem in two dimensions for monodisperse (all 
particles have equal radius) hard (no overlap) circular discs is a triangular 
packing with a packing fraction 0  =  7 r/\/l2  =  0 .9068..., which is known as 
the ordered closed packing density.

Crystalline systems with well defined structures such as the one mentioned 
above are well understood, less well comprehended is the case when packings 
are disordered. The packing of spheres that lack the long range order of 
crystals were first studied by Bernal [14] as a model system for liquids in the 
late 1950s. Bernal studied a related question to that posed by Kepler; what 
is the densest random packing of spheres? He found tha t 0 =  0.64 for 3D 
monodisperse spheres [15]. Despite the randomness of these disordered hard 
sphere systems, the value for the densest packing has proven to be robust 
with only small variations found in experimental values [16].

Factors such as static friction and the sphericity of particles can affect 
how particles pack together. Ellipsoids and other spheroids have been shown 
to pack more densely than spheres [17, 18]. Conversely frictional spheres 
can be randomly packed to a density less than 0.64 when poured loosely. 
This density (called random loose packed) is around 0.55 but is not strictly 
defined [19, 20]. We will restrict our attention to the contact properties of 

jammed disordered packings of frictionless spheres and discs in this work.
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2.1 Jam m ing

In the context of soft frictionless amorphous materials, such as wet foams 
and emulsions, the jamming transition of random close packed spheres is 

of particular interest and has been a substantial area of study in recent 
years [21, 22], At the jamming transition the properties of amorphous pack­
ings change abruptly. This is the point where a jammed packing makes the 
transition from being mechanical stable and behaving like a solid, to becom­
ing unjammed and mechanically unstable, where the yield stress and shear 
modulus drop to zero and the fluid description is most appropriate. In a 
static packing of atherm al particles, the packing will jam at a density 0c 
which is the same density as the random close packing density of frictionless 
particles.

In recent years the packing of atherm al static frictionless particles that 
can overlap and have short range repulsive potentials have been an area of 
active study. These jjackings have been described as an ‘Ising model’ for the 
jamming transition [18]. Jamming has been proposed as an analogy to the 
glass transition [7] and possesses interesting physics that is fundamentally 
different from that of ordinary solids.

The properties of jammed m atter are difficult to ascertain experimentally, 
particularly at therefore much of the research has been done on computa­
tionally generated packings [23]. In a landmark study by O ’Hern et al. [24], 
many properties of jammed amorphous soft spheres such as the shear and 
elastic modulus were found to scale with distance from 0c- O ’Hern et al. [24] 
found for a finite number of particles that the jamming transition occurs at a 
range of packing fractions and so calculates the transition to be at the peak 
of this distribution. This packing fraction is 0* =  0.639 ±  0.001 for monodis- 

perse soft spheres independent of the interaction potential used. This is in 
agreement with the experimentally found packing density of random closed 
packed hard spheres.

However 0* is only unique in the asymptotic limit of infinite number
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of particles. In the case of finite particle number N,  it was found that 
jamming occurs at distribution of packing fractions with a w'idth tha t scales 
like l / y / N .  For finite particle number the peak of the distribution of 0c 
is found at lower densities. To further confuse the issue it has been shown 
that the density 0c is dependent upon the packing protocol [19, 25] and the 
preparation history of the packing [26]. Torquato et al. [19] have even queried 
if the random closed packing density is well-defined and propose the concept 
of a ‘maximally random jam m ed’ state which can be precisely mathematically 
defined. Though it is im portant to note tha t others have argued that this 
precise definition may not be practical [24]. The definition of jamming used 
in O ’Hern et al. [24], requires th a t packings do not possess non-trivial floppy 
modes when at a non-zero pressure and will be discussed in detail in Section
2 . 1. 1.
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2.1.1 Isostatic Criteria

W hat is required for a soft particle packing to  be in a jam m ed sta te?  A 

jam m ed s ta te  is defined a t the point where a packing becomes rigid and  the 

elastic m oduli take a finite non-zero value, which requires th a t the  pressure is 

non-zero. In order for a packing to  be considered jam m ed there also cannot 

be collective particle m otions th a t have a zero elastic energy cost (floppy 

modes) o ther th an  those a ttrib u ted  to  rattlers. R attlers are particles th a t 

do not have a sufficient num ber of contacts to  be mechanically stable. By 

setting  a constrain t on the average contact num ber of a packing (z),  one can 

dem and the  system  generically disallow floppy deform ations [27, 28]. This 

sets the  isostatic contact criteria for a rigid packing described below.

The isostatic condition can be shown by the  following argum ents. If there 

are D  dim ensions w ith N  soft particles excluding ra ttlers, there  are N D  

degrees of freedom of which D  are triv ial due to  translational invariance. So, 

N D  — D  degrees of freedom m ust be constrained. This requires th a t the 

critical num ber of contacts Nc fulfil,

N c > N D - D .  (2.1.1)

If we call the critical average contact num ber 2c, and note th a t every contact 

is shared by two particles, then we can WTite the num ber of contacts as

N z
N a = ^  = N D - D .  (2 . 1.2 )

In order to  have a positive bulk m odulus an additional contact m ust be 

added [29] giving,

^  =  iVD -  £ >+ 1 .  (2.1.3)

The isostatic contact criteria then  becomes,

2 D - 2  , ^
Zc = 2 D - ~ j ^ ^  ( 2 J . 4 )
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In the hmit of large N  this brings the standard criteria of

6, in 3 dimensions, 

4, in 2 dimensions,
(2 . 1.5)

which is commonly used [18, 24]. For more details on this isostatic condition 
see Alexander [27].

In a recent work Dagois-Bohy et al. [30] show' that for a packing to be 

stable to shear, it requires tha t the shape of the periodic cell has to be allowed 
to deform during minimization of the packing. There are an additional D{D+  
1) — 1 degrees of freedom that have to be added to Equation (2.1.4) to account 
for such a deformation. The isostatic criteria is then given as

which leads to a number Zc quoted in Equation (2.1.5), only in the asymptotic 
limit of large N.  This will be discussed further in Section 2.2.

While globally these mechanically jammed states are constrained to have 
(z) =  Zc, there is a distribution of contact numbers for particles and there 
are some particles tha t have fewer than necessary contacts to achieve local 
mechanical stability. In general, particles tha t have less than D + 1 contacts 
cannot be locally mechanical stable. For 3D, tha t means all particles with 
less than  4 contacts and 2D, all particles with less than 3 contacts are locally 
unstable. These locally unstable particles are called rattlers and the contri­
bution of rattlers to the contact number analysis is omitted but are included 
when calculating the packing fraction.

(2 . 1.6)
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2.1.2 Polydispersity

The discussion of jammed packings is often focussed on monodisperse pack­
ings in 3D. Studying jamming of monodisperse discs in 2D is inappropriate 
because such packings have been shown to spontaneously order into crys­

talline structures [31], thus prevent the investigation into disordered systems. 
Indeed for two dimensional packings, in order to be disordered it is required 
that the standard deviation of the size distribution aft must be greater than 

0.1, otherwise crystalhsation can occur [32]. Frequently the choice of a 50-50 
bidisperse mixture of particles with a radius ratio of 1:1.4 between small and 
larger particles are used to avoid crystalhsation [31].

There has also been a long history of study of the density at which random 
close packing occurs for binary mixtures of particles in both experiment [33] 
and simulation [34, 35, 36]. All studies have found that as the ratio between 
the size of small and large particles moves further from one, the density at 
which 0c occurs increases. These bidisperse packings exhibit similar proper­
ties to monodisperse packings when jammed. The scaling of the shear and 
bulk moduli (denoted as G and B  respectively) with distance from jamming 
is similar to the monodisj^erse case [24, 36], namely

G oc {(p -  ^c)K B  oc H{(f) -  4>c),

where H  is the Heaviside step function. These scalings of the elastic mod­
uli of packings at (j>c are true in both 2D and 3D. More prevalent in na­
ture, though not as a widely studied, are packings with a continuous dis­
tribution of sizes. Experiments and simulations of continuous size distribu­
tions [37, 38, 39, 40, 41] have investigated the value of cpc and like tha t of 
binary mixtures found tha t 4>c increases with polydispersity. Another re­
sult of increased polydispersity in packings is an increase in the fraction of 

particles that are rattlers [41].
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2.2 Sim ulation Procedure

In light of some of the properties of packings being sensitive to the packing 
protocol, we use two different protocols to investigate disordered })olydisperse 
packings of soft particles. The first code is a molecular dynamics code based 
on the bubble model [42]. This code was originally developed to simulate the 
flow of foams in 2D by Langlois et al. [43]. The code has been amended to 

investigate the properties of packings.
The second is a conjugate gradient minimisation procedure for packing 

soft particles. This particular implementation of this procedure was initially 
developed by Corwin et al. [44]. In this thesis it is implemented in two and 
three dimensions and is used in all the packing results produced in Part I of 
this thesis unless stated otherwise.

2.2,1 Bubble M odel Code

This molecular dynamics code is responsible mainly for the rheological results 
in this thesis but contributes some of the 2D disordered packing simulation 
results. Durian [42] developed the bubble model to simulate the flow of wet 
foams. In the bubble model, bubbles are represented by overlapping (soft) 
discs (Figure 2.2.1(b)). This model was later refined by Langlois et al. [43] 
by removing a mean field approximation of viscous dissipation in Durian’s 

model. The bubble model simulates a foam by allowing each soft disc to 
move independently in a periodic cell and considers interactions only when 
overlap occurs. As a simplification in this model, the gas displaced upon 
overlap between discs is ignored. In real foams when bubbles interact, a 
deformation in the shape of the bubble occurs due to the gas displaced by 
the interaction (Figure 2.2.1(a)). For small deformations in wet foams this 
approximation is good [3, 5]. In order to describe the elastic repulsion due 
to surface tension experienced by bubbles in a foam, a simple spring force 
model for the elastic interaction of soft discs is used. This elastic repulsive
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Figure 2.2.1: (a) Experimental image of a 2D foam. Note the deformation of 
the bubbles due to contact, (b) Image of soft discs with overlap between 
the two soft discs in contact with radii /?, and Rj,  located at r ,  and 
respectively.
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force F„ acting on disc i due to disc j  is given by:

2(i?)
Ri + RjF n  =  (2 -2 .1)

Here k is the coefficient of elasticity, riij =  the normal vector between
bubbles i and j  and the overlap A,, is given by

(R, + R j ) - \ r , - r j l  \i[R, + Rj) > \r, -  r  

0, otherwise.

Ri and Rj  are the radii of discs i and j ,  centred at r ,  and Vj respectively 
and {R) is the average disc radius of the packing. Equation (2.2.1) is related 
to the harmonic approximation made in Equation (1.1.6), where the spring 
constant k =  47T7s and the deformation ^ R  now equates to A^j. In addition 
the term  is introduced to account for smaller bubbles having a
stronger repulsion than larger bubbles.

A second interaction force accounts for viscous dissipation in the films 
between two bubbles in contact. This viscous drag force Fd is found in 
experiment to be Fd cx [45, 46], where the exponent of 2 / 3  is due to
the bubbles deforming on contact and the film thickness of the liquid in the 
bubbles also changing when the foam flows [47, 48]. For simplicity in this 
model Fd is linear and only occurs with an overlap between discs,

Fd = -Cb{vi -  Vj )H[R,  + R j -  |r , -  r^l), (2.2.3)

where C(, is the dissipation constant and Vi and Vj are the respective disc 
velocities. We use a Verlet algorithm to calculate the trajectories of the 
discs. A Verlet algorithm relies on the position calculated at the previous 

and present time-step and the forces calculated at the present time-step to
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calculate the next position and velocity of a particle,

r{t  +  At) = 2r{t) — r{t — At)  + Fn{t) +  Fd{t) ^^2 (2.2.4)

v{t +  At) =
r{t  +  At) — r{t — At) 

2Ai
(2.2.5)

where nib is the mass of the disc.
Inertial effects are negligible for bubbles, therefore we set the ratio of 

the inertial timescale t  ̂ =  va. /̂cb to the viscous timescale ty = Cb/ k to be 
t j t y  =  KTrib/cl 1 [43, 49]. These timescales are set by the prefactors 
of Equations (2.2.1) and (2.2.3), which are chosen to be close to the values 
found in experiment.

In each packing we use 1500 polydisperse particles whose radii R  are 
normally distributed with a polydispersity or =  0.28. Computation time 
limits the number of particles in each packing, though in simulations with 
1000 particles, finite size effects are considered small. The discs are randomly 
placed in a periodic box at low' packing fraction and then allowed to relax 
w'hile their radii are slowly increased until the prescribed packing fraction 
4> is reached. The simulation was terminated when the energies reached a 
steady state, indicating a local minimum of the energy landscape, provided 
the isostatic criteria has been fulfilled. Upon reaching force equilibrium, 
discs with fewer than three contacts are removed for the analysis of the 
contact network but are included in the determination of the packing fraction. 
Contacts are defined as overlaps between discs. Typically between 8 and 14 
packings have been created for each packing fraction to increase statistics.

W'hen the total energy of a packing has reached a steady state, the con­
figuration is in a local energy minimum. The condition for a steady state 
is when the change in the energy of the system (calculated every 10  ̂ time- 
steps) is 2.5 x 10  ̂ less than the total energy of the system for 10® siiccessive 
time-steps. Energy is lost from the packings only through the dissipative 
interactions between discs due to the viscous drag force F^.
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2.2.2 C onjugate Gradient M inim isation

We now introduce another method to study packings in 2D and 3D. We 
simulate frictionless particles that interact through purely repulsive body 
centred forces, which can be written as a function of the overlap between two 
particles in contact. The overlap is

where and Rj  are the radii of spheres i and j  and dij is the distance 
betw'een the respective centres of the spheres. The interaction potential of 
the spheres is

These interactions are harmonic with a spring constant k.
We followed a simplified version of the infinite tem perature quench tech­

nique presented in O ’Hern et al. [24] to create jammed packings, this protocol 
has been previously used in simulations at (pc [44, 50]. Each sinmlation starts 
w ith a fixed number of particles {N = 16384) whose positions are distributed 
randomly within a cubic box with periodic boundary conditions. This is an 
approximation to an infinite tem perature condition. The particles have their 
radius drawn from a set size distribution P{r) and then rescaled such tha t 
the desired global packing fraction 0 matches th a t of a density which has 
been set. The tem perature is then quenched close to zero and nearly all of 
the energy in the system is removed by allowing particles to move away from 
one another by a conjugate gradient method. This method minimises the 
overlap between spheres and hence the the total energy of the packing [51]. 
Ŵ e decrease the packing fraction in sm^all increments (A 0 =  0.0005). Pack­
ings are said to have reached the jamming threshold 0c when they fulfil the 
criteria th a t the average contact number of packings of th a t size distribu-

otherwise.
(2.2.7)
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tion is Zc +  0.05 > {z) > Zc and the pressure is non-zero. This indicates a 
mechanically stable packing and the procedure is then stopped. At a given 
packing fraction a small number of packings fall below the isostatic criteria 

and are discarded. We choose the (z) threshold to be 0.05 from the isostatic 
point which is sufficiently close to the jamming point for our analysis, getting 

closer to does not alter our results.
For each size distribution up to 500 realisations of a packing at 0c in three 

dimensions and 50 realisations in two dimensions are created. An example 
of a sphere packing is shown in Figure 2.0.1. A variety of size distributions 
are created including discrete size distributions of monodisperse, where all 
particles have a single characteristic radius R,  and bidisperse, where there is 
a 50-50 mixture with a size ratio 1:1.4, to continuous distributions in which 
the spheres can have a range of radii given by lognormal, Gaussian or uniform 
distributions, which are plotted in Figure 2.3.1.

The main focus of this algorithm and an application of the bubble model 
algorithm is to produce jammed amorphous packings close to the jamming 
transition to investigate the contact properties of these packings. Recently 
Dagois-Bohy et al. [30] have shown tha t some realisations can be unstable to 
shear near the jannning point. W ith neither algorithm do we check tha t the 
packing is stable to shear. However, particularly using the CG minimisation 
method, since the average contact number is greater than  Zc and the number 
of particles is large then the likelihood of a packing being unstable to a small 
shear stress is slight.
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2.3 Bulk Properties of Polydisperse Packings

The size distribution affects the packing density at which the isostatic point 
is reached [37]. We define gr as the normahsed standard deviation of the 
particle radius distribution P{R)  where rattlers have been removed,

The shape of P{R)  changes when rattlers are removed, as shown in Figure 
2.3.1. On average rattlers only tend to be smaller particles but there is a limit 
on their size below which all particles are rattlers. As the width of the size 
distribution is increased, 0c becomes larger because smaller particles are 
able to fit between the interstices of larger particles in contact [39], as seen in 
Figure 2.3.2 for three and two dimensions (inset). This results in an increase

10
3D

,0
10

10'

1 0 ' “

1 0 "

‘0 0 0.5 2.5 31.5
R / < R >

Figure 2.3.1: Continuous size distributions used to create the soft sphere 
packings. The distributions are: (o) lognormal g r  = 0.20; (a )  Gaussian 

= 0.22; (□ ) uniform =  0.24. The open symbols represent the original 
size distribution and the closed symbols represent the size distribution once 
rattlers are removed.
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Figure 2.3.2: Relationship between the standard deviation of the radius dis­
tribution and (pc for a variety of size distributions in three dimensions: (V) 
monodisperse; (0) bidisperse; (□) uniform; ( ) Gaussian; (o) lognormal. 
The packing fractions including all particles are plotted as open symbols. 
The closed symbols denote 4>'̂ . The dashed line is the average packing frac­
tion with rattlers om itted for all size distributions. Inset: Relationship be­
tween Or and (j)c in two dimensions. The data is labelled the same as in the 
main plot with the addition of (o ) Gaussian distribution using the bubble 
model code with {z) = 4.06. The dashed line is the average packing fraction 
with rattlers om itted for all size distributions with ( T r  > 0 . 1 .

of rattlers, which is shown in Figure 2.3.3 and its inset. Rattlers, which are 
always present in real and simulated packings, are usually not discussed in 
detail in the literature. Our values are largely consistent with the results from 
literature [41, 44, 52]. For narrow size distributions, the packing fraction at 
which the isostatic point is reached and the relative amount of rattlers in a 
{)acking is unaffected by the type of size distribution of the packing. As the 
size distribution becomes wider more particles are found in the interstices 

between particles and do not contribute to the mechanical stability of the 
packing. Polydispersities with a large population of small particles, such as
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the uniform distribution, have an increased amount of rattlers, though (t)c 
is only slightly affected. The increase of (j)c and number of rattlers in 2D 
packings for an < 0.1 is a ttributed to the effects of crystallisation seen in 
Figure 2.3.4, where crystalline patches form, leading to an increase in 0c- A 
large number of rattlers are particles located in between crystalline patches.

Also plotted in Figure 2.3.2 is 0^, which is <pc with the vohmie of rattlers 
excluded. This 0^ is found to be a constant th a t is independent of the size 
distribution in three dimensions, where the average (f)'̂  =  0.621 ±  0.003. In 
two dimensions for or > 0 . 1  the 0^ is also constant and independent of 
polydispersity when crystallisation does not occur with the average 0'̂  equal 
to 0.803 ±  0.002.

To our knowledge nobody has looked at 0^; while this is below 0c includ­
ing rattlers, there is no literature value to compare it against. The constancy

10 n□ o

15 40

2D
0.2 0..1 0.4

a O < P ° 3D
0.40.2 0..3

Figure 2.3.3: Relationship between the standard deviation of the radius dis­
tribution and the percentage of rattlers at 0c in three dimensions. Inset: 
Relationship between the percentage rattlers found at 0c in two dimensions 
and the standard deviation of the radius distribution. The data  is labelled 
the same as in Figure 2.3.2.
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Figure 2.3.4: Visualisation of a packing with aR = 0.05. The numbers in the 
centres of the discs represent the number of contacts of that disc. The red 
coloured discs are rattlers which are locally unstable.

of the ra ttle r free 0^ is an interesting phenomenon for which we do not have 
a satisfactory explanation. It appears that two trends cancel out at higher 
polydispersities: (a) the increase of ra ttler percentage with polydispersity 
which would low'er 0^; (b) the ability to fill space more efficiently with in­
creasing polydispersity as evidenced by the increase of <pc, this would increase 

€■

2.3.1 C ontact V ariance

The contact properties of disordered packings is the main focus of Part I 
this thesis. There have been some simulation and experimental studies on 
the contact properties of polydisperse, disordered packings [38, 41, 53, 54] 
and recently the granocentric model has been proposed to predict the local 
packing structure at 0c [44, 50, 55] in three dimensions.

Changing the polydispersity also affects the contact properties. As seen in 
Figure 2.3.5, changing the width of the size distribution affects the standard
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deviation of the contact number distribution az,  which is defined as

=  y / W ) ^ W -  (2.3.2)

For all types of size distribution it is shown that broader size distributions 
results in broader contact number distributions. This trend is independent of 
the type of size distribution in both  two and three dimensions, though there 
do appear to be deviations for the uniform distribution at large or in 3D.

For two-dimensional cellular structures a corresponding relationship be­
tween the standard deviation of the size distribution and the standard de­
viation of the number of cell faces has been observed [56, 57, 58]. While 
the width of the contact number distribution is set by the width of the size 
distribution only, the shape of the contact number distribution does depend 
on the distribution of particle sizes used, w'hich w'ill be shown in the next 
chapter in Figure 3.3.5.

0.5

2D
0.05 0.22a.7.

3D
0.02 0.04 0.06 0.08 0.14

2O.K

Figure 2.3.5: Relationship between the variance of the radius distribution 
and the variance of the contact number distribution cr| in 3D. Plotted in the 
inset is the variance of the radius distribution cr| versus cr|in 2D. The data 
is labelled the same as in Figure 2.3.2.



Chapter 3

Local Contact Properties of 
Disordered Packings

While a large body of literature on random packings is devoted to the bulk 
properties of monodisperse and bidisperse packings near the jamming tran ­
sition [18, 22. 24. 54]. the properties of polydisperse packings have been left 
comparatively neglected. Im portant results on the local structure of polydis­
perse packings have emerged only in recent years [44, 50, 59].

Prior to this, there have been some studies on the relationship between 
the size of cells and contact number on a local scale [41]. Research has 
also focussed on the local mechanical properties through the study of force 
chains [60, 61, 62].

In this chapter, we take inspiration from the pioneering work by Chisel 
et al. [50] tha t established a link between the size distribution and the local 
structure of packings. This was achieved by taking a granocentric approach, 
viewing the packing from the perspective of a particle in the bulk. We expand 
on this work by investigating how the correlations between particle size and 
contact number depend upon the polydispersity of packings.

29
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3.1 The Granocentric Approach

The first to take a granocentric viewpoint was Dodds [63]. Dodds formulated 
a simple model to predict the variation of the average contact number distri­
bution with polydispersity of first 2D, and then 3D polydisperse packings, by 
enumerating all of the possible local arrangements particles of different sizes 
could form in a disordered packing. However, Dodds model imderestimated 
the average contact number of the packings systematically.

More recently. Chisel et al. [50] have proposed a statistical model that 
describes the contact number distribution for polydisperse packings, as well 
as predicting the packing fraction. Their model confronts the problem of 
disordered packings by treating each particle as midergoing a similar local 
stochastic process.

In this model, the contact distribution is modeled on the idea that each 
particle is midergoing tw'o independent random processes. The first is the 
formation of the neighbourhood of the granocentric particle, where the avail­
able solid angle of a particle is filled up to a certain defined limit 
that is less than the overall solid angle of a si)here 4tt, in the manner showai 
in Figure 3.1.1. This neighbourhood is defined by the available solid angle 
of the granocentric particle with particles whose radius is drawn from the 
size distribution P{R)  and then linked this to the solid angle by a Laplacian 
transform. The second process is the selection of the fraction of contacts that 
are formed from the neighbours around this central particle. This fraction is 
found to be independent of the central particle’s size. The result is a two pa­
rameter model that describes the contact number distribution quite well. A 
third parameter of the model, the average distance between the particle and 
non-contacting neighbours, then allows a prediction of the packing fraction.

This granocentric model makes a couple of assumptions that we will ad­
dress in the next chapter, that the disordered packing is homogeneous and 
does not contain any spatial correlations in the distribution of particle sizes 
and contact numbers.



3.1. THE GRANOCENTRIC APPROACH 31

Initially the granocentric model of Clusel et al. [50] worked only for poly- 
disperse packings, where the disorder is due to the range of particle size 
distribution rather than the positional disorder found in monodisperse pack­
ings. With some alterations to the method of implementing the granocentric 
model, it w'as later shown to be able to describe packings of with low polydis- 
persity [55]. Recently a mean-field version of the model has been proposed 
to describe the various relations between size and coordination number in 2D 
and 3D cellular structures [59].

0)-^ (jl>2 (Oc, p)|'e ^ 1 0  ^ 1 1  *^12 ^ 1 3

total max

Figure 3.1.1: Granocentric view of a random packing, reproduced from Clusel 
et al. [50]. a  The space occupied by a neighbour around a central particle 
is measured by the solid angle it subtends, which is shown to depend on the 
neighbour size (green, smaller; red, larger), b Neighbouring particles cover 
the surface of the central particle, c Space-filling around the central particle 
in b is represented by a sum of the colour-coded solid angles uj occupied by 
each neighbour. The sum of all the solid angles u j  add up to the total solid 
angle occupied by the surrounding particles Qtotai-
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3.2 Contact Num ber of a Particle of a Given

We now investigate the local structure of jammed packings by examining how 

contact number correlate with the size of a particle. In light of the results 
of the granocentric model of Clusel et al. [50], we examine the results of our 
simulations first in three dimensions, before turning our focus towards two 
dimensions.

3.2.1 T hree D im en sion s

To study the local contact number properties of these packings, we look at 
the average number of contacts a particle has for a given size. We define the 
average contact number for particles of a given size as,

where P{z\x)  is the contact number distribution for particles of a given di- 
mensionless size x, which can be the radius, surface area or volume. The 
summation in Equation (3.2.1) is bounded below at z  = A in order to omit 
rattlers. This average contact number for particles of given size x  at 0c is 
plotted for a wide range of size distributions of different widths and shape 
in Figure 3.2.1. We scaled the data in three different ways, in terms of the 
normalised radius, normalised surface area and normalised volume in Figure 
3.2.1(a), (b) and (c) respectively. In the three scalings, {z\x) for all size dis­
tributions and polydispersities follow similar trends. Namely, larger particles 
have more contacts on average. This can be explained in the context of the 

granocentric model [44, 50, 55].
Larger particles can accommodate more neighbours on average since the 

solid angle subtended by the neighbouring spheres is smaller for a larger cen­
tral particle. One of our key results is tha t these correlations are independent

Size

(3.2.1)
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Figure 3.2.1: The average of the contact num ber d istribution  for a particle 
of a given size for the  six different size d istributions at (pc- (V) monodisperse; 
(0 ) bidisperse, radius ra tio  1:1.4; (□ ) uniform  af{ = 0.11; (A) G aussian 
cTfl =  0.14; (o) lognorm al af{ = 0.20; (<l) lognorm al = 0.28; (*) lognormal 
CTfl =  0.32. We present th ree different scalings: (a) in term s of the  norm alised 
radius r; (b) in term s of th e  normalised area a; (c) in term s of the norm alised 
volume V.  The d a ta  are i)lotted over a range th a t illustrates the  quality  of 
the collapse. P lo tted  in each inset is a m agnification of the  d a ta  on an 
equivalent range for each scaling th a t emphasises th e  quality of the collapse 
for th a t scaling.
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of polydispersity.

While all scalings appear to lead to a collapse, a close look at the data in 
the insets of Figure 3.2.1 reveals th a t the best collapse is observed when the 
scaling is in terms of the normalised area,

X =  a =
R^

( /? 2
(3.2.2)

This is shown in Figure 3.2.1(b). This collapse of the da ta  is well described 
by a linear fit,

(2:|a) =  (2 ) + 7 (a -  1), (3.2.3)

which is plotted in Figure 3.2.2. When we look at a wide selection of poly- 
dispersities and plot the contact number average in terms of tliis normalised

< zla >

Bidisperse

■Monodisperse

3D

a

Figure 3.2.2: The average contact number for particles of a given area a  at 
(f)c in 3D for all (v)  monodisperse, (0) bidisperse, (□) uniform, (a ) Gaussian 
and (o) lognormal size distributions at all the widths a/? we have considered 
(see Figure 2.3.2). The sohd red line is a fit to Equation (3.2.3).
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surface area at 0c, all the polyclispersities collapse onto the same linear trend 
that can be seen in Figure 3.2.2. The contact number average for the discrete 
distributions (monodisperse, bidisperse) have the same value as that of the 
continuous distributions despite the significant difference in the composition 
of the packing. Figure 3.2.2 shows that at 0c, relationship between z and 
a is universal and independent of size distribution. This suggests that the 
contact properties of a particle depends only on its surface area.

The form of Equation (3.2.3) ensures that the isostatic constraint

0

is satisfied. The fitting parameter is found to be 7 =  3.032 ±  0.004.
It must be noted that because we omit rattlers from our analysis that 

for low a, the average {z\a) is constrained to be a mininnim of 4. Also for

value of the average {z\a) becomes more sc'attered. For all equations htted 
and figures plotted of averaged (luantities, any binned data with less than 100 
particles are omitted from Part I of this thesis. This is a standard procedure 
to avoid showing scatter in the tails, for more details see Appendix A.

In Figure 3.2.3 a number of different distributions are plotted for narrow 
intervals of a, and for each a interval plotted all the P{z\a) collapse inde­
pendent of size distribution. This confirms w’hat is suggested in Figure 3.2.2: 
that the contact number distribution for a particle in a packing at 0c does 
not depend on the global size distribution of the packing but on the size of 
the particle only.

00

(3.2.4)

large values of a the munber of particles of that size are few and therefore the
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Figure 3.2.3: The contact number d is tribu tion  for particles of a given size 
P{z\a)  for six different size d istributions at 0c in 3D. The data is labelled: 
(v )  monodisperse; (+ )  lognormal or =  0.10; (o) lognormal gr =  0.20; (a ) 
lognormal ctr =  0.22; (□ ) uniform  or =  0.24; (^) lognormal or =  0.32. 
P lotted here is a selection of the P{z\a)  for 6 different intervals a w ith  P{z\a)  
for each interval shifted on the y-axis for clarity. P lotted in order of lowest 
to  highest is 0.475 <  a <  0.525; 0.975 <  a <  1.025; 1.475 < a <  1.525; 
1.975 <  a <  2.025; 2.475 <  a <  2.525; 2.975 <  a <  3.025. For larger values 
of a the number of instances of tha t particle size becomes smaller.
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3.2.2 Two Dim ensions

Now we investigate whether this observation is particular to three dimensions, 
by examining if these local contact number size correlations can also be found 

in 2D. Furthermore, we address whether the simulation algorithm used affects 

the results of these correlations.

A similar treatm ent to that used in three dimensions works in two di­
mensions. In Figure 3.2.4(a), (b) and (c) the average contact number for 

particles of a given size x  at 0c is plotted and scaled in terms of the nor­
malised radius, normalised s\irface area and normalised “volume” . All size 
distributions follow similar trends, namely that larger particles have more 
contacts on average. Similar to the three-dimensional case, the best collapse 
is found wdien the scaling is,

I  =  y j s n y  (3^2.8)

as in Figure 3.2.4(a). We conjecture that this may be true for D > 3 as well, 
luwever this conjecture for D > 3 is not explored in this work. Therefore 
the appropriate scaling variable for size-contact immber correlations in 2D 
I)ackings is x =  r.

In Figure 3.2.5 a similar collapse of the average contact munber for parti­

cles of a given radius (2 |r) for a range of size distributions to that found for 
(z\a) in three dimensions. A linear relationship between {z\r) and r, which 
is similar to Equation (3.2.3), is given by,

(2 |r) =  (2) +72d(?’ -  1), (3.2.6)

is fit to the data in Figure 3.2.5 with the fit param eter ^ 2 0  =  2.023 ±  0.007.
The result is similar to that observed in two dimensional disc packings [64] 

for 0 above the jam m ing transition, which was achieved using a packing 

algorithm based on the bubble model, described in Section 2.2.1. The data
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Figure 3.2.4; T he average of the contact num ber d istribu tion  for a particle of 
a given size for the  six different size d istributions a t 4>c in 2D: (0 ) bidisperse, 
radius ratio  1:1.4; (<l) lognorm al cr/j =  0.10; (□ ) uniform =  0.17; (A) 
G aussian Of( =  0.24; ( v )  lognorm al ct/? =  0.35; ( o )  lognorm al a n  =  0.45. We 
present three different scalings: (a) in term s of the norm alised radius ?■; (b) 
in term s of the norm alised area a; (c) in term s of the  norm alised volume v .  

The d a ta  are p lo tted  over a range so th a t deviations from a perfect collapse 
can be discerned.
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obtained from this second algorithm, a Gaussian size distribution = 0.28 
and close to 0c with (z) = 4.06, plotted in 3.2.5, corroborates the results 

found with the conjugate gradient minimization algorithm. Therefore, the 
results do not depend upon the packing algorithm.

The results shown in Figure 3.2.5 suggests that all the conditional prob- 

abihties P{z\r)  collapse in 2D similar to that already seen in 3D. This is 
confirmed in Figure 3.2.6, where for each /• interval plotted, all the P{z\r)  

collapse independent of size distribution.
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Figure 3.2.5: The average contact number for particles of a given radius r at 
4>c ill 2D for all (0) bidisperse, (□) uniform, (a )  Gaussian, (v) Gaussian using 
bubble model code and (o) lognormal size distributions at all the widths aft 
we have considered (see Figure 2.3.2). The sohd red hue is a fit to Equation 
(3.2.6).
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P[z lr ]

Figure 3.2.6: The contact number distribution for discs of a given radius 
P{z\r) for the same size distributions as plotted in the the inset of Figure 3.2.4 
at 4>c- P lotted here is a selection of P{z\r) for five different intervals r with 
P{z\r)  for each interval shifted on the y-axis for clarity. P lotted  in order of 
lowest to highest is 0.475 < a < 0.525; 0.825 < a < 0.875; 0.975 < a < 1.025; 
1.125 < a < 1.175; 1.475 < a < 1.525.
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3.3 M ean Field Granocentric M odel

In Section 3.1, we outlined the granocentric approach. In this section we 
draw inspiration from that approach to propose a model tha t will describe 
the contact number distribution of polydisperse packings. Given the results 
shown in Section 3.2, we will now develop a mean field granocentric model 
to describe these correlations.

3.3.1 M ean Field G ranocentric M odel in 3D

We have shown th a t the contact number distribution P{z\a) for particles of 
a given size at (pc depends not on the global size distribution of the packing 
but only on the size of the particle in question. This allows us to formulate a 
mean field granocentric model that is similar in spirit to the one of Xewhall 
et al. [59], who investigated size-topology relations in tessellated packings.

If we consider a particle of a given radius R ^  we can then make a mean 
field assumption tha t all the particles surrounding it are of average radius 
(/?) since local correlations are independent of the size distributions. This 
is a similar ’granocentric’ approach to that taken by Clusel et al. [50]. In 
contrast to the original granocentric model [50], we explicitly exclude rattlers 
since their contact number is ill-defined.

In more detail, if a particle of size Rc is in contact with another particle 
of size R, the particle of size R  will subtend a solid angle Q of the central 
particle, which as in Corwin et al. [44], is given by

a ( R , , R )  = 2 w ( l - j ^ ^ l  + ^ y  (3.3.1)

Since the correlation between contact number and size appear independent of 
polydispersity, when scaled with a, we introduce our mean field assumption 
and rewrite Ecjuation (3.3.1) with all contacting particles now assumed to
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have an average radius

n{R, ,  v W )  =  27t 1 -
1

(3.3.2)

For a particle of size a, this expression can be reform ulated to  give the  solid 

angle subtended by any single contact as

i}{a)  =  27t ( 1 —

The m axim um  num ber of contacts a j)article can have is simply

(3.3.3)

« =
47T

(3.3.4)

A correction m ust be m ade to  Zmax to  account for the  interstices, similar to 

the familiar sphere kissing problem  for m onodisperse spheres where only 12 

spheres can be in contact w ith a central sphere even though there is sufficient 

solid angle to  fit 14 spheres [65].

A free param eter a  is introduced into the model to  lim it the  maxim um  

num ber of contacts:

^ m a x  ( *̂  )
2a

1 -
^/a 

l +  \/a 1 + ^  y / a

(3.3.5)

In order to  recover the  known result of the  kissing problem  for m onodisperse 

spheres, the value of a  would have to  be 0.8708. In our model, however, the 

value of a  will tu rn  out to  be less th an  th a t due to  additional constraints. 

We now make an ansatz th a t the d istribu tion  of num ber of particles in
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contact w ith a particle of size a is given by a binom ial distribution.

where B{z', Z,nax{(i),p) is a binom ial d istribution  w ith Zmax giving the  num ­

ber of trials, th a t is the num ber of a ttem p ts  to  place particles in contact w ith 

th e  central particle of size a. p  is the  acceptance probability  th a t a particle 

will be in contact. The probability p is the  second free param eter in the 

model.

In order to  omit ra ttlers, we trunca te  the  binom ial d istribu tion  for 2  <  4 

by including a Heaviside function H {z  — 4) and a norm alisation constant C, 

so P{z\a)  becomes,

N ote th a t this is in contrast to  the original granocentric model which did not 

exclude ra ttlers. This allows us to  make a prediction for the contact num ber 

average for a given particle size.

P{z\a) = B{z;Zmax{a),p) , (3.3.6)

max

max

(3.3.7)

m ax

m ax

where C  is given as,

C  =
6(1 -

6(1 - P ) ^ ( ( y ^ ) ^ '" “" -  1) -J9Zmax(6 +  p ( l l p -  15) p Z m a x i p Z m a x  ~  &P + 3))
(3.3.8)

’m a x

(3.3.9)
2  =  4

and the  corresponding variance of the  contact num ber for a given particle
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size

(
■2^max(o) \

z^P(zla)  I — {z \aY, (3.3.10)

as well as a j)redictioii of the global contact number distribution of the pack­
ing

OO

P{z)  =  J  P{z\a)P{a)da.  (3.3.11)
0

Given a size distribution P{a) and using Equation (3.3.7), a prediction 
for the contact number distribution can be made for any packing at 4>c- 
The acceptance probability p can be determined through a property of the 
binomial distribution. If X  ~  B{n,p)  is a random variable taken from a
binomial distribution B  with r; trials and acceptance probability p, then the
mean is given by

E[X]  =  np,

and the variance is given by

V ar[X\  =  np(l — p).

Thus, the ratio of the variance to the mean of a binomial distribution is a 
constant given in terms of p, which in the notation of our model gives

=  l - p ,  (3.3.12){z\a)

which allows a value of p to be found from the simulation data.
Ecpiation (3.3.7) is a truncated binomial distribution and therefore the

/  2 I \
ratio plotted in Figure 3.3.1 is only expected to reach a constant at
sufficiently large values of a, where the effect of truncation is negligible. As 
mentioned, for values a > 3 the number of occurrences of particles of tha t size 
becomes low and results in scatter in the calculated ratio. For a > 2 the ratio
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plateaus at 0.342 ±0.006 (dashed line in Figure 3.3.1), which corresponds to 
p =  0.658 it 0.006. This fixes the p param eter of our model.

After obtaining the probability p directly from the data, we can fix the 
second param eter a  by imposing the additional constraint given by Equation 

(3.3.13), namely tha t the global average contact number of the packing {z) 
must be equal to 6. The free i)arameter a  can be fixed by integrating the 
prediction from Equation (3.3.9) over the size distribution such that

OC-

(z) =  J  {z\a)P{a)da =  6. (3.3.13)
0

This results in q  taking a value of 0.625. Surprisingly, a  does not depend on

0.5

0.4

0.3 
<o la>
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<  z la  >

0.2
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a

Figure 3.3.1: The ratio of the variance to the average of the contact mnnber 
distribution for particles of a given size at 0c for the same size distributions 
as in Figure 3.2.1. The dashed line denotes the value of the acceptance 
probability p as found from the data and the solid line identifies the model 
prediction of this ratio.
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Figure 3.3.2: The average of the contact number d is tribu tion  for particles 
of a given size at 0c for the same size d istributions as in Figure 3.2.1. The 
model prediction (Equation (3.3.9)) is p lotted as the sohd red line.

polydispersity, therefore the two free parameters of the model, a  and p, can 

be fixed for all size d istribu tions at cj)c. This may be related to  the fact that 

0c w ithou t rattlers, which are exp lic itly  om itted in this model, is a constant 

(Figure 2.3.2).

The constancy of the two parameters is a significant sim plification to the 

orig inal granocentric model, where the acceptance probability  and maximum 

solid angle need to  be determined for each polydispersity separately.

P lo tting  the prediction of the average {z\a) from Ecjuation (3.3.9) against 

the average {z\a) from the data plotted in Figure 3.2.2 in Figure 3.3.2, it 

can be seen over a large range of a tha t the model prediction is in good 

agreement w ith  the data. Only for large values o f a does it  deviate slightly. 

The staircase structure of the model prediction seen in  Figure 3.2.2 is due to 

the discrete nature of the binom ial d is tribu tion.
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Figure 3.3.3: The variance of the contact number distribution for particles of 
a given size at 0c for the same size distributions as Figure 3.2.1. The model 
])rediction from Eciuation (3.3.10) is plotted as the solid red line.

Similarly, we can compare Equation (3.3.10) against the variance ((t | | o ) 
from the data in Figure 3.3.3. It can be seen over a large range of a that the 
model i)rediction is in good agreement with the data. Only for large values of 
a does the prediction begin to deviate from the data, this may be attributed 
to scatter due to low statistics. In both Figures 3.3.2 and 3.3.3 it can been 
seen that at low a there is a minimum size of particle predicted by the model. 

For this value of a  the model predicts a non-zero (2 |a) for a > 0.14, below 
this size a particle cannot form enough contacts to be locally stable, hence the 
prediction going to zero in Figure 3.3.2. The variance vanishes for a < 0.26 in 

Figure 3.3.3 because the maximum contact number predicted by the model 
is 4 for particles of that size. In both cases the data plotted takes a non-zero 
value below that predicted by the model but vanishes for a > 0.

Again we can compare the prediction of the distribution P{z\a) from
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Equation (3.3.7) against the conditional probability  d istributions from the 

d a ta  p lo tted  in Figure 3.2.3, in Figure 3.3.4. Figure 3.3.4 reveals some new 

inform ation about th e  model, nam ely th a t for low values of a, th a t is a < 2, 

the  prediction of the  d istribu tion  is extrem ely accurate but does not predict 

the  low probability  of occurrences for large 2  (indeed some are explicitly not 

allowed by the  model param eters) but for larger a >  2, the  model accurately 

predicts the full d istribu tion  bu t also accounts for low values of 2  th a t do not 

occur in sim ulations.

Finally, we can m atch our prediction for the  contact num ber d istribu tion  

given a size d istribu tion  from Ecjuation (3.3.11) to  the  contact num ber d istri­

bu tion  from the  data . For all the  d istributions p lo tted  in Figure 3.3.5 there is 

very good agreem ent between the  prediction and sinm lation data . The same 

param eters a  and p  are used for all the size distributions. For the  continuous 

size d istributions, the model predicts the P{z)  of the sim ulation d a ta  excel­

lently. There are only slight deviations between model and d a ta  for large 

values of For the  discrete size d istributions though there is a discrepancy 

for higher values of 2 . This model appears to  be unable to  cap ture the  low 

probability  particles th a t have very m any contacts for their size. However, 

the  model is in very good agreem ent w ith P{z)  for low 2 .
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Figure 3.3.4: The contact nuniber distribution for particles of a given size 
P{z\a) for the same size distributions as Figure 3.3.2 at 4>c- P lotted here 
is a selection of the P{z\a) for six different intervals a with P{z\a) for each 
interval shifted on the y-axis for clarity. P lotted in order of lowest to highest is 
0.475 < a < 0.525; 0.975 < a <  1.025; 1.475 < a < 1.525; 1.975 < a < 2.025; 
2.475 < a < 2.525; 2.975 < a < 3.025. The solid red hue model prediction of 
the distributions from Equation (3.3.7).
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Figure 3.3.5: The contact number distribution for a number of polydispersi- 
ties at 0c- The open symbols represent the simulation data  and the solid red 
line represents the model prediction from Equation (3.3.11). D ata is labelled 
the same as in Figure 3.3.4 with the addition of the bidisperse data set (<>)•
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3.3.2 Com parison w ith Original G ranocentric M odel

In Figure 3.3.6, using data provided by Chisel [66] from the original granocen­
tric model, a comparison is made between the original granocentric model 
described in [44] and the mean field model outlined in this thesis. Predomi­

nantly both models describe the data well, however the original granocentric 
model does not capture the large z behaviour.

3D

1 0 "

1 0

oo

•10
40

z

Figure 3.3.6; Comparison with the original granocentric model. The contact 
number distribution for a lognormal size distribution (rr/f =  0.28) (o) for 
simulation is compared with the prediction of the original granocentric model 
(•) and the mean-field model described here (•). D ata from the granocentric 
model ])rediction provided by Chisel [66].
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3.3.3 M ean Field G ranocentric M odel in 2D

A similar treatm ent to that used in three dimensions works in two dimensions.

with the size of the particle now represented by the normalised radius ?■ 
instead of the normalised surface area a. The model j)rediction plotted in

section. The principle adjustment is tha t the maximum number of discs 
th a t can be placed in contact with a disc of radius ?' must now be expressed 
in terms of the available angle rather than the available solid angle. Now, 
Eciuation (3.3.5) is altered for two dimensions to read as

Another consideration is tha t in two dimensions, rattlers are particles with 
less than  3 contacts rather than 4.

The two free parameters of the system are affected by this change of 
dimension. The acceptance probability p can be found as before from the 
ratio between the variance of the contact number for particles of a given 
radius ((t||7') and the average {z\r), seen in Figure 3.3.7(c), which goes to a 
constant value for sufficiently large values of r. The value for p found from 
the da ta  plotted in Figure 3.3.7(c) is 0.78 ±  0.02.

The value of the contact limiting param eter a  changes with the change 
of dimension. Analogous to the 3D case (Equation (3.3.13)), a  is determined 
by the isostatic constraint, which is

In Figure 3.3.7 we plot the two dimensional equivalent of Figure 3.3.2, except

Figure 3.3.7(a) for {z\r) is similar to the model outlined in the previous

^ m a x ( ^ ) (3.3.14)

OO

(3.3.15)
0

in two dimensions with the size distribution now given in terms of r rather 

than  a. The value of a  for two dimensions is found to be 0.894. The equiva-



3.3. M E A N  FIELD G R A N O C E N T R I C  M O D E L 53

lent value of a  th a t would recover the correct answer for the  kissing problem  

in 2D is 1.

T he justification for this model is th a t the  correlation between size and 

contact num ber is independent of of polydispersity, analogous to  the results 

in th ree dimensions. Similar to  Figure 3.3.4, a innnber of different size d istri­

butions are p lo tted  for given intervals of r  in Figure 3.3.8. For each /’ interval 

p lo tted , all the  P{z\r)  collapse indei)endent of size d istribution, therefore val­

idating the  basis of the model. Howwer, Figure 3.3.8 highlights some of the 

weaknesses of the model, which are particu larly  illustrated  for the  low^est in­

terval of r where the  d a ta  shows a range of contact num bers 2  bu t the model 

])redicts th a t only 3 discs can fit aroim d a disc of th a t size. This discrepancy 

at low r is due the influence of the m axim um  contact lim iting param eter q. 

This lim iting param eter results in the model prediction of (z\r) vanishing for 

r  <  0.24 and (cr^l?') for r  <  0.55. For large values of r the model prediction 

for the  d istribu tion  of contacts around a disc of a given radius is in b e tte r  

agreement.

T he global contact distribTition can then  be predicted  from the two di­

mensional equivalent of E quation (3.3.11),

In Figure 3.3.9, it is shown th a t there is good agreem ent betw'een the predic­

tions and d a ta  for a large range of aff and different types of size d istribution. 

Similar to results in three dimensions, for wider size d istribu tions the predic­

tion is in closer agreement w ith the data.

(3.3.16)

0
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Figure 3.3.7: (a) The average of the contact number distribution for particles 
of a given radius r in 2D for a number of different size distributions at 0c- 
The da ta  is labelled the same as in Figure 3.2.4 with the addition of (v) 
Gaussian af{ =  0.28 using the bubble model code. In all three panels, the 
model prediction for th a t quantity is plotted as the solid red line, (b) The 
variance {(jWr) for the same size distributions, (c) The ratio of the variance 
to the average of the contact number distribution for particles of a given size 
r. The dashed red line denotes the value of the acceptance probability p as 
found from the data.
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Figure 3.3.8: The contact number distribution for discs of a given radius r, 
P{z\r)  for the same size distributions as plotted in the the inset of Figure 
3.3.7 at 4>c- P lotted here is a selection of P{z\r)  for five different intervals 
r  with P{z\r) for each interval shifted on the y-axis for clarity. P lotted 
in order of lowest to highest is 0.475 < a < 0.525; 0.825 < a < 0.875; 
0.975 < a < 1.025; 1.125 < a < 1.175; 1.475 < a < 1.525. The solid red hne 
is the model prediction of P{z\r).
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Figure 3.3.9: The contact number distribution for a number of different 
polydispersities at 0c in two dimension. The data  from simulation is plotted 
as open symbols and the prediction from the model is plotted as the solid 
red line. The param eters p = 0.78 and a  = 0.894 are used for all size 
distributions. The same size distributions are plotted with the same symbols 
as in Figure 3.3.7.
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3.3.4 Conclusions & Outlook

We have shown th a t a surprising num ber of features of frictionless packings 

are insensitive to  polydispersity.

O ur key result is the universal correlations we observe between size and 

contact num ber of a particle, which are independent of the shape and w idth 

of the size d istribution. This holds in bo th  tw'o and three dimensions and 

allows a m ean field form ulation of the granocentric model. The contact 

rmmber d istribu tions em erging from the model agree well w ith th e  d a ta  for a 

wide range of polydispersities. The two param eters th a t appear in the  model 

are also found to  be insensitive to polydispersity.

W hile the binom ial d istribu tion  is a good api)roxim ation for P{z\a)  and 

P{z\r) ,  it does not cap tu re  the whole distribution. Particularly, there is a 

tendency to  overlook the  existence of large 2  occurring for large particles. 

It rem ains a subject for investigation of w hether another d istribu tion  can 

provide a superior description of P ( - |« )  and P{z\7').
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3.4 Particle Size w ith Contact Num ber z

In this section we look at the opposite correlation to tha t studied in Section 
3.2, and investigate how a packing at 4>c is structured when viewed from a 
particle with a given contact number. This is an approach tha t has been 
taken before in the study of force networks [67] and of disordered cellular 
structures [68, 69]. We will now investigate how' the correlations found in the 

first part of this chapter change when inspected in this manner.

3.4,1 Three D im ensions

Though we have shown a link between the surface area available to  a par­
ticle in a polydisperse random close packed packing and its average contact 
number, and tha t this relationship is independent of the size distribution, 
it is imi)ortant to enii)hasise that the converse is not necessarily true. The 
average area of particles that have z contacts, {a\z), is not equal to (2 |o). 
The average {a\z) is defined as

p O C

{a\z) =  /  aP[a\z)da. (3.4.1)
Jo

In the bottom  inset of Figure 3.4.1, it shown that {a\z) is not independent of 
size distribution. The (a |2 ) of continuous size distributions, lognormal and 
Gaussian, that have tails in P{a), are fit by

(a |2;) =  1 +  A( 2  -  (2:)), (3.4.2)

and in Figure 3.4.1 show good agreement with a range of polydispersities. 
When rescaled by the fitting param eter A, the {a\z) for all lognormal and 
Gaussian size distributions collapses, as seen in the top inset of FigTire 3.4.1. 
While the overall trend of {a\z) for lognormal and Gaussian distributions 
is linear, there are deviations. The size distributions th a t lack tails have a
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Figure 3.4.1: The average area of particles with a given contact number for 
four different size distributions in three dimensions at 4>c. (<l) lognormal 
an  =  0.05; ( a ) Gaussian (T/; =  0.14; (o) lognormal Or =  0.20; ([>) lognormal 
(T/? =  0.36. The solid lines are fits to Equation (3.4.2). The top inset shows 
the average area of particles with a given contact number for all (o) lognormal 
and (a ) Gaussian size distributions at (pc, collapsed by fitting the data to 
Ecjuation (3.4.2). The dashed red line corresponds to a slope of 1. Inset of 
the top inset shows the fit param eter A as a fimction of a a - The bottom  inset 
shows relationship betw^een {a\z) versus z for the same size distributions as 
plotted in Figure 3.3.5.

different functional form in because there are large populations of large 
spheres th a t can take a range of 2 as seen in Figure 3.3.4. W ithout a tail in 
the bidisperse and imiform size distributions, the i)lateau of (a |2;) seen in the 

bottom  inset of Figure 3.4.1 results. This linear relationship between size and 
contact number is similar to a relationship known to exist in two-dimensional 
cellular structures and is known as Lewis’ law [69]. This link between the 

arrangement of cellular structures and that of disordered packings will be 
explored further in Chapters 4 and 5.
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The two different relationships between a and 2  (Equations (3.4.2) and 
(3.2.3)) arise from being calculated from two different conditional probabili­

ties, the discrete distribution P{z\a) and the continuous distribution P{a\z), 
which are related by Bayes Theorem [70],

P{z\a) = P { a \ z ) ^ ^ ^ .  (3.4.3)
P[a)

As described in the previous section, P{z)  and P{a), in addition to being 
discrete and continuous distributions respectively, are related but are not 
the same. Hence the fitting param eter A is not equal to the inverse of 7 , 
which we recall is the fitting param eter of Equation (3.2.3).

From Equation (3.4.3), the two conditional averages (2 |a) and (a |2 ) can 
be related by

/•O C  ______

a{z\a) P{a)da = z{a\z)P{z).  (3.4.4)
2 = 4

Then by substituting the linear fits of Equation (3.2.3) and Equation (3.4.2) 
into Equation (3.4.4) a relationship can be found between the width of the 
size distribution and the width of the contact number distribution,

where a a is the standard deviation of the normahsed surface area distribution 
with rattlers om itted and is defined as.

/-'0

This is not trivially related to ct/j and is a useful measure of the size distri­
bution of packings in 3D.

While 7  is a constant, the fitting param eter A from Equation (3.4.2) is a 
function of a a - This is seen in the inset of the top inset of Figure 3.4.1.
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3.4.2 Two D im ensions

Similar correlations are also observed in two dimensions. By defining the 
average radius for particles with a given contact number {r\z) as,

poo
( r |2 ) =  /  rP{r\z)dr,  (3.4.7)

Jo
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Figure 3.4.2; The average radius of particles with a given contact number 
for four different size distributions in tw'o dimensions at cpc'- (<l) lognormal 
aft = 0.10; ( a ) Gaussian aft = 0.24; (o) lognormal aft = 0.30; (o ) lognormal 
aft = 0.45. The solid lines are fits to Ecjuation (3.4.8). The top inset shows 
the average area of particles with a given contact numl^er for all (o) lognormal 
and ( a ) Gaussian size distributions at 0c> collapsed by fitting the data to 
Equation (3.4.8). The dashed red line corresponds to a slope of 1. Inset of 
the top inset shows the fit param eter A as a fvmction of The bottom  
inset shows relationship betw'een (a |2:) versus 2  for the size distributions: (0) 
bidisperse; (□) uniform gr  =  0.23; (A)  Gaussian a^  =  0.27; (o) lognormal 
(Tfl =  0.35.
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a relationship similar to Equation (3.4.2) found in three dimensions can be 
w ritten for two dimensions. The equation,

{r\z) = 1 + \ 2d{z -  {z)), (3.4.8)

is then fit to (7’|z) of the two-dimensional Gaussian and lognormal distribu­
tions in Figure 3.4.2 with good agreement. In the bottom  inset of Figure 
3.4.2, as seen for three dimensions, the distributions without tails plateau for 
large 2 , though this is less pronounced than  in three dimensions due to the 

smaller range of contact mmibers. In the top inset of Figure 3.4.2, all the log­
normal and Gaussian data  are rescaled such tha t a trend with slope 1 would 
indicate agreement betw^een the data and Equation (3.4.8). The correlation 
betw'een size and contact number is w'ell described by Equation (3.4.8). The
fitting param eter of Equation (3.4.8), X2D, is plotted in the inset of the top
inset of Figure 3.4.2 and is a function of the polydispersity.

Through an analysis similar to tha t described in the previous section for 
three dimensions, a relationship between the standard deviations of the size 
distributions and the contact number distributions can be written,

2 "^20 2 / o  A(Tz — , , .(^R- (3.4.J)

The prediction of the contact mmiber variances (t|  made for 3D and 2D 

by Equation (3.4.5) and (3.4.9) are plotted in Figure 3.4.3 and its inset. 
The behaviour of cr| in 3D, adheres to a much clearer linear trend when 
plotted in terms of cr  ̂ than  the trend of cr| w'ith cr  ̂ plotted in Figure 2.3.5. 

The agreement between Equation (3.4.5) and the 3D d a ta  is best for broad 
distributions but less accurate for narrow distributions where (a|2) is not well 
approximated by the linear fit of Equation (3.4.2). Equation (3.4.9) fits the 
2D data  best for wider distributions as well. For the narrow distributions cr| 
is not captured as well as it was in 3D. This discrepancy can be a ttribu ted  

to the same reasons as advanced for 3D but is also in some part due to
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the partial crystallisation tha t occurs in 2D for a/; < 0.1. The type of size 
distribution used appears to have an effect with predictions of the contact 

number variance for Gaussian distributions being more accurate than those 
made for lognormal distributions.
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Figure 3.4.3: Relationship between the variance of the area distribution 
and the variance of the contact number distribution o \ .  The dashed line 
corresponds to a linear fit to the data: a \  =  1.60 +  8.09(t^. The closed 
symbols (•) are the predictions from Equation (3.4.5). P lotted in the inset 
is the variance a \  versus the variance of the radius distribution for two 
dimensional packings. The dashed line corresponds to a linear fit to the 
data: cr| =  0.61 +  3.52cr^. The closed symbols (•) are the predictions from 
Equation (3.4.9). The data is labelled the same as in Figure 2.3.2.
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3.4.3 Conclusions

Despite the correlations shown to be independent of polydispersity when 
viewed from the perspective of particle size, w'hen viewed from the stand­
point of contact number, the relationship between contact number and size 
becomes more complex. The relationship between these approaches is not 
straightforward. However, the behaviours of {a\z) in 3D and {r\z) in 2D are 
found to be linear with contact number for packings with sufficiently wide 
tails in their size distribution.

The linear relationship found in this section, along with the linear rela- 
tionshij) foimd in Section 3.2, allows for a prediction of the global contact 
number variance, given information on the variance of the size distribution.
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Figure 3.5.1: Visualisation of a 2D soft disc packing simulation at 0c with 
a bidisperse distribution of radii. The discs are linked by a solid black line 
when in contact and the thickness of the hue is proportional to the strength 
of the interaction.

3.5 The Force N etw ork in D isordered  

Packings

We have shown that disordered packings have various local contact correla­
tions that are independent of polydispersity. This has allowed a connection to 
be made between the size distribution and the contact number distribution. 
The next natural step is to investigate whether the distribution of forces can 
similarly be predicted from the size distribution. Previous work on the local 

structure of the force distribution at 0c has focussed on the existence of force 
chains [60, 61]. A 2D example of force chains is plotted in Figure 3.5.1. Our 
results in this section are related to these observations.
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3.5.1 Introduction to  Force D istributions

The force network of jammed packings is known to be highly heterogeneous. 
This effect can be characterised by the probability density of contact forces 

P{f ) .  For jammed particles P{ f )  typically has a maximum for /  < 1 [71] 
and a long tail for /  > 1, where /  is the normalised force /  =  f i / {f i )  
and fi  is the interaction force between particles. Experimentally, the force 
network of packings has typically been difficult to determine in the bulk. 
Until recently, the experimental procedure has measured the forces through 
imprints on carbon paper at the boundaries of a granular assembly [53]. 

These experiments obtained a P{ f )  that displayed an exponential rather than 
a Gaussian decay for large forces. W ith the advent of techniques tha t allow 
inspection of the contact forces inside the bulk of packings, such as confocal 
microscopy in jannned packings of emulsions [53, 72] and the use of photo­
elastic particles [60], a faster than exponential decay has been observed. This 
faster than exponential decay has also been found for 2D wet foams [54].

There have been many numerical studies on the shape of the P{ f )  d istri­
bution. O ’Hern et al. [71] has linked the existence of the maximum of P{ f )  
to packings developing a yield stress, and in [24] it was shown that packings 
at 0c have different forms of P{ f )  depending on whether /  is normalised 
by the global average of many packings or by the average of each individ­
ual packing, this property is called a lack of self averaging. Using different 
sinmlation techniques, Makse et al. [62] and Radjai et al. [73] found th a t the 
force distribution displays exponential behaviour at large / .

More recently, van Eerd et al. [74] have shown with the Force Network 
Ensemble (FNE) approach [75] and using advanced sampling techniques to 
get good statistics to investigate the tail of P{ f )  tha t these tails are faster 
than  exponential and the role of dimension is im portant.
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Figure 3.5.2: Force distributions of 3D packing simulations at (pc for a range 
of polydispersities. The data plotted is labelled as: (v) monodisperse; (0) 
bidisperse; (□) uniform =  0.11; (A) Gaussian (T/j =  0.14; (o) lognormal 
aft = 0.20; (<o) lognormal — 0.28. The dashed lines are fits of Ecjuation 
(3.5.1) to the tails of P ( / ) .  Inset: Zoom on the peak of the force distributions.

3 .5 .2  Effect o f  P o ly d isp ersity  on  th e  Force 

D istr ib u tio n

The effect of polydispersity on P{ f )  has not been extensively studied; of­
ten research has been restricted to monodisperse, bidisperse or a particular 
sample of polydisi)ersity. Work by Kondic et al. [76] has noted tha t the poly­
dispersity has an effect on the structure of the force network and there is a 

note on how polydispersity affects the distribution of forces in a numerical 
study in 2D [61], which shows only small variation in the behaviour of force 

distributions for a small range of {)olydispersity. Work by Voivret et al. [77] 
has shown that polydispersity does have a pronounced effect on the force 
distribution but they did not comment on how the tails of P { f  ) are affected.
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Figure 3.5.3: Force distributions of 2D packing simulations for a range of 
polydispersities at 0c.The data plotted is labelled as: (0) bidisperse; (□) 
uniform apt = 0.17; (a ) Gaussian afi = 0.24; (v)  lognormal aft = 0.30; (t>) 
lognormal = 0.40. The dashed lines are fits of Ecjuation (3.5.1) to the 
tails of P{f ) .  Inset: Zoom on the peak of the force distributions

We find that in both three dimensions and two dimensions, as shown in 
Figures 3.5.2 and 3.5.3 respectively, the force distribution depends upon the 
polydispersity of the packings. While the description of the tails of the dis­
tribution of disordered packings has been subject to some debate, with the 
question of whether the tails of the force distribution were described by a 
Gaussian, exponential or some other fall off, this dependence on polydisper­
sity has not been considered. Using the FNE approach, van Eerd et al. [74] 
found that in 3D the tails were well described by a faster than exponential 

fall-off with
P ( / )  ~  e x p ( - c /“), (3.5.1)

where a = 1.7 ±  0.1 for 3D monodisperse disordered packings. In 2D bidis-
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perse packings, the tails were well described by a Gaussian fall-off, a =  
2.0 ±  0.1. As in this work, all forces are normalised such that ( / )  =  1. To 
avoid the difficulties of the lack of self averaging of the force distribution at 

0c [24], P { f  ) is normalised by ( /)  for each packing rather than  the ensemble. 
In our research, we find that P{ f )  of monodisperse packings in three dimen­
sions and of the bidisperse packings in two dimensions are in good agreement 
with the results of van Eerd et al. [74]. Equation (3.5.1) is fitted for a selec­

tion of size distributions to the tail of P{ f )  in Figures 3.5.2 and 3.5.3 and 
dem onstrates tha t the decay of P{ f )  is strongly dependent on the polydis- 
I>ersity in 3D and slightly dependent in 2D. The value of the fit parameters 
of Equation (3.5.1) are displayed in Table 3.1.

Polydispersity D (Tr c a
Monodisperse 3 0.00 0.47 ±0.01 1.74 ±0.01
Bidisperse 3 0.17 0.82 ±0.01 1.21 ±0.01
Lognormal 3 0.20 1.87 ±  0.04 0.77 ±  0.01
Lognormal 3 0.28 2.90 ± 0 .10 0.52 ±0.01
Bidisperse 2 0.17 0.41 ±  0.02 1.99 ± 0 .04
Lognormal 2 0.45 0.52 ±  0.02 1.63 ± 0 .03

Table 3.1: Table of the fitting param eters of Equation (3.5.1) used to describe 
the tails of the polydisperse force distributions.
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Figure 3.5.4: (a) The average of the distribution of interaction force on a 
particle given a volume {f\v)  for 3D packings at 0c- (b) The distribution of 
forces on a particle given a volume P{f \ v)  for 3D packings at 4>c for v =  1.00. 
The d a ta  is labelled as in Figure 3.5.2.

3 .5 .3  L ocal C orrelations in th e  Force N etw ork

In the same way that local correlations were found in the contact network, 
we observe th a t force correlates with ])article size in the force network in 
three dimensions, for all polydispersities we find that the average /  collapses 
when binned by the normalised volume of a particle v, shown in Figure 3.5.4 
(a). Figure 3.5.4 (a) show's tha t large particles tend to experience larger 
forces on average. This behaviour may be linked to force chains and the 
observation tha t large forces on particles tend to positively correlate with 
each other [61]. In Figure 3.5.4 (b) the conditional distribution P{f \ v)  is 
plotted and unlike the case for contact number, revealed to be not cjuite 

independent of polydispersity. It should be noted th a t the tails of P[f \ v)  are 
not as pronounced as for P{f ) ,  and these two distribution are not the same.

Since we have shown th a t /  is dependent on the size of the particle, this 

could suggest tha t the bulk modulus for the packing is inhomogeneous, since 
large particles experience larger forces than small particles. To explore this 
we investigate the to tal energy of particles as a function of size. The to tal
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Figure 3.5.5; (a) The ratio of energy of particles of a certain volume v  to 
the volume of the particles for 3D packings at 0c- (b) The distribution of 
energy on a particles given a certain volume P{E\v)  for 3D packings at (pc 
when V =  1.00. The data is labelled the same as Figure 3.5.4.

normalised energy is defined as

For 3D packings, in order for the bulk modulus to  be homogeneous, it would 

recjuire that the ratio of energy to volume, the energy density, to be =  
constant.  In Figure 3.5.5(a), we find tha t despite a slight trend, the ratio is 
approximately constant, suggesting that inhoniogeneities in the bulk modulus 
are negligible. In Figure 3.5.5(b) the conditional distribution P{E\v)  displays 
an exponential decay, which shows only small variation with ct/j.

3.5.4 C onclusions O utlook

For the first time we have described how the decay of the tail of P{ f )  de])ends 
upon the polydispersity of the packing in both 2D and 3D. We have shown 
th a t large particles tend to have larger forces in 3D. We have shown that 

the energy density does not vary with particle size, implying tha t the bulk 
modulus is roughly homogeneous.



Chapter 4 

Nearest Neighbour Correlations

In Chapter 3 we focussed on predicting the contact properties of disordered 
packings and proposed a mean-field model based on the assumption tha t the 
packing is spatially uncorrelated. In this model we assumed that the contact 
number and size of a particle is imcorrelated to the contact number and size 
of the surrounding particles.

This assumption is often made by models attem pting to explain the prop­
erties of disordered media. In recent years successful models like the gra- 
nocentric model and its progeny make the assumption that the distribution 
of particle size in packings are homogenous, in other words tha t the distri­
bution of particle size around a given particle is the same as the global size 
distribution. Other models to predict the packing density [78] or the distri­
bution of forces [79] also assume th a t the distribution of contact numbers of 
particles is not spatially correlated.

In this chapter we investigate whether this assumption holds and to  what 
extent is it a reasonable assumption to make. In order to do this we define 
the nearest neighbours of a central particle. The particles in contact with 
this central particle are called nearest neighbours.

72
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4.1 Contact Num ber Correlations

Firstly, we investigate whether the contact network is spatially correlated 

by making an analogue to a correlation observed in two dimensional cellular 
networks called the Aboav-Weaire law. The Aboav-Weaire law states th a t 
cells with many neighbours are surrounded by cells with few' neighbours and 

vice versa.

4.1.1 D ry Foams

Dry foams form cellular structures. In perfectly ordered cellular structures 
in 2D, the number of sides of each cell is 6 and there is no variation in the 
area distribution of the cells, resulting in the hexagonal honeycomb structure. 
W’hile we note that monodisj)erse ceUular structures can be disordered, once 
a wide distribution of cell sizes are allowed, the structure may become nnich 
more disordered. It can l)e j)roven exi)licitly that the average coordination 
inunl)er (n) of a 2D dry foam must be e(jual to 6 [80]. While {n) of all of 
the cells nuist remain constant, the munber of sides of an individual cell can 
v'ary, giving rise to a distribution P{n). The question is, are the number of 
sides n of individual cells randomly distributed throughout the foam? This 
is answered by the Aboav Weaire law for dry foams.

4.1.2 A boav—W eaire law

A relationship between the number of sides of cells and the number of sides 
of neighbouring cells was observed in disorder cellular structures by Aboav 
[81] in polycrystalline MgO ceramic. Aboav found a correlation between n 

and the average number of sides of the neighbours of cells with n  sides, m{n).  
He found that cells with many sides are surrounded by cells with few sides 

and vice versa. The expression that Aboav found to describe the relationship
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between n and m(r?) was of the form:

m.{n) = A-\----, (4-1-1)
n

where A  and B  are constants. This purely empirical relationship was given 
a theoretical reinforcement by Weaire [68].

It was noted by Weaire that m{n) obeys a sum rule which is exact in any 
dimension,

' '^^m{n)nP{n) = P{n) ,  (4-1-2)
n  n

where n denotes the number of sides of a cell and P{n) is the distribution of 
nsided cells.

This sum rule (Equation (4.1.2)) can be shown by a counting argument. 
In detail, the cell A (see Figure 4.1.1) has ua sides each counted times on
the right hand side of Equation (4.1.2). The average number of sides of the

Figure 4.1.1: Aboav-Weaire correlations in cellular structures. The cells have 
been labelled in order to aid understanding of the Weaire sum rule.
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neighbours of cell A  is which is given by

(4.1.3)

By averaging rn for all cells with n neighbours, m (n) is found. Considering 
the left hand side of Equation (4.1.2) then gives,

Considering the right hand side of Equation (4.1.4), the first sum cycles 
through all the cells in the cellular structure. The smn in the bracketed 
expression then adfls up the contribution n of all the neighbours of each cell 
coimted in the first sum. Since only the contribution of the neighbouring cells 
are counted then each n ai)pears n times because tha t cell has n neighbours. 
Then Ecjuation (4.1.2) is a weighted sum of the contact numbers and therefore

which is identical to the right hand side of Equation (4.1.2), therefore the 
Weaire sum rule holds.

The contribution of Weaire was to show that Equation (4.1.1) must be 
of a form to satisfy Equation (4.1.2). The Aboav-W eaire law is then the 

simplest expression tha t both satisfies Equation (4.1.2) and describes the 
correlations between m  and n. The resulting expression is,

m in)nP (n )  =  ^  ] nP{n)  = P{n). (4.1.4)
n n

n

n

(4 .1.5 )

(4.1.6)
n

where a is an empirical i)aranieter whose value for a typical dry 2D foam is 1.2 

[2] and //2 is the variance of the cell sides w'hich is defined as ~  («^)-
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The exact physical significance of the a i)arameter is unknown.
Tliis relation, known as the Aboav-Weaire law (but is in fact a conjecture) 

is described as semi-empirical as the sum rule projiosed by Weaire only gives 
consistency to Aboav’s relation. It is reported as being foimd in all naturally 
disordered cellular structures [82]. However, some artificial structures such 

as the random Voronoi' froth show small deviations from the Aboav-W eaire 
law [83]. There has been no successful proof of the Aboav-Weaire law and it 

has only be shown to be exact for some special cases [84].
In the absence of spatial correlations, m  is a constant and is given by,

m (n) =  (n) +  ^ .  (4.1.7)
(n)

This uncorrelated arrangement in cellular structures is called a topological 
gas. The existence of such an uncorrelated structure is uncertain [85].

Most commonly this correlation has been investigated in two dimensions, 
thoiigh the Equation (4.1.6) has been altered to apply to polyhedra tessela- 
tions in 3D [86, 87],

m ( / )  = ( / > - « + ( 4 ^ 1 8 )

where /  is the number of faces of the polyhedron, m ( /)  is the average number 
of faces of neighbouring polyhedra, is the variance of the distribution of /  
and a is the Aboav-W eaire param eter in 3D. Eqviation (4.1.8) has found to be 
applicable to various type of cellular structure in 3D [86, 87], dem onstrating 
th a t there are spatial correlations in 3D cellular networks as well.
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4.1 .3  W eaire Sum  R ule in D isc Packings

Initially restricting ourselves to two dimensions, we return to packings and 
make an analogue with cellular structures for packings. We investigate 
whether the contact network is spatially correlated by defining to
be the average contact number of particles that are in contact with a par­

ticles th a t has 2 contacts. Z„„(z) is analogous to the quantity m (n) in the 
Aboav-W eaire law.

The sum rule argument, which was originally developed for cellular struc­
tures, holds ecjually well for a contact network of disordered soft disc pack­
ings. The main difference, as shown before, is that in two-dimensional cellular 
structures with three-fold vertices, (r?) =  6, while frictionless packings in two 
dimensions have (z) = Zc = 4 at (pc [64]. The simi rule for the contact 
network in packings is then

Z„„ is then a function of 2  that nmst satisfy Equation (4.1.9). For uncor­
related packings Z„n{z) is a constant (Z„„) which is independent of ^ and 
from Equation (4.1.9) is equal to

(4.1.9)
Z z

z nn (4.1.10)

This is the disc packing uncorrelated arrangement analogous to Equation 

(4.1.7).
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Figure 4.1.2; Contact number correlations for discs in contact at (pc in 2D. 
The error bars are standard deviations from the mean. The dashed line is 
the prediction of an uncorrelated packing from Equation (4.1.10). The data 
plotted in each panel is: (a) lognormal =  0.35; (b) Gaussian cr/j =  0.24; 
(c) uniform = 0.17; (d) bidisperse.
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4.1 .4  C orrelations in the C ontact N etw ork o f D isc  

Packings

Plotted in Figure 4.1.2 is Z„n(z)  for a variety of size distributions of discs in 
2D at the random close packing density. For wide size distributions, indepen­
dent of the type of size distribution, it is observed in Figure 4.1.2(a)-(d) that 
particles with less contacts than average are surrounded by j^articles with 

many contacts. Also, particles with more contacts than average are sur­
rounded by particles with fewer contacts. The uncorrelated prediction 
fails to capture the trend of Z„„{z)  and therefore there are nearest neighbour 
anti-correlations in the contact network similar to cellular structures.

4.1.5 A boav—W eaire in D isc Packings

Desj)ite having shown in Chapter 3 the validity of making a mean field as- 
sumi)tion for the model to jn'edict P(z)  by implicitly assuming that disor­
dered packings are uncorrelated. P'igure 4.1.4 clearly shows that this is not 
the case. Correlations similar to the Aboav-Weaire law for cellular structures 
are found in two dimensional packing data.

Though there are correlations, it is not clear if they are of Aboav-\W aire 
form. Znn(z) is an empirical function that must also satisfy Ecjuation (4.1.9). 
A solution to Ecpiation (4.1.9) can be found by a series expansion in terms 
of the moments of P(z):

(Znn -  {z))z -  a l  = -  -  {z')) , (4.1.11)
i=l

w'here the qs are arbitrary constants. If Cj =  0 for z > 1, one recovers the 
packing version of the Aboav-Weaire relationship,

=  +  (4.1.12)
z
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We now take the data  shown in Figure 4.1.2 and plot this da ta  again in Figure 
4.1.3 with axes chosen so th a t if the data was in agreement with Equation 

(4.1.12), there would be a straight line with negative slope. Figure 4.1.3 
shows that contact anti-correlations in 2D disc packings are well described 
by Equation (4.1.12). In the inset of Figure 4.1.3 the a param eter is plotted 

showing a sharp decrease when the size distribution is sufficiently narrow as 
to allow' crystalline patches to occur. This is compared to the a param eter 

for uncorrelated packings, in this case a typically takes a negative value.
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Figure 4.1.3: Contact number correlations for discs in contact at for the 
same size distributions as in Figure 4.1.2(a)-(d). The error bars are standard 
deviations from the mean. The solid lines are fits to Equation (4.1.12). The 
inset shows the fit param eter a as a function c r . The dashed red line marks 
the cT/{ at which crystallisation can occur. Inset: The data is labelled the 
same as in Figure 2.3.2. The solid red line is the value of the uncorrelated a 
for th a t aft.
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This A boav-W ^aire anti-correlation can be in terpreted  as a partia l screen­

ing of topological charge z — (z) by its contacting neighbours whose combined 

charge is z{Znn — {z)). T he param eter a can then  be used as a m easure of 

th a t screening of topological charge. For packings beyond the  point a t which 

crystallisation m ay occur, there is a steady decline in the  value of a. This 

is rem iniscent of the  prediction for the  a param eter in cellular s truc tu res to 

decline as th e  variance increases [88]. Recall th a t in Figure 3.4.3 the  variance 

cr| had  a linear dependence on the a \ .

4.1.6 C orrelations in the C ontact N etw ork o f Sphere 

Packings

Moving to  th ree dim ensions the same argum ent applies as in the  2D case. 

The principle change is th a t {z) — 6 in 3D. Figure 4.1.4 shows Zr,„(z) for var­

ious size d istribu tions in 3D. All d istribu tions exhibit clear anti-correlations, 

particles w ith few contacts are surrom ided by particles w ith m any contacts 

and vice versa. How’ever, deviations from the  uncorrelated j)rediction Z„rt 

are usually less th a n  10%, suggesting a cause of the success of the m ean field 

graiiocentric ai)proach, despite the correlations in the  contact network.

4.1 .7  A boav—W eaire Correlations in Sphere Packings

P lo tting  Znn{z)  in the m anner of Figure 4.1.4 clearly shows th a t there are 

spatial correlations in the  contact network, however it is difficult to  resolve 

w hether Ecjuation (4.1.12) perfectly captures the correlations. In order to  get 

a clear idea of how well the  d a ta  is described by the  classic A boav-W eaire 

correlation, we re-plot the  d a ta  in Figure 4.1.5 as — {z))z  — cr| versus 

2  — (z).  Should th e  d a ta  have a s tric tly  linear behaviour w ith negative slope 

then  it would be described by the  original A boav-W eaire correlation. Instead 

a non-linear behaviour is observed for all d istributions w ith deviations from 

the  linear trend  observed at high and low z — (z).
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Figure 4.1.4: Contact number correlations for spheres in contact at 0c- 
The dashed line is the prediction of an uncorrelated packing from Ecjuation 
(4.1.10). The da ta  plotted in each panel is: (a) lognormal apt = 0.20; (b) 
Gaussian ctr =  0.22; (c) uniform apt =  0.24; (d) bidisperse; (e) monodisperse.
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Figure 4.1.5: Contact number correlations for spheres in contact at 0ci for 
tlie same size distributions as in Figure 4.1.4. The error bars are standard 
deviations from the mean. The solid lines are fits to Equation (4.1.13). The 
inset shows the fit param eter h as a fimction aj^. The data in the inset is 
labelled the same as in Figure 2.3.2.

In order to account for these deviations from the linear trend of the classic 
Aboav-W eaire correlation, we revisit Equation (4.1.11). In two dimensions 
for 0c it was found that to describe the da ta  it was sufficient to only make 
Cl 7  ̂ 0; because of the deviations from linearity observed in three dimensions, 
we investigate higher powers of i. By only making the second term  non-zero 

(c2 7  ̂ 0), the deviations in the data can be described by a modified Aboav- 
Weaire correlation
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where b = C2 -

E quation  (4.1.13) captures the  trend  of the d a ta  for all size d istribu tions 

in F igure 4.1.5, however only the  G aussian d a ta  is fully described by this 

equation. In the inset of Figure 4.1.5 the  fit param eter b is p lo tted  for in­

creasing values of a/;, b does not depend on the  shape of the size d istribu tion  

b u t only on the  w idth  o r . N ote th a t all size d istributions regardless of shape 

or w idth  exhibit these anti-correlations in the contact network. T he i)hysical 

m eaning of b like the equivalent param eter a in the  cellular Aboav-W eaire 

law is not clear [2]. Of course various com binations of powers of i can be 

in troduced from E quation (4.1.11) to  b e tte r  describe the correlations but the 

sim plest expression th a t describes the  trend  in is to  keep only the second 

te rra  in the  expansion in Ecjuation (4.1.11) non-zero.

T he existence of these contact num ber correlations in the  contact network 

are not obvious, as cellular structu res and packings are governed by different 

global and local constraints. A lthough polydisperse packings can be tessel­

la ted  into a cellular s tru c tu re  [50, 86], not all faces of a cell correspond to 

contacts, therefore the  existence of correlations in packings does not follow 

natu ra lly  from sim ilar correlations in disordered cellular structures.
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4.2 Size-Size Correlations

We have shown in Section 3.2 th a t a relationsliip between the size of a par­
ticle and the contact number of a particle exists, where small particles typ­
ically have a lower coordination number than  larger particles. As well, w'e 

have shown in the previous sections that there are spatial correlations in 
the contact network of the disordered packings, where particles with a low 

coordination number tend to be in contact with particles tha t have a high co­
ordination number. We now investigate whether the size of nearest neighbour 
particles are correlated.

There has been limited study of the relationship between size of particles 
in contact in packings. The only examples of previous investigations of this 
phenomenon in cellular structures is the work of Sire and Sen) [89] and Seul 
et al. [90]. These works examined the relative size of neighbouring cells in 
2D cellular structures and found that cells sizes were anti-correlated to the 
size of its neighbour.

4.2.1 Size-Size Correlations in 3D

We begin by looking at size correlations in 3D sphere packings. In order 
to explore potential size correlations, A„„{a) is dehned as the average nor­
malised surface area of all particles in contact with a particle with surface 

area a. In Figure 4.2.1(a), Ann is plotted versus a for four different size distri­
butions, and we find that there are sj)atial correlations in the size of particles 
in disordered i)ackings. On average larger particles are surrounded by smaller 
particles and vice versa. The trend in the data differs from that which de­
scribes a packing in which the size of particles in contact is uncorrelated, 

defined as Ann in Equation (4.2.3).
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4.2.2 Relationship o f  Size-Size Correlations in 3D

Restricting our attention initially to 3D, the same counting argument that 
is used to formulate Equation (4.1.9) can be applied to particle size in a 
similar fashion. Analogous to Equation (4.1.9), must satisfy the following 
relation:

roo  poo

/  A n n { a )  {z\a) P{a)da =  /  a{z\a)P{a)da.  (4-2.1)
J o  Jo

In the scenario where there are no correlations in the size distribution of 
neighbouring particles, then A„„(a) becomes a constant (=  A „ „ )  and Equa­
tion (4.2.1) becomes

roo roo

^nn I {z\a)P{a)da = / a{z\a)P{a)da,
Jo  Jo

and then integrating on the left hand side and rearranging gives,

A n n  j ^

In Figure 3.2.2 it was show'n that {z\a) w'as well described by Equation 
(3.2.3). A simple prediction of the average size of neighbours in an uncorre­
lated packing can be found by substituting Equation (3.2.3) into the previous 
expression, and then simplifying to

A n n  =  1 +  (4.2.4)
\z)

where at 4)c, (z) =  Zc is a constant, as is the fit param eter of Equation (3.2.3), 

7 =  3.03. This relation is plotted in Figure 4.2.2.
Alternatively, the sum rule analogue for particle size can be w ritten as 

the simi

nn\z)zP{z)  =  z{a\z)P{z),  (4.2.5)
Z  Z

where {Ann\z) is the average area of a particle with ^ contacts. In this case

(4.2.2)

(4.2.3)



4.2. SIZE-SIZE CORRELATIONS 87

3D 3.6

3.4w1.15
3.2

nn

1.05

a

R /Rnn Inn

0.95

0.9
r

Figure 4.2.1: (a) Correlations between size of spheres in contact. All symbols 
represent the same size distributions as in Figure 4.1.5 except: ( a )  Gaussian 
a n  =  0.14. The solid lines are fits to the da ta  using E(iuation (4.2.8) with 
the dashed lines being the uncorrelated prediction calculated from Equation 
(4.2.6). The inset shows the fit param eter w as a function of a a- The data in 
the inset is labelled the same as in Figure 2.3.2. (b) Correlations between size 
of discs in contact in two dimensions rescaled by the predicted uncorrelated 
radius R„„. Five different size distributions are j)lotted: (0) bidisperse, 
radius ratio 1:1.4; (□) uniform a ^ t  =  0.17; ( a )  Gaussian o r  =  0.14; (<l) 
lognormal g r  =  0.20; ( v )  lognormal =  0.30; (o) lognormal g r  =  0.40.
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when Ann is uncorrelated, it can be calculated from

(4.2.6)

which is the data  plotted in Figure 4.2.2.
In order to describe the trend of An„ seen in Figure 4.2.1 (a), we formulate 

a series expansion in terms of the moments of P{a) th a t satisfies Equation

where are arbitrary constants.
Substituting this expression into Equation (4.2.7) and taking only the 

first term in the expansion (i =  1 ) gives,

where w =  u'l. This one i)aranieter fit to data, with 7  constrained to fit 
(2 |a), is shown in Figure 4.2.1(a). Equation (4.2.8) is found to be a good 
description of the correlations between the size of particles in packing.

Plotted in the inset of Figure 4.2.1(a) is the behaviour of w w ith increas­
ing width. Similar to the parameter a used as a measure of disorder of the 
contact network, w can be used to quantify the strength of anti-correlations 
in the particle size network. Packings with larger w have stronger separation 
of particle sizes. Therefore the more polydisperse a packing, the less the dis­
tribution of sizes of nearest neighbours resembles the global size distribution.

(4.2.1),

(4.2.7)
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4.2.3 R elationship of Size-Size Correlations in 2D

We reported  in [64] an equivalent sum  rule to  E quation  (4.2.1) for disc radius 

in two dimensions:

where /?„«(?") is the  average norm alised radius in contact w ith a particle 

of radius r ,  which is p lo tted  in Figure 4.2.1(b). In contrast to  the  results 

for three-dim ensional sphere packings, the relationship  between th e  radius 

of a disc and the average radiuH of its contacts is well described by the 

im correlated prediction, given as

for all {jolydispersities. T here are some deviations from the uncorrelated 

prediction at low r. These deviations can be a ttr ib u ted  to  the j)resence of 

small particles w ith a low num ber of contacts th a t can only rem ain in the 

connected network when in contact w ith much larger si)heres.

Using the same argm nents as in three dim ensions, the relationship be­

tween and the w idth  of the  size d istribu tion  can be found to  be

/  Rnn{r){z\r )P{r)dr  = /  r{z\ r)P{r)dr ,  (4.2.9)
Jo Jo

(4.2.10)

D  1 1 2
^ r i n  —  J- r  ^  R'l (4.2.11)

where 7 2 0  aiid (z) are constant at (pc-
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Figure 4.2.2: The micorrelated prediction for a range of different size 
distributions in three dimensions. The data plotted is calculated from Ecjua- 
tion (4.2.6). The dashed line is the vmcorrelated prediction of calculated 
from Equation (4.2.4). Inset: The uncorrelated prediction /?„„ for a range of 
different size distribution in two dimensions. The data plotted is calculated 
from Equation (4.2.10). The dashed line is the uncorrelated prediction of 
R„ri calculated from Equation (4.2.11). The data is labelled the same as in 
Figure 2.3.2.
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4.2 .4  U ncorrelated Prediction

As can be seen from Figure 4.2.2, the relationship between the uncorrelated 
prediction of the average size of neighbouring particles is the same in 2D and 
3D but for a change in variable. Figure 4.2.2 shows th a t as cr  ̂ increases so do 

the values of Ann- Rnni which is plotted in the inset of Figure 4.2.2, increases 
with increasing o r . Both Ann and Rnn axe well described by Equation (4.2.4) 
and Equation (4.2.11), respectively. Ann and are greater than  1 because 
particles with more contacts tend to be larger and therefore large particles
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tend to be included in the calculation of Ann Rnn more often than smaller 
particles, which on average have less contacts. Equations (4.2.4) and (4.2.11) 
show th a t as packings become more polydisperse this contribution of larger 

I)articles becomes more pronounced.
The uncorrelated predictions in Equations (4.2.4) and (4.2.11) can be re­

cast as the average of the size distribution of neighbouring particles. This 
allows from the bracketed expressions in Eciuation (4.2.4) and Equation
(4.2.11), an expression for the size distribution of neighbouring particles to 
be formed as.

resi)ectively. Due to the behaviour of (2 |a) and (2 I?') from Ecjuation (3.2.3) 
and Equation (3.2.6), for all polydisperse packings the size distribution of 
nearest neighbours is not the same as the global size distribution of the 
packings. This has consequences for mean field models such as the granocen- 
tric model that assmne the size distribution of contacts is the same as the 
glol)al size distribution P{B)  [44]. This assumption becomes progressively 
worse with increasing polydispersity.

(4.2.12)

and
(4.2.13)
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4.3 Conclusions Outlook

We  have shown in this chapter that, despite their name, random disordered 
packings contain robust correlations between neighbouring particles. For the 
first time we have shown that random packings of discs and spheres are struc­
tured in such a way tha t Aboav-Weaire type anti-correlations exist in the 
contact network. We note tha t at (pc, the anti-correlations in contact num­
ber are described by two different terms of Ecjuation (4.1.11), we do not have 
an exj)lanation for why these trends are subtly different in 2D and 3D. We 
note that while we do not have a physical explanation of the origin of these 
Aboav-W eaire correlations in packings, the analogy with cellular structures 
may continue to extend to explaining these correlations similarly in terms 
of maximum entropy (for a description of maximum entropy see Weaire and 
Rivier [82]). The description of these correlations in packings could poten­
tially be used to characterise the disorder of packings through the measure 
of the param eters a and b and to what extent topological charge is screened.

Also presented in this chapter is the interesting result of anti-correlation 
of particle size with neighbouring particle size in 3D but curiously this is not 
found in 2D. The significance of this result is that the size distribution of 
contacts is not homogeneous in 3D. A more damaging result for models that 
rely on the assinnption that the size distribution of nearest neighbours is the 
same as the global size distribution, such as the granocentric model, is the 
increase of the imcorrelated predicted average for wider size distributions in 
both 2D and 3D. This result states even if the distribution of particles sizes is 
homogeneous, the mean of the resulting distribution of sizes of neighbouring 
particles will still increase with polydispersity, due to the trend of larger 
particles having more contacts.

We can only attribu te  the success of the granocentric model to the fact 
th a t the nearest neighbour correlations are typically weak.

Perhaps the discovery of these correlations can point the way to  a more 
comprehensive method of describing the structure of disordered packings.



Chapter 5

Effect of Packing Fraction on 
the Structure of Disordered  
Packings

Figure 5.0.1: Exam ples of discs in contact in a packing w ith  G aussian size 
d is tribu tion  of w idth Gf{ =  0.28 at (a) (j) =  4>c and (b) 0  =  1.00.

93



C H APT ER 5. EF F E C T OF PACKING F R AC TIO N 94

Previously we have described various local and global contact properties 
of disordered packings at (pc- How do these contact network correlations 
change for polydisperse packings as we move away from the isostatic point?

There have been many studies of the properties of jammed m atter with 
changing density. Computationally, Bolton and Weaire [3], were the first to 
show that properties of wet foams like the shear modulus and the average 
contact number scale with the distance from the rigidity loss transition. More 
recently, the landm ark study by O ’Hern et al. [24] described the scaling 
of quantities such as the elastic moduli with distance from the jamming 
point. O ther work based on foams has shown that various properties scale 
with the distance from 4>c- Experimentally, Katgert and van Hecke [54] have 
confirmed what has previously been shown computationally, th a t the average 
contact number {z) scales with distance from jamming, as also observed in 
experiments of frictional discs [91]. Recently Zhao et al. [92] have shown 
that there is a regime change at very high packing fraction 0 =  1.18 for 
simulations of bidisperse particles in 3D, above which packings are referred 
to as deeply jannned. At this point the scalings reported by O ’Hern et al. [24] 
break down and different scalings are found. Note, in soft particle sinmlations 
the overlap between particles is counted twice in the calculation of 0  [18]. It 
is difficult to compare 0  calculated in soft particle simulations to 0 measured 
in experiments due to the deformation of particles at high 0 in real foams.

Also of interest is the analogy with dry foams, which we have made in 
C hapter 4. Many of the correlations seen at 0c are also observed for cellular 
structures like dry foams. Recent work on the granocentric model has made 
predictions for cellular structures [59].

We study packings which range from 0c up to 0  =  1.00 for a variety of 
polydispersities in 3D, which is less than the value found for where a regime 
change occurs and deep jamming occurs [92]. In two dimensions, we study 
packings up to 0 =  1.20, where the average contact number reaches (z) = 6. 
Examples of 2D packings at different 0 are shown in Figure 5.0.1.
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5.1 C ontact Num ber D istributions

First we look at the contact number distribution beyond the jamming point. 
Figure 5.1.1 shows the distribution of the relative contact number, P{z — {z)), 
for different packing fractions and different polydispersities. The shape of the 
P { z — {z)) distributions are independent of the packing fraction as evidenced 
by the collapse of P{z  — (z)) onto a master curve which is dependent upon 

the polydispersity. The P{z — {z)) collapse is surprising and means tha t the 
shape of P{z)  around its mean dei)ends on P{B)  but not on 0.

As shown in the inset of Figure 5.1.1, (z) increases as the square root of 
the distance of 0 from the isostatic point, which is consistent with previous 
results in both experiment [54, 91] and simulations [24, 42], This increase in 
the average contact number (z) is described by [24]

(z) — Zc + — (f)c. (5.1.1)

where Zq is the fit parameter. This relationship is valid in both 2D and 
3D. This ecjuation is fit to the simulation data and for a select group of size 
distribution the fits are plotted in the top inset of Figure 5.1.1 for 2D and 
the top inset of Figure 5.1.2 for 3D. The value Zq for various polydispersities 
can be found in Table 5.1.

There is good agreement between Zq fomid by fitting Equation (5.1.1) 
to the polydisperse data presented here and the bidisperse data found in 
[24], where Zq =  3.6 ±  0.5 in 2D and Zq =  8.4 ±  0.5 in 3D. The one notable 
discrepancy between the results is that for monodisperse which is found to be 
larger in this work than  in [24] (where Zq =  7 .7±0.5), this may be attribu ted  

to the wider range of densities exi)lored in this work. The result is that the 
average contact number in dense monodisperse packings is larger in this work 
than  predicted by O ’Hern et al. [24].

For 3D data, the shape of the distribution is independent of the pack­
ing fraction when the relative contact lunnber is rescaled by the standard
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Figure 5.1.1: Contact number distributions for increasing packing fraction (f) 
in 2D are plotted for a lognormal size distribution of w idth rr/j =  0.35 (top, 
represented by (o)), a Gaussian distribution of w idth g r  =  0.28 using the 
bubble model packing algorithm (middle, (A) )  and a uniform size distribution 
of w idth aji — 0.17 (bottom, (□ )). The distributions are shifted on the y- 
axis so that different polydispersities can be compared. The packing fractions 
plotted have an {z) represented in the top and bottom insets. The P { z — {z)) 
are colour coded w ith  0c coloured in black; and then in increasing {z) (and 
hence 0) coloured as red; gr<'(’ii; bhu'; purple'; pink; dark gnn'u; c\’;ui. Top 
Inset: Contact number average (z) versus 0. The data plotted are: (□ ) 
uniform cr^ =  0.17; ( a ) Gaussian ctr =  0.24; ( a ) Gaussian =  0.28 (using 
bubble model algorithm); (o) lognormal =  0.35. The solid lines are 
Equation (5.1.1) fitted to the uniform data (in purple) and to the lognormal 
data (in black). Bottom Inset: Contact number variance versus (z). The 
data are labelled the same as in top inset.
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Polydis])ersity D (^R

Lognormal 2 0.35 3.03 ±  0.1
Gaussian 2 0.28 3.29 ± 0 .1
Gaussian 2 0.24 3.33 ± 0 .1
Uniform 2 0.17 3.45 ± 0 .1
Lognormal 3 0.20 8.3 ± 0 .2
Gaussian 3 0.19 7.7 ± 0 .3
Lognormal 3 0.10 8.1 ± 0 .3
Monodisperse 3 0.00 9.0 ± 0 .1

Table 5.1: Prefactor Z q of Equation (5.1.1) for different polydispersity in 2D 
and 3D packings.

deviation of the contact number distribution az,  as evidenced by the col­
lapse of P {{z — {z))/az)  onto a master curve in Figure 5.1.2. Again it is the 
l)olydispersity that sets P{z)  in a uon-trivial manner.

The same rescaling with az  in 2D does not work generically; in particular 
the lognormal data  is clearly not described by s\ich a collapse. The corre­
sponding variance ( t |  in 2D, plotted in the bottom  inset of Figure 5.1.1, varies 
slightly. This is partly due to the fact tha t the minimum contact number 
is restricted to 3 while {z) plateau at 6. Packings with wide size distribu­
tions have wider contact number distributions as the density is increased, due 
to more particles forming contacts, as seen in Chapter 3. Equation (3.2.6), 
leading to a larger contact number variance. For narrower distributions 
is close to unity and relatively constant with increasing density. The choice 
of rescaling in 2D does not alter dram atically the collapse of P{z)  but for 

wider distributions a \  is larger and rescaling by o z  is inappropriate.
The relationship in 3D for o \  is more complex for increasing density. 

The polydisperse packings have a \  increasing with 0 and the ra te  of increase 

appears to be linked to on- In the monodisperse case ( t | slowly decreases, 
suggesting tha t the nionodisi)erse packing becomes more ordered as (f) in­

creases. Common to both trends is tha t the variance reaches a constant
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Figure 5.1.2: Contact number distributions for increasing packing fraction 
0  are plotted for a lognormal size distribution with =  0.20 (above) and 
a monodisperse size distribution (below). The distributions are shifted on 
the }’-axis so tha t different polydispersities can be compared. The packing 
fractions plotted are 0 =: (o) (p̂ , (□ ) 0.65; ( ) 0.70; (a ) 0.75; (<]) 0.80; (v ) 
0.85; (<l) 0.90; (x )  0.95; (4̂  ) 1.00. Top Inset: Contact number average {z) 
versus 0. The da ta  plotted are: ( t ) monodisperse; (o) lognormal. The solid 
lines are Equation (5.1.1) fitted to the monodisperse data  (in red) and to 
the lognormal da ta  (in bhu'). Bottom Inset: Contact number variance cr̂  
versus (z). The da ta  are labelled the same as in top inset with the addition 
of lognormal af{ = 0.10 (o) and Gaussian =  0.19 (A) size distributions.

value for packings with (z) > 9.
Finally, we show in Figure 5.1.3 the percentage of rattlers in 3D packings, 

with the percentage of rattlers in 2D shown in the inset of Figure 5.1.3. The 
presence of rattlers in denser packing fractions and the point at which the 
population of rattlers becomes negligible has not been reported on previously.
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As the relationship between 0 and the average contact number (z) has been 
shown to be robust for different dimensions and polydispersities, we use (z) 

to parameterize the packing density in Figure 5.1.3. This is the approach we 
will take for the remainder of this chapter and proves to be a useful measure 
for the contact properties we will report upon. The behaviour of the rattlers 
with increasing (f) is tha t of diminishing at a similar rate independent of 

the polydispersity. For 3D, the mmiber of rattlers are all but negligible for 
(z) > 9 and the same is true in 2D for packings with (z) > 5.5.

Figure 5.1.3: Percentage of rattlers for increasing 0  in 3D. The data are 
labelled the same as in toj) inset of Figure 5.1.2. Inset: Percentage of rattlers 
for increasing 0 in 2D. The data are labelled the same as in top inset of 
Figure 5.1.1.
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5.2 R elationship Betw een Contact N um ber  

and Size

In Chapter 3, we described a relationship between contact number and size in 
packings at 4>c tha t was linear and independent of polydispersity. In this sec­
tion we ask does this relationship persist at higher 0? Indeed in Figure 5.2.1
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Figure 5.2.1: Average of the contact number distribution for a given area 
{z\a) for increasing packing fraction in 3D. Four size distribution are plotted: 
monodisperse (v ); lognormal O f t  =  0.10 ( □ ) ;  Gaussian g r  =  0.19 (a ); log­
normal an =  0.20 (o). The open symbols are for 0 when {z) =  8.0 and the 
closed symbols for (2 ) =  6.5. The solid green line is a fit of Equation (3.2.3) 
to the (2 ) =  8.0 data  and the solid blue hue is a fit of Equation (3.2.3) to 
the {z) =  6.5 data. The da ta  in i>ink is for lognormal = 0.20 for (z) = 9.2 
and the data in cyan is for lognormal ct/? =  0.20 for ( z )  =  11.05. Inset: The 
variation of the fitting param eter 7  with (z). The data  represented by (*) 
are fits to all size distributions. The da ta  represented by (o) are fitted to 
the lognormal g r  =  0.20 size distribution. The dashed red line is a fit to 
Equation (5.2.1) for data  with (z) < 9.
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for 3D packings, we find a linear trend tha t is independent of polydispersity. 
It is im portant to note that the collapse of (z|a) for various polydispersity 

occurs with the same (z).
The linear trend recalls the result shown in Figure 3.2.2 in Section 3.2.1 

and therefore Equation (3.2.3) is fitted to the data, with excellent agreement 
found for {z) < 9. The functional variation of the fit param eter of Equation
(3.2.3), 7 , which is plotted in the inset of Figure 5.2.1, is approximately linear 

for (z) < 9, which we fit with the following equation,

7 = ^ + p ( { z ) - z , ) ,  (5.2.1)

where p is a fit param eter and takes a value of p =  0.73 ±  0.04 in 3D. As the 
packings become more dense, and (z) increases above 9 the fit to Equation
(3.2.3) becomes poorer and the trend in (2 |a) becomes sub-linear. For the 
])ackings with (z) > 9, the linear fit becomes progressively worse as (z) 
increases. This behaviour is refiected in the behaviour of 'y which plateaus 

for (::) >  y, however for (:;) > 8 we only have data for the lognormal size 
distribution.

Stepj)ing down a dimension to 2D, we recover the same relationship that 
was observed at 0c- bi Figure 5.2.2, a linear trend is fomid for a variety 
of polydispersities tha t is w'ell captured by Equation (3.2.6), which was de­
scribed in Section 3.2.2 for 0c- Unlike in 3D, this linear relationship continues 
up to the densest 0  studied. The variation of 720  with distance to the iso­
static point (2 ) =  4 is plotted in the inset of Figure 5.2.2, which shows 720  is 
linearly increasing vip to (z) = 5.5 and then appears to level out as (z) —)■ 6. 
72£) for packings with {z) < 5.5 is found to be fit well by Equation (5.2.1) 
with the fitting param eter in 2D, p2o = 0.75 ±  0.05.

As the average contact number {z) 6, the analogy w ith a cellular
structure becomes more apt. It is interesting to compare this linear relation 

between contact number and radius to tha t observed in a variety of cellu­
lar structure between the coordination nvmiber and cell area called Lewis’s
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law [69]. This relation has been studied extensively for dry foams [95, 96] 
but with conflicting results as to whether for polydisperse foams, the relation 
is better described by Desch’s law [97] (also known as Feltham ’s law [98]), 
where the contact number is related to the perimeter of the cell.

In both  of these relations, the average size of the cell rather than  the 
average contact number is the quantity calculated. As we have previously 
described in Section 3.4, these two averages are not the same.
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Figure 5.2.2: Average of the contact number distribution for a given size 
for increasing packing fraction 0 in 2D. Four size distribution are plotted 
uniform ctr =  0.17 (□); Gaussian o r  =  0.24 ( A) ;  Gaussian g r  =  0.28 (using 
bubble model code) ( a ) ;  lognormal g r  =  0.35 ( o ) .  The open symbols are for 
(f) when {z) =  5.2 and the closed symbols for {z) =  4.4. The solid red line is 
a fit of Eciuation (3.2.6) to the {z) =  5.2 data  and the solid blue line is a fit 
of Equation (3.2.6) to the {z) =  4.4 data. The data  in j)ink is for Gaussian 
Or = 0.28 for (^) =  5.94. Inset; The variation of the fitting param eter 720 

with (2 ). The d a ta  rei)resented by (*) are fits to all size distributions with the 
same {z). The da ta  represented by ( A)  are fitted to the Gaussian g r  =  0.28 
size distribution. The dashed red line is a fit to Equation (5.2.1) for data  
with {z) < 5.5.
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Figure 5.2.3: Average of the radius distribution for particles with a given 
contact number for increasing packing fraction 0  in 2D. Three size distribu­
tion are plotted uniform (Ta =  0.17 (puri>l('); Gaussian or = 0.24 (brown); 
lognormal =  0.35 (black). The data labelled as: {z) =  4.0 (•); {z) =  4.4 
(x) ;  (2) =  4.98 (□); {z) =  5.2 (a).  The solid hnes are fits of Equation (3.4.8) 
to the data  (2) =  4.0. Inset: Variation of the fitting param eter A2D with {z). 
The data is labelled as in top inset of Figure 5.1.1. Comparison is made with 
experimental data  for dry foam: (*) from [5G]; (*) from [93]; (*) from [94].

We begin by looking at 2D in order to make the comparison with 2D dry 
foam results. The average radius for discs with a given contact number (r|z) 
is plotted in Figure 5.2.3 for a variety of size distributions and for increasing 
I)acking fraction. Equation (3.4.8) was used in Section 3.4 to ht packings 
of 2D discs and we find that it describes the trend of the data, i)articularly 
for the uniform and Gaussian distributions. The lognormal distribution does 
deviate from the linear trend and it is not clear th a t Equation (3.4.8) is the 

final functional form of {r\z). In the Hmit of large 0 when the comparison 
with a cellular structure becomes most appropriate, this would be in best 

agreement with Desch’s law [97].
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In the inset of Figure 5.2.3 the behaviour of the fit param eter of Eq\iation 

(3.4.8), X2D, is plotted for increasing packing density. Each polydisi)ersity 
appears to exhibit a linear trend tha t converges to X2D ~  0.2. We Hnd 
good agreement with the trend of our da ta  when we compare our results to 
recent research th a t fits Desch’s law to: 2D foams [94]; the 2D surface of 
3D foams [93]; a combination of 2D foams and 2D Potts model and Surface 
Evolver simulations [56].

Returning to 3D, the situation is similar. As shown in Figure 5.2.4, 
Equation (3.4.2), which was introduced to describe the trend of {a\z) for 0c, 
describes the behaviour of {a\z) with increasing 0. However, there are more 
systematic deviations than observed in 2D. Again, at higher densities, it is

5
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0.24

r  m

<  alz  >
<  z >
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z - <  z  >

10 I . 5

Figure 5.2.4: Average of the area distribution for particles with a given con­
tact number for increasing packing fraction 0 in 3D. Three size distribution 
are plotted lognormal =  0.10 (red); Gaussian an =  0.19 (brown); lognor­
mal cT/j =  0.20 (black). The data labelled as: (2 ) =  6.0 (•); {z) =  6.5 (x) ;  
{z) =  7.0 (□); {z) =  8.0 (a).  The solid lines are fits of Equation (3.4.2) to 
the da ta  (2 ) =  6.0. Inset: Variation of the fitting param eter A with {z). The 
da ta  is labelled by colour as before.



5.2. RELATIONSHIP B E T W E E N  C O N T A C T  NUMBER A N D  SIZE  105

not completely clear tha t binning the particle size in terms of a is the best 
choice. Another difference with the results found for 2D is tha t there is very 
little variation of the fitting param eter A in Equation (3.4.2). Though due 
to the trend of the data  there is reason to suspect tha t all distributions tend 

towards a constant A ~  0.15 for large 0.
The upshot of using the {a\z) linear fit is th a t it allows us to make a 

prediction for the contact number variance cr|, if we have information on the 
the size distribution through the use of Equations (3.2.3) and (3.4.2). As can 
be seen in Figure 5.2.5, our prediction underestim ates the value of ( t |  but 
captures the the trend of ( t |.  The type of distribution used has an effect on 
the quality of the j)rediction, which is linked to the quality of the fit made 
for {r\z) and (a |2:). Particularly in two dimensions, the prediction is cjuite 
successful.

1.75
2D

1.25

0.75 z
0.5
0.25

2 4.5 5.5a.z o< z >

o

< z >

Figure 5.2.5: Variance of the contact number distribution for increasing pack­
ing fraction 0 in 3D with prediction j)lotted as the closed symbols. Packing 
d a ta  is plotted as open symbols. Inset is the same graph in 2D. The data  is 
labelled as before.
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5.3 Granocentric Approach w ith  Increasing  

Packing Fraction

5.3.1 Three D im ensions

0.254

0.2

•Oo 
o O <

la > 2
<  zla  >

0.05

3D 3D
0,'0 2
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4

a

Figure 5.3.1: Collapse of variance and ratio of variance to mean for (z) = 8 
in 3D. Same size distributions plotted as in Figure 5.2.1. (a) The variance 
of the distribution P{z\a).  (b) The ratio of the variance to the average of 
P{z\a).  The dashed green line represents the average value of the plateau.

Having shown that the collapse of (^la) occurs for vahies of the average 
contact number (z) other than Zc in the previous section, we now investi­
gate whether the mean field approach to predict P{z)  taken in Chapter 3 is 
valid at higher 0. Using packings with (2) =  8 as an example tha t is typical 
of denser i)ackings in 3D, the variance (cr||o) and the ratio of the variance 
to the average contact number are plotted in Figure 5.3.1(a) and (b) re­
spectively. We observe the collapse of both cjuantities at increased packing 
fraction with the independence of local contact correlations from the global 
size (iistril)Tition persisting at higher packing fractions.

In Figure 5.2.1, the average {z\a) collapses for all polydispersities when 

the {z) is the same. The granocentric model was based on the observation 
th a t {z\a) collapses for all size distribution at 4>c, and the dem onstration
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th a t P{z\a)  depends only on the size of the  particle and not the  global size 

d istribu tion . This can be inferred from looking a t the w id th  of P{z\a) ,  the  

variance (c r ||a ) , which for (z) =  8 is p lo tted  in Figure 5.3.1 (a). The same 

collapse for different polydispersities is observed as for 0ci suggesting th a t 

P{z\a)  is insensitive to  polydispersity.

T he ra tio  between for sufhciently large a in Figure 5.3.1 (b), is found 

to  be constan t. This p la teau  suggests an acccptance probability  of p =  0.819 

for the  m ean field granocentric model. By enforcing th a t

(z) = J  zP{z \a)P{a)da  = S, (5.3.1)

0

a value of a  can be found. For (z) = 8 th is space lim iting param eter is

10
a  0 . 8 -  ,  ©*

< 7. >

P | Z ]

1 0 '

3D
L

Figure 5.3.2: Model prediction of packings at (2) =  8.0 for: m onodisperse 
(V); lognorm al (X/? =  0.10 (o); G aussian ct/? =  0.19 (a ) ;  lognorm al oji =  0.20 
(o). The solid pink line is the  model prediction. Inset: M odel jjararneters a  
{*) and p {*) w ith  increasing (z).



5.3. G R A N O C E N TR IC  APPR O A C H  W IT H  IN C R E A S IN G  ct) 108

Q =  0.69.

Using the mean fieki granocentric model outhned for 0c, a prediction of 

the contact number d is tribu tion  is made for the size d istribu tions p lo tted in 

Figures 5.3.1. The granocentric prediction p lo tted in  Figure 5.3.2 is in  good 

agreement w ith  the data, indicating tha t th is model is ju s t as applicable at 

4> > (j)c. The same values of model parameters a  and p are used for each size 

d is tribu tion . In the inset of Figure 5.3.2, p and q  are p lo tted  and show' tha t 

both parameters increase for increasing 0.

5 .3 .2  T w o  D im en sion s

We now investigate whether the variance and the ra tio  of the variance to 

the mean collapse for 2D disc packings. Using packings w ith  {z) — 5.2 as 

an example tha t is typ ica l of denser packings in 2D, the variance ((7-||r) and 

the ra tio  of the variance to the average contact number is p lo tted in Figure 

5.2.2. Ŵ e observe a sim ilar collai)se as the packing fraction is increased 

w ith  the independence of local contact-size correlations from  the global size

0.2

o

o

2,
<  O

7. < zIr >

0.5
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0.5 2.5 0.5 2.5

r r

Figure 5.3.3; Collapse of variance and ra tio  of variance to  mean for (z) =  5.2 
in 2D. Same size d istribu tions plotted as in Figure 5.2.2. (a) The variance 
of the d is tribu tion  P{z\ r ) .  (b) The ra tio  of the variance to  the average of 
P{z\ r ) .  The dashed red line represents the average value of the plateau.



5.3. G R A N O C E N T R I C  AP P R OA CH  W I T H INCREASING c/) 109

distribution persisting at higher packing fractions.

Having already seen in FigTU’e 5.2.2 that the average (2 |r) collapses for
all polydispersities when the (z) is the same, w'e make the same inference
from Figure 5.3.3 th a t P{z\r)  is the same for all r  independent of packing

fraction, given the variance (<7||r) collapses, similar to that observed for 0c-
/^ 2  |^ \

A plateau is observed for the ratio between for sufficiently large r  in 
Figure 5.3.3 (b). The plateau suggests an acceptance probability of p = 0.92. 
By enforcing that

OO

(z) = j  zP{z\r)P{r)dr  =  5.2, (5.3.2)
0

a value of a  can be foimd. For {z) =  5.2 this param eter is a  =  1.02.
Using the mean field granocentric model, a prediction of the contact num-
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Figure 5.3.4: Model prediction of i)ackings at {z) =  5.2 in 2D for the same 
size distributions as previously. The solid red line is the model prediction. 
Inset; Granocentric model param eters n  (*) and p (*) with increasing (z) in 
2D.



5.3. G R A N O C E N T R IC  A P PR O A C H  W IT H  INCREASING  0 110

her distribution for {z) = 5.2 is made in Figure 5.3.4. The granocentric 
prediction is in good agreement with the data, indicating tha t this model is 

applicable at 0 > 0c for 2D as w’ell. The value of a  and p are independent 
of size distribution. In the inset of Figure 5.3.4 the model param eters p and 
a  are plotted, and show th a t for increasing 0 both these param eters grow.
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5.4 Correlations in N earest Neighbour 

C ontacts

In Chapter 4 we outhned how structure of disordered packings at 4>c exhibits 
spatial correlations in the contact network. In this section we examine the 
m anner in which these correlations persist in denser packings.

2D
z - < z >

Figure 5.4.1: Anti-correlation of neighbouring particles contact number for 
increasing packing fraction 0 in 2D packings using the bubble model algo­
rithm . Three densities for a Gaussian ((T/j =  0.28) distribution are plotted: 
{z) =  4.07 (x ); {z) =  5.40 (a ); {z ) =  5.94 (o). The sohd hnes are Equa­
tion (4.1.13) fitted to the data and the dashed lines are the uncorrelated 
prediction of Equation (4.1.10).

5,4.1 C ontact N um ber C orrelations in 2D

First turning our attention to 2D, we look at results for which are 
shown in Figure 5.4.1, where we plot (Z„„ — {z ) ) z  — a \  versus (^ — {z))  for
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three different packing fractions. If the original form of the Aboav-Weaire 
correlation for discs (Equation (4.1.12)) is to hold we expect the da ta  to 
follow a line with slope —a. Clearly, the da ta  does not follow the imcorrelated 
prediction (Equation (4.1.10)). Instead we observe anti-correlations in the 
contact network: discs with few contacts are surrounded by discs with many 

contacts and vice versa. We note tha t there are the deviations from purely 
linear behaviour, especially at higher packing fractions. This suggests th a t 

the relation used in Chapter 4 for 2D packings at (j)c is not adequate.
We turn  to the second term  in the expansion of Ecjuation (4.1.11) and 

keeping only the second term  non-zero, we recover Equation (4.1.13) proposed

2D

-20
o
N

♦
-40 < z >

4.5 5.5ee
S -60 0.08

0.04-80
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- 100,
100

2 2
<  Z >Z

Figure 5.4.2: Anti-correlation of neighbouring particles contact number for 
increasing density in 2D for a variety of size distributions. Four different size 
distributions are plotted: uniform an = 0.17 (□); Gaussian ct/j =  0.24 (A); 
Gaussian (dynamic) =  0.28 (o); lognormal gr = 0.35 (o). The da ta  is 
labelled for increasing {z) ~ : 4.0; 4.4; 5.2.The dashed line has a slope
of -1. Inset: Fit param eter h as function of {z). D ata is labelled the same as 
Figure 5.2.3.
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previously for 3D, which we rewrite below,

( Zn n  -  {Z) )  Z -  ^  .2 _   ̂ ( 5  4 ^ )
b

As shown in Figure 5.4.1, Equation (5.4.1) captures the non-hnearity well 
and leads to  a much improved fit compared to Equation (4.1.12). Including 
higher order terms in the expansion Ecjuation (4.1.11) does not improve the 

fit significantly.
We find tha t Equation (4.1.13) best captures the trend of the data  for 

other polydispersities plotted in Figure 5.4.2. Plotting the data in Figure 

5.4.2 with axes such th a t agreement with Equation (5.4.1) gives a trend with 
slope -1. we find excellent agreement for all data  with {z) > Zc + 0.05 with 
only slight deviation for low 2  at higher densities.

For da ta  at the isostatic point, the trend typically deviates upwards 
in Figure 5.4.2 (the black filled symbols) from that predicted by Equation 
(5.4.1). This indicates tha t this data is better described by the original form 
of the Aboav-Weaire correlation (Ecjuation (4.1.12)) as seen in Section 4.1.5. 
We do not have an ex])lanation for why this crossover from one trend to the 
other is observed.

The inset of Figure 5.4.2 shows the change of the param eter h with {z). 
The behaviour of the a param eter in the Aboav-Weaire law for cellular struc­
tures has been linked to ( t |  (see Figure 5.2.5). It is interesting to note that 
the general trend of b is similar to tha t of a | .  Packings w ith wide size distri­
butions have wider contact number distributions as the density is increased 
and a larger b. The opposite is true of narrow distributions such as the 

uniform = 0.17, where cr| is a decreasing function of density and the 
resulting b also decrease.
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5.4,2 C ontact N um ber C orrelations in 3D

Turning our attention to 3D sphere packings at higher densities, we find 
that in the case of polydisperse packings the contact number correlations 
reported at 0c persist. In Figure 5.4.3 the relationship between z and Znn{z) 
is plotted in the manner of Equation (5.4.1), where perfect agreement would 
lead to a slope of -1 and for much of the range of data there is exceUent 
agreement. Only for dense packings and low 2 are deviations found tha t are 
not captured by Equation (5.4.1). Given the expansion th a t we use, it is 
difficult to find some form that would describe these deviations. We believe 
that the existence of these deviations for lower 0 is due to the clusters of 
smaller particles th a t would be rattlers at a lower density but which are now 
in the contact network. These small particles with low contact number that 
join the contact network in clusters lower the average contact number of the 
surrounding particles.

The param eter h is j)lotted in the bottom  inset of Figure 5.4.3. For 
polydisperse distributions the evolution of h w ith increasing density is more 
complicated than the case in 2D. Broadly, b for polydisperse distributions 
does not change significantly with increasing (2) in 3D, with the trend sug­
gesting th a t h may tend to a constant 0.015 ±  0.005 for higher values of 0. 
In the case of monodisperse the trend is much clearer, linearly decreasing h 
with increasing (2).

The top inset of Figure 5.4.3 shows the contact correlations for a monodis­
perse packing at 0 =  0.75 and it is clear tha t relationship between and 2 is 
not well described by Equation (5.4.1). Large 2 are no longer anti-correlated 
but positively correlated, particles with large contact numbers are typically 
in contact with particles th a t have larger than  average contact number. This 
behaviour may indicate crystalline ordering as discussed in Appendix B. The 
physical significance of the b param eter has yet to be determined but could 
be of interest as a measure of the transition from disordered structures to 

ordered structures.
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Figure 5.4.3: Anti-correlation of neighbouring particles contact number
for increasing density in 3D. Four different size distributions are plotted: 
monodisperse (o); lognormal = 0.10 (□); Gaussian rr/? =  0.19 (a ); log­
normal cT/j =  0.20 (o). The dashed hue has a slope of -1. The d a ta  is colour 
coded for increasing (z) ~ : 6.0; G.5; 7.(1; 8.0 or in the case of the monodis­
perse packing the order in which the packings appear in the bottom  inset. 
Bottom  inset: Fit param eter h as function of {z). D ata is labelled the same 
as Figure 5.2.4. The dashed line is a linear fit to monodisperse data  to act 
as a guide to  the eye. Top inset: Anti-correlation of neighbouring particles 
contact number for monodisperse distribution at {z) =  8.9 with fit to Ecjua- 
tion (5.4.1) represented by solid line. The dashed line represents the trend 
expected from an uncorrelated packing.
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5.5 Correlations in N earest Neighbour Size

5.5.1 Size Correlations in 2D

As observed for 2D packings at (j)c, there are no strong correlations in the 
size of nearest neighbours for denser packings. In Figure 5.5.1, there is little 
deviation from the expected uncorrelated value of the average neighbour 

radius. In Figure 5.5.1 (a) and (b) for small r there are deviations due 
to particles tha t might otherwise be rattlers being in contact with larger 

particles. The only way such particles are counted in this analysis is if they 
can form sufficient contacts in the interstices betw'een large particles. Figure
5.5.1 (d) shows that there is little variation of with 4>.

5.5.2 Size Correlations in 3D

Figure 5.5.2(a)-(c) shows for 3D packings that Equation (4.2.8) continues to 
describe the correlation between a and the average area of neighbouring par­
ticles Ann, for data with {z) < 9. Deviations from the micorrelated prediction 
are small.

The exception to that behaviour is the transition of Ann for lognormal 
distributions, which become flat for {z) =  11.05 and is plotted in Figure 
5.5.2(a). The transition is contiimous from the correlations observed at (z) =  
8, similar to those at 0c> to the lack of correlations at high (p. There is no data  
for other polydispersities with {z) > 8 to compare to the dense lognormal 
data.

Figure 5.5.2(d) shows some small variation with (z), the amount of in­

crease in Ann ai)pears to be gr dependent. The slight increase of R^n and 
Ann is due to larger cells having more contacts with increasing 4>.
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Figure 5.5.1: Correlations between size of discs in contact for increasing 0 
in 2D. (a)-(c) Three different size distributions with the same symbols and 
coloured in the same manner as in Figure 5.4.2. The dashed line represents 
the uncorrelated prediction, (d) Uncorrelated prediction R„„ with increasing 
(z) for the same distribution as in Figure 5.4.2.
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Figure 5.5.2: Correlations between size of spheres in contact for increasing 
0 in 3D. Plotted in (a) is lognormal a ft = 0.20, (b) is Gaussian af{ = 0.19, 
(c) is lognormal = 0.10. The plot is colovu'ed in the same mamier as
in Figure 5.4.3 with the addition of (o) lognormal {z) = 11.05 in (a). The 
solid line represents a fit of Equation (4.2.8) to the isostatic da ta  set. (d) 
Uncorrelated prediction Ann with increasing {z) for the same distribution as 
in Figure 5.4.3.
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5.6 Conclusions & Outlook

We  conclude th a t packing fraction does not have a strong effect on the  shape 

of P{z)  for soft partic le  packings due to th e  m anner in which it can be gener- 

ically rescaled for b o th  2D and 3D for a given size d istribu tion . This again 

dem onstrates th a t  the  dom inant factor in setting  the  contact d istribu tion  is 

the  size d istribu tion .

The linear trends observed in {z\a) and  (z |r)  persist a t higher 0  in 3D 

and 2D, respectively. A lthough for 3D packings w ith {z) > 9, th is linear 

tren d  begins to  break  down. The param eters of the linear fits over th e  range 

in which they  are applicable are described by th e  sam e equation  in 2D and 

3D.

Sim ilar to  th e  averages, the  variance and  th e  ratio  of variance to  m ean of 

particles of a given a and in 3D and 2D respectively, collapse independent 

of polydisi)ersity, i)rovided (z) is the same. This suggests th e  use of the 

m ean field granocentric model, which successfully predicts the  P{z)  for all 

polydispersities w ith  (̂  >  0c-

We find th a t the  linear descriptions of (a |2:) and ( r |2 ) found at 0c ^ r̂e also 

valid at higher densities. For very dense packings the  fitting  i)aram eters of 

b o th  relations in 3D and 2D appear to  tend  to  constants th a t are independent 

of polydispersity. T he value of th is fitting param eter for {r\z) as {z) —> 6 is 

sim ilar to  th a t fovmd for Desch’s law in dry  foams.

Spatial correlations in nearest neighbour size and nearest neighbour con­

tac t network also persist in denser packings, but rem ain weak, Notable 

dissim ilarities betw een the  results at high 0  to  those found a t 0c include the 

observation th a t 2D nearest neighbour contact correlations are described us­

ing only the second term  in E quation  (4.1.11) ra th e r th a n  the first used a t 0c- 

Also, 3D monodisi)erse packings show a tendency of their contact network 

to  be positively correlated  in contact num ber for dense packings. T he fitting 

param eter b describing the  trend  of this correlation decreases linearly sug­

gesting ordering for monodisi)erse jjackings at higher 0. N earest neighbour
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correlations in size disappear for the lognormal distribution for (z) > 9 in 
3D.

There is a suggestion of a transition at {z) =  9 in 3D. This has only been 
studied for poly disperse lognormal packings and in order to elucidate the 
structure of dense disordered packings it merits further investigation.
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Chapter 6 

Introduction to  R heology

In Part I of this thesis we reported on the static contact properties of jammed 
coUections of particles and investigated how these properties change as the 
distance from the jamming point is increased, this distance being tuned by 
the packing fraction. In Part II, we look at wet foam where bubbles are 
sinmlated as soft discs as outlined in Section 2.2.1. Our focus is on the 
transition between jammed solid-like j)roperties of disordered particles to un­
jammed huid-like behaviour by applying a shear stress, thereby investigating 
the jamming phase diagram (see Figure 1.2.1) through the other axis.

In Chapter 7, we will examine the constitutive ecjuation for foam in an 
annular geometry where the shear stress is inhomogenous and investigate 
whether proposed models of flow in foams and emulsions describe the flow of 
soft discs in this geometry.

In Chapter 8, we will study some emergent properties of soft disc packings 
under shear in a rotating drum  setup, which are inspired by recent results 
in foams and granular media. Among the properties th a t the two materials 
share, we are particularly interested in the static angle of repose and the 
shear dilatancy.

122
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6.1 Foam Rheology

For most common fluids the viscosity // =  cr/ 7  is a constant, where a is the 
shear stress and 7  is the strain rate. Liciuids tha t have a constant r/ are called 
Newtonian fluids. Foams are non-Newtonian, in the class of fluids which are 
called shear thinning, where the viscosity decreases w'ith strain rate.

Wet foams may be regarded as an elastic solid or a viscous fluid depending 

on whether the shear stress that is applied is greater than  the yield stress ay, 
the threshold th a t separates the two behaviours. Below the yield stress the 
foam behaves like a solid and is subjected to  elastic deformation, while if we 
now increase the stress so that it exceeds the yield stress dy, the foam will 
yield, and begin to flow so that the effective viscosity of the foam changes 
according to the shear stress applied. The yield stress of a foam is a function 
of the packing fraction of the foam [99].

While foams are a collection of interacting bul)bles on the particle scale, 
there exist empirical models to account for the flowing behaviour using con­
tinuum  approaches on the macroscopic scale. This leads to the Herschel 
Bulkley model [1(30], the constitutive equation for foam flow;

where Cy is called the consistency and is a measure of the fluid’s resistance to 
flow, 7  is the rate of strain, and (3 is known as the Herschel-Bulkley exponent.

In recent years progress has been made to connect foam rheology with 
th a t of granular materials [101]. We consider granular m atter th a t, unlike 
foam, does not deform and possesses static friction in its i)article interaction. 
In foams and emulsions the relationship between shear stress and shear strain 

ra te  is often measured at constant (/>, and the model param eters of Equation 
(6.1.1) are dependent upon 0. For granular systems measuring at constant 0 
is difficult as grains dilate uj)on shear, affecting the packing fraction. There-

otherwise
(6 . 1. 1)
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fore granular experiments are often conducted under a constant confining 
pressure. Equations of the form of Equation (6.1.1) also exist for the flow 
of granular materials but are given in terms of /i, the macroscopic friction 
coefficient, which is defined as the ratio of the shear stress a to the normal 
stress P. Equations have been proposed that aj^ply to both materials, of the 
form,

=  l-tR  + y{I),  (6.1.2)

where /  is a diniensionless shear rate. In grains, /  is related to 7 by an 
inertial rearrangement timescale, while in foams and suspensions, I  is scaled 
by a viscous timescale. y is a function for which some recent empirical 
models have been projiosed [102, 103] and takes a form similar to that of 
the Herschel-Bulkley equation. Finally, is a critical macroscopic friction 
which for granular material has been known to take a value that resembles 
that of the static interaction friction of the material. Recent experiments and 
simulations of frictionless particles have show'n that is non-zero despite 
the lack of solid friction between bubbles [103, 104, 105].
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6.2 H erschel-B ulk ley  R heology

In the last decade there has been much study of two-dimensional foams as 
a simplified model of three-dimensional foam. From an experimental point 
of view this allows tracking of individual bubbles moving in a sheared foam 
allowing velocity profiles to be found. In exi)eriments the flow of two di­
mensional foams has been studied using a number of setups. These setups 
include a linear geometry with a confining top-plate, w'here the foam was 
sheared in opposite directions by the confining walls [45] and an annular 
Taylor-Couette setup where the outer wall sheared the foam and the inner 
wall was held fixed [106].

One of the first attempts to explain the empirical Herschel-Bulkley regime 
was by Princen [107]. Develoi)ed for ordered foams, this model is based upon 
the energy dissii)ation due to slip along the crystalline i)lanes in the ordered 
structure. From the Princen model a theoretical value of the Herschel-Bulkley 
exponent (3 =  2/3 was predicted [108]. More recently, this model has been re­
fined to account for surfactant effects on viscous dissipation in the films [109]. 
Another model by Tighe et al. [110] derives the Herschel-Bulkley rheology 
from a relaxation/dissipation ansatz.

A range of values have been found for the Herschel Bulkley exponent ^  
from 0.2 to 0.5 [45, 109, 112], which has been attributed to the chemistry of 
the surfactants used [47]. For the simulation of soft discs in a linear geometry, 
the Herschel-Bulkley exponent is /? w 0.5 [43, 49, 113]. The principle
difference between experiments have been the geometries in which they have 
been conducted. Recently, it has been shown that while the Herschel-Bulkley 
relation describes foam in a setup with linear shear [49], it is inconsistent with 
rheological measurements for a Taylor-Couette (circular) geometry shown in 
Figure 6.2.1 [111], this geometry is often referred to as a Couette geometry. 
The inconsistency between the flow in different geometries is elaborated on 
in the following analysis.

In a linear geometry the relationship between the shear stress a and the
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Figure 6.2.1: Sketch of the experimental setup used by K atgert et al. [ il l]  
to shear two dimensional foams in a Couette geometry. In this setup there 
is no confining top plate. The red triangle is a section of the foam that 
is deformed into the shape formed by the black border due to the strain "} 
api)lied to the foam. CTj measures the stress on the iimer wall from straining 
the foam. On the right is a sketch of the velocity profile of the foam flow, 
which is dependent upon r.

strain rate 7  is unique for a given imposed shear, while in a Couette geome­
try this relationship can vary w ith distance to the shearing boundary. This 
non-unique relationship between a  and 7  which depends upon the external 
forcing and the geometry is called non-local rheology. Shearing in a Couette 
geometry creates a more complicated flow than  the linear geometry. For a 
continuum fluid a linear geometry will have a constant shear stress across the 
flow, while in the Couette case the shear stress will vary with 1 /r^ . For a suf­
ficiently large number of particles between the confining walls this continuum 
approach is appropriate. This allows a direct probe of the Herschel-Bulkley 
relation for a single driving rate or applied stress, provided th a t the velocity
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profile is measured. If we take a continuum description of foam and deal
only with local averages of stress cr, strain 7 and angular velocity uq then,
for continuous shear of foam in a Couette geometry, the Cauchy equilibrium 

criterion in polar coordinates (see Appendix C .l) is,

da 2a , ,
—  +  —  =  0 . (6 .2 .1)
or r

Efjuation (6.2.1) can be solved for the case of a moving inner boundary as,

(^{r) =  (̂ i f  1 • (6.2.2)

where (T, is the stress on the inner boundary, /?, is the inner radius and r is 
the radial iwsition in between the two concentric walls. The strain  ra te  in 
this geometry is given by.

7(r) = d x i 0  Ug

dr r (6.2.3)

For more detail on strain rate in polar coordinate system see Aj)j)endix C.2. 
By substituting Equation (6.2.2) and Ecjuation (6.2.3) into Equation (6.1.1) 
we obtain

^
r dr(T = ay + c , , { ^ - ^ ]  . (6.2.4)

An expression for the velocity profile can be found by substituting Equation 
(6.2.4) into Eciuation (6.2.1) giving

d'^ue 1 2ay ^
dr“̂ \ P  J r dr J  I 3 c y r  \  r dr

In general Equation (6.2.5) can be solved numerically [114].
Previously, the Herschel- Bulkley equation had been found to successfully 

describe velocity profiles in a linearly sheared monolayer by balancing the 

stresses with the drag force due to an enclosing top ])late. However, it has



6.2. H E R SC H E L-B U LK LE Y RH E O LO G Y 128

been shown for a Couette geometry that this model fails. Katgert et al. [I ll]  
sheared a monolayer of foam in the setup shown in Figure 6.2.1, for various 

values of the wall velocity Uq. Equation (6.2.3) was used to calculate the local 
strain rate 7  and Equation (6.2.2) to calculate the local stress cr(r). Two 
surprising results were foimd. Firstly, the Herschel Bulkley model predicts 
that the normalised velocity profiles should change with the driving velocity 
Uq but the profiles did not change; the velocity profiles were rate independent. 
Secondly, as plotted in Figure 6.2.2, the calculated local stress a{r) and strain 
rate 7 (r) for a given driving velocity did not collapse onto a single a versus 
7  curve. Finally, it was noted th a t there was flow below the yield stress of 
the bulk material, which was calculated from fitting the Herschel Bulkley 
equation to the shear stress measured at the inner boundary.

In other experiments it has been observed that for narrow gap systems 
of 3D emulsion flows tha t the local and global flow differ [115] (emulsions 
have similar rheological properties to foams). Goyon et al. [115] showed that 
in a narrow microchannel, where a and '} varied throughout the channel, 
tha t the local flow curves did not collapse unto a single rheological curve 
for different forcing of the emulsion in the channel. This suggests a similar 
non-local continuum model to th a t of Goyon et al. [115] as an explanation 
for the difference between the local and global rheology noticed by Katgert 
et al. To account for this non-local behaviour, a fluidity param eter

/  =  i/cr, (6.2.6 )

was introduced. This param eter / ,  is the inverse viscosity and is essentially 
a measure of a m aterial’s propensity to flow. It is position dependent. The 
fluidity param eter arises due to plastic rearrangements in flowing foams in­
ducing rearrangements elsewhere in the bulk foam. While plastic rearrange­
ments are clearly visible in dry foams, wet foams also undergo analogous 
irreversible localised plastic rearrangements which is associated with a local 
yield stress between the interacting bubbles [116].
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c o n s t i t u t i v e  — 
r e l a t i o n  a t  wa l l
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Figure 6.2.2: Scaled stress versus strain rate curve produced with setup in 
6.2.1, as shown by Katgert et al. [ i l l] .  Local flow curves in Couette geometry 
for 5 different driving rates Uq: (□) 6.31 nini/s; (♦) 2.15 nnn/s; (a )  0.615 
nnn/s; (■) 0.22 nnn/s; ( ) 0.056 nnn/s. The solid ciu've is the Herschel 
Bulkley fitted to measurements tak(>n on the inner shearing wall for different 
driving velocities. The dashed curve is the prediction of the fluidity model 
with ^ constant for the slowest and fastest driving velocities.

This non-locality is predicted when the relative stress gradient Vcr/cr 
becomes comparable to the bubble scale. In general, a system with homoge­
neous stress will have a bulk fluidity fb tha t depends only on the local shear 
rate and is given by,

where H  is the miit step function. The most favourable configuration for the 

foam is to have f  = fb everywhere, however due to the inhomogeneities in the 
flow there are spatial variations in / .  It can be shown by taking the Taylor

(6.2.7)
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expansion of f {x)  — f  to the second order [116] that the fluichty obeys an 
equation of form,

fh{x) -  f {x)  + (6-2.8)

where ^ is the flow cooperativity length, which characterises the non-local 
effects and the first derivative in the expansion of /  is zero because the 
fluidity must be a symmetric function. Effectively ^ measures the distance 
from where flow in one part of the system can affect flow in another part. In 
the emulsion flow experiment by Goyon et al. [115] it was typically several 
droplet diameters.

There have been many experiments undertaken for 2D foams in a Couette 
geometry, however, soft discs simulations have not been previously used to 
study the rheology in this geometry. In a recent work Mansard et al. [113] 
performed 2D simulations in a geometry with nonuniform stress across it, 
observing non-local flow.

The focus of this research is to test whether the experimental results 
found by Katgert et al. can be reproduced in soft disc simulations. Using 
Equation (6.2.2) and Equation (6.2.3) to calculate the local stress a and 
strain rate 7 , we investigate whether they collapse onto a single rheological 
curve or whether a non-local rheology is observed. Furthermore, we compare 
this local stress-strain rate relation to the Herschel Bulkley relation found in 
simulations of sheared soft discs in a linear geometry. Finally, we investigate 
the effect of changing packing fraction on the rheology.
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6.3 M acroscopic Friction

Even though bubbles do not exhibit any static friction, recent experiments [104] 

and simulations [103, 117, 118, 105] have shown th a t there is an effective or 
macroscopic friction that affects the flow of foams. Does this macroscopic 
friction result in a stable pile of bubbles with a non-zero angle?

6.3.1 Static  A ngle of R epose

The static angle of rej)ose is a well known pro{)erty in granular media. One 
of the most common instances of this phenomenon is the piling of sand on 
a plane surface (Figure 6.3.1 (a)). When a sufficient amount of grains are 
I)oured, a conical heap is formed. The slope of the pile describes an angle 
with the surface. The static angle of repose Ofi is the maxinuun angle the 
pile forms before particles begin to fall down the slope. In the example of 
sand, a simi)le theory allows an estim ate of the angle of repose formed by 
spherical j)articles, using Coulomb friction [119].

Considering a particle on top of a sand pile, the forces applied on it (as 
shown in Figure 6.3.1 (b)), are S, the force of the gravity on the particle; 
N , the normal force on the partick" against the smface of the pile; T , the 
frictional force on the particle.

From Coulomb’s theory of friction, T  takes a value between 0 and f^iN,

a) b)

Figure 6.3.1: (a) Sand pile with an indication of the static angle of repose, 
(b) Vector diagram of the forces acting on a grain.
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where // is the coefficient of static friction. In eqnihbrium we obtain:

N + S + f  =  0. (6.3.1)

S is decomposed in tw'o components: 5j_, the normal component, perpendic­
ular to the slope and S\\, the shear component parallel to the slope. From 
the action reaction betw'een the pile and the particle we get that:

N  = = - S c o s 9 .  (6.3.2)

The projection of the forces (Ecjuation (6.3.1)) on the slope gives:

7  = - 5 ||  = - 5 s i n 0 .  (6.3.3)

If 5x < T,  then the ratio  of shear to normal stress, gives the angle of repose:

tau6'/} =  //. (6.3.4)

This has been show'n to be a good estim ator of the friction of a material.
Despite the great challenge to understand friction at a fundam ental level 

[120], by knowing the effective friction ĵ i we are able to estim ate a value for the 
angle of repose. In foams, there is no static friction and // =  0, however it has 
been found in experiments of the flow' of foams on inclined planes th a t there 
is an angle below' which no foams will flow Lespiat et al. [104]. This non-zero 
angle has also been observed in simulations of sheared frictionless particles, 
with the 6r in different works ranging between 4° — 7° [105], 6.28° [117], 
3.4° [118], 5.76° ±  0.22° [103]. In the experimental work of Lespiat et al. 
[104] this angle w'as 4.6°. These values contrasts with 6f{ =  22° found for 

frictional granular materials [121], 9^ is ecjuivalent to and are linked to 
cTy in the same m anner as Equations (6.1.1) and (6.1.2).

In Chapter 8, we investigate if this macroscopic friction results in a foam 
with 6fi > 0 using an experimental setup and comparing it to simulations.



Chapter 7 

C ouette G eom etry R heology

Figure 7.0.1: Image of Sim ulation Cell. T he  sam ple is i)eriodic in the  az­
im uthal direction w ith discs on th e  bo ttom  in teracting  w ith discs on the  left. 
T he gold discs are fixed in the  case of th e  ou ter wall at a radius Ro =84.99 
(/?), while the iimer w'all is s itu a ted  a t /?, =  25 (i?) and has an angular ve­
locity of Uq =  2b{R)s~^.  The w hite discs are free to  move in the  bulk. The 
tra ih n g  dots represent the disc trajectories.

133
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7.1 Couette Cell Simulations

In this chapter we will examine the constitutive equation for foam in a circular 
geometry where the shear stress is inhomogenous and investigate w^hether 
recent proposed models of foam flow describe the flow of soft discs in this 
geometry.

7.1.1 Sim ulation Setup

Using the same simulation code as described in Section 2.2.1, we simulate 
the flow of wet foams using soft discs in a Couette geometry w ith periodic 
boundary conditions; an example is shown in Figure 7.0.1. For this work 
two densities are studied: 4> =  0.95 and 0 =  0.90. We generate assemblies 
of 1417-1500 discs (depending on 0) in a periodic cell with two concentric 
boundaries.

The outer boundary is moved inwards, compressing the soft discs until 
the desired packing fraction 0 is reached, then the outer wall is held fixed at a 
radial distance =  84.99(/f’). The inner boundary is kept at a fixed radial 
distance /?, =  25(i?) and when the desired packing fraction 0 is reached, 
the inner wall is set moving at velocity Uq, always in a clockwise direction. 
O ther than  the compression of the outer wall and then the clockwise shearing 
of the inner wall no other energy is put into the simulation to anneal the 
sample. We use polydisperse discs with a uniform distribution and a range 
oi R  = (i? )(l±0 .15) to prevent crystallisation. The boundaries are composed 
of discs th a t are held fixed with a bidisperse radius distribution. While this is 
a similar geometry to th a t used by Cheddadi et al. [122] many of the details 
of these simulations are different.

The sample is typically sheared for 10s — 40s dej^ending on the driving 
velocity, with a time-step of 2.5 x 10~^s. After a transient, the shear stresses 
on the boundaries reach a steady state. The duration of the transient is esti­

m ated as ^/i(ry), where 7(rj^) is the strain rate at the radius where the stress
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is equal to the yield stress. Once this condition is met we start measuring 

the velocity profile of the flow. The averaged angular velocity profiles Ue are 

plotted in Figure 7.1.1.
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Figure 7.1.1: Normalised angular velocity profiles Ue of sheared soft disc 
packings for inner wall driving velocities Uq\ (•) 200 {R)s~^\ (•) 100 (i?)s“ '; 
(•) 25 (•) 20 (•) 5 (•) 2 {R)s~^. Inset are the same
profiles but w ith a logarithmic y-axis. The solid lines are fits from Ecjuation 
(6.2.5).

7.1.2 Sim ulation Results

The exponential velocity profiles seen in Figure 7.1.1 are similar to the rapidly 
decaying velocity profiles found in granular flows and the experimental results 
conducted in [123] for the flow of 2D foams trapped between two glass plates. 
Assuming th a t a continuum description applies and by measuring the shear 
stress at the inner boundary (Tj, the local stress cr(r) can then be found 

from Equation (6.2.2). Comparing the local stress a (r)  for the outer wall 
calculated from Equation (6.2.2) and measuring the shear stress at the outer 

boundary confirms th a t Equation (6.2.2) applies in these simulations. The 
Herschel-Bulkley model predicts that the velocity should go to zero when 
cr(r) =  ay. It is shown in the inset of Figure 7.1.1 tha t there is clearly flow'
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Figure 7.1.2: Stress versus strain rate curve for soft disc simulations. The 
solid line is the Herschel Bulkley equation (Equation (6.1.1)) fit to shear 
stress data measured at and shear strain rate calculated at the inner wall for 
different driving velocities. Data labeled {*) are for a linear geometry with 
the simulation parameters unchanged [49]. The dashed black line indicates 
the yield stress. The driving velocities for the Couette cell are labeled the 
same as in Figure 7.1.1.

throughout the width of the cell and flow below the yield stress ay calculated 
for the bulk, which is found from fitting Equation (6.1.1) to data measured 
at the inner wall. This flow below the bulk yield stress violates the Herschel- 
Bulkley model. The angular velocity profiles Ue are rate independent, which 
is inconsistent with the Herschel-Bulkley prediction of the velocity profiles as 
shown in Figure 7.1.1. This reproduces the experimental results of Katgert 
et al. [Ill] where rate independence and fiow below the yield stress was 
observed.

Sinnlarly the local strain rate 7 , which is a function of radius and angular 
velocity, can be calculated from the angular velocity profiles using Equation
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(6.2.3). The data  points plotted in Figure 7.1.2 correspond to the velocity 
profiles in Figure 7.1.1. The d a ta  plotted furthest to the right for the local 

curves are the points on the inner wall. As the da ta  points move progressively 
left they correspond to the positions and velocities of the points in Figure 
7.1.1 th a t move towards the outer boundary. D ata for stresses below the 
bulk yield stress ay in Figure 7.1.2 correspond to particles th a t can clearly be 
show'n to be flowing in Figure 7.1.1. The two cjuantities are compared to the 
Herscheh Bulkley relation in the linear geometry and plotted in Figure 7.1.2. 
The simulation results show' a similar behaviour to that seen in experiment 
(see Figure 6.2.2). The local stress-strain rate curves for each driving velocity 
Uo do not collapse onto the stress-strain rate data  of the linear geometry, as 
would be ex])ected from the Herschel Bulkley eciuation. This confirms the 
flow in the Couette geometry is different to th a t in the linear geometry. Also, 

the local rheology curves do not collapse onto a single curve, suggesting a 
non-local relation.

The flow below the bulk yield stress is displayed in a series of snapshots 
of the simulation in Figure 7.1.3. From these images it can be seen that in­
side the line marking r^, the radial yield distance under the Herschel Bulkley 
interpretation, discs become mixed quickly, indicating flow from their initial 
positions. Outside Ty various coloured radial bands become ruptured due 
to the shear induced rearrangem ents caused by the moving inner w'all. Cer­
tain locations are marked by a circle highlighting an irreversible rearrange­
ment, clearly showing th a t there is flow below the bulk yield stress. The 
irreversible plastic rearrangem ents shown in Figure 7.1.3 are defined by a 
sustained switching of neighbours by a particle. Figure 7.1.3 reveals tha t the 
further from the moving inner wall, the longer it takes for a rearrangement 
to occur, confirming the profiles shown in Figure 7.1.1.
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7.1.3 Com parison with H erschel—Bulkley

Using Ecjuation (6.2.5) we are able to calculate the velocity profile as pre­
dicted by the Herschel-Bulkley theory and compare it to the results of the 
soft disc simulations. The velocity prohle is found by numerically solving 
Equation (6.2.5) using a shooting m ethod in the M a t h e m a t i c a  function 
N D S olve  [124]. The comparison is plotted in Figure 7.1.1 and for the ma­
jority of driving velocities the Herschel Bulkley j)rediction underestim ates 

the velocity profile foimd in simulation. The velocity profiles calculated from 
a numerical solution of Equation (6.2.5) do not describe the velocity profiles 

of the simulations over the range of u; we considered. F itting Equation (6.1.1) 
to the shear stresses measured at the inner wall as shown in Figure 7.1.2 gives 
an exjjonent oi /3 = 0.49 ±  0.3 consistent with experimental values [47] and 
other soft disc simulations [49].

From Figure 7.1.1 and Figure 7.1.2 we see tha t the Herschel Bulkley 
model describes neither the velocity profiles nor the stress-strain rate rela­
tionship in this geometry. However the a-'\; measurements made at the inner 
wall are consistent with those foTind in a linear geometry in both  simula­
tion and experiment. The Herschel-Bulkley equation is an empirical formula 
th a t has been used to describe flow in visco-elastic materials like foams and 
enmlsions. Though it has been cjuite successful in describing the flow char­
acteristics in these materials as well as soft disc simulations, there has been 
no all enconiimssing microscopic description of why it has been successful. 
In Section 7.1.4, we will apply another empirical model that accounts for the 
aspects of flow in foams and soft disc sinmlations tha t the Herschel-Bulkley 
model fails to describe in this geometry.
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Figure 7.1.3: Plastic rearrangem ents beyond yield stress. Four snapshots 
of a simulation of a soft disc packing under shear. The radial sections are 
coloured differently to show their initial positions and show the movement 
of the foam. The circles m ark positions where plastic rearrangem ents occur 
between different coloured discs.
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7.1.4 Fluidity M odel

To account for the discrepancy found between the Herschel Bulkley theory 

and the velocity profiles found in sinnilation, we implement a fluidity model 
for non-local flow th a t has recently been proi)osed for emulsion flow in con­
fined channels [115, 125]. The fluidity predicted for the system can be found 
be converting Equation (6.2.8) to polar coordinates

M r )  -  f {r)  +  =  0. (7.1.1)

The boimdary conditions for such a system are chosen so th a t at the inner 
boundary the fluidity is the same as the bulk fluidity given by Equation 
(G.2.7) and at the outer boundary, since the outer boundary is held fixed there 
can be no flow and hence the fluidity nmst go to zero [126]. An alternative
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Figure 7.1.4: Comparison of fluidity model velocity profiles with sinnilation 
velocity profiles plotted in Figure 7.1.1. Inset are the same profiles with 
a logarithmic y-axis. The solid line is Equation (7.1.2) fitted to the data 
Uq =  2b{R)s~^ w ith ^ =  5.9{R).
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Figure 7.1.5: Fluidity profile from sheared soft disc packings with Uq'- (•) 
200 (•)  25 {R)s~^; ( •)  2 {R)s~^. The solid lines are the solutions of
the fluidity from Equation (7.1.1) w'ith ^ =  5.9 (R).

to the condition tha t the m aterial flows as bulk at the inner wall has been 
proposed in [113] for 2D confined Poiseuille flow, where the wall fluidity is 
taken as l.Gfb- However, as seen in Figure 7.1.2, the highest Uo simulation 
behaves as bulk flow' for some particle diameters into the channel. Ecjuation 
(7.1.1) is numerically solved using M a t h e m a t i c a  routine N D S o l v e  [124] 

to determine / .
A velocity profile from the fluidity model th a t describes non-local flow can 

then be found by substituting Equation (6.2.6) into Ecjuation (6.2.1) giving
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then  su b stitu tin g  in from E quation (6.2.3) gives

(I?- r
(1 2

=  0 .

D ifferentiating and simplifying leaves the  angular velocity given as

d'̂ ue
dr2

(7.1.2)

which can be solved rmmerically for a  velocity profile. A choice for the  pa­

ram eter ^ is then  m ade by com parison of E quation  (7.1.2) w ith sim ulation 

d a ta . This com parison is p lo tted  in Figure 7.1.4 w ith  good agreem ent be­

tw een theory  and  sim ulation.

T he fluidity of the  sim ulation can be com pared w ith  the  predicted fluidity 

from Ecjuation (7.1.1). T he fluidity is calculated by inserting the  calculated  

values of local s tra in  ra te  7  from Ecjuation (6.2.3) and local shear stress a 

from Ecpiation (6.2.1) into the  delinition of fluidity E quation  (6.2.6). M aking 

th e  sam e choice of non-locality length for all Uq, th e  com parison between 

theory  and  experim ent is shown in Figure 7.1.5.

For values of r  where the  stra in  7  is significant and  the  velocity profile is 

not affected by noise there is good agreem ent betw een the  predicted  fluidity 

and  th a t foimd in sim ulation. At large r the  velocity profiles becom e less 

w'ell defined, and hence th e  fluidity profiles becom es noisier. It is expected 

th a t by nm ning  sinm lations for a longer period of tim e the  ta ils of these 

velocity profiles will becom e more stable. How'ever for sinm lations w ith low' 

ro ta tio n  ra te  and therefore low shear rates, th e  tim e to  reach a steady  profile 

in th e  ta il of th e  velocity profile is significant. F igure 7.1.5 also shows th a t 

for large r, th e  value of /  is low and therefore th e  propensity  for non-local 

rearrangem ents (irreversible i)lastic rearrangem ents th a t have been induced 

by flow' in ano ther region of the  cell) to  occur is slight. The ta il of th e  /  

sinuilation d a ta  is noisy as few rearrangem ents occur in th is region over the
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Figure 7.1.6: Comparison of the rheological curves plotted in Figure 7.1.2 
with predictions made from the fluidity model (dashed lines). The data is 
labeled the same as in Figure 7.1.5.

tiniescale of the sinnilation. The data show'n for low r in Figure 7.1.5 is
indicative of agreement with the model.

Given tha t the velocity profiles are better fit by the fluidity theory than 
the Herschel-Bulkley theory, /  is used to find the rheological model be­
haviour of the rheology of the soft disc simulations by calculating the stress 
and strain as predicted by the solution of Equations (7.1.1) and (7.1.2) and 
plotted in Figure 7.1.6. There is good agreement between theory and the 
simulation data. The fluidity prediction is particularly robust below the 
Herschel Bulkley predicted yield stress of the bulk. The same ^ =  5.9(B) 
was used in all 3 predictions. The results shown in Figure 7.1.6 compare well

with the experimental predictions of Katgert et al. [111].
Up to this point all da ta  th a t has been presented is for 4> =  0.95; in 

Figure 7.1.7(a) and (b) simulation da ta  with 0 =  U.90 is compared with the
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a
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r / < R >

Figure 7.1.7; Flow properties at cp = 0.90. (a) Angular velocity profile for 
driving velocities Uq: (•) 150(i?)s'“ ';  (•) 2{R)s~^. The sohd hnes are fits to 
Equation (6.2.8). (b) Stress versus strain  rate curve. D ata marked as (o) is 
measured on the inner wall, the solid line is this da ta  fit by Equation (6.1.1). 
The horizontal dashed line is the yield stress. The coloured dashed lines are 
predictions of the fluidity model with ^ =  5.9(i?).

fluidity model. The velocity profile is well described by the fluidity model 
in Figure 7.1.7(a) and the shear stress versus strain-rate relation in Figure 
7.1.7(b) is also in good agreement with the fluidity model. The Herschel 
Bulkley equation fitted to the data in Figure 7.1.7(b) shows an increase in 
the exponent /3 =  0.54 ±  0.05 and decrease in the yield stress relative to 
0 =  0.95 data. For both comparisons the cooperativity length is kept the 
same as before with E, =  5.9(/?).

The choice of this cooperativity length is justified by Figure 7.1.8, w'here 
E, is largely unaffected by the change in 0 =  0.95 to 0 =  0.90 with the average 
of ^ =  5.9 ±  0.3(7?). This value of ^ is consistent with other values found in 

2D simulations [113] and experiment [111, 115]. Though ^ is approximately 
constant there is a trend towards lower ^ for increasing driving velocity. The 

reason we think tha t ^ drops with u) is because of the tiniescales involved 
in inducing a non-local rearrangement. As the m aterial is sheared faster the 

deformation timescale becomes smaller than  the time it takes a rearrange-
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ment to trigger another rearrangement further away in another part of the 
flow and hence ^ decreases. In 3D enmlsion experiments [115], it was found 

th a t 0 as the density of the m aterial gets closer to 0c- It is imclear from 
our results, for the small range of 0 considered here, whether this trend  in ^ 
is more likely than  ^ remaining constant.
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Figure 7.1.8: Variation of cooperativity length ^ w ith driving velocity and 0. 
D ata for tw'o packing fractions are plotted: (o) 0 =  0.95 and (□) 0  =  0.90. 
The dashed blue line is the average of the data, ^ =  5.9 ±  0.3(B).
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7.2 Conclusions & O utlook

w ith  soft disc simulations we have reproduced the results of the experiments 
conducted by Katgert et al. [I ll]  in a Couette geometry. The flow of the soft 

discs is shown to be independent of driving velocity Uq and we observe flow 
below the Herschel-Bulkley predicted yield stress ay of the bulk. We find 
tha t the rheological curve for this geometry differs from that of a linearly 
sheared foam. In addition, we have shown in Figure 7.1.2 tha t the local 
rheology curves do not collapse onto a single rheology curve, indicating that 

the rheology is non-local.
We find tha t the fluidity model proposed by Goyon et al. [115] is in good 

agreement with the simulation results presented here. The fitting param eter 
of the coojjerativity length ^ is in good agreement with these works and the 
simulations of Mansard et al. [113]. The influence of packing fraction appears 
to be slight and the variation of ^ is much greater with driving velocity than 
with 4>. The api)arent independence of ^ from 4> is hi contrast to the results 
of 3D emulsions [115, 125], but confirms the resvilts of 2D simulations [113].

The main topic of future work should be to extract ^ independently from 
the j)article trajectories. A outline of the scheme is to study the spatial 
correlation function of rearrangements and measuring the size of transient 
swirls that appear in the flow [49, 45].

It would appear tha t consensus has not been reached on the role of bound­
ary conditions in the investigation of non-local effects. The influence of the 
boundary is highlighted in [113], which selects a boundary condition for 
the fluidity tha t is greater than the bulk fluidity in contrast to other 2D 
work [111, 126]. There is still much work to be done on the influence of sur­
face roughness and system size on non-local flow. To this end we are in the 

process of adapting the simulation procedure, so tha t simulation can be run 
in the CUDA environment on GPU. The length of time a simulation takes 
is often the limiting factor in this research. W ith the current simulation 

Ijrocedure, in order to strain the simulations sufficiently to produce a stable
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velocity j)rofile, some of the simulations with a low Uq can take longer than  a 
month of com putation time to complete. A GPU sinnilation procedure will 
enhance the speed of simulation allowing a greater examination of the pa­
rameters th a t affect non-locality and allow the investigation of larger system 
sizes.

It has been shown in experiment tha t when the gap between the con­
fining walls becomes large, the Herschel Bulkley description of the rheology 
becomes appropriate again [127]. It would of interest to steadily increase 
the size of the system and identify the point at w'hich the fluidity model and 
Herschel Bulkley model become indistinguishable from each other.

The apparent different behaviour of ^ as a function of 0 in 2D and 3D begs 
further investigation. First of which requires an investigation of non-local 
effects at nmch higher and much lower 0 to better establish its behaviour. 

It would perhaps be a focus of the enhanced simulation procedure to modify 
soft disc rheology simulations to that of soft spheres in 3D and investigate 
the behaviour of The investigation of 3D foams looks to be a particularly 
bountiful area of future work with recent developments in experiments w'ith 
x-ray tomography on foams producing results on the rheology of foams [128].



Chapter 8 

R otating Drum

Figure 8.0.1: Image of Simulation Cell. The {)ink circles are fixed and the 
blue circles are free to move. There is a buoyancy force acting towards the 
toj) of the drum. The blue discs in contact are joined by a line with a width 
tha t is proportional to the elastic repulsion between the discs.

149
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8.1 Introduction to R otating Drum

In contrast to solid grains, bubbles have no static friction. This makes the 
study of foams in the context of packing and rheology an interesting prospect 
because it removes an additional variable from the widely studied area of 
granular media [129], In this chapter we study some of the phenomena tha t 
have previously been investigated for granular materials.

We study macroscopic friction as an emergent property of a collection of 
frictionless particles and whether it leads to a non-zero static angle of repose. 
In addition to this, we will investigate shear dilatancy in two dimensional 
foams and compare the shear dilatancy found in experiment with results 
from 2D simulations. Finally, we will conunent on attem pts to measure the 
angle at which foam starts  to flow.

We study these effects through simulation and experiment of a ro ta t­
ing drTini setup. The rotating drum experiment, already extensively used 
in granular media (see [130] and references therein), is adapted for foams 
(Figure 8.2.1). The experimental portion of this chapter is based upon work 
conducted by Poulichet et al. [131, 132]. The m ajority of the experimental 
work i)resented in this chapter was conducted by Poulichet in tandem  with 
the simulations which were conducted by me. This work is compared to soft 
disc simulations of the rotating drum setup. Using simulations and experi­
ments we study a variety of param eters th a t affect the angle of repose and 
shear dilatancy of foams.
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8.2 Com parison w ith Experim ent

8.2.1 Experim ental Setup

To investigate foam properties such as the static angle of repose or dilatancy 
in the ro tating drum  setup (Figure 8.2.1), the foam must be brought to a 
perturbed state  and allowed to relax freely to  a mechanical equilibriinn. It 

is possible to  do so by applying a shear stress by rotating a top plate with 
angular velocity u j  for a certain amount of time and then cease it abruptly. 
The main features of the apparatus used are:

• The circular drum (radius R=30mm)  equipped with a rough edge 
formed by teeth of about 2mm  wide and 1mm  deep, as sketched in 
Figure 8.2.2. This ensures a non-slip boundary condition on the rim of 
the drmn.

• The surfactant solution is prepared w ith tap  water and 1% concentra­
tion (by volume) of commercial detergent (Fairy Lic^uid).

LO

LED arrayLight diffusing sheet

Surfacant solutwjn
Figure 8^.2.

)les
amera

Figure 8.2.1: Side view sketch of the rotating drum  apparatus.
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•  Bubbles are trap p ed  under a top-p late  m ade of glass. The entire setup 

is levelled by three screwable feet. T he level is regularly checked to  

ensure the  consistency of the m easurem ents.

•  T he drum  is filled w ith bubbles to  a filling height of ^3  of th e  drum . 

C ustom arily  in granular experim ents the  drum  is half filled [130] but 

due to  the  presence of a driving shaft th a t interferes w ith the  image 

analysis (as visible in Figure 8.2.3), we cannot fill the  drum  to  halfway.

•  The drum  is a ttached  to  a shaft th a t can be ro ta ted  on its axis at the 

angular velocity oj w ith a stepper m otor. A nother stepper m otor allows 

us to  ro ta te  the  axis of the system  and tilt the  plane of the  driun  about 

an angle a  w ith respect to  the  horizontal. Both q  and uj are com puter 

controlkxl. a  nm st be lower than  7° {hp < 2 .56mm  on Figure 8.2.1) 

to  ensure th a t the  foam is in the wet lim it H u,e(. The foam rem ains 

wet w ithin a w idth  above the foam /lifjuid interface where liquid 

drainage due to  gravity is prevented by caj)illary forces. This wet region 

is estim ated  as:

where (/?) is the mean radius of the  bubbles and  Iq is th e  capillary 

length. T he capillary length is defined as Iq =  w ith  p the  density 

of the fiuid, g the gravity constant and 7  ̂ is the surface tension [129].

(8 .2 . 1)

bubble
Tlnm

Figure 8.2.2: Drawing of the  tee th  on th e  rim  of the drum .
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• Light-emitting diode (LED) arrays together with a light diffusing sheet 
ensure th a t the system ’s backlight is smooth and uniform. Such a 

condition is essential for image processing.

• A camera takes snapshots of the drum and is connected to a computer 
to collect the data. The maximum frame rate of the camera is 25 
frame per second, and its resolution is 1280x1024 pixels. The cam­
era is configured so tha t we get an experimental resolution of about 

10 pixels / m m.

The different samples crcated have monodisperse. bidisperse and polydis- 
perse radius distributions. The gas used is air. The maximum duration of 
an experiment is set to three hours after which the effects of coarsening on 
the bubbles are no longer negligible.

As mention in Part I of this thesis, foams can crystallise for small values of 
polydispersity (Figure 8.2.3). In order to avoid crystallisation in bidisperse 
samples, the introduction of big {ri, = (0.99 ±  0.03)r?7m) and small {I'g =  
(0.63 ±  O.Q3)mm) bubbles were alternated at least four times during the 
preparation of one sample. The radii of the bubbles are obtained using the 
image processing software ImageJ [133]: The area of the bubble is measured 
(by plotting a circle over it), then the radius is deduced from this area.

Figure 8.2.3: Example of crystallisation in a monodisperse foam.
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8.2.2 Experim ental M ethod

A simple vector diagram  (Figure 8.2.4) is useful to  visualise the  forces applied 

on the  system . T he com ponent of the  buoyancy parallel to  the  confining 

p late { F b  in F igure 8.2.4) is the effective force applied on the  bubble pile and 

is w ritten:

F b  =  sin («) Ftotai, (8.2.2)

where Ftotai is given as,

47T
Fatal 2 PwaterQi (8.2.3)

and Pu<ater is th e  density of w ater. From E quation (8.2.2), by changing the 

angle a  the  effective buoyancy force a])plied on the bubble pile is controlled.

Bubbles are introduced into the tilted  drum , which is im m ersed in the 

siu’factan t solution to  create a monolayer of foam. T he system  is sheared 

by ro ta tin g  the  drum  for aj)proxim ately two periods w ith  a ro ta tion  ra te  

uj =  2.58°6'“ ,̂ th en  th e  ro ta tion  stops and the  foam freely relaxes for ten  

m inutes to  ensure th a t the  foam has reached m echanical equilibrium  (see 

Figure 8.2.5 and  Figure 8.2.6). In th is relaxed s ta te  th e  yield stress of the

to tal

Figure 8.2.4: Simple vector diagram  w ith the buoyancy force (Ftotai) decom ­
posed in its perpendicular (F±)  and parallel [Fb]  com ponents wdth respect 
to  the  plane of th e  drum .
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Figure 8.2.5: Change of the angle of the foam/liquid interface during the 
experiment. The drum  completes a rotation in a period. The drum  rotates 
subsequently clockwise and counter clockwise. The tilt angle is a  =  (3.5°± 
1°), the rotation rate is ui =  2.58°s“ '. The foam is composed of 2 /3  big bub­
bles and 1/3 small bubbles. Note th a t the angles are constantly shifted by 
an angle of approximately two degrees. This offset is due to the imperfection 
of the levelling. A lternating rotation in both directions allows us to account 
for this offset see Eciuation (8.2.4').

foam appears to be homogenous and so the bubble pile forms a straight line 
across the drum.

The angle of repose should a static proj)erty and should not depend on 
the api)lied shear rate. This lack of dejjendence on the shear rate is verified 
by running experiments with two different shear rates (one low u  = 2.58 
and one high lu = 6.71 where we obtain the same static angle of repose
within error bars. Therefore, the static angle of repose does not depend on 

the history. R otating the drum  for five minutes ensures the tha t foam is well 
mixed to avoid crystal patches (Figure 8.2.3).

Latin numbers in Figures 8.2.5 and 8.2.G correspond to stress and re­
laxation. This operation is carried out subsequently for a clockwise (Figure 
8.2.6(a)) and a counter-clockwise (Figure 8.2.6(b)) rotation because of the

I  !  i r  i l l l i  I V  I  I  I  I I  I  n i l  I V
<ii

; L eveling
: offsett.

10 15
P e r io d

20 25
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a)

b)

min

ot at ions

nun

ot at ions

Figure 8.2.6: During the static angle of repose experiment, the procedures 
(a) and (b) are repeated subsequently.

imperfections of the levelling of the drum. After rotating in the clockwise 
direction the angle of rej^ose 6c is recorded. Similarly, after rotating in the 
counter-clockwise direction the angle of repose 9cc is recorded. The imper­
fection in levelling the drum  leads to an offset in the angle nieasurements 

(see Figure 8.2.5), this means tha t the two measured angles {6c and 6cc)  ^re 
not centred around 0. The angle tha t the interface of the foam makes with 
the horizontal is measured when the system is completely relaxed, i.e. when 
no more rearrangement occur within the bubble pile.

The systematic errors in measuring 6r  from the imperfect levelling of 
the drum  can be accounted for when we rotate both clockwise and counter­
clockwise. Therefore we can infer 6r  with the absolute values of 6c and 

See-

(8.2.4)

The static angle of re])ose is measured six times during each experiment. The 
error is estim ated by the standard deviation of these measurements.

Note th a t the small oscillations in Figure 8.2.5 occurring during rotations 
I  and I I I  are not intrinsic properties of the foam but is due to a wobble
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caused by drum misalignment. This wobble is not problematic for static 
properties such as 9^ as it only affects the dynamics.

The camera takes an image every two seconds so there are about 6000 
images for each run. An I D L  (In t e r a c t i v e  D ata  L a n g u a c ê )[134] image 

])rocessing code is used to measure the angles 9c and 9cc  from the centre of 
mass of the bubble pile. These angles are measured only at the end of every 
ten minute rest period.

Figure 8.2.7: Diagram of rotating drum sinmlation geometry. The boTuidary 
discs which are coloured pink at the edge have their i)ositions fixed though 
interact with the blue soft discs as normal. The blue discs are free to move 
throughout the drum. The boundary discs are rotated counter clockwise at 
angular velocity w for a period and then stopped.

Centre of mass
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8.2.3 Sim ulation Setup and M ethods

Simulations of a rotating drum  are performed using the soft disc code out­
lined in Section 2.2.1, where the coefficient of elasticity k and the dissipation 
constant Cb are set such tha t the ratio of the viscous to inertial tiniescale 

tv/ti = 0.0419. While ti ^  ty the dynamics are overdamped and the iner­
tial effects are negligible. The geometry shown in Figure 8.2.7 is used for 
a variety of different drum sizes Rp.  The discs on the boundary are held 
fixed in position and have a bidisperse radius distribution with the larger 
discs having a radius of 1.24(i?) and the smaller radius 0.76(i?) in order to 
impose a no slip condition. Inside the drum  a munber of discs are ])laced 
in a disordered lattice with a polydispersity th a t is either bidisi)erse (with a 
50-50 mix of 1:1.4 radius), uniform or monodisperse. The number of discs 
placed inside the driun is such tha t typically half the drimi is filled. In ad­
dition to the elastic repulsive force and the viscous drag force between discs, 
a buoyancy force Fb is included in this sinnilation w’hich drives the discs to 
the top of the drum. Once the interior discs have settled, the boundary discs 
are ro tated at an angular velocity uj for 8 seconds. The simulation time step 
is 5 X lO^^s. After this period of rotation when the interior discs have been 
excited and mixed, the imposed shearing is stopped, the boundary discs are 
held stationary and the pile is allowed to relax. W hen the angle the centre 
of mass of the pile makes with the centre of the drum remains unchanged for 
8 seconds, the simulation is term inated.

For large system sizes we have adapted the simulation procedure so tha t 
it can be executed in parallel on graphics processing units on the CUDA 
platform. This allows an exploration of very large system size in reasonable 
com putation time.

The angle of repose Or is found by calculating the centre of mass of the 

packing after it has relaxed and measuring the angle that is made with the 
geometric centre of the drum. This angle is measured for a range of variables 

such as R d ,  Fb, u j , polydispersity and different boundary conditions.
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8.2 .4  C om parison betw een Sim ulation and E xperim ent

There are a number of differences between simulation and experiment. Prin­
ciple of which is the difference in the viscous drag. In experiment viscous 

drag between bubbles scales as w'hile in simulation the viscous interac­
tion is linear. Also, the experiment includes a glass top plate to confine the 
bubbles, adding another viscous interaction. However, in term s of finding 

viscosity is not a factor as while it slows down the dynamics, it should 

not affect static properties.
In the static case two forces compete, repulsion between bubbles and 

the compressing force of buoyancy. To compare experiment and simulation, 
at least qualitatively^, we set a dimensionless munber {Bu)  to rej^resent the 
competition between the spring repulsion (k(/?)) and the buoyancy on a 

single bubble ( F b ).

B .  =  (8,2^5)

The approximation of the spring constant for bubbles in experiment is 47T7s 
in the wet limit [5].

In experiment this buoyancy effect can be timed by changing a  (Equation 
(8.2.2)) in the experiment. However, it is not possible to set a- larger than 
7° in the experimental setup because the vertical height of the bubble pile 
must not exceed Wwet^ so to avoid the effects of drainage. This would result 
in a foam with varying liquid fraction. It is difficult to set the angle of 
the top plate a  lower than  2° and keep the bubble pile together during the 
rotation phase. This sets the limit on the range of values of buoyancy tha t 
can be exj)lored in experiment. However, in the simulation, the effect of the 
buoyancy can be studied over a wider range. The effect tha t this ratio of 

buoyancy to repulsion is discussed in Section 8.3.3.
Another effect th a t is studied in simulation and experiment and then com­

pared in Section 8.3.2 is the effect polydispersity has on the angle of repose. 

In exi)eriment a bidisperse mixture was primarily used. The polydispersity
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is controlled by changing the relative number of big and small bubbles. The 
average radius of the big bubbles Rh is (0.99 ±  0.03)mrn and the average ra­

dius of the small bubbles Rg is (0.63 ±  0.03)mm. By changing the ratio of 
the number of big bubbles to  the number of small bubbles N s, a range of 
bidisperse mixtures from a monodisperse foam of big bubbles to a moriodis- 
perse foam of small bubbles can be investigated. For consistency, the filling 
depth of the foam in the drum  is kept constant for every mixture. The num­
ber of bubbles in each sample can vary from 208 to 344 depending upon the 
composition of the mixture (See Table 8.1 below). In simulation the effect 
tha t polydispersity has on 0/f is investigated by looking at three different 
types of particle size distribution; bidisperse, imiform and monodisperse.

Another difference between experiment and simulation is the filling height 
of the drum, which will be reported on in Section 8.3.4. For the experiment 
the filling height is kept constant at one third filled but the number of bubbles 
in the drum can change by changing their average size. In sinnilation we vary 
the filling height of a drum with 285 bidisperse particles in it by using drum 
setups of different radii.

We then alter the size of the drum and the mnnber of particles in the drum 
in simulation to explore the effect of the number of particles and system size 
has on 6*̂ . The drum  is always half filled in these sinmlations.

In Section 8.3.5, using Equation (6.1.2) outlined in C hapter 6, we compare 
a value for the angle of repose tha t we extract from the Couette geometry 
sinmlations in C hapter 7 with the values we have found in the rotating drum 
simulations and experiments.

In Section 8.4, we investigate how rotation rate in simulation and experi­
ment affects shear dilatancy. We then examine how this dilatancy is affected 
in simulation by changing param eters such the viscous drag coefficient Cf,, 
the filling height of the drum  and the number of particles in the drum.

Finally in Section 8.5, we discuss the angle at which flow begins in the 
bubble pile.
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Exp No. N N , /N Du a
El 208 1.000 0.000 9.74 X 10-^ 3.5° ±  1°
E2 220 0.845 0.140 8.GG X 10-^ 3.5° ±  1°
E3 234 0.709 0.186 7.78 X 10-^ 3.5° ±  1°
E3 234 0.709 0.186 7.78 X 10-^ 3.5° ±  1°
E4A 253 0.549 0.218 6.79 X 10-^ 3.5° ±  1°
E4A 253 0.549 0.218 6.79 X 10“^ 3.5° ±  1°
E4B 253 0.549 0.218 3.88 X 10-^ 2.0° ±  1°
E4C 253 0.549 0.218 10.7 X 5.5° ±  1°
E4D 253 0.549 0.218 12.G X 10“^ 6.5° ±  1°
E5 278 0.374 0.229 5.79 X 10-^ 3.5° ±  1°
E5 278 0.374 0.229 5.79 X 10-3 3.5° ±  1°
EG 288 0.288 0.224 5.33 X 10-^ 3.5° ±  r
E6 288 0.288 0.224 5.33 X 10-3 3.5° ±  r
EG 288 0.288 0.224 5.33 X 10-3 3.5° ±  1°
E7 298 0.232 0.214 5.03 X 10-3 3.5° ±  r
E7 298 0.232 0.214 5.03 X 10-3 3.5° ±  r
E8 317 0.132 0.181 4.54 X 10-3 3.5° ±  r
E8 317 0.132 0.181 4.54 X 10-3 3.5° ±  r
E9 344 0.000 0.000 3.92 X 10-3 3.5° ±  1°

Table 8.1; Table of experimental data
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8.3 Static Angle of R epose

111 this section we compare the results of the simulations and experiments to 
determine the static angle of repose. In both  experiment and simulation we 
find a non-zero Of{. We now' present our results for how a variety of factors 
influence the value of 0/?.

8.3.1 Effect of B oundary R oughness

First we check how' rough the boundary wall needs to be in order to not affect 
the value of Oft- Using a simulation of a drum  with Dft — 26{H) filled with 
285 bidisperse discs tha t has already been brought to the perturbed state  by 
rotation, the geometry of the boundary is changed. The discs on the bound­
ary are changed so that the boundary becomes composed of monodisperse 
discs of a given radius. The simulation is then allowed to relax. The smaller 
the radius, the more discs tha t are on the boundary. W ith smaller discs and 
less size difference between boundary discs there are less gaps for the discs
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Figure 8.3.1: Angle of repose versus surface roughness of the boundary.
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within the drum  to form a stable tem plate for a structure to create a non-zero

As shown in Figure 8.3.1, 9fi has a dependence on the surface roughness 
of the boundary. The surface roughness Ra is defined as,

into its lowest energetic state obtainable and not related to the shearing 
state, which is performed with a bidisperse boundary to allow for slip-free 
shearing. This simulation only investigates by how much the packing relaxes 
from its excited state. As the boundary becomes smoother, 9r decreases and 
for very small boundary discs, —>• 0. The furthest point on the right of
Figure 8.3.1 is the bidisperse boundary used in all other simulations.

7T

(8.3.1)
—  7T

where y{ip) describes the surface of the boim dary [135]. It nmst be em pha­
sised that this surface roughness dependence is due to the packing relaxing
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Figure 8.3.2: The static angle of repose with changing polydispersity. The 
filled symbols represent experimental data. This experimental data has a 
key that is recorded in Table 8.1. (■) E1,E9; (*) E2; (♦) E8; (x ) E3; (a) 
E7; (►) E4A; (•^) E6; ( a ) E5. The simulation data is represented as (o) 
monodisperse; ( ) bidisperse; (o) uniform.

8.3 ,2  Effect o f  P o ly d isp ers ity

In Figure 8.3.2 w'e compare the effect that polydispersity has on 6ft in simu­
lation and experiment. In simulation the bidisperse mixture is a 50-50 mix 
of soft discs w'ith radius either 1.17(7?) or 0.83{R) where (R) = 10““̂. The 
uniform size distribution includes discs that have a radius which range from 
0.85(7?) to 1.15(7?). Monodisperse simulations have a single radius of (7?). 
The simulated drum with Rp = 26(7?) is half filled with N  =  285 discs. Typ­
ically the sinnilation is repeated at least 8 times with a different configuration 
of initial particle positions for each set of parameters.

In experiment a bidisperse mixture was primarily used. The polydisper­
sity is controlled by changing the relative number of big and small bubbles 
as shown previously in Table 8.1.

The data plotted in Figure 8.3.2 contain a similar number of particles in

<>()

0 0.1 0.15 0.2 0.250.05
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both simulation and experiment. Similarly, Bu  is equivalent for all systems 
shown here. There is no apparent relation between the polydispersity and the 
static angle of repose with only a slight increase for less polydisperse samples. 
One may remark that for the case of monodisperse foams the static angle of 
repose is slightly higher than for polydisperse foams. This is attributed to 
be the consequence of crystallisation within the bubble pile as depicted in 
Figure 8.2.3. This effect is more pronoimced in simulations of monodisperse 
packings which form piles with large Oft. This discrepancy between simu­
lation and experiment may be due to the absence of small vibrations from 
the environment in simulation w'hich assist the packing in overcome poten­
tial barriers and finding a lower energy state or that in experiment bubbles 
may not be exactly monodisi)erse. Our interest in this work is disordered 
packing so sinmlation results for monodisperse soft discs are omitted from 
the discussion of other aspects of this research.
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8.3.3 Effect o f B uoyancy

Another parameter that requires investigation is Bu,  which represents the 
competition between buoyancy force and bubble repulsion. How does 6f( 
change with the buoyancy force? The change of the static angle of repose 
with the dimensionless number Bu = Fb / k{t) is plotted in Figure 8.3.3.

Figure 8.3.3 suggests that the angle of repose does not change with a 
significantly in experiment but in simulation over a wider range of values 
of Bu  there is a decrease in the values of 9^. In general the results of the 
experiment agree with those of the simulation.
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Figure 8.3.3: The effect on the static angle of repose due to buoyancy. Data 
are labeled the same as in Figure 8.3.2 except that (►) represents E4A, E4B, 
E4C and E4D.
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Figure 8.3.4: Plot of simulation results of the static angle of repose versus the 
fraction of the drum filled for N  = 285 bidisperse discs with Bu = 3.55 x 10“ '*.

8 .3 .4  Effect o f  S y stem  Size

We will now address the question of whether the static angle of repose changes 
with system sizes. Dependence of the angle of repose on system size has pre­
viously been observed in experiments of chute flow of 3D foam where the 
system size is the height of the foam [104]. The first aspect to be addressed 
is whether the discrepancy between the amount of the drmn filled in exper­
iment, where it is only filled versus the simulation procedure where the 
drum is 1/2 filled. In experiment it is not possible to fill more than a third of 

the dnnn  due to the driving shaft of the drum  (which can be seen in Figure 
8.2.3) which interferes with the imaging of the bubbles.

To test whether there is a dependence on filling depth, sinmlations of 

bidisperse discs with N  = 285 were conducted for = 23(/?), 26(7?), 
36(7?), 45(7?). As can be seen in Figure 8.3.4, there is no variation in 6fi with 
changing filling depth and therefore the variation in the size of the system is
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investigated in terms of the number of i)articles N.
In Figure 8.3.5 the data for simulation results with varying nmnber of 

particles N.  The filling fraction and diniensionless number Bu  are kei)t con­
stant. Simulations show that the angle of repose decreases with increasing 
system size. The trend for both bidisperse and uniform radius distril)utions 
are similar, with 6^ tending to be slightly larger for the uniform distribu­
tion. As N  gets large, tends towards a constant. Following the treatment 
Peyneau and Roux [103] used in studying the effects of finite size on macro­
scopic friction, we plot in the inset of Figure 8.3.5 the dependence of Or as 
a function of which appears to be linear. An empirical eciuation is fit
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Figure 8.3.5: Plot of the static angle of repose versus the number of particles 
in the system. Bidisperse data are represented by (o) symbols and sinmla- 
tions with a uniform radius distribution are represented by (o). The solid 
green line represents Ecjuation (8.3.2) fitted to the data. The dashed green 
line is the value of 9 ^  as found from Equation (8.3.2). Inset: Plot of Or as a 
ftmction of The solid green line represents Equation (8.3.2) fitted to
the data.
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Polydispersity N No. of Simulations R d Bu
Bidisperse 130 10 18{R) 3.55 X 10-4
Uniform 130 9 1S{R) 3.55 X 10-4
Bidisperse 285 24 26{R) 3.55 X 10-4
Uniform 285 24 2Q{R) 3.55 X 10-4
Bidisperse 550 17 36{R) 3.55 X 10-4
Uniform 550 17 36{i?) 3.55 X 10-^
Bidisperse 675 18 40(/?) 3.55 X 10-4
Uniform 675 20 40 (i?) 3.55 X 10-^
Bidisperse 1520 17 60{R) 3.55 X 10-4
Uniform 1520 18 60(i?) 3.55 X 10-4
Bidisperse 2700 18 80(i?) 3.55 X 10-4
Uniform 2700 18 80{R) 3.55 X 10-4
Bidisperse 4225 10 100 {R) 3.55 X 10-^
Uniform 4225 10 100{R) 3.55 X 10-4
Bidisperse 6580 8 120{R) 3.55 X 10-4
Uniform 6580 7 120{R) 3.55 X 10-4
Bidisperse 14800 1 190{R) 3.55 X 10-^

Table 8.2; Table of simulation data for variation with number of discs N.

to the data  of form,

^  (8^3.2)

where 0"  ̂ is the value of the Ofi as N  ^  oc and ^  is a fitting constant. 
F itting Equation (8.3.2) to the data yields th a t 6 ^  =  (4.82 ±  0.15)° and 

A = (60.6 ±  3.6)°. This value of the 6*“  is consistent with tha t of other 
simulations and experiments of foam [103, 104, 105, 117].

In exi)eriment it was not possible to opt for a drum of a different size 
because of the lim itations of the experimental apparatus. Instead the size 
of the bubbles were altered and microbubble samples were created with (/?) 

from 400/irn to 600//m. Various system sizes are investigated experimentally, 
from 234 bubbles to 1108 bubbles. It was not possible to  prepare larger 

systems because if the bubbles are too small, they can assemble in double
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Figure 8.3.6: The effect on the static angle of repose with increasing system 
size when buoyancy is matched between simulation and experiment. Exper­
imental polydisperse data is represented as (■), all other data is as before. 
Inset: Variation of simulation Bu  with system size.

layers. However, changing the size of (/?) also affects Bu  through Ecjuation 
(8.2.5). This means for increasing N  in experiment that Bu  is decreasing. 
In order to match simulation with experiment, the buoyancy force in the 
simulation needs to be altered for each system size. The Bu  matched data 
between sinmlation and experiment for increasing system is plotted in Figure 
8.3.6. The experimental data exhibits a similar trend to that shown in Figure 
8.3.5, where larger systems have a smaller On. The simulation results are in 
good agreement with the experimental data for all system sizes.
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Figure 8.3.7: Macroscopic friction versus viscous number measured on the 
inner wall of Couette simulations for two packing fractions: 0 =  0.95 (o); 
<t> = 0.90 (o). The solid line is Ecjuation (8.3.3) fit to the data.

8.3 .5  C om parison  w ith  C o u e tte  S im u lations

Returning briefly to Ecjuation (6.1.2) outlined in Chapter 6. If we use the 
data measured on the inner wall of the Gouette simulations in Ghai)ter 7 for 
a variety of driving velocities at two different 0 and then rescale this da ta  by 
dividing a by the normal stress on the walls of tlie sinnilation P  and then 
plot this against a dimensionless shear rate given by /  =  we see that
this da ta  collapses in Figure 8.3.7. Then substituting a form of y{I)  proposed 
by Peyneau and Roux [103] into Equation (6.1.2) we get

= Hr +  AI^.  (8.3.3)

When Equation (8.3.3) is fit to the data plotted in Figure 8.3.7, a value of 
the exponent b =  0.47 ±  0.07 is found. The value of macroscopic friction 
indicates 9f/ =  (4.2 ±0.6)°, in agreement with the rotating drum simulations.
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8.3.6 D iscussion  o f A ngle o f R epose

Let us discuss how a static angle of repose can exist if the bubbles do not 
exhibit any solid friction. The bubbles are trapped in the teeth on the edge of 
the drum and in turn frustrate bubbles above and so on. The boundary here 
creates a no slip boundary condition and creates a template for the bubbles 
located at the edge of the drum. Small systems have a larger proportion 
of bubbles on the boundary than large systems. Therefore small systems 
have less possibility to rearrange to a lower energy configuration than larger 
ones, leading to the static angle of repose being larger for smaller systems. 
This phenomenon is discussed for granular systems in Pouliquen and Renaut 
[136]. The authors employ the term effective friction. This effective friction 
is composed of a solid friction and a friction due to geometrical frustration. 
In the case of wet foam, this effective friction only depends on the geometry 
because there is no static friction. This frustration of a bubl)le being unable 
to flow j)ast other bubbles due to their geometric arrangement can be thought 
of as a microscopic yield stress and hence the origin of the angle of repose.

If we imagine an experiment w'ith an infinite number of bubbles, the finite 
size effect in this situation vanishes. We observed in Figure 8.3.5 that the 
simulation data strongly suggests that the static angle of repose tends to a 
constant (~  4.8) as we increase the system size. This implies an angle of 
repose exists whatever the size of the system.

Measurements in a three-dimensional chute flow' foam experiment by 
Lespiat et al. [104] have shown an angle at which the flow starts of 4.6°. 
This angle also increases for smaller systems, which corroborates our find­
ings. It is interesting to note that the values oi 6fi found in 2D simulations and 
experiments match those of 3D simulations [103] and 3D experiments [104].
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8.4 Shear D ilatancy

173

Shear
stress

Figure 8.4.1: Typical stick-slip scenario in monodisperse foam. The change 
in configuration induced by shearing leads to an increase of free volume.

8.4.1 C oncept o f D ilatancy

Dilatancy is the tendency of a material to  expand when it is sheared. This 
term  was introduced by Reynolds [137] in the nineteenth century in the con­
text of granular media. In this two-dimensional setup, the packing fraction 
is defined as the ratio of the area occupied by the bubbles and the total area 
occui)ied by the foam. W hen the system is sheared the foam exi)ands and 
consequently the packing fraction becomes lower.

This property can be explained phenonienologically. The ])articles are 
trapped in the bulk of the material. Wlien the system is subjected to a shear 
stress, the particles are rearranged within the pile and may have to slip or 
roll over each other (Figure 8.4.1). This leads to an increase of the area of 
the foam. Dilatancy of 2D foams w'as first described in theory and simulation 
by Weaire and Hutzler [138] and later a further theoretical model of dilatancy 

in foams was expanded upon by Rioual et al. [139]. Observations of dilatancy 
in experiments of 3D foams have been reported [104, 140]. Shear dilatancy 
has been previously reported for two-dimensional soft discs [43].

In this section we investigate dilatancy in the same rotating setup as 
before in simulation and experiment and compare the results.
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Figure 8.4.2: Example of a dilatancy experiment on a bidisperse sample of 
285 bubbles. The rotation rate is (11.77 ±  0.05)°s“ .̂ The vertical (red) line 
marks the moment at which the drum  stoj)s rotating.

8.4 .2  M e th o d s

Dilatancy is a dynamic property, as opposed to the static i)roperty the angle 
of repose. In the case of 2D wet foams and granular material this may be 
investigated by measuring how much the area of a packing expands a« the
system is sheared. 6(p is the change in packing fraction due to shear and is
defined as

d(j) (prest 4^shear

where 0res« is the packing fraction at rest and (pshear is the packing fraction 
during shear. S(f) >0 implies th a t 0 is decreasing when shear stress is applied 
and tha t the foam is undergoing shear dilation.

Simulations were performed in the same m anner as in Section 8.2. To 
perform the experiment, the drum  is filled with approximately 250 bubbles 
in the same way as for the static angle of repose experiment. Shear stress 
was applied by rotating the driun at a rotation rate uj. Using image analysis 
(IDL) the centre of mass of the bubble pile was calculated from which the

Drum at restRotating drum
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Figure 8.4.3: Example of a dilataiicy simulation on a bidisperse sample of 
285 bubbles. As in Figure 8.4.2, the vertical (red) line marks the moment at 
which the drum stops rotating. Rotation rate ui =  30

packing fraction was found by the following method.

The radial distance of the centre of mass from the edge of the drum hcoM  
is measured. Then assuming the distribution of particles is homogeneous, the 
angle that the edge of the pile makes at the dnnn  edge with the geometric 
centre of the drum, f3 can be found by,

4i?£)Sin^(f)
R d -  hcoM  =   . , n\\- (8.4.1)3(/3 -  sni(^))

Using (5, the comparable homogenous area Aocc of the pile is calculated,

^occ= ^ ( / 3 - s i n ( ^ ) ) .  (8.4.2)

The area of the particles in drum is known,

N  Q  ^ b o u n d a r y

=  +  —  nrj ,  (8.4.3)
2=1  2=1
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where r, is the radius of a particle i. The packing fraction 0 is then found 
from

(8-4.4)
■^occ

The packing fraction of the system at rest in experiment is found to be 

0 =  0.9 which is larger than the random close packing (recall 0c ~  in 
2D). This may be caused by partial crystallisation or boundary effects. In 
the simulated system with N  =  285, 0 is much lower at 0.837 ±  0.004. This 
difference from 0c is a ttributed  to the confinement of the system.
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Figure 8.4.4: Dilatancy effect for different shear rate for both sinnilation 
and exi)eriment. A bidisperse foarn (composed of 2/3 of big bubbles (radius 
(0.99 ±  0.03)r?!m) and 1/3 of small bubbles (radius (0.63±0.03)mm)) and 
a tilt angle a = (3 .5 ± l)°  is used to perform the experiment. A bidisperse 
foam of 285 bubbles with a similar diniensionless number B u  is used for the 
exi)erinient.

8.4.3 Results

Figure 8.4.2 and Figure 8.4.3 disi)lay the change in packing fraction wdien 
the system is sheared in experiment and simulation. Note that the wobble 
in the top plate of the experimental setup creates an oscillation around the 
average value of (pshear during rotation and therefore induces a small error. 
In both cases, the system clearly exhibits shear dilatancy: the bubble pile 

expands when a shear stress is applied.
Dilatancy is greater for larger shear rates in both simulation and ex­

periment as displayed in Figure 8.4.4. This is consistent with the results 
of Bagnold [141] who noted that dilatancy of granular materials altered with 
shear rate. However, we observe a linear trend for both simulation and ex­

periment, while Bagnold noted a quadratic dependence on the shear rate. In 
a similar but confined sinnilated system Langlois et al. [43] found a pow'er law
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Figure 8.4.5: Dilatancy effect for different system size in simulation. A bidis- 
perse foam of 285 bubbles with B u  = 3.55 x 10“ '* is used for the sinmlation. 
(•) are for simulations when the drum is half hlled and ( a ) for 1 / 3  filled drum. 
Inset: Dilatancy effect for different coefficient of viscosity Cf,.

dependence on the shear rate with an exponent of 0.4. Despite this common 
trend we observe a discrepancy between the value of the change of j)acking 
fraction for both the experimental case and the simulation. We also note a 
decrease of dilatancy with system size in Figure 8.4.5.

There are a number of factors that may affect the difference between the 
simulation and experimental results for shear dilation. First of all is the 
hlling height: it is found in simulation tha t if the drum is filled to a lower 
fraction, the value o f i n  contrast to increases (Figure 8.4.5). Also, 
altering the coefficient of friction c;, can help bridge the disparity between 
simulation and experimental results (inset of Figure 8.4.5). The combination 

of all these effects have not been simulated to ascertain if the experimental 
result can be reproduced. It may be the case that a correct rescaling of the 
shear rate results in a collapse of results in Figure 8.4.4 onto the same trend.
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8.4.4 Discussion of Dilatancy

We have shown that the dilatancy effect is more im portant when the system 
is sheared at a higher shear rate. This is similar to the dilatancy in 3D foams 
contimious shear observed by Marze et al. [140]. Increasing the shear rate 

leaves less time for bubbles to rearrange, requiring for bubbles to flow past 
each other by moving around each other and consequently the area increases. 
We get a constantly higher dilatancy effect in experiment than in simulation 

(see Figure 8.4.4). This may be the result of an additive viscous drag created 
by the toj) plate or due to difference in the viscous interactions in simulation 
and experiment. The presence of the confining top plate during shear means 
that a drag is imposed on the entire bubble pile rather than just at the 
boundary, as in the simulation. This drag api)lied to the entire foam may 
add to the frustration of the flow’ of the bubbles, again leading to a greater 
increases in the area of the bubble pile.

There is a competition between the rotation rate and the time scale of 
bubble relaxation. The time of relaxation depends on viscosity therefore it 
takes longer for bubbles to relax when a viscous drag is added and conse- 
(juently decreases the packing fraction 0.
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8.5 Angle W hen Flow Begins

Onset of gramilar flows have been studied by Pouhquen [142] and Pouhquen 
and Forterre [143]. Hysteresis between the angle at which the pile starts 

flowing and at which it stops flowing has been observed in the flow' of granular 
materials dow^n inclined planes. Using the rotating drum setup we investigate 

when the angle at which flow' starts Ogtart and w'hether this is the same as 
9fi. Starting w'ith a relaxed pile w'ith non-zero 6^, we rotate the drum in the 
opposite direction. Ideally, the foam would ro tate as a solid body rotation 

before starting to flow. When the rotation w'ould be equal to 9start, one 
w'ould expect a flowing behaviour different from solid body rotation. As 
seen in Figure 8.5.1, the transition between the solid body rotation and the 
flowing behaviour is too smooth to accurately determine the onset of flow.

I
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Figure 8.5.1: Angle at which the flow starts in simulation. The solid line is 
the angle the centre of mass makes relative to the centre of the drum. The 
dotted line is the angle the centre of mass would take should the pile rotate 
as a solid body and the dashed line marks the average angle of repose for 
this system. D ata is for a bidisperse packing of 675 discs with R d = 40(i?).
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8.6 Conclusions & Outlook

By means of experiment and simulation of two-dimensional wet foam in a 
rotating drum  configuration, we have dem onstrated the existence of a static 

angle of repose. The results obtained are robust and reproducible within error 
bars. Limited polydispersity in samples that do not crystallise does not have 
a significant effect on the value of dj .̂ Except in the case of monodisperse size 

distributions, the values of djj in simulation and experiment are in agreement. 
This agreement is particularly good wiien Bu  in simulations is tuned to that 
of the experiment. Small changes of buoyancy do not affect Or , but the size 
of the system has a pronomiced effect. The smaller the system, the higher the 
static angle of repose. Small N  means that there are less degrees of freedom 
to relax to a low'er 9f(. When the system ’s size N  is increased, the angle is 
found to tend to  a constant.

The simulation gives remarkably accurate results for the angle of repose 
Oft considering the simplicity of the model used. The behaviour of the simula­
tion results match those measured in experiment very well. St\idying bubbles 
is a good way to isolate the geometrical frustration effect occurring in gran- 
Tilar materials. The puzzling question that remains to be answered is: W hat 
sets this angle? So far no convincing theoretical argument has been given for 
the size of this angle.

The observation of shear dilatancy also requires further study to explain 
the discrepancy between the results in experiment and in simulation. This 
may require a modification to the bubble model to describe this effect or it 
could require finding a correct rescaling of the viscous interactions from the 

imposed driving velocities in simulation and experiment. For a comprehen­
sive comparison of the shear dilatancy, an experimental setup th a t does not 
have an artefact affecting its rotation of the foam is recjuired, or altering the 
simulation to include this artefact.



A ppendix A  

Statistical cutoff

For all equations fitted  and figures p lo tted  of averaged (juantities, any binned 

d a ta  w ith less th an  100 particles are om itted  from P art I of this thesis. This 

cutofi’ was decided upon after inspection of the data . We found by apjilying 

an arb itra ry  cutoff for all averaged quantities of 100 particles w’as sufficient 

to  filter out noise while preserving the trends in the data.

In Figure A .0.1 w'e have show'ii the  relationshij) betw'een the average num ­

ber of contacts a particle of size a has for all the polydispersities. We have 

shown both  after (in Figure A .0.1 (a)) and before (Figure A .0.1 (b)) the  cu t­

off has been applied. The trend  in the d a ta  is unaffected by the inclusion of 

more d a ta  points in Figure A.0.1. This exam ple is typical of the o ther plots 

w'here we apply th is cutoff.
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<  zla >

3D
a

0 2

oo<  zla >

a

Figure A.0.1: The average contact number for particles of a given area a at 
0c ill 3D for all ( V)  monodisperse, (0) bidisperse, (□) uniform, ( a ) Gaussian 
and (o) lognormal size distributions at all the widths aft we have considered 
(see Figure 2.3.2). The solid red line is a fit to Equation (3.2.3). In (a) only 
data binned with more than 100 i)articles have been plotted, while in (I)) all 
data  has been j)lotted.



A ppendix B

Ordering in 3D M onodisperse  
Packings for Increasing Packing 
Fraction

To investigate w hether packings become more ordered w ith increasing pack­

ing fraction for the  packing algorithm  ou thned  in Section 2.2.2, th ree m onodis­

perse i^ackings a t th ree different are analysed for local order. T he three 

packings are a t (p =  (f)c, (f> =  0.75 and 4> =  1.00. For each of these packings the 

Bond O rientational O rder P aram eter (B O O P) is calculated for each particle 

and p lo tted  in Figure B.0.1.

T he B O O P or S teinhard t order param eter is a m easure of the  ro ta tional 

order w ithin a sam ple [144] and has proved useful in identifying crystalline 

structures. T he bond orientation param eter is based upon the  association of 

a spherical harm onic Q„ii =  Oij) w ith  each bond in the  system , which

in th is case is defined as a contact. A contact in th e  context of the  B O O P is 

defined as a vector r^j jo ining the centre positions of neighbouring particles 

i and j .  (ptj and 9ij are th e  polar and azim uthal angles of th is bond w ith 

respect to  a spherical coordinate system . In order to  guarantee d irectional 

invariance of th e  B O O P only even spherical harm onics are considered. For

184
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synnnetric ]:>ackings the first non-zero results are obtained  for / =  4 and / =  6. 

The averaged 4̂  ̂ and 6'^ spherical harm onic are defined as,

9 ^  Ui
771= — 4 j  = l

i j )

1 / 2

m = —6 j = i

1/ 2

(B.0.2)

where is the  spherical harm onic, n, is the  num ber of contacts of the 

particle being considered and N  is the  to ta l num ber of particles w ith the 

system  [144, 145]. Each crystal s tru c tu re  has a unique set of Q 4  and Qq w ith 

which it may be identified and the values of some com m on crystal s truc tu re  

are shown in Table B .l.

In F igure B.0.1 the  and Qe values for fee, hep and bcc crystals are 

p lotted . It has been shown in experim ent th a t packings of m onodisperse

^  =  ^RC'P <t> =  0.75 <t> =  1.00

(a)

Qi

(b)
04

06

Xc)
Qa

Figure B.0.1: Bond O rien tation  O rder P aram eter for a packing of m onodis­
perse particles for increasing (f) labelled from left to  right, 0  =  0ci 0  =  0.75, 
0  =  1.00. T he plots are coloured w ith a spectrum  representing the  frequency 
of occurrence of a given pair of Q 4  and Qq, where blue indicates low' occur­
rence through to  red, which indicates high occurrence. T he values th a t are 
associated w ith  crystaUine ordering (see Table B .l) are shown as (•).
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Structure Q4 Qg
FCC 0.19094 0.57252
HCP 0.09722 0.48476
BCC 0.50918 0.62854

Table B .l: Table of Bond O rder O rien ta tion  P aram eters of some connnon 
crystalline structu res [146].

foams tend  to  form crystal structu res th a t are predom inately fee and  hep. In 

the  first image at 0c a wide range of Q 4 and Qq values are found for a packing. 

This is rem iniscent of a liquid system  [145] and is unsurprising as th e  random  

closed packed m onodisperse spheres were first studied as a model for licjuids 

[15]. W hen the  B O O P is studied at 0  =  0.75 which is slightly above the 

packing fraction associated w ith fee crystals of 0  =  0.7405, in F igure B.0.1 

(b) there is a higher cluster of values of the B O O P but this is not at any 

characteristic value of crystal ordering. This indicates th a t the  sam ple is 

becom ing more ordered. This is again shown in B.0.1 (c) where there are 

some particles th a t have the  and Qe values of an hep crystal bu t the  

m ajority  of particles do not. This im])lies th a t the packing is more ordered 

but not a fully crystalline state . T he inability  to  get to  an expected crystalline 

s ta te  is due to  the  sim ulation procedure. T here is no annealing step  in the 

CG m inim isation m ethod th a t allows a packing to  overcome a local energetic 

m inim um  and therefore cannot find the  global energy m inim um  which in th is 

case would be an fee or hep crystal. A nother possibility is th e  tem plating  

effect of a confining container is required for packings to  order fully.



A ppendix C

Stress and Strain R ate in Polar 
Coordinates

C .l  Shear Stress

Here we present a derivation from Tim oshenko and Goodier [147] for the 

shear stress in i)olar coor(hnates.

Consider the e(inilibrium of a small element 1234, cut out from the plate 

by the  radial sections 04, 02 norm al to  the p la te  and by two cylindrical sur­

faces 3, 1, norm al to  the  plate. The norm al stress com ponent in the radial 

direction is denoted by cr^r, the norm al com ponent in the  circum ferential di­

rection by aQe, and the  shear stress com ponent by Oro, each symbol represent­

ing stress at the  m id-point of the  element P  w ith  coordinates (r-|-‘̂’'/2 , 0+^^/2).  

On account of the variation of the  stress, the  values at th e  m id-points of the 

sides 1,2,3,4 are not quite the  same as the values arr,o-ee,<^re, and are denoted 

W  c^rr.i, etc. in Figure C.1.1.

By balancing the forces in the  tangen tia l direction, we can find th e  Cauchy 

ecjuilibrium condition. We have the  norm al forces on side 4, GrrAdr and 

on the  opposing side 2, — The  shear stress on side 4 also have a 

com ponent in the azim uthal direction, given by, are.A^r s \ \ \{d 6 /2 ) ,  which can
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rr. 3

e e .4

r8, 2

ee . 2

Figure C.1.1: Iiifinitesinial elem ent in polar coordinates.

be approxim ated to  Ore.idTdO/2. T he sam e approach can be taken for side 

2 where the  shear stress com ponent gives are.2drdO/2. The shear stress on 

sides 1 and  3 are given by + dr/2 )d0  and (Jr0,z{T — dr/2)d,9 respectively.

Sum m ing up all th e  forces in th e  tangen tia l direction, we ob ta in  the 

equation of equilibrium

1 dv dv
-  (^ee.2)dr +  -{arOA +  are.2)drd0 +  ((7 0̂,1 (r +  y ) -  ~  y

(C .1 .1 )

Dividing by drdO th is becomes

(Jee.2 -(ToeA , 1 .  , ,   ̂ +  f ) -  a,0.3(r -  f ) _
 7?,---------1“ o(l7re,4 +  <̂ re,2) H---------------------J (C . l . i jdO 2 dr

If the  dim ensions of th e  element are now taken sm aller and  smaller, to
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the hmit zero, the first term of this equation is in this hmit daee/dO. The 
second becomes are, and the third d{r(Jre)/dr. Differentiating the third term 
results in

— I- CTro +  (7̂ 0 +  r —— — 0. (C .l.3)
oO or

Then dividing by r  gives,

i ^  +  H ^  +  ^ = 0 .  (C.1.4)
r oO r or

If we assume that the solution has circular symmetry, as is the case in the 
Taylor Couette geometry, then becomes zero. If we change the notation 
so that Oj-e =  cr, then Equation C.1.4 becomes

(Cl,6)
or r

the same expression as Ecjuation (6.2.1).
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C.2 Strain Rate

Here we reproduce the derivation found in Acheson [148].
The infinitesimal strain rate tensor in generalised coordinates is defined

as
dui duj 
dej~^ dCi

(C.2.1;

where u  is the flow velocity vector and e is the position vector. Writing this 
generally in terms of the vector components gives

=  (Ci • V )(u  ■ Bj) +  (cj ■ V)(w • e^), (C.2.2)

which can be written more generally again as

iij = [(e* • V)u] • Bj) +  [{bj ■ V)u] ■ B̂ . (C.2.3)

Looking for the shear strain rate in polar coordinates, gives V 
then the shear strain rate is

frO dr
{ Ur Cr  +  U g e g ) ee +

0
rdO

[urCr + ueee)

In polar coordinates the unit position vectors have the identities

dcr
de
dee
de

—  — C r

Therefore Equation (C.2.4) simplifies to

 ̂dr  rdO '  ’

(C.2.4)

(C.2.5)

(C.2.6)

Ire —
due
dr

+
1 f  dUr dug

+  UrCe + -TT UeCr
do dO

(C.2.7)
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When the dot i)rodiict is aj)phed then the only non zero terms are

dm 1 ( d u r

d9
—  U q (C.2.8)

Assuming that there is no flow in the radial direction and choosing the 
convention of 6 so that the flow is always positive, with a change of notation 
so that =  7 then we recover.

dxie
dr

ue
r

(C.2.9)

the same expression as Equation (6.2.3).
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