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Summary

This thesis concerns the structure and flow properties of wet foams. We
primarily use computer simulations of soft particles to model the behaviour
of disordered wet foams. We investigate the properties of 2D and 3D polydis-
perse packings of soft particles and the flow of 2D soft discs as model systems
for wet foams.

We study how the polydispersity of packings affect the structure of dis-
ordered packings. We examine the correlations between size and contact
number of particles in jammed packings at the random closed packing den-
sity ¢, in two and three dimensions for a wide range of size distributions.
Our key finding is the existence of universal correlations between size and
contact number that is independent of the polydispersity. This empirical re-
sult allows us to formulate a mean field approach based on the granocentric
model that yields excellent agreement with our data.

We pose the question: how locally random are disordered packings of
particles” Many models proposed to describe the properties of packings
implicitly that the packings are spatially uncorrelated. Our measurements
show correlations in both size and contact number of nearest neighbours. In
general, the average contact number and the average size of neighbouring
particles do not correspond to the global mean of contact number and size.
In 3D packings larger particles are surrounded by smaller particles and vice
versa. Moreover, in both 2D & 3D, particles with few contacts neighbour
particles with many contacts. Nevertheless, these correlations are sufficiently
weak that the predictions obtained from the granocentric model agree well
with our data.

The effect of increasing packing fraction above ¢, in our simulations is
investigated. We find that for a given size distribution, the contact number
can be rescaled onto a master curve for any packing fraction in 2D and
3D. At higher densities the correlation between size and contact number

remains independent of polydispersity. Our model to predict the contact



number distribution from the size distribution is shown to be valid for denser
packings. The spatial correlations found at ¢, persist at higher packing
fraction.

The empirical Herschel-Bulkley equation is commonly used to described
foam rheology. This empirical description demands a unique rheological re-
lation independent of geometry. Recent experimental results have shown the
inadequacy of this description in confined geometries where the typical size
of confinement is 10-100 particle diameters.

We reproduce these experimental results in 2D simulations and similarly
find a non-unique position-dependent rheology, referred to as a non-local
rheology. Furthermore, we apply a fluidity model proposed for 3D emulsion
flows that captures the rheology of our simulations. We investigate how this
model is affected by packing fraction.

Frictionless particles have been show to have an emergent macroscopic
friction in both simulation and experiment. Granular materials form piles
with a characteristic angle of repose, which is attributed to the static friction
that exists between grains. We show that a static angle of repose is also
found in frictionless matter, such as wet foam. This result is found in 2D
simulations and compared with 2D experiments for a variety of parameters.
This angle in the limit of infinite system size tends to =~ 5°. We also observe

dilatancy when shear stress is applied to the system.
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Chapter 1
Introduction

Foams are found in every facet of our daily life, from the soap we wash with
and the coffee we drink in the morning, to the bike helmet that protects the
author as he travels to work, perhaps the chair you are sitting on right now.
You may find foam in the cushioning of your shoes as you play sport, and
hopefully find it in the delicious pint of beer with which the foam physicist
typically relaxes. Foams are undoubtedly ubiquitous.

In addition to their omnipresence in everyday life, foams have a wide
range of industrial applications. They are used in applications as diverse
as ore separation by flotation in mines, oil recovery, fire fighting, and dozens
others, including the preparation of solid foams for the construction for stable
but lightweight technologies.

If nothing else foams are beautiful, see Figure 1.1.1. This appreciation
of the aesthetic structures foams form has been the inspiration for the ar-
chitecture of iconic buildings like Beijing National Aquatics Center and the
Olympiastadion in Munich.

Most relevant to this work, foams have been described as an ideal model

for the study of disordered complex systems [1].
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Figure 1.1.1: Experimental image of bubbles in a Guinness foam. Average
bubble diameter is 53pm. Image courtesy of G. Ryan.

1.1 Foams

The typical foam is a two phase material that consists of gas bubbles dis-
persed in a continuous liquid phase with a surfactant that stabilises the
foam [2]. Foams are characterised by the fraction of gas enclosed in the total
volume of the foam, this is called the packing fraction ¢. There are two limits
to the packing fraction of foams. If the packing fraction is high, (¢ ~ 1),
the foam is dry. If the packing fraction is low, but not less than a critical
packing fraction ¢, the foam is wet. This ¢. is the random close packing
density, the point at which all the bubbles are just in contact and is related
to the jamming phase transition point J, which will be discussed in detail
later on. The value of ¢. depends on dimension, in 3D, ¢. =~ 0.64 and in 2D,
¢. =~ 0.84. A range of packing fractions in 2D are shown in Figure 1.1.2.
The two limits of wet and dry foam have qualitatively different structures.
Bubbles in a dry foam are forced by their surface tension to minimise their

surface areas, resulting in polyhedral structures that follow the well defined
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rules known as Plateau’s laws [4], which specify the angle at which film meet
and the number of films that can meet at a vertex. The ideal structure is
one that possesses the lowest surface energy while obeying Plateau’s laws.
In this configuration, the bubbles in the foam are separated by a thin film of
liquid, the edges of which are called Plateau borders. As the foam becomes
wetter, and ¢ decreases, the Plateau borders swell until the bubbles become
spherical. In the wet limit bubbles can be well approximated as spheres with
harmonic repulsion.

Foam may be studied on several length scales. The smallest length scale is
of the size of surfactant molecules, at this scale the chemistry of the particles
are most important. An intermediate, or mesoscopic length scale is on the
order of the individual bubble size. This scale is the basis of our investigations
in this thesis. At the mesoscopic scale where each bubble is discernible from
one another, individual bubbles interact and deform on contact. Finally at
the macro-scale, where bubbles form as an ensemble that is considered a foam
and forms a continuum. On this length scale the complex interactions at the
particle level produce the emergent behaviour of foams. In such a picture we
can consider macroscopic quantities like the rheology and the bulk modulus.
The focus of this thesis is the employment of simulations on the bubble scale

to study macroscopic properties.

Figure 1.1.2: Structure of 2D foam simulations for different packing fractions
¢, taken from Bolton and Weaire [3]. The figures range from dry foam on
the left to wet foam near ¢. on the right.
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Figure 1.1.3: Force balance on a deformed bubble. The dimensionless com-
pression of the bubble is £. = (R=h)/R.

The dominant interaction of a static wet foam is the repulsive interac-
tion between bubbles. This interaction is governed by the Young-Laplace
law, which describes the balance of pressure difference P across a gas-liquid

interface [2] as
27s
R b

where R is the radius of the bubble and ~, is the surface tension. When a

P=

(1.1.1)

small force is applied to a bubble, it is balanced by the pressure across the
thin film, giving
P = WT;P, (1.1.2)

where 7r7"12f is the area of the facet flattened by the force. To get an expression
for the force on a bubble being deformed we define the deformation 0&., where
& = (B-h)/Rr is a dimensionless measure of the compression [5]. The radius of

the flattened facet, by Pythagorus’s theorem, can be expressed as

re=H =k, (1.1:3)
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then rewriting Equation (1.1.3) in terms of &, gives

1

= R*— (R* + R°¢. — 2R?¢,). (1.1.4)

N

In the limit of small compression when £. ~ £, gives an approximation of
the flattened facet as
r} ~ 2R%5¢,, (1.1.5)

ignoring terms of O (4€?). Substituting the previous expression and the

Young-Laplace law into Equation (1.1.2) gives
F = 4wy, R)E,. (1.1.6)

Thus for small deformations, the interaction between bubbles is harmonic

with a spring constant kK = 4m,.

“A‘\ . .
(0’(’ .Q .v“'
e T

Figure 1.1.4: Experimental image of an emulsion packing. The average par-
ticle diameter is 55um. Image courtesy of G. Ryan.
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Foams have a tendency to be disordered with no long range structure. In
this regard foams resemble other amorphous materials like emulsions (Figure
1.1.4), soft pastes and particulate gels [6]. Like foams these materials have
a finite interaction range, the interaction energy is much greater than k7T
and therefore athermal. The behaviour of these materials along with that
of thermal materials like glasses have been encapsulated in a famous phase

diagram by Liu and Nagel [7].



1.2. STRUCTURE OF THESIS 7

Shear
Stress
o

Packing Density ¢

Figure 1.2.1: Schematic of the phase diagram for foams.

1.2 Structure of Thesis

In Figure 1.2.1, we show an equivalent phase diagram for athermal materials
like foams, removing the temperature axis from the diagram of Liu and Nagel
[7]. This elucidates the phase space of foams. Above the critical packing
fraction of the jamming point ¢., with no applied stress, a foam has a rigidity
that is characteristic of a solid. Should the density decrease below this critical
point the foam behaviour would transition to that of a fluid. Similarly,
if sufficient external shear stress o was applied to a foam above ¢., the
foam would start to flow. In this thesis we investigate this phase space,
with particular emphasis on the transition between the two states, through

simulation of soft particles.
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1.2.1 Packings

In Part I of this thesis we explore the first case of static foam at the critical
density, by treating foams as packings of disordered soft frictionless parti-
cles. Inspection of measures like the radial distribution function in foam
experiments [8] and soft particle simulations [9] have shown that this is an
appropriate model for foams at the critical density. We investigate the con-
tact properties of polydisperse packings, polydisperse meaning particles with
a range of sizes. This is with the view of providing a path to the understand-
ing of the structure of amorphous materials like foams. In Chapter 2, we
introduce the field of packings and present some results on bulk polydisperse
packings. In Chapter 3, we look at disordered packings from the point of
view of a particle in the packing. We investigate the relationship between
contact number and particle size, which we use to form a mean-field model
to predict the distribution of contacts. In Chapter 4, we look for spatial cor-
relations in the contact number and in particle size in disordered packings.
In Chapter 5, we look how the correlations between size and contact number

change as the packing fraction is increased.

1.2.2 Rheology

In Part 2 of this thesis we focus on how foams are affected when a shear
stress is applied to a foam above ¢, in Figure 1.2.1, and the foam starts to
flow. This study of the deformation and flow of matter is called rheology [10].
We introduce aspects of rheology in Chapter 6, before moving on to look at
the models of foam flow in 2D simulations in Chapter 7. In Chapter 8, we
investigate the macroscopic friction as an emergent property of foams and

simulations of frictionless particles.
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1.2.3 Style

I have chosen to use “we” to refer to work presented in the thesis with
consideration of the fact that research is often a collaborative effort, with
contributions made to the research from supervisors, project students and
collaborators. My personal preference that a writing style using the personal
voice makes for a more engaging description of research than the passive
voice. I have acknowledged when work that forms a significant part of the
thesis undertaken in collaboration with my own research but has been pri-
marily conducted by others. Finally, the layout of this thesis is broken into
two parts, focussing on packings and rheology. The intention is that either

part can be read independently of the other.



Part 1

Structure

10



Chapter 2

Introduction to Jammed

Packings

Figure 2.0.1: Visualisation of a soft sphere packing simulation at ¢, with a
lognormal distribution of radii. The spheres are coloured by size with blue
for the smallest through a spectrum to red for the largest.

11
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The question of how spheres pack together has been of interest to scien-
tists for centuries [11], with references to the packing of ordered structures
going back to a Sanskrit text written around 499 CE [12]. One of the oldest
posited problems is the Kepler conjecture. Johannes Kepler asked in De Nive
Sexangula (1611): what is the densest packing of hard spheres in three di-
mensions? Kepler conjectured that this structure would form a face-centered
cubic crystal with a packing fraction of ¢ = w/\/ﬁ = 0.74048 . ... The proof
of this conjecture was Hilbert’s eighteenth problem and the focus of much
attention for the last century until a rigorous proof was provided by Hales
[13] in 1998. The equivalent problem in two dimensions for monodisperse (all
particles have equal radius) hard (no overlap) circular discs is a triangular
packing with a packing fraction ¢ = 7/v/12 = 0.9068 . . ., which is known as
the ordered closed packing density.

Crystalline systems with well defined structures such as the one mentioned
above are well understood, less well comprehended is the case when packings
are disordered. The packing of spheres that lack the long range order of
crystals were first studied by Bernal [14] as a model system for liquids in the
late 1950s. Bernal studied a related question to that posed by Kepler: what
is the densest random packing of spheres? He found that ¢ = 0.64 for 3D
monodisperse spheres [15]. Despite the randomness of these disordered hard
sphere systems, the value for the densest packing has proven to be robust
with only small variations found in experimental values [16].

Factors such as static friction and the sphericity of particles can affect
how particles pack together. Ellipsoids and other spheroids have been shown
to pack more densely than spheres [17, 18]. Conversely frictional spheres
can be randomly packed to a density less than 0.64 when poured loosely.
This density (called random loose packed) is around 0.55 but is not strictly
defined [19, 20]. We will restrict our attention to the contact properties of

jammed disordered packings of frictionless spheres and discs in this work.
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2.1 Jamming

In the context of soft frictionless amorphous materials, such as wet foams
and emulsions, the jamming transition of random close packed spheres is
of particular interest and has been a substantial area of study in recent
years [21, 22]. At the jamming transition the properties of amorphous pack-
ings change abruptly. This is the point where a jammed packing makes the
transition from being mechanical stable and behaving like a solid, to becom-
ing unjammed and mechanically unstable, where the yield stress and shear
modulus drop to zero and the fluid description is most appropriate. In a
static packing of athermal particles, the packing will jam at a density ¢,
which is the same density as the random close packing density of frictionless
particles.

In recent years the packing of athermal static frictionless particles that
can overlap and have short range repulsive potentials have been an area of
active study. These packings have been described as an ‘Ising model” for the
jamming transition [18]. Jamming has been proposed as an analogy to the
glass transition [7] and possesses interesting physics that is fundamentally
different from that of ordinary solids.

The properties of jammed matter are difficult to ascertain experimentally,
particularly at ¢,.. therefore much of the research has been done on computa-
tionally generated packings [23]. In a landmark study by O’Hern et al. [24],
many properties of jammed amorphous soft spheres such as the shear and
elastic modulus were found to scale with distance from ¢.. O’Hern et al. [24]
found for a finite number of particles that the jamming transition occurs at a
range of packing fractions and so calculates the transition to be at the peak
of this distribution. This packing fraction is ¢* = 0.639 £+ 0.001 for monodis-
perse soft spheres independent of the interaction potential used. This is in
agreement with the experimentally found packing density of random closed
packed hard spheres.

However ¢* is only unique in the asymptotic limit of infinite number
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of particles. In the case of finite particle number N, it was found that
jamming occurs at distribution of packing fractions with a width that scales
like 1/v/N. For finite particle number the peak of the distribution of ¢,
is found at lower densities. To further confuse the issue it has been shown
that the density ¢, is dependent upon the packing protocol [19, 25] and the
preparation history of the packing [26]. Torquato et al. [19] have even queried
if the random closed packing density is well-defined and propose the concept
of a ‘maximally random jammed’ state which can be precisely mathematically
defined. Though it is important to note that others have argued that this
precise definition may not be practical [24]. The definition of jamming used
in O'Hern et al. [24], requires that packings do not possess non-trivial floppy

modes when at a non-zero pressure and will be discussed in detail in Section
2.1L.1.
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2.1.1 Isostatic Criteria

What is required for a soft particle packing to be in a jammed state? A
jammed state is defined at the point where a packing becomes rigid and the
elastic moduli take a finite non-zero value, which requires that the pressure is
non-zero. In order for a packing to be considered jammed there also cannot
be collective particle motions that have a zero elastic energy cost (floppy
modes) other than those attributed to rattlers. Rattlers are particles that
do not have a sufficient number of contacts to be mechanically stable. By
setting a constraint on the average contact number of a packing (z), one can
demand the system generically disallow floppy deformations [27, 28]. This
sets the isostatic contact criteria for a rigid packing described below.

The isostatic condition can be shown by the following arguments. If there
are D dimensions with N soft particles excluding rattlers, there are ND
degrees of freedom of which D are trivial due to translational invariance. So,
ND — D degrees of freedom must be constrained. This requires that the

critical number of contacts N, fulfil,
N.> ND — D. b

If we call the critical average contact number z., and note that every contact

is shared by two particles, then we can write the number of contacts as

=ND-D. (2.1.2)

In order to have a positive bulk modulus an additional contact must be
added [29] giving,

oA
~C

=ND-D+1. (2.1.3)

The isostatic contact criteria then becomes,

(2.1.4)
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In the limit of large N this brings the standard criteria of

6, in 3 dimensions,
2y = (2.1.5)
4, in 2 dimensions,

which is commonly used [18, 24]. For more details on this isostatic condition
see Alexander [27].

In a recent work Dagois-Bohy et al. [30] show that for a packing to be
stable to shear, it requires that the shape of the periodic cell has to be allowed
to deform during minimization of the packing. There are an additional D(D+
1)—1 degrees of freedom that have to be added to Equation (2.1.4) to account

for such a deformation. The isostatic criteria is then given as

D?—-D

Ze — 2D
¥ N

(2.1.6)

which leads to a number z,. quoted in Equation (2.1.5), only in the asymptotic
limit of large N. This will be discussed further in Section 2.2.

While globally these mechanically jammed states are constrained to have
(z) = 2z, there is a distribution of contact numbers for particles and there
are some particles that have fewer than necessary contacts to achieve local
mechanical stability. In general, particles that have less than D + 1 contacts
cannot be locally mechanical stable. For 3D, that means all particles with
less than 4 contacts and 2D, all particles with less than 3 contacts are locally
unstable. These locally unstable particles are called rattlers and the contri-
bution of rattlers to the contact number analysis is omitted but are included

when calculating the packing fraction.
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2.1.2 Polydispersity

The discussion of jammed packings is often focussed on monodisperse pack-
ings in 3D. Studying jamming of monodisperse discs in 2D is inappropriate
because such packings have been shown to spontaneously order into crys-
talline structures [31], thus prevent the investigation into disordered systems.
Indeed for two dimensional packings, in order to be disordered it is required
that the standard deviation of the size distribution oz must be greater than
0.1, otherwise crystallisation can occur [32]. Frequently the choice of a 50-50
bidisperse mixture of particles with a radius ratio of 1:1.4 between small and
larger particles are used to avoid crystallisation [31].

There has also been a long history of study of the density at which random
close packing occurs for binary mixtures of particles in both experiment [33]
and simulation [34, 35, 36]. All studies have found that as the ratio between
the size of small and large particles moves further from one, the density at
which ¢, occurs increases. These bidisperse packings exhibit similar proper-
ties to monodisperse packings when jammed. The scaling of the shear and
bulk moduli (denoted as G and B respectively) with distance from jamming

is similar to the monodisperse case [24, 36], namely

[

GO((¢_¢C) ) BO(H(d)_Cbc)

where H is the Heaviside step function. These scalings of the elastic mod-
uli of packings at ¢. are true in both 2D and 3D. More prevalent in na-
ture, though not as a widely studied, are packings with a continuous dis-
tribution of sizes. Experiments and simulations of continuous size distribu-
tions [37, 38, 39, 40, 41] have investigated the value of ¢. and like that of
binary mixtures found that ¢. increases with polydispersity. Another re-
sult of increased polydispersity in packings is an increase in the fraction of

particles that are rattlers [41].
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2.2 Simulation Procedure

In light of some of the properties of packings being sensitive to the packing
protocol, we use two different protocols to investigate disordered polydisperse
packings of soft particles. The first code is a molecular dynamics code based
on the bubble model [42]. This code was originally developed to simulate the
flow of foams in 2D by Langlois et al. [43]. The code has been amended to
investigate the properties of packings.

The second is a conjugate gradient minimisation procedure for packing
soft particles. This particular implementation of this procedure was initially
developed by Corwin et al. [44]. In this thesis it is implemented in two and
three dimensions and is used in all the packing results produced in Part I of

this thesis unless stated otherwise.

2.2.1 Bubble Model Code

This molecular dynamics code is responsible mainly for the rheological results
in this thesis but contributes some of the 2D disordered packing simulation
results. Durian [42] developed the bubble model to simulate the flow of wet
foams. In the bubble model, bubbles are represented by overlapping (soft)
discs (Figure 2.2.1(b)). This model was later refined by Langlois et al. [43]
by removing a mean field approximation of viscous dissipation in Durian’s
model. The bubble model simulates a foam by allowing each soft disc to
move independently in a periodic cell and considers interactions only when
overlap occurs. As a simplification in this model, the gas displaced upon
overlap between discs is ignored. In real foams when bubbles interact, a
deformation in the shape of the bubble occurs due to the gas displaced by
the interaction (Figure 2.2.1(a)). For small deformations in wet foams this
approximation is good [3, 5]. In order to describe the elastic repulsion due
to surface tension experienced by bubbles in a foam, a simple spring force

model for the elastic interaction of soft discs is used. This elastic repulsive
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Figure 2.2.1: (a) Experimental image of a 2D foam. Note the deformation of
the bubbles due to contact. (b) Image of soft discs with overlap A;; between
the two soft discs in contact with radii R; and R;, located at r; and r;,

respectively.



2.2. SIMULATION PROCEDURE 20

force F), acting on disc ¢ due to disc j is given by:

2(R)

n— :‘imAzjnij. (221)
( ]

Here « is the coefficient of elasticity, n;; = I:l—::Ll the normal vector between
=Ty

bubbles 7 and j and the overlap A;; is given by

R+ R:)—|ry—v;|, R+ Ry)>|ri—7;
Ay = ( )~ | i i)> | ’ (2.2.2)

0, otherwise.

R; and R; are the radii of discs ¢ and j, centred at r; and 7; respectively
and (R) is the average disc radius of the packing. Equation (2.2.1) is related
to the harmonic approximation made in Equation (1.1.6), where the spring
constant k = 477, and the deformation £ R now equates to A;;. In addition
the term 2(R)/Rr,+R, is introduced to account for smaller bubbles having a
stronger repulsion than larger bubbles.

A second interaction force accounts for viscous dissipation in the films
between two bubbles in contact. This viscous drag force Fj is found in
experiment to be Fy; oc Av”® [45, 46], where the exponent of 2/3 is due to
the bubbles deforming on contact and the film thickness of the liquid in the
bubbles also changing when the foam flows [47, 48]. For simplicity in this

model Fj is linear and only occurs with an overlap between discs,
Fd = —Cb(’l)i —r ’U]')H(Ri =+ Rj o= {7'2' = le)v (223)

where ¢, is the dissipation constant and v; and v; are the respective disc
velocities. We use a Verlet algorithm to calculate the trajectories of the
discs. A Verlet algorithm relies on the position calculated at the previous

and present time-step and the forces calculated at the present time-step to
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calculate the next position and velocity of a particle,

4 Fult) + Fat)

r(t + At) = 2r(t) — r(t — At)
my

At? (2.2.4)

r(t+ At) —r(t — At)
2At

v(t + At) = (2.2.5)

where my, is the mass of the disc.

Inertial effects are negligible for bubbles, therefore we set the ratio of
the inertial timescale t; = m;/c, to the viscous timescale t, = ¢,/k to be
ti/t, = kmy/c; < 1 [43, 49]. These timescales are set by the prefactors
of Equations (2.2.1) and (2.2.3), which are chosen to be close to the values
found in experiment.

In each packing we use 1500 polydisperse particles whose radii R are
normally distributed with a polydispersity og = 0.28. Computation time
limits the number of particles in each packing, though in simulations with
1000 particles, finite size effects are considered small. The discs are randomly
placed in a periodic box at low packing fraction and then allowed to relax
while their radii are slowly increased until the prescribed packing fraction
¢ is reached. The simulation was terminated when the energies reached a
steady state, indicating a local minimum of the energy landscape, provided
the isostatic criteria has been fulfilled. Upon reaching force equilibrium,
discs with fewer than three contacts are removed for the analysis of the
contact network but are included in the determination of the packing fraction.
Contacts are defined as overlaps between discs. Typically between 8 and 14
packings have been created for each packing fraction to increase statistics.

When the total energy of a packing has reached a steady state, the con-
figuration is in a local energy minimum. The condition for a steady state
is when the change in the energy of the system (calculated every 10° time-
steps) is 2.5 x 10? less than the total energy of the system for 10° successive
time-steps. Energy is lost from the packings only through the dissipative

interactions between discs due to the viscous drag force Fj.
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2.2.2 Conjugate Gradient Minimisation

We now introduce another method to study packings in 2D and 3D. We
simulate frictionless particles that interact through purely repulsive body
centred forces, which can be written as a function of the overlap between two

particles in contact. The overlap is

gt e ey
! R, +R;

(2.2.6)
where R; and R; are the radii of spheres ¢ and j and d;; is the distance
between the respective centres of the spheres. The interaction potential of
the spheres is

ks2, if é; >0, (2.2.7)
0, otherwise.

These interactions are harmonic with a spring constant k.

We followed a simplified version of the infinite temperature quench tech-
nique presented in O'Hern et al. [24] to create jammed packings, this protocol
has been previously used in simulations at ¢, [44, 50]. Each simulation starts
with a fixed number of particles (N = 16384) whose positions are distributed
randomly within a cubic box with periodic boundary conditions. This is an
approximation to an infinite temperature condition. The particles have their
radius drawn from a set size distribution P(r) and then rescaled such that
the desired global packing fraction ¢ matches that of a density which has
been set. The temperature is then quenched close to zero and nearly all of
the energy in the system is removed by allowing particles to move away from
one another by a conjugate gradient method. This method minimises the
overlap between spheres and hence the the total energy of the packing [51].
We decrease the packing fraction in small increments (A¢ = 0.0005). Pack-
ings are said to have reached the jamming threshold ¢. when they fulfil the

criteria that the average contact number of packings of that size distribu-
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tion is z. + 0.05 > (z) > 2. and the pressure is non-zero. This indicates a
mechanically stable packing and the procedure is then stopped. At a given
packing fraction a small number of packings fall below the isostatic criteria
and are discarded. We choose the (z) threshold to be 0.05 from the isostatic
point which is sufficiently close to the jamming point for our analysis, getting
closer to z. does not alter our results.

For each size distribution up to 500 realisations of a packing at ¢, in three
dimensions and 50 realisations in two dimensions are created. An example
of a sphere packing is shown in Figure 2.0.1. A variety of size distributions
are created including discrete size distributions of monodisperse, where all
particles have a single characteristic radius R, and bidisperse, where there is
a 50-50 mixture with a size ratio 1:1.4, to continuous distributions in which
the spheres can have a range of radii given by lognormal, Gaussian or uniform
distributions, which are plotted in Figure 2.3.1.

The main focus of this algorithm and an application of the bubble model
algorithm is to produce jammed amorphous packings close to the jamming
transition to investigate the contact properties of these packings. Recently
Dagois-Bohy et al. [30] have shown that some realisations can be unstable to
shear near the jamming point. With neither algorithm do we check that the
packing is stable to shear. However, particularly using the CG minimisation
method, since the average contact number is greater than z. and the number
of particles is large then the likelihood of a packing being unstable to a small

shear stress is slight.
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2.3 Bulk Properties of Polydisperse Packings

The size distribution affects the packing density at which the isostatic point
is reached [37]. We define oy as the normalised standard deviation of the

particle radius distribution P(R) where rattlers have been removed,

=1, (2.3.1)

The shape of P(R) changes when rattlers are removed, as shown in Figure
2.3.1. On average rattlers only tend to be smaller particles but there is a limit
on their size below which all particles are rattlers. As the width of the size
distribution og is increased, ¢. becomes larger because smaller particles are
able to fit between the interstices of larger particles in contact [39], as seen in

Figure 2.3.2 for three and two dimensions (inset). This results in an increase

P(R/<R>)

-6 B " 1 " 1 i 1 " 1 1 1
10 0.5 1

1.5
R/<R>

Figure 2.3.1: Continuous size distributions used to create the soft sphere
packings. The distributions are: (o) lognormal og = 0.20; (/) Gaussian
or = 0.22; ([J) uniform o4 = 0.24. The open symbols represent the original
size distribution and the closed symbols represent the size distribution once
rattlers are removed.
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Figure 2.3.2: Relationship between the standard deviation of the radius dis-
tribution and ¢, for a variety of size distributions in three dimensions: (V)
monodisperse; () bidisperse; ([) uniform; (/) Gaussian; (o) lognormal.
The packing fractions including all particles are plotted as open symbols.
The closed symbols denote ¢.. The dashed line is the average packing frac-
tion with rattlers omitted for all size distributions. Inset: Relationship be-
tween o and ¢, in two dimensions. The data is labelled the same as in the
main plot with the addition of (i>) Gaussian distribution using the bubble
model code with (z) = 4.06. The dashed line is the average packing fraction
with rattlers omitted for all size distributions with oz > 0.1.

of rattlers, which is shown in Figure 2.3.3 and its inset. Rattlers, which are
always present in real and simulated packings, are usually not discussed in
detail in the literature. Our values are largely consistent with the results from
literature [41, 44, 52]. For narrow size distributions, the packing fraction at
which the isostatic point is reached and the relative amount of rattlers in a
packing is unaffected by the type of size distribution of the packing. As the
size distribution becomes wider more particles are found in the interstices
between particles and do not contribute to the mechanical stability of the

packing. Polydispersities with a large population of small particles, such as
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the uniform distribution, have an increased amount of rattlers, though ¢,
is only slightly affected. The increase of ¢. and number of rattlers in 2D
packings for og < 0.1 is attributed to the effects of crystallisation seen in
Figure 2.3.4, where crystalline patches form, leading to an increase in ¢.. A
large number of rattlers are particles located in between crystalline patches.

Also plotted in Figure 2.3.2 is ¢., which is ¢, with the volume of rattlers
excluded. This ¢/ is found to be a constant that is independent of the size
distribution in three dimensions, where the average ¢ = 0.621 £+ 0.003. In

two dimensions for o > 0.1 the ¢/ is also constant and independent of

polydispersity when crystallisation does not occur with the average ¢, equal
to 0.803 £ 0.002.
To our knowledge nobody has looked at ¢/; while this is below ¢, includ-

ing rattlers, there is no literature value to compare it against. The constancy
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Figure 2.3.3: Relationship between the standard deviation of the radius dis-
tribution and the percentage of rattlers at ¢, in three dimensions. Inset:
Relationship between the percentage rattlers found at ¢, in two dimensions
and the standard deviation of the radius distribution. The data is labelled
the same as in Figure 2.3.2.
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Figure 2.3.4: Visualisation of a packing with oz = 0.05. The numbers in the
centres of the discs represent the number of contacts of that disc. The red
coloured discs are rattlers which are locally unstable.

of the rattler free ¢, is an interesting phenomenon for which we do not have
a satisfactory explanation. It appears that two trends cancel out at higher
polydispersities: (a) the increase of rattler percentage with polydispersity
which would lower ¢.; (b) the ability to fill space more efficiently with in-

creasing polydispersity as evidenced by the increase of ¢., this would increase

e

2.3.1 Contact Variance

The contact properties of disordered packings is the main focus of Part I
this thesis. There have been some simulation and experimental studies on
the contact properties of polydisperse, disordered packings [38, 41, 53, 54]
and recently the granocentric model has been proposed to predict the local
packing structure at ¢, [44, 50, 55] in three dimensions.

Changing the polydispersity also affects the contact properties. As seen in
Figure 2.3.5, changing the width of the size distribution affects the standard
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deviation of the contact number distribution oz, which is defined as
Gy = 3/ {22} — {2)2. (2.32]

For all types of size distribution it is shown that broader size distributions
results in broader contact number distributions. This trend is independent of
the type of size distribution in both two and three dimensions, though there
do appear to be deviations for the uniform distribution at large og in 3D.
For two-dimensional cellular structures a corresponding relationship be-
tween the standard deviation of the size distribution and the standard de-
viation of the number of cell faces has been observed [56, 57, 58]. While
the width of the contact number distribution is set by the width of the size
distribution only, the shape of the contact number distribution does depend
on the distribution of particle sizes used, which will be shown in the next

chapter in Figure 3.3.5.
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Figure 2.3.5: Relationship between the variance of the radius distribution o%

and the variance of the contact number distribution ¢% in 3D. Plotted in the
inset is the variance of the radius distribution % versus o%in 2D. The data

is labelled the same as in Figure 2.3.2.



Chapter 3

Local Contact Properties of

Disordered Packings

While a large body of literature on random packings is devoted to the bulk
properties of monodisperse and bidisperse packings near the jamming tran-
sition [18, 22, 24, 54], the properties of polvdisperse packings have been left
comparatively neglected. Important results on the local structure of polydis-
perse packings have emerged only in recent years [44, 50, 59)].

Prior to this, there have been some studies on the relationship between
the size of cells and contact number on a local scale [41]. Research has
also focussed on the local mechanical properties through the study of force
chains [60, 61, 62].

In this chapter, we take inspiration from the pioneering work by Clusel
et al. [50] that established a link between the size distribution and the local
structure of packings. This was achieved by taking a granocentric approach,
viewing the packing from the perspective of a particle in the bulk. We expand
on this work by investigating how the correlations between particle size and

contact number depend upon the polydispersity of packings.

29
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3.1 The Granocentric Approach

The first to take a granocentric viewpoint was Dodds [63]. Dodds formulated
a simple model to predict the variation of the average contact number distri-
bution with polydispersity of first 2D, and then 3D polydisperse packings, by
enumerating all of the possible local arrangements particles of different sizes
could form in a disordered packing. However, Dodds model underestimated
the average contact number of the packings systematically.

More recently, Clusel et al. [50] have proposed a statistical model that
describes the contact number distribution for polydisperse packings, as well
as predicting the packing fraction. Their model confronts the problem of
disordered packings by treating each particle as undergoing a similar local
stochastic process.

In this model, the contact distribution is modeled on the idea that each
particle is undergoing two independent random processes. The first is the
formation of the neighbourhood of the granocentric particle, where the avail-
able solid angle of a particle is filled up to a certain defined limit (£2,,42)
that is less than the overall solid angle of a sphere 47, in the manner shown
in Figure 3.1.1. This neighbourhood is defined by the available solid angle
of the granocentric particle with particles whose radius is drawn from the
size distribution P(R) and then linked this to the solid angle by a Laplacian
transform. The second process is the selection of the fraction of contacts that
are formed from the neighbours around this central particle. This fraction is
found to be independent of the central particle’s size. The result is a two pa-
rameter model that describes the contact number distribution quite well. A
third parameter of the model, the average distance between the particle and
non-contacting neighbours, then allows a prediction of the packing fraction.

This granocentric model makes a couple of assumptions that we will ad-
dress in the next chapter, that the disordered packing is homogeneous and
does not contain any spatial correlations in the distribution of particle sizes

and contact numbers.
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Initially the granocentric model of Clusel et al. [50] worked only for poly-
disperse packings, where the disorder is due to the range of particle size
distribution rather than the positional disorder found in monodisperse pack-
ings. With some alterations to the method of implementing the granocentric
model, it was later shown to be able to describe packings of with low polydis-
persity [55]. Recently a mean-field version of the model has been proposed
to describe the various relations between size and coordination number in 2D

and 3D cellular structures [59].

Q

total Qmax

Figure 3.1.1: Granocentric view of a random packing, reproduced from Clusel
et al. [50]. a The space occupied by a neighbour around a central particle
is measured by the solid angle it subtends, which is shown to depend on the
neighbour size (green, smaller; red, larger). b Neighbouring particles cover
the surface of the central particle. ¢ Space-filling around the central particle
in b is represented by a sum of the colour-coded solid angles w occupied by
each neighbour. The sum of all the solid angles w add up to the total solid
angle occupied by the surrounding particles €24
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3.2 Contact Number of a Particle of a Given
Size

We now investigate the local structure of jammed packings by examining how
contact number correlate with the size of a particle. In light of the results
of the granocentric model of Clusel et al. [50], we examine the results of our
simulations first in three dimensions, before turning our focus towards two

dimensions.

3.2.1 Three Dimensions

To study the local contact number properties of these packings, we look at
the average number of contacts a particle has for a given size. We define the

average contact number for particles of a given size as,

(2ln) = ZzP(z\r). (3:2.1)
2=4

where P(z|x) is the contact number distribution for particles of a given di-
mensionless size x, which can be the radius, surface area or volume. The
summation in Equation (3.2.1) is bounded below at z = 4 in order to omit
rattlers. This average contact number for particles of given size z at ¢, is
plotted for a wide range of size distributions of different widths and shape
in Figure 3.2.1. We scaled the data in three different ways, in terms of the
normalised radius, normalised surface area and normalised volume in Figure
3.2.1(a), (b) and (c) respectively. In the three scalings, (z|x) for all size dis-
tributions and polydispersities follow similar trends. Namely, larger particles
have more contacts on average. This can be explained in the context of the

granocentric model [44, 50, 55].
Larger particles can accommodate more neighbours on average since the
solid angle subtended by the neighbouring spheres is smaller for a larger cen-

tral particle. One of our key results is that these correlations are independent
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Figure 3.2.1: The average of the contact number distribution for a particle
of a given size for the six different size distributions at ¢.: (V) monodisperse;
(O) bidisperse, radius ratio 1:1.4; (U]) uniform o = 0.11; (~) Gaussian
or = 0.14; (o) lognormal o = 0.20; (<1) lognormal ox = 0.28; (+) lognormal
or = 0.32. We present three different scalings: (a) in terms of the normalised
radius 7; (b) in terms of the normalised area a; (c¢) in terms of the normalised
volume v. The data are plotted over a range that illustrates the quality of
the collapse. Plotted in each inset is a magnification of the data on an
equivalent range for each scaling that emphasises the quality of the collapse
for that scaling.
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of polydispersity.

While all scalings appear to lead to a collapse, a close look at the data in
the insets of Figure 3.2.1 reveals that the best collapse is observed when the
scaling is in terms of the normalised area,

R2
3 =g= —(R2>' (3.2.2)
This is shown in Figure 3.2.1(b). This collapse of the data is well described
by a linear fit,
(zla) = (2) +7(a - 1), (3.2.3)

which is plotted in Figure 3.2.2. When we look at a wide selection of poly-

dispersities and plot the contact number average in terms of this normalised
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Figure 3.2.2: The average contact number for particles of a given area a at
¢. in 3D for all (V) monodisperse, () bidisperse, ([1) uniform, (/) Gaussian
and (o) lognormal size distributions at all the widths cr we have considered
(see Figure 2.3.2). The solid red line is a fit to Equation (3.2.3).
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surface area at ¢, all the polydispersities collapse onto the same linear trend
that can be seen in Figure 3.2.2. The contact number average for the discrete
distributions (monodisperse, bidisperse) have the same value as that of the
continuous distributions despite the significant difference in the composition
of the packing. Figure 3.2.2 shows that at ¢., the relationship between z and
a is universal and independent of size distribution. This suggests that the
contact properties of a particle depends only on its surface area.

The form of Equation (3.2.3) ensures that the isostatic constraint

(5} = /<:|a>P(a)da = (3.2.4)

is satisfied. The fitting parameter is found to be v = 3.032 + 0.004.

It must be noted that because we omit rattlers from our analysis that
for low a, the average (z|a) is constrained to be a minimum of 4. Also for
large values of a the number of particles of that size are few and therefore the
value of the average (z|a) becomes more scattered. For all equations fitted
and figures plotted of averaged quantities, any binned data with less than 100
particles are omitted from Part I of this thesis. This is a standard procedure
to avoid showing scatter in the tails, for more details see Appendix A.

In Figure 3.2.3 a number of different distributions are plotted for narrow
intervals of a, and for each a interval plotted all the P(z|a) collapse inde-
pendent of size distribution. This confirms what is suggested in Figure 3.2.2:
that the contact number distribution for a particle in a packing at ¢. does
not depend on the global size distribution of the packing but on the size of

the particle only.
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Figure 3.2.3: The contact number distribution for particles of a given size
P(z|a) for six different size distributions at ¢, in 3D. The data is labelled:
(V) monodisperse; (+) lognormal o = 0.10; (o) lognormal or = 0.20; ()
lognormal og = 0.22; ([J]) uniform og = 0.24; (*) lognormal o = 0.32.
Plotted here is a selection of the P(z|a) for 6 different intervals a with P(z|a)
for each interval shifted on the y-axis for clarity. Plotted in order of lowest
to highest is' U475 < a < (.525; 09756 = a < 1.025; 14756 < a = 1.525;
1.976 < a < 2.025; 2475 < a < 2.525; 2.975 < 0 < 3.025. For larger values
of a the number of instances of that particle size becomes smaller.
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3.2.2 Two Dimensions

Now we investigate whether this observation is particular to three dimensions,
by examining if these local contact number size correlations can also be found
in 2D. Furthermore, we address whether the simulation algorithm used affects
the results of these correlations.

A similar treatment to that used in three dimensions works in two di-
mensions. In Figure 3.2.4(a), (b) and (c¢) the average contact number for
particles of a given size x at ¢, is plotted and scaled in terms of the nor-
malised radius, normalised surface area and normalised “volume”. All size
distributions follow similar trends, namely that larger particles have more
contacts on average. Similar to the three-dimensional case, the best collapse
is found when the scaling is,

RD-1
% = W [3.2.5)
as in Figure 3.2.4(a). We conjecture that this may be true for D > 3 as well,
however this conjecture for D > 3 is not explored in this work. Therefore
the appropriate scaling variable for size-contact number correlations in 2D
packings is x = 7.

In Figure 3.2.5 a similar collapse of the average contact number for parti-
cles of a given radius (z|r) for a range of size distributions to that found for
(z|la) in three dimensions. A linear relationship between (z|r) and r, which

is similar to Equation (3.2.3), is given by,
(z|r) = (2) + 72p(r — 1), (3.2.6)

is fit to the data in Figure 3.2.5 with the fit parameter v,p = 2.023 £ 0.007.
The result is similar to that observed in two dimensional disc packings [64]
for ¢ above the jamming transition, which was achieved using a packing

algorithm based on the bubble model, described in Section 2.2.1. The data
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Figure 3.2.4: The average of the contact number distribution for a particle of
a given size for the six different size distributions at ¢, in 2D: () bidisperse,
radius ratio 1:1.4; (<1) lognormal og = 0.10; ([J) uniform o = 0.17; (2)
Gaussian o = 0.24; (V) lognormal op = 0.35; () lognormal o = 0.45. We
present three different scalings: (a) in terms of the normalised radius r; (b)
in terms of the normalised area a; (c) in terms of the normalised volume v.
The data are plotted over a range so that deviations from a perfect collapse

can be discerned.
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obtained from this second algorithm, a Gaussian size distribution oz = 0.28
and close to ¢. with (z) = 4.06, plotted in 3.2.5, corroborates the results
found with the conjugate gradient minimization algorithm. Therefore, the
results do not depend upon the packing algorithm.

The results shown in Figure 3.2.5 suggests that all the conditional prob-
abilities P(z|r) collapse in 2D similar to that already seen in 3D. This is
confirmed in Figure 3.2.6, where for each r interval plotted, all the P(z|r)

collapse independent of size distribution.
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Figure 3.2.5: The average contact number for particles of a given radius r at
¢ in 2D for all () bidisperse, (L) uniform, (/) Gaussian, (V) Gaussian using
bubble model code and (o) lognormal size distributions at all the widths op
we have considered (see Figure 2.3.2). The solid red line is a fit to Equation
(3.2.6).
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Figure 3.2.6: The contact number distribution for discs of a given radius r,
P(z|r) for the same size distributions as plotted in the the inset of Figure 3.2.4
at ¢.. Plotted here is a selection of P(z|r) for five different intervals r with
P(z|r) for each interval shifted on the y-axis for clarity. Plotted in order of
lowest to highest is 0.475 < a < 0.525; 0.825 < a < 0.875; 0.975 < a < 1.025;

15125 <ar<a 1Sl AT s < q < Bli525.
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3.3 Mean Field Granocentric Model

In Section 3.1, we outlined the granocentric approach. In this section we
draw inspiration from that approach to propose a model that will describe
the contact number distribution of polydisperse packings. Given the results
shown in Section 3.2, we will now develop a mean field granocentric model

to describe these correlations.

3.3.1 Mean Field Granocentric Model in 3D

We have shown that the contact number distribution P(z|a) for particles of
a given size at ¢. depends not on the global size distribution of the packing
but only on the size of the particle in question. This allows us to formulate a
mean field granocentric model that is similar in spirit to the one of Newhall
et al. [59], who investigated size-topology relations in tessellated packings.

If we consider a particle of a given radius R., we can then make a mean
field assumption that all the particles surrounding it are of average radius
(R) since local correlations are independent of the size distributions. This
is a similar 'granocentric’ approach to that taken by Clusel et al. [50]. In
contrast to the original granocentric model [50], we explicitly exclude rattlers
since their contact number is ill-defined.

In more detail, if a particle of size R, is in contact with another particle
of size R, the particle of size R will subtend a solid angle 2 of the central

particle, which as in Corwin et al. [44], is given by

1 2R
Q(R..R) = 2r (1 =i L4 —) . (3.3.1)

+R—c Rc

Since the correlation between contact number and size appear independent of
polydispersity, when scaled with a, we introduce our mean field assumption

and rewrite Equation (3.3.1) with all contacting particles now assumed to
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have an average radius /(R?):

7)) — R S L VA ) :
Q(R,,/(R?) =27 | 1 1+—@ 1+ =7— | (3.3.2)

For a particle of size a, this expression can be reformulated to give the solid

angle subtended by any single contact as

) Vi[>
a) =2n (1—14-\/5 l+ﬁ>. (3e3.3)

The maximum number of contacts a particle can have is simply

W () {Q%J . (3.3.4)

A correction must be made to Z,,,,» to account for the interstices, similar to
the familiar sphere kissing problem for monodisperse spheres where only 12
spheres can be in contact with a central sphere even though there is sufficient
solid angle to fit 14 spheres [65].

A free parameter « is introduced into the model to limit the maximum

number of contacts:

2a

va 2
1_1+\/E 1+ﬁ

Zmax(a) = (335)

In order to recover the known result of the kissing problem for monodisperse
spheres, the value of & would have to be 0.8708. In our model, however, the
value of o will turn out to be less than that due to additional constraints.

We now make an ansatz that the distribution of number of particles in
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contact with a particle of size a is given by a binomial distribution.

P{z|a) = Bz, Zuunla), p), (3.3.6)
Zmax! 2 7
e (L [,
Z!(Zmar i 2)'

where B(z; Zna:(a), p) is a binomial distribution with Z,,,, giving the num-

ber of trials, that is the number of attempts to place particles in contact with

the central particle of size a. p is the acceptance probability that a particle

will be in contact. The probability p is the second free parameter in the
model.

In order to omit rattlers, we truncate the binomial distribution for z < 4

by including a Heaviside function H(z — 4) and a normalisation constant C'

so P(z|a) becomes,

P(Z|a) = BI(ZQ Znaz\0), D), (3.3.7)

ZIY)(II! z SN D o

where (' is given as,

6(1 — p)?

Gi1~ p)s((ﬁ)zm“ = 1) = Pl (64 Pl1Ip = 18) + P (P nee — O+ 3))
(33.48)

Note that this is in contrast to the original granocentric model which did not

o

exclude rattlers. This allows us to make a prediction for the contact number
average for a given particle size,
Zmax(a)
ielq) = Z #P{zlal, (3.3.9)

=4

and the corresponding variance of the contact number for a given particle
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size
Zmaz (a)

(o3lay = D 22P(zla) | - (zla)?, (3.3.10)
z=4
as well as a prediction of the global contact number distribution of the pack-

ing

Plz) = /P(z|a)P(a)da. (3.3.11)

Given a size distribution P(a) and using Equation (3.3.7), a prediction
for the contact number distribution can be made for any packing at ¢..
The acceptance probability p can be determined through a property of the
binomial distribution. If X ~ B(n,p) is a random variable taken from a
binomial distribution B with n trials and acceptance probability p, then the
mean is given by

E[X] = np,

and the variance is given by
Var[X] = np(1 — p).

Thus, the ratio of the variance to the mean of a binomial distribution is a

constant given in terms of p, which in the notation of our model gives

=1-p, (3.3.12)

which allows a value of p to be found from the simulation data.

Equation (3.3.7) is a truncated binomial distribution and therefore the
(0% ]a)
(z]a)
sufficiently large values of a, where the effect of truncation is negligible. As

ratio plotted in Figure 3.3.1 is only expected to reach a constant at

mentioned, for values a > 3 the number of occurrences of particles of that size

becomes low and results in scatter in the calculated ratio. For a 2 2 the ratio
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plateaus at 0.342 + 0.006 (dashed line in Figure 3.3.1), which corresponds to
p = 0.658 + 0.006. This fixes the p parameter of our model.

After obtaining the probability p directly from the data, we can fix the
second parameter a by imposing the additional constraint given by Equation
(3.3.13), namely that the global average contact number of the packing (z)
must be equal to 6. The free parameter o can be fixed by integrating the

prediction from Equation (3.3.9) over the size distribution such that

2= /(z|a)P(a)da =it (3.3.13)

This results in a taking a value of 0.625. Surprisingly, a does not depend on
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Figure 3.3.1: The ratio of the variance to the average of the contact number
distribution for particles of a given size at ¢, for the same size distributions
as in Figure 3.2.1. The dashed line denotes the value of the acceptance
probability p as found from the data and the solid line identifies the model
prediction of this ratio.
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Figure 3.3.2: The average of the contact number distribution for particles
of a given size at ¢, for the same size distributions as in Figure 3.2.1. The
model prediction (Equation (3.3.9)) is plotted as the solid red line.

polydispersity, therefore the two free parameters of the model, a and p, can
be fixed for all size distributions at ¢.. This may be related to the fact that
¢. without rattlers, which are explicitly omitted in this model, is a constant
(Figure 2.3.2).

The constancy of the two parameters is a significant simplification to the
original granocentric model, where the acceptance probability and maximum
solid angle need to be determined for each polydispersity separately.

Plotting the prediction of the average (z|a) from Equation (3.3.9) against
the average (z|a) from the data plotted in Figure 3.2.2 in Figure 3.3.2, it
can be seen over a large range of a that the model prediction is in good
agreement with the data. Only for large values of a does it deviate slightly.
The staircase structure of the model prediction seen in Figure 3.2.2 is due to

the discrete nature of the binomial distribution.
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Figure 3.3.3: The variance of the contact number distribution for particles of
a given size at ¢, for the same size distributions as Figure 3.2.1. The model
prediction from Equation (3.3.10) is plotted as the solid red line.

Similarly, we can compare Equation (3.3.10) against the variance (0%|a)
from the data in Figure 3.3.3. It can be seen over a large range of a that the
model prediction is in good agreement with the data. Only for large values of
a does the prediction begin to deviate from the data, this may be attributed
to scatter due to low statistics. In both Figures 3.3.2 and 3.3.3 it can been
seen that at low a there is a minimum size of particle predicted by the model.
For this value of a the model predicts a non-zero (z|a) for a > 0.14, below
this size a particle cannot form enough contacts to be locally stable, hence the
prediction going to zero in Figure 3.3.2. The variance vanishes for a < 0.26 in
Figure 3.3.3 because the maximum contact number predicted by the model
is 4 for particles of that size. In both cases the data plotted takes a non-zero
value below that predicted by the model but vanishes for a > 0.

Again we can compare the prediction of the distribution P(z|a) from
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Equation (3.3.7) against the conditional probability distributions from the
data plotted in Figure 3.2.3, in Figure 3.3.4. Figure 3.3.4 reveals some new
information about the model, namely that for low values of a, that is a < 2,
the prediction of the distribution is extremely accurate but does not predict
the low probability of occurrences for large z (indeed some are explicitly not
allowed by the model parameters) but for larger a > 2, the model accurately
predicts the full distribution but also accounts for low values of z that do not
occur in simulations.

Finally, we can match our prediction for the contact number distribution
given a size distribution from Equation (3.3.11) to the contact number distri-
bution from the data. For all the distributions plotted in Figure 3.3.5 there is
very good agreement between the prediction and simulation data. The same
parameters v and p are used for all the size distributions. For the continuous
size distributions, the model predicts the P(z) of the simulation data excel-
lently. There are only slight deviations between model and data for large
values of z. For the discrete size distributions though there is a discrepancy
for higher values of z. This model appears to be unable to capture the low
probability particles that have very many contacts for their size. However,

the model is in very good agreement with P(z) for low z.



3.3. MEAN FIELD GRANOCENTRIC MODEL 49

| v

| v

| 3 I oo

|

|4y

4:_ €5

S
¢

| LRI

| ovvmm

3D

lllllll I 1 l 1 l 1 l 1 II
4 6 8 10 12 14 16 18 20 22

Figure 3.3.4: The contact number distribution for particles of a given size
P(z|a) for the same size distributions as Figure 3.3.2 at ¢.. Plotted here
is a selection of the P(z|a) for six different intervals a with P(z|a) for each
interval shifted on the y-axis for clarity. Plotted in order of lowest to highest is
0.475 < a < 0.525; 0.975 < a < 1.025; 1.475 < a < 1.525; 1.975 < a < 2.025;
2.475 < a < 2.525; 2.975 < a < 3.025. The solid red line model prediction of
the distributions from Equation (3.3.7).
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Figure 3.3.5: The contact number distribution for a number of polydispersi-
ties at ¢.. The open symbols represent the simulation data and the solid red
line represents the model prediction from Equation (3.3.11). Data is labelled
the same as in Figure 3.3.4 with the addition of the bidisperse data set (0).
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3.3.2 Comparison with Original Granocentric Model

In Figure 3.3.6, using data provided by Clusel [66] from the original granocen-
tric model, a comparison is made between the original granocentric model
described in [44] and the mean field model outlined in this thesis. Predomi-
nantly both models describe the data well, however the original granocentric

model does not capture the large z behaviour.
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Figure 3.3.6: Comparison with the original granocentric model. The contact
number distribution for a lognormal size distribution (cg = 0.28) (o) for
simulation is compared with the prediction of the original granocentric model
(o) and the mean-field model described here (e). Data from the granocentric
model prediction provided by Clusel [66].
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3.3.3 Mean Field Granocentric Model in 2D

A similar treatment to that used in three dimensions works in two dimensions.
In Figure 3.3.7 we plot the two dimensional equivalent of Figure 3.3.2, except
with the size of the particle now represented by the normalised radius r
instead of the normalised surface area a. The model prediction plotted in
Figure 3.3.7(a) for (z|r) is similar to the model outlined in the previous
section. The principle adjustment is that the maximum number of discs
that can be placed in contact with a disc of radius 7 must now be expressed
in terms of the available angle rather than the available solid angle. Now,

Equation (3.3.5) is altered for two dimensions to read as

Bl = [—_?”—IJ . (3.3.14)
sin”! ()

Another consideration is that in two dimensions, rattlers are particles with

less than 3 contacts rather than 4.

The two free parameters of the system are affected by this change of
dimension. The acceptance probability p can be found as before from the
ratio between the variance of the contact number for particles of a given
radius (0%|r) and the average (z|r), seen in Figure 3.3.7(c), which goes to a
constant value for sufficiently large values of r. The value for p found from
the data plotted in Figure 3.3.7(c) is 0.78 &+ 0.02.

The value of the contact limiting parameter a changes with the change
of dimension. Analogous to the 3D case (Equation (3.3.13)), a is determined

by the isostatic constraint, which is
(2) = /<Z|T)P(r)dr = 4, (3.3.15)
0

in two dimensions with the size distribution now given in terms of r rather

than a. The value of a for two dimensions is found to be 0.894. The equiva-
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lent value of o that would recover the correct answer for the kissing problem
in 2D is 1.

The justification for this model is that the correlation between size and
contact number is independent of of polydispersity, analogous to the results
in three dimensions. Similar to Figure 3.3.4, a number of different size distri-
butions are plotted for given intervals of r in Figure 3.3.8. For each r interval
plotted, all the P(z|r) collapse independent of size distribution, therefore val-
idating the basis of the model. However, Figure 3.3.8 highlights some of the
weaknesses of the model, which are particularly illustrated for the lowest in-
terval of r where the data shows a range of contact numbers z but the model
predicts that only 3 discs can fit around a disc of that size. This discrepancy
at low r is due the influence of the maximum contact limiting parameter a.
This limiting parameter results in the model prediction of (z|r) vanishing for
r < 0.24 and (02

for the distribution of contacts around a disc of a given radius is in better

r) for r < 0.55. For large values of r the model prediction

agreement.
The global contact distribution can then be predicted from the two di-

mensional equivalent of Equation (3.3.11),
Pig) = /P(.‘:”I‘)P(I‘)d?'. (3.3.16)
0

In Figure 3.3.9, it is shown that there is good agreement between the predic-
tions and data for a large range of oz and different types of size distribution.
Similar to results in three dimensions, for wider size distributions the predic-

tion is in closer agreement with the data.
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Figure 3.3.7: (a) The average of the contact number distribution for particles
of a given radius r in 2D for a number of different size distributions at ¢..
The data is labelled the same as in Figure 3.2.4 with the addition of (V)
Gaussian o = 0.28 using the bubble model code. In all three panels, the
model prediction for that quantity is plotted as the solid red line. (b) The
variance (o%|r) for the same size distributions. (c) The ratio of the variance
to the average of the contact number distribution for particles of a given size
r. The dashed red line denotes the value of the acceptance probability p as
found from the data.
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Figure 3.3.8: The contact number distribution for discs of a given radius r,
P(z|r) for the same size distributions as plotted in the the inset of Figure
3.3.7 at ¢.. Plotted here is a selection of P(z|r) for five different intervals
r with P(z|r) for each interval shifted on the y-axis for clarity. Plotted
in order of lowest to highest is 0.475 < a < 0.525; 0.825 < a < 0.875;
0.975 < a < 1.025; 1.125 < a < 1.175; 1.475 < a < 1.525. The solid red line
is the model prediction of P(z|r).
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Figure 3.3.9: The contact number distribution for a number of different
polydispersities at ¢. in two dimension. The data from simulation is plotted
as open symbols and the prediction from the model is plotted as the solid
red line. The parameters p = 0.78 and a = 0.894 are used for all size
distributions. The same size distributions are plotted with the same symbols
as in Figure 3.3.7.
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3.3.4 Conclusions & Outlook

We have shown that a surprising number of features of frictionless packings
are insensitive to polydispersity.

Our key result is the universal correlations we observe between size and
contact number of a particle, which are independent of the shape and width
of the size distribution. This holds in both two and three dimensions and
allows a mean field formulation of the granocentric model. The contact
number distributions emerging from the model agree well with the data for a
wide range of polydispersities. The two parameters that appear in the model
are also found to be insensitive to polydispersity.

While the binomial distribution is a good approximation for P(z|a) and
P(z|r), it does not capture the whole distribution. Particularly, there is a
tendency to overlook the existence of large z occurring for large particles.
It remains a subject for investigation of whether another distribution can

provide a superior description of P(z|a) and P(z|r).
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3.4 Particle Size with Contact Number 2z

In this section we look at the opposite correlation to that studied in Section
3.2, and investigate how a packing at ¢, is structured when viewed from a
particle with a given contact number. This is an approach that has been
taken before in the study of force networks [67] and of disordered cellular
structures [68, 69]. We will now investigate how the correlations found in the

first part of this chapter change when inspected in this manner.

3.4.1 Three Dimensions

Though we have shown a link between the surface area available to a par-
ticle in a polydisperse random close packed packing and its average contact
number, and that this relationship is independent of the size distribution,
it is important to emphasise that the converse is not necessarily true. The
average area of particles that have z contacts, (a|z), is not equal to (z|a).

The average (a|z) is defined as

(nlg) = /Ox aP(a|z)da. (3.4.1)

In the bottom inset of Figure 3.4.1, it shown that (a|z) is not independent of
size distribution. The (a|z) of continuous size distributions, lognormal and

Gaussian, that have tails in P(a), are fit by
(a|z) =14+ Az — (2)), (3.4.2)

and in Figure 3.4.1 show good agreement with a range of polydispersities.
When rescaled by the fitting parameter A, the (a|z) for all lognormal and
Gaussian size distributions collapses, as seen in the top inset of Figure 3.4.1.
While the overall trend of (a|z) for lognormal and Gaussian distributions

is linear, there are deviations. The size distributions that lack tails have a
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Figure 3.4.1: The average area of particles with a given contact number for
four different size distributions in three dimensions at ¢.: (<1) lognormal
or = 0.05; (~) Gaussian or = 0.14; (o) lognormal oz = 0.20; (>) lognormal
or = 0.36. The solid lines are fits to Equation (3.4.2). The top inset shows
the average area of particles with a given contact number for all (o) lognormal
and (/) Gaussian size distributions at ¢,., collapsed by fitting the data to
Equation (3.4.2). The dashed red line corresponds to a slope of 1. Inset of
the top inset shows the fit parameter A as a function of 0 4. The bottom inset
shows relationship between (a|z) versus z for the same size distributions as
plotted in Figure 3.3.5.

different functional form in (a|z) because there are large populations of large
spheres that can take a range of z as seen in Figure 3.3.4. Without a tail in
the bidisperse and uniform size distributions, the plateau of (a|z) seen in the
bottom inset of Figure 3.4.1 results. This linear relationship between size and
contact number is similar to a relationship known to exist in two-dimensional
cellular structures and is known as Lewis’ law [69]. This link between the
arrangement of cellular structures and that of disordered packings will be

explored further in Chapters 4 and 5.
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The two different relationships between a and z (Equations (3.4.2) and
(3.2.3)) arise from being calculated from two different conditional probabili-
ties, the discrete distribution P(z|a) and the continuous distribution P(a|z),

which are related by Bayes Theorem [70],

(3.4.3)

P(z|a) = P(al2) 7

As described in the previous section, P(z) and P(a), in addition to being
discrete and continuous distributions respectively, are related but are not
the same. Hence the fitting parameter A is not equal to the inverse of ~,
which we recall is the fitting parameter of Equation (3.2.3).

From Equation (3.4.3), the two conditional averages (z|a) and (a|z) can

be related by

o0

/0oc a(z|a)P(a)da = Z z(a|z) P(z). (3.4.4)

z=4
Then by substituting the linear fits of Equation (3.2.3) and Equation (3.4.2)
into Equation (3.4.4) a relationship can be found between the width of the

size distribution and the width of the contact number distribution,

g 2

WJA. (3.4.5)

0% =
where 0 4 is the standard deviation of the normalised surface area distribution
with rattlers omitted and is defined as,

(RY)

o4 = (R%Q—L (3.4.6)

This is not trivially related to og and is a useful measure of the size distri-
bution of packings in 3D.
While ~ is a constant, the fitting parameter A from Equation (3.4.2) is a

function of o 4. This is seen in the inset of the top inset of Figure 3.4.1.
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3.4.2 Two Dimensions

Similar correlations are also observed in two dimensions. By defining the

average radius for particles with a given contact number (r|z) as,

(FiEy= /000 rP(r|z)dr, (3.4.7)

Figure 3.4.2: The average radius of particles with a given contact number
for four different size distributions in two dimensions at ¢.: (<1) lognormal
or = 0.10; (») Gaussian or = 0.24; (o) lognormal oy = 0.30; (>) lognormal
or = 0.45. The solid lines are fits to Equation (3.4.8). The top inset shows
the average area of particles with a given contact number for all (o) lognormal
and (/) Gaussian size distributions at ¢., collapsed by fitting the data to
Equation (3.4.8). The dashed red line corresponds to a slope of 1. Inset of
the top inset shows the fit parameter A as a function of 4. The bottom
inset shows relationship between (a|z) versus z for the size distributions: ({)
bidisperse; ([]) uniform oz = 0.23; () Gaussian oz = 0.27; (o) lognormal
or=0.35:
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a relationship similar to Equation (3.4.2) found in three dimensions can be

written for two dimensions. The equation,
(r|z) = 14 Xap(z — (2)), (3.4.8)

is then fit to (r|z) of the two-dimensional Gaussian and lognormal distribu-
tions in Figure 3.4.2 with good agreement. In the bottom inset of Figure
3.4.2, as seen for three dimensions, the distributions without tails plateau for
large z, though this is less pronounced than in three dimensions due to the
smaller range of contact numbers. In the top inset of Figure 3.4.2, all the log-
normal and Gaussian data are rescaled such that a trend with slope 1 would
indicate agreement between the data and Equation (3.4.8). The correlation
between size and contact number is well described by Equation (3.4.8). The
fitting parameter of Equation (3.4.8), Ayp, is plotted in the inset of the top
inset of Figure 3.4.2 and is a function of the polydispersity.

Through an analysis similar to that described in the previous section for
three dimensions, a relationship between the standard deviations of the size

distributions and the contact number distributions can be written,

0% = %Uﬁ. (3.4.9)

The prediction of the contact number variances 0% made for 3D and 2D

by Equation (3.4.5) and (3.4.9) are plotted in Figure 3.4.3 and its inset.
The behaviour of ¢% in 3D, adheres to a much clearer linear trend when
plotted in terms of 0% than the trend of 0% with 0% plotted in Figure 2.3.5.
The agreement between Equation (3.4.5) and the 3D data is best for broad
distributions but less accurate for narrow distributions where (a|z) is not well
approximated by the linear fit of Equation (3.4.2). Equation (3.4.9) fits the
2D data best for wider distributions as well. For the narrow distributions o3
is not captured as well as it was in 3D. This discrepancy can be attributed

to the same reasons as advanced for 3D but is also in some part due to
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the partial crystallisation that occurs in 2D for oz < 0.1. The type of size
distribution used appears to have an effect with predictions of the contact
number variance for Gaussian distributions being more accurate than those

made for lognormal distributions.

Figure 3.4.3: Relationship between the variance of the area distribution 0%

and the variance of the contact number distribution 0%. The dashed line
corresponds to a linear fit to the data: 0% = 1.60 + 8.090%. The closed
symbols (e) are the predictions from Equation (3.4.5). Plotted in the inset
is the variance 0% versus the variance of the radius distribution 0% for two
dimensional packings. The dashed line corresponds to a linear fit to the
data: 0% = 0.61 + 3.520%. The closed symbols (e) are the predictions from

Equation (3.4.9). The data is labelled the same as in Figure 2.3.2.



3.4. PARTICLE SIZE WITH CONTACT NUMBER Z 64

3.4.3 Conclusions

Despite the correlations shown to be independent of polydispersity when
viewed from the perspective of particle size, when viewed from the stand-
point of contact number, the relationship between contact number and size
becomes more complex. The relationship between these approaches is not
straightforward. However, the behaviours of (a|z) in 3D and (r|z) in 2D are
found to be linear with contact number for packings with sufficiently wide
tails in their size distribution.

The linear relationship found in this section, along with the linear rela-
tionship found in Section 3.2, allows for a prediction of the global contact

number variance, given information on the variance of the size distribution.
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Figure 3.5.1: Visualisation of a 2D soft disc packing simulation at ¢. with
a bidisperse distribution of radii. The discs are linked by a solid black line
when in contact and the thickness of the line is proportional to the strength
of the interaction.

3.5 The Force Network in Disordered
Packings

We have shown that disordered packings have various local contact correla-
tions that are independent of polydispersity. This has allowed a connection to
be made between the size distribution and the contact number distribution.
The next natural step is to investigate whether the distribution of forces can
similarly be predicted from the size distribution. Previous work on the local
structure of the force distribution at ¢. has focussed on the existence of force
chains [60, 61]. A 2D example of force chains is plotted in Figure 3.5.1. Our

results in this section are related to these observations.
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3.5.1 Introduction to Force Distributions

The force network of jammed packings is known to be highly heterogeneous.
This effect can be characterised by the probability density of contact forces
P(f). For jammed particles P(f) typically has a maximum for f < 1 [71]
and a long tail for f > 1, where f is the normalised force f = fi/(f;)
and f; is the interaction force between particles. Experimentally, the force
network of packings has typically been difficult to determine in the bulk.
Until recently, the experimental procedure has measured the forces through
imprints on carbon paper at the boundaries of a granular assembly [53].
These experiments obtained a P(f) that displayed an exponential rather than
a Gaussian decay for large forces. With the advent of techniques that allow
inspection of the contact forces inside the bulk of packings, such as confocal
microscopy in jammed packings of emulsions [53, 72] and the use of photo-
elastic particles [60], a faster than exponential decay has been observed. This
faster than exponential decay has also been found for 2D wet foams [54].

There have been many numerical studies on the shape of the P(f) distri-
bution. O’Hern et al. [71] has linked the existence of the maximum of P(f)
to packings developing a yield stress, and in [24] it was shown that packings
at ¢. have different forms of P(f) depending on whether f is normalised
by the global average of many packings or by the average of each individ-
ual packing, this property is called a lack of self averaging. Using different
simulation techniques, Makse et al. [62] and Radjai et al. [73] found that the
force distribution displays exponential behaviour at large f.

More recently, van Eerd et al. [74] have shown with the Force Network
Ensemble (FNE) approach [75] and using advanced sampling techniques to
get good statistics to investigate the tail of P(f) that these tails are faster

than exponential and the role of dimension is important.
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Figure 3.5.2: Force distributions of 3D packing simulations at ¢, for a range
of polydispersities. The data plotted is labelled as: (V) monodisperse; ()
bidisperse; (U]) uniform oz = 0.11; (/) Gaussian o = 0.14; (o) lognormal
or = 0.20; (<) lognormal o = 0.28. The dashed lines are fits of Equation
(3.5.1) to the tails of P(f). Inset: Zoom on the peak of the force distributions.

3.5.2 Effect of Polydispersity on the Force

Distribution

The effect of polydispersity on P(f) has not been extensively studied; of-
ten research has been restricted to monodisperse, bidisperse or a particular
sample of polydispersity. Work by Kondic et al. [76] has noted that the poly-
dispersity has an effect on the structure of the force network and there is a
note on how polydispersity affects the distribution of forces in a numerical
study in 2D [61], which shows only small variation in the behaviour of force
distributions for a small range of polydispersity. Work by Voivret et al. [77]
has shown that polydispersity does have a pronounced effect on the force

distribution but they did not comment on how the tails of P(f) are affected.
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Figure 3.5.3: Force distributions of 2D packing simulations for a range of
polydispersities at ¢..The data plotted is labelled as: () bidisperse; (L)
uniform op = 0.17; (») Gaussian og = 0.24; (V) lognormal oz = 0.30; (=)
lognormal o0 = 0.40. The dashed lines are fits of Equation (3.5.1) to the
tails of P(f). Inset: Zoom on the peak of the force distributions

We find that in both three dimensions and two dimensions, as shown in
Figures 3.5.2 and 3.5.3 respectively, the force distribution depends upon the
polydispersity of the packings. While the description of the tails of the dis-
tribution of disordered packings has been subject to some debate, with the
question of whether the tails of the force distribution were described by a
Gaussian, exponential or some other fall off, this dependence on polydisper-
sity has not been considered. Using the FNE approach, van Eerd et al. [74]
found that in 3D the tails were well described by a faster than exponential

fall-off with
P(f) ~ exp(—cf*?), (3.5.1)

where a = 1.7 £+ 0.1 for 3D monodisperse disordered packings. In 2D bidis-
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perse packings, the tails were well described by a Gaussian fall-off, a =
2.0+ 0.1. As in this work, all forces are normalised such that (f) = 1. To
avoid the difficulties of the lack of self averaging of the force distribution at
¢c [24], P(f) is normalised by (f) for each packing rather than the ensemble.
In our research, we find that P(f) of monodisperse packings in three dimen-
sions and of the bidisperse packings in two dimensions are in good agreement
with the results of van Eerd et al. [74]. Equation (3.5.1) is fitted for a selec-
tion of size distributions to the tail of P(f) in Figures 3.5.2 and 3.5.3 and
demonstrates that the decay of P(f) is strongly dependent on the polydis-
persity in 3D and slightly dependent in 2D. The value of the fit parameters
of Equation (3.5.1) are displayed in Table 3.1.

‘ Polydispersity | D I OR | c | a ‘
Monodisperse | 3 | 0.00 | 0.47 +0.01 | 1.74 £ 0.01
Bidisperse 3 AT 082001 | 121 2011
Lognormal 3 | 020 | 187 £0.04 | 0.77 £ 0.01
Lognormal 3 1028|290+0.10 | 0.52 +0.01
Bidisperse 2 10.17 | 041 £0.02 | 1.99 & 0.04
Lognormal 2 |0.45|052+0.02 | 1.63+0.03

Table 3.1: Table of the fitting parameters of Equation (3.5.1) used to describe

the tails of the polydisperse force distributions.
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Figure 3.5.4: (a) The average of the distribution of interaction force on a
particle given a volume (f|v) for 3D packings at ¢.. (b) The distribution of
forces on a particle given a volume P(f|v) for 3D packings at ¢, for v = 1.00.
The data is labelled as in Figure 3.5.2.

3.5.3 Local Correlations in the Force Network

In the same way that local correlations were found in the contact network,
we observe that force correlates with particle size in the force network in
three dimensions. for all polydispersities we find that the average f collapses
when binned by the normalised volume of a particle v, shown in Figure 3.5.4
(a). Figure 3.5.4 (a) shows that large particles tend to experience larger
forces on average. This behaviour may be linked to force chains and the
observation that large forces on particles tend to positively correlate with
each other [61]. In Figure 3.5.4 (b) the conditional distribution P(f|v) is
plotted and unlike the case for contact number, revealed to be not quite
independent of polydispersity. It should be noted that the tails of P(f|v) are
not as pronounced as for P(f), and these two distribution are not the same.

Since we have shown that f is dependent on the size of the particle, this
could suggest that the bulk modulus for the packing is inhomogeneous, since
large particles experience larger forces than small particles. To explore this

we investigate the total energy of particles as a function of size. The total
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Figure 3.5.5: (a) The ratio of energy of particles of a certain volume v to
the volume of the particles for 3D packings at ¢.. (b) The distribution of
energy on a particles given a certain volume P(FE|v) for 3D packings at ¢,
when v = 1.00. The data is labelled the same as Figure 3.5.4.

normalised energy is defined as
k o ;
Ei=-—)Y_ 2% (3.5.2)
J

For 3D packings, in order for the bulk modulus to be homogeneous, it would
require that the ratio of energy to volume, the energy density, to be @ =
constant. In Figure 3.5.5(a), we find that despite a slight trend, the ratio is
approximately constant, suggesting that inhomogeneities in the bulk modulus
are negligible. In Figure 3.5.5(b) the conditional distribution P(FE|v) displays

an exponential decay, which shows only small variation with og.

3.5.4 Conclusions & Outlook

For the first time we have described how the decay of the tail of P(f) depends
upon the polydispersity of the packing in both 2D and 3D. We have shown
that large particles tend to have larger forces in 3D. We have shown that
the energy density does not vary with particle size, implying that the bulk

modulus is roughly homogeneous.



Chapter 4
Nearest Neighbour Correlations

In Chapter 3 we focussed on predicting the contact properties of disordered
packings and proposed a mean-field model based on the assumption that the
packing is spatially uncorrelated. In this model we assumed that the contact
number and size of a particle is uncorrelated to the contact number and size
of the surrounding particles.

This assumption is often made by models attempting to explain the prop-
erties of disordered media. In recent years successful models like the gra-
nocentric model and its progeny make the assumption that the distribution
of particle size in packings are homogenous, in other words that the distri-
bution of particle size around a given particle is the same as the global size
distribution. Other models to predict the packing density [78] or the distri-
bution of forces [79] also assume that the distribution of contact numbers of
particles is not spatially correlated.

In this chapter we investigate whether this assumption holds and to what
extent is it a reasonable assumption to make. In order to do this we define
the nearest neighbours of a central particle. The particles in contact with

this central particle are called nearest neighbours.

12
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4.1 Contact Number Correlations

Firstly, we investigate whether the contact network is spatially correlated
by making an analogue to a correlation observed in two dimensional cellular
networks called the Aboav-Weaire law. The Aboav-Weaire law states that
cells with many neighbours are surrounded by cells with few neighbours and

vice versa.

4.1.1 Dry Foams

Dry foams form cellular structures. In perfectly ordered cellular structures
in 2D, the number of sides of each cell is 6 and there is no variation in the
area distribution of the cells, resulting in the hexagonal honeycomb structure.
While we note that monodisperse cellular structures can be disordered, once
a wide distribution of cell sizes are allowed, the structure may become much
more disordered. It can be proven explicitly that the average coordination
number (n) of a 2D dry foam must be equal to 6 [80]. While (n) of all of
the cells must remain constant, the number of sides of an individual cell can
vary, giving rise to a distribution P(n). The question is, are the number of
sides n of individual cells randomly distributed throughout the foam? This

is answered by the Aboav—Weaire law for dry foams.

4.1.2 Aboav—Weaire law

A relationship between the number of sides of cells and the number of sides
of neighbouring cells was observed in disorder cellular structures by Aboav
[81] in polycrystalline MgO ceramic. Aboav found a correlation between n
and the average number of sides of the neighbours of cells with n sides, m(n).
He found that cells with many sides are surrounded by cells with few sides

and vice versa. The expression that Aboav found to describe the relationship
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between n and m(n) was of the form:

m(n):A+§. (4.1.1)
n

where A and B are constants. This purely empirical relationship was given
a theoretical reinforcement by Weaire [68].
It was noted by Weaire that m(n) obeys a sum rule which is exact in any

dimension,

Zm(n)nP(n) =Z712P(n). (4.1.2]

n n
where n denotes the number of sides of a cell and P(n) is the distribution of
nsided cells.
This sum rule (Equation (4.1.2)) can be shown by a counting argument.
In detail, the cell A (see Figure 4.1.1) has n,4 sides each counted n4 times on

the right hand side of Equation (4.1.2). The average number of sides of the

Figure 4.1.1: Aboav-Weaire correlations in cellular structures. The cells have
been labelled in order to aid understanding of the Weaire sum rule.
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neighbours of cell A is m,4, which is given by

nA

1
my = — n;. (4.1.3)
na :

By averaging m for all cells with n neighbours, m(n) is found. Considering
the left hand side of Equation (4.1.2) then gives,

1
Zm )nP(n ; <;Z ) nP(n Z (an) n). (4.14)
Considering the right hand side of Equation (4.1.4), the first sum cycles
through all the cells in the cellular structure. The sum in the bracketed
expression then adds up the contribution n of all the neighbours of each cell
counted in the first sum. Since only the contribution of the neighbouring cells
are counted then each n appears n times because that cell has n neighbours.

Then Equation (4.1.2) is a weighted sum of the contact numbers and therefore

Z (Z n,-) Fin) = 271213(71), (4.1.5)

n % n

which is identical to the right hand side of Equation (4.1.2), therefore the
Weaire sum rule holds.

The contribution of Weaire was to show that Equation (4.1.1) must be
of a form to satisfy Equation (4.1.2). The Aboav-Weaire law is then the
simplest expression that both satisfies Equation (4.1.2) and describes the

correlations between m and n. The resulting expression is,

6a + po
n

m=6-—a+

(4.1.6)

where a is an empirical parameter whose value for a typical dry 2D foam is 1.2

[2] and ps is the variance of the cell sides which is defined as yy = (n)?— (n?).
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The exact physical significance of the a parameter is unknown.

This relation, known as the Aboav—Weaire law (but is in fact a conjecture)
is described as semi-empirical as the sum rule proposed by Weaire only gives
consistency to Aboav’s relation. It is reported as being found in all naturally
disordered cellular structures [82]. However, some artificial structures such
as the random Voronoi froth show small deviations from the Aboav-Weaire
law [83]. There has been no successful proof of the Aboav-Weaire law and it
has only be shown to be exact for some special cases [84].

In the absence of spatial correlations, m is a constant and is given by,
m(n) = (n) + —. (4.1.7)

This uncorrelated arrangement in cellular structures is called a topological
gas. The existence of such an uncorrelated structure is uncertain [85].

Most commonly this correlation has been investigated in two dimensions,
though the Equation (4.1.6) has been altered to apply to polyhedra tessela-
tions in 3D [86, 87],

I
alfi+ 1
m(f) = () - a+ WL, (4.18)
where f is the number of faces of the polyhedron, m(f) is the average number
of faces of neighbouring polyhedra, u£ is the variance of the distribution of f
and a is the Aboav-Weaire parameter in 3D. Equation (4.1.8) has found to be
applicable to various type of cellular structure in 3D [86, 87], demonstrating

that there are spatial correlations in 3D cellular networks as well.
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4.1.3 Weaire Sum Rule in Disc Packings

Initially restricting ourselves to two dimensions, we return to packings and
make an analogue with cellular structures for packings. We investigate
whether the contact network is spatially correlated by defining Z,,(z) to
be the average contact number of particles that are in contact with a par-
ticles that has z contacts. Z,,(z) is analogous to the quantity m(n) in the
Aboav-Weaire law.

The sum rule argument, which was originally developed for cellular struc-
tures, holds equally well for a contact network of disordered soft disc pack-
ings. The main difference, as shown before, is that in two-dimensional cellular
structures with three-fold vertices, (n) = 6, while frictionless packings in two
dimensions have (2) = z. = 4 at ¢, [64]. The sum rule for the contact

network in packings is then

Y Zil)alia) =} 2P (4.1.9)

Zun is then a function of z that must satisfy Equation (4.1.9). For uncor-
related packings Z,,(z) is a constant (7,,,,) which is independent of z and

from Equation (4.1.9) is equal to

. 1.10
: (4.1.10)

This is the disc packing uncorrelated arrangement analogous to Equation
(4.1.7).

e
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Figure 4.1.2: Contact number correlations for discs in contact at ¢, in 2D.
The error bars are standard deviations from the mean. The dashed line is
the prediction of an uncorrelated packing from Equation (4.1.10). The data
plotted in each panel is: (a) lognormal o = 0.35; (b) Gaussian o = 0.24;
(¢) uniform o = 0.17; (d) bidisperse.
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4.1.4 Correlations in the Contact Network of Disc
Packings

Plotted in Figure 4.1.2 is Z,,,,(z) for a variety of size distributions of discs in
2D at the random close packing density. For wide size distributions, indepen-
dent of the type of size distribution, it is observed in Figure 4.1.2(a)-(d) that
particles with less contacts than average are surrounded by particles with
many contacts. Also, particles with more contacts than average are sur-
rounded by particles with fewer contacts. The uncorrelated prediction Z,,,
fails to capture the trend of Z,,,(z) and therefore there are nearest neighbour

anti-correlations in the contact network similar to cellular structures.

4.1.5 Aboav—Weaire in Disc Packings

Despite having shown in Chapter 3 the validity of making a mean field as-
sumption for the model to predict P(z) by implicitly assuming that disor-
dered packings are uncorrelated, Figure 4.1.4 clearly shows that this is not
the case. Correlations similar to the Aboav—-Weaire law for cellular structures
are found in two dimensional packing data.

Though there are correlations, it is not clear if they are of Aboav—-Weaire
form. Z,,(z) is an empirical function that must also satisfy Equation (4.1.9).
A solution to Equation (4.1.9) can be found by a series expansion in terms

of the moments of P(z):
(Znn — <3>)3_0%: —Z('i (Zi— <2i>). (4.1.11)
i=1

where the ¢;s are arbitrary constants. If ¢; = 0 for « > 1, one recovers the

packing version of the Aboav-Weaire relationship,

a(z) + 0%

A

Zon = (2) —a + (4.1.12)
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We now take the data shown in Figure 4.1.2 and plot this data again in Figure
4.1.3 with axes chosen so that if the data was in agreement with Equation
(4.1.12), there would be a straight line with negative slope. Figure 4.1.3
shows that contact anti-correlations in 2D disc packings are well described
by Equation (4.1.12). In the inset of Figure 4.1.3 the a parameter is plotted
showing a sharp decrease when the size distribution is sufficiently narrow as
to allow crystalline patches to occur. This is compared to the a parameter

for uncorrelated packings, in this case a typically takes a negative value.
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Figure 4.1.3: Contact number correlations for discs in contact at ¢., for the
same size distributions as in Figure 4.1.2(a)-(d). The error bars are standard
deviations from the mean. The solid lines are fits to Equation (4.1.12). The
inset shows the fit parameter a as a function og. The dashed red line marks
the op at which crystallisation can occur. Inset: The data is labelled the
same as in Figure 2.3.2. The solid red line is the value of the uncorrelated a
for that op.
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This Aboav—Weaire anti-correlation can be interpreted as a partial screen-
ing of topological charge z— (z) by its contacting neighbours whose combined
charge is z(Z,, — (z)). The parameter a can then be used as a measure of
that screening of topological charge. For packings beyond the point at which
crystallisation may occur, there is a steady decline in the value of a. This
is reminiscent of the prediction for the a parameter in cellular structures to
decline as the variance increases [88]. Recall that in Figure 3.4.3 the variance

0% had a linear dependence on the o7.

4.1.6 Correlations in the Contact Network of Sphere
Packings

Moving to three dimensions the same argument applies as in the 2D case.
The principle change is that (z) = 6 in 3D. Figure 4.1.4 shows Z,, (=) for var-
ious size distributions in 3D. All distributions exhibit clear anti-correlations,
particles with few contacts are surrounded by particles with many contacts
and vice versa. However, deviations from the uncorrelated prediction Z i
are usually less than 10%, suggesting a cause of the success of the mean field

granocentric approach, despite the correlations in the contact network.

4.1.7 Aboav—Weaire Correlations in Sphere Packings

Plotting Z,,(z) in the manner of Figure 4.1.4 clearly shows that there are
spatial correlations in the contact network, however it is difficult to resolve
whether Equation (4.1.12) perfectly captures the correlations. In order to get
a clear idea of how well the data is described by the classic Aboav—Weaire
correlation, we re-plot the data in Figure 4.1.5 as (Z,, — (z))z — 0% versus
2z — (z). Should the data have a strictly linear behaviour with negative slope
then it would be described by the original Aboav—Weaire correlation. Instead
a non-linear behaviour is observed for all distributions with deviations from

the linear trend observed at high and low z — (2).
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Figure 4.1.4: Contact number correlations for spheres in contact at ¢..
The dashed line is the prediction of an uncorrelated packing from Equation
(4.1.10). The data plotted in each panel is: (a) lognormal o = 0.20; (b)
Gaussian o = 0.22; (¢) uniform op = 0.24; (d) bidisperse; (e) monodisperse.
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Figure 4.1.5: Contact number correlations for spheres in contact at ¢,., for
the same size distributions as in Figure 4.1.4. The error bars are standard
deviations from the mean. The solid lines are fits to Equation (4.1.13). The
inset shows the fit parameter b as a function oz. The data in the inset is
labelled the same as in Figure 2.3.2.

In order to account for these deviations from the linear trend of the classic
Aboav-Weaire correlation, we revisit Equation (4.1.11). In two dimensions
for ¢. it was found that to describe the data it was sufficient to only make
c1 # 0; because of the deviations from linearity observed in three dimensions,
we investigate higher powers of 7. By only making the second term non-zero
(co # 0), the deviations in the data can be described by a modified Aboav—

Weaire correlation
b > 2 2
Znn = (2) — bz + Ll b), (4.1.13)

o
<
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where b = c,.

Equation (4.1.13) captures the trend of the data for all size distributions
in Figure 4.1.5, however only the Gaussian data is fully described by this
equation. In the inset of Figure 4.1.5 the fit parameter b is plotted for in-
creasing values of ox. b does not depend on the shape of the size distribution
but only on the width oz. Note that all size distributions regardless of shape
or width exhibit these anti-correlations in the contact network. The physical
meaning of b like the equivalent parameter a in the cellular Aboav-Weaire
law is not clear [2]. Of course various combinations of powers of i can be
introduced from Equation (4.1.11) to better describe the correlations but the
simplest expression that describes the trend in Z,, is to keep only the second
term in the expansion in Equation (4.1.11) non-zero.

The existence of these contact number correlations in the contact network
are not obvious, as cellular structures and packings are governed by different
global and local constraints. Although polydisperse packings can be tessel-
lated into a cellular structure [50, 86], not all faces of a cell correspond to
contacts, therefore the existence of correlations in packings does not follow

naturally from similar correlations in disordered cellular structures.
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4.2 Size-Size Correlations

We have shown in Section 3.2 that a relationship between the size of a par-
ticle and the contact number of a particle exists, where small particles typ-
ically have a lower coordination number than larger particles. As well, we
have shown in the previous sections that there are spatial correlations in
the contact network of the disordered packings, where particles with a low
coordination number tend to be in contact with particles that have a high co-
ordination number. We now investigate whether the size of nearest neighbour
particles are correlated.

There has been limited study of the relationship between size of particles
in contact in packings. The only examples of previous investigations of this
phenomenon in cellular structures is the work of Sire and Seul [89] and Seul
et al. [90]. These works examined the relative size of neighbouring cells in
2D cellular structures and found that cells sizes were anti-correlated to the

size of its neighbour.

4.2.1 Size-Size Correlations in 3D

We begin by looking at size correlations in 3D sphere packings. In order
to explore potential size correlations, A,,(a) is defined as the average nor-
malised surface area of all particles in contact with a particle with surface
area a. In Figure 4.2.1(a), A,,, is plotted versus a for four different size distri-
butions, and we find that there are spatial correlations in the size of particles
in disordered packings. On average larger particles are surrounded by smaller
particles and vice versa. The trend in the data differs from that which de-
scribes a packing in which the size of particles in contact is uncorrelated,
defined as A, in Equation (4.2.3).
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4.2.2 Relationship of Size-Size Correlations in 3D

Restricting our attention initially to 3D, the same counting argument that
is used to formulate Equation (4.1.9) can be applied to particle size in a
similar fashion. Analogous to Equation (4.1.9), A,, must satisfy the following

relation:

/0°° Apnla)izla)Pla)da = /Oooa(z’a)P(a)da. (4.2.1)

In the scenario where there are no correlations in the size distribution of

neighbouring particles, then A,,(a) becomes a constant (= A,,) and Equa-

tion (4.2.1) becomes

Ann/O <z|a)P((z)da:/O a(z|a)P(a)da, (4.2.2)

and then integrating on the left hand side and rearranging gives,

i /Oxa (%? P(a)) da. (4.2.3)

In Figure 3.2.2 it was shown that (z|a) was well described by Equation

(3.2.3). A simple prediction of the average size of neighbours in an uncorre-
lated packing can be found by substituting Equation (3.2.3) into the previous

expression, and then simplifying to
AT, S (4.2.4)

(2)
where at ¢, (z) = z. is a constant, as is the fit parameter of Equation (3.2.3),
= 3.03. This relation is plotted in Figure 4.2.2.

Alternatively, the sum rule analogue for particle size can be written as

the sum

Z(A,mlz)zp(z) = Zz(a|z)P(z), (4.2.5)

z z

where (A,,|2) is the average area of a particle with z contacts. In this case
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Figure 4.2.1: (a) Correlations between size of spheres in contact. All symbols
represent the same size distributions as in Figure 4.1.5 except: (/) Gaussian
or = 0.14. The solid lines are fits to the data using Equation (4.2.8) with
the dashed lines being the uncorrelated prediction calculated from Equation
(4.2.6). The inset shows the fit parameter w as a function of o 4. The data in
the inset is labelled the same as in Figure 2.3.2. (b) Correlations between size
of discs in contact in two dimensions rescaled by the predicted uncorrelated
radius R,,. Five different size distributions are plotted: ({) bidisperse,
radius ratio 1:1.4; ([]) uniform op = 0.17; (») Gaussian og = 0.14; (<)
lognormal o = 0.20; (V) lognormal o = 0.30; (i) lognormal o = 0.40.
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when A,,, is uncorrelated, it can be calculated from

A, = <1—> " 2(al2) P(2), (4.2.6)

z

which is the data plotted in Figure 4.2.2.
In order to describe the trend of A,,, seen in Figure 4.2.1 (a), we formulate

a series expansion in terms of the moments of P(a) that satisfies Equation
(4.2.1),

~ a(zl) Pla)da + 5, wi(a’ — (a'))

Apn(a) = J o (4.2.7)

where w; are arbitrary constants.
Substituting this expression into Equation (4.2.7) and taking only the
first term in the expansion (i = 1) gives,
(z) +vo4 + w(a — 1)

Aoaln] = & raa=1). (4.2.8)

where w = w;. This one parameter fit to data, with 7 constrained to fit
(z|la), is shown in Figure 4.2.1(a). Equation (4.2.8) is found to be a good
description of the correlations between the size of particles in packing.
Plotted in the inset of Figure 4.2.1(a) is the behaviour of w with increas-
ing width. Similar to the parameter a used as a measure of disorder of the
contact network, w can be used to quantify the strength of anti-correlations
in the particle size network. Packings with larger w have stronger separation
of particle sizes. Therefore the more polydisperse a packing, the less the dis-

tribution of sizes of nearest neighbours resembles the global size distribution.
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4.2.3 Relationship of Size-Size Correlations in 2D

We reported in [64] an equivalent sum rule to Equation (4.2.1) for disc radius

in two dimensions:
/ Bomlritzle ) Ply jdr = / r{z|r)P(r)dr, (4.2.9)
0 0

where R,,(r) is the average normalised radius in contact with a particle
of radius r, which is plotted in Figure 4.2.1(b). In contrast to the results
for three-dimensional sphere packings, the relationship between the radius
of a disc and the average radius of its contacts is well described by the

uncorrelated prediction, given as
()

e /x ( )

for all polydispersities. There are some deviations from the uncorrelated

P(r)) dr, (4.2.10)

prediction at low r. These deviations can be attributed to the presence of
small particles with a low number of contacts that can only remain in the
connected network when in contact with much larger spheres.

Using the same arguments as in three dimensions, the relationship be-

tween R, and the width of the size distribution can be found to be

B = 1~ i, (4.2.11)

(2)

where 7,p and (z) are constant at ¢..
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Figure 4.2.2: The uncorrelated prediction A,, for a range of different size
distributions in three dimensions. The data plotted is calculated from Equa-
tion (4.2.6). The dashed line is the uncorrelated prediction of A, calculated
from Equation (4.2.4). Inset: The uncorrelated prediction R,, for a range of
different size distribution in two dimensions. The data plotted is calculated
from Equation (4.2.10). The dashed line is the uncorrelated prediction of

R, calculated from Equation (4.2.11). The data is labelled the same as in
Figure 2.3.2.

4.2.4 Uncorrelated Prediction

As can be seen from Figure 4.2.2, the relationship between the uncorrelated
prediction of the average size of neighbouring particles is the same in 2D and
3D but for a change in variable. Figure 4.2.2 shows that as 04 increases so do
the values of A,,. Rn,. which is plotted in the inset of Figure 4.2.2, increases
with increasing 0. Both A, and R,, are well described by Equation (4.2.4)
and Equation (4.2.11), respectively. A,, and R,, are greater than 1 because

particles with more contacts tend to be larger and therefore large particles
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tend to be included in the calculation of A,,,, and R,,,, more often than smaller
particles, which on average have less contacts. Equations (4.2.4) and (4.2.11)
show that as packings become more polydisperse this contribution of larger
particles becomes more pronounced.

The uncorrelated predictions in Equations (4.2.4) and (4.2.11) can be re-
cast as the average of the size distribution of neighbouring particles. This
allows from the bracketed expressions in Equation (4.2.4) and Equation
(4.2.11), an expression for the size distribution of neighbouring particles to

be formed as,

PlA - (<ZL°>’>P(a)> o (4.2.12)
e P(Ry,) = <<<~|7>> P(r)Nr:RM. (4.2.13)

respectively. Due to the behaviour of (z|a) and (z|r) from Equation (3.2.3)
and Equation (3.2.6), for all polydisperse packings the size distribution of
nearest neighbours is not the same as the global size distribution of the
packings. This has consequences for mean field models such as the granocen-
tric model that assume the size distribution of contacts is the same as the
global size distribution P(R) [44]. This assumption becomes progressively

worse with increasing polydispersity.
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4.3 Conclusions & Outlook

We have shown in this chapter that, despite their name, random disordered
packings contain robust correlations between neighbouring particles. For the
first time we have shown that random packings of discs and spheres are struc-
tured in such a way that Aboav-Weaire type anti-correlations exist in the
contact network. We note that at ¢.. the anti-correlations in contact num-
ber are described by two different terms of Equation (4.1.11), we do not have
an explanation for why these trends are subtly different in 2D and 3D. We
note that while we do not have a physical explanation of the origin of these
Aboav-Weaire correlations in packings, the analogy with cellular structures
may continue to extend to explaining these correlations similarly in terms
of maximum entropy (for a description of maximum entropy see Weaire and
Rivier [82]). The description of these correlations in packings could poten-
tially be used to characterise the disorder of packings through the measure
of the parameters a and b and to what extent topological charge is screened.

Also presented in this chapter is the interesting result of anti-correlation
of particle size with neighbouring particle size in 3D but curiously this is not
found in 2D. The significance of this result is that the size distribution of
contacts is not homogeneous in 3D. A more damaging result for models that
rely on the assumption that the size distribution of nearest neighbours is the
same as the global size distribution, such as the granocentric model, is the
increase of the uncorrelated predicted average for wider size distributions in
both 2D and 3D. This result states even if the distribution of particles sizes is
homogeneous, the mean of the resulting distribution of sizes of neighbouring
particles will still increase with polydispersity, due to the trend of larger
particles having more contacts.

We can only attribute the success of the granocentric model to the fact
that the nearest neighbour correlations are typically weak.

Perhaps the discovery of these correlations can point the way to a more

comprehensive method of describing the structure of disordered packings.
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Effect of Packing Fraction on
the Structure of Disordered

Packings

Figure 5.0.1: Examples of discs in contact in a packing with Gaussian size
distribution of width or = 0.28 at (a) ¢ = ¢, and (b) ¢ = 1.00.
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Previously we have described various local and global contact properties
of disordered packings at ¢.. How do these contact network correlations
change for polydisperse packings as we move away from the isostatic point?

There have been many studies of the properties of jammed matter with
changing density. Computationally, Bolton and Weaire [3], were the first to
show that properties of wet foams like the shear modulus and the average
contact number scale with the distance from the rigidity loss transition. More
recently, the landmark study by O’Hern et al. [24] described the scaling
of quantities such as the elastic moduli with distance from the jamming
point. Other work based on foams has shown that various properties scale
with the distance from ¢.. Experimentally, Katgert and van Hecke [54] have
confirmed what has previously been shown computationally, that the average
contact number (z) scales with distance from jamming, as also observed in
experiments of frictional discs [91]. Recently Zhao et al. [92] have shown
that there is a regime change at very high packing fraction ¢ = 1.18 for
simulations of bidisperse particles in 3D, above which packings are referred
to as deeply jammed. At this point the scalings reported by O’Hern et al. [24]
break down and different scalings are found. Note, in soft particle simulations
the overlap between particles is counted twice in the calculation of ¢ [18]. It
is difficult to compare ¢ calculated in soft particle simulations to ¢ measured
in experiments due to the deformation of particles at high ¢ in real foams.

Also of interest is the analogy with dry foams, which we have made in
Chapter 4. Many of the correlations seen at ¢, are also observed for cellular
structures like dry foams. Recent work on the granocentric model has made
predictions for cellular structures [59].

We study packings which range from ¢. up to ¢ = 1.00 for a variety of
polydispersities in 3D, which is less than the value found for where a regime
change occurs and deep jamming occurs [92]. In two dimensions, we study
packings up to ¢ = 1.20, where the average contact number reaches (z) = 6.

Examples of 2D packings at different ¢ are shown in Figure 5.0.1.
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5.1 Contact Number Distributions

First we look at the contact number distribution beyond the jamming point.
Figure 5.1.1 shows the distribution of the relative contact number, P(z—(z)),
for different packing fractions and different polydispersities. The shape of the
P(z— (z)) distributions are independent of the packing fraction as evidenced
by the collapse of P(z — (z)) onto a master curve which is dependent upon
the polydispersity. The P(z — (z)) collapse is surprising and means that the
shape of P(z) around its mean depends on P(R) but not on ¢.

As shown in the inset of Figure 5.1.1, (z) increases as the square root of
the distance of ¢ from the isostatic point, which is consistent with previous
results in both experiment [54, 91] and simulations [24, 42]. This increase in

the average contact number (z) is described by [24]

(2) = 2c+ ZoV/ @ — e, (5.1.1)

where Z; is the fit parameter. This relationship is valid in both 2D and
3D. This equation is fit to the simulation data and for a select group of size
distribution the fits are plotted in the top inset of Figure 5.1.1 for 2D and
the top inset of Figure 5.1.2 for 3D. The value Z, for various polydispersities
can be found in Table 5.1.

There is good agreement between Z; found by fitting Equation (5.1.1)
to the polydisperse data presented here and the bidisperse data found in
[24], where Zy = 3.6 £ 0.5 in 2D and Z; = 8.4 + 0.5 in 3D. The one notable
discrepancy between the results is that for monodisperse which is found to be
larger in this work than in [24] (where Z; = 7.7£0.5), this may be attributed
to the wider range of densities explored in this work. The result is that the
average contact number in dense monodisperse packings is larger in this work
than predicted by O’Hern et al. [24].

For 3D data, the shape of the distribution is independent of the pack-

ing fraction when the relative contact number is rescaled by the standard
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Figure 5.1.1: Contact number distributions for increasing packing fraction ¢
in 2D are plotted for a lognormal size distribution of width oz = 0.35 (top,
represented by (o)), a Gaussian distribution of width op = 0.28 using the
bubble model packing algorithm (middle, (A)) and a uniform size distribution
of width og = 0.17 (bottom, ((J)). The distributions are shifted on the y-
axis so that different polydispersities can be compared. The packing fractions
plotted have an (z) represented in the top and bottom insets. The P(z— (2))
are colour coded with ¢, coloured in black; and then in increasing (z) (and
hence ¢) coloured as red; green; blue; purple; pink; dark green; cvan. Top
Inset: Contact number average (z) versus ¢. The data plotted are: ([J)
uniform or = 0.17; (A) Gaussian or = 0.24; (A) Gaussian or = 0.28 (using
bubble model algorithm); (o) lognormal oz = 0.35. The solid lines are
Equation (5.1.1) fitted to the uniform data (in purple) and to the lognormal
data (in black). Bottom Inset: Contact number variance o2 versus (z). The
data are labelled the same as in top inset.
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I Polydispersity l D ] OR I Zy |
Lognormal 210356 1303£0.1
Gaussian 2 028 {-3.28 +£0.1
Gaussian 2 1024 13.33+0.1
Uniform 2 (0417 {345 £0.1
Lognormal 3 10.20] 83102
Gaussian 31019 T.T£0.3
Lognormal 3 [040 ¢ 81 =203
Monodisperse | 3 | 0.00 | 9.0 £0.1

Table 5.1: Prefactor Z; of Equation (5.1.1) for different polydispersity in 2D
and 3D packings.

deviation of the contact number distribution oz, as evidenced by the col-
lapse of P ((z — (z))/0.) onto a master curve in Figure 5.1.2. Again it is the
polydispersity that sets P(z) in a non-trivial manner.

The same rescaling with o in 2D does not work generically; in particular
the lognormal data is clearly not described by such a collapse. The corre-
sponding variance % in 2D, plotted in the bottom inset of Figure 5.1.1, varies
slightly. This is partly due to the fact that the minimum contact number
is restricted to 3 while (z) plateau at 6. Packings with wide size distribu-
tions have wider contact number distributions as the density is increased, due
to more particles forming contacts, as seen in Chapter 3, Equation (3.2.6),
leading to a larger contact number variance. For narrower distributions 0%
1s close to unity and relatively constant with increasing density. The choice
of rescaling in 2D does not alter dramatically the collapse of P(z) but for
wider distributions o% is larger and rescaling by o is inappropriate.

The relationship in 3D for 0% is more complex for increasing density.
The polydisperse packings have 0% increasing with ¢ and the rate of increase
appears to be linked to op. In the monodisperse case 0% slowly decreases,
suggesting that the monodisperse packing becomes more ordered as ¢ in-

creases. Common to both trends is that the variance reaches a constant
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Figure 5.1.2: Contact number distributions for increasing packing fraction
¢ are plotted for a lognormal size distribution with oz = 0.20 (above) and
a monodisperse size distribution (below). The distributions are shifted on
the y-axis so that different polydispersities can be compared. The packing
fractions plotted are ¢ =: (o) ¢.; (O) 0.65; (¢) 0.70; (A) 0.75; (<1) 0.80; (V)
0.85; (<1) 0.90; (=) 0.95; (+) 1.00. Top Inset: Contact number average (z)
versus ¢. The data plotted are: (+) monodisperse; (o) lognormal. The solid
lines are Equation (5.1.1) fitted to the monodisperse data (in red) and to
the lognormal data (in blue). Bottom Inset: Contact number variance o2
versus (z). The data are labelled the same as in top inset with the addition
of lognormal i = 0.10 (o) and Gaussian og = 0.19 (/) size distributions.

value for packings with (z) > 9.

Finally, we show in Figure 5.1.3 the percentage of rattlers in 3D packings,
with the percentage of rattlers in 2D shown in the inset of Figure 5.1.3. The
presence of rattlers in denser packing fractions and the point at which the

population of rattlers becomes negligible has not been reported on previously.
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As the relationship between ¢ and the average contact number (z) has been
shown to be robust for different dimensions and polydispersities, we use (z)
to parameterize the packing density in Figure 5.1.3. This is the approach we
will take for the remainder of this chapter and proves to be a useful measure
for the contact properties we will report upon. The behaviour of the rattlers
with increasing ¢ is that of diminishing at a similar rate independent of
the polydispersity. For 3D, the number of rattlers are all but negligible for
(z) > 9 and the same is true in 2D for packings with (z) > 5.5.
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Figure 5.1.3: Percentage of rattlers for increasing ¢ in 3D. The data are
labelled the same as in top inset of Figure 5.1.2. Inset: Percentage of rattlers
for increasing ¢ in 2D. The data are labelled the same as in top inset of
Figure 5.1.1.
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5.2 Relationship Between Contact Number

and Size

In Chapter 3, we described a relationship between contact number and size in
packings at ¢, that was linear and independent of polydispersity. In this sec-

tion we ask does this relationship persist at higher ¢? Indeed in Figure 5.2.1
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Figure 5.2.1: Average of the contact number distribution for a given area
(z|a) for increasing packing fraction in 3D. Four size distribution are plotted:
monodisperse (V); lognormal o = 0.10 ([J); Gaussian og = 0.19 (/); log-
normal og = 0.20 (o). The open symbols are for ¢ when (2) = 8.0 and the
closed symbols for (z) = 6.5. The solid green line is a fit of Equation (3.2.3)
to the (z) = 8.0 data and the solid blue line is a fit of Equation (3.2.3) to
the (z) = 6.5 data. The data in pink is for lognormal oz = 0.20 for (z) = 9.2
and the data in cvan is for lognormal o = 0.20 for (z) = 11.05. Inset: The
variation of the fitting parameter v with (z). The data represented by (%)
are fits to all size distributions. The data represented by (o) are fitted to
the lognormal oz = 0.20 size distribution. The dashed red line is a fit to
Equation (5.2.1) for data with (z) < 0.
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for 3D packings, we find a linear trend that is independent of polydispersity.
It is important to note that the collapse of (z|a) for various polydispersity
occurs with the same (z).

The linear trend recalls the result shown in Figure 3.2.2 in Section 3.2.1
and therefore Equation (3.2.3) is fitted to the data, with excellent agreement
found for (2) < 9. The functional variation of the fit parameter of Equation
(3.2.3), v, which is plotted in the inset of Figure 5.2.1, is approximately linear
for (z) <9, which we fit with the following equation,

1= 240z - ). (5.2.1)
where p is a fit parameter and takes a value of p = 0.73 £ 0.04 in 3D. As the
packings become more dense, and (z) increases above 9 the fit to Equation
(3.2.3) becomes poorer and the trend in (z|a) becomes sub-linear. For the
packings with (z) > 9, the linear fit becomes progressively worse as (z)
increases. This behaviour is reflected in the behaviour of v which plateaus
for (z) > 9, however for (z) > 8 we only have data for the lognormal size
distribution.

Stepping down a dimension to 2D, we recover the same relationship that
was observed at ¢.. In Figure 5.2.2, a linear trend is found for a variety
of polydispersities that is well captured by Equation (3.2.6), which was de-
scribed in Section 3.2.2 for ¢.. Unlike in 3D, this linear relationship continues
up to the densest ¢ studied. The variation of v,p with distance to the iso-
static point (z) = 4 is plotted in the inset of Figure 5.2.2, which shows ~5p is
linearly increasing up to (z) = 5.5 and then appears to level out as (z) — 6.
Yap for packings with (z) < 5.5 is found to be fit well by Equation (5.2.1)
with the fitting parameter in 2D, pyp = 0.75 £ 0.05.

As the average contact number (2) — 6, the analogy with a cellular
structure becomes more apt. It is interesting to compare this linear relation
between contact number and radius to that observed in a variety of cellu-

lar structure between the coordination number and cell area called Lewis’s
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law [69]. This relation has been studied extensively for dry foams [95, 96]
but with conflicting results as to whether for polydisperse foams, the relation
is better described by Desch’s law [97] (also known as Feltham’s law [98]),
where the contact number is related to the perimeter of the cell.

In both of these relations, the average size of the cell rather than the
average contact number is the quantity calculated. As we have previously

described in Section 3.4, these two averages are not the same.

<zlr>

Figure 5.2.2: Average of the contact number distribution for a given size
for increasing packing fraction ¢ in 2D. Four size distribution are plotted
uniform o = 0.17 (L]); Gaussian o = 0.24 (/); Gaussian g = 0.28 (using
bubble model code) (4 ); lognormal g = 0.35 (o). The open symbols are for
¢ when (z) = 5.2 and the closed symbols for (z) = 4.4. The solid red line is
a fit of Equation (3.2.6) to the (z) = 5.2 data and the solid blue line is a fit
of Equation (3.2.6) to the (z) = 4.4 data. The data in pink is for Gaussian
or = 0.28 for (z) = 5.94. Inset: The variation of the fitting parameter v,p
with (z). The data represented by (*) are fits to all size distributions with the
same (z). The data represented by (A) are fitted to the Gaussian og = 0.28
size distribution. The dashed red line is a fit to Equation (5.2.1) for data
with (z) < 5.5.
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Figure 5.2.3: Average of the radius distribution for particles with a given
contact number for increasing packing fraction ¢ in 2D. Three size distribu-
tion are plotted uniform og = 0.17 (purple); Gaussian og = 0.24 (brown);
lognormal or = 0.35 (black). The data labelled as: (z) = 4.0 (e); (z) = 4.4
(x); (z) = 4.98 (O); (2) = 5.2 (4). The solid lines are fits of Equation (3.4.8)
to the data (z) = 4.0. Inset: Variation of the fitting parameter \op with (z).
The data is labelled as in top inset of Figure 5.1.1. Comparison is made with
experimental data for dry foam: (+) from [56]; (*) from [93]; (+) from [94].

We begin by looking at 2D in order to make the comparison with 2D dry
foam results. The average radius for discs with a given contact number (r|z)
is plotted in Figure 5.2.3 for a variety of size distributions and for increasing
packing fraction. Equation (3.4.8) was used in Section 3.4 to fit packings
of 2D discs and we find that it describes the trend of the data, particularly
for the uniform and Gaussian distributions. The lognormal distribution does
deviate from the linear trend and it is not clear that Equation (3.4.8) is the
final functional form of (r|z). In the limit of large ¢ when the comparison
with a cellular structure becomes most appropriate, this would be in best

agreement with Desch’s law [97].
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In the inset of Figure 5.2.3 the behaviour of the fit parameter of Equation
(3.4.8), Agp, is plotted for increasing packing density. Each polydispersity
appears to exhibit a linear trend that converges to Aop =~ 0.2. We find
good agreement with the trend of our data when we compare our results to
recent research that fits Desch’s law to: 2D foams [94]; the 2D surface of
3D foams [93]; a combination of 2D foams and 2D Potts model and Surface
Evolver simulations [56].

Returning to 3D, the situation is similar. As shown in Figure 5.2.4,
Equation (3.4.2), which was introduced to describe the trend of (a|z) for ¢,
describes the behaviour of (a|z) with increasing ¢. However, there are more

systematic deviations than observed in 2D. Again, at higher densities, it is
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Figure 5.2.4: Average of the area distribution for particles with a given con-
tact number for increasing packing fraction ¢ in 3D. Three size distribution
are plotted lognormal o = 0.10 (red); Gaussian o = 0.19 (brown); lognor-
mal o = 0.20 (black). The data labelled as: (z) = 6.0 (e); (2) = 6.5 (x);
(z) = 7.0 (O); (2) = 8.0 (A). The solid lines are fits of Equation (3.4.2) to
the data (z) = 6.0. Inset: Variation of the fitting parameter A with (z). The
data is labelled by colour as before.
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not completely clear that binning the particle size in terms of a is the best
choice. Another difference with the results found for 2D is that there is very
little variation of the fitting parameter A in Equation (3.4.2). Though due
to the trend of the data there is reason to suspect that all distributions tend
towards a constant A\ =~ 0.15 for large ¢.

The upshot of using the (a|z) linear fit is that it allows us to make a
prediction for the contact number variance %, if we have information on the
the size distribution through the use of Equations (3.2.3) and (3.4.2). As can
be seen in Figure 5.2.5, our prediction underestimates the value of 0% but
captures the the trend of 0. The type of distribution used has an effect on
the quality of the prediction, which is linked to the quality of the fit made
for (r|z) and (alz). Particularly in two dimensions, the prediction is quite

successful.

Figure 5.2.5: Variance of the contact number distribution for increasing pack-
ing fraction ¢ in 3D with prediction plotted as the closed symbols. Packing
data is plotted as open symbols. Inset is the same graph in 2D. The data is
labelled as before.
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5.3 Granocentric Approach with Increasing

Packing Fraction

5.3.1 Three Dimensions
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Figure 5.3.1: Collapse of variance and ratio of variance to mean for (z) = 8
in 3D. Same size distributions plotted as in Figure 5.2.1. (a) The variance
of the distribution P(z|a). (b) The ratio of the variance to the average of
P(z|a). The dashed green line represents the average value of the plateau.

Having shown that the collapse of (z]a) occurs for values of the average
contact number (z) other than z, in the previous section, we now investi-
gate whether the mean field approach to predict P(z) taken in Chapter 3 is
valid at higher ¢. Using packings with (z) = 8 as an example that is typical
of denser packings in 3D, the variance (0%|a) and the ratio of the variance
to the average contact number are plotted in Figure 5.3.1(a) and (b) re-
spectively. We observe the collapse of both quantities at increased packing
fraction with the independence of local contact correlations from the global
size distribution persisting at higher packing fractions.

In Figure 5.2.1, the average (z|a) collapses for all polydispersities when
the (z) is the same. The granocentric model was based on the observation

that (z|a) collapses for all size distribution at ¢., and the demonstration
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that P(z|a) depends only on the size of the particle and not the global size
distribution. This can be inferred from looking at the width of P(z|a), the
variance (0%|a), which for (z) = 8 is plotted in Figure 5.3.1 (a). The same
collapse for different polydispersities is observed as for ¢., suggesting that

P(z|a) is insensitive to polydispersity.

The ratio between (?:ZIS) for sufficiently large a in Figure 5.3.1 (b), is found
to be constant. This plateau suggests an acceptance probability of p = 0.819

for the mean field granocentric model. By enforcing that

) = /zP(z|a)P(a)da =8 (5.3.1)
0
a value of a can be found. For (z) = 8 this space limiting parameter is

'S
o

Figure 5.3.2: Model prediction of packings at (z) = 8.0 for: monodisperse
(V); lognormal og = 0.10 (0); Gaussian oz = 0.19 (2); lognormal ox = 0.20
(o). The solid pink line is the model prediction. Inset: Model parameters «
(%) and p (*) with increasing (z).
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& = .69,

Using the mean field granocentric model outlined for ¢., a prediction of
the contact number distribution is made for the size distributions plotted in
Figures 5.3.1. The granocentric prediction plotted in Figure 5.3.2 is in good
agreement with the data, indicating that this model is just as applicable at
¢ > ¢.. The same values of model parameters o and p are used for each size
distribution. In the inset of Figure 5.3.2, p and « are plotted and show that

both parameters increase for increasing ¢.

5.3.2 Two Dimensions

We now investigate whether the variance and the ratio of the variance to
the mean collapse for 2D disc packings. Using packings with (z) = 5.2 as
an example that is typical of denser packings in 2D, the variance (o%|r) and
the ratio of the variance to the average contact number is plotted in Figure
5.2.2. We observe a similar collapse as the packing fraction is increased

with the independence of local contact-size correlations from the global size

Figure 5.3.3: Collapse of variance and ratio of variance to mean for (z) = 5.2
in 2D. Same size distributions plotted as in Figure 5.2.2. (a) The variance
of the distribution P(z|r). (b) The ratio of the variance to the average of
P(z|r). The dashed red line represents the average value of the plateau.
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distribution persisting at higher packing fractions.

Having already seen in Figure 5.2.2 that the average (z|r) collapses for
all polydispersities when the (z) is the same, we make the same inference
from Figure 5.3.3 that P(z|r) is the same for all r independent of packing
fraction, given the variance (o%|r) collapses, similar to that observed for ¢..

02 ' . .
A plateau is observed for the ratio between ((zz|l)> for sufficiently large r in

Figure 5.3.3 (b). The plateau suggests an acceptance probability of p = 0.92.
By enforcing that

o = /zP(z]r)P(r)dr = §.32 (5.3.2)
0

a value of a can be found. For (z) = 5.2 this parameter is a = 1.02.

Using the mean field granocentric model, a prediction of the contact num-
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Figure 5.3.4: Model prediction of packings at (z) = 5.2 in 2D for the same
size distributions as previously. The solid red line is the model prediction.

Inset: Granocentric model parameters « (x) and p (*) with increasing (2) in
2D.
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ber distribution for (z) = 5.2 is made in Figure 5.3.4. The granocentric
prediction is in good agreement with the data, indicating that this model is
applicable at ¢ > ¢, for 2D as well. The value of a and p are independent
of size distribution. In the inset of Figure 5.3.4 the model parameters p and

« are plotted, and show that for increasing ¢ both these parameters grow.
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5.4 Correlations in Nearest Neighbour

Contacts

In Chapter 4 we outlined how structure of disordered packings at ¢. exhibits
spatial correlations in the contact network. In this section we examine the

manner in which these correlations persist in denser packings.
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Figure 5.4.1: Anti-correlation of neighbouring particles contact number for
increasing packing fraction ¢ in 2D packings using the bubble model algo-
rithm. Three densities for a Gaussian (oz = 0.28) distribution are plotted:
(2) = 4.07 (x); (2) = 5.40 (4); (2) = 5.94 (o). The solid lines are Equa-
tion (4.1.13) fitted to the data and the dashed lines are the uncorrelated
prediction of Equation (4.1.10).

5.4.1 Contact Number Correlations in 2D

First turning our attention to 2D, we look at results for Z,,, which are

shown in Figure 5.4.1, where we plot (Z,, — (2))z — o2 versus (z — (z)) for
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three different packing fractions. If the original form of the Aboav-Weaire
correlation for discs (Equation (4.1.12)) is to hold we expect the data to
follow a line with slope —a. Clearly, the data does not follow the uncorrelated
prediction (Equation (4.1.10)). Instead we observe anti-correlations in the
contact network: discs with few contacts are surrounded by discs with many
contacts and vice versa. We note that there are the deviations from purely
linear behaviour, especially at higher packing fractions. This suggests that
the relation used in Chapter 4 for 2D packings at ¢. is not adequate.

We turn to the second term in the expansion of Equation (4.1.11) and

keeping only the second term non-zero, we recover Equation (4.1.13) proposed
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Figure 5.4.2: Anti-correlation of neighbouring particles contact number for
increasing density in 2D for a variety of size distributions. Four different size
distributions are plotted: uniform op = 0.17 (0); Gaussian og = 0.24 (A);
Gaussian (dynamic) op = 0.28 (¢); lognormal o = 0.35 (o). The data is
labelled for increasing (z) ~: 4.0; 4.4; 1.98; 5.2.The dashed line has a slope
of -1. Inset: Fit parameter b as function of (z). Data is labelled the same as
Figure 5.2.3.
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previously for 3D, which we rewrite below,

o e 2
L <“b>) £705 o 1(2 - (). (5.4.1)
As shown in Figure 5.4.1, Equation (5.4.1) captures the non-linearity well
and leads to a much improved fit compared to Equation (4.1.12). Including
higher order terms in the expansion Equation (4.1.11) does not improve the
fit significantly.

We find that Equation (4.1.13) best captures the trend of the data for
other polydispersities plotted in Figure 5.4.2. Plotting the data in Figure
5.4.2 with axes such that agreement with Equation (5.4.1) gives a trend with
slope -1, we find excellent agreement for all data with (2) > z. + 0.05 with
only slight deviation for low 2 at higher densities.

For data at the isostatic point, the trend typically deviates upwards
in Figure 5.4.2 (the black filled symbols) from that predicted by Equation
(5.4.1). This indicates that this data is better described by the original form
of the Aboav-Weaire correlation (Equation (4.1.12)) as seen in Section 4.1.5.
We do not have an explanation for why this crossover from one trend to the
other is observed.

The inset of Figure 5.4.2 shows the change of the parameter b with (z).
The behaviour of the a parameter in the Aboav-Weaire law for cellular struc-
tures has been linked to ¢% (see Figure 5.2.5). It is interesting to note that
the general trend of b is similar to that of 0%. Packings with wide size distri-
butions have wider contact number distributions as the density is increased
and a larger b. The opposite is true of narrow distributions such as the
uniform o = 0.17, where 0% is a decreasing function of density and the

resulting b also decrease.
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5.4.2 Contact Number Correlations in 3D

Turning our attention to 3D sphere packings at higher densities, we find
that in the case of polydisperse packings the contact number correlations
reported at ¢, persist. In Figure 5.4.3 the relationship between z and Z,,,(2)
is plotted in the manner of Equation (5.4.1), where perfect agreement would
lead to a slope of -1 and for much of the range of data there is excellent
agreement. Only for dense packings and low z are deviations found that are
not captured by Equation (5.4.1). Given the expansion that we use, it is
difficult to find some form that would describe these deviations. We believe
that the existence of these deviations for lower ¢ is due to the clusters of
smaller particles that would be rattlers at a lower density but which are now
in the contact network. These small particles with low contact number that
join the contact network in clusters lower the average contact number of the
surrounding particles.

The parameter b is plotted in the bottom inset of Figure 5.4.3. For
polydisperse distributions the evolution of b with increasing density is more
complicated than the case in 2D. Broadly, b for polydisperse distributions
does not change significantly with increasing (z) in 3D, with the trend sug-
gesting that b may tend to a constant 0.015 £ 0.005 for higher values of ¢.
In the case of monodisperse the trend is much clearer, linearly decreasing b
with increasing (z).

The top inset of Figure 5.4.3 shows the contact correlations for a monodis-
perse packing at ¢ = 0.75 and it is clear that relationship between Z,,,, and z is
not well described by Equation (5.4.1). Large z are no longer anti-correlated
but positively correlated, particles with large contact numbers are typically
in contact with particles that have larger than average contact number. This
behaviour may indicate crystalline ordering as discussed in Appendix B. The
physical significance of the b parameter has yet to be determined but could
be of interest as a measure of the transition from disordered structures to

ordered structures.
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Figure 5.4.3: Anti-correlation of neighbouring particles contact number
for increasing density in 3D. Four different size distributions are plotted:
monodisperse (¢); lognormal or = 0.10 (OJ); Gaussian og = 0.19 (2); log-
normal g = 0.20 (o). The dashed line has a slope of -1. The data is colour
coded for increasing (z) ~: 6.0; 6.5; 7.0; 8.0 or in the case of the monodis-
perse packing the order in which the packings appear in the bottom inset.
Bottom inset: Fit parameter b as function of (z). Data is labelled the same
as Figure 5.2.4. The dashed line is a linear fit to monodisperse data to act
as a guide to the eye. Top inset: Anti-correlation of neighbouring particles
contact number for monodisperse distribution at (z) = 8.9 with fit to Equa-
tion (5.4.1) represented by solid line. The dashed line represents the trend
expected from an uncorrelated packing.
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5.5 Correlations in Nearest Neighbour Size

5.5.1 Size Correlations in 2D

As observed for 2D packings at ¢., there are no strong correlations in the
size of nearest neighbours for denser packings. In Figure 5.5.1, there is little
deviation from the expected uncorrelated value of the average neighbour
radius. In Figure 5.5.1 (a) and (b) for small r there are deviations due
to particles that might otherwise be rattlers being in contact with larger
particles. The only way such particles are counted in this analysis is if they
can form sufficient contacts in the interstices between large particles. Figure

5.5.1 (d) shows that there is little variation of R, with ¢.

5.5.2 Size Correlations in 3D

Figure 5.5.2(a)-(c) shows for 3D packings that Equation (4.2.8) continues to
describe the correlation between a and the average area of neighbouring par-
ticles A,,,, for data with (2) < 9. Deviations from the uncorrelated prediction
are small.

The exception to that behaviour is the transition of A,, for lognormal
distributions, which become flat for (2) = 11.05 and is plotted in Figure
5.5.2(a). The transition is continuous from the correlations observed at (z) =
8, similar to those at ¢., to the lack of correlations at high ¢. There is no data
for other polydispersities with (z) > 8 to compare to the dense lognormal
data.

Figure 5.5.2(d) shows some small variation with (z), the amount of in-
crease in A,, appears to be o dependent. The slight increase of R,, and

A,, is due to larger cells having more contacts with increasing ¢.
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Figure 5.5.1: Correlations between size of discs in contact for increasing ¢
in 2D. (a)-(c) Three different size distributions with the same symbols and
coloured in the same manner as in Figure 5.4.2. The dashed line represents
the uncorrelated prediction. (d) Uncorrelated prediction R, with increasing
(z) for the same distribution as in Figure 5.4.2.
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Figure 5.5.2: Correlations between size of spheres in contact for increasing
¢ in 3D. Plotted in (a) is lognormal o = 0.20, (b) is Gaussian oz = 0.19,
(c) is lognormal og = 0.10. The plot is coloured in the same manner as
in Figure 5.4.3 with the addition of (©) lognormal (z) = 11.05 in (a). The
solid line represents a fit of Equation (4.2.8) to the isostatic data set. (d)
Uncorrelated prediction A, with increasing (z) for the same distribution as
in Figure 5.4.3.
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5.6 Conclusions & Outlook

We conclude that packing fraction does not have a strong effect on the shape
of P(z) for soft particle packings due to the manner in which it can be gener-
ically rescaled for both 2D and 3D for a given size distribution. This again
demonstrates that the dominant factor in setting the contact distribution is
the size distribution.

The linear trends observed in (z|a) and (z|r) persist at higher ¢ in 3D
and 2D, respectively. Although for 3D packings with (z) > 9. this linear
trend begins to break down. The parameters of the linear fits over the range
in which they are applicable are described by the same equation in 2D and
3D.

Similar to the averages, the variance and the ratio of variance to mean of
particles of a given a and r, in 3D and 2D respectively, collapse independent
of polydispersity, provided (z) is the same. This suggests the use of the
mean field granocentric model, which successfully predicts the P(z) for all
polydispersities with ¢ > ¢..

We find that the linear descriptions of (a|z) and (r|z) found at ¢, are also
valid at higher densities. For very dense packings the fitting parameters of
both relations in 3D and 2D appear to tend to constants that are independent
of polydispersity. The value of this fitting parameter for (r|z) as (z) — 6 is
similar to that found for Desch’s law in dry foams.

Spatial correlations in nearest neighbour size and nearest neighbour con-
tact network also persist in denser packings, but remain weak. Notable
dissimilarities between the results at high ¢ to those found at ¢, include the
observation that 2D nearest neighbour contact correlations are described us-
ing only the second term in Equation (4.1.11) rather than the first used at ¢..
Also, 3D monodisperse packings show a tendency of their contact network
to be positively correlated in contact number for dense packings. The fitting
parameter b describing the trend of this correlation decreases linearly sug-

gesting ordering for monodisperse packings at higher ¢. Nearest neighbour
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correlations in size disappear for the lognormal distribution for (z) > 9 in
3D

There is a suggestion of a transition at (z) = 9 in 3D. This has only been
studied for polydisperse lognormal packings and in order to elucidate the

structure of dense disordered packings it merits further investigation.
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Chapter 6
Introduction to Rheology

In Part I of this thesis we reported on the static contact properties of jammed
collections of particles and investigated how these properties change as the
distance from the jamming point is increased, this distance being tuned by
the packing fraction. In Part II, we look at wet foam where bubbles are
simulated as soft discs as outlined in Section 2.2.1. Our focus is on the
transition between jammed solid-like properties of disordered particles to un-
jammed fluid-like behaviour by applying a shear stress, thereby investigating
the jamming phase diagram (see Figure 1.2.1) through the other axis.

In Chapter 7, we will examine the constitutive equation for foam in an
annular geometry where the shear stress is inhomogenous and investigate
whether proposed models of flow in foams and emulsions describe the flow of
soft discs in this geometry.

In Chapter 8, we will study some emergent properties of soft disc packings
under shear in a rotating drum setup, which are inspired by recent results
in foams and granular media. Among the properties that the two materials
share, we are particularly interested in the static angle of repose and the

shear dilatancy.
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6.1 Foam Rheology

For most common fluids the viscosity n = /4 is a constant, where ¢ is the
shear stress and # is the strain rate. Liquids that have a constant 7 are called
Newtonian fluids. Foams are non-Newtonian, in the class of fluids which are
called shear thinning, where the viscosity decreases with strain rate.

Wet foams may be regarded as an elastic solid or a viscous fluid depending
on whether the shear stress that is applied is greater than the yield stress o,,
the threshold that separates the two behaviours. Below the yield stress the
foam behaves like a solid and is subjected to elastic deformation, while if we
now increase the stress so that it exceeds the yield stress o,, the foam will
yield, and begin to flow so that the effective viscosity of the foam changes
according to the shear stress applied. The yield stress of a foam is a function
of the packing fraction of the foam [99].

While foams are a collection of interacting bubbles on the particle scale,
there exist empirical models to account for the flowing behaviour using con-
tinuum approaches on the macroscopic scale. This leads to the Herschel

Bulkley model [100], the constitutive equation for foam flow:

oy + P, ifo >0y

o= (6.1.1)
4 =0, otherwise

where ¢, is called the consistency and is a measure of the fluid’s resistance to
flow, 4 is the rate of strain, and [ is known as the Herschel-Bulkley exponent.

In recent years progress has been made to connect foam rheology with
that of granular materials [101]. We consider granular matter that, unlike
foam, does not deform and possesses static friction in its particle interaction.
In foams and emulsions the relationship between shear stress and shear strain
rate is often measured at constant ¢, and the model parameters of Equation
(6.1.1) are dependent upon ¢. For granular systems measuring at constant ¢

is difficult as grains dilate upon shear, affecting the packing fraction. There-
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fore granular experiments are often conducted under a constant confining
pressure. Equations of the form of Equation (6.1.1) also exist for the flow
of granular materials but are given in terms of y, the macroscopic friction
coefficient, which is defined as the ratio of the shear stress ¢ to the normal
stress P. Equations have been proposed that apply to both materials, of the

form,
p=pr+y(l), (6.1.2)

where [ is a dimensionless shear rate. In grains, I is related to 4 by an
inertial rearrangement timescale, while in foams and suspensions, [ is scaled
by a viscous timescale. y is a function for which some recent empirical
models have been proposed [102, 103] and takes a form similar to that of
the Herschel-Bulkley equation. Finally, g is a critical macroscopic friction
which for granular material has been known to take a value that resembles
that of the static interaction friction of the material. Recent experiments and
simulations of frictionless particles have shown that pg is non-zero despite
the lack of solid friction between bubbles [103, 104, 105].
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6.2 Herschel-Bulkley Rheology

In the last decade there has been much study of two-dimensional foams as
a simplified model of three-dimensional foam. From an experimental point
of view this allows tracking of individual bubbles moving in a sheared foam
allowing velocity profiles to be found. In experiments the flow of two di-
mensional foams has been studied using a number of setups. These setups
include a linear geometry with a confining top-plate, where the foam was
sheared in opposite directions by the confining walls [45] and an annular
Taylor-Couette setup where the outer wall sheared the foam and the inner
wall was held fixed [106].

One of the first attempts to explain the empirical Herschel-Bulkley regime
was by Princen [107]. Developed for ordered foams, this model is based upon
the energy dissipation due to slip along the crystalline planes in the ordered
structure. From the Princen model a theoretical value of the Herschel-Bulkley
exponent 3 = 2/3 was predicted [108]. More recently, this model has been re-
fined to account for surfactant effects on viscous dissipation in the films [109).
Another model by Tighe et al. [110] derives the Herschel-Bulkley rheology
from a relaxation/dissipation ansatz.

A range of values have been found for the Herschel-Bulkley exponent /3
from 0.2 to 0.5 [45, 109, 112], which has been attributed to the chemistry of
the surfactants used [47]. For the simulation of soft discs in a linear geometry,
the Herschel-Bulkley exponent is 3 ~ 0.5 [43, 49, 113]. The principle
difference between experiments have been the geometries in which they have
been conducted. Recently, it has been shown that while the Herschel-Bulkley
relation describes foam in a setup with linear shear [49], it is inconsistent with
rheological measurements for a Taylor-Couette (circular) geometry shown in
Figure 6.2.1 [111], this geometry is often referred to as a Couette geometry.
The inconsistency between the flow in different geometries is elaborated on
in the following analysis.

In a linear geometry the relationship between the shear stress ¢ and the
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Figure 6.2.1: Sketch of the experimental setup used by Katgert et al. [111]
to shear two dimensional foams in a Couette geometry. In this setup there
is no confining top plate. The red triangle is a section of the foam that
is deformed into the shape formed by the black border due to the strain 5
applied to the foam. o; measures the stress on the inner wall from straining
the foam. On the right is a sketch of the velocity profile of the foam flow,
which is dependent upon r.

strain rate % is unique for a given imposed shear, while in a Couette geome-
try this relationship can vary with distance to the shearing boundary. This
non-unique relationship between ¢ and % which depends upon the external
forcing and the geometry is called non-local rheology. Shearing in a Couette
geometry creates a more complicated flow than the linear geometry. For a
continuum fluid a linear geometry will have a constant shear stress across the
flow, while in the Couette case the shear stress will vary with 1/r2. For a suf-
ficiently large number of particles between the confining walls this continuum
approach is appropriate. This allows a direct probe of the Herschel-Bulkley

relation for a single driving rate or applied stress, provided that the velocity
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profile is measured. If we take a continuum description of foam and deal
only with local averages of stress o, strain v and angular velocity uy then,
for continuous shear of foam in a Couette geometry, the Cauchy equilibrium

criterion in polar coordinates (see Appendix C.1) is,

b0 29 % (6.2.1)
or r

Equation (6.2.1) can be solved for the case of a moving inner boundary as,

o(r) = o; (ﬁy. (6.2.2)

r

where o; is the stress on the inner boundary, R; is the inner radius and r is
the radial position in between the two concentric walls. The strain rate in
this geometry is given by,

Jug  ug

i (6.2.3)

y(r) = or r

For more detail on strain rate in polar coordinate system see Appendix C.2.
By substituting Equation (6.2.2) and Equation (6.2.3) into Equation (6.1.1)

we obtain

PR . ) (6.2.4)
F=y ol —— = . 2
y T\ or

An expression for the velocity profile can be found by substituting Equation
(6.2.4) into Equation (6.2.1) giving

0%uy 2 ug  10uy 20, (up Oug HEE
o = (5 - 1) (ﬁ - ;W) * Bour (7 A E) L e

In general Equation (6.2.5) can be solved numerically [114].

Previously, the Herschel-Bulkley equation had been found to successfully
describe velocity profiles in a linearly sheared monolayer by balancing the

stresses with the drag force due to an enclosing top plate. However, it has
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been shown for a Couette geometry that this model fails. Katgert et al. [111]
sheared a monolayer of foam in the setup shown in Figure 6.2.1, for various
values of the wall velocity Uy. Equation (6.2.3) was used to calculate the local
strain rate 4 and Equation (6.2.2) to calculate the local stress o(r). Two
surprising results were found. Firstly, the Herschel-Bulkley model predicts
that the normalised velocity profiles should change with the driving velocity
Uy but the profiles did not change; the velocity profiles were rate independent.
Secondly, as plotted in Figure 6.2.2, the calculated local stress o(r) and strain
rate 4(r) for a given driving velocity did not collapse onto a single o versus
4 curve. Finally, it was noted that there was flow below the yield stress of
the bulk material, which was calculated from fitting the Herschel-Bulkley
equation to the shear stress measured at the inner boundary.

In other experiments it has been observed that for narrow gap systems
of 3D emulsion flows that the local and global flow differ [115] (emulsions
have similar rheological properties to foams). Goyon et al. [115] showed that
in a narrow microchannel, where o and % varied throughout the channel,
that the local flow curves did not collapse unto a single rheological curve
for different forcing of the emulsion in the channel. This suggests a similar
non-local continuum model to that of Goyon et al. [115] as an explanation
for the difference between the local and global rheology noticed by Katgert

et al. To account for this non-local behaviour, a fluidity parameter

f=1/0, (6.2.6)

was introduced. This parameter f, is the inverse viscosity and is essentially
a measure of a material’s propensity to flow. It is position dependent. The
fluidity parameter arises due to plastic rearrangements in flowing foams in-
ducing rearrangements elsewhere in the bulk foam. While plastic rearrange-
ments are clearly visible in dry foams, wet foams also undergo analogous
irreversible localised plastic rearrangements which is associated with a local

yield stress between the interacting bubbles [116].
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Figure 6.2.2: Scaled stress versus strain rate curve produced with setup in
6.2.1, as shown by Katgert et al. [111]. Local flow curves in Couette geometry
for 5 different driving rates Uy: (J) 6.31 mm/s; (4) 2.15 mm/s; (A) 0.615
mm/s; (M) 0.22 mm/s; () 0.056 mm/s. The solid curve is the Herschel
Bulkley fitted to measurements taken on the inner shearing wall for different
driving velocities. The dashed curve is the prediction of the fluidity model
with € constant for the slowest and fastest driving velocities.

This non-locality is predicted when the relative stress gradient Vo /o
becomes comparable to the bubble scale. In general, a system with homoge-
neous stress will have a bulk fluidity f, that depends only on the local shear

rate and is given by,

1

fo = . (U_UU>EH(U—Uy). (6.2.7)
g

Gy

where H is the unit step function. The most favourable configuration for the
foam is to have f = f, everywhere, however due to the inhomogeneities in the

flow there are spatial variations in f. It can be shown by taking the Taylor
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expansion of f(z) = f to the second order [116] that the fluidity obeys an
equation of form,

(‘)2

fo(z) — f(z) + 52@

where € is the flow cooperativity length, which characterises the non-local

(z) =0, (6.2.8)

effects and the first derivative in the expansion of f is zero because the
fluidity must be a symmetric function. Effectively £ measures the distance
from where flow in one part of the system can affect flow in another part. In
the emulsion flow experiment by Goyon et al. [115] it was typically several
droplet diameters.

There have been many experiments undertaken for 2D foams in a Couette
geometry, however, soft discs simulations have not been previously used to
study the rheology in this geometry. In a recent work Mansard et al. [113]
performed 2D simulations in a geometry with nonuniform stress across it,
observing non-local flow.

The focus of this research is to test whether the experimental results
found by Katgert et al. can be reproduced in soft disc simulations. Using
Equation (6.2.2) and Equation (6.2.3) to calculate the local stress ¢ and
strain rate 7, we investigate whether they collapse onto a single rheological
curve or whether a non-local rheology is observed. Furthermore, we compare
this local stress-strain rate relation to the Herschel-Bulkley relation found in
simulations of sheared soft discs in a linear geometry. Finally, we investigate

the effect of changing packing fraction on the rheology.
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6.3 Macroscopic Friction

Even though bubbles do not exhibit any static friction, recent experiments [104]
and simulations [103, 117, 118, 105] have shown that there is an effective or
macroscopic friction that affects the flow of foams. Does this macroscopic

friction p result in a stable pile of bubbles with a non-zero angle?

6.3.1 Static Angle of Repose

The static angle of repose is a well known property in granular media. One
of the most common instances of this phenomenon is the piling of sand on
a plane surface (Figure 6.3.1 (a)). When a sufficient amount of grains are
poured, a conical heap is formed. The slope of the pile describes an angle
with the surface. The static angle of repose i is the maximum angle the
pile forms before particles begin to fall down the slope. In the example of
sand, a simple theory allows an estimate of the angle of repose formed by
spherical particles, using Coulomb friction [119].

Considering a particle on top of a sand pile, the forces applied on it (as
shown in Figure 6.3.1 (b)), are S, the force of the gravity on the particle;
N, the normal force on the particle against the surface of the pile; T, the
frictional force on the particle.

From Coulomb’s theory of friction, T takes a value between 0 and ulNV,

Figure 6.3.1: (a) Sand pile with an indication of the static angle of repose.
(b) Vector diagram of the forces acting on a grain.
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where p is the coefficient of static friction. In equilibrium we obtain:
N+S+T=0. (6.3.1)

S is decomposed in two components: S, the normal component, perpendic-
ular to the slope and S|, the shear component parallel to the slope. From

the action reaction between the pile and the particle we get that:
N ==§, ==5cosd. (6.3.2)

The projection of the forces (Equation (6.3.1)) on the slope gives:
T = -8 = —Ssind. (B:34)
If S| < T, then the ratio of shear to normal stress, gives the angle of repose:
tanfg = u. (6.3.4)

This has been shown to be a good estimator of the friction of a material.

Despite the great challenge to understand friction at a fundamental level
[120], by knowing the effective friction y we are able to estimate a value for the
angle of repose. In foams, there is no static friction and u = 0, however it has
been found in experiments of the flow of foams on inclined planes that there
is an angle below which no foams will flow Lespiat et al. [104]. This non-zero
angle has also been observed in simulations of sheared frictionless particles,
with the A in different works ranging between 4° — 7° [105], 6.28° [117],
3.4° [118], 5.76° + 0.22° [103]. In the experimental work of Lespiat et al.
[104] this angle was 4.6°. These values contrasts with 0 = 22° found for
frictional granular materials [121]. € is equivalent to pugr and are linked to
o, in the same manner as Equations (6.1.1) and (6.1.2).

In Chapter 8, we investigate if this macroscopic friction results in a foam

with fr > 0 using an experimental setup and comparing it to simulations.



Chapter 7

Couette Geometry Rheology

Figure 7.0.1: Image of Simulation Cell. The sample is periodic in the az-
imuthal direction with discs on the bottom interacting with discs on the left.
The gold discs are fixed in the case of the outer wall at a radius R, =84.99
(R), while the inner wall is situated at R; = 25(R) and has an angular ve-
locity of Uy = 25(R)s~!. The white discs are free to move in the bulk. The
trailing dots represent the disc trajectories.
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7.1 Couette Cell Simulations

In this chapter we will examine the constitutive equation for foam in a circular
geometry where the shear stress is inhomogenous and investigate whether
recent proposed models of foam flow describe the flow of soft discs in this

geometry.

7.1.1 Simulation Setup

Using the same simulation code as described in Section 2.2.1, we simulate
the flow of wet foams using soft discs in a Couette geometry with periodic
boundary conditions; an example is shown in Figure 7.0.1. For this work
two deusities are studied: ¢ = 0.95 and ¢ = 0.90. We generate assemblies
of 1417-1500 discs (depending on ¢) in a periodic cell with two concentric
boundaries.

The outer boundary is moved inwards, compressing the soft discs until
the desired packing fraction ¢ is reached, then the outer wall is held fixed at a
radial distance R, = 84.99(R). The inner boundary is kept at a fixed radial
distance R; = 25(R) and when the desired packing fraction ¢ is reached,
the inner wall is set moving at velocity Up, always in a clockwise direction.
Other than the compression of the outer wall and then the clockwise shearing
of the inner wall no other energy is put into the simulation to anneal the
sample. We use polydisperse discs with a uniform distribution and a range
of R = (R)(1+£0.15) to prevent crystallisation. The boundaries are composed
of discs that are held fixed with a bidisperse radius distribution. While this is
a similar geometry to that used by Cheddadi et al. [122] many of the details
of these simulations are different.

The sample is typically sheared for 10s — 40s depending on the driving
velocity, with a time-step of 2.5 x 10~ 7s. After a transient, the shear stresses
on the boundaries reach a steady state. The duration of the transient is esti-

mated as !/5(r,), where ¥(r,) is the strain rate at the radius where the stress
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is equal to the yield stress. Once this condition is met we start measuring
the velocity profile of the flow. The averaged angular velocity profiles Uy are

plotted in Figure 7.1.1.
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30 40 50 60 %0 R0

Figure 7.1.1: Normalised angular velocity profiles ug of sheared soft disc
packings for inner wall driving velocities Upy: () 200 (R)s™!; (o) 100 (R)s™;
() 25 (R)s™!; (@) 20 (R)s™!; (o) 5 (R)s™!; (8) 2 (R)s™!. Inset are the same
profiles but with a logarithmic y-axis. The solid lines are fits from Equation
(6.2.5).

7.1.2 Simulation Results

The exponential velocity profiles seen in Figure 7.1.1 are similar to the rapidly
decaying velocity profiles found in granular flows and the experimental results
conducted in [123] for the flow of 2D foams trapped between two glass plates.
Assuming that a continuum description applies and by measuring the shear
stress at the inner boundary o;, the local stress o(r) can then be found
from Equation (6.2.2). Comparing the local stress o(r) for the outer wall
calculated from Equation (6.2.2) and measuring the shear stress at the outer
boundary confirms that Equation (6.2.2) applies in these simulations. The
Herschel-Bulkley model predicts that the velocity should go to zero when

o(r) = o,. It is shown in the inset of Figure 7.1.1 that there is clearly flow
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Figure 7.1.2: Stress versus strain rate curve for soft disc simulations. The
solid line is the Herschel-Bulkley equation (Equation (6.1.1)) fit to shear
stress data measured at and shear strain rate calculated at the inner wall for
different driving velocities. Data labeled (+) are for a linear geometry with
the simulation parameters unchanged [49]. The dashed black line indicates
the yield stress. The driving velocities for the Couette cell are labeled the
same as in Figure 7.1.1.

throughout the width of the cell and flow below the yield stress o, calculated
for the bulk, which is found from fitting Equation (6.1.1) to data measured
at the inner wall. This flow below the bulk yield stress violates the Herschel-
Bulkley model. The angular velocity profiles Uy are rate independent, which
is inconsistent with the Herschel-Bulkley prediction of the velocity profiles as
shown in Figure 7.1.1. This reproduces the experimental results of Katgert
et al. [111] where rate independence and flow below the yield stress was
observed.

Similarly the local strain rate 5, which is a function of radius and angular

velocity, can be calculated from the angular velocity profiles using Equation
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(6.2.3). The data points plotted in Figure 7.1.2 correspond to the velocity
profiles in Figure 7.1.1. The data plotted furthest to the right for the local
curves are the points on the inner wall. As the data points move progressively
left they correspond to the positions and velocities of the points in Figure
7.1.1 that move towards the outer boundary. Data for stresses below the
bulk yield stress o, in Figure 7.1.2 correspond to particles that can clearly be
shown to be flowing in Figure 7.1.1. The two quantities are compared to the
Herschel-Bulkley relation in the linear geometry and plotted in Figure 7.1.2.
The simulation results show a similar behaviour to that seen in experiment
(see Figure 6.2.2). The local stress-strain rate curves for each driving velocity
Uy do not collapse onto the stress-strain rate data of the linear geometry, as
would be expected from the Herschel-Bulkley equation. This confirms the
flow in the Couette geometry is different to that in the linear geometry. Also,
the local rheology curves do not collapse onto a single curve, suggesting a
non-local relation.

The flow below the bulk yield stress is displayed in a series of snapshots
of the simulation in Figure 7.1.3. From these images it can be seen that in-
side the line marking r,, the radial yield distance under the Herschel-Bulkley
interpretation, discs become mixed quickly, indicating flow from their initial
positions. Outside r, various coloured radial bands become ruptured due
to the shear induced rearrangements caused by the moving inner wall. Cer-
tain locations are marked by a circle highlighting an irreversible rearrange-
ment, clearly showing that there is flow below the bulk yield stress. The
irreversible plastic rearrangements shown in Figure 7.1.3 are defined by a
sustained switching of neighbours by a particle. Figure 7.1.3 reveals that the
further from the moving inner wall, the longer it takes for a rearrangement

to occur, confirming the profiles shown in Figure 7.1.1.
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7.1.3 Comparison with Herschel-Bulkley

Using Equation (6.2.5) we are able to calculate the velocity profile as pre-
dicted by the Herschel-Bulkley theory and compare it to the results of the
soft disc simulations. The velocity profile is found by numerically solving
Equation (6.2.5) using a shooting method in the MATHEMATICA function
NDSoLve [124]. The comparison is plotted in Figure 7.1.1 and for the ma-
jority of driving velocities the Herschel-Bulkley prediction underestimates
the velocity profile found in simulation. The velocity profiles calculated from
a numerical solution of Equation (6.2.5) do not describe the velocity profiles
of the simulations over the range of w we considered. Fitting Equation (6.1.1)
to the shear stresses measured at the inner wall as shown in Figure 7.1.2 gives
an exponent of 5 = 0.49 + 0.3 consistent with experimental values [47] and
other soft disc simulations [49)].

From Figure 7.1.1 and Figure 7.1.2 we see that the Herschel-Bulkley
model describes neither the velocity profiles nor the stress-strain rate rela-
tionship in this geometry. However the -4 measurements made at the inner
wall are consistent with those found in a linear geometry in both simula-
tion and experiment. The Herschel-Bulkley equation is an empirical formula
that has been used to describe flow in visco-elastic materials like foams and
emulsions. Though it has been quite successful in describing the flow char-
acteristics in these materials as well as soft disc simulations, there has been
no all encompassing microscopic description of why it has been successful.
In Section 7.1.4, we will apply another empirical model that accounts for the
aspects of flow in foams and soft disc simulations that the Herschel-Bulkley

model fails to describe in this geometry.
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Figure 7.1.3: Plastic rearrangements beyond yield stress. Four snapshots
of a simulation of a soft disc packing under shear. The radial sections are
coloured differently to show their initial positions and show the movement
of the foam. The circles mark positions where plastic rearrangements occur
between different coloured discs.
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7.1.4 Fluidity Model

To account for the discrepancy found between the Herschel-Bulkley theory
and the velocity profiles found in simulation, we implement a fluidity model
for non-local flow that has recently been proposed for emulsion flow in con-
fined channels [115, 125]. The fluidity predicted for the system can be found

be converting Equation (6.2.8) to polar coordinates

an (T

Jolr) = (0—2+ ‘) =0 (7.1.1)
I 7

The boundary conditions for such a system are chosen so that at the inner

boundary the fluidity is the same as the bulk fluidity given by Equation

(6.2.7) and at the outer boundary, since the outer boundary is held fixed there

can be no flow and hence the fluidity must go to zero [126]. An alternative
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Figure 7.1.4: Comparison of fluidity model velocity profiles with simulation
velocity profiles plotted in Figure 7.1.1. Inset are the same profiles with
a logarithmic y-axis. The solid line is Equation (7.1.2) fitted to the data
U = 25(R)s™! with £ = 5.9(R).
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Figure 7.1.5: Fluidity profile from sheared soft disc packings with Up: (e)
200 (R)s™!; (o) 25 (R)s™!; (e) 2 (R)s™!. The solid lines are the solutions of
the fluidity from Equation (7.1.1) with £ = 5.9 (R).

to the condition that the material flows as bulk at the inner wall has been
proposed in [113] for 2D confined Poiseuille flow, where the wall fluidity is
taken as 1.6f,. However, as seen in Figure 7.1.2, the highest U, simulation
behaves as bulk flow for some particle diameters into the channel. Equation
(7.1.1) is numerically solved using MATHEMATICA routine NDSOLVE [124]
to determine f.

A velocity profile from the fluidity model that describes non-local flow can

then be found by substituting Equation (6.2.6) into Equation (6.2.1) giving

(3+2)6)
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then substituting in from Equation (6.2.3) gives

d 2 Up d—I:_o o
<5+ﬁ<ﬁ—%ﬁ—“

Differentiating and simplifying leaves the angular velocity given as

d2 Ug ! f Ug dC;J 71.2
. 1 L . -
1 ) ( f ) (7,2 r ’ ( 1 )

which can be solved numerically for a velocity profile. A choice for the pa-

rameter £ is then made by comparison of Equation (7.1.2) with simulation
data. This comparison is plotted in Figure 7.1.4 with good agreement be-
tween theory and simulation.

The fluidity of the simulation can be compared with the predicted fluidity
from Equation (7.1.1). The fluidity is calculated by inserting the calculated
values of local strain rate 4 from Equation (6.2.3) and local shear stress o
from Equation (6.2.1) into the definition of fluidity Equation (6.2.6). Making
the same choice of non-locality length & for all Uy, the comparison between
theory and experiment is shown in Figure 7.1.5.

For values of » where the strain 7 is significant and the velocity profile is
not affected by noise there is good agreement between the predicted fluidity
and that found in simulation. At large r the velocity profiles become less
well defined, and hence the fluidity profiles becomes noisier. It is expected
that by running simulations for a longer period of time the tails of these
velocity profiles will become more stable. However for simulations with low
rotation rate and therefore low shear rates, the time to reach a steady profile
in the tail of the velocity profile is significant. Figure 7.1.5 also shows that
for large r, the value of f is low and therefore the propensity for non-local
rearrangements (irreversible plastic rearrangements that have been induced
by flow in another region of the cell) to occur is slight. The tail of the f

simulation data is noisy as few rearrangements occur in this region over the
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Figure 7.1.6: Comparison of the rheological curves plotted in Figure 7.1.2
with predictions made from the fluidity model (dashed lines). The data is
labeled the same as in Figure 7.1.5.

timescale of the simulation. The data shown for low r in Figure 7.1.5 is
indicative of agreement with the model.

Given that the velocity profiles are better fit by the fluidity theory than
the Herschel-Bulkley theory, f is used to find the rheological model be-
haviour of the rheology of the soft disc simulations by calculating the stress
and strain as predicted by the solution of Equations (7.1.1) and (7.1.2) and
plotted in Figure 7.1.6. There is good agreement between theory and the
simulation data. The fluidity prediction is particularly robust below the
Herschel-Bulkley predicted yield stress of the bulk. The same £ = 5.9(R)
was used in all 3 predictions. The results shown in Figure 7.1.6 compare well
with the experimental predictions of Katgert et al. [111].

Up to this point all data that has been presented is for ¢ = 0.95; in
Figure 7.1.7(a) and (b) simulation data with ¢ = 0.90 is compared with the
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Figure 7.1.7: Flow properties at ¢ = 0.90. (a) Angular velocity profile for
driving velocities Uy: (o) 150(R)s™"; (o) 2(R)s~'. The solid lines are fits to
Equation (6.2.8). (b) Stress versus strain rate curve. Data marked as (o) is
measured on the inner wall, the solid line is this data fit by Equation (6.1.1).
The horizontal dashed line is the yield stress. The coloured dashed lines are
predictions of the fluidity model with £ = 5.9(R).

fluidity model. The velocity profile is well described by the fluidity model
in Figure 7.1.7(a) and the shear stress versus strain-rate relation in Figure
7.1.7(b) is also in good agreement with the fluidity model. The Herschel-
Bulkley equation fitted to the data in Figure 7.1.7(b) shows an increase in
the exponent 3 = 0.54 £+ 0.05 and decrease in the yield stress relative to
¢ = 0.95 data. For both comparisons the cooperativity length is kept the
same as before with € = 5.9(R).

The choice of this cooperativity length is justified by Figure 7.1.8, where
£ is largely unaffected by the change in ¢ = 0.95 to ¢ = 0.90 with the average
of £ = 5.9+ 0.3(R). This value of £ is consistent with other values found in
2D simulations [113] and experiment [111, 115]. Though & is approximately
constant there is a trend towards lower £ for increasing driving velocity. The
reason we think that £ drops with w is because of the timescales involved
in inducing a non-local rearrangement. As the material is sheared faster the

deformation timescale becomes smaller than the time it takes a rearrange-
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ment to trigger another rearrangement further away in another part of the
flow and hence £ decreases. In 3D emulsion experiments [115], it was found
that £ — 0 as the density of the material gets closer to ¢.. It is unclear from
our results, for the small range of ¢ considered here, whether this trend in £

is more likely than £ remaining constant.

Figure 7.1.8: Variation of cooperativity length £ with driving velocity and ¢.
Data for two packing fractions are plotted: (o) ¢ = 0.95 and ([]) ¢ = 0.90.
The dashed blue line is the average of the data, £ = 5.9 + 0.3(R).
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7.2 Conclusions & Outlook

With soft disc simulations we have reproduced the results of the experiments
conducted by Katgert et al. [111] in a Couette geometry. The flow of the soft
discs is shown to be independent of driving velocity Uy and we observe flow
below the Herschel-Bulkley predicted yield stress o, of the bulk. We find
that the rheological curve for this geometry differs from that of a linearly
sheared foam. In addition, we have shown in Figure 7.1.2 that the local
rheology curves do not collapse onto a single rheology curve, indicating that
the rheology is non-local.

We find that the fluidity model proposed by Goyon et al. [115] is in good
agreement with the simulation results presented here. The fitting parameter
of the cooperativity length £ is in good agreement with these works and the
simulations of Mansard et al. [113]. The influence of packing fraction appears
to be slight and the variation of £ is much greater with driving velocity than
with ¢. The apparent independence of £ from ¢ is in contrast to the results
of 3D emulsions [115, 125], but confirms the results of 2D simulations [113].

The main topic of future work should be to extract £ independently from
the particle trajectories. A outline of the scheme is to study the spatial
correlation function of rearrangements and measuring the size of transient
swirls that appear in the flow [49, 45].

It would appear that consensus has not been reached on the role of bound-
ary conditions in the investigation of non-local effects. The influence of the
boundary is highlighted in [113], which selects a boundary condition for
the fluidity that is greater than the bulk fluidity in contrast to other 2D
work [111, 126]. There is still much work to be done on the influence of sur-
face roughness and system size on non-local flow. To this end we are in the
process of adapting the simulation procedure, so that simulation can be run
in the CUDA environment on GPU. The length of time a simulation takes
is often the limiting factor in this research. With the current simulation

procedure, in order to strain the simulations sufficiently to produce a stable
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velocity profile, some of the simulations with a low U, can take longer than a
month of computation time to complete. A GPU simulation procedure will
enhance the speed of simulation allowing a greater examination of the pa-
rameters that affect non-locality and allow the investigation of larger system
sizes.

It has been shown in experiment that when the gap between the con-
fining walls becomes large, the Herschel-Bulkley description of the rheology
becomes appropriate again [127]. It would of interest to steadily increase
the size of the system and identify the point at which the fluidity model and
Herschel-Bulkley model become indistinguishable from each other.

The apparent different behaviour of £ as a function of ¢ in 2D and 3D begs
further investigation. First of which requires an investigation of non-local
effects at much higher and much lower ¢ to better establish its behaviour.
It would perhaps be a focus of the enhanced simulation procedure to modify
soft disc rheology simulations to that of soft spheres in 3D and investigate
the behaviour of £&. The investigation of 3D foams looks to be a particularly
bountiful area of future work with recent developments in experiments with

x-ray tomography on foams producing results on the rheology of foams [128].
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8.1 Introduction to Rotating Drum

In contrast to solid grains, bubbles have no static friction. This makes the
study of foams in the context of packing and rheology an interesting prospect
because it removes an additional variable from the widely studied area of
granular media [129]. In this chapter we study some of the phenomena that
have previously been investigated for granular materials.

We study macroscopic friction as an emergent property of a collection of
frictionless particles and whether it leads to a non-zero static angle of repose.
In addition to this, we will investigate shear dilatancy in two dimensional
foams and compare the shear dilatancy found in experiment with results
from 2D simulations. Finally, we will comment on attempts to measure the
angle at which foam starts to flow.

We study these effects through simulation and experiment of a rotat-
ing drum setup. The rotating drum experiment, already extensively used
in granular media (see [130] and references therein), is adapted for foams
(Figure 8.2.1). The experimental portion of this chapter is based upon work
conducted by Poulichet et al. [131, 132]. The majority of the experimental
work presented in this chapter was conducted by Poulichet in tandem with
the simulations which were conducted by me. This work is compared to soft
disc simulations of the rotating drum setup. Using simulations and experi-
ments we study a variety of parameters that affect the angle of repose and

shear dilatancy of foams.
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8.2 Comparison with Experiment

8.2.1 Experimental Setup

To investigate foam properties such as the static angle of repose or dilatancy
in the rotating drum setup (Figure 8.2.1), the foam must be brought to a
perturbed state and allowed to relax freely to a mechanical equilibrium. It
is possible to do so by applying a shear stress by rotating a top plate with
angular velocity w for a certain amount of time and then cease it abruptly.

The main features of the apparatus used are:

e The circular drum (radius R=30mm) equipped with a rough edge
formed by teeth of about 2mm wide and 1mm deep, as sketched in
Figure 8.2.2. This ensures a non-slip boundary condition on the rim of

the drum.

e The surfactant solution is prepared with tap water and 1% concentra-

tion (by volume) of commercial detergent (Fairy Liquid).

w
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Figure 8.2.1: Side view sketch of the rotating drum apparatus.
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e Bubbles are trapped under a top-plate made of glass. The entire setup

is levelled by three screwable feet. The level is regularly checked to

ensure the consistency of the measurements.

The drum is filled with bubbles to a filling height of 1/3 of the drum.
Customarily in granular experiments the drum is half filled [130] but
due to the presence of a driving shaft that interferes with the image

analysis (as visible in Figure 8.2.3), we cannot fill the drum to halfway.

The drum is attached to a shaft that can be rotated on its axis at the
angular velocity w with a stepper motor. Another stepper motor allows
us to rotate the axis of the system and tilt the plane of the drum about
an angle a with respect to the horizontal. Both o and w are computer
controlled. a must be lower than 7° (h, < 2.56mm on Figure 8.2.1)
to ensure that the foam is in the wet limit W,.;. The foam remains
wet within a width W, above the foam/liquid interface where liquid
drainage due to gravity is prevented by capillary forces. This wet region
is estimated as: g

Waet = 2—??). (8.2.1)
where (R) is the mean radius of the bubbles and [y is the capillary
length. The capillary length is defined as [, = \/7—2 with p the density
of the fluid, g the gravity constant and 7, is the surface tension [129].

WN\LH

2 mm

Figure 8.2.2: Drawing of the teeth on the rim of the drum.
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e Light-emitting diode (LED) arrays together with a light diffusing sheet
ensure that the system’s backlight is smooth and uniform. Such a

condition is essential for image processing.

e A camera takes snapshots of the drum and is connected to a computer
to collect the data. The maximum frame rate of the camera is 25
frame per second, and its resolution is 1280x1024 pixels. The cam-
era is configured so that we get an experimental resolution of about

10 pizels/mm.

The different samples created have monodisperse, bidisperse and polydis-
perse radius distributions. The gas used is air. The maximum duration of
an experiment is set to three hours after which the effects of coarsening on
the bubbles are no longer negligible.

As mention in Part I of this thesis, foams can crystallise for small values of
polydispersity (Figure 8.2.3). In order to avoid crystallisation in bidisperse
samples, the introduction of big (r, = (0.99 + 0.03)mm) and small (ry =
(0.63 £+ 0.03)mm) bubbles were alternated at least four times during the
preparation of one sample. The radii of the bubbles are obtained using the
image processing software ImagelJ [133]: The area of the bubble is measured

(by plotting a circle over it), then the radius is deduced from this area.

Figure 8.2.3: Example of crystallisation in a monodisperse foam.
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8.2.2 Experimental Method

A simple vector diagram (Figure 8.2.4) is useful to visualise the forces applied
on the system. The component of the buoyancy parallel to the confining
plate (ﬁB in Figure 8.2.4) is the effective force applied on the bubble pile and

1s written:

FB = SiIl((I) Eotalv (822)
where Fj,q is given as,
47 \ ,
E(}lal == ?<R>3,0uvaterg~ (823)

and pyater 1S the density of water. From Equation (8.2.2), by changing the
angle a the effective buoyancy force applied on the bubble pile is controlled.

Bubbles are introduced into the tilted drum, which is immersed in the
surfactant solution to create a monolayer of foam. The system is sheared
by rotating the drum for approximately two periods with a rotation rate
w = 2.58°s7!, then the rotation stops and the foam freely relaxes for ten
minutes to ensure that the foam has reached mechanical equilibrium (see

Figure 8.2.5 and Figure 8.2.6). In this relaxed state the yield stress of the

Figure 8.2.4: Simple vector diagram with the buoyancy force (F}oml) decom-
posed in its perpendicular (F|) and parallel (Fg) components with respect
to the plane of the drum.
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Figure 8.2.5: Change of the angle of the foam/liquid interface during the
experiment. The drum completes a rotation in a period. The drum rotates
subsequently clockwise and counter clockwise. The tilt angle is a = (3.5°+
1°). the rotation rate is w = 2.58°s~!. The foam is composed of 2/3 big bub-
bles and 1/3 small bubbles. Note that the angles are constantly shifted by
an angle of approximately two degrees. This offset is due to the imperfection
of the levelling. Alternating rotation in both directions allows us to account
for this offset see Equation (8.2.4)

foam appears to be homogenous and so the bubble pile forms a straight line
across the drum.

The angle of repose should a static property and should not depend on
the applied shear rate. This lack of dependence on the shear rate is verified
by running experiments with two different shear rates (one low w = 2.58 °s™!
and one high w = 6.71 °s~!) where we obtain the same static angle of repose
within error bars. Therefore, the static angle of repose does not depend on
the history. Rotating the drum for five minutes ensures the that foam is well
mixed to avoid crystal patches (Figure 8.2.3).

Latin numbers in Figures 8.2.5 and 8.2.6 correspond to stress and re-
laxation. This operation is carried out subsequently for a clockwise (Figure

8.2.6(a)) and a counter-clockwise (Figure 8.2.6(b)) rotation because of the
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111
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Figure 8.2.6: During the static angle of repose experiment, the procedures
(a) and (b) are repeated subsequently.

imperfections of the levelling of the drum. After rotating in the clockwise
direction the angle of repose 6¢ is recorded. Similarly, after rotating in the
counter-clockwise direction the angle of repose ¢ ¢ is recorded. The imper-
fection in levelling the drum leads to an offset in the angle measurements
(see Figure 8.2.5), this means that the two measured angles (6 and c¢) are
not centred around 0. The angle that the interface of the foam makes with
the horizontal is measured when the system is completely relaxed, i.e. when
no more rearrangement occur within the bubble pile.

The systematic errors in measuring 6 from the imperfect levelling of
the drum can be accounted for when we rotate both clockwise and counter-

clockwise. Therefore we can infer #z with the absolute values of 6~ and
ecci

= 10| + |6ccl
Eas e

The static angle of repose is measured six times during each experiment. The

Or (8.2.4)

error is estimated by the standard deviation of these measurements.
Note that the small oscillations in Figure 8.2.5 occurring during rotations

I and III are not intrinsic properties of the foam but is due to a wobble
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caused by drum misalignment. This wobble is not problematic for static
properties such as fp as it only affects the dynamics.

The camera takes an image every two seconds so there are about 6000
images for each run. An IDL (INTERACTIVE DATA LANGUAGE)[134] image
processing code is used to measure the angles 6 and #-¢ from the centre of
mass of the bubble pile. These angles are measured only at the end of every

ten minute rest period.

Centre of mass

%’//

Figure 8.2.7: Diagram of rotating drum simulation geometry. The boundary
discs which are coloured pink at the edge have their positions fixed though
interact with the blue soft discs as normal. The blue discs are free to move
throughout the drum. The boundary discs are rotated counter clockwise at
angular velocity w for a period and then stopped.
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8.2.3 Simulation Setup and Methods

Simulations of a rotating drum are performed using the soft disc code out-
lined in Section 2.2.1, where the coefficient of elasticity x and the dissipation
constant ¢, are set such that the ratio of the viscous to inertial timescale
t,/t; = 0.0419. While t; > t, the dynamics are overdamped and the iner-
tial effects are negligible. The geometry shown in Figure 8.2.7 is used for
a variety of different drum sizes Rp. The discs on the boundary are held
fixed in position and have a bidisperse radius distribution with the larger
discs having a radius of 1.24(R) and the smaller radius 0.76(R) in order to
impose a no slip condition. Inside the drum a number of discs are placed
in a disordered lattice with a polydispersity that is either bidisperse (with a
50-50 mix of 1:1.4 radius), uniform or monodisperse. The number of discs
placed inside the drum is such that typically half the drum is filled. In ad-
dition to the elastic repulsive force and the viscous drag force between discs,
a buoyancy force Fp is included in this simulation which drives the discs to
the top of the drum. Once the interior discs have settled, the boundary discs
are rotated at an angular velocity w for 8 seconds. The simulation time step
is 5 x 10~ "s. After this period of rotation when the interior discs have been
excited and mixed, the imposed shearing is stopped, the boundary discs are
held stationary and the pile is allowed to relax. When the angle the centre
of mass of the pile makes with the centre of the drum remains unchanged for
8 seconds, the simulation is terminated.

For large system sizes we have adapted the simulation procedure so that
it can be executed in parallel on graphics processing units on the CUDA
platform. This allows an exploration of very large system size in reasonable
computation time.

The angle of repose 6y is found by calculating the centre of mass of the
packing after it has relaxed and measuring the angle that is made with the
geometric centre of the drum. This angle is measured for a range of variables

such as Rp, Fg, w, polydispersity and different boundary conditions.
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8.2.4 Comparison between Simulation and Experiment

There are a number of differences between simulation and experiment. Prin-
ciple of which is the difference in the viscous drag. In experiment viscous

2/3 while in simulation the viscous interac-

drag between bubbles scales as Av
tion is linear. Also, the experiment includes a glass top plate to confine the
bubbles, adding another viscous interaction. However, in terms of finding
Or, viscosity is not a factor as while it slows down the dynamics, it should
not affect static properties.

In the static case two forces compete, repulsion between bubbles and
the compressing force of buoyancy. To compare experiment and simulation,
at least qualitatively, we set a dimensionless number (Bu) to represent the
competition between the spring repulsion (x(R)) and the buoyancy on a

single bubble (Fp):
By =

ok (8.2.5)

The approximation of the spring constant for bubbles in experiment is 477,
in the wet limit [5].

In experiment this buoyancy effect can be tuned by changing o (Equation
(8.2.2)) in the experiment. However, it is not possible to set « larger than
7° in the experimental setup because the vertical height of the bubble pile
must not exceed Wy, so to avoid the effects of drainage. This would result
in a foam with varying liquid fraction. It is difficult to set the angle of
the top plate a lower than 2° and keep the bubble pile together during the
rotation phase. This sets the limit on the range of values of buoyancy that
can be explored in experiment. However, in the simulation, the effect of the
buoyancy can be studied over a wider range. The effect that this ratio of
buoyancy to repulsion is discussed in Section 8.3.3.

Another effect that is studied in simulation and experiment and then com-
pared in Section 8.3.2 is the effect polydispersity has on the angle of repose.

In experiment a bidisperse mixture was primarily used. The polydispersity
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is controlled by changing the relative number of big and small bubbles. The
average radius of the big bubbles R} is (0.99 + 0.03)mm and the average ra-
dius of the small bubbles Ry is (0.63 £ 0.03)mm. By changing the ratio of
the number of big bubbles N, to the number of small bubbles Ns, a range of
bidisperse mixtures from a monodisperse foam of big bubbles to a monodis-
perse foam of small bubbles can be investigated. For consistency, the filling
depth of the foam in the drum is kept constant for every mixture. The num-
ber of bubbles in each sample can vary from 208 to 344 depending upon the
composition of the mixture (See Table 8.1 below). In simulation the effect
that polydispersity has on #p is investigated by looking at three different
types of particle size distribution; bidisperse, uniform and monodisperse.

Another difference between experiment and simulation is the filling height
of the drum, which will be reported on in Section 8.3.4. For the experiment
the filling height is kept constant at one third filled but the number of bubbles
in the drum can change by changing their average size. In simulation we vary
the filling height of a drum with 285 bidisperse particles in it by using drum
setups of different radii.

We then alter the size of the drum and the number of particles in the drum
in simulation to explore the effect of the number of particles and system size
has on fi. The drum is always half filled in these simulations.

In Section 8.3.5, using Equation (6.1.2) outlined in Chapter 6, we compare
a value for the angle of repose that we extract from the Couette geometry
simulations in Chapter 7 with the values we have found in the rotating drum
simulations and experiments.

In Section 8.4, we investigate how rotation rate in simulation and experi-
ment affects shear dilatancy. We then examine how this dilatancy is affected
in simulation by changing parameters such the viscous drag coefficient ¢y,
the filling height of the drum and the number of particles in the drum.

Finally in Section 8.5, we discuss the angle at which flow begins in the
bubble pile.
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|ExpNo. | N [ Ny/N| or [ Bu | «

El 208 | 1.000 | 0.000 | 9.74 x 1073 | 3.5° £ 1°
E2 220 | 0.845 | 0.140 | 8.66 x 1073 | 3.5° £ 1°
E3 2341 0.709 | 0.186 | 7.78 x 1073 | 3.5° £ 1°
E3 234 | 0.709 [ 0.186 | 7.78 x 1073 | 3.5° £ 1°
E4A 253 | 0.549 | 0.218 | 6.79 x 1073 | 3.5° £+ 1°
E4A 253 | 0.549 | 0.218 | 6.79 x 1073 | 3.5° + 1°
E4B 253 | 0.549 | 0.218 [ 3.88 x 1073 [ 2.0° + 1°
E4C 253 [ 0.549 | 0.218 [ 10.7 x 1073 | 5.5° + 1°
E4D 253 | 0.549 | 0.218 [ 12.6 x 1073 | 6.5° + 1°
E5 278 1 0.374 [ 0.229 [ 5.79 x 1073 | 3.5° £ 1°
E5 278 | 0.374 [ 0.229 | 5.79 x 1073 [ 3.5° £ 1°
E6 288 | 0.288 | 0.224 | 5.33 x 1073 | 3.5° £ 1°
E6 288 | 0.288 [0.224 [ 533 x 1073 | 3.5° £ 1°
E6 288 1 0.288 [ 0224 | 533 x 10~3 [ 3.5° £ 1I°
E7 208 | 0.232 [ 0.214 [ 5.03 x 10~3 [ 3.5° £ 1°
E7 208 | 0.232 | 0.214 | 5.03 x 1073 [ 3.5° £ 1°
ES 3170132 [ 0.181 | 4.54 x 102 [ 3.5° £ 1°
ES 3171 0.132 [ 0.181 | 454 x 10° [ 3.5° £ 1°
E9 344 | 0.000 | 0.000 | 3.92 x 1073 | 3.5° £ 1°

Table 8.1: Table of experimental data

161
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8.3 Static Angle of Repose

In this section we compare the results of the simulations and experiments to
determine the static angle of repose. In both experiment and simulation we
find a non-zero fz. We now present our results for how a variety of factors

influence the value of 6p.

8.3.1 Effect of Boundary Roughness

First we check how rough the boundary wall needs to be in order to not affect
the value of fp. Using a simulation of a drum with Dp = 26(R) filled with
285 bidisperse discs that has already been brought to the perturbed state by
rotation, the geometry of the boundary is changed. The discs on the bound-
ary are changed so that the boundary becomes composed of monodisperse
discs of a given radius. The simulation is then allowed to relax. The smaller
the radius, the more discs that are on the boundary. With smaller discs and

less size difference between boundary discs there are less gaps for the discs

~
T =T T
=—=0—t
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|
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Figure 8.3.1: Angle of repose versus surface roughness of the boundary.
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within the drum to form a stable template for a structure to create a non-zero
Or.
As shown in Figure 8.3.1, 6z has a dependence on the surface roughness

of the boundary. The surface roughness R, is defined as,

1 ™
[ v Rodu (831)
D

a

2m

where y(1)) describes the surface of the boundary [135]. It must be empha-
sised that this surface roughness dependence is due to the packing relaxing
into its lowest energetic state obtainable and not related to the shearing
state, which is performed with a bidisperse boundary to allow for slip-free
shearing. This simulation only investigates by how much the packing relaxes
from its excited state. As the boundary becomes smoother, f decreases and
for very small boundary discs, g — 0. The furthest point on the right of

Figure 8.3.1 is the bidisperse boundary used in all other simulations.
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Figure 8.3.2: The static angle of repose with changing polydispersity. The
filled symbols represent experimental data. This experimental data has a
key that is recorded in Table 8.1. (H) E1,E9; (x) E2; (¢) E8; (x) E3; (a)
E7; (») E4A; («) E6; (Ao) E5. The simulation data is represented as (o)
monodisperse; () bidisperse; (o) uniform.

8.3.2 Effect of Polydispersity

In Figure 8.3.2 we compare the effect that polydispersity has on f in simu-
lation and experiment. In simulation the bidisperse mixture is a 50-50 mix
of soft discs with radius either 1.17(R) or 0.83(R) where (R) = 10~*. The
uniform size distribution includes discs that have a radius which range from
0.85(R) to 1.15(R). Monodisperse simulations have a single radius of (R).
The simulated drum with Rp = 26(R) is half filled with N = 285 discs. Typ-
ically the simulation is repeated at least 8 times with a different configuration
of initial particle positions for each set of parameters.

In experiment a bidisperse mixture was primarily used. The polydisper-
sity is controlled by changing the relative number of big and small bubbles
as shown previously in Table 8.1.

The data plotted in Figure 8.3.2 contain a similar number of particles in
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both simulation and experiment. Similarly, Bu is equivalent for all systems
shown here. There is no apparent relation between the polydispersity and the
static angle of repose with only a slight increase for less polydisperse samples.
One may remark that for the case of monodisperse foams the static angle of
repose is slightly higher than for polydisperse foams. This is attributed to
be the consequence of crystallisation within the bubble pile as depicted in
Figure 8.2.3. This effect is more pronounced in simulations of monodisperse
packings which form piles with large 6. This discrepancy between simu-
lation and experiment may be due to the absence of small vibrations from
the environment in simulation which assist the packing in overcome poten-
tial barriers and finding a lower energy state or that in experiment bubbles
may not be exactly monodisperse. Our interest in this work is disordered
packing so simulation results for monodisperse soft discs are omitted from

the discussion of other aspects of this research.
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8.3.3 Effect of Buoyancy

Another parameter that requires investigation is Bu, which represents the
competition between buoyancy force and bubble repulsion. How does 0y
change with the buoyancy force? The change of the static angle of repose
with the dimensionless number Bu = F/k(r) is plotted in Figure 8.3.3.
Figure 8.3.3 suggests that the angle of repose does not change with «
significantly in experiment but in simulation over a wider range of values
of Bu there is a decrease in the values of #z. In general the results of the

experiment agree with those of the simulation.
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Figure 8.3.3: The effect on the static angle of repose due to buoyancy. Data
are labeled the same as in Figure 8.3.2 except that (») represents E4A, E4B,
E4C and E4D.
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Figure 8.3.4: Plot of simulation results of the static angle of repose versus the
fraction of the drum filled for N = 285 bidisperse discs with Bu = 3.55x 10,

8.3.4 Effect of System Size

We will now address the question of whether the static angle of repose changes
with system sizes. Dependence of the angle of repose on system size has pre-
viously been observed in experiments of chute flow of 3D foam where the
system size is the height of the foam [104]. The first aspect to be addressed
is whether the discrepancy between the amount of the drum filled in exper-
iment, where it is only 1/3 filled versus the simulation procedure where the
drum is 1/2 filled. In experiment it is not possible to fill more than a third of
the drum due to the driving shaft of the drum (which can be seen in Figure
8.2.3) which interferes with the imaging of the bubbles.

To test whether there is a dependence on filling depth, simulations of
bidisperse discs with N = 285 were conducted for Rp = 23(R), 26(R),
36(R), 45(R). As can be seen in Figure 8.3.4, there is no variation in #z with

changing filling depth and therefore the variation in the size of the system is
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investigated in terms of the number of particles N.

In Figure 8.3.5 the data for simulation results with varying number of
particles N. The filling fraction and dimensionless number Bu are kept con-
stant. Simulations show that the angle of repose decreases with increasing
system size. The trend for both bidisperse and uniform radius distributions
are similar, with #x tending to be slightly larger for the uniform distribu-
tion. As N gets large, 0 tends towards a constant. Following the treatment
Peyneau and Roux [103] used in studying the effects of finite size on macro-
scopic friction, we plot in the inset of Figure 8.3.5 the dependence of 0y as

1/2

a function of N='/% which appears to be linear. An empirical equation is fit
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Figure 8.3.5: Plot of the static angle of repose versus the number of particles
in the system. Bidisperse data are represented by (o) symbols and simula-
tions with a uniform radius distribution are represented by (o). The solid
green line represents Equation (8.3.2) fitted to the data. The dashed green
line is the value of % as found from Equation (8.3.2). Inset: Plot of 6y as a
function of N=/2. The solid green line represents Equation (8.3.2) fitted to
the data.
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‘ Polydispersity ] N | No. of Simulations | Rp | Bu |
Bidisperse 130 10 18(R) | 3.55 x 10~*
Uniform 130 9 18(R) | 3.55% 10~
Bidisperse 285 24 26(R) | 3.55 x 10~*
Uniform 285 24 26(R) | 3.55 x 104
Bidisperse 550 17 36(R) | 3.55 x 10~*
Uniform 550 17 36(R) | 3.55 x 1074
Bidisperse 675 18 40(R) | 3.55 x 10~*
Uniform 675 20 40(R) | 3.55 x 10~*
Bidisperse 1520 17 60(R) | 3.55 x 10~*
Uniform 1520 18 60(R) | 3.55 x 1074
Bidisperse 2700 18 BO(R) | 3.55x 107
Uniform 2700 18 80(R) | 3.55 x 10~*
Bidisperse 4225 10 100(R) | 3.55 x 10~*
Uniform 4225 10 100{R) | 3.556 x 10~*
Bidisperse 6580 8 120(R) | 3.55 x 10~*
Uniform 6580 7 120(R) | 8.65 % 10~*
Bidisperse 14800 1 190(R) | 3.5bx 10~

Table 8.2: Table of simulation data for variation with number of discs N.

to the data of form,
A

VN
where 6% is the value of the 6z as N — oo and A is a fitting constant.
Fitting Equation (8.3.2) to the data yields that 6% = (4.82 + 0.15)° and
A = (60.6 £ 3.6)°. This value of the 6% is consistent with that of other
simulations and experiments of foam [103, 104, 105, 117].

Or = 62 + (8.3.2)

In experiment it was not possible to opt for a drum of a different size
because of the limitations of the experimental apparatus. Instead the size
of the bubbles were altered and microbubble samples were created with (R)
from 400pm to 600um. Various system sizes are investigated experimentally,
from 234 bubbles to 1108 bubbles. It was not possible to prepare larger

systems because if the bubbles are too small, they can assemble in double



8.3. STATIC ANGLE OF REPOSE 170

10 T
9t 3
8_ . -
7h -
i e

BR = N =

0 400 800 12001
4l 0.006 . T -
G
3r 0.004 - - ]
s Bu i o _
i 0.002 o .
o
l_ 5 - -
[ | |
0 PR [T ) P 0 | IOI iR e s e
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
N

Figure 8.3.6: The effect on the static angle of repose with increasing system
size when buoyancy is matched between simulation and experiment. Exper-
imental polydisperse data is represented as (M), all other data is as before.
Inset: Variation of simulation Bu with system size.

layers. However, changing the size of (R) also affects Bu through Equation
(8.2.5). This means for increasing N in experiment that Bu is decreasing.
In order to match simulation with experiment, the buoyancy force in the
simulation needs to be altered for each system size. The Bu matched data
between simulation and experiment for increasing system is plotted in Figure
8.3.6. The experimental data exhibits a similar trend to that shown in Figure
8.3.5, where larger systems have a smaller #z. The simulation results are in

good agreement with the experimental data for all system sizes.
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Figure 8.3.7: Macroscopic friction versus viscous number measured on the
inner wall of Couette simulations for two packing fractions: ¢ = 0.95 (o);
¢» = 0.90 (o). The solid line is Equation (8.3.3) fit to the data.

8.3.5 Comparison with Couette Simulations

Returning briefly to Equation (6.1.2) outlined in Chapter 6. If we use the
data measured on the inner wall of the Couette simulations in Chapter 7 for
a variety of driving velocities at two different ¢ and then rescale this data by
dividing ¢ by the normal stress on the walls of the simulation P and then
plot this against a dimensionless shear rate given by I = @7/p, we see that
this data collapses in Figure 8.3.7. Then substituting a form of y(I) proposed
by Peyneau and Roux [103] into Equation (6.1.2) we get

W= pgp+ Al (8.3.3)

When Equation (8.3.3) is fit to the data plotted in Figure 8.3.7, a value of
the exponent b = 0.47 + 0.07 is found. The value of macroscopic friction pg

indicates O = (4.2+0.6)°, in agreement with the rotating drum simulations.
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8.3.6 Discussion of Angle of Repose

Let us discuss how a static angle of repose can exist if the bubbles do not
exhibit any solid friction. The bubbles are trapped in the teeth on the edge of
the drum and in turn frustrate bubbles above and so on. The boundary here
creates a no slip boundary condition and creates a template for the bubbles
located at the edge of the drum. Small systems have a larger proportion
of bubbles on the boundary than large systems. Therefore small systems
have less possibility to rearrange to a lower energy configuration than larger
ones, leading to the static angle of repose being larger for smaller systems.
This phenomenon is discussed for granular systems in Pouliquen and Renaut
[136]. The authors employ the term effective friction. This effective friction
is composed of a solid friction and a friction due to geometrical frustration.
In the case of wet foam, this effective friction only depends on the geometry
because there is no static friction. This frustration of a bubble being unable
to flow past other bubbles due to their geometric arrangement can be thought
of as a microscopic yield stress and hence the origin of the angle of repose.

If we imagine an experiment with an infinite number of bubbles, the finite
size effect in this situation vanishes. We observed in Figure 8.3.5 that the
simulation data strongly suggests that the static angle of repose tends to a
constant (~ 4.8) as we increase the system size. This implies an angle of
repose exists whatever the size of the system.

Measurements in a three-dimensional chute flow foam experiment by
Lespiat et al. [104] have shown an angle at which the flow starts of 4.6°.
This angle also increases for smaller systems, which corroborates our find-
ings. It is interesting to note that the values of #z found in 2D simulations and

experiments match those of 3D simulations [103] and 3D experiments [104].
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8.4 Shear Dilatancy

i " Shear
stress

Figure 8.4.1: Typical stick-slip scenario in monodisperse foam. The change
in configuration induced by shearing leads to an increase of free volume.

8.4.1 Concept of Dilatancy

Dilatancy is the tendency of a material to expand when it is sheared. This
term was introduced by Reynolds [137] in the nineteenth century in the con-
text of granular media. In this two-dimensional setup, the packing fraction
is defined as the ratio of the area occupied by the bubbles and the total area
occupied by the foam. When the system is sheared the foam expands and
consequently the packing fraction becomes lower.

This property can be explained phenomenologically. The particles are
trapped in the bulk of the material. When the system is subjected to a shear
stress, the particles are rearranged within the pile and may have to slip or
roll over each other (Figure 8.4.1). This leads to an increase of the area of
the foam. Dilatancy of 2D foams was first described in theory and simulation
by Weaire and Hutzler [138] and later a further theoretical model of dilatancy
in foams was expanded upon by Rioual et al. [139]. Observations of dilatancy
in experiments of 3D foams have been reported [104, 140]. Shear dilatancy
has been previously reported for two-dimensional soft discs [43].

In this section we investigate dilatancy in the same rotating setup as

before in simulation and experiment and compare the results.
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Figure 8.4.2: Example of a dilatancy experiment on a bidisperse sample of
285 bubbles. The rotation rate is (11.77 4+ 0.05)°s~!'. The vertical (red) line
marks the moment at which the drum stops rotating.

8.4.2 Methods

Dilatancy is a dynamic property, as opposed to the static property the angle
of repose. In the case of 2D wet foams and granular material this may be
investigated by measuring how much the area of a packing expands as the
system is sheared. d¢ is the change in packing fraction due to shear and is
defined as

00 = @rest — Dshear

where ¢, is the packing fraction at rest and ¢gpeq, is the packing fraction
during shear. d¢ >0 implies that ¢ is decreasing when shear stress is applied
and that the foam is undergoing shear dilation.

Simulations were performed in the same manner as in Section 8.2. To
perform the experiment, the drum is filled with approximately 250 bubbles
in the same way as for the static angle of repose experiment. Shear stress
was applied by rotating the drum at a rotation rate w. Using image analysis

(IDL) the centre of mass of the bubble pile was calculated from which the
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Figure 8.4.3: Example of a dilatancy simulation on a bidisperse sample of
285 bubbles. As in Figure 8.4.2, the vertical (red) line marks the moment at
which the drum stops rotating. Rotation rate w = 30 °s~ 1.

packing fraction was found by the following method.

The radial distance of the centre of mass from the edge of the drum hcony
is measured. Then assuming the distribution of particles is homogeneous, the
angle that the edge of the pile makes at the drum edge with the geometric

centre of the drum, 3 can be found by,

4ARp sin® (g)

306 —sn(0)) (8.4.1)

RD = h(,'OM =

Using 3, the comparable homogenous area A,.. of the pile is calculated,

b - 522(5 — sin(f)). (8.4.2)

The area of the particles in drum is known,

N /B Nboundary

Ap = Zﬂrf + s Z mre, (8.4.3)
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where 7; is the radius of a particle . The packing fraction ¢ is then found

from
Ap

AOCC

The packing fraction of the system at rest in experiment is found to be

e (8.4.4)

¢ = 0.9 which is larger than the random close packing (recall ¢. =~ 0.84 in
2D). This may be caused by partial crystallisation or boundary effects. In
the simulated system with N = 285, ¢ is much lower at 0.837 4+ 0.004. This

difference from ¢, is attributed to the confinement of the system.
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Figure 8.4.4: Dilatancy effect for different shear rate for both simulation
and experiment. A bidisperse foam (composed of 2/3 of big bubbles (radius
(0.99 £ 0.03)mm) and 1/3 of small bubbles (radius (0.63+0.03)mm)) and
a tilt angle a=(3.54+1)° is used to perform the experiment. A bidisperse
foam of 285 bubbles with a similar dimensionless number Bu is used for the
experiment.

8.4.3 Results

Figure 8.4.2 and Figure 8.4.3 display the change in packing fraction when
the system is sheared in experiment and simulation. Note that the wobble
in the top plate of the experimental setup creates an oscillation around the
average value of ¢gpeqr during rotation and therefore induces a small error.
In both cases, the system clearly exhibits shear dilatancy: the bubble pile
expands when a shear stress is applied.

Dilatancy is greater for larger shear rates in both simulation and ex-
periment as displayed in Figure 8.4.4. This is consistent with the results
of Bagnold [141] who noted that dilatancy of granular materials altered with
shear rate. However, we observe a linear trend for both simulation and ex-
periment, while Bagnold noted a quadratic dependence on the shear rate. In

a similar but confined simulated system Langlois et al. [43] found a power law
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Figure 8.4.5: Dilatancy effect for different system size in simulation. A bidis-
perse foam of 285 bubbles with Bu = 3.55 x 10~* is used for the simulation.
(e) are for simulations when the drum is half filled and (A ) for 1/3 filled drum.
Inset: Dilatancy effect for different coefficient of viscosity c;.

dependence on the shear rate with an exponent of 0.4. Despite this common
trend we observe a discrepancy between the value of the change of packing
fraction for both the experimental case and the simulation. We also note a
decrease of dilatancy with system size in Figure 8.4.5.

There are a number of factors that may affect the difference between the
simulation and experimental results for shear dilation. First of all is the
filling height: it is found in simulation that if the drum is filled to a lower
fraction, the value of 99/¢,..,, in contrast to g, increases (Figure 8.4.5). Also,
altering the coefficient of friction ¢, can help bridge the disparity between
simulation and experimental results (inset of Figure 8.4.5). The combination
of all these effects have not been simulated to ascertain if the experimental
result can be reproduced. It may be the case that a correct rescaling of the

shear rate results in a collapse of results in Figure 8.4.4 onto the same trend.
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8.4.4 Discussion of Dilatancy

We have shown that the dilatancy effect is more important when the system
is sheared at a higher shear rate. This is similar to the dilatancy in 3D foams
continuous shear observed by Marze et al. [140]. Increasing the shear rate
leaves less time for bubbles to rearrange, requiring for bubbles to flow past
each other by moving around each other and consequently the area increases.
We get a constantly higher dilatancy effect in experiment than in simulation
(see Figure 8.4.4). This may be the result of an additive viscous drag created
by the top plate or due to difference in the viscous interactions in simulation
and experiment. The presence of the confining top plate during shear means
that a drag is imposed on the entire bubble pile rather than just at the
boundary, as in the simulation. This drag applied to the entire foam may
add to the frustration of the flow of the bubbles, again leading to a greater
increases in the area of the bubble pile.

There is a competition between the rotation rate and the time scale of
bubble relaxation. The time of relaxation depends on viscosity therefore it
takes longer for bubbles to relax when a viscous drag is added and conse-

quently decreases the packing fraction ¢.
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8.5 Angle When Flow Begins

Onset of granular flows have been studied by Pouliquen [142] and Pouliquen
and Forterre [143]. Hysteresis between the angle at which the pile starts
flowing and at which it stops flowing has been observed in the flow of granular
materials down inclined planes. Using the rotating drum setup we investigate
when the angle at which flow starts 6, and whether this is the same as
fr. Starting with a relaxed pile with non-zero g, we rotate the drum in the
opposite direction. Ideally, the foam would rotate as a solid body rotation
before starting to flow. When the rotation would be equal to 0, one
would expect a flowing behaviour different from solid body rotation. As
seen in Figure 8.5.1, the transition between the solid body rotation and the

flowing behaviour is too smooth to accurately determine the onset of flow.

0 (degrees)

i n i n 1
0 5000 10000 15000 20000

Figure 8.5.1: Angle at which the flow starts in simulation. The solid line is
the angle the centre of mass makes relative to the centre of the drum. The
dotted line is the angle the centre of mass would take should the pile rotate
as a solid body and the dashed line marks the average angle of repose for
this system. Data is for a bidisperse packing of 675 discs with Rp = 40(R).
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8.6 Conclusions & Outlook

By means of experiment and simulation of two-dimensional wet foam in a
rotating drum configuration, we have demonstrated the existence of a static
angle of repose. The results obtained are robust and reproducible within error
bars. Limited polydispersity in samples that do not crystallise does not have
a significant effect on the value of 8. Except in the case of monodisperse size
distributions, the values of 8y in simulation and experiment are in agreement.
This agreement is particularly good when Bu in simulations is tuned to that
of the experiment. Small changes of buoyancy do not affect 6z, but the size
of the system has a pronounced effect. The smaller the system, the higher the
static angle of repose. Small N means that there are less degrees of freedom
to relax to a lower 6z. When the system’s size N is increased, the angle is
found to tend to a constant.

The simulation gives remarkably accurate results for the angle of repose
fr considering the simplicity of the model used. The behaviour of the simula-
tion results match those measured in experiment very well. Studying bubbles
is a good way to isolate the geometrical frustration effect occurring in gran-
ular materials. The puzzling question that remains to be answered is: What
sets this angle? So far no convincing theoretical argument has been given for
the size of this angle.

The observation of shear dilatancy also requires further study to explain
the discrepancy between the results in experiment and in simulation. This
may require a modification to the bubble model to describe this effect or it
could require finding a correct rescaling of the viscous interactions from the
imposed driving velocities in simulation and experiment. For a comprehen-
sive comparison of the shear dilatancy, an experimental setup that does not
have an artefact affecting its rotation of the foam is required, or altering the

simulation to include this artefact.



Appendix A

Statistical cutoff

For all equations fitted and figures plotted of averaged quantities, any binned
data with less than 100 particles are omitted from Part I of this thesis. This
cutoff was decided upon after inspection of the data. We found by applying
an arbitrary cutoff for all averaged quantities of 100 particles was sufficient
to filter out noise while preserving the trends in the data.

In Figure A.0.1 we have shown the relationship between the average num-
ber of contacts a particle of size a has for all the polydispersities. We have
shown both after (in Figure A.0.1 (a)) and before (Figure A.0.1 (b)) the cut-
off has been applied. The trend in the data is unaffected by the inclusion of
more data points in Figure A.0.1. This example is typical of the other plots
where we apply this cutoff.
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Figure A.0.1: The average contact number for particles of a given area a at
¢ in 3D for all (V) monodisperse, () bidisperse, ([ 1) uniform, (/) Gaussian
and (o) lognormal size distributions at all the widths o we have considered
(see Figure 2.3.2). The solid red line is a fit to Equation (3.2.3). In (a) only
data binned with more than 100 particles have been plotted, while in (b) all
data has been plotted.



Appendix B

Ordering in 3D Monodisperse
Packings for Increasing Packing

Fraction

To investigate whether packings become more ordered with increasing pack-
ing fraction for the packing algorithm outlined in Section 2.2.2, three monodis-
perse packings at three different ¢ are analysed for local order. The three
packings are at ¢ = ¢., ¢ = 0.75 and ¢ = 1.00. For each of these packings the
Bond Orientational Order Parameter (BOOP) is calculated for each particle
and plotted in Figure B.0.1.

The BOOP or Steinhardt order parameter is a measure of the rotational
order within a sample [144] and has proved useful in identifying crystalline
structures. The bond orientation parameter is based upon the association of
a spherical harmonic Q,,; = Y;"(¢ij, 0i;) with each bond in the system, which
in this case is defined as a contact. A contact in the context of the BOOP is
defined as a vector r;; joining the centre positions of neighbouring particles
i and j. ¢;; and 6;; are the polar and azimuthal angles of this bond with
respect to a spherical coordinate system. In order to guarantee directional

invariance of the BOOP only even spherical harmonics are considered. For
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symmetric packings the first non-zero results are obtained for [ = 4 and [ = 6.

The averaged 4" and 6" spherical harmonic are defined as,

4 n 2 1/2
4 l [~~~ m
6 n 2 1/2
41 1 |«
_— e fiadd Y (s, s B.0.2
Qs E m;ﬁ " ; 6 (Pij,0:5) ( )

where Y;™ is the ['" spherical harmonic, n; is the number of contacts of the
particle being considered and N is the total number of particles with the
system [144, 145]. Each crystal structure has a unique set of Q4 and Qg with
which it may be identified and the values of some common crystal structure
are shown in Table B.1.

In Figure B.0.1 the @4 and (g values for fcc, hep and bee crystals are

plotted. It has been shown in experiment that packings of monodisperse

¢ = ¢R(‘p ¢ =0.75 ¢ =1.00

Os

@ (b) ©
o e B

Figure B.0.1: Bond Orientation Order Parameter for a packing of monodis-
perse particles for increasing ¢ labelled from left to right, ¢ = ¢., ¢ = 0.75,
¢ = 1.00. The plots are coloured with a spectrum representing the frequency
of occurrence of a given pair of ), and g, where blue indicates low occur-
rence through to red, which indicates high occurrence. The values that are
associated with crystalline ordering (see Table B.1) are shown as (e).
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[Structure | Qs | Qs |

FCC 0.19094 | 0.57252
HCP 0.09722 | 0.48476
BCC 0.50918 | 0.62854

Table B.1: Table of Bond Order Orientation Parameters of some common
crystalline structures [146].

foams tend to form crystal structures that are predominately fcc and hep. In
the first image at ¢. a wide range of ()4 and Q¢ values are found for a packing.
This is reminiscent of a liquid system [145] and is unsurprising as the random
closed packed monodisperse spheres were first studied as a model for liquids
[15]. When the BOOP is studied at ¢ = 0.75 which is slightly above the
packing fraction associated with fcc crystals of ¢ = 0.7405, in Figure B.0.1
(b) there is a higher cluster of values of the BOOP but this is not at any
characteristic value of crystal ordering. This indicates that the sample is
becoming more ordered. This is again shown in B.0.1 (¢) where there are
some particles that have the Q4 and Qg values of an hcp crystal but the
majority of particles do not. This implies that the packing is more ordered
but not a fully crystalline state. The inability to get to an expected crystalline
state is due to the simulation procedure. There is no annealing step in the
CG minimisation method that allows a packing to overcome a local energetic
minimum and therefore cannot find the global energy minimum which in this
case would be an fcc or hep crystal. Another possibility is the templating

effect of a confining container is required for packings to order fully.



Appendix C

Stress and Strain Rate in Polar

Coordinates

C.1 Shear Stress

Here we present a derivation from Timoshenko and Goodier [147] for the
shear stress in polar coordinates.

Consider the equilibrium of a small element 1234, cut out from the plate
by the radial sections 04, 02 normal to the plate and by two cylindrical sur-
faces 3, 1, normal to the plate. The normal stress component in the radial
direction is denoted by o,,, the normal component in the circumferential di-
rection by ogg, and the shear stress component by o,4, each symbol represent-
ing stress at the mid-point of the element P with coordinates (r+d7/2, §+449/2).
On account of the variation of the stress, the values at the mid-points of the
sides 1,2,3,4 are not quite the same as the values o,,.0¢9.0,¢, and are denoted
by ¢,,1, etc. in Figure C.1.1.

By balancing the forces in the tangential direction, we can find the Cauchy
equilibrium condition. We have the normal forces on side 4, o,,4dr and
on the opposing side 2, —o,,2dr. The shear stress on side 4 also have a

component in the azimuthal direction, given by, .9 4dr sin(df/2), which can
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Figure C.1.1: Infinitesimal element in polar coordinates.

be approximated to 0,9 4drdf/2. The same approach can be taken for side
2 where the shear stress component gives 0,92drdf/2. The shear stress on
sides 1 and 3 are given by 0,41 (r+dr/2)df and 0,9 3(r — dr/2)d6 respectively.

Summing up all the forces in the tangential direction, we obtain the

equation of equilibrium

1 dT' dr
e =eaialtis 5(0’"9'4 +0r9.2)drdd + (o1 (r + 7) — orp3(r — ?))dﬁ =1
(C.1.1)
Dividing by drd6f this becomes
060,2 — 0664 et 5 ~gaplr — 5
— g8 T 3\0mat o T (S
do a5 2(0 0,4 0 0,2) + o ( )

If the dimensions of the element are now taken smaller and smaller, to



C.1. SHEAR STRESS 189

the limit zero, the first term of this equation is in this limit doge/06. The
second becomes 0,4, and the third d(ro,¢)/0r. Differentiating the third term
results in

Jdogg 0org

—— 4O+ Opp + 1
BT SR or

Then dividing by r gives,

= 0. (C.1.3)

100¢g 20,9  Oorg
r of r or

=0. (C.1.4)

If we assume that the solution has circular symmetry, as is the case in the
Taylor -Couette geometry, then ogy becomes zero. If we change the notation

so that 0,9 = o, then Equation C.1.4 becomes

e (C.1.5)
or 1

the same expression as Equation (6.2.1).
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C.2 Strain Rate

Here we reproduce the derivation found in Acheson [148].
The infinitesimal strain rate tensor in generalised coordinates is defined

as

s 8ui 8Uj
W = aej 86’1‘ ‘

(C.2.1)

where w is the flow velocity vector and e is the position vector. Writing this

generally in terms of the vector components gives
'7,‘]' = (61' 5 V)('U, , 6]’) . (ej . V)(u . e,-), (C22)
which can be written more generally again as

Yij = [(ei - V)u] - €;) + [(€; - V)u] - e;. (C.23)

|

Looking for the shear strain rate in polar coordinates, gives V = (-, ;3—9)

Q

then the shear strain rate is

. 0 0
Yoy = l:a—r(urer + ugeg)} ey + {@(urer + ugeg) | - €. (C.2.4)

In polar coordinates the unit position vectors have the identities

der
;9 =e0, (C.2.5)
Beg

Therefore Equation (C.2.4) simplifies to

. Oug 1 [ Ou, Jug
Urdi= B o {; <a—96,r + ureg + 90 u9€r>] " Er. (C.2.7)
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When the dot product is applied then the only non zero terms are

;71"0 — % <+ 1 <dur — ua) . (028)

or ' r\ 08

Assuming that there is no flow in the radial direction and choosing the
convention of # so that the flow is always positive, with a change of notation
so that 4,9 = % then we recover,

8“9 Up

- (C.2.9)

f\/:

the same expression as Equation (6.2.3).
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