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Summary 

The human ability to understand speech is underpinned by a hierarchical auditory system 

whose successive stages process increasingly complex attributes of the auditory input. To 

produce categorical speech perception, it has been suggested that this system must elicit 

consistent neural responses to speech tokens (e.g., syllables, phonemes) despite variations 

in their acoustics. This is an intermediate stage of the speech processing hierarchy, 

followed by lexical and semantical analyses which allow the extraction of concepts from 

speech sounds. 

 Although speech is a very important and unique aspect of humans, the cortical 

mechanisms that allow its efficient processing remain unclear. One of the issues is 

methodological, with research in auditory neuroscience often constrained to utilising 

artificial speech stimuli such as isolated syllables or words. Also, important aspects such 

as the temporal cortical dynamics have been ignored by studies that use technologies such 

as functional MRI. This thesis investigates the neural underpinnings of speech perception 

using scalp electro- and magneto-encephalography (EEG, MEG), with the aim of 

developing methodologies capable of isolating neural activity at different stages of the 

speech processing hierarchy by analysing spatio-temporal cortical dynamics in response 

to different features of speech. 

Previous research revealed that cortical activity is entrained to the low frequency 

amplitude fluctuations of speech in time (i.e., amplitude envelope). However, the neural 

underpinnings of this phenomenon remain unclear. Here, further insights on this topic are 

revealed by studying the responses to continuous natural speech. In the first study 

(Chapter 3), participants were presented with natural speech from an audio-book while 

non-invasive EEG signals were recorded. This chapter demonstrates that EEG signals are 

sensitive to the temporal tracking of categorical phonological features of speech and 

provides a novel analysis framework to quantitatively investigate this phenomenon.  

The study in Chapter 4 aimed to further assess this framework and, specifically, its 

ability to isolate cortical responses to phonetic features from the ones in response to 

speech acoustics. This involved implementing a perceptual pop-out paradigm that, by 

providing or not providing prior predictive knowledge on the upcoming stimuli, allowed 

for the comparison between two conditions consisting of the same stimulus but different 

perceived clarity. As a result, this study introduced a novel cortical measure of phoneme-
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level speech processing that is modulated by the perceived clarity of the incoming stimuli. 

The effects of prior predictive knowledge on the cortical responses to speech are further 

investigated in Chapter 5, in which a similar pop-out paradigm and source-space MEG 

signals were used to provide new insights on the neural substrates of these effects and, 

specifically, on the interactions between and within selected cortical sites in temporal and 

frontal areas.  

The other important question of this thesis regards the applicability of the novel 

framework in Chapter 3 in the study of language development and specific speech and 

language impairments. This kind of research can involve working with particular cohorts 

(e.g., clinical populations, infants), which may be unable to undertake long EEG 

experiments, and one issue relating to the framework described in the previous chapters 

is whether it would work with small amounts of data. Chapter 6 aims to address this by 

introducing an extension of the original approach that allows the reduction of the 

recording time down to 10 minutes. Finally, this improved approach is applied to 

investigate speech perception in children with dyslexia (Chapter 7) and the results support 

theories stating that this developmental deficit, whose symptoms involve mainly a 

person’s reading skills, is related with language processing and, in particular, with the 

low frequency cortical tracking of phonological features.   
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Chapter 1. Introduction 

Spoken language is the form of communication that most markedly distinguishes humans 

from other species. Humans are able to understand speech in real-time despite challenges 

such as noisy environments, competing speakers, co-articulation effects, and the 

variability of speaker accents and voices. The seeming ease of this process makes us 

oblivious of the incredibly complex neural operations required to parse real-world 

acoustic signals into their corresponding meanings (Naatanen and Winkler, 1999). 

While the precise neurophysiological mechanisms and neuroanatomic infrastructure 

underpinning this ability are not well understood (Poeppel, 2014), robust speech 

perception has been proposed to be the product of a hierarchical auditory processing 

system whose successive stages process increasingly complex attributes of the audio 

input (Chang et al., 2010; Okada et al., 2010; Peelle et al., 2010). In this context, it has 

been suggested that, while earlier areas of the auditory system undoubtedly respond to 

acoustic differences in speech tokens, later areas must exhibit consistent neural responses 

to those tokens in order to produce a categorical perception of speech sounds and words. 

This framework, in which potentially discriminable speech sounds are assigned to 

functionally equivalent classes, suggests that speech is “special” to our brains as it is 

processed differently from other non-speech sounds (Liberman et al., 1967; Liberman, 

1970; Stevens and House, 1972; Nourski, 2017). In particular, research in the field of 

speech perception has focused on the categorical perception of the smallest linguistic 

units that can change the meaning of a speech message, called phonemes (e.g., /c/ and /f/ 

as in car vs far) (Chomsky and Miller, 1968; Casserly and Pisoni, 2010). The mapping 

of acoustic sounds into phonemes is considered an essential step for speech 

comprehension. However, unveiling the cortical mechanisms that underpin such a neural 

process is an incredibly complex task (Casserly and Pisoni, 2010). 
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The human brain is composed of about 100 billion neurons interconnected with 

over 100 trillion synapses (Williams and Herrup, 1988; Herculano-Houzel, 2009). 

Today’s technology is far from being able to capture such an incredible level of 

complexity. Specifically, there is no machine capable of measuring brain dynamics non-

invasively with both high temporal and spatial resolution. For this reason, different fields 

in neuroscience have specialised in the study of brain mechanisms at distinct levels of 

detail. In the context of speech, functional magnetic resonance imaging (fMRI) (Obleser 

et al., 2007; DeWitt and Rauschecker, 2012), non-human primate electrophysiology 

(Rauschecker and Scott, 2009), and electrocorticography (ECoG) (Chang et al., 2010; 

Zion Golumbic et al., 2013b; Mesgarani et al., 2014; Nourski, 2017) have all made 

important contributions to our understanding of hierarchical speech encoding in the brain. 

However, all of these methods have their shortcomings: fMRI has relatively poor 

temporal resolution, which is a strong limitation given that speech has very fast dynamics; 

studies based on primates have to deal with fundamental differences with humans (e.g., 

primates do not speak); ECoG studies are limited to patient groups with severe cases of 

epilepsy. 

Recent developments in electro- and magneto-encephalography (EEG/MEG) 

techniques may offer important opportunities for further progress. These approaches 

allow for the macroscopic, non-invasive study of brain patterns with high temporal 

resolution and have been used for years to study the processing of speech units such as 

discrete syllables (i.e., syllables presented in isolation) (Salmelin, 2007). Furthermore, it 

has been shown that both EEG and MEG index the cortical tracking of the low frequency 

amplitude envelope of natural speech (Aiken and Picton, 2008b; Lalor and Foxe, 2010; 

Ding and Simon, 2012a). This has proved useful for investigating the mechanisms 

underlying speech processing (Luo and Poeppel, 2007), how such processing is affected 

by attention (Kerlin et al., 2010; Ding and Simon, 2012a; Power et al., 2012), and how 

audio and visual speech interact (Luo et al., 2010; Zion Golumbic et al., 2013a). However, 

it has not yet been established to what extent these EEG/MEG indices reflect higher-level 

speech-specific processing versus lower-level processing of the spectro-

temporal/acoustic stimulus dynamics (Ding and Simon, 2014). 

The main goal of this thesis is the identification of an experimental and analytic 

approach to isolate quantitative indices of phonological processing based on measures of 

cortical entrainment to natural speech features using non-invasive technologies. The work 

presented in this manuscript is the result of collaborative, multi-disciplinary research that, 
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from a core of engineering methodologies, provides new insights in neighbouring fields 

such as neuroscience, linguistics, psychology, and clinical research. 

1.1 Background 

The human brain allows for effortless, robust, and real-time processing of speech. As 

mentioned above, speech comprehension is a hard task that requires a very complex 

neural network. One example that may help the reader to appreciate the importance and 

complexity of this task can be found in the context of speech recognition software, in the 

field of computer science and engineering. While we may consider speech comprehension 

as a straightforward process that does not require out-of-the-ordinary intelligence, that 

same process is one which the leading companies in the information technology field are 

striving to emulate in the form of speech recognition software and represents a multi-

billion dollar industry. Yet, the performances of such software remain far from being 

comparable to human-level speech recognition. 

Successful speech comprehension feels so natural and easy to do that it can be 

readily taken for granted. In fact, before the availability of modern signal processing 

technology, researchers believed that the corresponding neural processes were fairly 

uncomplicated and straightforward (Casserly and Pisoni, 2010). Of course, this is not the 

case, which is the reason for the present research work. A brilliant analogy of the modern 

challenges of research in speech perception was proposed by Prof. Nima Mesgarani 

during a talk at the 20th Jelinek Workshop in Speech and Language Technology (Seattle, 

USA, 2015, here readapted to the domain of neurophysiology). Let us consider a lake 

populated with fish that swim in various directions (Figure 1.1A) and that we want to 

study the movements of these fish. Now, all we have are measurements of wave height at 

different locations of the lake. In neurophysiology, measurements provided by EEG, 

MEG, or ECoG can be thought of as the time-series of such height values, while the fish 

movement corresponds to the neural activity. This type of measurement will allow the 

study of shoals of fish, however the movement of a single fish cannot be detected. This 

problem, which already seems very hard, is further complicated by various types of noise 

that is often larger than the signal of interest, e.g., the wave movement induced by a speed-

boat (Figure 1.1B). The sections to follow will extensively address traditional and novel 

approaches to “tackle” this type of issue. 
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Figure 1.1: The challenge of research in speech perception. 

If we think of a brain as a lake, where each neuron is a fish, neurophysiological measurements (e.g., EEG) 

can be thought of as the wave heights at various locations. Such measurements can be used to tell us 

something about the movement of shoals of fish, while deriving dynamics of each single fish is an ill-posed 

problem.  

 

Despite these challenges, it is important to pursue this type of research because of 

the major role that successful speech comprehension plays in education and social 

development. This role becomes indisputable when considering the negative effects of 

impairments in speech and language functions, which range from the substantially higher 

rates of depression and anxiety, school dropout, delinquency, to a lower chance of future 

employment (Sabornie, 1994; Wiener and Schneider, 2002; McNulty, 2003; Daniel et al., 

2006; Baker and Ireland, 2007; Brooks, 2014). Indeed, the causes and symptoms are of 

various types and our inability to investigate the brain dynamics of this process in 

sufficient detail makes it very difficult to fully understand and diagnose such deficits. 

Impairment in speech and language functions can involve difficulties in 

comprehension and/or use of spoken, written and/or other symbolic systems. These 

deficits can be grouped into (American Speech-Language-Hearing Association 1993): 

• Hearing disorders are limitations in the sensitivity to physical acoustic 

sounds, due to damage of the peripheral organs responsible for the perception 
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of sounds. Individuals with hearing impairment can be deaf (they cannot hear 

sounds) or hard of hearing (their primary sensory input for communication is 

still auditory, although sound perception is impaired). 

• Language disorders involve the form of language (phonology, morphology, 

syntax), the semantic content of language, or the function of language 

(functional and socially appropriate communication); 

• Speech disorders refer to a deficit in the articulation of speech sounds 

(mistakes, omissions, or additions), fluency (e.g., a disrupted flow of speaking, 

repetitions, atypical rate), or voice (atypical vocal loudness, pitch, duration, 

and more generally vocal quality). 

Deficits in speech perception that cannot be attributed to any of these groups can be 

classified as central auditory processing disorders, which may involve, for example, 

difficult hearing in noisy environments, lack of attention during listening, or lack of 

auditory memory. It is important to highlight that this grouping is not clear-cut. In fact, 

the presence of one type of impairment does not exclude other symptoms. The ability to 

quantify speech processing at specific levels of the cortical hierarchy may be crucial to 

better understand the neural causes of these disorders, providing a means to better 

distinguish different deficits and to provide potential biomarkers for diagnosis. 

Furthermore, such neural indices could provide new insights on the cortical mechanisms 

of speech perception in healthy people, as well as their development from infancy to 

adulthood, and their decline from adult to old age. 

This thesis is centred on speech perception, however this field of research is 

intertwined with non-verbal receptive communication. In fact, higher levels of the speech 

and language processing hierarchy are thought to process modality-independent 

information, which may be reached and shared by different pathways originating from 

distinct sensory inputs (Poeppel, 2006; Simanova et al., 2014; Handjaras et al., 2016). For 

example, one can consider the case of developmental dyslexia, a learning disorder that 

affects 5-10% of school aged children whose symptoms and impact persist into adulthood 

(Vellutino et al., 2004). Dyslexia is defined by difficulties in acquiring reading despite 

otherwise normal sensory and intellectual functioning. However, current theories suggest 

that the root causes of dyslexia are related to a deficit in the processing of phonological 

units (Goswami, 2011; Richlan, 2012; Goswami and Leong, 2013; Lehongre et al., 2013; 

Clark et al., 2014; Goswami, 2015). In fact, this processing stage is not exclusive to verbal 

speech, as it involves, for example, the association of written letters (graphemes) or lip 
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movements (visemes) with sounds. The ability to investigate speech perception at the 

level of phonemes could provide a new view into deficits in phonological processing for 

both verbal and non-verbal receptive (and expressive) communication. 

1.2 Research Goals and Collaborations 

The overarching goal of this thesis is to identify a novel methodology to extract 

quantitative indices of the cortical processing of speech at the level of phonemes using 

non-invasive EEG. Firstly, such a methodology is described and used to test the 

hypothesis that the cortical tracking of speech measured with EEG reflects speech 

processing at both the acoustic and phonological levels. Secondly, this thesis takes a new 

look at the neural underpinnings of speech perception, with a focus on the mechanism of 

integration of prior information and sensory input. In particular, the ability to investigate 

phonological processing with high temporal resolution provides an opportunity to clarify 

the precise dynamics and interactions between distinct hierarchical levels during speech 

perception. Finally, the present research work aims to define a framework to isolate 

indices of speech processing at the acoustic and phonological levels that is applicable in 

clinical and other cohorts of interest as a research tool and potentially as a diagnostic 

biomarker. 

This research work involved international collaborations that complemented the 

existing infrastructure at Trinity College. Firstly, the collaboration with Dr. Rebecca E. 

Millman (University of York, now at University of Manchester) provided an opportunity 

to investigate the cortical dynamics of speech perception with high spatial and temporal 

resolution using MEG, a technology that is currently unavailable in the Republic of 

Ireland (Chapter 5). Furthermore, the interaction with Dr. Varghese Peter and Prof. Denis 

Burnham (MARCS institute for brain, behavior, and development; Western Sydney 

University) allowed for the first clinical application of this methodology in cohorts with 

developmental dyslexia (Chapter 7). 

1.3 Thesis outline 

In Chapter 2, the neural anatomy of speech processing is described, with a particular 

focus on the functional organisation in the human cortex. The cortical mechanisms that 

allow the integration of prior knowledge and information from other sensory modalities 
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into the perception of speech are discussed. As this topic remains hotly debated, two 

chapters of this thesis are focused on such neural mechanisms (Chapters 4 and 5). The 

subsequent section describes non-invasive technologies to investigate speech perception 

in humans. Given the importance of time-domain analysis in speech perception, a 

particular focus is given to electro- and magnetoencephalography (EEG and MEG 

respectively), which provide direct non-invasive measures of brain activity with high 

temporal resolution. Finally, this section includes a description of recent analysis 

approaches that allow the investigation of speech processing using naturalistic stimuli 

such as continuous speech. 

 Chapter 3 introduces a novel analysis framework that enables the isolation of 

cortical responses to speech at the level of phonemes using non-invasive EEG and an 

experiment with natural speech. This study provides the first evidence that EEG is 

sensitive to the temporal tracking of categorical phonological features of natural speech 

and shows sensitivity to distinct features at the level of phonemes e.g., vowels and 

consonants, nasal and fricative. 

The availability of such a framework enables the study of a variety of questions. 

Chapter 4 investigates how quantitative measures of cortical tracking of acoustic and 

phonetic speech features are affected by intelligibility and prior knowledge. This study 

demonstrates that indices of phoneme-level speech processing increase in magnitude with 

perceived intelligibility. Also, these measures are sensitive to the effect of prior 

knowledge, which is discussed in the context of current theories. 

Chapter 5 builds on Chapter 4 by examining the cortical mechanisms that allow 

the integration of prior knowledge with sensory input using technology with higher spatial 

resolution. In particular, MEG (co-registered with MRI) was used to further investigate 

these mechanisms of integration in source-space by using source reconstruction of MEG 

signals in cortical locations of interest. 

Another research question of this thesis is whether the novel framework 

introduced in Chapter 3 could find applicability in the study of speech perception in 

particular cohorts, e.g., clinical populations, infants. One issue is the long experimental 

time required for this analysis (> 1 hour). For instance, clinical assessment may involve 

a long battery of tests, which imposes strict time constraints on the duration of each 

specific test. Chapter 6 provides a solution to this issue by introducing an extension of 

the analysis framework. This improved approach enables the extraction of indices of 

cortical tracking at the level of phonemes using only 10 minutes of recording time. 
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Chapter 7 describes the first application of this analysis framework in the study 

of speech perception in particular cohorts. Specifically, measures of cortical tracking of 

acoustic and phonetic features are used to investigate speech perception in developmental 

dyslexia in children aged between 6 and 12 years. This study reveals causal effects of 

dyslexia that support theories stating that this developmental deficit is related with 

language processing and, specifically, with the low frequency cortical tracking of 

phonological speech features. 

Finally, Chapter 8 presents a discussion of the main findings of the research 

carried out in this thesis and outlines other current and future work that builds upon the 

foundations of this work.
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Chapter 2. The neurophysiology of speech 

perception 

This chapter provides a review of the literature relevant to this thesis and is divided into 

three sections. The first section describes speech and summarises the current 

understanding of the functional neuroanatomy of speech comprehension, with a focus on 

phoneme-level processing. The following section focuses on current views on the 

mechanisms that allow the active integration of prior information to facilitate speech 

comprehension. The third section presents an overview of the methodologies to study 

sound and speech perception, with a focus on non-invasive technologies and continuous 

acoustic stimuli. 

2.1 The functional anatomy of speech perception 

Speech is the verbal means of communicating and consists of articulation, voice, and 

fluency. It can be decomposed into smaller units such as sentences, phrases, words, and 

syllables. In phonology, the most basic unit of sound is called ‘phoneme’ and it can be 

described as the smallest contrastive linguistic unit which may differentiate one word 

from another. Separately, language refers to the socially shared rules that allow speech to 

be an efficient communication method. For instance, it defines the meaning of words, 

how to build new words by combining different suffixes or prefixes, and how to put words 

together. The combination of sensory organs and neuronal structures that allow us to 

perceive and localise sounds, and to interpret speech sounds into meaningful messages is 

called the human auditory system. This dissertation presents research on the 

underpinnings of receptive speech processing specifically in the human cerebral cortex. 
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2.1.1 The auditory system 

In its physical form, speech is a pressure waveform that travels from a speaking person 

to one or more listeners. This vibration is mechanically transformed into electrical signals 

by the human peripheral auditory system. The signal from the two ears are combined in 

the central auditory system, which is thought to be crucial in the extraction of early 

acoustic features, such as binaural cues for sound localisation and pitch. The resulting 

electrical signal is then transported to the auditory cortex which, in the context of speech 

comprehension, is responsible for the identification of auditory stimuli such as speech, 

rather than any other sound, and for the extraction of its corresponding meaning. The 

mechanisms that characterise the ascending auditory pathway, its evolution from animals 

to humans, and its impairment in case of trauma or disease have been topics of intense 

investigation (Salmelin, 2007; Rauschecker and Scott, 2009; Ding and Simon, 2014) 

(Figure 2.1). 

 

 
Figure 2.1: The ascending auditory pathway. 

Illustration from Purves et al. (2008). 

 

Peripheral auditory system 

Sound waves arrive at the outer ear, propagate through the ear canal, and hit the tympanic 

membrane (i.e., ear drum), causing it to vibrate. This thin and conical component marks 

the beginning of the middle ear, which is an air-filled cavity containing three auditory 



11 

 

ossicles (malleus, incus, and stapes). Because of this structure, vibrations of the tympanic 

membrane propagate through the middle ear and reach the inner ear, which represents a 

direct interface with the nervous system (Figure 2.2A). These vibrations reach the 

cochlea, a small coiled cavity with tonotopic organisation (frequency-to-place mapping), 

which performs frequency analysis of the incoming sound wave by splitting it up into 

multiple frequency-bands  (Yang et al., 1992). 

The section cochlea contains tiny mechanosensory cells, known as hair cells. The 

vibration that reaches the cochlea induces the movement to these hair cells, which are 

connected to spiral ganglion neurons from the auditory nerve. Therefore, that movement 

of hair cells is transformed into electrical signals which, on a broader picture, allows for 

the transformation of an incoming sound wave into electrical signals. 

 A 

 

 

 

 

 

 

 

B 

 

Figure 2.2: The peripheral auditory 

system. 

(A) Adapted from Chittka and Brockmann 

(2005).  

(B) An llustration of the tonotopic 

organisation of the cochlea. High- and low 

frequency sounds maximally stimulate the 

base and apex of the cochlear respectively 

(Lahav and Skoe, 2014). 
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The tonotopy of the cochlea constitutes the first stage of sound processing, which results 

in the filtering of the auditory signal into logarithmically spaced frequency bands (Figure 

2.2B). This tonotopic structure is then preserved through the central auditory system and 

primary auditory cortex. 

 

Central auditory system 

The structures that transport and process auditory information to the human cortex after 

its transformation into electrical signals are collectively called the central auditory 

system. The inner ear communicates with the central auditory system via the auditory 

nerve. The cochlear nucleus (CN) is a structure situated in the brainstem that extracts 

information on the firing rate of the auditory nerve fibres and performs nonlinear spectral 

and spatial analysis (Purves et al., 2008). Auditory information is then transferred 

laterally to the superior olivary complex (SOC) where, for the first time, information from 

both ears converge and binaural cues can be derived. As a result, sound localisation in the 

azimuthal plane (left vs right) can be performed at this stage. 

The following stage of the auditory pathway is the inferior colliculus (IC), which is 

considered to be involved in, among the other things, the integration and routing of multi-

modal sensory perception and in the processing of amplitude modulation features crucial 

for pitch detection (Joris et al., 2004). Furthermore, it is thought to play a central role in 

the extraction of sound features that are critical for sound perception (Ehret and Romand, 

1997). Finally, the signals propagate through the medial geniculate nucleus (MGN) of the 

thalamus, which connects IC and the primary auditory cortex. Please refer to the books 

by Schnupp et al. (2011) and by Clark (2006) for further reading on the structures of the 

auditory system described above. 

 

Auditory cortex 

The signal processed in MGN is transmitted to the auditory cortex, an area located 

bilaterally on the supratemporal plane that comprises the superior two-thirds of the 

superior temporal gyrus (STG) (Celesia, 1976; Galaburda and Sanides, 1980; Rivier and 

Clarke, 1997). To date, because of both technical and neuroscientific limitations, there is 

no dominant anatomical parcellation scheme of human auditory cortical areas that is 

generally accepted and routinely used across laboratories (Moerel et al., 2014). Similar to 

the monkey (which can be studied in more detail with invasive studies), the human 

auditory cortex has been suggested to be hierarchically organised with a core of primary 
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auditory areas that receive ascending signals from the thalamus, and is surrounded by 

non-primary regions named belt and parabelt (Hackett et al., 1998; Morosan et al., 2001). 

However, at the finer level of area definition, there is large variability among the various 

reports. For this reason, the following analysis is limited to a macroscopic scale. 

In the anterior to posterior direction, the human auditory cortex can be divided into 

three regions (Kim et al., 2000): Planum polare (PP), transverse temporal gyrus or 

Heschl’s gyrus (HG), and planum temporale (PT). HG, which is hidden in the depth of 

the Sylvian fissure (SF), is thought to be evolutionary new as it was found only in a subset 

of chimpanzee brains (Hackett et al., 2001), but not in the macaque monkey (however, 

see Baumann et al., 2013). Interpretations vary for a placement of the human auditory 

core along HG, across HG, and everything in between (Baumann et al., 2013). Despite 

this debate, it is commonly agreed that the core is located in a tonotopic area of the 

auditory cortex with frequency selectivity organised in a high-low-high gradient 

(Baumann et al., 2013; Saenz and Langers, 2014). Please refer to Moerel, De Martino, 

and Formisano (2014) for a more in-depth discussion on the structures and functions of 

the human auditory cortex. 

The brain network responsible for the processing of complex sounds, such as 

speech, involves areas beyond the STG. In particular, other cortical sites of interest are 

placed in superior temporal sulcus (STS), middle temporal gyrus (MTG), and inferior 

temporal sulcus (ITS), and extend to areas of other cortical lobes, such as the inferior 

frontal gyrus (IFG). The following section describes the current views on the functional 

structure, roles, and interactions within such a network. 

2.1.2 Hierarchical organisation of the auditory system in the human cortex 

The neural organisation of speech perception in the human cortex has been surprisingly 

difficult to characterise, even in gross anatomical terms (Hickok and Poeppel, 2007). The 

hypotheses on this topic before the introduction of modern neuroimaging techniques were 

mainly based on observations of patients with speech disorders due to lesions in parts of 

the cortex. For instance, patients with speech comprehension disorders were typically 

affected by lesions in the left superior temporal gyrus (STG) (Hickok and Small, 2015). 

Therefore, this area was thought to be critical for speech perception. However, later 

studies revealed that the destruction of the left STG causes deficits in speech production, 
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not in speech comprehension, which confirmed that multiple regions participate in the 

speech comprehension process  (Damasio and Damasio, 1980). 

 

 

Figure 2.3: Anatomical details of the auditory processing network in the human cortex. 

Original illustration from Friederici (2011). The different lobes (frontal, temporal, parietal, occipital) are 

marked by coloured borders. Major speech language relevant gyri (IFG, STG, MTG) are colour coded. 

Numbers indicate language relevant Brodmann Areas (BA; Brodmann, 1909). Broca’s area consists of the 

pars opercularis (BA 44) and the pars triangularis (BA 45). The premotor cortex is located in BA 6. 

Wernicke’s area is defined as BA 42 and BA 22. The primary auditory cortex (PAC) and Heschl’s gyrus 

(HG) are located in a lateral to medial orientation. 

 

Modern neuroimaging technologies such as magnetic resonance imaging (MRI), 

fMRI, EEG, MEG, and ECoG have been shown to be valuable tools for the investigation 

of speech processing. Recent work with these methods provided further insights into this 

phenomenon and revealed speech perception as a complex process that involves both left 

and right hemispheres and that is not limited to the temporal areas of the cortex (Figure 

2.3) (Hagoort, 2005; Shalom and Poeppel, 2008; Friederici, 2011; Friederici, 2012; 

Hickok and Small, 2015). Furthermore, the interaction between speech comprehension 

and speech production, which involves also parietal regions of the cortex, was shown to 

be important and difficult to disentangle (Giraud et al., 2007). 
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A growing body of literature supports the hypothesis that speech perception is 

underpinned by a hierarchical system which processes features of speech at progressively 

higher levels of abstraction, from purely acoustic features of the speech sound to 

categorical units of speech (phonemes and syllables), words, and semantics (Hickok and 

Poeppel, 2004; Okada et al., 2010). However, there remains considerable controversy as 

to whether this analytic process proceeds strictly “left-to-right” in a feedforward manner, 

from smaller units (e.g., phonemes) to larger units (e.g., syllables; Chait et al., 2015). A 

growing body of research indicates that the human cortex is characterised by a massive 

amount of anatomical feedback versus feedforward connections (Gazzaniga, 2009). 

Although this seems to suggest a crucial role of top-down modulation in speech 

processing, the precise role of feedback is still hotly debated and will be discussed more 

fully in the next section. 

Among the several models proposed to explain the cortical organisation of speech 

processing (e.g., Hickok and Poeppel, 2007; see Figure 2.4), some agreement is found in 

the hypothesis that there exists specialisation at the sound-word interface. In this sense, 

lower-level areas are the ones involved in the processing of the raw sound signal and the 

extraction of acoustical patterns from a speech sound, while higher-level areas are 

specialised in the processing of speech at the phonological, morphological, syntactical 

and lexical stages. One prominent model of the speech comprehension network was 

suggested by Hickok and Poeppel (2007), which macroscopically localised spectro-

temporal analysis in dorsal STG and phonological level analysis in mid-posterior STS. 

Subsequently, this model suggests a divergence of this network into a ventral stream, 

which is involved in extracting and processing lexical components of speech and localises 

in MTG and ITS, and a dorsal stream, which maps speech onto articulatory motor 

representations (area Sylvian parietal temporal, between parietal and temporal lobes) and 

to more abstract and linguistic decision processes (IFG). 

The cortical processing of speech has historically been attributed to the left or 

‘dominant’ hemisphere. Although this is still hotly debated, recent research shed some 

light on this issue by supporting the conjecture that temporal processing at different 

timescales is associated with hemispherically asymmetric activation (Boemio et al., 2005; 

Jamison et al., 2006; Giraud et al., 2007; Obleser et al., 2008; Telkemeyer et al., 2009; 

Morillon et al., 2010; Giraud and Poeppel, 2012). One view proposes that right and left 

auditory areas are primarily suited to processing spectral and temporal changes 

respectively (Zatorre et al., 1992; Zatorre and Belin, 2001; Zatorre et al., 2002; Poeppel, 
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2003; Schonwiesner et al., 2005). Higher order areas such as STS have been suggested to 

exhibit a right hemispheric bias during the processing of sounds at the syllabic rate (200-

300 ms; Boemio et al., 2005), whereas faster rates (25-50 ms) are thought to induce left 

lateralised responses (Poeppel, 2003; Zatorre and Salimpoor, 2013). In the context of 

speech, the emerging consensus is that cortical processing becomes progressively more 

left lateralised as signals become more speech-like, suggesting that laterality effects are 

more driven by higher order linguistic processing demands than by speech analysis per 

se (Binder et al., 2000; McGettigan et al., 2012; Peelle, 2012; Cogan et al., 2014; Overath 

et al., 2015).  

 

 

Figure 2.4: The dual-stream model of the functional anatomy of language. 

Original figure from Hickok and Poeppel (2007). The schematic diagram (A) describes the main functional 

blocks of the dual-stream model, which are associated to specific areas of the cortex (B). The earliest stage 

of cortical speech processing involves some form of spectro-temporal analysis, which is carried out in 

auditory cortices bilaterally in the supra-temporal plane. These spectro-temporal computations appear to 

differ between the two hemispheres. Phonological-level processing and representation involves the middle 

to posterior portions of the STS bilaterally. Subsequently, the system diverges into a dorsal pathway (blue) 

that maps sensory or phonological representations onto articulatory motor representations, and a ventral 

pathway (pink) that maps sensory or phonological representations onto lexical conceptual representations. 
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2.1.3 Phoneme-level processing in human auditory cortex 

Speech perception is the process that allows vocal communication and it consists of the 

transformation of a speech sound into its underlying meaning. An essential characteristic 

of this process is its robustness. In fact, it remains effective despite considerable natural 

variability across speakers and distortions in noisy and reverberant environments. 

Consequently, there is reason to believe that linguistic analysis cannot proceed directly 

from the sound waveform itself, but requires a processing stage that maps the variable 

speech sounds into invariant representations of speech units, such as phonemes and 

syllables (Liberman et al., 1967; Mesgarani et al., 2008; Overath et al., 2015). 

In the field of linguistics, speech can be represented as a set of categorical 

phonological features that describe how a sound is articulated by humans (Chomsky and 

Halle, 1968; Jakobson et al., 1969). These features include properties of consonants, such 

as place of articulation (i.e., the location in the mouth where the constriction and 

obstruction of air occurs), manner of articulation (i.e., configuration and interaction of 

speech organs, such as tongue, lips, and palate), and glottal state of sounds (e.g., vibration, 

aspiration), as well as properties of vowels (e.g., back, high, and rounded vowels). Such 

properties can provide a “universal” feature set, i.e., language independent. Another way 

to represent speech is through a language-specific set of phonemes. Importantly, each 

phoneme maps to a unique configuration of phonetic features (Table 2.1).  

Studies on small mammals showed that primary auditory areas encode spectro-

temporal patterns that can discriminate features of speech such as the manner of 

articulation and voicing (Mesgarani et al., 2008), suggesting that humans and animals 

may build upon similar general acoustical structures to recognise and discriminate 

sounds. Crucially, there is evidence of the categorical encoding of such phonetic features 

in the STG, which may constitute a crucial step in the processing of a stimulus as speech 

rather than any other sound (Mesgarani et al., 2014; Leonard et al., 2016). The 

identification of categorical phonetic features allows for phoneme detection and, although 

it is unclear whether phonemes are explicitly encoded in the human cortex or by means 

of its constituent features, the processing leading to their categorical identification 

engages an extended cortical network that reaches from the auditory cortex to frontal and 

parietal regions (Scott and Johnsrude, 2003; Liebenthal et al., 2005; Turkeltaub and 

Coslett, 2010). 

 



18 

 

As expected by a hierarchical system, higher-level cortical areas in humans have 

been shown to be progressively more sensitive to more abstract features of speech and 

less susceptible to acoustic variation (DeWitt and Rauschecker, 2012; Overath et al., 

2015). In particular, the region of STS (especially posterior regions) has been shown to 

be more sensitive to higher order intelligibility features and less to acoustic variations 

compared to auditory core regions (Okada et al., 2010). Also, STS has been suggested to 

be a possible area of speech-specific processing and encoding of linguistic features 

ranging from single phonemes to pairs of syllables (Hickok and Poeppel, 2007; Overath 

et al., 2015). However, there remains considerable uncertainty about its specific roles in 

the categorical perception and its integration in the speech comprehension network. 

 

 
 
Table 2.1: Table of phonemes and phonetic features. 

Adapted from http://www.internationalphoneticassociation.org/content/ipa-chart. 
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2.2 The integration of prior and cross-modal information 

in speech processing 

Conversational speech is characterised by fast dynamics and large spectro-temporal 

variability. Humans can rapidly adapt to different voices and accents, and developed the 

remarkable ability to successfully perform speech comprehension despite the challenges 

of real world environments, such as noise, speech degradation, and competing speakers. 

In this context, there is widespread agreement that the perception does not only depend 

on the processing of sensory input, but that it benefits from the integration of information 

from different modalities and from prior knowledge. This section provides some insights 

on the current theories that explain such mechanisms of integration. 

2.2.1 Principal factors contributing to speech perception 

The previous section described the auditory system and presented current views on its 

functional organisation. In particular, the human cortex has been suggested to be 

organised in hierarchical stages that identify and process, from lower- to higher-levels, 

progressively more abstract elements of speech (Hickok and Poeppel, 2004; Okada et al., 

2010; Peelle, 2012) (Section 2.1.2). In the simplest scenario, such a system could be 

represented as a unidirectional hierarchical network with a bottom-up information flow 

reflecting progressively more refined representation of speech extracted purely from 

sensory information (Figure 2.5A). This serial process would elicit cortical responses 

with precise temporal order, thus facilitating the isolation of neural indices at specific 

hierarchical levels along the time dimension. Although this pattern of cortical activation 

can be observed in response to simple isolated speech sounds (Salmelin, 2007), this basic 

model cannot account for several fundamental mechanisms required for natural speech 

comprehension, and thus it is not a good representation of our auditory system. For 

instance, lexically ambiguous words have multiple meanings, and the selection of the 

intended one may require prior knowledge or even information that has yet to be heard 

(Mason and Just, 2007). In the latter case, the listener (or reader) would have to wait for 

the following part of the speech to resolve such ambiguity, as is the case with the word 

ball in the following sentence: 

 

This time the ball was moved outside 

because the children had almost broken the window. 
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Figure 2.5: Schematic representations of information flow in models of speech perception. 

(A) Feed-forward model of speech perception. This network describes the auditory system as fully 

characterised by the bottom-up processing of sensory information. (B) A feed-forward/feed-back model 

that enables the integration of prior-knowledge with sensory input. (C) This panel compares interactive and 

autonomous model rationales (adapted from McClelland et al., 2006). An interactive model posits bi-

directional excitatory connections between processing levels with phoneme-level responses produced at the 

pre-lexical processing level (this schematic is a different view of the same model in panel B). An 

autonomous model of the sort advocated in Norris et al. (2000) posits strictly feedforward excitatory 

connections from pre-lexical to lexical processing and a separate stage of phoneme identification that 

combines information from both pre-lexical and lexical levels. 
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Similarly, the influence of semantic context on phonemic perception was studied in 

the context of phonemic ambiguity (Ganong effect, Ganong, 1980) and also when 

selected phonemes were replaced by a cough or noise (phonemic restoration effect, 

Warren, 1970). Studies based on these effects found that perception of the ambiguous 

segments is biased towards word sounds (rather than non-word ones) and toward words 

consistent with the prior semantic context (Connine and Clifton, 1987; Pitt and Samuel, 

1993). These are examples of why the acoustic-phonetic encoding cannot be understood 

solely in terms of the mapping between an acoustic (or gestural) event and a phonetic 

percept. In this context, the most influential models of speech processing vary in the way 

that they incorporate sensory input with other sources of information, which is a crucial 

ability given that speech is usually heard under less-than-optimal listening conditions. 

Speech comprehension benefits from various linguistic and acoustic properties that 

involve some types of past experience, for example about speaker, specific language, 

accent, listening conditions, or the semantic context. Past experience may come in the 

form of accurate prior knowledge or expectation, which provide sudden and dramatic 

changes in subjective perception (Ludmer et al., 2011; Sohoglu and Davis, 2016). For 

instance, strong perceptual enhancement of heavily distorted speech occurs when the 

listener has prior knowledge of the content, either exact words or semantic context 

(perceptual pop-out effect). Alternatively, past experience could entail a more gradual 

and incremental perceptual learning of regularities of the language, acoustic noise, or 

degradation over a timescale of minutes or longer (Sohoglu and Davis, 2016). For 

example, perception of speech that was degraded using noise-vocoding was shown to 

improve with experience (Goldstone, 1998; Ahissar and Hochstein, 2004; Davis et al., 

2005). Although both perceptual learning and perceptual pop-out are based on prior 

experience, their very different effects may suggest that they originate from different 

brain mechanisms (Rubin et al., 1997; Norris et al., 2003). In particular, perceptual 

learning was linked to offline synaptic changes in low-level sensory processing, while 

prior knowledge and expectation were suggested to influence perception through activity 

at hierarchically late stages of processing. 

One view of speech comprehension proposed autonomous models of speech that 

attribute most lexical effects to post-perceptual decisions and do not require feedback 

connections (Massaro, 1989; Norris et al., 2000). One model in particular, the Merge 

model, suggests the processing of phonemic codes and lexical analysis through two 

separate streams (Norris et al., 2000). In this model, information processed in pre-lexical 



22 

 

levels flows in a strictly bottom-up fashion to the lexical level, allowing activation of 

compatible lexical candidates. Crucially, information from both pre-lexical and lexical 

levels is available and merged at a subsequent decision stage, allowing explicit phoneme 

recognition with no need for perceptual effects between distinct levels. A different view 

suggests that a single system of integration including multiple interacting levels of 

processing supports the effects of both prior knowledge and perceptual learning 

(McClelland and Elman, 1986; Rubin et al., 1997; Friston, 2005; Mirman et al., 2006) 

(Figure 2.5B). This interactive processing view suggests that abstract higher-levels of the 

hierarchy (lexical levels) use prior-knowledge to facilitate speech processing at lower-

levels (pre-lexical levels). The same interactions would lead to a synaptic change that 

facilitates a more effective processing of new presentations of similar stimuli. Several 

findings support this interactive approach and, specifically, the view that lexical factors 

can affect pre-lexical processing (see Figure 2.5C for a comparison between interactive 

and autonomous models; for a full review, see  McClelland et al., 2006). However, the 

precise top-down/bottom-up mechanisms of integration within this interactive approach 

remain unclear  (Norris et al., 2016).  

2.2.2 Sharpening vs Predictive coding theories 

The integration of sensory input and prior experience is not exclusive of auditory 

processing and has been extensively investigated in many sensory modalities (Kastner et 

al., 1999; Bar et al., 2006; Summerfield et al., 2006; van Ede et al., 2010; Zelano et al., 

2011; Giraud and Poeppel, 2012; Kok et al., 2012a; Chennu et al., 2013; Büchel et al., 

2014; Gardner and Fontanini, 2014). Previous research suggested that a single general 

neural mechanism may underpin this phenomenon. A growing body of literature has 

investigated a theory based on hierarchical Bayesian inference, in which higher order 

cortical regions modulate lower levels via top-down connections (Section 2.2.1), thereby 

facilitating sensory processing (Lee and Mumford, 2003; Friston, 2005; Yuille and 

Kersten, 2006; Summerfield and Koechlin, 2008). Within this framework, the critical 

issue is what does bottom-up information represent and what exactly is affecting prior 

experience through top-down connections. 

One view is that higher hierarchical levels may suppress lower order sensory 

responses that are inconsistent with current expectation, which would result in a 

“sharpening” of the cortical sensory representation (Lee and Mumford, 2003). This could 
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be explained as being the result of feedback connections that either inhibit unexpected or 

enhance expected sensory information (Spratling, 2008). A different account of the 

Bayesian inference theory, named predictive coding, posits that higher order regions 

suppress the predictable information in lower processing areas and that, therefore, 

bottom-up connections propagate the prediction-error at each hierarchical stage 

(Mumford, 1992; Rao and Ballard, 1999; Murray et al., 2002). Also, a more recent model 

of predictive coding proposed the coexistence of prediction errors and sensory 

representation through two functionally distinct subpopulations of neurons: Prediction 

error units are associated with the signals that are passed forward from one level of the 

hierarchy to the next (i.e., the bottom-up signals); Representation units encode the 

putative sensory information, which can be sharpened through lateral interactions that 

subtract out the activity of the error units (Rao and Ballard, 1999; Friston, 2005; Jehee 

and Ballard, 2009; Clark, 2013). Thus, the updated information encoded in these 

representation units is used for the top-down predictions, which propagates to lower 

levels and generates prediction errors. By this account, this “delicate dance” between top-

down and bottom-up appear to dissolve the superficially clean distinction between 

believing (i.e., prior knowledge, expectation) and perception, which emerge as being 

deeply mechanically intertwined (Clark, 2013).  

One reason for excitement is the broad impact that these theories could have on the 

field of neuroscience. A better understanding of the architecture and functional 

organisation of cortical systems would lead to implications ranging from the 

interpretation of specific cortical responses (e.g., mismatch negativity responses, 

repetition suppression) to a better understanding of specific neural diseases (e.g., 

schizophrenia). In the specific case of “repetition suppression”, multiple studies have 

shown a reduction in stimulus-evoked neural activity with stimulus repetition (Grill-

Spector et al., 2006; Summerfield et al., 2008; Todorovic et al., 2011). In the context of 

predictive coding, this phenomenon could be addressed as a decrease of prediction error 

signals with the increase in predictability due to repetition. Please refer to Grill-Spector 

et al., 2006 for further discussion on the repetition suppression phenomenon, and to the 

work from Hohwy and Clark for additional discussion and interpretation of the predictive 

coding framework, also in the context of symptoms such as delusions and hallucination 

in schizophrenia (Clark, 2013; Hohwy, 2013; Clark, 2016).  
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Figure 2.6: Computational variables involved in perceptual inference. 

Original figure from Sedley et al. (2016). The graph represents a possible mechanism of perceptual 

inference in the context of auditory perception that is characterised by an active integration of expectation 

and prediction errors. This particular model refers to an auditory fundamental frequency detection task. The 

solid curve represents a schematic probability distribution of the prior prediction about the fundamental 

frequency (f) of an upcoming auditory stimulus (ft), where t simply refers to the number or position of the 

stimulus within a sequence. This prediction is characterised by its mean (μt) and precision (Πt), which is 

the inverse of its variance (σt
2). An unexpected ft would result in a large prediction error (ξt), which is the 

absolute difference between μt and ft. This mismatch between top-down prediction and bottom up sensory 

information results in a prediction update (Δμt; i.e., Bayesian belief updating) that modifies the probability 

distribution of the expected sensory input (dashed line). 
 

In recent years there has been some empirical support for both the sharpening and 

predictive coding accounts  (Murray et al., 2002; Summerfield et al., 2008; den Ouden et 

al., 2009; Alink et al., 2010; Todorovic et al., 2011; Kok et al., 2012a; Kok et al., 2012b; 

Meyer et al., 2014), however there remains considerable controversy between these two 

models. In particular, one issue is that a reduction of neural activity in early sensory 

regions could agree with both the sharpening and predictive coding views, in fact that 

could be interpreted both as a suppression of expected or unexpected sensory information 

(Hsieh et al., 2010; Kok et al., 2012a). Also for this reason, most of the current evidence 

supporting either model tends to be indirect and focused on very specific domains, such 

as the testing of the Bayesian inference mechanism in specific modalities (Figure 2.6) 

(Ernst and Banks, 2002; Knill and Pouget, 2004). More recent studies have investigated 

this issue in a more direct way by considering indices of sensory representation, rather 

than just measures of the increase and decrease of cortical activation. For speech, it was 

demonstrated that an overall decrease of cortical activation may co-occur with an increase 

in sensory representation (Figure 2.7) (Murray et al., 2002; Egner et al., 2010; Blank and 

Davis, 2016; Sohoglu and Davis, 2016; Tuennerhoff and Noppeney, 2016). Although 
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these findings point to a predictive coding account rather than the sharpening hypothesis, 

more research is needed to clarify this issue in the context of auditory processing and, 

importantly, in the more general interpretation of the “predictive brains”. 

A 

 

 
 

 

 

 

 

 

 

 

B 

 

Figure 2.7: Predictive coding account for the speech processing network. 

(A) The graph depicts a model of the speech comprehension cortical network in the context of phonological 

perception (Sohoglu and Davis, 2016). Behavioural and neural outcomes were determined by the 

interaction between two hierarchically organised levels of representation: sensory (acoustic-phonetic) 

features (STG) and phonological categories (frontal and somatomotor regions). The bar graphs represents 

perceptual hypotheses about the phonological content of speech (e.g., two phonological categories, A and 

B, colour-coded blue and red, respectively). Such predictions are conveyed top-down to the STG as 

predictions for upcoming sensory features via weights (solid pink arrows). The predictions are then updated 

using the previous prediction and the corresponding prediction error. In this scheme, perceptual learning 

(broken pink arrow) modulates the relative likelihood of the two categories encoded by activity in 

phonological prediction units. For each new sensory input, perceptual learning modulates the connection 

weights that map between phonological categories and acoustic features. (B) In this experiment, 

participants heard isolated words that were acoustically degraded using noise-vocoding. A higher number 

of frequency channels reflects a higher quality and, thus, better intelligibility. Prior knowledge on the 

upcoming stimulus (provided in text form) increased the perceived intelligibility for both 4- and 12-channel 

acoustic degradation. This perceptual increase corresponded to a decrease in BOLD activity in STS. In 

addition, an index of speech encoding reported a significant amount of speech information in STS only 

when speech was perceived as intelligible. Crucially, this was not the case for the 12-channel condition 

with prior knowledge, in which the prior information suppressed the speech encoding compared to when 

prior knowledge was not available (Adapted from Blank and Davis, 2016). 
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2.3 Measuring the cortical dynamics of speech perception 

As described by the previous sections, speech comprehension involves a broadly 

distributed cortical network that exhibits both bottom-up and top-down dynamics. 

Although important insights have been recently provided about the functional roles of 

specific topographical areas of the cortex, this system is characterised by complex spatio-

temporal dynamics and cross-frequency interactions that an approach based solely on 

spatial parcellation cannot capture. Because of this multifaceted nature of the speech 

processing network, several different technologies have been used to investigate distinct 

aspects of its underpinnings.  

While much of our understanding of the neurobiology of language has been 

deduced from behavioural (Davis and Johnsrude, 2007) and lesion (Wernicke, 1874) 

studies, over the last 30 years or so those findings have been complemented by research 

using brain imaging. Firstly, primate invasive electrophysiology (Rauschecker and Scott, 

2009) enabled the design of detailed models of the sound processing system. However, 

primates do not speak and the differences between their cortex and that of the human 

constitutes another obstacle to this type of imaging. Invasive brain recordings, such as 

ECoG, have also been performed on human subjects, providing neural data with good 

temporal and spatial resolution (Buzsáki et al., 2012; Mesgarani et al., 2014; Holdgraf et 

al., 2016; Leonard et al., 2016). However, it is usually performed on patients with severe 

cases of epilepsy just before they undergo brain surgery, which means that the broadly 

distributed speech processing network may be affected by such a condition. Furthermore, 

ECoG only samples a restricted area of the cortex (which is specific to each patient), 

meaning that the measurements cannot capture the network in its entirety. Another recent 

invasive approach that allows for the investigation of the functional segregation of 

cortical regions is focal cooling (Flinker and Knight, 2016; Long et al., 2016), which aims 

at altering speaking behaviour by cooling distinct cortical sites after craniotomy. 

However, this approach presents similar limitations as ECoG. fMRI overcomes these 

issues, as it does not have such strong limitations in terms of participant groups, and it 

allows for the imaging of the whole cortex (Logothetis, 2008; Glover, 2011; Overath et 

al., 2015; Blank and Davis, 2016; Tuennerhoff and Noppeney, 2016). However, fMRI 

has a limited temporal resolution that hampers its ability to investigate the fast dynamics 

of speech. Similarly, EEG and MEG enable a broad coverage that extends over the entire 

surface of the scalp, with no particular restrictions on the participant cohorts (Buzsáki et 
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al., 2012; Ding and Simon, 2014; Jackson and Bolger, 2014; Sohoglu and Davis, 2016; 

Baillet, 2017). Crucially, EEG and MEG provide very high temporal resolution at the cost 

of spatial resolution. Differently from intracranial recordings that can be pushed over a 

sampling rate of 10 kHz when aiming at the recording of neuronal spikes, non-invasive 

electro- and magneto-encephalography are usually conducted using a sampling rate of the 

order of 1 kHz. In fact, these technologies are strongly affected by a suppression at the 

high frequencies that follows the 1/f  

i power law relationship (Keshner, 1982; Wornell, 

1993). Finally, EEG and MEG record “direct” measures of electrical cortical activation, 

whereas fMRI measures variations of blood oxygen. For these reasons, EEG and MEG 

have the potential to provide new insights on the neurobiology of speech perception and 

are further discussed in this section. 

2.3.1 Non-invasive electroencephalography 

The brain is characterised by billions of interconnected neurons that form a complex 

network. The synchronous activation of neuron ensembles generates electric fields that 

can be measured from the scalp by placing electrodes on its surface. This procedure is 

completely non-invasive and the electrodes are usually in contact with the skin through a 

conductive gel. A number of electrodes are strategically placed on the scalp in order to 

cover most of the surface of the head, including the areas that are most representative of 

the neural activity of interest (Figure 2.8). 

Due to the use of surface electrodes, the spatial resolution of an EEG system is 

limited to an inter-electrode distance of approximately 11 mm in high-density systems 

with 512 electrodes. Therefore, each electrode relates to the potentials generated by 

approximately 107 to 109 neurons and only macroscopic population effects can be 

measured. Furthermore, the layers of tissue between brain and scalp also cause the 

electrical response to smear across the scalp, an effect known as volume conduction 

(Freeman et al., 2003) which further reduces spatial precision. 

A further level of complexity is caused by the small magnitude of brain signals, 

which is in the order of 20-40 μV. Therefore, the signal has to be amplified in order to be 

detected. Unfortunately, this operation is not selective and does also include unwanted 

signals such as electrooculogram (EOG) activity from eye blinking and movement (Corby 

and Kopell, 1972) and electromyogram (EMG) activity from muscle activation 

(Goncharova et al., 2003). We refer to these signals as EEG artifacts and the experiments 
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are carefully designed in order to reduce their occurrence during the recording and allow 

their identification and exclusion in the pre-processing stage which precedes the data 

analysis. 
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Figure 2.8: Electroencephalographic recording setup. 

(A) Electroencephalographic measures are recorded using a number of scalp electrodes (usually 128 

electrodes in this thesis; Courtesy of BioSemi B.V.). (B) These electrodes are in contact with the skin through 

a specific conductive gel and they are placed using an elastic cap according to a standard topographical 

distribution. (C) Voltage measures are recorded for each electrode and synchronised to the stimuli using 

specific trigger signals that indicates events such as the beginning of a sound file. 

2.3.2 Magnetoencephalography 

Electrical current produces magnetic induction, whose strength can be measured remote 

from the current source. The idea behind MEG is to measure the magnetic induction 

corresponding to the electrochemical current that flows within and between brain cells 

(Baillet, 2017). The magnetic signal produced by neural currents is on a scale of 

femtoteslas (10-15 T), over 10 million times smaller than the Earth’s static magnetic field. 

For this reason, it is necessary for MEG technology to have high sensitivity and large 

dynamic ranges. Commercial systems feature coil magnetometers with whole-head 

coverage and about 300 independent channels, each sampled at up to 30 kHz. 

Superconductive temperatures are reached by enclosing the sensing apparatus in a 

thermally insulated tank (dewar) filled with liquid helium. Therefore, the MEG sensors 

are not in contact with the scalp, thus subject preparation times are much shorter than in 

EEG.  

MEG technology presents a number of fundamental differences from EEG. Firstly, 

EEG signals are strongly affected by differences in electrical conductivity between the 

scalp, skull, and other biological tissues. This is not the case for MEG as magnetic 
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permittivity (the magnetic equivalent of conductivity) does not change for different 

layers. For this reason, MEG signals are less distorted than EEG electrical potentials and, 

in particular, allow for a clearer interpretation of the anatomical sources of the measured 

activity. However, the laws of physics impose that MEG signals decrease faster with 

source depth, which hampers the ability of this technology to capture activity from medial 

or subcortical brain regions. A second distinctive property of MEG is that it is sensitive 

mainly to quasi-tangential neural sources, while EEG can measure both quasi-tangential 

and quasi-radial sources (Cohen and Cuffin, 1987; Fuchs et al., 1998; Baillet et al., 1999; 

Ahlfors et al., 2010; Aydin et al., 2015). In addition, MEG signal depends on the location 

and orientation of the sensors with respect to neural sources. For this reason, both the 

monitoring of head movements within a session, and the registration of head positions 

between sessions and participants are crucial for data quality and group analysis and 

comparison. The extreme sensitivity of the MEG sensors means that they are affected by 

surrounding electromagnetic sources, such as metal objects or electrically powered 

instruments. Therefore, careful positioning of the device is important for signal quality. 

Finally, unlike EEG data, MEG measures are reference-free. 

2.3.3 Event-Related framework 

A primary use of electro- and magnetoencephalography is the study of brain responses to 

sensory stimuli. In these studies, the participant is usually presented with a number of 

stimuli and may be asked to perform a task such as answering questions or pressing a 

button in response to a particular target. The precise timing of these events has to be 

known (or recorded, if randomised) and synchronised with the neural recording. This 

allows the experimenter to associate a brain response to the stimulus that caused it and to 

study the temporal dynamics of the brain activity. Such brain responses are called event-

related potentials (ERP) for EEG, and event-related fields (ERF) for MEG. However, the 

signal-to-noise ratio (SNR) of the recorded signal is usually insufficient to study 

responses to single events (see Sections 2.3.1 and 2.3.2). In fact, the signal of interest that 

reaches the EEG or MEG sensors has a very small magnitude and is mixed with other 

unwanted signals, such as spontaneous neural activity, muscular electrical activity due to 

movements of the participant, and external electrical noise. 

One of the most common methods to overcome the SNR issue is to extract a series 

of EEG/MEG epochs which are time-locked to a repeated stimulus and to average them. 
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By assuming noise has a zero mean and that a particular stimulus elicits the same 

ERP/ERF at each presentation, this averaging technique can be used to reduce noise while 

preserving the response to the stimulus (Luck, 2005).  

ERP/ERF components (peaks and troughs) are studied in terms of their 

characteristic amplitude, latency, and topographical distribution. In terms of auditory 

processing, the ERP/ERF elicited in response to sound stimuli is known as an auditory 

evoked potential/field (AEP/AEF; Figure 2.9). The latencies of such auditory responses 

can be grouped into three parts: early responses come from the brainstem (auditory 

brainstem response - ABR); the middle-latency responses are derived from an initial 

activation of the auditory cortex; late responses come from auditory and associated 

cortices (Picton, 2013). Notably, research on AEPs/AEFs in response to speech suggests 

that components with longer latencies relate to progressively higher levels of the speech 

processing hierarchy (Salmelin, 2007). This indicates that AEP/AEF are closely tied to 

perception as they reflect more than the low-level acoustics of the stimulus. For this 

reason, the use of auditory evoked responses as a clinical tool in audiology has been 

suggested in the context of auditory threshold estimation, indexing the auditory system 

development, auditory discrimination, and fine tuning of auditory implants such as 

cochlear implants (Cone-Wesson and Wunderlich, 2003; Lopez-Valdes et al., 2013; 

Paulraj et al., 2015). 

A                                B 

 

 

 

Figure 2.9: A canonical auditory evoked potential (AEP). 

(A) Peaks I–VI represent the auditory brainstem response (ABRs), peaks N0–Nb represent the middle 

latency auditory evoked potentials (MLR) and peaks P1–N2 represent the long latency response (LLR) 

(Picton et al., 1974). (B) Time course of auditory-evoked responses to speech in superior temporal cortex 

(Salmelin, 2007).  
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2.3.4 Modelling the response to continuous speech 

In the last few decades, ERP/ERF techniques have yielded great insight into the 

processing of sounds and speech in the human brain. These methodologies are effective 

when short, isolated, and frequent stimuli are presented which, in the context of speech, 

can be syllables or words. However, the event-related framework is ill-suited for studying 

cortical responses to naturalistic stimuli such as continuous speech. In American English 

natural speech, units of sounds such as syllables occur at a rate of about 3 to 10 Hz, which 

correspond to durations from 100 to 330 ms (Figure 2.10). Importantly, there exist even 

smaller units of speech, called phonemes, which occur at faster rates that range from about 

6 to 32 Hz, meaning that some units have durations as low as 30 ms (Kuwabara, 1996; 

Crosse et al., 2016a). Such fast dynamics of natural speech imply that long latency 

responses to a phoneme/syllable overlap with short latency activity elicited by the 

following unit. This overlap hampers the effectiveness of the event-related approach in 

the study of continuous speech. 

 

Figure 2.10: Average rate of linguistic units. 

This result was based on the normal speaking rate of American English. The brackets indicate the mean ± 

SD (Kuwabara, 1996; Crosse et al., 2016a). 

 

The human auditory system is tuned to process continuous speech. In fact, short isolated 

(discrete) sounds have been shown to elicit different patterns of cortical responses (Bonte 

et al., 2006). For this reason, recent studies have investigated approaches for analysing 

EEG/MEG responses to continuous sounds (Lalor et al., 2009; Lalor and Foxe, 2010; 

Ding and Simon, 2014). The focus has been on the time scale most critical for speech 

recognition, which is in the order of hundreds of milliseconds (1-10 Hz). One way of 

representing the temporal fluctuations at this time scale is the amplitude envelope (also 

known as the temporal envelope or, more simply, envelope), which summarises a speech 

or non-speech sound as a univariate signal in time. Research studies in animal 

neurophysiology has reported that signals from single neurons in primary auditory cortex 

encode the envelope of non-speech sounds by phase-locked neural firing (Wang et al., 
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2003). This cortical entrainment phenomenon has been demonstrated for the envelope of 

speech in humans using EEG (Aiken and Picton, 2008), MEG (Ahissar et al., 2001; Luo 

and Poeppel, 2007), and ECoG (Nourski et al., 2009). In particular, the envelope 

entrainment has been shown to be prominent for low frequency neural activity (< 8 Hz; 

delta- and theta-band, 1-4 and 4-8 Hz respectively) and for the amplitude envelope of 

high-gamma band activity (Pasley et al., 2012; Zion Golumbic et al., 2013b). 

Although the cortical entrainment to the envelope of speech is now well established, 

its underlying neural mechanisms and functional roles remain controversial (Ding and 

Simon, 2014). This phenomenon has been shown for non-speech sounds and for 

unintelligible speech (Lalor et al., 2009; Howard and Poeppel, 2010; Millman et al., 2013; 

Steinschneider et al., 2013), indicating contributions from lower-level areas related to the 

processing of the sound acoustics. Furthermore, recent studies have revealed the 

contribution of higher-level processing areas. In particular, top-down cognitive functions 

such as attention have been shown to modulate the cortical entrainment to speech (Kerlin 

et al., 2010; Ding and Simon, 2012a; Mesgarani and Chang, 2012; Zion Golumbic et al., 

2013b; O'Sullivan et al., 2014). Importantly, it has been suggested that the entrainment to 

continuous speech depends also on the listeners’ ability to extract linguistic information 

that, as described in Section 2.2, may involve more than just sensory information (Peelle 

et al., 2013; Zoefel and VanRullen, 2015). 

A number of essential questions remain unanswered about the nature of the 

envelope entrainment phenomenon. Firstly, although there is agreement about the 

contribution of lower-level auditory areas, it remains unclear which acoustic features are 

driving the cortical responses (e.g., acoustic “edges”, pitch, coarse spectro-temporal 

modulation). Furthermore, in terms of the contribution from the higher-level stages of the 

speech processing hierarchy, unresolved questions remain about what aspects of the top-

down cognitive functions are reflected in the neural responses, for instance whether the 

main contribution comes from the modulation of activity in lower-level areas or also from 

activity in non-primary areas. 

The anatomical and functional understanding of this phenomenon and the ability to 

isolate contributions from different hierarchical levels and/or cortical areas has the 

potential to provide significant advances in the study of speech processing in the human 

brain and it is a central topic of this thesis. To this end, it is crucial to identify analysis 

approaches that best exploit the specific type of neural recording used. Cortical 

entrainment can be quantified using measures of cross-correlation or coherence  between 
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the speech envelope and the neural recordings (Peelle et al., 2013; Millman et al., 2015; 

Thwaites et al., 2015; Baltzell et al., 2016). An alternative and potentially more sensitive 

approach consists of estimating the mapping between the speech envelope and recorded 

neural signals, such as the spectro-temporal response function (STRF) method (Depireux 

et al., 2001; Ding and Simon, 2012a). The following subsection describes a recent 

methodology for estimating such a mapping, which allows for the investigation of the 

processing of continuous auditory stimuli. 

2.3.5 Temporal response function (TRF) 

The human brain is highly non-linear and time-variant by nature. However, a large 

number of studies have brought new insights to the state-of-the-art by assuming that it (or 

some parts of it) behaves like a linear time-invariant (LTI) system (Bialek et al., 1991; 

Stanley et al., 1999; Lalor and Foxe, 2010; Ding and Simon, 2012b; Mesgarani and 

Chang, 2012; Pasley et al., 2012). This assumption may be very strong, but it allows the 

use of modelling approaches such as linear regression. An advantage of this framework 

is to have a system entirely described by its impulse response. Such impulse responses 

can be used as dependent measures of speech processing and can be estimated, given the 

input and output signals, using a number of different techniques. Moreover, when the 

impulse response is available (the real one or its estimation), it can be used to predict the 

output given the input (forward-modelling) or to reconstruct the input given the output 

(backward-modelling). We refer to the estimated system response as a temporal response 

function (TRF) and to this framework as the TRF approach (Ding and Simon, 2012a; 

Crosse et al., 2016b). 

If the system that we want to model is the human brain and, specifically, its 

subsystems that are involved in sound and speech processing, then the input is the 

auditory stimulus presented to the participant while the output is the neural signal 

recorded (e.g., EEG, MEG, ECoG). The forward model can be represented in discrete 

time as: 

 
𝑟(𝑡, 𝑛) = ∑𝑤(𝜏, 𝑛)𝑠(𝑡 − 𝜏) + 𝜀(𝑡, 𝑛)

𝜏

, (2.1) 

where ε(t, n) is the residual response at each channel n and time point t not explained by 

the model. The TRF, 𝑤(𝜏, 𝑛), can be thought of as a filter that describes the linear 

transformation of the ongoing stimulus 𝑠(𝑡 − 𝜏) to the ongoing neural response 𝑟(𝑡, 𝑛). 
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This transformation is described for a specified range of time lags 𝜏 relative to the 

instantaneous occurrence of the stimulus feature 𝑠(𝑡). 

 A number of recent studies have shown that regularised linear regression is an 

effective method for system estimation (Lalor et al., 2009; Power et al., 2011; O'Sullivan 

et al., 2014; Crosse et al., 2016a). In particular, this approach has been shown to be 

effective for studying the spatiotemporal dynamics of the non-invasively recorded 

cortical signal in response to speech stimuli. These dynamics can be studied using the 

regression weights returned by the forward model estimation. These weights, 𝑤(𝜏, 𝑛), are 

referred to as TRF and are estimated (as for a standard linear regression) by minimising 

the mean-square error (MSE) between the neural response 𝑟(𝑡, 𝑛) and its prediction 

𝑟̂(𝑡, 𝑛): 

 

𝑚𝑖𝑛(𝜀(𝑡, 𝑛)) =  ∑[𝑟(𝑡, 𝑛) − 𝑟̂(𝑡, 𝑛)]2

𝑡

. (2.2) 

 

This minimisation problem can be solved by applying the following closed formula (de 

Boer and Kuyper, 1968): 

 

𝑤 = (𝑠𝑇𝑠)−1𝑠𝑇𝑟. (2.3) 

This formula is valid in the basic case of a single input and an instantaneous 

relationship between input and output. However, although the processing of a speech 

sound in the human brain is very fast, it is not instantaneous. Therefore, the TRF has to 

include a certain time-lag window of a few hundred milliseconds, starting from the 

presentation of a stimulus. A comparison between forward TRF and AEP responses can 

be obtained by matching this time-window with the epoch length of the AEP epochs. For 

example, in the context of sound perception, a window of interest could extend from -100 

(τmin) to 400 ms (τmax), where the lag -100 ms would correspond to the cortical response 

to a stimulus 100 ms before that stimulus was presented, whereas the TRF at 400 ms 

would index how a change in the input sound would affect the EEG after 400 ms. In this 

context, the forward TRF function shows a high degree of correspondence with the 

common AEP in terms of its major components and their time course (Lalor et al., 2009). 

Unlike the event-related framework, this approach allows for the study of the responses 

to a continuous stimulus (Mesgarani et al., 2009) and, importantly, it allows the estimation 

of responses to two or more stimuli presented concurrently (Power et al., 2012). 
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The inclusion of a time-lag window is obtained simply by replacing the stimulus 

vector s in Equation 2.3 with a matrix S containing the time delayed versions of that same 

stimulus: 

… 

𝑆 =  

[
 
 
 
 
 
 
 
 
 
𝑠(1 − 𝜏𝑚𝑖𝑛) (−𝜏𝑚𝑖𝑛) … 𝑠(1) 0 … 0

: : … : 𝑠(1) … :
: : … : : … 0
: : … : : … 𝑠(1)

𝑠(𝑇) : … : : … :
0 𝑠(𝑇) … : : … :
: 0 … : : … :
: : … : : … :
0 0 … 𝑠(𝑇) 𝑠(𝑇 − 1) … 𝑠(𝑇 − 𝜏𝑚𝑎𝑥)]

 
 
 
 
 
 
 
 
 

. 

 

 

 

 

(2.4) 

The resulting formulation includes the inversion of the matrix STS (the autocovariance 

matrix), which is an operation particularly prone to numerical instability when solved 

with finite precision. This problem can be solved by introducing a bias term λ or 

‘smoothing factor’ to the TRF estimation formula: 

 

𝑤 = (𝑆𝑇𝑆 +  𝜆𝐼)−1𝑆𝑇𝑟, (2.5) 

where I is the identity matrix. Addition of this smoothing term also solves the other main 

issue, that of overfitting. In fact, this additional weighting of the diagonal of  STS before 

matrix inversion, a procedure known as Tikhonov regularisation (Tikhonov et al., 1977), 

prevents overfitting to high-frequency noise along the low-variance dimensions 

(Theunissen et al., 2001; Mesgarani et al., 2008).  

Indeed, there are other approaches that allow the handling of continuous stimuli, 

such as cross-correlation and coherence analyses. However, these are better suited to 

stimuli modulated by a stochastic process such as Gaussian white noise, while natural 

stimuli such as continuous speech rarely conform to a white random process. For this 

reason, the TRF represents a more temporally precise method to characterise sensory 

systems in response to naturalistic stimuli such as speech (please refer to Lalor et al., 

2009; Crosse et al., 2016b for experimental evidence). Furthermore, the TRF has the 

important advantage (over both cross-correlation and coherence analyses) of being a 

predictive model, which facilitates the acquisition of quantitative measurements based on 

prediction (of the neural data) and reconstruction (of the stimulus). In particular, if a 

neural recording is split into two parts, trialsA and trialsB, a TRF fit on trialsA could be 

used to predict the EEG signal or to reconstruct the input stimulus of trialsB. This 

approach, which has been discussed in the context of brain-computer interfaces 
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(O'Sullivan et al., 2014; Mirkovic et al., 2015), allows the quantitative estimate of the 

quality of the model derived. This is achieved using leave-one-out cross validation to 

generate predictions over the whole dataset, which are then compared with the actual data 

(EEG signals and input stimuli for forward and backward models respectively) (Crosse 

et al., 2016b). This produces a measure that reflects the quality of the estimated model 

that can be used to compare distinct conditions or subject groups. 

Although linear regression approaches, such as the TRF, have been shown to 

effectively model the neural responses to natural speech, current and past research has 

been focusing on the cortical entrainment to the acoustic envelope of speech (Ding and 

Simon, 2014). The following chapter aims at clarifying whether non-invasive EEG and 

MEG reflect more than the passive following of the low-level speech acoustics and 

investigates specifically the cortical processing at the level of phonemes.
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Chapter 3. Low frequency cortical 

entrainment to speech reflects phonemic 

level processing 

3.1 Introduction 

Human brains have evolved to convert the spectro-temporally complex acoustic patterns 

of natural speech into coherent, categorical, semantic representations. This ability is one 

of the characteristics that most strikingly distinguishes humans from other species. 

However, we are far from understanding the precise cortical mechanisms that allow 

humans to accomplish this task. As set out in Chapter 1, the overarching goal of this thesis 

is to define non-invasive and robust procedures to isolate neural indices of natural speech 

processing at the level of phonemes. EEG is the best candidate to achieve this objective, 

as it is a relatively inexpensive, non-invasive technology that provides us with direct 

recordings of cortical activity with high-temporal resolution. The latter factor especially 

makes EEG a suitable solution when using sensory stimuli with fast dynamics such as 

speech. As detailed in Section 2.3, EEG signals have been shown to reflect the cortical 

tracking of the envelope of speech, however it remains unclear whether this phenomenon 

simply reflects low-level responses to speech acoustics or if it actually includes 

processing of speech-specific features.  

Recent research has provided important insights into this fundamental question by 

identifying specific areas of the cortex that are involved in phoneme-level processing. In 

particular, phonetic features have been shown to be encoded in the superior temporal 

gyrus (Mesgarani et al., 2014), which suggests a role of that area in the transformation of 

speech acoustics into categorical representations. Another temporal area thought to be 

involved in this processing stage is the superior temporal sulcus, whose function has been 
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shown to be distinct from lexical, semantic or syntactic processes (Overath et al., 2015). 

These findings, which are in line with the hypothesis of a hierarchical organisation of the 

speech processing network, suggest that categorical speech information is encoded in 

cortical areas that are potential generators of EEG signals (Huang et al., 2003; 

Schonwiesner et al., 2007; Ruhnau et al., 2013).  

This chapter investigates the degree to which low-level (envelope, spectrogram) 

and higher-level (phonemic, phonetic feature) characteristics of natural speech are 

reflected in EEG activity. In doing so, we provide evidence that EEG does not just reflect 

passive neural following of the acoustic energy of speech, but that it also indexes the 

categorical perception of phonemes in the human brain. Furthermore, we sought to 

determine whether processing of different phonetic features can be discriminated in EEG 

responses and found that this discriminative power varies as a function of response 

latency, in line with what one might expect of a hierarchical system. The findings 

described in this chapter were presented at several international conferences and were 

published as: “Low frequency cortical entrainment to speech reflects phoneme level 

processing”, Current Biology, 25:2457-2465, October 2015. 

3.2 Methods 

3.2.1 Subjects 

This study consisted of two experiments. Ten healthy subjects (7 male) aged between 23 

and 38 years old participated in the first experiment, and ten healthy subjects (7 male) 

aged between 21 and 32 years old participated in the second (5 subjects participated in 

both experiments). The study was undertaken in accordance with the Declaration of 

Helsinki and was approved by the Ethics Committee of the School of Psychology at 

Trinity College Dublin. Each subject provided written informed consent. Subjects 

reported no history of hearing impairment or neurological disorder. 

3.2.2 Stimuli and Experimental Procedure 

In the first experiment, subjects undertook 28 trials, each of the same length (just under 

155 seconds), where they were presented with a professional audio-book version of a 

popular mid-20th century American work of fiction written in an economical and 

understated style and read by a single male American speaker. The trials preserved the 
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storyline, with neither repetitions nor discontinuities. The average speech rate was ~210 

words/min. Similarly, the second experiment involved the presentation of the same trials 

in the same order, but with each of the 28 speech segments played in reverse. All stimuli 

were presented monophonically at a sampling rate of 44,100 Hz using Sennheiser HD650 

headphones and Presentation software from Neurobehavioral Systems 

(http://www.neurobs.com). Testing was carried out in a dark room and subjects were 

instructed to maintain visual fixation for the duration of each trial on a crosshair centred 

on the screen, and to minimise eye blinking and all other motor activities. 

3.2.3 Data Acquisition and Preprocessing 

Electroencephalographic (EEG) data were recorded from 128 scalp electrodes for 

18 subjects, and 160 scalp electrodes for 2 subjects. The data acquired using the 160-

electrode system were mapped to the same 128 electrode positions used for all other 

subjects using a spline interpolation algorithm (EEGLAB; Delorme and Makeig, 2004) 

resulting in a coherent dataset with identical channel configuration for all subjects. Data 

were filtered over the range 0 - 134 Hz, and digitised with a sampling frequency of 512 

Hz using a BioSemi Active Two system. Data were analysed offline using MATLAB 

2014 software (The Mathworks Inc.). EEG data were digitally filtered between 1 and 15 

Hz using a Chebyshev Type 2 filter in both the forward and backward directions to 

remove phase-distortion. In order to reduce the processing time required, all EEG data 

were then down-sampled to 128 Hz. Excessively noisy EEG channels were rejected based 

on several criteria (Junghofer et al., 2000), and the data on these channels were estimated 

using spherical spline interpolation (EEGLAB; Delorme and Makeig, 2004). Independent 

component analysis (ICA) was performed independently for each subject using the 

Infomax algorithm (Makeig et al., 1996). Components constituting artifacts were 

removed via visual inspection of their topographical distribution and frequency content 

and the remaining components were back-projected to EEG electrode space. All channels 

were then referenced to the average of the two mastoid channels. 
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3.2.4 TRF computation 

The method used here to analyse the mapping between the various speech 

representations and the recorded EEG data is commonly known as a temporal response 

function (TRF; Section 2.3.5). A TRF can be interpreted as a filter that describes the 

brain's linear transformation of a stimulus feature, s(t), to the continuous neural response 

r(t), i.e.,  

 𝑟(𝑡)  =  𝑇𝑅𝐹 ∗  𝑠(𝑡), (3.1) 

where * represents the convolution operator. The TRFs were calculated by performing 

regularised linear regression between our stimulus variables and our EEG. Specifically 

we perform ridge regression wherein a parameter (λ) is set to control overfitting (see 

Section 2.3.5 and Crosse et al., 2016b for a detailed description of this step). Given that 

the stimulus here is often represented as a multivariate feature vector, we refer to our 

TRFs as multivariate TRFs (mTRFs). mTRFs were calculated using custom written, 

publicly available software (https://sourceforge.net/projects/aespa/, Crosse et al., 

2016b). 

Previous work attempted to cast TRF functions with μV as their unit of measure (Lalor 

et al., 2006; Lalor et al., 2009). However, this relies on a decision to normalise the input 

stimulus values between some limits and, as such, has been somewhat arbitrary. In 

addition, in the present work, the mTRFs are multivariate which further complicates the 

issue of precise units. For these reasons, and in line with previous work from other groups 

(e.g. Ding and Simon, 2012a), the mTRFs are presented here in arbitrary units. The 

colours in the mTRF plots (Figures 3.4 and 3.5) can be interpreted as follows: red at a 

particular latency indicates that, at that post-stimulus lag, the EEG voltage is driven in a 

positive direction by the presentation of that particular stimulus (e.g., phoneme or 

frequency). And blue means the EEG voltage at that post-stimulus lag is driven negative 

by that stimulus. Thus, given the same normalisation strategy for forward and time-

reversed speech, the mTRF responses can be compared in terms of their amplitudes, 

despite their description in terms of arbitrary units. 
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3.2.5 Speech Representations 

Linear regression was used to determine multivariate temporal response functions 

(mTRFs) describing a mapping between the EEG and five speech representations: 

1. Broadband amplitude envelope (E): This was calculated as:  

 𝐸 = |𝑥𝑎(𝑡)|,     𝑥𝑎(𝑡) = 𝑥(𝑡) + 𝑗𝑥(𝑡), (3.2) 

where 𝑥𝑎(𝑡) is the complex analytic signal obtained by the sum of the original speech 

𝑥(𝑡) and its Hilbert transform 𝑥̂(𝑡). E was defined as the absolute value of 𝑥𝑎(𝑡). 

This was then downsampled to the same sampling frequency as the EEG data, after 

applying a zero-phase shift anti-aliasing filter.  

2. Spectrogram (S): This was obtained by first filtering the speech stimulus into 16 

frequency bands between 250 Hz and 8 kHz according to Greenwood's equation 

(Greenwood, 1961), and then computing the amplitude envelope (as above) for each 

frequency band. 

3. Phonemes (P): This representation was computed using the Prosodylab-Aligner 

(Gorman et al., 2011) which, given a speech file and the corresponding textual 

orthographical transcription, automatically partitions each word into phonemes from 

the American English International Phonetic Alphabet (IPA) and performs forced-

alignment (Yuan and Liberman, 2008), returning the starting and ending time-points 

for each phoneme. This information was then converted into a multivariate time-

series composed of indicator variables, which are binary arrays (one for each 

phoneme). These are active for the time-points in which phonemes occurred. The 

phonemes are mutually exclusive, so that only one can be active at each sample point. 

We selected a subset of the IPA composed of the 35 most frequent phonemes in the 

presented speech stimuli (3 of 38 IPA phonemes were excluded as being outliers in 

terms of how rare they were). P is a language dependent representation of speech. 

4. Phonetic features (F): This representation was obtained through a linear mapping of 

the phonemic representation into a space of 19 features (based on the University of 

Iowa’s phonetics project http://www.uiowa.edu/~acadtech/phonetics/english/ 

english.html/) and using an approach similar to Mesgarani et al. (2014). This set of 

phonetic features were a distinctive subset of those defined by Chomsky and Halle 

(Chomsky and Halle, 1968) to describe the articulatory and acoustic properties of the 

phonetic content of speech. In particular, the chosen features are related to the manner 
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of articulation, to the voicing of a consonant, to the backness of a vowel, and to the 

place of articulation. Each phoneme consists of a combination of distinct features; 

therefore this is a set of non-mutually exclusive descriptors. F is a language 

independent representation of speech. 

5. Finally, we propose a model that combines F and S (FS): This was obtained by 

concatenating F and S into a single data matrix. This representation consists of 19 

phonetic features and 16 frequency bands; therefore FS has 35 dimensions. The 

rationale for combining these particular two representations was that the better 

performance of the S-model relative to the E-model suggested it as a more optimal 

way to capture processing of the low-level acoustics. Choosing between P and F was 

simply done for efficiency given that F is essentially a more concise representation 

of the same information as that contained in P.  

 
Figure 3.1: Assessing the encoding of speech features in EEG. 

128-channel EEG data were recorded while subjects listened to continuous, natural speech consisting of a 

male speaker reading from a novel or its time-reversed complement. Linear regression was used to fit 

multivariate temporal response functions between the low frequency (1-15 Hz) EEG data and five different 

representations of the speech stimulus. Each mTRF model was then tested for its ability to predict EEG 

using leave-one-out cross-validation. 
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3.2.6 Model Evaluation 

We wished to compare how each speech representation mapped to the EEG. To do this, 

we used a leave-one-out cross-validation approach, whereby, for each representation, an 

mTRF was trained on 27 trials, and used to predict the EEG data from the remaining trial. 

This process was repeated until the data from all trials were predicted. Prediction 

accuracies were evaluated by determining a correlation coefficient (Pearson's r) between 

the actual and predicted EEG data on each electrode channel. Note that silent time 

intervals for which the entire time-lag window had zero values were removed from the 

correlation evaluation because the prediction values for such silent intervals would be 

constant and, therefore, not meaningful when predicting EEG signals (the same intervals 

were removed from all speech representations). When analysing the characteristics of the 

mTRFs (Figures 3.4 and 3.5), the results were obtained using the whole dataset, with no 

division between training and testing data. 

3.2.7 Electrode Selection 

The model evaluation procedure revealed a specific distribution of EEG prediction 

correlations across the scalp. Importantly, there was no statistical difference in the 

distribution of these predictions between the 5 models (E, S, P, F, and FS; p > 0.05 T-

ANOVA, Lehmann and Skrandies, 1980; Figure 3.2E). A subject-independent set of 12 

electrodes from the 2 areas of the scalp with high prediction correlations was selected (6 

on the left side of the scalp, and their symmetrical counterparts on the right), without 

biasing any of the mTRF models. Each of the selected electrodes was among the 12 

electrodes with highest prediction correlations for over 90% of the cross-validation steps 

for every model. This subset of electrodes was used to obtain the prediction correlations 

presented in Figures 3.2 and 3.3. The average of the mTRFs across these 12 electrodes 

is presented in Figure 3.4. 

3.2.8 Time-lag Selection 

The presented mTRFs were first computed on a broad time-window from -150 to 450 ms. 

Based on visual inspection, this time interval was then restricted to lags from 0 to 250 ms 

as no visible response was present outside this range. This was confirmed by a 

quantitative search using the maximisation of the EEG prediction correlation as the 

objective function. 
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3.2.9 Multi-Dimensional Scaling 

Figures 3.6 and 3.7 display the results of a multi-dimensional scaling (MDS) analysis 

applied to the phonemic and phonetic-features mTRF models (i.e., on the 

multidimensional array of weights produced by the linear regression). Given a set of 

’objects’, MDS is an analytic vehicle which transforms each object into a point in a multi-

dimensional space. Importantly, the distances between the objects reproduce an empirical 

matrix of dissimilarities Di. In our case, the objects are phonemes (or phonetic-features) 

and the dissimilarities are standardised Euclidean distances between their neural 

responses. In particular, a phoneme object is composed of the linear regression weights 

at all of the 12 EEG channels of interest for each subject (channel data were not averaged 

in this analysis). As such, it incorporates spatial information across channels as well as 

temporal information across the mTRF allowing insights into the spatiotemporal 

activation differences between different phoneme objects. That said, the differences we 

report are most likely driven by temporal information (Figure 3.2E). 

Previous research has suggested that MDS is a useful analysis tool for the 

categorical perception of phonetic stimuli (Shepard, 1980; Iverson and Kuhl, 1995; 

Chang et al., 2010), as well as other areas of research. Similar to previous research (Chang 

et al., 2010), we employed a non-metric MDS that minimises the mapping error measured 

by Kruskal Stress (Kruskal and Wish, 1978). Finally, the MDS was calculated in 5 

dimensions (eigenvariates), which was enough to allow the reconstruction of the original 

dissimilarities with an accuracy in excess of 90% in all cases (stress ≤ 0.1) (Kruskal and 

Wish, 1978). 

3.2.10  F-Scores 

In a classification task, given a set of ‘objects’ grouped in a meaningful set of classes, the 

main goal of a classifier is to predict the class to which each object belongs. The F-Score 

(or F1-Score) is a measure of the quality of such predictions, obtained as the harmonic 

mean of precision and recall (Rijsbergen, 1979; Chinchor, 1992; Sasaki, 2007). The F-

Score can be used, for example, to compare distinct classification algorithms when using 

the same data, to compare different conditions or, as in this case, different datasets (i.e., 

TRFs for particular phonemes or features) when using the same classifier. 

We performed 100 repetitions of the randomised classification algorithm k-means 

(unsupervised classification, with prior knowledge of the number of classes k, MacQueen, 
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1967) to classify phonemes (and phonetic-features) and to study which classes of features 

are represented in the mTRFs. For each repetition, given the phonemic (or phonetic-

features) mTRF model at all electrodes of interest for every subject, k-means returns a set 

of predictions for which an F-Score is evaluated. The values reported in Figures 3.6 and 

3.7 are the averages of these repetitions. In order to work with k classes with ‘roughly’ 

the same number of elements, the classification for consonants/non-consonants and for 

manner of articulation was performed on a revised set of classes, where the smallest 

classes were merged with the most similar ones. 

3.2.11  Statistical Analyses 

All statistical analyses were performed using a repeated measures ANOVA to compare 

distributions of Pearson correlation values across models and speech direction (forward 

and time-reversed speech) and to compare F-Score classifications across response 

intervals and speech direction. In the latter analysis, we used the jackknife method on the 

F-Scores of the 10 subjects. The values reported use the convention F(df, dferror). 

Greenhouse-Geisser corrections were made if Mauchly’s test of sphericity was not met. 

All post-hoc model comparisons were performed using Bonferroni corrected paired t-

tests. 

While it is customary to apply Fisher’s z transformation to Pearson correlation 

scores before performing statistical analysis on those scores, we did not do that for the 

results presented below. The rationale for the Fisher transform is to normalise the 

sampling distribution of the (usually skewed) Pearson’s r values and to produce a less 

biased statistic. However, in our case, the r values are really quite low and are, generally 

speaking, already normally distributed. Also, it has been suggested that with large 

numbers of data points and small r values, applying a Fisher’s z transformation can in 

fact lead to a more biased result (Corey et al., 1998). 

3.3 Results 

128-channel EEG was recorded from 10 subjects as they listened to segments of an audio-

book and 10 subjects who listened to the same audio-book played in reverse (five subjects 

undertook both experiments). To identify neural indices of lower- and higher-level speech 

processing we investigated mappings between different representations of the speech and 
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the low frequency (1-15 Hz) EEG (Figure 3.1A). Specifically, we did this by using 

regularised linear regression to model the relationship between each speech 

representation and the data from each EEG channel (Figure 3.1A). The resulting models 

are commonly referred to as (multivariate) temporal response functions (Crosse et al., 

2016b). We employed a cross-validation approach and mTRF models to quantify how 

well each speech representation related to the neural data. The quality of the prediction 

was assessed using correlation (Pearson’s r). 

3.3.1 Neural evidence for phonetic processing 

The overarching rationale was to use variations in EEG prediction scores across speech 

representations as a dependent measure for assessing how well the EEG reflects the 

processing of lower- and higher-level speech features. Neural entrainment to speech 

envelopes is well established and, as such, performance of the E-model acted as a baseline 

with which to compare the performance of the other models. Robust mappings between 

speech spectrograms and high-gamma frequency ECoG have previously been shown 

(Pasley et al., 2012). However it is unknown whether this richer representation can be 

accurately indexed using low frequency EEG, something we address with the S-model. 

Similarly, the relationship between high frequency ECoG and a categorical phoneme 

representation of speech has been examined before (Mesgarani et al., 2014). However, no 

such relationship has been investigated for EEG (or MEG), hence the P-model. 

Transforming phonemes into a lower dimensional phonetic feature representation 

(Chomsky and Halle, 1968) frames our results in terms of the articulatory and acoustic 

properties of each phoneme and has advantages for the efficiency of this type of 

modelling. This motivated our F-model.  

An important issue when considering the spectrogram representation and the 

phonemic/phonetic feature representations is that they are mutually highly redundant. 

This is because, on average, each phoneme will have a particular characteristic spectro-

temporal profile. So if each phoneme were always spoken in the same way, then the two 

representations would be equivalent. However, in natural speech this is not the case, with 

significant variation in the spectro-temporal profile of a given phoneme across instances. 

One might thus expect that our P-model (and F-model), which is ignorant of these 

variations, would underperform relative to the S-model. However, it is also true that 

human listeners categorically perceive phonemes despite spectro-temporal variations, a 
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fact that is presumably underpinned by consistent neural responses to those phonemes 

(Okada et al., 2010; Peelle et al., 2010). Such consistent responses would be captured by 

our P-model, potentially leading to it outperforming the S-model, which is ignorant of the 

categorical nature of these utterances. Indeed, given their mutual redundancy and 

complementary strengths, both models may perform similarly. To attempt to reveal their 

complementary strengths, we also derived a model based on combining the time-aligned 

phonetic features and the corresponding speech spectrogram (the FS-model). Improved 

performance of this model over the others would suggest that the EEG is indexing the 

processing of both low-level acoustic fluctuations and higher-level phonetic features.  

In line with this hypothesis, the average performance of the FS-model across our 

12 chosen electrodes was better than all other models (ANOVA: F(1.5,13.6) = 29.1, p = 

2.9x10-5; post-hoc paired t-test comparisons of FS with all other models: p = 0.001, p = 

0.002, p = 8.2x10-5, p = 0.001 for E, S, P, and F respectively; Figure 3.2A). Indeed FS 

was best for all 10 subjects (Figure 3.2B). The fact that the P- and F-models are simple 

transformations of one another was reflected in the lack of any performance difference 

between them (p > 0.05). There was also no difference between the P- (or F-) and S-

models (p = 0.24 and p = 0.34, respectively), which, as mentioned previously, was always 

a possibility. Importantly, we found that the model based on the envelope of speech, 

which has been heavily relied upon in many studies of speech neurophysiology (Luo and 

Poeppel, 2007; Zion Golumbic et al., 2013b; Ding et al., 2014), underperformed relative 

to all other models (p < 0.01). Furthermore, we found no lateralisation effects in the 

performance of any model (p > 0.05, ANOVA). Indeed, model performances were 

qualitatively similar at other scalp locations. 

While we contend that the improved performance of the FS-model is evidence for 

the encoding of both low-level acoustic variations and higher-level phonetic features, it 

remained possible that this result was driven by the FS-model having more free 

parameters than the other models. We sought to test whether or not this was the case by 

investigating the performance of several other high dimensional models. Combining P 

and S did not outperform the FS-model (p > 0.05), even though it has 16 additional 

dimensions. Also combining the P- and F- models did not outperform either the P- or F-

models alone (p > 0.05). These results suggest that the greater number of parameters in 

the FS-model does not explain our finding. 
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Figure 3.2: EEG responses to forward speech, but not time-reversed speech, are best predicted when 

speech is represented as a combination of spectro-temporal features and phonetic feature labels. 

(A) Grand-average EEG prediction correlations (Pearson’s r) for each speech model (mean ± SEM). While 

there is no statistical difference in prediction performance between the Spectrogram (S), Phonetic features 

(F), and Phonemic (P) models (p > 0.05), all of these models are better predictors of the EEG than that 

based on the envelope (E; ▲ p < 0.01). Importantly, the model based on the combination of phonetic-

features and spectrogram (FS) outperforms all other models (* p < 0.01). (B) Correlation values between 

recorded EEG and that predicted by each mTRF model for individual subjects. The subjects are sorted 

according to the prediction correlations of the FS-model, which outperforms all the other models for every 

subject. The E-model performs worse than every other model for every subject. (C) Grand-average EEG 

prediction correlations for the time-reversed speech condition (mean ± SEM). Prediction correlations using 

the speech envelope are lower than those for all other models (▲ p < 0.05). As with normal speech, there 

is no statistical difference in prediction performance between the S, F, and P models (p > 0.05). Importantly 

in this case, there is also no difference between the performance of those models and that based on the 

combination of phonetic-features and spectrogram (FS; p > 0.05). (D) Correlation values between recorded 

EEG and that predicted by each mTRF model for individual subjects for time-reversed speech. The subjects 

are sorted according to the prediction correlations of the FS-model. The E-model performs worse than every 

other model for every subject. (E) The topographical distributions of the prediction accuracies are shown 

for the 5 models and for the 2 conditions: natural and time-reversed speech. A non-parametric test was 

performed to test for differences between these topographies (T-ANOVA). No significant differences were 

found (p > 0.05). The electrodes that were chosen for all analyses are represented by black dots. 
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However, to further establish the validity of our interpretation we performed the 

same analyses on the data from the subjects who listened to time reversed speech. Because 

the same speech segments were used, the same E, S, P, F and FS speech representations 

could be used in a time-reversed fashion. The key manipulation here is that time-reversed 

speech has the same long-term amplitude spectrum as natural speech, but is not perceived 

as intelligible speech. Overall, the prediction values were lower than for forward speech, 

likely as a result of differences in top-down attention and also consistent with previous 

research showing weaker neural entrainment to unintelligible speech (Peelle et al., 2013). 

However, crucially, while the E-model again performed more poorly than the others (p < 

0.05), the FS-model in this case showed no improvement over the S-, P- or F-models (p 

> 0.05; Figure 3.2C,D). This supports our contention that the FS-model, in the case of 

forward speech, indexes the neural processing of speech features at the level of phonemes. 

3.3.2 Phonetic processing across different EEG frequency bands 

Given previous research positing different functional roles in speech processing for 

different cortical oscillations (Giraud and Poeppel, 2012) and, in particular, differential 

encoding of speech features by delta and theta-band entrainment (Ding and Simon, 2014), 

we examined the different model performances for distinct frequency bands. Phoneme 

level processing (i.e., FS outperforming all other models) was evident only in the delta- 

and theta- bands (Figure 3.3). The P- and F-models outperformed the S-model for the 

delta-band while the S-model outperformed the P- and F-models for the alpha, beta and 

low-gamma bands, possibly evincing the differential sensitivity of these bands to detailed 

acoustic information (S) and categorical phonemic processing (P and F). Relative model 

performances in the theta-band are qualitatively similar to the results obtained above with 

the broadband (1-15 Hz) signal. EEG prediction scores are very low for beta and low-

gamma in keeping with the generally low SNR for EEG at these frequencies.  

Given the higher prediction scores for delta, theta and alpha, and the phonetic 

processing effects visible using the broadband (1-15 Hz) EEG signal, we continue to 

analyse this broader representation of the EEG in what follows. 
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Figure 3.3: EEG response prediction for different EEG frequency bands. 

Grand-average EEG prediction correlations (Pearson’s r) for each speech model (mean ± SEM) for delta, 

theta, alpha, beta and low-gamma band EEG frequencies. * denotes prediction differences at the level of 

p<0.05, while ** denotes prediction differences at the level of p<0.01, both using planned paired t-tests.  

 

The P-mTRF shows variable dynamics across phonemes (Figure 3.4C). To reveal 

groups of phonemes with similar responses, we performed hierarchical clustering on the 

P-mTRFs at the 12 electrodes of interest. In doing so, we found that the model could 

accurately discriminate consonants and vowels (32 of 35 phonemes classified correctly). 

For visualisation purposes (Figure 3.4C), we present the phonemes grouped as vowels, 

diphthongs, semi-vowels, and consonants and we sort within each group according to the 

hierarchical clustering distances. It can be seen that the mTRFs for consonants onset at 

around 50 ms while those for vowels do not generally show a significant response before 

~100 ms. In contrast to these early differences, all phonemes show a similar response 

between ~150 and 200 ms. This timing pattern is consistent with previous research that 

has shown that acoustic-phonetic features of speech modulate activity in non-primary 

auditory areas from 50-100 ms onwards, with language-specific phonetic-phonological 

analysis starting by 100-200 ms (Salmelin, 2007). Interestingly, in the case of time-

reversed speech, the P-mTRF amplitude is noticeably lower than for forward speech 

particularly during the 150-200 ms interval (Figure 3.5C). 
 

 



51 

 

 

 

 

Figure 3.4: mTRF models for natural speech reflect sensitivity to different speech features. 

mTRFs plotted for (A) envelope (E), (B) spectrogram (S), (C) phoneme (P) and (D) phonetic feature (F) 

models at peri-stimulus time-lags from -100 to 400 ms for natural speech, averaged over 12 fronto-temporal 

electrodes. The phonemes were sorted based on a hierarchical clustering analysis on the average mTRF 

after grouping them into vowels, diphthongs, semi-vowels, and consonants. Horizontal dashed lines 

separate distinct categories of phonemes and phonetic-features. 

 

 

When considering the mTRF for the F-model, it should be remembered that each 

phoneme is simply a combination of phonetic-features. Indeed, a linear mapping from the 

F-mTRF to the phonemic space produced a model that is highly correlated with the P-

model (r = 0.93, p = 1.6*10-5; 2-tailed t-test). We therefore consider these two models to 

be essentially equivalent. However, while the mTRF for the P-model highlights 

differences between vowels and consonants, the mTRF for the F-model allows us to 

visualise sensitivity to different articulatory speech features (Figure 3.4D). Again, the 

vowels stand out strongly from the features associated with consonants. But within each 

of the consonant-related features, a considerable degree of variability is evident across 

the specific distinctions. 
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Figure 3.5: mTRF models for time-reversed speech. 

mTRFs plotted for (A) envelope (E), (B) spectrogram (S), (C) phoneme (P) and (D) phonetic feature (F) 

models at peri-stimulus time-lags from -100 to 400 ms for natural speech, averaged over 12 fronto-temporal 

electrodes. The phonemes order is the same as that used in Figure 3.4. Horizontal dashed lines separate 

distinct categories of phonemes and phonetic-features. 

3.3.3 Sensitivity of EEG to phonetic features as a function of latency 

We wished to test the hypothesis that the sensitivity of our neural responses to different 

acoustic and phonetic features would increase as a function of response latency in line 

with what one might expect of a hierarchical system. To do this we applied unsupervised 

multi-dimensional scaling to the mTRFs in the following time intervals: 50 – 100 ms, 100 

– 150 ms, and 150 – 200 ms, which correspond approximately to the 3 main peaks in the 

P-mTRF (Figure 3.4C). This approach allowed us to build a geometric space in which 

the Euclidean distance between phonemes (or phonetic-features) corresponds to the 

similarity of their neural responses. Furthermore, this allowed us to examine how 

sensitive the neural responses were to different phonetic features by quantifying how well 

the responses clustered according to the different groups of phonetic features that 

produced them. We did this by performing k-means clustering, where k is the number of 

groups under consideration, and then calculating the corresponding F-Scores (the 

harmonic mean of precision and recall) between the actual grouping and the result of the 
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clustering. All statistical tests were performed using a jackknife one-way repeated 

measures ANOVA with a Greenhouse-Geisser correction if the assumption of sphericity 

was not met.  

The increasing F-scores as a function of latency for the P-mTRF show that the 

responses become more discriminative between consonants and non-consonants at longer 

latencies (F(2.0, 18.0) = 3x109, p < 0.0005; Figure 3.6A). Similarly, the F-scores for the 

F-mTRF show that the responses become more sensitive to different groups of phonetic 

features as a function of latency (F(1.3, 11.4) = 105, p < 0.0005; Figure 3.6B). Again, it 

can be seen that responses to vowels are clearly separable from those to consonant-related 

features at longer latencies. Analysis within each phonetic feature group revealed no 

sensitivity in our mTRFs for place of articulation, voicing or for different vowels (not 

shown). However the mTRFs did discriminate manner of articulation (Figure 3.6C), 

especially at longer latencies (F(2.0, 18.0) = 215.0, p < 0.0005). These results show that 

non-invasive neural responses to speech are sensitive to specific phonetic features and 

that this sensitivity increases as a function of latency.  

The lack of response sensitivity to different specific vowels above, combined with 

the high degree of discriminability between vowels and consonants, caused us to wonder 

whether our model performance (Figure 3.2A) was mostly driven by this between class 

response sensitivity. We tested this by randomly relabelling the consonants in our time-

aligned phoneme model (P) with other consonants and by relabelling the vowels with 

randomly chosen vowels. This led to a marked drop in EEG prediction performance 

(mean  SD, r = 0.0247  0.0009, shuffled over 50 randomly relabelled versions of the 

stimulus, compared with 0.0635 for the correct P labelling). This suggests that, while the 

neural responses strongly discriminate between vowels and consonants, the data are also 

sensitive to differences within these two classes.  

Finally, we repeated the above analyses for the time-reversed speech (Figure 3.7). 

In this case, consonants and non-consonants could still be discriminated in the P-mTRF 

(F(1.1, 20.3) = 42.9, p < 0.0005). In addition phonetic features (F(1.3, 23.1) = 148.0, p < 

0.0005) and manner of articulation (F(2.0, 36.0) = 147.7, p < 0.0005) could also be 

discriminated. However, importantly, unlike for forward speech, there was no significant 

relationship between discriminability and latency for either phonetic features (F(1.3, 

11.6) = 0.1, p = 0.79) or manner of articulation (F(2.0, 18.0) = 0.46, p = 0.64) and 

discriminability for consonants and non-consonants did not monotonically increase with 

latency. 



54 

 

 

Figure 3.6: The sensitivity of EEG to speech features increases with response latency. 

Multidimensional scaling (MDS) on the phonetic-features and phonemic mTRFs as a function of peri-

stimulus time-lag. By carrying out repeated k-means classification we derive F-score measures that 

represent the discriminability of our mTRFs in each of the three time intervals 50 – 100 ms, 100 – 150 ms, 

and 150 – 200 ms, which correspond approximately to the 3 main peaks and troughs of the phonemic mTRF 

(Figure 3.3C). (A) MDS on the phonetic-features mTRF. The F-scores indicate the differential sensitivity 

of responses to manner of articulation, voicing, backness of a vowel, and place of articulation features. 

These F-scores show significant increase with response latency. (B) MDS on the phoneme mTRF. The F-

scores are a measure of the binary classification of responses to consonants and non-consonants (vowels, 

diphthongs, and semi-vowels), which, again, significantly increases with latency. Although the 

classification performed was binary, the distinction between the four main classes of phonemes is evident. 

(C) MDS on the phoneme mTRF. Here the F-scores are computed for the four classes: plosive; liquid and 

glide; nasal; fricative and affricate. The four categories are progressively more separable across the three 

time intervals (jackknife method, p < 0.0005). 
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Figure 3.7: Discriminability of speech features in EEG for time-reversed speech. 

Multidimensional scaling (MDS) on the phonetic-features and phoneme mTRF as a function of peri-

stimulus time-lag. F-Scores measures are derived with the same procedure used in Figure 3.6. (A) MDS 

on the phonetic-features mTRF. The F-scores indicate the differential sensitivity of responses to manner of 

articulation, voicing, backness of a vowel, and place of articulation features. These F-scores show no 

significant increase with response latency. (B) MDS on the phoneme mTRF. The F-scores are a measure 

of the binary classification of responses to consonants and non-consonants (vowels, diphthongs, and semi-

vowels). As in Figure 3.6, the figures show a distinction between the four main classes of phonemes. 

However, the same monotonic increase with latency is not seen. (C) MDS on the phoneme mTRF. Here, 

the F-scores are computed for the four classes: plosive; liquid and glide; nasal; fricative and affricate. There 

is no significant difference in F-score with latency. 

3.4 Discussion 

For humans to successfully process natural speech they must parse complex and variable 

acoustic inputs into categorical units and correctly encode those units as particular 

phonemes (Chang et al., 2010). In this chapter, in the context of natural speech, we have 

demonstrated that low frequency, noninvasively recorded EEG indexes this categorical 
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phonemic level processing. Furthermore, we have shown that the articulatory features of 

speech can be best discriminated by responses at longer latencies, in line with what one 

might expect of a hierarchical system.  

3.4.1 EEG measures of cortical entrainment reflect speech-specific 

processing 

Our findings have important implications for current theories on cortical entrainment to 

the envelope of speech (Luo and Poeppel, 2007; Aiken and Picton, 2008; Giraud and 

Poeppel, 2012; Ding and Simon, 2014). In particular, we have shown that the processing 

of different speech features that covary with the envelope can be dissociated according to 

the neural responses they elicit. Therefore, neural measures based on the envelope alone 

are likely to include contributions from neural populations at different levels of the speech 

processing hierarchy. Given the relatively modest difference in modelling performance 

between our FS- and S-models, it is entirely possible that the speech-specific contribution 

to measures of cortical entrainment is relatively small in comparison to the more general 

response to the stimulus acoustics. As we know from Chapter 2, one brain region that 

could be responsible for such a contribution is the superior temporal sulcus. It has been 

suggested that STS is involved in phonological-level processing bilaterally (Hickok and 

Poeppel, 2007), a finding that fits with the lack of any lateralisation effects in our 

prediction performances. While this region has been implicated in many other cognitive 

domains (Hein and Knight, 2008), recent neuroimaging work has suggested that it may 

represent a special locus of speech analysis that is distinct from lexical, semantic or 

syntactic processes (Overath et al., 2015). The notion that speech-specific effects in EEG 

may derive from a relatively small contribution from a specific brain region such as STS 

would partly explain why it has been so difficult to definitively say whether or not 

envelope entrainment measures reflect anything more than low-level processing of the 

acoustics of speech (Ding and Simon, 2014).  

Recently it has been suggested that there may be different functional roles for 

entrainment at different frequencies with theta-band entrainment (4-8 Hz) encoding 

speech features critical for intelligibility and delta-band entrainment (1-4 Hz) being 

related to the perceived, non-speech-specific acoustic rhythm (Ding and Simon, 2014). 

Our finding that FS outperforms all other models for delta- and theta-bands (Figure 3.3) 

suggests that both of these bands may reflect speech-specific processing. One attempt to 

reconcile these views is to suggest that relying on envelope tracking as a dependent 
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measure, particularly for delta-band where it performs poorly, results in a lower 

sensitivity to subtle speech-specific effects. While we have argued that these speech-

specific effects can be seen by comparing FS and S performances, it is also worth noting 

how the S- and F-model performances differentially vary across frequency bands (e.g., 

compare the relative model performances for delta and alpha). This variation potentially 

provides another way to disambiguate lower- and higher-level speech processing effects, 

something that is investigated in the next chapters. 

3.4.2 A novel approach for studying natural speech perception: Further 

requirements and potential impact 

Our finding aligns well with recent invasive ECoG research investigating the encoding 

of natural speech in the human brain (Chang et al., 2010; Mesgarani et al., 2014). 

Specifically, based on recordings from the superior temporal gyrus in epilepsy patients, 

high gamma frequency (75-150 Hz) activity was shown to encode an acoustic-phonetic 

representation of speech. Based on this, it has been suggested that the STG may be a 

transitional stage in the auditory processing hierarchy, early enough to still encode the 

acoustic features of speech but high enough to exhibit response selectivity to complex 

spectro-temporal patterns (Shamma, 2014). The fact that the ECoG recordings were 

shown to be optimally sensitive to intermediate acoustic-phonetic speech features at an 

intermediate response time lag of around 150 ms (Mesgarani et al., 2014), agrees 

reasonably well with the increased discriminative power of our EEG responses at this 

latency. While we have speculated that our findings may have specific contributions from 

STS, the concordance with ECoG from STG suggests that the analysis framework we 

have outlined may represent an important mechanism for applying findings from the 

ECoG community into research with a wider variety of subjects including infants (Kuhl, 

2010), children with developmental difficulties (Gervais et al., 2004), the elderly 

(Ruggles et al., 2012) and patients with psychiatric disorders (Li et al., 2009). This is 

particularly important because much of the EEG/MEG research in these cohorts relies on 

stimuli composed of discrete syllables, leading to a literature that is very limited in what 

it can say about the parsing and processing of continuous speech (e.g. Kuhl, 2010). 

Developing further insights using our approach would benefit from an ability to 

disentangle the activity from the many neural sources that are concurrently active during 

speech processing. While this issue is often seen as a shortcoming of EEG and MEG, it 

can also be seen as a strength in terms of the global view of hierarchical processing that 
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these methods provide. But it will still be necessary to further characterise how different 

speech representations map to different neural responses and to determine which specific 

neural populations are responsible for those responses. Furthermore, it will be necessary 

to disentangle how much the cortical entrainment of speech is driven by additive evoked 

activity and how much by the entrainment of ongoing oscillations (Schroeder and 

Lakatos, 2009; Giraud and Poeppel, 2012; Zion Golumbic et al., 2013b). One potentially 

fruitful approach to address these questions is to manipulate the relative amount of low- 

and high-level information that is available in the speech stimuli with a view towards 

disambiguating the information contained within our S- and F-models (e.g. Zoefel and 

VanRullen, 2015). Indeed this is already possible to an extent by considering the 

difference between the FS- and S-model performances, which we contend is likely to 

reflect phonemic level processing in relative isolation. Importantly this difference was 

positive for each and every subject. As such, it has the potential to act as a dependent 

measure in research aimed at understanding speech processing in particular populations. 

The sensitivity of response functions to different phonetic features, and how that 

sensitivity varies with latency also represent potentially useful dependent measures of 

speech-specific processing. These questions and others are at the core of the following 

chapters. 

3.5 Summary 

This chapter introduced a novel framework to investigate speech perception using non-

invasive electroencephalography (EEG) and an experimental paradigm based on natural 

speech perception. Using this approach, we provided evidence for categorical phoneme-

level speech processing by showing that the relationship between continuous speech and 

neural activity is best described when that speech is represented using both low-level 

spectro-temporal information and categorical labelling of phonetic features. Furthermore, 

the mapping between phonemes and EEG becomes more discriminative for phonetic 

features at longer latencies, in line with what one might expect from a hierarchical system. 

Importantly, these effects are not seen for time-reversed speech.
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Chapter 4. Isolating neural indices of 

continuous speech processing at the 

phonetic level 

4.1 Introduction 

Chapter 3 introduced a novel approach to non-invasively index the cortical processing of 

natural speech at the level of phonemes. Here, we investigate the possibility to use this 

procedure to extract quantitative indices of phonological processing in relative isolation. 

The previous chapter suggested that the contrast between the measures of EEG 

predictability for the FS- and S-models (FS-S) may represent such an index. This study 

aims to test the link between this measure and phonological perception. In doing so, we 

also expected our measures to provide new insights for one of the major unresolved 

questions in speech perception: what are the cortical mechanisms underpinning the 

integration of prior knowledge with sensory input? 

As detailed in Chapter 2, successful speech comprehension in noisy, real-world 

environments is carried out by a complex hierarchical system in the human brain (Chang 

et al., 2010; Okada et al., 2010; Peelle et al., 2010; DeWitt and Rauschecker, 2012; 

Hickok and Small, 2015). In such cases, it is widely acknowledged that an active 

cognitive process takes place where speech perception is strongly influenced by prior 

knowledge and a contextual expectation of upcoming speech input (McClelland and 

Elman, 1986; Davis and Johnsrude, 2007; McClelland, 2013; Heald and Nusbaum, 2014; 

Leonard and Chang, 2014). However the nature of this influence is not yet well 

understood.  

Firstly, it remains unclear at what hierarchical processing stages – and in particular 

how early – the encoding of speech is affected by top-down influence (Davis and 
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Johnsrude, 2007). Studies using prior information to enhance the perception of degraded 

speech report that subjects experience a strong perceptual pop-out effect, whereby they 

report a marked increase in the perceived clarity of the speech as they process it in real-

time (Blank and Davis, 2016; Holdgraf et al., 2016; Tuennerhoff and Noppeney, 2016). 

This suggests that prior information might affect speech processing in situ in lower-level 

sensory processing areas at the acoustic and phonetic encoding stages, something that has 

been observed for effects such as phoneme restoration in noise (Leonard et al., 2016). 

However, event-related potential evidence on this issue has suggested that prior 

information first modulates activity in higher-order areas which then feeds back to affect 

lower-level sensory processing at longer latencies (Sohoglu et al., 2012).  

A second unresolved issue is the mechanism through which prior information 

affects bottom-up sensory processing. As we know from Chapter 2, one view is that the 

neural encoding of a stimulus is enhanced by expectation (sharpening theories) 

(McClelland and Elman, 1986; Mirman et al., 2006). The predictive coding theory, 

instead, proposes that discrepancies (or errors) between what is predicted and what is 

received are passed from one level to the next within the speech processing hierarchy 

(Friston, 2005; Arnal and Giraud, 2012; Giraud and Poeppel, 2012).  

This chapter aims to confirm the effectiveness of our novel approach at isolating 

neural indices of speech-specific processing by providing qualitative and quantitative 

ways of disentangling contributions from acoustic- and phoneme-level neural processing. 

At the same time, the ability to disambiguate contributions reflecting the processing of 

low-level speech acoustics from those reflecting the processing of categorical phonetic 

features (Mesgarani et al., 2014; Di Liberto et al., 2015) provides a new way to investigate 

the underpinnings of speech comprehension. In particular, this study examines these two 

issues: 1) how early in the hierarchy is speech encoding affected by prior information, 

and 2) is the increase in perceived clarity that comes with prior information reflected in 

an enhancement or suppression of activity at particular hierarchical stages. Here, we use 

these models in an attempt to shed more light on how prior information affects speech 

encoding by manipulating the perceived clarity of degraded speech stimuli. Specifically, 

we hypothesised an increase in the strength of phonetic-feature encoding between the 

cases where subjects hear unintelligible degraded speech versus when they can 

understand that same degraded speech as a result of having prior information. 

The findings described in this chapter were presented at several international 

conferences, were published as a conference paper: “Isolating neural indices of 
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continuous speech processing at the phonetic level”, Advances in Experimental Medicine 

and Biology, 894: 337-345, April 2016, and have been submitted as a research article: 

“Cortical measures of phoneme-level speech encoding correlate with the perceived clarity 

of natural speech”, in review. 

4.2 Methods 

4.2.1 Subjects and Data Acquisition 

Fourteen healthy subjects (8 males, aged between 21 and 31) participated in this study. 

Electroencephalographic (EEG) data were recorded from 128 electrode positions (plus 2 

mastoid channels). Data were filtered over the range 0 – 134 Hz and digitised with a 

sampling frequency of 512Hz using a BioSemi Active Two system. Monophonic audio 

stimuli were presented at a sampling rate of 44,100 Hz using Sennheiser HD650 

headphones and Presentation software from Neurobehavioral Systems 

(http://www.neurobs.com). Testing was carried out in a dark room and subjects were 

instructed to maintain visual fixation on a crosshair centred on the screen, and to minimise 

motor activities for the duration of each trial. The study was undertaken in accordance 

with the Declaration of Helsinki and was approved by the Ethics Committee of the School 

of Psychology at Trinity College Dublin. Each subject provided written informed consent. 

Subjects reported no history of hearing impairment or neurological disorder. 

4.2.2 Stimuli and Experimental Procedure 

Audio-book versions of two classic works of fiction read in American English by the 

same male speaker were partitioned into 10-second speech snippets using MATLAB 

software (The MathWorks Inc.). 120 snippets were randomly selected for the experiment. 

In order to alter the intelligibility of the speech, a method known as noise-vocoding was 

implemented (Shannon et al., 1995; Davis and Johnsrude, 2003). This method filters the 

speech into a number of frequency-bands and uses the amplitude envelope of each band 

to modulate band-limited noise. Specifically, the speech for this experiment was vocoded 

using three frequency-bands logarithmically spaced between 70 and 5000Hz according 

to Greenwood's equation (70 – 494 – 1680 – 5000 Hz) (Greenwood, 1961). 

Each EEG standard trial consisted of the presentation of 3 speech segments (Figure 

4.1A). The first segment (NP: no prior knowledge) was degraded using noise-vocoding; 
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the second one (C: clear) was the same 10-second speech segment, but in its original clear 

form; and the third presentation (P: prior knowledge) was the noise-vocoded version 

again. As such, the first (NP) and third (P) speech segments involved identical acoustic 

stimuli, but it was hoped that the perceived clarity of the third segment (P) would be 

improved by the prior information provided by the interleaved segment C (perceptual 

pop-out effect, Section 2.2.1). As a control measure, we also included deviant trials. These 

trials consisted of a modified version of NP and/or P, where a random segment of ~5 

seconds was replaced with words from a different trial. For both NP and P, the probability 

of a deviant stimulus was set to 10%. 

Participants were asked to make two judgements based on the stimuli. First, after 

presentation of segment C, they were asked to decide whether the first vocoded segment, 

NP, was deviant (different from C) or standard (the same as C). And second, after 

presentation of the second vocoded segment, P, they were asked to decide whether it was 

a deviant (different from C) or standard (the same as C). More specifically, they were 

asked to make both of these decisions using a level of confidence from 1 to 5 (‘definitely 

a deviant’, ‘probably a deviant’, ‘I don’t know’, ‘probably a standard’, and ‘definitely a 

standard’). For standard trials, a higher confidence level when comparing segments P and 

C than when comparing segments NP and C was taken as evidence of enhanced perceived 

speech clarity. This score was normalised by subtracting a subject-specific baseline that 

was obtained by performing the same operation on deviant trials (see Section 4.3 for a 

better understanding of the rationale behind this normalisation). 

Prior to the taking part in the full experiment the participants were presented with 

a number of noise-vocoded speech snippets for approximately 10 minutes. The goal of 

this was to enable subjects to become familiar with the peculiarity of noise-vocoded 

speech without allowing so much exposure as to enable substantial perceptual learning to 

take place (Sohoglu and Davis, 2016). 

4.2.3 Stimulus Representations  

Following Chapter 3, mTRFs were estimated based on distinct representations of the 

speech stimulus:  

1. Spectrogram (S): This was obtained by partitioning the speech signal into three 

frequency­bands logarithmically spaced between 70 and 5000 Hz according to 

Greenwood's equation (70 ­ 494 ­ 1680 ­ 5000 Hz, the same used for the vocoder) 
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(Greenwood, 1961), and computing the amplitude envelope for each band, as in 

Equation 3.2. 

2. Phonetic-features (F): As in Chapter 3, with the difference that only 18 phonetic 

features were used. Specifically, the feature ‘affricate’ was excluded. In fact, 

because of the use of short trials, it had no occurrences in several trials. 

3. Finally, we propose a model that combines F and S (FS). 

 

Figure 4.1: A pop-out experiment to modulate speech perception. 

(A) Experimental setup. EEG data were recorded while subjects listened to groups of three 10-s long speech 

snippets. In standard trials, the first (NP: no prior knowledge) and the third (P: prior knowledge) speech 

snippets were a three-channel noise-vocoded version of the second snippet (C: clear). In deviant trials, 

either the first or third snippets (or both) did not fully match the second snippet. After C and P, participants 

were asked to identify the first and the second vocoded snippets respectively as matching the clean speech 

or not (i.e., standard or deviant trial). (B) Analysis approach. Linear regression was used to derive mappings 

from different speech representations to the EEG. Regression models were fit for the acoustic spectrogram 

(S), a set of time-aligned phonetic features (F), and a combination of the two (FS). Each model was then 

tested for its ability to predict the EEG using leave-one-out cross-validation. The information reflected by 

the S- and F-models were suggested to be largely overlapping. However, each of them carry some 

contributions that are unique of spectrotemporal and speech-specific (phoneme-level) processing 

respectively. Hence, the combined FS-model outperforms the two individual models as it combines the 

information that both of them encode.  
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Based on the above three representations, we have also previously suggested that one can 

attempt to isolate the unique contribution that derives from phonetic-feature level 

processing by subtracting the performance of the S-model from that of the FS-model (i.e., 

FS–S; Di Liberto et al., 2015; Di Liberto and Lalor, 2017). 

A couple of final notes on our stimulus representations. Below, we also used a 

univariate envelope representation of the speech (E) for visualisation purposes. This was 

calculated as the sum of the three band-limited envelopes that constitute the S 

representation. Chapter 3 also included a phonemic representation of the speech (a 

multivariate time-series of forced aligned phonemes, similar to F). However, because of 

the limited amount of speech data used in the present study, rarer phonemes did not have 

a sufficient number of occurrences to produce a good model fit. As a result, we did not 

include this representation in the present study and focused our analysis on the more 

fundamental phonetic-features model. As an aside, if it were of interest, the scalp 

responses to phonemes can still be visualised by performing a linear projection of the F-

model (in fact, a phoneme can be represented as a combination of specific phonetic 

features). Please refer to Section 3.2.2 for a more detailed description of these speech 

representations. 

4.2.4 EEG Data Analysis 

The EEG signals were analysed offline using MATLAB software. Because of suggestions 

that speech entrainment in the delta- (1–4 Hz) and theta-bands (4–8 Hz) might have 

different functional roles in speech processing (Ding and Simon, 2014), we analysed these 

two EEG bands separately. Specifically, the data were digitally filtered into the two 

frequency-bands of interest using Chebyshev Type-2 band-pass filters with pass-band in 

delta-band and in theta-band. Next, signals were down-sampled to 128 Hz, and referenced 

to the average of the two mastoid channels. EEG channels whose time-series data had a 

variance that exceeded three times that of the surrounding channels were identified as 

being excessively noisy. And the data on those channels were replaced by spline 

interpolating the data from the surrounding clean channels using EEGLAB software 

(Delorme and Makeig, 2004).  

As performed in Chapter 3, a forward mTRF analysis was conducted to quantify 

how well the EEG reflects the encoding of the various speech representations. 

Regularised linear regression was used to create a mapping between the EEG and the 



65 

 

three abovementioned speech stimulus representations (Figure 4.1B). Speech stimuli and 

the corresponding EEG responses were partitioned into 10 equal-sized subsets S1, S2, …, 

S10, and R1, R2, …, R10 respectively. 10-fold cross-validation was employed on these 

partitions to compare how each speech representation (S, F, and FS) mapped to the EEG. 

In particular, EEG signals of a subset i (Ri) were predicted using each distinct speech 

representation model fit on all the left-out partitions (1,…,i-1,i+1,…,10), and prediction 

accuracies were quantified for each electrode using a Pearson correlation. To optimise 

performances within each speech representation model, we conducted a parameter search 

(over the range 10-3, 10-2, …, 105) for the regularisation parameter λ within each speech 

representation model. This procedure maximised the EEG prediction accuracy averaged 

across trials, subjects, and all 128 electrodes. The combination of regularisation and 

cross-validation controlled for overfitting and prevented bias toward the test data used for 

quantifying the prediction accuracies (Crosse et al., 2016b). 

The time-lag window was set between -50 and 250 ms, as the most accurate EEG 

prediction accuracies for clear speech were in this window. After the optimisation of the 

regularisation term λ and of the time-lag window, the set of 12 consistently well-predicted 

electrodes identified in Chapter 3 was selected for calculating the EEG prediction 

accuracies. 

4.2.5 Statistical Analysis 

Statistical analyses were performed using a repeated measures ANOVA to compare 

distributions of Pearson’s correlation values across models. ANOVA analyses were 

conducted after verifying that the normality assumption was not violated, which was 

assessed both visually (QQ plots; not shown) and quantitatively (Shapiro-Wilk test). The 

values reported use the convention F(df, dferror). Greenhouse-Geisser corrections were 

made if the assumption of sphericity was not met (as indicated by a significant Mauchly’s 

test). All post hoc model comparisons were performed using Bonferroni corrected paired 

t-tests. Two-tailed permutation tests with 200,000 repetitions were used for pair-wise 

comparisons if the assumption of normality was violated (Shapiro-Wilk test). 
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4.3 Results 

4.3.1 Prior knowledge enhances perceived speech clarity 

Participants were asked to identify the first (NP) and the second (P) speech vocoded 

streams as a standard (St) or deviant (D) presentation using a level of confidence from 1 

to 5 (from ‘definitely a deviant’ to ‘definitely a standard’ respectively). The response 

distribution for each condition (averaged across subjects; Figure 4.2A) indicates that 

participants were more confident in identifying standard trials when prior knowledge was 

available (StP compared to StNP), while this was not the case for deviant trials (DP 

compared to DNP). Note that subjects were instructed to report detection of a deviant trial 

only if they heard a difference with the corresponding clear speech snippet. But because 

perceptual pop-out did not occur for the modified portion of the DP trials, this was a more 

difficult determination for subjects to make. For this reason, prior knowledge improved 

the standard but not the deviant detection scores.  

A significant enhancement of the detection score from NP to P was observed for 

standard trials (StP > StNP, permutation test, p = 0.001), which confirms that prior 

knowledge had an effect on the subjects’ confidence in detecting standard trials. 

However, this alone is not sufficient to draw conclusions about the effects of prior 

knowledge on the perceived speech clarity. This is because it was possible that subjects 

may have been biased to respond to both standard and deviant stimuli as standard trials 

when prior information was available. For example, this was the case for subject 12, 

whose individual behavioural scores are reported in Figure 4.2B (bottom panel). In 

contrast, subject 5 (Figure 4.2B, top) exhibited an increase of speech clarity with prior 

knowledge, as detection for both standard and deviant improved for P trials. In order to 

control for such biases across individual subjects, a subject-specific baseline was derived 

using deviant trials and subtracted from the confidence level for standard trials. This 

corrected behavioural measure (St – D) exhibited a significant interaction with prior 

knowledge (StP – StNP > DP – DNP, permutation test, p = 10-6). This result, which is depicted 

in Figure 4.2C, indicates an increase in perceived speech clarity due to prior knowledge 

of the upcoming stimulus. This perceptual enhancement can be summarised for each 

single subject using the following quantitative measure: 

 ∆Clarity= (StP − StNP) − (DP − DNP). (4.1) 
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Interestingly, the result in Figure 4.2 shows that the NP vocoded speech snippets, 

although severely degraded, were perceived as partially intelligible rather than 

completely unintelligible (StNP > DNP, permutation test, p = 10-6). These results indicate 

that, as hypothesised, prior information led to clearer perception of the noise-vocoded 

speech stimuli, a perceptual difference that we have quantified as ∆Clarity.  

 

 

Figure 4.2: A behavioural measure of speech clarity reflects the effect of prior knowledge. 

Subjects were presented with sequences of vocoded-original-vocoded speech snippets and were asked to 

identify the two noise-vocoded streams (NP and P stimuli) as standard or deviant presentations by 

comparing them with the original speech snippet. Responses consisted of a level of confidence from 1 

(‘Definitely a deviant’) to 5 (‘Definitely a standard’). (A) The response distributions (mean percent 

occurrence ± SEM) confirm that subjects were more confident in detecting standard trials when prior 

knowledge was available. (B) The confidence level for two selected subjects. The result in the top panel 

shows that subject 5 improved in detecting both standard and deviant trials when prior knowledge was 

available, which we interpret as evidence for an increase in perceptual clarity. In contrast, subject 12 

(bottom panel), responded with higher values to P stimuli for both standard and deviant trials. In this case, 

the positive StP-StNP cannot be assumed to purely reflect an increase in perceived clarity, as deviants were 

not detected. (C) The confidence level averaged across all subjects (mean ± SEM) is here reported for NP 

and P stimuli, and for both standard and deviant trials. The increase in confidence due to prior knowledge 

is larger for standard than for deviant trials (*p < 0.05). 

4.3.2 Dual effect of prior knowledge on the cortical entrainment to speech 

features 

EEG predictability measures were derived using a forward mTRF model that estimates 

an optimal linear mapping from a speech representation to the corresponding scalp-

recorded EEG signal. These predictability measures were derived for different frequency 

bands (delta, theta) and models (S, F, and FS). A significant interaction between these 

two factors emerged from a unified 2 x 3 ANOVA analysis for the C and NP conditions, 

but not for P (two-way ANOVA, C: F(1.37,17.85) = 6.261, p = 0.015, effect size = 0.33; 

NP: F(1.19,15.48) = 8.454, p = 0.008, effect size = 0.39; P: F(1.26,16.42) = 0.233, p = 

0.692, effect size = 0.018). Based on this interaction, follow up one-way ANOVAs were 

conducted for the delta- and theta-bands separately and the results were compared 

between the no prior knowledge (NP), clear speech (C), and prior knowledge (P) stimuli. 

In the delta-band, the analysis for C stimuli (Figure 4.3A, top) showed that the combined 
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FS-model performed better than both S- and F-models, and that the F-model performed 

better than the S-model (ANOVA: F(1.41,19.70) = 48.226, p = 1.7*10-7; post hoc paired 

t-test comparisons: p = 10-6, p = 3.5*10-5, p = 9*10-4 for S vs FS, F vs FS, and S vs F 

respectively). Furthermore, the analysis for C stimuli in theta-band (Figure 4.3A, 

bottom) showed that the combined FS-model performed better than both S- and F-

models, however no significant difference emerged between the F-model and the S-model 

(ANOVA: F(1.26,16.37) = 14.490, p = 8.5*10-4; post hoc paired t-test comparisons: p = 

0.002, p = 5*10-6, p = 1 for S vs FS, F vs FS, and S vs F respectively). These results are 

consistent with those obtained for clear natural speech using a different dataset in the 

previous chapter.  

Chapter 3 also suggested that isolated indices of speech-specific processing could 

be quantified using this analysis framework. In particular, as depicted in Figure 4.1B, it 

was suggested that this could be done by noting that the FS-model is sensitive to activity 

reflecting the processing of both sound acoustics and categorical phonetic features, while 

the S-model does not explicitly encode phonetic features and should thus be less sensitive 

to the categorical processing of those features. Therefore, it was proposed that any 

difference in EEG prediction accuracy between the two models would be due to the fact 

that the FS-model captures extra activity reflecting the processing of categorical phonetic 

features. And, as such, it was suggested that one could isolate a measure of speech-

specific cortical processing at this level by subtracting rS from rFS. Here, we hypothesised 

that this measure would be specifically sensitive to differences in perceived clarity as a 

result of prior knowledge. Specifically, our hypothesis was that, because the perceived 

speech clarity (and therefore intelligibility) of the two conditions differed as a result of 

prior knowledge, we would see a clear increase in our proposed isolated measure of 

phonetic feature-level processing (FS-S) with prior knowledge. In line with other work 

(Holdgraf et al., 2016), we also wished to explore possibility that top-down effects on the 

processing of speech may impact even earlier stages of speech encoding at the level of 

acoustics, as indexed via the S-model. The effect of prior knowledge on this FS-S measure 

was quantified as: 

 ∆(FS-S) = (rFS – rS)P – (rFS – rS)NP. (4.2) 

In line with our hypothesis, we found that ∆(FS-S) in the delta-band was positively 

correlated with the behavioural measure ∆Clarity across subjects (Figure 4.3B). That is to 

say, the larger the enhancement in speech clarity due to prior information for a given 
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subject, the bigger ∆(FS-S) for that subject (Pearson’s correlation coefficient r = 0.63, p 

= 0.015). Somewhat surprisingly, no such correlation emerged for theta-band ∆(FS-S) 

(Pearson’s correlation coefficient r = 0.40, p = 0.158). This result suggests that the delta-

band neural measure FS-S, which we take as in index of phonetic-feature encoding, is 

sensitive to increases in the perceived clarity of speech that come with access to prior 

knowledge. Interestingly, however, for a majority of subjects (11 out of 14), and despite 

the positive correlation with behaviour, our index of phoneme level processing actually 

decreased with prior information, a finding that runs counter to our primary hypothesis. 

This suggests the possibility of a second effect involving a suppression of responses at 

this hierarchical processing level to the P condition relative to NP (t-test on FS-S: p = 

0.003).  

In order to clarify the factors that led to the suppressive effect of prior knowledge 

on the delta-band cortical index FS-S, the various model performances were compared 

for the NP and P stimuli. It is important to re-emphasise that each pair of NP and P stimuli 

had identical physical properties. Therefore significant differences in the corresponding 

scalp responses must be due to some combination of the following two factors: 1) it could 

be related to the enhancement of perceived clarity with prior information, a suggestion 

that is supported by our abovementioned positive correlation between ∆Clarity and ∆(FS-

S), and 2) it could be related to the fact that the P stimulus is a repetition of a previously 

presented stimulus, while the NP stimulus is always a first presentation. If the latter is a 

factor in causing a reduction in delta-band EEG prediction accuracy, it should be evident 

in the pattern of model performances. Indeed, model performances for the NP and P 

stimuli exhibited different patterns in terms of the relative model performances (Figure 

4.3C). Specifically, the model performances for NP were similar to those for clear speech, 

with the combined FS-model performing better than both S and F (ANOVA: 

F(1.14,14.87) = 7.22, p = 0.014; post hoc paired t-test comparisons of FS with all other 

models: p = 0.012, p = 0.001 for S and F respectively). This was not the case for the 

responses to the P stimuli. In fact FS performed better only than F, while no significant 

difference emerged when compared with S (ANOVA: F(1.29,16.72) = 4.24, p = 0.04; 

post hoc paired t-test comparisons of FS with all other models: p = 1, p = 0.001 for S and 

F respectively). The model predictions were lower for NP stimuli than for clean speech, 

but had a similar relative performance pattern (paired t-test on S: p = 0.88; F: p = 0.04; 

FS: p = 0.01), which was not particularly surprising given that noise vocoding reduced 

the intelligibility of the NP stimuli, but did not make them completely unintelligible. 
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This pattern of results suggests that the delta-band EEG predictability measures are 

sensitive to the effect of prior knowledge, and that this prior knowledge primarily affected 

the interaction between acoustic (S) and phonetic (F) speech models, rather than any 

individual model performance. In fact, no significant effect (enhancement nor 

suppression) emerged for any single speech representation/model between NP and P 

(paired t-test on S: p = 0.16; F: p = 0.16; FS: p = 0.29). Unlike in the delta-band, EEG 

predictability in the theta-band did not exhibit different results patterns for NP and P 

stimuli. No significant difference emerged between FS and S for either NP or P stimuli, 

suggesting that cortical entrainment measures in the theta-band are not affected by 

differences in perceived clarity (NP stimuli: ANOVA, F(1.17,15.16) = 4.83, p = 0.039; 

post hoc paired t-test comparisons: p = 1, p = 0.002, p = 0.208 for S vs FS, F vs FS, and 

S vs F respectively; P stimuli: ANOVA, F(1.09,14.22) = 5.97, p = 0.026; post hoc paired 

t-test comparisons: p = 1, p = 4.3*10-5, p = 0.292 for S vs FS, F vs FS, and S vs F 

respectively). 

 
 

Figure 4.3: The effect of prior knowledge on EEG predictability. 

Linear regression was used to fit models known as multivariate temporal response functions between the 

low-frequency (delta-band and theta-band) EEG and different representations of the speech stimulus. In 

particular, speech was represented as its spectrogram (S), a time-aligned sequence of categorical phonetic 

features (F) or a combination of both (FS) (*p < 0.05, **p < 0.01, ***p < 0.001). The difference in 

performance between the FS- and S-models (i.e., FS-S) is taken as an isolated measure of phoneme-level 

encoding. (A) Correlations (mean ± SEM) between recorded EEG and EEG predicted using the mTRF 

models for spectrogram (S), phonetic features (F), and their combination (FS) for clear speech. (B) A 

significant positive correlation emerges between the change in perceived intelligibility (measured as 

∆clarity) and the change in our isolated index of phoneme level delta-band entrainment from NP to P speech 

segments ((FS-S)P – (FS-S)NP) as a result of prior knowledge. (C) Correlations (mean ± SEM) between 

recorded EEG and EEG predicted using the mTRF models for spectrogram (S), phonetic features (F), and 

their combination (FS) for noise-vocoded speech. In the delta-band, the FS-model performs best for the NP 

speech segments (no prior knowledge) but not for the P segments (prior knowledge). No significant 

differences emerge in the theta-band. 
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4.3.3 Differential effects of prior knowledge on distinct phonetic features 

The results so far suggest that prior knowledge affects the EEG-measured cortical 

tracking of speech and, crucially, the correlation between perceived clarity and FS–S links 

this effect directly with the cortical processing of phonetic features of speech. To clarify 

how prior information affects specific speech features, we compared the model-weights 

across conditions, speech representations, and time-lags in the delta-band (Figure 4.4). 

This analysis was conducted on a broader time-lag window of -100 to 500, which allowed 

for a clearer contrast between more and less meaningful time-lags. In addition, the TRF-

weights shown in the figure were averaged across a set of 12 fronto-central well-predicted 

electrodes. 

The acoustic models, which were fit using the envelope and the 3-band spectrogram 

of speech, showed stronger average responses in the C condition compared to NP and P, 

while the weights of NP and P were very similar (Figure 4.4A). A more interesting 

pattern of results emerged for the F-model (Figure 4.4B). In particular, there appeared to 

be differences between the C, P, and NP models in the vowel-based features of the TRF 

(Figure 4.4B). These differences were supported by a simple statistical cluster analysis 

that compared the phonetic feature TRFs between conditions (uncorrected t-tests at every 

time-lag and for every feature; Figure 4.4C). To examine this in another way, we 

collapsed the TRFs across phonetic feature categories (Manner of Articulation, Voicing, 

Vowels, and Place of Articulation) and examined the resulting one-dimensional TRFs 

across conditions (along with the standard Envelope TRF for comparison; Figure 4.4D). 

A significant suppression of the N1 and P1 components for vowel features emerged for 

NP and P compared with C (permutation test between NP- and C-models: p < 0.05 for -

15–85 ms and 195–312 ms; permutation test between P- and C-models: p < 0.05 for -15–

54 ms and 187–250ms; significant clusters with less than 2 contiguous time-lags were 

excluded; Figure 4.4D). Interestingly, although not significant, the average suppression 

was greater for P compared to NP. Qualitatively, consonant voicing and place of 

articulation features resemble the weights for clear speech in the P but not in the NP 

condition, while no obvious similarity across conditions emerged for manner of 

articulation features, although there were no statistically significant effects on this. 
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Figure 4.4. The effect of prior knowledge on the temporal response functions. 

(A) The TRF (model weights) for the spectrogram representation of speech (S) are shown for all conditions 

after averaging across 12 selected electrodes (see Section 4.2.4). To allow a direct comparison of all 

conditions, the TRF for the C-model is shown using only 3 frequency-bands, although the model used in 

the analysis included all 16 bands. Colours indicate the TRF magnitude (arbitrary units). (B) TRF models 

fit using phonetic features (F) are shown for all conditions. (C) F-model weights were compared between 

each pair of conditions using t-tests at each time-lag and phonetic feature. (D) To more directly compare 

the TRF weights between conditions, univariate models are shown for the envelope of speech and for four 

distinct groups of phonetic features (average weights of each group are reported): manner of articulation, 

voicing, vowels, and place of articulation. 
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4.4 Discussion 

This chapter investigated the effect of prior knowledge on the cortical entrainment to 

acoustic and phonetic features of speech using non-invasive EEG and the novel analysis 

approach introduced in Chapter 3. The results observed for the clear speech reproduced 

the ones shown in the previous chapter. In the delta-band, a weaker but similar pattern 

emerged for NP stimuli, which were only partially intelligible because of a severe 

degradation of their acoustic properties. Crucially, a different result pattern was observed 

for P stimuli, indicating that prior knowledge modulates the cortical entrainment to 

speech features. We hypothesised that this phenomenon would be reflected in an increase 

in the novel measure of cortical entrainment to speech-specific phonetic features that was 

suggested in Chapter 3 (FS-S). This hypothesis turned out to be partially supported by 

our data, which exhibited two top-down effects of prior knowledge. The first effect was 

in line with our hypothesis and took the form of a positive correlation between our neural 

measure and perceived clarity across subjects. The second ran counter to our hypothesis 

and took the form of an overall reduction in EEG prediction accuracy for the P stimuli. 

4.4.1 A novel isolated index of speech-specific processing 

Previous research has failed to find any effect of perceived speech intelligibility on low-

frequency cortical tracking of the speech envelope using a perceptual pop-out task 

(Millman et al., 2015). This is consistent with our findings in that we saw no correlation 

between perceived clarity and tracking of low-level acoustics (via the S-model). It was 

only by using differential model performances as our index that we were able to isolate 

processing at the phonetic-feature level and reveal a relationship. This points to a concern 

about relying on envelope tracking as a measure of speech processing (Obleser et al., 

2012). Specifically, it is highly likely that such a reliance leads to neural indices that 

reflect multiple, distinct functional processes (Ding and Simon, 2014), making it difficult 

to determine to what extent the indices reflect speech-specific activity. This might explain 

why there has been a lack of consistency across studies aimed at examining the effects of 

speech intelligibility on neural measures of envelope tracking (Howard and Poeppel, 

2010; Peelle et al., 2013; Ding et al., 2014). We suggest that our approach represents one 

way of partially disentangling the multiple processes that must be active during natural 

speech perception. 



74 

 

The effects of prior knowledge discussed here emerged only in the delta-band of 

the EEG. This is in line with a current view suggesting that delta- and high-frequency 

activity (> 40 Hz) are reliable indicators of perceived linguistic representations, while 

theta-band activity may primarily reflect the analysis of the acoustic features of speech 

(Ding et al., 2014; Kösem and van Wassenhove, 2016). Indeed one study, in particular, 

examined the cortical tracking of vocoded speech in background noise and found that 

delta-band tracking correlated with speech recognition scores across subjects (Ding et al., 

2014), a result that corresponds very nicely with our neural-behavioural correlation. 

However, the specificity of our effects to the delta-band also appears to run counter to 

other studies examining the relationship between cortical tracking of vocoded speech and 

intelligibility. Peelle and colleagues (2013) reported significant differences between the 

cortical tracking of intelligible and unintelligible (vocoded) speech in the theta-band. That 

said, the authors of that study reported no correlation between their behavioural measures 

of intelligibility and their theta-band tracking indices. In addition, they did not control for 

the fact that their intelligibility manipulation (vocoding) covaried with the amount of 

sensory detail in their stimuli, an issue that we have attempted to address and that has 

been shown to be important in their more recent work (Blank and Davis, 2016). So it is 

possible that their theta-band effects actually reflect something other than intelligibility 

and, therefore, that they do not in fact conflict with our findings.  

4.4.2 Neural basis for the counteracting effects of prior knowledge 

The emergence of two effects of perceptual pop-out is consistent with previous studies 

suggesting that prior knowledge may produce counteracting effects (e.g., Tuennerhoff 

and Noppeney, 2016). One view is that predictions increase the perceived clarity by 

inducing a better synchronisation of the cortical responses to speech (Peelle et al., 2013), 

which would produce larger cortical entrainment measures. Along the same lines it has 

been proposed that increased entrainment measures may reflect the activation of higher-

order areas that would have been “inactive” or less responsive when perceived clarity was 

degraded (George et al., 1999; Davis and Johnsrude, 2003; Peelle et al., 2013; 

Tuennerhoff and Noppeney, 2016). Both of these ideas are consistent with our positive 

neural-behavioural correlation across subjects. On the other hand, predictive coding 

theories assert that prior knowledge of an upcoming stimulus should suppress the 

measured cortical responses, as those responses are proposed to represent the error 
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between what is predicted and the bottom-up sensory input (Friston, 2005; Clark, 2013). 

And this would be consistent with the overall suppression we see in our neural index of 

phonetic-feature encoding. 

In our data, the first effect of prior knowledge on the cortical responses is an 

enhancement in delta-band tracking that correlates with perceptual clarity. This effect, 

which emerged from the between-subject analysis, appears to be in line with a recent 

study from Holdgraf and colleagues (2016) that reported an increase in ECoG activity in 

auditory cortical areas using a similar pop out paradigm. That study, which could not 

report on the correlation between such an increase and any behavioral measure of clarity, 

explained such enhancement as a rapid change in the tuning of cortical responses, which 

become more responsive to specific speech features when prior information is available. 

Although directly relating that interpretation to our model-based predictions is not 

perfectly straightforward, one possible link is through previous work on cross-frequency 

coupling between high-frequency amplitude and low-frequency phase (e.g. Gross et al., 

2013). It may be the case that the increase in high-gamma band amplitude reported by 

Holdgraf et al. could be linked to the low-frequency tracking enhancements reported in 

our data. The second effect, which involves an overall suppression of FS–S with prior 

knowledge, is consistent with the late suppression in left STG shown by Sohoglu et al. 

(2012) and in line with predictive coding theories. Indeed, because of our experimental 

design, the stimulus repetition for P trials may contribute to this suppressive phenomenon. 

On the one hand, it has been hypothesised that such suppressive effects are automatic and 

due to stimulus-induced neural adaptation (Grill-Spector et al., 2006). On the other hand, 

the suppression may be a consequence of top-down predictions and could be explained 

via the theory of predictive coding (Summerfield et al., 2008; Todorovic et al., 2011). 

However, research on repetition suppression usually involves short, isolated auditory 

stimuli (e.g. tones), which are very different from the 10-s sentences used in the present 

study. As such, we are inclined to tentatively suggest that repetition suppression and 

adaptation will not have played a major role in our findings, but rather that our 

suppression effects are likely a consequence of predictive coding. 

Indeed a review of predictive coding theory has proposed that there may exist two 

distinct units within our sensory processing hierarchies: representational units and error 

units (Hohwy, 2013). And this idea fits well with our dual effects. It may be the case that 

activity from representational units is increased with prior knowledge in our experiment, 

while activity from error units is suppressed. Future work involving a more balanced 



76 

 

factorial design may be able to more clearly separate these two effects. Such a design 

should also allow for an analysis of how the cortical tracking measures we have reported 

here (which we take as an index of the encoding of phonetic features) relate to ongoing 

gamma- and beta-bands oscillations, given that they have been linked with bottom-up 

prediction errors and top-down predictions, respectively (Arnal et al., 2011). 

4.5 Summary 

The present chapter demonstrates that indices of speech-specific cortical processing can 

be isolated using non-invasive EEG. Specifically, it was assessed that the measure FS-S, 

which was suggested in the previous chapter, is sensitive to the effect of prior information 

during the perception of degraded speech. This study suggests that the improvement in 

perceived intelligibility and the impact of predictability resulting from the prior 

knowledge have opposite effects on the encoding of phonemes. Firstly, the availability of 

prior information enhanced the perceived clarity of degraded speech, which was 

positively correlated with changes in phonetic-feature encoding across subjects. In 

addition, prior knowledge induced an overall reduction of this cortical measure, which 

we interpret as resulting from the increase in predictability.
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Chapter 5.  Causal cortical dynamics of a 

predictive enhancement of speech 

intelligibility 

5.1 Introduction 

The previous chapter demonstrated that prior knowledge modulates EEG measures of 

cortical entrainment to speech features. This phenomenon emerged only for phonological 

features (neural index FS-S) and was suggested to reflect the cortical integration of prior 

information with auditory input. This finding suggests that measures of cortical 

entrainment can be used to better understand exactly how, where, and when predictive 

mechanisms influence speech perception, which are issues that are central to the 

understanding of this cortical network (Norris et al., 2016). However, the previous chapter 

could not fully account for such complex dynamics because of the low spatial resolution 

of the experimental data. Here, we describe a pop-out experiment that has the goal of 

investigating the effects of prior knowledge on the dynamics in temporal and frontal 

cortical areas using source-space MEG signals. 

As we know from Chapters 2 and 4, the cortical hierarchy that underpins speech 

comprehension is characterised by both bottom-up and top-down signals (Hickok and 

Poeppel, 2007; Peelle et al., 2010; Gross et al., 2013; Bornkessel-Schlesewsky et al., 

2015). In particular, top-down connections may constitute a neural basis for the 

integration of prior knowledge in the speech processing network (Davis and Johnsrude, 

2007; Wild et al., 2012; Lewis and Bastiaansen, 2015). Although recent studies provided 

important insights into the functions of distinct key areas of the speech network, a number 

of fundamental questions remain unanswered, especially regarding the temporal 

dynamics and interactions between cortical sites. Previous studies either did not have the 
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temporal resolution (Blank and Davis, 2016), the cortical coverage (Holdgraf et al., 2016) 

or, as in Chapter 4, the spatial resolution to characterise precise dynamics between regions 

in the speech network. Studies with the requisite spatiotemporal resolution (Sohoglu et 

al., 2012; Sohoglu and Davis, 2016), focused on cortical (de)activation, rather than 

indexing the representational content that may underlie such responses, i.e., the neural 

encoding of speech features. 

Here, we seek a better understanding of the spatiotemporal cortical dynamics that 

underpin the integration of prior knowledge and sensory input by using measures of MEG 

power, neural encoding of the speech envelope, and a connectivity analysis in key cortical 

areas. To this end, MEG data from a perceptual “pop-out” experiment (Millman et al., 

2015) were re-analysed. In Millman et al. (2015) perceptual pop-out (e.g. Davis et al., 

2005) was used to change the percept of physically identical tone-carrier vocoded speech 

sentences (in short, tone-vocoded sentences) from unintelligible to intelligible during data 

acquisition. The pop-out effect was obtained by preceding the presentation of some of the 

vocoded sentences with the original, unprocessed version of the stimulus. 

As in Chapter 4, the pop-out approach dissociates the effects of (top-down) prior 

knowledge from (bottom-up) changes in sensory information (Sohoglu et al., 2012; 

Millman et al., 2015; Blank and Davis, 2016; Holdgraf et al., 2016; Sohoglu and Davis, 

2016). Crucially, the availability of anatomical MRI scans for every subject enabled 

analyses in source-space (rather than in sensor-space). In particular, bespoke MEG 

beamformer-based analysis was used to estimate neural sources in bilateral locations of 

interest (Millman et al., 2015), corresponding to HG, STS, MTG, and IFG. These regions 

have been shown to provide distinct contributions to the speech recognition process and 

to represent progressively higher levels of the speech perception hierarchy (Davis and 

Johnsrude, 2003; Scott and Johnsrude, 2003; Hickok and Poeppel, 2007; Peelle et al., 

2010; Peelle et al., 2013; Mesgarani et al., 2014; Overath et al., 2015; Leonard et al., 

2016; Sohoglu and Davis, 2016; Tuennerhoff and Noppeney, 2016). Similarly to Sohoglu 

et al. (2012), it was hypothesised that an early activation of IFG would precede cortical 

processing in temporal areas such as STG and STS. Furthermore, the high spatiotemporal 

resolution of this data may be sufficient to reveal both top-down and bottom-up dynamics. 

In this context, this study seeks to clarify how fast such top-down and bottom-up 

modulation occur and which specific areas (and order) they involve. 

The neural encoding of speech was estimated using measures of cortical 

entrainment to the temporal envelope of speech sentences (Lalor et al., 2009; Crosse et 
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al., 2016b). As the functional roles and interpretations of the cortical entrainment 

phenomenon are still debated (Ding and Simon, 2014), the first goal of this study was to 

determine whether and how entrainment to the speech envelope is affected by perceptual 

pop-out and could therefore entail sensitivity to the integration of prior knowledge with 

sensory information and the consequent change in perceived intelligibility. Secondly, we 

aimed to investigate the top-down/bottom-up dynamics of the pop-out effect by using 

measures of cortical entrainment, event-related power, and effective connectivity.  

The findings described in this chapter were presented at the Society for 

Neuroscience 56th annual meeting as a poster (November 2016) and have been submitted 

as a research article as: “Causal cortical dynamics of a predictive enhancement of speech 

intelligibility”, in review. 

5.2 Methods 

The present study is based on re-analyses of a previously published MEG study on 

perceptual pop-out (Millman et al., 2015).  

5.2.1 Participants 

Sixteen right-handed native English speakers (10 males; mean age = 29.2 years ± 7.8 

years, age range = 20-48 years) took part in this experiment. The participants reported 

normal hearing and no history of neurological disorders. 

5.2.2 Speech stimuli 

Short-duration sentences spoken by an adult British English male (BKB/IHR corpus; e.g. 

Macleod and Summerfield, 1987; Foster et al., 1993) were used as the speech stimuli. 

The duration of each speech sentence was approximately 1.5-s, and the duration of each 

epoch was extended to 2.5-s through the addition of approximately 1-s of silence to the 

end of each sentence. Stimuli were delivered diotically to participants via Etymotic insert 

earphones (Etymotic Research ER30, Elk Grove Village, IL) at a comfortable sound level. 

The sentences were “The kettle boiled quickly” (always unintelligible), and “The 

floor was quite slippery” (the pop-out sentence), and “She ironed her skirt” (always 

intelligible). The intelligibility of all three speech sentences was degraded by using a tone-

carrier vocoder (e.g. Dudley, 1939). A tone-vocoder with only three carriers was used to 

produce vocoded stimuli that were unintelligible prior to exposure to the original, 
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unprocessed version of the same sentence. The carrier frequencies were 225, 1047, and 

4861 Hz. The temporal envelopes at the output of each channel were extracted using half-

wave rectification and smoothing. The cut-off frequency of the low-pass filter used to 

smooth the extracted temporal envelope varied depending on the carrier frequency. 

Specifically, the cut-off frequency was set to half the equivalent rectangular bandwidth 

(e.g. Moore and Glasberg, 1983) of each channel (24, 68, and 274 Hz for each of the 

carrier frequencies, respectively). The temporal envelopes extracted from each band were 

then summed to form the broadband speech temporal envelope for each sentence. 

Technical note: Tone-vocoding versus Noise-vocoding 

This experiment used tone-vocoding for speech degradation, while Chapter 4 used noise-

vocoding. The main difference between the two approaches lies in the carrier signal: In 

tone-vocoding it is a sine-wave with a frequency equal to the centre frequency of the 

vocoder channel; Noise-vocoding uses a noise carrier with a centre frequency and 

bandwidth equal to the vocoder channel. Another similar method, called sine-wave 

speech, is instead based on a formant tracking approach rather than a pre-defined 

frequency-band separation as in vocoding approaches. 

5.2.3 Experimental paradigm 

The experiment was carried out in a single session for each subject and was composed of 

three parts, as outlined in Figure 5.1. The main rationale was to present participants with 

unintelligible vocoded speech, which was perceived as unintelligible regardless of how 

many times it was repeated. Crucially, prior exposure to the original clear version of 

vocoded speech enhances perceived intelligibility when listening to the vocoded version 

(i.e., the “pop out” effect; Davis et al., 2005). In this experiment, participants were 

presented with repetitions of the original version of the intelligible stimulus at the 

beginning of the MEG session. During block 1, MEG data were recorded as participants 

listened to the three vocoded speech sentences and to silent trials (2.5-s duration). These 

auditory conditions were named Pop-out, Unintelligible, Intelligible, and Silent, and they 

were presented in random order for a total of 100, 100, 50, and 50 times respectively. In 

block 1, participants could comprehend only the Intelligible stimulus. At the end of block 

1, participants were presented with repetitions of the original version of the Pop-out 

stimulus during a training block with no neural recordings. Finally, MEG recordings were 
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performed during block 2, which was physically the same as block 1, but with the crucial 

difference that both the Intelligible and the Pop-out stimuli were perceived as intelligible.  

 

Figure 5.1: A pop-out experiment to isolate predictive perceptual enhancement of speech. 

Adapted from Millman et al. (2015). MEG data were recorded while participants listened to speech 

sentences that were degraded using 3-channel tone-carrier vocoded speech (Pop-outpre and 

Unintelligiblepre conditions). In block 1 (~20 minutes) both vocoded sentences of interest were perceived 

as unintelligible. A training block followed (~3 minutes in which MEG data was not recorded) in which 

participants listened to the vocoded and the original versions of only one of the two sentences. Finally, both 

vocoded sentences of interest were presented in block 2 (~20 minutes). In the latter case, the pop-out 

sentence (Pop-outpost condition) became intelligible after training, whereas the other sentence of interest 

remained unintelligible (Unintelligiblepost condition) because participants were not exposed to the 

corresponding original version.  
 

The conditions of interest, i.e. Unintelligible and Pop-out, recorded before the 

training block are denoted Pop-outpre and Unintelligiblepre. Likewise, the same conditions 

recorded after the training block are referred to as Pop-outpost and Unintelligiblepost. In 

addition, probe trials were presented during each block (2.5 seconds duration; 25 per 

block). During a probe trial, participants were played an auditory cue, which prompted 

them to respond, using a button box, and indicate a binary intelligibility rating (intelligible 

or unintelligible) for the last sound they heard. The resulting values were used to verify 
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that the desired enhancement of perceived clarity from block 1 to block 2 occurred for 

the Pop-out trials but not for the Unintelligible trials. As reported in Millman et al. (2015), 

due to a technical issue, intelligibility ratings were only recorded for 15 of the 16 

participants.  

5.2.4 MEG recordings  

Data were collected at the University of York, UK, using a Magnes 3600 whole-head 

248-channel magnetometer (formerly 4-D Neuroimaging, Inc., San Diego, CA). The 

signals were recorded at a sample rate of 678.17 Hz and were low-pass filtered online 

with a cut-off frequency of 200 Hz. 

Before recording, individual facial and scalp landmarks (left and right preauricular 

points, Cz, nasion, and inion) were spatially coregistered using a Polhemus Fastrak 

System. The landmark locations in relation to the sensor positions were derived on the 

basis of a precise localisation signal provided by five spatially distributed head coils with 

a fixed spatial relation to the landmarks. These head coils provided a measurement of a 

participant head movement at the beginning and end of each data acquisition block. 

The raw data in each epoch were inspected visually. Epochs contaminated with 

either physiological or non-physiological artifacts were manually removed. 

5.2.5 Coregistration 

For the source-space analyses, the landmark locations were matched with the individual 

participants' anatomical magnetic resonance (MR) scans using a surface-matching 

technique adapted from Kozinska et al. (2001). T1-weighted MR images were acquired 

with a GE 3.0-T Signa Excite HDx system (General Electric, Milwaukee, WI) using an 

eight-channel head coil and a 3-D Fast Spoiled Gradient Recall sequence: repetition 

time/echo time/flip angle = 8.03 ms/3.07 ms/20°, spatial resolution of 1.13 mm × 1.13 

mm × 1.0 mm, in-plane resolution of 256 × 256 × 176 contiguous slices. The individuals' 

data were spatially normalised to the Montreal Neurological Institute (MNI) standard 

brain, based on the average of 152 individual T1-weighted structural images (Evans et 

al., 1993). The source-space grid for each participant was initially defined in MNI space 

and linearly transformed back to individual MRIs.  
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5.2.6 Beamformer-based analyses 

An MEG beamformer estimates the contribution of a given grid point in the brain to the 

signal measured at the MEG sensors. Independent beamformers (spatial filters) are 

constructed for each grid point. Each beamformer is an optimal spatial filter dedicated to 

a given grid point. The outputs of these spatial filters are often termed “virtual electrodes”. 

In this study, a vectorised, linearly constrained minimum-variance beamformer 

(Van Veen et al., 1997; Huang et al., 2004) was used to obtain the spatial filters with a 

multiple-spheres head model (Huang et al., 1999). The beamformer grid size was 5 mm. 

The three orthogonal spatial filters were implemented as a single 3-D system (see Johnson 

et al., 2011). In this beamformer framework, the orientation of each spatial filter is a 

crucial free parameter that should be specified for the metric of interest. In this study, an 

independent, unsupervised approach was chosen for the optimisation of the spatial-filter 

orientation. In particular, a principal component analysis (PCA) was performed to extract 

one dominant signal from a space of 163 orientations with equal spatial distribution. This 

choice allowed for all analyses (power, envelope entrainment, and causality) to be 

performed using the same source-space data and avoided possible overfitting due to the 

dependency between spatial-filter orientation and entrainment analysis parameters. 

5.2.7 Locations of interest 

The aim of this study was to characterise the effects of prior knowledge (and of the 

consequent enhancement in speech intelligibility) on the activity in several bilateral key 

locations in the speech comprehension hierarchy and their interactions (e.g. Hickok and 

Poeppel, 2007): These key locations included, as depicted in Figure 5.2, HG, STS, [MNI: 

±61, -22, 0] (coordinates taken from Overath et al., 2015); posterior MTG, [MNI: ±55, -

46, -4] (coordinates taken from Lau et al., 2008); and IFG, [MNI: ±54, 18, 20] 

(coordinates taken from Sohoglu et al., 2012). As in the work of Millman and colleagues 

(Millman et al., 2013; Millman et al., 2015), left and right HG were manually seeded 

because the anatomy of HG varies considerably among individuals (e.g. Rademacher et 

al., 2001). 
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Figure 5.2: Schematic of the cortical locations of interest. 

A standard MNI brain is used to display the 4 bilateral cortical areas selected for this study. 

5.2.8 Frequency bands of interest 

Spatial filters from the LOIs were generated using a time window of 2000 ms, including 

500 ms prior to stimulus presentation. Broadband (1–45 Hz) data from the conditions of 

interest (Pop-out, Unintelligible) were projected through the spatial filters in the first 

instance so that all analyses (i.e., power envelope, entrainment and causality) could be 

carried out using the same spatial filters orientation. Contributions from more specific 

brain rhythms were assessed by spectrally filtering the broadband source-space signal in 

the frequency bands delta (1–4 Hz), theta (4–8 Hz), alpha (8–15 Hz), beta (15–30 Hz), 

and gamma (30–45 Hz) using Chebyshev Type 2 digital filters in both a forwards and 

backwards direction to remove phase-distortion. 

5.2.9 Event-related power analyses 

Event-related fields time-locked to stimulus onset were derived for Pop-outpre, Pop-

outpost, Unintelligiblepre, and Unintelligiblepost. Whilst fMRI studies are limited to overall 

measures of cortical activity over relatively long time windows, the current analysis also 

investigated the temporal dynamics of the cortical responses to speech. This information 

is conveyed by means of the cumulative event-related power, where cumulative power at 

time t is calculated as the sum of the squares for the time window [0, t]. The use of this 

measure allowed for a clearer visualisation of overall trends across the duration of a 

sentence compared to the more common point-by-point power analysis. Baseline 

correction was applied using the pre-stimulus time interval from -0.5 to -0.2 ms. 

After calculating the cumulative power measures for each individual condition, a 

combined measure was derived for each location and frequency band using the same 
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contrast as for the normalised difference used by Millman et al. (2015): [(Pop-outpost – 

Pop-outpre) – (Unintelligiblepost – Unintelligiblepre)]. The reasoning behind the use of this 

specific contrast is that Unintelligiblepost – Unintelligiblepre accounts for MEG differences 

due to repetition, while Pop-outpost – Pop-outpre also reveals the effects of prior knowledge 

and its effects on speech intelligibility. This overall measure reflects the source-space 

MEG power enhancement due to the perceptual pop-out. On a similar note, the same 

contrast could be re-written as [(Pop-outpost – Unintelligiblepost) – (Pop-outpre – 

Unintelligiblepre)], where Pop-outpre – Unintelligiblepre accounts for MEG variation due 

to low-level physical differences between the two vocoded sentences, while Pop-outpost – 

Unintelligiblepost also reflects the effects of prior knowledge and its effects on speech 

intelligibility. 

5.2.10  Cortical entrainment analyses 

The mapping between stimulus and cortical activity was estimated using the mTRF 

system identification approach (see Section 2.3.5). In particular, differently from Chapter 

4, the procedure involved identifying a mapping from source-space MEG signal to the 

speech envelope (backward-modelling) that optimised the following linear model: 

 
𝑠̂𝑙𝑜𝑐(𝑡) = ∑ 𝑟(𝑡 + 𝜏, 𝑙𝑜𝑐)𝑔(𝜏, 𝑙𝑜𝑐)

𝜏𝑖+𝑤𝑖𝑛𝑆𝑖𝑧𝑒

𝜏=𝜏𝑖

, (5.1) 

where 𝑠̂𝑙𝑜𝑐(𝑡) is the estimated speech envelope using the MEG signal from a 

location of interest loc, 𝑟(𝑡 + 𝜏, 𝑙𝑜𝑐) is the MEG response time lag τi and location loc, 

and 𝑔(𝜏, 𝑙𝑜𝑐) is the linear decoder for the corresponding time lag and location. The 

objective was to reconstruct the underlying speech envelope and to compare the quality 

of such reconstructions across experimental conditions and cortical locations of interest. 

The decoder 𝑔(𝜏, 𝑙𝑜𝑐) was optimised for each condition using leave-one-out cross-

validation while maximising the correlation between 𝑠̂𝑙𝑜𝑐(𝑡) and 𝑠(𝑡) (Crosse et al., 

2016b; mTRF Toolbox: http://sourceforge.net/projects/aespa/). At the cross-validation 

step i, data from all trials but triali were used to fit a model and to reconstruct an estimate 

of the envelope for triali. The procedure was then repeated for all trials, which allowed us 

to derive such an estimate for every trial. 

In order to control for overfitting, we conducted a parameter search to select the 

optimal value for the regularisation parameter λ, i.e., the value of λ that produces the 

highest mean correlation between envelope and its estimates across all trials. This mean 
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correlation, which was measured by calculating Pearson’s correlation (r), represents a 

quantitative measure of cortical entrainment to the envelope of speech. 

A window of time-lags with a size of 200 ms (Crosse et al., 2016b) was shifted from 

shorter to longer latencies with steps of 50 ms (from -50 – 150 ms to 200 – 400 ms), 

which allowed investigation of the spatiotemporal dynamics of the effect of interest. The 

quality of fit was estimated for each window. Note that models are fit on the whole 

duration of a sentence (1.5 s), while the time-lag window-size refers to how many data-

points of the MEG signal are used to reconstruct one single point of the speech envelope. 

Here, the contrast used for the power analysis [(Pop-outpost – Unintelligiblepost) – 

(Pop-outpre – Unintelligiblepre)] was decomposed into Pop-outpost – Unintelligiblepost and 

Pop-outpre – Unintelligiblepre. Only the Pop-outpost – Unintelligiblepost contrast involves 

the perceptual pop-out effect, while the Pop-outpre – Unintelligiblepre contrast may only 

reflect differences in cortical entrainment due to low-level physical differences between 

the two vocoded sentences. The choice of these contrast measures ensures that the 

resulting effects are neither due to repetition suppression nor perceptual learning. In fact 

such factors could emerge here only when the number of prior presentations of the stimuli 

differ between conditions, i.e., for contrasts between different blocks. The chosen 

approach is valid for the entrainment analysis as it involves subtraction of prediction 

correlations. However, these measures could not be used in the event-related power 

analysis while preserving the time-domain, as the subtraction of MEG power would be 

dominated by low-level physical differences between the two sentences. 

5.2.11  Network effective connectivity analysis 

Brain connectivity measures are used to infer neuronal spatiotemporal interactions which 

index and predict task-relevant changes in cognitive states and behaviour. Whilst methods 

such as dynamic causal modelling (DCM) require a set of possible hypotheses for the 

neurobiological system of interest (Stephan et al., 2007), there exist approaches that do 

not impose such a constraint and relies on data-driven analyses (Granger, 1969; Ding et 

al., 2006). Here, an exploratory dynamical framework for neuronal system identification 

was used to assess the effect of prior information on the effective connectivity between 

cortical areas of interest in temporal and frontal lobes (effective connectivity denotes 

asymmetric causal dependences between brain regions). To this end, the source 
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information flow toolbox (SIFT, Delorme et al., 2011) was used to investigate such causal 

effects in the context of bottom-up/top-down cortical information flow. 

SIFT was used to fit Vieira-Morf models on the source-space MEG data. A direct 

directed transfer function (dDTF; Korzeniewska et al., 2003) measure was used to 

estimate the direct causality between pairs of cortical locations of interest (‘directed’ 

indicates that nodes are connected by directional edges; ‘direct’ clarifies that direct 

information flow is isolated from indirect/spurious edges). dDTF can be interpreted as 

frequency-domain conditional granger causality (GC) measure and is effective in 

removing spurious indirect causal influence between brain sources (Kus et al., 2004). For 

each connection, this analysis looks for significant causal interactions in the time-

frequency domain. The SIFT toolbox was provided with the broad-band source-space 

data (1 – 45 Hz). Data preprocessing consisted of constant detrending, and time and 

ensemble normalisation (Ding et al., 2000) with the following model parameters: model-

order = 18, window-size = 300 ms, step-size = 30 ms. Furthermore, SIFT performs a 

frequency analysis by means of a segmentation-based linear vector autoregressive model 

(similar to a short-time Fourier transform) (Ding et al., 2000). Model validation was 

performed by checking for its stability and the whiteness of the residuals by means of the 

autocorrelation function (ACF) test (Lütkepohl, 2007; Delorme et al., 2011). The smallest 

model order that led to stability and whiteness for all experimental conditions was 

selected.  

As for the event-related power analysis, the contrasts between (Pop-outpost – Pop-

outpre) and (Unintelligiblepost – Unintelligiblepre) were used to investigate the effect of 

prior knowledge in the spatio-spectral MEG domain. Because the time domain was 

involved, the connectivity contrasts Pop-outpost – Pop-outpre and Unintelligiblepost – 

Unintelligiblepre were derived first (Figure 5.7), as they involved the same physical 

stimulus and, therefore, the time dimension could be preserved. By collapsing the dDTF 

measure along the time domain, it was possible to compare the results for Pop-out and 

Unintelligible stimuli.  

5.2.12  Statistical analysis 

All statistical analyses were conducted using Wilcoxon signed-rank tests (paired if 

possible), except where otherwise stated. All numerical values are reported as mean ± 

SD. In the cortical power and in the entrainment analyses, permutation-based cluster 
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statistics (N = 1000 repetitions) were used to correct for multiple comparisons while 

keeping in consideration that results for neighbouring time points or time windows are 

not independent. In the connectivity analysis, Bonferroni correction was applied by taking 

into consideration both the number of frequency bins and the number of nodes. 

5.3 Results 

5.3.1 Behavioural intelligibility ratings 

The responses made during the probe trials were analysed to confirm that the Pop-out 

sentences were perceived as more intelligible in block 2, i.e., after exposure to the 

unprocessed speech. The low intelligibility ratings for the Pop-outpre (mean = 15.7%, SD 

= 34%), Unintelligiblepre (mean = 11.1%, SD = 17.3%), and Unintelligiblepost (mean = 

17.8%, SD = 28.9%) sentences indicate that they were perceived as unintelligible. The 

intelligibility ratings for Pop-outpost (mean = 93.5%, SD = 15.2%) were significantly 

greater than the ones for Pop-outpre (Wilcoxon signed rank test, N = 15 subjects, p = 0.001) 

and Unintelligiblepost (Wilcoxon signed rank test, N = 15 subjects, p = 0.001), indicating 

that prior knowledge induced perceptual pop-out in the Pop-out condition only. In the 

Unintelligible control condition, the ratings for Unintelligiblepre were not significantly 

different than those for Unintelligiblepost, (Wilcoxon signed rank test, N = 15 subjects, p 

= 0.15), indicating that the Unintelligible condition was an adequate control for temporal 

order effects. In block 1, there were no significant differences in the rating for Pop-outpre 

and Unintelligiblepre (Wilcoxon signed rank test, N = 15 subjects, p = 0.95), indicating 

that both conditions were perceived as similarly unintelligible. 

5.3.2 Distinct effects of perceptual pop-out on neurophysiological power 

Event-related power enhancement showed significant effects for STS, MTG, and IFG 

(Wilcoxon signed rank test, N = 16 subjects, p < 0.05; cluster statistics were used to 

correct for multiple comparisons for all the tests in this section). Figure 5.3 shows how 

this measure varies across the whole sentence duration (1.5 s) across all locations and 

frequency bands of interest. Sustained delta-band power enhancement was measured in 

left STS (p < 0.05) and left MTG (p < 0.05). MTG showed significant left lateralisation 

of such enhancement (paired Wilcoxon signed-rank test, N = 16, p < 0.05). Importantly, 

these sustained effects did not emerge for other frequency bands. A different pattern of 
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results was measured in IFG, which showed early (~100-550 ms) left-lateralised effects 

in gamma-band (p < 0.05; significant left lateralisation, paired Wilcoxon signed-rank test, 

N = 16, p < 0.05) and right-biased enhancements for longer latencies for broadband power 

(~600-1300 ms respectively; p < 0.05; significant right lateralisation emerged for the 

broadband signal: paired Wilcoxon signed-rank test, N = 16, p < 0.05). 

 

  

Figure 5.3: Perceptual pop-out determines changes in source-space MEG power. 

Event-related fields time-locked to sentence onsets were derived and power measures were calculated for 

each time sample from a latency of zero. Baseline correction was applied using the time interval from -0.5 

to -0.2 ms. The cumulative difference in power [(Pop-outpost – Pop-outpre) – (Unintelligiblepost – 

Unintelligiblepre)] is reported here for all frequency bands and cortical sources of interest (left and right 

hemispheres are directly compared to investigate possible asymmetries; values on the y-axis are reported 

in arbitrary units). Significant power change and hemispheric asymmetries are marked with horizontal lines 

(Wilcoxon signed rank tests, N = 16, p < 0.05; cluster statistics across the time dimension was used to 

correct for multiple comparisons). Note that IFG and results for broad-band signals are shown on different 

ordinate scales as they exhibited event-related power at different magnitude than the other locations and 

frequency bands of interest. 
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This pattern of enhancement and suppression of cortical activity, as depicted in 

Figure 5.3, is based on the normalised difference measure [(Pop-outpost – Pop-outpre) – 

(Unintelligiblepost – Unintelligiblepre)], which isolates the effects of perceptual pop-out 

(Millman et al., 2015). Therefore, the present experiment successfully elicited an increase 

in perceived intelligibility that was reflected in the source-space MEG signal. In 

particular, the sustained effects in left STS and left MTG suggest that the perceptual 

change in speech intelligibility is underpinned by enhanced activity in those cortical 

locations (Peelle et al., 2013; Blank and Davis, 2016; Tuennerhoff and Noppeney, 2016). 

Shorter suppressive effects also emerged in HG and IFG. Although this result indicates 

that the MEG data reflects some effects of prior knowledge, this specific measure was 

insufficient to assess top-down/bottom-up cortical interactions and, importantly, it did not 

show overwhelming suppressive effects due to prior knowledge that would have 

supported other studies based on similar pop-out paradigms (Sohoglu et al., 2012; Blank 

and Davis, 2016; Sohoglu and Davis, 2016). One reason may lie in the event-related 

approach itself, which is ill-suited for the relatively long sentences used in this experiment 

(Crosse et al., 2016b): The fast dynamics of conversational speech hamper the 

investigation of long latency responses, as they overlap with the early responses to 

subsequent sounds. This is not the case when short isolated stimuli are used such as single 

words (Sohoglu et al., 2012; Sohoglu and Davis, 2016). For this reason, additional 

analyses were used that aimed at eliciting more targeted indices of cortical activity with 

the goal of determining the precise spatiotemporal dynamics due to the effect of prior 

knowledge.  

5.3.3 Prior knowledge modulates top-down and bottom-up envelope 

entrainment 

Cortical entrainment was used to determine how accurately the broadband envelope of 

speech could be reconstructed from the source-space MEG signals of individual 

participants, as measure by correlation (Pearson’s r). A change in this correlation when 

Unintelligiblepost was compared with Pop-outpost (block 2) was used to quantify changes 

in cortical entrainment due to perceptual pop-out (Figure 5.4). A significant entrainment 

enhancement involving almost all the cortical areas of interest emerged for the delta-band 

(1–4 Hz) at different latencies. Specifically, an early sustained enhancement of left 

cortical areas arose, starting from consecutive time windows for, in this order, IFG, HG, 

STS, and MTG, from -50–150 ms, 0–200 ms, 50–250 ms, 100–300 ms respectively 
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(Wilcoxon signed-rank test, N = 16, p < 0.05; correction for multiple comparisons was 

performed using a cluster statistics that takes into account dependencies across the time 

dimension). This result suggests that delta-band activity in left IFG may initiate the early 

propagation of envelope entrainment within the left-hemisphere in a bottom-up direction 

from HG, to STS, and finally to MTG. The enhancement in such areas was sustained until 

the lag-window 150–350 ms for all left cortical areas, while only left MTG also showed 

enhancement for 200–400 ms. Cortical enhancement in right cortical areas emerged only 

in the window 100–300 ms for IFG, and in the windows from 150 ms for STS and MTG, 

which were excluded after the correction for multiple comparisons performed using 

cluster statistics. Envelope entrainment in the theta-band (4–8 Hz) showed an early 

suppression with perceptual enhancement in all cortical areas of interest, while reaching 

(non-corrected) significance in left STS, right HG, STS, and IFG. However, only the 

suppressive effect in IFG remained significant after application of the cluster correction. 

The link between these results and the perceptual pop-out effect was controlled by 

performing the same analysis on envelope reconstruction correlations derived for the 

sentences of interest in block 1. Any differences in the reconstruction accuracies between 

Unintelligiblepre and Pop-outpre (Figure 5.5) represent a baseline that accounts for 

physical differences between the two vocoded sentences that do not involve the pop-out 

effect. The effects seen for block 2 did not emerge for stimuli presented in block 1 and, 

importantly, no significant increase in entrainment emerged for any time-lag window. 

The interaction between block and entrainment enhancement was formally tested by 

means of an three-way ANOVA analysis that, while considering the three factors block, 

cortical location, and time-lag window, found a significant main effect of block in both 

delta-band (F(1,1280) = 166.50; p = 6.71*e-36) and theta-band (F(1,1280) = 78.29; p = 

2.90*e-18). 

These findings provide detailed information on the effects of prior knowledge on 

the early cortical dynamics underlying continuous speech processing. In particular, they 

indicate that the availability of higher-level information in the upcoming stimulus, which 

enhances the perceived intelligibility of the speech sentences, increasing the early delta-

band tracking of the envelope of speech in left IFG. Enhanced delta-band entrainment 

was also measured in other left cortical areas at progressively longer latencies, suggesting 

that information flow initiated by left IFG then propagates to primary auditory cortex, 

followed by superior temporal and posterior middle temporal areas within the left 

hemisphere.   
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Figure 5.4: Prior information induces top-down dynamics of delta-band entrainment to the speech 

envelope. 

TRFs were evaluated from the cortical responses to the envelope of the stimulus (backward modeling 

approach; window size: 200ms). The quality of fit was estimated by calculating correlations between the 

speech envelope and its reconstructions using cross-validation. Differences between Pop-out and 

Unintelligible sentences were calculated for both blocks 1 and 2 (before and after exposure to the original 

sentence in the Pop-out condition). This procedure was repeated for each cortical location of interest. 

Significant effects emerged for delta-band (Wilcoxon signed-rank test, N = 16, *p < 0.05; cluster statistics 

across the time dimension was used to correct for multiple comparisons). (A) Differences between Pop-out 

and Unintelligible stimuli for block 2, where only the Pop-out stimulus was perceived as intelligible. 

Significant effects represent cortical entrainment enhancement induced by prior information and physical 

differences between Pop-out and Unintelligible sentences. (B) Differences between Pop-out and 

Unintelligible sentences for block 1, where both stimuli were unintelligible. Significant contrasts are caused 

by differences in entrainment brought about by physical differences between the stimuli. 
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Figure 5.5: Effects of prior information on the theta-band entrainment to the speech envelope. TRFs 

were evaluated from the cortical responses to the envelope of the stimulus (backward modelling approach; 

window size: 200ms). The quality of fit was estimated by calculating correlations between the speech 

envelope and its reconstructions using cross-validation. Differences between Pop-out and Unintelligible 

sentences were calculated for both blocks 1 and 2 (before and after exposure to the original sentence in the 

Pop-out condition). This procedure was repeated for each cortical location of interest. Some significant 

effects were identified for theta-bands (Wilcoxon signed-rank test, N = 16, *p < 0.05; cluster statistics 

across the time dimension was used to correct for multiple comparisons). 

5.3.4 Effects of prior knowledge on cortico-cortical dynamics 

The cortical entrainment analysis provided insights on how perceptual pop-out affects the 

encoding of the speech sentences measured with MEG. However, this approach is 

constrained to the speech features chosen for the analysis, which in this case consists of 



94 

 

the speech envelope. Furthermore, while both the entrainment and power analyses study 

the effects of perceived intelligibility in each individual cortical area separately from the 

others, there are approaches that allow the explicit investigation of the causal interaction 

between cortical areas. Importantly, these approaches enable the study of how the pop-

out effect modifies the spatiotemporal dynamics of the speech comprehension network, 

without biasing the analysis to specific features of speech (e.g., speech envelope). 

Therefore, further analysis was conducted with the goal of obtaining complementary 

insights on the cortical mechanisms of integration of prior information during speech 

comprehension. 

 

 

Figure 5.6: A source-space connectivity analysis: Low-level top-down and higher-level bottom-up 

connections are enhanced when prior information is available. 

Frequency grid showing the event-related grand-average (N = 16) change in brain dynamics induced by 

prior information across frequency, and cortical locations (SIFT; Delorme et al., 2011). dDTF 

(Korzeniewska et al., 2003) were calculated for an 8 node model, including all locations of interest. These 

can be interpreted as frequency-domain conditional granger causality measures. Frequency grids show the 

dDTF contrast from block 1 to block 2, for Unintelligible (green) and Pop-out (orange) stimuli. Significant 

differences between stimulus type are highlighted with the grey shaded area (paired Wilcoxon signed rank 

test, N = 16, p < 0.05; Bonferroni correction was applied). 
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Figure 5.7: Source-space connectivity analyses for distinct speech stimuli. 

Time-frequency grid showing the event-related grand-average (N = 16) change in brain dynamics induced 

by prior knowledge across time, frequency, and cortical locations (SIFT; Delorme et al., 2011). Direct 

Directed Transfer Function measures (dDTF; Korzeniewska et al., 2003) were calculated for an 8-node 

model, including all locations of interest. These can be interpreted as frequency-domain conditional granger 

causality measures. (A, B) Time-frequency grids showing the normalised dDTF contrast from block 1 to 

block 2, for A) Unintelligible and B) Pop-out stimuli. The baseline is -100 to -10 ms and the vertical red 

dashed lines indicates latency of the beginning of a sentence (t = 0 ms). The dDTF contrast measures were 

thresholded for statistical significance using the 95th percentile of all measured values. 
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Here, this was achieved by estimating effective connectivity measures within the 

eight nodes network of locations of interest (bilateral HG, STS, MTG, and IFG). The 

space-frequency grid in Figure 5.6 shows significant changes in top-down and bottom-

up connectivity between cortical locations of interest due to perceptual pop-out. The 

strongest effects of prior information were an increase of the top-down link between left 

STS-left HG, a stronger bottom-up connection for left STS-left MTG, and a stronger 

inter-hemispheric connection from left HG to right HG. The connectivity between left 

HG-left STS exhibited both an increase of top-down and decrease of bottom-up 

information flow over almost the whole frequency band of interest. In contrast, the link 

between left STS-left MTG showed an enhanced bottom-up information flow due to prior 

knowledge, with a concomitant suppression of top-down connection. Finally, the 

significant links to and from IFG involved mainly low frequencies (< 15 Hz). Figure 5.7 

shows this same result with the inclusion of the time dimension for both Unintelligible 

and Pop-out stimuli (Figure 5.7A and B respectively). 

5.4 Discussion 

The cortical mechanisms that underpin the integration of prior knowledge with sensory 

input during continuous speech comprehension are poorly understood. This chapter 

demonstrated that non-invasive MEG measures are sensitive to the predictive effects of 

prior knowledge on perceived speech intelligibility. Furthermore, we provided insight 

into the cortical spatiotemporal dynamics of this network that have implications for 

current views of the cortical underpinnings of speech comprehension. 

5.4.1 Low-frequency envelope entrainment reflects perceived speech 

intelligibility 

Measures of cortical entrainment to speech features, in particular to the speech envelope, 

are powerful tools to investigate the cortical mechanisms of continuous speech processing 

(Ahissar et al., 2001; Aiken and Picton, 2008; Nourski et al., 2009; O'Sullivan et al., 2014; 

Crosse et al., 2016a). However, it remains unclear to what extent envelope entrainment 

reflects the encoding of sensory information that is specific to speech (Ding and Simon, 

2014; Di Liberto et al., 2015; Zoefel and VanRullen, 2016) and how entrainment is 

affected by higher-order processes (such as the integration of prior knowledge; Holdgraf 

et al., 2016). It has been argued that speech intelligibility impacts on the phase of ongoing 
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neural oscillation in (left) temporal cortex, which was interpreted as suggesting that 

linguistic information affects neural oscillations (Peelle et al., 2013; Park et al., 2015). 

Yet, those studies did not disentangle the effects of perceptual from physical (acoustic) 

differences, as the intelligibility was modulated using physical manipulations of the 

speech stimuli (e.g., noise-vocoding, time-reversing). 

A previous analysis of the same MEG dataset used in the present study did not 

reveal any significant effect of prior knowledge on phase-locking to the speech envelope 

(Millman et al., 2015), quantified using theta-band coherence and cross-correlation 

measures between stimulus envelope and source-space neural signals. In particular, the 

latter approach is sub-optimal when studying responses to stimuli with speech-like 

statistics (Crosse et al., 2016b) and did not allow an exploration of the temporal dynamics 

and specificity of the pop-out effect. Chapter 4 aimed at relating ongoing EEG to 

particular features of a speech stimulus and found a positive correlation between delta-

band entrainment to phoneme-level features and perceived speech intelligibility using a 

pop-out paradigm similar to the one employed here. However, no significant effect of 

prior knowledge emerged specifically for the envelope entrainment. It may be the case 

that the effect of prior knowledge on cortical entrainment is so subtle – relative to the 

entrainment to the acoustic energy of the stimulus itself – that the use of an imaging 

modality with higher spatial resolution than sensor-space EEG, combined with a stronger 

focus on time-domain analyses, is required to reveal it. 

In contrast to the previous work from Millman et al. (2015), the results shown in 

Figure 5.4 clearly indicate that low-frequency envelope entrainment is affected by 

perceptual pop-out. Importantly, this effect was related specifically to the increase in 

perceived speech intelligibility and not to an effect of stimulus repetition or perceptual 

learning (Sohoglu and Davis, 2016). Furthermore, the result was not a consequence of 

physical differences between the two stimuli as no effects on envelope entrainment were 

observed for block 1, in which both stimuli (Pop-out, Unintelligible) were unintelligible. 

Indeed, this finding is in line with the notion that cortical entrainment to the envelope of 

speech is prominent in the delta- and theta-bands (Ahissar et al., 2001; Aiken and Picton, 

2008; Giraud and Poeppel, 2012; Gross et al., 2013; Keitel et al., 2017). Specifically, our 

results agree with a recent view suggesting that delta-band entrainment is strongly linked 

with speech intelligibility (Ding and Simon, 2013; Ding et al., 2014; Ding and Simon, 

2014) and with the formation of temporal predictions (Arnal et al., 2015). On the other 

hand, theta-band entrainment has been associated with the acoustic properties of the 
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speech envelope (Ding and Simon, 2013; Peelle et al., 2013). However, our results 

suggest a role of theta-band entrainment in the predictive mechanisms that support an 

increase in the perceived intelligibility of speech. 

5.4.2 Top-down and bottom-up effects of prior knowledge during speech 

perception 

Speech comprehension is thought to involve the active integration of prior knowledge 

with sensory input through predictive top-down cortical mechanisms (Davis and 

Johnsrude, 2007; Wild et al., 2012; Blank and Davis, 2016; Leonard et al., 2016; 

Tuennerhoff and Noppeney, 2016), however the exact spatiotemporal dynamics of this 

process remain unclear. In particular, there is strong evidence that such effects occur in a 

broad network of cortical areas, including regions in temporal cortex and frontal areas 

such as IFG (Sohoglu et al., 2012; Park et al., 2015; Sohoglu and Davis, 2016). Our results 

advance the current understanding of this cortical network by providing new insights on 

its precise spatiotemporal dynamics. 

Here, we show that delta-band cortical entrainment to the envelope of speech is 

affected by prior knowledge, and that this effect rapidly propagates in a top-down manner, 

from left IFG to left HG (time windows [-50, 150] ms and [0, 200] ms respectively), and 

only subsequently reaches STS and then MTG (Figure 5.4). Interestingly, such a top-

down phenomenon did not emerge for theta-band (Figure 5.5), which instead showed 

early suppression of entrainment. This finding supports the notion that neural oscillations 

at different rates may contribute in distinct ways to predictive mechanisms in speech 

comprehension (Gross et al., 2013; Ding and Simon, 2014; Fontolan et al., 2014; Kösem 

and van Wassenhove, 2016). In line with previous studies on speech comprehension, the 

early cortical entrainment measured in IFG suggests the involvement of a broader 

network that includes temporal and frontal sites (Hickok and Poeppel, 2007; Obleser and 

Kotz, 2009; Park et al., 2015; Sohoglu and Davis, 2016). Additionally, our results 

demonstrate that IFG exerts influence on regions in temporal cortex, supporting speech 

intelligibility through entrainment to the envelope of speech. 

The cortical entrainment analysis indicated that the effects of prior knowledge 

entailed a rapid top-down propagation that affected all left cortical areas of interest 

between the time windows [-50, 150] ms and [100, 300] ms. This result suggests that the 

effects of prior knowledge occur on a much shorter temporal scale than previously 

reported by similar pop-out studies (Sohoglu et al., 2012; Sohoglu and Davis, 2016). One 
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explanation may be found in the use of short sentences in the present experiment. In 

contrast to isolated words, such stimuli are suitable for deriving entrainment measures in 

addition to event-related responses. Moreover, meaningful sentences enable the study of 

cortical responses to linguistic features. For these reasons, the present work highlights the 

importance of investigating both the cortical responses to isolated speech units and to 

continuous speech stimuli.  

The cortical entrainment analysis provided also a detailed picture of the top-

down/bottom-up effects of prior knowledge in the speech comprehension network. 

However, the quantitative measures were biased toward a specific feature of speech: the 

temporal envelope. Furthermore, the order in which cortical entrainment emerges in 

different areas does not imply causality. This motivated further analysis of the MEG 

responses to unveil causal dynamics to which linear mapping between stimulus and neural 

recording would be insensitive. A connectivity analysis was performed on the source-

space MEG signals to determine effective (directional) direct causality between the 

cortical regions of interest (Figure 5.6). It is important to clarify that our estimate of 

causality is constrained by two factors: 1) It is specific to dDTF measures, which can be 

thought as in the same domain as Granger causality and 2) it is limited to the 8 cortical 

sites of interest. This analysis showed that perceptual pop-out increases the top-down (and 

suppresses the bottom-up) information flow between left HG and left STS. This is in line 

with theories of predictive coding which would explain such effects as an early top-down 

modulation, which increases the readiness of HG to process the upcoming stimulus, and 

the subsequent reduction of the bottom-up prediction error (Friston and Kiebel, 2009; 

Clark, 2013). A second effect was the enhancement of the bottom-up causal link from left 

STS to left posterior MTG. The use of short meaningful sentence stimuli (rather than 

isolated words) may be crucial for the interpretation of this result; such stimuli enable 

processing at the syntactic and semantic levels. In this context, previous research 

suggested the emergence of both activity suppression, at hierarchical levels where speech 

information is predictable, and activity enhancement, at levels that were previously not 

(or less) active (George et al., 1999; Tuennerhoff and Noppeney, 2016). Our results 

suggest that posterior MTG is strongly involved in the processing of higher-level features 

of speech related to intelligibility (Lau et al., 2008; Turken and Dronkers, 2011; Henseler 

et al., 2014; Zhang et al., 2015; Tuennerhoff and Noppeney, 2016). The focus on local 

interactions was essential to reveal the various pattern of this “vertical” information flow. 
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Finally, our results suggest the involvement of a broader network of cortical areas 

than previously modelled (Sohoglu and Davis, 2016; Tuennerhoff and Noppeney, 2016) 

for the predictive effect of prior information, including left frontal and bilateral temporal 

lobes. Our findings suggest that characterisation of the fast cortical dynamics in response 

to continuous speech requires neuroimaging technologies with sufficient spatial coverage 

and high temporal resolution. In line with previous studies, this finding suggests that early 

integration of prior knowledge in IFG enhances the readiness of the network to the 

expected incoming stimulus in lower-order temporal areas (Friston, 2005; Sohoglu and 

Davis, 2016). We contend that frontal areas constitute a crucial part of such a cortical 

network (c.f. Tuennerhoff and Noppeney, 2016).  

5.5 Summary 

In summary, this chapter provided detailed spatiotemporal evidence of the top-down and 

bottom-up dynamics of prior knowledge on speech intelligibility using a pop-out 

paradigm. First, our results indicate that non-invasive measures of envelope entrainment 

are sensitive to the predictive effect of prior knowledge. Second, prior knowledge induces 

rapid information flow in delta-band cortical signals that initiates in left IFG and 

subsequently bottom-up propagates to HG, STS, and MTG in the left hemisphere. This 

indicates that left IFG may induce rapid (< 50 ms) top-down modulation of lower levels 

of the speech processing hierarchy. In line with the notion of predictive coding, an 

effective connectivity analysis revealed that perception of intelligible speech sentences 

increased the top-down information flow from left STS to left HG and enhanced the 

bottom-up causal link from left STS to left MTG, suggesting the involvement of left 

posterior MTG in the processing of intelligible speech features.
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Chapter 6. Indexing cortical entrainment to 

natural speech at the phonemic level: 

Methodological considerations for applied 

research 

 

6.1 Introduction 

A significant number of people worldwide suffer from some form of speech and language 

impairment. These can arise as a consequence of developmental disorders (Leonard, 

2014) or from a decline in related cortical functions (e.g., through ageing, psychosis, 

injury; Ross et al., 2007; Kemper and Anagnopoulos, 2008; Mesulam et al., 2014). A 

better understanding of the underlying speech processing network and the ability to 

identify a specific impairment within that network are crucial to developing clinically 

useful assessments of speech and language in these populations. 

Speech and language impairment can disrupt one’s ability to understand auditory 

speech and efficiently communicate in a number of ways, which correspond to different 

symptoms. In this context, standardised assessment of such impairments is usually 

pursued using a number of behavioral tests (e.g., non-verbal hearing, speech, and 

language tests; standardised test of intelligence, Tomblin et al., 1996; Ford and Dahinten, 

2005; Gardner et al., 2006). However, these measures are inadequate at capturing the full 

extent of a person’s impairment and should be considered only as one aspect of a 

comprehensive assessment process  (Flanagan et al., 1997; Mody and Belliveau, 2013). 

Furthermore, some of these measures cannot be derived for some groups such as infants 

or participants with reading impairment or no reading skills. 
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A complementary approach is to “directly” investigate the causes that underpin 

such conditions, rather than evaluate “indirect” effects on specific behavioral markers. In 

this sense, neuroimaging provides an opportunity to derive measures directly related to 

the cortical processing of speech in the human brain. In particular, noninvasive, safe, 

functional brain measurements (EEG, MEG, fMRI, NIRS) have now been proven feasible 

for use with both children (starting at birth) and adults (Aslin and Mehler, 2005; Kuhl et 

al., 2005; McNealy et al., 2006; Kuhl, 2010). In this context, the framework defined in 

Chapter 3 provides a potential novel methodology for investigating natural speech 

encoding under a variety of conditions and in a variety of cohorts. This could include 

research on the causes of speech impairments in particular cohorts by deriving direct 

indices of cortical activity at specific levels of the speech processing hierarchy using non-

invasive EEG. However, short experimental times are preferable in applied research 

(Mirkovic et al., 2015), whereas the methodology introduced in Chapter 3 used a 

recording time of 72 minutes per subject, which may constitute an obstacle when studying 

particular cohorts (e.g., young children). 

The present chapter introduces an extension of this framework that allows for a 

significant reduction of the experimental time needed to derive such indices of phoneme-

level cortical entrainment. While not many electrodes are needed for this approach to be 

effective (by construction; see forward modelling approach in Crosse et al., 2016b), the 

ability to use the framework with small amounts of data from individual subjects is 

uncertain. To clarify this issue, an extensive analysis was conducted to assess the 

minimum experimental time needed to detect meaningful cortical responses. The goal of 

the analysis was to show that it is possible to utilise short data sets across multiple subjects 

to make inferences about speech processing in individual subjects. Specifically, we aimed 

to show that we can robustly index phoneme-level processing in the context of natural 

speech in cases of limited amounts of experimental data. The results of this study were 

published as a journal article as: “Indexing cortical entrainment to natural speech at the 

phonemic level: Methodological considerations for applied research”, Hearing Research, 

February 2017. 
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6.2 Material and methods 

The present study is based on re-analyses of the dataset collected for Chapter 3. Please 

refer to Section 3.2 for information on the participants and the EEG experimental 

paradigm. 

6.2.1 Data Preprocessing 

EEG data were digitally filtered between 1 and 8 Hz using a Chebyshev Type 2 zero-

phase filter. In order to reduce the processing time, all EEG data were then down-sampled 

to 64 Hz. EEG channels with a variance that exceeded three times that of the surrounding 

channels were labelled as bad channels, and replaced by an estimate calculated using 

spherical spline interpolation (EEGLAB; Delorme and Makeig, 2004). All channels were 

then re-referenced to the average of the two mastoid channels with the goal of maximising 

the EEG responses to the auditory stimuli (Luck, 2005). 

6.2.2 Speech Representations 

Following Chapter 3, mTRFs were estimated based on four distinct representations of the 

speech stimulus: 

1. Broadband amplitude envelope (E); 

2. Spectrogram (S); 

3. Phonetic features (F); 

4. Finally, we propose a model that combines F and S (FS). 

Please refer to Section 3.2.5 for a detailed description of these speech representations. 

6.2.3 Model Evaluation 

As performed in Chapter 3, a model-based analysis was conducted to quantify how well 

the EEG reflects the encoding of the various speech representations. The idea is to fit a 

model (i.e., an mTRF) that describes the forward mapping from a speech representation 

to the EEG and then to test that model by seeing how accurately it can predict EEG from 

a new trial. This is quantified using a correlation coefficient (Pearson’s r) and the 

procedure is then repeated for each trial (leave-one-out cross-validation). A single 

prediction correlation value was then derived by averaging these correlations over all 
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trials and a set of electrodes of interest (see Section 3.2.7). Note that silent time intervals 

were removed from the correlation evaluation (the same intervals were removed from all 

speech representations). 

For each participant, predictions of their EEG signals were derived using mTRFs 

that were fit on data of that specific subject (subject-specific models). This approach, 

which was used also in Chapter 3, was compared to a subject-independent method. This 

approach consisted of using models obtained by averaging the subject-specific mTRFs 

obtained from all other subjects (generic models). In other words, models fit on 9 subjects 

were averaged and then used to predict the EEG of the left-out subject. 

The mTRF approach requires three key considerations when carrying out model-

based predictions of EEG data: 1) the channels to be predicted; 2) the choice of time-lags 

between stimulus and data to optimise prediction; and 3) the choice of the regularisation 

parameter λ. The optimisation procedures performed in Chapter 3 were also used here. 

6.2.4 Multi-Dimensional Scaling analysis 

The mTRF mapping functions produced by the above analysis can be informative about 

how particular speech features are represented in the EEG. One useful technique for 

analysing these multivariate mapping functions is known as multidimensional scaling 

(MDS). The same procedure performed in Chapter 3 was also used here. 

6.2.5 Statistical Analyses 

Unless otherwise stated, all statistical analyses were performed using a repeated measure, 

one way ANOVA to compare distributions of Pearson correlation values across models 

and to compare F-Score classifications across response intervals. The values reported use 

the convention F(df, dferror). Greenhouse-Geisser corrections were made if Mauchly’s 

test of sphericity was not met. All post-hoc model comparisons were performed using 

Bonferroni corrected paired t-tests. 
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6.3 Results 

6.3.1 Neural evidence for phonetic processing in generic models 

To investigate whether phoneme level cortical activity can be indexed using a generic 

modelling approach, mTRFs (Crosse et al., 2016b) were built to describe the linear 

mapping from each speech representation to the EEG scalp-recorded signal. The quality 

of these predictions, measured with Pearson's correlation, indexed how well the EEG 

reflects the processing of low- and high-level speech features. Figure 6.1A,B show this 

result when the EEG predictions were derived using a subject-specific model, i.e., given 

a subject, the predictions of their EEG signal were obtained using a model fit on that same 

subject using cross-validation across trials. While no significant difference emerged 

between the S- and F-models, the model fit on the combination of the two (FS) produced 

the highest EEG prediction correlations (ANOVA: F(3.0,7.0) = 12.1, p = 0.004; post-hoc 

paired t-test comparisons of FS with all other models: p = 0.001, p = 0.005, p = 0.023 for 

E, S, F respectively). As previously argued in Chapter 3, this result indicates that low-

frequency EEG indexes the cortical entrainment to categorical phoneme-level features of 

speech. 

A similar analysis was conducted to assess whether the same effect emerged when 

using the generic modelling approach. In particular, the same processing steps as in the 

subject-specific case were performed with one important difference: when predicting the 

EEG for a given subject, we used models that were fit to data from all the other subjects. 

Because EEG responses vary across subjects as a result of cortical folding, EEG 

prediction correlations for generic models were expected to be lower than in the subject-

specific approach. This was confirmed by the results in Figure 6.1C,D (two-way 

ANOVA; effect of modelling approach: F(1,72) = 6.1, p = 0.016). However, crucially, 

the combined model FS still produced the best EEG predictions in this case (ANOVA: 

F(3.0,7.0) = 21.9, p = 0.001; post-hoc paired t-test comparisons of FS with all other 

models: p < 0.001, p < 0.001, p = 0.024 for E, S, F respectively). Again, this suggests that 

this modelling approach is sensitive to the effects of categorical phoneme-level 

processing, even when using generic models. 
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Figure 6.1: Sensitivity of generic models to the encoding of speech features. 

EEG data were recorded while subjects listened to natural speech from an audiobook. Speech was 

represented using E and S (speech acoustics), F (phonetics), and FS (which combines acoustics and 

phonetics). mTRF were built to describe the mapping from each representation of speech to the EEG 

recording and used to predict the EEG signal with cross-validation (▲ greater than all others, p < 0.01; ▼ 

smaller than all others, p < 0.01; * p < 0.05). (A) Correlations between EEG and its predictions are shown 

for each subject and each of the 4 speech representations. The predictions were obtained using speech-

specific models, i.e., trained and tested within each subject using cross-validation (subjects were re-

arranged according the performance of the FS-model for visualisation purpose). This panel corresponds to 

Figure 3.1; it is not identical because of minor changes in the data preprocessing (e.g., down-sampling rate). 

(B) The same data is here shown grouped by the 4 speech representations. Each data point refers to a 

specific subject (a specific colour saturation was assigned to each subject). (C) Correlations between EEG 

and its predictions using a generic model, i.e., trained on all subjects with the exception of the test subject. 

The subject arrangement is consistent with (A). (D) The same values obtained for generic models are here 

grouped by speech representation. Each data point refers to a specific subject and their colours match the 

ones shown in (B). Because prediction correlations were calculated using 72 minutes of data, chance level 

here is effectively zero. 
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6.3.2 Generic models index phonetic processing for limited experimental 

time 

In Chapters 3 and 4, we suggested that one could potentially derive an isolated measure 

of phoneme-level processing from the EEG prediction framework. In particular, 

subtracting the Pearson's correlations for the FS- and S-models (FS-S) should represent 

such an index of phoneme-level processing. Such a measure would be unsuited for 

clinical application if it required long experimental times. For this reason, we wished to 

investigate its robustness as a function of EEG recording time in both subject-specific and 

generic modelling approaches. 

The subject-specific FS-S measure showed a logarithmically increasing prediction 

accuracy as a function of testing time. Crucially, with less than 30 minutes of EEG data, 

the FS-S measure was not statistically significantly different from zero across subjects 

(Wilcoxon signed rank test, p > 0.05; Figure 6.2A). A significant FS-S measure emerged 

only when the amount of recording data was greater than or equal to 30 minutes 

(Wilcoxon signed rank test, p < 0.05). Crucially, this issue, which hampers the clinical 

applicability of such an approach, did not apply to the generic models. The overarching 

rationale is that the use of data from many subjects produces a model that converges to 

an effective fit even for short recording times. For instance, since each model was 

averaged across 9 subjects, an experimental time of 10 minutes corresponded to 90 

minutes of data in total, which is more data than was available for any subject-specific 

model. These considerations are confirmed by the results in Figure 6.2A, which shows 

the significant advantage of the generic modelling approach over the subject-specific 

approach when up to 40 minutes of data were available from each subject (paired 

Wilcoxon signed rank test, p = 0.001, p = 0.020, p = 0.014, p = 0.037, p = 0.064, p = 

0.084, p = 0.064, respectively from 10 to 70 minutes of recording data). 

Figure 6.2B provides further support to these considerations by showing how 

recording time impacts on the mTRF model fit for a particular subject (S4). Qualitatively, 

the regression weights for the generic models required only 20-30 minutes of data to 

converge to a stable fit for both S and F. In contrast, the corresponding subject-specific 

models showed a more gradual and prolonged convergence. Importantly, the subject-

specific and generic mTRFs converged to qualitatively similar results (please note that 

the x-axis was up-sampled and smoothed for visualisation purpose). This observation is 

confirmed by the numerical result in Figure 6.1A,C; in fact the EEG prediction 

accuracies obtained for subject-specific and generic models for subject 4 (S4) were 
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comparable. Intuitively, a generic model that does not resemble the corresponding 

subject-specific model may lead to poor EEG prediction accuracies for the generic model 

(for example, see S6). 

 

Figure 6.2: Generic models are effective for short recording times. 

(A) The speech-specific neural index FS-S for increasing experimental time (minutes) is reported for the 

subject-specific models and compared with the result obtained using a generic model, i.e., trained on all 

subjects but the one used to evaluate the EEG prediction correlation. The subject-specific modelling 

approach needs at least 30 minutes of data to be sensitive to the FS-S effect, while the generic model 

produces significant results also for short experimental times. Importantly, a significant difference emerges 

between the two approaches for recording times under or equal to 40 minutes (** p < 0.01, * p < 0.05), 

which means that it's advantageous to use a generic model when little training data is available. Also, the 

use of speech-specific models does not improve the performance of a generic model, even when the whole 

72 minutes dataset is used (p > 0.05). (B) The mTRF regression weights are shown for the S (Frequency vs 

time-lags) and F (Phonetic-features vs time-lags) models for increasing experimental time (minutes). Given 

a selected subject (S4, see Figure 6.1), this panel compares the mTRFs for its subject-specific model (fit on 

S4) and its generic model (fit on all the others). Smoothing of the x-axis was performed for visual purpose. 
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These results highlight the applicability of the generic modelling approach in the 

study of single subjects with limited amounts of data. 

6.3.3 Sensitivity of EEG to phonetic features for limited recording time  

As shown in Chapter 3, another possibly useful way of assessing speech encoding is to 

quantify how well the mTRFs to different phonetic features can be discriminated. But 

how much experimental data is needed in order to carry out these types of discriminative 

analysis? This is important because it determines which phonetic features have an impact 

on the model performances for different amounts of experimental data. Also, it 

determines which phonetic features can be further studied, for example to infer possible 

differences between subject groups. Here, we addressed this question by quantifying the 

discriminability between phonetic feature groups in the mTRF models. Specifically, 

unsupervised MDS was applied to the subject-specific phonetic-feature mTRF models 

using the 12 bilateral electrodes of interest. This approach allowed us to build a geometric 

space in which the Euclidean distance between phonetic features corresponds to the 

similarity of their neural responses. In this space, k-means clustering (k = 2) was 

performed to study the pairwise discriminability between feature groups (vowels, semi-

vowels, fricatives, plosives), which was quantified by calculating the F-scores (the 

harmonic mean of precision and recall) between the actual grouping and the result of the 

clustering.  

Figure 6.3 shows the evolution of the discriminability between phonetic features 

categories with the amount of experimental data. Chance level for the F-score measure 

(which changes for each pair of feature groups) was calculated by repeating this same 

procedure (MDS and F-Score) after randomly relabelling each phoneme occurrence and 

converting that into phonetic features. Each discriminability reported in Figure 6.3 was 

obtained by subtracting the F-score derived when using the correct stimulus with its 

chance level (shuffled over 50 randomly relabelled versions of the stimulus). Individual 

subject values and their mean are reported in the figure.  

In line with Chapter 3, EEG activity in response to vowels (vow) could be 

significantly discriminated from that to fricative (fri) and plosive (plo) consonants (paired 

Wilcoxon signed rank test, p < 0.05), while no significant difference between vowels and 

semi-vowels (semi) emerged. Importantly, these considerations were true even when only 

small amounts of experiment data (10 minutes) were available. The individual subject 
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data clarifies that, when enough data is available, the significant effects for the 

comparisons vow-fri (from 30 minutes of data) and vow-plo (from 50 minutes of data) 

correspond to an above-chance discriminability for every single subject. Also, EEG 

activity to vowels was more discriminable from plosive than it was from fricative 

consonants (this difference was significant for all experiment duration with the exception 

of 20 min; paired Wilcoxon signed rank test, p < 0.05). Interestingly, the discriminability 

of classes within consonants reveals a different pattern. In particular, semi-vowels 

required at least 20 minutes of experimental time to emerge as different from plosive 

consonants. Also, weak significant discriminability emerged between plosive and 

fricative (p ≲ 0.05; with the exception of one data-point). In this case, a recording time 

of at least 60 (plo-semi) or 70 minutes (plo-fri and fri-semi) was required to achieve an 

above-chance result for every single subject. 

 

Figure 6.3: Sensitivity of EEG to phonetic features for limited recording time. 

A measure of discriminability between phonetic features was derived from a MDS on the phonetic features 

mTRF model. In both figures, the x-axis indicates the amount of recording data and the y-axis reports a 

discriminability score (F-score). The comparison of each pair of feature-sets produced a distinct chance 

level, which was subtracted from the corresponding discriminability scores for visualisation clarity. Empty 

grey circles indicate non-significant discrimination values (p > 0.05). The small dots indicate the result on 

an individual subject level. (A) Vowels resulted discriminable from fricative and plosive consonants, and 

this difference emerged with 10 minutes of data. Vowels and semi-vowels were not significantly 

discriminable at any training time. (B) Plosive consonants and semi-vowels were significantly 

discriminated when at least 20 minutes of data was used. Similarly, plosive and fricative consonants are 

significantly discriminable for all recording durations, with the exception of 30 minutes. 

6.4 Discussion 

Language impairments are disorders that affect the understanding and/or use of spoken 

or written language, which carry the risk of poor social functioning, reduced 

independence and restricted employment opportunities (Clegg and Henderson, 1999; 

Paul, 2007; Reed, 2012). The disorder may involve the form of language (phonology, 

syntax, and morphology), its meaning (semantics), or its use (pragmatics), and includes 
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deficits such as specific-language impairment (SLI), aphasia, and dyslexia, among others. 

Early identification is crucial for improving long-term outcomes in many of these 

conditions, especially for early school age children who are less likely to have subsequent 

reading and academic problems in case of early diagnosis (Catts et al., 2002; Clark, 2010). 

In this context, the ability to derive noninvasively robust markers of natural speech 

processing at specific levels of the cortical hierarchy could be of great benefit for research 

in certain cohorts. Here we have investigated a number of practical considerations 

surrounding the novel framework for indexing the encoding of natural speech at the level 

of phonemes introduced in Chapter 3. 

6.4.1 A methodological advance toward clinical application 

This study demonstrates that a generic model is capable of indexing the cortical 

entrainment to several speech representations of interest. As one would expect, it was 

found that overall the EEG prediction correlations were lower for generic models than in 

the subject-specific approach (Figure 6.1). This is likely to be an effect of anatomical 

differences among individuals, which causes differences in the EEG signals between 

subjects. This subject-specific information would be lost when averaging between 

subjects, hence producing lower EEG prediction correlations. Even though the prediction 

values were smaller overall than in the subject-specific case, the generic modelling 

approach produces a similar pattern of prediction accuracies. Moreover, the generic 

model of a larger and reasonably homogeneous group would still encode cortical 

responses that are consistent across subjects. Potentially, this framework could benefit 

from such a larger dataset, and may require even shorter recording times to produce 

meaningful results. Here, out of the four speech representations used, the combination of 

acoustic and phonetic features (FS) is the best at predicting the EEG signal, while the 

envelope of speech is the worst. This result is relevant as the broadband envelope of 

speech has been used in several recent studies on auditory perception (Aiken and Picton, 

2008; Nourski et al., 2009; Zion Golumbic et al., 2013a; Ding et al., 2014; Millman et al., 

2015). And the generic modelling approach has been shown here to be able to produce a 

significant neural index of phoneme-level processing (FS-S). 

The results discussed so far suggest that a generic modelling approach can be used 

to index cortical entrainment to phonetic features of speech. In order for this approach to 

be feasible for applied research in particular cohorts, this study aimed at assessing how 
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much experimental time it requires. Figure 6.2 showed that subject-specific models are 

sensitive to recording duration and need at least 30 minutes of recording data to provide 

a significant index of phoneme-level activity (although, the more data the better), which 

limits the applicability of this framework. In this context, a solution is met by using a 

generic modelling approach, which was effective even with only 10 minutes of recording 

data. Furthermore, Figure 6.3 demonstrates that phonetic-feature groups such as vowels, 

fricative consonants, and plosive consonants are discriminable already after 10 minutes 

of recording time (e.g., vowels VS fricative consonants, vowels VS plosive consonants). 

Unsurprisingly, the ability to separate phonetic-features increases with recording time, 

which highlights the importance of collecting as much experimental data as possible. 

With the goal of minimising the experimental duration and facilitating clinical (and 

non-clinical) application, there are other considerations that are important to clarify. 

Firstly, the mapping procedure at the core of this framework (mTRF) is performed 

independently for each single electrode. In this context, Chapter 3 indicated a lack of 

topographical differences and that the strongest EEG predictability measures emerged 

from fronto-central scalp sites. The choice of focusing on a set of electrodes of interest in 

those sites also allowed us to investigate weaker effects that emerge at a group level, such 

as the sensitivity of EEG to specific phonetic features. However, no qualitative 

differences emerged between electrodes of interest and, in this sense, the effectiveness of 

this approach would not suffer from the reduction of the electrode-set, as long as the scalp 

areas of interest are used. This confirms that it is absolutely possible to obtain similar 

results by using only a few bilateral electrodes. However, the use of 16 or 32 scalp 

electrodes over the whole scalp surface may be important at the preprocessing stage, as it 

would facilitate artifact detection and channel interpolation to deal with noise and motor 

artifacts, which may be more problematic in specific cohorts (e.g., infants, older persons). 

Additionally, the use of a larger number of participants in each subject group may result 

in a further reduction of the amount of recording data needed to produce significant 

objective measures of speech perception. 

6.4.2 Challenges and guidelines for real-world application 

One possible shortcoming of the above generic modelling approach is that it relies on 

testing an individual subject using a model fit to other subjects. For studies comparing 

groups (e.g., typically developing children vs children with dyslexia), this means 
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combining data within each group to form separate generic models. This implicitly 

assumes a certain amount of homogeneity within each group, an assumption that is 

certainly problematic (Happe et al., 2006; Willems et al., 2016). In fact, Figure 6.1 

demonstrated that such variabilities affect the results even within the subject-group of this 

study. Intuitively, subjects with dynamics more similar to the group (subject-specific 

model similar to the correspondent generic model) will be characterised by higher EEG 

prediction correlations, while the opposite will happen for subjects with peculiar mTRFs. 

In this sense, the generic modelling approach could be used as a tool to investigate the 

homogeneity within a subject-group. This method is suitable to study within-subject 

effects, and indices of such effects (i.e., FS-S), properly normalised, could be used to 

compare different subject groups. In this context, interpretation of the analysis outputs 

needs to take into account the choice of subject-groups, as excessive within-group 

variability may hamper the fit of a generic model. 

An alternative solution could be to define a unique generic model using a training 

control group, and to use such model to assess whether a new subject (e.g., a patient) 

belongs or not to the group. This approach has the advantage of having no limitations on 

the recording times for the training control group. However, the effectiveness of such an 

approach, which assumes some degree of homogeneity in each of the subject groupings, 

could not be verified here as it requires a dataset that includes at least two distinct subject 

groups. To this end, the measures of phonetic features discriminability (Figure 6.3) may 

provide a quantitative way to assess the homogeneity within a subject group. In particular, 

such measures were effective for every single subject when enough recording time was 

available and, for selected feature groups, 20 or 30 minutes of data were sufficient. 

However, it remains unclear how the particularities of the subjects used to fit a model will 

affect the predictions it produces for the test subject. Future work incorporating 

neuropsychological metrics and behavioural assays of speech perception will aim to 

clarify how this factor impacts our proposed methodology and to investigate the 

effectiveness of this framework at detecting specific processing problems at an individual 

subject level.  

 

 

 



114 

 

6.5 Summary 

In summary, we have defined a framework to investigate speech processing using 

“direct” measures of cortical activity recorded with EEG. Importantly, the feasibility of 

applying this framework using shorter testing times was demonstrated. The approach 

provides a number of novel dependent measures of speech processing which can be used 

to assess speech processing on individual subjects in certain cohorts. In addition to an 

overall index of phonetic level processing (FS-S), we introduced a methodology to assess 

speech processing at the level of specific phonetic features, which may be important for 

investigating the causes and effects of specific speech and language disorders. For 

instance, dyslexia, which has been linked to phonological deficits (Goswami, 2015), may 

be related to altered/impaired processing of specific phonetic features. Another example 

is the study of language development. The processing of speech into phonetic categories 

is known to gradually develop through infancy and childhood (Kuhl, 2004); however, this 

has typically been investigated in the context of simple, discrete stimuli. The framework 

introduced here provides a new way to investigate such developmental processes in more 

naturalistic conditions.
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Chapter 7. Deficits in right hemisphere 

encoding of natural speech correlate with 

psychometric measures of dyslexia 

7.1 Introduction 

 

The studies presented in Chapters 3 and 6 were oriented towards the development of a 

procedure to investigate the cortical processing of natural speech in particular cohorts, 

both clinical and nonclinical. The resulting procedure extracts objective 

electrophysiological measures of cortical tracking of specific acoustic and phonetic 

features of natural speech at both group and individual subject levels. This approach 

allows the extraction of reliable neural indices of speech using only 10 minutes of EEG 

recording, during which participants simply listen to natural speech from an audio-story. 

The present study explored the effectiveness of this approach to investigate speech 

processing in clinical populations while targeting one cohort in particular: Developmental 

dyslexia (hereafter dyslexia). 

Dyslexia is a learning disorder defined by difficulties in the acquisition of reading 

despite an adequate learning environment and otherwise normal intellectual and sensory 

functioning (Snowling, 2000). The 5-10% of school aged children affected by dyslexia 

usually perform poorly in tests of phonological awareness, verbal short-term memory, 

and lexical-access, highlighting that this disorder affects the linguistic component 

involved in the process of learning to read (Vellutino et al., 2004). Furthermore, children 

with dyslexia have substantially higher rates of depression and anxiety, juvenile 

delinquency, school dropout, and lower chance of future employment (Sabornie, 1994; 

Wiener and Schneider, 2002; McNulty, 2003; Daniel et al., 2006; Baker and Ireland, 
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2007; Brooks, 2014). The reduction or eradication of these consequences could be 

achieved through a better understanding of this disorder. Specifically, the identification 

of the root causes of dyslexia could better inform the necessary conditions for 

environmental enrichment and allow for the development of clinical tools for its early 

diagnosis. This, in turn could benefit the education and future employment of millions of 

children (Goswami, 2015). However, a person with dyslexia accumulates far less 

experience in reading-related skills, such as language (e.g. vocabulary, phonological 

recording) and sensory processing (e.g. oculomotor control, visuospatial attention). In 

this context, it has been difficult to disambiguate causes from consequences of this 

developmental disorder, which are currently hotly debated. 

Current theories propose that auditory, visual, or a modality-independent primary 

deficit underlies dyslexia (Goswami, 2015). The root cause of this disorder has been 

suggested to be phonological (Goswami, 2011; Richlan, 2012; Goswami and Leong, 

2013; Lehongre et al., 2013; Clark et al., 2014; Goswami, 2015) and related to the 

temporal sampling of the auditory input (temporal sampling framework; Goswami, 2011). 

Another factor that may underpin such deficit and language impairments in general is 

working memory, which can be thought of as a temporary storage system necessary for a 

wide range of complex cognitive activities, including language processing (Baddeley, 

2003). In addition, several studies with both adults and children found differences in 

amplitude and hemispheric bias between individuals with dyslexia and control groups 

(Lehongre et al., 2011; Giraud and Poeppel, 2012; Hamalainen et al., 2012; Poelmans et 

al., 2012). However, it has been argued that most of these studies did not hold the 

conditions necessary to assess causality (Goswami, 2015). Specifically, the account for 

control groups that match both age and reading-level was identified as crucial to 

disentangle causal effects from the consequences of reduced reading experience.  

The ability to isolate cortical measures of speech processing at the level of 

phonemes could provide crucial insights to arbitrate the debate on the primary causes of 

this deficit which, in fact, have been suggested to be phonological. For this reason, 

dyslexia is an appropriate clinical application of the novel analysis approach introduced 

in Chapter 3 and further developed in Chapter 6. Here, we investigate causal effects of 

dyslexia by considering both age and reading-level matched control groups using 

measures of cortical entrainment to speech acoustics and phonetics derived with our 

approach. Children aged between 6 and 12 listened to an audio-story for 9 minutes while 
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non-invasive EEG data were recorded and, in a separate session, performed a battery of 

tests on language, memory, intelligence, and attention skills. 

Under the hypothesis that dyslexia is underpinned by a phonological deficit 

(Goswami, 2011; Richlan, 2012; Goswami and Leong, 2013; Lehongre et al., 2013; Clark 

et al., 2014; Goswami, 2015), we expect such an impairment to affect measures of cortical 

entrainment that relate with phoneme-level processing, i.e. F, FS, and FS-S. Firstly, the 

present study aims to identify scalp areas that are affected by dyslexia. Secondly, the 

behavioural causes in such regions are investigated, with the goal of clarifying whether, 

where on the scalp, and at what latencies dyslexia is linked to a phonological deficit. The 

neural index FS-S allows us to isolate phoneme level processing (Chapters 3 and 6) and 

it has been shown to relate with intelligibility features of speech (Chapter 4). We 

hypothesised that FS-S would correlate with psychometric indices of phonological skills 

in scalp regions affected by dyslexia. The findings described in this chapter were 

presented at the Advances and Perspectives in Auditory Neuroscience (APAN) meeting 

as a poster (November 2016) and is currently in preparation as a research article as: 

“Deficits in right hemisphere encoding of natural speech correlate with psychometric 

measures of dyslexia”, in preparation. 

7.2 Material and methods 

Sixty-seven children (twenty-six female) aged between 6 and 12 years old, whose native 

language is English, participated in the experiment. The ethics committee for Human 

Research at Western Sydney University approved all the experimental methods used in 

the study. Informed consent was obtained from the parents of all the participants. Children 

also gave verbal assent for the study. 

7.2.1 Subjects 

Children were grouped into: 25 participants with dyslexia (DX; 8 female) and 42 control 

subjects (CTR; 18 female). Children were recruited in Sydney via advertisements in local 

media or via a database of families who previously expressed interest to participate in 

infancy and child research. All participants reported having no hearing difficulties. 

Families’ socio-economic statuses were calculated based on the average household 

weekly income of their area of residence (Australian Bureau of Statistics). All families 

came from middle or higher middle socio-economic backgrounds. 
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An additional grouping was derived to compare a DX group with two control 

groups: one matched by age (CA) and the other by reading-level (RL). DX, CA, and RL 

were composed of 13, 13, and 32 children respectively. The additional 14 children were 

not included as their reading-levels were either too high or too low compared to the rest 

of the subjects. 

7.2.2 Behavioural measurements 

Group assignment (DX vs CTR) was determined based on the children’s performances 

on tests from a screening battery that included measures of language, memory, 

intelligence, and attention. Children were assigned to the DX group if A) they obtained a 

score of 1.5*SD (standard deviation) below the age-appropriate mean in one or more 

phonological processing task and at least one reading task, and if B) had average scores 

(within 1*SD from the age appropriate mean) on the grammatical competence tests, and 

C) had average non-verbal IQ score and no indications of Autism Spectrum Disorder 

(ASD) or attention deficit hyperactivity disorder (ADHD). Children were assigned to the 

control group if they obtained average scores (within 1*SD) on all the tasks of the 

screening battery and had no indications of ASD or ADHD. The specific psychometric 

measures are described below: 

 

Word and non-word reading: The sight word efficiency and the phonemic encoding 

efficiency sub-tests of the Test of Word Reading Efficiency (TOWRE; Torgesen et al., 

2012) were administered. The TOWRE consists of two lists, one of 66 words and another 

of 66 non-words. In two separate trials, children are required to read as many items as 

possible from each list in 45 seconds. A standardised score (M = 100, SD = 10) is 

computed based on how many words are read accurately in this time for each test. 

 

Phonological processing: (1) Phonological awareness: Four sub-tests of the 

phonological awareness battery of the Comprehensive Test of Phonological Processing 

(CTOPP; Wagner et al., 2013) were administered. A) Elision – children were required to 

pronounce a word while omitting one of its component sounds, e.g. “say cup without /k/”. 

B) Blending words – children were required to hear two parts of a word and were asked 

to combine them and produce the resulting word, e.g., “/pen/ and /səl/ make pencil”. C) 

Sound matching – in this test, children saw two images of objects and were required to 
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point to the object whose label contained a target sound, e.g., when shown the objects sun 

and ball, the child is asked to show the one that starts with /s/. D) Phoneme isolation – 

children are required to listen to a word and identify one of its component sounds, e.g., 

“what is the second sound of the word train”. A composite standardised score for 

phonological awareness is then computed (M = 100, SD = 10). (2) Phonological short-

term memory (PTSM): all children completed the digit and non-word repetition subtests 

of the CTOPP (Wagner et al., 2013). Children were presented with sequences of digits or 

non-words that increased with complexity after each trial and were required to repeat 

them in the same order as they were presented. This yields a composite standardised score 

for phonological memory (M = 100, SD = 10). 

 

Rapid Symbolic Naming: The rapid digit naming and rapid letter naming subtests 

of the CTOPP were administered. Children were presented with a list of 36 items (digits 

or letters respectively) on a card and required to name as many as possible in the period 

of 2 minutes. The number of accurately named items in that time is used to calculate a 

standardised composite rapid symbolic naming score (M = 100, SD = 10). 

 

Working memory: Children completed the forward and backward number repetition 

subtests of the Clinical Evaluation of Language Fundamentals test (CELF; Semel et al., 

2006). A composite standardised working memory score was obtained based on the 

number of items that the child could successfully recall in each subtest (M = 10, SD = 3). 

 

Expressive vocabulary: The expressive vocabulary subtest of the Wechsler 

Individual Achievement Test (WIAT; Wechsler, 2009) was completed. The experimenter 

showed children an image and described it (e.g., “tell me the word that means a brush for 

cleaning teeth”), and children were required to name the image. The test is discontinued 

after 4 consecutive incorrect answers or when the entire set of 17 items is completed, 

yielding a standardised expressive vocabulary score (M = 100, SD = 10). 

 

Grammatical competence: The Test of Reception of Grammar (TROG; Bishop, 

2003a) and the Recalling Sentences subtest of the CELF (Semel et al., 2006) were 

administered. In the TROG, children were shown a card with four images and heard a 

sentence. They were required to point to the image on the card that was described by the 

sentence. The total number of correct responses is used to calculate the standardised 
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reception of grammar score (M = 100, SD = 10). In the Recalling Sentences subtest, 

children heard a sentence and were required to repeat it verbatim. Responses are scored 

according to the number of errors made in each repetition, and used to compute a 

standardised score for this subtest (M = 10, SD = 3). 

 

Non-Verbal Intelligence: Children complete the matrices subtest of the Kaufman 

Brief Intelligence Test (KBIT; Kaufman and Kaufman, 2004). The number of matrices 

completed correctly out of a maximum of 46 items is used to compute a standardised non-

verbal intelligence score (M = 100, SD = 10). 

 

Parental questionnaires: In addition to the screening battery, children’s parents 

completed the Children’s Communication Checklist (CCC-2; Bishop, 2003b) and the 

Swanson, Nolan, and Pelham rating scale (SNAP-IV; Swanson, 1992). The CCC-2 is 

used to assess children’s general communicative abilities and identify communicative 

deficits characteristic of SLI or Autism Spectrum Disorder (ASD). The SNAP-IV is used 

to identify behavioural patterns characteristic of ADHD or other behavioural disorders. 

No children who were included in the final sample showed any indications of ASD or 

ADHD. 

7.2.3 EEG Experimental Procedure  

Participants were presented for 9 minutes with an audio-story read by a female Australian 

English speaker. The stimulus was presented monophonically at a sampling rate of 44,100 

Hz using loudspeakers while subjects watched the corresponding cartoon. Note that the 

visual input only generally matched the events narrated in the audio-story, whereby they 

found correspondence in the general meaning but not in the detailed temporal events such 

as speech. High density EEG was recorded using 129-channel Hydrocel Geodesic Sensor 

Net (HCGSN), NetAmps 300 amplifier and NetStation 4.5.7 software (EGI Inc.) at a 

sampling rate of 1 kHz with the reference electrode placed at Cz. The electrode 

impedances were kept below 50 kΩ. 

7.2.4 EEG Data Preprocessing 

Data were analysed offline using MATLAB software (The Mathworks Inc.). EEG 

electrodes that were positioned at the jaw, mastoids, and forehead were removed from the 
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analysis because of their excessive noise. EEG signals from the remaining 93 channels 

were digitally filtered in three frequency-bands: delta-band (1-4 Hz), theta-band (4-8 Hz), 

and 1-8 Hz, using Chebyshev Type 2 filter in both the forwards and backwards directions 

to remove phase-distortion. Data were referenced to the average of all channels. In order 

to reduce processing time, data were down-sampled to 100 Hz. EEG channels with 

variance that exceeded three times that of the surrounding channels were labelled as bad 

channels, and replaced by an estimate calculated using spherical spline interpolation 

(EEGLAB; Delorme and Makeig, 2004). 

7.2.5 Model Evaluation 

As performed in Chapter 3, a model-based analysis was conducted to quantify how well 

the EEG signal reflects the encoding of different features of speech (Figure 7.1A). 

Specifically, the speech representations used were: 

• Spectrogram (S); 

• Phonetic features (F); 

• A combination of F and S (FS). 

Please refer to Section 3.2.2 for a detailed description of these speech representations. 

The idea is to fit linear mTRF models to describe the forward mapping from a 

speech representation to the corresponding EEG and then to test that model by seeing 

how accurately it can predict EEG from a new trial. This is quantified using Pearson’s 

correlation and a 9-fold cross validation. Because only 9 minutes of data were available 

for each subject, prediction correlations were derived using a generic modelling approach, 

as defined in Chapter 6. Such an approach entails the averaging of mTRFs within specific 

subject groups and, therefore, it assumes a certain degree of homogeneity for each group. 

The analysis was conducted using two different approaches that use generic models: 

a) Within-group approach (Figure 7.1B): Given two subject groups A and B, 

mTRF models are trained for every subject in each group and EEG prediction 

correlations are calculated using a cross-validated generic modelling approach 

within each group. A and B can be compared both in terms of their mTRFs and 

prediction correlation values. This approach is used to compare DX with CA 

and RL at each EEG electrode. 

b) Cross-group approach (Figure 7.1C): This approach originates from an idea 

that was mentioned in Section 6.4. The main rationale is to derive a template 
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using a sample from a group of subjects, and then to test whether a new subject 

belongs or not to that same group. The control subjects group (CTR) is 

randomly split into two partitions of equal size: CTR-1 and CTR-2. mTRF 

models are fit for each subject in CTR-1. A single generic model is obtained by 

averaging models for all subjects in this group. This model is then used to 

predict the EEG of all other subjects (CTR-2 and DX). The rationale is that 

CTR-2 should be homogeneous with CTR-1, therefore the EEG responses of its 

subjects should be predictable. Differently, a group like DX may be 

underpinned by a different response pattern, which would make the EEG less 

(or not) predictable using a model trained on control subjects. The procedure is 

then repeated using CTR-2, providing prediction values for CTR-1. Prediction 

values for non-control subjects using models fit on CTR-1 and CTR-2 were 

averaged. Mean prediction accuracies were derived by averaging all EEG 

electrodes. Results were averaged over 100 repetitions of this procedure, which 

used random binary partitioning of the CTR group. Correlations between these 

EEG predictability indices and psychometric behavioural measurements was 

evaluated using the Pearson’s correlation index. This analysis was also 

conducted at each individual scalp electrode. 

In both approaches, the model time-lags and the regularisation parameter λ were 

optimised as in Chapter 3. 
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Figure 7.1: Assessing the encoding of speech features in EEG. 

(A) 128 channel EEG data were recorded while subjects listened to continuous, natural speech consisting 

of a female speaker reading a story. We used linear regression to fit multivariate temporal response 

functions (mTRFs) between the low-frequency (1-8 Hz) EEG and five different representations of the 

speech. Each mTRF model was then tested at each scalp location for its ability to predict EEG using leave-

one-out cross-validation and Pearson’s correlation measures. (B) Within-group approach: EEG prediction 

accuracies for a subject are calculated using mTRF models fit using the other subjects of the same group. 

This approach allows to compare models and EEG predictions between groups. To this end, comparisons 

with the dyslexia group (DX) were performed for control groups (CTR) that were matched either by age 

(CA) or reading-level (RL). (C) Cross-group approach: Control subjects were randomly partitioned into 2 

groups (CTR1 and CTR2). EEG prediction accuracies for a subject (either in CTR2 or DX) are calculated 

using the mTRF models fit using a sample set of control subjects (CTR1).This procedure was then repeated 

for a model fit on CTR2. 
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7.2.6 Statistical Analyses 

Unless otherwise stated, all statistical analyses were performed using non-parametric 

Wilcoxon signed rank tests, while non-paired comparisons were conducted using two-

sided Wilcoxon rank sum tests. For tests involving all scalp electrodes, a cluster-based 

non-parametric analysis was conducted, with two as the minimum cluster size (Maris and 

Oostenveld, 2007). This statistical test takes into consideration the scalp distribution of 

the measure of interest by performing a permutation test on the cluster of electrodes with 

highest score i.e., the most important cluster according to the metric of interest. This 

approach provides a solution to the multiple comparison problem by including 

biophysical motivated constraints that allow to increase the sensitivity of this statistical 

test in comparison with a standard Bonferroni correction. Also, the false discovery rate 

(FDR) method (Benjamini-Hockberg-Yekutieli procedure; Benjamini and Yekutieli, 

2001) was used to assess significance in analyses that involved multiple comparisons of 

a neural index with the several psychometric measures. 

7.3 Results 

7.3.1 Reduced EEG predictability in dyslexia 

A within-group mTRF analysis was conducted on DX, CA, and RL. This approach 

compares subject groups in terms of how well acoustic and phonetic features of speech 

are reflected by the EEG signal. Measures of EEG predictability (Pearson’s r), which 

quantify the cortical entrainment to the corresponding features of speech, were derived 

for each speech representation. Qualitatively similar patterns emerged for the two control 

groups, while noticeably different scalp distributions resulted for subjects with dyslexia 

(Figure 7.2A). The neural indices, averaged across electrodes, showed an overall 

reduction for dyslexia compared to both control groups for all speech models (Wilcoxon 

Rank-Sum Tests: DX versus RL, p = 0.027, p = 0.014, p = 0.009 for S, F, and FS 

respectively; DX versus CA, p = 0.027, p = 0.011, p = 0.021 for S, F, and FS respectively). 

Figure 7.2B reports scalp areas that showed significant differences (p < 0.05) between 

DX and the control groups. 

Effects in the EEG delta-band involved broader scalp areas than in theta-band 

(significant-areadelta-band / significant-areatheta-band = 2.64, 1.49, and 11.33 for S, F, and FS 

respectively, where area was calculated as {DX versus CA} ∪ {DX versus RL}), 
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nevertheless the combination of both bands (1-8 Hz) produced the strongest results. 

Specifically, differences between DX and both control groups, which reflect effects of 

dyslexia that are not due to reduced reading skills (Goswami, 2015), were most 

pronounced for the FS-model in the combined 1-8 Hz band. Such effects emerged in three 

scalp regions (corresponding to the areas coloured in yellow in Figure 7.2B): a frontal 

area ROI1; a region in the right hemisphere ROI2; and an occipital area ROI3. 

Significance also emerged for an isolated electrode in the posterior-right region, which 

was not associated to any ROI as a minimum cluster size of 2 was used for the cluster 

statistics. ROI2 can be further divided into two clusters, one more frontal (ROI2a) and 

the other central (ROI2b), which exhibit significant suppression and enhancement due to 

dyslexia respectively. Furthermore, significant effects of dyslexia using the FS and F 

speech representations involved broader scalp areas than for the purely acoustic 

representation S (area(FS) / area(S) = 3.52; area(F) / area(S) = 2.61). 

 

 

Figure 7.2: Right biased reduction of cortical entrainment to natural speech in dyslexia. 

(A) EEG (1-8 Hz) prediction correlations (Pearson’s r) averaged across participants are reported here for 

each model (acoustic – S, phonetic – F, combined – FS) and for each subject group (dyslexia – DX, age 

matched control – CA, reading-level matched control – RL). (B) EEG predictability was compared between 

DX and the two control groups, for each model and scalp electrode using a paired Wilcoxon test. Coloured 

areas indicate EEG channels that showed significant effects between subject groups (cluster-based 

nonparametric statistics, p < 0.05). Direct effects of dyslexia were disentangled from other indirect effects 

(such as contrasts due to differences in reading skills or age) by identifying electrodes that showed 

significant differences between DX and both control groups ( {DX – CA} ∩ {DX – RL} ), which are 

indicated in yellow. The group differences emerged for the EEG frequency-band 1-8 Hz were shown to be 

mainly (but not uniquely) driven by effects in delta-band. 
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7.3.2 Cortical entrainment to speech correlates with linguistic skills 

The previous section showed that cortical entrainment to acoustic and phonetic features 

of natural speech is affected by dyslexia, and that this is not due to differences in age nor 

reading skills. However, the precise factors that underpin these effects remain unclear. 

Specifically, are they related to a phonological impairment, or do they reflect some other 

factors, such as an attentional deficit? We sought to answer to this question by assessing 

correlations between EEG predictability scores and psychometric measures.  

A cross-group approach was used to test this hypothesis. Table 7.1 reports 

correlation values between EEG predictability using FS (after averaging across all scalp 

electrodes) and all behavioural scores. Significant positive correlations emerged with 

measures of ‘phonological awareness, memory, and rapid symbolic naming’, ‘digit span’, 

‘recalling sentences’, ‘reception of grammar’, and ‘reading non-words’ (FDR corrected, 

α = 0.05). Note that, differently from the within-group analysis in Figure 7.2, this analysis 

does not exclude potential effects of reading-skills (an issue that will be addressed in the 

following section). In fact, cross-group analyses were performed on all subjects rather 

than only on the subsets DX, CA, and RL. 

The same correlation analysis was conducted on the composite EEG predictability 

measure FS-S, which was suggested in the previous chapters to represent an isolated 

index of phonological processing. In this case, this neural measure correlated with 

behavioural scores of ‘phonological memory and rapid symbolic naming’, ‘digit span’, 

‘reading words and non-words’, ‘general communication’, and ‘inattention’. These 

various patterns of results were only partially expected. In fact, the possible link of FS 

and FS-S with phonological processing was hypothesised to translate into strong 

correlations with measures of phonological skills. While this was certainly the case for 

the FS index, the significant correlations with reading skills and inattention hamper the 

interpretation of this result. Nevertheless, this analysis indicates that there is a link, either 

direct or indirect, between EEG predictability measures and standard psychometric 

measures of language skills. 
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Category Psychometric Test 
Correlation 

with FS 
Correlation 
with FS-S  

    

Phonological Skills 

Phon. awareness 0.338 0.281 

Phon. Memory 0.462 0.340 

Rapid symbolic naming 0.348 0.334 

Language Fundamentals 

Digit span 0.324 0.358 

Recalling sentences 0.407 0.280 

Reception of grammar 0.344 0.207 

Reading Efficiency 
Words 0.251 0.358 

Non-words 0.359 0.405 

General communication Children’s communication checklist 0.271 0.336 

IQ Brief intelligence test 0.296 0.230 

ADHD 
Inattention -0.132 -0.359 

Hyperactivity -0.085 -0.294 

 
Table 7.1. Cortical entrainment measures correlate with measures of phonological and language 

skills. 

EEG predictability measures for the FS-model and the ones derived as FS-S (Pearson’s r) were averaged 

across all electrodes and then correlated with psychometric measures of phonological skills, language, 

intelligence, and attention. Significant values are reported with black font (FDR correction, α = 0.05). 

7.3.3 Topographic specificity of the effects of dyslexia  

The correlations in Table 1 were obtained by averaging the neural measures across all 

scalp electrodes. While this analysis confirmed that such neural indices are linked to 

language skills, it could not disambiguate effects of phonological skills from other 

measures of language, reading, and attention. In this context, it is possible that effects of 

dyslexia that arise at distinct scalp locations are underpinned by different factors, which 

would provide an opportunity to disentangle the effects due to phonological skills. In 

particular, we hypothesised that electrodes that were sensitive to the effects of dyslexia 

(Figure 7.2B, ROI1-3) would show correlation with psychometric measures reflecting 

the causes of such effects. Specifically, this analysis was aimed at revealing whether 

dyslexia is linked to a phonological deficit.  

Figure 7.3 reports the correlation values of cortical entrainment measures for FS-

S, FS, S, and F with six most relevant psychometric measures of phonological, reading, 

and memory skills. Firstly, the FS-S metric produced significant positive correlations 

with the measures ‘phonological awareness’ and ‘phonological memory’ that emerged 
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only in the right hemisphere and that covered entirely ROI2. ROI2 showed also a 

correlation between FS-S and ‘Digit span’, a measure that has been linked to both short- 

and long-term memory (Jones and Macken, 2015). Finally, no significant correlation with 

‘reading words’, ‘reading non-words’, and ‘sentence recall’ emerged in any ROI.  

The same correlation analysis was conducted for FS, F, and S. EEG prediction 

scores for the F-model, which is based on phonetic features, were similar to the results 

for FS-S, with the exception of ‘phonological awareness’ that did not show a significant 

correlation in ROI2. The S-model, which is based on speech acoustics, did not show 

significant correlations with psychometric measures in any ROI, with the exception of a 

single electrode in ROI2. In addition, as hypothesised, FS scores positively correlated 

with ‘phonological awareness and memory’ in ROI2, and also with ‘sentence recall’ and 

‘digit span’. These results may suggest a major link between phonological and memory 

skills with dyslexia, involving in particular the right hemisphere. Importantly, these 

effects are not due to differences in reading skills.  

 

 

Figure 7.3: Topographic specificity to language skills of the effects of dyslexia. 

Correlations (Pearson’s r) between EEG predictability measures and all psychometric measures are 

reported for all scalp locations using all subjects. Significant correlations were identified by using cluster-

based nonparametric statistics (p < 0.05; FDR correction for multiple comparisons was applied for each 

electrode and neural index, α = 0.05). Grey areas indicate scalp areas that did not reach significance. Scalp 

areas that showed a significant effect of dyslexia for the FS-model (see Fig. 7.2B, 1-8 Hz) are indicated by 

black contours (ROI 1-3). The neural measure FS-S, which was suggested to represent an isolated index of 

phoneme-level processing, correlates with behavioural measures of phonological skills specifically for 

ROI2. 

 

Indeed, one issue is that several of the psychometric measures used are highly 

correlated with each other (Figure 7.4). For this reason, despite the use of cluster statistics 

that includes correction for multiple comparisons, the correlation analysis is prune to 
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spurious correlations, which challenges the identification of the causes of dyslexia. For 

example, ROI2 showed correlations with both measures of ‘phonological awareness’ and 

‘digit span’. However, the two psychometric indices are correlated with each other (r = 

0.41, p = 0.0003), thus it is difficult to conclude that ROI2 is linked to one, the other, or 

both skills. On the other hand, spurious correlations do not always occur as an effect of 

the pair-wise correlations between behavioural measures shown in Figure 7.4. For 

example, the ‘IQ’ score correlated with most measures of language skills, however it 

showed no significant interactions with any of the neural measures of interest (Figure 

7.5). To further reinforce the present results, the individual electrode correlations between 

behavioural and neural measures in Figures 7.3 and 7.5 were recalculated by using a 

partial correlation that excluded possible interactions with IQ and age of the participants. 

This less conservative analysis confirmed the correlation between FS-S with 

‘phonological awareness’ and ‘digit span’ skills in ROI2, while correlations with FS in 

that same region emerged only for the behavioural measure ‘recalling sentences’.  

 

 

Figure 7.4: A further look at the psychometric measures. 

Correlation (Pearson’s r) between all pairs of psychometric measures are reported
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7.4 Discussion 

Chapters 3 and 6 introduced a novel methodology to study natural speech perception at 

the level of phonemes. This chapter represents the first clinical application of such 

methodology and targeted children with developmental dyslexia, a deficit whose root 

causes remain uncertain and have been suggested to lie in impaired phonological 

processing (Goswami, 2011; Richlan, 2012; Goswami and Leong, 2013; Lehongre et al., 

2013; Clark et al., 2014; Goswami, 2015). Specifically, the deficit may relate to the 

cortical mechanism of temporal sampling and cortical tracking to speech (Thomson and 

Goswami, 2008; Goswami, 2011). To test this hypothesis, we conducted our novel EEG 

analysis on children aged between 6 and 12 years that were presented with 9 minutes of 

natural speech from an audio-story. 

Firstly, a group level analysis demonstrated that dyslexia affects the cortical 

tracking of speech. Dyslexia produced an overall reduction in cortical tracking of speech 

across all scalp electrodes. Analysis at individual scalp electrodes revealed significant 

effects of dyslexia specifically in three distinct ROIs. As hypothesised, results at the 

individual subject level revealed positive correlations between these effects and measures 

of phonological skills and memory capacity, supporting the theory of impaired phase 

locking to speech in dyslexia. Furthermore, these results demonstrate the effectiveness of 

this experimental framework in studying speech perception in clinical (and other) cohorts 

of interest. 

7.4.1 Impaired phase-locking to speech features in dyslexia 

In line with the initial hypothesis, cortical entrainment to acoustic and phonetic features 

of speech were affected by dyslexia. As discussed throughout this thesis, EEG 

predictability constitutes a reliable indicator of cortical entrainment to the specific 

features of speech used at the model fit and prediction stages. In this context, the overall 

reduction in EEG predictability measures in DX may reflect impairment in the cortical 

mechanisms of phase-locking to speech. An alternative explanation for this reduction is 

a lower homogeneity in the EEG responses within the DX group compared to CA and 

RL. This would affect the analysis procedure at the model fit stage, which requires 

averaging across subjects. Nevertheless, the significant effects of dyslexia were not 
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uniform across the scalp and emerged as a consequence of both increased and decreased 

EEG predictability (Figure 7.2), suggesting that dyslexia affects the topographic patterns 

of phase locking rather than just its overall magnitude. For this reason, we contend that 

this result reflects a deficit in phase locking due to dyslexia that selectively affects specific 

cortical areas, rather than simply producing an overall reduction of cortical tracking. 

7.4.2 Atypical phonological processing in right hemisphere in dyslexia 

The correlation analysis in Figures 7.3 and 7.5 demonstrated a variety of scalp 

distributions for different psychometric measures and indicated a main role of 

phonological and memory skills in the same ROIs that showed to be affected by dyslexia. 

Indeed, that EEG predictability correlates with psychometric measures is not surprising 

per se. In fact, both electrodes in ROI1-3 and the chosen psychometric measures (used 

for diagnosis) are affected by dyslexia by definition, which could determine correlations 

between these neural and behavioural indices. Instead, this analysis was conducted to 

identify which specific psychometric measures were generating such differences and 

whether these exhibited topographic specificity. 

The hypothesis of a phonological deficit in dyslexia related to the temporal 

sampling mechanisms finds support in the strong correlations emerged here between the 

behaviourally measured deficit in phonological skills and neural indices of cortical 

entrainment to phoneme-level speech. In particular, this result emerged for FS-S in ROI2, 

indicating a right hemisphere specificity of this deficit. This result is in line with recent 

literature on speech perception that hypothesised hemispheric specialisation to speech 

features at different rates (Poeppel, 2003). According to this processing scheme, named 

“asymmetric sampling in time” (AST) hypothesis, a deficit in the processing of specific 

speech units, such as phonemes, would affect speech processing differently between the 

two hemispheres. This expectation was met by previous studies that showed effects of 

dyslexia in the right hemisphere (Goswami, 2011; Peter et al., 2016) and on hemispheric 

asymmetry (Heim et al., 2003; Abrams et al., 2009).  Given the correspondence between 

the present results and previous findings, we contend that temporal sampling of 

phonological units is altered by dyslexia and that this phenomenon affects specifically the 

cortical entrainment to phonological units in the right hemisphere. 
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7.4.3 Neural correlates of reduced working memory and reading level in 

dyslexia 

Together, these results confirm the hypothesis that motivated this work, but they do not 

present a simple story. Indeed effects of dyslexia, that were not due to differences in 

reading-level, emerged in right hemisphere (ROI2) and related specifically to a 

phonological deficit. However, EEG predictability in the same scalp area correlated with 

measures of working memory (‘digit span’ and ‘recalling sentences’) and, in minor part, 

with other linguistic skills (e.g. ‘communication checklist’). Of course, it is possible that 

some of these correlations are spurious, thus indicating only indirect links between 

cortical oscillations and such behavioural scores. Furthermore, as expected, measures of 

attention and IQ did not show any interaction with the atypical cortical entrainment to 

speech features. 

The behavioural measures ‘communication checklist’ and ‘recalling sentences’ 

showed some significant correlations only with the neural indices FS and S in ROI2. 

However, the effect involved only part of ROI2, suggesting that it is either spurious or 

simply a minor contributor to the effect of dyslexia in that scalp region. Differently, strong 

correlation values emerged for the measure of working memory ‘digit span’ with FS-S, 

FS, and F specifically in ROI2. As for measures of phonological skills, ROI2 was 

involved only for speech models that included phonetic features, suggesting once again 

the link of that region with phonological processing.  

Interestingly, no correlations emerged for ROI1 and ROI3 from the individual 

electrode analysis. Indeed, this may be the consequence of a limited sensitivity of this 

analysis, possibly because of the low SNR of the recordings, or it may entail that those 

regions are affected by multiple complementary factors that do not emerge for pair-wise 

interactions. One attempted explanation is that the effects seen for the occipital region 

ROI3 relate to differences in the processing of visual cues. However, this is unlikely 

because auditory and visual inputs were related semantically but not at the level of speech 

acoustics and phonetics, while the TRF analysis regressed out specifically responses to 

such lower-level features of speech. Another explanation could relate to the fact that a 

group difference does not necessarily reflect a linear gradient corresponding to some 

behavioural measures of language skills that would produce strong correlation values. For 

example, a sharper sigmoid-like relationship could underpin such a relationship. 

However, post-hoc investigation using multiple kernels would be too sensitive to false-

positives, thus future studies will require precise prior hypotheses on such interactions.  
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Other significant correlations emerged for electrodes not belonging to any ROI. 

This was the case for the reading level measure, indicating that this factor is not a main 

contributor to the atypical cortical entrainment in dyslexia, which reinforces previous 

studies on dyslexia and cortical entrainment that did not include a reading-level matched 

group. Nevertheless, this chapter confirmed the strong relationship between reading-level 

and the cortical processing of speech, hence we believe that future research should include 

such a control group when investigating dyslexia and its root causes. 

7.5 Summary 

Our results provide, for the first time, evidence for impaired low-frequency neural 

entrainment to phonetic features of natural speech in dyslexia. Furthermore, this 

phenomenon exhibited a right hemispheric bias, which was associated specifically with a 

deficit in phonological skills and was disentangled from differences in reading-level. This 

finding provides quantitative support for the temporal sampling framework formulated 

by Goswami (Trends Cogn Sci, 2011). Also, the neural indices of cortical entrainment 

correlated with psychometric measures of language skills, and FS-S correlated 

specifically with measures of phonological skills in scalp regions affected by dyslexia. 

This suggests that these neural indices may provide an objective metric to investigate 

language development and impairment.
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Chapter 8. General Discussion 

 

Speech is central to human life. However, the neural mechanisms that allow speech 

comprehension are poorly understood. As we know from Chapter 2, one major challenge 

lies in capturing the high spatial and temporal detail of what is thought to be a hierarchical 

system. The ability to study cortical dynamics at specific hierarchical levels in isolation 

may be key in: 

A) Understanding the cortical underpinnings of speech comprehension in healthy 

adults and typically developing children; 

B) Investigating the causes of deficits involving speech and language functions.  

While new non-incremental insights on this system have been produced by ECoG and 

fMRI work, these have been constrained in terms of population sample and cortical 

coverage of study, and by low temporal resolution respectively. 

This thesis introduces a novel framework to isolate neural activity at specific levels 

of the speech processing hierarchy using natural stimuli and high temporal resolution. 

This EEG-based approach, which can be extended to MEG, is applicable to a wide variety 

of subjects, from infants to older persons, and in both clinical and non-clinical 

populations.  

The first part of this thesis, consisting of Chapters 1-3, motivates this research 

(Chapter 1) and provides a summary of the recent work in the field (Chapter 2). Chapter 

3 defines the novel framework and demonstrates that it is sensitive to the cortical 

processing of speech at the level of phonemes. The latter is considered a crucial step of 

speech comprehension, as it represents an early level of categorical perception that is 

“special to speech”, i.e. that occurs specifically for speech and not for other non-speech 

sounds (Mesgarani et al., 2014; Leonard et al., 2016). 



136 

 

The second part of the thesis, composed of Chapters 4 and 5, deals with the key 

point A described above. The EEG-study of Chapter 4 isolates quantitative indices of 

phoneme-level processing to investigate the mechanisms of integration of prior 

knowledge with sensory input on healthy adults during speech perception. Chapter 5 

provides further insights on that same cortical process using an MEG source-space 

analysis with a focus on disentangling neural activity from different cortical sources and 

rhythms. 

Chapters 6 and 7 develop the key point B. Chapter 6 extends the framework 

introduced in Chapter 3, demonstrating its applicability with only 10 minutes of recording 

time, which is an important step toward research in particular cohorts. In addition, 

Chapter 7 demonstrates that this analysis approach is not only applicable, but also 

effective in studying speech and language impairment. Specifically, measures of 

phonological processing were affected by dyslexia, which is in line with theories stating 

that this reading disorder is actually underpinned by a phonological deficit.  

 The rest of this chapter focuses on more general discussion that relates to the thesis 

as whole. The primary aims of the thesis are dealt with in Sections 8.1, 8.2, and 8.3. 

Limitations and (ongoing and) future applications of the work are discussed in Section 

8.4, followed by concluding remarks. 

8.1 A novel approach to study natural speech perception 

This thesis finds its roots in the relatively recent discovery that low-frequency cortical 

activity tracks the temporal envelope of natural speech (Ahissar et al., 2001; Luo and 

Poeppel, 2007; Aiken and Picton, 2008). This has led to insights into core mechanisms of 

speech perception, such as selective attention (Ding and Simon, 2012a; Power et al., 2012; 

O'Sullivan et al., 2014) and audio-visual integration (Luo et al., 2010; Zion Golumbic et 

al., 2013a; Crosse et al., 2015; Crosse et al., 2016a). This work allows the study of these 

mechanisms in naturalistic conditions, however this research has been limited in one 

important respect. Namely, it has been unclear whether envelope tracking reflects any 

speech-specific cortical processing or whether it simply indexes passive following of the 

acoustic energy of any sound input. The first main finding of this thesis answers this 

question by demonstrating that EEG-measured low-frequency cortical oscillations entrain 

to phonological features of speech.  
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This discovery was achieved through the design of an analysis framework based on 

so-called forward models, which predict the EEG signal using different representations 

of the speech. The quantitative results have been suggested to reflect the amount of speech 

information encoded in the neural signal, which have been related specifically to acoustic 

(E, S) and phonetic features (P, F) of speech. The fact that the combined model FS 

produced higher EEG predictions than the purely acoustic and phonetic ones, and that 

this was not the case when participants were presented with time-reversed speech, has 

been interpreted as a proof that acoustic and phonetic encoding in the EEG were not 

completely overlapping and that, therefore, EEG reflects phonetic encoding.  

The motivation behind the use of time-reversed speech in the control experiment 

was to have a stimulus with similar properties to the original audio-book but that was 

unintelligible. Of course, forward and time-reversed speech share the same spectro-

temporal properties with the sole difference that one is the time inversion of the other, 

which allowed for a fair comparison. One other option that we considered was to use 

different languages (not spoken by the participants) with similar phonological properties 

to English, such as Dutch, and with different phonological inventory, such as Hindi. 

However, time-reversed speech was a better choice for a fair control experiment for two 

main reasons: Firstly, a foreign language may have various differences with English (e.g., 

spectro-temporal, rhythmic, phonological), which would make the comparison between 

natural speech and control conditions depending not only on comprehension, but also on 

such lower-level differences. Secondly, the use of a different automatic phoneme aligner 

software would be necessary, which would require a careful comparison of the alignment 

precision between English and the foreign language (usually the most common languages 

have the best aligners). For these reasons, time-reversed speech was an optimal choice 

for that specific control experiment. Of course, this transformation entails effects such as 

reduced attention, because the stimulus becomes unintelligible, and changes of the 

temporal dynamics at the onsets and offsets (of words and phonemes). Chapter 4 provides 

further support to both validity and effectiveness of our framework. In fact, differently 

from Chapter 3, perceived clarity was modulated without changing the speech acoustics 

and that change correlated with our novel neural index FS-S.   

This framework provides an unprecedented opportunity to characterise the 

acoustic-phonetic processing of natural speech with high spatial and temporal resolution 

using a macroscopic technique that can capture activity in auditory cortex as well as 

concurrent activity in frontal and visual cortices. Importantly, this finding has been 
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reproduced by subsequent research. Firstly, the work in Chapter 4 confirmed the results 

for the natural speech condition using a different experimental paradigm. This study 

indicated that EEG predictability increases with spectral detail (Section 4.3.2) and is 

modulated by prior knowledge. Importantly, the measure FS-S increased with perceived 

intelligibility, which demonstrates that this index is speech-specific.  Also, recent work 

from a different group provided further support to our findings by investigating 

phonological perception on continuous speech using an ERP analysis (Khalighinejad et 

al., 2017). It was observed that EEG responses to continuous speech encode both phonetic 

and speaker information at various latencies relative the phoneme onset. Differently from 

linear regression approaches, event-related averaging has the drawback of not addressing 

explicitly the issue of overlapping between long and short latency responses to 

consecutive stimuli. Despite these limitations, Khalighinejad et al. reported remarkably 

distinct cortical responses that are in line with the finding discussed in this thesis. 

Nevertheless, the choice of using the mTRF approach enabled us to further develop the 

work from Chapter 3 by using EEG predictability and generic models, which could be 

difficult with event-related averaging which, differently from regression approaches, is 

not optimised for predictions.  

8.2 Heterogeneous roles of low-frequency cortical 

rhythms 

Recent literature on speech perception hypothesised that processing of speech units at 

specific rates, such as phonemes, engages the two hemispheres differently (Poeppel, 

2003). Although this has been shown in a variety of experiments (Giraud et al., 2007; 

Hickok and Poeppel, 2007; Gross et al., 2013; Keitel et al., 2017), there remains 

significant controversy on the specific roles of different cortical rhythms. One view is that 

delta- and high-frequency activity (> 40 Hz) are reliable indicators of perceived linguistic 

representations, while theta-band entrainment may primarily reflect the analysis of 

acoustic features of speech (Kösem and van Wassenhove, 2016). However, as mentioned 

in Chapter 4, this interpretation does not agree with previous (tentative) suggestions that 

speech features critical for intelligibility are reflected by theta-band oscillations, while 

delta-band entrainment relates to the acoustic rhythm (Ding and Simon, 2014). 

The greater specificity afforded by our forward encoding models provides insights 

from a different perspective from that of previous studies based on broader envelope 
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entrainment measures. Our considerations focus on delta- and theta-band neural rhythms 

because EEG measures of cortical entrainment were mostly driven by those frequencies. 

In particular, while Chapter 3 demonstrates that both EEG delta- and theta-bands reflect 

phoneme-level entrainment, a major distinction between purely acoustic and phonetic 

models emerged in the slower delta rhythms. This suggests that theta-band more strongly 

reflects entrainment to speech acoustics. This finding is confirmed in Chapter 4, where 

only delta-band FS-S increased with perceived intelligibility, which confirms the speech-

specific role of these EEG rhythms. Also, Chapter 5 showed a distinct role of delta and 

theta oscillations in envelope entrainment. While theta-band showed “only” a suppression 

at short latencies, delta-band revealed spatio-temporally complex patterns due to prior 

knowledge and increased intelligibility that involved latencies up to 400 ms from stimulus 

onset. Unfortunately, the experimental paradigm, originally developed for a cross-

correlation approach, could not be used for phoneme-level analysis because of the limited 

amount of stimulus data (only 2 short sentences were repeated throughout the 

experiment). Phoneme-level analysis was conducted instead in Chapter 7, where results 

were driven by a combination of delta- and theta-bands with, once again, a major 

contribution from EEG delta-band. 

These results support the distinctive complementary roles of the two bands in the 

processing of acoustic and phonological features. Such roles may extend over the 

temporal lobe and involve frontal regions such as the IFG. Of course, this thesis focused 

on a rigid separation of delta- and theta-bands as 1-4 Hz and 4-8 Hz, which may be 

considered standard (as for other variations, such as 1-3 Hz and 3-7 Hz). Further work 

will have to verify whether there is an actual “hard” boundary between these cortical 

oscillations (or, at least, that we can model it as hard), or if a “softer” boundary that adapts 

to the specific speech rate of a stimulus should be applied. 

8.3 The role of prior predictive knowledge in speech 

comprehension 

Recent studies have contributed to the characterisation of specific cortical areas in terms 

of their functional roles in speech comprehension. In particular, a hierarchical 

organisation of temporal areas supporting the perceptual and lexical processing of speech 

has been identified: Key regions include the superior temporal gyrus (Humphries et al., 

2014) and the superior temporal sulcus (Chang et al., 2010; Mesgarani et al., 2014; 
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Overath et al., 2015), which exhibited sensitivity to acoustic and phonetic features of 

speech. Furthermore, the middle temporal gyrus has been related to higher-level lexical 

processing (Lau et al., 2008; Turken and Dronkers, 2011). 

Although these studies provide important insights into the mechanisms of key 

regions in the speech network, a number of fundamental questions remain unanswered, 

especially regarding the temporal dynamics and interactions between cortical areas. The 

presence of both feed-forward and feed-back connections allows for the efficient and 

effortless integration of sensory auditory input with prior knowledge. These mechanisms 

have been shown to extend over the temporal lobe. In particular, prior knowledge has 

been shown to elicit a top-down influence within temporal areas (Tuennerhoff and 

Noppeney, 2016) and from inferior frontal gyrus to STG (Sohoglu et al., 2012; Leonard 

et al., 2016; Sohoglu and Davis, 2016). 

Theories on more general neural mechanisms, such as sharpening and predictive 

coding, may explain these effects (Section 2.2.2). As known from Chapter 2, these 

frameworks predict various patterns of suppression and enhancement of neural activity 

with prior knowledge. Despite recent tantalising discussions on this topic, which touch 

on various phenomenon and diseases (from speech perception to visions in 

schizophrenia), scientists have not reached an agreement (Clark, 2013). In the context of 

speech perception, a recent ECoG study from Holdgraf et al. (2016) demonstrated that 

prior knowledge, rather than simply producing increases or decreases in activation in 

specific cortical areas, enhances high gamma-band entrainment to speech-like spectro-

temporal features in temporal cortex. In this sense, this study agrees with another recent 

finding from Blank and Davis (2016) that showed a double effect of prior knowledge in 

STS: a suppression in fMRI BOLD response and an enhanced representation of speech-

specific features. While Blank and Davis explicitly linked their finding with the predictive 

coding theory, the results reported by Holdgraf et al. appear to be more in line with the 

sharpening theory, as they showed enhancement but not a suppression of cortical 

responses to speech. 

The results from Chapters 4 and 5 provide new important insights that complement 

the current literature. Firstly, Chapter 4 demonstrated a dual effect of prior knowledge: 

an increase with perceived intelligibility and a suppression. Both enhancement and 

suppression effects also emerged in Chapter 5, where they were specific to delta- and 

theta-bands respectively. These results are in line with the finding from Blank and Davis. 

In particular, we contend that there is a link between the delta-band phoneme-level 
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increase (FS-S) in Chapter 4, the delta-band envelope entrainment enhancement 

measured for STS in Chapter 5, and the enhancement of speech-specific information 

encoding in STS described by Blank and Davis. Indeed, a review of predictive coding 

theory has proposed that there may exist two distinct units within our sensory processing 

hierarchies: representational units and error units (Hohwy, 2013). And this idea fits well 

with our dual effects. It may be the case that activity from representational units is 

increased with prior knowledge in our experiment, while activity from error units is 

suppressed. This account may address also the result from Holdgraf and colleagues. In 

fact, it is possible that the ECoG measures and cortical locations used in that study were 

sensitive only (or mainly) to representational units, which would explain why no 

suppression emerged from that study.  

Within the same theoretical framework, there are other (complementary) 

explanations for a dual effect that includes both enhancement and suppression due to prior 

knowledge. One of these suggests that higher-order areas that are “inactive” or less 

responsive when speech is less (or not) intelligible would become more active when prior 

knowledge makes speech clearer. Such a phenomenon would explain the results in 

Chapter 5, where a causal bottom-up link from STS to MTG emerges when prior 

knowledge is available, suggesting that MTG is involved in the processing of speech 

features that require intelligibility. 

Indeed, the results presented in this thesis indicate that the complex underpinnings 

of speech perception cannot be captured by 2- or 3-node models as previously attempted 

(Sohoglu and Davis, 2016; Tuennerhoff and Noppeney, 2016). In particular, the study in 

Chapter 5 suggests that IFG may interact differently with distinct temporal areas, which 

could not be captured by a two-node model. In addition, the same chapter indicates a need 

for high temporal and spatial resolution to disentangle feed-forward and feed-back 

effects. 

The results in this thesis provide an opportunity to discuss theories that go beyond 

speech perception and the auditory modality. Overall, the present work supports the 

predictive coding framework and indicates that such enhancement/suppressive effects 

apply to speech processing at the phonemic level. Furthermore, a cortical hierarchy that 

involves fast feedback effects (from IFG to HG) and slower feed-forward processing 

(from HG, STS, to MTG) emerged as part of the mechanism that integrates prior 

knowledge with sensory input and producing a perceptual enhancement. 
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8.4 Ongoing and Future Work 

“The actual words are the tip of a vast iceberg of very rapid unconscious non-linguistic 

processing” (Prof. Steven Pinker) 

 

The categorical identification of phonemes constitutes a first step toward the abstraction 

of a sensory input, which becomes progressively less modality-specific and, therefore, 

more abstract. For instance, my concept of ‘apple’ is an abstraction of what that word 

represents for me. It could be taste, visual, or even auditory (e.g., the sound while eating 

one or the pronunciation of the actual word ‘apple’). Whatever the modality, this internal 

representation may constitute one important difference between people’s perceptual 

experiences and the ability to study these abstractions may involve a variety of fields such 

as cognitive neuroscience, clinical and criminal psychology, computer engineering, 

marketing, and even religion. This thesis may be nothing of all of that, or it may represent 

a first step toward the ability of modelling this abstract internal representation of our daily 

perceptual experience. 

The research presented in this manuscript demonstrated that non-invasive EEG 

reflects the cortical processing of natural speech at the level of phonemes. A novel 

analysis framework was developed to derive quantitative objective measures of neural 

entrainment to acoustic and phonological features of speech. Indeed, the cortical 

processing of speech requires the brain to decode information at higher levels of 

abstraction than phonemes, e.g., grammar and semantics. Further research is needed to 

model and quantify cortical responses to such abstract features of speech. 

One ongoing line of research that we are currently pursuing is the study of the visual 

component of speech. In particular, one core question is whether categorical perception 

of the so-called visemes – i.e. the visual equivalent of phonemes – occur in visual cortex 

during lip-reading. Using a similar approach to the one in Chapter 3, some results have 

been obtained in this direction, suggesting some level of categorical perception in visual 

areas during silent lip-reading (O’Sullivan et al., 2016). However, this work is far from a 

conclusive demonstration of such a phenomenon and further research is needed.  

A second line of research that we have been investigating is the extension of this 

analysis framework to other linguistic components. In particular, we have been 

investigating the possibility of modelling EEG responses to speech based on the semantic 

content within each sentence (Broderick, In preparation). We envisage that the ability to 

do this would constitute a significant advance of the current analysis methodologies and 
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that it has the potential to provide new insights on linguistic processing. Crucially, these 

and other possible measures of linguistic processing could be extracted from the same 

recordings used for acoustics and phonetics. Potentially, one unique natural speech 

experiment, as in Chapter 3, 6, and 7, could produce a whole set of neural measures at 

different linguistics levels, while a long battery of various tests is currently required by 

standardised tests to extract behavioural measures of language skills. We contend that the 

success of this research may lead to a new, more direct and efficient way to study speech 

perception and, possibly, to conduct diagnosis of speech and language impairments. 

Of course, much more work is needed to clarify whether this research can be 

successful. Chapters 6 and 7 constitutes “only” the first step toward such objectives. 

Firstly, the effectiveness of our novel analysis approach has to be tested on populations 

with other language deficits. Secondly, the approach may be further strengthened with 

the use of mapping approaches more sophisticated than a regularised linear regression. In 

addition, the feasibility of this approach using EEG systems with dry electrodes should 

be verified. In fact, this technology allows for a shorter set-up time, which would be 

preferable in many cases, including longitudinal studies, which are likely to involve many 

sessions, and specific populations that cannot commit to an experiment for a long time, 

e.g., elderly with dementia. 

As a concluding note, this research work can be beneficial to better understand the 

cortical mechanisms that underpin speech processing, and has already provided novel 

insights into such neural functions. In addition to what previously said, this work may 

provide a way to investigate speech processing on populations where standard 

behavioural methods are not reliable or absent. One example is the study of the 

development of speech processing, starting from new-borns. In particular, the ability to 

derive reliable objective measures of speech processing in infants and young children 

may have the potential to allow early diagnosis of speech and language impairment, 

which currently can be very hard and may require the awaiting for more severe symptoms 

to arise before confidently achieve a diagnosis. Furthermore, this approach could reveal 

new insights on other important and not well understood phenomena, such as second 

language acquisition and bilingualism.  
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8.5 Summary and Conclusions 

The body of research from this thesis provides a method to investigate the cortical 

processing of natural speech with non-invasive EEG and to disambiguate cortical 

responses to speech acoustics and phonetics. This methodology has been used to 

investigate the cortical mechanisms that underpin the integration of prior knowledge with 

sensory input, revealing new insights that support the theory of predictive coding and the 

interaction between frontal and temporal areas during such process. Furthermore, this 

thesis demonstrated the applicability of our novel analysis approach using less than 10 

minutes of EEG recordings, during which participants listened to a continuous audio-

story, and its effectiveness was demonstrated by studying speech processing in children 

with dyslexia.
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