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ABSTRACT: The probabilistic analysis of Offshore Wind Turbines (OWT) is not a new practice. The standards
for designing OWT (IEC 61400 class) emphasizes that assessing uncertainty is of major importance inside the
design chain. Still, major challenges related to the uncertainty and the probabilistic assessment pose to the sector
and its development. The analysis of operational loads is one them.
The problem of analyzing extreme responses or cumulated damage in operation during the design phase is signif-
icantly related to its high computational cost. As we progressively add complexity to the system to account for its
uncertainties, the computational effort increases and a perceptive design becomes a heavy task. If an optimization
process is then sought, the designing effort grows even further. In the particular case of fatigue analysis, it is
frequent to not be able to cover a full lifetime of simulations due to computational cost restrictions.
The mentioned difficulties fomented the utilization of surrogate models in the reliability analysis of OWT. From
these surrogate approximations the ones based on Kriging models gained a special emphasis recently for structural
reliability. It was shown that, for several applications, these models can be efficient and accurate to approximate
the response of the system or the limit state surfaces.
The presented paper tackles some of the issues related to their applicability to OWT, in a case specific scenario
of the tower component subjected to operational fatigue loads. A methodology to assess the reliability of the
tower component to fatigue damage is presented. This methodology combines a Kriging model with the theory of
extreme values. A one-dimensional Kriging case using the state of art NREL’s monopile turbine is presented.The
reliability of the OWT tower is calculated for 20 years.
The results show that the usage of a Kriging model to calculate the long term damage variation shows a high
potential to assess the reliability of OWT towers to fatigue failure.

1 INTRODUCTION

The Offshore Wind Turbine (OWT) sector has been
growing steadily in parallel with the current needs and
demands for clean energy. Still, the cost of OWT en-
ergy is still above other energy conversion sources.
Despite being a very highly technical sector, improve-
ment of the design techniques remains a need to un-
lock new breakthroughs that will enable it to become
progressively more competitive.

At the same time, probabilistic design is further de-
manded by the sector as a strategy to enable compre-
hensive designing processes that generate robust sys-
tems.

One of the areas of particular concern for OWT, as
designed for long life-time, is the fatigue design. In
the case of the OWT towers, fatigue is seen as a major
driver of failure.

Certifying and designing a wind turbine to ensure
that it is not going to fail through structural fatigue may
involve a very onerous design process. The calculation
of fatigue on a wind turbine, as a cumulative event,
means that the designer needs to simulate and repli-
cate the damage suffered by the wind turbine during
its design life time. This usually means thousands of
computational simulations, and consequently, a huge
computational effort that hinders the design and even
more the optimization process on a practical basis.



To simplify the process a simplified analysis that
prioritizes the most critical enviromental states (or the
ones expected to originate more damage) is frequently
applied. Running all the simulations that represent the
full lifetime of a OWT is not a common practice. Even
with several simplifications and assumptions the fa-
tigue remains a very highly resource demanding task.

Due to its non-linear character and to some of the as-
sumptions and simplifications considered, uncertainty
propagates through the design chain interfering with
the awareness of the real robustness of the system.

Under this context, the following paper presents a
methodology for the calculation of offshore wind tur-
bine towers fatigue based on a surface model. The us-
age of a surface model, in the case a Kriging model, re-
duces significantly the amount of computational effort
needed to address the problem of fatigue. A methodol-
ogy for calculation of long-term fatigue on OWT tow-
ers is presented and discussed. It is important to high-
light that the methodology presented here for OWT
towers can be applied to other structural component.

To successfully introduce the proposed methodol-
ogy, Section 2 presents the main theoretical aspects
of the reliability assessment based on Kriging models
and some of the most relevant works up to date. Sec-
tion 3 presents the methodology applied and the model
used for analysis. Section 4 shows the main results of
the analysis and discusses them allowing for the main
conclusions to be drawn in the following chapter.

2 FATIGUE RELIABILITY OF OWT

The design of OWT stands to two major standards,
the IEC61400-1 (IEC, 2005) and IEC61400-3 (IEC,
2009). Other standards, guidelines and recomenda-
tions can be found that comply with the previously
mentioned and that were created to help the designer
during design and certification processes, e.g. (DNV,
2014).

The current design practices implemented in the in-
dustry in regard of fatigue assessment have more of de-
terministic than probabilistic. To assess fatigue failure,
commonly a set of simulations are run and the damage
is assessed for the design lifetime with some subjacent
considerations that minimize the computational effort.
Assessment of the uncertainties and the variations in-
troduced by in the process is limited.

For fatigue analysis the assumption of linearly cu-
mulative damage represented by the Miner’s rule with
partial safety factors is endorsed. To extract the dam-
age generated by the external loads a rainflow counting
methodology is recommended (DNV, 2014).

Even introducing several simplifications, the analy-
sis of fatigue of an OWT accordingly to the certifica-
tion requirements still represents a highly resource in-

tensive task that can involve several hundreds or thou-
sands of simulations of heavy and complex models.
It is of great interest then to introduce and validate
methodologies that can significantly reduce this effort
and increase the precision of the design.

In Kallehave et al. (2015) it is mentioned that de-
pending on the actual structural detail, there may be a
further potential to extend the lifetime by up to 40%,
or equivalently reduce the mass of fatigue driven parts
of the pile in future designs.

Several challenges need to be tackled though, it is
shown in Sutherland and Veers (1995), through per-
forming experimental tests on a 34 meters blade, that
the damage calculated in 10 minutes can vary substan-
tially.

Therefore, even considering the significant potential
to improve on fatigue assessment, any further method-
ology needs to be meticulous with inherent uncertain-
ties.

One of the methodologies that has been gaining par-
ticular notoriety to account for the uncertainties in the
response of the physical systems is the use of surro-
gate models, in particular Kriging surrogate models.
The following chapter presents the theory subjacent
to these models and some of the most relevant works
on structural reliability and fatigue analysis where they
were applied.

2.1 Surrogate Kriging Models

A surrogate model or metamodel is a generic descrip-
tion that includes different types of models. These can
be usually described as a model of a model. They can
be also understood as a mathematical relation or an
algorithm that relates the inputs and the outputs of a
certain system or process. These approximation mod-
els are many times also described as, response surface
methods, in the sense that they mimic the behaviour of
a simulation model as close as possible with a surface,
having as a direct benefit the reduction of the compu-
tational cost of evaluating that model.

The most popular surrogate models are polynomial
response surfaces, Kriging models, support vector ma-
chines, space mapping, and artificial neural networks.
In the present work attention is given to the Kriging
models which the application in structural reliability is
relatively recent and is an active area of research lately.
The Kriging surface models present the big advantage
of considering the uncertainty in the approximation of
a true response of a model, making it therefore inter-
esting for reliability engineering.

The principle behind the Kriging models is to ap-
proximate the true state function g(x) that depends on
a vector x = [X1,X2, ...,Xn] of n random variables
with an approximate mathematical model G(x).



The Kriging models are exact interpolators based on
the idealization of the numerical model response as the
realization of a Gaussian stochastic process (Echard
et al., 2011). Therefore, with a Kriging model the true
response function g(x) can be written as follows:

G(x) = f(β;x) + z(x) (1)

f(β;x) = β1f1(x) + ...+ βpfp(x) (2)

where f(β;x) is a deterministic component deter-
mined by a regression model defined by p basis func-
tions fp(x) and p regression coefficients β; being the
number of p coefficients needed to estimate function
of the approximation intended in the regression (or-
der considered). On the other hand, z(x) is a Gaussian
stochastic process with zero mean and covariance be-
tween two points in the space:

cov(z(xi), z(xj)) = σ2
zΩ(θ;xi, xj), (3)

with i, j = 1,2,3, ...,m

here, σ2
z is the constant process variance and Ω a cor-

relation function, which represents the correlation be-
tween two arbitrary points xi and xj in the space. The
process of fitting a Kriging metamodel demands a sam-
ple of m support points or observations that is com-
monly designated as Design of Experiments (DoE);
DoE = [xk, yk == g(xk)] with k = 1,2,3, ...m. In this
sample of support points the Kriging prediction is the
exact value realisation at each xk. The covariance func-
tion interpolates then the errors between the regression
model predictions and the true limit state realisations.
In the framework of structural analysis an exponential
Gaussian correlation function has been widely applied
for structural reliability analysis.

Ω(θ;xi, xj) = exp

(
−

n∑
i=1

θi(xi − xj)
2

)
, (4)

where n is the dimension of the vector space, also it is
the number of random variables. The correlation func-
tion depends on the realisations xi and xj and on the
correlation parameters θi.

It can be seen that the Kriging model depends on
3 main parameters, the regression coefficients β, the
variance σ2

z and the correlation parameters θ. For a
given sample of support points the problem can then
be solved through a generalised least squares formula-
tion, where the estimator for β̂ and σ̂2

z are given by the
following equations.

β̂ = (F TΩ−1F )−1F TΩ−1y1:m (5)

σ̂2
z =

1

m

(
y1:m − Fβ̂

)T
Ω−1

(
y1:m − Fβ̂

)
(6)

F is the regression matrix in which the lines are the ba-
sis functions f(β,xk) evaluated at them support points
and y1:m is the vector of true realisations of the func-
tion as previously defined at m points. The matrix Ω
defines the correlation between each pair of support
points according to the correlation function considered
before:

Ω =

Ω(x1, x1) . . . Ω(x1, xm)
... . . . ...

Ω(xm, x1) . . . Ω(xm, xm)

 (7)

This matrix, as can be seen in Equation 4, depends on
the parameter θ and therefore its calculation is needed
before assessing the value of both β̂ and σ̂2

z . The cor-
relation function is then defined by using maximum
likelihood estimation:

θ̂ = argmin L(θ) (8)

with,

L(θ) = (det Ω)
1
m σ̂(θ)2z (9)

being the L(θ) the likelihood estimator to be min-
imised. Knowing all the estimators for the Kriging
model, a prediction of g(u) in a certain point u in the
space is given by the Kriging expected value µG and
variance σ2

G:

µG(u) = f(u)T β̂ + r(u)T Ω−1(y− Fβ̂) (10)

σ2
G = σ2

z

(
1 +U(u)T (F TΩ−1F )−1U(u) − r(u)TΩ−1r(u)

)
(11)

U(u) = F TΩ−1r(u) − 1 (12)

r(u) = [Ω(u,x1), . . . ,Ω(u,xm)] is the correlation vec-
tor between one point and all the other known points.
Not forgetting that f(u), like defined before, is the
trend of the model, the deterministic part of it.

A zero order polynomial is of common application,
meaning that Equation 2 reduces to f(β,x) = β1. This
means that the matrix F for this case takes the form
of a vector with components fk(xk) = 1 for m compo-
nents. It is assumed that a constant term is sufficient for
generating precise Kriging interpolation models for re-
liability. In Gaspar et al. (2014) it is shown that higher
order polynomials may not contribute to improved ac-
curacy in the case particular structural of reliability en-
gineering problems.

It is important to emphasize that in a Kriging model
a function is approximated in a way that it is exactly
predicted in a point u that belongs to the space of ex-
periments or sample of support points, meaning that
µG(u) is exactly G(u) and its Kriging variance is null.



The Kriging models or Gaussian process models are
of interest for the topic of reliability analysis due to
their interpolation capacity, the flexibility to approxi-
mate arbitrary functions with a high level of accuracy
and the capability of accounting for a local uncertainty
measure.

2.2 Kriging model in reliability analysis of OWT

Examples of the application of the Kriging models for
reliability problems can be found in (Bichon et al.,
2008; Echard et al., 2011; Zhang et al., 2015; Gas-
par et al., 2014). In the particular case of the reliability
analysis of offshore wind turbines, the application of
Kriging surface to calculate the reliability of the sys-
tem is relatively new.

The application of Kriging models for OWT reli-
ability analysis was first highlighted in Yang et al.
(2015), where a reliability based probabilistic opti-
mization of a Tripod foundation was developed. The
variable of optimization considered was the weight of
the structure which was then subjected to specific con-
straints, and the reliability checked through Monte-
Carlo simulations. The advantage of using a meta-
model to reproduce the behaviour of the system is well
shown, as a more comprehensive design is achieved
through the process with a reduced amount of compu-
tational time.

Following, in Morató et al. (2016) the response of
an OWT is modeled using a Kriging model. Again,
approximating the response of the model with a Krig-
ing surface is motivated by the reduction of the com-
putational time needed to analyse the reliability of an
OWT. Two limit state (LS) functions are considered in
the analysis. As in Yang et al. (2015) Latin Hypercube
sampling is used to set the design of experiments.

While these models steadily gained interest for
analysing OWTs, their usage in the wind energy in-
dustry dates from before. In Maki et al. (2012) the
wind turbine response is approximated with a Kriging
model and therefore applied to replace the computa-
tional expensive coupled dynamic code. This enables
a multi-level optimization approach of the blades of a
1MW wind turbine.

When analyzing the fatigue life of components, the
use of Kriging is not widely common. On the other
hand, the potential shown for its application is high.
Echard et al. (2013) reduced the computational time
of a fatigue reliability analysis from more than 100
days to approximately 9 hours by using a surrogate
model and adaptive sampling methodologies. Showing
therefore the huge benefits in reduction of the com-
putational cost from the application of a Kriging in-
terpolation scheme without compromising accuracy in
the results. In Yang and Wang (2012) a probabilistic

structural fatigue resistance optimization of a bending
stiffener is presented where they compare three meta-
models, among which there is a Kringing interpolation
surface, to reduce computational time and enable the
optimization to be practicable.

In the particular case of fatigue analysis of OWT
no work was found that combines the Kriging mod-
els and the fatigue analysis. A methodology for the
fatigue analysis of OWT will be presented in the fol-
lowing chapter and the uncertainty resulting from its
application addressed.

3 OWT FATIGUE ANALYSIS MODELLING

In the present study NREL’s 5MW baseline OWT
is applied due to its state of the art character,
(Jonkman et al., 2009). Uncertainty quantification
toolbox, UQLab Marelli and Sudret (2014), was used
to build the Kriging model. The structural analysis is,
as mentioned, focused on the tower and the loads (fore-
aft moment) are calculated in 9 points across its height.
To present the method used, the analysis here focuses
on the point located in the connection with the in-
terface piece which is expected to be the more criti-
cal one. In further analysis of the uncertainty of the
method, all the points will be considered to infer on
the influence of change of cross section.

It is usually assumed in the bibliography that un-
der constant or random loading the fatigue life follows
a normal or log-normal distribution (Wu et al., 1997;
Wirsching and Chen, 1988). This is an important as-
sumption for the methodology proposed as this way, it
is correct to assume that a Kriging surface will repro-
duce long-term fatigue results adequately.

To assess the fatigue life of the structure a new
methodology that is aligned with the current practices
used in the sector for the fatigue analysis of OWT is
introduced. Ten minutes simulations are used to deter-
mine the short term levels of fatigue damage. To cal-
culate the short term damage the current practice used
in the sector is applied. Rainflow counting method is
therefore used to assess the number of cycles asso-
ciated to each stress interval (Niesłony, 2009). The
long term fatigue calculations assume linear cumula-
tive damage accordingly to the Miner’s rule, Equation
13,

DC =
I∑

i=1

ni

Ni

(13)

where ni are the number of cycles experienced at a
certain stress bin i during the lifetime and Ni is the
theoretical maximum according to the S-N curve, the
damage level can then be determined individually for
each of the life time ten minutes cycles experienced



by the turbine. The fact that the damage can be lin-
early summed allows the definition of a surface that
represents the damage experienced by the OWT. This
surface can then be approximated by a Kriging interpo-
lation scheme, reducing as a consequence the number
of simulations needed to have a full assessment of the
OWT ni cycles for each stress bin during the expected
life time.

It is important to highlight that in the current indus-
try applications the designer may choose the environ-
mental states considered more important, or the ones
expected to contribute with more structural damage, as
running all the life-time simulations may be impracti-
cable. The usage of lumped scatter diagrams is pirat-
ical representation of this, (Fischer et al., 2010). As a
consequence, the simulation time can be quite reduced,
but the approach originates less awareness of the real
behaviour of the OWT and may overestimate or under-
estimate the real damage levels.

To fully assess the fatigue life of the OWT tower
after calculating the damage surface two proposals are
presented: the usage of Monte-Carlo simulations from
the originated Kriging interpolation, or the integration
of the different levels of damage through the expected
joint distribution of environmental variables during the
life-time of the turbine.

Since the focus here is to validate the model and as-
sess some of its errors, no special methodology is used
to generate the DoE. In the future special attention
should be paid to the way the design of experiments
is picked in order to increase the efficiency of apply-
ing the methodology. The damage levels are assessed
in this phase based on the main environmental vari-
able: wind velocity (vwind). Either way, Kriging mod-
els are shown to work well when the space of variables
increases (Gaspar et al., 2014).

4 DAMAGE SURFACE APPROXIMATION WITH
KRIGING

To analyse the results of applying the described
methodology a Kriging metamodel was built with the
wind velocity (vwind) as the main variable of the DoE.
The wind is expected to be the main contributor for
the damage in the tower. Other variables, e.g. the wave
conditions, direction of the wind, among other, are ex-
pected also to contribute to damage of the OWT. To
generate the response surface first a single seeded sim-
ulation was compared with results from six seeded
wind speeds.

Important to notice that every simulation of the cou-
pled dynamic code takes an average time of 20 to 25
minutes, making the analysis very resource intensive in
case a full life-time simulation is pursuit. In the indus-
try the fatigue calculation for OWT is addressed by se-

lecting the simulations expected to contribute the most
for the life-time. The end result is a single point as-
sessment for twenty years were the result accounts for
a very limited probabilistic assessment.

The results of the Kriging fitting for a one di-
mensional variable are shown in Figure 1. The Krig-
ing Gaussian uncertainty approximates the short term
damage variability and generates random realisations
(simulated points) that replicate the fatigue uncer-
tainty. An ordinary Kriging metamodel was considered
in the model.

Despite being a state-of-art code, the calculations of
the short-term loads and the short-term damage gener-
ated were validated with the results from the commer-
cial software GH-Bladed. Even considering that it is
unlikely to generate two equal time series, the order of
the damage and the Markov matrices were compared
for reference.

For the calculation of the fatigue a bi-linear S-N
curve was adopted accordingly with the guidelines
given in DNV (2014).

Figure 1: a) Kriging model not considering local variability of the
DoE. b) Kriging model considering local variability of the DoE.

It is possible to identify that not considering the
short-term variability of the damage may introduce
substantial errors in the Kriging prediction. With a
higher number of seeds the Kriging model approxi-
mates the response in a more adequate way. It is pos-
sible to use a small number of points, but the variation
in the surface is much bigger as the result of a one or
two simulations can approximate the real mean value
if exactly the right points are picked, which is highly
unlikely.

For low wind speeds (<10m/s) the standard devia-
tion seems to be highly over predicted by the meta-



model. This may be related to the low damage gen-
erated during this regime of operation. The damage
generated in 10 minutes for wind speeds below the
rated power does not contribute significantly for the
total damage in 20 years as the damage in 10 min-
utes can decrese up to 100 when the wind velocities
decreases in comparison with the damage originated
at rated power. Therefore, to estimate the long-term
variability of the damage wind speeds below 9 m/s
was considered as having the constant mean value pre-
dicted by the metamodel. Further analysis of using the
Kriging surface for fatigue estimation of OWT may
address this issue, although, its contribution for the
operation fatigue life is residual. The increase of the
number of points in the DoE that covers the low wind
speeds is very likely to minimize this variability how-
ever the computational cost associated with refining
the DoE in the low wind speeds should be evaluated
against the additional accuracy gained in the long term
estimation of damage.

Even considering that the Kriging surface seems to
catch some of the variability of the short-term damage
as the number of seeds increases, in Figure 1 it is possi-
ble to identify that it can under-predict or over-predict
this variability.

The convergence of the results was then checked
with the increase of the number of seeded wind veloc-
ities, using additional simulations to cross check the
model. Due to computational time restrictions the ini-
tial six seeds were considered. The convergence of the
mean and standard deviation was then checked to infer
on the error of the metamodel approximation, Figure
2.

Figure 2: Convergence error of the mean and the standard devia-
tion of the Kriging model.

The results show that the mean has an average error
inferior to 10% while the standard deviation despite
converging to values around 20% in the most impor-
tant wind speeds, for high wind speeds it has a signif-
icant error (as can be seen in the confidence intervals

of Figure 1), around 60%. One of the potential factors
that may be affecting the results at high vwind is the fact
that the controller implemented in the NREL 5MW
monopile turbine does not consider the shut-down of
the turbine. Low wind speeds were not considered in
this analysis of convergence due to the cited reasons
and the difficulty in having proper estimations of their
uncertainty.

It is important to notice that the present graphic indi-
cates, using the example of when 3 points are applied
to create the Kriging, that the accuracy of the model
will depend more on the points picked for the DoE
than on the number of points used. The mean is a mea-
sure that converges fast, while the predicted standard
deviation is highly dependent on the picked points.
Due to the normal distributed character of the damage
one additional point may not mean better results un-
til a certain threshold of number of points is achieved.
The results show that a careful approach to the number
of seeds simulated is needed in order to have the best
trade-off in improvement of accuracy when comparing
with the additional cost of generating new points.

Nevertheless, the presented convergence graphic is
very interesting in the sense that allows for a establish-
ing a correction of the Kriging estimations in certain
points. With few additional simulations it is possible
to have a measure of the uncertainty in the Kriging
predictions and with a coupled analysis have more ac-
curate results. Following works shall address how this
measure of uncertainty can support the selection of the
DoE.

One of the biggest challenges in the application of
the Kriging surface for fatigue is making these two
measures converge with the model results.

If too many points are used to generate the Kriging
metamodel, it can get constrained to the design of ex-
periments and lose the capability to correctly predict
the variability of the damage generated in 10 minutes.
On the other hand, if few or badly chosen DoE points
are considered, the model will overestimate the vari-
ability of the damage generated in 10 minutes.

Further developments shall then assess the DoE by
characterizing the fatigue variability with the variabil-
ity of the loads generated by the wind. Comparison of
the results obtained from a implemented Kriging ap-
proach should be also compared with the ones obtained
by a stochastic Kriging approach.

Even considering that during the lifetime the results
will converge to the mean, neglecting the variability
of the DoE and predicting its damage exactly in the
model, may introduce errors by not considering im-
portant variations around those points when assessing
the long term variability of the damage. This can be
identified in Figure 3.

To calculate the extreme response of the damage a



Figure 3: Extrapolated Pf for the OWT tower fatigue

set of points was generated and then Pf was extrap-
olated. The Kriging metamodel is applied to generate
long term series in a very fast way when compared to
what would be expected if all the simulations were run.

One hundred series of 20 years damage were gener-
ated from the Kriging surface. It is known that a linear
combination of a set of Gaussian variables will pro-
duce a new Gaussian variable, so a normal distribution
was used to fit the data. The long term damage distri-
bution allows then the estimation of the probability of
failure due to fatigue by calculating the probability of
achieving the failure damage level.

The limit-state line of damage considered was the∑
D = 0.5. The value of 0.5 appears in different doc-

uments that refer to the structural fatigue analysis due
to the common overestimation of fatigue life by the as-
sumption of linear summation of damage accordingly
to the Palmgren-Miner rule, Equation 13, (Veldkamp,
2006). This design lifetime threshold can be found in
some guidelines for OWT design by the recommen-
dation of a design fatigue factor(DFF) for a lifetime
without inspections, e.g. DNV (2014). It is possible to
identify that Pf is almost 0 for the considered struc-
ture in the framework presented. The analysed sys-
tem’s tower is expected to be highly reliable. As exam-
ple, in Morató et al. (2016), couldn’t compute its Pf

for the limit-state involving the extreme overturning
moment of the tower. Nevertheless, several assump-
tions were taken in the current work in regard of the
way the loading variables were analysed that may con-
tribute to the calculated reliability (e.g. one single vari-
able was used to create the Kriging model). In Veld-
kamp (2006) an extensive analysis of the uncertainty
associated with the different design variables that rule
the fatigue life of wind turbines is presented. It is then
expected for a more extensive analysis of the different
uncertainties in the design variables to increase the risk
of failure. It is also important to highlight that the S-N

curve has some inherent reliability concept that is as-
sociated with a probability of failure, which should be
accounted and coupled in further computations of the
shown probabilities.

5 CONCLUSIONS

An alternative approach to calculation of the fatigue
reliability of OWT towers was presented in the present
paper. This approach considers the utilization of a
metamodel to approximate the fatigue damage gen-
erated in ten minutes. In the present case a Kriging
model is applied due to its inherent capability to ap-
proximate the response field with a Gaussian process.

Using metamodels, in special the Kriging models, is
not a new practice in the field of reliability. Although a
robust approach is still needed for many specific case
scenarios. For OWT towers the assessment of fatigue
life in the design certification process usually disre-
gards a reliability approach, being the survivability ad-
dressed as a deterministic process. This urged the need
to develop methodologies to assess how robust is the
design in the expected life time.

The Kriging models present as the main advantage
the low computational cost. Additionally, they capture
the uncertainty of the short-term damage. Their im-
plementation is not intrusive in the source code, and
the predictions for long term show the potential to be
highly accurate.

Nonetheless, several challenges need to be tack-
led to improve the implementation of the presented
methodology, being the four main ones:

• Address the uncertainty generated by considering
the DoE as a deterministic prediction in the Krig-
ing.

• Optimize the generation of DoE points to improve
the accuracy in predicting the variability of the
damage and having the least computational cost.

• Improve the Kriging accuracy for the variability
in the low wind speed velocities.

• Increase the number of dimensions and analyse
the accuracy and sensitivity of the results.

There are other more detailed challenge to be ad-
dressed as the possibility of missing out with this ap-
proach some narrow peaks of damage caused by res-
onance conditions. Surpassing these challenges may
contribute to significant improvement in the ratio of
effort and accuracy given by the model. The high short
term fatigue damage variability has shown as being
of major importance in future developments of the
methodology.



To conclude it is important to highlight that the ap-
proach presented significantly increases the designer
awareness for the risks inherent to the fatigue life-time
allowing a better planning of the life-cycle manage-
ment of the equipment.
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