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ABSTRACT
Given that the exact answer to a question is fixed, we ask is it
possible to strengthen the privacy by increasing the crowd size that
participates even though they do not contribute to the exact answer?
In this paper, we introduce the notion of scalable privacy whereby
data owners not at a particular location privatize their response such
that they respond as if they are at a location (even when they are
not). Immediately the question of utility is raised and we examine
the tradeoffs to construct such a privacy mechanism so that it scales
in both privacy and utility.

CCS CONCEPTS
•Security and privacy→Mobile and wireless security; Privacy
protections; •Networks→ Network privacy and anonymity;
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1 INTRODUCTION
In our proposed scalable privacy mechanism, each data owner’s
sensitive data resides on the data owner’s own device. Once receiving
a query, each data owner does not directly respond to the query with
the sensitive attribute. First, the data owner flips a biased sampling
coin to determine whether or not they should participate. If a data
owner does not participate, they privately write ⊥ thus effectively
increasing the anonymity set. If a data owner does participate, the
data owner locally privatizes their sensitive attribute based on the
randomized response mechanism [8] such that only privatized data is
released (rather than the sensitive answer). In contrast, prior privacy-
preserving systems must synchronize the amount of differential
privacy noise added by other data owners or system components [4].

To privately write the data owners’ privatized responses to a data
aggregator, each data owner generates function secret shares (FSS)
[1]. FSS slices the privatized response into multiple shares and trans-
mits one share to each aggregator. Each aggregator independently
processes each share within each given epoch. At the end of an
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agreed upon epoch, all aggregators share their results with the ap-
propriate analyst. As long as there is at least one honest aggregator,
the data owners’ private write property is guaranteed. FSS hardness
assumptions does not depend on a particular pseudorandom number
generator (as opposed to a homomorphic pseudorandom generator
[5]) which allows the scalable privacy mechanism to be efficient and
scalable. Our initial results show we can privately write 250,000
data owners’ location data (1280 bits) with a key size of 181KB and
an anonymity set of one million data owners.

For example, suppose we crowdsource crowd densities at popular
London tourist destinations using the query in Figure 1. A data
owner begins by answering the query “Am I at London Bridge?”.
Prior work using the Laplace mechanism [6, 7] would have everyone
at London Bridge answer truthfully. Then, a small amount of privacy
noise is added to protect privacy. In Haystack Privacy, all data
owners respond to the query as seen in Figure 1. A small fraction
of those not at London Bridge will respond “Yes, I’m at London
Bridge”. A small fraction at London Bridge will respond “No, I’m
not at London Bridge”. Both cases provide plausible deniability
and are controlled by two different Bernoulli trials specified in the
query. To estimate the aggregate count, the expected value of the
privacy noise due to the Bernoulli trials is calculated and removed.
One observation is the number of people at London Bridge is fixed.
While the number of people in any locale (e.g., London Bridge) may
be fixed, the inclusion of inputs from people not at that location
enables us to increase the crowd size and strengthen the privacy.

2 PRIVACY MODEL
Our system model is in the same setting as local privacy models
resembling the randomized response mechanism [8]. However, our
model differs in that the output space consists of three values, namely
⊥, “Yes”, and ‘No” rather than the two values of “Yes” and “No”.

We now define our construction. First, the data owner performs
i.i.d. random sampling with probability πs to determine if they will
participate. If not, the data owner writes ⊥.

Second, the data owner responds with an L bit vector, one bit for
each location. The data owner tosses the first coin with probability
π1 for each location. If heads, answer truthfully. If tails, the data
owner tosses the second coin with probability π2 and replies ”Yes”
if heads and ”No” if tails. This means for their actual location,
the data owner responds “Yes” with probability πs× π1, and for
the locations they are not at, they respond “Yes” with probability
πs× (1−π1)×π2.

Next, the privatized L bit vector is privately written to the aggre-
gators utilizing the FSS cryptographic primitive. The aggregators
verify the shares as described in the previous section utilizing FSS
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(b) Haystack privacy

Figure 1: (a) illustrates that each data owner is able to privately
write a value without an adversary linking a message to a partic-
ular data owner (b) the Haystack mechanism privatizes the mes-
sage before privately writing allowing for privacy-preserving
aggregate analytics.

share verification. At the end of the epoch, the aggregators finalize
the contributed writes into the N×L matrix without knowing which
rows each data owner wrote to.

Definition 2.1. (Scalable Privacy.) Let D be any database. Let a
crowd C be defined as any group of at least k data owners.

A privacy mechanism San is (k,ε )-haystack-private if for every
database D and every data owner i ∈D, either San(D) ≈ε San(D\ i),
i ε-blends with more than one crowd C, or both.

San(D) ≈ε San(D\ i) means that essentially removing a specific
data owner does not significantly change the result, allowing that
data owner to blend in the crowd, such as when sampling occurs.

3 PRELIMINARY RESULTS
We utilize the California Transportation Dataset from magnetic pave-
ment sensors[2] collected in LA\Ventura California freeways [3].
There are a total of 3,865 stations and 999,359 vehicles total. We
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Figure 2: Accuracy. Ground truth versus privatized vehicle
counts with a confidence interval of 95%. The legend descrip-
tion refer to the first coin toss π1, second coin toss π2, and sam-
pling probability πs respectively. The Pearson correlation coef-
ficient values are all above 0.9921 with a p-value all lower than
6.8298e−64.

assign virtual identities to each vehicle. Each vehicle announces the
station it is currently at.

Figure 2 compares the scalable privacy mechanism to the ground
truth data over a 24 hour time period with a confidence interval of
95%. We select a single popular highway station. Every vehicle at
the station reports “Yes” while every other vehicle in the population
truthfully reports “No”. The scalable privacy mechanism then priva-
tizes each vehicle’s response. The figure shows that the privatized
time series is highly correlated with the ground truth. While the
L2 error may be large due to the variance, the relative counts is
very accurate. Traffic management analyzing the privatized time
series would be able to infer the ebbs and flow of the vehicular traf-
fic. The parameters π1 = 0.998,π2 = 0.5,πs = 0.9 have the strongest
Pearson correlation coefficient with ρ = 0.9993 and a p-value of
p = 6.747e−100. The shape of the privatized line is not the accurate
mean estimation though is useful for traffic profile and fluctuations.
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